
Learning Internal Dense But External
Sparse Structures of Deep Convolutional

Neural Network

Yiqun Duan(B) and Chen Feng

School of Engineering, The University of British Columbia (Okanagan Campus),
Kelowna, BC V1V 1V7, Canada
{yiqun.duan,chen.feng}@ubc.ca

Abstract. Recent years have witnessed two seemingly opposite devel-
opments of deep convolutional neural networks (CNNs). On the one
hand, increasing the density of CNNs (e.g., by adding cross-layer con-
nections) achieves better performance on basic computer vision tasks.
On the other hand, creating sparsity structures (e.g., through pruning
methods) achieves a more slim network structure. Inspired by modularity
structures in the human brain, we bridge these two trends by propos-
ing a new network structure with internally dense yet externally sparse
connections. Experimental results demonstrate that our new structure
could obtain competitive performance on benchmark tasks (CIFAR10,
CIFAR100, and ImageNet) while keeping the network structure slim.

Keywords: Hierarchical CNN · Evolutionary algorithms ·
Neural network structure

1 Introduction

Deep Convolutional Neural Networks (e.g. [12,18,20,28]) have recently made
remarkable success in visual tasks. The very intuitive idea of improving a neural
network at the earlier period is to enlarge the scale of the network. However,
follow-up papers have shown that when the feedforward network structure has
reached a certain depth, neither the best test accuracy nor training accuracy
will increase as the network depth increases [15]. An important observation is
that by increasing network density and adding long distance connections, the
network could be improved such as ResNet [12] and DenseNet [15] have shown.
These long-distance connections could create shortcuts between layers in differ-
ent depth. By propagating loss directly, the network could become deeper and
more accurate.

As the network becomes denser, deeper, and more accurate, its scale increases
up to millions of parameters. Thus, reducing the network scale and complexity
becomes a crucial research task for real-world applications. One promising solu-
tion is to increase the network sparsity by pruning redundant connections. For
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instance, by pruning connections with tiny weights and fine-tuning the pruned
network, [11] could reduce the network complexity while only sacrificing about
1% of model accuracy. Similar solutions to create sparsity include channel prun-
ing [14] and structure sparsity [36].

In neuroscience, studies concentrating on the brain structure reveal that neu-
ron connections in human brain perform a locally dense but externally sparse
property that the closer two regions are, the denser the connections between
them will be [4,9,34]. Also, studies show that while sensory information arrives
at the cortex, it is fed up through hierarchical regions from primary area V1
up to higher areas such as V2, V4 and IT [2]. Inside of each cortex layer, tightly
packed pyramidal cells consist of basic locally dense structures in the brain.

Based on neuroscientific considerations, the brain does not form connections
between every neuron. Instead, the brain forms local modules which consist of
internally dense connected neurons inside and forms connections between these
dense modules to save space and become more efficient. These internally dense
yet externally sparse properties could also be introduced into neural network
structures. Thus, we could bridge the trends of being dense and being sparse
together in neural network structures. Intuitively, we could acquire good per-
formance while keeping the network structure slim by introducing this brain
inspired structure.

We introduce an internally dense yet externally sparse neural network struc-
ture by prefixing dense modules and evolving sparse connections between them.
The basic building blocks of this network structures are several internally dense
modules, where each module consists of several densely connected [15] bottle-
neck layers to simulate the tightly packed cells. After that, we could form sparse
connections between these dense modules for the whole network structure. To
give more convincing guidance for forming sparse connections rather than man-
ually design connections based on experience, we design an evolutionary training
algorithm (Sect. 3.3) to search optimized connections Moreover, besides merely
creating parallel connections between modules, our algorithm could create long-
distance connections between the input module and the output module by a
transit layer.

