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Abstract. Physical reservoir computing (PRC) utilizes the nonlinear
dynamics of physical systems, which is called a reservoir, as a computa-
tional resource. The prerequisite for physical dynamics to be a successful
reservoir is to have the echo state property (ESP), asymptotic properties
of transient trajectory to driving signals, with some memory held in the
system. In this study, the prerequisites in dissociate cultures of cortical
neuronal cells are estimated. With a state-of-the-art measuring system of
high-dense CMOS array, our experiments demonstrated that each neuron
exhibited reproducible spike trains in response to identical driving stimu-
lus. Additionally, the memory function was estimated, which found that
input information in the dynamics of neuronal activities in the culture
up to at least 20 ms was retrieved. These results supported the notion
that the cultures had ESP and could thereby serve as PRC.
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1 Introduction

Neural activity does not have permanently stable or periodic states and shows
transient responses, with states moving constantly from one to the next [5,30].
For example, when a locust perceives an odor, neurons in the antenna lobe
transit from low to high frequency states. Subsequently, states are maintained
for a while, after which they return to the original state. The trajectory of
the state transition is reproducible, but it changes depending on the stimulus
duration [7].

Such a reproducible response is described by common-signal-induced syn-
chronization or generalized synchronization [18]. When a drive subsystem and
a response subsystem are represented by the states x and y, respectively, the
response subsystem given the time series input h(x) from the drive subsystem,
converges to the state where y is represented by y = Φ(x), draws a repeatable
trajectory for the same time series input [18]. Jaeger called such a trajectory a
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transient attractor [11] and the property of converging to this trajectory an echo
state property (ESP) [13,20]. Reservoir computing (RC) [14,19,31] generates
reproducible responses by generalized synchronization between the drive and
response subsystem such as a recurrent neural network (RNN) composed of sig-
moid or spiking neurons, and emulates desired outputs by linear regression with
the reproducible responses. RC can not only be applied in engineering, such as in
machine learning, but can also be used to estimate computational capabilities of
a dynamical system by analyzing equations executed in the response subsystem,
i.e., in the reservoir. For example, by letting a reservoir learn past inputs, we
can examine how accurately and how long the inputs would be retained in the
reservoir [12].

Furthermore, physical reservoir computing (PRC), which uses a physical sys-
tem as a reservoir, has been reported in recent years. The framework of RC
at least requires generalized synchronization between the drive subsystem and
response subsystem to construct a successful reservoir, and to date, various
dynamical systems have been utilized as reservoirs, and their computational
capabilities have been evaluated by many researchers, as follows: Fernando et al.
showed that ripples changing temporally in a bucket have linear separability [8].
Recently, the computational capabilities of delay-based dynamical systems were
analyzed by applying time-multiplexing to electronic and laser systems subject
to delay feedback and thereby constructing a pseudo network [1,4]. Furthermore,
Nakajima et al. applied forces to a device mimicking an octopus arm and inves-
tigated its computational capabilities from a dynamical system’s point of view
[21–26].

As discussed previously, PRC has been applied to various dynamical systems
to evaluate their computational capabilities; however, in real neural circuits,
synaptic plasticity works according to the long-term input history, and the net-
work structure between neurons is constantly updated and the response of the
circuits would alter accordingly [9,16]. Furthermore, computational capabilities
of RNNs such as timing capacity, which is the maximum delay after a pulse
input that the network produces, have been analyzed [17], whereas PRC with
cultures has not been achieved. On the other hand, Dranias et al. evaluated
short-term memory combining transient dynamics of cell cultures and support
vector machine (SVM), and showed that the cultures discriminated input applied
1 s or more before [6]. However, as SVM was adopted for the readout, responses
retrieved from the culture were nonlinearly transformed and one can not dis-
tinguish nonlinearity of the culture’s responses from of SVM. Therefore, the
characteristics of neuronal cultures as reservoirs have not been fully revealed.

