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Abstract. This paper explores a simple method for obtaining contex-
tual word representations. Recently, it was shown that random sentence
representations obtained from echo state networks (ESNs) were able
to achieve near state-of-the-art results in several sequence classification
tasks. We explore a similar direction while considering a sequence label-
ing task specifically named entity recognition (NER). The idea is to
simply use reservoir states of an ESN as contextual word embeddings by
passing pre-trained word-embeddings as its input. Experimental results
show that our approach achieves competitive results in terms of accuracy
and faster training times when compared to state-of-the-art methods. In
addition, we provide an empirical evaluation of hyper-parameters that
influence this performance.
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1 Introduction

Natural language processing (NLP) comprises a broad spectrum of tasks such as
sentence labeling [2,31], question answering [24], sequence-to-sequence learning
[28], natural language interference [3] etc. One of the core components crucial to
all these tasks is obtaining an appropriate representation of text. For instance, in
a sequence tagging task, each word in a sentence is assigned a linguistic tag (eg. a
named entity or a part of speech). In order to be processed by supervised machine
learning models, each word is represented by a real-valued vector that encodes
both context and semantics. Earlier systems considered word representations
that are obtained using latent-semantic analysis methods such as Singular Value
Decomposition [6] or GloVe [22] that uses word co-occurrences and context-
window based word representations such as Word2Vec [19]. Although effective,
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these methods are not robust against morphological variations or misspelled
words. Tackling this and extending on Word2Vec, FastText [13] represents each
word with a bag of character n-grams. Following this trend, recent methods
such as ELMo [23] and Flair [1] combine character-level language models and
deep recurrent architectures to obtain contextual word representations and have
become state-of-the-art methods.

In a sequence classification task, too, the task boils down to obtaining com-
pact representations of sentences. While classic methods using bags-of-words
(BOW) or term frequency-inverse document frequency (TF-IDF) are simple and
effective, they ignore word ordering and suffer from high dimensionality. In recent
years, several methods [14,27] have been developed to learn compositional opera-
tors that convert word representations to sentence representations using different
neural architectures. One drawback of these approaches is that they are trained
for a particular task and require supervised learning. However, it is desired to
obtain task agnostic representations that can be shared across a wide range
of tasks. An approach tailored to this is SkipThought [15] which is similar to
Skip-gram architecture of Word2Vec but encode sentences directly. Similarly,
InferSent [5] learns a generic representation which is trained on a standard nat-
ural language inference task yields state-of-the-art results on several tasks.

While the majority of representation learning methods nowadays are driven
by choosing methods that vary the encoder architecture or the type of network
(RNNs, CNNs), there has been an alternative line of work [32] that caught
attention recently. These methods do not train any sentence encoders explicitly;
rather they use pre-trained word embeddings as inputs to randomized recurrent
neural networks such as bi-directional long short term memory (BiLSTMs) and
echo state networks (ESNs). They showed that state-of-the-art sentence encoders
do not significantly improve performance over random encoders.

Inspired by these works, we explore contextualized word representations using
echo state networks. In particular, we propose to solve a sequence labeling
task namely named entity recognition (NER). Current approaches train a bi-
directional LSTM which takes pre-trained word embeddings as its inputs to
train a contextual word representation for a NER classifier. Instead, we propose
to use echo state networks which provide a random context for its input without
training any of the recurrent connections. Therefore, our main contribution is
evaluating echo state network-based random contextual encoder and look how
close they can match the performance of trained contextual encoders.

Providing random context has been studied under the title “reservoir com-
puting”. Echo state networks which follow this paradigm, have been successfully
applied to provide context in several sequential tasks; for neural cryptography
to memorize sequences [25], to learn policies in reinforcement learning [26] and
time series prediction [11,16]. Extending this to deep architectures, deep ESNs
[9] have been applied to detect Parkinson’s disease. However, its application
in natural language processing is relatively an unexplored area, and is limited
to learn grammatical structures [10,30] and systematicity in natural language
[8]. Differing from these methods, our approach focuses on obtaining contextual
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word representations to be used in NER which, to the best of our knowledge,
has not been studied with echo state networks.

