
Using Feature Entropy to Guide Filter
Pruning for Efficient Convolutional

Networks

Yun Li , Luyang Wang, Sifan Peng, Aakash Kumar, and Baoqun Yin(B)

Department of Automation, University of Science and Technology of China,
Hefei, China

{yli001,ly1105,sifan,akb}@mail.ustc.edu.cn
bqyin@ustc.edu.cn

Abstract. The rapid development of convolutional neural networks
(CNNs) is usually accompanied by an increase in model volume and com-
putational cost. In this paper, we propose an entropy-based filter pruning
(EFP) method to learn more efficient CNNs. Different from many exist-
ing filter pruning approaches, our proposed method prunes unimportant
filters based on the amount of information carried by their correspond-
ing feature maps. We employ entropy to measure the information con-
tained in the feature maps and design features selection module to for-
mulate pruning strategies. Pruning and fine-tuning are iterated several
times, yielding thin and more compact models with comparable accuracy.
We empirically demonstrate the effectiveness of our method with many
advanced CNNs on several benchmark datasets. Notably, for VGG-16
on CIFAR-10, our EFP method prunes 92.9% parameters and reduces
76% float-point-operations (FLOPs) without accuracy loss, which has
advanced the state-of-the-art.

Keywords: Convolutional neural networks · Filter pruning ·
Entropy · Features selection module

1 Introduction

In recent years, we have witnessed a rapid development of deep neural networks
in many computer vision tasks such as image classification [6], semantic segmen-
tation [16,19] and object detection [3]. However, as the CNN architectures tend
to be deeper and wider to get superior performance, the number of parameters
and convolution operations also increase rapidly. For instance, Resnet-164 has
nearly 2 million parameters and VGG-16 requires more than 500 MB storage
space. These cumbersome models significantly exceed the computing limitation
of current mobile devices.

Considerable research efforts have been devoted to compressing large CNN
architectures. Pruning is an intuitive CNN compression strategy and it mostly
focuses on removing unimportant network connections. The current pruning
c© Springer Nature Switzerland AG 2019
I. V. Tetko et al. (Eds.): ICANN 2019, LNCS 11728, pp. 263–274, 2019.
https://doi.org/10.1007/978-3-030-30484-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30484-3_22&domain=pdf
http://orcid.org/0000-0003-1490-2657
https://doi.org/10.1007/978-3-030-30484-3_22


264 Y. Li et al.

methods usually include directly deleting weight values of filters [4,22] and
totally pruning some filters [7,12,15,24]. The weight value pruning methods
introduce non-structured sparsity in the parameter tensors and require dedi-
cated sparse matrix operation libraries. In contrast, the filter level pruning is a
naturally structured way of pruning without introducing sparsity and thus does
not require sparse libraries or specialized hardware. Therefore, filter pruning
attracts more attention in accelerating CNN architectures.

However, most of the previous researches on filter pruning only focus on the
activation values or the scale factors weighted on the output of filters and fail
to consider the amount of information carried by the feature maps. The feature
maps are the most direct reflection of the usefulness of convolution filters. Pre-
vious works [12,14] have shown that feature maps are sparse and a considerable
number of feature maps output by the middle layers of CNN are most of zeros
or zero matrices. Regardless of the given scale factor, the feature maps with all
zero values cannot make contribution to the accuracy of the model. On the other
hand, if given a small scale factor, a feature map containing a large amount of
information will be pruned, which may lead to some important information loss.

In this paper, we propose an entropy-based filter pruning (EFP) method
to address the above-mentioned problem. Our EFP selects unimportant filters
based on the amount of information contained in their corresponding feature
maps. We employ entropy [21] to measure the information carried by feature
maps, since it plays a central role in information theory as measures of informa-
tion and uncertainty. Some similar works proposed to prune the network based
on entropy. [13] proposed to calculate the filter entropy, and failed to consider
that the amount of information in the filter is unexplained compared with the
feature map. [17] calculated the entropy of the global mean of the feature map,
which is a rough measure and ignores the spatial information in the feature map.
However, our proposed feature entropy method is different from them and can
overcome their weakness, since we choose to expand the feature maps by row
and calculate their spatial information entropy to weigh the effectiveness of the
corresponding filters. Then, we design features selection module to extract the
output of every filter and determine their entropy weights. These modules are
placed between every two adjacent convolutional layers of a well-trained net-
work, as shown in Fig. 1. Those filters whose output feature maps are given
small weights will be pruned. After pruning, we fine-tune the compact model
to restore performance and can even achieve a higher accuracy in many cases.
Finally, the pruning and fine-tuning process are repeated for several times to get
an even more compact network. Furthermore, we also research the correspon-
dence between the entropy pruning ratio and the number of filters to explore the
distribution of information in each convolutional layer of a CNN architecture.

