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Abstract. In this work, we propose an algorithm for training deep neu-
ral networks for classification of breast cancer in histopathological images
affected by data unbalance with support of active learning. The out-
put of the neural network on unlabeled samples is used to calculate
weighted information entropy. It is utilized as uncertainty score for auto-
matic selecting both samples with high and low confidence. A number
of low confidence samples that are selected in each iteration is manually
labeled by pathologist. A threshold that decays over iteration number
is used to decide which high confidence samples should be concatenated
with manually labeled samples and then used in fine-tuning of convo-
lutional neural network. The neural network can optionally be trained
using weighted cross-entropy loss to better cope with bias towards the
majority class.

1 Introduction

In the last decade, a significant effort has been put forth for breast cancer recog-
nition from histological slides. Histological slides allow the pathologist to distin-
guish between the normal tissue, non-malignant (benign) tissue, and malignant
lesions. Currently, substantial efforts are devoted to recognize the two fundamen-
tal types of breast cancer with Computer Aided Diagnosis (CAD) [1]. Various
computer-based approaches for analysis of histological images have been pro-
posed to support pathologists in quantifying morphological features [2], detecting
malignant lesions [3], and predicting prognosis for breast cancer [1].

Prior to a visual analysis by pathologist the tissue samples are collected dur-
ing biopsy and then stained with Hematoxylin and Eosin (H&E). Afterwards,
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in traditional approach the pathologist examines microscopic images of the tis-
sue samples from the biopsy with different magnification factors. To make the
correct diagnosis, the doctor investigates various image features including pat-
terns, textures, and different morphological properties [4]. Different magnifica-
tion factors are inherent in analysis of histological images, and require panning,
zooming, focusing, and the whole diagnosis process is very time consuming and
tiresome. The diagnosis results are influenced by many subjective factors. As a
consequence, such manual process sometimes leads to erroneous or insufficient
diagnosis for breast cancer identification. Manual classification of histological
images is laborious for pathologists, prone to inconsistencies, expensive and time-
consuming. In some cases, detailed analysis of a single case could require several
slides with multiple stainings. Moreover, pathologists undergo pressure to han-
dle large volumes of cases while providing a larger amount of information in the
pathology reports. In order to minimize risks associated with improper diagnosis
of cancer, as well as to provide a support for pathologists in preparing reports,
various image processing and recognition techniques have been elaborated for
analyzing pathological images at microscopic resolution [5]. Unfortunately, tra-
ditional computer signal processing and computer vision techniques are not able
to meet the requirements and to fulfill the expectations of clinicians.

Owing to advancement of digital imaging techniques, a remarkable progress
in histological image processing and recognition has been made [1]. Modern
whole slide image (WSI) scanners can process entire tissue slices and deliver
high-resolution images. WSIs are very large in size and contain huge informa-
tion. Such images are characterized by small inter-class variance and large intra-
class variance. Moreover, features extracted from similar histological images with
unlike magnification are usually very different. Thus, automatic classification of
breast cancer pathological images is a challenging task.

The approaches to automatic classification of breast caner pathological
images can be divided into two groups: methods based on feature engineering
and classical machine learning, and methods based on feature/deep learning. In
contrast to traditional approaches, which rely on hand-crafted features, recent
algorithms learn useful features directly from the training image patches by the
optimization of the loss function. The history of extracting handcrafted fea-
tures for breast cancer recognition image classification is a long one [2]. In [6], a
multiple magnifications-based framework for breast cancer on histopathological
image classification has been proposed. The authors utilized various joint color-
texture features and classifiers, and demonstrated that suitable feature-classifier
combinations can largely outperform relevant methods. Before 2017, the sys-
tem proposed in [6] outperformed in terms of recognition accuracy all machine
learning based approaches. A review of current deep learning based approaches
to histopathological image analysis can be found in [7]. Several methods were
proposed for classification of histopathological images, and they mainly differ in
architectures of convolutional neural networks, data augmentation, etc.

