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Preface

The fast development of machine learning methods is influencing all aspects of our life
and reaching new horizons of what we have previously considered being Artificial
Intelligence (AI). Examples include autonomous car driving, virtual assistants,
automated customer support, clinical decision support, healthcare data analytics,
financial forecast, and smart devices in the home, to name a few, which contribute to
the dramatic improvement in the quality of our lives. These developments, however,
also bring risks for significant hazards, which were not imaginable previously,
e.g., falsification of voice, videos, or even manipulation of people’s opinions during
elections. Many such developments become possible due to the appearance of large
volumes of data (“Big Data”). These proceedings include the theory and applications of
algorithms behind these developments, many of which were inspired by the functioning
of the brain.

The International Conference on Artificial Neural Networks (ICANN) is the annual
flagship conference of the European Neural Network Society (ENNS). The 28th
International Conference on Artificial Neural Networks (ICANN 2019) was
co-organized with the final conference of the Marie Skłodowska-Curie Innovative
Training Network European Industrial Doctorate “Big Data in Chemistry” (http://
bigchem.eu) project coordinated by Helmholtz Zentrum München (GmbH) to promote
the use of machine learning in Chemistry. The conference featured the main tracks
“Brain-Inspired Computing” and “Machine Learning Research.” Within the conference
the First International Workshop on Reservoir Computing as well as five special
sessions were organized, namely:

Artificial Intelligence in Medicine
Informed and Explainable Methods for Machine Learning
Deep Learning in Image Reconstruction
Machine Learning with Graphs: Algorithms and Applications
BIGCHEM: Big Data and AI in chemistry

A Challenge for Automatic Dog Age Estimation (DogAge) also took place as part
of the conference. The conference covered all main research fields dealing with neural
networks. ICANN 2019 was held during September 17–19, 2019, at Klinikum rechts
der Isar der Technische Universität München, Munich, Germany.

Following a long-standing tradition, the proceedings of the conference were
published as Springer volumes belonging to the Lecture Notes in Computer Science
series. The conference had a historical record of 494 article submissions. The papers
went through a two-step peer-review process by at least two and in majority of cases by
three or four independent referees. In total, 503 Program Committee (PC) members and
reviewers participated in this process. The majority of PC members had Doctoral
degrees (88%) and 52% of them were also Professors. These reviewers were assigned
46 articles. The others were PhD students in the last years of their studies, who

http://bigchem.eu
http://bigchem.eu


reviewed one to two articles each. In total, for the 323 accepted articles, 975 and 985
reports were submitted for the first and the second revision sessions. Thus, on average,
each accepted article received 6.1 reports. A list of reviewers/PC Members, who agreed
to publish their names, are included in these proceedings.

Based on the reviewers’ comments, 202 articles were accepted and more than 100
articles were rejected after the first review. The remaining articles received an
undecided status. The authors of the accepted articles as well as of those with
undecided status were requested to address the reviewers’ comments within two weeks.
On the basis of second reviewers’ feedback, another 121 articles were accepted and the
authors were requested to include reviewers’ remarks into the final upload. Based on
these evaluations, diversity of topics, as well as recommendations of reviewers, special
session organizers, and PC Chairs, 120 articles were selected for oral presentations. Out
of the total number of 323 accepted articles (65% of initially submitted), 46
manuscripts were short articles with a length of five pages each, while the others were
full articles with an average length of 13 pages.

The accepted papers of the 28th ICANN conference were published as five volumes:

Volume I Theoretical Neural Computation
Volume II Deep Learning
Volume III Image Processing
Volume IV Text and Time series analysis
Volume V Workshop and Special Sessions

The authors of accepted articles came from 50 different countries. While the
majority of the articles were from academic researchers, the conference also attracted
contributions from manifold industries including automobile (Volkswagen, BMW,
Honda, Toyota), multinational conglomerates (Hitachi, Mitsubishi), electronics
(Philips), electrical systems (Thales), mobile (Samsung, Huawei, Nokia, Orange),
software (Microsoft), multinational (Amazon) and global travel technology (Expedia),
information (IBM), large (AstraZeneca, Boehringer Ingelheim) and medium (Idorsia
Pharmaceuticals Ltd.) pharma companies, fragrance and flavor (Firmenich),
architectural (Shimizu), weather forecast (Beijing Giant Weather Co.), robotics
(UBTECH Robotics Corp., SoftBank Robotics Group Corp.), contract research
organization (Lead Discovery Center GmbH), private credit bureau (Schufa), as well as
multiple startups. This wide involvement of companies reflects the increasing use of
artificial neural networks by the industry. Five keynote speakers were invited to give
lectures on the timely aspects of intelligent robot design (gentle robots), nonlinear
dynamical analysis of brain activity, deep learning in biology and biomedicine,
explainable AI, artificial curiosity, and meta-learning machines.

These proceedings provide a comprehensive and up-to-date coverage of the
dynamically developing field of Artificial Neural Networks. They are of major interest
both for theoreticians as well as for applied scientists who are looking for new
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innovative approaches to solve their practical problems. We sincerely thank the
Program and Steering Committee and the reviewers for their invaluable work.

September 2019 Igor V. Tetko
Fabian Theis
Pavel Karpov
Věra Kůrková
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Recurrent Patterns of Brain Activity
Associated with Cognitive Tasks and Attractor
Dynamics (John Taylor Memorial Lecture)

Alessandro E. P. Villa

NeuroHeuristic Research Group, University of Lausanne,
Quartier UNIL-Chamberonne, 1015 Lausanne, Switzerland

alessandro.villa@unil.ch
http://www.neuroheuristic.org

The simultaneous recording of the time series formed by the sequences of neuronal
discharges reveals important features of the dynamics of information processing in the
brain. Experimental evidence of firing sequences with a precision of a few milliseconds
have been observed in the brain of behaving animals. We review some critical findings
showing that this activity is likely to be associated with higher order neural (mental)
processes, such as predictive guesses of a coming stimulus in a complex sensorimotor
discrimination task, in primates as well as in rats. We discuss some models of evolvable
neural networks and their nonlinear deterministic dynamics and how such complex
spatiotemporal patterns of firing may emerge. The attractors of such networks corre-
spond precisely to the cycles in the graphs of their corresponding automata, and can
thus be computed explicitly and exhaustively. We investigate further the effects of
network topology on the dynamical activity of hierarchically organized networks of
simulated spiking neurons. We describe how the activation and the
biologically-inspired processes of plasticity on the network shape its topology using
invariants based on algebro-topological constructions. General features of a brain
theory based on these results is presented for discussion.



Unsupervised Learning: Passive and Active

Jürgen Schmidhuber

Co-founder and Chief Scientist, NNAISENSE, Scientific Director,
Swiss AI Lab IDSIA and Professor of AI, USI & SUPSI, Lugano, Switzerland

I’ll start with a concept of 1990 that has become popular: unsupervised learning
without a teacher through two adversarial neural networks (NNs) that duel in a
mini-max game, where one NN minimizes the objective function maximized by the
other. The first NN generates data through its output actions while the second NN
predicts the data. The second NN minimizes its error, thus becoming a better predictor.
But it is a zero sum game: the first NN tries to find actions that maximize the error
of the second NN. The system exhibits what I called “artificial curiosity” because the
first NN is motivated to invent actions that yield data that the second NN still finds
surprising, until the data becomes familiar and eventually boring. A similar adversarial
zero sum game was used for another unsupervised method called “predictability
minimization,” where two NNs fight each other to discover a disentangled code of the
incoming data (since 1991), remarkably similar to codes found in biological brains. I’ll
also discuss passive unsupervised learning through predictive coding of an agent’s
observation stream (since 1991) to overcome the fundamental deep learning problem
through data compression. I’ll offer thoughts as to why most current commercial
applications don’t use unsupervised learning, and whether that will change in the
future.



Machine Learning and AI for the Sciences—
Towards Understanding

Klaus-Robert Müller

Machine Learning Group, Technical University of Berlin, Germany

In recent years machine learning (ML) and Artificial Intelligence (AI) methods have
begun to play a more and more enabling role in the sciences and in industry. In
particular, the advent of large and/or complex data corpora has given rise to new
technological challenges and possibilities.

The talk will connect two topics (1) explainable AI (XAI) and (2) ML applications
in sciences (e.g. Medicine and Quantum Chemistry) for gaining new insight. Specifi-
cally I will first introduce XAI methods (such as LRP) that are now readily available
and allow for an understanding of the inner workings of nonlinear ML methods ranging
from kernel methods to deep learning methods including LSTMs. In particular XAI
allows unmasking clever Hans predictors. Then, ML for Quantum Chemistry is dis-
cussed, showing that ML methods can lead to highly useful predictors of quantum
mechanical properties of molecules (and materials) reaching quantum chemical accu-
racies both across chemical compound space and in molecular dynamics simulations.
Notably, these ML models do not only speed up computation by several orders of
magnitude but can give rise to novel chemical insight. Finally, I will analyze mor-
phological and molecular data for cancer diagnosis, also here highly interesting novel
insights can be obtained.

Note that while XAI is used for gaining a better understanding in the sciences, the
introduced XAI techniques are readily useful in other application domains and industry
as well.



Large-Scale Lineage and Latent-Space
Learning in Single-Cell Genomic

Fabian Theis

Institute of Computational Biology, Helmholtz Zentrum München (GmbH),
Germany

http://comp.bio

Accurately modeling single cell state changes e.g. during differentiation or in response
to perturbations is a central goal of computational biology. Single-cell technologies
now give us easy and large-scale access to state observations on the transcriptomic and
more recently also epigenomic level, separately for each single cell. In particular they
allow resolving potential heterogeneities due to asynchronicity of differentiating or
responding cells, and profiles across multiple conditions such as time points and
replicates are being generated.

Typical questions asked to such data are how cells develop over time and after
perturbation such as disease. The statistical tools to address these questions are tech-
niques from pseudo-temporal ordering and lineage estimation, or more broadly latent
space learning. In this talk I will give a short review of such approaches, in particular
focusing on recent extensions towards large-scale data integration using single-cell
graph mapping or neural networks, and finish with a perspective towards learning
perturbations using variational autoencoders.



The Gentle Robot

Sami Haddadin

Technical University of Munich, Germany

Enabling robots for interaction with humans and unknown environments has been one
of the primary goals of robotics research over decades. I will outline how
human-centered robot design, nonlinear soft-robotics control inspired by human neu-
romechanics and physics grounded learning algorithms will let robots become a
commodity in our near-future society. In particular, compliant and energy-controlled
ultra-lightweight systems capable of complex collision handling enable
high-performance human assistance over a wide variety of application domains.
Together with novel methods for dynamics and skill learning, flexible and easy-to-use
robotic power tools and systems can be designed. Recently, our work has led to the first
next generation robot Franka Emika that has recently become commercially available.
The system is able to safely interact with humans, execute and even learn sensitive
manipulation skills, is affordable and designed as a distributed interconnected system.
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Adaptive Graph Fusion for Unsupervised
Feature Selection

Sijia Niu, Pengfei Zhu(B), Qinghua Hu, and Hong Shi

College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
{narska 0919,zhupengfei,huqinghua,serena}@tju.edu.cn

Abstract. The massive high-dimensional data brings about great time complex-
ity, high storage burden and poor generalization ability of learning models. Fea-
ture selection can alleviate curse of dimensionality by selecting a subset of fea-
tures. Unsupervised feature selection is much challenging due to lack of label
information. Most methods rely on spectral clustering to generate pseudo labels
to guide feature selection in unsupervised setting. Graphs for spectral clustering
can be constructed in different ways, e.g., kernel similarity, or self-representation.
The construction of adjacency graphs could be affected by the parameters of ker-
nel functions, the number of nearest neighbors or the size of the neighborhood.
However, it is difficult to evaluate the effectiveness of different graphs in unsuper-
vised feature selection. Most existing algorithms only select one graph by expe-
rience. In this paper, we propose a novel adaptive multi-graph fusion based unsu-
pervised feature selection model (GFFS). The proposed model is free of graph
selection and can combine the complementary information of different graphs.
Experiments on benchmark datasets show that GFFS outperforms the state-of-
the-art unsupervised feature selection algorithms.

Keywords: Graph fusion · Unsupervised feature selection · Self-representation

1 Introduction

The ubiquitous use of electronic sensors, digital imaging devices and social networks
produce mountains of high-dimensional data, which terribly leads to the curse of dimen-
sionality. In the high-dimensional feature space, the classification and clustering mod-
els, which are computationally controllable in low-dimensional space, could become
absolutely intractable [3,4]. To alleviate the situation, feature selection is regarded as
an indispensable step to search the most informative and discriminative features from
the original data, which can effectively reduce the storage space and time complexity
[7]. In the past, consistent efforts have been devoted to the development of new feature
selection algorithms [3,8,15,20,28]. According to the availability of the label informa-
tion, feature selection methods can be categorized into supervised [20], semi-supervised
[1] and unsupervised [8] ones. For unsupervised learning, the class label information is
unavailable to guide the selection of minimal feature subset.

Compared with supervised cases, unsupervised feature selection is more challeng-
ing due to the lack of label information [29]. Laplacian score reflects the locality pre-
serving power of features [8]. And pseudo labels indicate the affiliation relations of sam-
ples, which can be generated by spectral clustering (SPEC [27], MCFS [3], NDFS [12]),
c© Springer Nature Switzerland AG 2019
I. V. Tetko et al. (Eds.): ICANN 2019, LNCS 11728, pp. 3–15, 2019.
https://doi.org/10.1007/978-3-030-30484-3_1
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matrix factorization (RUFS [22], EUFS [24]), linear predictors (UDFS [26], JELSR
[10]), consensus clustering or dictionary learning [29]. Among them, spectral cluster-
ing is widely used in that it can effectively generate the pseudo labels from the graphs.
Graphs can be constructed by kernel similarity [9] or self-representation [13,16]. For
the traditional spectral clustering algorithm, the sample similarity matrix is firstly calcu-
lated, which can be measured by different kernel functions, e.g., Gaussian kernel, poly-
nomial kernel, linear kernel, etc. The quality of constructed graphs could be affected
by the parameters of kernel functions. The majority of unsupervised feature selection
methods chose to calculate k-nearest neighbor graphs with Gaussian kernel function by
experience. Unlike the traditional method, the self-representation based methods learn
the affinity matrix automatically to get the graph structure and can uncover the latent
subspace structure especially on high-dimensional data. Self-representation represents
a sample by a linear combination of all samples and uses the representation coefficients
to reflect the sample relationships [5,13,17]. For spectral clustering based unsuper-
vised feature selection algorithms, it is difficult to evaluate the effectiveness of different
graphs. No matter which method is used, most existing algorithms only select one graph
by experience. However, the chosen graph maybe is not optimal for unsupervised fea-
ture selection. On the other hand, if we want to select graph based on their respective
importance, we need to set a weight to each graph respectively with additional parame-
ters, which is unsatisfactory especially in unsupervised learning task [19].

Therefore, the problems about choosing one of many methods to construct a per-
fect graph for unsupervised feature selection or defining the weight of each graph with
diverse methods have not been fully explored. In this paper, we propose a novel adap-
tive multi-graph feature selection method to fuse graphs automatically to obtain more
appropriate representation and perform feature selection simultaneously to select the
discriminative features in unsupervised learning tasks. We construct graphs by several
self-presentation based methods [6,13] and the representative kernel similarity based
method [9]. Considering the importance of different graphs for given data, we apply
the parameter-free auto-weighted multiple graph learning method to learning a set of
weights of all graphs automatically without any additional parameter [21]. The pro-
posed model is free of graph selection and can combine the complementary information
of different graphs. The main contributions of our work are summarized as below.

– Multi-graph constructed by various methods are adaptively fused to get more appro-
priate graph structure for spectral clustering.

– A novel unsupervised feature selection algorithm is proposed by conducting graph
fusion, generation of pseudo labels and feature selection simultaneously.

– Extensive experiments on benchmark datasets demonstrate the effectiveness of the
proposed method.

2 Graph Constructed Methods

In our work, the fused graphs for spectral clustering mainly constructed by two types
of methods which are sample similarity based and self-presentation based ones.
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2.1 Kernel Function Based

For sample similarity based graphs, the sample relations are often measured by kernel
functions. The kernel functions mainly include Gaussian kernel, Polynomial kernel,
PolyPlus kernel, and Linear kernel etc. For sample similarity based methods, the factors
that affect graph construction consist of the parameters of kernel functions, the number
k of nearest neighbors or the size ε of the neighborhood [2], which are selected by
experience in most cases.

Owing to the space limit, we show the detail of Gaussian kernel here. Given two
samples xi and xj , the sample similarity between them based on Gaussian kernel is
defined as [9]:

Sij =
{

exp(−‖xi − xj‖2/σ2), ‖xi − xj‖ < ε, ε > 0
0, otherwise

(1)

where ε is sufficiently small. From Sect. 1, we know the majority of representative unsu-
pervised feature selection methods use Gaussian kernel for spectral clustering. In our
experiments, we put Gaussian kernel based graphs with various k values to be fused.

2.2 Self-representation Based

Self-presentation based methods assume that a sample can be linearly reconstructed
represented by a set of bases and are used to measure the sample relationships. The
representative methods include sparse subspace clustering (SSC) [5], low-rank repre-
sentation (LRR) [13], multi-subspace [18], and least squares representation (LSR) [16].
The main difference of these models lies in the self-representation loss and the regu-
larization imposed on the representation coefficient matrix. For a given data matrix X,
the common formulation of learning self-representation matrix Z can be summarized
as [17]:min

Z
L(X − XZ) + λR(Z).

For SSC, L(X − XZ) = ‖X − XZ‖2F and R(Z) = ‖Z‖1, which is used to obtain
a sparse solution tending to be block diagonal. For LRR, L(X−XZ) = ‖X − XZ‖2,1

andR(Z) = ‖Z‖∗, which aims to find low-rank affinity matrix and uses the robust l2, 1-
norm to alleviate the noisy case. As for LSR, L(X−XZ) = ‖X − XZ‖2F and R(Z) =
‖Z‖2F . After the sample relationship matrix Z was learned by self-representation, the
affinity matrix can be obtained for spectral clustering. In our experiments, we put these
three methods based graphs to be fused.

3 The Proposed Method

3.1 The Objective Function

We present the method of Auto-Weighted Multiple Graph Learning (AMGL) to fuse
graphs and describe our objective function for feature selection in this subsection.

We denote X = [x1,x2, ...,xn] ∈ Rd×n as the data matrix, where d is the dimen-
sion of features and n is the number of samples. For a given X, U = {uij} ∈ Rn×n

(∀i, j ∈ 1, 2, ..., n) is the affinity matrix and the corresponding degree matrix can be
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constructed to D with Dii =
n∑

j=1

uij . And as a description of graph, Laplacian matrix

L is calculate withL = D − U. For multiple graphs, letm be the number of graphs and
Lv means any matrix of the set of Laplacian matrices. We define the cluster indicator
matrix, i.e., the pseudo class labels matrix F = [f1, f2, ..., fn]T ∈ Rn×c, where c is the
number of classes.

Fig. 1. The framework of the proposed adaptive graph fusion for unsupervised feature selection.
L1,L2, ...,Ln can be calculated by kernel similarity based or self-representation based methods.

Therefore, from AMGL, the formulation of multiple graphs clustering is [21]:

min
F∈C

m∑
v=1

√
Tr(FTLvF). (2)

In spectral clustering, F is constrained with FTF = I. And according to the derivative
of Eq. (2), the parameter-free auto-weight vector ϕv of multiple graphs can be calcu-
lated. The real problem we should solve is as follow:

min
FTF=I

m∑
v=1

ϕvTr(FTLvF), (3)

where ϕv = 1

2
√

Tr(FTLvF)
.

During feature selection with our method, the features which are most related to the
pseudo class labels are selected. Except for the Fmentioned above, we propose to learn
the weight matrix W ∈ Rd×c for selection simultaneously. Based on Eq. (2) and the
nonnegative constraint [12], we propose the objective function for feature selection:

min
F,W

m∑
v=1

√
Tr(FTLvF) + α(‖XTW − F‖2F + β‖W‖2,1)

s.t. FTF = I, F ≥ 0,
(4)

where α and β are positive constants. To sum up, in Eq. (4), the first term learns the
pseudo class labels using AMGLwith spectral clustering. The second term is the regres-
sion model while the third term is l2,1-norm regularization. The group sparsity ensures
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Algorithm 1. Graph Fusion Based Unsupervised Feature Selection (when d > n)
Input:

Data matrix X ∈ Rd×n; Laplacian matrices set L; Parameter α, β, μ, c, and m.
1: Set the iteration step t = 1;

Initialize Ft ∈ Rn×c and set Gt ∈ Rd×n as an identity matrix; Initialize the weight vector
ϕv

t = 1
m

for each graph.
2: repeat
3: At = α(I − XTGt−1

X(XTG−1X+ βI)−1);

4: F t+1
ij = F t

ij
(μF)ij

(
m∑

v=1
ϕvLvFt+AtFt+μFFTF)ij

;

5: Wt+1 = Gt−1
X(XTGt−1

X+ βI)−1Ft+1;
6: Update the diagonal matrix

Gt+1 =

⎡
⎣

1
2‖w1‖2

...
1

2‖wd‖2

⎤
⎦;

7: ϕv
t+1 = 1

2
√

Tr(Ft+1TLvFt+1)

8: t = t + 1;
9: until Converge.
Output:

The index by sorting all d features according ‖wi
t‖2(i = 1, ..., d) in descending order.

W sparse in row and enablesW to evaluate the interrelation between cluster labels and
features, which is beneficial for selecting discriminative features. The framework of the
proposed adaptive graph fusion for unsupervised feature selection is shown in Fig. 1.

3.2 Optimization and Algorithm

In the subsection, we show an iterative algorithm to solve the graph fusion and the
optimization problem of feature selection.

Laplacian Matrices Set. We have introduced several methods of constructing graph
in the Sect. 2. In our method, we choose to calculate affinity matrices according to k-
nearest neighbor method with a few k values and choose several self-representation
based methods and then calculate graph structure matrix according to each affin-
ity matrix. For self-representation based, due to the asymmetry of Z, we use [16]
Z∗ = (|Z|+ |ZT |)/2 to calculate the final affinity matrix Z∗. Then we set these affinity
matrices to the laplacian matrices set L = {L1,L2, ...,Lv} as a input of Algorithm 1.

Unsupervised Feature Selection. Following [12], we introduce the optimization rules.
The l2,1-norm regularization is non-smooth and the objective function can not convex
in F and W simultaneously. To reduce the complexity of the optimization process, we
write the objective function as follow:

min
F,W

m∑
v=1

√
Tr(FTLvF) + α(‖XTW − F‖2F + β‖W‖2,1) + μ

2 ‖FTF − I‖2F
s.t. F ≥ 0,

(5)
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where μ is a positive parameter to control the orthogonality. Then for the ease of repre-
sentation, we define

L(F,W) =
m∑

v=1

√
Tr(FTLvF) + α(‖XTW − F‖2F + β‖W‖2,1) +

μ
2
‖FTF − I‖2F . (6)

Let ∂L(F,W)
∂W = 0, we get [12]

∂L(F,W)
∂W = 2α(X(XTW − F) + βGW)−1XF ⇒ W = (XXT + βG)−1XF.

(7)
G is a diagonal matrix and is inferred during the process of derivation and Gii =

1
2‖wi‖2

, where wi(i = 1, 2, ..., d) is the row vector of W. Replace W of Eq. (5) with
Eq. (7) and it can be rewritten as

min
F,W

m∑
v=1

√
Tr(FTLvF) + Tr(FTAF) + μ

2 ‖FTF − I‖2F s.t.F ≥ 0, (8)

where
A = α(I − XT (XXT + βG)−1X) (9)

and I ∈ Rn×n is a identify matrix.
To set auto-weight for each graph based on Eq. (3) and with the multiplicative updat-

ing rules [14], we let φij be the Lagrange multiplier for the constraint of F ≥ 0 and
Φ = [φij ], the function is

m∑
v=1

ϕvTr(FTLvF) + Tr(FTAF) + μ
2 ‖FTF − I‖2F + Tr(ΦFT ). (10)

Setting its derivative w.r.t. Fij = 0 and using KKT condition [11] φijFij = 0, the
updating rules of F is

Fij ← Fij
(μF)ij

(
m∑

v=1
ϕvLvF+AF+ μFFTF)ij

. (11)

In Eqs. (7) and (9), we need to compute the inverse of XXT + βG. However, for
most of high-dimensional data, the feature dimension is much larger than the number
of samples [29], which leads to the complexity to compute W and A would be very
large. According to the Woodbury matrix identity [29], we can get

W = G−1X(XTG−1X+ βI)−1F, (12)

and
A = α(I − XTG−1X(XTG−1X+ βI)−1). (13)

When the feature dimension is higher than the number of samples, Eqs. (12) and (13)
are used to update W and A. Otherwise, Eqs. (7) and (9) are used.

Based on all the above analysis, the optimization algorithm, when d > n is satisfied,
is summarized in Algorithm 1. If d > n is not satisfied, only replace the updating rules
of A and W with At+1 = α(I − XT (XXT + βGt)−1X) and Wt+1 = (XXT +
βG)−1XFt+1 in line 3 and line 5 of Algorithm 1, respectively.
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3.3 Convergence Analysis

From the optimization process above, we update one of W and F while keeping the
other one fixed. Then we prove the convergence with W or F fixed respectively. For
convenience, we denote

f(F) =
m∑

v=1

√
Tr(FTLvF), g(F) = Tr(FTAF) +

μ

2
‖FTF − I‖2F . (14)

With Wt fixed, there is L(Ft,Wt) = f(F) + g(F). From [21] and [23], we have
f(Ft+1) ≤ f(Ft) and g(Ft+1) ≤ g(Ft), respectively. Because f(F) and g(F) are
continuous functions, it is easy to prove f(Ft+1) + g(Ft+1) ≤ f(Ft) + g(Ft), i.e., we
have

L(Ft+1,Wt) ≤ L(Ft,Wt). (15)

For
min
W

‖XTW − F‖2F + βTr(WTDW), (16)

Eq. (7) is the solution to it [23].
According to Eq. (6) and the proof in [23], we have

L(Ft+1,Wt+1) ≤ L(Ft+1,Wt) ≤ L(Ft,Wt). (17)

Finally, we know that L(F,W) will monotonously decrease in each iteration with the
updating rules in Algorithm 1, i.e., F and W can converge to the local optimal value.

4 Discussion

In this paper, we used two categories of methods for graph construction, i.e., kernel
similarity based and self-representation based ones, to construct graphs. But the pro-
posed method is not limited to the above two graph construction methods. We can fuse
as many kinds of graphs as want. In fact, our proposed method is not a simple extension
of AMGL. Firstly, AGML is developed for clustering and semi-supervised classifica-
tion while the proposed method is used for unsupervised feature selection. Second, the
motivation of AMGL is adaptive fusion of multi-view graphs. However, our work aims
to adaptively fuse graphs generated by different methods on single-view data.

5 Experiments

In this section, extensive experiments verify the effectiveness of the proposed method.

5.1 Datasets

In this paper, eight diverse publicly available datasets are selected for comparison,
including four biological datasets (i.e., TOX-1711, ALLAML (see Footnote 1), CLL-
SUB-111 (see Footnote 1), SMK-CAN-187 (see Footnote 1), two handwritten digit

1 http://featureselection.asu.edu/datasets.php.

http://featureselection.asu.edu/datasets.php
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datasets (i.e., USPSdata 202, binalpha3), one face image dataset (i.e., PalmData25 (see
Footnote 3)) and one shape dataset (i.e., Mpeg7 (see Footnote 3)). Datasets descriptions
is summarized in Table 1.

Table 1. Datasets descriptions.

Datasets #Samples #Features #Classes #Domains

TOX-171 171 5748 4 Biology

ALLAML 72 7129 2 Biology

CLL-SUB-111 111 11340 3 Biology

SMK-CAN-187 187 19993 2 Biology

USPS 1854 256 10 Digit

binalpha 1404 320 36 Digit

PalmData25 2000 256 100 Image

Mpeg7 1400 4000 2 Shape

5.2 Comparison Method

To validate the effective of our proposed GFFS for feature selection, we compare it with
the following representative unsupervised feature selection methods:

– LS [8] selects features consistent with Gaussian Laplacian matrix according to the
power of locality preserving.

– SPEC [27] is a filter method that use spectral clustering.
– MCFS [3] is a filter method that select features based on spectral analysis and sparse

regression with l1-norm regularization.
– UDFS [26] creates pseudo labels by a linear classifier and l2,1-norm regularization.
– NDFS [12] is a filter method and perform spectral clustering to learn the cluster
labels of the inputs, during which the feature selection is performed simultaneously.

– EUFS [24] directly embeds feature selection into a clustering algorithm via sparse
learning without the transformation.

5.3 Evaluation Metrics

We apply three common evaluation metrics, i.e., classification accuracy (ACC), normal-
ized mutual information , and clustering accuracy [17,25] to evaluate the performance.
Due to the space limit, only the detailed definition of NMI are described as below.

2 http://www-i6.informatik.rwth-aachen.de/.
3 https://sites.google.com/site/feipingnie/.

http://www-i6.informatik.rwth-aachen.de/
https://sites.google.com/site/feipingnie/
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Table 2. Classification accuracy (ACC %) of different feature selection methods. The top two
results are highlighted in bold.

DATA LS SPEC MCFS UDFS NDFS EUFS GFFS GFFS(k1) GFFS(k2) GFFS(k3)

TOX-171 49.75 54.11 66.04 60.35 64.08 54.11 66.08 66.10 65.84 66.74

ALLAML 65.85 84.04 75.77 87.28 81.27 86.44 89.25 82.51 88.10 87.53

CLL-SUB-111 58.13 59.47 56.59 63.55 66.45 61.33 68.88 66.97 63.01 65.57

SMK-CAN-187 60.23 61.32 63.32 63.35 64.65 63.59 68.21 67.35 66.78 67.26

USPS 68.59 86.56 88.11 77.32 90.40 90.39 91.39 90.79 91.19 90.90

binalpha 24.03 34.73 54.89 50.54 58.48 49.30 59.25 58.86 58.22 58.93

PalmData25 96.92 95.04 98.90 98.88 98.90 98.16 98.97 98.93 99.05 98.96

Mpeg7 54.59 1.43 66.54 56.38 66.54 56.14 68.48 66.62 66.60 66.59

We denote C as the set of clusters learned from the ground truth and C′ is Their
mutual information metric MI(C,C′) is defined as follows:

MI(C,C′) =
∑

ci∈C,cj∈C′
p(ci, c

′
j)log2

p(ci, c
′
j)

p(ci)p(c′
j)

, (18)

where p(ci) and p(c′
j) are the probabilities that a data point selected from the point

belongs to clusters ci and c′
j respectively. p(ci, c

′
j) is the joint probability that select

data point belongs to the cluster ci and c′
j simultaneously. The normalized mutual infor-

mation (NMI) are defined as follows:

NMI(C,C′) =
MI(C,C′)

max(H(C),H(C′))
, (19)

where H(C) and H(C′) are the entropies of C and C′ respectively. The range of
NMI(C,C′) is from 0 to 1. In detail, if the two sets of clusters are identical then
NMI = 1 while NMI = 0 if the two sets are independent.

5.4 Parameter Setting

Following the experiment setting in [12,22,26], for all the comparison methods, the k
value of k-means clustering method is set to 5 and we set the parameters of themselves
as the best value. For UDFS, EUFS and the proposed method GFFS, we tune parameters
α and β in the range of {10−6, 10−4, 10−2, 1, 102, 104, 106} by the grid search strategy.
For the graphs are intended to fuse, we choose Gaussian kernel function and (3, 5),
(3, 5, 7), (3, 5, 7, 15) as the k value sets with reporting the average result named ‘GFFS’
and we set (3, 5, 7, 9), (3, 5, 7, 9, 13), (3, 5, 7, 9, 13, 15) as other k sets by experience
which are abbreviated to k1, k2 and k3 respectively to show the result in tables. We
choose LSR, SSC and LRR as the alternative self-presentation based methods construct
other graphs. Additionally, we used k-nearest neighbor classifier and k is set as 10 for
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Table 3. Clustering performance (NMI %) of different feature selection methods. The top two
results are highlighted in bold.

DATA LS SPEC MCFS UDFS NDFS EUFS GFFS GFFS(k1) GFFS(k2) GFFS(k3)

TOX-171 9.41 9.83 12.44 19.51 31.29 15.25 33.37 28.96 31.71 30.98

ALLAML 7.89 20.11 11.34 19.55 30.00 11.01 33.79 30.20 24.15 27.12

CLL-SUB-111 10.51 19.67 20.20 21.29 21.25 25.05 26.17 21.07 20.90 25.10

SMK-CAN-187 2.05 1.75 0.25 4.25 6.89 2.44 10.13 6.89 9.38 7.76

USPS 37.31 52.48 55.49 44.91 57.48 54.10 58.63 57.53 57.26 57.93

binalpha 36.83 36.93 52.64 53.39 53.38 46.08 54.67 54.78 54.20 54.18

PalmData25 85.42 83.88 89.33 88.69 89.19 87.74 89.78 89.24 89.62 89.37

Mpeg7 53.60 27.21 58.65 55.93 63.67 55.93 64.78 63.74 63.89 63.89

Table 4. Clustering accuracy (%) of different feature selection methods. The top two results are
highlighted in bold.

DATA LS SPEC MCFS UDFS NDFS EUFS GFFS GFFS(k1) GFFS(k2) GFFS(k3)

TOX-171 38.18 38.83 40.90 45.11 51.30 43.15 51.56 49.50 51.36 50.17

ALLAML 66.29 75.29 68.22 68.40 73.41 68.38 78.02 70.85 74.49 76.19

CLL-SUB-111 46.52 50.55 50.07 51.97 53.11 55.69 53.96 52.43 52.22 52.71

SMK-CAN-187 53.48 56.48 51.80 61.84 64.06 58.90 67.55 64.36 66.80 64.90

USPS 45.62 55.00 59.17 49.43 61.68 59.17 62.61 64.54 64.79 64.03

binalpha 21.37 23.27 36.36 36.02 37.21 31.52 38.56 39.05 37.68 37.30

PalmData25 64.76 62.17 69.39 68.53 69.11 66.94 70.64 69.52 69.88 69.36

Mpeg7 30.95 7.35 37.46 33.74 42.50 33.68 44.40 43.34 42.49 42.57

all methods. For feature dimensions, the numbers of features are set as {10, 20, ..., 150}
and we show the average results of different feature dimensions.

5.5 Experiment Result

The results for different methods on eight datasets are listed in Tables 2, 3 and 4. On
these datasets, the proposed method GFFS achieves the best performance in most cases.
The reason is that GFFS fuses graphs meanwhile learns the pseudo class labels matrix
and the feature selection matrix, which enable it select informative features. While both
GFFS and NDFS utilize l2,1-norm regularization term and the nonnegative constraint,
we pay attention to fuse to better graph instead of using a single graph by experience,
which can combine the complementary information of different graphs.

Due to the space limit, we only address the sensitiveness of parameters on the pro-
posed method in terms of ACC and the curves of convergence on TOX-171, Palm-
Data25, andMpeg7 datasets in Figs. 2 and 3. From these figures, we see that our method
is not sensitive to α and β and converges around 25 iterations.
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Fig. 2. The convergence curves of GFFS on TOX-171, PalmData25, and Mpeg7 datasets.

Fig. 3. Classification accuracy (ACC) with different α and β. (a), (b), (c): different β keeping
α = 0.01; (d), (e), (f): different α keeping β = 0.01.

6 Conclusion

In this paper, we proposed a novel adaptive graph fusion based unsupervised fea-
ture selection (GFFS) algorithm. Different from the existing models that use either
kernel similarity or self-representation to generate the affinity matrix, GFFS avoids
graph selection by automatically learning the weights of graphs and fusing them in
a parameter-free way. Extensive experiments on benchmark datasets validate that the
proposed model outperforms the state-of-the-art unsupervised feature selection meth-
ods. In the future work, we will extend the proposed model to semi-supervised feature
selection tasks.
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Abstract. Without class label, unsupervised feature selection methods
choose a subset of features that faithfully maintain the intrinsic structure
of original data. Conventional methods assume that the exact value of
pairwise samples distance used in structure regularization is effective.
However, this assumption imposes strict restrictions to feature selec-
tion, and it causes more features to be kept for data representation.
Motivated by this, we propose Unsupervised Feature Selection via Local
Total-order Preservation, called UFSLTP. In particular, we character-
ize a local structure by a novel total-order relation, which applies the
comparison of pairwise samples distance. To achieve a desirable features
subset, we map total-order relation into probability space and attempt
to preserve the relation by minimizing the differences of the probabil-
ity distributions calculated before and after feature selection. Due to
the inherent nature of machine learning and total-order relation, less
features are needed to represent data without adverse effecting on per-
formance. Moreover, we propose two efficient methods, namely Adaptive
Neighbors Selection(ANS) and Uniform Neighbors Serialization(UNS),
to reduce the computational complexity and improve the method perfor-
mance. The results of experiments on benchmark datasets demonstrate
that the proposed method significantly outperforms the state-of-the-art
methods. Compared to the competitors by clustering performance, it
averagely achieves 31.01% improvement in terms of NMI and 14.44% in
terms of Silhouette Coefficient.

Keywords: Unsupervised feature selection · Total-order relation ·
Local manifold structure

1 Introduction

There are plenty of high-dimensional data in many fields, such as pattern recog-
nition [4], content distribution [24,25] and cloud computing [21], which presents
great problems such as the curse of dimensionality, huge cost of computa-
tion. Therefore, it’s vital to conduct feature dimension reduction, which mainly
includes feature learning and feature selection. However, feature learning meth-
ods, such as t-SNE [13], PCA [1], aims to combine and integrate features, it will
c© Springer Nature Switzerland AG 2019
I. V. Tetko et al. (Eds.): ICANN 2019, LNCS 11728, pp. 16–28, 2019.
https://doi.org/10.1007/978-3-030-30484-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30484-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-30484-3_2


Unsupervised Feature Selection via Local Total-Order Preservation 17

Fig. 1. An example of “Swiss roll”. For two data points A and B on a nonlinear
manifold, their Euclidean distance (length of dashed line) cannot accurately reflect
their intrinsic similarity, as measured by the distance along the manifold (length of
solid curve).

loss the practical physical significance of features. Therefore, the research will
focus on feature selection. Meanwhile, as most data are unlabeled and label-
ing data is particularly expensive in both time and effort, unsupervised feature
selection is challenging but significant for the effective analysis of data [8,22,23].

Recently, a variety of methods have been proposed to address the problems
of unsupervised feature selection. Without class label, they attempt to choose
a subset of features that can faithfully maintain the intrinsic structure derived
from the original data [5,12,19]. The commonly used structures include, but not
limit to, the global1 structure [26,29,30], the local manifold structure [3,6,11,27],
and discriminative information [18]. These structures can be captured by classic
models, such as, stochastic neighbors (SNE) [13], linear combination of sam-
ples [5], local linear embedding (LLE) [11], and personalized structure [9], most
of which are constructed by the linear relation or similarity between samples.
However these will affect the effectiveness of structure, since the former neglects
nonlinear relationship between instances, and the similarity measured in high-
dimensional space might not be qualitatively meaningful [12], i.e., data samples
in high-dimensional space are approximately equidistant from each other [14,17].
Obviously, the quality of selected features relies severely on the effectiveness of
structure. Unfortunately, when the samples are distributed in a nonlinear man-
ifold (e.g. Fig. 1), the structure constructed in traditional methods, especially
the global structure, may not be that accurate as ideal [16]. All in all, the key
challenge centers around how to construct an effective geometric structure to
accurately present the intrinsic relationship between instances.

Most of the existing unsupervised feature selection methods, overwhelmingly
build a structure by the exact value of distance. Despite the empirical availability
of high learning performance, they inevitably impose strict restrictions to feature
selection, it causes more features to be kept for data representation. In machine
learning, the nearest class or cluster is referenced to label new data, thus it is of
vital meaning to consider the comparison of distance for learning tasks.

1 In the following, we term pairwise samples similarity as global structure in order to
keep it consistent with local manifold structure.
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Fig. 2. An example of the comparision between UFSLTP and traditional algorithms.
Without labels, some traditional methods obtain weights with similar value for [a,
b, c], such as [0.9352, 0.9023, 0.9001]. If asked to select two features, they will
select features a and b, which is obviously sub-optimal (a). However UFSLTP gets
highly differentiated weights as [0.8729, 0.5409, 0.9357], therefore it will select features
a and c(c).

Inspired by above observations, we propose to perform unsupervised fea-
ture selection via preserving the comparison of distance, rather than the exact
value. And we from a concept of total-order relation on datasets to express the
comparison between instances in terms of distance. By means of it, we propose
an effective method, namely Unsupervised Feature Selection via Local Total-
order Preservation (UFSLTP). An example of the contrast between UFSLTP
and traditional algorithms is shown in Fig. 2. Due to the inherent nature of
machine learning and total-order relation, less features are needed to represent
data without adverse effect on performance. The major contributions of this
work is summarized as follows:

– We formally define a local total-order relation on datasets, it helps to con-
struct an effective local manifold structure.

– A novel unsupervised feature selection method UFSLTP is proposed. And by
virtue of it, less features are needed to represent data without adverse effect
on learning performance.

– We propose two efficient methods, namely Adaptive Neighbors Selection
(ANS) and Uniform Neighbors Serialization (UNS), to reduce the compu-
tational complexity and improve the method performance.

– Comprehensive experiments demonstrate that compared to other methods in
clustering, our UFSLTP averagely achieves 31.01% improvement in terms of
NMI and 14.44% in terms of Silhouette Coefficient.

2 Related Work

In unsupervised scenarios, various of criteria are utilized to accomplish feature
selection. A typical and simple criterion is the Low Variance [15], which elimi-
nates the features having a variance score below the predefined threshold. How-
ever, the selected features are not guaranteed to be discriminant for labels [7,20].
From the perspective of this, there is a new criterion attempting to choose a
subset of features that can faithfully maintain the intrinsic structure of data
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[5,12,19]. The commonly used structures include but not limit to, the global
structure [26,29,30], the local manifold structure [3,6,11,27], and discriminative
information [18].

Obviously, the quality of selected features relies severely on the effectiveness
of structure. To preserve global structure, SPEC [29] employs the spectrum of
the graph induced from pairwise samples distance to measure feature relevance.
SNFS [26] employs the concept of stochastic neighbors and selects the features
best preserving such structure. What’s more, SPFS [30] and USFSM [19] also
select features from the alike view.

Recently, the methods by preserving local manifold structure have been
increasingly popular. Laplacian Score (LS) [6] is computed to reflect the locality
preserving power for each feature. Analogously, some typical scheme are pro-
posed and widely applied, such as multi-cluster embedding (MCFS) [3], local
linear embedding (LLE) [16], linear preserve projection (LPP) [7], and local
tangent space alignment (LTSA) [28].

Based on the view of preserving discriminative information, pseudo-label
based algorithms received great attention due to their excellent performance,
such as UDFS [27], RSFS [18], SPFS [9] and so on. Without available class
labels, such methods predominately attempt to generate pseudo-labels through
linear regression or transformation. However, the pseudo-labels in such methods
are always inaccurate, and will mislead the results.

As shown in [30], most of the classic feature selection methods proposed so
far, can be interpreted from the perspective of similarity preservation. Whereas
the similarity or distance measured in high-dimensional space might not be qual-
itatively meaningful for the curse of dimensionality, which will affect the effec-
tiveness of structure and lead to an unideal feature subset.

In a word, the key challenge centers around constructing an effective geomet-
ric structure to accurately present the intrinsic relationship between instances.

3 Problem Formulation

In this section we present the concepts used in this work. Let X ∈ R
n×D be the

unlabeled dataset where each instance xi ∈ R
1×d.

Definition 1. Total-order relation. We formulate such property as total-
order on X, identified as xj ≥i xk: there is always dT

ijdij ≥ dT
ikdik, where xi, xj,

and xk denote three different instances from X, and dij = xi − xj.

The total-order relation on dataset is aimed at representing the relationship
between data samples in terms of distance, i.e., a data sample is closer to a given
sample than another. And the properties of it are as follows:

Corollary 1. The properties of total-order relation. For a total-order rela-
tion, the following statements are true for all data points xi, xj, xk from X:

Inversion symmetry: if xj ≥i xk, xk ≥i xj, then xj =i xk.
Transitivity: if xj ≥i xk and xk ≥i xz, then xj ≥i xz.
Completeness: there is always either xj ≥i xk or xk ≥i xj.
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In order to complete feature selection, we introduce an indicator vector
w = (w1, w2, . . . , wD), wt ∈ {0, 1}, then xi changes into xidiag(w) after fea-
ture selection. With the above definitions, the pivotal problem of UFSLTP can
be defined as follows. Given a dataset X, the task is to obtain a w by (1) calcu-
lating the total-order relation with diag(w) for each instance when before and
after feature selection; (2) minimizing the differences of the relation calculated
before and after feature selection.

4 The UFSLTP Algorithm

4.1 The Objective Problem

In view of the definitions above, we denote the relative distance before feature
selection as dijk = dT

ijdij − dT
ikdik, and that after feature selection as d′

ijk =
dT

ijdiag(w)dij − dT
ikdiag(w)dik.

Definition 2. Probabilistic Total-order Relation. For a total-order relation
xj ≥i xk, its probabilistic model is defined as follows:

pijk = P (xj ≥i xk) =
1

1 + e−dijk
. (1)

For the sake of more flexibility, we include a scale parameter δ2 into the proba-
bility model pijk.

pijk = P (xj ≥i xk) =
1

1 + e− dijk

δ2

. (2)

Also, we can get another model qijk generated from selected features:

qijk = P (xj ≥i xk|w) =
1

1 + e− d′
ijk

δ2

. (3)

In such case, we get two distributions pi = [pi12, pi13, . . . , pi(n−1)n] and qi =
[qi12, qi13, . . . , qi(n−1)n] for each instance. We try to minimize the differences of
the two probability distributions for each xi, and represent it by KL-divergence
between pi and qi.

∀i,KL(pi‖qi) =
∑

j �=i,k �=i

pijk log
pijk

qijk
. (4)

Furthermore, we propose the criterion of feature selection: choose the set of
features that can minimize the aggregated differences of the probability models
calculated before and after feature selection. What’s more, we relax the ‘0/1’
constraint on wt to real values in [0, 1], where ‖ · ‖1 is the L1-norm and λ is the
parameter to control the L1 regularization:

f(w) = min
w

n∑

i=1

∑

j,k �=i

pijk log
pijk

qijk
+ λ‖w‖1, s.t. wt ∈ [0, 1],∀t = 1, . . . , D. (5)
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4.2 Optimization

Adaptive Neighbors Selection and Uniform Neighbors Serialization.
For the efficiency of computation, we formulate local total-order relation, only
adding a constrain to Definition 1 that xj , xk are all from the neighborhood set
Ni of xi (i.e., xj , xk ∈ Ni). Of course, the properties of it are all inherited.

Also, we propose two efficient methods, namely Adaptive Neighbors Selec-
tion(ANS) and Uniform Neighbors Serialization(UNS), which help to from an
efficient local manifold structure. In the experiment, we obtain the neighbors
for each instance by k-nearest neighbors. To ensure the adaptability in various
of datasets, here we propose ANS by introducing a proportionality coefficient
γ (k = |Ni| = γn), the sensitivity of it will be discussed in experiment. UNS
is proposed to further improve the performance of UFSLTP. UNS aims to uni-
formly sort the selected neighbors for each instance with respect to the distance,
which gives us a sorted sequence of instances. Under the action of the transitivity
of total-order relation, we can just perform the calculation between the adjacent
instances in sorted sequence. Therefore, the final objective function is as follows:

f(w) = min
w

n∑

i=1

|Ni|−1∑

xj∈Ni,k=j+1

pijk log
pijk

qijk
+ λ‖w‖1, s.t. wt ∈ [0, 1],∀t = 1, . . . , D.

(6)

L-BFGS-B for UFSLTP. With gradient projection, L-BFGS-B can optimize
nonlinear problems with bounds constraint, such as min

x
f(x), s.t. l ≤ x ≤ u [2].

Let us denote the function in (6) as L, we can get function value fm and
gradient vector gm by ∂Li

∂wt
for each iteration:

fm =
n∑

i=1

|Ni|−1∑

j �=i,k=j+1

pijk log
pijk

qijk
+ λ‖w‖1. (7)

∂Li

∂wt
=

|Ni|−1∑

j �=i,k=j+1

−pijkqijk[(xit − xjt)2 − (xit − xkt)2]
δ2

× e− −dijk

δ2 + λ. (8)

In each iteration, we compute the new step size ηm that satisfies:

f(wm+1) ≤ f(wm) + αηmgT
mdm, |gT

m+1| ≤ β|gT
mdm|. (9)

where dm is the search direction, and α, β are parameters valuing 10−4 and 0.9
in our code, respectively. And our code terminates when:

‖P (wm − gm, l, u) − wm‖∞ ≤ 10−5, where P (x, l, u)i =

⎧
⎪⎨

⎪⎩

li if xi < li.

xi if xi ∈ [li, ui].
ui if xi > ui.

(10)
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Algorithm 1. UFSLTP
Require: The dataset X ∈ Rn×D, the starting point w, and an integer r ≤ 0.
Ensure: Findex: The index list of the selected features.
1: Initialize H0 ← I and m ← 0.
2: Select neighbors for each sample xi and sort them by the distance to xi.
3: Compute pijk (2) for each sample and its neighbors, store the results into a list P .
4: repeat
5: Compute qijk (3) for each sample, store the results into a list Q.
6: Compute fm using (7).
7: Compute the gradient vector gm using (8).
8: Compute a search direction dm ← Hmgm using a two-loop recursion.
9: Perform a line search along dm satisfying the Wolfe conditions (9), subject to

the bounds on the problem, to compute a step size ηm.
10: Set wm+1 ← wm + ηmdm.
11: if m ≤ r then
12: Discard the vector pair {sk−r, yk−r}.
13: end if
14: Save sm ← xm+1 − xm, ym ← gm+1 − gm for the two-loop recursion.
15: Set m ← m + 1.
16: until the convergence test(10) is satisfied.
17: Sort all D features according to wt (t = 1, 2, . . . , D) in descending order and select-

ing the features with wt ranking top μ%(μ = 10, 20, . . . , 100).

As what we can see from Algorithm 1, the details of solving the objective
problem for UFSLTP (6) are shown in line 8–15. Line 2 describes ANS and UNS,
and line 3–7 record the probability distributions and the results of fm and gm

for each iteration.

4.3 Theoretical Analysis on Convergence and Complexity

The UFSLTP is solved by L-BFGS-B with Wolfe search, which has been proved
the global convergence by Liu and Nocedal [10]. Besides, the experiments show
its fast convergence, the iterations is often less than 25.

It is noteworthy that there are 6 portions in Algorithm 1, and the computa-
tional cost for each step is as follows:

– ANS and UNS: Considering k neighbors for each data, O(n2k) is needed.
– Computing probability distribution p: O(2nk).
– Computing q, f, and g: O(2nk) + O(2nkD) in each iteration.
– Two-loop recursion: O(nl).
– Updating vector w: O(D + 2nkD).
– Selecting top μ% features: O(DlogD).

Supposing the number of loop is c, while k, c and l are much less than n and D,
then the total computational cost for our UFSLTP algorithm is: O(n2k + 2nk +
2cnk + 2cnkD + cnl + cD + 2ckD + DlogD) ∼ O(n2 + nD + DlogD).
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Table 1. The details of the experimental datasets.

Datasets No. of instance No. of features No. of classes

UCI datasets SPECTF 267 44 2

vehicle 846 18 4

segmentation 2310 19 7

optdigits 3823 64 10

Forgs 7195 22 60

Large datasets colon 62 2000 2

nci9 60 9712 9

Yale 165 1024 15

5 Experiments

5.1 Experimental Settings

We carry out the experiments on 8 real-world datasets. As shown in Table 1,
there are 5 public standard real datasets taken from the UCI machine learning
repository2, and 3 datasets from ASU feature selection repository3.

We compare UFSLTP with the following unsupervised feature selection algo-
rithms. The contrast against them was made because they are respectively a
typical representation of the algorithms designed from different standpoints.

– All-Fea: All features of the datasets are employed for clustering.
– LaplacianScore(LS): Selects features by local manifold structure [6].
– Multi-Cluster Feature Selection(MCFS): Selects features based on pre-

serving the multi-cluster structure of data [3].
– Unsupervised Discriminative Feature Selection(UDFS): Selects fea-

tures by preserving the structure based on discriminative information [27].
– Stochastic Neighbors-preserving Feature Selection(SNFS): Selects

feature by preserving the structure based on stochastic neighbors [26].
– Unsupervised Personalized Feature Selection(UPFS): Selects features

by preserving the personalized structure of original data [9].

For LS, MCFS and UDFS, we fix k, which specifies the size of neighborhood,
at 5 for all datasets. To fairly compare different algorithms, we tune regulariza-
tion parameters from {10−6, 10−3, 1, 103, 106} for MCFS and UDFS. Because
the feature numbers of different datasets are various, we set the number of
selected features as n×{10%, 20%, . . . , 100%}, with n denoting the total number
of instances. We report the best results of the methods with different parameters.

Currently, there is no standard measure for unsupervised feature selection,
hence we follow the typical ways to perform the evaluation: in terms of the

2 http://archive.ics.uci.edu/ml/datasets.html.
3 http://featureselection.asu.edu/datasets.php.

http://archive.ics.uci.edu/ml/datasets.html
http://featureselection.asu.edu/datasets.php
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Table 2. Clustering results (NMI/SC) of different algorithms over 8 datasets.

Datasets All-Fea LS MCFS UDFS SNFS UPFS UFSLTP

SPECTF 0.247 0.109 0.138 0.156 0.213 0.142 0.243

0.454 0.411 0.478 0.512 0.467 0.463 0.513

vehicle 0.185 0.291 0.289 0.347 0.299 0.319 0.346

0.442 0.395 0.503 0.445 0.418 0.362 0.511

segmentation 0.675 0.552 0.393 0.442 0.442 0.488 0.556

0.429 0.461 0.488 0.400 0.380 0.405 0.513

optdigits 0.747 0.596 0.557 0.510 0.583 0.599 0.649

0.183 0.205 0.190 0.208 0.210 0.167 0.212

Forgs 0.740 0.681 0.643 0.637 0.611 0.634 0.684

0.234 0.226 0.215 0.197 0.228 0.176 0.231

colon 0.006 0.001 0.004 0.003 0.006 0.005 0.008

0.231 0.225 0.230 0.234 0.242 0.219 0.237

Yale 0.493 0.463 0.480 0.470 0.516 0.514 0.581

0.104 0.104 0.108 0.111 0.113 0.111 0.141

nci9 0.426 0.428 0.437 0.436 0.428 0.438 0.462

0.050 0.052 0.052 0.044 0.052 0.042 0.053

Average 0.439 0.391 0.367 0.375 0.387 0.387 0.441

0.266 0.0.260 0.283 0.269 0.264 0.243 0.301

Average improvement
by UFSLTP

10.53% 75.00% 28.03% 33.61% 17.34% 21.52% 31.01%

13.37% 14.24% 8.57% 13.90% 11.75% 24.78% 14.44%

clustering performance by Normalized Mutual Information(NMI) and Silhouette
Coefficient(SC). The value of them range from 0 to 1, they reflect the clustering
performance in terms of internal and external view, and a better features subset
gets a larger value of NMI or SC. We use K-means as the clustering method, and
repeat it 20 times with random initializations, the average results are reported.

5.2 Performance Evaluation

To evaluate UFSLTP in terms of clustering, the methods mentioned above are
applied over all datasets. The average clustering results in terms of NMI and
SC are shown in Table 2. In the last row, the value shows how much the perfor-
mance is averagely improved by using UFSLTP compared with this method, it
is calculated as follow:

100% × p vUFSLTP − p vother

p vother
. (11)

where p vUFSLTP is the performance of UFSLTP, and p vother is the performance
of the corresponding method.
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And the values in italics show the averagely improved performance compared
with all other baseline methods. As what we can see from it, the proposed
UFSLTP outperforms other methods, achieving 31.01% improvement in terms
of NMI and 14.44% in terms of Silhouette Coefficient.

Fig. 3. Clustering NMI with various percentages of ranked features over 8 datasets.

Fig. 4. Clustering SC with various percentages of ranked features over 8 datasets.

Furthermore, in order to check whether UFSLTP can rank and select the
features considered as relevant in terms of clustering, we collect the results with
different feature numbers, and present them in Figs. 3 and 4. From the data
shown in them, the proposed UFSLTP always gets a better or stable value with
less features than other methods, and the best percentage is between 20% and
60%. When the percentage is larger than that, the performance changes slightly
or even decreases.
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Considering the information in Table 2 and the figures, we can obtain that
UFSLTP gets better clustering results with less features than other methods.
The improvements can be attributed to the inherent nature of the total-order
relation, which only restricts the comparison of pairwise samples distance.

5.3 Sensitivity Analysis

There are three parameters in our UFSLTP, the scale factor γ when
perform ANS, the δ2 in probability mapping, the λ controls L1-norm
for regularization item. We investigate their impact on the performance
in terms of NMI. To study how their variation affects the performance,
we vary γ in the range of {0.005, 0.01, 0.02, 0.05, 0.10, 0.15, 0.20}, δ2 in
the range of {60, 80, 100, 120, 140, 160, 180, 200}, and λ in the range of
{0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005}.

Fig. 5. Parameters sensitivity on optdigits dataset in terms of NMI.

Since all datasets have a similar trend, we only show the result of optdigits.
The performance variation of these parameters w.r.t. the selected feature rate are
shown in Fig. 5. As can be observed, the best clustering performance is achieved
when γ in the range of 0.01 to 0.1, δ2 in the range of 80 to 120, and λ in the
range of n × 0.0005 to n × 0.005. Generally speaking, the proposed UFSLTP is
not very sensitive to the model parameters, and it is safe to tune them in a wide
range, which is appealing in practice.