The main contribution of this paper is to introduce biologically-inspired inter-
nally dense yet externally sparse properties into convolutional neural network by
prefixing dense modules and forming sparse connections between dense modules.
Instead of empirically constructing module connections, we design an evolution-
ary training algorithm to search optimized connections. This structure could
reach compared slim network structures while keeping competitive model per-
formance on image classification tasks (Exp. Sect. 4.3). We give a detailed anal-
ysis of how different sparse connections and different module properties will con-
tribute to the final performance. Moreover, we reveal contribution proportion on
the final performance of each connection by several contrast experiments. Thus,
we could give intuitive guidance for designing hierarchical network structures.
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2 Related Works

Network Architectures Are Becoming Denser
The exploration of network architectures has been an important foundation

for all Deep Learning tasks. At the early period of deep learning, increasing
the depth of a network might promise a good result as the network structure
moved from LeNet to VGG (e.g. [18,20,28]). Since people realize that the increas-
ing depth of the network amplifies problems such as over-fitting and gradient-
vanishing [3], parallel structures [32,39] and densely connected layers [15] have
been introduced to increase network capacity. In this paper, we refer to the dense
block in [15] while constructing internal densely connected modules.

Deep Neural Network Compression
Besides increasing model capacity, deep neural network compression is

another active domain concentrating on acquiring slim models by eliminating
network redundancy. These methods could be summarized by the three basic
aspects: 1. Numerical approximation of kernels, which includes binariza-
tion [7,25], quantization [40], weight sharing or coding method [10] and mainly
uses numerical method to approximate kernel with smaller scale; 2. Sparse
regularization on kernels, which mainly prunes connections based on reg-
ularization on kernels, such as weights/channel pruning [14,23] and structure
sparsity learning [22,36]; 3. Decomposition of kernels, which mainly uses
smaller groups of low-rank kernel instead of a larger whole kernel, such as [6,8,17]
and [37]. Instead of pre-training then pruning the whole network structure,
we use an evolutionary programming method to determine sparse connections
between dense modules, while keeping the modules slim. Competitive perfor-
mances are obtained.

Neural Network Structure Search
At early period, papers [1,5,24,31] have developed methods that evolve both

topologies and weights on simple neural networks. Recently, papers concen-
trate on evolving structures have risen again along with the rapid development
of deep learning. Genetic CNN [38] concentrates on using genetic algorithm
to evolve skip-connections on a straight forward convolutional neural network.
Then, Google [26] shows great potential about structure search on image clas-
sification tasks. Google also proposed a state-of-the-art deep neural network
structure NasNet [41] to search both the parameters and the structures. How-
ever, the huge scale of these networks still remains a problem. In our paper, the
evolving algorithm is a tool to reveal properties of internally dense yet externally
sparse structures. Moreover, we analyze how each connections could contribute
to the final model performance.

3 Methodology

In order to introduce internal dense yet external sparse properties into deep con-
volutional neural networks, we proposed a new network structure which prefixes
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internal dense modules and evolves sparse connections between dense modules.
We define M as the set of dense modules. For a clear identification of these
dense modules, we divide these dense modules into D layers, where each layer
contains W modules. In particular, we define a dense module in the set M as
Md,w, d ∈ {0, 1, ...D}, w ∈ {0, 1, ...W}, where index d denotes the depths in
layer wise and w denotes the module index among all of the others in the same
depth. These modules M are sparsely connected by directed edges/connections.
We define P as the adjacency matrix to represent these directed connections
between modules. Clearly, the whole neural network structure can be defined
as a directed graph G(M,P ), where M denotes the set of internal dense mod-
ules Md,w, P denotes the adjacency matrix, which is used to represent sparse
connections between modules.

For example, Fig. 1 shows a set of dense modules in subfigure Fig. 1(a) with
depth D = 4 and W = 3. We use an adjacency matrix P to represent connections
between modules as it shows in Fig. 1(b). In this example, firstly a 3*3 convolu-
tional layer processed the input images into some feature maps. Then the feature
maps are divided into several groups in channel wise. Each group is sent into a
dense module as the input feature maps. After the features flow through sparse
dense convolutional neural networks, the outputs are concatenated together for
final output layer.