We evaluate our method on several benchmark datasets and different CNN
architectures. For VGG-16 on CIFAR-10, we achieve 92.9% of parameters prun-
ing and 76% float-point-operations (FLOPs) reduction with 0.04% accuracy
improvement, which has advanced the state-of-the-art. For the less redundant



Using Feature Entropy to Guide Filter Pruning for Efficient CNNs 265

ResNet-56 and ResNet-164, we also gain 50.8% and 52.9% parameters reduction,
respectively, without notable accuracy loss.

2 Related Work

Most previous works on deep CNN compression can be roughly divided into 4
categories, matrix decomposition, weight quantization, architecture learning and
model pruning.

Matrix decomposition was proposed to approximate weight matrix of deep
CNN tensor with sparse decomposition and low-rank matrix [23], using tech-
niques like Singular Value Bounding [10]. While these methods can reduce the
computational cost, the compression of the parameters is very limited.

Some works [1,2,4] proposed to quantize the filter weights. The network
weights were quantized to several groups and all the weights in the same group
shared the same value, only the effective weights and indices need to be stored.
This method can achieve a large compression ratio in terms of parameters. How-
ever, the FLOPs of the network cannot be reduced, since shared weights need
to be restored to the original positions during the process of calculation.

Some other works [8,25] proposed to learn the CNN architecture automat-
ically. [25] trained RNN with reinforcement learning to maximize the expected
accuracy of the generated architectures on a validation set. [8] designed AutoML
for Model Compression which leverages reinforcement learning to sample the
model design space and achieves the model compression. The search space of
these strategies is extremely large and they need to train models for a long time
to determine the best strategy.

Pruning is an intuitive model compression method. [4] proposed an iterative
connection pruning method by pruning unimportant connections whose weights
are below the threshold. [22] regularized the structures by group Lasso penalty
leading to a compact structure. However, pruning weights always bring unstruc-
tured models which are not implementation friendly and the FLOPs reduction
is very limited. To overcome these limitations, some filter pruning methods have
been explored. [9,12,15] leveraged L1-based methods to select unimportant fil-
ters and channels. [18] used statistics information from next layer to evaluate
and prune filters. [24] utilized LSTM to select convolutional layers and then
evaluated the filters of selected layers. [7] proposed a soft filter pruning method
which updates the filters to be pruned after each training epoch. These methods
usually require less dedicated libraries or hardwares, as they pay attention to
pruning the network structures instead of individual connection of filters. Our
proposed entropy-based method also falls into this category, achieving not only
parameters reduction but also FLOPs saving without special libraries designed.

3 Method

In this section, we will give a detailed description of our entropy-based filter
pruning method. First, we introduce how to determine the entropy weights of



266 Y. Li et al.

feature maps in Sect. 3.1. Next, our feature maps selection and filter pruning
strategies are presented in Sect. 3.2. Finally, the analysis of computational cost
compression is illustrated in Sect. 3.3.

Fig. 1. Illustration of our proposed method which prunes filters based on entropy.
We insert features selection module between each two adjacent convolutional layers
of the well-trained network (left side). For the i-th layer, the output feature maps
of convolution filters are extracted and input to the entropy module to determine
their entropy weights. Then those feature maps with smaller weights indicate that
they contain less information and the corresponding filters will be pruned (right side).
Meanwhile, the corresponding channels of each filter in (i + 1)-th layer will also be
pruned to be consistent with input. All the convolutional layers are pruned in parallel.

