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Abstract. We present a novel gesture recognition system for the appli-
cation of continuous gestures in mobile devices. We explain how mean-
ingful gesture data can be extracted from the inertial measurement unit
of a mobile phone and introduce a segmentation scheme to distinguish
between different gesture classes. The continuous sequences are fed into
an Echo State Network, which learns sequential data fast and with good
performance. We evaluated our system on crucial network parameters
and on our established metric to compute the number of successfully
recognized gestures and the number of misclassifications. On a total of
ten gesture classes, our framework achieved an average accuracy of 85%.
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1 Introduction

Mobile phones rapidly advanced from a portable telephone to a device with
a multitude of technological features. While most smartphones are controlled
through a touchscreen or by voice, another feature that can be easily exploited
is the inbuilt Inertial Measurement Unit (IMU). It enables using a phone as a
direct gesture input device, similar to what has been explored by the gesture
recognition community adopting the Wii Remote Controller around a decade
ago.

This third, gesture based interaction channel would allow to better operate
the phone when only one hand is available to the user or when the environment is
too noisy to deliver speech commands. Human-robot interaction (HRI) research
shows that using IMU sensor data to control a robot with gestures (e.g. showing
directions in a navigation task) can be an interesting approach in contrast to
vision-based approaches, which rely more on controlled environmental conditions
and are thus more challenging to realize in real world applications.

Our present study introduces a framework for continuous gesture recognition
exploiting the IMU sensor availability in standard mobile phones and is further
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motivated to foster research on our chosen model for classifying gestures: Echo
State Networks (ESN) [6]. ESNs implement a specific form of recurrent neu-
ral networks (RNN) that deviate from the classic RNN training scheme. The
important distinction to the usual gradient-descent methods lies in a functional
separation between a neuronal ‘reservoir’ providing a high-dimensional process-
ing of the input data and a read out component, in its most basic form simply
a linear model.

We want to work on the time stream directly which necessitates a model
that can deal with temporal data, i.e. inputs of different length. While Hidden
Markov Models (HMMs) would be a more classical choice and Long Short-Term
Memory Networks (LSTMs) would be more powerful, we chose ESNs as they
provide a good trade off between flexibility and ease of training.

ESNs together with other models that follow a similar computational scheme
are summarized under the term Reservoir Computing (RC) [12]. They have
been primarily studied in the language and robotic domain including navigation
[1,2,5,11] while the research on gestures is rather sparse [3,8]. This is surprising
as all fields share important properties like long-range dependencies and high
performance variances across subjects (e.g. the speakers’ speed, gesture move-
ment speed).

In the present paper, we address the task of continuous gesture recognition
implemented within an ESN-based framework. We highlight the specific require-
ments for the segmentation and classification of gestures embedded in a continu-
ous data stream recorded from movements using a smartphone. Our study shows
that ESNs are a potentially interesting computational method for this task and
give further directions to extend our framework for future applications in the
gesture recognition domain.

2 Data Recordings and Methods

We defined a gesture protocol to standardize our data recordings and developed
a ‘SensorTracker App’ to enable experimental reproducibility. The data and the
code including the ESN are publicly available1. We collected IMU sensor data
from a Samsung Galaxy S5 neo smartphone (Android OS). Figure 1 displays the
ten gestures we used in our experiments (following [9]) recorded from a total
of five subjects. The subjects were seated at a table and instructed to hold
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Fig. 1. Gestures performed with a smartphone used in our experiments. Arrows show
the direction. Temporary positions are shown in grey.

1 https://github.com/swtietz/UHH-IMU-gestures.

https://github.com/swtietz/UHH-IMU-gestures
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the phone in their dominant hand. Each gesture performance started in the so-
called ‘portrait’ mode (i.e. the user faces the display) with elbows at around
90◦. A supervisor responsible to set the time markers (i.e. gesture start and end
phase) was seated opposite to the participant but gave no instructions on how to
perform the gesture specifically. Each gesture type was performed ten times with
set time breaks in between to avoid fatigue and task habituation. The access to
the sensor values including preprocessing steps to gain reasonable input values
are described in the reference work [9]. Each time step is described by nine values
representing the 3D acceleration, 3D rotation velocity (local coordinate system)
and 3D orientation (world coordinate) system. Figure 2 shows an exemplary
input stream for the snap right gesture and the markers obtained from the
supervisor (blue) and our average computation (cf. Eq. 1) (green). In total, we
obtained 500 gesture samples, from which we created activity-based ground truth
labels:

target(t) =

{
1, 1/l ∗ ∑t

i=t−l

∑signals
s |input(i, s)| ≥ θ

0, else
(1)

where t is the current time step, l the length of a sliding window and θ denotes
a threshold. We used an input-driven ESN, so we analyzed our data before
feeding it into the network regarding temporal variations and input changes,
as this can have an influence on the parametrization. Figure 3 demonstrates
the experimental variances across gestures and subjects. Generally, almost all
gestures show only small deviations between subjects (small boxes) except outlier
for snap right and snap forward and performances range in the interval of 10 to
40 time steps (≈0.3 to 1.3 s). In contrast, the shaking updown and shaking left-
right gestures took around 50–70 time steps (≈1.6 to 2.3 s) and showed highest
variability regarding the subjects performances and between the two gestures.

