
Echo State vs. LSTM Networks for Word
Sense Disambiguation

Alexander Popov , Petia Koprinkova-Hristova(B) , Kiril Simov ,
and Petya Osenova

IICT, Bulgarian Academy of Sciences, Sofia, Bulgaria
{alex.popov,kivs,petya}@bultreebank.org, pkoprinkova@bas.bg

Abstract. Inspired by bidirectional long short-term memory (LSTM)
recurrent neural network (RNN) architectures, commonly applied in nat-
ural language processing (NLP) tasks, we have investigated an alterna-
tive bidirectional RNN structure consisting of two Echo state networks
(ESN). Like the widely applied BiLSTM architectures, the BiESN struc-
ture accumulates information from both the left and right contexts of
target word, thus accounting for all available information within the text.
The main advantages of BiESN over BiLSTM are the smaller number
of trainable parameters and a simpler training algorithm. The two mod-
elling approaches have been compared on the word sense disambiguation
task (WSD) in NLP. The accuracy of several BiESN architectures is com-
pared with that of similar BiLSTM models trained and evaluated on the
same data sets.

Keywords: Recurrent neural networks · Echo state network ·
Long short-term memory · Natural language processing ·
Word sense disambiguation

1 Introduction

An important recent development in natural language processing (NLP) has
been the adoption of recurrent neural networks (RNNs) as a viable tool for
language modeling. Word sense disambiguation (WSD) is an NLP task aimed
at assigning proper categories of meaning to words that are ambiguous (i.e.
they can have several related or unrelated meanings depending on the context).
For instance, the word “speaker” can refer to a person who speaks (“The next
speaker will talk about new scientific achievements.”) or a device reproducing
speech (“The speaker sound was of very poor quality.”). In order to do WSD
we need to account for all words (the context) not only before but also after the
target word (“speaker” in our example). In some cases the task might require
examining even the context preceding a sentence boundary, and on rare occasions
it might even depend on looking forward into and beyond the current sentence.
Thus the ability of RNNs to keep a memory trace of past “events” at theoretically

c© Springer Nature Switzerland AG 2019
I. V. Tetko et al. (Eds.): ICANN 2019, LNCS 11731, pp. 94–109, 2019.
https://doi.org/10.1007/978-3-030-30493-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30493-5_10&domain=pdf
http://orcid.org/0000-0001-7676-3600
http://orcid.org/0000-0002-0447-9667
http://orcid.org/0000-0003-3555-0179
http://orcid.org/0000-0002-4484-5027
https://doi.org/10.1007/978-3-030-30493-5_10


Echo State vs. LSTM Networks for Word Sense Disambiguation 95

arbitrary distances from the present step is an obvious advantage over algorithms
that collect information from a fixed window around the target word.

For a long time RNNs were considered difficult to train, as their memory
capabilities are often thwarted in practice by the exploding/vanishing gradients
problem. While the exploding gradients can be capped, a more elaborate solution
was needed to combat the vanishing part. As an attempt to solve these problems
long short-term memory cells [12] were designed to selectively forget informa-
tion about old states and pay attention to new inputs (a good introduction to
LSTMs can be found in [8]; another similar and newer development are gated
recurrent units [2]). A further enhancement to such an architecture is making
it bidirectional [9], i.e. the input sequence is fed into two recurrent context lay-
ers – one running from the beginning to the end of the sequence and the other
one running in reverse. Bidirectional LSTMs (BiLSTMs) have been successfully
applied to a number of sequence-to-sequence tasks in NLP [13,31–33].

Although LSTM architectures cope well with the exploding/vanishing gra-
dients problem, their training via the gradient descent algorithm is a computa-
tionally demanding task, especially in the case of very deep networks. Aimed at
the development of fast trainable RNNs, an alternative approach was proposed
in 2002 independently by [18] under the name liquid state machines (LSM)
and by [14] under the name echo state networks (ESN). Nowadays these are
collectively referred to as reservoir computing (RC) [17] approaches. The idea
consists of generating a random and sparsely connected recurrent reservoir of
neurons whose mutual connection weights are not subject to training and a lin-
ear readout layer that can be tuned in one shot (presenting each training sample
only once and solving the least squares problem). Since their emergence, RC
approaches have been widely used for the modeling of a variety of dynamical
systems [1]. Gallicchio et al. [7] compared deep ESN architectures with popular
deep gated RNNs (like LSTM and GRU architectures) for time series prediction
and demonstrated that in most benchmark problems deep ESNs outperform the
fully trained RNNs.

Application of ESNs in NLP have started to appear only recently, so there
are only a few works in this area. The possibility of language modelling via
ESN was investigated in [5,11]. In [29,30], ESNs are applied for semantic role
labeling in a multimodal robotic architecture. Other NLP applications are in
the area of speech processing—[26,27], and in language modeling—[28]. To the
best of our knowledge, there are yet no examples of ESNs being used for WSD.
Our preliminary attempt to solve the WSD task using a single ESN reservoir
[16] has shown that although the training and testing errors on predicted sense
embedding vectors are quite small, the vector representations of the possible
senses per word are very close to one another in the embedding space, resulting
in low accuracy scores.