3.1 Determining Entropy Weights of Feature Maps

Most of the previous works [9,12,15] determine the importance of filters by L1
sparsity or scale factors and ignore the amount of information carried by the
feature maps. Some previous works [12,14] have shown that quite a number of
feature maps output by the intermediate layers of CNN are zero matrices or
most of zeros, which reveals that not all the filters in the model are useful.

To judge the effectiveness of filters, we employ entropy to measure the infor-
mation in feature maps. Entropy plays a central role in information theory as
measures of information and uncertainty and it is proportional to the amount of
information [17]. Considering that the outputs of different convolutional layers
have significant differences in the amount of information, the weights of feature
maps are determined in each layer independently. Specially, to avoid the contin-
gent result of a single image, we randomly select a large number of images from
the training dataset to calculate the average entropy weights of filters. Let Hi/Wi

denote the height/width of the output feature maps and mi be the number of
filters of the i-th convolutional layer, in which one filter generates one feature
map. N denotes the number of images randomly fed into the network. For n-th
image, let X

(n)
i,k be the k-th output feature map matrix of layer i, expanded by

row and forms a feature map vector:

X̂
(n)
i,k =

(
x
(n)
i,k,1, x

(n)
i,k,2, · · · , x(n)

i,k,Li

)
, (1)



Using Feature Entropy to Guide Filter Pruning for Efficient CNNs 267

in which Li = Hi × Wi. Normalize X̂
(n)
i,k by Eq. (2), we gain P

(n)
i,k .

p
(n)
i,k,l =

x
(n)
i,k,l − min

l

{
x
(n)
i,k,l

}

max
l

{
x
(n)
i,k,l

}
− min

l

{
x
(n)
i,k,l

} (2)

P
(n)
i,k =

(
p
(n)
i,k,1, p

(n)
i,k,2, · · · , p(n)i,k,Li

)
(3)

Next, for n-th image and i-th convolutional layer, the entropy of the the k-th
feature map vector is defined as:

E
(n)
i,k = −qi

Li∑

l=1,f
(n)
i,k,l>0

f
(n)
i,k,l ln f

(n)
i,k,l , k = 1, 2, · · · ,mi, (4)

in which f
(n)
i,k,l = p

(n)
i,k,l/

∑Li

l=1 p
(n)
i,k,l, qi = 1/lnLi.

Then, for the output of the i-th convolutional layer, the entropy weight of
the k-th feature map can be defined as:

w
(n)
i,k =

E
(n)
i,k

mi∑
k=1

E
(n)
i,k

, (5)

in which 0 ≤ w
(n)
i,k ≤ 1,

∑mi

k=1 w
(n)
i,k = 1.

Afterwards, we get the average entropy weight of the the k-th feature map:

wi,k =

N∑
n=1

w
(n)
i,k

N
, (6)

in which 0 ≤ wi,k ≤ 1,
∑mi

k=1 wi,k = 1.
Eventually, using the the algorithm described above, we can determine all

the entropy weights of feature maps in each convolutional layer.

3.2 Filter Pruning Strategies

In order to identify the less useful filters from a well-trained model, the features
selection module is designed and inserted between each two adjacent convolu-
tional layers of the model. As shown in Fig. 1, the output of i-th convolutional
layer is fed into entropy weights module to determine the weights of every feature
map via the algorithm described in Sect. 3.1. The low weights indicate there is
less information in these feature maps and the corresponding filters of i-th con-
volutional layer are less useful. Then we can prune the feature maps with low
weights by removing all their incoming and outgoing connections. By doing so,
all the less important filters of the i-th layer and feature maps fed into the (i+1)-
th layer are pruned, as well as the corresponding channels of each filter in the
(i + 1)-th layer.



268 Y. Li et al.

Determining Pruning Thresholds. In each convolution layer, it is essential
to determine the pruning threshold based on the given entropy pruning ratio.
Firstly, entropy weights of feature maps in each layer are sorted in ascending
order. Then they are accumulated from the smallest weights until the given
entropy pruning ratio is exceeded. The last superimposed weight is used as the
threshold of the corresponding layer, and all the feature maps and corresponding
filters whose entropy weights are lower than the threshold will be pruned. After
that, we obtain a more compact network with fewer parameters, less storage and
less run time consumption.