2 Preliminaries

2.1 Named Entity Recognition

Named entity recognition (NER) is the task of detecting named entities in text
and assigning them an appropriate label such as organization, location or person.
For example: “[Jane Green]PER became the youngest director of the world lead-
ing sports equipment manufacturer [ActPro Equipment]ORG”. More generally
NER can be typically considered as a sequence labeling problem, where words
or characters in a sequence must be classified to one of the predefined classes.
Detecting named entities can either be a standalone task (e.g for anonymizing
sensitive entities in documents) or part of a text pre-processing pipeline.

Early NER systems relied heavily on domain-specific knowledge in the form of
lexicons and simple hand-crafted rules and features; for instance, the morphology
of the word, trigger context words and term frequency. Further development on
feature-engineering systems, included the replacement of hand-crafted rules with
supervised machine learning models. Additionally, more sophisticated features
were used, such as part-of-speech tagging, word embedding, context features.
For a detailed review of these earlier approaches, the reader is referred to [20].

One of the limitations of feature-engineering models is that they rely on a
domain expert, either to hand-craft the rules or to define meaningful features
for a specific application. In recent years, research has moved away from this
paradigm, towards NN-based feature inferring systems, as showcased in a recent
review [33]. Most of the recently developed NER systems consist of the same core,
namely a bi-directional long short-term memory (LSTM). The LSTM takes a
sequence of word embeddings as its input and returns a sequence of contextual
word embeddings by encoding them into its sentence context. This contextual
word embedding is obtained by concatenating the LSTM’s hidden state of a word
for both directions. The LSTM is often coupled with a Conditional Random Field
(CRF), a probabilistic method that can predict labels of sequences by taking the
neighboring labels into account [29].

2.2 Echo State Networks

Recurrent Neural Networks are a very powerful tool in NLP. However, both
training and parameter tuning of an RNN can be cumbersome, due to the size
and the connectivity of the network [7,21]. This problem can be addressed by an
alternative paradigm, reservoir computing. Reservoir computing is based on the
notion of an interconnected randomly generated network that processes sequen-
tial data. This concept is the core of the Echo State Network (ESN), introduced
by Jäger [12].

An ESN consists of a reservoir of recurrently and sparsely connected nodes,
which are then connected to an output layer, responsible for transforming the
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response of the network to the appropriate target output. The basic benefit of
ESNs is that only the output layer of the network needs to be trained, while the
reservoir essentially serves as a context-aware, non-linear mapping of the input
data to a high dimensional space.

For an ESN with nin input nodes, nout output nodes and nres reservoir nodes,
we can define three sets of weights: the input weights W in ∈ R

nres×nin that
connect the input nodes to the reservoir, the reservoir weights W res ∈ R

nres×nres

that interconnect the reservoir nodes and the output weights W out ∈ R
nout×nres

that connect the reservoir to the output nodes.
At time step t, let xt ∈ R

nin , rt ∈ R
nres and yt ∈ R

nout be the state of the
input, reservoir and output neurons respectively. The update of the network is
then as follows:

rt = (1 − α)rt−1 + αfres(W resrt−1 + W inxt) (1)

yt = fout(W outrt), (2)

where fres(.) and fout(.) are component-wise activation functions and α ∈ [0, 1]
is the leaking rate. For fres(.) typically a sigmoidal function is chosen for the
reservoir neurons, while for the output layer the selection is task dependent;
usually, a linear or softmax function is used. The leaking rate has to be tuned
for the given task, as it relates to the required memory of the network [17].

As discussed earlier, the generation of the reservoir and input weight matrices
is random. However, it is controlled by certain parameters, such as the distribu-
tion from which the weights are chosen, the spectral radius (maximum eigenvalue
of W res), or the input scaling. Similarly to the leaking rate, these parameters
are task dependent and need to be carefully set, in order to ensure reasonable
performance. For a detailed guideline on how such hyper-parameters can be set
the reader is referred to the review in [17]. Training a network to perform a cer-
tain task, comes then to training the output weights, W out which is explained
in Sect. 3 with respect to named entity recognition.

