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Abstract. Semi-supervised learning algorithms typically construct a
weighted graph of data points to represent a manifold. However, an
explicit graph representation is problematic for neural networks oper-
ating in the online setting. Here, we propose a feed-forward neural net-
work capable of semi-supervised learning on manifolds without using an
explicit graph representation. Our algorithm uses channels that represent
localities on the manifold such that correlations between channels rep-
resent manifold structure. The proposed neural network has two layers.
The first layer learns to build a representation of low-dimensional mani-
folds in the input data as proposed recently in [8]. The second learns to
classify data using both occasional supervision and similarity of the man-
ifold representation of the data. The channel carrying label information
for the second layer is assumed to be “silent” most of the time. Learn-
ing in both layers is Hebbian, making our network design biologically
plausible. We experimentally demonstrate the effect of semi-supervised
learning on non-trivial manifolds.

Keywords: Semi-supervised learning · Online learning ·
Manifold learning

1 Introduction

When labeled data are scarce or expensive to obtain, we often resort to semi-
supervised learning which exploits the abundance of unlabeled data. For data
concentrating on a lower dimensional manifold, it is often reasonable to assume
smoothness, i.e., that data points adjacent on the manifold are likely to have
similar values of the target variable (the label). Then, learning the manifold
structure from both labeled and unlabeled data can assist in label prediction.
[1–3,11].
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In machine learning, an online method updates the model incrementally as it
receives training data in a sequential manner. This approach is to be contrasted
with offline machine learning, which generates the best model by learning on
the entire training data set at once. Online learning is used either because it is
computationally infeasible to train over the entire dataset, or it is used where
the algorithm has to dynamically adapt to new patterns in the data, e.g. when
the data itself is generated in real time. The last situation is particularly relevant
in the context of neuronal networks.

Our brains likely rely on online semi-supervised learning to generate behavior.
As our sensory organs stream data about the world they are analyzed in real time
to produce behaviorally relevant output. While most of the sensory data lack
labels, some supervision is available from other sources such as inter-personal
communication.

To represent a data manifold, semi-supervised learning algorithms typically
construct an adjacency graph whose vertices are labeled and unlabeled data
points and edge weights represent their adjacency on the manifold. However, such
representation is impractical in the online setting where the data are streamed
sequentially and the labels are predicted on the fly. Furthermore, the online
setting does not have the memory capacity to store the past data.

Thus, there is a need for online semi-supervised algorithms both for modeling
neural computation and solving general machine learning tasks. Whereas exist-
ing online algorithms [4] can rely on a sparse representation, they still require
memory quadratic in the dimensionality of data. In addition, these algorithms
rely on the availability of an adjacency measure between new and stored data
points.

In this paper, we propose a biologically plausible neural network for online
semi-supervised learning (Fig. 1, left). By avoiding explicit representation of the
adjacency graph our network can process unlimited-size datasets in online set-
ting. Moreover, as required by biology, the network relies only on local learning
rules meaning that synaptic weight update depends on the activity of only the
two neurons this synapse connects.

The network has two layers. The first layer learns the manifold structure of
the data by representing each datum as a sparse vector whose components rep-
resent overlapping localities on the manifold. The manifold structure is captured
by the correlations between the components carried by corresponding channels.
Because most existing algorithms for sparse representations, such as [10], do not
have natural neural implementations we base our work on the recently developed
manifold tiling algorithm [8]. Inspiration for such design comes from biological
neural networks such as place cells in the rodent hippocampus.

The second layer learns a classifier using both occasional supervision and the
similarity of the manifold representation of the data provided by the first layer.
In our neural network, the supervision signal is not fed back from downstream
layers of the network like in perceptron or back-propagation networks, but comes
along and synchronously with the data from the previous layer. To make it semi-
(rather than fully) supervised, the label signal is assumed to be “silent” most of
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the time. The output attempts to predict the correct label when that signal is
not available, otherwise it just reproduces the label.

We derive both the activity dynamics and the learning rules in each layer
from the principle of similarity preservation [6] which was previously used in
the unsupervised setting. Starting with a similarity preserving objective function
allows us to analyze the output of the algorithm and obtain biologically plausible
local learning rules.

We demonstrate experimentally the effectiveness of this semi-supervised net-
work compared to fully supervised online learning. Moreover, we observe that
online semi-supervised learning may be competitive with offline methods, espe-
cially on smaller samples. This is an important advantage allowing our network
to adapt quickly when the manifold shape or the labels are changing with time.