Iterative Pruning and Fine-Tuning. There may be some temporary accuracy
loss after pruning, but it can be largely compensated by the following fine-tuning
process. After that, we can even achieve a higher accuracy than the original one.
For the whole network pruning, previous works usually prune and fine-tune the
filters layer by layer [4,18], or retrain the network after each pruning and fine-
tuning process [15]. Considering that these strategies are quite time-consuming,
our method prunes all layers in parallel, followed by fine-tuning to compensate
any loss of accuracy. Moreover, we prune and fine-tune the network iteratively
and there is no need to retrain the network from scratch again. The experiments
on VGGNet indicate that this strategy is effective. With several iterations, we
can achieve a large degree of compression and even lead to a better result.

Adjustment Strategy for Residual Architectures. The proposed filter
pruning method can be easily applied to plain CNN architectures such as
VGGNet and AlexNet. However, some adjustment strategies are required when
it is used to prune complex architectures with cross layer connections such as
residual networks [6]. For these architectures, the output of the building block’s
last convolutional layer and the identity mapping must be same in size and num-
ber of feature maps, which makes them difficult to be pruned. As can be seen
from part b of Fig. 2, our features selection modules are placed after the first and
second convolutional layers. For the third convolutional layer of the bottleneck
block, we only prune the channels of each filter to make them consistent with
the input feature maps and do not reduce the number of filters, since the output
of it must match the identity maps and there are fewer parameters contained in
these 1 × 1 filters.

3.3 Analysis of Computational Cost Compression

According to Sect. 3.1, the ith convolutional layer takes as input a Wi−1×Hi−1×
mi−1 tensor of feature maps and produces a Wi × Hi × mi tensor, where mi−1

and mi are the numbers of feature maps. Let us assume the ith convolutional
layer is parameterized by Ki×Ki×mi−1×mi, where Ki is the spatial dimension
of every filter. Standard convolutions have the computational cost of Ki ×Ki ×
mi−1 × mi × Wi × Hi. Let ri denote the entropy pruning rate of i-th layer and
r̂i be the corresponding filter pruning rate. Then the number of filters of the
i-th layer will be reduced from mi to mi (1 − r̂i), and the channels of filters in



Using Feature Entropy to Guide Filter Pruning for Efficient CNNs 269

Fig. 2. Illustration of the strategy to prune residual networks. (a) Original bottleneck
block of ResNet, (b) bottleneck block with features selection (FS) modules. The BN
layer is placed before each convolutional layer, and FS module is placed after ReLU.

this layer are reduced from mi−1 to mi−1 (1 − r̂i−1). Afterwards, we can get the
compression ratio in computational cost for this pruned layer:

1 − Ki
2 × mi−1 (1 − r̂i−1) × mi (1 − r̂i) × Wi × Hi

Ki
2 × mi−1 × mi × Wi × Hi

= 1 − (1 − r̂i−1) (1 − r̂i) .
(7)

4 Experiments

We evaluate our proposed EFP on several benchmark datasets and networks:
VGG-16 on CIFAR10 and CIFAR100, ResNet-56 on CIFAR-10, ResNet-164 on
CIFAR-100. Both CIFAR datasets [11] contain 50000 training images and 10000
test images. The CIFAR-10 dataset is categorized into 10 classes, and the CIFAR-
100 is categorized into 100 classes. All the experiments are implemented with
PyTorch [20] framework on NVIDIA GTX TITAN Xp GPU. Moreover, our
method is compared with several state-of-the-art methods [7,9,12,15].