6 Conclusion

In this paper, we propose a new unsupervised feature selection method UFSLTP.
It aims to preserve a local structure characterized by a total-order relation, which
uses the comparison of the pairwise samples distance rather than the exact value.
Due to the inherent nature of machine learning and total-order relation, less
features are needed to represent data without adverse effecting on performance.
In comparison with six baseline approaches, the results of experiments on real-
world datasets demonstrate that UFSLTP achieves better performance with less
features than other methods in terms of clustering and supervised classification.
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Abstract. We use a model for discrete stochastic search in which one
or more objects (“targets”) are to be found by a search over n locations
(“boxes”), where n is infinitely large. Each box has some probability that
it contains a target, resulting in a distribution H over boxes. We model
the search for the targets as a stochastic procedure that draws boxes
using some distribution S. We derive first a general expression on the
expected number of misses E[Z] made by the search procedure in terms of
H and S. We then obtain an expression for an optimal distribution S∗ to
minimise E[Z]. This results in a relation between: the entropy of H and
the KL-divergence between H and S∗. This result induces a 2-partitions
over the boxes consisting of those boxes with H probability greater than
1
n

and the rest. We use this result to devise a stochastic search proce-
dure for the practical situation when H is unknown. We present results
from simulations that agree with theoretical predictions; and demon-
strate that the expected misses by the optimal seeker decreases as the
entropy of H decreases, with a maximum obtained for uniform H. Finally,
we demonstrate applications of this stochastic search procedure with a
coarse assumption about H. The theoretical results and the procedure
are applicable to stochastic search over any aspect of machine learning
that involves a discrete search-space: for example, choice over features,
structures or discretized parameter-selection. In this work, the proce-
dure is used to select features for Deep Relational Machines (DRMs)
which are Deep Neural Networks (DNNs) defined in terms of domain-
specific knowledge and built with features selected from large, potentially
infinite-attribute space. Empirical results obtained across over 70 real-
world datasets show that using the stochastic search procedure results
in significantly better performances than the state-of-the-art.
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1 Introduction

Our interest in this paper is to obtain a distributional understanding of discrete
stochastic search. By this, we mean the following: (a) The purpose of a discrete
search is to find one or more objects (targets) that are in one or more of n
locations (boxes). The object-locations are selected using some probability dis-
tribution over the boxes (we will call this H); and (b) The search procedure uses
a distribution over the boxes (S) to select boxes, and determine if a target is in
the box. We would like to provide answers to the questions like these: (1) Does
minimising the number of false selections (“misses”) by the search procedure
necessarily mean that H = S?; (2) If the answer to (1) is “no”, are some H’s
easier than others, for a search procedure seeking to minimise misses?; and (3)
If the answer to (2) is “yes”, how can a search procedure use knowledge of H
(either complete, partial, or aggregate) to minimise misses?

Motivation for exploring this view of stochastic search is due to our inter-
est in machine learning algorithms searching potentially infinite discrete spaces.
These algorithms can be applied for solving problems concerning natural phe-
nomena. One example of this kind of problem is prediction of carcinogenicity of
chemicals [9] which forms the application area in this paper. In such cases, it is
conceptually useful to think of targets being distributed according to some non-
uniform distribution H. This machine learning setting of searching for targets
in natural phenomena is different to the adversarial setting of a hide-and-seek
game in which the purpose of the hider is to make search as difficult as possible
for the seeker. It will be seen below that this corresponds to the special case of
H being a uniform distribution, which results in the maximal number of misses
by the optimal S. Nevertheless, in this paper, we will still refer to H as a “hider
distribution”, and to S as a “seeker distribution”, with the caveat that this will
not necessarily imply an adversarial setting.

Distributional models for search are of interest to machine learning for at
least three reasons. First, when the search space is potentially infinite [3], the
only reasonable techniques for searching will involve some form of sampling from
known or unknown distributions. Second, practical machine learning often deals
with good, rather than optimal solutions. This means that there may be more
than one possible target, and finding any one of them should suffice. We can
characterise what this means in terms of H, and how will this affect the choice
of S. Third, in applications the boxes need not be independent. If this translates
to some local smoothness assumptions about the locations of good solutions, then
it can be used by the search procedure when devising an S. Based on the above,
our contributions can be outlined as follows: (1) we develop a relation between
H and S∗. Further, we address theoretically and experimentally the cases arising
from non-uniform H’s and from many good solutions; (2) The results are used to
develop a sampling procedure for large discrete search spaces; (3) The sampling
procedure is then used to select features for Deep Relational Machines (DRMs).
DRMs are Deep Neural Networks (DNNs) defined in terms of domain-specific
knowledge and are built with features selected from large, potentially infinite-
attribute space [5,14]; (4) We empirically test the performance of DRM across
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over 70 real-world datasets. The results suggest that using the stochastic search
procedure results in significantly better performances than the state-of-the-art.

The rest of the paper is organised as follows. Section 2 describes discrete
search with a stationary H. In Sect. 2.1 we show how, if H is known completely,
the optimal S need not necessarily be identical to H. In Sect. 2.2 we use the
insights gained from previous section to devise a simple sampling strategy when
H is not known but some meta-information about H is available. Section 3 con-
tains results from simulations, supporting the theoretical results and an applica-
tion of the “unknown H” situation to the problem of selecting relational features
from a potentially infinite-attribute space for a Deep Neural Network (DNN).
We evaluate the stochastic feature selection on over 70 datasets obtained from
real-world biochemical problems. Section 4 concludes the paper. The proofs can
be found in the Appendix.

2 A Distributional Model of Discrete Search

We start with a distributional model that is consistent with the description of
the discrete search hide-and-seek game in [16] and [18]. We start with n boxes
and one ball. The ball is thrown onto the boxes (and it must fall into one of
them) with some probability. For us, this gives rise to the “hider distribution”
H on the boxes. A stochastic search procedure is a sampling strategy that draws
boxes at random using some “seeker distribution” S, until it succeeds eventually
after m trials to find the ball. A miss can be understood as an event of selecting
(opening) a box and not finding the ball. Here we will assume that if the ball is
in a box opened, then it will be detected. There is a cost associated with this
search, monotonic in the number of misses m. It is natural to expect that the
expected cost to find the ball will depend on whether or not H is known. We
sharpen this intuition using the ideal setting when H is known completely to
the stochastic search procedure.

2.1 Hider Distribution Known

We will assume that if the ball is in a box, then it will be found. As with a
generalised form of the hide-and-seek game, this can be changed to allow finding
the ball with some probability even if it is there. Let Z be a random variable
for number for misses by the search before finding the ball. We want to find the
expected number of misses E[Z]|H,S .

Lemma 1 (Expected number of misses with a single ball). Let H and
S be discrete distributions denoted by H = (h1, h2, . . . , hn), S = (s1, s2, . . . , sn).
Let hi, si > 0 for i = 1 to n. Let the ball be in one of n boxes according to
the hider distribution H. The search attempts to find the ball using the seeker
distribution S. Then, the expected number of misses is:

E[Z]|H,S = E[Z] =
n∑

k=1

hk

sk
− 1 (1)
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We note that E[Z]|H,S is n−1 when H = S or when S is a uniform distribution.
Also, we state here that E[Z]|H,S ≥ (n−1) when H is uniform (see the appendix
for a proof).

A generalisation of this expression can be derived when there is more than
one ball and each box can contain not more than one ball. The expected number
of misses is lower if it is sufficient for the search to find any one of the balls.

Lemma 2 (Expected number of misses with K balls). Let H and S be
discrete distributions as in Lemma 1. Let there be K balls in K of the n boxes
according to the hider distribution H. The search attempts to find at least one
ball using the seeker distribution S. Then, the expected number of misses is:

E[Z]|H,S =
∑

i,σ(i)∈P(n,K)

(
K∏

k=1

h
(k)
σ(i)

)⎧
⎨

⎩
1(∑K

k=1 s
(k)
σ(i)

) − 1

⎫
⎬

⎭ ,

where, σ(i) is ith position in the permutation of 1, . . . , n.

All the results above are derived assuming sampling with replacement. The first
reason for this assumption is simply mathematical convenience. Sampling with-
out replacement, when all boxes have equal probability is governed by the hyper-
geometric distribution, yielding (n − 1)/2 misses on average.

However, with non-uniform hider distributions, the appropriate seeker distri-
bution is the more complex Wallenius non-central hypergeometric distribution,
which is difficult to solve analytically (but numerical solutions are tractable in
some cases: see [6]). Secondly, it can be argued that for real problems involving
multiple rounds of experimentation, sampling with replacement is in fact the
correct model, since hypotheses discarded in one experiment, may nevertheless
become viable options on later ones. Thirdly, it is a well-known practicality, that
the differences do not matter if n is large. These caveats notwithstanding, the
results in the next section can be seen as upper-bounds on those obtainable when
sampling is done without replacement (even with a non-central hypergeometric
distribution).

The following result is a consequence of the fact that H and S are distribu-
tions:

Theorem 1 (Expected misses is convex). Given a distribution H and a
positive distribution S, E[Z]|H,S =

∑
i

hi

si
− 1 is convex.

It follows that there is an optimal seeker distribution S∗ such that Eq. (1) is
minimised.

Theorem 2 (Optimal S given H). Let H be a discrete distribution as in
Lemma 1. The optimal seeker distribution S∗ = (s∗

1, s
∗
2, . . . , s

∗
n) where s∗

i =√
hi∑n

j=1

√
hj

, 1 ≤ i ≤ n.

The following result follows for the special case of a uniform H (that is, H
is Unif(1, n)):
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Corollary 1 ( S∗ for Uniform H). If H ∼ Unif(1, n) then S∗ ∼ Unif(1, n)
and E[Z]|H,S∗ = n − 1.

We note that this result is consistent with those presented in [16,18] for the
hide-and-search game, where the adversarial nature of the game requires the
hider to select a uniform distribution to maximise the expected misses by a
seeker.

If H distribution is non-uniform, then we note the following.

Corollary 2. Given a non-uniform hider distribution H and a corresponding
optimal seeker distribution S∗,

E[Z] =
n∑

i=1

hi

s∗
i

− 1 =
n∑

i=1

(√
hi

)2

− 1

With non-uniform H, E[Z] can get substantially lower than the n − 1 value
obtained for uniform H. For non-uniform H, we find the following.

Theorem 3. Let H and S∗ be defined as in Theorem 2. Let KLD(U ||V )
denote the Kullback-Liebler divergence between distributions U and V . Then,
E[Z]|H,S∗ = 22KLD(H||S∗)+Entropy(H) − 1.

Based on the earlier result for uniform H, it is evident if H is uniform, entropy of
H will be a maximum the KL-divergence between H and S∗ will be 0. As entropy
of H decreases (H is non-uniform), although the KLD term increases, the overall
expression has a minimum for S = S∗. We provide some further intuition about
the optimal seeker S∗ for the case of a non-uniform H. In this case, some boxes
will have higher than uniform probability of containing the target, and some will
have less than uniform probability. In order to minimise misses, the seeker needs
also to look at unlikely boxes. Specifically, an unlikely box has to be selected
with higher probability than that used by H to avoid many misses if the box
contains the target. In general therefore, the optimal S distribution needs to have
higher probabilities on unlikely boxes than the hider; and to compensate, lower
probabilities on the likely boxes. This pushes the seeker closer to the uniform.
distribution, and therefore usually with higher entropy than H.

If, on the other hand, H is uniform then the seeker simply cannot use any
higher entropy distribution and has no choice but to follow the hider’s uniform
distribution.

All these results require H to be known. In practice, the question is what
can be done if H is not known. We consider this in the following section for the
case of non-uniform H.

2.2 Unknown Hider Distribution

In almost all practical situations, we do not know H. What can be done in such
cases? Based on the results of the previous section, we will begin by assuming,
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for efficient target identification, that H is non-uniform. We define a 2-partition
of the locations based on H as follows: the U partition contains locations that
have probability greater than uniform probability (> 1

n ) and the rest forms the
V partition. We assume further:

– Any target location has probability greater than 1
n . All targets are to be found

in the “target partition”. W.l.o.g. we can take the target partition to be U ;
and

– The size of the target partition is known to be the proportion p (0 < p < 1)

The sample size which with high probability will result in boxes from the target
partition can be calculated.

Lemma 3 (Samples from the target partition). Let H be a distribution
over a set X. Let U denote the set of boxes {x : x ∈ X and h(x) > 1/n}
and L = X − U . Without loss of generality, let the target(s) be in U , and let
p = |U |/|X| (> 0). Then a sample of size:

s ≥ log(1 − α)
log(1 − p)

will contain at least one element of U with probability ≥ α.

(This use of s should not be confused with the search-distribution probability
si for a location i). With the assumptions above, it is evident that the higher
the number of targets, the greater the value of p, and the smaller the sample
size s. That is, with many possible locations containing targets, it is easier to
find at least one target location.1 Of course, sampling only guarantees with high
probability that there will be at least one box from the target partition. Thus,
not all boxes in the sample will be from the target partition; and of those, not
all may contain a target.

A procedure that uses the sample to search for the targets is in Procedure 1.
The procedure takes as inputs: X, a set of boxes; p (> 0), the proportion of boxes
in the target’s partition; α, lower bound on probability of finding an element
from the target’s partition; t, an upper bound on the iterations of the sampler;
function Hider : X → {TRUE,FALSE}, s.t. Hider(x) is TRUE for box x if
a ball is in box x; and FALSE otherwise; and returns a box with a target and
the number of misses.
Some issues with this procedure are apparent immediately:

– Since sampling is done with replacement, in the worst case, the procedure
can end up drawing many more than n − 1 samples before finding the hider,
unless the bound t stops the procedure before this happens;

1 We note that a similar argument is used in [7] to identify possibly good solutions in
discrete event simulations; and is proposed for use in Inductive Logic Programming
(ILP) in [17]. Both do not explicitly relate this to a distribution model, as is done
here.
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Procedure 1. The Sampling Procedure
1: procedure Sampler(X, p, α, t, Hider)
2: done ← FALSE
3: m ← 0
4: s ← � log(1−α)

log(1−p)
�

5: while ¬done do
6: Sample ← Draw(Unif, s, X) � Draw a sample of s boxes from X
7: X ′ ← {x : x ∈ Sample and Hider(x) = TRUE}
8: if X ′ �= ∅ or m > t then
9: done ← TRUE
10: m ← m + 1

11: x ← Draw(Unif, 1, X ′)
12: return (x, m)

– If Hider(x) = FALSE for all x ∈ B (that is, there is no ball), then the
procedure will not terminate, until the bound t is reached; and

– This procedure does not take into account boxes already sampled (that is,
boxes are drawn independently of each other).

Obvious corrections for the first two issues are either to bound the maximum
rounds of sampling allowed; or to use sampling without replacement (in experi-
ments in this paper, we adopt the former. One way in which t could be assigned
is as follows. Let β denote a lower bound on the probability of obtaining a hider
in t trials, each with sample s determined by p and α (that is, the probability
of identifying a box with a ball is at least α). It is not hard to derive that if
t ≥ log(1−β)

log(1−α) then the probability of identifying a box with a ball in t trials will
be at least β. The number of boxes after t rounds of sampling is clearly s × t.
To address the third issue, sampling can be made conditional on boxes already
obtained (that is, adopting a Markov model): we do not pursue this further in
this paper.

The procedure also assumes that there can be more than one box x ∈ X
with Hider(x) = TRUE, and that it is sufficient to find any one of these boxes.
This assumption about multiple hiders often makes sense in practice, when we
are happy with near-optimal solutions.

3 Empirical Evaluation

3.1 Simulations

The results from simulations are as follows:

Known hider distribution. Results of simulations with known H distribu-
tions are in Fig. 1. These results confirm the following:
1. The seeker distribution obtained in Theorem 2 have higher entropy than

the hider distribution (as expected).
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Fig. 1. Known hider distribution

2. For hider distributions other than the uniform, it is possible to obtain
seeker distributions that make fewer expected misses than n−1 (which is
the value obtained if the seeker knows the hider’s distribution). Further,
as predicted theoretically, this expected value is lower as n increases.

3. For low-entropy hiders, it is possible to obtain substantially low numbers
of expected misses with the distribution obtained in Theorem 2.

Unknown hider distribution. Figure 2 shows the expected number of misses
observed using Procedure 1 for varying values of n (|X|) and p, the proportion
of boxes in the H’s target partition. In all cases, α = 0.95 (that is, we want
to be 95% sure of obtaining at least one box from the H’s target partition on
each iteration of sampling in Procedure 1). We note the following:
1. The number of misses increases as the number of hidden objects (balls)

decreases. This is as expected.
2. The expected number of misses: (a) is substantially less than the worst

case of n−1; (b) decreases as p increases; and (c) decreases as n increases.
The last finding may seem surprising in the first instance. However, we
note that the sample size in Procedure 1 does not change with n, but
the actual number of balls for a given abscissa is much larger for larger
values n. A simple pigeonhole argument therefore suffices to explain the
empirical result of finding balls quicker as n increases. This behaviour
is also consistent with the theoretical case predicted when the hider is
known (and observed empirically in Fig. 1).

3.2 Real-World Data

In this section we focus on real-world applications of the “unknown H” problem.
Specifically, we will focus on problems arising in the area of structure-activity
prediction. In this, data are in the form of arbitrary-sized graphs represent-
ing small molecules. The vertices in the graph are atoms, and the edges rep-
resent bonds, labelled as single, double, aromatic and so on. Each molecule is
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Fig. 2. Unknown hider distribution, with more than 1 hider: (a) p = 0.1; and
(b) p = 0.25. That is, the proportion of boxes in the H’s partition of the step-
approximation is known to be 10% and 25% of the total number of boxes n. The
number of balls is varied from 1% of n to 25% of n (X-axis). The expected number of
misses is on the Y-axis.

labelled as belonging to one of several classes (for example carcinogenic or non-
carcinogenic). Also available is a substantial body of bio-chemical knowledge
in the form of definition of functional groups, ring structures, and so on. Given
the graph-structure of a molecule, bio-chemical knowledge allows us to infer fur-
ther relations that hold for the molecule. For example, it may follow that the
molecule as several benzene rings, and that some of these were fused, and so
on. Relational “features” are molecular fingerprints defined in terms of what is
known biochemically. For example, one such fingerprint might be: a molecule
m has a 7-membered ring r1; and m has a lactone ring r2; and r1 and r2 are
connected . The area of Inductive Logic Programming (ILP [15]) has been used
with success to discover features like these, given data and generic definitions of
concepts like lactone rings (see for example [10]).

Deep Relational Machines, or DRMs ([14]), use relational features such as the
ones above, as inputs to a deep neural network. While this form of neuro-symbolic
modelling combines the power of deep learning and relational modelling, a diffi-
culty is that the number of relational features given sufficiently complex domain
knowledge can be very large (in principle, infinitely large). The question then
arises of how to select suitable inputs for a DRM. Recently, it has been shown
empirically that DRMs with even randomly drawn relational features can be
surprisingly effective for classification problems [5]). We investigate whether the
stochastic search procedure proposed here can do better.

Data and Domain Knowledge. The data consists of 73 datasets from the
National Cancer Institute (NCI)2 originating from an extensive experimental
study on effectiveness of chemical compounds against various cell lines. The

2 https://www.cancer.gov/.

https://www.cancer.gov/
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effectiveness is labelled as an anti-cancer activity which is either positive or
negative. This dataset was recently studied in [5,22]. Each instance is an atom-
level description of a chemical compound along with its class label. The atom-
label description is captured in bond fact and is defined as bond(CompoundID,
Atom1, Atom2, Atom1Type, Atom2Type, BondType). An example of an instance is:

class(m1, pos). bond(m1, 29, 30, car, car, ar). bond(m1, 14, 11, car, c3, 1). . . .

The 73 datasets consist of approximately 220,000 molecules. The positive class
distribution in the datasets ranges from 40% to 90%.

The domain knowledge ([2,20]) consists of definitions for various functional
groups and rings in the molecular compounds. These definitions are described in
multiple hierarchies. For instance: hydroxilamine is a amine group, methyl group
is an inductive donating group, and halide is an inductive accepting group. The
ring hierarchy consists of definitions for aromatic and non-aromatic rings. Func-
tional groups are represented as functional group(CompoundID, Atom, Length,
Type) and rings are described as ring(CompoundID, RingID, Atoms, Length,
Type). These definitions are in turn used to infer the presence of higher level
composite structures. These are: the presence of fused rings, connected rings,
and substructures.

Algorithms and Machines. The relational features are generated using the
procedure described in [21]. The structure and parameters of the deep net are
learned using Adam Optimiser [11]. Specifically, for finding the structure of the
deep net, a validation set was used which was randomly sampled from the train-
ing set.

All the experiments (feature construction and deep learning) are conducted
in two Linux based machines with similar architectures: 64 GB main memory,
16 processing cores, 8 GB NVIDIA Graphics Processing Units. We used Python
based Keras ([4]) with Tensorflow as backend ([1]) for implementation of Deep
Neural Network models.

Method. The Deep Relational Machine (DRM) is built using the features sam-
pled by the hide-and-seek procedure as described in Procedure 1. We assume
the goodness of features is their Laplace score (the Laplace score of a feature is

p+1
p+n+2 where p, n are the number of positive and negative instances for which the
feature is TRUE); and any feature in the top 50-percentile of scores is accept-
able as an input feature for the DRM (that is, p = 0.5). That is, target features
are to be found in the top 50-percentile of possible relational features is taken to
be a “hidden ball”. This gives a small bias towards good features, but does not
restrict the DRM from identifying better features by combination in its hidden
layers. In all experiments, α is fixed at 0.95. Therefore, the value of the sample
size (s) in Procedure 1 (Line 4) is 5. That is, the number of features sampled
before selecting a good feature is very small.

For different numbers of input-features, each found by hide-and-seek sam-
pling, we follow the procedure used in [5] to identify the structure and weights
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of the DRM. That is: (a) the network is a dense fully-connected multilayer per-
ceptron; (b) the network structure is allowed to vary from 1 to 4 hidden layers:
so, the simplest structure has 1 hidden layer and the complex most structure has
4 hidden layers; (c) the number of neurons in each hidden layer is selected from
a set: {5, 10}; (d) the hidden neurons are activated by rectified linear function;
(e) the output layer (two neurons representing the two classes) use the softmax
activation; (f) the dropout rate is fixed at 0.50.; (g) loss function is defined by
cross-entropy; and (h) The Adam Optimiser ([12]) with learning rate: 0.001;
β1 : 0.9; β2 : 0.999; ε : 10−8; decay : 0 is used for training; and (i) we estimate
the accuracy of the DRMs on the same independent test-sets as used in [5].

Results. The test results from comparing the Hide-and-Seek DRM (HS) and
the Lifted Relational Neural Network (LRNN) [22] are in Fig. 3. The comparison
suggests a significant improvement over the state-of-the-art results. In a recent
study on the DRMs [5], it is shown that selecting features uniformly from a very
large space can also result in better predictive performance. The performances
of uniform random DRM (Rand) and the hide-seek DRM (HS) are compared
with regard to different number of features in Fig. 4. It is evident that other
than the last row, DRMs with hide-and-seek selection perform better than those
with the uniform random sampling strategy employed in [5]. This suggests that
if the number of input features are restricted to being small (due to limitations
of hardware, or for reasons of efficiency), then hide-and-seek sampled features
would be a better choice. It is curious that with a large number of input features
(here, >3500 or so), there is no significant statistical advantage from hide-and-
seek sampling. This may be due to the fact that the DRM has a sufficiently
diverse set of input features from uniform selection to be able to construct good
features in its intermediate hidden layers.

#Feats LRNN-Wins HS-Wins P -value
50 65 8 < 0.01
100 60 13 < 0.01
250 36 37 < 0.01
500 24 49 < 0.01
1000 23 50 < 0.01
2500 23 50 < 0.01

Fig. 3. A comparison of the performance of Hide-Seek based DRM versus state-of-the-
art result (LRNN [22]). A “win” on a problem means the DRM has a higher predictive
accuracy, as estimated on an independent test set for that problem. There are 73
problems in all, and entries are numbers of wins for each DRM. The P -value denotes
the probability that the performance of the two models is the same.
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#Feats Ties Rand-Wins HS-Wins P -value
50 12 18 43 < 0.01
100 9 14 50 < 0.01
250 4 21 48 < 0.01
500 1 21 51 < 0.01
1000 4 25 44 < 0.01
2500 2 21 50 < 0.01

3800 1 33 39 0.22

Fig. 4. A comparison of the performance of DRMs using uniform random (Rand)
sampling of features and hide-and-seek (HS) sampling. The last row contains 3800
features to match the average number of features in [5]. A “win” on a problem means the
corresponding DRM has a higher predictive accuracy, as estimated on an independent
test set for that problem. There are 73 problems in all, and entries are numbers of wins
for each DRM. The P -value denotes the probability that the performance of the two
kinds of DRMs is the same.

4 Conclusions

In this paper, we have attempted to clarify, in distributional terms, some of the
conditions under which a seeker can expect to do well in a hide-and-seek game.
If the game is adversarial, the seeker will not be able to find the ball for long
period of time. In distributional terms, this comes down to selection a hiding
location using a uniform distribution. The expected cost for the seeker is then
a maximum (= n − 1, where n is the number of locations). For non-uniform
hider distribution H, the number of guesses made by the seeker can be lower.
But when is this a minimum? A natural assumption is this would occur when
the seeker uses the same distribution as H. In fact, this is not the case, and our
results here present evidence for this empirically and theoretically.

Our interests in non-uniform hider distributions arise from the intuition that
for many problems in machine learning, data are from observational studies
of phenomena for which an adversarial setting is not appropriate. Instead, the
distribution of good solutions follows some distribution, usually non-uniform.
This is especially so if the phenomena being studied are natural ones (“Nature
is not adversarial”: [13]). The results we have here are first steps in obtaining an
alternative mathematical characterisation of applications in these domains. The
results we have obtained for clause-selection in ILP are extremely promising,
demonstrating how we are able to find good solutions by sampling very small
fractions of the overall space. Further, the theoretical results and the proposed
sampling procedure are applicable to stochastic search over any other aspect of
machine learning that involves a discrete search-space: for example, structures
or discretized parameter-selection.

Earlier studies such as [8,16,18,19] have formulated the discrete pursuit-
evasion problem described in terms of hider and seekers. The principal motivation
of these methods is to obtain a strategy for the hider to avoid detection by the
seeker. Our emphasis has been on a distributional formulation, which has led to
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several results that are, to the best of our knowledge, not found in the literature
of pursuit games. Specifically, this includes: our mathematical characterisation
of the minimising seeker distribution for non-uniform hider distribution H and
the existence of step-approximations to H. However, one result in common with
the literature on pursuit games is this: if H is uniform, this would maximise the
expected misses by the seeker.

In the application on real-world data, we have demonstrated how hide-and-
seek sampling can help select good features for a deep relational machine, when
the size of the input layer cannot be very large. In such cases, our results suggest
that non-uniform sampling of features based on the results with an unknown
hider distribution usually result in better performance than selection based an
uniform sampling of features. Of course, feature-selection based on elaborate
search may give even better performance: but the sampling based approach
is very efficient (the numbers of features sampled before selecting one is very
small). The Deep Networks built with the hide-and-seek sampling based features
show significant improvement over the state-of-the-art deep network methods
and therefore it may stand as a new baseline for comparison.

We see some other ways in which the work here can be extended. First, we
have stayed with the classical discrete hide-and-seek setting, in which locations
are unrelated. In practice, this is unrealistic, since relations amongst boxes may
arise if we are happy with good solutions (as opposed to the best solution).
If locations in the neighbourhood of a box containing a good solution are also
likely to contain good solutions. We would like to characterise this as the seeker
knowing something about the behaviour of H. Second, when the H is not known,
we only use the size of the hiding partition (the proportion of boxes in which
the ball has been hidden) when sampling. If more information is known, then
it may be possible to sample more efficiently: for example, only from the hiding
partition. This would us to address much more effectively problems for which
there are very few hiders.

Acknowledgments. The second author (A.S.) is a Visiting Professorial Fellow,
School of CSE, UNSW Sydney. This work is partially supported by DST-SERB grant
EMR/2016/002766, Government of India.

Appendix: Proofs

Proof of Lemma 1

Proof. The ideal case is E[Z] = 0. That is, on average, the search opens the
correct box k on its first attempt. Now P(Z = 0| the ball is in box k) = hksk =
hk(1 − sk)0sk. Since the ball can be in any of the n boxes, P(Z = 0) =∑n

k=1 hk(1 − sk)0sk. More generally, for Z = j, the search opens wrong boxes j
times, and P(Z = j) =

∑n
k=1 hk(1− sk)jsk. The expected number of misses can

now be computed:
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E[Z]|H,S =
∞∑

j=0

j × P(Z = j)

=
∞∑

j=0

j

n∑

k=1

hk(1 − sk)jsk

Swapping the summations over j and k, we get

E[Z]|H,S =
n∑

k=1

hksk

∞∑

j=0

j(1 − sk)j

=
n∑

k=1

hksk
1 − sk

s2k

This simplifies to:

E[Z]|H,S =
n∑

k=1

hk

sk
− 1

Proof of Lemma 2

Proof. This extends the Lemma 1 (Expected Cost of Misses by the Seeker) to a
general case of multiple (K) stationary hiders. The number of ways the K hiders
can choose to hide in n boxes is nPK and let P(n,K) denote a set of all such
permutations. For example, P(3, 2) = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}.

All the K hiders can hide in any one of these choices with probability(
h
(1)
σ(i)h

(2)
σ(i) . . . h

(K)
σ(i)

)
, where h

(k)
σ(i) denotes the probability of the hider in kth

place in the selected choice of σ(i). Analogously, the seeker can find any one of
these hiders with probability

(
s
(1)
σ(i) + s

(2)
σ(i) + · · · + s

(K)
σ(i)

)
, and would not find the

hider once is 1 −
(
s
(1)
σ(i) + s

(2)
σ(i) + · · · + s

(K)
σ(i)

)
. If the hider makes j such misses,

then it is
{

1 −
(
s
(1)
σ(i) + s

(2)
σ(i) + . . . s

(K)
σ(i)

)}j

. Now, the expected misses for this
multiple hider formulation is given as

E[Z] =
∑

i,σ(i)∈P(n,K)

K∏

k=1

h
(k)
σ(i)

∞∑

j=0

j

(
1 −

K∑

k=1

s
(k)
σ(i)

)j K∑

k=1

s
(k)
σ(i)

This further simplifies to

E[Z]|H,S =
∑

i,σ(i)∈P(n,K)

K∏

k=1

h
(k)
σ(i)

⎛

⎝ 1
∑K

k=1 s
(k)
σ(i)

− 1

⎞

⎠
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Proof of Theorem 1

Proof. The problem can be posed as a constrained optimisation problem in which
the objective function that is to be minimized is

f =
n∑

i=1

hi

si
− 1

Our objective is to minimize the function f given any hider distribution

H. Let us represent ∇f =
(

∂f

∂s1
,

∂f

∂s2
, . . . ,

∂f

∂sn

)
. In this problem, ∇f =

(
−h1

s2
1
,−h2

s2
2
, . . . ,−hn

s2
n

)
. Now, computing the double derivative ∇2f , we get

∇2f = ∇(∇f) = 2
(

h1

s31
,
h2

s32
, . . . ,

hn

s3n

)

Since, ∀i, hi ≥ 0, si ≥ 0, we can claim that ∇2f has all non-negative second
derivative components. And, therefore f is convex.

Proof of Theorem 2

Proof. We will write E[Z]|H,S as a function of S i.e. f(S). Our objective is to
minimise f(S) =

∑n
i=1

hi

si
subject to constraint

∑n
i=1 si = 1. The corresponding

dual form (unconstrained) of this minimisation problem can be written as

g(S, λ) =
n∑

i=1

hi

si
+ λ

(
1 −

n∑

i=1

si

)

To obtain the optimal values of S and λ, we set ∂g
∂si

= 0 for i = 1, . . . , n, and
∂g
∂λ = 0. This gives: −hi

s2
i

− λ = 0 and
∑n

i=1 si = 1. From this: si = −
√

hi√
λ

, ∀i.
Applying this quantity for si in

∑n
i=1 si = 1 and the value of the parameter

λ = −hi

s2
i
, we get: −

∑n
i=1

√
hi

−
√

hi
si

= 1. Simplifying the above, we obtain the desired

optimal seeker distribution S∗: s∗
i =

√
hi∑n

j=1

√
hj

, ∀i ∈ {1, . . . , n}.

Proof of Corollary 1

Proof. If S is non-uniform with ∀si > 0, we have E[Z]|H,S = 1
n

∑n
i=1

1
si

− 1 ≥
n∑n

i=1 si
−1 and the denominator is 1 because S is a distribution. So, S∗ must be

a uniform distribution and in this case, the quantity E[Z]|H,S =
∑n

i=1
1/n
1/n −1 =∑n

i=1 1 − 1 = n − 1.

Proof of Corollary 2

Proof. The proof is as follows:

n∑

i=1

hi

s∗
i

=
n∑

i=1

hi( √
hi∑j

j=1

√
hj

) =
n∑

i=1

√
hi

j∑

j=1

√
hj =

n∑

i=1

(√
hi

)2

Hence, the result follows.
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Proof of Theorem 3

Proof. The KL-divergence between the two distribution H and S∗ is defined as:

KLD(H‖S∗) =
n∑

i=1

hi log2
hi

s∗
i

=
n∑

i=1

hi log2 hi −
n∑

i=1

hi log2

√
hi∑n

j=1

√
hj

(using Theorem 2)

=
1
2

n∑

i=1

hi log2 hi + log2

⎛

⎝
n∑

j=1

√
hj

⎞

⎠
(

n∑

i=1

hi

)

= −1
2
Entropy(H) + log2

⎛

⎝
n∑

j=1

√
hj

⎞

⎠

= −1
2
Entropy(H) + log2 (E[Z]|H,S∗ + 1)

1
2 (using Corollary 2)

=
1
2

[−Entropy(H) + log2 (E[Z]|H,S∗ + 1)]

Simplifying, we get:

E[Z]|H,S∗ = 22KLD(H||S∗)+Entropy(H) − 1

Proof of Lemma 3

Proof. The probability that a randomly drawn box is not in the U partition
is (1 − p). The probability that in a sample of s boxes, none are from the U
partition is (1 − p)s, and therefore the probability that there is at least 1 box
amongst the s from the U partition is 1 − (1 − p)s. We want this probability to
be at least α. That is:

1 − (1 − p)s ≥ α

With some simple arithmetic, it follows that

s ≥ log(1 − α)
log(1 − p)
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Abstract. Unsupervised feature selection (UFS) as an effective method
to reduce time complexity and storage burden has been widely applied to
various machine learning tasks. The selected features should model data
distribution, preserve data reconstruction and maintain manifold struc-
ture. However, most UFS methods don’t consider these three factors
simultaneously. Motivated by this, we propose a novel joint dictionary
learning method, which handles these three key factors simultaneously.
In joint dictionary learning, an intrinsic space shared by feature space
and pseudo label space is introduced, which can model cluster struc-
ture and reveal data reconstruction. To ensure the sparseness of intrinsic
space, the �1-norm regularization is imposed on the representation coef-
ficients matrix. The joint learning of robust sparse regression model and
spectral clustering can select features that maintain data distribution
and manifold structure. An efficient algorithm is designed to solve the
proposed optimization problem. Experimental results on various types
of benchmark datasets validate the effectiveness of our method.

Keywords: Feature selection · Data distribution ·
Data reconstruction · Manifold structure · Joint dictionary learning

1 Introduction

With the rapid growth of contemporary information technology, data informa-
tion is often represented by high dimensional features in machine learning, data
mining and natural language processing [11]. In fact, not all features are rele-
vant and important to the data processing tasks and many of them are unrelated,
redundant or noisy. Feature selection aims to select the most representative fea-
tures and eliminate redundant features from the original data, and it has been
proved to be effective in handling high-dimensional data [6].

Many feature selection algorithms have been proposed for selecting the most
representative features. From the perspective of the availability of label infor-
mation, feature selection algorithms can be divided into supervised [10], semi-
supervised [5] and unsupervised cases [1]. Supervised methods usually use label
c© Springer Nature Switzerland AG 2019
I. V. Tetko et al. (Eds.): ICANN 2019, LNCS 11728, pp. 46–58, 2019.
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information to select discriminative features to distinguish instances from dif-
ferent labels. However, unsupervised feature selection, due to the lack of label
information, is a difficult task to guide the search of relevant features.

In unsupervised scenario, data distribution, data reconstruction and local
structure are the key factors for guiding feature selection [16]. Since the discrim-
inative information is usually encoded in labels, how to select the discriminative
features is an important but difficult task for unsupervised problem [8]. One
common method is to utilize cluster labels (which can be regarded as pseudo
labels) to select features that can best preserve the cluster structure, which can
discriminate samples from different classes. Thus, data distribution, which can
be reflected by cluster structure, is significant for unsupervised feature selec-
tion. From the perspective of data reconstruction, the selected features should
be representative and can reconstruct the original data well. More specifically, it
assumes that the original data can be approximated by performing a reconstruc-
tion function on the selected features [6]. Additionally, nearby samples should
be divided into the same cluster, resulting in locality preserving needs to be
considered. So far, there are very few algorithms taking into account these three
main factors simultaneously [16].

In light of all these factors, we propose an effective unsupervised feature
selection algorithm, i.e, Joint Dictionary Learning for Unsupervised Feature
Selection (JDLUFS). We consider data reconstruction, data distribution and
manifold structure simultaneously to select the most important and discrimina-
tive features for unsupervised learning. Unlike traditional unsupervised feature
selection methods which use matrix factorization to generate pseudo labels, we
apply dictionary learning to obtain sparse intrinsic space, which can reveal the
data reconstruction and reconstruct more accurate pseudo labels. To select the
discriminative features, A linear regression term is added into the objective func-
tion to maintain the cluster structure. Spectral clustering is utilized to uncover
the data local structure. The main contributions of our work are as follows: (a) A
joint dictionary learning method for unsupervised feature selection is proposed,
and features that can model data distribution, preserve data reconstruction and
maintain manifold structure are selected. (b) The �1-norm regularization is used
to ensure the sparseness of intrinsic space and the �2,1-norm regularization is
added to achieve group sparsity and remove the irrelevant or noisy features.
(c) An alternating minimization algorithm is developed to solve the optimiza-
tion problem. Extensive experiments on different types of benchmark datasets
demonstrate the effectiveness of the proposed model.

2 Related Work

In this section, we mainly review the existing unsupervised feature selection
models for data distribution, data reconstruction, and local structure.

Unsupervised method based on data distribution first detect the cluster struc-
ture of samples and then directly select features that can best preserve the cluster
structure. To maintain the distribution information, NDFS [8] performs spectral
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clustering to learn the cluster structure of samples, and adds �2,1-norm regu-
larization on the feature selection matrix to select the discriminative features.
RUFS [11] combines robust clustering with robust feature selection to select the
most important features, which can improve the robustness of the algorithm.
Inspired by multi-view learning, CUFS [16] considers data distribution as one-
view, and data reconstruction as the other view, in which the common redundant
noisy features can be removed by co-regularized learning. Another type of unsu-
pervised algorithm selects features from the perspective of data reconstruction,
which defines feature relevance as the capability of features to approximate fea-
ture space via a reconstruction function [6]. Under the framework of matrix
factorization, EUFS [12] directly embeds feature selection into a clustering algo-
rithm through sparse learning and adds nonnegative orthogonal constraints to
the cluster indicator matrix. CDLFS [15] utilizes dictionary learning instead of
matrix factorization to learn the synthesis dictionary which can reconstruct sam-
ples and the analysis dictionary which can select features. REFS [6] embeds the
reconstruction function learning process to feature selection.

In manifold learning, it is generally considered that high-dimensional data are
nearly lying on a low-dimensional manifold [15]. To preserve the local geometric
structure, the manifold regularization is often used in many unsupervised feature
selection methods.

It can be seen that most existing methods don’t consider data distribution,
data reconstruction and local structure simultaneously. To address this issue,
our proposed method seamlessly integrates these three key factors into a uni-
fied framework in which the dictionary learning replaces matrix factorization to
reflect data reconstruction capabilities.

3 The Proposed Approach

Throughout this paper, matrices are denoted as boldface capital letters and
vectors are written as boldface lowercase letters. The same as [17], we denote
the i-th row and j-th column of a matrix A = [Aij ] as ai and aj , and its

Frobenius norm and �2,1-norm are denoted as ||A||F =
√∑

i

∑
j A2

ij , and

||A||2,1 =
∑

i

√∑
j A2

ij , and Tr(A) is the trace of A if A is square. Let X ∈ R
d×n

be the training data set, where d is feature number, n is the number of samples
and each column xi ∈ R

d×1 represents an instance. Denote the cluster indicator
matrix U = [ui; . . . ;un] ∈ R

n×c, where c is the number of clusters and each row
ui ∈ {0, 1}1×c is the cluster indicator vector for i-th sample.

3.1 Approach

To select the most representative features, we consider the key factors men-
tioned above in our model. Since matrix factorization can not reflect some
data distribution priors in unsupervised learning, we adopt dictionary learn-
ing to maintain data reconstruction and obtain cluster labels, i.e, pseudo labels.
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In cross-modality case, it is generally considered that related modalities share
the same sparse representation, i.e., the intrinsic space. Inspired by the success
of joint dictionary learning in cross-modality problems [14], we extend joint dic-
tionary learning for UFS and consider the feature space X and the pseudo label
space U ∈ R

n×c to be two modalities which share an intrinsic space A ∈ R
k×n,

where k is dictionary size, i.e, intrinsic space dimension. We introduce the dic-
tionary Dx used to reconstruct the feature matrix X and the dictionary Du used
to reconstruct the pseudo label matrix U. To maximize the connection between
the two modalities in the intrinsic space and learn more accurate pseudo labels
of samples, the extended joint dictionary learning model is defined as follows:

min
Dx,Du,A,U

||X − DxA||2F + ||UT − DuA||2F + β||A||1
s.t. ||dxi||22 ≤ 1, ||dui||22 ≤ 1,∀i (1)

Under the framework of joint dictionary learning, the consistent intrinsic space
of samples is adaptively learned by feature space and pseudo label space, and the
accurate cluster labels are reconstructed by the intrinsic space. By leveraging the
interactions between these two goals, we can preserve the data reconstruction
well and capture accurate cluster structure. Additionally, we add the �1-norm to
A to make the intrinsic space more sparse and improve generalization ability.

Because of the importance of discriminative information encoded in labels,
it is very significant to select representative features that are more relevant to
pseudo labels in unsupervised feature selection problems [8]. Since the cluster
structure can reveal the data distribution of instances well, we introduce a fea-
ture selection matrix W ∈ R

d×c to preserve the cluster structure via linear
sparse regression, by which the original features can be projected into corre-
sponding clusters. The feature selection framework based on data distribution is
formulated as:

min
W

α||U − XT W||2F + δ||W||2,1 (2)

where δ is a regularization parameter used to balance the sparsity and regression
error. The �2,1-norm is imposed on the feature selection matrix W to achieve the
group sparsity and remove noisy features. In detail, ||wi||2 shrinks to zero if i-th
feature is less discriminative to the pseudo label U. Hence, when ||wi||2 = 0, it
indicates that the i-th feature is redundant and should be discarded. In other
words, the larger the value of ||wi||2 is, the more important the i-th feature is.
Therefore, we finally get the most important features by sorting feature weights
wi = ||wi||2, i = 1, . . . , d in descending order.

In the above models, we mainly aim to assist in maintaining data reconstruc-
tion and data distribution. Additionally, we expect that the obtained pseudo
label space can also preserve the local geometric structure of the samples. In
other words, similar samples should be grouped into the same cluster. Spectral
analysis has been proven to maintain the manifold structure [9]. We further add
the following function to force similar samples with similar cluster labels:

min
U

γTr(UT LU), s.t. UT U = I,U ≥ 0 (3)
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where L ∈ R
n×n is a Laplacian matrix, L = D−S, D is a diagonal matrix with

its diagonal element defined as Dii =
∑n

j=1 Sij and S ∈ R
n×n represents the

sample similarity matrix which can be learned by heat kernel or cosine similarity.
Here we use the heat kernel weighting method.

Putting (1), (2), and (3) together, the proposed approach JDLUFS is to solve
the following optimization model:

min
Dx,Du,A,W,U

||X − DxA||2F + ||UT − DuA||2F + β||A||1
+ α||U − XT W||2F + γTr(UT LU) + δ||W||2,1

s.t. ||dxi||22 ≤ 1, ||dui||22 ≤ 1,∀i,UT U = I,U ≥ 0 (4)

3.2 Optimization Algorithm

The optimization problem in (4) is non-convex with respect to Dx, Du, A, W
and U, but is convex for each variable while fixing the others. Thus we employ
an alternating optimization strategy to derive the update rule for each variable.
In the next subsection, we will give a clear description of the convergence of the
optimization algorithm.

Update Dx. As for the updating of Dx, we fix other variables except Dx and
remove the irrelevant items. Then we get the following optimization problem:

D̂x = arg min
Dx

||X − DxA||2F , s.t. ||dxi||22 ≤ 1,∀i (5)

We further introduce an auxiliary variable H, and D̂x can be calculated by
Alternating Direction Method of Multipliers (ADMM) algorithm [2]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dt+1
x = arg min

Dx

||X − DxA||2F + μ||Dx − Ht + St||2F
Ht+1 = arg min

H
μ||Dt+1

x − Ht + St||2F , s.t. ||hi||22 ≤ 1,∀i

St+1 = St + Dt+1
x − Ht+1, update μ if appropriate

(6)

Update Du. The optimization problem about Du is similar to Dx. We can
update Du similar to Dx by (6).

Update A. After fixing the other variables, the problem in (4) becomes:

Â = arg min
A

||X − DxA||2F + ||UT − DuA||2F + β||A||1 (7)

The closed-form solution of the above formula is:

Â = (DT
x Dx + DT

u Du + βI)−1(DT
x X + DT

u U) (8)

Update U. Similar to the process of updating A, we need to remove items
that are not related to U, resulting in the following equation:

min
UTU=I,U≥0

||UT − DuA||2F + α||U − XT W||2F + γTr(UT LU) (9)
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To eliminate the orthogonal constraint of U, we add a penalty term λ||U −
I||2F (In our experiment, λ = 106). Since U ≥ 0, we introduce the Lagrangian
multiplier Φ ∈ R

n×c ≥ 0, and the obtained Lagrangian function is:

F(U,Φ) = ||UT − DuA||2F + α||U − XT W||2F + γTr(UT LU)

+ λ||U − I||2F − Tr(ΦT U) (10)

Setting ∂F(U,Φ)
∂U = 0, we get:

Φ = 2(U − AT DT
u ) + 2α(U − XT W) + 2γLU + 4λU(UT U − I) (11)

Then we can derive the update formula of U according to the Karush-Kuhn-
Tuckre (KKT) condition ΦijUij = 0:

Uij =
(AT DT

u + αXT W + 2λU)ij

(U + αU + γLU + 2λUUT U)ij

Uij (12)

Finally, we normalize U such that (UT U)ii = 1, i = 1, . . . , c.
Update W. Similar to the above methods, we get the subproblem of W:

Ŵ = arg min
W

α||U − XT W||2F + δ||W||2,1 (13)

The problem in (13) is non-smooth but is convex. In this paper, we solve the sub-
problem of W by using the Iterative Reweighed Least Square (IRLS) algorithm.
Following [15], the objective problem can be rewritten as:

Wt+1 = arg min
W

Q(W|Wt)

= arg min
W

Tr((U − XT W)T (U − XT W)) +
δ

α
Tr(WT GtW) (14)

where G is a diagonal matrix with the i-th diagonal element as Gii = 1
2||wt

i ||2 .

Then let the derivative of the above expression be 0, i.e., ∂Q(W|Wt)
∂W = 0, we get:

X(XT W − U) +
δ

α
GtW = 0 (15)

Obviously, the closed-form solution of Wt+1 is:

Wt+1 = (XXT +
δ

α
Gt)−1XU (16)

To get the solution of Wt+1, we have to calculate the inverse of (XXT + δ
αGt).

Obviously, when the feature dimension is very high, the time consumption
of (16) is unacceptable. Fortunately, when the number of instances is much
smaller than its feature dimension, we can use the Woodbury matrix identity:
(A + BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1. Hence, we can further
rewrite (16) as:

Wt+1 = Gt−1X(XT Gt−1 +
δ

α
I)−1U (17)

Based on the above iterative criteria for Dx, Du, A, W and U, the pseudo
code of the proposed JDLUFS framework is summarized in Algorithm1.
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Algorithm 1. The JDLUFS algorithm.
Input: Data matrix X ∈ R

d×n; Parameters p, c, α, β, γ and δ; Dictionary size k; Loss
variation ratio σ; Maximum number of iterations N;

Output: t features from the dataset.
1: Initialize α = 1, λ = 106, Dx, Du, W and U;
2: Compute affinity graph S and Laplacian matrix L;
3: repeat
4: Â = (DT

x Dx + DT
uDu + βI)−1(DT

x X + DT
uU);

5: Update Dx and Du by calculating iteration problem (6);

6: Uij =
(ATDT

u+αXT W+2λU)
ij

(U+αU+γLU+2λUUTU)ij
Uij

7: Update W by solving (13) using IRLS;
8: until Up to the maximum number of iterations or loss variation ratio
9: Sort all d features according to ||wi||2 in descending order and select the top-t

ranked features.

3.3 Time Complexity and Convergence Analysis

There are five subproblems in our algorithm: Dx, Du, A, W and U. The time
complexities of updating dictionaries Dx and Du are O(T1(k3+k2d+d2k+kdn))
and O(T1(k3 + k2c + c2k + kcn)), respectively, where T1 indicates the iteration
number in (6). A has a closed-form solution and the time complexity is O(k3 +
k2d+kdn). For W, we consider the relationship between the number of samples
and the feature dimension, therefore the time complexity is O(T2(min(d3, n3))),
where T2 is the iteration number of the IRLS algorithm. In subproblem U, we
traverse each item in U and the time complexity is O(cn2).

In each iteration, the optimization problem for A and the transformed
Lagrangian function for U are convex functions, so we can get the respec-
tive closed-form solutions. For dictionaries Dx and Du, the ADMM algorithm
can guarantee the optimum solutions to update these two dictionaries and the
detailed convergence proof of ADMM can be found in [2]. Additionally, the con-
vergence proof of the IRLS algorithm for solving the subproblem of W has been
intensively studied in [15]. Since our objective function has a lower bound 0, the
proposed algorithm is guaranteed to converge to a stationary point.

4 Experiments

In this section, we conduct extensive comparative experiments to evaluate our
algorithm in terms of both classification and clustering performance on six
benchmark datasets1, including one handwritten digital image dataset (USPS),
one object image dataset (COIL20), two face image datasets (warpPIE10P
and pixraw10P), one spoken letter dataset (ISOLET) and one cancer dataset
(LUNG). Detailed information of the datasets is summarized in Table 1. All
experiments are performed on a computer with CPU (i5-6500 @ 3.20 GHz) and
8 GB memory using MATLAB software.
1 http://featureselection.asu.edu/datasets.php.

http://featureselection.asu.edu/datasets.php
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Table 1. Detailed information of the datasets

Dataset Instances Features Classes Domain Selected features

USPS 9298 256 10 Image, Digit [50, 80, . . . , 200]

COIL20 1440 1024 20 Image, Object [50, 100, . . . , 300]

warpPIE10P 210 2420 10 Image, Face [50, 100, . . . , 300]

ISOLET 1560 617 26 Spoken letter [50, 100, . . . , 300]

LUNG 203 3312 5 Biological [50, 100, . . . , 300]

Pixraw10P 100 10000 10 Image, Face [50, 100, . . . , 300]

4.1 Experiment Setup

We compare JDLUFS with five representative unsupervised feature selection
algorithms. The ideas of these algorithms are briefly shown as follows:

– Laplacian Score [4]: a filter algorithm which selects features that best preserve
the local manifold structure by calculating the Laplacian Score.

– SPEC [13]: a filter model that selects features by using spectral clustering.
– RUFS [11]: a method which combines matrix factorization and local manifold

learning and uses �2,1-norm to maintain the robustness of the algorithm.
– EUFS [12]: an embedded method that embeds feature selection into a clus-

tering algorithm through sparse learning.
– CUFS [16]: an approach which selects features with the ability to maintain

data distribution and data reconstruction under matrix factorization frame-
work.

For classification performance, we use the nearest neighbor classifier and
record the classification accuracy. Two clustering evaluation metrics, Normalized
mutual information (NMI) and Clustering Accuracy (ACC) [3], are employed to
evaluate clustering performance. The lager the three metrics are, the better the
performance is. Following the previous works [7,11], for all the methods, we
specify the size of neighborhoods p as 5 to construct the Laplacian matrix for
all datasets. For JDLUFS, we fix α = 1 and λ = 106 and mainly investigate
the influence of β, γ and δ. We also set the size of dictionary to be k times
the original feature dimension and the range of k is from {0.2, 0.4, 0.6, 0.8}.
To fairly compare all the methods, we tune the parameters by a “grid-search”
strategy from

{
10−6, 10−5, . . . , 106

}
and record the best result. How to deter-

mine the optimal number of selected features is still an open question, thus we
set the number of selected features for last five datasets as {50, 100, . . . , 300}.
Since the dimension of USPS is 256, we set the number of selected features
for this dataset as {50, 80, . . . , 200}. We record average results over different
dimensions. In this experiment, we use the k-means clustering algorithm to eval-
uate the performance of selected features of different methods. We randomly
initialize and repeat the clustering 20 times for each setting. Additionally, we
adopt 10-fold cross-validation to ensure the reliability of the classification results.
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As for the evaluation by classification and clustering, we report the average
results with standard deviation (std) for all algorithms.

4.2 Results and Analysis

The classification and clustering results of different algorithms on the six bench-
mark datasets are shown in Table 2. We can have the following observations.
Laplacian score performs well overall in terms of classification accuracy. Both
SPEC and Laplacian take into account the manifold structure of samples, which
illustrates the importance of local structure information. RUFS jointly performs
robust cluster label learning and robust feature selection, which indicates proper

Table 2. Comparing results (mean% ± std) of several unsupervised feature selection
algorithms on six benchmark datasets in terms of three metrics (Classification Accu-
racy, NMI and ACC). The best results are in boldface. The number in the parentheses
is the size of dictionary k which is a multiple of the original feature dimension.

Dataset Classification results (Classification Accuracy%± std)

USPS COIL20 warpPIE10P ISOLET LUNG Pixraw10P

Laplacian 94.08± 3.65 85.94± 6.05 94.28± 3.56 76.56± 4.82 91.78± 1.17 87.50± 15.24

SPEC 78.66± 23.71 57.14± 21.19 97.19± 5.60 73.30± 8.03 89.77± 2.25 68.00± 20.06

RUFS 95.41± 5.70 94.31± 11.44 99.89± 3.56 84.04± 8.15 93.61± 1.65 97.83± 1.78

EUFS 95.47± 3.53 93.01± 8.83 99.75± 0.72 80.95± 10.15 93.13± 1.56 97.50± 4.34

CUFS 95.86± 1.82 93.49± 4.52 99.91± 0.44 84.16± 3.00 91.13± 1.40 99.00± 3.53

Ours (0.2) 96.01± 2.81 95.22 ± 3.68 99.92± 1.90 85.63± 3.81 94.14± 1.53 99.00± 2.80

Ours (0.4) 96.09± 2.88 95.06± 3.67 99.93± 1.88 86.57± 3.02 94.14± 1.53 99.17±2.99

Ours (0.6) 96.11 ±2.86 95.01± 3.61 99.95±1.82 86.77±3.97 94.43±1.56 99.00± 2.89

Ours (0.8) 96.10± 2.76 94.89± 3.39 99.83± 1.83 85.03± 3.77 94.14± 1.63 99.00± 2.33

Clustering results (NMI%± std)

Laplacian 61.08± 4.88 65.68± 2.97 22.36± 2.57 70.62± 2.77 59.78± 6.60 79.43± 13.61

SPEC 47.85± 23.71 50.54± 21.19 52.77± 5.60 66.51± 8.03 59.09± 2.25 66.13± 20.06

RUFS 62.55± 3.52 73.38± 6.96 42.28± 4.21 76.62± 8.80 65.50± 5.17 87.35± 3.60

EUFS 62.27± 2.52 67.61± 2.16 68.50±12.91 70.47± 6.37 59.11± 7.55 79.76± 4.88

CUFS 61.89± 1.69 71.63± 2.47 48.23± 4.99 75.23± 3.87 59.52± 2.61 81.95± 5.66

Ours (0.2) 62.98± 1.63 73.98±2.39 44.50± 3.30 78.14± 4.44 67.15± 2.08 90.88± 6.22

Ours (0.4) 63.03±1.73 73.87± 2.47 39.04± 3.17 77.74± 4.49 67.38±2.10 90.48± 6.20

Ours (0.6) 62.94± 1.75 73.97± 2.49 41.23± 3.25 78.53±4.67 66.90± 2.20 91.42±6.22

Ours (0.8) 63.02± 1.66 73.87± 2.23 41.58± 3.22 77.63± 4.36 67.22± 2.29 90.94± 6.73

Clustering results (ACC%± std)

Laplacian 64.58± 4.28 53.19± 2.93 21.44± 1.54 55.49± 3.12 70.49± 8.68 66.22± 17.20

SPEC 50.38± 12.99 35.72± 10.04 42.98± 5.90 52.01± 4.06 64.85± 3.29 56.95± 10.41

RUFS 66.43± 3.10 61.01± 7.44 34.53± 2.31 62.03± 9.61 79.61± 4.39 81.20± 4.43

EUFS 66.46± 2.98 54.46± 1.92 58.93±10.31 56.86± 6.66 71.71± 6.53 74.00± 5.04

CUFS 65.06± 2.03 60.52± 3.23 41.42± 3.76 62.15± 5.21 69.70± 2.46 75.97± 5.56

Ours (0.2) 67.74±2.47 61.21± 3.75 37.10± 3.04 64.26± 4.92 82.34± 3.65 83.00± 5.35

Ours (0.4) 67.58± 2.70 61.24± 3.79 32,60± 3.99 64.92± 4.01 83.15±3.97 83.35± 5.37

Ours (0.6) 67.49± 2.61 61.71±3.74 34.37± 3.92 65.59±4.21 79.38± 3.89 84.22±5.52

Ours (0.8) 67.67± 2.57 61.43± 3.53 35.02± 4.02 63.46± 4.78 82.33± 3.10 83.57± 5.10
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Fig. 1. Clustering performance (NMI) of all the methods on USPS and LUNG datasets.