That is why, in an attempt to increase WSD accuracy, in present work we have
adopted a bidirectional reservoir approach proposed initially in [6,24]. Similar
to BiLSTMs, bidirectional reservoir structures (BiESN) were applied for feature
extraction from time series – from forward and backward contexts (left and



96 A. Popov et al.

right ESN reservoir state vectors); the features are further used for classification
purposes. In our model the readout is a linear combination of the current input
and both reservoir states, and the training of the output connections is done
via the recursive least squares (RLS) algorithm. Here we also compare BiESN
models with similar BiLSTM models [22] evaluated on the same task of WSD.

The structure of the paper is as follows: the next section introduces ESN and
BiESN architectures and compares them with similar LSTM models; Sect. 3
briefly describes the available research on BiLSTMs for WSD; the results
obtained on WSD with BiESNs are presented next and compared with the accu-
racy of BiLSTM architectures; a section dedicated to conclusions and future
work closes the paper.

2 Echo State Networks vs LSTM Architectures

2.1 ESN Basics

The structure of an ESN is shown on Fig. 1. It incorporates a dynamic reservoir
of neurons with a sigmoid activation function (usually the hyperbolic tangent)
and randomly generated recurrent connections W res. The reservoir state R(k)
depends both on its previous state R(k − 1) and on the current input in(k)—
Eq. 1. The network output is generated as a linear combination of the reservoir
and input states—Eq. 2:

R(k) = (1 − a)R(k − 1) + a tanh(W inin(k) + W resR(k − 1)) (1)

out(k) = W out[in(k), R(k)] (2)

Here W in and W res are nin × nR and nR × nR matrices that are randomly
generated and are not trainable; nout, nin and nR are the sizes of the corre-
sponding vectors out, in and R; the parameter a, called leaking rate, influences
the reservoir short-term memory and in many applications is omitted, i.e. a is
set to 1; W out is a nout × (nin + nR) trainable matrix.

According to recipes in [14], the reservoir connection matrix W res should
be generated so as to guarantee the “echo state property” of the ESN, i.e. the
changes in the input vector must be reflected like an “echo” in the output vector
(meaning that the response effect should vanish gradually over time). This is
achieved by proper normalization of the matrix W res so that its spectral radius
becomes smaller than 1 (although for some applications it has been shown that
a spectral radius above 1 could also work). The output weights can be tuned
by the least squares (LS) approach (or ridge regression) in one shot after the
single presentation of all input/output training samples, or iteratively using its
recursive version (RLS) – presenting training input/output samples one by one
[14].



Echo State vs. LSTM Networks for Word Sense Disambiguation 97

Fig. 1. Echo state network structure.

2.2 Echo State vs. Long Short-Term Memory Networks

A similar recurrent structure widely used in the area of NLP is the long short-
term memory (LSTM) network [10], shown in Fig. 2. The LSTM cell model is
described by the following set of equations:

m(k) = f(k) ◦ m(k − 1) + i(k) ◦ tanh(W in
m in(k) + W res

m mo(k − 1) + bm) (3)
mo(k) = o(k) ◦ σ(m(k)) (4)

out(k) = W out
m mo(k) (5)

Here ◦ denotes Hadamard product; m(k) is an internal state (memory) vector,
mo(k) is a memory units output vector and out(k) is readout from the structure
(following the analogy with ESNs) at the current time instant k; f(k), i(k) and
o(k) denote the states of the forget, input and output gates respectively. The
dynamics of the gates is governed by the following recurrent equations:

i(k) = σ(W in
i in(k) + W res

i mo(k − 1) + bi) (6)
f(k) = σ(W in

f in(k) + W res
f mo(k − 1) + bf ) (7)

o(k) = σ(W in
o in(k) + W res

o mo(k − 1) + bo) (8)

Here σ denotes the sigmoid function. In order to maintain the analogy with ESNs,
the recurrent connection weights are denoted by the superscript res, while the
input connection weights – by the superscript in. The dimension of the weight
matrices depends on the number of memory units nm and the input vector size
nin as follows: W in

∗ , where ∗ is for m, i, f or o respectively, are matrices of size
nin × nm; W res

∗ are matrices of size nm × nm; b∗ are vectors of size nm.
Looking at Figs. 1 and 2 and the corresponding Eqs. 3–8 and 1–2, the similar-

ity is obvious. Both accumulate temporal information – in the reservoir (Eq. 1)
or in the memory (Eq. 3) of the recurrent structures. The only difference is that
ESNs have no bias term (although it could be added) and that its parameters
analogous to the input, forget and output gates (according to Eq. 1 they are
a, (1 − a) and 1, respectively) are constant, while the LSTM gates are dynam-
ically changing (Eqs. 6–8, respectively). In contrast to ESNs, whose trainable