In this paper, we constructed a reservoir using a cell culture from rat cortices
and stimulated it two times with an identical electrical stimulation trace to
investigate whether the reservoir met the prerequisite for RC, i.e., whether it has
an ESP. Additionally, we examined their expressive capability of information by
measuring memory functions.
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Fig. 1. Composing a reservoir with a rat cortical cell culture. (a) Micro-electrode array
(MEA) system. (b) The mean extracellular action potential (EAP) amplitudes of spon-
taneous activity plotted on the electrode array at 46 days in vitro (DIV). Black points
represent electrodes in the vicinity of axon initial segments (AIS). (c) The axons were
located by sequentially stimulating electrodes that were included in the area having a
radius 70–80µm from the AIS. The black points are the stimulated electrodes. (d) The
waveform of bipolar pulse stimulation. The amplitude follows a normal distribution,
and the interpulse interval (IPI) is 10, 20, or 30 ms. (e) The selected electrodes used
for measurement (gray) and stimulation (black).

2 Materials and Methods

2.1 Cell Culture

All experiments were approved by the ethical committee of the University of
Tokyo and followed “Guiding Principles for the Care and Use of Animals in the
Field of Physiological Science” by the Physiological Society of Japan.

Techniques for cell culture have been developed to maintain the culture and
conduct experiments for a long time [10,28]. Embryonic rat cortices were dis-
sected from E18 rat and used for cortical cell cultures. The cortices were dissoci-
ated in 2 mL of 0.25% trypsin-ethylenediaminetetraacetic acid (Trypsin-EDTA,
Life Technologies), from which cells were isolated by trituration, and 38,000 cells
were seeded on each MEA (MaxWell Biosystems; Fig. 1(a)). For cell adhesion, 5
mL of 0.05% Polyethileneimine (PEI; Sigma-Aldrich) and 5µL of 0.02 mg/mL
Laminin (Sigma-Aldrich) were used before plating the cells. After 24 h from
plating the cells, the plating media [3] were changed to the growth media [28].
The plating media were composed of Neurobasal 850µL (Life Technologies),
10% horse serum (HyClone), 0.5 mM GlutaMAX (Life Technologies), and 2%
B27 (Life Technologies). The growth media were composed of DMEM 850µL
(Life Technologies), 10% horse serum (HyClone), 0.5 mM GlutaMAX (Life Tech-
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Fig. 2. Detected extracellular action potentials. The position of the measurement elec-
trode (x, y) is (77, 35). In (a) and (b), the gray and black lines represent filtered
signals and signals detected as spikes, respectively. (a) Extracellular action potentials
of spontaneous activity measured before (upper) and after (lower) the stimulation. (b)
Extracellular action potentials evoked by two-trial identical stimulations. Filtered sig-
nals saturated when electrical stimulation was conducted. (c) The stimulation signal
trace. The mean and standard deviation of stimulation amplitude were 200 mV and
50 mV, respectively. The interpulse interval was 10µs.

nologies), and 1 mM sodium pyruvate (Life Technologies). All experiments were
conducted in an incubator at 37 ◦C and 5% CO2. The MEAs were sealed with a
lid to prevent water evaporation and invasion of bacteria and fungus.

2.2 Electrode Selection

We calculated the average spike amplitudes during a spontaneous activity at
all electrodes, and selected electrodes on which the axon places as stimulation
electrodes. The MEA had 26,400 electrodes, which place 17.5µm apart and
are arranged in a 120 × 220 grid. An extracellular action potential (EAP) has
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a larger negative amplitude in the vicinity of an axon initial segment (AIS)
than around other segments [2], and the EAP amplitude of spontaneous activity
at each electrode were obtained to search for electrodes near neurons among
26,400 electrodes. We first obtained 20-s voltage traces at 26,400 electrodes,
from which negative EAPs xn were detected. From these xn, the average of the
EAP amplitudes for each electrode were calculated to create a 120 × 220 map.
We smoothed the electrode map using the Gaussian filter, searched local minima
on the map, and regarded them as electrodes near AISs. Furthermore, to search
for the axon of the AIS, all electrodes in an area with a radius of 70–80µm
from the AIS electrodes were stimulated one at a time. As shown in Fig. 1(c),
each electrode was stimulated by 20 bipolar pulses with 50-ms interpulse interval
(IPI) and 300-mV amplitude. Spike detection was applied to the voltage traces
to obtain band-pass filtered signals. The signal traces for 20 trials were averaged
and electrodes whose mean amplitude could be less than −200µV were selected
as the stimulation electrodes.