2 Review of the Manifold-Tiling Network Derived
from Non-negative Similarity Matching

To introduce our notation, let the input to the network be a set of vectors, xt ∈
Rn, t = 1, . . . , T , coming from n channels at time t. In response, the manifold
learning network layer outputs an activity vector, ht ∈ Rm, t = 1, . . . , T , m
being the number of output channels, or hidden units in our two-layer network,
Fig. 1, left.

Manifold-tiling networks have been derived [8] from similarity-preserving
objectives [5] with a non-negativity constraint. Similarity preservation postu-
lates that similar input pairs, xt and xt′ , evoke similar output pairs, ht and
ht′ . Similarity of a pair of vectors can be quantified by their scalar product.
Nonlinear manifolds can be learned by constraining the sign of the output and
introducing a similarity threshold α. [8] propose an optimization problem:

min
H≥0

diagH�H≤I

−Tr((X�X − αE)H�H) (1)

= min
ht≥0, ‖ht‖2

2≤1
−

∑

t,t′
(x�

t xt′ − α)h�
t ht′ .

Here matrix notation was introduced: X ≡ [x1, . . . ,xT ] ∈ Rn×T and H ≡
[h1, . . . ,hT ] ∈ Rm×T , and E is a matrix of all ones.

Intuitively, (1) attempts to preserve similarity for similar pairs of input sam-
ples but orthogonalizes the outputs corresponding to dissimilar input pairs.
Indeed, if the input similarity of a pair of samples t, t′ is above a specified
threshold, x�

t xt′ > α, then the output vectors ht and ht′ would prefer to have
h�
t ht′ ≈ x�

t xt′ − α, i.e., they would be similar. If, however, x�
t xt′ < α, then

they would tend to be orthogonal, h�
t ht′ = 0, since the lowest value of h�

t ht′ for
ht,ht′ ≥ 0 is zero. As ht and ht′ are nonnegative, to achieve orthogonality, the
output activity patterns for dissimilar patterns would have non-overlapping sets
of active output channels. In the context of manifold representation, (1) strives
to preserve in the h-representation the local geometry of the input data cloud
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Fig. 1. Left: Two-layer network for semi-supervised learning. The first layer learns
manifolds (the upper layer with interneurons in red), the second layer is one neuron
that learns a classifier in the semi-supervised manner. The output of the network
predicts the label value when the labels channel is silent, otherwise it reproduces the
label. Right: Receptive fields of manifold tiling. Data are 2000 points sampled from two
arcs in 2D (black dots); in the third dimension we show responses of individual channels
to the corresponding data points, each channel is assigned a color (Color figure online).

in x-space and let the global geometry emerge out of the nonlinear optimization
process.

Figure 1 illustrates manifold tiling on a two spiral arcs in two dimensions,
showing the receptive fields of output channels in the third dimension. Receptive
fields tile the arcs with overlaps, but there is no overlap between separate arcs.

To derive a neural network that optimizes (1), we express the norm constraint
in the Lagrangian form:

min
∀t:ht≥0

max
∀t:ut≥0

− 1
T

∑

t,t′
(x�

t xt′ − α)h�
t ht′ (2)

+
∑

t

u�
t ut(1 − h�

t ht).

Here, unconventionally, the non-negative Lagrange multipliers that impose
the inequality constraints are factorized into inner products of two non-negative
vectors (u�

t ut). In the second step, we introduce auxiliary variables, W,b,Vt [7]:

min
∀t:ht≥0

max
∀t:ut≥0

min
W

max
b

min
∀t:Vt≥0

T Tr(W�W) − T‖b‖22+ (3)

+
∑

t

(
−2xtW�ht + 2

√
αh�

t b + ‖ut‖22 − 2utVtht + Tr(V�
t Vt)

)

The equivalence of (3) to (2) can be seen by performing the W,b, and Vt

optimizations explicitly and plugging back in the optimal values. Equation (3)
suggests a two-step online algorithm (see [8] for full derivation). For each input
xt, in the first step, one solves for ht, ut and Vt, by projected gradient descent-
ascent-descent,
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⎡

⎣
ht

ut

Vt

⎤

⎦ ←−
⎡

⎣
ht + γh

(
Wxt − V�

t ut − √
αb

)

ut + γu (−ut + Vtht)
Vt + γV

(
uth�

t − Vt

)

⎤

⎦

+

, (4)

where γh,u,V are step sizes. This iteration can be interpreted as the dynamics of
a biologically plausible neural circuit (Fig. 1, right, the upper layer), where com-
ponents of ht are activities of excitatory neurons, b is a bias term, components
of ut are activities of inhibitory neurons (shown in red), and W is the feedfor-
ward connectivity matrix. Vt is the synaptic weight matrix from excitatory to
inhibitory neurons, which undergoes a fast time-scale anti-Hebbian plasticity,
which in computer simulation means repeated updates within one t step. In the
second step, W and b are updated by gradient descent-ascent:

W ← W + η
(
htx�

t − W
)
, b ← b + η

(√
αht − b

)
,

where W is going through a slow time-scale Hebbian plasticity and b through
homeostatic plasticity. The parameter η is a learning rate.