4.1 Implementation Details

Experimental Setting. In the experiments, the initial models are trained from
scratch to calculate the accuracies as their baselines. During the training process,
all images are cropped randomly into 32 × 32 with four paddings and horizontal
flip is also applied. We use mini-batch size 100 to train and mini-batch size 1000
to test VGGNet, and use mini-batch size 64 to train and mini-batch size 256 to
test ResNet. All the models are trained and fine-tuned using SGD for 180 epochs
on two datasets. During training and fine-tuning processes, the initial learning



270 Y. Li et al.

Pruning Ratio of Entropy (%)
0 10 20 30 40 50 60 70 80 90 100

R
at

io
 o

f R
em

ai
ni

ng
 F

ilt
er

s 
(%

)

0

10

20

30

40

50

60

70

80

90

100
conv1
conv2
conv3
conv4
conv5
conv6
conv7
conv8
conv9
conv10
conv11
conv12
conv13

Fig. 3. The pruning results of VGG-16 on CIFAR-10 with entropy pruning rate from
10% to 100%.

rate is set to 0.1, and is divided by 10 at 50% and 75% of the total number of
epochs, following the setting in [15]. Besides, the weight initialization described
by [5] is also applied.

Entropy Pruning Rate and Filter Pruning Rate. We use our entropy-
based method to prune less important filters. In our experiments, 1000 images
randomly selected from the datasets are fed into the pre-trained network to gain
the average entropy weights of feature maps. Then, we give entropy pruning rates
for every convolutional layer to calculate the pruning thresholds via the method
described in Sect. 3.2. Figure 3 shows the filter pruning results of VGG-16 on
CIFAR-10 with entropy pruning rate from 10% to 100%. The pruning results
reveal that information distribution varies between different convolution layers.
For some convolutional layers of VGG-16, pruning only 10% information entropy
can lead to more than 70% filters reduction.

4.2 Pruning VGGNet

To evaluate the effectiveness of our proposed method on VGG-16, we test it on
CIFAR-10 and CIFAR-100 datasets.

VGG-16 on CIFAR-10. Considering that convolutional layers of VGGNet are
different in robustness [12] and information concentration, we give each convo-
lution layer a separate pruning ratio. According to the number of filters and
the results shown in Fig. 3, the layers of VGG-16 are divided into 3 levels, the
layers with less than 128 filters, the layers with 256 filters and the layers with
512 filters. For a given entropy pruning rate r, the rates are set to 0.5r, r and
1.5r for the three levels, respectively. We set r = 10% and prune VGG-16 model
iteratively. As shown in Table 1(a), our proposed EFP achieves a better per-
formance than the other filter pruning methods. With only one iteration, our



Using Feature Entropy to Guide Filter Pruning for Efficient CNNs 271

Table 1. Pruning results of VGGNet on CIFAR-10 and CIFAR-100. “Baseline” and
“Param. baseline” denote the normal accuracy and number of parameters of the orig-
inal model, respectively. In “Method” column, “iter-1” declares the first iteration of
pruning. The pruned ratio of parameters and FLOPs are also shown in column-7&8.

(a) Pruning results of VGG-16 on CIFAR-10

Method Baseline Accuracy Param. baseline Parameters Pruned Flops
saved

Li et al. [12] 93.25% 93.30% 1.5 × 107 5.4 × 106 64.0% 34.2%

Slimming [15] 93.66% 93.80% – – 88.5% 51.0%

Ours (iter-1) 93.72% 93.97% 1.5 × 107 3.5 × 105 76.4% 49.5%

Ours (iter-4) 93.72% 93.76% 1.5 × 107 1.0 × 105 92.9% 76.0%

(b) Pruning results of VGG-16 on CIFAR-100

Method Baseline Accuracy Param. baseline Parameters Pruned Flops
saved

Slimming [15] 73.26% 73.48% – – 75.1% 37.1%

Ours (iter-1) 73.60% 73.82% 1.5 × 107 9.6 × 106 34.4% 26.2%

Ours (iter-2) 73.60% 73.61% 1.5 × 107 6.4 × 106 56.4% 44.0%

method can prune 50% parameters and even achieve 0.25% accuracy improve-
ment. After four iterations, the parameters saving can be up to 92.9% and the
FLOP reduction is 76% with 0.04% accuracy improvement, which has advanced
the state-of-the-art.

VGG-16 on CIFAR-100. We use the same setting on VGG-16 to evaluate our
method on CIFAR-100. As can be seen from Table 1(b), our model can achieve
44% FLOPs reduction with only two iterations, which is better than the result
of [15]. The pruning ratio is not as high as it in CIFAR-10. It is possibly due to
the fact that CIFAR-100 contains more classes and it needs more information to
classify targets.

