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Abstract. Future developments in artificial intelligence will profit from
the existence of novel, non-traditional substrates for brain-inspired com-
puting. Neuromorphic computers aim to provide such a substrate that
reproduces the brain’s capabilities in terms of adaptive, low-power infor-
mation processing. We present results from a prototype chip of the
BrainScaleS-2 mixed-signal neuromorphic system that adopts a physical-
model approach with a 1000-fold acceleration of spiking neural network
dynamics relative to biological real time. Using the embedded plasticity
processor, we both simulate the Pong arcade video game and imple-
ment a local plasticity rule that enables reinforcement learning, allowing
the on-chip neural network to learn to play the game. The experiment
demonstrates key aspects of the employed approach, such as accelerated
and flexible learning, high energy efficiency and resilience to noise.
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1 Introduction

Many breakthrough advances in artificial intelligence incorporate methods and
algorithms that are inspired by the brain. For instance, the artificial neural net-
works employed in deep learning are inspired by the architecture of biological
neural networks [1]. Very often, however, these brain-inspired algorithms are run
on classical von Neumann devices that instantiate a computational architecture
remarkably different from the one of the brain. It is therefore a widely held
view that the future of artificial intelligence will depend critically on the deploy-
ment of novel computational substrates [2]. Neuromorphic computers represent
an attempt to move beyond brain-inspired software by building hardware that
structurally and functionally mimics the brain [3].

In this work, we use a prototype of the BrainScaleS-2 (BSS2) neuromor-
phic system [4]. The employed physical-model approach enables the accelerated
(1000-fold with respect to biology) and energy-efficient emulation of spiking neu-
ral networks (SNNs). Beyond SNN emulation, the system contains an embedded
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plasticity processing unit (PPU) that provides facilities for the flexible implemen-
tation of learning rules. Our prototype chip (see Fig. 1A) contains 32 physical-
model neurons with 32 synapses each, totalling 1024 synapses. The neurons
are an electronic circuit implementation of the leaky integrate-and-fire neuron
model. We use this prototype to demonstrate key advantages of our employed
approach, such as the 1000-fold speed-up of neuronal dynamics, on-chip learn-
ing, high energy-efliciency and robustness to noise in a closed-loop reinforcement
learning experiment.

2 Experiment
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Fig. 1. A: prototype chip and evaluation board. B: schematic of experimental setup.
The chip runs the experiment fully autonomously, with the PPU simulating the virtual
environment (Pong) and calculating reward-based weight updates that are applied to
the on-chip analog neural network. The neural network receives the discretized ball
position as input and outputs the target paddle position. B taken from [5].

The experiment represents the first demonstration of on-chip closed-loop learn-
ing in an accelerated physical-model neuromorphic system [5]. It takes place on
the chip fully autonomously, with external communication only required for ini-
tial configuration (see Fig.1B). We use the embedded plasticity processor both
to simulate a simplified version of the Pong video game (opponent is a solid
wall) and to implement a reward-modulated spike-timing-dependent plasticity
(R-STDP) learning rule [6] of the form Aw;; o< (R—R)e;;, where R is the reward,
R is a running average of the reward and e;; is an STDP-like eligibility trace.
Each synapse locally records the STDP-like eligibility trace and stores it as an
analog value (a voltage), to be digitized and used by the plasticity processor [4].

The two-layer neural network receives the ball position along one axis as
input and dictates the target paddle position, to which the paddle moves with
constant velocity, using the neuronal firing rates. It receives reward depending
on its aiming accuracy (i.e., how close it aims the paddle to the center of the
ball), with R = 1 for perfect aiming, R = 0 for not aiming under the ball
and graded steps in between. By correlating reward and synaptic activity via
the given learning rule, the SNN on the chip learns to trace the ball with high
fidelity.
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Fig. 2. Screenshot of experiment interface for live demonstration. Left: playing field and
color-coded neuronal firing rates. Middle: color-coded synaptic weight matrix. Right:
performance in playing Pong.

A screen recording of a live demonstration of the experiment (see Fig.2) is
available at https://www.youtube.com/watch?v=LW0Y5SSIQU4. The record-
ing allows the viewer to follow the game dynamics, neuronal firing rates, synaptic
weight dynamics and learning progress. The learning progress is quantified by
measuring the relative number of ball positions for which the paddle is able to
catch the ball. The learned weight matrix is diagonally dominant: this expresses
a correct mapping of states to actions in the reinforcement learning paradigm.
Importantly, neuronal firing rates vary
from trial to trial due to noise in the ana-
log chip components. Used appropriately,
-1 this can become an asset rather than a
nuisance: in our reinforcement learning
scenario, such variability endows the neu-
-2 ral network with the ability to explore the
action space and thereby with a neces-

sary prerequisite for trial-and-error learn-
-3 I ing. We also found that neuronal param-
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Fig.3. Comparison of experiment
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found that a software simulation (NEST
v2.14.0) on an Intel processor (i7-4771), when considering only the numerical
state propagation, is at least an order of magnitude slower than our neuromor-
phic emulation (see Fig.3 and [5]). Besides this, the emulation on our proto-
type is at least 1000 times more energy-efficient than the software simulation
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(23J vs. 106 mJ per iteration). This evinces the considerable benefit of using
the BSS2 platform for emulating spiking networks and hints towards its decisive
advantages when scaling the emulated networks to larger sizes.

4 Conclusions

These experiments demonstrate, for the first time, functional on-chip closed-loop
learning on an accelerated physical-model neuromorphic system. The employed
approach carries the potential to both enable researchers with the ability to inves-
tigate learning processes with a 1000-fold speed-up and to enable novel, energy-
efficient and fast solutions for brain-inspired edge computing. While digital neu-
romorphic solutions and supercomputers generally achieve at most real-time sim-
ulation speed in large-scale neural networks [7-9], the speed-up of BrainScaleS-2
is independent of network size and will become a critical asset in future work on
the full-scale BrainScaleS-2 system.
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