3 A Neural Network for Semi-supervised Learning

In this section, we propose a neural network architecture for semi-supervised
learning. In our approach, contrary to the widely accepted schemes, the label
signal is not fed back from downstream layers of the network but comes along
and synchronously with the rest of the data. To make it semi- (rather than fully)
supervised, the signal is assumed to be “silent” most of the time.

Consider a classification problem with the input stream of data, {h1, . . . ,
ht, . . .}, where ht ∈ Rm, and the corresponding class labels {z̃1, . . . , z̃t, . . .},
where in a binary case z̃t ∈ {−1,+1}. The labels are occasionally signalled by a
channel carrying values zt = θtz̃t, where θt ∈ {0, 1} either masks or reveals the
true label. The data from the previous layer and the label channel are combined
in the semi-supervised learning neuron, Fig. 1, right, bottom layer.

Consider a time period of 1, . . . , T , where the inputs are organized into a
matrix H = [h1, . . . ,hT ] and a vector of (partly hidden) labels z� = (z1, . . . , zT ).
The output y� = (y1, . . . , yT ) needs to reproduce the label signal, so we employ
a quadratic loss function ‖y− z‖2. We express the assumption of smoothness of
predicted label y on the manifold using the similarity alignment [7] between the
input and output Gramians: Tr(H�Hyy�). Also, as the label only takes values
1 and −1, we restrict the output to stay within those limits. This gives rise to
the following optimization problem:

min
y

‖y − z‖2 − μ

T
Tr(H�Hyy�), (5)

s.t. − 1 ≤ yt ≤ 1, t = 1, . . . , T,

where we also introduced a regularization coefficient μ controlling the relative
importance of the two parts of the objective function.
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To derive an online algorithm, following [7], we introduce an auxiliary variable
w and expand in time:

min
y

min
w

1
T

∑

t

[1
2
(yt − zt)2 − μytw�ht

]
+

μ

2
w�w (6)

s.t. − 1 ≤ yt ≤ 1, t = 1 . . . T.

Optimizing over w, we obtain: w = 1
T

∑
t ytht, which makes it clear the new

formulation is equivalent to Eq. (5). The advantage of this formulation is that
it suggests a two-step online algorithm. For each input ht, on the first step, one
solves for the instantaneous output yt under fixed w:

yt = max(−1,min(1, μw�
t ht + zt)) (7)

On the second step, w is updated as:

w ← t

t + 1
w +

1
t + 1

ytht (8)

This also maps well onto a biologically plausible neural network where com-
ponents of w are interpreted as synapse weights, updated by local Hebbian rule.
We assume that the synapse weight of the z channel is not changing, thus dif-
ferentiating it from the other input channels. We set this weight to be equal to
1 without loss of generality. The algorithm is initialized with w = 0, assuming
no prior information.

An alternative objective function can be obtained by expressing the loss as
−y�z and adding an entropy-like regularizer treating (yt +1)/2 as a probability
estimate for z̃t = 1:

min
y

− y�z − μ

2T
Tr(H�Hyy�) (9)

−
∑

t

[1 + yt
2

log(
1 + yt

2
) +

1 − yt
2

log(
1 − yt

2
)
]

The solution of this optimization problem is the familiar sigmoidal neuron rule:

yt = tanh (μw�
t ht + zt)) (10)

with the same update for w as in Eq. (8). The behavior of both algorithms is
almost indistinguishable, so we only report the results from Eq. (7).

4 Numerical Experiments

We apply our algorithm to the synthetic dataset designed as “two moons”: two
classes are sets of points in 2D, each concentrated around a spiral arc, Fig. 2, top.
Such a synthetic dataset is widely used as a test for semi-supervised learning
algorithms (see, e.g., [2,4]). Note that the classes are not linearly separable,
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and can be separated only when their manifold structure is discovered. Upon
discovering the manifold structure, intuitively, the data can be classified using
only one labeled example for each class, see red asterisks in Fig. 2, top.