Fig. 2. Clustering accuracy with α and β fixed on USPS and LUNG datasets.

cluster label generation methods are significant for selecting discriminative fea-
tures. EUFS achieves better clustering performance by directly embedding fea-
ture selection into the clustering algorithm and considering both data recon-
struction capabilities and local structure. CUFS focuses on data distribution
and data reconstruction simultaneously and achieves higher ACC and NMI than
EUFS. JDLUFS achieves the best classification performance on 6 datasets, and
the optimal clustering performance on 5 datasets, which can be mainly explained
by the following reasons. First, using joint dictionary learning, the learned intrin-
sic space shared by feature space and pseudo label space can reconstruct features
and cluster labels and minimize the reconstruction error. Second, we utilize lin-
ear sparse regression to capture cluster structure and maintain data distribu-
tion. Third, introduce the manifold regularization to reveal data local structure.
Therefore, the three key factors are simultaneously integrated into our frame-
work to guide feature selection. Additionally, for the dictionary size k, it can
be observed that when k = 0.4 or k = 0.6, our model obtains the best results
in most cases. As we continue to increase the dictionary size, the experimental
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Fig. 3. Convergence analysis on Pixraw10P dataset with different dictionary sizes

results are not improved. Obviously, the intrinsic space dimension should not be
too low or too high. Hence, the precision and storage consumption need to be
considered simultaneously. In Fig. 1, we present the clustering performance in
term of NMI as the number of selected features changes. Due to space limit, we
only report the results on USPS and LUNG datasets. We can see that JDLUFS
achieves better NMI than compared methods, which means our model tends to
select representative features. However, the performance is comparatively sensi-
tive to the number of selected features, which is still an open problem for many
unsupervised feature selection algorithms.

4.3 Parameters Sensitivity and Convergence

JDLUFS has four parameters α, β, γ and δ. We always fix α and β to 1, and tune
γ and δ from

{
10−6, 10−5, ..., 106

}
. The experimental results in terms of cluster

accuracy on USPS and LUNG datasets are shown in Fig. 2. We can observe
that the clustering performance doesn’t vary much, which indicates that our
method is not very sensitive to the parameters γ and δ with wide ranges. To
verify the convergence of the proposed algorithm, we run JDLUFS on Pixraw10P
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dataset which has 10,000 features. Figure 3 shows the convergence curves of
JDLUFS with different dictionary sizes k. The experimental results show that
our algorithm converges within 30 iterations and is not sensitive to the dictionary
size.

5 Conclusion

In this paper, we propose a joint dictionary learning method for unsupervised
feature selection, which considers data distribution, data reconstruction and data
local structure simultaneously and seamlessly integrates these three key factors
into a unified framework. Compared with the existing unsupervised feature selec-
tion methods preserve data reconstruction via matrix factorization, we learn an
intrinsic space shared by feature space and pseudo label space which can better
reconstruct cluster labels and reduce reconstruction error. Moreover, we adopt
linear sparse regression term to maintain the cluster structure of samples and
�2,1-norm is imposed on feature selection matrix to select the most discriminative
features. Experiment results on benchmark datasets verify the effectiveness of the
proposed method in classification and clustering performance. Future work will
investigate if the proposed method can be extended to semi-supervised learning.
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Abstract. High-dimensional data are ubiquitous in regression. To
obtain a better understanding of the data or to ease the learning process,
reducing the data to a subset of the most relevant features is important.
Among the different methods of feature selection, filter methods are pop-
ular because they are independent from the model, which makes them
fast and computationally simpler than other feature selection methods.
The key factor of a filter method is the filter criterion. This paper focuses
on which properties make a good filter criterion, in order to be able to
select one from the numerous existing ones. Six properties are discussed,
and three filter criteria are compared with respect to the aforementioned
properties.

Keywords: Feature selection · Filter criteria · Regression

1 Introduction

In regression problems, datasets are often high-dimensional. Therefore, select-
ing a reduced subset of the most relevant features is an important challenge
for data analysis, to help fighting the curse of dimensionality, to ease the learn-
ing process, to increase interpretability of the original data, etc. Many works, in
diverse domains such as healthcare, spam detection or marketing, focus on meth-
ods reducing the original subset of features in datasets [9,13,22,26,28]. Feature
selection can roughly be classified into filters, wrappers and embedded meth-
ods. This paper focuses on filter methods, which have the advantage to be fast
thanks to their independence from the model used. Indeed filters do not need to
train any model during the selection process, contrarily to wrappers [16,17] or
embedded methods [20]. They also lead to a selection of features that is indepen-
dent from the models that will be subsequently used. To select the subset of the
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most relevant features for the problem at hand, filter methods need a sound rel-
evance criterion. The choice of this criterion is therefore strategic for a successful
filter-based feature selection process. The problem is that there exist many filter
criteria with various properties. Among these criteria, this paper does not intend
to present the best criterion to be used on every dataset but focuses instead on
the essential properties of what makes a good filter criterion for feature selection
in regression, and what are its strengths or weaknesses with respect to these
properties. These properties are described and discussed in Sect. 3, after intro-
ducing feature selection with filters in Sect. 2. Several interesting filter criteria
are described in Sect. 4 and compared in the light of these properties in Sect. 5.
Finally, conclusions on these comparisons are given in Sect. 6.

2 Feature Selection with Filter Criteria

Feature selection helps to reduce the dimension of a dataset by removing redun-
dant or less useful features. In the context of filter methods for feature selection, a
good relevance criterion must first be selected. The relevance criterion measures
the importance of the relationship between a feature, or a group of features, and
the target. The target is the output variable depending on the problem at hand.
This criterion is therefore the key factor of a successful dimension reduction
process with filter methods.

Filter criteria are very diverse: for example, some are based on entropy, such
as the mutual information (Sect. 4.1), while some are based on noise variance
(Sect. 4.2) or regression quality (Sect. 4.3). The question raised by this paper is:
“What is needed in a good filter criterion in order to obtain the subset of the
most relevant features for the problem at hand?” These properties are listed in
Sect. 3 and used for comparison of several relevance criteria in Sect. 5.

A complete feature selection process needs mainly two ingredients: a filter
criterion, as already discussed, but also a search procedure, in order to find
the best subset of features among all possible subsets (whose number grows
exponentially with the number of initial features), without having to compute the
filter criterion between all subsets of variables and the target. Several methods
exist, such as forward search, greedy search, genetic algorithms, mRMR [23], etc.
During this search procedure, the chosen relevance criterion is, again, strategic.
For example, those search methods need a multivariate criterion to be able to
measure the relevance between two features but also between a subset of features
and the target. Indeed it is often believed that filters use univariate criteria
only; this is not correct: several multivariate filter criteria exist, such as the
mutual information (Sect. 4.1) and the noise variance (Sect. 4.2). This property
is discussed in Sect. 3.2 and is used for comparison in Sect. 5.2.

3 Properties of a Relevance Criterion for Feature
Selection in Regression

The choice of the relevance criterion used for feature selection, among the various
existing ones, is strategic. This section describes the six essential properties of
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a good relevance criterion used as a filter during a feature selection process in
regression. It also discusses the reasons why these properties are important. In
order to demonstrate how to use these six properties, a comparison of the filter
criteria presented in Sect. 4, with respect to these properties, is realised in Sect. 5.

3.1 Property 1: Ability to Detect Nonlinear Relationships

In real datasets, the relationship between variables is most generally nonlinear.
Therefore, a good filter criterion for feature selection in regression should be able
to detect nonlinear relations between variables, or groups of variables [11,14].

3.2 Property 2: Ability to Detect Multivariate Relationships

When looking for the best subset of features, a search procedure, such as a for-
ward search, needs to evaluate the relations between groups of two, or more,
features and the target. Indeed, measuring the relationship between one input
feature and the target is not enough, as some features only contribute to the tar-
get when combined. An example of that would be when the target is determined
by the product of two features. To achieve this multidimensional measurement,
the filter criterion needs to be able to measure multivariate relations between
groups of variables. This property is essential for feature selection methods with
a filter criterion [6,24].

3.3 Property 3: Estimator Behaviour

Most filter criteria are defined as a statistical property of the data integrated
over the domain space. The criteria are repeatedly evaluated at each step of the
search procedure. However, the criteria themselves can usually not be evaluated
exactly because of the integration over the domain space. An estimator is thus
needed, whose computational complexity and statistical properties are therefore
important and must be taken into account when choosing a criterion [3].

3.4 Property 4: Estimator Parameters

Filter criteria estimator often require an optimization parameter to be tuned.
The influence of this parameter on the quality of the estimation, and therefore
on the quality of the feature selection itself, might be important. For exam-
ple, nearest-neighbours based estimators, such as the Kraskov estimator (see
Sect. 4.1), need to choose the number of neighbours used in the estimation. This
choice of parameter might be crucial, while its influence is sometimes underesti-
mated in the literature. When comparing different estimators, the stability of the
estimator with respect to an optimization parameter is an important property
to take into account. This property is discussed in Sect. 5.4.
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3.5 Property 5: Estimator Behaviour in Small Datasets

Data are ubiquitous. In many fields the number of data that can be collected
might be huge, leading to the so-called “big data”. In other fields however the
number of data remains limited (for example because of collection costs), while
the number of dimensions (features) might be large for every data [15]. The
ratio “number of instances/dimensionality” is therefore an important concept
in all machine learning methods. A small sample dataset is one with a low
ratio “number of instances/dimensionality”. When working with a small sample
dataset, the estimator of the filter criterion needs to behave well to select the best
subset of features. This property is discussed, and filter criteria are compared
with respect to it, in Sect. 5.5, for small sample situations.

3.6 Property 6: Invariant Estimator

When comparing features or groups of features having a linear, or quasi-linear,
relationship, some estimators evaluate differently linear relationships with differ-
ent gradients of the relationship between the features and the target. However,
the importance of a feature or a group of features should not depend on this
gradient but only on the predictability, i.e. the quality of the information in the
features used to predict the output. In feature selection, this would have the
consequence to prefer some features with a greater gradient than features with
a lower gradient. The independence of the estimator towards this gradient is
discussed in Sect. 5.6.

4 Description of Three Popular Criteria

This section reviews three filter criteria, the mutual information, the noise vari-
ance and the adjusted coefficient of determination, with their most frequently
used estimators, in order to illustrate the important properties of a good filter
criterion presented in Sect. 3.

4.1 Mutual Information

Mutual information (MI) is a frequently used criterion for filter methods, in
regression or classification [1,2,13,21,27]. Based on entropy, it is a symmet-
ric measurement of the dependence between random variables, introduced by
Shannon in 1948 [25]. It evaluates the importance of the relationship between
a feature, or a group of features, and another one. It has been shown to be
an efficient criterion to select relevant features in classification [11,23] and in
regression [10,14]. This paper focuses on regression problems.

Let X and Y be two random variables, whose respective probability density
functions are pX and pY , and where X represents the features and Y the target.
MI measures the reduction in the uncertainty on Y when X is known

I(X;Y ) = H(Y ) − H(Y |X) (1)
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where H(Y ) = − ∫
Y

pY (y) log pY (y)dy is the entropy of Y and H(Y |X) =∫
X

pX(x)H(Y |X = x)dx is the conditional entropy of Y given X. The mutual
information between X and Y is equal to zero if and only if they are independent.
If Y can be perfectly predicted as a function of X, then I(X;Y ) = H(Y ).

With real datasets, MI cannot be directly computed because it is defined in
terms of probability density functions, which are unknown when only a finite
sample of data is available. Therefore, MI has to be estimated from the dataset
[12]. The estimator introduced by Kraskov et al. [19] is based on a k-nearest
neighbour method and results from the Kozachenko-Leonenko entropy estimator
[18] Ĥ(X) = −ψ(k)+ψ(N)+log cd+ d

N

∑N
i=1 log εk(i), where k is the number of

neighbours, N is the number of instances in the dataset, d is the dimensionality,
cd = (2π

d
2 )/Γ (d2 ) is the volume of the unitary ball of dimension d, Γ is the

gamma function, εk(i) is twice the distance from the ith instance to its kth

nearest neighbour and ψ is the digamma function. The Kraskov estimator of the
mutual information is

Î(X;Y ) = ψ(N) + ψ(K) − 1
k
− 1

N

N∑

i=1

(ψ(τx(i)) + ψ(τy(i))) (2)

where τx(i) is the number of points located no further than the distance
εX(i, k)/2 from the ith observation in the X space, τy(i) is the number of points
located no further than the distance εY (i, k)/2 from the ith observation in the
Y space and where εX(i, k)/2 and εY (i, k)/2 are the projections into the X and
Y subspaces of the distance between the ith observation and its kth neighbour.

When using MI for feature selection, the relationships between several subsets
of features and the target Y are computed with a search procedure. Among
these subsets, the one maximising the value of the estimated mutual information
Î(X;Y ) (2) is selected.

4.2 Noise Variance

Noise variance is another popular filter criterion used for feature selection. Its
aim is to evaluate the level of noise in a finite dataset. In regression, the noise
represents the error in estimating the output variable as function of the input
variables, under the hypothesis that a model could be built (by a machine learn-
ing regression model).

Let us consider a dataset with N instances, d features Xj , a target Y and N
input-output pairs (xi, yi). The relationship between these input-output pairs is

yi = f(xi) + εi i = 1, ..., N (3)

where f is the unknown function between xi and yi, and εi is the noise or
prediction error when estimating f . The principle is to select the subsets of
features Xj which lead to the lowest prediction error, or lowest noise variance
[14].
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With real finite datasets, the noise variance has to be estimated, e.g. with the
Delta Test, which is a widely used estimator [7,8]. The Delta Test δ is defined
as

δ =
1

2N

N∑

i=1

[yNN(i) − yi]
2 (4)

where N is the size of the dataset, yNN(i) is the output associated to xNN(i),
xNN(i) being the nearest neighbour of the point xi.

For feature selection using the noise variance, and therefore the Delta Test
estimator, the relationships between several subsets of features and Y are com-
puted, again with a search procedure such as a greedy search. The search pro-
cedure selects the subset of features with the lowest value of the estimator δ.

4.3 Coefficient of Determination

The coefficient of determination R2 is the proportion of the variance in the
output variable that can be explained from the input variables; it ranges between
0% (unpredictable) and 100% (totally predictable). The definition of R2 is

R2 = 1 − SSres

SStot
(5)

where SSres =
∑

i(yi−f(xi))2 and SStot =
∑

i(yi−y)2 with i = 1, ..., n, and with
y being the mean of the observed data. This coefficient statistically measures how
well the regression approximates the target. Because R2 automatically increases
when features are added to the model, we use its alternative, the adjusted R2, or
R2

adj , for feature selection in regression, which is more suitable for small sample
sizes. Its definition is

R2
adj = 1 − SSres/(n − d − 1)

SStot/(n − 1)
(6)

where d is the number of selected features in the model and n the sample size.
A low R2

adj indicates that the data are not close to the fitted regression line and
a high R2

adj indicates the opposite.
The R2

adj criterion used with a linear regression model cannot capture the
nonlinear relationships between the features and the target. In order to use
the R2

adj in a nonlinear context, local linear approximations are considered [5].
In practice, for each point of the function f , a linear regression is computed
with a number of neighbours k starting from 4. The R2

adj is computed for every
regression. For each value of k, an average of the R2

adj on every point of f is
computed. The best mean R2

adj is then selected; it corresponds to a specific
number of neighbours k.

The first step of the search procedure, the univariate step, selects the feature
with the highest mean R2

adj [5]. The multidimensional feature selection strategy,
where the group of features with the highest mean R2

adj is selected, is imple-
mented similarly, but instead of evaluating the regression in two dimensions,
R2

adj evaluates the fitness of the local, multivariate regressions in three, four, five
dimensions, depending on the step of the search process.
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5 Analysis and Comparison

This section analyses and compares, in the context of feature selection in regres-
sion, the mutual information, the noise variance and the coefficient of determina-
tion (described in Sect. 4), with respect to the six properties listed and discussed
in Sect. 3.

5.1 Comparison with Property 1: Non-linearity

The three filter criteria described in this paper can evaluate a nonlinear relation-
ship between a group of features and the target. For the mutual information and
the noise variance, it is intrinsically true. For R2

adj , the implementation described
in Sect. 4.3 uses local approximations of the regression and is therefore suitable
for nonlinear relations between the features and the target as well. This impor-
tant property is therefore non-discriminant for the three filter criteria compared
in this section. This paper does not consider dependencies between features Xj

and focuses on evaluating their interest for predicting a given target. Several
approaches have been proposed to deal with redundancy in feature subsets, like
e.g. mRMR [23].

5.2 Comparison with Property 2: Multivariate Criterion

The three filter criteria compared in this section are all able to evaluate the rela-
tionship between a group of features and the target for relevance, and between
groups of features for redundancy, as shown in their respective equations (see
Sect. 4). This second property is therefore also non-discriminant. This shows that
these three criteria are all worth considering when doing feature selection.

5.3 Comparison with Property 3: Estimator Behaviour

The estimators of the three relevance criteria compared in this paper are all
based on a k-nearest neighbour method. Therefore, their time complexity and
their statistical properties are similar and less discriminant. Their respective
behaviour during a forward search method for selecting features with small sam-
ple datasets is discussed in Sect. 5.5.

5.4 Comparison with Property 4: Estimator Parameters

Being all based on a k-nearest-neighbour method, the three estimators of the
compared criteria all have one optimization parameter k. For the Kraskov esti-
mator of the mutual information, this parameter is usually set between 6 and 8
[19]. For the Delta Test, the k parameter is, by definition, set to 1 and therefore
does not need to be modified. For the mean R2

adj , k is usually set higher than
for the Kraskov estimator, in order to obtain stable results during the feature
selection process.
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(a) Feature f1. (b) Feature f2. (c) Feature f3.

Fig. 1. Three features of the dataset Anthrokids, where f1 is the 1st feature, f2 is the
11th feature and f3 is the 19th feature of the dataset.

In order to evaluate the relation between the value of k and the value of
the filter criterion, and in order to understand how to select k when using these
estimators, the first step of a feature selection method has been performed on
3 features of the Anthrokids1 dataset (Fig. 1), with a value of k neighbours
ranging from 5 to approximately 200, both for the mutual information and the
noise variance. Let us remark that this experiment has not been performed for
the Delta Test, the value of k being set to 1 by definition.

Results are shown in Fig. 2: The MI value for the 3 features f1 to f3 in Fig. 2(a)
and the mean R2

adj for the same features in Fig. 2(b). Figure 2(a) shows a good sta-
bility of the mutual information estimator towards the value of k for these features.
Figure 2(b) shows that the value of the highest mean R2

adj is less stable than the
values of the mutual information. But for a value of k higher than 50, the feature
selection results are stable for R2

adj as well, as the ranking of the features does not
change for a k between 50 and 200, the feature f1 being the first to be selected and
the feature f3 being the last to be selected by both criteria.

(a) (b)

Fig. 2. Evolution of (2(a)) MI values and (2(b)) R2
adj values for three features f1, f2 and

f3 (corresponding respectively to the features 1, 11 and 19 of the dataset Anthrokids
presented in Fig. 1) when k varies.

1 https://research.cs.aalto.fi/aml/datasets.shtml.

https://research.cs.aalto.fi/aml/datasets.shtml
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5.5 Comparison with Property 5: Estimator Behaviour in Small
Sample Datasets

Methods such as k-nearest-neighbours methods can suffer from a bias when
comparing smooth and non-smooth features, especially in small sample [4,5].
However, the biases in the estimations are much more severe with the mutual
information than with the noise variance or the adjusted R2 [4,7].

Experiments have been performed on the real-world dataset Anthrokids. A
forward search has been realised with three features of this dataset (Fig. 1).
Results are presented in Fig. 3. The best feature selected in Fig. 3(a) is the one
maximizing the mutual information value. In Fig. 3(b), it is the one minimizing
the noise variance. And in Fig. 3(c), it is the one maximizing the adjusted R2.
For the three criteria, the first feature selected is the feature f3. Results also
show that the value of the mutual information and of the adjusted R2 stabilises
itself around a hundred instances (Figs. 3(a) and (c)). The values of the Delta
Test measure are more stable, even in small sample. When comparing Figs. 3(a),
(b) and (c), the adjusted R2 measure and the MI measure presents the advantage
to distinguish better the values between the features f1 and f3. For the Delta
Test, these values are almost the same, contrarily to the adjusted R2.

(a) (b) (c)

Fig. 3. Average values of (3(a)) MI measures, (3(b)) Delta Test measures and (3(c))
adjusted R2 measures for three features of the dataset Anthrokids.

5.6 Comparison with Property 6: Estimator Invariance

In order to analyse the invariance of the estimator with respect to the gradient
of the relation between a feature, or a group of features, and the target, an
illustrative experiment has been realised on three linear functions with various
slopes. Three different linear functions have been generated:

y1 = f1(x) = 2x1 + x2 + ε where ε ∼ N(0, 0.1)
y2 = f2(x) = 4x1 + 2x2 + ε where ε ∼ N(0, 0.1)
y3 = f3(x) = 6x1 + 4x2 + ε where ε ∼ N(0, 0.1)

(7)
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Experiments have been performed with various sizes of samples, from small
ones to larger ones. For each size, an average value of the estimators of the three
criteria have been computed. The results of this experiment are presented in
Fig. 4. The Delta Test (Fig. 4(b)) and the mutual information (Fig. 4(a)) show
an influence of the gradient on the results. This influence disappears with a
larger size of sample for the Delta Test. R2

adj (Fig. 4(c)) shows no influence of
the function gradient on the results as the three functions are almost superposed.

(a) (b) (c)

Fig. 4. Average value of (4(a)) the mutual information, (4(b)) the Delta Test and (4(c))
the adjusted R2 for the three linear functions with different slopes described in (7).

For this property, the adjusted R2 behaves better than the Delta Test and
the mutual information in the sense that they are independent from the slope of
the functions and they obtain the same value for the three functions f1, f2 and
f3. The Delta Test behaves better than the mutual information since the bias
tends to disappear in larger samples.

5.7 Comparison Summary

Table 1 shows a summary of the comparison of the three filter criteria with
respect to the six properties presented in Sect. 3, in a context of feature selection
in regression. When analysing the ease of parameter optimization (P4), the Delta
Test performs better than the mutual information and the adjusted R2 because
its only parameter k is set to 1 by definition. In the small sample scenario
presented in this paper (P5), the Delta Test behaves better than the two other
criteria. For the estimator invariance (P6), the adjusted R2 behaves better than
the Delta Test and the mutual information in the sense that this criterion is not
influenced by the slope of the function between the features and the target.
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Table 1. Comparison of mutual information with Kraskov, Delta Test and Adjusted
R2. A ‘+’ indicates a good behaviour of the criterion towards this property. A ‘−’
indicates a weakness of the criterion towards this property. The signs‘+ +’ or ‘− − ’
are only there to show a difference between two criteria with a good (or bad) behaviour
towards the property, when one of them is better (or worse) than the other one.

Properties MI with Kraskov Noise variance with DT Adjusted R2

P1: Non-linearity + + +

P2: Multivariate + + +

P3: Estimator Behaviour + + +

P4: Estimator Parameters + + + −
P5: Estimator in Small Sample − + −
P6: Estimator Invariance − − +

6 Conclusions

This paper focuses on which properties make a good filter criterion for feature
selection in regression. To illustrate the importance of these properties, it com-
pares three filter criteria, with artificial and real datasets, to show their respective
strengths and weaknesses with respect to each other. These properties could be
used to analyse any other filter criterion used for feature selection or they could
be used in situations where there is redundancy like mRMR or missing values
in feature subsets.
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13. Gómez-Verdejo, V., Verleysen, M., Fleury, J.: Information-theoretic feature selec-
tion for functional data classification. Neurocomputing 72, 3580–3589 (2009).
https://doi.org/10.1016/j.neucom.2008.12.035

14. Guillén, A., Sovilj, D., Mateo, F., Rojas, I., Lendasse, A.: New methodologies based
on delta test for variable selection in regression problems. In: Workshop on Parallel
Architectures and Bioinspired Algorithms, Canada (2008)

15. Helleputte, T., Dupont, P.: Feature selection by transfer learning with linear reg-
ularized models. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor,
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Abstract. Feature ranking (FR) and feature selection (FS) are crucial
steps in data preprocessing; they can be used to avoid the curse of dimen-
sionality problem, reduce training time, and enhance the performance of
a machine learning model. In this paper, we propose a new layer for
deep neural networks - CancelOut, which can be utilized for FR and FS
tasks, for supervised and unsupervised learning. Empirical results show
that the proposed method can find feature subsets that are superior to
traditional feature analysis techniques. Furthermore, the layer is easy to
use and requires adding only a few additional lines of code to a deep
learning training loop. We implemented the proposed method using the
PyTorch framework and published it online (The code is available at:
www.github.com/unnir/CancelOut).

Keywords: Deep learning · Feature ranking · Feature selection ·
Unsupervised feature selection · Machine learning explainability

1 Introduction

Feature importance and interpretability of machine learning (ML) models have
received much attention in the recent years due to the fact that accurate estima-
tions are not always enough to solve a data problem. An explanation of machine
learning model outcomes may help not only to understand the model’s results,
but also to introduce new tests, better understand the data, and as a conse-
quence from above, improve trust in the model, which is important when the
model is used by specialists from other fields. However, most accurate and robust
ML models usually cannot be interpreted [4].

One of the most effective ML methods nowadays is deep learning (DL), which
can be explained in terms of the universal approximation theorem [2]. Which
principally states that any compactly supported continuous function on R

n can
be approximated with a single hidden layer feed-forward neural network (NN).
However, due to DL’s high inherent complexity, most DL models are primarily
handled as a black box. Even though recent attempts have been made to address
the issue of their interpretability and feature selection [1,4], existing methods
are complicated.
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Fig. 1. A deep neural network with a CancelOut layer as an input layer.

2 Related Work

Many research articles on feature ranking (FR) and feature selection (FS) using
DL propose the permutation method, which is based on the idea that if we
remove or corrupt a feature from a dataset, the performance will change. By
analyzing these changes, it is possible to determine if a feature is valuable or
not. The obvious drawback of that idea is that it is computation-intensive, and
in order to check n features, one need to train a DL model at least n times.

Another similar strategy was proposed in [1], where the dropout layer is
exploited for feature ranking [12] for feature ranking. To analyze which features
are important, an artificial NN model with a dropout layer must achieve mini-
mum loss, and the dropout layer should learn small dropout rates for features
that are important, while increasing the dropout rate for the rest of unimportant
features. In this case, a model can be run once.

An interesting approach for quantifying the influence of individual input
signals on the output computed by a deep neural network was proposed in the
paper [6]. This method is based on the estimation of local linear models for each
neuron in the network and the propagation and aggregation of these models into
a net wide model.

The work in [9] introduces a similar idea to the linear models with elastic net
regularization, but it employs a NN with multiple layers. This method regularizes
input weights in a loss function using l1 and l2 norms together; without these
terms the method is unstable.

Furthermore, many articles investigate an interpretation of a decision of the
ANN for a single data sample [13]. However, this approach is hard to apply for
feature ranking of a whole dataset.

The paper is divided into four sections. In Sect. 3, the proposed approach for
feature ranking is introduced. Section 4 presents the implementation and result
of the study. Finally, Sect. 5 contains a summary of the work.
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3 CancelOut

In this Section, we present a new layer for deep neural networks - CancelOut,
a method that helps identify a subset of relevant input features (variables) in a
dataset. Also, the proposed method can be applied for feature sensitivity anal-
ysis.

CancelOut is an artificial neural network (ANN) layer, which is comparable
to a fully connected (FC) layer with one distinction: neurons in the FC layer
have connections to every input, whereas neurons in the CancelOut layer have
only one connection to one particular input (Fig. 1).

The primary idea behind CancelOut layer is to update its weights (WCO)
during the training stage so that irrelevant features will be canceled out with a
negative weight (Eq. 1). Otherwise, the best variables, which contribute more to
a learning process, are going to be passed through with a positive weight.

CancelOut(X) = X � g(WCO) (1)

where � indicates an element-wise multiplication, X is an input vector X ∈ R
N
v ,

WCO is a weight vector WCO ∈ R
N
v , Nv is the feature size, and g is an activation

function. Note, g(x) denotes here element-wise application, e.g. X =

⎡
⎣

a
b
c

⎤
⎦, then

g(X) = g

(⎡
⎣

a
b
c

⎤
⎦

)
=

(⎡
⎣

g(a)
g(b)
g(c)

⎤
⎦

)
.

3.1 Theoretical Justification of the CancelOut Layer

For simplicity, consider a three layers artificial neural network (Fig. 1) with linear
activation function after layer (2) and (3), where the CancelOut layer with the
sigmoid activation function σ is utilized as input layer (superscript (1)). Note
that bias terms in FC layers are omitted for simplicity reasons. Then the output
of the network is given by:

ŷ = X � σ(WCO) · W (2)w
(3)
1 (2)

where X = [x1, x2, x3], WCO ∈ R
3,W (2) ∈ R

3, and w
(3)
1 ∈ R. Note, · is the dot

product between two vectors.
The Eq. 2 can be seen as a linear regression model:

ŷ = Xθ1 + θ0 (3)

where θ1:
θ1 = σ(WCO) · W (2)w

(3)
1 (4)

In case of multiple artificial neurons in the hidden layer(2) (Fig. 2), the output
is given by:

ŷ = X � σ(WCO) · W
(2)
1 w

(3)
1︸ ︷︷ ︸

θ1

+X � σ(WCO) · W
(2)
2 w

(3)
2︸ ︷︷ ︸

θ2

(5)
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Fig. 2. A deep neural network with a CancelOut layer and two artificial neurons in the
third layer.

From the Eq. 2 it can be seen that if the any value after the activation function
g(w(1)

CO)) in the CancelOut layer equals 0, than the corresponding input value
xn to g(w(1)

CO)) is also 0. The following lemma summarizes this idea.

Lemma 1. If a value after an activation function from the CancelOut layer is
0, a corresponding input variable does not affect the output of an ANN.

As an illustration: let a value after the activation function from the CancelOut
layer be 0.

σ(w(1)
1 ) = 0 (6)

Then ŷ from Eq. 5 from the ANN 5, can be seen as:

ŷ =X � σ(WCO) · W
(2)
1 w

(3)
1 + X � σ(WCO) · W

(2)
2 w

(3)
2

=���������
x1σ(w(1)

1 )w(2)
1 w

(3)
1 + x2σ(w(1)

2 )w(2)
2 w

(3)
1 + x3σ(w(1)

3 )w(2)
3 w

(3)
1

+ ���������
x1σ(w(1)

1 )w(2)
4 w

(3)
2 + x2σ(w(1)

2 )w(2)
5 w

(3)
2 + x3σ(w(1)

3 )w(2)
6 w

(3)
2 (7)

Remark 1. Clearly, if w
(2)
1 = w

(2)
4 = 0 in the Eq. 7 and the bias1 term is also

zero, then a CancelOut weight w
(1)
1 does not represent beneficial information. In

order to avoid this outcome, we suggest to consider these recommendations:

– a proper choice of activation function in a layer after the CancelOut layer
helps to bypass that issue;

– regularization terms can be used in a loss function;
– finally, it is advisable to have numerous artificial neurons in the layer after

the CancelOut layer, since it diminishes the chance that all neurons weights
in the layer after W (2) the CancelOut layer be zeros.

1 The bias term is omitted here, see Subsect. 3.1.
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Moreover, if a weight wi in the CancelOut layer is 0, then the gradient with
respect to wi is 0. The following lemma summarizes this idea.

Lemma 2. If a value after an activation function from the CancelOut layer is
approximately 0, then the gradient of the weight is also approximately 0.

Combining Lemmas 1 and 2, we get the following theorem:

Theorem 1. Values after the activation function in the CancelOut layer indi-
cate contributions to the output of a corresponding variable.

Consequently, the CancelOut layer ranks features in a similar way linear
models do, e.g. the large the absolute values in the CancelOut layer the more
a corresponding input variable contributes to the output. Also, compared to
linear models, the CancelOut method takes into account linear and non-linear
combinations of input data.

Remark 2. A zero coefficient in CancelOut values σ(W (1)
CO) leads to fewer opti-

mization parameters, hence, a model learns faster. This also helps to reduce, it
helps to reduce the number of features, therefore mitigating overfitting. More-
over, feature selection with the CancelOut layer can be adopted in two scenarios;
a user can either specify the number of features or extract features using a chosen
threshold.

Our FR approach is similar to [9], but in our work, the input scalar σ(W (1)
CO)

is bound in the chosen interval (e.g. for the sigmoid activation function is
(
0, 1

)
).

Therefore our approach is more stable, and it is simpler to rank features since
a user selects only a threshold. Besides, the CancelOut FR method does not
require a penalty coefficient in a loss function.

3.2 CancelOut Layer Weights Initialization

A random weight initialization is not desired for the CancelOut layer, since it
may give an advantage for one subset of features over another. Therefore, weights
are initialized with uniformly distribution [5] with additional β coefficient:

WCO ∼ U(− 1√
nin

+ β,
1√
nin

+ β) (8)

where nin is the size of the previous layer, and β is the coefficient which depends
on the choice of an activation function.

We introduced β coefficient into Eq. 8 in order to control the initial output
values after an activation function g(WCO), it needs to be g(WCO) �= 0, because
we assume that every feature is equally important e.g. for the logistic activation
function β ∈ [−3, inf).
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3.3 Loss Function

In order to accelerate the feature ranking process in the CancelOut layer, we
introduce two regularization terms in a loss function (Eq. 9):

L(X,Y ) = L(X,Y ) − λ1 var(
WCO

Nv
) + λ2

∥∥∥∥
WCO

Nv

∥∥∥∥
1

(9)

where L is a selected loss function, for the classification task it can be seen as:

LCE(X,Y ) = − 1
n

n∑
i=1

(y(i) ln ψ(x(i)) +
(
1 − y(i)

)
ln

(
1 − ψ(x(i))

)
)

−λ1 var(
WCO

Nv
) + λ2

∥∥∥∥
WCO

Nv

∥∥∥∥
1

(10)

where X =
{
x(1), . . . , x(n)

}
is the set of input examples in the training dataset,

and Y =
{
y(1), . . . , y(n)

}
is the corresponding set of labels. The ψ(x) represents

the output of the neural network given input x, λ1 and λ2 are user-specified
parameter coefficients λ1 ∈ [0, 1], λ2 ∈ [0, 1], Nv is a number of variables in a
dataset, and WCO are CancelOut weights.

The mean square error (MSE) loss can be utilized for regression tasks:

LMSE(X,Y ) =
1
2n

n∑
i=1

(y(i) − ψ(x(i)))2 − λ1 var(
WCO

Nv
) + λ2

∥∥∥∥
WCO

Nv

∥∥∥∥
1

(11)

The variance of the weights from the CancelOut layer var(WCO

Nv
) helps to

stimulate diversity in the CancelOut layer, there l1 norm is used to introduce
sparsity in WCO weights and to constrain the variation to small weights. Also, l1
penalty restricts the model from selecting correlated features. Lastly, our feature
selection approach supports all losses and does not require the realization terms
(Table 1).

Table 1. Datasets

Dataset Samples Features Target

Statlog (Australian Credit Approval) 690 14 (continuous, nominal) Binary

Diabetes 442 10 (continuous, nominal) Regression

MNIST 70.000 784 (continuous) Multiclass

4 Experimental Results

In this section, we perform several experiments to evaluate different aspects of
our CancelOut layer. In a first experiment, we examine the performance of our
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algorithm for classification and regression tasks, using the Statlog (Australian
Credit Approval) and Diabetes dataset [3] (Sect. 4.1). We choose these datasets,
because they contain different feature types such as continuous and nominal.
We compare the proposed features from a CancelOut NN with a Random Forest
and a Gradient Boosting algorithm using k-fold cross-validations (stratified for
the classification experiment).

In a second experiment, we add a dummy variable (Y + ε1) ∈ X with nor-
mally distributed noise ε to the Australian Credit Approval dataset, in order to
see if the proposed method is able to detect a feature that is highly correlated
with the target feature (Sect. 4.2). Additionally, we introduce a “noisy” vari-
able Xrandom ∼ N(0, 1) + ε2 to assess, whether CancelOut discards irrelevant
features. Note, ε1 �= ε2.

Next, we compare feature importance characteristics from LASSO, SHAP
[10], and CancelOut (Sect. 4.3). In a final experiment, we evaluate our model for
the unsupervised scenario using a convolutional autoencoder (Sect. 4.4).

Fig. 3. A deep neural network architecture used for the experiments, where n is a
number of variables.

In all experiments, we use a five layers DL model (Fig. 3) where the input layer
is the CancelOut layer with the sigmoid activation function after each FC layer
the ReLU activation function [5] was applied. Further, we use the optimization
algorithm Adam [7] with learning rate 0.003, β1 = 0.9, β2 = 0.999, and ε = 10−9.
We utilize the early stopping technique to control overfitting of our model.
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4.1 Feature Ranking

Classification Example. We illustrate the AUC scores for different sizes of
feature subsets [3] in Fig. 4. The results are obtained by five-fold stratified cross-
validation on the Australian Credit Approval dataset using Naive Bayes (Fig. 4a)
and decision trees (Fig. 4b). Our algorithm achieves consistently good predictions
for both classifiers and all feature set sizes. Moreover, CancelOut obtains superior
predictions for small feature subsets. The variability in AUC is similar for all
algorithms.

Regression Example. To evaluate CancelOut in context of a regression prob-
lem, we apply linear regression (Fig. 4c) and decision trees regression (Fig. 4d) on
the diabetes dataset. We illustrate the MSE for different sizes of the reduced fea-
ture set in Fig. 4. We obtain the MSE scores again by five-fold cross-validation.
CancelOut has disadvantages for linear regression if the number of features is
smaller than three. However, our algorithm obtains competitive results for the

Fig. 4. A comparison of FS methods using Naive Bayes classifier (a) and decision trees
(b) for the classification problem, and using linear regression (c) and decision trees
regression (d) algorithms for the regression problem.
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Fig. 5. A feature importance analysis for the Australian credit approval dataset [3]
with two new features.

mid- and end-range of the reduced feature set size. The error measures for regres-
sion tasks with decision trees highly fluctuate with the number of selected fea-
tures. Yet, our algorithm obtains best results for a small reduced feature set.
These observations suggest that CancelOut can generally obtain feature sets
that perform well in regression tasks.

4.2 Identifying Target and Noisy Features

In this experiment, we introduce two new features into the Australian Credit
Approval dataset [3]. The first variable Y + ε1 is highly correlated to the target
feature and the second is a random noise feature generated from the normal
distribution Xrandom ∼ N(0, 1) + ε2. The idea of the experiment is to show
the ability of the proposed FR method to detect key and noisy features in the
dataset.

In Fig. 5, we present a feature importance analysis for the augmented Aus-
tralian Credit Approval dataset. The depicted values are the average of ten runs
of an ANN obtained using the CancelOut layer. The analysis indicates that our
method can successfully detect variables that are highly correlated to the target
by evaluating them as the most important variable. Moreover, CancelOut miti-
gates the influence of noisy features by giving them low weights. This is shown
exemplary by the low rank of Xrandom.

4.3 Evaluating Individual Feature Importance

We investigated several feature analysis methods for the diabetes dataset and
summarized it into Fig. 6. The purpose of this comparison is to show that
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CancelOut behaves comparable to other algorithms. Although there are dif-
ferences in feature importance for the single features age, sex, s2 and s3, the
overall distribution of CancelOut weights is comparable to that of the SHAP
and LASSO models.

Fig. 6. A feature importance analysis for the diabetes dataset [3] using the proposed
method (CancelOut), LASSO, and SHAP.

4.4 Unsupervised Feature Ranking Using Autoencoder

In this subsection, we demonstrate how the CancelOut layer can be utilized for
unsupervised learning tasks with a convolutional autoencoder [11]. The archi-
tecture of the autoencoder consists of three convolutional neural network (CNN)
layers in encoder and decoder parts, and the CancelOut as an input layer for
the encoder. For this experiment, the MNIST dataset [8] is used.

Figure 7 shows CancelOut variable weights after training the convolutional
autoencoder on the whole dataset (a), only on digit 0 (b), only on digit 3 (c),
and only on digit 8 (c). CancelOut captures the most relevant regions of the
picture for all four training sets. The information provided by CancelOut layer
weights can help in model understanding, debugging, and adjustment, e.g. by
introducing a “focus” on relevant features if a model performs poorly.
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Fig. 7. σ(WCO) values from the CancelOut layer after training using MNIST dataset:
(a) the whole dataset, (b) images from 0 class, (c) images from 3 class, (c) images from
8 class.

5 Conclusion

In this paper, we introduced a novel feature ranking method using deep neu-
ral networks for various machine learning problems. The proposed method is
extremely easy to implement, it can be done using all modern DL frameworks,
and this method can be simply scaled. Due to the power of the neural networks,
the presented approach learns linear and non-linear data dependencies. Also,
the CancelOut layer can be applied for any data type and machine learning
tasks, such as classification and regression problems or even for unsupervised
problems as an input layer for an autoencoder. Finally, the proposed layer helps
understand the data and its influence on the performance of DL models.



CancelOut : A Layer for Feature Selection in Deep Neural Networks 83

References

1. Chang, C.H., Rampasek, L., Goldenberg, A.: Dropout feature ranking for deep
learning models. arXiv e-prints (2017)

2. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math.
Control, Signals Syst. 2(4), 303–314 (1989). https://doi.org/10.1007/BF02551274

3. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

4. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining
explanations: an overview of interpretability of machine learning. arXiv e-prints
(2018)

5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

6. Kasneci, G., Gottron, T.: LICON: a linear weighting scheme for the contribution
ofInput variables in deep artificial neural networks. In: Proceedings of the 25th
ACM International on Conference on Information and Knowledge Management,
CIKM 2016, pp. 45–54. ACM, New York, NY, USA (2016). https://doi.org/10.
1145/2983323.2983746

7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv e-prints
(2014)

8. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.
lecun.com/exdb/mnist/

9. Li, Y., Chen, C.Y., Wasserman, W.W.: Deep feature selection: theory and applica-
tion to identify enhancers and promoters. J. Comput. Biol. 23(5), 322–336 (2016).
https://doi.org/10.1089/cmb.2015.0189. PMID: 26799292

10. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In:
Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol.
30, pp. 4765–4774. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.pdf

11. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representa-
tions by error propagation. In: Rumelhart, D.E., McClelland, J.L., (eds.) Par-
allel Distributed Processing: Explorations in the Microstructure of Cognition, vol.
1, pp. 318–362. MIT Press, Cambridge (1986). http://dl.acm.org/citation.cfm?
id=104279.104293

12. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929–1958 (2014). http://jmlr.org/papers/v15/srivastava14a.html

13. Zhang, Q., Nian Wu, Y., Zhu, S.C.: Interpretable convolutional neural networks.
arXiv e-prints (2017)

https://doi.org/10.1007/BF02551274
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.deeplearningbook.org
https://doi.org/10.1145/2983323.2983746
https://doi.org/10.1145/2983323.2983746
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1089/cmb.2015.0189
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://dl.acm.org/citation.cfm?id=104279.104293
http://dl.acm.org/citation.cfm?id=104279.104293
http://jmlr.org/papers/v15/srivastava14a.html


Adaptive-L2 Batch Neural Gas

Nicomedes L. Cavalcanti Jr.1(B), Marcelo Rodrigo Portela Ferreira2,
and Francisco de Assis Tenorio de Carvalho1

1 Centro de Informática – CIn/UFPE,
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Abstract. Neural Gas (NG) algorithms aim to find optimal data rep-
resentations based on feature vectors. Unlike SOM, NG algorithms take
into consideration the dissimilarities between prototypes in the original
input space and not on a grid defined in advance. It has been successfully
applied in vector quantization and clustering. However, conventional NG
algorithms implicitly assume that the variables have the same importance
in the clustering task. Nevertheless, some variables may be irrelevant and,
among the important ones, some may be more or less important than
others to the clustering task. This paper provides an adaptive batch NG
algorithm that, in comparison with the traditional batch NG algorithm,
has an additional step where it automatically computes the importance
of the variables in the clustering task. Experiments with synthetic and
real datasets show the usefulness of the proposed adaptive NG algorithm.

Keywords: Batch Neural Gas · Clustering · Adaptive Distances ·
Variable weight

1 Introduction

Clustering is an essential task in unsupervised learning. Clustering aims to
organise a dataset in clusters such that objects in the same cluster have a high
degree of similarity but are dissimilar concerning objects belonging to other clus-
ters [12,22,25]. Clustering has been successfully used in different fields, including
bioinformatics [21], image processing [24], and information retrieval [5].

Traditionally, the most popular cluster structures provided by clustering
methods are partition and hierarchy. Hierarchical methods build a nested
sequence of partitions of the input data with a graphical representation called
dendrogram. Partitioning methods aim to obtain a single partition of the data
into a fixed number of clusters according to some suitable clustering criteria
based on dissimilarity, density, etc. [12].

This paper is concerned with a class of partitioning methods, the prototype-
based clustering algorithms. Hard prototype-based partitioning methods, like
c© Springer Nature Switzerland AG 2019
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k-means [15,16], assign each data point to exactly one cluster. Others algo-
rithms, like fuzzy c-means [2], self-organizing maps (SOM) [13,14] and Neural
Gas (NG) [17,18], have in common that each data point influences more than
one prototype at a time. Besides, prototype-based partitioning methods have
batch and sequential versions.

SOM has been successfully used for clustering and visualization. SOM consists
of neurons arranged ona regular low-dimensional grid (themap) such that there are
neighborhood relations among the neurons. To each neuron corresponds a proto-
type vector (model)which represents a subset of data units (cluster).One of the dif-
ficulties of the SOM is that it performs clustering assuming neighborhood relations
between neurons in a discrete output grid defined in advance [14], that has tomatch
the previous neighborhood relations between the data points. Unlike the SOM, NG
algorithms [3,7,17,18] take into consideration the dissimilarities between proto-
types in the original input space and not on a grid defined in advance.

Conventional NG algorithms implicitly assume that the variables have the
same importance in the clustering task. However, some variables may be irrele-
vant and, among the important ones, some may be more or less important than
others to the clustering task. For this purpose, several variations of the k-means
algorithm have been proposed aiming to automatically learn the weights of the
variables [1,4,11,20,23]. Concerning supervised and unsupervised sequential NG
algorithms, it has been demonstrated that the optimization of parameterized dis-
tance functions can improve their performance [8,9].

The main contribution of this paper is to provide an adaptive batch neural gas
algorithm that, in comparison with the traditional batch neural gas algorithm [3],
has an additional step where it automatically computes the importance of the
variables in the clustering task.

The rest of this paper has the following structure: Sect. 2 reviews on-line and
batch neural gas; Sect. 3 presents the proposed adaptive neural gas algorithm.
Section 4 shows the experiments performed to assess the proposed algorithm
compared to k-means and the traditional on-line and batch neural gas algo-
rithms. On Sect. 5 some conclusions are drawn and an outline for future research
is proposed.

2 Neural Gas

This section reviews the basic on-line and batch neural gas algorithms [3,7,
17,18]. Neural gas has been used successfully for vector quantization, cluster-
ing, pattern recognition, etc. In contrast to k-means, in NG algorithms, each
object influences more than one prototype at a time, according to their mutual
neighborhood. Moreover, unlike the SOM, in NG algorithms, no grid topology
is imposed in advance.

2.1 On-Line Neural Gas

Let data points x ∈ RP distributed according to a distribution P (x). The on-line
NG aims to find prototypes wr (1 ≤ r ≤ C) that represent the data points such
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that the following cost function is minimized:

ENG(W) =
1

2C(λ)

C∑

r=1

∫
hλ(Kr(xk,wr))d2(x,wr)P (x) dx (1)

where

– A matrix W =
(
wrj

)
1≤r≤C
1≤j≤P

of representatives (prototypes) of the clusters;

– d2(x,wr) is the squared Euclidean distance between data point x and proto-
type wr;

– Kr(x,wr) is a hidden variable with the constraint that its values constitute
a permutation of {0, . . . , C − 1} for each x;

– hλ is a Gaussian shaped curve with neighborhood radius λ > 0, that is
computed as hλ(Kr(x,wr)) = exp{−Kr(x,wr)/λ};

– C(λ) =
∑C

r=1 hλ(Kr(x,wr)), is a normalization constant.

The training of the on-line NG evolves on mainly two steps, namely compe-
tition and representation. The competition step provides the rank of the proto-
types sorted according to the distances as follows:

Kr(x,wr) = |{wl : d(x,wl) < d(x,wr)}|
(1 ≤ r, l ≤ C) (2)

The representation step provides the prototypes whose computation has the
form of a stochastic gradient descent, which results in:

wr = wr + Δwr

Δwr = ε hλ(Kr(x,wr)) (x − wr) (3)
(1 ≤ r ≤ C)

where, the learning rate ε > 0 controls the extent to which every wr changes
given a new data point x. The neighborhood radius decreases during the train-
ing in such a way that at the beginning, the data point influences almost all
prototypes and at the end, it influences only a few prototypes.

Assuming a clustering task, after the training of the NG algorithm, a par-
tition of the data points into C clusters can be obtained as Pr = {xk ∈ D :
Kr(xk,wr) is equal to 0} (1 ≤ r ≤ C).

2.2 Batch Neural Gas

Batch NG algorithms have the advantage of converging faster than their on-line
counterparts in most cases. Adaptation, in this case, only happens after all sam-
ples have been collected rather than at each sample, which for high dimensional
data can become a computation burden.

Let Θ = {θ1, . . . , θN} be a set of N objects described by P real-valued
variables. Let D = {x1, . . . ,xN} be a non-empty set, where the kth object θk (1 ≤
k ≤ N) is represented by a vector xk = (xk1, . . . , xkP ) ∈ RP .
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The Batch Neural Gas (BNG) derives from the NG cost function for finite
data sample as follows:

EBNG(W) =
C∑

r=1

N∑

k=1

hλ(Kr(xk,wr)) d2(xk,wr) (4)

where d2(xk,wr), Kr(xk,wr), hλ(Kr(xk,wr)) and λ are as before.
Assuming a clustering task and from an initial solution, the training of the

batch NG also evolves on mainly two steps, namely competition and representa-
tion. As before, the competition step provides the rank of the prototypes sorted
according to the distances as follows:

Kr(x,wr) = |{wl : d(x,wl) < d(x,wr)}|
(1 ≤ r, l ≤ C) (5)

The representation step provides the prototypes that are obtained from the
minimization of the cost function EBNG with respect to the prototypes. Thus,
from ∂EBNG

∂wr
= 0 and after some algebra, the cluster prototypes wr (1 ≤ r ≤ C)

are obtained as follows:

wr =
∑N

k=1 hλ(Krk)xk∑N
k=1 hλ(Krk)

(6)

After the BNG training, a partition of the data points into C can be obtained
according to Pr = {xk ∈ D : Kr(xk,wr) is equal to 0} (1 ≤ r ≤ C).

3 Adaptive-L2 Batch Neural Gas

This section presents the Adaptive-L2 Batch Neural Gas algorithm. The pro-
posed Adaptive-L2 Batch Neural Gas (hereafter named ABNG) aims to provide:

– A vector v = (v1, . . . , vP ), where vj is the relevance weight of the jth variable.
The larger vj is, the more important jth variable is;

– A matrix W =
(
wrj

)
1≤r≤C
1≤j≤P

of representatives (prototypes) of the clusters,

where wr = (wr1, . . . , wrP ) is the prototype of the cluster r (1 ≤ r ≤ C), and
wrj (1 ≤ j ≤ P ) is the jth component of the cluster prototype wr;

– A matrix K =
(Krk

)
1≤k≤N
1≤r≤C

, where Krk = Kr(xk,wr) are hidden variables

with the constraint that their values constitute a permutation of {0, . . . , C−1}
for each xk [3].

Finally, after the training and assuming a clustering task, a partition P =
{P1, . . . , PC} of Θ into C non-empty clusters can be obtained.

The ABNG algorithm is derived from a modified version of the cost function
of the BNG algorithm [3,7] as follows:
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EABNG(v,W,K) =
C∑

r=1

N∑

k=1

hλ(Krk) d2v(xk,wr) (7)

=
C∑

r=1

N∑

k=1

hλ(Kr(xk,wr)) d2v(xk,wr)

=
C∑

r=1

N∑

k=1

hλ(Kr(xk,wr))
P∑

j=1

vj (xkj − wrj)2

where

– d2v is an adaptive squared Euclidean distance parameterized by v, the vector
of relevance weights of the variables, that is computed as follows:

d2v(xk,wr) =
P∑

j=1

vj (xkj − wrj)2 (8)

– hλ is a Gaussian shaped curve with neighborhood radius λ > 0, that is
computed as hλ(Kr(xk,wr)) = exp{−Kr(xk,wr)/λ}.

For a given cycle, when the neighborhood λ radius is kept fixed, v, W and K
are computed interactively in three steps (weighting, representation, and com-
petition) through the minimization of the cost function EABNG.

During the weighting step, the matrices W and K are kept fixed. Thus, the
minimum of the cost function EABNG is obtained when v is a null vector. To avoid
this trivial solution, a constraint on the components of v is needed. In previous
work two main types of constraints are proposed: a product-to-one constraint [4]
and a sum-to-one constraint [11]. Since the latter approach needs the tuning
of a further parameter, in this paper, we will consider only the product-to-one
constraint. Therefore, first, we use the method of Lagrange multipliers with the
restriction that

∏P
j=1 vj = 1 and obtain

LABNG(v,W,K) =
C∑

r=1

N∑

k=1

hλ(Kr(xk,wr))
P∑

j=1

vj (xkj −wrj)2 −ω

⎛

⎝
P∏

j=1

vj − 1

⎞

⎠

(9)
Then, we compute the partial derivatives of LABNG w.r.t. vj (1 ≤ j ≤ P ) and

ω, and after some algebra we obtain

vj =

{∏P
h=1

[∑C
r=1

∑N
k=1 hλ(Kr(xk,wr)) (xkh − wrh)2

]} 1
P

∑C
r=1

∑N
k=1 hλ(t)(Kr(xk,wr)) (xkj − wrj)2

(10)

During the representation step, v and K are kept fixed. The cost function
EABNG is optimized with respect to the prototypes. Thus, from ∂EABNG

∂wr
= 0

and after some algebra, the cluster prototypes wr (1 ≤ r ≤ C) are obtained as
follows:
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wr =
∑N

k=1 hλ(Krk)xk∑N
k=1 hλ(Krk)

(11)

During the competition step, v and W are kept fixed. The cost function
EABNG is optimized with respect to the matrix K. First, we can rewrite EABNG

as

EABNG(K) =
N∑

k=1

C∑

r=1

hλ(Krk) d2v(xk,wr)

The cost function EABNG(K) is minimized with respect to the matrix
K =

(Krk

)
1≤k≤N
1≤r≤C

if, for each xk ∈ D,
∑C

r=1 hλ(Krk) d2v(xk,wr) is minimized.

According to Ref. [7] this is achieved if Krk, the rank of prototype wr with
respect to object xk, is sorted according to the (adaptive) distance used to com-
pare objects and prototypes, i.e., if Krk is computed as follows:

Krk = Kr(xk,wr) = |{wl : dv(xk,wl) < dv(xk,wr)}| (12)

where |A| is the cardinal of a given set A.

Algorithm 1. ABNG algorithm
Require: : the data-set D = {x1, . . . ,xn}; the number C of clusters; the number of

iterations Tmax; initial radius λi; final radius λf

Ensure: : the vector of relevance weights of the variables v; the matrix of prototypes
W; the matrix K the partition P

1: Initialization

Set t ← 0; Set λ(t) = λi

(
λf

λi

) t
TMax ; Set v(t) = (1, . . . , 1);

For (1 ≤ r ≤ C), randomly select C distinct prototypes w
(t)
r ∈ D;

For (1 ≤ k ≤ N) and (1 ≤ r ≤ C), compute dv(t)(xk,w
(t)
r );

For (1 ≤ k ≤ N) and (1 ≤ r ≤ C), compute K(t)
rk = Kr(xk,w

(t)
r ) = |{w(t)

l :

dv(t)(xk,w
(t)
l ) < dv(t)(xk,w

(t)
r )}|;

2: repeat

3: set t = t + 1; set λ(t) = λi

(
λf

λi

) t
TMax ;

4: Step 1: weighting:
For (1 ≤ j ≤ P ), compute:

v
(t)
j =

{∏P
h=1

[∑C
r=1

∑N
k=1 h

λ(t) (Kr(xk,w
(t−1)
r )) (xkh−w

(t−1)
rh

)2
]} 1

P

∑C
r=1

∑N
k=1 h

λ(t) (Kr(xk,w
(t−1)
r )) (xkj−w

(t−1)
rj )2

5: Step 2: representation:

For (1 ≤ r ≤ C), compute: w
(t)
r =

∑N
k=1 h

λ(t) (Kr(xk,w
(t−1)
r ))xk

∑N
k=1 h

λ(t) (Kr(xk,w
(t−1)
r ))

6: Step 3: competition:
For (1 ≤ k ≤ N) and (1 ≤ r ≤ C), compute K(t)

rk = Kr(xk,w
(t)
r ) = |{w(t)

l :

dv(t)(xk,w
(t)
l ) < dv(t)(xk,w

(t)
r )}|;

7: until t > tmax

8: Step 3: final assignment:
For (1 ≤ r ≤ C), compute: Pr = {xk ∈ D : Kr(xk,w

(t)
r ) is equal to 0}
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Once reached the predetermined maximum number of cycles by the user, the
last step of ABNG is to assign the objects to the clusters as follows:

Pr = {xk ∈ D : Kr(xk,wr) is equal to 0} (1 ≤ r ≤ C) (13)

4 Experiments

This section provides an experimental comparison between the proposed ABNG
algorithm with conventional NG and BNG neural gas algorithms as well as
k-means as a baseline algorithm.