Also, we consider gestures that differ in the required rotation (rot) or accel-
eration (acc). We call the performance strength the ‘energy’:

Energy(t) = Eacc(t) + Erot(t) (2)

Eacc(t) =
√

accx(t)2 + accy(t)2 + accz(t)2 (3)

Erot(t) =
√

rotx(t)2 + roty(t)2 + rotz(t)2 (4)

The gesture energy is summed over time t and the value is normalized by dividing
its sample length to avoid a bias towards longer gesture samples. Notably, the
absolute rotation value is constantly smaller than the acceleration due to the
different scales (rad/s vs. m/s2). This fact has to be taken into account for the
input scaling before feeding the data into the reservoir.
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Fig. 2. Sensor data for the snap right gesture. (Color figure online)

Fig. 3. Gesture variances within gestures and across the different gesture types. Black
crosses denote outliers. (Color figure online)
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2.1 Echo State Networks

Echo State Networks (ESN) [6] have proven successful in prediction benchmarks
including chaotic time series. Here, we follow the standard notation for leaky-
integrator ESN (LI-ESN) [7] and describe our scheme to search for optimized
network parameters.

An ESN is functionally separated into a reservoir of recurrently connected
neurons, whose activation, or simply states, x are updated as:

x̃(t + 1) = f(u(t + 1)W in + x(t)W res + y(t)W fb + ν(t)) (5)
x(t + 1) = (1 − α)x(t) + αx̃(t + 1) (6)

where f is the activation function (here tanh) and u is the input. The layer-
wise connectivity matrices W ∗ for the input, reservoir, and feedback remain
fixed while training the network. We initialize W in sparsely with only 10% of all
weights set. W res is initialized fully connected with gaussian weights and then
rescaled to the desired spectral radius. As we are using the ESN for supervised
learning, we set the feedback matrix W fb and the noise term ν to 0.

The neural activation are collected into a state matrix X and then fitted
using a linear model. Given the output Y (supervised learning):

Y = g(W outX) (7)

with linear output function g, standard ESN training contracts to a regression
on the output weights W out. Using common matrix notation for regression it
can be computed:

W out = Y XT (XXT + λI)−1 (8)

where λ is a penalty term applied in ridge regression and I is the identity matrix.
Our input vectors contain nine sensor values and the output layer has ten

neurons representing the gesture classes. The fact that temporal patterns excite
the reservoir differently can be represented in the readout [10]. Figure 4 shows
three possible shapes for the target signal. First, a rectangular shape when-
ever a signal is detected, which we obtain when applying our threshold scheme
explained below. Second, a Gaussian shape providing a model for the low activ-
ity in the beginning of every gesture (start and end) and greatest activity during
the gesture performance (stroke). The last option creates a time window that
focuses only on the last time steps assuming that most information is gathered
after sufficient reservoir excitement. In our experiments, we obtained the best
results when using the first option (Fig. 4a).

2.2 Training and Parameter Validation

The data is split into a n − 1 persons training set, where it is further split into
segments containing only one target sample, shuffled randomly and then con-
catenated to four different training sets. The remaining person is used as the test
set. We performed a grid search to obtain a reasonable network parametrization.
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Fig. 4. Sketch of three different shapes for the target signal whenever activity occurs.
(a) A rectangular shape (b) A Gaussian shape (c) A time window considering only the
final activity.

For each combination of model parameters, an ESN is evaluated via leave-one-
out cross validation. As this process is an exhaustive search over the parameter
space, Table 1 shows the final collection of values, where we show in bold the cho-
sen values giving the lowest validation error and which are used for the gesture
experiments.

Table 1. Reservoir Parameters: Here ρ stands for spectral radius, α for the leak rate,
κ for input connectivity and λ for the regularization coefficient from ridge regression.

Parameter Domain

Reservoir size 400

Input scaling 1, 5, 9, 13

ρ 0.1, 0.4, 0.7, 1.0, 1.3

α 0.1, 0.3, 0.5, 0.7, 0.9

κ 0.1

λ 0.01, 0.1, 1, 10

In summary, we observe from our validations on network parameters, that
obeying the reciprocal relationship between connectivity and input scaling as
well as keeping the processing power in the reservoir by a low leakage rate α and
a (relatively) high spectral radius ρ is beneficial for our task.