Our network solves this highly non-linear classification problem. The first
layer learns units that tile each “moon” with overlaps while no unit is shared
between the two moons. The second layer propagates labeling information along
links formed by correlations in the tile responses. We generated data points
randomly and uniformly, only placing two labeled points early in the data stream.
We used tiling layer with 40 neurons and semi-supervised neuron with μ =
1000. The Fig. 2, bottom row, illustrates the working of the semi-supervised
neuron. As seen on Fig. 2, bottom left, the output is zero until labeled points
arrive. Then there is a transition period, during which the label signals propagate
along correlated tiles. Finally, the responses stabilize to correct values: 1 for
green, −1 for blue. Figure 2, bottom right, illustrates propagation of the labeling
information. Initially, all weights are zero. When a labeled point arrives, weights
corresponding to the tiles overlapping this point increase in absolute value. That
signal gradually propagates until all synapses corresponding to “green moon” get
positive weights and, all “blue” ones - negative weights.

Next, we apply our network to a larger dataset, a 3D Chessboard on a Swiss
roll, Fig. 3, left. All the data live on a 2D Swiss roll manifold and the two classes
are defined by the squares of the chessboards. We consider chessboards with
varying square sizes with the most fine-grained chessboard being most difficult
for classification. Whereas linear classifiers per se can not solve this problem,
after learning the manifold classification is linear.

We compare our semi-supervised algorithm with an online fully supervised
classifier – logistic regression. Both algorithms get the same input stream of 2000
data points, of which 50, 100, or 200 randomly selected are labeled and the rest
are unlabeled. The input for both classification algorithms is the output of tiling
with 200 neurons. Parameters μ for our neuron and learning rate for logistic
regression are selected for best results of each algorithm. All runs repeated 10
times to obtain error bars.

Both algorithms classify each input using their current weights. However, the
fully supervised algorithm cannot update its weights when an unlabeled example
arrives, unlike the semi-supervised algorithm. Indeed, experiments show that the
semi-supervised neural network performs better than the supervised classifier
(Fig. 3, center), demonstrating its ability to take advantage of unlabeled data.

Next, we compare our online algorithm with an offline semi-supervised learn-
ing algorithm. For the latter, we use a state of the art linear SVM with Laplacian
penalty following [2], but with a twist 1: for the linear case we assume smooth-
ness of weights rather than labels. This means that components of the separating
vector w should have similar values when corresponding tiling components have
highly overlapping receptive fields. The degree of overlap between receptive fields
can be measured by dot products between tiling components, and can be cal-
culated on both labeled and unlabeled data. Then the Gramian S = 1

T HH�

1 In a separate experiment we made sure this twist only improves the results.
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Fig. 2. Semi-supervised learning on the “two moons” dataset with two labeled points.
Top: “Two moons” in 2D, classes - green crosses and blue triangles; red asterisks
indicate two labeled points. Bottom left: Label predicted by the semi-supervised neuron
(yt values) in time, green crosses and blue triangles as the true class of the input.
Labeled points indicated by arrows. Bottom right: Propagation of labels is shown by
the weights of the tiles in time. Tiles are ordered along the x axis according to their
locations on the “moons”: “crosses” on the left and “triangles” - on the right. Lines
show temporal dynamics of the weights, and only every 100th time point is shown.
Arrows indicate tiles where labeled points fall.

can be thought of as the adjacency matrix of a graph where vertices are tiling
components. The graph will be fairly sparse due to the nature of tiling. The
graph Laplacian penalty is then:

∑

i,j

(wi − wj)2Si,j = 2w�Lw, where L = diag(S1) − S, (11)

and the objective function of linear SVM with Laplacian penalty takes the form:

min
w,b

∑

t

[1 − zt(w�ht + b)]+ + λ‖w‖2 + μw�Lw (12)

where the index t runs through the labeled samples only, with zt ∈ {−1, 1} being
labels.

In this experiment, the online algorithm is fed a data stream with 0.05%
of samples randomly labeled. Then at every 500th step the classification rule
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Fig. 3. Left: 3D Swiss roll manifold and three binary classification problems on the
unrolled manifold. Granularity of the chessboard decreases from top to bottom. Center:
Semi- vs. fully supervised: comparison of our semi-supervised algorithm with a fully
supervised algorithm in the online setting. Right: Online vs. offline: comparison of our
online semi-supervised learning algorithm with the offline semi-supervised algorithm
(see text) for different granularity levels of the chessboard.

obtained up to this point is applied to a separate test set of 2000 samples. At
the same step, the SVM with Laplacian regularization, Eq. (12), is trained on
all data seen online so far and tested against the same test set. As before, the
input for both algorithms is the output of tiling with 200 neurons. Parameters
μ for our neuron and learning rate for logistic regression are selected for best
results of each algorithm. All runs repeated 10 times to obtain error bars.