3 Using ESN for Contextual Word Representations

We are concerned with obtaining contextual-word representations using echo
state networks; In particular, we are given pre-trained word embeddings of
sentences. To that end, let us consider a sentence s consisting of L tokens
which can be regarded as a sequence of its pre-trained token embeddings ie.
s = (x1,x2, . . .xL ). Given this input sequence and an echo state network with
randomly initialized input and reservoir weights, we pass the given input sen-
tence one token at a time and collect its reservoir states at every time step as
c = (r1, r2, . . . rL ) by following Eq. (1).

By computing context in this manner, the representation of a token includes
the previous context. Whereas for named entity recognition, it is observed in
[5,32] that it is beneficial to have bi-directional context. To do this, we pass the
sequence also in reverse order once and collect its corresponding reservoir states.
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Therefore, contextual word-representation for each token is the concatenated
reservoir states obtained from both directions ie. c = (r1, r2, . . . rL ) where each
ri is [−→ri ,←−ri ]. Note, we use the same echo state network for both directions,
unlike LSTM-based methods which use two separate hidden layers parsing in
each direction. This is primarily because Wres is randomly initialized.

To solve a sequence labeling task such as NER, we pass this sequence c of
contextual-word representations to the readout layer with weights Wout and
its output can be collected in a sequence y = (y1,y2, . . .yL ) following Eq. (2)
with fout as softmax activation function. Given a ground truth sequence g =
(g1, g2, . . . gL ) of NER tags where each gi is a one-hot encoded vector of possible
tags, then it is sufficient to optimize Wout by taking a gradient descent at the
rate of η minimizing cross-entropy loss L between predicted sequence y and
ground truth sequence g.

L(y, g) = −
L∑

i=1

C∑

j=1

gi(j) log(yi(j)) (3)

Wout = Wout − η∇Wout
L(y, g) (4)

As input and reservoir weight matrices Win and Wres are kept constant
throughout this training process, we can break this whole procedure naturally
into (1) generating contextual-word representations for all sentences (2) fitting a
readout layer. Step (1) can be done just once for each echo state network setting
and contextual-representations can be stored. In Step (2), any classifier of our
choice (shallow or deep) can be trained offline with a batch gradient descent.

4 Experimental Results

In our experiments, we evaluate the contextual-word representations computed
by echo state networks on the task of Named Entity Recognition. Specifically,
we test our approach on GermEval Dataset from 2014 [2] in which the task is to
identify named entities in sentences. In total, there are 12 classes comprising of
4 main classes: PERson, LOCation, ORGanisation, OTHer and 2 subclasses for
each of them: -deriv and -part. The subclasses complicate the task by introduc-
ing nested named entities and derived entities. One example of a nested entity is
“University of Bonn” which is an ORG but at the same time contains a location
entity “Bonn” (LOC-part). Similarly, the second subclass includes word deriva-
tion, for example, “das Bonner Theater” (translated as “the theater of Bonn”)
contains the word “Bonner” (LOC-deriv) derived from the entity “Bonn”. The
dataset has a predefined splitting into a training, a development and a test set
with 24 000, 2 200 and 5 100 sentences respectively.

4.1 Hyper-parameter Tuning

As echo state networks have several hyper-parameters which must be set before-
hand, we first tune them by cross-validating on the development set. To that end,
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Table 1. Hyper-parameters tuning

Parameter Value Performance

Spectral radius 0.6 61.18

0.7 61.34

0.8 60.92

0.9 60.60

1.0 60.71

1.1 60.50

1.3 60.14

Leaking rate 0.3 60.92

0.5 64.74

0.6 65.11

0.7 66.27

0.75 66.28

0.8 60.71

Input scaling 0.125 60.76

0.25 62.23

0.375 61.10

0.5 60.92

0.75 59.45

we use pre-trained word embeddings from FastText [13] as the inputs. For this
purpose, we use the Flair implementation1, which offers an easy to use framework
for training and evaluating NER models along with access to different types of
embeddings. To keep this tuning process tractable, as discussed before, we first
generate contextual-word embeddings for different settings of ESN. Later, we
fit a logistic regression model as our read out layer to train it to predict NER
tags. For training this readout layer, we use Adadelta optimizer trained for 150
epochs with a learning rate of 0.1 and weight decay of 10−5.