4.3 Pruning ResNet

For ResNet architectures, two models ResNet-56 and ResNet-164 with bottleneck
structure are utilized to evaluate the proposed method. In bottleneck blocks, the
BN layer and ReLU are placed before each convolutional layer. Considering that
there are skip connections in the ResNet structures and the information can be
shared across the network, we use the same entropy pruning ratio to prune all
the layers. Moreover, the feature information can be shared across the network
through skip connection, making ResNet structures less sensitive to large-scale
pruning, so we prune ResNet-56 and ResNet-164 in a one-shot manner.

ResNet-56 on CIFAR-10. We first prune a medium depth network ResNet-56
on CIFAR-10. The result is compared with several state-of-the-art methods. As
shown in Table 2(a), we can gain almost the equal accuracy with the original



272 Y. Li et al.

Table 2. Pruning results of ResNet on CIFAR-10 and CIFAR-100 datasets. In
“Method” column, “10%” is the one-shot pruning ratio of entropy weights.

(a) Pruning results of Resnet-56 on CIFAR-10

Method Baseline Accuracy Param. baseline Parameters Pruned Flops
saved

Li et al. [12] 93.04% 93.06% 8.5 × 105 7.3 × 105 13.7% 27.6%

He et al. [9] 92.80% 91.80% – – – 50.0%

He et al. [7] 93.59% 93.35% – – – 52.6%

Ours (15%) 94.12% 94.11% 5.9 × 105 4.3 × 105 25.7% 29.4%

Ours (30%) 94.12% 93.31% 5.9 × 105 2.9 × 105 50.8% 53.9%

(b) Pruning results of Resnet-164 on CIFAR-100

Method Baseline Accuracy Param. baseline Parameters Pruned Flops
saved

Slimming1 [15] 76.63% 77.13% – – 15.5% 33.3%

Slimming2 [15] 76.63% 76.09% – – 29.7% 50.6%

Ours (10%) 76.96% 77.59% 1.7 × 106 1.3 × 106 23.5% 24.0%

Ours (20%) 76.96% 77.14% 1.7 × 106 1.0 × 106 41.2% 46.8%

Ours (30%) 76.96% 76.59% 1.7 × 106 8.0 × 105 52.9% 58.7%

model with about 26% parameters pruned and 30% FLOPs reduced. Moreover,
our EFP can also prune 50.8% parameters and 53.9% FLOPs with only 0.79%
accuracy drop. It can be observed that unlike VGGNet has a large number of
parameters and FLOPs, the bottleneck designed ResNet has less redundancy in
parameters and calculations.

ResNet-164 on CIFAR-100. For the deeper network ResNet-164, we adopt
the same setting with ResNet-56. Table 2(b) shows that our method outper-
forms Network Slimming [15]. For ResNet-164, Network Slimming can prune
15% parameters without accuracy loss. When they prune about 30% parame-
ters, there will be 0.54% accuracy drop. However, our proposed method can out-
perform the original model by 0.18% with 41.2% parameters pruned and 46.8%
FLOPs reduced. When we prune 30% entropy weights, our method achieves
52.94% parameters pruned and 58.7% FLOPs saved with only 0.37% accuracy
drop.

To comprehensively understand the impact of our proposed method on the
model, we test model compression ratio and accuracy of different entropy pruning
rates. As shown in Fig. 4, the accuracy of the pruned model first rises above the
baseline model and then drops as the entropy pruning rate increases. When the
entropy pruning ratio is under 25%, almost 50% parameters are pruned, and our
method brings no accuracy loss and even achieves slight accuracy improvement.
This result shows our proposed EFP can reduce redundant information and
improve the effective expression of features.



Using Feature Entropy to Guide Filter Pruning for Efficient CNNs 273

Fig. 4. Pruning results of ResNet-164 on CIFAR-100 regarding different entropy prun-
ing ratios.