98 A. Popov et al.

Fig. 2. LSTM cell structure. Dashed lines represent recurrent connections, while solid
lines – feedforward connections.

parameters are only in the reservoir readout matrix, all weight matrices from
Eqs. 3, 5, as well as 6–8, have to be trained. Thus the total number of train-
able parameters of LSTMs and ESNs having the same number of internal units
(nm = nR = nunits), as well as the same input and output vector sizes are:

nLSTM
tr.params = 4nunits(nin + nunits + 1) + noutnunits (9)

nESN
tr.params = noutnin + noutnunits (10)

An additional advantage of ESNs is that the matrix containing the recurrent
connection weights could be sparse, so that the memory necessary to store its
parameters decreases even further. Another difference is found in the training
procedure: LSTMs are trained via backpropagation through the time states. The
gradient descent algorithm used for the training needs at least several epochs
(iterations over all training data) to settle into a possible local error minimum
and a lot of memory to keep all intermediate state variables necessary for gradient
calculation. ESNs, on the other hand, are trained in one epoch by solving ridge
regression equations or using an RLS algorithm, thus finding optimal parameters
in one shot. Hence the main advantages of ESNs are the smaller number of
parameters and the simpler training algorithm, which can significantly decrease
the necessary computational resources. All of this is achieved at the expense
of simplifications (constant gates) and the random choice of ESN non-trainable
parameters (reservoir connection matrix, its sparsity and leakage rate) that could
make its application trickier.

2.3 Bidirectional ESN Architecture

In order to compare ESN performance with that of widely applied LSTM network
structures, here we adopt a bidirectional reservoir structure (BiESN) similar to
the one proposed in [6] and shown in Fig. 3. The information for the left and
right contexts is accumulated in two independent reservoirs – ESNL and ESNR.



Echo State vs. LSTM Networks for Word Sense Disambiguation 99

Fig. 3. Bidirectional structure composed of two ESNs for the left and right contexts.

First, for the k-th word in a series of tokens, containing n words in total, we
scan the text from left to right (Eq. 11) and from right to left (Eq. 12):

ContextL(k) = [in(0), in(1), ...in(k)] (11)

ContextR(k) = [in(n), in(n − 1), ...in(k)] (12)

in order to accumulate the left and right contexts respectively. Here in(t) denotes
the vector concatenation of the embeddings of the words within the window
centered on the t-th word. In the case of a fixed-size context window applied to
separate sentences it is necessary to have zero padding at the beginning and end
of sentences. However, since the reservoirs themselves are able to accumulate
information from context series with indefinite lengths, in our application we
scan training/testing text documents from beginning to end (left context) and
vice versa (right context). This should allow them to build up a richer contex-
tual representation beyond sentence boundaries. In this sense the architecture
behaves differently from the BiLSTM. LSTMs typically read only one sentence at
a time, since they are much more difficult to train over such long dependencies.

The two separate reservoir states calculated upon the presentation of the left
and right context sequences are obtained as follows:

RL(k) = ESNL(ContextL(k)) (13)

RR(k) = ESNR(ContextR(k)) (14)

Here ESN∗(Context∗(k)) stands for the iterative calculation of Eq. (1), as
applied to input sequences (11) and (12) respectively. Notice that the param-
eters for the two ESNs – leaking rates aL and aR and the input and reservoir



100 A. Popov et al.

weight matrices W in
L , W res

L , W in
R , W res

R – are initialized independently. The
main difference with [6,24] is that in our BiESN structure the output is a linear
combination of both reservoirs states and the target word context window, as
follows:

out(k) = W out[in(k), RL(k), RR(k)] (15)

The output weights W out are tuned using RLS, so that the BiESN predicts the
sense (word sense embedding) of the middle word in the window.

In the case of BiESNs and the corresponding BiLSTM models the number
of trainable parameters becomes:

nBiLSTM
tr.params = 8nunits(nin + nunits + 1) + nout(nin + 2nunits) (16)

nBiESN
tr.params = nout(nin + 2nunits) (17)

3 BiLSTM for WSD

RNNs have been used in several ways for the task of WSD. One such work is
[15], which uses a BiLSTM to solve a lexical sample task – that is, the model
is disambiguating one word per sentence only. The model is on par (or slightly
better) with state-of-the-art systems, but uses no other features apart from input
word embeddings. Popov [22] presents two BiLSTM architectures for solving the
all-words task (i.e. disambiguating all open-class words in a context). Figure 4 is a
combined representation of the two architectures that share the same embedding
and BiLSTM layers design; the main difference is in the output layers.

The recurrent BiLSTM layer consists of two LSTM cells processing the
incoming embeddings in forward and reverse order; the outputs of the forward
and backward LSTM cells are then concatenated and fed into the linear output
layer to be re-sized according to the training data dimension (the size of the
vocabulary nv for Architecture A and the size of the embedding vectors nemb

for Architecture B respectively). Architecture A has an additional softmax layer
calculating the probability distribution of the output layer over the vocabulary
of synonym sets (synsets).