The AIS electrodes and electrodes with a high firing rate were chosen as
the measurement electrodes. The MEA could simultaneously utilize up to 1,024
of 26,400 electrodes. The remaining electrodes, except the stimulation and AIS
electrodes, were connected to the electrodes with a higher firing rate. To measure
the number of spikes at each electrode, voltage traces in spontaneous activity
were measured for 20 s each.

2.3 Spike Detection

The 6th Butterworth bandpass filter and zero-phase IIR filter were applied to the
voltage traces to extract 300–3000 Hz components. For stimulating electrodes,
artifacts caused by stimulation were removed by eliminating traces ±2 ms from
the stimulation times. The extracted signals were divided into positive com-
ponents xp and negative components xn, and their standard deviations were
calculated as follows [29]:

σ = median
{ |x|

0.6745

}
. (1)

If the amplitude of extracted signal exceeded 4σ (xp > 4σp, |xn| > 4σn), the
value of spike train was set to one; otherwise, it was set to zero. There is a
1–2 ms period called absolute refractory period, in which spikes do not occur
even when the neuron is stimulated. As the measurement frequency was 20 kHz,
the above spike train was separated by a 1-ms time bin, and if one or more spikes
appeared in one bin, the modified spike train was set to one; otherwise it was
set to zero.

2.4 Electrical Stimulation

When investigating ESP and memory capacity, we gave bipolar pulse stimuli
(Fig. 1(c)) of the amplitude that followed the normal distribution N (μ, σ2) with
mean μ and standard deviation σ, and of the IPI of T = 10, 20, and 30 ms.
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2.5 Spike Metric

The distance between two spike trains were evaluated with Victor’s spike metric
[32]. Two vectors a ∈ Nna and b ∈ Nnb (na ≤ nb) hold spike times in the
first and second trials, respectively, and the total cost to convert a to b is cal-
culated. Although there are many conversion paths, the one with the minimum
cost among them is the distance G(a, b). To convert the vector, there are three
operations: adding, deleting, and moving spikes, whose costs are one, one, and
q Δt, respectively. Note that Δt is the absolute difference between the times
before and after moving the spike, and q is a weight parameter and was set to
10 ms. As the distance G(a, b) depends on na, nb, the normalized distance d(a, b)
was obtained as follows:

d(a, b) =
G(a, b) − Δn

na
. (2)

When Victor’s metric converts a to b, spikes are added Δn(= nb − na) times.
Since the spike addition cost is one, there will always be a cost Δn. The remain-
ing na spikes are transformed by moving, or adding and deleting, and d(a, b)
represent the cost averaged over na operations.

2.6 Composing a Reservoir

The interpulse interval was T (= 10, 20, 30 ms), whereas the spike detection
interval was 1 ms. Since the two intervals must be the same to compose a reser-
voir, the spike count in a T -width time bin was used as a state of node.

When a dynamical system has computational capabilities, the system con-
verges to the same trajectory without depending on the initial values [13,20]. To
wash out the initial transient, the time series data after converging was divided
into training data (i = 1, · · · , N) and test data (i = N + 1, · · · , 2N).

Ridge regression was adopted for training readout weights. The readout
weights w and the output ŷ were calculated by Eqs. (3) and (4), respectively.