4.1 Synthetic Datasets

To evaluate the ability of the proposed method for handling noise on data,
the 3MC synthetic dataset (available at https://github.com/deric/clustering-
benchmark) was considered. This dataset has 400 objects each described by 2
real-valued variables plus a class indicator variable. There are 3 well-defined
clusters into this dataset. One cluster has a ring-like shape and the other two
clusters have a rectangular shape. These clusters do not overlap.

During the experiments over 3MC, four scenarios were considered. The first
scenario is the original 3MC dataset. In the second, third and fourth scenarios
were added, respectively, one, five and ten noise variables. The noise variables
follow a Gaussian distribution with mean set to 2μ1 + 2μ2 and variance set
to (2σ2

1 + 2σ2
2)

2 where μ1 and μ2 are the sampling mean of 3MC original two
variables respectively and σ2

1 and σ2
2 are the sampling variance of 3MC original

two variables respectively.
In each of the four scenarios considered here the four algorithms KM, NG,

BNG, and ABNG were executed 30 times. The quality of the partitions provided
by these algorithms was assessed with the Adjusted Rand index (AR) [10]. The
AR index measures the similarity between an a priori partition and a partition
provided by a clustering algorithm. AR takes its values from the interval [−1, 1],
where the value 1 indicates perfect agreement between partitions, whereas values
near 0 (or negatives) correspond to cluster agreement found by chance [19].
For the learning rate parameter ε(t) = εi(

εf

εi
)

t
TMax of NG algorithm, we follow

Ref. [17] and set suitable initial and final values, respectively as εi = 0.5 and
εf = 0.05, for all 3MC datasets. For the neighbourhood radius λ(t) = λi(

λf

λi
)

t
TMax

of BNG and ABNG algorithms, the initial and final values were set, respectively,
as λi = 199.00 and λf = 0.43 for each 3MC dataset. The initial value was set
such that hλ(C − 1) = exp{−(C − 1)/λ} = 0.99. In this way, each data point
influences strongly all the prototypes, even the prototype of highest rank (the
most dissimilar prototype). On the contrary, the final value was set such that
hλ(C − 1) = exp{−(C − 1)/λ} = 0.01. In this way, each data point influences
strongly only the prototypes of lower rank (the most similar prototypes). We
also considered 400 cycles (TMax = 400).

https://github.com/deric/clustering-benchmark
https://github.com/deric/clustering-benchmark
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Table 1 shows the performance of the algorithms in terms of AR index for
the solution that presented the minimum value of the cost function among the
30 solutions. It can be observed that ABNG outperforms all the other algo-
rithms considered here when noise variables are added to the original 3MC. The
other algorithms have their AR index values severely compromised even when
just one single noise variable was added to 3MC whereas ABNG showed robust
performance in terms of AR index for all scenarios considered.

Table 1. AR index for the solution with minimum value of the cost function for 3MC
dataset and versions of it with noise variables

Dataset + number of noise variables added AR index

KM NG BNG ABNG

3MC + 0 0.80026 0.80026 0.71435 0.73309

3MC + 1 −0.00434 −0.00472 −0.00351 0.75255

3MC + 5 0.00503 0.00284 0.00359 0.65653

3MC + 10 −0.00263 −0.00251 −0.00372 0.60010

The second column of Table 2 shows the final weight vector v computed
by ABNG for the minimum value for cost function EABNG over 30 executions.
Despite the addition of noise variables to the original 3MC dataset, ABNG was
able to assign much higher weights to the first two original variables and com-
paratively much lower weights to the noise variables. This helps to explain how
ABNG handles so well the scenarios where noise variables were added to 3MC
data set.

Table 2. Final weight vectors v provided by the ABNG algorithm for 3MC datasets,
with and without noise variables, for the minimum cost function EABNG

Dataset + number of
noise variables added

Final weight vector v
provided by the ABNG

3MC + 0 (1.752, 0.570)

3MC + 1 (13.056, 12.192, 0.006)

3MC + 5 (374.961, 116.076, 0.121, 0.119, 0.127, 0.115, 0.108)

3MC + 10 (481.508, 625.415, 0.274, 0.244, 0.271, 0.298, 0.295,
0.264, 0.308, 0.308, 0.282, 0.289)
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4.2 UCI Machine Learning Repository Datasets

Fifteen datasets from the UCI Machine learning Repository [6], were considered
in this study. Table 3, in which N is the number of objects, P is the number of
variables, K is the number of a priori classes, summarizes these datasets.

Table 3. Summary of the datasets

Dataset N P K

Breast Tissue 106 9 6

Cardiotocography 2126 22 3

Crowdsourced Mapping 10845 29 6

Ecoli 336 7 8

Glass identification 214 9 6

Image Segmentation 2310 16 7

Iris 150 4 3

Leaf-30c 310 14 30

Libras Movement 360 90 15

Mice Protein 1077 68 8

Thyroid Gland 215 5 3

Pima Diabetes 768 8 2

wdbc 569 32 2

Wine 178 13 3

Yeast 1484 8 10

The initial and final values of the learning rate parameter of NG algorithm
were set, respectively, as εi = 0.5 and εf = 0.05, for all datasets. For the neigh-
bourhood radius of NG, BNG, and ABNG algorithms, Table 4 provides suitable
initial value λi and final value λf specifically for each dataset. We refer to the
Sect. 4.1 for a discussion on setting these parameters.

K-means, NG, BNG and ABNG were run on these datasets 30 times, with
C (the number of clusters) equal to K (the number of a priori classes). The
quality of the partitions provided by these algorithms was also assessed with
the Adjusted Rand index (AR) [10]. For each algorithm, Table 5 shows its per-
formance in terms of AR index for the solution that presented the minimum
value of the cost function among the 30 solutions, one for each run. It can be
observed that ABNG was the best in 7 out of 15 datasets. In particular, ABGN
outperformed BNG in 11 out 15 datasets and NG in 8 out 15 datasets. However,
k-means outperformed the ABNG algorithm in 8 out of 15 datasets.
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Table 4. Neighbourhood radius: initial and final values

Dataset λi λf

Breast cancer winsconsin 99.50 0.22

Breast Tissue 497.50 1.09

Cardiotocography 199.00 0.43

Crowdsourced Mapping 497.50 1.09

Ecoli 696.49 1.52

Glass identification 497.50 1.09

Image Segmentation 596.99 1.30

Iris 199.00 0.43

leaf-30c 2885.48 6.30

Libras movement 1392.99 3.04

Mice protein 696.49 1.52

Pima Diabetes 99.50 0.22

Thyroid Gland 199.00 0.43

Wine 199.00 0.43

Yeast 895.49 1.95

Table 5. AR index for the solution with minimum E

Dataset CRand for minimum E

KM NG BNG ABNG

BreastTissue 0.17452 0.09986 0.16429 0.28897

Cardiotocography 0.04578 0.04171 0.01984 0.06277

Crowdsourced Mapping 0.10593 0.10223 0.09496 0.10381

Ecoli 0.42266 0.41313 0.38940 0.38436

Glass identification 0.27023 0.27389 0.23341 0.19504

Image Segmentation 0.40342 0.32288 0.30691 0.47409

Iris 0.73024 0.73024 0.75834 0.71728

Leaf-30c 0.31538 0.30420 0.24062 0.26143

Libras Movement 0.32728 0.31527 0.21434 0.20981

Mice Protein 0.14491 0.15681 0.10680 0.14080

Thyroid Gland 0.57907 0.57907 0.36858 0.84875

Pima Diabetes 0.07439 0.07203 0.07619 0.10680

wdbc 0.49142 0.49142 0.49664 0.71220

Wine 0.37111 0.37111 0.37198 0.77127

Yeast 0.13361 0.13867 0.08646 0.12377
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5 Conclusions

Conventional on-line and batch NG algorithms implicitly assume that the vari-
ables have the same importance in the clustering task. This paper proposes
ABNG, an adaptive batch NG algorithm that computes the optimal weights of
relevance of the variables in this task. These weights change at each iteration of
the algorithm and are different from variable to variable. Therefore, the proposed
algorithm is able to select the important variables for the clustering task.

Experiments with synthetic and real datasets from the UCI machine learn-
ing repository [6] showed the usefulness of the proposed new clustering method.
The experiments with the synthetic datasets showed the ability of the proposed
method for handling noise on data, in contrast with the conventional neural gas
algorithms. The results with the real datasets, showed the overall good perfor-
mance of the ABNG algorithm, specially for the datasets with variables of dif-
ferent relevance for the clustering task. Moreover, the proposed adaptive batch
NG outperformed the conventional batch NG in 11 out of 15 datasets.

The adaptive batch NG algorithm of this paper takes into account the rele-
vance weight of the variables globally for all clusters. In the near future, we aim
to extent it to take into account the relevance weight of the variables locally for
each cluster specifically.
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Abstract. Recently, the applications of Artificial Intelligence are widely spread
in many areas of research. They almost use tailor made classification engine of
Deep Learning, and many of such engines uses Convolutional Neural Networks.
In this paper, we propose a method for preprocessing the un-structured data to
the 2 dimensional data suitable for CNN using Self Organizing Map. The
performance is evaluated with the experiments using KDD cup 99 data as input
vectors.

Keywords: Self Organizing Map � Convolutional Neural Network �
Data compression

1 Introduction

Recently, Artificial Intelligence (AI) is applied to the applications of many areas, such
as industrial, entertainment, educational, and so on. In these applications, Deep
Learning (DL) [1] method which employs the neural network using deep layers are
used. DLs are also applied to many researches of bio-medicine, chemistry, biology,
security, and so on. One of reason why DLs are applied to many researches is existence
of tailor made classification engines which are based on DL. Many of these engines are
designed for image classification which employed deep Convolutional Neural Network
(CNN) [2]. However, almost of real world data are not 2-dimensional array data which
can be easily converted to image. It may be the vector of 1-dimensional array of large
number of elements, multi-modal vectors which are composed of unstructured vectors,
or multi-dimensional arrays more than 3 dimension. In some researches, the input
data are simply converted to images with simply arranging the original data on
2-dimensional array, and applied to CNN for classification. In [3], processor level
features are simply arranged on 2 dimensional array, and given to CNN for detecting
Malware. Using this method, good performance of classification is reported in a certain
degree, however the performance of CNN is considered not to be provided enough.
CNN can extract the features of local region in the images with convolution. However,
the effect of convolution may be meaningless because the input data are arranged on
2-dimensional array in meaningless way.
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In this paper, we propose a method for preprocessing the un-structured data to the
2 dimensional array suitable for CNN using Self Organizing Map (SOM) [4]. Con-
ventionally, SOM is applied to the unsupervised clustering and visualization of the
relationship of input vectors. In this paper, SOM is presented the vector of each element
of all data as input vectors, because SOM is used to convert the unstructured data to
2 dimensional array. With using smaller map size compared with the original data, the
input data can be compressed, and the time for computation in classification is expected
to be shortened. After converting the input data to set of 2 dimensional arrays, the
arrays are given to CNN for classification.

The experiments using KDD cup 99 data [5] are conducted to examine the per-
formance of proposed method.

2 Method

2.1 Preprocessing of Input Data Using SOM

As for the conventional Self Organizing Map (SOM), the input vectors are given for
each data in row data shown as (a) in Fig. 1. After learning, the input data is mapped to
a winner unit, and the relationship among the data is visualized on the map.

For converting the input data to 2 dimensional array, the input data are given to
SOM for each attribute in column as shown as (b) in Fig. 1. Before learning, the input
data are normalized for each attribute. After learning SOM, the map represents the
relationship among the attributes according to the set of input data. Thus, the layer
composed of the element of n-th position in reference vectors represents the features of
n-th input data arranged on 2 dimensional array of map size as shown in Fig. 2. If the
size of map is taken as smaller than the number of attributes, input data is compressed.
If the size is taken as larger, input data is extended including the relationship among the
data.

The preprocessed data are given to CNN as image data after normalizing the values
in 2 dimensional array between 0–255, and classification is conducted.

Fig. 1. Input data of SOM
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2.2 Algorithm

The brief algorithm is as follows.

1. For each attributes, the input data are normalized between 0 and 1.
2. Train SOM using the input vector composed of each attribute of all input data as

shown as (b) in Fig. 1.
3. Extract each layer of the reference vectors on the map as the converted data of each

input data as shown in Fig. 2, and convert the values from 0.0–1.0 to 0–255 as to
convert to 8 bit grayscale image.

4. Classify the converted images using CNN.

3 Experimental Result

The experiments are conducted using KDD cup 99 data which is used as standard
benchmark data for detection of malicious IP packets. As for the reason of computa-
tional resources, 10000 heading data in kddcup.data_10_percent is used, and the major
9 labels which include more than 10 data are used for classification. Each data is
composed of 42 attributes including the label, and 38 numerical attributes are used after
normalizing to the range 0 to 1 as mentioned in Sect. 2.

The experiments are conducted with changing the size of maps. For all cases, each
data is learned in 100 iterations with changing the neighbor size from 1/2 of map size to
0, learning rate from 0.8 to 0.1. Figure 3 shows the preprocessed data which is con-
verted to 4 � 4 images using the map of 4 � 4 units for 3 data labeled Normal,
Neptune and Smurf in KDD cup 99 data.

Fig. 3. Preprocessed Images of 4 � 4

Fig. 2. Preprocessing to 2 dimensional array
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For each label, the input data is converted to the different image which can be easily
identified by human.

After preprocessing using SOM, the converted images are given to CNN for the
experiments of classification. For the comparison, the original data are converted to the
image of 8� 5 pixels with arranging 38 attributes in order and padding 0 to remainders.

CNN is implemented using Keras library with TensorFlow. The CNN with 6 layers
which is composed of 4 convolution layers and 2 dense layers is used. 80% of the data
are used for training and 20% of data are used for validation, and 3 cross validations are
conducted for each case. All training data are presented to CNN in 5 epochs. Table 1
shows the results.

The number in () in the first row denotes the number of data for each label. From
2nd row, each row denotes the result with changing the size of map. The first column
denotes the accuracies for training data, the second column denotes those for validation
data, and the remainder denotes the those for each labeled data. For all cases, the
accuracies for training data and validation data are over 98%. The data of major 3
labels are classified in high accuracies for all cases, however accuracies of minor 6
labels degrade as the size of the images becomes smaller. Conversely, major 3 labels
can be almost classified using only 4 elements in 2 � 2 images preprocessed by SOM.

Table 1. Accuracies of classification

Training data Validation Normal
(1956)

Neptune
(2114)

Smurf (5742)

Original data 0.996 0.997 0.995 1.000 0.999
2 � 2 0.981 0.980 0.997 1.000 0.666
3 � 3 0.995 0.995 0.995 1.000 1.000
4 � 4 0.993 0.993 0.998 1.000 0.999
8 � 5 0.994 0.994 0.997 1.000 0.999
8 � 8 0.996 0.994 0.996 0.999 0.999
16 � 16 0.994 0.995 0.986 1.000 1.000
Tear drop (19) Port sweep (27) Ip sweep (10) Back (13) Satan (!5) Warez client (20)
0.982 0.963 0.855 0.983 0.880 0.833
0.000 0.000 0.000 0.000 0.282 0.000
1.000 0.877 0.870 0.942 0.812 0.282
0.544 0.914 0.652 0.800 0.812 0.410
0.982 0.827 0.783 0.958 0.838 0.462
1.000 0.889 0.841 0.783 0.812 0.821
0.947 0.877 0.841 0.958 0.897 0.936

Application of Self Organizing Map to Preprocessing Input Vectors 99



4 Conclusion

In this paper, the preprocessing method of unstructured data to 2 dimensional array
suitable for Convolutional Network using Self Organizing Map is proposed. The
effectiveness is confirmed by the experiments using KDD cup 99 data. Practical
accuracy can be achieved even if the original data are compressed to 1/10 number of
elements.

As the future work, the preprocessing method of newly presented data should be
considered. In current method, new data must be preprocessed by SOM with adding to
training data. The method which can convert new data using the trained map should be
developed. And, it may be possible to get better accuracy with converting the data to 3
or more dimensional data, and applying to CNN.
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Abstract. Humans can set suitable subgoals to achieve certain tasks.
They can also set sub-subgoals recursively if required. The depth of this
recursion is apparently unlimited. Inspired by this behavior, we propose a
new hierarchical reinforcement learning architecture called RGoal. RGoal
solves the Markov Decision Process (MDP) in an augmented state-action
space. In multitask settings, sharing subroutines between tasks makes
learning faster. A novel mechanism called thought-mode is a type of
model-based reinforcement learning. It combines learned simple tasks to
solve unknown complicated tasks rapidly, sometimes in zero-shot time.

Keywords: Hierarchical reinforcement learning ·
Model-based reinforcement learning · Zero-shot learning ·
Computational neuroscience

1 Introduction

Humans can set suitable subgoals to achieve certain tasks (goals). They can also
set sub-subgoals recursively if needed. For example, if you wish to get an object
on a high shelf, it is necessary to set up a ladder first. In this case, “the ladder
is set up” is a subgoal state. If the ladder is in a store room, it is necessary to go
to the store room first to retrieve the ladder. In this case, “you are in the store
room” becomes a sub-subgoal state. The depth of this recursion is apparently
unlimited for humans. Inspired by this behavior, we propose a new hierarchical
reinforcement learning architecture [2–6,8,9,11] called the RGoal architecture.

In RGoal, an agent’s subgoal settings are similar to subroutine calls in pro-
gramming languages. Each subroutine can execute primitive actions or recur-
sively call other subroutines. The timing for calling another subroutine is learned
by using a standard reinforcement learning method. Unlimited recursive subrou-
tine calls accelerate learning because they increase the opportunity for the reuse
of subroutines in multitask settings.

RGoal is strongly influenced by the previously proposed HDG [4] and
MAXQ [6] architectures. MAXQ is a multi-layered hierarchical reinforcement
c© Springer Nature Switzerland AG 2019
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Fig. 1. Even though goals (G1, G2, and G3) are different between tasks, the route from
the state S to the subgoal m is common. If the tasks share that route as a subroutine,
learning will be accelerated.

learning architecture with a fixed number of layers. It accelerates learning based
on the following three features.

1. Subtask sharing: In multitask settings, sharing subroutines between tasks
makes learning faster (Fig. 1).

2. Temporal abstraction: When learning complicated tasks, restricting the
search space such that it only includes combinations of simple subroutines
makes learning faster.

3. State abstraction: Abstracting states to such an extent that they do not affect
the execution of subroutines makes learning faster.

RGoal provides the first feature through value function decomposition (Sect. 2.3)
and the second feature through a novel mechanism called thought-mode
(Sect. 2.7). Although we have not yet implemented the third feature, it should
be possible through function approximation using neural networks.

In the future, by extending RGoal, we wish to construct a computational
model of the mechanism of human planning based on the prefrontal cortex of
the human brain. Therefore, RGoal is designed not only to be useful from an
engineering perspective, but also to be a simple architecture that can be easily
implemented in the neural circuits of the brain.

The remainder of the paper is organized as follows. First, we describe the
architecture of RGoal in Sect. 2 and evaluate it in Sect. 3. We describe related
works in Sect. 4. Finally, we present our conclusions in Sect. 5.

2 The RGoal Architecture

2.1 Landmarks and Subgoals

In this paper, we assume that the set of states that may become goals or subgoals
on the environment is given beforehand. We refer to an element of this set as a
landmark. Typically, landmarks are states of the environment that are salient to
the agent.

In RGoal, a subroutine g is “a policy for reaching the subgoal state g from
arbitrary states.” We assume that an agent executing subroutine g will reach the
corresponding state g within finite time. This assumption simplifies the theoret-
ical framework and algorithm for RGoal, and facilitates the realization of the
thought-mode described in Sect. 2.7. It must be possible to extend RGoal in the
future such that each subroutine can have more than one terminal state, similar
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Fig. 2. (a) An example state-action space in a two-dimensional grid. (b) The augmented
state-action space when a landmark set M = {m1,m2,m3} is given. Possible actions
include the subroutine calls CM = {Cm1 , Cm2 , Cm3} and movements within the two-
dimensional space.

to the MAXQ architecture [6]. Although the reusability of subroutines can be
increased in this manner, it may also increase the calculation cost of action-value
functions or decrease calculation accuracy.

An agent maintains a stack to remember subgoals. When an agent calls a
subroutine g′, the current subgoal g is pushed onto the stack. When the sub-
routine g′ terminates (the agent reaches the corresponding state g′), the original
subgoal g is popped from stack and reset as a new subgoal.

There is another design methodology that does not use a stack. In this
methodology, an agent only remembers the original goal G. Whenever the final
called subroutine terminates, the current subgoal is reset to G. Although we
have confirmed that this methodology also works, we do not present its details
in this paper.

Although the landmark set affects performance, a bad landmark set does
not make a task unsolvable. If a landmark set only contains the goal state,
the behavior of RGoal is the same as non-hierarchical reinforcement learning.
If there are too many landmarks in the set, learning becomes very difficult.
However, landmarks that are not worth using will be gradually filtered out as
learning progresses.

2.2 The Augmented State-Action Space

The RGoal architecture learns the action-value function for the Markov deci-
sion process (MDP) in the augmented state-action space [9] described in this
Section. Because the mathematical structure of this MDP is the same as typ-
ical MDPs, we can utilize various theoretical conclusions (e.g., convergence to
an exact solution) and implementation techniques (e.g., function approximation
and eligibility trace) to solve problems.

An MDP is defined as < S,A, P, r >, which consists of a set of states S, set
of actions A, transition function P : S × A → (S → [0, 1]), and reward function
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r : S × A → R. When an MDP and a landmark set M = {m1,m2, · · · } ⊆ S
are given, another MDP on the augmented state-action space < S̃, Ã, P̃ , r̃ > is
defined as follows. First, a set of augmented states S̃ and a set of augmented
actions Ã are defined as

S̃ = S × M
Ã = A ∪ CM, CM = {Cm1 , Cm2 , · · · }. (1)

An augmented state s̃ = (s, g) ∈ S̃ is a pair consisting of an original state s and
a subgoal state g ∈ M. Cm ∈ CM is an action that calls a subroutine m. In
other words, Cm sets the landmark m as a new subgoal. Taking an action Cm

changes the augmented state (s, g) to (s,m). A transition function P̃ (s̃′|s̃, ã) is
defined based on the original transition function P (s′|s, a) as follows:

P̃ ((s′, g)|(s, g), a) = P (s′|s, a)
P̃ ((s,m)|(s, g), Cm) = 1. (2)

A reward function r̃(s̃, ã) is defined based on the original reward function r(s, a)
as follows:

r̃((s, g), a) = r(s, a)
r̃((s, g), Cm) = RC , (3)

where the constant RC is a hyperparameter that represents the cost of each
subroutine call.

Figure 2 presents an example of an augmented state-action space. It contains
the subgoal g, which represents the agent’s inner state, as part of the state of
the external environment. If the original state-action space is a two-dimensional
space and n landmarks are given, the augmented state-action space looks like a
building with n floors. At each step, the agent moves within the current floor
or moves to another floor. In general, optimal policies do not execute any Cm.
However, the execution of some Cm may make convergence to a suboptimal
policy faster.

2.3 Value Function Decomposition

Decomposition of the action-value function in the augmented state-action space
makes learning faster because parts of the decomposed functions are shared
between different tasks. The details of this process are provided below.

Given a policy π : S̃×Ã → [0, 1] and a goal G ∈ M, the action-value function
Qπ

G(s̃, ã) is defined as

Qπ
G((s, g), ã) = Eπ

G[Σ∞
t=0rt+1|s̃0 = (s, g), ã0 = ã], (4)

which is the expected value of the summation of the sequence of rewards r1 =
r̃(s̃0, ã0), r2 = r̃(s̃1, ã1), · · · , which are obtained when taking an action ã at an
initial state s̃0 = (s, g) and taking actions according to the policy π. We assume
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that the total reward obtained after reaching the goal state G is 0. In other words,
tasks are episodic. In this paper, we assume that rewards are not discounted.

We assume that if an agent is using a policy π, the agent at a state (s, g)
reaches the subgoal state (g, g) within finite time. Furthermore, an agent at
the state (g,G) reaches the goal state (G,G) within finite time. When the stack
contains only G and an agent reaches the subgoal state (g, g) from (s, g), the state
is automatically set to (g,G) and the reward at the time is 0. Then, Qπ

G(s̃, ã) can
be decomposed into two parts (i.e., rewards obtained before and after reaching
the subgoal g) as follows:

Qπ
G((s, g), ã) = Qπ(s, g, ã) + V π

G (g), (5)

where Qπ(s, g, ã) is the expected value of the total rewards obtained when taking
an action ã at an initial state (s, g) and taking actions according to the policy
π until reaching (g, g). Additionally, V π

G (g) is the expected value of the total
rewards after the state (g,G) until reaching (G,G), which can be efficiently
calculated based on Qπ(s, g, ã) as

V π
G (g) = Σãπ((g,G), ã)Qπ

G((g,G), ã)
= Σãπ((g,G), ã)(Qπ(g,G, ã) + V π

G (G))
= Σãπ((g,G), ã)Qπ(g,G, ã). (6)

(Note that V π
G (G) = 0).

Because the function Qπ(s, g, ã) does not depend on the original goal G, it can
be shared between different tasks to make learning faster. The same argument
holds when recursive calls are permitted.

2.4 Update Rule

The current implementation of RGoal represents an action-value function
Q(s, g, ã) as a table. The update rule for the table can be derived from a standard
reinforcement learning method, Sarsa algorithm for QG(s̃, ã):

QG(s̃, ã) ← QG(s̃, ã) + α(r + QG(s̃′, ã′) − QG(s̃, ã)). (7)

Consider the case where ã is Cg′ , which represents a subroutine call g′. When
the stack contains only G and prior to the subroutine call, the assumed route
of the agent is s → g → G. After the subroutine call, the route is changed to
s → g′ → g → G. Therefore, the following equation holds:

QG(s̃′, ã′) − QG(s̃, ã)
= (Q(s′, g′, ã′) + Vg(g′) + VG(g)) − (Q(s, g, ã) + VG(g))
= Q(s′, g′, ã′) − Q(s, g, ã) + Vg(g′). (8)

This equation also holds when ã is not a subroutine call, but is a primitive
action. (Not that g = g′ and Vg(g′) = 0, in such cases.) The same argument
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holds when recursive calls are permitted. From Eqs. (5), (7), (8), the update
rule for Q(s, g, ã) is derived as

Q(s, g, ã) ← Q(s, g, ã) + α(r + Q(s′, g′, ã′) − Q(s, g, ã) + Vg(g′)). (9)

Note that special treatment is required when s = g (i.e., the agent reaches
the subgoal g). Because Q(s, g, ã) = 0 when s = g, by definition, the table values
should not change in such cases.

2.5 Table Initialization

The elements of the table Q should be initialized as Q(s, g, ã) = 0 if s = g.
If s �= g, the initial values are arbitrary. However, the values do affect per-

formance [7]. As an extreme case, we can restrict subroutine calls by setting
Q(s, g, Cm) = −∞ for some appropriate set of (s, g,m) to reduce the search
space. If such a restriction is too strong, performance will become worse. How-
ever, this does not make a task unsolvable because the execution of primitive
actions is not restricted. An engineer may design appropriate restrictions of sub-
routine calls to tune overall performance, similar to the task graph design in the
MAXQ architecture [6].

2.6 Action Selection

The action-selection policy π(s̃, ã) is derived from the action-value function
QG(s̃, ã). The current implementation uses a softmax action selection policy,
which is defined as follows:

π((s, g), ã) =
exp(βQG((s, g), ã))

Σã′exp(βQG((s, g), ã′))
=

exp(βQ(s, g, ã) + βVG(g))
Σã′exp(βQ(s, g, ã′) + βVG(g))

=
exp(βQ(s, g, ã))

Σã′exp(βQ(s, g, ã′))
. (10)

2.7 Thought-Mode

When learning complicated tasks, restricting the search space to include only
combinations of simple subroutines makes learning faster. In this case, subrou-
tines realize the temporal abstraction [5] of action sequences. In the RGoal archi-
tecture, a novel mechanism called thought-mode facilitates this behavior.

Suppose that the optimal routes between all neighboring pairs of landmarks
have been already learned. Then, an approximate solution for the optimal route
between distant landmarks can be obtained by connecting neighboring land-
marks. For example, in Fig. 1, the route S → m → G1 is an approximate solu-
tion for the route from S to G1. Such solutions can be found without taking any
actions within the environment [2–4]. The thought-mode of RGoal is a mecha-
nism for finding approximate routes by repeating simulations of episodes within
an agent’s brain. This mechanism can be implemented with only a few small
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Fig. 3. Pseudo code for the RGoal algorithm, which is based on the Sarsa algorithm.

modifications to the RGoal algorithm. Because of its simplicity, we consider this
mechanism to be a promising first step toward a computational model for the
planning mechanism of the human brain.

The behavior of thought-mode is described below. If the selected action ã is a
primitive action, the simulated state in the agent’s brain is immediately changed
from s to the current subgoal g. In such cases, the table element Q(s, g, ã) is not
updated. If ã is a subroutine call Cm, the behavior of thought-mode is the same
as that of the normal mode. In such cases, the subgoal g is changed to m and
the table element Q(s, g, Cm) is updated normally.

The behavior described above can be regarded as a type of model-based
reinforcement learning [1]. The learned value of Q(s, g, ã) is used as a model of
the environment that tells the agent how much reward will be obtained if the
agent moves from s to g.

2.8 RGoal Algorithm

The pseudo code for the RGoal algorithm, which is based on the Sarsa algorithm,
is presented in Fig. 3. This algorithm uses a flat table and stack with a single
loop consisting entirely of simple operations.
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3 Evaluation

RGoal performance was evaluated on a maze task. Here, we focus on convergence
speed to suboptimal solutions, rather than exact solutions.

The map and landmark set are presented in Fig. 4. For each episode, the
start S and goal G are randomly selected from the landmark set. When the
agent reaches G, the episode ends and the next episode with a different start
and goal begins.

Fig. 4. Map of a maze on the 2D grid used for the evaluation. Twenty landmarks
(denoted m) are placed on the map. For each episode, the start S and goal G are
randomly selected from the landmark set.

Fig. 5. Experiment 1. Relationship between the upper limit S of the stack depth and
RGoal performance. S = 0 corresponds to non-hierarchical reinforcement learning.
When S = 1, recursive calls are not allowed, as in the two-layered reinforcement learn-
ing. A greater upper limit results in faster convergence because it increases the oppor-
tunity for the reuse of subroutines.
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Fig. 6. Experiment 2. Relationship between the length P (times 1000 steps) of the
pre-training phase and RGoal performance. In the pre-training phase, only pairs of the
start and goal within Euclidean distances of eight are selected. S = 100. The graph
also includes a change in the score during the pre-training phase. The greater the value
of P , the faster the convergence speed.

Fig. 7. Experiment 3. Relationship between thought-mode length T and RGoal per-
formance. T is the number of simulations executed prior to the actual execution of
each episode. S = 100, P = 2000. Here, we only plot the change in score after the
pre-training phase. If thought-mode length is sufficiently long, approximate solutions
are obtained in almost zero-shot time.

The reward for moving up, down, left, or right is −1, that for moving diag-
onally is −√

2, that for hitting a wall is −1, and that for a subroutine call is
RC = −1. As mentioned earlier, rewards are not discounted.

The table elements of Q(s, g, ã) are initialized to zero if s = g and −50−n (n
is small noise), otherwise. To make learning faster, subroutine calls are restricted
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to be executable only on landmarks by initializing some appropriate elements to
−∞, as described in Sect. 2.5.

The action-selection function is a softmax function with β = 1. The learning
rate is α = 0.1.

For each of the following experiments, the average values of 10 trials were
calculated. For each graph, the horizontal axis is the number of steps and the
vertical axis is the number of episodes per step. The larger the value of the y-
axis, the faster the agent reaches the goal. Here, “the number of steps” means
the number of moves within the map or collisions with a wall. Subroutine calls,
returns from subroutines, and execution steps in thought-mode are not included
because they are regarded as virtual actions in the agent’s brain.

Experiment 1 examined the relationship between the upper limit S of the
stack depth and RGoal performance (Fig. 5). When the stack depth reaches
the upper limit, the agent does not make any further subroutine calls. S = 0
corresponds to non-hierarchical reinforcement learning. A greater upper limit
results in faster convergence. However, at S = 100, the convergence is slightly
slower than that at S = 4. The score after convergence is the best when S = 0.
This is because if subroutines can be used, an agent may choose suboptimal
routes through some landmarks. We have confirmed that even when subroutine
calls can be used, if we optimize the search tendency by choosing a small value
of β, then increasing β, the agent eventually finds the optimal policy that does
not call subroutines.

Experiment 2 examined the relationship between the length P (times 1000
steps) of the pre-training phase and RGoal performance (Fig. 6). In the pre-
training phase, only pairs of the start S and goal G within Euclidean distances
of eight are selected. Such pairs constitute 60 pairs out of the 20 19 = 380
total pairs. In this experiment, S = 100. For fair comparison, the graph includes
changes in the score during the pre-training phase. The results show that a
greater value of P results in faster convergence during the normal phase after
the pre-training phase. This means that if an agent learns simple tasks first,
learning difficult tasks becomes faster because the learned simple tasks can be
reused as subroutines.

Experiment 3 examined relationship between thought-mode length T and
RGoal performance (Fig. 7). T is the number of simulations in an agent’s brain
that are executed immediately before each actual execution of an episode in
the environment. In this experiment, S = 100 and P = 2000. Here, we only
plot changes in the score after 2,000,000 steps of the pre-training phase. The
results show that if the thought-mode length is sufficiently long, approximate
solutions for unknown tasks are obtained immediately (almost in zero-shot time)
by combining knowledge from previously experienced simple tasks.

4 Related Work

Unlike previous hierarchical reinforcement learning architectures, RGoal is
unique in that the caller and callee relation between subroutines is not pre-
defined, but is learned within the framework of reinforcement learning. We have
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integrated several important ideas that were proposed in previous papers into a
single simple architecture to realize the desired RGoal features.

RGoal has a very similar structure to the Hierarchical Distance to Goal
(HDG) architecture [4]. HDG uses a dedicated algorithm for offline searching
of routes by connecting distant landmarks. In contrast, RGoal accomplishes the
same goal by using thought-mode, which is much easier to implement and is
similar to human behavior.

The H-DYNA architecture [2,3] also utilizes planning with temporal abstrac-
tion, similar to the thought-mode in our architecture.

MAXQ [6] is an architecture for hierarchical reinforcement learning that can
utilize layers deeper than two and handles subtask sharing through value function
decomposition. In RGoal, decomposition becomes simpler based on the assump-
tion that each subroutine terminates in a single state.

The R-MAXQ architecture [8] introduced the feature of model-based rein-
forcement learning into MAXQ. It straightforwardly leans and utilizes a model
of the environment. In RGoal, the learned Q(s, g, ã) is used as a model of the
environment.

Derivation of a hierarchical policy using an augmented state-action space
was proposed in [9]. The space in RGoal is simpler and visually understandable,
thereby facilitating easier understanding of recursive subgoal settings.

The option-critic architecture [11] acquires options (subroutines) from agent
experiences. In RGoal, the landmark set is given or supposed to be acquired as
salient states experienced by the agent.

Because the theoretical framework of RGoal is simple, it is easy to extend.
For example, techniques for accelerating learning, such as universal value func-
tion approximators [10] or hindsight experience replay [12], should be easily
applicable.

5 Conclusion

We proposed a novel hierarchical reinforcement learning architecture that allows
unlimited recursive subroutine calls. We integrated several important ideas that
were proposed in previous papers into a single simple architecture. A novel mech-
anism called thought-mode combines learned simple tasks to solve unknown com-
plicated tasks rapidly, sometimes in zero-shot time. Because of its simplicity, we
consider RGoal to be a promising first step toward a computational model of the
planning mechanism of the human brain. In the future, RGoal will be applicable
to robots that purposefully use tools such as ladders. A dialogue system that
makes purposeful speech is also one of the applications aimed at.

In the future, we will attempt to speed up learning by introducing state
abstraction via function approximation and aim for more realistic application
tasks. Detailed comparisons with other approaches are also important future
work.
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Abstract. When learning from images, it is desirable to augment the
dataset with plausible transformations of its images. Unfortunately, it is
not always intuitive for the user how much shear or translation to apply.
For this reason, training multiple models through hyperparameter search
is required to find the best augmentation policies. But these methods are
computationally expensive. Furthermore, since they generate static poli-
cies, they do not take advantage of smoothly introducing more aggressive
augmentation transformations. In this work, we propose repeating each
epoch twice with a small difference in data augmentation intensity, walk-
ing towards the best policy. This process doubles the number of epochs,
but avoids having to train multiple models. The method is compared
against random and Bayesian search for classification and segmentation
tasks. The proposal improved twice over random search and was on par
with Bayesian search for 4% of the training epochs.

Keywords: Convolutional neural networks · Data augmentation ·
Computer vision · Learning to learn

1 Introduction

Data augmentation is the process of syntactically creating plausible new obser-
vations that could come from the original source. Data augmentation has become
a staple of deep learning, in particular when it comes to computer vision [16].
Transformations such as rotation or shear are applied to create new images from
existing images.

All these transformations require some sort of parametrization. The parame-
ter choice is not always straight-forward, especially when it comes to continuous
parameters like the aforementioned transformations. Unfortunately, the search
methods that exist, as described in the next section, are highly expensive com-
putationally, as they require training many models to try different parameter
combinations which are then evaluated using the validation set.
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In this work, we propose a simple approach: slowly increase the amount
of augmentation during training. This has the added benefit of accruing gains
from gradually increasing the difficulty of the observations, a process known as
curriculum learning [3].

2 State of the Art

There is a large intersection between hyperparameter search and automatic aug-
mentation. An hyperparameter is any parameter that cannot be estimated by
the normal estimation process of the model; this includes such disparate things
as the learning rate, the size of the neural network or, in our case, how much
rotation or shear to apply during data augmentation.

Several search heuristics exist to reduce the hyperparameter search space.
These techniques involve training many models to find the best hyperparam-
eter(s) θ∗ = argθ max s(fθ(Xval)) such that a metric function s is maximized
when a surrogate model fθ, trained with θ augmentations, is evaluated using
validation data Xval. Since hyperparameters are not independent, the problem
becomes combinatorial.

Given a budget B of how many surrogate models to train, the problem
becomes how best to sample an user-defined range θ ∈ [θ, θ]. All the existing
hyperparameter search methods consist in suggesting different sampling func-
tions θ ∼ Fi for each model i, 1 ≤ i ≤ B.

Grid search consists in dividing this range linearly, Fi = θ + i−1
B (θ − θ).

Another common approach is random search, which samples of an uniform
distribution, F = U(θ, θ). It has been found to produce better results for a
smaller B [4].

Other techniques exist that focus on the most promising parts of the search
space. Bayesian optimization samples from the posterior distribution to best
solve the exploration-exploitation trade-off problem involved. This distribution
is generally modeled using a Gaussian Process, and an acquisition function
chooses the next point to sample based on an expectation/variance combina-
tion (exploitation/exploration) [5]. Successive halving trains each model for a
few epochs and then chooses the best-half performing models for the next Fi+1

sampling [14]. AutoAugment uses an RNN as its F sampling function [9].
Evolutionary algorithms have also been used for hyperparameter search [21].

Fewer research exists into dynamically optimizing hyperparameters.
Gradient-based algorithms do exist that allow minimizing a validation loss for
particular problems, such as L2 regularization [17].

After a vector θ is found, it is known as a policy. Most work find a single θ
which specifies a limit on the augmentation; for example, if θ = 30 for rotation,
then, for each image, rotation is applied randomly using an Uniform (−30, 30).
This is how our experimental section will work. But other work find two hyper-
parameters for each transformation: the probability of the transformation being
applied and its absolute magnitude [9].
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3 Proposal

Our proposal consists in starting with no augmentation (θ1 = 0) and gradually
make it more aggressive (θt+1 > θt). The index refers to the iteration (or epoch).
Please notice only a single model is being used. At each epoch t, the proposal
is to perform the epoch twice, for θt−1 − ε and θt−1 + ε, so that the impact of
a small perturbation ε can be inferred using finite differences on the validation
set. The procedure consists in the following steps:

1. Model f is trained for one (or more) epoch(s) without augmentation, obtain-
ing weights w1.

2. The weights are then forked in two, w
(1)
t+1 and w

(2)
t+1, which are obtained by

minimizing the loss L for one epoch using the training set Xtr(θt), augmented
by vector θt, and labels ytr,

w
(1)
t+1 = arg min

w
L(Xtr(θt − Δ), ytr |wt)

w
(2)
t+1 = arg min

w
L(Xtr(θt + Δ), ytr |wt).

Δ is a vector which is zero for all values except for a single one j, for which
Δj = ε. This j is chosen randomly in this work. This hyperparameter j is the
one that is being tested.

3. The models are then evaluated and compared

δ = s(f(Xval |w(2)
t+1), y

val) − s(f(Xval |w(1)
t+1), y

val),

so that

θt+1 = θt − Δ and wt+1 = w
(1)
t+1 if δ < 0,

θt+1 = θt + Δ and wt+1 = w
(2)
t+1 if δ > 0.

Possible ties (δ = 0) are solved by using the validation loss.
4. Go back to (2).

An illustration of the process is provided in Fig. 1. The hyperparameter θ controls
the range with how aggressive augmentation is applied, it controls the probability

Fig. 1. Hyperparameter evolution where θ controls the rotation and s is the validation
score.
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distribution of how aggressive the augmentation will be. For example, a rotation
of θ = 30 means that the rotation of each image will be chosen randomly using
an Uniform (−30, 30).

The possible range of values for each hyperparameter θ is defined differently
per transformations. For example, for rotation, the valid range is [0, 180]. See
Table 1.

Table 1. The six transformations used in this work

Hyperparameter Units θ θ Example

none – – –

Rotation degrees 0 180

Translation x/y pixels 0 width

Shear degrees 0 60

Zoom out factor 1/3 –

Zoom in factor – 3

Channel shift value 0 50

Brightness value 0.5 2

4 Experiments

Tranformations. The augmentation techniques that have been used are the six
transformations provided by the Keras Pre-processing toolkit1 – rotation, x/y
translation, shear, zoom in/out, channel shift (add a constant to each layer),
and brightness (multiply each layer by a constant). There are six transforma-
tions and seven hyperparameters since zoom is the same transformation with
two hyperparameters defining the range. The ranges and an example from the
MNIST dataset are illustrated in Table 1.
Datasets. A collection of 16 datasets was used (Table 2), most of which were from
medical applications. Ten of these datasets were used for classification (with K
classes) and ten of these were used for semantic segmentation (marked in column
Mask). Some were used for both tasks.

Images size w × w was reduced to 128 × 128 for datasets with images of
varying sizes, for c channels. A summary of dataset characteristics, as well as
the sources are provided in Table 2. The vessels dataset was a concatenation
of the datasets cited. The datasets were partitioned in 60-20-20 train-val-test
partitions, or the original partitioning scheme was used when provided.

1 https://github.com/keras-team/keras-preprocessing.

https://github.com/keras-team/keras-preprocessing
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Table 2. Summary of the datasets used

Dataset w c N K? Mask? Source

breast-aesthetic 128 3 120 — � [6]

cervix-huc 128 3 261 — � [11]

cervix-kaggle 128 3 1503 — � [1]

CIFAR-10 32 3 60 k 10 — [15]

CIFAR-100 32 3 60 k 100 — [15]

Fashion-MNIST 28 1 70 k 10 — [26]

ISIC 2017 128 3 2750 3 � [8]

iris 128 3 2164 — � [23]

MNIST 28 1 70 k 10 — [18]

PH2 128 3 200 3 � [19]

smartskins 128 3 292 3 � [25]

STL10 96 3 13 k 10 — [7]

SVHN 32 3 ≈99 k 10 — [20]

teeth 128 3 98 — � [12]

vessels 128 3 88 — � [2,13,24]

VOC 2012 128 3 ≈12 k 20 � [10]

Tasks. Two different types of datasets were experimented with: classification
and semantic segmentation, whenever the dataset allowed. In both cases, cross-
entropy was used, and, to solve any class imbalance in the dataset, the loss was
weighted by the inverse frequency of each class. The metrics used were balanced
accuracy (classification), and the Jaccard index (segmentation).

Segmentation is an interesting problem given that the image and the binary
mask must synchronously suffer from the same augmentation. Evidently, no
brightness or channel shift is applied to the mask.
Architecture. The neural network used was made of convolution-maxpooling
blocks, initially with a image of size w × w and halving the activation map
at each layer until the activation was approximately 6 × 6, so that each block
was applied �log2

w
6 � times, with the classification problem ending in K classes:

w × w × c → w/2 × w/2 × 32 → · · · →≈ 6 × 6 × 32 →≈ 1152 → 32 → K. The
activation function used was ReLU, except for softmax for the last layer. For
semantic segmentation, an U-Net architecture was used [22], which is composed
of an encoding and a decoding phase. The encoding phase used is the same as
the gray colored part, and the decoding phase is also the same in reverse, with
up-sampling being used instead of max-pooling to double the activation map.
Skip-layers are used to connect the first convolutional layer with the last, the
second with the penultimate, and so forth, like in U-Net.
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Table 3. Evaluation scores in percentage using the testing set (higher is better)

Classification (balanced accuracy)

Dataset None Random Bayesian Proposal Proposal∗

CIFAR-10 64.1 70.0 73.6 78.2 73.7

CIFAR-100 27.4 27.3 30.4 38.5 18.5

Fashion-MNIST 91.4 83.7 92.0 92.0 92.1

ISIC 2017 48.7 46.7 53.7 49.8 43.0

MNIST 99.1 99.0 99.5 99.4 99.2

PH2 46.7 62.8 64.7 48.6 52.1

smartskins 32.7 34.3 35.9 37.9 37.1

STL10 57.2 62.4 58.5 64.8 56.8

SVHN 79.4 10.0 81.8 87.1 85.6

VOC 2012 12.7 28.9 34.9 33.5 30.8

# Top 1 0 0 4 5 1

# Top 2 0 2 6 9 4

Avg Rel Gain 0.0 8.5 26.6 27.2 14.6
bold: best method; italic: second-best.

Methods. We tested our proposal together with no augmentation (none) trained
for 250 epochs, each epoch augmenting a total of 1,024 images in batches of 128
images. These methods were compared against state-of-the-art augmentation
using random and Bayesian search. In these cases, 50 surrogate children were
trained for 25 epochs each (the cost was therefore of 1,250 epochs), with the
final child trained for 250 epochs. Bayesian search was performed using Expected
Improvement as the acquisition function [5], modeled using a Gaussian Process
with an RBF kernel, using as seed the first 10 of the 50 surrogate models trained.

Furthermore, a method called proposal∗ was added to the table, which is a
static version of the proposal. This method takes the last policy found by the
proposal method and applies that, and only that policy, to a model trained from
scratch. The purpose of this exercise is to test if the gain from the proposed
method came from the incremental nature of the method.
Reproducibility. The code was implemented in Keras and is available at http://

github.com/rpmcruz/averse-segmentation.

5 Results

Tables 3 and 4 consider 10 datasets for each classification and segmentation tasks,
respectively. Our proposal is compared against random and Bayesian search.
Firstly, it is interesting to note that gains from data augmentation were much
greater for classification than from segmentation. For each dataset, if we contrast
the best performing method against apply no augmentation, then the average
relative gains are of 32% and 3% for classification and segmentation, respectively.
In fact, doing nothing (none) was three times in top-2 for segmentation.

http://github.com/rpmcruz/averse-segmentation
http://github.com/rpmcruz/averse-segmentation


Automatic Augmentation by Hill Climbing 121

Table 4. Evaluation scores in percentage using the testing set (higher is better)

Semantic segmentation (Jaccard index)

Dataset None Random Bayesian Proposal Proposal∗

breast-aesthetic 95.6 90.6 96.8 95.9 96.9

cervix-huc 82.4 84.5 84.2 83.7 84.9

cervix-kaggle 92.6 91.1 93.2 93.4 93.2

iris 99.1 98.4 98.2 99.2 98.9

ISIC 2017 90.7 91.5 91.7 91.7 91.1

PH2 87.5 91.3 89.9 90.7 89.7

smartskins 97.9 94.6 96.7 96.2 97.1

teeth 94.0 91.5 91.0 94.1 93.0

vessels 67.7 75.4 77.8 76.8 73.6

VOC 2012 74.0 75.1 78.7 77.8 76.2

# Top 1 1 1 3 4 2

# Top 2 3 3 5 7 4

Avg Rel Gain 0.0 0.7 2.4 2.5 1.8
bold: best method; italic: second-best.

The proposal performed better in the vast majority of cases (top-2 was 90%
and 70% of cases). The poor performance is explained by the vast search space
from having 7 transformations, and the fact there is a bias towards conservative
augmentation (centered in zero) performing better.

Furthermore, proposal∗ can be contrasted with the proposal column to under-
stand whether the dynamic nature of the method contributed to its performance,
as suggested by the curriculum learning literature [3]. In most cases, the results
are not significantly different. However, this static version was 60% worse than
the dynamic version.

In terms of training time, while the proposal would be expected to double
the training time relative to the baseline, it actually increased training time by
around 5.1 times, on average for all datasets, due to the way context switching
of the training was implemented. The weights were saved and loaded from the
disk each time a context switch was necessary, which could be improved. In any
case, random search models were about 8.6 times worse than the baseline on
average.

The hyperparameters evolved more or less stably as can be seen in the rota-
tion examples from Fig. 2. It makes sense that rotation is not particularly useful
when it comes to digit recognition. On the other hand, skin lesions do benefit
from rotation.
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Fig. 2. Evolution of the rotation hyperparameter

Fig. 3. Hierarchical clustering of the final augmentation policies

Considering the hyperparameters θ at the final epoch, t = 250, found by the
proposed method, a dendrogram was built to find which classification datasets
performed similarly, using Euclidean distance (Fig. 3). Interestingly, all melano-
ma-related datasets (in the left of the dendrogram) had similar augmentations,
and could easily form a cluster. Fashion-MNIST and VOC 2012 relate miscel-
laneous classes and are distanced similarly, as does MNIST and SVHN which
relate numbers.

6 Conclusion

A problem has been identified: the magnitude to apply data augmentation is
not always obvious. Finding the best parametrization using traditional search
methods is intensive. The solution: a simple yet novel approach is to gradually
allow for more aggressive augmentation, using the validation set as an oracle.

Each epoch is run twice with a slight difference in one of the augmentation
parameters, and the best parameter is chosen for the next epoch. This method
was contrasted against random and Bayesian search. It performed slightly better
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than Bayesian search in both classification and segmentation tasks for one-fifth
the epochs, and twice the performance of random search.

As future work, a number of details could be improved. The index j, which
was here chosen randomly, could be chosen using a multi-armed bandit heuristic.
The timing of when to make augmentation more aggressive could be based on
the loss plateauing, rather than the end of each epoch.
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Abstract. Person re-identification (re-ID) problem aims to retrieve a
person from an image gallery captured across multiple cameras. How-
ever, images of the same identity have variations due to the change in
camera views. So learning a camera-invariant representation is one objec-
tive of re-identification. In this paper, we propose a camera-style transfer
model for generating images, and a fake triplet loss for training the per-
son feature embedding model. We train a StarGAN, a kind of generative
adversarial networks, as our transfer model, which can transfer the style
of an image from one camera to multiple different camera-styles by a
generator network. So the image set is expanded with style-transferred
images. However, style transferring yields image distortion, which mis-
leads the training of feature embedding model. To overcome the influence
of image distortion, we consider the gap between fake and real images,
then we propose a fake triplet loss to capture the camera-invariant infor-
mation of fake images. We do a series of experiments on the Market-1501,
DukeMTMC-reID, and CUHK03 datasets, and show the effectiveness of
our methods.

Keywords: Re-identification · Generative adversarial networks ·
StarGAN · Triplet loss

1 Introduction

Person re-identification (re-ID) is a task of retrieving cross-camera images of a
specified pedestrian in a gallery. In the past few years, person re-ID attracts
great attention due to its applications in many fields, such as video surveillance
and group behavior analysis. However, person image often undergoes dramatic
variations in pose, illumination, and background. The labels of poses and back-
grounds are difficult to be obtained, while camera-ID is catched during collecting
c© Springer Nature Switzerland AG 2019
I. V. Tetko et al. (Eds.): ICANN 2019, LNCS 11728, pp. 125–137, 2019.
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Fig. 1. The generation process of camera-style transferred images.

pedestrian images for re-ID tasks. As a result, we aim to extract camera-invariant
features for re-ID problems.

Some previous works have attempted to catch camera-invariant features for
re-ID problems. Triplet loss is one method of extracting camera-invariant fea-
tures, which maps cross-camera images with the same identity to close features.
However, an identity always keeps a single pose in a specific camera view, so
human poses are entangled with camera views, which influence the performance
of triplet loss. In addition, an image transfer model called CycleGAN (Cycle-
constrained Generative Adversarial Network) is used to transfer camera-styles of
images [20,21]. But they only use cross-entropy loss to train the feature embed-
ding model and do not pay attention to the relevance of transferred images
and original images. Moreover, the training of multiple CycleGANs in [20,21] is
time-consuming.

In this paper, we propose a method that uses the idea of transferring camera-
styles. We employ a unified generative adversarial network called StarGAN [1]
as our camera-style transfer model, which transfer a person image to different
images with other camera-styles. The transferred fake image retains the identity
information and human pose of the original image. Instead of training multiple
CycleGANs, we use a single StarGAN model to transfer person images.

The camera-style transfer model makes up a deficiency of re-ID datasets.
For one pedestrian, he/she will appear in multiple camera views under various
conditions, such as background and illumination, and this person has different
poses in these scenes. While in real life, the person may appear in these scenes
with the same pose, and most collected training dataset lacks these images. Some
generated fake images are displayed in Fig. 1. As shown in Fig. 1, the fake images
keep person poses, and the background and illumination are transformed into
other styles. In addition, the person may not appear in some camera views, and
our model can generate these images with corresponding camera-styles.

However, fake images generated by StarGAN suffer from noise and distor-
tion, so there is a gap between generated fake images and collected real images.
If simply ignoring the image gap and training feature embedding model, the
performance of our embedding model will decline. To alleviate the influence of
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Fig. 2. The pipeline of our proposed method. Our method contains a camera-style
transfer model and a feature embedding model. P is the number of identities in the
training dataset.

image distortion, we apply a fake triplet loss to train a camera-invariant embed-
ding model. The fake triplet loss is calculated with the features of fake and real
images, so fake triplet loss studies the relevance between original images and
transferred images. The entire architecture of our model is shown in Fig. 2.

Our proposed cross-camera re-ID method has the following advantages. First,
we use a simple camera-style transfer model to generate fake images, and our
model takes less training time and achieve a solid transfer performance. Second,
we propose a fake triplet loss for training feature embedding models, and the
fake triplet loss represents the gap between fake and real images. In a nutshell,
our work has the following contributions:

– A StarGAN based cross-camera style transfer model for person re-
identification. This model simplifies the process of generating camera-style
transferred samples.

– A fake triplet loss on both real and fake images. This loss helps feature embed-
ding models to learn camera-invariant feature and relieves the effect of dis-
tortion on camera-style transferred images.

– We evaluate our approach on three benchmark datasets. By comparison with
some methods, the performance of our approach is competitive on the three
datasets.

2 Related Work

Camera-Invariant Representation for Person Re-identification. The
success of deep learning classification motivates the booming of deep re-ID mod-
els. In [17], Zheng et al. raise a single stream re-ID model called IDE (ID-feature
Embedding) which is trained as an image classification model. The IDE model
can be fine-tuned from ImageNet [6] pre-trained models. In [12], Schroff et al.
propose triplet loss and show the outstanding performance of using triplet loss in
feature embedding models. Moreover, Some researchers intend to extract camera-
invariant embeddings with deep networks. In [15], Wu et al. build a model for
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predicting human pose and use pose priors to carry out online re-ID matching.
In [9], Qian et al. attempt to generate person images with specified poses by the
network of GAN. Compared with previous works, our method does not require
human pose priors.

Generative Adversarial Networks. Generative Adversarial Networks [2]
have obtained significant success in image generation tasks. Recently, GANs have
also been used in image-to-image translation problems. In [5], a conditional GAN
is applied to learn a mapping that transfers images from one domain to another.
The shortcoming of [5] is the requirement of paired training images as supervi-
sion. CycleGAN [22] overcomes this problem by employing cycle-consistency loss
on the framework of [5], which is trained by unpaired images from two domains.
However, a CycleGAN model only transfers images between two fixed domains.
More recently, Choi et al. [1] propose a framework called StarGAN that can
transfer an image from one domain to multiple other domains, and we employ
this model as our camera-style transfer model. In [19], Zhong et al. employ Star-
GAN and do unsupervised domain adaptation between two datasets, while we
aim to extract camera-invariant feature in one dataset.

3 Proposed Method

The explanation of our method is structured as follows. First, we exhibit our
utilization and modification of StarGAN in Sect. 3.1. Second, we introduce our
fake triplet loss in Sect. 3.2, which intends to exploit camera-style transferred
fake images in the training stage. Finally, we present the training details of our
work in Sect. 3.3.

3.1 StarGAN in Camera-Style Translation

In this paper, we employ StarGAN as our camera-style transfer model, which
transfer real images to different camera-styles. We consider camera views as
person image domains and consider camera-ID labels as domain-ID labels. Then
we train a StarGAN to transfer one person image from the camera domain Ci

to other camera domains {Cj �=i}.
The objective of StarGAN [1] is to train a single generator G that learns

mappings among multiple domains. Given C domains {X1,X2, ...,XC}, where
Xc = {xc

i}Nc
i=1 and c is the domain label, we train G to transfer an input image

xCj in domain Cj to an output image y in domain Ck. The formal representation
of an optimal generator G∗ is G∗(xCj , Ck) = y, where the distribution of y is
close to the real dataset XCk .

