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Abstract. We revisit the kernel minimum enclosing ball problem and
show that it can be solved using simple recurrent neural networks. Once
solved, the interior of a ball can be characterized in terms of a function of
a set of support vectors and local minima of this function can be thought
of as prototypes of the data at hand. For Gaussian kernels, these minima
can be naturally found via a mean shift procedure and thus via another
recurrent neurocomputing process. Practical results demonstrate that
prototypes found this way are descriptive, meaningful, and interpretable.

1 Introduction

The problem of characterizing data in terms of prototypes commonly arises in
contexts such as clustering, latent component analysis, manifold identification,
or classifier training [15,16,19,20,23]. Ideally, prototype identification should
be computationally efficient and yield representative and interpretable results
either for meaningful downstream processing or for assisting analysts in their
decision making. In this paper, we discuss a two-stage approach based on kernel
minimum enclosing balls and their characteristic functions that meets all these
requirements.

Minimum enclosing balls (MEBs) are central to venerable techniques such
as support vector clustering [3], or support vector data description [17]. More
recently, balls have shown remarkable success in structuring deep representation
learning [6,7,14]. Here, we revisit the kernel MEB problem and discuss how to
solve it using simple recurrent neural networks. Resorting to recent work [1]
which showed that recurrent neural networks can accomplish Frank-Wolfe opti-
mization [9], we show how the Frank-Wolfe algorithm allows for finding MEBs
and how this approach can be interpreted in terms of reservoir computing.

The solution to the kernel MEB problem consists in a set of support vectors
that define the surface of a ball in a high dimensional feature space. Its inte-
rior, too, can be characterized in terms of a function of its support vectors. Local
minima of this function coincide with representative and easily interpretable pro-
totypes of the given data and we show that, for balls computed using Gaussian
kernels, these minima are naturally found via generalized mean shifts [4,10].
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Since the mean shift procedure, too, can be interpreted in terms of reservoir
computing, the approach we present in this paper constitutes an entirely neuro-
computing based method for prototype extraction.

(a) Euclidean MEB (b) Gaussian kernel MEBs for growing scale parameters

Fig. 1. A 2D data set, its Euclidean MEB, and several Gaussian kernel MEBs. Squares
indicate which data points support the surface of the corresponding ball

2 Minimum Enclosing Balls in Data- and Feature Space

In order for our presentation to be self-contained, we begin with a brief review
of the minimum enclosing ball (MEB) problem.

Given a data matrix X = [x1, . . . ,xn] ∈ R
m×n, the minimum enclosing ball

problem asks for the smallest Euclidean m-ball B(c, r) with center c ∈ R
m and

radius r ∈ R that contains each of the given data points xi.
Understood as an inequality constrained convex minimization problem, the

primal MEB problem is to solve

c∗, r∗ = argmin
c, r

r2

s. t.
∥
∥xi − c

∥
∥
2 − r2 ≤ 0 i = 1, . . . , n.

(1)

Evaluating the Lagrangian and Karush-Kuhn-Tucker conditions for (1) yields
the corresponding dual MEB problem

μ∗ = argmax
μ

μᵀz − μᵀXᵀX μ

s. t.
μᵀ1 = 1

μ � 0

(2)

where μ ∈ R
n is a vector of Lagrange multipliers, 0,1 ∈ R

n denote vectors of
all zeros and ones, and the entries of z ∈ R

n are given by zi = xᵀ
i xi.

The Karush-Kuhn-Tucker conditions further reveal that, once (2) has been
solved, center and radius of the sought after ball amount to

c∗ = X μ∗ (3)

r∗ =
√

μᵀ
∗z − μᵀ

∗XᵀX μ∗. (4)
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Note that the given data points enter the problem in (2) only in form of inner
products with other data points because XᵀX is an n×n Gramian with entries
(XᵀX)ij = xᵀ

i xj and z = diag[XᵀX]. The dual thus allows for invoking the
kernel trick where inner products are replaced by non-linear kernel functions so
as to implicitly solve the problem in a high dimensional feature space.