The training data for Architecture A consists of one-hot vectors labels. The
training data for Architecture B consists of real-valued embedding vectors of
word senses obtained from the gold labels (for a description of how these vectors
are generated, see [25] and [22]). The embedding model used for the word senses
is the same as the model used for the input tokens, as this should facilitate
training.

Thus the loss functions subject to minimization during training via the gra-
dient descent procedure are: cross entropy in the case of Architecture A and
mean square error between predicted and target word synset embeddings in
the case of Arcitechture B. In the case of Arcitechture B the classification itself is
done by choosing the closest possible synset label, as measured in terms of cosine
similarity between synset embeddings. Thus, Architecture A is a classifier which
learns to distinguish directly between synset categories (hence the use of cross



Echo State vs. LSTM Networks for Word Sense Disambiguation 101

entropy – the network is trained to predict probability distributions), whereas
Architecture B learns to embed the context of usage of each open-class word
– in terms of the semantico-syntactic features in the embedding models (hence
the mean square error loss function is used – it allows the network to learn to
predict each dimension of meaning).

Fig. 4. Recurrent neural networks for WSD: where diverging, the two pathways (Archi-
tectures A and B) are marked by a separator (/ ); the left pathway (marked in bold)
corresponds to elements from Architecture A; the right pathway (marked in italic)
corresponds to elements from Architecture B. The NONE symbol signals that no cor-
responding element is present for the particular architecture.

Both architectures are trained on the SemCor data set [20], which is tradi-
tionally used for the WSD task (it is used for the ESN models below as well). For
evaluation, the concatenation of a number of Senseval and SemEval data sets is
used, as described in [22] and here called WSDEval-ALL; it contains 7254 word
sense annotations in total. The Senseval-2 data set is used as a development set
[3].

The word/synset embeddings are obtained via the Word2Vec package [19],
using training data obtained from a pseudo corpus of artificial sentences gen-
erated from an enriched version of the WordNet knowledge graph [4] (for more
details see [22]). The model here is slightly richer, as a Wikipedia dump is con-
catenated to the pseudo corpus prior to training, so that the model would reflect
not just the explicit relational knowledge encoded in the WordNet knowledge
graph but knowledge about natural language text as well. The same embeddings
are used to train the BiESN models as well, as described in the next section.



102 A. Popov et al.

It is important to note that for some of these recurrent architectures this
embedding model is not optimal. Widely used models such as GloVe [21] have
been shown to yield results which are closer to the state of the art (e.g. [22]).
However, since some of the architectures presented here need access to both word
and word sense (synset) embeddings, the model described above is used in all
cases in the interest of making a fair comparison.

Table 1. WSD accuracy for the BiLSTM architectures (on the WSDEval-ALL data
set).

Model nunits Accuracy nBiLSTM
tr.params

Architecture A 400 66.2 320 800 + 1100nv

Architecture B 100 62.6 470 800

Architecture B 400 61.3 2 573 200

Architecture B 1000 61.9 11 098 000

MFS 64.8

IMS-s+emb 69.6

Table 1 shows the recorded accuracy scores. The BiLSTM architectures both
use a single bidirectional layer of LSTM blocks. We report a result with an
Architecture A type model which has LSTM blocks of size 400; input and output
dropout of 0.2 is applied to the blocks, whose matrices are initialized with a
random uniform initializer in the range [−1; 1]; training is carried out with a
SGD optimizer with learning rate 0.2, on batches of 100 training sentences [22].
As for Architecture B type models, we report results with LSTM blocks of sizes
100, 400 and 1000, so as to give a fuller sense of how those compare with their
reformulation as ESN networks (the rest of the hyperparameters are the same
as with the A-model, only the dropout parameter is set to a different value –
0). Additional improvements to the RNNs are possible, such as adding attention
mechanisms and training on auxiliary tasks (see [23]), but since our purpose is to
provide a relatively fair comparison between the ESN and LSTM mechanisms,
we refrain from exploring them. The results from the IMS-s+emb system are
used here as representative of the state of the art, as reported in [22]; the model
is a trained SVM using tailor-made features, which include word embeddings.
The most frequent sense (MFS) baseline, which is a very strong one and is also
described in [22], is provided as well.

4 BiESNs for WSD

In this section we evaluate the BiESN architecture with linear readout (described
previously). For the sake of comparison, we have also trained BiESN models with
an additional softmax layer at the output.



Echo State vs. LSTM Networks for Word Sense Disambiguation 103

4.1 BiESN with Linear Readout

Since the reservoir, being a recurrent structure, has its own internal memory,
we set the window size to one word. The left and right contexts are obtained
by starting from the beginning and the end of each text in the training corpus.
Hyper-parameters of ESN reservoirs were not subject of optimization in present
work. Based on our previous experience on WSD with one reservoir [16], we set
hyper-parameters of both reservoirs as follows: random input weight matrices
W in in range [−0.5; 0.5]; recurrent connection matrices W res with 50% sparsity
were initialized randomly and were scaled to achieve spectral radius at the edge
of stability (1.25), the leakage rate a was set to 1. The following Table 2 presents
accuracy scores for trained BiESN models that have different reservoir sizes and,
correspondingly, varying numbers of trainable parameters.