Fig. 1. Example of a network’s structure obtained by fixing the dense modules M in
advance and using the adjacency matrix P to represent sparse connections between
modules. Figure (a) denotes the network structure. Figure (b) denotes the adjacency
matrix corresponding to Fig. (a), where red rectangle area denotes connections with
distance 1, green rectangle denotes connections with distance 2, blue area denotes
connections with distance 3. (Color figure online)

Naturally, three main questions occur: 1. What is the exact structure and
definition of a dense module Md,w? 2. What does a connection represent in this
convolutional neural network? 3. How shall we connect these dense modules and
decide the adjacency matrix P?

The exact structure of an internal dense module Md,w is defined in Sect. 3.1.
In Sect. 3.2, we answer the second question by specifying a connection in neural
networks. In Sect. 3.3, we solve the problem of connecting these modules by
evolving sparse connections between them.
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3.1 Build Internal Densely Connected Modules

In this section, we will introduce the detailed structure of a dense module Md,w.
From a high level, a dense module Md,w receives feature maps from other dense
modules as its input, then outputs down-scaled feature maps. In other words, we
densely connect our bottleneck layers and a transit layer as the main structure
inside a dense module as it is shown in Fig. 2.

Fig. 2. An example of structure for a prefixed dense module as shown above, where
yellow layer represents several densely connect bottleneck layers (it means each inter-
mediate output has a direct connection to the output layer). The detailed structure
of a bottleneck layer is shown left. After the final layer, the green layer represents
a transition layer to control the feature map size. The depth of dense blocks in our
experiment usually varied from 6 to 20. (Color figure online)

This structure uses a bottleneck layer as the basic building block of the dense
module. Following [15,33], we design our own bottleneck layer as below. A bottle-
neck layer consists of sequential layers as follows: {BN - 1*1conv -BN - 3*3conv},
where BN denotes a batch normalization layer [16] which could normalize the
feature maps by adjusting and scaling after activation functions. The BN layer
is followed by a 1*1 convolution layer which keeps the feature map size the same.
Then it is followed by a BN layer and a 3*3 convolution layer with zero padding.
The bottleneck layer l keeps the output feature map size unchanged and con-
trols the channel number of the feature maps always be constant number k (the
meaning of k will be explained later).

In that case, the bottleneck layers could be densely connected [15] to increase
density of dense module Md,w. The densely connectivity could be presented as
xl = Hl(x0, x1, x2, ...xl−1), where Hl represents nonlinear operation on feature
maps in bottleneck layer l and (x0, x1, x2, ...xl−1) represents the concatenation
(channel-wise) of all previous outputs. It means that the input of layer l depends
on outputs of every previous layers. As each bottleneck layer produces feature
maps with k channels, the layer l has concatenated input feature maps with
k0 + k × (l − 1) channels, where k0 is the channel number of input feature maps
in this dense module. In that case, as layer number l goes deeper, the channel
number of input feature maps will grow rapidly as defined above. Following [15],
we define k as the growth rate of the module, which could control the module
scale. In experiments of this paper, we keep the growth rate k the same for all
dense modules M .
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We define a transit layer as the output layer of every dense module Md,w.
The transit layer consists of sequential layers {BN - Relu -1*1conv - Average-
pooling}, where BN is the batch normalization layer introduced above, Relu is
the activation function. The 1*1 convolution layer controls the output feature
map channels as a constant number k0 for all dense modules M . The average
pooling layer mainly down scale the feature map size for final classification task.
It should be noted that, the transit layer could control the output feature maps
of dense modules to have a certain shape.