Hence, letting K : Rm×R
m → R be a Mercer kernel, we introduce K ∈ R

n×n

where Kij = K(xi,xj) and k ∈ R
n such that k = diag[K] and obtain the kernel

MEB problem
μ∗ = argmax

μ
μᵀk − μᵀK μ

s. t.
μᵀ1 = 1

μ � 0.

(5)

Once (5) has been solved, the radius of the minimum enclosing ball in feature
space can be computed analogously to (4), namely

r∗ =
√

μᵀ
∗k − μᵀ

∗K μ∗. (6)

However, the center of the feature space ball cannot be computed similarly
since (3) does not lend itself to the kernel trick. Nevertheless, computing

cᵀ
∗c∗ = μᵀ

∗K μ∗. (7)

still allows for checking whether or not an arbitrary x ∈ R
m resides within the

kernel MEB of the given data. This is because the inequality ‖x−c∗‖2 ≤ r2∗ can
be rewritten as

K(x,x) − 2κᵀμ∗ + μᵀ
∗K μ∗ ≤ μᵀ

∗k − μᵀ
∗K μ∗ (8)

where κ ∈ R
n in the second term on the left has entries κi = K(x,xi).

Figure 1 compares the Euclidean minimum enclosing ball of a set of 2D data
to kernel minimum enclosing balls computed using Gaussian kernels

K(xi,xj) = exp
(

−‖xi − xj‖2
2λ2

)

(9)

with different scale parameters λ. In order to visualize the surfaces of the feature
space balls in the original data space, we considered the function

f(x) =
√

K(x,x) − 2κᵀμ∗ + μᵀ
∗K μ∗ −

√

μᵀ
∗k − μᵀ

∗K μ∗ (10)

and highlighted the contour for which f(x) = 0. Note that f(x) can be seen as a
characteristic function of the corresponding MEB B, because f(x) ≤ 0 ⇔ x ∈ B
and f(x) > 0 ⇔ x �∈ B.

Finally, we note that those data points xi which support the surface of an
MEB B in data- or in feature space are easily identified. This is because only if
xi resides on the surface of the ball will its Lagrange multiplier μi∗ exceed zero;
for points inside the ball the inequality constraints in (2) or (5) are inactive and
their multipliers vanish. Below, we will refer to points whose multipliers exceed
zero as the support vectors sj of B.
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Algorithm 1. Frank-Wolfe algorithm for (11)
initialize a feasible point in Δn−1, for instance

μ0 = 1
n
1

for t = 0, . . . , tmax do
determine the step direction

νt = argmin
ν ∈Δn−1

−νᵀ∇D(μt)

update the current estimate

μt+1 = μt + 2
t+2

[νt − μt]

3 Neural Computation of Minimum Enclosing Balls

Next, we discuss how the Frank-Wolfe algorithm [9] solves the kernel MEB prob-
lem and how this approach can be interpreted in terms of reservoir computing.

Observe that the kernelized dual Lagrangian D(μ) = μᵀk − μᵀK μ in (5)
is concave so that −D(μ) = μᵀK μ − μᵀk is convex. We may therefore rewrite
the maximization problem in (5) in terms of a minimization problem

μ∗ = argmin
μ∈Δn−1

μᵀK μ − μᵀk (11)

where we also exploited that the non-negativity and sum-to-one constraints in
(5) require any feasible solution to reside in the standard simplex Δn−1 ⊂ R

n.
Written as in (11), our problem is clearly recognizable as an instance of a

convex minimization problem over a compact convex set and we note that the
Frank-Wolfe algorithm provides a simple iterative solver for this setting.

Algorithm 1 shows how it specializes to our context: Given an initial guess μ0

for the solution, each iteration of the algorithm determines which νt ∈ Δn−1 min-
imizes the inner product νᵀ∇D(μt) and applies a conditional gradient update
μt+1 = μt + ηt (νt − μt) where the step size ηt = 2

t+2 ∈ [0, 1] decreases over
time. This way, updates will never leave the feasible set and the efficiency of the
algorithm stems from the fact that it turns a quadratic problem into a series of
simple linear problems.