3 Classification Issues in a Continuous Data Stream

In many gesture recognition tasks the network is presented with a short segment
that only contains one isolated sample of a gesture with predetermined start-
stroke-end scheme.

In strong contrast to this approach we train our network on a continuous
time stream containing multiple, different gestures. The network does not only
need to learn which gesture it sees but also when each gesture starts and ends.
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This is a much more realistic, but also more challenging, setup than the classical
classification task.

We now explain how we detect and distinguish between active segments and
nonactive gesture segments and their corresponding labels. This is an important
process to ensure proper network evaluation.

3.1 The ‘No-Gesture’ Class

As we work on a continuous time stream, the network outputs label information
at every time step, as opposed to just a single label after the gesture has been
presented. Therefore we need a way to deal with segments in between gestures
that do not contain any information.

The simplest approach would be to use a constant cutoff and only label a
time step if any neurons activity is above the threshold. A more flexible, neural
way would be to add another neuron to the output layer that functions as a
‘No-Gesture’ class. The target for this neuron is to be active whenever the smart
phone is resting and to be inactive while a gesture is being performed, i.e. it is
one whenever all other targets are zero.

However, our experiments reveal that the activation of this signal can lead to
unstable behavior, consequently producing misclassifications, as demonstrated
in Fig. 5. While for some active segments the threshold signal decreases, e.g.
at time step 4800, and a turn left gesture is classified, at around time steps
5050–5150 the threshold oscillates, distracting the classifier.

Fig. 5. Example of a threshold (black line) learnt to discriminate between an active and
a non-active gesture segment. The colored areas show the actual gesture hypotheses. Its
activity increases when no gestures are classified and decreases otherwise. The signal
also tends to fluctuate with some negative impact on the classification performance of
our system, although overall, the approach is robust. (Color figure online)

We run an exemplary experiment on a random subset of our dataset compar-
ing the two approaches, the additional no gesture output-neuron versus a fixed
cutoff value. We obtained an average F1-score of 0.874 for the neural approach
and an average F1-score of 0.949 for a fixed threshold value of 0.5. Consequently
we chose the constant threshold method for further evaluations.
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3.2 Gesture Segmentation Process

In a continuous gesture stream, the determination of start and end as well as
the distinction between a gesture performed and ‘No-Gesture’ are specific chal-
lenges of gesture recognition systems. As we are using supervised learning, a first
approach to tackle this issue would be to segment gestures when the predicted
label changes. This is problematic due to the so-called subgesture problem. A
subgesture is when a specific gesture can either have a standalone character
with its own meaning or be an integral part of another gesture. Figure 6 demon-
strates how subgestures can influence the classification. We differentiate between
the ‘ArgMax’ approach, which at every time step simply hypothesizes a gesture
based on the neuron with highest activity and the actual desired segmentation.
At the beginning of this example the ‘ArgMax’ approach classifies a snap for-
ward gestures but in effect the gesture is a shake up-down. The former gesture is
a subgesture of the latter, and as such every time a shake gesture is performed
it is highly likely that misclassifications occur which reduces the overall gesture
system performance.

To avoid this issue we start summing up the activity of every output neuron
over time, as soon as it hits a certain threshold. When activity of all neurons
falls below the threshold we label the gesture based on the neuron with highest
total activation since the threshold has been exceeded.

Fig. 6. Gesture segmentation showing the effect when gestures have the same subges-
ture. Here, the actual gesture is shake up-down but the first movements are detected
as snap forward.

With the resultant segmentation we proceed to identify a mapping between
the predicted outcome of the classification and the true labels. This mapping
is important to provide a meaningful evaluation scheme on correctly but also
incorrectly classified gestures. Notably, the prediction and target segments do
not need to have matching segmentation borders. Further they do not need to
have the same number of segments. Our rules for the matching between the
(segmented) gesture prediction and the actual correct gesture are as follows:
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– A prediction and a target segment are mapped together when they are over-
lapping in at least one time step. No care is given whether the length of the
predicted segment matches the original signal length.

– Each predicted gesture segment is mapped exactly once.
– There is only one true positive (TP) which counts as the target gesture seg-

ments; otherwise, the segment is counted as false positives (FP) or wrong
gestures (WG).

– If a predicted segment does not overlap with a target class signal, it will be
mapped and labeled as WG. It will be mapped to ‘No-Gesture’ and scored
as FP if neither the original class nor any other class can be mapped.