Table 2. Accuracy of WSD by BiESN models with linear readout.

nR Accuracy nBiESN
tr.params

100 61.712 150 000

1000 63.201 690 000

3000 64.387 1 890 000

5000 65.049 3 090 000

Comparison with the reported in Table 1 accuracy for BiLSTM Architecture
B from Fig. 4 (which is more akin to the BiESN structure) shows that the BiESN
architecture outperforms BiLSTM significantly. The total number of trainable
parameters of the BiLSTM Architecture B that achieved highest accuracy of
62.6% (nunits = 100) was 470800; this corresponds to a BiESN structure with
much more (about 770) units. However, further increase of the BiLSTM size
decreased WSD accuracy. In contrast, a BiESN with only 100 units and 150000
trainable parameters achieved accuracy of 61.7%, which corresponds to accuracy
of 61.9% for the BiLSTM Architecture B with 1000 units and about 74 times
bigger number (11098000) of trainable parameters. Further increase of BiESN
model size led to increased accuracy so that even a BiESN with 1000 units
outperforms a BiLSTM with the same number of units (and many more train-
able parameters), achieving 63.2% accuracy. Moreover, our best BiESN model
achieved accuracy of more than 65% (for nR = 5000). The BiESN architec-
ture thus offers a simpler and easily trainable alternative that is able to beat
the difficult MFS baseline and edge towards the state of the art. Moreover, the
same kinds of improvements applicable to LSTMs (more expressive embedding
models, attention mechanisms, etc.) can be implemented for ESNs as well.

4.2 BiESNs with Softmax Output Layer

Next, we present a few experiments with a BiESN architecture trained to per-
form direct classification of word senses. It is to a great extent analogous with



104 A. Popov et al.

the BiLSTM Architecture A from Fig. 4. The concatenated vector of both reser-
voirs states and the input vector is processed by a layer of neurons with ReLU
activation functions whose dimension corresponds to the size of the dictionary
nv. Then the gradient procedure minimizing the mean square error is used to
train the weight matrices of both ReLU and softmax layers positioned after the
reservoirs. Finally, the softmax probability distribution is computed and a cross
entropy comparison is performed against the gold labels (one-hot vectors) like in
the case of BiLSTM Architecture A. Table 3 displays the results for the softmax
version of the BiESN.

Table 3. Accuracy of WSD with BiESN + ReLU + softmax.

nR Accuracy nBiESN
tr.params

300 64.856 900nv

1000 65.008 2300nv

3000 64.994 6300nv

We are yet to comprehensively optimize the hyperparameters of the network,
but even a preliminary comparison shows that BiESNs are able to achieve results
similar to those associated with vanilla BiLSTMs. In all cases the accuracy is
around 65%, i.e. slightly below the results obtained with BiESNs trained via
RLS method on the linear readout (see Table 2). We have to mention that in our
experiments with BiLSTM models training is done only in one iteration over all
data with constant learning rate (1.0). Therefore using smaller or variable learn-
ing rates in combination with multiple iterations could improve WSD accuracy
further at the expense of increased training time.

4.3 Linguistic Error Analysis

The error analysis was performed by comparing the outputs of the best-
performing BiESN network with the gold annotations. A table with all error
cases was extracted, aligning the gold synset and gold synset gloss (i.e. defini-
tion) per error with the selected synset and its gloss. In each case the cosine
similarity between the gold and selected synset embeddings was included. The
totality of error cases were then ordered in descending order, starting from the
most similar pairs and proceeding to the least similar ones.

In the range of pair cosine similarity between 0.97 and 0.90 there are 392
examples. Inside this group examples of all content words have been found:
nouns, verbs, adjectives, adverbs. We chose highly similar cases in order to
inspect whether such small differences reflect genuine distinctions or are rather
misleading.

These pairs containing highly similar but non-identical synsets can be divided
into several categories. In the first case the non-match is due to the selection of



Echo State vs. LSTM Networks for Word Sense Disambiguation 105

another meaning of the lemma which is very close to the gold sense (in terms
of the synset glosses). For example, the noun “week” has three meanings. The
gold one is sense number three: “a period of seven consecutive days starting on
Sunday”. The selected one is the first sense: “any period of seven consecutive
days; it rained for a week”. Another example is the verb “say”, which has 11
senses. The gold one is number 2: “report or maintain”. The selected sense is
number 1: “express in words”. Interestingly enough, in another case the same
verb is annotated in the gold corpus with sense number 8: “utter aloud”. The
sense selected by the system is again number 1:“express in words”, which could
indicate that it is in fact a generalization of the other two. Another example is
the adjective “new”. It has 10 senses. The gold one is number 3: “original and of
a kind not seen before”. The selected one is number 1: “not of long duration”.