Moreover, a discriminator D is proposed to train the generator in an
adversarial form. The output of D is two probability distributions D : x →
{Dr(x),Dd(x)}, where Dr denotes the reality level of images and Dd denotes
the domain classification probabilities. To train the network, the adversarial loss
Ladv is applied which can make the generated images indistinguishable from real
images. Besides, a domain classification loss is decomposed into two terms Lr

cls
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and Lf
cls to optimize the model with real images and fake images separately.

Ladv, Lr
cls and Lf

cls are expressed as follows:

Ladv = Ex[log Dr(x)] + Ex,c[log(1 − Dr(G(x, c)))] (1)

Lr
cls = Ex,c[− log Dcls(c|x)] (2)

Lf
cls = Ex,c[− log Dcls(c|G(x, c))] (3)

where c is the target domain of generator G.
To guarantee that transferred images contain the identity of original images,

a reconstruction loss Lrec is applied to reconstruct the original image x from
the transferred image G(x, c). Generally, person images are the ROIs detected
from large images by algorithms like DPM [3], so the person always located in
the center of images. As a result, we add a mask to the reconstruction loss. The
modified reconstruction loss loosens the limitation of cycle-consistency constraint
[22], so the model is encouraged to ignore the variations over background parts.
The modified reconstruction loss is expressed as:

Lrec = Ex,c,c′ [||(x − G(G(x, c), c′)) � M ||1] (4)

where c′ is the source domain of x, c is the target domain of x, � denotes
element-wise multiplication, and M is a mask.

The overall loss functions of StarGAN are expressed as:

LD = −Ladv + λclsL
r
cls (5)

LG = Ladv + λclsL
f
cls + λrecLrec (6)

where LD and LG correspond to the loss functions of discriminator D and gener-
ator G; λcls and λrec are hyper-parameters that leverage the weights of domain
classification loss and reconstruction loss.

(a) Triplet loss (b) Fake triplet loss

Fig. 3. The diagram of triplet loss and fake triplet loss. mα and mfake are the margins
between anchor-positive distance and anchor-negative distance.
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3.2 Fake Triplet Loss

The goal of a re-ID task is to learn a function fθ which maps person images
x ∈ X to a feature space F . A metric function D(xi, xj) measures the dis-
tance between features fθ(xi) and fθ(xj), and feature embedding models aim at
enlarging D(xi, xj) when the xi and xj belong to different identities and short-
ening D(xi, xj) when the xi and xj belong to the same identity. In FaceNet [12],
triplet loss is proposed to ensure that an anchor image xa of one person is closer
to positive images xp of the same identity than other negative images xn of other
different identities. The formulated expression is written as:

D(xa, xp) + mα < D(xa, xn), (xa, xp, xn) ∈ T (7)

where mα denotes a given margin between the anchor-positive distance and
the anchor-negative distance and T means the set of all triplets. Generally,
D(xi, xj) = ||xi − xj ||2.

The number of triplets is so numerous that using all the triplets in the training
phase is intractable. A sampling method samples P person identities from the
dataset, then randomly samples K images for each identity. Therefore, a mini-
batch with P ×K person images is formed. Based on this sampling method, the
triplet loss is formulated as:

Ltri =
P∑

i=1

K∑

a=1

[mα − min
j=1..P
n=1..K

j �=i

D(xi
a, xj

n) + max
p=1..K

D(xi
a, xi

p)]+ (8)

where [·]+ denotes max(0, ·) function. The schematic diagram of triplet loss is
shown in Fig. 3(a).

Owing to the distortion of fake images, choosing fake images as anchor images
will degrade the performance of feature embedding models, hence we do not
directly apply triplet loss to fake images. For the convenience of description, we
define some annotations for specific person images. Given an anchor image, a fake
image with the same identity label is called a fake positive image, and a real
image with the same identity label is called a real positive image. Analogously,
for an anchor image, a person image with the same identity is called a positive
image and an image with a different identity label is called a negative image.
Then we make the following assumptions: for an anchor image, the fake positive
images are closer than negative images. The diagram of our triplet assumption
is shown in Fig. 3(b).

To constrain our assumption, we propose a fake triplet loss to exploit the fake
person image information and alleviate the effect of distortion on fake images.
The fake triplet loss is expressed as:

Lfake =
P∑

i=1

K∑

a=1

[mfake − min
j=1..P
n=1..K

j �=i

D(xi
a, xj

n) + max
p=1..K

D(xr,i
a , xf,i

p )]+ (9)
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where the superscripts of xr or xf denotes x belongs to the original dataset or the
fake dataset. This loss will shorten the metric distance between an original image
and corresponding camera-style transferred images, hence the feature embedding
model can learn a camera-invariant embedding mapping between person images
and features. To utilize our loss during the training phase, we first sample P
identities, then sample K real images and K fake images for each identity.

3.3 Training Details

We train a StarGAN model to transfer person images. We follow the network
structure and training strategy in [1]. Keeping the setting in [1], person images
are resized to 128×128. The mask M , located on the center of images, is 64 by 128
pixels. For every image in the original training dataset, the generator produces
C new training samples related to all C cameras. We refer to the generated
images as camera-style transferred images or fake images. Since each fake image
is transferred from a real image and contains the same identity information, we
can try to tag fake images with the corresponding original image labels. During
training the feature embedding model, we use the combination of original images
and fake images to train our feature embedding model.

We use the ResNet-50 network [4] as the backbone of our feature embedding
model. When trained with real images, our model is optimized by an additional
label-smoothing cross-entropy loss, which is written as:

Lcls = − 1
N

N∑

i=1

log p(xi)q′(xi), q′(xi) = (1 − ε)q(xi) +
ε

K
(10)

where ε ∈ [0, 1] is a hyper-parameter, p(xi) is the predicted classification proba-
bility distribution of image xi, q(xi) is the one-hot identity label of xi and K is
the number of identities.

The full objective of our feature embedding model is expressed as:

L = Ltri + Lfake + Lcls (11)

We use two types of models as our feature embedding models in our training
phase. The first type is the IDE model [17]. We follow the training strategy of
IDE-model for fine-tuning the ImageNet pre-trained model. We pool the output
of backbone to a 2048 − d vector as the representation of a person image. The
second type is the mid-level feature embedding model. This model fuses the
features of final-layer and mid-layer in ResNet50, and outputs a 3072−d feature
vector. We resize person images to 128 × 256 and add a fully-connected layer to
map feature vectors into P dimensions for classification, where P is the number
of identities in the training dataset.

4 Experiments

4.1 Datasets

We evaluate our method on Market-1501 [16], DukeMTMC-reID [10] and
CUHK03 [7] datasets.
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Fig. 4. The comparison of CycleGAN and StarGAN, and the comparison of original
StarGAN and StarGAN with mask.

The Market-1501 dataset contains 32,668 bounding boxes of 1,501 identities
captured from 6 different viewpoints. All bounding boxes are detected by DPM
[3]. 12,936 images from 751 identities are used for training and 19,732 images
from 750 identities are used for testing. In testing, 3,368 hand-drawn bounding
boxes from 750 identities are used as queries.

DukeMTMC-reID is a newly published person re-ID dataset. It contains
36,411 labeled images of 1,404 identities collected from 8 cameras. The dataset is
split into two parts: one part includes 16,522 training images from 702 identities,
the other part includes 2,228 query images from other 702 identities and 17,661
gallery images.

The CUHK03 dataset contains 14,097 images of 1,467 identities. Identities
are observed from 10 cameras. CUHK03 applies two ways to produce the cropped
images: one is human annotation and the other is DPM detection. Our evaluation
is based on the DPM detected images. We use the new training/testing protocol
in [18] to select 767 identities for training and the rest 700 for testing.

We transfer one image to C new images for each dataset, where C is the
number of cameras in the dataset.

4.2 The Comparison of CycleGAN and StarGAN

We compare the generative performance of CycleGAN and StarGAN in the
camera-style transfer process. We follow the model architecture and training
strategy in [20,21]. For CycleGAN, to achieve style transferring for the total
of 6 cameras in Market1501 dataset, each pair of cameras need a CycleGAN
model. So we train

(
6
2

)
= 15 CycleGAN model to generate transferred images.

For StarGAN, we need only one model to learn all the transformations among 6
cameras. The size of the generated images is 128×128. We display the generated
images in Fig. 4. As exhibited in Fig. 4, images generated by StarGAN have less
noise and distortion. Our transfer model works better on drawing body contours
(Shown in Fig. 4-{1,2,3,4}), and our model produces less noise and distortion
(Shown in Fig. 4-{5,6,7,8}). Besides, the training of our model spends less time.
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Table 1. The comparison of using different mfake

mfake value Rank-1 mAP

0.10 88.09 73.24

0.05 87.86 73.39

0.00 89.10 74.44

−0.05 88.51 74.20

−0.10 87.38 72.05

Table 2. The comparison of triplet loss and fake triplet loss

Ltri dataset Lfake dataset Rank-1 mAP

real – 88.36 74.19

real+fake – 85.96 68.94

real real+fake 89.10 74.44

Training our transfer model on one TITAN Xp takes 12 h, while training 15
CycleGAN takes about 9 × 15 = 135 h.

Furthermore, we compare the generated images of original StarGAN and
the modified StarGAN. We modify the reconstruction loss with adding a mask.
The images are shown in Fig. 4. While most generated images are similar, some
images contains difference. The origin loss forces transferred images to match
the background, while the person part is distorted, which weaken the quality of
images.

4.3 The Influence of Fake Triplet Loss

To leverage between the distortion of fake images and the camera-invariant infor-
mation of fake images, we select a list of values assigned to mfake and train the
IDE model with two triplet loss functions. The results of applying fake triplet
loss on the IDE model is shown in Table 1.

When training the embedding model with fake triplet loss, if the similarity
between the anchor image and the negative image is bigger than the similarity
between the anchor and the fake positive plus mfake, the fake triplet loss will try
to enlarge the distance between anchor and the negative image. Although “fake”
images contain the “real” identities information, they still have gaps compared
to real ones. So, it is necessary for model to tolerant such gaps in a certain
degree. Therefore, we need such mfake to do some trade-off. Due to the results
in Table 1, we can see that choosing 0.00 as the value of mfake will achieve a
better performance. This result signifies that the generated fake positive images
are closer to an anchor image than negative images, even fake images involve
some image distortion.

Furthermore, the performance of choosing fake images as anchor images in
triplet loss is tested. As shown in Table 2, directly applying triplet loss on fake
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images will degrade the performance of feature embedding models. These results
indicate that using fake triplet loss will indeed relieve the effect of distortion in
fake images.

4.4 Ablation Study of Loss Functions

We conduct some experiments on the Market-1501 dataset to indicate the avail-
ability of our proposed approach. As shown in Table 3, the baseline approach
with Lcls and Ltri can achieve 89.49% on Rank-1 accuracy. After adding our
fake triplet loss, the performance of the IDE model on Rank-1 accuracy can
reach 90.70%. And our approach with the mid-level model can achieve 92.73%
on Rank-1 accuracy, which is a competitive result on Market-1501.

Table 3. The results of ablation study

Model Lcls Ltri Lfake Rank-1 mAP

IDE
√

86.73 69.87

IDE
√

88.36 74.19

IDE
√ √

89.49 74.95

IDE
√ √

89.10 74.44

IDE
√ √ √

90.70 76.48

mid-level
√ √

90.53 76.79

mid-level
√ √ √

92.73 79.41

Table 4. Augment dataset with incremental schema

Dataset Rank-1 mAP

Real 89.49 74.95

Real+Fake1,2,3 90.35 74.84

Real+Fake4,5,6 90.08 75.27

Real+Fake1,2,3+Fake4,5,6 90.71 76.75

Real+Fake1,2,3,4,5,6 90.70 76.48

4.5 Flexibility for the Number of Cameras

In general, a single StarGAN could only learn a fixed number of styles, which
means that in Re-ID problems the number of cameras must be fixed, and results
in some inflexibility of algorithms. However, our algorithm could adapt to the
changing of camera numbers by introducing an incremental schema.

Suppose we only have 3 cameras (Cam 1, 2 and 3) in the beginning. So we
train a StarGAN to transfer images between 3 cameras. When we get new data
from extra cameras (Cam 4, 5, 6), we just train another StarGAN to adapt newly
added cameras.
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Our experiments (Table 4) show that separately training different models to
augment the dataset incrementally can achieve the same performance (90.71%)
as train a single model containing all transformations among all 6 cameras
(90.70%). That means our method is flexible enough to deal with a variable
number of cameras. And no matter we augment the dataset incrementally or
uniformly, the more camera we have, the better performance we get. (90.35% for
only use camera 1, 2, 3, and 90.08% for only use camera 4, 5, 6, versus 90.7%
for use all 6 cameras).

4.6 Results

We compare our method with some re-ID methods on Market-1501,
DukeMTMC-reID, and CUHK03 datasets in Table 5. First, we train the IDE
model with our approach on all datasets and obtain competitive results compared
with state-of-the-art methods. Specifically, our approach achieves 90.70% for
Market-1501, 80.83% for DukeMTMC-reID and 61.21% for CUHK03 in Rank-1
accuracy.

Moreover, we train the mid-level model with our proposed method. We
achieve Rank-1 accuracy 92.73% for Market-1501, Rank-1 accuracy 82.36% for
DukeMTMC-reID and Rank-1 accuracy 62.00% for CUHK03.

Table 5. The overall results on three datasets

Method Market-1501 DukeMTMC-reID CUHK03

Rank-1 mAP Rank-1 mAP Rank-1 mAP

BOW+kissme [16] 44.4 20.8 25.1 12.2 6.4 6.4

SVDNet [14] 82.3 62.1 76.7 56.8 41.5 37.3

CamStyle [20,21] 88.12 68.72 75.27 53.48 – –

CamStyle+RE [20,21] 89.49 71.55 78.32 57.61 – –

PoseTransfer [8] 87.65 68.92 78.52 56.91 41.6 38.7

ContrAttn [13] 83.79 74.33 – – 46.71 46.87

PSE [11] 88.6 72.6 79.2 60.6 – –

PoseNormalize [9] 89.43 72.58 73.58 53.20 – –

IDE 89.49 74.95 79.94 63.30 60.14 55.08

IDE + Ours 90.70 76.48 80.83 63.66 61.21 55.55

mid-level 90.53 76.79 80.57 64.02 60.93 55.34

mid-level + Ours 92.73 79.41 82.36 65.69 62.00 56.65

5 Conclusion

In this paper, we exploit the domain transfer capability of StarGAN to generate
camera-style transferred images. Then we propose fake triplet loss, an effec-
tive loss function for learning discriminative representation, to train our feature
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embedding models. This loss can alleviate the distortion of fake images and
exploit the camera-invariant identity information hidden in fake images. Experi-
ments on Market-1501, DukeMTMC-reID and CUHK03 datasets show that our
method can improve the performance of feature embedding models.
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Abstract. Object detection methods can be divided into two categories
that are the two-stage methods with higher accuracy but lower speed and
the one-stage methods with lower accuracy but higher speed. In order to
inherit the advantages of both approaches, a novel dense object detector,
called Path Augmented RetinaNet (PA-RetinaNet), is proposed in this
paper. It not only achieves a better accuracy than the two-stage methods,
but also maintains the efficiency of the one-stage methods. Specifically,
we introduce a bottom-up path augmentation module to enhance the
feature exaction hierarchy, which shortens the information path between
lower feature layers and topmost layers. Furthermore, we address the
class imbalance problem by introducing a Class-Imbalance loss, where
the loss of each training sample is weighted by a function of its predicted
probability, so that the trained model focuses more on hard examples. To
evaluate the effectiveness of our PA-RetinaNet, we conducted a number
of experiments on the MS COCO dataset. The results show that our
method is 4.3% higher than the existing two-stage method, while the
speed is similar to the state-of-the-art one-stage methods.

Keywords: Object detection · Convolutional neural network ·
Class imbalance

1 Introduction

In recent years, object detection has achieved significant progress, with the use
of deep neural networks (DNN). The most advanced DNN detectors currently
are divided into two categories: two-stage approaches and one-stage approaches.
The two-stage approaches, such as Faster R-CNN [1], R-FCN [2] and FPN [3],
typically generates a set of sparse object candidate boxes in the first phase, and
then further classifies and regresses the candidate boxes in the second phase.
The two-stage approaches have achieved the top performances on the challenging
COCO benchmark [4]. The one-stage approaches, e.g., YOLO [5,6], SSD [7,8],
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to uniformly sample the object locations on a picture according to scales and
aspect ratios. The efficiency of the one-stage method calculation makes it highly
concerned. However, their detection accuracy is always lower than the two-stage
methods. One of the main reasons is due to class imbalance [9].

The two-stage methods address class imbalance through cascading and
heuristic sampling. The first proposal stage (such as Selective Search [10],
RPN [1]) filters out the background samples and controls the number of can-
didate object locations to a small extent (e.g., 2k). In the second classifica-
tion stage, heuristic sampling, such as fixed foreground-background ratio (1:3)
or online hard example mining (OHEM) [11], is used to maintain the balance
between foreground and background.

Instead, the one-stage methods must process a larger set of candidate loca-
tions that are periodically sampled on an image. In practice, a large number
of locations are often enumerated to densely cover spatial locations, scales, and
aspect ratios. Therefore, this is extremely caused to the class imbalance prob-
lem. To solve it, some methods have been proposed. In order to reduce the false
detections caused by class imbalance, Zhang et al. [12] designed a maximum
output labeling mechanism. Kong et al. [13] use the objectness prior constraint
on convolutional feature maps to significantly reduce the search space of objects.
Lin et al. [9] solve the class imbalance problem by reconstructing the standard
cross entropy loss, focus the training on a sparse set of hard examples and down-
weights the loss assigned to well-classified examples.

In this paper, we have improved the RetinaNet [9] by adding a path aug-
mentation module to shorten the information propagation path while using low-
level features for precise positioning. Also, we propose a new loss function based
on cross entropy loss. With the predicted probability of a certain class in the
training process, this loss function changes dynamically. The scaling factor we
introduced only related to prediction probability, can automatically down-weight
of easy examples, making the model more focal on hard examples. Extensive
experiments show that our proposed method can train a high-accuracy, quickly
one-stage detector that outperforms the sampling heuristics or hard example
mining, the previous state-of-the-art one-stage detector. Our method achieves
42.5% AP on MS coco test-dev with ResNet-101 [14].

The main contributions of this work are summarized as follows. (1) We
improve the RetinaNet framework for object detection by adding a bottom-
up path augmentation module. This shortens the information propagation path,
using low-level features for accurate location. (2) To address the class imbal-
ance problem, we design a new loss, named Class-Imbalance loss (CIL). Dur-
ing the training, the loss function changes dynamically, and the scaling factor
only related to predicted probability can automatically down-weight of the easy
examples, making the model pay more attention to the hard examples. (3) The
method we proposed, named PA-RetinaNet, achieves the state-of-the-art results
on MS COCO [4].
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2 Related Work

Classical Object Detectors. Early object detection methods use the sliding-
window paradigm that apply hand-crafted features and classifiers on dense image
grids to find objects. Viola and Jones [15] use Haar and AdaBoost algorithms
to cascade and weight a series of weak classifiers into a strong classifier for face
detection, achieving satisfactory accuracy with high efficiency. DPM [16] is a very
successful object detection algorithm, and won the PASCAL VOC (2007, 08,
09) consecutive detection champion and it was once an important part of many
classifiers, segmentation, human poses, and behavioral classifications. However,
with the re-emergence of deep learning, the CNN-based detector has quickly
become the dominant object detection field, which can be roughly divided into
two categories, i.e., the two-stage approaches and one-stage approaches.

Two-Stage Approaches. More recent approaches like R-CNN [17] use region
proposal methods (e.g., Selective Search [10], EdgeBoxes [18], RPN [1]) to first
generate potential bounding boxes in an image and then run a classifier on
these proposed boxes. Its worth to noting that the two-stage approaches (e.g.,
R-CNN [19], SPPnet [20], Fast RCNN [17] to Faster R-CNN [1]) in several chal-
lenging datasets (e.g., MS COCO [4]) has achieved remarkable performance.
After that, many effective techniques are proposed to further improve the per-
formance, such as architecture diagram [2], training strategy [11,21], contextual
reasoning [8,22] and multiple layers exploiting [13,23–25].

One-Stage Approaches. The complex pipelines of the two-stage methods are
slow and hard to optimize because each individual component must be trained
separately. Therefore, one-stage methods have attracted much attention because
of its efficiency. OverFeat [26] is one of the first proposed one-stage object detec-
tors based on deep networks for classification, localization and detection. In
recent years, Redmon et al. [5] propose You Only Look Once (YOLO), which
can use a single feedforward convolutional network to directly predict object
classes and locations. After that, YOLOv2 [6] is put forward to further enhance
the previous version. Liu et al. [8] spreads out anchors of different scales to mul-
tiple layers to focus on predicting objects of a certain scale, this method was
called SSD. DSDD [7] uses deconvolution to introduce additional context into
SSD for the promotion of the accuracy. Lin et al. [9] propose focal loss to deal
with the class imbalanceand design RetinaNet to improve the detection accu-
racy. Although the one-stage methods have made good progress, its accuracy
still lags behind the two-stage methods.

The design of our PA-RetinaNet detector inherits and improves the struc-
ture of RetinaNet. Adding a bottom-up path, which shortens the information
propagation path and makes low-layer information easier to propagate, yields a
satisfying effect.
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Class Imbalance. As [9], most one-stage object detection methods are troubled
by the large class imbalance problem in the training process. An image only has
a few locations containing objects, but these detectors need evaluate 104 − 105

candidate locations. So the class imbalance problem may cause the inefficient
training even overwhelm training and degenerate models. Hard negative min-
ing [8,11,15] is usually used to solve this problem, however, less effective. On
the contrary, we introduce a Class-Imbalance loss to deal with the problem a
one-stage detector must face.

3 Network Architecture

Our overall network architecture is illustrated in Fig. 1. Our PA-RetinaNet con-
sists of a backbone network, a path augmentation module and two parallel sub-
networks with specific tasks. The backbone adopts the Feature Pyramid Network
(FPN) [3], an existing convolutional network, to calculate a feature map of an
entire input image. A path augmentation module is augmented to make low-
layer information easier to propagate. The two sub-networks are used for object
classification and bounding box regression, respectively.

Fig. 1. PA-RetinaNet architecture. (a) ResNet. (b) Feature Pyramid Network(FPN).
(c)Bottom-up path augmentation. (d) Class subnet. (e) Box subnet. ⊕ stands for lateral
connection.

Backbone Network. We adopt Feature Pyramid Network (FPN) [3] as the
backbone network of our PA-RetinaNet. FPN augments a standard convolutional
network with a top-down pathway and lateral connections, allowing the network
to efficiently construct a rich, multi-scale feature pyramid from a single resolution
input image, as show in Fig. 1(a)–(b). Each level of the pyramid can be used to
detect objects at a different scale.
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Path Augmentation. The low-level feature map mainly perceiving the image’s
edge, corner and other details and local information, while the high-level feature
map mainly reflecting the semantical information of the whole objects. Inspired
by [27], a bottom-up path is augmented to make low-layer information easier
to propagate. Therefore, adding a bottom-up path is necessary to propagate
semantically strong features and enhance the reasonable classification capability
of all features in FPN [3].

According to the definition in FPN [3], layers of the same network stage can
generate feature maps of the same spatial size, each feature level corresponds to
one stage. We use ResNet [14] as our basic structure and represent feature levels
of FPN as {P2; P3; P4; P5}. The path augmentation module from the lowest P2

to P5. Their space size is gradually down-sampled to 1/4 of the previous layer
size as shown in Fig. 1(c). We use {N2; N3; N4; N5} to represent newly generated
feature maps corresponding to {P2; P3; P4; P5}. Note that N2 is P2.

As shown in Fig. 1, ⊕ represents the lateral connection of the lower-layer
coarse feature map Pi+1 and the higher-layer fine feature map Ni, generating a
new feature map Ni+1. Each feature map Ni is first down-sampled by a 3× 3
convolutional layer with stride 2, which gives the same resolution as Pi+1 and
is added to it by a lateral connection. Then, the fused feature map generates
Ni+1 through another 3× 3 convolutional layer as input to the next two sub-
networks. This is an iterative process until N5 is generated. We use 256-channel
feature maps in these modules, and a ReLU operation is performed after all
convolutional layers. The new feature map, {N2; N3; N4; N5}, is then pooled to
obtain the feature grid for each proposal.

Two Parallel Subnets. The classification subnet and the box regression sub-
net. The classification subnet predicts the probability that each of the A anchors
and K object classes will exist at each spatial position, the box regression subnet
regresses the offset from each anchor box to a nearby ground-truth object, if one
exists. The two subnets are both a small FCN [28]. They are attached to each
FPN level; parameters of the same subnet are shared across all pyramid levels,
but not shared in different subnet. In the classification subnet, the input feature
map of 256 channels is obtained from the given layer. The subnet first applies
four 3× 3 conv layers, each conv layer has 256 filters, and each one is followed
by ReLU activations, then a 3× 3 conv layer with KA filters, and finally the
sigmoid activations outputs KA binary predictions for per spatial location, see
Fig. 1(d). The design of the box regression subnet is identical to the classification
subnet except that it terminates in 4A linear outputs per spatial location, shown
in Fig. 1(e).

Loss Function. Lin et al. [9] propose the focal loss, which introduces a modulat-
ing factor with tunable focusing parameter γ ≥ 0, takes a lot of experimentation
to get the best value, to some extent, it is empirical.

In this paper, we propose a new loss function that is only related to the
predicted probability, similar as [9], and still perform the binary classification
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based on the cross entropy (CE) loss function:

CE(p, y) =
{−log(p) if y = 1

−log(1 − p) otherwise.
(1)

Here, p ∈ [0, 1] is the predicted probability for the class with label y = 1.

We introduce a scaling factor β =

{
1 − p

1
p−1 if y = 1

1 − (1 − p)
1

1−p−1 otherwise.
that is only

related to the predicted probability of a certain class in the training process,
define the loss as:

CIL(p, y) = −β × CE(p, y) =

{
(1 − p

1
p−1)log(p) if y = 1

(1 − (1 − p)
1

1−p−1)log(1 − p) otherwise.
(2)

As shown in Fig. 2, compare with the focal loss1, when p → 0, our loss is signif-
icantly greater than the focal loss, which makes our model pay more concerned
with hard, misclassified examples than Lin et al. [9]; On the contrary, when
p → 1, the two are almost the same.

Fig. 2. Comparison of difference loss. We introduce a novel loss, named Class-
Imbalance loss, is described by the green curve (β). Other curves visualize the focus
loss functions corresponding to different focusing parameters γ = {0, 0.5, 1, 2, 5}.

The scaling factor β can reduce the loss weight of the easy examples and
also extend the loss weight range of the examples. Compared with the standard

1 Lin et al. [9] found γ = 2 to work best through a large number of experiments. The
function in this paper is mainly compared with the focal loss at γ = 2.



144 G. Tan et al.

cross entropy loss function, when the example classification probability p ≈ 0.9,
the loss weight of the example is reduced by about 100 times; when the example
classification probability p ≈ 0.969, the loss weight of the example is reduced by
about 1000 times; when the example classification probability p = 0.9, the loss
of the example is reduced by 2 times; when the example classification probability
p = 0.1, the loss weight coefficient of the example is 0.999. When p ≈ 0.9 and
p ≈ 0.969, the Class-Imbalance loss function and the focus loss function have
little difference for the loss weight adjustment, but when p ≤ 0.5, the loss weight
of the Class-Imbalance loss function for misclassified example is obviously higher
than the focus loss function, which plays a great positive effect in correcting
misclassified examples.

A common way to solve the class imbalance problem is to introduce a weight-
ing factor α ∈ [0, 1]. The precision is slightly improved compared to CIL(p, y)
without adding a weighting factor. Therefore, we also introduce a weighting fac-
tor α for y = 1 and 1−α for otherwise in our experiments. The final expression
of our Class-Imbalance loss is:

CIL(p, y) = −αβ × CE(p, y)

=

{
α(1 − p

1
p−1)log(p) if y = 1

(1 − α)(1 − (1 − p)
1

1−p−1)log(1 − p) otherwise.

(3)

4 Experiments

Implementation Details. We implement PA-RetinaNet based on pytorch [30].
The pre-trained models used in the experiments are publicly available. We use
ResNet-50 or ResNet-101 [14] as backbone and follow the design of anchors
in [9]. In order to increase the speed, we only decode the prediction box with the
highest score of 1k per level, and the threshold detector confidence is 0.05. The
highest predictions for each level are combined and non-maximum suppression
with a threshold of 0.5 is used to produce the final detections. We use Class-
Imbalance loss as the loss on the output of classification subnet. Weighting factor
α is set to 0.25. Theoretically, the predicted probability p ∈ [0, 1], but in the
experimental environment, in order to prevent the occurrence of infinity, we
clamp the predicted probability p ∈ [1e − 4, 1.0 − 1e − 4].

Dataset and Metrics. COCO [4] dataset is one of the most challenging
datasets in object detection because of its data complexity.There are 118 k images
in the training set, 5 k images in the verification machine, test-dev set and test-
challenge set each contain 20 k images. The label of the test subset is not public.
This data set contains 80 classes. We trained our model on the train2017 sub-
set, conducted the ablation experiment on the val2017 subset, and conducted
the comparison experiment on the test-dev. We follow the standard evaluation
metrics, i.e., AP, AP50, AP75, APS , APM and APL.



PA-RetinaNet: Path Augmented RetinaNet for Dense Object Detection 145

Ablation Studies. First, we analyze what role the bottom-up path augmenta-
tion plays in training. Then we analyze the importance of our Class-Imbalance
loss function. Our ablation study are performed on the val-2017 subset, based
on the RetinaNet framework [9], followed by focal loss function (FL) or Class-
Imbalance loss function (CIL), and a bottom-up path enhancement module
(BUPA). The study is shown in Table 1. We initialize RetinaNet with resnet-
50 [14].

(1) Bottom-up Path Augmentation (BUPA). Bottom-up path augmenta-
tion module facilitates easier propagation of low-layer. With or without Class-
Imbalance loss function,bottom-up path augmentation module can achieve bet-
ter performance. The improvement to large-scale instances is the most signifi-
cant. This verifies that the information from lower feature levels is also useful.

(2) Class-Imbalance Loss (CIL). With or without bottom-up path augmen-
tation, class-imbalance loss consistently improves detection AP by more than
1.7 and 4.9 respectively. This improvement means that our class-imbalance loss
can focus more on the hard examples, which proves the effectiveness of our loss
function.

Table 1. Ablation experiments for PA-RetinaNet and Class-Imbalance Loss (CIL). All
models are trained and tested on coco 2017. All ablation experiments use default values:
anchors for 3 scales and 3 aspect ratios, ResNet-50 backbone, and a 600 pixel train and
test image scale. Based on RetinaNet [9], we gradually add or replace focal loss (FL),
bottom-up path augmentation(BUPA), Class-Imbalance loss (CIL)for ablation studies

RetinaNet FL BUPA CIL AP AP50 AP75 APS APM APL√ √
34.3 53.2 36.9 16.2 37.4 47.4√ √ √
35.7 57.3 38.0 18.6 39.4 51.7√ √
36.0 55.2 38.7 17.4 39.6 49.7√ √ √
39.2 59.4 41.1 20.8 43.9 54.1

+4.9 +6.2 +4.2 +4.6 +6.5 +6.7

Table 2. Speed comparison of PA-RetinaNet and RetinaNet on MS COCO test-dev
set.

Methods Backbone Scale Time

RetinaNet [9] ResNet-50 600 92

RetinaNet [9] ResNet-101 600 118

PA-RetinaNet(ours) ResNet-50 600 96

PA-RetinaNet(ours) ResNet-101 600 123
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Fig. 3. Visualization results of PA-RetinaNet on COCO validation set.

Comparison to State of the Art. We compare PA-RetinaNet with the state-
of-the-art detectors in Tables 2 and 3. Compared to existing one-stage methods,
our results are top ranked, while the speed is similar to them. Compared to
recent two-stage methods, PA-RetinaNet achieves a 4.3 point gap above Mask
R-CNN [29] based on ResNet-101.

Visualization. In Fig. 3, we present some detection examples on coco dataset
with our PA-RetinaNet model. Only detection bounding boxes with scores
greater than 0.6 are displayed.
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Table 3. Detection results on MS COCO test-dev set. Bold fonts indicate the best
performance.

Methods Backbone AP AP50 AP75 APS APM APL

Two-stage:

Faster R-CNN [1] VGG-16 21.7 35.9 - - - -

R-FCN [2] ResNet-101 29.9 51.9 - 10.9 32.8 45.0

Mask R-CNN [29] ResNet-101 38.2 60.3 41.7 20.1 41.1 50.2

One-stage:

YOLOv2 [6] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5

SSD300* [8] VGG-16 25.1 43.1 25.8 6.6 25.9 41.4

SSD321 [7] ResNet-101 28.0 45.4 29.3 6.2 28.3 49.3

DSSD321 [7] ResNet-101 28.0 46.1 29.2 7.4 28.1 47.6

SSD512* [8] VGG-16 28.8 48.5 30.3 10.9 31.8 43.5

SSD513 [7] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8

DSSD513 [7] ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1

RetinaNet [9] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2

PA-RetinaNet(ours) ResNet-50 40.1 61.9 44.0 22.9 42.8 50.9

PA-RetinaNet(ours) ResNet-101 42.5 63.6 46.3 26.6 45.5 53.6

5 Conclusion

In this paper, we propose PA-RetinaNet, an upgrade to the RetinaNet archi-
tecture, to make low-layer information easier to propagate and a new Class-
Imbalance loss to address the class imbalance problem. These changes are eval-
uated on MS COCO [4], and achieve state-of-the-art results. In the future, we
plan to employ PA-RetinaNet to detect some other specific kinds of objects,
e.g., vehicle, pedestrian, and face, and introduce a rough-fine (Supercategory -
category) classification mechanism in our PA-RetinaNet to further improve the
performance.

Acknowledgments. This project is an improvement on yhenon’s work, thanks for
the code provided by yhenon (https://github.com/yhenon/pytorch-retinanet).
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Abstract. Singular Value Decomposition (SVD) constitutes a bridge
between the linear algebra concepts and multi-layer neural networks—it
is their linear analogy. Besides of this insight, it can be used as a good
initial guess for the network parameters, leading to substantially better
optimization results.

Keywords: Singular Value Decomposition · Neural network ·
Deep neural network · Initialization · Optimization ·
Conjugate gradient

1 Motivation

The utility of multi-layer neural networks is frequently being explained by their
capability of extracting meaningful features in their hidden layers. This view is
particularly appropriate for large size applications such as corpus-based seman-
tics analyses where the number of training examples is too low for making the
problem fully determined in terms of a direct mapping from the input to the
output space.

This capability of feature extraction is mostly implicitly attributed to using
nonlinear units in contrast to a linear mapping. The prototype of such linear
mapping is linear regression, using multiplication of an input pattern by a regres-
sion matrix to get an estimate of the output pattern, omitting the possibility of
using a sequence of two (or more) matrices corresponding to the use of a hidden
layer of linear units. This possibility is usually considered to be obsolete with
the argument that a product of two matrices is also a matrix and the result is
thus equivalent to using a single matrix.

This argument, although superficially correct, hides the possibility of using
a matrix of deliberately chosen low rank, which leads to the correct treatment
of under-determined problems.

A key to understanding the situation is Singular Value Decomposition (SVD).
In the following, it will be shown that SVD can be interpreted as a linear analogy
of a neural network with one hidden layer and that it can be used for generating
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a good initial solution for optimizing nonlinear multi-layer neural networks. Saxe
et al. [5] support this theory from the opposite direction: they showed empirically
that the optimized results from a nonlinear network are very similar to the results
coming from an SVD. McCloone et al. [4] have an interesting approach on how
to support optimization by SVD in various network architectures (namely Multi-
Layer Perceptron and RBF networks). However, our interest is in pointing out
the direct relationship between SVD and a shallow multi-layer neural network
with a low dimensional hidden layer. The low dimensionality of the hidden layer
has the function of feature extraction.

The work of Xue et al. [8] is decreasing the number of parameters within a
neural network significantly by replacing a layer’s weight matrix by two layers
which weight matrices are constructed using SVD. Similar to our approach, this
results effectively in initializing the two layers using the resulting matrices from
SVD (1). Still, it is used to decrease the model size rather than showing that
this initialization is already good guess for finding the (near-) optimal solution.

2 Singular Value Decomposition

SVD is a powerful concept of linear algebra. It is a decomposition of an arbitrary
matrix A of size m × n into three factors:

A = USV T (1)

where U and V are orthonormal and S is of identical size as A, consisting of a
diagonal matrix D0 and a zero matrix. For m < n, it is [S0, 0], for m > n it is
[S0, 0]T . In the further discussion, only the case of m < n will be considered as
the opposite case is analogous.

SVD is then simplified to

A = USV T = U [S0, 0] [V0, Vx]T = US0V
T
0 (2)

by omitting redundant zero terms. This form is sometimes called economical.
For the economical form (2), the decomposition with r = min (m,n) has

mr + r + nr = (m + n + 1) r nonzero parameters. The orthonormality of U and
V imposes 2r unity norm constraints, and r (r − 1) orthogonality constraints,
resulting in a total number of

2r + r (r − 1) = r2 + r (3)

constraints.
The number of free parameters amounts to

(m + n + 1) r − r2 − r (4)

which is
(m + n + 1)m − m2 − m = mn, for m < n (5)
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and, analogically,

(m + n + 1)n − n2 − n = mn, for m > n (6)

So, the economical form of SVD possesses the same number of free parameters
as the original matrix A.

The number of nonzero singular values in S0 is equal to the rank r of
matrix A. An interesting case arises if the matrix A is not full rank, that is,
if r < min (m,n). Then, some diagonal elements of S0 are zero. Reordering the
diagonal elements of S0 (and, correspondingly the columns of U and V0) so that
its nonzero elements are in the field S1 and zero elements in S2, the decomposi-
tion further collapses to

A = US0V
T
0 = [U1, U2]

[
S1 0
0 S2

]
[V1, V2]

T = U1S1V
T
1 (7)

Then, with the help of orthogonality of U1 and V1, the matrix can be decomposed
into the sum

A = USV T =
r∑

k=1

skukv
T
k (8)

An important property of SVD is its capability for a matrix approximation
by a matrix of lower rank. In analogy to the partitioning the singular values
with the help of S1 and S2 to nonzero and zero ones, they can be partitioned
to large and small ones. Selecting the r̂ largest singular values makes (8) to an
approximation Â of matrix A. This approximation has the outstanding property
of being that with the minimum L2 matrix norm of the difference Â − A

∥∥∥Â − A
∥∥∥
2

(9)

out of all matrices of rank r̂.
The L2 matrix norm of M is defined as an induced norm by the L2 vector

norm, so that it is defined as

∥∥M∥∥
2

= max
x

∥∥Mx
∥∥
2∥∥x∥∥

2

(10)

In many practical cases, a relatively small number r̂ leads to approximations
very close to the original matrix. Equation 8 shows that this property can be
used for an economical representation of a m×n matrix A by only r̂ (m + n + 1)
numerical values. The optimum approximation property is shown below to be
relevant for the mapping approximation discussed below.

A further important application of SVD is an explicit formula for a matrix
pseudo-inverse. Pseudo-inverse A+ is the analogy of an inverse matrix for the
case of non-square matrices, with the property

AA+A = A (11)
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It can be easily computed with the help of SVD:

X+ = V ST
invU

T (12)

with Sinv being a matrix of the same dimension as S with inverted non-zero
elements 1

sii
on the diagonal.

3 SVD and Linear Regression

One of the applications of the pseudo-inverse (11) is a computing scheme for
least squares. The linear regression problem is specified by input/output column
vector pairs (xi, yi), seeking the best possible estimates

ŷi = Bxi + a (13)

in the sense of least squares.
The bias vector a can be received by extending the input patterns xi by a

unity constant. For simplicity, it will be omitted in the ongoing discussion.
The solution amounts to solving the equation

Y = BX (14)

with matrices Y and X made of the corresponding column vectors. The optimum
is found with the help of the pseudo-inverse X+ of X. In the over-determined
case (typical for linear regression), the least squares solution is

B = Y X+ = Y XT
(
XXT

)−1
(15)

In the under-determined case, there is an infinite number of solutions with
zero approximation error. The following solution has the minimum matrix norm
of B:

B = Y X+ = Y
(
XTX

)−1
XT (16)

Both (15) and (16) use the pseudo-inverse that can be easily computed with help
of SVD according to (12).

4 SVD and Mappings of a Given Rank

Both the full SVD (1) and its reduced rank form (7) are products of a dense
matrix U , a partly or fully diagonal matrix S, and a dense matrix V T . This
suggests the possibility of viewing them as a product of two dense matrices US
and V T , or U and SV T . All these matrices are full rank, even if the original
matrix B was not due to the under-determination.

The product US and V T is the sequence of two linear mappings. The latter
matrix maps the n-dimensional input space to an intermediary space of dimen-
sion r̂, the former the intermediary space to the m-dimensional output space.
Since n > r̂ and m > r̂, the intermediary space represents a bottleneck similar
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to a hidden layer of a neural network. The orthogonal columns of V can be
viewed as hidden features compressing the information in the input space. This
relationship to neural networks be followed in Sect. 5.

The reasons to search for such a compressed mapping are different for the
over-determined and the under-determined problems.

4.1 Over-Determined Problems

Suppose for an over-determined problem with input matrix X and output matrix
Y , the best linear solution is sought. The columns of X and Y correspond to the
training examples. The least-square-optimum solution is the linear regression

y = Bx + a (17)

with matrix B from (15). The bias vector a can be received by extending the
matrix X by a unit row and applying the pseudo-inversion of such an extended
matrix. The last column of such an extended regression matrix corresponds to
the column bias vector a.

The linear regression matrix is m × n for input dimension n and output
dimension m, its SVD is as in (1).

With more than n independent training examples, the regression matrix B
and also the matrix S are full rank with singular values on the diagonal of S.

There may be reasons for assuming that there are random data errors, with-
out which the rank of B would not be full. This would amount to the assumption
that some of the training examples are, in fact, linearly dependent or even iden-
tical and only the random data errors make them different. To ensure correct
generalization, it would then be appropriate to assume a lower rank of the regres-
sion matrix. This will suggest using the approximating property of SVD with
a reduced singular value set. Leaving out the components with small singular
values may be equivalent to removing the data noise. Taking a matrix Smod with
r̂ largest singular values while zeroing the remaining ones (see, e.g., [7]) results
in a matrix according to (7):

Bmod = UmodSmodV
T
mod (18)

that has the least matrix L2 norm
∥∥B − Bmod

∥∥
2

(19)

out of all existing matrices Bmod with rank r̂. The L2 matrix norm is induced
by the L2 vector norm, as defined in Eq. 10. The definition (10) of the L2 matrix
norm has an implication for the accuracy of the forecasts with help of R and
Rmod:

∥∥B − Bmod

∥∥
2

= max
x

∥∥(B − Bmod)x
∥∥
2∥∥x∥∥

2

= max
x

∥∥y − ymod

∥∥
2∥∥x∥∥

2

(20)
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The vector norm of the forecast error equal to the square root of the mean
square error is obviously minimal for a given norm of the input vector. In other
words, the modified, reduced-rank regression matrix has the least maximum
forecast deviation from the original regression matrix relative to the norm of the
input vector x.

4.2 Under-Determined Problems

A different situation is if the linear regression is under-determined. This is fre-
quently the case in high-dimensional applications such as computer vision and
corpus-based semantics—the number of training examples may be substantially
lower than the dimensions of the input. The training examples span a subspace
of the input vector space. Using this training information, new patterns can
only be projected onto this subspace. The projection operator, using the same
definition of the input matrix X as above, is given as:

x̂ = XX+x = X
(
XTX

)−1
XTx (21)

This can be viewed as a pattern-specific weighting of training examples by a
weight vector wx

x̂ = XwT
x (22)

To recall the corresponding output, the same weight vector can be used:

ŷ = Y wT
x = Y X+x = Y

(
XTX

)−1
XTx (23)

This is equivalent to solving the regression problem

Y = RX (24)

with help of the pseudo-inverse (see, e.g., [3]) of X, which is (16) in the under-
determined case.

The regression matrix R is, as usual, of size m × n. If the input dimension
m exceeds the number of training examples the regression matrix R solving
Eq. 24 is not full rank. Its SVD will exhibit some zero singular values and can
be reduced, without a loss of information, to a reduced form:

Bred = UredSredV
T
red (25)

5 SVD and Linear Networks

Before establishing the relationship between SVD and nonlinear neural networks,
let us consider hypothetical multi-layer networks with linear units of the form
g (x) = x in the hidden layer.

Suppose a network with one hidden layer of predefined size p is used to
represent a mapping from input x to output y. Suppose now that the best linear
mapping from input x to output y is

y = Bx (26)
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The best approximation with a rank limitation to r̂ and is, according to (7):

y = U1S1V
T
1 x (27)

This expression can be viewed as a network with one linear hidden layer of
width p = r̂. The weight matrix between the input and the hidden layers is

V T
1 (28)

and that between the hidden and the output layers is

U1S1 (29)

This network has the property of being the best approximation of the map-
ping from the input to the output between all networks of this size with orthonor-
mal (in the hidden layer) and orthogonal (in the output layer) weight vectors.

This optimality is not strictly guaranteed to be reached if relaxing the
orthogonality constraints. The difference between the orthogonal and the non-
orthogonal solutions depends on the ratio between the input and the output
widths, and on the relative width of the hidden layer in the following way.

How serious this optimality gap may be can be assessed observing the fraction
of the number of orthogonality constraints to the number of parameters. If this
fraction is small, the number of independent parameters is close to the number
of all parameters and the influence of the orthogonality constraints is small.

With hidden layer size r (equal to the rank of the linear mapping), the total
number of constraints is r2 + r. With m < n and n = qm, q ≥ 1, the total
number of parameters is (m + qm + 1) r. The fraction, and its approximation
for realistic values of r � 1 is then

r2 + r

(m + qm + 1) r
=

r + 1
m + qm + 1

≈ r

(1 + q)m
(30)

This fraction decreases with the ratio m
r (the degree of feature compression by

the network) and the ratio q. Since both ratios will usually be large in practical
problems of the mentioned domain, the distance to the optimality after relaxing
the orthogonality constraints can be expected to be small.

6 SVD and Initializing Nonlinear Neural Networks

Most popular hidden units possess a linear or nearly linear segment. A sigmoid
unit

s (x) =
1

1 + e−x
(31)

is nearly linear around the point x = 0 where its derivative is equal to 0.25.
Rescaling this unit to the symmetric form

f (x) = 2s (2x) − 1 =
2

1 + e−2x
− 1 (32)
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we obtain a nonlinear function the derivative of which is unity around x = 0,
plotted in Fig. 1.

Its relative deviation from the linear function g (x) = x is below ten percent
for q|x| < 0.58 (see Fig. 2). So, a neural network with one hidden layer using the
sigmoid activation function (32) behaves like a linear network for small activation
values of the hidden layer.

This fact can be used for finding a good initial guess of parameters of a
nonlinear neural network with a single hidden layer. The in-going weights into
the hidden and output layers are (28) and (29), respectively.

7 Computing Experiments

A series of computing experiments have been carried out to assess the real effi-
ciency of using SVD as a generator of the initial state of neural network parame-
ters. To provide a meaningful interpretation of the mean square figures attained,
all problems have been deliberately defined to have a minimum at zero. To justify
the use of the hidden layer as a feature extractor, its width should be smaller
than the minimum of the input and output sizes. The dimensions have been
chosen so that the full regression would be under-determined (as typical for the
application types mentioned above), but the use of a hidden layer with a smaller
width makes it slightly over-determined. So, the effect of overfitting, harmful for
generalization, is excluded.

The software used for SVD computation was the Python module SciPy [2].
Neural networks were optimized by several methods implemented in the popular
framework Keras [1]: Stochastic Gradient Descent (SGD), selected because of its
widespread use, as well as Adadelta and RMSprop, which seem to be the most
efficient ones for the problems considered.

Typical Keras-methods are first order and there is a widespread opinion in
the neural network community that second-order methods are not superior to the
first order ones. However, there are strong theoretical and empirical arguments in
favor of the second-order methods from numerical mathematics. So the conjugate
gradient method (CG), as implemented in SciPy, has also been applied. Since
the SciPy/Keras interface failed to work for this method1, efficient Keras-based
network evaluation procedures could not be used. So, for the largest problems,
the CG method had to be omitted.

The performance of the optimization methods has been compared with the
help of the number of gradient calls. All methods have been used with the default
settings of Keras and SciPy.

Three problem sizes denoted as A, B, and C have been used. Using different
size classes will make it possible to discern possible dependencies on the problem
size if there are any. The largest size of class C is still substantially below that of
huge networks such as VGG-19 [6] used in image classification. The computing
1 Since we use TensorFlow as Keras’ backend execution engine, the resulting compu-

tation graph would have been cut into two different executions for each optimization
step which causes a too high computational overhead.
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effort for making method comparison with such huge sizes would be excessive
for the goals of this study. However, we believe the size is sufficient for showing
trends relevant for very large network sizes.

The three size classes are characterized by their input and output dimensions
as well as by the size of the training set. The concrete network sizes, parame-
ter numbers, and numbers of constraints (output values to be reached times
the number of training examples) are given in Table 1. The column “# con-
straints” shows the number of constraints imposed by the reference outputs to
be fitted. It is the product of the output dimension and the training set size.
Comparing the number of constraints with the number of parameters defines the
over-determination or the under-determination of the problem (e.g., a problem
with more constraints than parameters is over-determined).

The results for the different size classes are given in Table 2. For each net-
work architecture, three different parametrizations with corresponding training
sets have been generated, all with a known mean square error minimum of zero.
For every variant, an SVD has been computed and used to determine the net-
work initialization. For comparison, five different random network initializations
have been generated. The results below are geometric means of minima reached
(means from three optimization runs for SVD initializations, and means from
3 · 5 = 15 runs for random initializations).

Table 1. Test problem definitions

Type #input #output #hidden #training #parameters #constraints

A 100 50 20 80 3070 4000

B 300 150 60 240 27210 36000

C 1000 500 200 800 300700 400000

Table 2. Mean square minima reached by various optimization methods with random
and SVD-based initial parameter sets

Algorithm Init. Size class A Size class B Size class C

#iter. Fopt × 10−3 #iter. Fopt × 10−3 #iter. Fopt × 10−3

SVD — — 10.200 — 10.559 — 10.814

SGD Random 2000 30.361 2000 90.402 2000 177.095

RMSprop Random 2000 0.040 2000 0.096 2000 0.260

Adadelta Random 2000 1.290 2000 6.748 2000 31.076

CG Random 637 0.002 821 0.012 — —

SGD SVD 2000 1.779 2000 4.145 2000 7.254

RMSprop SVD 2000 0.030 2000 0.085 2000 0.248

Adadelta SVD 2000 0.062 2000 0.511 2000 2.086

CG SVD 316 0.000 233 0.021 — —
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The results of four optimization methods are given in the randomly initialized
variant and in the variant initialized with help of the SVD solution.

The first row, labeled with algorithm “SVD”, shows the minima reached
by the SVD solution without any subsequent optimization. It is obvious that
the SVD-based initialization is pretty good. Its mean square error minimum is
substantially better than the weakest Keras-method SGD with random initial-
ization. For the largest problem size class, SVD without optimization is also
superior to Adadelta with random initialization.

An SVD-based initialization with a subsequent optimization lets SGD reach
an acceptable minimum, with even better results using Adadelta. The best Keras-
method, RMSprop, was clearly inferior to the conjugate gradient (CG), although
CG stopped the optimization substantially earlier that the fixed iteration number
of RMSprop. For both these methods, the improvement by SVD-based initializa-
tion was weak (for CG only in the number of iterations). This is not unexpected:
good optimization methods are able to find the representations similar to the
SVD by themselves, solving a closely related problem with a different numerical
procedure.

8 Conclusion and Discussion

SVD constitutes a bridge between the linear algebra concepts and multi-layer
neural networks—it is their linear analogy. Besides this insight, it can be used as
a good initial guess for the network parameters. The quality of this initial guess
may be, for large problems, better than weakly performing (but widely used)
methods such as SGD ever reach.

It has to be pointed out that as long as the network uses nonlinear hidden
units, simply using this initial guess as ultimate network parameters makes little
sense: it would be preferable to make the units linear, and use the SVD matrices
directly to represent the desired input-output mapping.

Unfortunately, there seems to be no analogous generalization for networks
with multiple hidden layers. With a hidden layer sequence of monotonically
decreasing width (for example, from the input towards the output) it would be
possible to proceed iteratively, by successively adding hidden layers of decreasing
width.

The procedure would start by defining the first hidden layer z1 (the one
with the largest dimension) and initializing its weights with the help of SVD.
Then, the following iterations over the desired number of hidden layers would
be performed:

1. Analyzing the mapping between the output of the last hidden layer considered
and the output layer zi → y (with z0 = x) using SVD.

2. Finding an initial guess of parametrization for the incoming weights to zi+1.
3. Optimizing the weights of such extended nonlinear network by some appro-

priate optimization method.
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This is a formal generalization of the procedure for the network with a single
hidden layer z1, as presented above.

However, it is difficult to find a founded justification for this procedure, as it is
equally difficult to find a founded justification for using multiple fully connected
hidden layers at all—although there seems to be empirical evidence in favor of
this. Of course, there are good justifications for using special architectures such
as convolutional networks, which are motivated, e.g., by spatial operators in
image processing.
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Abstract. An autoencoder (AE) is one of the important neural network
methods for dimensionality reduction problems. Unfortunately, however,
deep AEs have the drawback in trainability which often makes obtain-
ing a good performance a difficult task owing to their model complexity.
This paper proposes a simple weight initialization algorithm called the
principal component initialization (PCI) method to improve and stabi-
lize the generalization performance of deep AEs in one shot. PCI uses
orthogonal bases of the original data space obtained with principal com-
ponent analysis and transposed ones as initial weights of the AEs. The
proposed method significantly outperforms the current de facto standard
initialization method for image reconstruction tasks.

Keywords: Weight initialization · Deep Autoencoders

1 Introduction

Autoencoders (AEs) has become a powerful dimensionality reduction method in
the recent decade in the context of “deep learning” since Hinton et al. demon-
strated the success of the deep AE model [5]. However, deep AEs have a lack of
trainability because of the gradient vanishing problem and the high complexity
of the model parameters. Several studies have attempted to tackle this problem.
For example, Hinton et al. [5] proposed a layerwise pretraining method for deep
AEs using the deep belief network (DBN), i.e., the deep restricted Boltzmann
machine (RBM). This approach is an efficient weight initialization method that
has been reported as a good alternative to overcome trainability problems [3].
However, such successful initialization methods based on pretraining [3,5] require
a massive amount of computation because they have to perform complex itera-
tive optimizations for each layer.

This paper proposes a one-shot weight initialization method for deep AEs,
called “Principal Component Initialization” (PCI) to improve the generalization
performance and the convergence of learning transitions without the iterative
training of entire networks. The key to the proposed method is the well-known
parallels between PCA and AEs. Several studies reported that the PCA can
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be interpreted as a special case of shallow AE [2,8]. Further, Karakida et al.
reported that RBMs—commonly used for pretraining of AEs—have the same
dynamics as the principal component analysis on their steady-state solution
calculated with contrastive divergence algorithms [6]. We could make an intuitive
assumption as follows: Knowledge derived from a PCA could be used for efficient
weight initialization. Mathias et al. proposed a weight initialization method for
shallow AEs by transferring the PCA result; however, their method is slightly
complicated, and it does not provide the mechanism for initializing deep AEs.
Our method can be employed for deep AEs in a more straightforward manner
owing to tied-weight learning [3]. The experimental result demonstrates that
the proposed method significantly improves reconstruction errors with reduced
representations calculated in AEs.

2 Methodology

2.1 Comparison Between PCA and AEs

Both PCA and AE—the important methods in this study–are dimensionality
reduction methods in the sense of machine learning. PCA is a factor decomposi-
tion method used to calculate an orthogonal subspace of the original data space
to ensure that the given data is well-represented with coordinates on the sub-
space. X = (x1, · · · ,xN ) ∈ R

D×N denotes a data matrix of D-dimensional
samples. PCA finds a decomposition X = WY where W ∈ R

D×M is the
M-dimensional orthogonal basis matrix of projection subspace and Y ∈ R

M×N

denotes a reduced M -dimensional representation of an original data matrix X. A
maximum variance solution of PCA can be calculated as a eigendecomposition
problem of the covariance matrix of data matrix Σ :=

〈
(x − 〈x〉)(x − 〈x〉)T 〉

by
setting W = VM , where VM contains M eingenvectors with the largest eigen-
values of Σ. For an input x, PCA calculates the reduced representation as
y = WTx, which means a projection onto the obtained orthogonal bases W .

AE is a fully connected neural network used for the data transformation prob-
lem. AEs can be divided into two parts: One is an encoder, which transforms D-
dimensional inputs into M -dimensional intermediate representation. The other
is a decoder, which transforms M -dimensional intermediate representations into
D-dimensional space as to reconstruct the inputs. AEs serve as a dimension-
ality reduction model in the case of M < D because the low-dimensional
intermediate representations calculated in the encoder retain the informa-
tion for reconstructing the inputs. Here, we consider a two-layered AE with
D-dimensional inputs and M -dimensional intermediate representation, denoted
as (D-M). The encoder’s dimensionality reduction for input x is calculated as
y = φ(Wx + b) where φ denotes a nonlinear function called the activation
function, e.g., ReLU(x) = max(0, x), W ∈ R

M×D, and b ∈ R
M denotes weight

parameters and bias parameter, respectively. The decoder reconstructs the input
x from the reduced representation y as x′ = φ(W ′y + b′), where W ′ ∈ R

D×M

and b′ ∈ R
D are decoder weights and bias parameters, respectively. AEs obtain a



PCI: Principal Component Initialization for Deep Autoencoders 167

good transformation to calculate intermediate representations, that means train-
able parameters W, b,W ′, b′, by optimizing them as to reconstruct the input as
x = x′.