Spectral Radius: The spectral radius ρ(Wres) which is the maximal absolute
eigenvalue of the reservoir weight matrix. As Wres is initialized randomly, it is
essential to set the spectral radius to a value less than 1.0 to satisfy the echo state
property [12]. However, it was shown empirically that sometimes even higher
values satisfy this condition and deliver better performance [17]. We varied the
spectral radius between 0.6 and 1.3 and measured the resulting F1 score. Table 1
shows the F1 scores for different spectral radii; the performance peaks around
0.7 and then decreases continuously apart from a small local maximum around
the unit spectral radius.

1 https://github.com/zalandoresearch/flair.

https://github.com/zalandoresearch/flair
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[Uni vs Bi-directional]

Fig. 1. Influence of reservoir size on performance; the larger the reservoir, the better
the performance. The fact that the bi-directional variant performs better than the
uni-directional suggests that task depends on context from either sides

Leaking Rate: Next, we examine the leaking rate α which determines the speed
of reservoir updates for its inputs. A high leaking rate indicates that a lot of old
information vanishes through the “leak” in favor of new inputs. Table 1 shows
that the best values are somewhere found between 0.7 and 0.75. This indicates
that for this task, a higher leaking rate is preferred indicating that a faster
update is necessary. Optimal settings of both leaking rate and spectral radius
suggest that it is sufficient to have a shorter temporal context.

Input Scaling: Another key parameter of echo state networks is the scaling of
input weight matrix Win . These weights can be controlled to influence the non-
linearity of the reservoir responses. In our setting, we use tanh(·) activations;
for linear tasks, it is thus beneficial to have small weights around 0.0, where the
activation is almost linear. On the other side, for a more complex task, it might
be better to choose a high scaling in order to make use of the non-linearity of the
activation function. However, it was shown in previous research [17] that large
weights can make the ESN unstable. Also, there exists a trade-off between non-
linear mapping and memory capacity of echo state networks, it was suggested to
use Extreme Learning Machines (ELMs) to tackle that subject [4]. In Table 1,
the effect of the input scaling is presented. The highest f1-score corresponds to
input scaling of 0.25.

Reservoir Size: Next, we investigate the influence of reservoir size for both uni-
and bi-directional ESNs. Since a bi-directional ESN produces an embedding of
twice the reservoir size, we instead look at the final embedding sizes to obtain
a fair comparison. Figure 1 shows that the bi-directional embedding leads to a
continuously better f1-score of around 1.5% indicating the task benefits from
having bi-directional temporal context.
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Table 2. NER on word embeddings

Model Embedding dimension Run time Performance

Logistic regression (LR) 300 33 min 52.75 ± 0.19

Bi-ESN + LR 4096 37 min 69.04 ± 0.22

Bi-ESN + NN 4096 47 min 70.54 ± 0.10

Bi-LSTM 4096 10 h 12 min 75.45 ± 0.10

Bi-LSTM 256 3 h 3 min 76.87 ± 0.21

4.2 Evaluation on Different Embeddings

Next, we investigate the performance of contextual-word representations obt-
ained from ESN on the test set by considering two types of word embeddings:
FastText and Stacked embedding of FastText (dimension of 300) and Flair
(dimension of 4096) [1]. We also consider two variants of ESN, first with a
logistic regression (Bi-ESN + LR) read out layer and second with a neural net-
work (Bi-ESN + NN) with a hidden layer consisting of 1000 neurons and 0.5
dropout. In either case, we fix our size of reservoir to have 2048 neurons amount-
ing to 4096 dimensional embedding (bi-directional). The optimal setting of other
hyper-parameters is obtained from the analysis presented in the previous section.
We compare our approach to several baseline models: (i) logistic regression (LR)
which does not use any context (ii) bi-directional LSTM (Bi-LSTM) which learns
contextual word-representations in an end-to-end fashion for NER task with hid-
den size 256 as chosen in [1]. For fair comparison, we also train a variant with
hidden size that matches the size of ESN reservoir.