In this group we observe that the gold annotation provides some non-first
sense of the lemma while the selected sense is always the first meaning. This
observation can be used to put forward two hypotheses. The first one is that
apparently the partition of meanings in WordNet includes some overlap between
the different senses (or even subsumption in some cases). The other hypothesis is
that the algorithm tends to select the first meaning whenever there is insufficient
knowledge to distinguish between more fine-grained senses of the same lemma.

The second category of errors includes examples where the gold sense and the
selected sense belong to different domains. For example, for the lemma “window”
the gold sense is number 8 and belongs to the domain of computer science: “a
rectangular part of a computer screen that contains a display different from
the rest of the screen”. The selected sense is again number 1 but it belongs
to a totally different domain: “a framework of wood or metal that contains a
glass windowpane and is built into a wall or roof to admit light or air”. Another
example is the noun “trial”, which has 6 senses altogether. In the gold annotation
it is used in its sense #3 in the law domain: “(law) the determination of a person’s
innocence or guilt by due process of law”. In the test data however sense 1 is
selected, which is more general: “the act of testing something”.

Within this set of highly similar pairs one can find also mismatches between
highly dissimilar senses, irrespective of any domain misalignments. For example,
the verb “crawl” has 5 meanings. The gold one is sense 2: “feel as if crawling
with insects”. The selected one is, not unexpectedly, sense 1: “move slowly; in
the case of people or animals with the body near the ground”. Here the meanings
are neither close, nor overlapping. As a subtype here we can consider also senses
that differ not so much in their lexical meaning but rather in the participants
involved. For example, the verb “kill”, with 15 senses, is in one case annotated
in the gold corpus with meaning number 9: “deprive of life”. The selected sense
number 1 is: “cause to die; put to death, usually intentionally or knowingly”. In
the former case the causing force is underspecified, it could be due to something
like a disease. In the latter case it necessarily involves humans.

There are also some grey areas where the domain is not explicitly stated
in the definition but it might be presupposed. For example the noun “pound”,
with 12 senses, is in the gold corpus given meaning number 2: “the basic unit of



106 A. Popov et al.

money in Great Britain and Northern Ireland; equal to 100 pence”. The selected
sense is number 1: “16 ounces avoirdupois”.

From the point of view of linguistics, and more precisely—that of modeling
lexical senses, our survey confirms previous observations—that in some cases
the distinct senses per lemma overlap and become virtually indistinguishable for
algorithms. Thus, a productive strategy could be merging them in more general
senses. From the point of view of computational methods, more knowledge is
necessary in order to make these distinctions, especially new training sets which
provide good examples of the senses currently used for evaluation. Last but
not least, resorting to the first sense (i.e. usually the most frequent one) when
no other clues are available remains the preferred strategy for computational
models.

5 Conclusions

The results reported in this paper outperform our previous work [16], thereby
confirming the ability of the BiESN architecture to capture more context infor-
mation. Moreover, the results obtained for WSD are comparable with the per-
formance of BiLSTM architectures. One important takeaway is that since the
computational time and resources necessary for the training of reservoir archi-
tectures are considerably less in comparison with the gradient descent training
of LSTM architectures, ESNs could emerge as a more attractive tool in the near
future.

We have to point out that since in the present work we do not optimize the
ESN hyperparameters (they were set on the basis of some preliminary observa-
tions), further work towards their optimal tuning could increase even more the
accuracy of BiESN models. In addition to this, since recent reports on deep ESN
architectures are also very promising, our next aim will be to apply them as well
in the context of WSD. One potential direction for future work is to apply the
same approach over different kinds of input constructions: not just over linear
text, but also over graphs. In this way we will be able to explore the syntactic
and discourse structures of text, in addition to its linear make-up.

Acknowledgments. This research has been funded by the Bulgarian National Science
Fund grant number 02/12/2016—Deep Models of Semantic Knowledge (DemoSem) and
was partially supported by the National Scientific Program “Information and Commu-
nication Technologies for a Single Digital Market in Science, Education and Security
(ICTinSES)”, financed by the Ministry of Education and Science. Alexander Popov was
also partially supported by the Bulgarian Ministry of Education and Science under the
National Research Programme “Young scientists and postdoctoral students” approved
by DCM # 577/17.08.2018.