As noted in a recent survey [7], the problem of insufficient labeled images
is very important in the area of histopathological image analysis. Most of the
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approaches to cope with this issue fall into one of the following categories: (1)
increasing the number of examples with annotations, (2) utilization of mod-
els/parameters for/from other tasks, or (3) exploitation of weak label or unla-
beled data. Some research has been done on methods belonging to first two
categories. In particular, several data augmentation and transfer learning based
method were elaborated to improve learning of neural networks for histological
image classification. However, little work has been done on exploitation of weak
label or unlabeled data. One of the main reasons is that for histopathological
image classification this is very hard and challenging task. One of the reasons
that significant effort has only been devoted to classification of histopatholog-
ical images is that almost all research group are working on freely available
datasets, like BreaKHis [8], and thus they underestimate the costs and difficul-
ties associated with data annotation. As previously mentioned, WSIs are very
large in size, contain huge information and manual labeling of such images,
which requires a highly qualified pathologists, is very time consuming. In [9]
an interactive machine-learning system for digital pathology has been proposed.
The proposed framework utilizes active learning to direct user feedback, making
classifier training efficient and scalable in datasets containing huge amount of
histologic objects.

In this work, we propose an algorithm for training deep neural networks for
classification of breast cancer in histopathological images with support of active
learning (AL). Instead of random selection, AL methods typically actively select
samples with lowest confidence as the most valuable samples to add them to
the query and finally train the model incrementally [10]. Randomly selecting
samples instead of actively choosing samples establishes a lower bound. In the
proposed method, both samples with high and low confidence are included in
the query. We utilize information entropy as uncertainty score for automatic
selection of both samples with high and low confidence. A threshold that decays
over iteration number is used to decide which high confidence samples should be
concatenated with manually labeled samples and then used in fine-tuning of a
convolutional neural network. A weighted entropy [11] is calculated on the basis
of prediction of CNN, which is tuned in every iteration in such a way. The pool
of labeled samples is updated with newly labeled samples by the pathologist.
Such high confidence samples for the labeling are selected automatically by the
algorithm on the basis of weighted entropy after selecting the uncertain samples.

The contribution of this work is as follows: first, we propose an improved
deep convolutional neural network model to achieve accurate and precise clas-
sification or grading of breast cancer pathological images. Meanwhile, online
data augmentation, transfer learning and fine-tuning strategies are employed to
avoid model overfitting effectively. Second, we propose an active learning scheme
for fine-tuning a deep residual convolutional neural network on unbalanced data.
Finally, experimental results based on freely available pathological image dataset
show that the performance of our method is better or at least comparable with
recent state-of-the-art methods for breast cancer classification on histopatholog-
ical images, with good robustness and generalization ability.
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2 Breast Cancer Classification on Histopathological
Images

During analysis of the stained tissue, pathologists examines overall architecture
of tissue, along with nuclei layout, density and variability. The diagnosis process
using H&E stained biopsies is not trivial, and the average diagnostic compatibil-
ity between pathologists is about 75% [12]. Most of the WSI scanners that are
presently in the use carry out slide scanning at x20 or x40 magnification with
spatial resolution in order of 0.5 /pixel and 0.25 u /pixel, respectively. One of
the major difficulties in breast cancer histopathology image analysis is variabil-
ity of appearance, which is mostly the result of variations in the conditions of
the tissue preparation and staining processes. The color appearance can signif-
icantly vary due to differences in fixation and in staining processes. A typical
histopathology slide comprises a tissue area of about 15 x 15 mm. Considering
the resolutions on which the slides are scanned, the scanned images have size of
up to several gigapixels. Taking into consideration that classification of larger
images requires far larger number of parameters, as well as that typical WSI
image can consists of as many as tens of billions of pixels, the WSI scans are
divided into patches of size a few hundred pixels times a few hundred pixels, see
also Fig. 1, which are then analyzed independently. The mentioned figure depicts
sample histopathological images [8] with two fundamental types of breast cancer:
benign and malignant.
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Fig. 1. Sample histopathological images with two fundamental types of breast cancer:
benign (left) and malignant (right).