ŵ = arg min
w

{
1
N

N∑
i=1

(yi − w · si)2 + α||w||22
}

, (3)

ŷi = ŵ · si, (4)

where yi was the desired output in the i-th time bin, || · ||2 representing the
Euclidean norm, and α was a hyperparameter that adjusts the degree of nor-
malization. When one uses Ridge regression, the Akaike information criteria AIC
is expressed by the following equation:

AIC =
1

Nσ̂2

( 2N∑
i=N+1

(ŷi − yi)2 + 2σ̂2df

)
, (5)

df =
M+1∑
i=1

ei

ei + α
, (6)
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where σ̂2 = 1
N − p − 1

∑2N
i=N+1(ŷi|α=0 − yi)2, and ei(i = 1, 2, · · · ,M +1) were the

eigenvalues of the matrix [s1 · · · sN ]T [s1 · · · sN ]. We obtained p pairs of (α,w)
during training and p pairs of (α,AIC) during test, with which α was chosen
such that the AIC would be minimized.

2.7 Memory Capacity

A measure for short-term memory of a reservoir is memory capacity (MC),
which quantifies the past input held in the reservoir by giving the temporally
uncorrelated time-series input νi to the reservoir and emulating the past inputs.
The memory function fk (k = 1, 2, · · · ) represents the accuracy with which νi−k

the input delayed by k time bin are stored in the reservoir and examining fk

provides how accurately and how long the input is held. The memory capacity
C is represented by the sum of fk:

fk = max
w

(∑
i(νi−k − ν̄)(ŷi − ¯̂y)

)2
∑

i(νi − ν̄)2 · ∑
i(ŷi − ¯̂y)2

(7)

C =
∑

k

fk (8)

3 Results and Discussions

3.1 Echo State Property

Spontaneous activities and evoked responses were alternately measured for 300 s
per trial. Figure 2(a) and (b) show the filtered signals of spontaneous activity
and evoked responses at 292.0–292.4 s, respectively. Figure 2(c) represents the
stimulation voltage trace applied to all stimulation electrodes. While the spike
frequency in spontaneous activity was low and the spike times were uniformly
distributed, the spikes in evoked response densely concentrated around specific
times, which corresponded with times when the amplitude was large and indi-
cated that strong stimuli induced spikes at specific times.

Figure 3 shows the difference in the number of spikes, Δn, and the normalized
spike train distance, d, with 1-s time bin. Δn converged in approximately 30 s
from beginning of stimulation whereas d fluctuated a little before Δn converged;
therefore, the spike trains converged in approximately 30 s, which suggests that
short-term plasticity occurred in the culture. The spikes in each neuron might
converge because of facilitation and depression caused by repeated spikes occur-
rence.

Furthermore, the spike train distances of spontaneous activities and evoked
responses with 300-s time bin are shown in Fig. 4(a) and (b), respectively, where
the distances were calculated for each activity and plotted on the electrode map.
In addition, the averaged distances for 80 electrodes of all the measurement
electrodes are shown in Fig. 4(c). The average distances of spontaneous activity
were close to two, which indicated that there were many pairs whose spike time
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Fig. 3. The average spike train distance changes in time (μ = 200 mV). The upper
and lower figures show the absolute difference in the number of spikes Δn and the
normalized distance d. The figures (a), (b), and (c) show the distances when the inter-
pulse interval is 10, 20, and 30 ms, respectively. The black lines and shade are the mean
distances and the standard deviation over the measurement electrodes, respectively.

differences were more than 10 ms because the cost to delete and add the spike
(Δt > 10 ms) is two. However, the average distances of evoked responses were
smaller than those of spontaneous activity, which suggests that the spikes with
a time difference of 10 ms or less increased in evoked responses. The distances
in evoked responses being smaller than those in spontaneous activity indicated
that the cell culture had the ESP.