2.2 Proposed Method: Principal Component Initialization

The key to the proposed method (PCI) is that the calculation of the reduced
representation of PCA and AE are similar, except for an activation function and
a bias parameter of AEs. On both models, the primary mechanism of dimension-
ality reduction is the product of the weight matrix W . In our proposed method,
the encoder weight matrix of AEs W ∈ R

M×D, which has M intermediate neu-
rons, is initialized as VM , i.e., the bases of M -dimensional projection subspace
of PCA. The decoder weights are initialized as the transpose of VM because
the decoder weights serve well in transposed constraints W ′ = WT , known as
the tied-weight learning [3]. The remaining bias parameters are initialized with
Gaussian initialization, e.g., the He’s initialization [4].

For deep AEs, which for example, have 4-layers (D-M1-M2), the weight
matrix of first encoder and decoder W (1) ∈ R

M1×D,W (1)′ ∈ R
D×M1 are initial-

ized first as W (1) = VM1 ,W
(1)′

= V T
M1

in the same manner as a two-layered AE.
Subsequently, the weight matrix of the second layers W (2) ∈ R

M2×M1 ,W (2)′ ∈
R

M1×M2 are initialized with the PCI for the transformed input by using the
initialized first encoder, which means that the PCA result of the transformed
M1-dimensional intermediate representations (yi = VM1xi + b)Ni=1. For all lay-
ers in AEs, the proposed method successively initializes their weights by fixing
previous layers weights, as in Hinton’s layerwise pretraining method, mentioned
in Sect. 1.

3 Experiments and Results

We compared the reconstruction errors from reduced intermediate representa-
tions for AEs that are initialized with He’s initialization [4]; i.e., the de facto stan-
dard weight initialization method for ReLU networks and our proposed method
PCI. Experimental datasets are MNIST, CIFAR-10, and CIFAR-100, which are
the high-dimensional image dataset, and they are used in many studies on dimen-
sionality reduction problems. We trained all AEs using the Adam optimization
algorithm [7] with parameters α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8

until training loss plateaus were obtained.
We calculated a test MSE loss with the 90th percentile values of the con-

verged learning processes as a representative value for the evaluation, and we
averaged over 10 different realizations for the random conditions. To evaluate the
improvement in training speed, we also calculated the ratio ePCI/eHe of epochs to
reach to the 90th percentile losses for two initialization conditions (PCI and He’s
initialization). Table 1 shows the results of two two-layered shallow AEs (D-100)
and (D-10), and two deep AEs (D-100-50-10) and (D-500−500−200-100), men-
tioned in [5], where D indicates input dimensionality that is 784 for MNIST and



168 A. Suzuki and H. Sakanashi

3072 for CIFAR-10/100. For all data and AE structures, the proposed method
achieves better reconstruction losses than He’s initialization method, which is
statistically significant (p < 0.01, n = 10, non-parametric Wilcoxon signed-rank
test). As a notable fact, the proposed method decreased the standard deviation
of the losses, which suggests that PCI also improves the stability of the resulting
trained model. Epochs to achieve the same generalization have also been mas-
sively decreased for all conditions, especially in the case of shallow networks, i.e.,
(D-100) and (D-10).

Table 1. MSE losses and convergence speed for test data. Each metrics following ±
indicate the standard deviation of 10 realizations.

MNIST (D-100) (D-10) (D-100-50-10) (D-500-500-200-10)

He’s initialization 41.39 ± 2.501 255.9 ± 45.48 106.3 ± 7.297 76.13 ± 16.05

PCI (Ours) 27.61 ± 0.008 161.2 ± 0.009 93.75 ± 3.932 43.36 ± 0.422

p-value 0.0050 0.0051 0.0051 0.0051

ePCI/eHe 0.014 ± 0.0022 0.024 ± 0.021 0.178 ± 0.129 0.078 ± 0.070

CIFAR-10 (D-100) (D-10) (D-100-50-10) (D-500-500-200-10)

He’s initialization 717.4 ± 172.7 952.0 ± 13.23 375.9 ± 28.15 393.4 ± 46.35

PCI (Ours) 139.5 ± 5.076 355.4 ± 0.009 340.2 ± 15.29 314.8 ± 17.93

p-value 0.0051 0.0051 0.0469 0.0051

ePCI/eHe 0.038 ± 0.014 0.045 ± 0.0010 0.351 ± 0.362 0.185 ± 0.186

CIFAR-100 (D-100) (D-10) (D-100-50-10) (D-500-500-200-10)

He’s initialization 885.1 ± 192.0 1075.1 ± 69.27 387.4 ± 24.12 374.1 ± 28.13

PCI (Ours) 138.7 ± 3.498 345.8 ± 5.945 346.9 ± 19.02 301.6 ± 8.395

p-value 0.0051 0.0051 0.0093 0.0051

ePCI/eHe 0.044 ± 0.012 0.045 ± 0.0010 0.454 ± 0.423 0.092 ± 0.078

4 Discussion and Conclusion

This paper proposed a PCA-based efficient weight initialization method, named
as a principal component initialization (PCI), for deep AEs. The proposed
method used projection bases obtained in PCA as initial weights of AEs to
improve the efficiency for learning better reduced representations. In the exper-
iments, we compared a reconstruction loss from the learned reduced representa-
tion of AEs. The proposed method demonstrated significantly better results than
the conventionally used He’s initialization algorithm in the image reconstruction
tasks.

As future work, the effects of non-linearity of a dataset on the performance
of PCI should be investigated to prove that PCI can work well for an extremely
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non-linear dataset. Akinduko et al. reported that, in the study of similar ini-
tialization from PCA to the self-organizing map model, random initializations
outperformed PCA initialization in the case of significant non-linear tasks [1].
It is not clear whether the proposed method performs well for a significantly
non-linear dataset. Further, as an improvement of our method, it is expected
for PCI to be able to automatically lead the optimal number of intermediate
neurons of AEs by eigenvalues of principal components, which correspond to the
variances of principal subspaces.
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Abstract. We introduce a data-dependent weight initialization scheme
for ReLU and output layers commonly found in modern neural network
architectures. An initial feedforward pass through the network is per-
formed using an initialization set (a subset of the training data set).
Using statistics obtained from this pass, we initialize the weights of the
network, so the following properties are met: (1) weight matrices are
orthogonal; (2) ReLU layers produce a predetermined fraction of non-
zero activations; (3) the outputs produced by internal layers have a pre-
determined variance; (4) weights in the last layer are chosen to mini-
mize the squared error in the initialization set. We evaluate our method
on popular architectures (VGG16, VGG19, and InceptionV3) and faster
convergence rates are achieved on the ImageNet data set when compared
to state-of-the-art initialization techniques (LSUV, He, and Glorot).

Keyword: Weight initialization

1 Introduction

Because of its success solving challenging problems, deep learning has become
a very active area of research. Throughout the years, techniques to train and
improve the quality of these models have been presented. The research commu-
nity has been aggressively pushing the sate-of-the-art by developing new archi-
tectures, regularization techniques, and more efficient and effective optimization
algorithms. New resources, such as powerful GPUs, have allowed us to train
and use deeper networks that are currently the only solution we have to tackle
challenging problems.

In recent years, the research community has put a strong emphasis in devel-
oping new network architectures [8,9,19,19,23] and regularization techniques
[10,17,21,22]. Relatively little attention has been given to weight initialization.
This might be explained by the increasing number of decisions that have to be
made during the architecture design phase. To name a few, the deep learning
practitioner has to determine the number of hidden layers in the network, the
number of units per layer, the type of layers, the cost function, the optimiza-
tion algorithm, and an appropriate selection of regularization techniques. With
so many decisions to be made, selecting the initial weights of the network may,
c© Springer Nature Switzerland AG 2019
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at first glance, seem like a minor detail. However, weight initialization is an
important step that has a strong impact on the training time of a network and
the quality of the resulting model. In fact, improper weight initialization can
prevent gradient descent from converging [7].

Many researchers pre-train their models on other data sets (such as Ima-
geNet) due to their large size. The reasoning behind this practice is that the
first layers in the network learn to perform feature-extraction tasks that are use-
ful for many similar problems. Thus, pre-training a model on a large data set
allows the network to learn robust feature extraction mechanisms that then serve
as the initial weights of the network when training it on the original task’s data
set. Doing this has shown to work well in practice. However, He et al. [6] show
that, although ImageNet pre-training speeds up convergence early in training,
doing this does not necessarily help the resulting model generalize or perform
better.

In the following sections, we present a taxonomy of weight initialization tech-
niques, and survey the most representative examples in each category. We also
present a novel weight initialization technique that achieves better convergence
rates when compared to other modern weight initialization schemes. This new
scheme uses an initialization set extracted from the training data to initialize
the weights in such a way that the following desirable properties are attained:

– The weight vectors associated to different units in the same layer are orthog-
onal, allowing to decouple the behavior of individual units.

– ReLU layers produce a predetermined fraction of non-zero activations, which
prevents dead units or units that have linear behavior.

– The outputs produced by each internal layer have a predetermined constant
variance, preventing vanishing or exploding gradients.

– Weights in the last layer are chosen to minimize the error in the initialization
set, which starts the optimization process in a good region of the search space.

We present experiments using modern deep learning architectures (VGG16
[16], VGG19 [16], and InceptionV3 [20]) applied to the ImageNet [4] data set.
We compare our algorithm with three state-of-the-art initialization techniques
and show that it provides faster convergence.

2 Weight Initialization Techniques

Weight initialization techniques can be divided into three main groups: Data
Independent, Data Dependent, and Pre-Training approaches, depending on the
amount of information derived from available data.

Data Independent Weight Initialization Techniques. Techniques in this
category are the ones that do not make use of any training data to determine
the initial parameter values of a network. They usually work by sampling num-
bers from a normal/uniform distribution and using such numbers as the initial
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values of the network’s parameters. Multiple heuristics have been proposed to
select the variance and mean when a normal distribution is used, or the mini-
mum and maximum values when sampling from a uniform distribution. A simple
and commonly-used heuristic consists of using a normal distribution with zero
mean and unit variance. However, this often leads to poor convergence in deep
networks, as it makes the variances in the activations of hidden units increase
with depth. Glorot et al. [5] propose to use a standard deviation of

√
2

nin+nout

to initialize linear layers, where nin is the number of inputs the layer is fed and
nout is the number of outputs it produces. The idea behind this method is to try
to keep the variance of the input gradient and the output gradient the same by
initializing the weights to numbers that are not too small nor too big. A similar
analysis was performed by He et al. [7] for ReLU activations. He et al. show
that Glorot’s initialization does not work well for ReLU layers, and empirically
demonstrates it building a 30-layer network that converges under He Initializa-
tion, but not under Glorot’s. In this approach, a variance of V ar(Wi) = 2/nin

is used for ReLU layers.

Data Dependent Weight Initialization Techniques. While Glorot and
He initializations make reasonable assumptions about the input data, other
techniques explicitly exploit available training data to initialize the network’s
weights. An example is the layer-sequential unit-variance (LSUV) initialization
scheme proposed by Mishkin et al. [12]. In this approach, weights are pre-
initialized using orthonormal matrices. Then, an initialization set is extracted
from the training data and used in an iterative process where the weights of
a layer are updated until unit variance in the layer’s activations is obtained.
At each iteration, the layer’s activations are calculated using the initialization
set and the layer’s weights are updated by dividing them over the activations’
standard deviation.

LSUV initialization was tested on different architectures, and the results
showed that it allows for the training of very deep networks using standard
gradient descent. The overhead added is minimal since running this scheme is
equivalent to processing a single mini-batch, which is done thousands of times
when training deep neural networks. LSUV initialization works well with multi-
ple activation functions (such as linear, ReLU, maxout, etc.), and outperforms
more sophisticated systems such as FitNets [13]. Mishkin et al. also show that
LSUV reduces the need for batch normalization [10].

Another data-dependent scheme used within a larger, more elaborate process
is Weight Normalization (WN) [14]. WN is a weight reparameterization process
that allows gradient descent to converge more rapidly. This is done by reparam-
eterizing each neuron’s weight vector w in terms of another vector v and a scalar
parameter g as follows:

w =
g

||v||v
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The idea is to perform stochastic gradient descent on v and g directly. This
reparameterization step has the effect of forcing the Euclidean norm of the weight
vector w to be g. To properly initialize g, v, and the biases b, Salimans et al.
propose to use a data dependent approach. Based on their experiments, Salimans
et al. propose to sample elements of v from a normal distribution with 0 mean
and a standard deviation of 0.05. To initialize a neuron’s g and b parameters,
they propose to use an initialization set X, and perform an initial feedforward
pass through the network, where each neuron computes the following:

ypre =
v · x

||v|| y = f(
ypre − μ(ypre)

σ(ypre)
)

To fix the initialization set statistics of all pre-activations ypre in the batch,
parameters b and g are initialized as follows:

g =
1

σ(ypre)
b =

−μ(ypre)
σ(ypre)

To test the performance of this technique, WN was applied to four different
models covering applications in image recognition, generative modelling, and
deep reinforcement learning. In all cases, WN showed a faster convergence rate.

Pre-training Weight Initialization Techniques. Weight initialization tech-
niques in this category usually start by initializing the weights randomly and
pre-train the network on another task. An example of this is training the model
using a large data set (like ImageNet) before using the task’s data to fine-tune
parameter values. Another example of this type of techniques is presented by
Sudowe et al. [18]. Sudowe et al. propose to collect large amounts of unlabeled
data and use it to pretrain the network in a self-supervised way. The artificial
task they created to pretrain an image classification network is called Patch
Task, and it is described as follows. Given a patch of pixels extracted from the
input, the model is trained to predict its origin out of k possible locations in the
original image. The original image is divided into k locations, where each loca-
tion is a discrete position within the image. Thus, the task is similar to solving
a jigsaw puzzle with only one piece missing.

Once the network is trained on this artificial task, the weights are reused when
training the network to solve its primary task. When evaluated, it was shown that
this method outperforms traditional random initialization and closely matches
reusing weight matrices obtained training on the ImageNet dataset.

3 Proposed Initialization Scheme

3.1 Initialization of ReLU Layers

Like Mishkin et al. [12], we also propose to initialize the parameters of layers
using orthonormal matrices, and force the output of a layer to have a prede-
termined standard deviation s using an initialization set. The innovation in our
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approach is the incorporation of a hyperparameter called the active fraction (f)
that allows the deep learning practitioner to specify how likely it should be for
a unit in a ReLU layer to produce non-zero activation. Our scheme can be seen
as a three-step process: (1) Orthogonalization, (2) ReLU Adaptation, and (3)
Standarization. The following subsections describe each of the steps.

Orthogonalization Step. An adequate initialization scheme should try to
exploit the representational capacity of a network. To accomplish this, we ini-
tialize the units/filters of a layer using weight vectors that are orthogonal to
each other, as described by Saxe et al. in [15].

ReLU Adaptation Step. The ReLU activation function has shown to be a
very effective and easy way to introduce non-linearity in a network [3]. Due
to their strong performance, ReLU layers and their variations (leaky ReLU,
parametric ReLU, etc.) are very common in modern deep learning architectures.
We propose to incorporate a hyperparameter called the active fraction f that
can be used to determine how likely it is for a ReLU unit to produce a non-zero
value.

To accomplish this, an initialization set of size n is fed to the network to
compute the layer’s output before the ReLU operation is applied. Let H be the
pre-ReLU activation tensor, where Hi,j is the output for instance i and unit j.
To obtain the desired behavior, bj , the bias for unit j must be equal to minus
the �(1 − f)n�-th order statistic of column j of H.1

Standarization Step. Mishkin et al. [12] propose to initialize the weights of
a layer in such a way that the activations produced by the layer have unit
variance. We build on this idea by incorporating a hyperparameter s that allows
the deep learning practitioner to specify the desired standard deviation of a
layer’s activations. We do this by computing the layer’s output after the ReLU
operation is applied using the initialization set. We divide the weight and biases
tensors by the corresponding standard deviation of the produced output and
multiply that by s.

3.2 Initialization of Output Layers

To initialize the output layer(s) of the network, we also feed an initialization set
to the network and compute the output H produced by the last hidden layer.
If the network’s output is Y ′ = HW , we propose to initialize W by setting
it to H∗Y , where Y is the network’s expected output for the initialization set
and H∗ is the pseudo-inverse of H. If softmax is used, we replace Y with the
corresponding logits the network is to produce. In essence, we are computing the
best least-squares solution to Y = HW .
1 In practice, we find the kth statistic by sorting the columns of H, but a slightly

faster (O(n)) vs. (O(n logn)) implementation is possible using quickselect.
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Algorithm 1 shows the complete weight initialization algorithm. The input
X,Y represent the intialization set, h is a vector containing the layer sizes (where
h0 is the dimensionality of the input), f is the active fraction and σg is the desired
standard deviation for all hidden units. Notice that the pseudocode assumes all
layers are fully-connected, but the same initialization scheme can be applied to
any layer that uses the ReLU function.

Algorithm 1. Weight Initialization
1: procedure Initialize(X, Y, h, f, σg)
2: H(0) ← X
3: n ← len (h)
4: for i = 1 to n do
5: W (i) ← randn(0, 1)[hi−1×hi] � random matrix of size hi−1 × hi

6: W (i) ← Orthonormalization(W (i)) � orthogonalize
7: P ← H(i−1)W (i)

8: P ← sort(P ) � sort each column of P in ascending order
9: b(i) ← −P [�(1 − f)hi�]

10: s = σ(P ) � vector of column-wise standard deviations
11: � Scale weights and bias to obtain σg standard deviation
12: for j = 1 to hi do
13: W

(i)

[:,j] ← W
(i)

[:,j]σg/sj

14: b(i) ← b
(i)
j σg/sj

15: H(i) ← relu(H(i−1)W (i) + b(i))

16: W (n) ← (H(n))∗Y
17: b(n) ← 0
18: return W (1), . . . , W (n), b(1), . . . , b(n)

3.3 Overhead

Our initialization technique adds operations that are not performed by standard
weight initialization schemes. To analyze this overhead, we need to consider the
running time of: (1) the feed-forward pass performed on the initialization set; (2)
the creation of orthonormal weight matrices; (3) the algorithm used to find the
kth statistic in every column of activation matrices; (4) the operations performed
on weight values to produce the predetermined goal standard deviation; and (5)
the algorithm used to compute the pseudo-inverse necessary for the initialization
of the output layer.

The size of the initialization set is considerably smaller than the size of the
complete training set. In our experiments, we set the size of the initialization set
to be about 4% of the size of the complete training set. Thus, the cost of the
feed-forward pass performed on the initialization set is a small fraction of the
time it takes to complete a full epoch. Generating orthonormal matrices using
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the approach described in [15] requires computing the singular value decompo-
sition (SVD) of each weight matrix in the network. The running time of this
is O(min(hih

2
i+1, hi+1h

2
i )), where hi represents the number of units in layer i.

Finding the kth statistic in every column of activation matrices can be done
using quickselect, which runs in O(n), where n (in our context) is the size of the
initialization set. To produce the goal standard deviation, we first compute the
standard deviation of the activations of a given unit, which takes O(n), where
n is the size of the initialization set. Once this is done, every weight is divided
by this value and multiplied by the goal standard deviation. This steps takes
O(n), where n is the number of inputs the unit receives. Finally, the cost of
initializing the output layer is determined by the time it takes to compute the
Moore-Penrose inverse, which is dominated by the cost of computing the SVD of
the activation matrix of the last hidden layer. As previously stated, the running
time of performing this operation is O(min(mn2, nm2)) for an m-by-n matrix.
In our context, n is the number of samples in the initialization set, and m is
the number of units in the last hidden layer. Thus, for n > m, the initializa-
tion process takes time O(n) with constant factors depending on the network’s
architecture.

Empirically, we observed that the running time of the initialization process
is about 3 to 6 times of that of processing a training mini-batch of the same size
as the initialization set.

4 Experimental Results

We designed two sets of experiments. The purpose of the first set was to analyze
how the performance of our method is affected by its hyperparameters. In the
second set, we compared our method to popular weight initialization techniques,
including Glorot, He, and LSUV. The following subsections describe in detail the
evaluation process of each set of experiments.

Table 1. Hyperparameter values

Hyperparameter Values

Initialization set size 128, 256, 512, 1024, 2048

Active fraction 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

Learning rate 0.01, 0.001, 0.0001

Goal standard deviation 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0,
2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0

4.1 Hyperparameter Evaluation

We were mostly interested in understating how the learning rate, the size of
the initialization set, and the active fraction hyperparameters affect the perfor-
mance of our technique. To accomplish this, we constructed a small convolutional
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neural network and used our approach to initialize it multiple times using differ-
ent hyperparameter values. After initialization, the network was trained for 50
epochs using gradient descent and categorical crossentropy as the loss function.
We used a mini-batch size of 128 and used the CIFAR10/100 [11] data sets. We
exhaustively ran experiments using all combinations of hyperparameter values as
defined in Table 1. The architecture of the convolutional network is described in
Table 2. All convolutional layers are composed of 3 × 3 filters with a stride of 1.

Table 2. Convolutional neural network architecture

Layer # Type Properties

1 Convolutional 2D - ReLU Number of filters: 32

2 Convolutional 2D - ReLU Number of filters: 32

3 MaxPooling 2D Pool size: 2 × 2

4 Dropout Rate = 0.25

5 Convolutional 2D - ReLU Number of filters: 64

6 Convolutional 2D - ReLU Number of filters: 64

7 MaxPooling 2D Pool size: 2 × 2

8 Dropout Rate: 0.50

9 Dense - ReLU Number of units: 512

10 Dropout Rate: 0.50

11 Softmax

Initialization Set Size Results. Due to the large number of conducted exper-
iments, Table 3 only presents a subset of them. We kept the results where the
learning rate, the active fraction, and goal standard deviation were set to 0.01,
0.8, and 1.0, respectively, as they are representative of the behavior observed
with other hyperparameter values. We also only show the results obtained using
CIFAR100 as they are very similar to the ones obtained using CIFAR10.

Table 3. CIFAR100 - Initialization set results

Initialization
set size

Loss
after
initializa-
tion

Test
accuracy
after
initializa-
tion

Loss
after 1
epoch

Test
accuracy
after 1
epoch

Loss
after 50
epochs

Test
accuracy
after 50
epochs

128 4.535 0.043 4.059 0.088 2.180 0.431

256 4.566 0.041 4.396 0.042 2.287 0.4083

512 14.872 0.010 15.956 0.01 15.956 0.01

1024 4.479 0.065 4.459 0.033 2.254 0.412

2048 4.410 0.110 4.050 0.104 2.132 0.439
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The results show that, as expected, larger initialization set sizes produce bet-
ter initial accuracies and lower loss values. However, this behavior is not mono-
tonic; when the initialization set size is exactly the same as the number of neurons
in the last hidden layer, performance is extremely poor. This is due to the way
the Moore-Penrose pseudo-inverse is computed. When we have more instances
in the set than units in the layer, the algorithm solves an over-determined sys-
tem of equations. When this happens, the pseudo-inverse algorithm finds the
least-squares fit solution. If we have more units than examples in the set and
thus deal with an underdetermined system of equations, the pseudo-inverse algo-
rithm finds a solution that minimizes the L2 norm of the solution variables. In
both cases, the pseudo-inverse algorithm has a regularizing effect on the weight
values. If the number of examples in the set is the same as the number of units,
the matrix is square and (usually) invertible, thus the solution overfits the ini-
tialization set and does not have any regularization effect on the weights, which
leads to poor generalization.

Active Fraction Results. Table 4 (CIFAR100) only shows a subset of the
results as well. We kept the results where the learning rate, initialization set
size, and goal standard deviation were set to 0.001, 2048, and 1.0, respectively.
The results suggest that a value between 0.6 and 0.9 should be used. We say
that ReLU units die when pushed into a state where they no longer produce
a non-zero value. We speculate that a higher active fraction allows ReLU units
to become active most of the time, preventing them from dying as the training
process occurs while still introducing non-linearity into the network.

Table 4. CIFAR100 - Active fraction results

Active
fraction

Loss
after
initializa-
tion

Test
accuracy
after
initialization

Loss after 1
epoch

Test
accuracy
after 1 epoch

Loss after 50
epochs

Test
accuracy
after 50
epochs

0.1 4.674 0.026 4.593 0.018 4.572 0.027

0.2 4.521 0.052 4.564 0.035 4.342 0.075

0.3 4.476 0.067 4.537 0.049 3.996 0.122

0.4 4.452 0.084 4.514 0.057 3.649 0.164

0.5 4.448 0.093 4.494 0.071 3.502 0.188

0.6 4.436 0.099 4.483 0.063 3.392 0.205

0.7 4.419 0.108 4.495 0.046 3.313 0.215

0.8 4.420 0.106 4.504 0.042 3.296 0.218

0.9 4.438 0.098 4.498 0.049 3.320 0.213
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Table 5. CIFAR100 - Learning rate results

Learning

Rate

Loss after

initialization

Test

Accuracy

after

initialization

Loss after

1 epoch

Test

Accuracy

after 1 epoch

Loss after

50 epochs

Test

Accuracy

after 50

epochs

0.01 4.410 0.110 4.050 0.104 2.132 0.439

0.001 4.410 0.110 4.504 0.042 3.296 0.218

0.0001 4.410 0.110 4.464 0.064 4.231 0.079

Learning Rate Results. For Table 5, we kept the results where the active
fraction, initialization set size, and goal standard deviation were set to 0.8, 2048,
and 1.0, respectively. The results suggest that a large learning rate should be
used with our approach. We hypothesize that gradient values are small when
using our approach, as our weights are chosen to minimize the network’s initial
loss value. Therefore, a large learning rate is favored.

Table 6. CIFAR100 - Standard deviation results

Goal

standard

deviation

Loss after

initializa-

tion

Test

accuracy

after ini-

tialization

Loss after

1 epoch

Test

accuracy

after 1

epoch

Loss after

50 epochs

Test

accuracy

after 50

epochs

0.1 4.418 0.109 4.438 0.053 2.487 0.385

0.2 4.425 0.104 4.392 0.071 2.356 0.396

0.3 4.414 0.108 4.341 0.081 2.304 0.408

0.4 4.432 0.105 4.329 0.075 2.270 0.410

0.5 4.425 0.105 4.274 0.062 2.226 0.418

0.6 4.412 0.110 4.200 0.090 2.166 0.438

0.7 4.422 0.110 4.194 0.087 2.233 0.420

0.8 4.421 0.107 4.148 0.085 2.237 0.421

0.9 4.419 0.108 4.075 0.101 2.167 0.434

1.0 4.426 0.109 4.110 0.087 2.227 0.423

1.1 4.419 0.112 3.992 0.109 2.185 0.433

1.2 4.425 0.111 3.959 0.112 2.132 0.445

1.3 4.418 0.109 3.925 0.106 2.192 0.429

1.4 4.426 0.104 3.916 0.111 2.160 0.436

1.5 4.411 0.119 3.861 0.123 2.192 0.432

1.6 4.424 0.107 3.872 0.122 2.176 0.432

1.7 4.422 0.108 3.853 0.116 2.126 0.448

1.8 4.417 0.108 3.830 0.120 2.131 0.441

1.9 4.420 0.109 3.814 0.120 2.152 0.436

2.0 4.422 0.110 3.796 0.127 2.176 0.432

2.1 4.416 0.110 3.782 0.129 2.192 0.426

2.2 4.414 0.111 3.760 0.129 2.130 0.438

2.3 4.428 0.107 3.815 0.126 2.144 0.443

2.4 4.420 0.108 3.815 0.122 2.210 0.426

2.5 4.420 0.110 3.737 0.136 2.148 0.437

2.6 4.417 0.109 3.843 0.122 2.140 0.441

2.7 4.419 0.105 3.764 0.128 2.135 0.446

2.8 4.421 0.108 3.806 0.127 2.187 0.429

2.9 4.425 0.106 3.864 0.118 2.188 0.429

3.0 4.414 0.110 3.751 0.126 2.159 0.436
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Standard Deviation Results. For Table 5, we kept the results where the
active fraction was set to 0.8, the initialization set size was 2048, and the learning
rate was kept constant at 0.01. The results, presented in Table 6, are very similar
across all standard deviation values. We tried values distant from 1, such as
0.1, 0.001, 10, and 100, and we observed significantly worse performance. We
conclude that a value between 0.8 and 3 is appropriate. The complete set of
results is publicly available online [2].

4.2 Other Initialization Techniques

Table 7. VGG16 - ImageNet - Initialization and one epoch results

Learning
rate

Initialization
method

Loss
after
initial-
ization

Test
accuracy
after
initial-
ization

Loss
after 1
epoch

Test
accuracy
after 1
epoch

0.1 Ours 6.884 0.008 16.096 0.001

0.1 LSUV 7.400 0.001 16.099 0.001

0.1 Glorot 6.910 0.001 6.910 0.001

0.1 He 7.389 0.001 16.099 0.001

0.01 Ours 6.884 0.008 3.915 0.233

0.01 LSUV 7.400 0.001 4.043 0.205

0.01 Glorot 6.910 0.001 6.654 0.006

0.01 He 7.389 0.001 4.000 0.218

0.001 Ours 6.884 0.008 4.519 0.156

0.001 LSUV 7.400 0.001 5.243 0.088

0.001 Glorot 6.910 0.001 6.909 0.001

0.001 He 7.389 0.001 5.144 0.098

0.0001 Ours 6.884 0.008 5.325 0.086

0.0001 LSUV 7.400 0.001 6.201 0.029

0.0001 Glorot 6.910 0.001 6.909 0.001

0.0001 He 7.389 0.001 6.395 0.018

We compared our method to the following state-of-the-art initialization tech-
niques: Glorot, He, and LSUV. We tested all initialization schemes on the follow-
ing model architectures: VGG16, VGG19, and InceptionV3. We used ImageNet
for all experiments with images resized to 256 × 256. When using our initial-
ization approach, we used an initialization set of size 256 for hidden layers, an
initialization set of size 8192 for the output layers, a value of 0.8 for the active
fraction hyperparameter, and a goal standard deviation (s) of 1.0. For LSUV, we
also used an initialization set of size 256 for hidden layers, and an initialization
set of size 8192 for the output layers. We only trained the models for 1 epoch
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Table 8. VGG19 - ImageNet - Initialization and one epoch results

Learning
rate

Initialization
method

Loss
after
initial-
ization

Test
accuracy
after
initial-
ization

Loss
after 1
epoch

Test
accuracy
after 1
epoch

0.1 Ours 6.888 0.006 16.102 0.001

0.1 LSUV 7.430 0.001 16.105 0.001

0.1 Glorot 6.910 0.001 6.910 0.001

0.1 He 7.238 0.001 16.102 0.001

0.01 Ours 6.888 0.006 3.828 0.232

0.01 LSUV 7.430 0.001 4.068 0.206

0.01 Glorot 6.910 0.001 6.909 0.001

0.01 He 7.238 0.001 4.138 0.196

0.001 Ours 6.888 0.006 4.487 0.159

0.001 LSUV 7.430 0.001 5.120 0.095

0.001 Glorot 6.910 0.001 6.909 0.001

0.001 He 7.238 0.001 5.179 0.092

0.0001 Ours 6.888 0.006 5.269 0.090

0.0001 LSUV 7.430 0.001 6.162 0.026

0.0001 Glorot 6.910 0.001 6.909 0.001

0.0001 He 7.238 0.001 6.232 0.026

as we were mostly interested in comparing the strategies in the early stages of
the training process. Because we know that the learning rate plays an important
role, we repeated the experiments with the following learning rates: 0.1, 0.01,
0.001, and 0.0001.

Tables 7, 8, and 9 present the test loss and test accuracy after initializa-
tion (but before training) and after one epoch of training tested on the above-
mentioned models and initialization schemes.

We also trained VGG16 on ImageNet for 10 epochs using all initializa-
tion techniques to analyze how these methods compare as the training process
advances. We used a learning rate of 0.01, a mini batch size of 32, regular stochas-
tic gradient descent, and categorical crossentropy as the loss function. Figure 1
shows the accuracy achieved on the test set after every training epoch.

Our experiments confirm the results obtained by He et al. [7]. Glorot initial-
ization does not work well with ReLU layers. It consistently performs worse than
the rest of the techniques. Our results also show that our method initializes the
network in a desirable area in the parameter space; where the initial test accu-
racy is high and the loss is low. In all experiments, our method outperformed
the other techniques in both loss and test set accuracy. We also observed better
accuracies as the training process advanced. Our code is freely available in our
GitHub repository [1].
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Fig. 1. VGG16 - ImageNet - 10 training epochs results

Table 9. InceptionV3 - ImageNet - Initialization and one epoch results

Learning
rate

Initialization
method

Loss
after
initial-
ization

Test
accuracy
after
initial-
ization

Loss
after 1
epoch

Test
accuracy
after 1
epoch

0.1 Ours 6.875 0.016 2.744 0.407

0.1 LSUV 7.430 0.001 3.060 0.355

0.1 Glorot 6.911 0.001 2.986 0.372

0.1 He 7.160 0.001 2.977 0.367

0.01 Ours 6.875 0.016 3.326 0.300

0.01 LSUV 7.430 0.001 3.904 0.222

0.01 Glorot 6.911 0.001 3.677 0.251

0.01 He 7.160 0.001 4.000 0.206

0.001 Ours 6.875 0.016 5.302 0.072

0.001 LSUV 7.430 0.001 5.891 0.036

0.001 Glorot 6.911 0.001 5.803 0.039

0.001 He 7.160 0.001 11.605 0.002

0.0001 Ours 6.875 0.016 6.799 0.007

0.0001 LSUV 7.430 0.001 7.010 0.003

0.0001 Glorot 6.911 0.001 6.936 0.004

0.0001 He 7.160 0.001 7.277 0.001
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5 Conclusion

In this paper, we propose a new weight initialization technique, where we use
statistics obtained from a subset of the training set to initialize the network’s
weights. We used orthonormal vectors to initialize the units of a layer, and
introduce a hyperparameter called active fraction that allows the deep learning
practitioner to define a prior on the behavior of ReLU layers. Similar to LSUV,
we also incorporate a weight standarization step, where we force the output of
each layer to have a predetermined standard deviation. Lastly, we show that
initializing the last layer using the Moore-Penrose pseudo-inverse of the repre-
sentation produced by the last hidden layer introduces a regularizing effect on
the weights while minimizing the initial loss value. Future work includes study-
ing the behavior of our method in other domains beyond image classification,
analyzing its behavior in relation to optimization algorithms that employ adap-
tive learning rates such as Adam and RMSprop, and extending it to work on
recurrent networks.
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Abstract. Improving generalization is one of the main challenges for
training deep neural networks on classification tasks. In particular, a
number of techniques have been proposed, aiming to boost the perfor-
mance on unseen data: from standard data augmentation techniques to
the �2 regularization, dropout, batch normalization, entropy-driven SGD
and many more.

In this work we propose an elegant, simple and principled approach:
post-synaptic potential regularization (PSP). We tested this regulariza-
tion on a number of different state-of-the-art scenarios. Empirical results
show that PSP achieves a classification error comparable to more sophis-
ticated learning strategies in the MNIST scenario, while improves the
generalization compared to �2 regularization in deep architectures trained
on CIFAR-10.

Keywords: Regularization · Generalization · Post-synaptic potential ·
Neural networks · Classification

1 Introduction

In the last few years artificial neural network (ANN) models received huge inter-
est from the research community. In particular, their potential capability of solv-
ing complex tasks with extremely simple training strategies has been the initial
spark, while convolutional neural networks (CNNs), capable of self-extracting
relevant features from images, have been the fuel for the burning flame which
is the research around ANNs. Furthermore, thanks to the ever-increasing com-
putational capability of machines with the introduction of GPUs (and, recently,
TPUs) in the simulation of neural networks, ANNs might be embedded in many
portable devices and, potentially, used in everyday life.

State-of-the-art ANNs are able to learn very complex classification tasks:
from the nowadays outdated MNIST [15], moving to CIFAR-10 and then even
the ImageNet classification problem. In order to overcome the complexity of
these learning tasks, extremely complex architectures have been proposed: some
examples are VGG [22] and ResNet [10]. However, due to their extremely high
number of parameters, these models are prone to over-fitting the data; hence,
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they are not able to generalize as they should. In this case, the simple learn-
ing strategies (like SGD) alone are no longer able to guarantee the network to
learn the relevant features from the training set and other strategies need to be
adopted.

In order to improve the generalization of ANNs, several approaches have
been proposed. One of the most typical relies on the introduction of a “regular-
ization” term, whose aim is to add an extra constraint to the overall objective
function to be minimized. Recently, other approaches have been proposed: from
the introduction of different optimizers [13] to data augmentation techniques,
the proposal of new techniques like dropout [24] and even changing the basic
architecture of the ANN [10].

In this work, we propose a regularization term inspired by a side effect of
the �2 regularization (also known as weight decay) on the parameters. In par-
ticular, we are going to show that, naturally, weight decay makes the post-
synaptic potential dropping to zero in ANN models. From this observation, a
post-synaptic potential regularization (PSP) is here proposed. Differently from
�2 regularization, its effect on the parameters is not local: parameters belonging
to layers closer to the input feel the effect of the regularization on the forward
layers. Hence, this regularization is aware of the configuration of the whole net-
work and tunes the parameters using a global information and, unlike activation
function research techniques [19], it is low-complexity. We show that the standard
�2 regularization is a special case of the proposed regularizer as well. Empirically
we show that, when compared to the standard weight decay regularization, PSP
generalizes better.

The rest of this paper is organized as follows. In Sect. 2 we review some of
the most relevant regularization techniques aiming at improving generalization.
Next, in Sect. 3 we introduce our proposed regularization, starting from some
simple considerations on the effect of the �2 regularization on the post synaptic
potential and analyzing the potential effects on the learning dynamics. Then, in
Sect. 4 we show some empirical results and some extra insights of the proposed
regularization. Finally, in Sect. 5 the conclusions are drawn.

2 Related Work

Regularization is one of the key features a learning algorithm should particularly
take care of in deep learning, in order to prevent data over-fit and boosting the
generalization [8]. Even though such a concept is more general and older than
the first ANN models [26], we are going to focus on what regularization for deep
architectures (trained on finite datasets via supervised learning) is. We can divide
the regularization strategies in our context under four main categories [14]:

– regularization via data: some examples include (but are not limited to) the
introduction of gaussian noise to the input [7], dropout to the input [24], data
augmentation [1,4] and batch normalization [11].

– regularization via network architecture: in this case, the architecture is prop-
erly selected in order to fit the particular dataset we are aiming to train. It can
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involve the choice of single layers (pooling, convolutional [15], dropout [24]),
it can involve the insertion of entire blocks (residual blocks [10]), the entire
structure can be designed on-purpose [2,5,9] or even pruned [25,29]. Recently,
an empirical study on new activation functions has been proposed [19].
Ramachandran et al. proposed a search technique to investigate the perfor-
mance over a combination of activation functions. Its outcome is the best-
fitting activation function for the training problem, according to the ANN
architecture used. Recently, it was shown that models with multiple outputs
and shared layers may also act as a regularizing technique [20].

– regularization via optimization: an optimizer can determine the nature of
the local minima and avoid “bad” local minima (if any [12]), boosting the
generalization [3,13]. The initialization also seemed to cover an important
role [6], together with early-stopping [18] techniques.

– regularization via regularization term: here a regularization term is added to
the loss, and a global objective function is minimized. This will be the scope
of our work.

One of the ground-breaking regularization techniques, proposed few years ago, is
dropout. Srivastava et al. [24] proposed, during the training process, to stochas-
tically set a part of the activations in an ANN to zero according to an a-priori
set dropout probability. Empirically it was observed that, applying dropout on
a fully-connected architecture, was significantly improving the generalization,
while its effectiveness was less evident in convolutional architectures. Such a
technique, however, typically requires a longer training time, and sometimes a
proper choice of the dropout probability may change the effectiveness of the
technique. However, dropout has many variants aiming to the same goal: one of
the most used is dropconnect by Wan et al. [28].

A completely different approach to boost the generalization is to focus
the attention on some regions of the loss functions. It has been suggested by
Lin et al. [16] that “sharp” minima of the loss function does not generalize as well
as “wide” minima. According to this, the design of an optimizer which does not
remain stuck in sharp minima helps in the generalization. Towards this end, some
optimizers like SGD or Adam [13] are already implicitly looking for these kind of
solutions. Recently, a specially-purposed optimizer, Entropy-SGD, designed by
Chaudhari et al. [3], showed good generalization results. However, more sophis-
ticated optimizers increase the computational complexity significantly.

A regularization technique, proposed about 30 years ago by Weigend et al.
and just recently re-discovered, is weight elimination [29]: a penalty term is
added to the loss function and the total objective function is minimized. The
aim of the regularization term is here to estimate the “complexity” of the model,
which is minimized together with the loss function. The learning complexity
for an object increases with its number of parameters: there should exist an
optimal number of parameters (or, in other words, configuration) for any given
classification problem. Supporting this view, while using their sensitivity-driven
regularization [25] aiming to sparsify deep models, Tartaglione et al. observed
an improvement of the generalization for low compression ratios.
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Any of the proposed regularization techniques, however, is typically used
jointly with the �2 regularization. Such a technique is broadly used during most
of the ANN trainings and, despite its simple formulation, under a wide range
of different scenarios, it improves the generalization. Furthermore, many recent
works suggest that there is a correspondence between �2 regularization and other
techniques: for example, Wager et al. [27] showed an equivalence between dropout
and weight decay. Is there something else to understand about �2 regularization?
What’s under the hood? This will be our starting point, to be discussed more in
details in Sect. 3.2.

3 Post-synaptic Potential Regularization

In this section we first analyze the effect of weight decay on the output of any neu-
ron in an ANN model. We show that �2 regularization makes the post-synaptic
potential drop to zero. Hence, a regularization over the post-synaptic potential
is formulated (PSP). Next, the parameters update term is derived and some
considerations for multi-layer architectures are drawn. Finally, we show the con-
crete effect of post-synaptic potential regularization on both the output of a
single neuron and its parameters.

3.1 Notation

Fig. 1. Representation of the k-th neuron of the l-th layer of an ANN. The input yl−1

is weighted by the parameters Θl,k, passes through some affine function f(·) producing
the post-synaptic potential zl,k which is fed to the activation function ϕ(·), producing
the output yl,k
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In this section we introduce the notation to be used in the rest of this work.
Let us assume we work with an acyclic, multi-layer artificial neural network
composed of N layers, where layer l = 0 is the input layer and l = N the output
layer. The ensemble of all the trained parameters in the ANN will be indicated
as Θ. Each of the l layers is made of Kl neurons (or filters for convolutional
layers). Hence, the k-th neuron (k ∈ [1,Kl]) in the l-th layer has:

– yl,k as its own output.
– yl−1 as input vector.
– θl,k as its own parameters: wl,k are the weights (from which we identify the

j-th as wl,k,j) and bl,k is the bias.

Each of the neurons has its own activation function ϕl,k(·) to be applied after
some affine function fl,k(·) which can be convolution, dot product, adding resid-
ual blocks, batch normalization or any combination of them. Hence, the output
of a neuron can be expressed by

yl,k = ϕl,k [fl,k (θl,k,yl−1)] (1)

We can simplify (1) if we define the post-synaptic potential (or equivalently, the
pre-activation potential) zl,k as

zl,k = fl,k (θl,k,yl−1) (2)

As we are going to see, the post-synaptic potential will be central in our method
and analysis and encloses the true essence of the proposed regularization strategy.
A summary of the introduced notation is graphically represented in Fig. 1.

3.2 Effect of Weight Decay on the Post-synaptic Potential

Most of the learning strategies use the well-known �2 regularization term

R�2(Θ) =
1
2

∑

l

∑

k

∑

j

θ2l,k,j (3)

Equation (3) is minimized together with the loss function L(·); hence, the overall
minimized function is

J(Θ, ŷ) = ηL(Θ, ŷ) + λR�2(Θ) (4)

where ŷ is the desired output and η, λ are positive real numbers, and commonly
in range (0, 1). All the update contributions are computed using the standard
back-propagation strategy. Let us focus here, for sake of simplicity, on the reg-
ularization term (3). Minimizing it corresponds to adopt the commonly named
weight decay strategy for which we have the following update rule:

θt+1
l,k,j := (1 − λ)θt

l,k,j (5)
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This generates a perturbation of the output for the corresponding neuron result-
ing in a perturbation of the post-synaptic potential:

Δzl,k = zt+1
l,k − zt

l,k (6)

How does the �2 regularization affect zl,k?
Clearly, minimizing (3) means that θl,k,j → 0∀l, k, j. Now, if we have an

input pattern for our network y0, it is straightforward, according to (2) and (5),
that zl,k → 0, as all the parameters will be zero.

Under this assumption, we can say that the weight decay strategy implicitly
aims to focus on peculiar regions of the mostly-used activation functions: in
the case we use sigmoid or hyperbolic tangent, we have the maximum value for
the derivative for zl,k ≈ 0; while for the ReLU activation we are close to the
function’s derivative discontinuity. Is this the real essence of weight decay and
one of the reasons it helps in the generalization?

Starting from these very simple observation, we are now going to formulate
a regularization term which explicitly minimizes |zl,k|.

3.3 Post-synaptic Regularization

In the previous section we have observed that, in the typical deep learning sce-
nario, weight decay minimizes the post-synaptic potential, focusing the output
of the neuron around some particular regions, which might help in the signal
back-propagation and, indirectly, favor the generalization.

If we wish to explicitly drive the output yl,k of the neuron, or better, its
post-synaptic potential, we can impose an �2 regularization on zl,k:

R =
1
2

∑

l

∑

k

(zl,k)2 (7)

where k is an index ranging for all the neurons in the l-th layer. We can split
(7) for each of the k neurons in the l-th layer:

Rl,k =
1
2

(zl,k)2 (8)

In case we desire to apply the regularization (8), we can use the chain rule to
check what is the update felt by the parameters of our model:

∂Rl,k

∂θl,k,j
=

∂Rl,k

∂zl,k
· ∂zl,k

∂θl,k,j
= zl,k · ∂zl,k

∂θl,k,j
(9)

Expanding (9), we have

∂Rl,z

∂θl,k,j
=

∂zl,k

∂θl,k,j
·
(

bl,k +
∑

i

wl,k,iy(l−1,i)

)
(10)
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Here we need to differentiate between bias and weight cases: if θl,k,j is the bias
then (10) can be easily written as

∂Rl,k

∂bl,k
= bl,k +

∑

i

wl,k,iy(l−1,i) (11)

while, if θl,k,j is one of the weights,

∂Rl,k

∂wl,k,j
=

∂zl,k

∂wl,k,j
·
⎡

⎣wl,k,j
∂zl,k

∂wk,j
+

⎛

⎝bl,k +
∑

i�=j

wl,k,iy(l−1,i)

⎞

⎠

⎤

⎦

= wl,k,j

(
∂zl,k

∂wl,k,j

)2

+

⎛

⎝bl,k +
∑

i�=j

wl,k,iy(l−1,i)

⎞

⎠ ∂zl,k

∂wl,k,j

= wl,k,j

(
∂zl,k

∂wl,k,j

)2

+ Cl,k,j
∂zl,k

∂wl,k,j
(12)

where Cl,k,j is the contribution to zl,k from all the parameters except for wl,k,j .
From (12) it is possible to recover the usual weight decay assuming ∂zl,k

∂wl,k,j
= 1

and Cl,k,j = 0.
The variation in the parameter value, according to (9), is

Δθl,k,j = −λzl,k
∂zl,k

∂θl,k,j
(13)

where λ ∈ (0, 1) as usual. As we are minimizing (7), we can say that zl,k is a
bounded term. Furthermore, looking at y(l−1,j), we need to distinguish between
two cases:

– l = 1: in this case, y(0,j) represents the input, which we impose to be a bounded
quantity.

– l �= 1: here we should recall that y(l−1,j) is the output of the (l − 1)-th
layer: if we minimize the post-synaptic potentials also in those layers, for
the commonly-used activation functions, we guarantee it to be a bounded
quantity.

Hence, as a product of bounded quantities, also (13) is a limited quantity.
However, what we aim to minimize is not (8), but the whole summation in

(7). If we explicitly wish to write what the regularization contribution to the
parameter θl,k,j is, we have

∂Rp,h

∂θl,k,j
= zp,h · ∂zp,h

∂θl,k,j
(14)

Here, three different cases can be analyzed:

– p < l: in this case, the gradient term is ∂zp,h

∂θl,k,j
= 0 and the entire contribution

is zero.
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– p = l: here, the gradient term ∂zp,h

∂θl,k,j
= y(l−1,j) if h = k, zero otherwise.

– p > l: this is the most interesting case: regularization on the last layers affects
all the previous ones, and such a contribution is automatically computed using
back-propagation.

Hence, in the most general case, the total update contribution resulting from
the minimization of (7) on the j-th weight belonging to the k-th neuron at layer
l is indeed

Δθl,k,j = −λ

⎡

⎣zl,k
∂zl,k

∂θl,k,j
+

L∑

p=l+1

∂Rp

∂θl,k,j

⎤

⎦ (15)

where
∂zl,k

∂θl,k,j
=

{
1 if θl,k,j is bias
y(l−1,j) if θl,k,j is weight

(16)

In this section we have proposed a post-synaptic potential regularization which
explicitly minimizes zl,k in all the neurons of the ANN. In particular, we have
observed that the update term for the single parameter employs a global informa-
tion coming from forward layers, favoring the regularization. In the next section,
results from some simulations in which PSP regularization is tested are shown.

4 Experiments

In this section we show the performance reached by some of the mostly-used
ANNs with our post-synaptic potential regularization (PSP) and we compare
it to the results obtained with weight decay. We have tested our regularization
on three different datasets: MNIST, Fashion-MNIST and CIFAR-10 on LeNet5,
ResNet-18 [10], MobileNet v2 [21] and All-CNN-C [23]. The proposed hyper-
parameters have been selected using grid search. All the simulations are per-
formed using the standard SGD with CUDA 8 on a Nvidia Tesla P-100 GPU.
Our regularization has been implemented using PyTorch 1.1.1

4.1 Simulations on MNIST

As very first experiments, we attempted to train the well-known LeNet-5 model
over the standard MNIST dataset [15] (60k training images and 10k test images,
all the images are 28 × 28 pixels, grey-scale). We use SGD with a learning
parameter η = 0.1, mini-batch size 100. The training lasts here 50 epochs. In
Fig. 2a, we show a typically observed scenario in our experimental setting, where
we compare standard SGD with no regularization, the effect of �2 and �1 regular-
ization (λ = 0.0001), the effect of dropout on the network (having p = 0.5) and
our pre-activation signal potential regularization (PSP, λ = 0.001). The results
are shown in Table 1, that reports the obtained classification errors, averaged
on 10 different runs along with the corresponding standard deviation. While the

1 All the source code is publicly available at https://github.com/enzotarta/PSP.

https://github.com/enzotarta/PSP
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weight decay average performance is 0.74%, PSP performance is 0.55%. Please
note that this result is deemed statistically significant since the t-test rejects
the null hypothesis that there’s no difference between the means with p-value
in order of 10−5. We would like to emphasize that, using this simple training
strategy, the performance reached on LeNet-5 is among the best recorded, nev-
ertheless having a much lower computational complexity [3]. We find interesting
the behavior of

〈
z2

〉
for all the three techniques (Fig. 2b). In the case of stan-

dard SGD, the averaged
〈
z2

〉
value, as it is not controlled, typically grows until

the gradient on the loss will not be zero. For �2 regularization, interestingly, it
slowly grows until it reaches a final plateau. Finally, in PSP regularization, the〈
z2

〉
value is extremely low, and still slowly decreases. According to the results

in Fig. 2a, this is helping in the generalization.
At this point we can have a further look at what is happening at the level

of the distribution of the parameters layer-by-layer. A typical trained param-
eters distribution for LeNet5, trained on MNIST, is shown in Fig. 3. While �2
regularization typically shrinks the parameters around zero, PSP regularization
does not constrain the parameters with the same strength, while still constrains
the pre-activation signal (Fig. 2b). However, contrarily to this, the first convo-
lutional layer, with �2 regularization, is less constrained around zero than with
PSP (Fig. 3a). Such a behavior can be explained by (15): all the regularization
contributions coming from all the forward layers (in this case, conv2, fc1 and
fc2) affect the parameters in conv1, which are directly conditioning all the z
computed in forward layers.

4.2 Simulations on Fashion-MNIST

We have decided, as a further step, to test LeNet-5 on a more complex dataset:
hence, we have chosen the Fashion-MNIST dataset [30]. It is made of 10 classes
of 28 × 28 grey-scale images representing various pieces of clothing. They are
divided in 60k examples for the training set and 10k for the test set. Such a
dataset has two main advantages: the problem dimensionality (input, output) is
the same as MNIST; hence, the same ANN can be used for both problems, and
it is not as trivial as MNIST to solve.

Table 1. Classification error on LeNet-5 for MNIST and Fashion-MNIST evaluated on
an average of 10 runs (error % ± standard deviation)

Regularization MNIST Fashion-MNIST

�2 0.74(±0.06) 8.28(±0.73)

PSP 0.55(±0.05) 7.88(±0.28)

�1 1.02(±0.26) 9.56(±0.64)

Dropout 0.63(±0.08) 8.22(±0.25)
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(a) Error on the test set

(b) Average of z2 values

Fig. 2. Performance comparison in LeNet5 trained on MNIST between �2 regulariza-
tion, �1 regularization, dropout and post synaptic potential regularization (PSP). All
the plots show an average on 10 runs.
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(a) First convolutional layer (conv1) (b) Second convolutional layer (conv2)

(c) First fullyconnected layer (fc1) (d) Output layer (fc2)

Fig. 3. Typical distribution of the parameters in a LeNet5 trained on MNIST with �2
regularization and with post synaptic potential regularization (PSP).

Training results are shown in Table 1. The simulations are performed with η =
0.1, batch size 100 and λ = 0.0001 for both �2 and �1 regularization while
λ = 0.001 for PSP. The training lasts here 150 epochs. Here, the difference
in the generalization between �2 and PSP is wider than the one presented for
MNIST: we are able, with the same architecture, to improve the performance by
around the 1% without any other heuristics.

4.3 Simulations on CIFAR-10

Moving towards deep architectures, we decided to use CIFAR-10 as dataset. It
is made of 32 × 32 color images (3 channels) divided in 10 classes. The training
set is made of 50k images and the test set of 10k samples. This dataset is a
good compromise to make the first tests on deep architectures as the training is
performed from scratch.
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Three convolutional architectures have been here tested: MobileNet v2 [21],
ResNet-18 [10] and All-CNN-C [23]. In order to separate the contribution of our
regularizer towards other state-of-the-art regularizers, we are going to compare
our results with our baseline (same data augmentation, no dropout). All these
networks were pre-trained with η = 0.1 for 150 epochs and then learning rate
decay policy was applied (drop to 10% every 100 epochs) for 300 epochs. Mini-
batch size was set to 128 and momentum to 0.9. For standard training, the �2 λ
was set to 0.0005 while for PSP regularization to 0.001.

All the results are shown in Table 2. Please note that ALL-CNN-C includes by
design some dropout layers, having p = 0.5; as a consequence, all the presented
results for this architecture includes dropout. Our results show that PSP-based
regularization generalizes better than �2, �1 and dropout.

Table 2. Top-1 classification error on CIFAR-10 (Error %)

Architecture �2 PSP �1 Dropout (p = 0.1)

ResNet-18 5.1 4.6 6.2 6.4

MobileNet v2 7.0 6.4 6.9 7.7

All-CNN-C 9.1 8.6 9.4 N/A

5 Conclusion

In this work we have proposed a post-synaptic potential regularizer for super-
vised learning problems. Starting from the observation that weight decay indi-
rectly shrinks the post-synaptic potential to zero, we have formulated the new
PSP regularization. Contrarily to weight decay, it uses a global information com-
ing from other parameters affecting the post-synaptic potential. We have also
shown that �2 regularization is a special case of our PSP regularization. Look-
ing at the computational complexity, if the Autograd [17] package is used for
back-propagation, no significant computational overhead is added.

Empirical results show that PSP regularization improves the generalization
on both simple and more complex problems, boosting the performance also on
deep architectures. Future work includes the application of PSP to recurrent
neural networks, tests on networks using non-linear activation functions and the
definition of a proper decay policy for PSP regularization.
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Abstract. In this work, a novel modification on the standard Levenberg-
Marquardt (LM) algorithm is proposed for eliminating the necessity of the
validation set for avoiding overfitting, thereby shortening the training time while
maintaining the test performance. The idea is that training points with smaller
magnitudes of training errors are much liable to cause overfitting and that they
should be excluded from the training set at each epoch. The proposed modifi-
cation has been compared to the standard LM on three different problems. The
results shown that even though the modified LM does not use the validation data
set, it reduces the training time without compromising the test performance.

Keywords: Neural networks � Levenberg-Marquardt algorithm � Overfitting �
Validation data set

1 Introduction

Overfitting is one of the most important problems in the machine learning area of
research, especially in training neural networks, that degrades the generalization
capability of the model under investigation. In the literature, there are several tech-
niques to overcome overfitting problem namely, Early Stopping (ES) [1], Weight
Decay [2], Noise Injection [3] and Optimized Approximation [4]. On the other hand, as
the training algorithms, gradient-based methods such as Steepest Descend, Conjugate
Gradient, and Levenberg–Marquardt (LM) [5] have been the most widely preferred
optimization methods for training neural networks. The choice of the optimization
method together with the method for avoiding overfitting is very important due to the
its impact on the generalization performance [6]. Among others, the LM with ES is the
mostly used one due to its advantages over other options. In this paper, we proposed a
novel modification on LM for avoiding overfitting that provides an acceptable test
performance without using the validation data set. This paper is organized as follows:
in the next Section, the standard LM algorithm is reviewed. In Sect. 3, the proposed
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modification is given in detail. Next, the comparison results for three different examples
have been given in Sect. 4. Finally, the paper concludes with the conclusions in
Sect. 5.