In the area of digital pathology, there are available some freely available
datasets that contain hand-annotated histopathological images and correspond-
ing labels. In [13], a performance comparison between four machine learning
algorithms, including decision tree (DT), Naive Bayes (NB), k-nearest neigh-
bors (KNN) and support vector machine (SVM) on the Wisconsin Breast Can-
cer dataset [14], which consists of 699 instances (458 benign and 241 malig-
nant cases). Experimental results demonstrated that the SVM classifier achieves
the highest accuracy of 97.13% with 10-fold cross-validation. BreaKHis dataset
[8] contains 7 909 histopathological images of breast cancer from 82 patients.
The authors employed six different feature descriptors and four different clas-
sical machine learning methods, including 1-NN (1 Nearest Neighbor), QDA
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(Quadratic Discriminant Analysis), RF (Random Forest), and SVM with the
Gaussian kernel function to carry out classification of benign and malignant
tumors. The classification accuracy is between 80 and 85% in 5-fold cross-
validation. Although classical machine learning methods demonstrated great
usefulness in digital pathology, present deep learning-based methods outperform
traditional ones. In [15] a modified AlexNet [16] convolutional neural network
improved classification accuracy by 4-6% on BreaKHis dataset. A CNN-based
method proposed in [17] can classify breast cancer histopathological images inde-
pendently of their magnifications. Two different architectures were studied: a
single task CNN to predict malignancy, and a multi-task CNN to predict both
malignancy and image magnification level simultaneously. Evaluations were car-
ried out on the BreaKHis dataset, and the experimental results were competitive
with state-of-the-art results achieved by classical machine learning methods. In
[18] a pre-trained ResNet_V1_152 [19] has been applied to carry out diagnosis of
benign and malignant tumors on BreaKHis as well as multi-class classification
of various subtypes of histopathological images of breast cancer. This deep CNN
achieved an accuracy of 98.7% and 96.4% for binary classification and multi-
class classification, respectively. It is worth noting that although there are 7 909
histopathological images in the BreaKHis dataset, the number of images is far
from enough for effectively using current deep learning techniques.

Another difficulty in breast cancer classification on histopathological images
is class imbalance [20]. It can be observed in several histopathological benchmark
datasets, including BreaKHis. As underlined in [20], it is largely unclear to what
extent the data imbalance affects the performance of deep learning algorithms
for histopathological image analysis, and what techniques [21] should be applied
to learn from unbalanced data. Overall, class unbalance is very important prob-
lem, which is, however, frequently neglected in many evaluations on BreaKHis
dataset. Moreover, several studies reports only the classification accuracy, which
is sometimes badly chosen as the only metric to judge the classification perfor-
mance on the imbalanced data.

Significant effort has been devoted to classification of histopathological
images. Several research group performed evaluations on freely available datasets
with histopathological images, and thus they were not involved in manual data
annotation, which is very costly and time consuming task. Active learning is
a machine learning technique, which is generally effective when the acquisi-
tion cost of label data is substantial [7]. It can be used to support super-
vised learning for automatic choosing the most valuable unlabeled sample(s)
(i.e. the one(s) that could led to improved classification performance when
labeled properly and included in training data) and display it for manual label-
ing by pathologists. Most active learning focuses on selecting examples from
a so-called area of uncertainty, i.e. space that is nearest to the model’s deci-
sion boundary, which for a binary classification problem can be expressed as:
x’ = argmax, min, P(y|z),y € {0,1}. However, simple selecting samples from
an unlabeled pool with considerable data imbalance may pose some practical
difficulties. The greater fraction of examples in the majority class may result
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in a model preferring one class over another. If labels of samples selected by an
active learning algorithm are considered as random variables, the class imbalance
would result in preference for majority examples in the training dataset subset,
i.e. over-representation. Unless properly treated such an over-representation may
result in a model with predictive preference for the majority class when labeling.
This important issue motivated us to explore active learning on unbalanced data
for cancer classification on histopathological images by the use of convolutional
neural networks.