3.2 Explore External Sparse Connections

Since we have defined the whole network structure as a directed graph G(M,P )
and explained definition of dense modules M in Sect. 3.1, we will explain what
a connection denotes in a neural network in this section. As we have explained
before, M could be regarded as a set of nodes in the directed graph G(M,P )
and P is the adjacency matrix to represent the directed connections between
modules M . The directed connections denote the feature map flow in our neural
networks. Once there is a connection between two modules, it means one module
will accept the output feature map of the other module as part of its inputs. For
example, in Fig. 1, the module M3,1 receives two directed connections from M2,1

and M2,3, it means module M3,1 receives feature maps both from M2,1 and M2,3.
Similarly, the module M3,1 sends a directed connection to M4,1, this means M3,1

send output feature maps to M4,1 as one of its inputs.
According to the transit layers defined in Sect. 3.1, output feature maps of all

modules have the same channel number k0. However, the sizes of feature maps
from different depth are different. So, how can we make a module to accept
output feature maps from different depth of feature maps? After the example,
we will introduce how we exactly make a module to accept changeable feature
maps from multiple other dense modules.

Methods for Local Connections with Same Depth
Here we define the distance as the difference d1 − d2 of two connected mod-

ules Md1,w1 and Md2,w2 in depth. If the distance of the connection is 1 (e.g.,
connection between M3,3 and M2,3 in Fig. 1), we call it a local connection. As
we defined in Sect. 3.1, each output feature map of a dense module with same
depth shares the same feature map size and the same channel number k0. If there
is only one local connection, we could naturally follow the down sampling flow
of deep CNN and directly send the feature map output of the previous depth
to the current module as: Od,w = Md,w(Od−1,w2), where Od−1,w2 denotes the
output feature map of previous depth Md−1,w2 .

But what if the module Md,w has several local connections? We use an Addi-
tion Method to connect multiple feature map inputs which could be defined as:
Od,w = Md,w(Od−1,w1 +Od−1,w2 ...), where Od1,w1 and Od1,w2 ... denote the mul-
tiple input feature maps. These additional methods directly add all the input
feature maps from local connections and fit the required input feature map size
of Md,w. Actually we also try the Concatenation Methods which concatenate
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all input feature maps channel wise and use a single transit layer introduced in
Sect. 3.1 to reduce the channel number to required k0. The experiment results
show that the two connection methods have very similar results on the same
structure. As addition methods don’t need extra transit layers when changing
the input feature map numbers, we choose addition methods as our connection
methods.

Methods for Long Distance Connections from Different Depth
Within the same definition of distance above, a typical example of multiple

long distance connections is as shown in Fig. 1, where M4,3 receives directed
connections from both M3,2 (with depth 3) and M1,2 (with depth 1). It should
be noted that the existence of long distance connections means that feature maps
could flow through different numbers of dense modules in this network structure.
Here we also use the addition methods introduced above. Since the fact that the
output feature maps of all the modules have same channel number k0, the only
problem for adding feature maps from different depth is the different feature
map size. In that case, before addition, we implement an average pooling layer Td

according to the depth d to change the feature map size into current requirement
of a module. After that, we could add all the adjusted input feature maps as the
input of Md,w. The math process can be define as Od,w = Md,w(Td1(Od1,w1)) +
Td2(Od2,w2)...), where Od,w denotes the output feature map of module Md,w and
Td denotes the pooling layer from depth d. In this case, we can achieve long
distance connections.

3.3 Evolution Algorithm to Search External Sparse Connections

Since we’ve answered the question of what is a dense module in Sect. 3.1 and
how the modules are connected in Sect. 3.2, this section will introduce how we
decide the connection topologies.

One crucial problem in creating sparse connections between dense modules
is that there has not been a convincing theory on what can be called an effi-
cient connection. In that case, we decide to make the neural network evolving
optimized sparse connections by itself. In this paper, we use a genetic algorithm
[29] to search the proper connections. We take the adjacency matrix P as shown
above as the gene for evolving. In each iteration, the genetic algorithm generates
several new ‘individuals’ with genes from the mutation of the best ‘individual’ in
last iteration. The set of generated ‘individuals’ is called ‘population’. Genetic
algorithm evolves by selecting best performance individual in every iteration.

Encoding: Here we take the adjacent matrix P to represent connection topol-
ogy during training. In implementation details, we use a connection list of each
module to reduce the storage space.