Next, we build on recent work [1] and show how Frank-Wolfe optimization
for the kernel MEB problem can be implemented by means of rather simple
recurrent neural networks.

For the gradient of the negated dual Lagrangian −D(μ), we simply have
−∇D(μ) = 2Kμ − k so that each iteration of the Frank-Wolfe algorithm has
to compute

νt = argmin
ν∈Δn−1

νᵀ[

2Kμt − k
]

. (12)
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The objective function in (12) is linear in ν and needs to be minimized over
a compact convex set. Since minima of a linear functions over compact convex
sets are necessarily attained at a vertex, the solution of (12) must coincide with
a vertex of Δn−1. Since the vertices of the standard simplex in R

n correspond
to the standard basis vectors ej ∈ R

n, we can cast (12) as

νt = argmin
ej∈Rn

eᵀ
j

[

2Kμt − k
] ≈ gβ

(

2Kμt − k
)

. (13)

where gβ(x) introduced in the approximation on the right of (13) represents the
vector-valued softmin operator. Its i-th component is given by

(

gβ(x)
)

i
=

e−βxi

∑

j e−βxj
(14)

and we note that
lim

β→∞
gβ(x) = argmin

ej∈Rn

eᵀ
j x = ei. (15)

Based on the relaxed optimization step in (13), we can therefore rewrite the
Frank-Wolfe updates for our problem as

μt+1 = μt + ηt

[

νt − μt

]

(16)
= (1 − ηt)μt + ηt νt (17)

≈ (1 − ηt)μt + ηt gβ

(

2Kμt − k
)

. (18)

Choosing an appropriate parameter β for the softmin function, the non-linear
dynamical system in (18) mimics the Frank-Wolfe algorithm up to arbitrary
precision and can therefore solve the kernel MEB problem.

From the point of view of neurocomputing this is of interest because, the
system in (18) is algebraically equivalent to the equations that govern the internal
dynamics of the simple recurrent architectures known as echo state networks [11].
In other words, we can think of this system in terms of a reservoir of n neurons
whose synaptic connections are encoded in the matrix 2K. The system evolves
with fixed inputs inputs k and its non-linear readout happens according to (6)
and (7). The step size ηt assumes the role of the leaking rate of the reservoir.
Since ηt decays towards zero, neural activities will stabilize and the system is
guaranteed to approach a fixed point μ∗ = limt→∞ μt.

What is further worth noting about the reservoir governed by (18) is that its
synaptic connections and constant input are determined by the training data for
the problem under consideration. Understanding the MEB problem as a learning
task, both could be seen as a form of short term memory. At the beginning of a
learning episode, data is loaded into this memory and used to determine support
vectors. At the end of a learning episode, only those data points and activities
required for decision making, i.e. those xi and μi for which μi > 0, need to
be persisted in a long term memory to be able to compute the characteristic
function in (10).
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Fig. 2. Two additional 2D data sets. Squares highlight support vectors sj of Gaussian
kernel MEBs; the color coding indicates the characteristic function f(x) in (10). The
panels on the right show local minima of f(x). Points that minimze the function f(x)
can be understood as prototypes for the given data

4 Neural Reduction of Support Vectors to Prototypes

Figure 2 show two more 2D data sets for which we computed Gaussian kernel
MEBs. Squares highlight support vectors, the coloring indicates values of the
characteristic function f(x) in (10), and blue dots represent its local minima.
Both examples illustrate that (i) the number of support vectors of a kernel MEB
is typically smaller than the number of data points the support vectors are
computed from, (ii) the number of local minima of the characteristic function is
typically smaller than the number of support vectors, and (iii) points where the
characteristic function achieves a minimum constitute characteristic prototypes
for the given data. Curiously, however, we are not aware of any prior work where
minimizers of f(x) have been considered as prototypes before. Next, we therefore
discuss a simple recurrent procedure for how to compute them.