Additionally, Fig. 4(d) shows the average distances for the mean amplitude μ
and IPI of the stimulus. As μ and IPI increased, the average distance decreased.
Spike trains were measured in some trials when a bipolar pulse stimulus with
2.4-V amplitude was injected, and the reproducibility between spikes was exam-
ined [15], where spikes occurred in 10 ms or more after stimulation and the spike
patterns matched better as the spike times were closer to the stimulation. In
contrast, when stimulation was repeatedly applied to the cell culture, the spike
train distance got smaller as the IPI was larger, which might imply that when
multiple stimulations were given, the spike timing was well-matched to a time
close to 30 ms from the stimulation.

3.2 Memory Functions

We constructed a reservoir with nodes whose state was the spike number within
a time bin T (= 10, 20, and 30 ms) and calculated the memory functions. Figure 5
shows the memory functions of the cortical cell culture. ρk represents the cor-
relation coefficient of νi−k with ŷi that was calculated with w of the memory
function fk. ρk (Fig. 5(a) k = 1, 2, (b) k = 1, and (c) k = 1) showed weak
positive correlations, which proved that the number of spikes was determined
by stimulation up to 20 ms. It has been reported that spikes for 20 ms from the
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Fig. 4. Echo state property of a rat cortical cell culture. (a) Spike train distances of
spontaneous activities on the electrode array. (b) Spike train distances of evoked activ-
ities on the electrode array. The interpulse interval (IPI) was 10 ms. (c) Spike train
distances of each electrode. 80 of all measurement electrodes are shown here. The col-
ored lines show the mean distances of all electrode distances. In (c) and (d), black
circle, blue plus, green cross, and red circle markers stand for spontaneous activity
and evoked response with 10, 20, and 30-ms IPI stimulations, respectively. In (b) and
(c), mean and standard deviation of stimulation amplitude were 300 mV and 50 mV,
respectively. (d) Distances averaged over all measurement electrodes except for stimu-
lation ones. The standard deviation of stimulation amplitude was 50 mV. (Color figure
online)

stimulus are caused by the stimulus. These results showed that the number of
spikes was determined not only by the stimulus just before but by stimuli up
to 20 ms before. A part of stimulus information up to 20 ms before might be
retained by excitatory postsynaptic potentials (EPSPs) of pyramidal neurons.
If a next EPSP occurs before the previous EPSP returns to the base line, the
EPSP is added up. The addition of EPSP is linear when the interval is 30 ms
or more, and nonlinear when it is 30 ms or less [27]. As the stimulus is stronger,
the stimulated neuron fire more frequently and the postsynaptic neurons retain
more nonlinear EPSPs. In other words, the number of spikes of postsynaptic
neurons might have contributed to the stimulus strength information held in the
reservoir.

However, the stimulation amplitudes older than 20 ms were not retained.
Dranias et al. optically stimulated cell cultures where neurons were transfected
with ChannelRhodopsin-2, and showed that SVM with time series data of firing
rate could distinguish optical stimulations applied 1 s or more before [6]. In our
study, since the stimulation interval was 10–30 ms, further studies are needed to
examine what occurs in the culture when this interval is longer.
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Fig. 5. Memory function of a rat cortical cell culture (μ = 400 mV). The red plus
markers and the black circle markers represent fk, the memory function of k, and
the correlation coefficient ρk, respectively. The figures (a), (b), and (c) show memory
functions when interpulse interval is 10, 20, and 30 ms, respectively. (Color figure online)

4 Conclusions

In this paper, we constructed reservoirs using cell cultures from rat cortices
and stimulated them two times with an identical electrical stimulation trace to
measure the distance between two spike trains. Additionally, we examined their
expression of information by measuring memory functions. The results were as
follows:

– When the axons of spontaneously active neurons were stimulated, the spike
train distances of evoked activity averaged at all electrodes were smaller than
the distance of spontaneous activity.

– As the amplitude and IPI of stimulation increased, the spike train distances
decreased.

– When the electrical stimulation whose amplitude followed the normal distri-
bution was applied and the reservoir was constructed with the nodes repre-
sented by the firing rate, the memory function became relatively high at bins
delayed by one and two.
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