On FastText Embeddings: Table 2 summarizes the performance of all meth-
ods trained with FastText embeddings as inputs. It is evident that the
contextual-word representations generated by ESN lead to a strong improve-
ment over a logistic regression method. Comparing the two ESN variants, it is
noticed that a readout with neural networks has ≈1.5% improvement over logis-
tic regression read out layer. The most important result is that the difference
between the LSTM and the ESN models amounts to a value of 6% only. This
suggests that LSTM variants do not improve much over ESN methods but only
incur longer training times of ≈3 h. On the other hand, ESN methods can be
quickly trained in less than an hour ≈0.5 h. These result suggests that random
contextual-word representations obtained from ESN are already competitive and
can be used as a baseline while bench-marking LSTM-based NER models.

On Word + Flair Embeddings: Table 3 presents the same set of experiments
as before but with the combination of Flair and FastText token embeddings as
inputs. In these experiments, we choose the size of the reservoir as 4396 result-
ing in contextual-word embedding size of 8792 due to bi-direction. One impor-
tant observation is that all methods have a considerable improvement over the
results presented in Table 2 which shows that Flair embeddings are more pow-
erful in NER task. As Flair embeddings already encode contextual information
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Table 3. NER on Flair + word embeddings

Model Embedding dimension Run time Performance

Logistic regression 4396 2 h 10 min 73.78 ± 0.18

Bi-ESN + LR 8792 3 h 40 min 76.74 ± 0.03

Bi-ESN + NN 8792 4 h 40 min 78.17 ± 0.19

Bi-LSTM 8792 75 h 81.24 ± 0.13

Bi-LSTM 256 4 h 35 min 83.52 ± 0.21

as opposed to FastText, one might expect no further improvement by applying
a further contextual encoding using ESN or LSTM. Nevertheless, both the ESN
and the LSTM increase the performance noticeably by 3 to 5% and 8 to 10%
respectively. Comparing the LSTM with the ESN models, we observe that the
performance gap is just around 5%. These findings concur with our previous
analysis that ESNs are capable of achieving competitive performance as LSTMs
while requiring only short period of training time.

5 Conclusion

In this paper, we explored a random contextual-word encoder using echo state
networks. Although their input and recurrent connections are not adapted to
the task, they are still capable of providing context which can be leveraged for
named entity recognition. Experiments suggest that they can be trained quickly
and achieve competitive accuracy when compared to state-of-the-art methods.
As the performance between trained encoders such as LSTMs and our ESN-based
random context encoders is not much, our method can be used as a baseline for
evaluating other contextual-word learning methods. There are several aspects
in echo state networks which can be further explored; these include sparsity
of connections, the structure of reservoir (random graphs, scale-free networks).
Also, there has been some research into ESNs with multiple layers [18] that could
enhance the performance. As future work, we intend to pursue these ideas which
would bring the performance gap further down.

References

1. Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence
labeling. In: Proceedings of International Conference on Computational Linguistics
(2018)

2. Benikova, D., Biemann, C., Kisselew, M., Pado, S.: Germeval 2014 Named Entity
Recognition Shared Task (2014)

3. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus for
learning natural language inference. arXiv preprint arXiv:1508.05326 (2015)

http://arxiv.org/abs/1508.05326


Echo State Networks for Named Entity Recognition 119

4. Butcher, J.B., Verstraeten, D., Schrauwen, B., Day, C., Haycock, P.: Reservoir
computing and extreme learning machines for non-linear time-series data analysis.
Neural Netw. 38, 76–89 (2013)

5. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning
of universal sentence representations from natural language inference data. arXiv
preprint arXiv:1705.02364 (2017)

6. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

7. Doya, K.: Bifurcations in the learning of recurrent neural networks. In: Proceedings
IEEE International Symposium on Circuits and Systems (1992)

8. Frank, S.L.: Learn more by training less: systematicity in sentence processing by
recurrent networks. Connect. Sci. 18(3), 287–302 (2006)

9. Gallicchio, C., Micheli, A., Pedrelli, L.: Deep echo state networks for diagnosis of
Parkinson’s disease. arXiv preprint arXiv:1802.06708 (2018)

10. Hinaut, X., Dominey, P.F.: On-line processing of grammatical structure using reser-
voir computing. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.)
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