– If a target segment remains without any mapping, it will be marked as a
‘No-Gesture’ segment and labeled as false negative (FN).

– For ‘No-Gesture’ segments an unlimited amount of matches is allowed.

The set of rules allows to label all segments in a sequence while preserving
the temporal dependencies. An example of the rule application is demonstrated
in Fig. 7. Our approach has a disadvantage when considering the definition of
true positives (TP), i.e. when the actual gesture was correctly classified - it
assumes a one-to-one correspondence from the target signal to the classifier
signal. However, a target signal can be recognized a second time by another
prediction signal, which will result in a double entry of a target signal in its
corresponding row of the confusion matrix. Is this the case, the row sums define
an upper bound for the positive entries per class but do not tell the absolute
value anymore. A solution would be to normalize over the row sums, however,
we prefer to evaluate the number of misclassifications rather than argue over
normalized values.

Fig. 7. Example of the mapping between predicted and actual labels when applying
our rules.

4 Evaluation

We evaluated our system using the F1-score obtained from the segmentation
and mapping procedure. Additionally, we evaluated our system on an individual
basis to show how inter-subject variability across subjects can influence the final
classification. Finally, we provide an overall evaluation of our system. The focus
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of this paper is not on achieving the highest possible performance but rather on
showing a novel evaluation approach without the need for segmenting the signal
before classification. We therefore refrain from reporting comparison scores.

Table 2 summarizes the results from a leave-one-out test and evaluation on
each participant (names are anonymised). The varying F1-scores underpin the
performance variations introduced in our experiments, however, the evaluation
on gesture misclassifications gives us more valuable information. Therefore, we
also provide a confusion matrix for an average subject (Ni) in Fig. 8.

In accordance with the previously mentioned subgesture problem misclas-
sifications mostly originate from confusions of the shake up-down (‘shake ud’)
gesture with the forward and backward gesture and respectively of the shake
left-right (‘shake lr’) gesture with a left or right gesture.

Table 2. Subject evaluation: network is trained in a hold one out fashion on data of
4 people, then evaluated on a fifth, unseen person. Scores are reported for every fold.
Train error is calculated as 1 − F1 score

Test set Train Train error F1 test score

J {L, S, Ni, Na} 0.088 0.624

Ni {Na, J, L, S} 0.096 0.791

S {Ni, Na, J, L} 0.076 0.809

Na {J, L, S, Ni} 0.074 0.831

L {S, Ni, Na, J} 0.093 0.926

The overall classification ability of our system is reported in Table 3. As
described above gesture segments of four people are shuffled and mixed together
into four different time streams. Validation score is calculated by leave one out
cross validation on these four streams. Test score is calculated on the remaining,
unseen fifth person. All results are averaged over five repetitions to account for
stochastic effects during initialization and training.

Table 3. F1 scores and accuracy for final experiment. Reported values are averaged
over five repetitions, standard deviation shown in brackets.

Validation Test

F1 score Accuracy F1 score Accuracy

0.923 (0.00) 0.932 (0.00) 0.734 (0.03) 0.846 (0.02)
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Fig. 8. Confusion matrix showing an average performance among the five subjects.

5 Discussion and Future Work

We have demonstrated a successful ESN-based framework for the task of contin-
uous gesture recognition. We introduced a scheme for the meaningful segmen-
tation of gestures in a stream of sensor values and their mapping to labels to
establish a reasonable evaluation scheme. This way, we laid the foundation for
future IMU data collections. We presented the parametrization of an ESN for
optimal classification and evaluated our system on individual subjects. Although
we highlighted the inter-subject variability as an influential factor for classifica-
tion, our system achieved overall an accuracy of 85% with notably few standard
deviation.

From our experiments, we propose some ideas for future applications which
would improve our system. First, we are aware that our dataset is rather small
compared to common gesture benchmark datasets used in machine learning.
Although IMU data is used for different applications, no other, probably big-
ger, dataset is publicly available. Therefore, we provide our IMU dataset along
with our implementation to encourage further explorations on the data includ-
ing our segmentation scheme as well as analysis on the ESN model. Regarding
the ESN we think of an additional online learning phase for newly introduced
people to increase the system adaptability. We also recommend revising our
segmentation process to be independent on the zero activity condition applied
so far. For future application, the No-Gesture condition should be removed by
a mechanism which can better distinguish between a meaningful gesture and
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some random movements. Finally, the emergence of deep reservoir architectures
[4] offer opportunities to investigate the timescale properties of gestures, which
would probably help solving the subgesture problem as we highlighted for some
of our gestures, and to analyse those networks regarding their capability to cope
with inter-subject variability, still a dominant factor influencing the performance
in gesture recognition systems.
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