2 Training a Feed-Forward Neural Network with LM

Given a data set D ¼ ti; yif gNi¼1, where ti 2 R
R is the ith input vector and yi 2 R is the

corresponding output, our goal is to find the parameters of the best feed-forward neural
network with one hidden layer and S hidden neurons. The input-output relationship of
the network is of the form, ŷi xð Þ ¼Wch Wgtiþ bh

� �þ bc, where x is the vector of all
adjustable parameters (weights and biases), h is the S� 1 vector of hyperbolic tangent
activation functions, Wg is the S� R matrix of input weights, bh is the S� 1 vector of
hidden biases, Wc is the 1� S vector of output weights and bc is the scalar output bias
[7]. To prevent the neural network from overfitting, the most commonly used technique
is ES, where the data set is divided into three subsets namely training, validation and
testing. Training is terminated at the Lth increase in fval xð Þ in a row, at the end of which
the best neural network is the one that has the best validation performance,
as seen in Fig. 1. As the training algorithm, LM uses the update direction as

pk ¼ � JT xkð ÞJ xkð Þþ lkI
� ��1JT xkð Þe xkð Þ: In LM, the regulation term lk may change

at every epoch. In this study, we have adopted a conventional way, which is to
multiply/divide by lscal ¼ 10. For more details on the strategies for changing the
regulation term in LM, one may refer to [8].

3 Motivation and the Modified LM Algorithm

The main idea in the proposed modification on LM is that training points with smaller
magnitudes of training errors, especially the ones within the interval �� þ �½ �, are
much likely to cause overfitting and thus they should be excluded from the training set
in the current training epoch, thereby shortening the training time while maintaining the
test performance. In the standard LM algorithm, consider ei xkð Þ, which is the training
error at the kth epoch for the ith training data point. Let E be the set of the indices of the

Fig. 1. Finding the best model by early stopping based on the validation performance.
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training data points outside the interval �� þ �½ �, i.e., E ¼ i; �\ ei xkð Þj jf g; then
there are NE data points in the set E. If we plot ei xkð Þ for i ¼ 1; 2; . . .;Ntra, as seen in
Fig. 2, it can be seen that for a specified �, Ntra � NE errors lie within the interval
�� þ �½ � and the remaining NE data points are outside the interval.

During the standard LM training, for a specified � small enough, training data
points within the interval �� þ �½ � may cause overfitting in the current training
epoch. Therefore, if the training data points within the interval �� þ �½ � are excluded
from the training data set at each epoch, then overfitting can somewhat be avoided. The
main idea of the modification is that, at each epoch, we work only with NE data points
in E, since the excluded data points in the interval �� þ �½ � have much more
influence on the overfitting. As we work with only the data points in E, instead of using
the Jacobian matrix J xkð Þ and the error vector e xkð Þ to calculate pk, we use their subsets
JE xkð Þ and eE xkð Þ, respectively. In other words, the update direction is calculated as,

pk ¼ � JTE xkð ÞJE xkð Þþ lkI
� ��1JTE xkð ÞeE xkð Þ; where eE xkð Þ is the NE � 1 vector of

errors in E and JE xkð Þ is the NE � n Jacobian matrix corresponding to the data points in
E. Another modification is proposed on the update condition; in the standard LM, if
ftra xk þ pkð Þ\ftra xkð Þ is satisfied then the parameters are updated, i.e. xkþ 1  xk þ pk.
On the other hand, in the modified LM, the update is made according to the number of
elements in the sets E and Ep, where Ep is defined as the set of indices of the training
data points outside the interval �� þ �½ � when the parameters are updated with pk,
that is to say, Ep ¼ i; �\ ei xk þ pkð Þj jf g. Thus, if NEp (the number of elements in Ep)
is less than NE, then the update is made, which forces the data points towards the
interval �� þ �½ �. To select the value of �, it is initialized with a proper value and
then adapted at each training epoch, which is another modification in the algorithm.
This adaptation is made as follows: In the standard LM, if ftra xk þ pkð Þ\ftra xkð Þ is
satisfied, then the parameters are updated and the lk is divided by lscal; otherwise, no
update is made and lk is multiplied by lscal. On the other hand, in the modified LM, if
NEp\NE, then the update is made, the parameter lk is decreased as lk  lk=lscal and
also � is decreased as � �� D�; otherwise, no update is made, lk is increased as
lk  lk � lscal and � is increased as � �þD�. Thus, the parameter � is adapted

Fig. 2. Training errors in and out of the set E
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according to the update direction, which makes the interval �� þ �½ � flexible. The
last modification is on the termination criteria. Training is terminated if the maximum
number of epochs is reached or E is empty, i.e. NE ¼ 0. The modified LM algorithm is
given below:

Determine x0, μ0, μmax, μscal, kmax, ρ1, ρ2, L, ε and Δε; k = 0; 
ftra

∗ = ∞; MainLoop = TRUE
while MainLoop

k ← k+1; Calculate ftra(xk), e(xk) and J(xk); Find the 
set Ε of e(xk) satisfying ε<|e(xk)|. Find eE(xk), the 
subset of e(xk) with indices in E. Find JE(xk), the sub-
set of J(xk) with indices in E. InnerLoop = TRUE;
while InnerLoop
pk = -[JE

T(xk)JE(xk)+μkIE]
-1JE

T(xk)eE(xk). Find the set Ep of 
e(xk+pk) satisfying ε<|e(xk+pk)|
if length(Ep)<length(E)xk+1 = xk+pk; μk ← μk/μscal; ε ← ε-Δε; InnerLoop = FALSE
else
μk ← μk˟μscal; ε ← ε+Δε
if μk<μmax; InnerLoop = FALSE; MainLoop = FALSE; end

end
end
Calculate ftra(xk+1) 
if ftra(xk+1)<ftra

∗; ftra
∗ = ftra(xk+1); x∗=xk+1. end

if kmax<k | NE=0; MainLoop = FALSE; end
end

4 Examples

We have compared our modified LM algorithm with the standard LM algorithm with
respect to training time and test performance on three different regression examples.
For all examples, the parameters are set as follows: l0 ¼ 1, lmax ¼ 1010, lscal ¼ 10,
kmax ¼ 100, r1 ¼ 10�10, r2 ¼ 10�10, L ¼ 10, � ¼ 0:02 and D� ¼ 0:02. Moreover, all
input variables and output variable in the data sets are normalized to the interval
0 1½ �; afterwards, they are corrupted by additive white noise with zero mean and 0.05
standard deviation. In all examples, 60% of data is used for training, 20% is used for
validation and 20% is used for testing, respectively. For a fair comparison, conditions
for the algorithms under comparison are totally same, i.e., initial parameters of the
neural networks and training sets are all same at every simulation. The only difference
is that the classical LM uses the validation data set, while modified LM does not. After
each training phase, the test performances of the methods are obtained by the same test
data set. For each case, the simulations are repeated 100 times by starting the neural
networks with different initial parameters, and then training times and test
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performances for each algorithm are stored. Afterwards, we obtained the average
values of training times and test performances for the algorithms.

The first example is Sun Spot data, which contains monthly mean total sunspot
number from 1749 to 2015, which adds up to 3193 data points in total [9]. Based on R
previous months, the mean sun spot number in the next month is predicted. In the
simulations R is increased from 5 to 50 by one and S (number of hidden neurons) is
increased from 5 to Smax. For each case, i.e. R; Sð Þ pair, networks are started with the
same random initial parameters, then trained with standard LM and modified LM and
their training times and test performances are stored. This is repeated 100 times and
average values of the training times and test performances are tabulated in Table 1.

Results show that modified LM provides nearly the same test performance as that
of the standard LM, while reducing the average training time by half.

Another example is Box and Jenkins’ data that has one input variable u nð Þ, and one
output variable y nð Þ, with 286 data points. It is assumed that yn ¼
f yn�1; . . .; yn�ny ; un�1; . . .; un�nu
� �

for proper choices of ny and nu [10]. In the simu-
lations ny and nu are increased from 1 to 3 by one and S is increased from 5 to Smax. For
each case, i.e. ny; nu; S

� �
triplets, networks are started with the same random initial

parameters, then trained with standard LM and modified LM and their training times
and test performances are stored. This is repeated 100 times and average values of the
training times and test performances are tabulated in Table 2.

Results show that modified LM provides satisfactory test performance, while
reducing the average training time to its 1/5.

The last example is Continuously Stirred Tank Reactor (CSTR) which is a third-
order nonlinear process, the dynamics of which is given by a set of differential
equations as _x1 tð Þ ¼ 1� 4x1 tð Þþ 0:5x22 tð Þ, _x2 tð Þ ¼ 3x1 tð Þ � x2 tð Þ � 1:5x22 tð Þþ u tð Þ,
_x3 tð Þ ¼ x22 tð Þ � x3 tð Þ and y tð Þ ¼ x3 tð Þ, where u tð Þ is the input signal, y tð Þ is the output
of the process [11]. During the data collection phase, the magnitude of the control
signal is made random between umin ¼ 0 and umax ¼ 0 in each Runge-Kutta time-step
of Ts ¼ 0:1sec: to obtain a persistently exciting data set of 5000 data points. It is

Table 1. Results for the Sun Spot Data

Av. Training time (sec.) Av. Test performance ftst xð Þ
Standard LM 52.747 2.4221
Modified LM 25.290 2.4165

Table 2. Results for the Box-Jenkins process

Av. Training time (sec.) Av. Test performance ftst xð Þ
Standard LM 0.9199 0.2910
Modified LM 0.1873 0.2909
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assumed that yn ¼ f yn�1; . . .; yn�ny ; un�1; . . .; un�nu
� �

for proper choices of ny and nu. In
the tests, ny and nu are increased from 1 to 4 by one and S is increased from 5 to Smax.
For each case, i.e. ny; nu; S

� �
triplets, networks are started with the same random initial

parameters, then trained with standard LM and modified LM and their training times
and test performances are stored. This is repeated 100 times and average values of the
training times and test performances are tabulated in Table 3. Results show that
modified LM provides the same test performance as that of the standard LM, while
reducing the average training time to its 1/3.

5 Conclusions

In this paper, a novel modification on the standard LM algorithm is proposed for
eliminating the need of the validation set for avoiding overfitting, thereby reducing the
training time without any deterioration in the test performance. Accordingly, the
modified algorithm works with less data than standard LM, and hence it improves the
computational time and complexity. The proposed modification has been compared to
the standard LM on three different problems. The results shown that even though the
modified LM does not use the validation data set, it reduces the training time con-
siderably without compromising the test performance.
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Abstract. We study the performance of stochastic gradient descent
(SGD) in deep neural network (DNN) models. We show that during a
single training epoch the signs of the partial derivatives of the loss with
respect to a single parameter are distributed almost uniformly over the
minibatches. We propose an optimization routine, where we maintain
a moving average history of the sign of each derivative. This history is
used to classify new derivatives as “exploratory” if they disagree with
the sign of the history. Conversely, we classify the new derivatives as
“exploiting” if they agree with the sign of the history. Each derivative
is weighed according to our classification, providing control over explo-
ration and exploitation. The proposed approach leads to training a model
with higher accuracy as we demonstrate through a series of experiments.

Keywords: Optimization · Gradients · Deep learning ·
Neural networks

1 Introduction

In supervised machine learning, the training of a machine learning model is
generally a lengthy iterative optimization procedure. During this procedure, a
loss function, which corresponds to the incorrectness of the model, is minimized.

The loss optimizer is an algorithm that iteratively minimizes the model’s
loss function over the training set, by adjusting the model’s parameters. One
of the most common optimization algorithms is “Minibatch Stochastic Gradient
Descent” (Minibatch-SGD) [3]. In this approach, a subset of training examples (a
minibatch) is used to produce the loss value with respect to the loss function and
the current model parameters. Next, the gradient, that is the set of the partial
derivatives of the loss function w.r.t. all the model parameters, is computed for
each training example using backpropagation [14]. The gradients of the different
training examples in a minibatch are averaged, resulting in a single derivative
for every parameter.

For practical reasons and for better generalization, minibatch sizes are usually
as small as 4 orders of magnitude smaller than the size of the training set [5].
As a result, the gradients of each minibatch are very different. In this work,
Sect. 3, we demonstrate that only slightly more than half of the minibatches yield
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derivatives with a sign that complies with the sign of the average derivative for
the whole dataset. This means that gradients from minibatches are very noisy
and the question that arises is why should the model parameters be updated
based on such noisy information.

The goal of this study is to devise a training routine that allows control over
the noise of the gradients, such that the training will either converge faster or
to higher accuracy. Specific contributions of this paper are:

1. An optimization algorithm that controls the degree of noise created by the
minibatch-SGD.

2. Empirical evidence for the noise of the minibatch-SGD.

This paper is organized as follows. Section 2 presents relevant previous
research on the optimization algorithms in machine learning. Section 3 presents
a key observation about the noisiness of the minibatch-SGD, which serves as the
motivation for the proposed technique. Section 4 presents the proposed deriva-
tive filtering (DF) optimization algorithm. Section 5 describes the experimen-
tal setup, including the datasets, the architectures and the training routines
that were involved in the empirical examination of the DF algorithm. Section 6
presents the results of the experiments. Section 7 discusses interesting further
research directions and Sect. 8 concludes the paper.

2 Related Work

Parameter update strategies were investigated in order to modify the param-
eters of the model in a way that ensures high accuracy and fast convergence
time. SGD modification such as the momentum [16] were introduced in order
to speedup the gradient descent and to avoid sharp updates due to noisy gradi-
ents. Other studies proposed update strategies that involved tracking the sizes of
the gradients and of the model parameters, and applying proportional updates
(AdaGrad [4], AdaDelta [20], RMSProp [19], Adam [11]). For example, the Ada-
Grad approach maintains a separate learning rate for each trainable parameter
in the model, its idea was recently developed into an online adaptive method [12].
Adam optimization algorithm continuously maintains the first and the second
moments of the gradients across the mini batches and updates the parameters
using these estimates. Interestingly, the most recent state-of-the-art results on
CIFAR, SVHN and ImageNet, PASCAL VOC, and MS-COCO datasets were
obtained with variants of Residual Neural Networks (ResNet s) [5], and the
optimization algorithm they used was the regular SGD. Recently proposed SGD
with warm restarts (SGDR) [13] showed a better convergence rate.

Other than the optimizer, the operation of Batch-Normalization [10], greatly
reduces the convergence time during training. The batch normalization oper-
ation, applied after every linear layer, reduces the model’s internal covariate
shift. Without the batch normalization, the internal covariate shift naturally
takes place since different layers often perform updates in contradicting direc-
tions and hence constantly change the distribution of activations observed by the
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succeeding layers. [6] showed that batch-normalization, weight-decay, and learn-
ing rate are related, and proposed alternative norms (L1 and L∞) for better
convergence.

The noise induced by the minibatch-SGD was found to be proportional
to η|T |/b where η is the learning rate, |T | is the number of training examples and
b is the size of the minibatch [18]. In deep neural networks, the amount of noise
injected in the parameter update steps is often amplified by additive Gaussian
noise [15], or even by a multiplicative noise [7]. In our work, we attempt to
control the noise induced by the minibatch gradients, rather than to introduce
extra noise.

The signs of the gradient were explored in a context of gradient com-
pression for the parallel SGD training [2,17]. In these works, the sign of the
derivatives provided crucial information for the optimization process, allowing to
compress their magnitude without a significant impact on the training progress.
Our work, on the other hand, attempts to exploit the signs of the gradients to
control the noise created by the small minibatches.

3 SGD is Noisy

For the rest of the paper, we refer to partial derivatives in the gradient simply
as derivatives. This is not to be confused with the gradients, which are vectors
of derivatives.

The vanilla SGD procedure provides noisy update steps, determined by the
small size of the minibatches, which do not capture the direction of Gradient
Descent (GD) minima. On the one hand, these noisy updates provide the opti-
mization with exploratory capability, which greatly improves the generalization
ability of the model, as we discussed in Sect. 2. On the other hand, the noisy
updates may slow down the training progress.

To demonstrate the above-mentioned phenomenon, we produced a decently
difficult synthetic binary classification dataset (100k training samples, 2 classes)
and trained a 3-layer fully-connected neural network on it. The training was
performed with a minibatch size equal to the size of the dataset (e.g. a single
parameter update per epoch). Next, at each epoch, we observed the gradients
of randomly drawn minibatches of size 100 and sought for a correlation between
these small minibatches and the dataset-sized minibatch. Figure 1 shows the
distribution of the mean batch derivatives w.r.t the last fully-connected layer
parameters. Namely, the values of the elements in the gradient of the last layer
are shown in a form of distribution quantized into 40 bins. Each bin is split into
a red and a green column. The green column shows the number of derivatives
in a minibatch, for which the derivative averaged across the entire dataset is
positive. The red column shows the number of derivatives in a minibatch, for
which the derivative averaged across the entire dataset negative.

The distribution presented in Fig. 1 shows, that in almost half of the mini-
batches the sign of the average derivative does not correspond to the sign of
that derivative when averaged across the entire dataset. The implication is that
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almost half of the updates in the epoch are in the “wrong” direction, rendering
them exploratory steps rather than optimization steps.

Fig. 1. Distribution of mean derivative values. The x-axis stands for the mean
derivative value in batch (batch-size 100) and is split into 40 bins. Each bin contains
two bars which show the number of batches whose mean derivative value fell in that
bin. The red (leftmost) bar shows the amount of the examples in the bin for which the
GD’s derivative is negative, whereas the green (rightmost) bar shows the number of
the examples in the bin for which the GD’s derivative is positive. (Color figure online)

4 Sign Based Derivative Filtering

The core idea of the proposed training algorithm is to distinguish between two
types of derivatives based on their sign. The derivatives that comply with the
sign of the recently observed derivatives are denoted exploiting derivatives,
whereas the derivatives that do not comply with the sign of previously observed
derivatives are denoted exploratory derivatives. To keep track of the recent
derivatives, a discounted moving average is maintained. Setting the history dis-
count factor γ to 0 degenerates the history to contain the gradients of the pre-
vious iteration.

To leverage the noise of the SGD minibatches, the exploiting derivatives are
multiplied by α and the exploratory derivatives are multiplied by β. This mod-
ulation reweighs the derivatives prior to updating the model parameters, and
controls the exploitation-to-exploration ratio. Setting α/β > 1 prioritizes the
exploiting derivatives, thereby reduces the impact of the noisy gradients. Set-
ting α/β = 1 degenerates the DF algorithm to a baseline minibatch SGD. It is
important to notice that since the coefficients α and β are applied to the gra-
dients, they affect the learning rate. Hence the choice of two hyperparameters
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rather than a single hyperparameter α for exploitation and 1 − α for exploita-
tion, allows using values larger than 1, such that the global learning rate is not
reduced.

The proposed optimization algorithm is denoted Derivative Filtering (DF)
and we present it as Algorithm 1. This algorithm presents a training procedure
that reweighs derivatives in the minibatch, based on their sign compared to an
iteration-level γ-discounted moving average history of gradients. The algorithm
returns the trained model. The � is an element-wise XNOR operation. The
function sign(x) returns 1 if x ≥ 0, and returns 0 otherwise. The multiplications
and the application of sign(x) function are strictly element-wise.

Algorithm 1. DF(X,W0,L,T, b, α, β, γ, η)
1: Input: training set X, model parameters W0, number of epochs T , minibatch-

size b, exploitation coefficient α, exploration coefficient β, moving average discount
factor γ, learning rate η. The provided L(W, x) is a loss function that returns the
loss value of the model W for input x.

2: Initialize: H0 ← 1
|X|

∑
x∈X ∇W L(W0, x))

3: Initialize: V0 ← 0
4: for t = 0 to T − 1 do
5: for B ⊆ X, |B| = b do
6: G̃t ← 1

b

∑
x∈B ∇W L(Wt, x))

7: Mt ← sign(G̃t) � sign(Ht)
8: Gt ← α · Mt · G̃t + β · (1 − Mt) · G̃t

9: Vt+1 ← 0.9Vt − ηGt

10: Wt+1 ← Wt + Vt+1

11: Ht+1 ← γ · Ht + (1 − γ) · G̃t

12: end for
13: end for
14: return WT

Lines 9–10 perform the model’s parameter update using momentum with
coefficient 0.9. Line 11 maintains a moving average of the non-modulated gradi-
ents.

We note that the initial bias introduced by the exponential moving average
does not require special attention here since the number of training iterations is
large (60 thousand iterations per training in the datasets we consider) and the
influence of the initial biased moving average is negligible.

5 Experimental Setup

To examine the effect of the derivative filtering on the training, we performed an
empirical study. The DF (Algorithm 1) was implemented using Tensorflow [1]
framework, and its effect was observed during the training on image classification
datasets. Specifically, we experimented with α, β ≥ 1 in order not to slow down
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the training, since these coefficients directly affect the learning rate. Note that
the baseline for comparison (i.e., a non-DF training using Momentum-SGD) is
obtained by setting α = β.

Datasets. CIFAR-10 and CIFAR-100 are the two image classification datasets
we used. Each of these datasets contains 50k training examples and 10k test
examples, where each example is a labeled RGB color image of the size 32 × 32.
The labels in CIFAR-10 and CIFAR-100 correspond to 10 and 100 classes,
respectively.

Models. The deep neural network models we trained are from the ResNet fam-
ily [5]. We chose this architecture family due to its widespread success and the
fact that its core idea contributed to a series of architectures that followed such
as DenseNet [8] and Deep Networks with stochastic depth [9]. The ResNet archi-
tecture consists of building blocks, each of which contains 2 convolutional layers
with a skip connection which allows passing the input of the building block “as
is” to the output of this building block. Batch normalization in ResNet was
applied after the convolutional operation before any other operation (such as
non-linear activation or addition with the skip connection) takes place. Specifi-
cally, we focused on two variants of ResNet models: ResNet-20 and ResNet-110,
containing 20 and 110 layers, respectively. The reasoning behind this choice is
to examine the DF algorithm both on shallow and deep models.

Training Routine. During the training, we employed a standard data augmen-
tation and the optimization was done using DF (Algorithm 1). Learning rate
initialized to 0.1 and reduced by a factor of 10 at epochs 80 and 120. Training
time: 150 epochs, minibatch size: 128. For statistically stable results, every train-
ing was repeated 10 times (with differently randomized initial weights) and the
average accuracy, as well as the standard deviation of the accuracy, are reported.

6 Results

Our initial experiments showed degradation in test accuracy when employing DF
with α

β < 1. This result can be explained by the fact that the vanilla SGD (corre-
sponding to α

β = 1) optimizes the model using extremely noisy gradients. Hence,
further amplification of the (exploratory) derivatives would cause the optimiza-
tion to diverge. The Appendix contains results for such choices of parameters.
On the other hand, we received promising results using α/β > 1.

Test accuracies obtained using DF with α/β ≥ 1 from ResNet-20 and ResNet-
110 models are presented in Tables 1 and 2, respectively. In these tables, we depict
12 models, trained with DF (α

β , γ) ∈ {1, 2, 4} × {0, 0.01, 0.5, 0.99}. The models
that achieved the highest test accuracy appear in bold. Compared to the vanilla
Momentum-SGD training (α/β = 1, γ = 0), the setting that achieved the highest
test accuracy was DF with a high discount factor (γ = 0.99) and the exploitation
favoring ratio of α/β = 2. The gains of this setup of parameters (α/β = 2, γ =
0.99), in terms of the final test accuracy, are summarized in Table 3.
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In addition, we observed how different parameters affect test accuracy
throughout the training process. Test accuracy plots, as a function of train-
ing epoch, for various γ values and for α/β = 2, 4 are presented in Figs. 2 and 3
for the models ResNet-20 and ResNet-110, respectively. The plots present the
average accuracy trend, obtained from 10 differently initialized models.

Table 1. Test accuracy of ResNet-20 on CIFAR-10 and CIFAR-100 datasets. The
presented accuracies are average across 10 differently randomized and trained models.
The corresponding standard deviation (σ) is reported for every result.

ResNet

20

CIFAR-10 CIFAR-100

γ = 0 γ = 0.01 γ = 0.5 γ = 0.99 γ = 0 γ = 0.01 γ = 0.5 γ = 0.99

α/β = 1 91.05% 90.93% 90.97% 90.98% 66.22% 65.89% 66.07% 66.27%

σ = .35% σ = .24% σ = .15% σ = .13% σ = .38% σ = .34% σ = .39% σ = .47%

α/β = 2 91.24% 91.07% 91.07% 91.50% 65.89% 66.10% 66.07% 67.40%

σ = .27% σ = .32% σ = .29% σ = .19% σ = .88% σ = .50% σ = .54% σ = .43%

α/β = 4 91.10% 91.14% 90.95% 90.98% 65.91% 66.05% 66.57% 67.07%

σ = .17% σ = .2% σ = .26% σ = .31% σ = .51% σ = .65% σ = .40% σ = .29%

Table 2. Test accuracy of ResNet-110 on CIFAR-10 and CIFAR-100 datasets. The
presented accuracies are average across 10 differently randomized and trained models.
The corresponding standard deviation (σ) is reported for every result.

ResNet

110

CIFAR-10 CIFAR-100

γ = 0 γ = 0.01 γ = 0.5 γ = 0.99 γ = 0 γ = 0.01 γ = 0.5 γ = 0.99

α/β = 1 91.29% 91.14% 91.04% 91.55% 67.31% 67.04% 65.98% 66.96%

σ = 1% σ = .88% σ = .89% σ = .70% σ = 1% σ = 1.7% σ = 2% σ = 2%

α/β = 2 91.52% 91.24% 91.30% 92.43% 67.73% 68.06% 68.68% 71.17%

σ = .83% σ = 1% σ = .94% σ = .51% σ = 2.7% σ = 1.5% σ = 1.2% σ = 1%

α/β = 4 92.00% 91.80% 92.42% 91.77% 69.77% 69.31% 68.94% 69.11%

σ = .74% σ = .87% σ = .49% σ = .76% σ = .84% σ = 2% σ = 1.3% σ = 2.3%

Table 3. Test accuracy achieved by models trained by a Momentum SGD without
derivative filtering (left column) and by models trained with the best parameter setup
of the DF (right column).

no DF α/β = 1 DF (γ = 0.99) α/β = 2

ResNet-20 CIFAR-10 91.05%, σ = .35% 91.50%, σ = .19%

CIFAR-100 66.22%, σ = .38% 67.40%, σ = .43%

ResNet-110 CIFAR-10 91.29%, σ = 1% 92.43%, σ = .51%

CIFAR-100 67.31%, σ = 1% 71.17%, σ = 1%
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(a) CIFAR-10 α/β = 2 (b) CIFAR-100 α/β = 2

(c) CIFAR-10 α/β = 4 (d) CIFAR-100 α/β = 4

Fig. 2. Test accuracy curve for DF training (Algorithm 1) and ResNet-20 architecture.

7 Discussion and Future Work

We mark batches as “exploratory” per parameter if the sign of the derivative of
the loss does not agree with the sign of the discounted average of the derivative.
We scale the derivative based on whether it categorised as exploratory or not.
Our experiments demonstrate that this idea leads to improved test-accuracy.
Final results showed that the best choice of ratio between the scaling factors α
(for “exploitation”) and β (for “exploration”) is two. Such tuning of parameters
is not rare in the literature. In fact, some of the most advanced optimization
algorithms employ numerous manually determined parameters (c.f. Adam opti-
mizer [11] employs β1, β2; momentum-accelerated SGD [16] requires the momen-
tum value to be set manually). It would be interesting to devise an adaptive
method for setting this parameter.

This work focused on a general training setup, employing minibatches of con-
ventional sizes. In the light of the popular large scale distributed training, which
often employs large batch sizes, it is tempting to investigate how the proposed
DF algorithm (Algorithm 1) can accommodate large minibatches. In the case of
large minibatches, the gradients are less exploratory and therefore may require
α/β < 1. In addition, given the fact that categorizing and scaling derivatives
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(a) CIFAR-10 α/β = 2 (b) CIFAR-100 α/β = 2

(c) CIFAR-10 α/β = 4 (d) CIFAR-100 α/β = 4

Fig. 3. Test accuracy during DF training (Algorithm 1) and ResNet-110 architecture.

based on signs imposes a biasing of the gradient estimates, a theoretical analysis
of the convergence rate for the DF algorithm is of separate interest.

8 Conclusions

In this paper we unveiled a new way of handling a stream of gradient information
provided by the minibatch-SGD training. We temporally weighted each partial
derivative in a gradient according to its sign change relative to the history of
recent minibatches. It was done by introducing three coefficients α, β, γ. The
α/β ratio modulates the exploiting ability of the training, whereas the discount
factor γ acts similarly to a low pass filter, smoothing fluctuations of the gradients.
Moreover, we showed that when the DF approach is applied with large discount
factor (which translates into a strong smoothing of the gradients) and with
α > β, the trained model reaches higher classification accuracy.

The results of our experiments showed, that the proposed technique can
act as a regularizer, namely slowing down the training in its initial stages, but
eventually reaching a higher level of generalization. Namely, our empirical find-
ings exhibit 0.3%−3.6% accuracy improvement on CIFAR-10 and CIFAR-100
datasets.
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Appendix

See Fig. 4.

(a) CIFAR-10 γ = 0.01 (b) CIFAR-100 γ = 0.01

(c) CIFAR-10 γ = 0.5 (d) CIFAR-100 γ = 0.5

(e) CIFAR-10 γ = 0.99 (f) CIFAR-100 γ = 0.99

Fig. 4. Test accuracy curve for DF of ResNet-20 models using both exploration favoring
ratios (α/β < 1) and exploitation favoring ratios (α/β > 1). Poor performance is
observed for exploration favoring strategy.
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Abstract. Hyperparameter optimization of a neural network is a non-
trivial task. It is time-consuming to evaluate a hyperparameter setting,
no analytical expression of the impact of the hyperparameters are avail-
able, and the evaluations are noisy in the sense that the result is depen-
dent on the training process and weight initialization. Bayesian optimiza-
tion is a powerful tool to handle these problems. However, hyperparame-
ter optimization of neural networks poses additional challenges, since the
hyperparameters can be integer-valued, categorical, and/or conditional,
whereas Bayesian optimization often assumes variables to be real-valued.
In this paper we present an architecture-aware transformation of neural
networks applied in the kernel of a Gaussian process to boost the per-
formance of hyperparameter optimization.

The empirical experiment in this paper demonstrates that by intro-
ducing an architecture-aware transformation of the kernel, the perfor-
mance of the Bayesian optimizer shows a clear improvement over a näıve
implementation and that the results are comparable to other state-of-
the-art methods.

Keywords: Hyperparameter optimization · Gaussian process ·
Transformation · Neural networks

1 Introduction

Designing a well-functioning neural network architecture is not a trivial task. The
hyperparameters [2], which describe the architecture of a neural network, can be
large in quantity and have a non-linear impact of the performance. To evaluate a
hyperparameter setting one needs to train the model, with the specified setting,
and test it on validation data. Since the training of a neural network model is very
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time consuming it is intractable to systematically test all possible configurations.
In other words, we are facing a non-linear expensive black-box optimization
problem.

To tackle such black-box problems, surrogate methods are often employed,
and the subclass of Bayesian optimization has shown to be a powerful tool in
many applications (e.g., [10,12,19]). The Bayesian procedure is to construct a
probabilistic model of a black box function, and after each function evaluation
exploit the posterior distribution to make a decisions about where to next eval-
uate the function. Bayesian methods generally depend on a prior distribution,
and in this case, we need to choose a prior over functions, assumed to capture
the behavior of the black box function. Gaussian process (GP) is an efficient
and powerful family of prior distributions of functions [17], and in this paper we
utilize the properties of GPs to optimize the architecture of neural networks.

An additional challenge of neural networks, as compared to standard black-
box optimization, is that the hyperparameters can be conditioned by another.
That is, some hyperparameters need only to be specified if other parameters
are active or have a certain value. For example, a neural network with only
one layer does not have parameters associated with a second to third layer.
Given a joint set of all the hyperparameters, e.g., the number of layers and the
number of neurons for each layer, respectively, will result in many points with
inactive hyperparameters. A common strategy is to give a default value to the
inactive parameters and let the surrogate model ignore those values (for a GP
having a zero distance between these points) [5]. With this approach one can
construct conditional kernels [15]. Equivalently, in this paper we describe it with
a general transformation T in the kernel of a GP. More precisely, we construct a
transformation T : BD → X , where BD is a box where the GP is defined and X
is the set of hyperparameters for a neural network. Furthermore, since many of
the hyperparameters are integers and/or categorical then many of the points in
the box will map to the same configuration under the transformation T . That
is, two distinct points xi, xj ∈ BD can be equal under the transformation, i.e.,
T (xi) = T (xj). By utilizing this transformation in the kernel of a GP all points
that describes the same configuration will have the same mean and variance.

The paper is organized as follows. We begin in Sect. 2 with a short summary
of the relevant background on Bayesian optimization and GPs. In Sect. 3 we
describe the proposed transformation in detail and how it is employed in the
special case of hyperparameter optimization of neural networks. In Sect. 4 we
present some numerical results of our proposed idea and in Sect. 5 we conclude
with some final remarks and some proposed future work.

1.1 Contribution

Our main contribution in this paper is the idea/construction of a general
transformation T in the kernel of a GP that is well-suited for hyperpa-
rameter optimization of neural networks. This transformation can handle
continuous, integer-valued, categorical, and conditional hyperparameters. We
include feasibility projection into the transformation that project infeasible
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hyperparameter configurations of neural networks to feasible configurations,
which in turn reduces the problem. The inclusion of the transformation T intro-
duces some difficulties for the gradient based local search methods commonly
used for optimizing the acquisition function. By modifying these methods to
pattern search algorithms that are interacting with the transformation we solve
the problem. Lastly, we introduce a parameterization of neural network that
decreases the size of the hyperparameter set that in turn simplifies the hyperpa-
rameter optimization problem.

2 Bayesian Optimization

Consider the problem to

minimize
x

f(x)

subject to x ∈ X ⊆ R
D,

(1)

where f is assumed to be prohibitively expensive to evaluate, so that, e.g., a
direct gradient based search is intractable. One approach to approximately solve
(1) is by iteratively replacing f by surrogate models, inferred from past function
evaluations, and using these model to propose new candidate values for x. The
Bayesian optimization approach fits into this framework by considering f to
be a random function, according to some prior distribution, and interpreting
function evaluations as sample data for calculating posterior distributions, in
turn yielding posterior distributions of the function values at x ∈ X . Of course,
having access to a full distribution of function values at every point x, it is not
obvious how to select the next candidate point to evaluate, requiring the choice
of an acquisition function for estimating the benefit of evaluating a point x. To
completely specify a Bayesian optimization algorithm we thus have to answer
two questions:

1. How do we choose the prior distribution for f?
2. How do we choose the acquisition function?

In Sects. 2.1 and 2.2 we describe our approach to answering these to questions.

2.1 Gaussian Processes

A Gaussian process is an extension of the multivariate Gaussian distribution to
an infinite-dimensional stochastic process for which any finite combination of
dimensions is a Gaussian distribution. That is, a GP (on X ) is a distribution
over functions on the form f : X → R, specified by its mean function m : X → R

and its covariance function k : X × X → R:

f(x) ∼ GP (m(x), k(x,x′)).

The prior mean function m is often assumed to be zero function m(x) = 0. There
are, however, alternative priors that are used, e.g., in [3]. Further, for predictive
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purposes the covariance function is often assumed to be given by a kernel, i.e.,
an a priori selected form of k. The particular characteristic of the function f(x),
e.g., smoothness, amplitude, additive noise can then be specified by the choice of
kernel k, and we will in the sequel only consider the popular Matèrn 5/2-kernel
[19]:

kM52(x,x′) = θ0

(
1 +

√
5r2(x,x′) +

5
3
r2(x,x′)

)
exp −

√
5r2(x,x′) (2)

where

r2(x,x′) =
D∑

d=1

(xd − x′
d)

2

θ2d
, (3)

and θi, i = 0, . . . , D, are hyperparameters to the covariance function. Several
other kernels are commonly used, we refer the reader to [17] for an overview.

Suppose that we have evaluated a black box function fblack box(x) at t points
x1, . . . ,xt ∈ X . Let the corresponding objective values be summarized by the
set D1:t = {(xi, yi)}ti=1, where yi = fblack box(xi) + εi and εi ∼ N (0, σ2

noise) is
additive noise with variance σ2

noise. Then the predictive distribution of the GP
is

P (yt+1|D1:t,xt+1) = N (μt(xt+1), σ2
t (xt+1)), (4)

where

μt(xt+1) = kT [K + σ2
noiseI]−1y1:t, (5a)

σ2
t (xt+1) = k(xt+1,xt+1)[K + σ2

noiseI]−1k, (5b)

with y1:t = (y1, . . . , yt) as column vector with all the objective evaluations, K
as the covariance matrix defined as

K =

⎛
⎜⎝

k(x1,x1) · · · k(x1,xt)
...

. . .
...

k(xt,x1) · · · k(xt,xt)

⎞
⎟⎠ , (6)

and k = (k(xt+1,x1), . . . , k(xt+1,xt)) as column covariance vector. See [17] for
detailed derivation.

It should be clear from the above that the choice of prior can have a strong
effect on performance of a Bayesian optimizer. Hence, one runs the risk of replac-
ing the hard-to-optimize function f with hard-to-tune hyperparameters of the
GP priors. This problem can however be circumvented somewhat, by addition-
ally placing a prior on the set of GP hyperparameters (e.g., the kernel function
k), and using Markov Chain Monte Carlo (MCMC) sampling [7] of GP hyper-
parameters for a full Bayesian treatment. This carries the computational cost
of running an MCMC sampler, which should be balanced against the computa-
tional cost of additional evaluations of f .
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2.2 Acquisition Function

The purpose of the acquisition function a : X → R
+ is to guide the search to the

optimum. Generally acquisition functions are defined such that a high acquisition
value corresponds to a potentially low function value. In our case, the acquisition
function uses the predictive distribution generated by the Gaussian process to
compute the utility of performing an evaluation of a certain point in X . That
is, the next point xt+1 to be evaluated by f is simply xt+1 = arg maxx∈X a(x).
Typically, acquisition functions depend on previous observations and the hyper-
parameters of the Gaussian process, i.e. σ2

noise and the hyperparameters θi of the
kernel, and we denote this dependency by a(x;D1:t,θ). Several popular acquisi-
tion functions are under the GP prior solely described by the predictive mean,
from Eq. (5a) including the dependencies, μ(x;D1:t,θ), and the predictive vari-
ance function, from Eq. (5b) including the dependencies, σ2(x;D1:t,θ).

One popular acquisition function is the Expected Improvement (EI) [12]:

aEI(x;D1:t,θ) = σ(x;D1:t,θ) (γ(x)Φ(γ(x)) + φ(γ(x))) , (7)

where Φ(·) and φ(·) are the c.d.f and the p.d.f, respectively, of a standard Gaus-
sian distribution, xbest = arg minx∈{x1,...,xt} fblack box(x), and

γ(x) =
fblack box(xbest) − μ(x;D1:t,θ)

σ(x;D1:t,θ)
. (8)

We will in the sequel only use Expected Improvement as acquisition function,
however we note that there is a large literature regarding other choices (e.g.,
[4,8]).

3 Transformation

The hyperparameter set X of a neural network usually includes conditional, cate-
gorical, and integer hyperparameters. This implies that the common assumption
in Bayesian optimization that the feasible set X of (1) is a (scaled) hypercube
is not satisfied. However, we may of course apply a transformation

T : BD → X , (9)

where B is a box in R
D. If T is surjective, we can replace (1) by the equivalent

problem to
minimize

x
f(T (x))

subject to x ∈ BD,
(10)

which is a problem with only continuous variables, and attempt to apply
Bayesian optimization to this problem. An issue with this approach is illustrated
in the following example.



Architecture-Aware Bayesian Optimization for Neural Network Tuning 225

Example 1. Let f(x) = x2, X = {0, 1} ⊂ R
1, and let T be the rounding of [0, 1]

to the nearest point in X , i.e., T : [0, 1] → {0, 1}, T (x) = [x]. Suppose that
we have evaluated each point in X once, so that D1:2 = {(0, 0), (1, 1)}. Then,
although the function is fully determined by the sampled values, a Gaussian
process as described above will retain some uncertainty regarding the value, say,
f(T (1/4)). The effect is that we may spend unnecessary function evaluations in
a region where the black-box function is fully determined when optimizing f .

The core issue in the example above is that the Gaussian process is defined
näıvely on BD, rather than on X . To define a Gaussian process on X we note that
the Matèrn kernel is well defined for any pseudometric space (X, d), by simply
replacing the rescaled Euclidean metric in (3) by the metric d on X. Moreover,
since X ⊂ R

D, we can take the restriction of the Euclidean metric on R
D,

rescaled as in (3), as a metric on X . Doing so would however require optimization
of the acquisition function a over X for generating new candidate points during
the optimization process, and for ease of implementation we instead define a
Gaussian process on BD by defining a family of pseudometrics d′, parametrized
by θ as in (3), on BD

d′(x,x′; θ) := d(T (x), T (x′); θ), (11)

It follows that the Gaussian process on BD has the property that, k(x,x′) = θ0
whenever T (x′) = T (x). In other words, optimizing (10), using (11) to define
a kernel, is algorithmically equivalent to optimizing (1) using the corresponding
Gaussian process on X , assuming the acquisition function is optimized exactly.

We point out that using a pseudometric to define a Matèrn kernel on BD,
the covariance matrix K in (6) is only guaranteed to be positive semi-definite,
rather than positive definite. However, when σnoise > 0, K + σ2

noiseI is indeed
positive definite, and the Gaussian process update (5) is well defined.

3.1 A Transformation for Neural Networks

We describe the definition of our constructed transformation T , in (9), that is
suited for neural networks, component-wise for continuous, integer, categorical,
and conditional hyperparameters:

– Continuous hyperparameters are assumed to be normalized to the unit inter-
val, standard procedure [20], and the transformation is simply the identity
map.

– Integer hyperparameters, with domain {a, . . . , b}, are transformed by round-
ing, similar to [6], i.e.:

T : [a − 1/2, b + 1/2] → {a, . . . , b}
x �→ [x].

– Categorical hyperparameters are assumed to be represented via one-hot
encoded, i.e., a categorical hyperparameter with C values is parametrized by
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an element of {0, 1}C . The transformation is then a map T : [0, 1]C → {0, 1}C ,
as in [6], such that T (x)i = 1, where i is the largest component of x (with
ties broken by taking the smallest i), and T (xj) = 0 for j �= i.

– Conditional hyperparameters are given a default value under the transforma-
tion T for inactive hyperparameters, and otherwise treated according to their
as in the above. Note that when utilizing such a transformation T points that
only differ in inactive hyperparameters are transformed to the same point.

While working with hyperparameters of neural networks some configurations
might end up in infeasible points. For example, changing the hyperparameters
“pooling size” and “convolutional filter size” in a convolutional neural network
might result in a too aggressive down-sampling of the data, so that nothing
of the data remains. We solve this problem by amending the construction of
the transformation T above to include feasibility projections; a hyperparameter
configuration that leads to an infeasible network architecture is transformed to
a “nearby” configuration. In the case of convolutional neural network above, an
infeasible point will be transformed to the point where the number of layers
are equal to the feasible amount of layers, i.e., the layer before the data got
down-sampled too much.

3.2 Parameterization of Neural Network

Even though one replaces the black-box function f(x) with a Gaussian process,
that is cheap to evaluate, the global optimization of the acquisition function
can still be a non-trivial task. Therefore, if we can decrease the size of the
hyperparameter set, but still preserve, at least close to, the best performance it
would simplify optimization of the acquisition function. Furthermore, given that
we will use a distance-based kernel of the Gaussian processes, we wish, if possible,
to choose a parametrization such that a change in i:th and j:th components of
x have a comparable effect on f . The latter, however, is not a trivial task.
How the hyperparameters of a neural network affect the performance is an open
research problem. Nevertheless, an intuitive idea, based on the result in [16], is
to reduce the number of points that govern the number of neurons per layer. In
[16] it is shown that the number of linear regions of a deep neural network, with
rectified linear activations, grows exponentially with the number of layers, and
polynomially in the width the layers. To match the effect of width and depth we
take a parametrization such that the width is exponential in the corresponding
parameter value. That is, instead of choosing an exact number neurons per layer,
we choose a relative exponential amount of neurons compared to the previous
layer: either we double the number of neurons, keep the same amount, or reduce
it by half to the next layer. This way we reduce the hyperparameter governing
the number of neurons at layer i ≥ 2 down to three values, respectively, while
keeping a comparable effect on representational capacity of the neural network,
as measured by the possible number of linear regions, of width- and depth-related
variables.
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3.3 Optimization of Acquisition Function Under Transformation

A common procedure [20] to optimize the acquisition function is to start with
initialization of randomized points, uniformly or from a Sobol sequence, in the
hypercube and thereafter utilize local search, commonly by utilization of gra-
dients, on each of the randomized points. However, when we are applying the
transformation T , some variables are in fact integers, reflected in the fact that
the acquisition function is constant for large areas of the categorical, integer-
valued and inactive conditional hyperparameter will have the same value. That
is, in those dimensions there will be large plateaus, where the partial deriva-
tive for that dimension will be zero, see Fig. 1 as an example. These plateaus
complicate the local search and solely gradient-based can get stuck completely.
Therefore, we implement a pattern search [21] based strategy for local search,
described below.

Fig. 1. An illustration of integer-valued and conditional variable. The variable x1 gov-
ern if the variable x2 is active or not. As long as x1 > 0.5 then x2 is active and this
variable is an integer-valued variable. This illustrates the large plateaus that can occur
in the hyperparameter set of a neural network under the transformation T .

For local search we separate the continuous hyperparameters from the cat-
egorical, integer-valued, and conditional hyperparameters. The continuous vari-
ables are updated with gradient ascent while non-continuous variables are fixed.
Non-continuous variables are then updated, keeping the continuous variables
fixed, by evaluating neighboring points if they differ under the transformation
T , maintaining a Tabu list of previously visited points. An alternation between
the two updates is utilized until local maximum has been found or a maximum
number of evaluations has been reached.

The transformation T is applied during the initialization phase of the
Bayesian optimizer as well, such that only points that differ under the transfor-
mation are evaluated. Furthermore, we use an adapted probability distribution
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weighted according to the number of points for each layer, i.e., the initialization
of points in the acquisition function will have more points with more layers since
they make up more of the hyperparameter space under the transformation T .
Lastly, to increase that probability that there are some potentially good ini-
tialization points for the optimization task of the acquisition function, n points
with high acquisition score from previous iteration are stored and used together
with a new randomized initialization from the adapted probability distribution
at each iteration.

4 Experimental Results

Consider the problem to find the best suited convolutional neural network for
CIFAR-10 [14] image recognition task. The hyperparameters we consider are
summarized in Table 1. We choose to not have a very high-dimensional hyper-
parameter set so that the experiment can be run multiple times in a reasonable
time frame, but still high-dimensional enough to capture the essential part of
hyperparameters optimization problem. Furthermore, we set some restriction on
the training of the neural network to decrease the simulation time. A neural net-
work cannot be trained longer than ten minutes and early stopping is included,
partly as a regularizer and partly so the training period can be shorter than
10 min. The early stopping is 20 epochs in this experiment, and the validation
set is 20% of the data set. Adam [13] is used as the optimizer for the training of
the convolutional neural network.

Table 1. Summary of all the hyperparameters used in the experiment. There are 13
in total, all of them integers, and seven of them conditional. The second column indi-
cates the value implemented during training and the third column the corresponding
parameterized values yielding X . In total there are 205800 possible combinations of
hyperparameters.

Hyperparameter Implementation Parametrization Conditional

Number of convolutional layers {1, 2, 3} {1, 2, 3} No

Neurons in convolutional layer 1 {24, 25, . . . , 28} {4, . . . , 8} No
Neurons in layer i

Neurons in layer i−1
, i = 2, 3 {1/2, 1, 2} {−1, 0, 1} Yes

Filter size in layer i {2, 3, 4} {2, 3, 4} Yes

Pooling size after layer i {2, 3} {2, 3} Yes

Number of dense layers {1, 2} {1, 2} No

Neurons in dense layer 1 {24, 25, . . . , 28} {4, . . . , 8} No
Neurons in dense layer 2
Neurons in dense layer 1

{1/2, 1, 2} {−1, 0, 1} Yes

We consider five different models:

– Random search, that cannot pick an already chosen hyperparameter config-
uration.
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– Regular GP, from the library pyGPGO [11].
– GP modified with transformation T and random search as optimizer of the

acquisition function.
– GP modified with transformation T and local search as optimizer of the

acquisition function.
– Tree Parzen Estimator (TPE) [2], from the library hyperopt [1].

All models get 150 evaluation points, whereof 50 are initialization points. For
the three GPs we choose expected improvement, see Eq. (7), as the acquisition
function, matern52, see Eq. (2), as the covariance function, NUTS [9] as the
MCMC-sampler for the hyperparameters of the GP implemented in the library
pymc3 [18], 10 NUTS samples used for each iteration, i.e., 10 GPs constructed.
The results of the empirical experiment are visualized in Fig. 2.

Fig. 2. Average accuracy ± a half standard deviation of the best hyperparameter
configuration found on the data set CIFAR-10 for the five different models; Random
search, GP, GP (random), GP (with local search), and TPE, for 8, 4, 6, 9, and 10
runs, respectively. Due to differences in the initialization phase the methods start at
different accuracy levels (after 50 initialization points). One can see that TPE and GP
with local search perform the best and that Random search and standard GP show
worst performance.

5 Conclusion and Future Work

By introducing an architecture-aware transformation of the kernel, the perfor-
mance of our architecture-aware Bayesian optimizer shows a clear improvement
over a näıve implementation, which performs comparably to the baseline of ran-
dom search. We achieve comparable, but slightly worse, results to the state-of-
the-art method TPE. However, we note that there is significant room for improv-
ing the Bayesian optimizer by, e.g., varying the acquisition function. Further, the
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results show that the choice of the acquisition function optimizer has a strong
effect on performance, which indicates yet another possibility for improvement.

Future work include evaluating the proposed idea with transformations in
the kernel of Gaussian processes on other data sets and other types of neural
network architectures. Categorical and continuous variables are easily included
in the proposed framework, and the next step is to analyze the performance when
having mixed variable types (e.g., adding learning rate and type of activation
functions).
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Abstract. One of the most popular training algorithms for deep neu-
ral networks is the Adaptive Moment Estimation (Adam) introduced by
Kingma and Ba. Despite its success in many applications there is no
satisfactory convergence analysis: only local convergence can be shown
for batch mode under some restrictions on the hyperparameters, coun-
terexamples exist for incremental mode. Recent results show that for
simple quadratic objective functions limit cycles of period 2 exist in
batch mode, but only for atypical hyperparameters, and only for the
algorithm without bias correction. We extend the convergence analy-
sis to all choices of the hyperparameters for quadratic functions. This
finally answers the question of convergence for Adam in batch mode to
the negative. We analyze the stability of these limit cycles and relate our
analysis to other results where approximate convergence was shown, but
under the additional assumption of bounded gradients which does not
apply to quadratic functions. The investigation heavily relies on the use
of computer algebra due to the complexity of the equations.

Keywords: Adam optimizer · Convergence · Computer algebra ·
Dynamical system · Limit cycle

1 Introduction

Adaptive Moment Estimation (Adam), originally presented by Kingma and
Ba [6] is probably the most widely used training algorithm for neural networks,
especially convolutional neural networks. Implementations exist in all popular
machine learning frameworks like Tensorflow or PyTorch. In order to make the
presentation self-contained and to motivate our contribution we first explain the
variant of the Adam algorithm used in this paper (Algorithm1): Adam consti-
tutes a first order method for minimization of f = f(w) : R

n → R, so only
gradient information is used. Plain gradient descent wt+1 = wt − α∇wf(wt),
with a learning rate α > 0, termed backpropagation in the neural network lan-
guage, is easy to understand and implement but has several drawbacks (see [7]
for a basic exposition): First, convergence is only local and cannot guarantee a
global optimum due to the nonlinearity of the objective function. Second, the
learning rate must be chosen small enough but an upper bound usually cannot
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be given for real life problems, so users resort to trial and error. Third, conver-
gence can be very slow for ill-conditioned problems, i.e. objective functions with
a large ratio of the largest and smallest eigenvalues of the Hessian.

The first issue is a fundamental boundary in nonlinear optimization. Adapta-
tion of a single learning rate is not addressed by Adam either, rather individual
learning rates for the components of f are computed relative to a common learn-
ing rate, based on so called moments of the function f : The gradient ∇f(w) is
not directly used as a descent direction but passed through a linear filter with
parameter β1 giving an exponential moving average mt, the first moment. The
componentwise square of the gradient is passed through another linear filter
with parameter β2 giving an exponential moving average vt, the second moment.
(The symbols ⊗,⊕ and � denote the component-wise multiplication and divi-
sion of vectors, as well as component-wise addition of vectors and scalar, so
∇f(wt) ⊗ ∇f(wt) gives the component-wise squares. We also denote the com-
ponentwise square root of a nonnegative vector x with the symbol

√
x.) Typical

values used in practice and suggested in [6] without theoretical justification are
β1 = 0.9, β2 = 0.999. The vector −mt � √

vt is then used as the iteration direc-
tion, with roughly similar componentwise scaling. To avoid division by zero, a
small positive term ε is added in the denominator.

Algorithm 1. Adam Optimization
Require: α ∈ R

+, ε ∈ R β1, β2 ∈ (0, 1), w0 ∈ R
n, objective function f(w) ∈

C2 (Rn,R)
1: m0 = 0
2: v0 = 0
3: t = 0
4: while w not converged do
5: mt+1 = β1mt + (1 − β1)∇f(wt)
6: vt+1 = β2vt + (1 − β2)∇f(wt) ⊗ ∇f(wt)

7: wt+1 = wt − α

√
1−βt+1

2

(1−βt+1
1 )

mt+1 � √
vt+1 ⊕ ε

8: t = t + 1
9: end while

In the course of time, several variations of the Adam optimizer were devel-
oped. The main points worth noting about Algorithm1 are: If a constant value
F is used as an input in the equations for mt and vt instead of ∇f(wt) then
mt and vt will converge, but not to F and F 2 respectively, as one would like to
have in an replacement for the raw gradient terms. To remedy this, a so-called
bias correction is used to compensate the geometric sum up to time t, dividing

mt+1 by (1 − βt+1
1 ), and vt+1 by

√
1 − βt+1

2 . All referenced publications with
the exception of [4] apply a bias correction in the learning rate αt; we use the
same bias correction as described in [6, Sect. 2].

Originally Kingma and Ba [6] used
√

v ⊕ ε and a bias correction. Other pub-
lications like [3,9] do not use an ε to avoid division by zero, probably assuming
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that ∇f(w0) �= 0 in all components, so effectively the initial value is set to some
small ε. We use the variant with ε in the denominator; otherwise the initial value
v0 = 0 would have to be excluded in all results, and one could not talk about
stability of a fixed point w� of the iteration corresponding to a minimum of the
objective function.

Also we use
√

v ⊕ ε as in [2], instead of
√

v ⊕ ε as in the original pub-
lication [6]. Our variant has the advantage that the iteration is continuously
differentiable for all v ≥ 0 whereas the ε outside of the square root leads to a
non differentiable exception set. The numerical differences of the two variants
are marginal and described in more detail in [2].

Despite its apparent success the theoretical basis for Adam is weak: The first
moment cannot be shown to be a descent direction, so the objective value does
not decrease in each iteration. The original proof published in [6] is wrong as
has been noted by several authors, see [1,9,10]. Of course a faulty proof does not
imply that the Adam optimizer does not converge, and indeed local convergence
can be shown for batch mode under reasonable restrictions on the hyperpa-
rameters α, β1, β2, see [2]. In [9] an example is given where the regret does not
converge, neither do the arguments of the objective function, but this coun-
terexample does not use batch mode, rather two cyclically alternating objective
functions during the iteration. Our counterexample function is much simpler,
but the proof relies on computer algebra.

Results exist which show ε-bounds on the gradients, ‖∇f(wt)‖ < ε for ε > 0
arbitrarily small for all t sufficiently large, see [3]. Other results show asymp-
totic bounds on the regret or that the function values come close to the mini-
mum, f(wt) − f(w�) < ε, see [3] again for example. To the best of the authors’
knowledge, [2] is the only (partial) result on weight convergence in the standard
mathematical definition limt→∞ wt = w�, however only in a local sense.

Contrary to these results the preprint [4] shows that 2-cycles exist for the
Adam optimizer without bias correction for the simple case of a scalar quadratic
objective function f(w) = 1

2w2. Quadratic objective functions are a natural
benchmark for any optimization algorithm in convex analysis: The standard
gradient descent algorithm converges for learning rate small enough, see [8], so
this behaviour should be replicated by more sophisticated gradient motivated
adaptive algorithms like Adam. However [4, Proposition 3.3] only deals with the
case β1 = 0 which means that the first moments are not adapted at all – this
case hardly can be called an adaptive moment algorithm any more.