3 The Algorithm

The aim of active learning algorithms is to attain best possible performance of
the learned model with as few labeled samples as possible [10]. Standard AL
algorithms run in an iterative manner and in each learning step usually select
only a few of the most informative samples, i.e. samples that have quite low
prediction confidence, and frequently engage the user to label the recommended
data. The algorithm stops when a predefined stopping criteria is met. In case of
unbalanced data, conventional classification algorithms are often biased towards
the majority class because their loss functions attempt to optimize quantities,
which do not take into account the data distribution. In the worst case, particu-
larly when the dataset is severely unbalanced, minority examples can be treated
as outliers of the majority class and ignored. The learning algorithm simply pro-
duces a trivial classifier with tendency to classify every example as the majority
class. An approach proposed in [22] performs active learning using both majority
& clearly classified samples and minority & most informative samples. However,
it is unable to cope with unbalanced data due to reasons mentioned above.

We use weighted information entropy [11] as uncertainty score. Weighted
entropy is a measure of information supplied by a probabilistic experiment whose
elementary events are characterized both by their objective probabilities and by
some qualitative (objective or subjective) weights associated with the events. We
characterize each event z; by {p;,w;}, i =1,....n, > p; = 1, w; <0, where
p;i is the probability of the event z; and weight w; quantifies qualitative aspect
of ;. The weighted entropy of {p;,w;}, i =1,...,n is defined as:

n
Hoy(wy,ws, .., Wn; P1,D2, -+, Dn) = — Y Wi 10g i (1)
k=1

In our approach the weights w; are determined on the basis of class probabilities.
We give higher weight to minority class and lower weight to majority class.
The pseudo-code of the algorithm is listed below. The input arguments are
as follows: max_it — maximum number of iterations, unc_samp_size — number
of the most uncertain samples that are selected in each iteration for manual
labeling by the pathologist, delta — initial threshold value that is used in selec-
tion of the most confident samples, delta_decay — smaller than zero factor to
decrease the value of delta if the classifier performs better, x_init, y_init —
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Algorithm 1. Active learning on unbalanced data

Input: max_it, unc_samp_size, delta, delta decay, x_init, y_init, x_pool, -, W

PL = x_init, y_init
uratio = num(y-init==0) / num(y_init==1)
PU = x_pool, -
train(PL, W, uratio)
W = load_weights
for i in range(max_it):
y-pred_prob = predict(PU, W)
un_idx = get_uncertain_samples( y_pred_prob, unc_samp_size, uratio)
y-pool [un_idx] # perform manual labeling of PU[un_idx]
10: PL = append(PL, PU[un_idx])
11: hc_idx = get_high confid_samples(y_pred prob, delta, uratio)
12: hc = hc_idx - un_idx # remove samples also selected as uncertain
13: PH = PU[hc]
14: ptrain = concatenate(PL, PH)
15: train(ptrain, W) # optionally: train(ptrain, W, uratio)
16: PU = delete(PU[un_idx])
17: W = load_weights
18: delta = delta * delta decay
19: uratio = num(y_pred_prob==0) / num(y_pred_-prob==1)
20: acc = evaluate(x_test, y_test, W)
21: return W