Echo State vs. LSTM Networks for Word Sense Disambiguation 107

References

1. Butcher, J.B., Verstraeten, D., Schrauwen, B., Day, C.R., Haycock, P.W.: Reservoir
computing and extreme learning machines for non-linear time-series data analysis.
Neural Netw. 38, 76–89 (2013). https://doi.org/10.1016/j.neunet.2012.11.011

2. Cho, K., van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of
neural machine translation: encoder-decoder approaches. In: Proceedings of SSST-
8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Transla-
tion, pp. 103–111. Association for Computational Linguistics, Doha, October 2014.
https://doi.org/10.3115/v1/W14-4012

3. Edmonds, P., Cotton, S.: SENSEVAL-2: overview. In: The Proceedings of the Sec-
ond International Workshop on Evaluating Word Sense Disambiguation Systems,
SENSEVAL 2001, pp. 1–5. Association for Computational Linguistics, Stroudsburg
(2001). http://dl.acm.org/citation.cfm?id=2387364.2387365

4. Fellbaum, C.: WordNet. In: Poli, R., Healy, M., Kameas, A. (eds.) Theory and
Applications of Ontology: Computer Applications, pp. 231–243. Springer, Dor-
drecht (2010). https://doi.org/10.1007/978-90-481-8847-5 10

5. Frank, S.L., Čerňanský, M.P.: Generalization and systematicity in echo state net-
works. In: The Annual Meeting of the Cognitive Science Society, pp. 733–738 (2008)

6. Gallicchio, C., Micheli, A.: A reservoir computing approach for human gesture
recognition from kinect data. In: Proceedings of the AI for Ambient Assisted Living
(2016)

7. Gallicchio, C., Micheli, A., Pedrelli, L.: Comparison between DeepESNs and gated
RNNs on multivariate time-series prediction. CoRR (2018). http://arxiv.org/abs/
1812.11527

8. Graves, A.: Supervised Sequence Labelling with Recurrent Neural Networks. SCI,
vol. 385. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24797-2

9. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610
(2005). https://doi.org/10.1016/j.neunet.2005.06.042

10. Greff, K., Srivastava, R.K., Koutńık, J., Steunebrink, B.R., Schmidhuber, J.:
LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10),
2222–2232 (2017). https://doi.org/10.1109/TNNLS.2016.2582924

11. Hinaut, X., Dominey, P.F.: Real-time parallel processing of grammatical structure
in the fronto-striatal system: a recurrent network simulation study using reservoir
computing. PLOS ONE 8(2), 1–18 (2013). https://doi.org/10.1371/journal.pone.
0052946

12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

13. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging.
CoRR (2015). http://arxiv.org/abs/1508.01991

14. Jaeger, H.: Tutorial on training recurrent neural networks, covering BPPT, RTRL,
EKF and the echo state network approach. GMD Report 159, German National
Research Center for Information Technology (2002)

15. K̊agebäck, M., Salomonsson, H.: Word sense disambiguation using a bidirectional
LSTM. In: Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon
(CogALex - V), pp. 51–56. The COLING 2016 Organizing Committee, Osaka,
December 2016. https://www.aclweb.org/anthology/W16-5307

16. Koprinkova-Hristova, P., Popov, A., Simov, K., Osenova, P.: Echo state network for
word sense disambiguation. In: Proceedings of the Artificial Intelligence: Method-
ology, Systems, and Applications - 18th International Conference, AIMSA 2018,

https://doi.org/10.1016/j.neunet.2012.11.011
https://doi.org/10.3115/v1/W14-4012
http://dl.acm.org/citation.cfm?id=2387364.2387365
https://doi.org/10.1007/978-90-481-8847-5_10
http://arxiv.org/abs/1812.11527
http://arxiv.org/abs/1812.11527
https://doi.org/10.1007/978-3-642-24797-2
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.1371/journal.pone.0052946
https://doi.org/10.1371/journal.pone.0052946
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1508.01991
https://www.aclweb.org/anthology/W16-5307


108 A. Popov et al.

Varna, Bulgaria, 12–14 September 2018, pp. 73–82 (2018). https://doi.org/10.
1007/978-3-319-99344-7 7

17. Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural
network training. Comput. Sci. Rev. 3, 127–149 (2009). https://doi.org/10.1016/
j.cosrev.2009.03.005

18. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable
states: a new framework for neural computation based on perturbations. Neural
Comput. 14(11), 2531–2560 (2002). https://doi.org/10.1162/089976602760407955

19. Mikolov, T., Chen, K., Corrado, G.S., Dean, J.: Efficient estimation of word rep-
resentations in vector space. CoRR (2013). https://arxiv.org/abs/1301.3781

20. Miller, G.A., Leacock, C., Tengi, R., Bunker, R.T.: A semantic concordance. In:
Proceedings of the Workshop on Human Language Technology, HLT 1993, pp.
303–308. Association for Computational Linguistics, Stroudsburg (1993). https://
doi.org/10.3115/1075671.1075742

21. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543. Association for Computational
Linguistics, Doha, October 2014. https://doi.org/10.3115/v1/D14-1162

22. Popov, A.: Word sense disambiguation with recurrent neural networks. In: Proceed-
ings of the Student Research Workshop Associated with RANLP 2017, pp. 25–34.
INCOMA Ltd., Varna, September 2017. https://doi.org/10.26615/issn.1314-9156.
2017 004