Offline algorithm has an advantage of considering all data samples before
taking decision on labeling, while online algorithm has to assign a label estimate
to each data sample as it appears. Results on Fig. 3, right, show, however, that
with enough smoothness (i.e., coarser granularity in the “Chessboard” exam-
ple), the online algorithm perform closely to the offline one. Moreover, online
algorithm can perform better than the offline one while the number of presented
data points is small (e.g., less than approximately 1200 with granularity 0.5).
But small sample sizes is exactly the situation where semi-supervised learning
is supposed to be helpful. The ability of the online algorithm to adapt quickly
is also important when there is a drift in the manifold shape or the labels.
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5 Relation to Graph Laplacian

Existing algorithms for semi-supervised learning on manifolds typically utilize
the graph Laplacian for smoothness regularization [2,3,11], see the last term in
Eq. (12). This follows from the analysis of [9], which showed that graph Laplacian
regularization results in classifier corresponding to normalized graph cut, which
helps avoid heavily imbalanced classes. In contrast, our smoothness term, last
term, in Eq. (6), lacks diagonal normalization of Laplacian. When optimized
exactly, it should lead to the minimum cut of the graph, which is prone to
generate classes of very different size [9]. Consider a simple example of a square,
where two labeled points for two classes are close to diagonally opposite corners.
Laplacian regularization would cut the square in half approximately along the
other diagonal, Fig. 4, left, while the minimum graph cut would lead to highly
asymmetric solution: one predicted label concentrates closely around one of the
labeled points, all the rest occupied by the other label.

However in our experiments we very rarely observe this trend towards asym-
metrical solutions. To develop an intuition for why this happens, consider a
period in the learning process during which labels channel is silent (zt = 0), and
yt is not reaching the limits yet. This is the decisive period, where the label infor-
mation propagates between the synapse weights, see Fig. 2, bottom left. Then
(7) becomes simply yt = μw�

t ht. Assume the input points arrive i.i.d., then
so are ht vectors. Then substituting expression for yt into (8) we can write an
expectation for one component of w:

E(Δwi) = η
(∑

j

μE(hihj)wj − wi

)
= η

(
μ

∑

j

si,jwj − wi

)
, (13)

where we defined si,j ≡ E(hihj), and η = 1/(t + 1). Now (si,j) can be seen as
the adjacency matrix of a weighted graph, where vertices are tiling channels, in
a manner analogous to the matrix (Si,j), appearing in Eq. (11) in the previous
section. The term μ

∑
j si,jwj , appearing in the right hand side of Eq. (13),

has the effect of “smoothing” out w in over the tiling channels, in a manner
analogous to the effect of the Laplacian penalty presented in (12). Essentially,
the Laplacian penalty causes the components of w diffuse over the graph [11]. So,
in expectation, the evolution of w in our algorithm would share some features
with the gradient descent of w to optimize the expression in (12). “Smoothness”
of the resulting w over channels translate to smoothness of prediction over input
space, thereby reducing the likelihood of extremely imbalanced solutions.

We illustrate this with a simulation experiment on the square in Fig. 4. Ide-
ally, there should be equal number of predicted labels for both classes. We,
therefore, measure the imbalance, by looking at fraction associated with the
majority class among predictions. This measure of imbalance ranges from 0.5
to 1.0. For each run, we generate 2000 unlabeled sample points uniformly on
the square, plus 2 labeled points near the corners. These data were fed to our
network with 50 tiling channels and μ = 10 in (6). For comparison, the output
of tiling layer is also used as input to linear classifier with Laplacian regulariza-
tion. The histogram of results, after 100 such runs, is presented in Fig. 4, right.
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While indeed the results for our network fluctuate more, compared to those of
the Laplacian regularization approach, the extreme imbalances are rare in both
approaches.

Fig. 4. Left: Linear classification with Laplacian regularization, points colored by pre-
dicted label; labeled points are red arrows. Right: The histogram of 100 repetitions of
simulation of our measure of imbalance, namely, the fraction of the majority predicted
label for Laplacian solution offline and for our network. Note that the frequencies fall
off in both methods as the fraction moves up from 0.5.

6 Conclusion

We presented a neural network that learns low-dimensional manifolds in the data
stream, then learns a classifier in a semi-supervised setting, where only small part
of inputs are labeled. The network operates in an online fashion, producing an
output immediately after seeing every input. Weights are updated by a biologi-
cally plausible local Hebbian-type rule. We demonstrated the effectiveness of the
network in simulations, comparing it with fully supervised online algorithm and
with a semi-supervised offline algorithm.
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