Solving the kernel MEB problem yields a vector of Lagrange multipliers
whose non-zero entries indicate support vectors of B. As the multipliers of all
other data points equal zero, the characteristic function in (10) can be evaluated
using only the support vectors and their multipliers.

Hence, letting l ≤ n denote the number of support vectors of B, we next
collect all of the support vectors of B in a matrix S = [s1, . . . , sl] ∈ R

m×l and
consider a vector σ ∈ R

l of their multiplies. Furthermore, introducing a reduced
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kernel matrix Q ∈ R
l×l where Qij = K(si, sj) and kernel vector q ∈ R

l such
that q = diag[Q], allows us to rewrite the characteristic function in (10) as

f(x) =
√

K(x,x) − 2κᵀσ + σᵀQ σ −
√

σᵀq − σᵀQ σ =
√

d(x) − r∗ (19)

where the entries of κ ∈ R
l now amount to κj = K(x, sj) and where function

d : Rm → R computes the squared feature space distance between x and the
center of B.

Writing the characteristic function like this and observing that, on the outside
of B, the distance function d(x) will grow beyond all bounds, it is clear that the
problem of estimating local minimizers of f(x) is equivalent to the problem of
estimating those x ∈ B for which the gradient of d(x) vanishes.

Assuming that K(·, ·) is a Gaussian kernel such as in (9), we have K(x,x) = 1
so that the gradient of d(x) becomes

∇d(x) = − 2
λ2

k∑

j=1

σj K(x, sj)
[

x − sj

]

. (20)

Equating the right hand side to 0 provides

x =

∑

j σj K(x, sj)sj
∑

j σj K(x, sj)
=

∑

j σj κjsj
∑

j σj κj
=

SΣκ

κᵀσ
= SΣD−1κ (21)

where we introduced two diagonal matrices Σ = diag[σ] and D = diag[(σκᵀ)1],
respectively. But this result is to say that local minima of f(x) correspond to
weighted means or convex combinations of the support vectors of B.

We also recognize (21) as an extension of classical mean shift updates [4,10]
(where there are no scaling parameters σj). Hence, when started with x0 ∈ R

m,
the following process with step size γt ∈ [0, 1] will find the nearest minimizer of
the characteristic function

κt = vec
[

K(xt, sj)j

]

(22)

Dt = diag
[

(σκᵀ
t )1

]

(23)

xt+1 = (1 − γt)xt + γt SΣD−1
t κt. (24)

Looking at (24), we recognize these dynamics as yet another variant of the
internal dynamics of a reservoir of neurons and note that, for γt = 1, the updates
in (24) become the mean shift updates in (21). In other words, mode seeking via
mean shifts can be seen as yet another form of neurocomputing.

Letting x0 ← sj be a copy of one of the support vectors in S and starting
mode seeking at this point will identify the minimizer closest to this support
vector. Repeating this process for all the support vectors of B will thus collapse
them into another, usually smaller, set of points that can be understood as
prototypes of the given data. Collecting these in a matrix P ∈ R

m×p where
p ≤ l ≤ n therefore provides a reduced representation for a variety of downstream
processing steps.
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Table 1. Sample mean and prototypes extracted from the CBCL face data

5 Practical Examples

In order to provide illustrative examples for the performance of our approach,
we next present results obtained in experiments with three standard benchmark
data sets: The MIT CBCL face database1 contains intensity images of different
faces recorded under various illumination conditions, the well known MNIST
database [12] consist of intensity images of ten classes of handwritten digits, and
the recently introduced MNIST-Fashion data [22] contains intensity images of
fashion items again sampled from ten classes.