Initial State: The initial adjacency matrix is shown as Fig. 3-Initial State which
only has direct local connections. We randomly initialize the weights value of
modules at the first iteration in the training process. Since a deep neural network
needs a long time to train, restricted to our computation capacity, we set the
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Fig. 3. An example of the Network Structure Evolving. Initial state denotes the initial
adjacency matrix P . As we set before first iteration Pbest = Pinit, based on Pbest

we generate 2 individuals below. All together these 3 individuals form the population
which to be trained simultaneously in iteration 1. Then, we choose the individual with
the best performance, and based on that we form population for iteration 2. Following
this principle we keep the network evolving.

population between 2 to 3 individuals. We define the adjacency matrix of the
initial individual state as Pinit, the best performance individual of the previous
iteration as Pbest, and others as Pi at beginning of each iteration. An example
of evolving process is shown in Fig. 3.

Evolution Strategy: At each iteration, the mutation function will generate
several new individuals based on the best individual from the previous iteration
Pbest. The mutation function could be defined as:

P1, P2... = Mutation(Pbest) (1)

Where it accepts Pbest as its input, then generates several mutation individuals
P1, P2... based on Pbest. The mutation function randomly picks two possible con-
nections and changed their connectivity based on the input adjacency matrix. It
means that, if we randomly pick an unconnected connection, we set it connected.
And for already connected connection, we set it disconnected. Then we treat the
set of Pbest, P1, P2... as population in this iteration and separately resume train-
ing the whole network under these connection conditions for an epoch and choose
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Algorithm 1. Evolutionary Connectivity Algorithm
1: procedure Evolve(G(M, Pinit), Data, n) � Data: Training

data, G(M, Pinit): Given network structure with modules M and initial adjacency
matrix Pinit, n: Total iteration

2: Pbest ← Pinit

3: for n iterations do
4: P1, P2...Pk−1, Pk ← Mutation(Pbest) � k,Number of individuals in a

generation, Pk = Pbest

5: checkpoint ← G(M, Pbest)
6: for k iterations do
7: Resume weights of M in the Checkpoint: G(M, Pk) ← checkpoint
8: train G(M, Pk) on Data and get validation accuracy
9: if Pk.accuracy > Pbest.accuracy then

10: Pbest ← Pk

11: best − check ← G(M, Pk)
12: end if
13: end for
14: Resume weights of M in the best − check: G(M, Pbest) ← best − check
15: end for
16: Return Pbest

17: end procedure

the individual with the best accuracy as Pbest of current iteration. Adjacency
matrix of the best performance individual Pbest will remain to next iteration.
And based on it we mutate new individuals. The whole process is shown in
Algorithm 1.

4 Experiments

In this section, we apply several experiments to reveal interesting phenomena
and properties of the internally dense yet externally sparse deep neural net-
work structures. All of the experiments in this section are based on CIFAR10,
CIFAR100 and ImageNet datasets for image classification tasks. Section 4.1
shows the efficiency of the evolutionary algorithm by several repeatability exper-
iments. Section 4.2 discusses how the growth rate of each module will affect the
model performance. Section 4.3 gives our performance benchmark compared to
state-of-the-art models. At last, we do a detailed discussion about which con-
nections are important for the whole model in Sect. 4.4.

4.1 Evolving Sparse Connections

This experiment is used to prove the efficiency of the Evolutionary Connectivity
Algorithm introduced in Sect. 3.3. We evaluate the network structure efficiency
on the classification task using benchmark dataset CIFAR10. In implementation
details, we prefix the dense modules having 4 different depth, where in each
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depth, it has 3 modules. The total of 12 modules M have the growth rate k of
12. The dense modules in depth 1, 2, 3, 4 respectively have 6, 12, 24, 16 bottleneck
layers inside each module. The input feature map channels of each dense module
k0 is 32. The preprocessed images firstly flow through a 3*3 convolution layer
and generate feature maps with 96 channels. Then the feature maps are divided
into 3 feature map groups with 32 channels each. And the three groups are
separately fed to input dense modules with depth 1 (M1,1,M1,2,M1,3).