5 Conclusion

In this paper, we propose a simple yet effective method, which evaluates the useful-
ness of convolution filters based on the information contained in the feature maps
output by these filters. Our method introduces entropy to measure the amount of
information carried by feature maps and evaluate the importance of correspond-
ing convolution filters. Features selection module is designed to formulate pruning
strategies.Tofit different network structures, somepruning strategies are proposed
and address the problem of the dimension mismatch in resnets during pruning.
Moreover, the distribution of information in every convolutional layer of CNNs is
also discussed and the results demonstrate that in some layers most filters make
limited contribution to the performance of the model. Extensive experiments show
the superiority of our approach compared to the existing methods. Notably, for
VGG-16 on CIFAR-10, our proposed method can prune 92.9% parameters and
meanwhile lead to 76% FLOPs reduction without accuracy loss, and this perfor-
mance has advanced recent state-of-the-art methods.

Acknowledgments. This work was supported by the Equipment Pre-Research Foun-
dation of China under grant No. 61403120201.

References

1. Chen, W., Wilson, J., Tyree, S., Weinberger, K., Chen, Y.: Compressing neural
networks with the hashing trick. In: ICML, pp. 2285–2294 (2015)

2. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks: training deep neural networks with weights and activations constrained
to +1 or −1. arXiv preprint arXiv:1602.02830 (2016)

3. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: CVPR, pp. 580–587 (2014)

http://arxiv.org/abs/1602.02830


274 Y. Li et al.

4. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and Huffman coding. In: ICLR (2016)

5. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on imagenet classification. In: ICCV, pp. 1026–1034 (2015)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR, pp. 770–778 (2016)

7. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating
deep convolutional neural networks. In: IJCAI (2018)

8. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., Han, S.: AMC: AutoML for model
compression and acceleration on mobile devices. In: Ferrari, V., Hebert, M.,
Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 815–832.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2 48

9. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural
networks. In: ICCV (2017)

10. Jia, K., Tao, D., Gao, S., Xu, X.: Improving training of deep neural networks via
singular value bounding. In: CVPR 2017, pp. 3994–4002 (2017)

11. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical report, Citeseer (2009)

12. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. In: ICLR (2017)

13. Li, Y., et al.: Exploiting kernel sparsity and entropy for interpretable CNN com-
pression. In: CVPR (2019)

14. Liu, B., Wang, M., Foroosh, H., Tappen, M., Pensky, M.: Sparse convolutional
neural networks. In: CVPR, pp. 806–814 (2015)

15. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolu-
tional networks through network slimming. In: ICCV, pp. 2755–2763 (2017)

16. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: CVPR, pp. 3431–3440 (2015)

17. Luo, J.H., Wu, J.: An entropy-based pruning method for CNN compression. arXiv
preprint arXiv:1706.05791 (2017)

18. Luo, J.H., Wu, J., Lin, W.: ThiNet: a filter level pruning method for deep neural
network compression. In: ICCV (2017)

19. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmen-
tation. In: ICCV, pp. 1520–1528 (2015)

20. Paszke, A., Gross, S., Chintala, S., Chanan, G.: Pytorch: tensors and dynamic
neural networks in Python with strong GPU acceleration (2017)

21. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948)

22. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in
deep neural networks. In: Advances in Neural Information Processing Systems, pp.
2074–2082 (2016)

23. Yu, X., Liu, T., Wang, X., Tao, D.: On compressing deep models by low rank and
sparse decomposition. In: CVPR, pp. 7370–7379 (2017)

24. Zhong, J., Ding, G., Guo, Y., Han, J., Wang, B.: Where to prune: using LSTM to
guide end-to-end pruning. In: IJCAI, pp. 3205–3211 (2018)

25. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578 (2016)

https://doi.org/10.1007/978-3-030-01234-2_48
http://arxiv.org/abs/1706.05791
http://arxiv.org/abs/1611.01578

	Using Feature Entropy to Guide Filter Pruning for Efficient Convolutional Networks
	1 Introduction
	2 Related Work
	3 Method
	3.1 Determining Entropy Weights of Feature Maps
	3.2 Filter Pruning Strategies
	3.3 Analysis of Computational Cost Compression

	4 Experiments
	4.1 Implementation Details
	4.2 Pruning VGGNet
	4.3 Pruning ResNet

	5 Conclusion
	References