@

initial training pool consisting of samples and corresponding labels, x_pool —
unlabeled pool of data samples, W — weights of the pre-trained neural network.
The factor uratio, see line #2 in Algorithm 1, is used to express unbalance in
dataset, and it can be determined as ratio of number of samples in each class.
The output of the predictor, see line #7 in Algorithm 1, is used to calculate
the weighted entropy, which in turn is used to determine the most uncertain
samples, see line #8, as well as high confidence samples, see line #11. The
number of uncertain samples selected in each iteration from the unlabeled pool
PU depends on value of the predefined constant unc_samp_size. After selecting
such samples, see index un_idx, a pathologist manually assigns labels to the
recommended samples. The labeled pool PL is progressively updated in each
iteration by PU[un_idx], see line #10. The discussed pool PL is concatenated
with high confidence pool PH and then used to fine-tune the neural network,
i.e. to update weights W. This means that the samples from the unlabeled pool
PU are progressively fed into the convolutional neural network. Depending on
the option, it can be trained using commonly used categorical cross-entropy or
weighted categorical cross-entropy in order to better cope with unbalanced data.
The indexes of samples from PU to be included in PH are calculated on the basis
of the method get_high _confid_samples, which selects samples whose weighted
entropy is smaller than delta, see line #11. The delta variable is updated in
every iteration, see line #18. In this way, more and more confident samples are
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selected in subsequent iterations. The uratio factor is calculated on the basis of
the predictions y_pred_prob. Since the get_high confid _samples method can
select samples that were previously selected by get _uncertain_samples method,
the algorithm excludes samples with indexes un_idx, which were labeled by the
pathologist. During training of the neural network in a predefined number of
epochs, the best weights are stored, and then loaded before evaluation of the
accuracy, as well as calculating the prediction in the next iteration. The pool
of unlabeled samples PU is updated at the end of each iteration. To overcome
the influence from the imbalanced histopathological images in subclasses, the
minority class can be additionally balanced by turning images up and down,
right and left, and rotating them counterclockwise by 90 and 180°.

4 Experimental Results and Discussion

We investigated the performance of various convolutional neural networks in
breast cancer classification on histopathological images. It is well known that
learning hyperparameters have a great influence on the performance of the
trained CNN model, particularly the learning rate. Thus, in addition to investi-
gations on various models of neural networks for active learning on unbalanced
data, we devoted a considerable attention to selecting the learning hyperparam-
eters for training. Due to limited amount of training images with breast cancer
and model over-fitting risks we investigated techniques for reducing the number
of CNN parameters as well as various data augmentation methods. The evalu-
ations were realized on BreaKHis dataset consisting of 2480 images in benign
class and 5429 images in malignant class. We randomly selected 6418 images for
training subset, 802 images for validation and 689 images for test subset.

4.1 Breast Cancer Classification on Histopathological Images Using
Deep Convolutional Neural Networks

At the beginning we investigated transfer learning of pre-trained VGG16 convo-
lutional neural network for breast histopathology image classification. We uti-
lized VGG16 with weights learned on imageNet dataset without the top layer.
We extracted the features delivered by the VGG without the top layer and stored
them for the future use. Next, on features with shape (7,7,512) we trained a
convolutional neural network consisting of 256 filters in the first layer and relu
activation, dropout layer and output layer with sigmoid activation. The network
has been trained using binary cross-entropy loss and RMSprop algorithm with
learning rate set to 2e-5. The batch size has been set to 32 and training was in
200 epochs. The classification accuracy on test data was equal to 87.16%. After-
wards, we investigated fine-tuning of VGG16 with on-line data augmentation.
The weights of VGG16 network without the top layer were frozen. After flatten-
ing the last layer of such a base network, we added a dense layer consisting of 256
neurons with relu activation, dropout set to 0.5 and an output neuron with acti-
vation set to sigmoid. The network has been trained using binary cross-entropy
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loss and RMSprop algorithm with learning rate set to 2e-5. During training
we executed online data augmentation (rotation, horizontal/vertical shift, image
flip). The batch size has been set to 32 and training was in 30 epochs. The classi-
fication accuracy on the test data was equal to 85.7%. Finally, the block5_convi
layer has been set as trainable and complementary training of the network with
such a trainable layer has been done in 100 epochs. The classification accuracy
on the test dataset improved to 96.5%.

In the next stage we investigated resNet neural networks. Similarly to exper-
iments with the VGG network, the fully connected layer of the pre-trained net-
work has been replaced with a new fully connected layer. The network was
pre-trained using the same parameters on the same training data as the VGG16
neural network. Next, the resba branch2a layer has been set as trainable and
complementary training of the network with such a trainable layer has been
done in 60 epochs. During training the network achieved 99.0% accuracy on the
validation data. On test data the accuracy was equal to 97.8%.