Through the training process, the network evolves sparse connections
between prefixed dense modules according to the Evolutionary Connectivity
Algorithm 1. We set the total iteration number to be 160, with weight decay
of 5e−4. The training uses SGD with momentum 0.9 for gradient descent. The
learning rate strategy is the same as most of the papers that during epoch 0–90
the learning rate is 0.1, during 90–140 learning rate is 0.01, and during 140–160
learning rate is 0.001. It should be noted that changing the learning rate will
lead to accuracy ‘step jumps’ such as Figs. 4, 5 and 6 show. Restricted to our
computation power, we set the number of individuals generated in each iteration
to be 2. The training curves of Pbest are shown in Fig. 4. All the experiments are
trained on NVIDIA AWS P3.x2large instance.

Fig. 4. Several Repeatable Experiments on Sparse Connection Evolving. The upper
four figures denote the training curve & testing curve of each experiment. The lower
figure denotes the comparison of test accuracy of each experiment. All accuracy step
jumps are caused by learning rate change strategy in Sect. 4.1.

According to the repeatable experiment results, although randomness of
forming the early generations may lead to variation and fluctuation on the test-
ing performance curve, the training curve will finally converge to the same trend.
This shows the repeatability of our algorithm. Based on these experiments, we
found that the optimized adjacency matrix is not unique to achieve good per-
formances. The evolving results are shown in Fig. 5. However, we could still find
some similarity between those evolving results of these experiments. It denotes
that the modules with shallow depth are more likely to form a long-distance
connection. This means that the distance between the input and the output are
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shortened under that situation. This perfectly fits a current trend observed by
various papers [6,12,15,27,32,33] that skip/direct connections are important.

Fig. 5. Connection Matrix with Best Performance on each Experiment. We also give
an example connection status of Exp1.

4.2 How Growth Rate of the Dense Module Influences the Final
Result

As we mentioned above in Sect. 3.1, growth rate k is an important parameter
which controls the model scale. In order to figure out the influence of growth
rate k, this subsection introduces the contrast experiment by controlling all
other factors the same except the growth rate k in the prefix dense modules.
The prefixed modules and training parameters are the same as those used in
experiment Sect. 4.1. We train the network with the same strategy and the same
device above. The results are shown in Fig. 6.

Fig. 6. Test Accuracy Curve Comparison on Different Growth Rate. Each color repre-
sents test accuracy curve of experiments on different growth rate.

Clearly, the networks with smaller growth rate converge faster and have flat-
ter curve shapes compared to those with larger growth rates at the earlier period
of training. It means that the modules with smaller scale are easier to train while
the connections of this network evolving. We can also see that, although modules
with smaller growth rates converge really fast, the final test accuracy is not as
high as those modules with larger growth rate. However, experiment results also
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demonstrate that the network redundancy is not the ‘larger the better’. As it
shows in Fig. 6, after the growth rate is larger than 32, the test accuracy will
not increase anymore. It is also rational because if the capacity of each module
is too large, the unstable input features may make the network harder to train.
On another hand, the increasing growth rate, which leads to the increasing of
model scale, increases the risk of over-fitting.

4.3 Performance Benchmark

Although our paper emphasizes on how sparse connections will change the model
performance, we still give performance scores on the benchmark dataset as shown
in Tables 1 and 2. Since the aim of this paper is to obtain slim structures while
keeping the model’s capacity and achieve internally dense yet externally sparse
network structures, the test accuracy on both ImageNet and CIFAR is not
that high compared to state-of-the-art models. However, we still get compet-
itive results on both datasets.

Table 1. Test error rate performance on CIFAR dataset. Note results with * are the
best result run by ourselves.