For each experimental setting, we vectorized the designated training samples
which left us with a data matrix X ∈ R

361×2429 for the CBCL data and matrices
X ∈ R

361×6000 for each class in two MNIST data sets.
In each experiment, we computed the sample mean x̄ = 1

nX1 as a reference
prototype and normalized the data in X to zero mean and unit variance before
running our procedure. Scale parameters λ for the Gaussian MEB kernels were
determined using the method in [8] and reused during mean shift computation;
the activation function for neural MEB computation was set to g∞.

An favorable property of MEB-based prototype identification is that it does
not need manual specification of the number p of prototypes. Minimum enclosing
ball computation and mean shift on the resulting support vectors automatically
identify appropriate numbers l and p of support vectors and prototypes. Hence,
after having obtained p MEB-based prototypes for each data matrix, we also ran
k-means clustering for k = p in order to provide an intuitive baseline comparison.

The rightmost column of Table 1 shows the p = 29 MEB-based prototypes
we found for the CBCL face data; the center column of the table shows cluster
prototypes resulting from k-means clustering for k = 29 and the single image in
the leftmost column depicts the overall sample mean for comparison.

The cluster means in the center column represent average faces which are
smoothed to an extent that makes it difficult to discern characteristic features.
The MEB prototypes, on the other hand, show distinguishable and therefore

1 http://cbcl.mit.edu/software-datasets/FaceData2.html.

http://cbcl.mit.edu/software-datasets/FaceData2.html
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Table 2. Sample mean and prototypes extracted from MNIST digit data

interpretable visual characteristics. In other words, these prototypes reveal that
the CBCL data contains pictures of faces of people of pale or dark complexion, of
people wearing glasses, sporting mustaches, or having been photographed under
varying illumination conditions.

What is further worth noting is that several of the MEB-based prototypes
coincide with given images or, put differently, with actual data points. This phe-
nomenon is known from latent factor models such as archetypal analysis [2,5,19]
or CUR decompositions [13,18,21] and usually considered beneficial for inter-
pretability [16]. The fact that we observe it here suggests that, for real world
data, some of the support vectors of a kernel minimum enclosing ball them-
selves constitute minima of the corresponding characteristic function so that
the above mean shift procedure will not reduce them any further. Since sup-
port vectors reside on the boundary of a given data set, this also explains the
apparent variety among the MEB-based prototypes. While this also holds for
prototypes extracted via archetypal analysis or CUR decompositions, the pro-
totypes resulting from our approach do not exclusively coincide with extremal
data points. In fact, some of them resemble the overall sample mean or the local
means found via k-means. In contrast to archetypal analysis, CUR decomposi-
tions, or k-means clustering, we therefore observe that our MEB-based approach
produces extremal and central prototypes simultaneously.

Tables 2 and 3 show examples of results obtained from the MNIST data sets.
These are apparently analogous to the results we just discussed and therefore
corroborate that our approach identifies prototypes that cover a wide variety of
aspects of a data set.
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Table 3. Sample mean and prototypes extracted from MNIST fashion data

6 Conclusion

The problem of extracting representative prototypes from a given set of data
frequently arises in data clustering, latent component analysis, manifold iden-
tification, or classifier training. Methods for this purpose should scale well and
yield meaningful and interpretable results so as to assist downstream processing
or decision making by analysts. In this paper, we proposed a two-stage approach
based on kernel minimum enclosing balls and their characteristic functions. Our
approach can be efficiently computed and empirical results suggest that it yields
notably distinct prototypes that are therefore interpretable. Contrary to estab-
lished techniques for clustering or factor analysis, our method yields central and
extremal prototypes alike.

From the point of view of neurocomputing, our approach in interesting in that
it can be computed using simple recurrent neural networks. Building on recent
work in [1], we showed that kernel minimum enclosing balls can be computed
using architectures akin to those found in reservoir computing. We also showed
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that, if kernel minimum enclosing balls are determined w.r.t. Gaussian kernels,
the problem of further reducing the support vectors of a ball naturally leads
to a variant of the mean shift procedure which can be understood as a form of
recurrent neural computation, too.
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