In the last stage of this part of experiments we investigated pre-trained
resNet18 neural network with weights learned on the imageNet dataset. The
fully connected layer of the network has been replaced with a new fully con-
nected layer with 256 neurons and the network has been pre-trained on the
same training data using identical parameters and online data augmentation.
The best classification accuracy that we obtained was about 75%. Finally, the
zero_padding2d_18 layer has been set as trainable and complementary training
of the network with such a trainable layer has been done in 60 epochs. On the
test data the classification accuracy improved to 91.5%.

The above experiments demonstrated that by setting in the base neural net-
work the last layer as trainable and then extending such a base network about
a dense layer, pre-trained in advance and fine-tuning the neural network in sev-
eral epochs can lead to substantial improvement in classification performance.
Bearing in mind that resNet18 neural network has far smaller number of training
parameters in comparison to VGG16 and resNet50 neural networks, and thus the
fine-tuning can be done in far shorter time, and particularly that our focus was
on developing best strategies for active learning for breast cancer classification on
histopathological images affected by data unbalance and not just experimenting
with neural network architectures to obtain improvements in classification accu-
racy, the resNet18 neural network has been selected for further investigations on
active learning algorithms.

4.2 Breast Cancer Classification on Histopathological Images Using
Active Learning and Deep Convolutional Neural Network

In the next stage of the experiments we investigated active learning algorithms
for breast cancer classification on histopathological images affected by data
unbalance. The active learning algorithm was based in resNetl8 neural net-
work with weights learned on the imageNet dataset. The weights of the network
without the top layer were frozen. The fully connected layer of the network has
been replaced with a new fully connected layer consisting of 256 neurons with
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relu activation and subsequent dropout set to 0.5. The output of the network
was softmax layer. This means that the zero_padding2d_18 layer that in the
previous experiment was set as trainable, and thanks to which the classification
accuracy considerably improved, in the discussed evaluations has been frozen.
From the training data, twenty percent of training samples were selected for
initial training of the neural network. The neural network has been initially
trained in five epochs, and size of batch with data shuffling equal to 32. To bet-
ter cope with imbalanced data, it has been trained using weighted categorical
cross-entropy and RMSprop algorithm with learning rate set to 2e-5. The class
weights were determined on the basis of data labels in the initial data. The best
weights obtained in the training were stored and then utilized to initialize the
network in the subsequent iterations, see line #4 — 5 in Algorithm 1. The active
learning has been performed in nine iterations. In each iteration a complemen-
tary training of the network in five epochs has been carried out. The number of
uncertain samples, i.e. samples labeled in each iteration by pathologist has been
set to 300.

Table 1 presents results that were achieved in experimental evaluations. The
presented results are averages of scores from ten independent runs of each con-
sidered algorithm with unlike weights initializations. First row contains results
that were achieved by a baseline active learning algorithm with samples selected
randomly for annotation by a pathologist. The discussed algorithm does not
use the high-confident samples as pseudo-annotated data. Second row contains
scores that were obtained by active learning algorithm using samples that were
selected on the basis of weighted categorical cross-entropy. In a similar way to
the previous algorithm, it does not use the high-confident samples as pseudo-
annotated data. As we can observe, this algorithm achieves better classification
performance. Third row contains scores that were obtained by algorithm using
samples that were selected on the basis of categorical cross-entropy, and in which
high-confident samples were utilized as pseudo-annotated data. The accuracy,
recall and F1l-scores are better in comparison to scores achieved by previously
discussed algorithms. The last row contains results achieved by the proposed
algorithm, which employs samples that are selected on the basis of weighted
categorical cross-entropy, and in which high-confident samples are utilized as
pseudo-annotated data. The accuracy, recall and F1-scores are superior to scores
achieved by algorithms discussed previously. Particularly, owing to using the

Table 1. Classification performance on BreaKHis dataset using active learning: rs -
random sampling, hc - high confidence samples, wce - weighted cross-entropy.