Method Params Depth CIFAR-10 CIFAR-100

Network in network [21] – – 8.81 35.68

VGG19 [28] – – 6.58 27.09

Highway Network [30] – – 7.72 32.29

DFN [35] 3.9M 50 6.40 27.61

Fractal Net [19] 38.6M 21 5.22 23.30

Resnet [12] 1.7M 110 5.46 5.58∗ 27.62

Pre-activated Resnet [13] 1.7M 164 4.72 5.12∗ 25.6

Wide Resnet [39] 7.4M 32 5.4 23.55

Densenet (k = 12) [15] 1M 40 5.24 5.43∗ 24.42 24.98∗

Densenet-BC (k = 12) 0.8M 100 4.51 22.27

Densenet121 (k = 24) 15.2M 121 4.68∗ 21.49∗

SDMN, growth rate k = 8, 6 modules 0.4M – 6.97∗ –

SDMN, growth rate k = 8, 8 modules 1.3M – 6.59∗ 25.6∗

SDMN, growth rate k = 8, 12 modules 2.3M – 5.97∗ 24.8∗

SDMN, growth rate k = 12, 12 modules 3.7M – 5.35∗ 23.41∗

SDMN, growth rate k = 32, 12 modules 22M 4.79∗ 21.9∗

4.4 Separable of Sparse Connections

In this subsection, we discuss which connections are important based on one
of our evolved adjacency matrices. We separately cut off one sparse connection
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Table 2. Test accuracy rate performance on ImageNet dataset, compared with slim
network models.

Model Params Top1/Top5 Acc.

MobileNetV1 4.2M 70.6%/89.5%

ShuffleNet (2x) 4.4M 70.9%/89.8%

MobileNetV2 (1.4) 6.9M 74.7%/â

NASNet-A (N = 4, F = 44) 5.1M 74.0%/91.3%

Sparse-Dense-Modules (k = 12) 3.7M 71.1%/90.0%

from the whole network structure each time and test the remaining accuracy on
CIFAR10 dataset. Then we come up with a matrix, which suggests the accuracy
decreasing while losing each connection. The matrix is shown in Fig. 7.

The red rectangle area denotes the direct connections; the green and blue
rectangle area denote the long-distance connections. According to the accuracy
loss distribution, local and direct connections are of vital importance for a neural
network. This is rational because the deep learning method needs a compared
invariant forward and backward feature flow path for loss propagation. We can
also see the accuracy loss is larger along the diagonal to the high left of the
matrix. It means that connections within shallow depth play a more important
role in conducting features/patterns than deeper connections. It is also rational
because the shallower connections simultaneously mean the features that flow
through such connections have not been extract to some level of abstraction.

Fig. 7. Example connection matrix shows the selected best connection from a typical
experiment. Right part of the figure shows how much accuracy will loss if we cut off
the corresponding connection in the connection matrix. (Color figure online)

5 Conclusions and Future Work

In this paper, we firstly introduce locally dense but externally sparse struc-
tures of deep convolutional neural network by prefixing some dense modules M
and evolving sparse connections between them. Experiment results demonstrate
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that evolving sparse connections between dense modules could reach competi-
tive results on benchmark datasets. In order to analyze the properties of these
biologically plausible structures, we apply several sets of contrast experiments
and show in Experiment section. By changing the growth rate of each dense
module, we analyze how model scale will influence the model performance. Sim-
ilar to most of the related works, redundancy of each dense module is not ‘the
larger the better’, where the test accuracy will first increase with the growth rate
increasing, but finally drop while the growth has reached some thresholds. We
also analyze the contribution of each connection to the whole model by discon-
necting each connection and separately testing the accuracy of the model with
the disconnected connection. It shows that local connections are important for
baseline accuracy, while long-distance connections could improve the accuracy
by small steps.

The combination of being dense and being sparse is an interesting area. The
internally dense and externally sparse structures also coincide with the modular-
ity in human brain. We demonstrate the feasibility of these structures and give
a simple algorithm to search best connections. We also notice that the connec-
tion matrix is not unique for reaching good performance. We will concentrate
on revealing the relationship between these similar connection matrices and the
corresponding features behind it. In this case, we may acquire state-of-the-art
performance on other datasets and tasks in our future work. Moreover, as these
structures have various direct paths between input and output, separating a net-
work into several small networks without big accuracy loss is also a promising
topic.
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