23. Raganato, A., Camacho-Collados, J., Navigli, R.: Word sense disambiguation: a
unified evaluation framework and empirical comparison. In: Proceedings of the
15th Conference of the European Chapter of the Association for Computational
Linguistics: Long Papers, vol. 1, pp. 99–110. Association for Computational Lin-
guistics, Valencia (2017). https://www.aclweb.org/anthology/E17-1010

24. Rodan, A., Sheta, A.F., Faris, H.: Bidirectional reservoir network strained using
SVM+ privileged information for manufacturing process modeling. Soft Comput.
21(22), 6811–6824 (2017). https://doi.org/10.1007/s00500-016-2232-9

25. Simov, K., Osenova, P., Popov, A.: Comparison of word embeddings from different
knowledge graphs. In: Gracia, J., Bond, F., McCrae, J.P., Buitelaar, P., Chiar-
cos, C., Hellmann, S. (eds.) LDK 2017. LNCS (LNAI), vol. 10318, pp. 213–221.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59888-8 19

26. Skowronski, M., Harris, J.: Minimum mean squared error time series classification
using an echo state network prediction model. In: 2006 IEEE International Sympo-
sium on Circuits and Systems. IEEE (2006). https://doi.org/10.1109/ISCAS.2006.
1693294

27. Squartini, S., Cecchi, S., Rossini, M., Piazza, F.: Echo state networks for real-time
audio applications. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN
2007. LNCS, vol. 4493, pp. 731–740. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72395-0 90

28. Tong, M.H., Bickett, A.D., Christiansen, E.M., Cottrell, G.W.: Learning gram-
matical structure with echo state networks. Neural Netw. 20(3), 424–432 (2007).
https://doi.org/10.1016/j.neunet.2007.04.013

29. Twiefel, J., Hinaut, X., Soares, M.B., Strahl, E., Wermter, S.: Using natural lan-
guage feedback in a neuro-inspired integrated multimodal robotic architecture. In:
25th IEEE International Symposium on Robot and Human Interactive Communi-
cation, RO-MAN 2016, New York, NY, USA, 26–31 August 2016, pp. 52–57 (2016).
https://doi.org/10.1109/ROMAN.2016.7745090

https://doi.org/10.1007/978-3-319-99344-7_7
https://doi.org/10.1007/978-3-319-99344-7_7
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1162/089976602760407955
https://arxiv.org/abs/1301.3781
https://doi.org/10.3115/1075671.1075742
https://doi.org/10.3115/1075671.1075742
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.26615/issn.1314-9156.2017_004
https://doi.org/10.26615/issn.1314-9156.2017_004
https://www.aclweb.org/anthology/E17-1010
https://doi.org/10.1007/s00500-016-2232-9
https://doi.org/10.1007/978-3-319-59888-8_19
https://doi.org/10.1109/ISCAS.2006.1693294
https://doi.org/10.1109/ISCAS.2006.1693294
https://doi.org/10.1007/978-3-540-72395-0_90
https://doi.org/10.1007/978-3-540-72395-0_90
https://doi.org/10.1016/j.neunet.2007.04.013
https://doi.org/10.1109/ROMAN.2016.7745090


Echo State vs. LSTM Networks for Word Sense Disambiguation 109

30. Twiefel, J., Hinaut, X., Wermter, S.: Semantic role labelling for robot instructions
using echo state networks. In: 24th European Symposium on Artificial Neural
Networks, ESANN 2016, Bruges, Belgium, 27–29 April 2016 (2016). http://www.
elen.ucl.ac.be/Proceedings/esann/esannpdf/es2016-168.pdf

31. Wang, P., Qian, Y., Soong, F.K., He, L., Zhao, H.: Part-of-speech tagging with bidi-
rectional long short-term memory recurrent neural network. CoRR (2015). http://
arxiv.org/abs/1510.06168

32. Wang, P., Qian, Y., Soong, F.K., He, L., Zhao, H.: A unified tagging solution:
bidirectional LSTM recurrent neural network with word embedding. CoRR (2015).
http://arxiv.org/abs/1511.00215

33. Wang, W., Chang, B.: Graph-based dependency parsing with bidirectional LSTM.
In: Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics: Long Papers, vol. 1, pp. 2306–2315. Association for Computational
Linguistics, Berlin, August 2016. https://doi.org/10.18653/v1/P16-1218

http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2016-168.pdf
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2016-168.pdf
http://arxiv.org/abs/1510.06168
http://arxiv.org/abs/1510.06168
http://arxiv.org/abs/1511.00215
https://doi.org/10.18653/v1/P16-1218

	Echo State vs. LSTM Networks for Word Sense Disambiguation
	1 Introduction
	2 Echo State Networks vs LSTM Architectures
	2.1 ESN Basics
	2.2 Echo State vs. Long Short-Term Memory Networks
	2.3 Bidirectional ESN Architecture

	3 BiLSTM for WSD
	4 BiESNs for WSD
	4.1 BiESN with Linear Readout
	4.2 BiESNs with Softmax Output Layer
	4.3 Linguistic Error Analysis

	5 Conclusions
	References