Algorithm | Accuracy | Precision | Recall | F1-score
rs, he-no | 0.9258 0.9416 0.9517 | 0.9467
wce, he-no | 0.9428 0.9652 0.9517 | 0.9583
wce-no, hc | 0.9467 0.9644 0.9584 | 0.9613
wce, he 0.9507 0.9612 0.9678 | 0.9644
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weighted cross-entropy and high-confident samples as pseudo-annotated data
our algorithm achieves the smallest number of false negatives, i.e. it achieves
the highest recall. This is highly desirable property because practically it is very
dangerous and costly to miss an image with malignant while it is positive.

Figure 2 illustrates sample results that were obtained in one of the mentioned
above experiments, in which we evaluated the classification performance of active
learning using entropy (c.f. green curves) and weighted entropy (c.f. blue curves).
Left plot on Fig. 2 depicts the evolution of size of PL pool over iteration number
as well as evolution of size of PH pool (consisting of high confidence samples)
vs. iteration number. As we explained in Sect. 3, the concatenated PL and PH
samples were used to train the CNN. As previously mentioned, the number of
PL samples increases about 300 in each iteration, whereas the number of PH
samples depends on their uncertainty score referred to the delta parameter,
and therefore can be different in each iteration, see also green and blue curves
on the left plot on Fig. 2. Right plot on Fig. 2 presents classification accuracies
vs. iteration number. As we can observe, on the initial training pool consisting
of only labeled data, the algorithm based on entropy achieved 86% accuracy,
whereas algorithm based on weighted entropy achieved 83.9% accuracy. In sev-
enth iteration the entropy-based algorithm learned on 3035 samples from PL pool
and 3146 training samples from PH pool, and achieved on such training data
93.3% classification accuracy, whereas weighted entropy-based algorithm learned
on 3035 samples from PL pool and 3335 samples from PH pool and achieved
94.62% classification accuracy. In all remaining experiments, the classification
accuracies achieved by weighted entropy-based active learning in iterations #3
— 7 were higher in comparison to accuracies achieved by entropy-based active
learning. As we can observe on Fig. 2, in next iterations the increase of the clas-
sification accuracy was not so high despite larger number of the PL samples
and smaller proportion of PH data in total training data fed to the CNN. In
tenth iteration the classification accuracy on the test data was equal to 95.06%
for entropy-based algorithm and 95.21% for weighted-entropy based algorithm.
The classification accuracies are far larger than 91.5% accuracy achieved by the
resNet18 neural network with zero_padding2d_18 set as trainable, c.f. results in
Subsect. 4.2. Comparing results achieved by resNet18 neural network with the
fully connected layer replaced by new fully connected layer and fine-tuned as in
most relevant work, c.f. Subsect. 4.2, and results obtained with active learning,
we can observe considerable improvement of classification accuracy. The increase
of the classification accuracy from about 75% to 95% has been achieved owing
to use our techniques for training neural networks on histopathological images
affected by unbalanced data.

Since calculations of precision and recall do not make use of the true neg-
atives, precision-recall analysis is useful in cases where there is an imbalance
in the samples between the two classes. Figure 3 illustrates the precision-recall
that has been obtained on the basis of results produced by weighted entropy
based-algorithm. The average precision score is equal to 0.99.
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Fig. 3. Precision-recall curve.

The algorithm has been implemented in python language using Keras/
TensorFlow frameworks. The training has been realized on TitanX GPU.

5 Conclusions

The proposed AL-based algorithm for breast cancel classification on unbalanced
histopathological datasets considerably reduces the label effort from patholo-
gists, without significantly sacrificing the accuracy. Thanks to the use of weighted
cross-entropy in the loss function during training the CNN, as well as weighted
entropy both for selecting uncertain samples and determining high confidence
samples the proposed algorithms achieves high classification accuracy, high aver-
age precision score as well as precision-recall tradeoff, and it is less biased towards
the majority class.
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