We extend the results of [4] to the general case of hyperparameters α > 0,
0 < β1 < 1, 0 < β2 < 1, and show existence of 2-limit-cycles for scalar objective
functions f(w) = 1

2cw2, c > 0, which easily generalizes by diagonalization to
strictly convex quadratic functions f(w) = 1

2w⊥Cw with C positive definite; we
denote the transpose by w⊥. This is done for the Adam algorithm in batch mode
only, but also for bias correction. We assume that the gradient of f : Rn → R

exists and is continuous; the Hessian is needed for some results.
We give numerical evidence that for typical values of β1, β2 near 1 these 2-

cycles are unstable, and stable for β1, β2 near 0. The analysis of the limit cycles
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is not exhaustive: more 2-cycles may exist, and cycles of larger period. However
our results suffice to clarify the global non-convergence of Adam even for strictly
convex functions under the fairly standard assumptions of bounds on the Hessian
∇2f(w) like 0 < lIn ≤ ∇2f(w) ≤ LIn for all w ∈ R

n.
The outline of the paper is as follows: In Sect. 2 we define our variant of

the Adam algorithm and explain the steps of our proof. In Sect. 3 these steps
are carried out. The Maple code used can be obtained from GitHub1. Section 4
shows numerical simulations suggesting that a Hopf bifurcation occurs, before
we state some conclusions and relate our results to other research.

2 Outline of the Proof

We denote x = (m, v,w) the state of the Adam iteration, and interpret the algo-
rithm as discrete time dynamical system xt+1 = T (t, xt; p) with T = T (t, x; p) =
T (t,m, v, w;α, β1, β2, ε) to express the dependence of the iteration on the state
x = (m, v,w) and the hyperparameters p = (α, β1, β2, ε).

We write Adam without bias correction in the same way as T̄ = T̄ (x; p) =
T̄ (m, v,w;α, β1, β2, ε). This gives an autonomous dynamical system; the right
hand side does not explicitly depend on t. The difference between the two systems
is denoted by Θ(t, x; p), so we have analogous to [2]

xt+1 = T (t, xt; p) = T̄ (xt; p) + Θ(t, xt, p) (1)

with

T̄ (xt; p) =

⎡
⎣

β1mt + (1 − β1) g (wt)
β2vt + (1 − β2) g (wt) ⊗ g (wt)
wt − α (mt+1 � √

vt+1 ⊕ ε)

⎤
⎦ (2)

and

Θ(t, xt; p) =

⎡
⎢⎢⎣

0
0

−α

(√
1−βt+1

2

1−βt+1
1

− 1
)

(mt+1 � √
vt+1 ⊕ ε)

⎤
⎥⎥⎦ (3)

2.1 Steps of the Proof

We show that for the objective function f(w) = 1
2cw2 with c > 0 2-cycles occur for

a wide range of hyperparameters in the Adam iteration without bias correction,
and that iterations of the bias corrected algorithm converge to this limit cycle if
it is stable. We proceed in several steps, analyzing simplified variants of Adam
first, then adding complexity in each step. The analysis uses Maple as a computer
algebra system and some continuity and disturbance arguments because the naive
approach of applying the solve command to find 2-cycles fails – the equations are
too complicated.
1 https://github.com/SebastianB3/Cycles-in-Adam.

https://github.com/SebastianB3/Cycles-in-Adam


236 S. Bock and M. Weiß

1. We start with the scalar case f(w) = 1
2cw2, c > 0. We obtain analytical

expressions for 2-limit-cycles T̄ 2(x;α, β1, β2, ε) = x of the autonomous system
with ε = 0.

2. Calculating the eigenvalues of T̄ 2 we find that these do not depend on the
learning rate α and the factor c in the objective function. For some typical
values of the hyperparameters we give evidence that these limit cycles are
often attractive. We have not managed to give analytical estimates for stable
eigenvalues using CAS so far.

3. Using the implicit function theorem we show that for a neighbourhood of
ε� = 0 there exists a unique limit cycle of the autonomous system with ε > 0.
By continuity of the eigenvalues, these limit cycles are also attractive for ε
small enough.

4. We apply a disturbance estimate to show that locally solutions of T (t, x; p)
converge to the limit cycles of T̄ (x; p). The proof is essentially the same as
in [2, Theorem V.1.] and holds for cycles of any integer length.

3 Existence of 2-Limit-Cycles in Adam

Step 1: We show that limit cycles of period 2 exist for Adam without bias cor-
rection, i.e. the autonomous system T̄ . A 2-cycle corresponds to a non-constant
solution of T̄ (T̄ (x; p); p)) = x, so we try to solve this system of equations with
Maple. This fails, so we do not use arbitrary parameters but fix ε = 0. Now
Maple succeeds and returns

m̃ =
1
2

c (β1 − 1)2 α

(β1 + 1)2
, ṽ =

1
4

α2
(
β2
1 − 2β1 + 1

)
c2

(β1 + 1)2
, w̃ =

1
2

α (β1 − 1)
β1 + 1

(4)

with (−m̃, ṽ,−w̃) the other point on the 2-cycle. Note that m̃ �= 0, so we have a
2-cycle indeed. We abbreviate these points as x̃1 and x̃2. The v components of
x̃1 and x̃2 are identical. This limit 2-cycle exists for all β1 �= ±1, that is for all
reasonable Adam hyperparameters. Maple also returns more 2-cycles depending
on the roots of 2β1β2 − 2β2

2 − 2β1 + 2β2, we have not analyzed these. We could
not determine cycles of greater period q ∈ N by solving T̄ q(x) = x.

Step 2: But we can determine the stability of the limit cycle using the Eigen-
values of the Jacobian of T̄ 2(x̃1), which are the same as those of T̄ 2(x̃2). The
Jacobian, with no easy interpretation, is computed by Maple as:
⎡
⎢⎢⎢⎣

− (β1 + 2) β1 2 (β1+1)β2
αc

c (β1 − 1) (β1 + 2β2 − 1)

−2 (β2 − 1) αβ1 c 3β2
2 − 2β2 2 c2(β1−1)(β1+3/2β2−1/2)(β2−1)α

β1+1

2β1 (β1+1)(1−β1−2β2 )
c(β1−1)

2 (2β1+3β2−1)(β1+1)β2

c2α(β1−1)
2β1

2 + (8β2 − 6) β1 + 6β2
2 − 6β2 + 1

⎤
⎥⎥⎥⎦

Using Maple we obtain a very lengthy expression for the eigenvalues which does
not depend on α or c, but on β1 and β2 only. Details can be seen in the sup-
plementary code. This is surprising as most algorithms show dependence on
the learning rate, and one might assume that the behaviour at a limit cycle is
different at least for α → 0 and α → ∞.
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Fig. 1. Absolute magnitude of real and complex eigenvalues

Plotting the absolute values of the eigenvalues over β1 and β2 we can see that
these limit cycles are often attractive, see Fig. 1. Local attractivity holds if the
absolute values are less than 1: This is the case for the real eigenvalue, see left
plot, but the magnitude approaches 1 as β2 approaches 1 – consider the standard
value β2 = 0 suggested in [6]. The pair of complex conjugate eigenvalues can be
stable as well as unstable – unstable again for β1 and β2 near 1. This is good
news: For typical β1, β2 the limit cycle will not turn up in numerical simulations
as it is unstable. We have not managed to give analytical estimates for stable
eigenvalues using CAS so far.

Step 3: Now we show that the limit cycle also exists for ε > 0 sufficiently
small. We fix the hyperparameters α, β1, β2 and consider the function

F (x, ε) = T̄ (T̄ (x;α, β1, β2, ε);α, β1, β2, ε) − x

Consider a state x̃ on a 2-cycle for ε̃ = 0 as in step 1, then F (x̃, 0) = 0, that
is we have a zero of F . If ∂F

∂x (x̃, 0) is invertible, then the Implicit Function
Theorem shows that in a neighbourhood of ε̃ = 0 there exists a unique zero
x(ε) with F (x(ε), ε) = 0. This zero of F corresponds to a 2-cycle of T̄ with
hyperparameter ε. (We always have ε > 0, but on a non-trivial 2-cycle we have
shown that v > 0 by the explicit term for x̃1 and x̃2 in (4), so even a small
reduction of ε would be allowed.) Calculating the determinant with Maple we
get

det
(

∂F

∂x
(x̃, 0)

)
= 8(β1 + 1)(β2 − 1)(β1 + β2)

which is non-zero for all relevant 0 < β1, β2 < 1 So the limit cycle exists for
small ε < ε̂, let us call this upper bound

ε̂ = ε̂(α, β1, β2) (5)

for reference and by continuous dependence of the eigenvalues on the matrix,
these limit cycles are also attractive.

Step 4: We apply a disturbance estimate to show that T̄ (x;α, β1, β2, ε) and
T (t, x;α, β1, β2, ε) have asymptotically the same limit cycles. The following theo-
rem is a variation of [2, Theorem V.1.] and holds for cycles of any integer length.
The proof is very similar and omitted for brevity. The difference between the vari-
ants is that here we do not use an estimate of the type ‖Θ(t, x̃)‖ ≤ Cβt ‖x̃ − x�‖
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where the fixed point x� appears but rather an exponentially decaying term Cβt.
Consequently we cannot show exponential stability of the 2-limit-cycle but only
exponential convergence of trajectories nearby, with the constants depending on
the initial value.

Theorem 1. Let X ⊂ R
n be a closed set, ‖·‖ a norm on R

n. Let T : N0×X → X
be a mapping which is a contraction w.r.t. the second variable uniform in t ∈ N0,
i.e. there exists L < 1 with

‖T (t, x) − T (t, y)‖ ≤ L ‖x − y‖ ∀x, y ∈ X, t ∈ N0

Furthermore assume that the difference between T (t + 1, ·) and T (t, ·) is expo-
nentially bounded: There exist C ≥ 0, 0 < β < 1 such that

‖T (t + 1, x) − T (t, x)‖ ≤ Cβt ∀x ∈ X, k ∈ N0

Then T has a unique fixed-point x� in X: T (t, x�) = x� for all t ∈ N0. For
all x0 ∈ X, the sequence defined by xt+1 = T (t, xt), t ∈ N0, converges to x�

exponentially.

To apply this theorem to the 2-limit-cycle we have to estimate the difference
between two iterations of Adam with and without bias correction:

∥∥T (t + 1, T (t, x)) − T̄ (T̄ (x))
∥∥

We use the fact from [2] that

‖Θ(t, x)‖ =
∥∥T (t, x) − T̄ (x)

∥∥ ≤ Cβt ‖x − x�‖
as well as

‖Θ(t, x)‖ =
∥∥T (t, x) − T̄ (x)

∥∥ ≤ Cβt ‖x‖
Using this we estimate

∥∥T (t + 1, T (t, x)) − T̄ (T̄ (x))
∥∥ ≤ ∥∥T (t + 1, T (t, x)) − T̄ (T (t, x))

∥∥ +∥∥T̄ (T (t, x)) − T̄ (T̄ (x))
∥∥

≤ Cβt+1 ‖T (t, x)‖ + L
∥∥T (t, x) − T̄ (x)

∥∥

where L is a local Lipschitz constant near the limit cycle. The Lipschitz conti-
nuity exists because T̄ is continuously differentiable. We continue the estimate

≤ Cβt+1 ‖T (t, x)‖ + LCβt ‖x‖
= Cβt+1

∥∥T̄ (x) + Θ(t, x)
∥∥ + LCβt ‖x‖

≤ Cβt+1
∥∥T̄ (x)

∥∥ + C2βt+1βt ‖x‖ + LCβt ‖x‖
≤ C̃βt max{∥∥T̄ (x)

∥∥ , ‖x‖}

with C̃ ≥ max{C2, LC}. As we consider only states x near the limit cycle x̃1,
x̃2 we can locally bound the term

∥∥T̄ (x)
∥∥ by continuity of T̄ .

We summarize our findings in the following theorem.
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Theorem 2. Consider the Adam-Optimizer as defined in Algorithm1 and objec-
tive function f(w) = 1

2cw2, c > 0. Then the algorithm is locally convergent under
the assumptions stated in [2]. However there exist solutions that converge to the
2-limit-cycles of the algorithm without bias correction; so the algorithm does not
converge globally to the minimum w� = 0.

4 Numerical Simulations: Discrete Limit Cycles

In [4, Proposition 3.3] the authors show the existence of a discrete limit cycle for
the Adam. This discrete limit cycle depends on the learning rate α and β1 = 0.
Therefore we demand 0 < β1 < 1 this limit cycle does not affect the local
convergence proof of [2]. But we found in some numerical experiments few limit
cycles which alter the convergence of Adam.

First, we will recall the hyperparameter bound of [2]

α maxn
i=1(μi)√
ε

(1 − β1) < 2β1 + 2 (6)

with μi the i-th eigenvalue of the Hessian ∇2f(w�). This bound is marked in
the Experiments with a red cross and depicts in every of our Experiments the
bifurcation position. The εmach = 2−52 ≈ 2.2204 · 10−16 is the machine accuracy
of IEEE floating point arithmetic with double precision (Table 1).

Table 1. Parameters of the different limit cycles

Experiment 1 Experiment 2 Experiment 3

c 10 1 1

α 0.001 0.5 0.8

β1 0.9 0.2 0.5

β2 0.999 0.5 0.6

ε 10−8 10−6 0.01

m0 −1.281144718 · 10−5 0 0

v0 5.925207756 · 10−8 0 0

w0 2.434174964 · 10−5 εmach εmach

In the first Experiment, we found a 2-limit-cycle close the parameters sug-
gested by [6]. A plot between the three main values mt, vt, wt looks like a fountain
and we can see, that the values of mt and wt become more diffuse with increasing
vt (see Fig. 2 left). By looking closely to wt, it attracts attention that wt is reach-
ing the solution 0 but leaving it again (see Fig. 2 right). One of the eigenvalues
of the corresponding Jacobian is greater than 1, so the solution is not a stable
2-limit-cycle. The other real valued 2-limit-cycles also are not stable. Therefore
we reach in Experiment 1 a limit-cycle with a higher order than 2 (see Fig. 3).
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Fig. 2. Discrete limit cycle with the parameters suggested by [6] (Experiment 1)

In the following we will only consider w and α. By the fact that mt and vt are
only auxiliary variables depending on the history of w, they are less important
than w and α. In order to clarify this aspect, reference is made at this point to
page 3 in [6]. There is a definition for vt without vt−1 and thus a definition of w
without m and v is possible. In addition, the following remark gives an insight
into the dependency from mt to the history of w in 2-limit-cycles.

Remark 1. We assume a 2-limit-cycle and therefore we can write mt = mt+2.
With this knowledge, we can rewrite the mt-update rule.

[−β1 1
1 −β1

] [
mt

mt+1

]
= (1 − β1)

[
g(wt)

g(wt+1)

]

Defining β1 ∈ (0, 1) the system is uniquely solvable and thus mt does not have
more information for the system than w. The same applies to vt.

If we are iterating over α from 10−4 to 0.001 we reach Fig. 3 and see a Hopf
bifurcation. With inequality (6) we can calculate exactly the coordinate of the
bifurcation (see the red cross in Fig. 3).

αBifurcation =
(2β1 + 2)

√
ε

(1 − β1) maxn
i=1 (μi)

= 0.00038

In the second Experiment we can see that it is possible that even if we are
starting closely to the solution w0 = εmach we are ending in a stable cycle far
away. By iterating over α from 10−4 to 0.01 we can see a pitchfork bifurcation of
the Adam. With α = 0.5 stable, the eigenvalues of the corresponding Jacobian
are λ1 ≈ 0.0113983 and λ2,3 ≈ −0.7606667 ± 0.5465392 i. In absolute value
all three eigenvalues are smaller than 1 and so we reach a stable 2-limit-cycle
between w1 = 1/6 and w2 = −1/6.

In contrast to the implicit function argument, Experiment 3 uses ε = 0.01 �
εmach. In Fig. 5 on the left side one can see that starting at α = 0.6 Adam
converges to a 2-limit-cycle. At around α = 0.7 Adam shows a chaotic behaviour.
On the right side one can see the behaviour of the parameters m, v and w at
α = 0.8. It visualizes the chaotic behaviour and reminds of the shape of a Lorenz
system.
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Fig. 3. Hopf bifurcation (Experiment 1) (Color figure online)

Fig. 4. Discrete limit cycle starting near the solution (Experiment 2) (Color figure
online)

Fig. 5. Discrete limit cycle with a large ε (Experiment 3) (Color figure online)

Even if we want to minimize a multidimensional problem we can detect such
a bifurcation. For example, with f(w) : R2 → R, f(w) = w⊥Cw and

C =
[
1.1184 0.5841
0.5841 3.8816

]
= Q⊥

[
1 0
0 4

]
Q
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Fig. 6. Bifurcation in a multidimensional optimization (Color figure online)

we obtain Fig. 6. In every of our experiments the first bifurcation is exactly on
the solved inequality (6) (see the red cross in Figs. 3, 4, 5 and 6). This result is
only an empirical proved assumption and an analytical proof would be desirable.

5 Conclusion and Discussion

The results can be extended easily by a diagonalization argument and change
of coordinates to strictly convex quadratic functions 1

2w⊥Cw + b⊥w + a with
w ∈ R

n. But already the scalar quadratic function shows that the Adam dynam-
ics cannot be globally convergent, even for strictly convex objective function.
This implies that there cannot be a global Lyapunov function. Our results seem
in contradiction to [3] where ε-bounded gradients are proven. However this con-
tradiction can be explained by the assumption ‖∇f(w)‖ ≤ H in the cited pub-
lications, which we do not use, and the choice of β1, β2 depending on the bound
ε. So there is still hope for a general convergence result under both assumptions
0 < lIn ≤ ∇2f(w) ≤ LIn and ‖∇f(w)‖ ≤ H for all w ∈ R

n. Furthermore we
have investigated only one limit cycle of period 2. More limit cycles of larger
period might exist, so restrictions on objective function and hyperparameters
that eliminate this 2-limit-cycle might miss other or even create other limit
cycles. The computer algebraic methods used in this paper seem hopeless even
for period 3, so probably completely other methods are necessary.

Our results also have no direct implication on efforts to prove convergence
of Adam in the incremental mode under additional assumptions. However the
lack of a Lyapunov function suggests that Lyapunov based proofs like [5] for the
stochastic heavy ball algorithm, cannot be transferred to Adam in the stochastic
or incremental setting.
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Abstract. Recent years have witnessed two seemingly opposite devel-
opments of deep convolutional neural networks (CNNs). On the one
hand, increasing the density of CNNs (e.g., by adding cross-layer con-
nections) achieves better performance on basic computer vision tasks.
On the other hand, creating sparsity structures (e.g., through pruning
methods) achieves a more slim network structure. Inspired by modularity
structures in the human brain, we bridge these two trends by propos-
ing a new network structure with internally dense yet externally sparse
connections. Experimental results demonstrate that our new structure
could obtain competitive performance on benchmark tasks (CIFAR10,
CIFAR100, and ImageNet) while keeping the network structure slim.

Keywords: Hierarchical CNN · Evolutionary algorithms ·
Neural network structure

1 Introduction

Deep Convolutional Neural Networks (e.g. [12,18,20,28]) have recently made
remarkable success in visual tasks. The very intuitive idea of improving a neural
network at the earlier period is to enlarge the scale of the network. However,
follow-up papers have shown that when the feedforward network structure has
reached a certain depth, neither the best test accuracy nor training accuracy
will increase as the network depth increases [15]. An important observation is
that by increasing network density and adding long distance connections, the
network could be improved such as ResNet [12] and DenseNet [15] have shown.
These long-distance connections could create shortcuts between layers in differ-
ent depth. By propagating loss directly, the network could become deeper and
more accurate.

As the network becomes denser, deeper, and more accurate, its scale increases
up to millions of parameters. Thus, reducing the network scale and complexity
becomes a crucial research task for real-world applications. One promising solu-
tion is to increase the network sparsity by pruning redundant connections. For
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instance, by pruning connections with tiny weights and fine-tuning the pruned
network, [11] could reduce the network complexity while only sacrificing about
1% of model accuracy. Similar solutions to create sparsity include channel prun-
ing [14] and structure sparsity [36].

In neuroscience, studies concentrating on the brain structure reveal that neu-
ron connections in human brain perform a locally dense but externally sparse
property that the closer two regions are, the denser the connections between
them will be [4,9,34]. Also, studies show that while sensory information arrives
at the cortex, it is fed up through hierarchical regions from primary area V1
up to higher areas such as V2, V4 and IT [2]. Inside of each cortex layer, tightly
packed pyramidal cells consist of basic locally dense structures in the brain.

Based on neuroscientific considerations, the brain does not form connections
between every neuron. Instead, the brain forms local modules which consist of
internally dense connected neurons inside and forms connections between these
dense modules to save space and become more efficient. These internally dense
yet externally sparse properties could also be introduced into neural network
structures. Thus, we could bridge the trends of being dense and being sparse
together in neural network structures. Intuitively, we could acquire good per-
formance while keeping the network structure slim by introducing this brain
inspired structure.

We introduce an internally dense yet externally sparse neural network struc-
ture by prefixing dense modules and evolving sparse connections between them.
The basic building blocks of this network structures are several internally dense
modules, where each module consists of several densely connected [15] bottle-
neck layers to simulate the tightly packed cells. After that, we could form sparse
connections between these dense modules for the whole network structure. To
give more convincing guidance for forming sparse connections rather than man-
ually design connections based on experience, we design an evolutionary training
algorithm (Sect. 3.3) to search optimized connections Moreover, besides merely
creating parallel connections between modules, our algorithm could create long-
distance connections between the input module and the output module by a
transit layer.

The main contribution of this paper is to introduce biologically-inspired inter-
nally dense yet externally sparse properties into convolutional neural network by
prefixing dense modules and forming sparse connections between dense modules.
Instead of empirically constructing module connections, we design an evolution-
ary training algorithm to search optimized connections. This structure could
reach compared slim network structures while keeping competitive model per-
formance on image classification tasks (Exp. Sect. 4.3). We give a detailed anal-
ysis of how different sparse connections and different module properties will con-
tribute to the final performance. Moreover, we reveal contribution proportion on
the final performance of each connection by several contrast experiments. Thus,
we could give intuitive guidance for designing hierarchical network structures.
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2 Related Works

Network Architectures Are Becoming Denser
The exploration of network architectures has been an important foundation

for all Deep Learning tasks. At the early period of deep learning, increasing
the depth of a network might promise a good result as the network structure
moved from LeNet to VGG (e.g. [18,20,28]). Since people realize that the increas-
ing depth of the network amplifies problems such as over-fitting and gradient-
vanishing [3], parallel structures [32,39] and densely connected layers [15] have
been introduced to increase network capacity. In this paper, we refer to the dense
block in [15] while constructing internal densely connected modules.

Deep Neural Network Compression
Besides increasing model capacity, deep neural network compression is

another active domain concentrating on acquiring slim models by eliminating
network redundancy. These methods could be summarized by the three basic
aspects: 1. Numerical approximation of kernels, which includes binariza-
tion [7,25], quantization [40], weight sharing or coding method [10] and mainly
uses numerical method to approximate kernel with smaller scale; 2. Sparse
regularization on kernels, which mainly prunes connections based on reg-
ularization on kernels, such as weights/channel pruning [14,23] and structure
sparsity learning [22,36]; 3. Decomposition of kernels, which mainly uses
smaller groups of low-rank kernel instead of a larger whole kernel, such as [6,8,17]
and [37]. Instead of pre-training then pruning the whole network structure,
we use an evolutionary programming method to determine sparse connections
between dense modules, while keeping the modules slim. Competitive perfor-
mances are obtained.

Neural Network Structure Search
At early period, papers [1,5,24,31] have developed methods that evolve both

topologies and weights on simple neural networks. Recently, papers concen-
trate on evolving structures have risen again along with the rapid development
of deep learning. Genetic CNN [38] concentrates on using genetic algorithm
to evolve skip-connections on a straight forward convolutional neural network.
Then, Google [26] shows great potential about structure search on image clas-
sification tasks. Google also proposed a state-of-the-art deep neural network
structure NasNet [41] to search both the parameters and the structures. How-
ever, the huge scale of these networks still remains a problem. In our paper, the
evolving algorithm is a tool to reveal properties of internally dense yet externally
sparse structures. Moreover, we analyze how each connections could contribute
to the final model performance.

3 Methodology

In order to introduce internal dense yet external sparse properties into deep con-
volutional neural networks, we proposed a new network structure which prefixes
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internal dense modules and evolves sparse connections between dense modules.
We define M as the set of dense modules. For a clear identification of these
dense modules, we divide these dense modules into D layers, where each layer
contains W modules. In particular, we define a dense module in the set M as
Md,w, d ∈ {0, 1, ...D}, w ∈ {0, 1, ...W}, where index d denotes the depths in
layer wise and w denotes the module index among all of the others in the same
depth. These modules M are sparsely connected by directed edges/connections.
We define P as the adjacency matrix to represent these directed connections
between modules. Clearly, the whole neural network structure can be defined
as a directed graph G(M,P ), where M denotes the set of internal dense mod-
ules Md,w, P denotes the adjacency matrix, which is used to represent sparse
connections between modules.

For example, Fig. 1 shows a set of dense modules in subfigure Fig. 1(a) with
depth D = 4 and W = 3. We use an adjacency matrix P to represent connections
between modules as it shows in Fig. 1(b). In this example, firstly a 3*3 convolu-
tional layer processed the input images into some feature maps. Then the feature
maps are divided into several groups in channel wise. Each group is sent into a
dense module as the input feature maps. After the features flow through sparse
dense convolutional neural networks, the outputs are concatenated together for
final output layer.

Fig. 1. Example of a network’s structure obtained by fixing the dense modules M in
advance and using the adjacency matrix P to represent sparse connections between
modules. Figure (a) denotes the network structure. Figure (b) denotes the adjacency
matrix corresponding to Fig. (a), where red rectangle area denotes connections with
distance 1, green rectangle denotes connections with distance 2, blue area denotes
connections with distance 3. (Color figure online)

Naturally, three main questions occur: 1. What is the exact structure and
definition of a dense module Md,w? 2. What does a connection represent in this
convolutional neural network? 3. How shall we connect these dense modules and
decide the adjacency matrix P?

The exact structure of an internal dense module Md,w is defined in Sect. 3.1.
In Sect. 3.2, we answer the second question by specifying a connection in neural
networks. In Sect. 3.3, we solve the problem of connecting these modules by
evolving sparse connections between them.
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3.1 Build Internal Densely Connected Modules

In this section, we will introduce the detailed structure of a dense module Md,w.
From a high level, a dense module Md,w receives feature maps from other dense
modules as its input, then outputs down-scaled feature maps. In other words, we
densely connect our bottleneck layers and a transit layer as the main structure
inside a dense module as it is shown in Fig. 2.

Fig. 2. An example of structure for a prefixed dense module as shown above, where
yellow layer represents several densely connect bottleneck layers (it means each inter-
mediate output has a direct connection to the output layer). The detailed structure
of a bottleneck layer is shown left. After the final layer, the green layer represents
a transition layer to control the feature map size. The depth of dense blocks in our
experiment usually varied from 6 to 20. (Color figure online)

This structure uses a bottleneck layer as the basic building block of the dense
module. Following [15,33], we design our own bottleneck layer as below. A bottle-
neck layer consists of sequential layers as follows: {BN - 1*1conv -BN - 3*3conv},
where BN denotes a batch normalization layer [16] which could normalize the
feature maps by adjusting and scaling after activation functions. The BN layer
is followed by a 1*1 convolution layer which keeps the feature map size the same.
Then it is followed by a BN layer and a 3*3 convolution layer with zero padding.
The bottleneck layer l keeps the output feature map size unchanged and con-
trols the channel number of the feature maps always be constant number k (the
meaning of k will be explained later).

In that case, the bottleneck layers could be densely connected [15] to increase
density of dense module Md,w. The densely connectivity could be presented as
xl = Hl(x0, x1, x2, ...xl−1), where Hl represents nonlinear operation on feature
maps in bottleneck layer l and (x0, x1, x2, ...xl−1) represents the concatenation
(channel-wise) of all previous outputs. It means that the input of layer l depends
on outputs of every previous layers. As each bottleneck layer produces feature
maps with k channels, the layer l has concatenated input feature maps with
k0 + k × (l − 1) channels, where k0 is the channel number of input feature maps
in this dense module. In that case, as layer number l goes deeper, the channel
number of input feature maps will grow rapidly as defined above. Following [15],
we define k as the growth rate of the module, which could control the module
scale. In experiments of this paper, we keep the growth rate k the same for all
dense modules M .
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We define a transit layer as the output layer of every dense module Md,w.
The transit layer consists of sequential layers {BN - Relu -1*1conv - Average-
pooling}, where BN is the batch normalization layer introduced above, Relu is
the activation function. The 1*1 convolution layer controls the output feature
map channels as a constant number k0 for all dense modules M . The average
pooling layer mainly down scale the feature map size for final classification task.
It should be noted that, the transit layer could control the output feature maps
of dense modules to have a certain shape.

3.2 Explore External Sparse Connections

Since we have defined the whole network structure as a directed graph G(M,P )
and explained definition of dense modules M in Sect. 3.1, we will explain what
a connection denotes in a neural network in this section. As we have explained
before, M could be regarded as a set of nodes in the directed graph G(M,P )
and P is the adjacency matrix to represent the directed connections between
modules M . The directed connections denote the feature map flow in our neural
networks. Once there is a connection between two modules, it means one module
will accept the output feature map of the other module as part of its inputs. For
example, in Fig. 1, the module M3,1 receives two directed connections from M2,1

and M2,3, it means module M3,1 receives feature maps both from M2,1 and M2,3.
Similarly, the module M3,1 sends a directed connection to M4,1, this means M3,1

send output feature maps to M4,1 as one of its inputs.
According to the transit layers defined in Sect. 3.1, output feature maps of all

modules have the same channel number k0. However, the sizes of feature maps
from different depth are different. So, how can we make a module to accept
output feature maps from different depth of feature maps? After the example,
we will introduce how we exactly make a module to accept changeable feature
maps from multiple other dense modules.

Methods for Local Connections with Same Depth
Here we define the distance as the difference d1 − d2 of two connected mod-

ules Md1,w1 and Md2,w2 in depth. If the distance of the connection is 1 (e.g.,
connection between M3,3 and M2,3 in Fig. 1), we call it a local connection. As
we defined in Sect. 3.1, each output feature map of a dense module with same
depth shares the same feature map size and the same channel number k0. If there
is only one local connection, we could naturally follow the down sampling flow
of deep CNN and directly send the feature map output of the previous depth
to the current module as: Od,w = Md,w(Od−1,w2), where Od−1,w2 denotes the
output feature map of previous depth Md−1,w2 .

But what if the module Md,w has several local connections? We use an Addi-
tion Method to connect multiple feature map inputs which could be defined as:
Od,w = Md,w(Od−1,w1 +Od−1,w2 ...), where Od1,w1 and Od1,w2 ... denote the mul-
tiple input feature maps. These additional methods directly add all the input
feature maps from local connections and fit the required input feature map size
of Md,w. Actually we also try the Concatenation Methods which concatenate
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all input feature maps channel wise and use a single transit layer introduced in
Sect. 3.1 to reduce the channel number to required k0. The experiment results
show that the two connection methods have very similar results on the same
structure. As addition methods don’t need extra transit layers when changing
the input feature map numbers, we choose addition methods as our connection
methods.

Methods for Long Distance Connections from Different Depth
Within the same definition of distance above, a typical example of multiple

long distance connections is as shown in Fig. 1, where M4,3 receives directed
connections from both M3,2 (with depth 3) and M1,2 (with depth 1). It should
be noted that the existence of long distance connections means that feature maps
could flow through different numbers of dense modules in this network structure.
Here we also use the addition methods introduced above. Since the fact that the
output feature maps of all the modules have same channel number k0, the only
problem for adding feature maps from different depth is the different feature
map size. In that case, before addition, we implement an average pooling layer Td

according to the depth d to change the feature map size into current requirement
of a module. After that, we could add all the adjusted input feature maps as the
input of Md,w. The math process can be define as Od,w = Md,w(Td1(Od1,w1)) +
Td2(Od2,w2)...), where Od,w denotes the output feature map of module Md,w and
Td denotes the pooling layer from depth d. In this case, we can achieve long
distance connections.

3.3 Evolution Algorithm to Search External Sparse Connections

Since we’ve answered the question of what is a dense module in Sect. 3.1 and
how the modules are connected in Sect. 3.2, this section will introduce how we
decide the connection topologies.

One crucial problem in creating sparse connections between dense modules
is that there has not been a convincing theory on what can be called an effi-
cient connection. In that case, we decide to make the neural network evolving
optimized sparse connections by itself. In this paper, we use a genetic algorithm
[29] to search the proper connections. We take the adjacency matrix P as shown
above as the gene for evolving. In each iteration, the genetic algorithm generates
several new ‘individuals’ with genes from the mutation of the best ‘individual’ in
last iteration. The set of generated ‘individuals’ is called ‘population’. Genetic
algorithm evolves by selecting best performance individual in every iteration.

Encoding: Here we take the adjacent matrix P to represent connection topol-
ogy during training. In implementation details, we use a connection list of each
module to reduce the storage space.

Initial State: The initial adjacency matrix is shown as Fig. 3-Initial State which
only has direct local connections. We randomly initialize the weights value of
modules at the first iteration in the training process. Since a deep neural network
needs a long time to train, restricted to our computation capacity, we set the
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Fig. 3. An example of the Network Structure Evolving. Initial state denotes the initial
adjacency matrix P . As we set before first iteration Pbest = Pinit, based on Pbest

we generate 2 individuals below. All together these 3 individuals form the population
which to be trained simultaneously in iteration 1. Then, we choose the individual with
the best performance, and based on that we form population for iteration 2. Following
this principle we keep the network evolving.

population between 2 to 3 individuals. We define the adjacency matrix of the
initial individual state as Pinit, the best performance individual of the previous
iteration as Pbest, and others as Pi at beginning of each iteration. An example
of evolving process is shown in Fig. 3.

Evolution Strategy: At each iteration, the mutation function will generate
several new individuals based on the best individual from the previous iteration
Pbest. The mutation function could be defined as:

P1, P2... = Mutation(Pbest) (1)

Where it accepts Pbest as its input, then generates several mutation individuals
P1, P2... based on Pbest. The mutation function randomly picks two possible con-
nections and changed their connectivity based on the input adjacency matrix. It
means that, if we randomly pick an unconnected connection, we set it connected.
And for already connected connection, we set it disconnected. Then we treat the
set of Pbest, P1, P2... as population in this iteration and separately resume train-
ing the whole network under these connection conditions for an epoch and choose
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Algorithm 1. Evolutionary Connectivity Algorithm
1: procedure Evolve(G(M, Pinit), Data, n) � Data: Training

data, G(M, Pinit): Given network structure with modules M and initial adjacency
matrix Pinit, n: Total iteration

2: Pbest ← Pinit

3: for n iterations do
4: P1, P2...Pk−1, Pk ← Mutation(Pbest) � k,Number of individuals in a

generation, Pk = Pbest

5: checkpoint ← G(M, Pbest)
6: for k iterations do
7: Resume weights of M in the Checkpoint: G(M, Pk) ← checkpoint
8: train G(M, Pk) on Data and get validation accuracy
9: if Pk.accuracy > Pbest.accuracy then

10: Pbest ← Pk

11: best − check ← G(M, Pk)
12: end if
13: end for
14: Resume weights of M in the best − check: G(M, Pbest) ← best − check
15: end for
16: Return Pbest

17: end procedure

the individual with the best accuracy as Pbest of current iteration. Adjacency
matrix of the best performance individual Pbest will remain to next iteration.
And based on it we mutate new individuals. The whole process is shown in
Algorithm 1.

4 Experiments

In this section, we apply several experiments to reveal interesting phenomena
and properties of the internally dense yet externally sparse deep neural net-
work structures. All of the experiments in this section are based on CIFAR10,
CIFAR100 and ImageNet datasets for image classification tasks. Section 4.1
shows the efficiency of the evolutionary algorithm by several repeatability exper-
iments. Section 4.2 discusses how the growth rate of each module will affect the
model performance. Section 4.3 gives our performance benchmark compared to
state-of-the-art models. At last, we do a detailed discussion about which con-
nections are important for the whole model in Sect. 4.4.

4.1 Evolving Sparse Connections

This experiment is used to prove the efficiency of the Evolutionary Connectivity
Algorithm introduced in Sect. 3.3. We evaluate the network structure efficiency
on the classification task using benchmark dataset CIFAR10. In implementation
details, we prefix the dense modules having 4 different depth, where in each
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depth, it has 3 modules. The total of 12 modules M have the growth rate k of
12. The dense modules in depth 1, 2, 3, 4 respectively have 6, 12, 24, 16 bottleneck
layers inside each module. The input feature map channels of each dense module
k0 is 32. The preprocessed images firstly flow through a 3*3 convolution layer
and generate feature maps with 96 channels. Then the feature maps are divided
into 3 feature map groups with 32 channels each. And the three groups are
separately fed to input dense modules with depth 1 (M1,1,M1,2,M1,3).

Through the training process, the network evolves sparse connections
between prefixed dense modules according to the Evolutionary Connectivity
Algorithm 1. We set the total iteration number to be 160, with weight decay
of 5e−4. The training uses SGD with momentum 0.9 for gradient descent. The
learning rate strategy is the same as most of the papers that during epoch 0–90
the learning rate is 0.1, during 90–140 learning rate is 0.01, and during 140–160
learning rate is 0.001. It should be noted that changing the learning rate will
lead to accuracy ‘step jumps’ such as Figs. 4, 5 and 6 show. Restricted to our
computation power, we set the number of individuals generated in each iteration
to be 2. The training curves of Pbest are shown in Fig. 4. All the experiments are
trained on NVIDIA AWS P3.x2large instance.

Fig. 4. Several Repeatable Experiments on Sparse Connection Evolving. The upper
four figures denote the training curve & testing curve of each experiment. The lower
figure denotes the comparison of test accuracy of each experiment. All accuracy step
jumps are caused by learning rate change strategy in Sect. 4.1.

According to the repeatable experiment results, although randomness of
forming the early generations may lead to variation and fluctuation on the test-
ing performance curve, the training curve will finally converge to the same trend.
This shows the repeatability of our algorithm. Based on these experiments, we
found that the optimized adjacency matrix is not unique to achieve good per-
formances. The evolving results are shown in Fig. 5. However, we could still find
some similarity between those evolving results of these experiments. It denotes
that the modules with shallow depth are more likely to form a long-distance
connection. This means that the distance between the input and the output are
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shortened under that situation. This perfectly fits a current trend observed by
various papers [6,12,15,27,32,33] that skip/direct connections are important.

Fig. 5. Connection Matrix with Best Performance on each Experiment. We also give
an example connection status of Exp1.

4.2 How Growth Rate of the Dense Module Influences the Final
Result

As we mentioned above in Sect. 3.1, growth rate k is an important parameter
which controls the model scale. In order to figure out the influence of growth
rate k, this subsection introduces the contrast experiment by controlling all
other factors the same except the growth rate k in the prefix dense modules.
The prefixed modules and training parameters are the same as those used in
experiment Sect. 4.1. We train the network with the same strategy and the same
device above. The results are shown in Fig. 6.

Fig. 6. Test Accuracy Curve Comparison on Different Growth Rate. Each color repre-
sents test accuracy curve of experiments on different growth rate.

Clearly, the networks with smaller growth rate converge faster and have flat-
ter curve shapes compared to those with larger growth rates at the earlier period
of training. It means that the modules with smaller scale are easier to train while
the connections of this network evolving. We can also see that, although modules
with smaller growth rates converge really fast, the final test accuracy is not as
high as those modules with larger growth rate. However, experiment results also
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demonstrate that the network redundancy is not the ‘larger the better’. As it
shows in Fig. 6, after the growth rate is larger than 32, the test accuracy will
not increase anymore. It is also rational because if the capacity of each module
is too large, the unstable input features may make the network harder to train.
On another hand, the increasing growth rate, which leads to the increasing of
model scale, increases the risk of over-fitting.

4.3 Performance Benchmark

Although our paper emphasizes on how sparse connections will change the model
performance, we still give performance scores on the benchmark dataset as shown
in Tables 1 and 2. Since the aim of this paper is to obtain slim structures while
keeping the model’s capacity and achieve internally dense yet externally sparse
network structures, the test accuracy on both ImageNet and CIFAR is not
that high compared to state-of-the-art models. However, we still get compet-
itive results on both datasets.

Table 1. Test error rate performance on CIFAR dataset. Note results with * are the
best result run by ourselves.

Method Params Depth CIFAR-10 CIFAR-100

Network in network [21] – – 8.81 35.68

VGG19 [28] – – 6.58 27.09

Highway Network [30] – – 7.72 32.29

DFN [35] 3.9M 50 6.40 27.61

Fractal Net [19] 38.6M 21 5.22 23.30

Resnet [12] 1.7M 110 5.46 5.58∗ 27.62

Pre-activated Resnet [13] 1.7M 164 4.72 5.12∗ 25.6

Wide Resnet [39] 7.4M 32 5.4 23.55

Densenet (k = 12) [15] 1M 40 5.24 5.43∗ 24.42 24.98∗

Densenet-BC (k = 12) 0.8M 100 4.51 22.27

Densenet121 (k = 24) 15.2M 121 4.68∗ 21.49∗

SDMN, growth rate k = 8, 6 modules 0.4M – 6.97∗ –

SDMN, growth rate k = 8, 8 modules 1.3M – 6.59∗ 25.6∗

SDMN, growth rate k = 8, 12 modules 2.3M – 5.97∗ 24.8∗

SDMN, growth rate k = 12, 12 modules 3.7M – 5.35∗ 23.41∗

SDMN, growth rate k = 32, 12 modules 22M 4.79∗ 21.9∗

4.4 Separable of Sparse Connections

In this subsection, we discuss which connections are important based on one
of our evolved adjacency matrices. We separately cut off one sparse connection
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Table 2. Test accuracy rate performance on ImageNet dataset, compared with slim
network models.

Model Params Top1/Top5 Acc.

MobileNetV1 4.2M 70.6%/89.5%

ShuffleNet (2x) 4.4M 70.9%/89.8%

MobileNetV2 (1.4) 6.9M 74.7%/â

NASNet-A (N = 4, F = 44) 5.1M 74.0%/91.3%

Sparse-Dense-Modules (k = 12) 3.7M 71.1%/90.0%

from the whole network structure each time and test the remaining accuracy on
CIFAR10 dataset. Then we come up with a matrix, which suggests the accuracy
decreasing while losing each connection. The matrix is shown in Fig. 7.

The red rectangle area denotes the direct connections; the green and blue
rectangle area denote the long-distance connections. According to the accuracy
loss distribution, local and direct connections are of vital importance for a neural
network. This is rational because the deep learning method needs a compared
invariant forward and backward feature flow path for loss propagation. We can
also see the accuracy loss is larger along the diagonal to the high left of the
matrix. It means that connections within shallow depth play a more important
role in conducting features/patterns than deeper connections. It is also rational
because the shallower connections simultaneously mean the features that flow
through such connections have not been extract to some level of abstraction.

Fig. 7. Example connection matrix shows the selected best connection from a typical
experiment. Right part of the figure shows how much accuracy will loss if we cut off
the corresponding connection in the connection matrix. (Color figure online)

5 Conclusions and Future Work

In this paper, we firstly introduce locally dense but externally sparse struc-
tures of deep convolutional neural network by prefixing some dense modules M
and evolving sparse connections between them. Experiment results demonstrate



260 Y. Duan and C. Feng

that evolving sparse connections between dense modules could reach competi-
tive results on benchmark datasets. In order to analyze the properties of these
biologically plausible structures, we apply several sets of contrast experiments
and show in Experiment section. By changing the growth rate of each dense
module, we analyze how model scale will influence the model performance. Sim-
ilar to most of the related works, redundancy of each dense module is not ‘the
larger the better’, where the test accuracy will first increase with the growth rate
increasing, but finally drop while the growth has reached some thresholds. We
also analyze the contribution of each connection to the whole model by discon-
necting each connection and separately testing the accuracy of the model with
the disconnected connection. It shows that local connections are important for
baseline accuracy, while long-distance connections could improve the accuracy
by small steps.

The combination of being dense and being sparse is an interesting area. The
internally dense and externally sparse structures also coincide with the modular-
ity in human brain. We demonstrate the feasibility of these structures and give
a simple algorithm to search best connections. We also notice that the connec-
tion matrix is not unique for reaching good performance. We will concentrate
on revealing the relationship between these similar connection matrices and the
corresponding features behind it. In this case, we may acquire state-of-the-art
performance on other datasets and tasks in our future work. Moreover, as these
structures have various direct paths between input and output, separating a net-
work into several small networks without big accuracy loss is also a promising
topic.
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Abstract. The rapid development of convolutional neural networks
(CNNs) is usually accompanied by an increase in model volume and com-
putational cost. In this paper, we propose an entropy-based filter pruning
(EFP) method to learn more efficient CNNs. Different from many exist-
ing filter pruning approaches, our proposed method prunes unimportant
filters based on the amount of information carried by their correspond-
ing feature maps. We employ entropy to measure the information con-
tained in the feature maps and design features selection module to for-
mulate pruning strategies. Pruning and fine-tuning are iterated several
times, yielding thin and more compact models with comparable accuracy.
We empirically demonstrate the effectiveness of our method with many
advanced CNNs on several benchmark datasets. Notably, for VGG-16
on CIFAR-10, our EFP method prunes 92.9% parameters and reduces
76% float-point-operations (FLOPs) without accuracy loss, which has
advanced the state-of-the-art.

Keywords: Convolutional neural networks · Filter pruning ·
Entropy · Features selection module

1 Introduction

In recent years, we have witnessed a rapid development of deep neural networks
in many computer vision tasks such as image classification [6], semantic segmen-
tation [16,19] and object detection [3]. However, as the CNN architectures tend
to be deeper and wider to get superior performance, the number of parameters
and convolution operations also increase rapidly. For instance, Resnet-164 has
nearly 2 million parameters and VGG-16 requires more than 500 MB storage
space. These cumbersome models significantly exceed the computing limitation
of current mobile devices.

Considerable research efforts have been devoted to compressing large CNN
architectures. Pruning is an intuitive CNN compression strategy and it mostly
focuses on removing unimportant network connections. The current pruning
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methods usually include directly deleting weight values of filters [4,22] and
totally pruning some filters [7,12,15,24]. The weight value pruning methods
introduce non-structured sparsity in the parameter tensors and require dedi-
cated sparse matrix operation libraries. In contrast, the filter level pruning is a
naturally structured way of pruning without introducing sparsity and thus does
not require sparse libraries or specialized hardware. Therefore, filter pruning
attracts more attention in accelerating CNN architectures.

However, most of the previous researches on filter pruning only focus on the
activation values or the scale factors weighted on the output of filters and fail
to consider the amount of information carried by the feature maps. The feature
maps are the most direct reflection of the usefulness of convolution filters. Pre-
vious works [12,14] have shown that feature maps are sparse and a considerable
number of feature maps output by the middle layers of CNN are most of zeros
or zero matrices. Regardless of the given scale factor, the feature maps with all
zero values cannot make contribution to the accuracy of the model. On the other
hand, if given a small scale factor, a feature map containing a large amount of
information will be pruned, which may lead to some important information loss.

In this paper, we propose an entropy-based filter pruning (EFP) method
to address the above-mentioned problem. Our EFP selects unimportant filters
based on the amount of information contained in their corresponding feature
maps. We employ entropy [21] to measure the information carried by feature
maps, since it plays a central role in information theory as measures of informa-
tion and uncertainty. Some similar works proposed to prune the network based
on entropy. [13] proposed to calculate the filter entropy, and failed to consider
that the amount of information in the filter is unexplained compared with the
feature map. [17] calculated the entropy of the global mean of the feature map,
which is a rough measure and ignores the spatial information in the feature map.
However, our proposed feature entropy method is different from them and can
overcome their weakness, since we choose to expand the feature maps by row
and calculate their spatial information entropy to weigh the effectiveness of the
corresponding filters. Then, we design features selection module to extract the
output of every filter and determine their entropy weights. These modules are
placed between every two adjacent convolutional layers of a well-trained net-
work, as shown in Fig. 1. Those filters whose output feature maps are given
small weights will be pruned. After pruning, we fine-tune the compact model
to restore performance and can even achieve a higher accuracy in many cases.
Finally, the pruning and fine-tuning process are repeated for several times to get
an even more compact network. Furthermore, we also research the correspon-
dence between the entropy pruning ratio and the number of filters to explore the
distribution of information in each convolutional layer of a CNN architecture.

We evaluate our method on several benchmark datasets and different CNN
architectures. For VGG-16 on CIFAR-10, we achieve 92.9% of parameters prun-
ing and 76% float-point-operations (FLOPs) reduction with 0.04% accuracy
improvement, which has advanced the state-of-the-art. For the less redundant
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ResNet-56 and ResNet-164, we also gain 50.8% and 52.9% parameters reduction,
respectively, without notable accuracy loss.

2 Related Work

Most previous works on deep CNN compression can be roughly divided into 4
categories, matrix decomposition, weight quantization, architecture learning and
model pruning.

Matrix decomposition was proposed to approximate weight matrix of deep
CNN tensor with sparse decomposition and low-rank matrix [23], using tech-
niques like Singular Value Bounding [10]. While these methods can reduce the
computational cost, the compression of the parameters is very limited.

Some works [1,2,4] proposed to quantize the filter weights. The network
weights were quantized to several groups and all the weights in the same group
shared the same value, only the effective weights and indices need to be stored.
This method can achieve a large compression ratio in terms of parameters. How-
ever, the FLOPs of the network cannot be reduced, since shared weights need
to be restored to the original positions during the process of calculation.

Some other works [8,25] proposed to learn the CNN architecture automat-
ically. [25] trained RNN with reinforcement learning to maximize the expected
accuracy of the generated architectures on a validation set. [8] designed AutoML
for Model Compression which leverages reinforcement learning to sample the
model design space and achieves the model compression. The search space of
these strategies is extremely large and they need to train models for a long time
to determine the best strategy.

Pruning is an intuitive model compression method. [4] proposed an iterative
connection pruning method by pruning unimportant connections whose weights
are below the threshold. [22] regularized the structures by group Lasso penalty
leading to a compact structure. However, pruning weights always bring unstruc-
tured models which are not implementation friendly and the FLOPs reduction
is very limited. To overcome these limitations, some filter pruning methods have
been explored. [9,12,15] leveraged L1-based methods to select unimportant fil-
ters and channels. [18] used statistics information from next layer to evaluate
and prune filters. [24] utilized LSTM to select convolutional layers and then
evaluated the filters of selected layers. [7] proposed a soft filter pruning method
which updates the filters to be pruned after each training epoch. These methods
usually require less dedicated libraries or hardwares, as they pay attention to
pruning the network structures instead of individual connection of filters. Our
proposed entropy-based method also falls into this category, achieving not only
parameters reduction but also FLOPs saving without special libraries designed.

3 Method

In this section, we will give a detailed description of our entropy-based filter
pruning method. First, we introduce how to determine the entropy weights of
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feature maps in Sect. 3.1. Next, our feature maps selection and filter pruning
strategies are presented in Sect. 3.2. Finally, the analysis of computational cost
compression is illustrated in Sect. 3.3.

Fig. 1. Illustration of our proposed method which prunes filters based on entropy.
We insert features selection module between each two adjacent convolutional layers
of the well-trained network (left side). For the i-th layer, the output feature maps
of convolution filters are extracted and input to the entropy module to determine
their entropy weights. Then those feature maps with smaller weights indicate that
they contain less information and the corresponding filters will be pruned (right side).
Meanwhile, the corresponding channels of each filter in (i + 1)-th layer will also be
pruned to be consistent with input. All the convolutional layers are pruned in parallel.

3.1 Determining Entropy Weights of Feature Maps

Most of the previous works [9,12,15] determine the importance of filters by L1
sparsity or scale factors and ignore the amount of information carried by the
feature maps. Some previous works [12,14] have shown that quite a number of
feature maps output by the intermediate layers of CNN are zero matrices or
most of zeros, which reveals that not all the filters in the model are useful.

To judge the effectiveness of filters, we employ entropy to measure the infor-
mation in feature maps. Entropy plays a central role in information theory as
measures of information and uncertainty and it is proportional to the amount of
information [17]. Considering that the outputs of different convolutional layers
have significant differences in the amount of information, the weights of feature
maps are determined in each layer independently. Specially, to avoid the contin-
gent result of a single image, we randomly select a large number of images from
the training dataset to calculate the average entropy weights of filters. Let Hi/Wi

denote the height/width of the output feature maps and mi be the number of
filters of the i-th convolutional layer, in which one filter generates one feature
map. N denotes the number of images randomly fed into the network. For n-th
image, let X

(n)
i,k be the k-th output feature map matrix of layer i, expanded by

row and forms a feature map vector:

X̂
(n)
i,k =

(
x
(n)
i,k,1, x

(n)
i,k,2, · · · , x(n)

i,k,Li

)
, (1)
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in which Li = Hi × Wi. Normalize X̂
(n)
i,k by Eq. (2), we gain P

(n)
i,k .

p
(n)
i,k,l =

x
(n)
i,k,l − min

l

{
x
(n)
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}
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l

{
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(n)
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}
− min
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(n)
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} (2)

P
(n)
i,k =

(
p
(n)
i,k,1, p

(n)
i,k,2, · · · , p(n)i,k,Li

)
(3)

Next, for n-th image and i-th convolutional layer, the entropy of the the k-th
feature map vector is defined as:

E
(n)
i,k = −qi

Li∑

l=1,f
(n)
i,k,l>0

f
(n)
i,k,l ln f

(n)
i,k,l , k = 1, 2, · · · ,mi, (4)

in which f
(n)
i,k,l = p

(n)
i,k,l/

∑Li

l=1 p
(n)
i,k,l, qi = 1/lnLi.

Then, for the output of the i-th convolutional layer, the entropy weight of
the k-th feature map can be defined as:

w
(n)
i,k =

E
(n)
i,k

mi∑
k=1

E
(n)
i,k

, (5)

in which 0 ≤ w
(n)
i,k ≤ 1,

∑mi

k=1 w
(n)
i,k = 1.

Afterwards, we get the average entropy weight of the the k-th feature map:

wi,k =

N∑
n=1

w
(n)
i,k

N
, (6)

in which 0 ≤ wi,k ≤ 1,
∑mi

k=1 wi,k = 1.
Eventually, using the the algorithm described above, we can determine all

the entropy weights of feature maps in each convolutional layer.

3.2 Filter Pruning Strategies

In order to identify the less useful filters from a well-trained model, the features
selection module is designed and inserted between each two adjacent convolu-
tional layers of the model. As shown in Fig. 1, the output of i-th convolutional
layer is fed into entropy weights module to determine the weights of every feature
map via the algorithm described in Sect. 3.1. The low weights indicate there is
less information in these feature maps and the corresponding filters of i-th con-
volutional layer are less useful. Then we can prune the feature maps with low
weights by removing all their incoming and outgoing connections. By doing so,
all the less important filters of the i-th layer and feature maps fed into the (i+1)-
th layer are pruned, as well as the corresponding channels of each filter in the
(i + 1)-th layer.
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Determining Pruning Thresholds. In each convolution layer, it is essential
to determine the pruning threshold based on the given entropy pruning ratio.
Firstly, entropy weights of feature maps in each layer are sorted in ascending
order. Then they are accumulated from the smallest weights until the given
entropy pruning ratio is exceeded. The last superimposed weight is used as the
threshold of the corresponding layer, and all the feature maps and corresponding
filters whose entropy weights are lower than the threshold will be pruned. After
that, we obtain a more compact network with fewer parameters, less storage and
less run time consumption.

Iterative Pruning and Fine-Tuning. There may be some temporary accuracy
loss after pruning, but it can be largely compensated by the following fine-tuning
process. After that, we can even achieve a higher accuracy than the original one.
For the whole network pruning, previous works usually prune and fine-tune the
filters layer by layer [4,18], or retrain the network after each pruning and fine-
tuning process [15]. Considering that these strategies are quite time-consuming,
our method prunes all layers in parallel, followed by fine-tuning to compensate
any loss of accuracy. Moreover, we prune and fine-tune the network iteratively
and there is no need to retrain the network from scratch again. The experiments
on VGGNet indicate that this strategy is effective. With several iterations, we
can achieve a large degree of compression and even lead to a better result.

Adjustment Strategy for Residual Architectures. The proposed filter
pruning method can be easily applied to plain CNN architectures such as
VGGNet and AlexNet. However, some adjustment strategies are required when
it is used to prune complex architectures with cross layer connections such as
residual networks [6]. For these architectures, the output of the building block’s
last convolutional layer and the identity mapping must be same in size and num-
ber of feature maps, which makes them difficult to be pruned. As can be seen
from part b of Fig. 2, our features selection modules are placed after the first and
second convolutional layers. For the third convolutional layer of the bottleneck
block, we only prune the channels of each filter to make them consistent with
the input feature maps and do not reduce the number of filters, since the output
of it must match the identity maps and there are fewer parameters contained in
these 1 × 1 filters.

3.3 Analysis of Computational Cost Compression

According to Sect. 3.1, the ith convolutional layer takes as input a Wi−1×Hi−1×
mi−1 tensor of feature maps and produces a Wi × Hi × mi tensor, where mi−1

and mi are the numbers of feature maps. Let us assume the ith convolutional
layer is parameterized by Ki×Ki×mi−1×mi, where Ki is the spatial dimension
of every filter. Standard convolutions have the computational cost of Ki ×Ki ×
mi−1 × mi × Wi × Hi. Let ri denote the entropy pruning rate of i-th layer and
r̂i be the corresponding filter pruning rate. Then the number of filters of the
i-th layer will be reduced from mi to mi (1 − r̂i), and the channels of filters in
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Fig. 2. Illustration of the strategy to prune residual networks. (a) Original bottleneck
block of ResNet, (b) bottleneck block with features selection (FS) modules. The BN
layer is placed before each convolutional layer, and FS module is placed after ReLU.

this layer are reduced from mi−1 to mi−1 (1 − r̂i−1). Afterwards, we can get the
compression ratio in computational cost for this pruned layer:

1 − Ki
2 × mi−1 (1 − r̂i−1) × mi (1 − r̂i) × Wi × Hi

Ki
2 × mi−1 × mi × Wi × Hi

= 1 − (1 − r̂i−1) (1 − r̂i) .
(7)

4 Experiments

We evaluate our proposed EFP on several benchmark datasets and networks:
VGG-16 on CIFAR10 and CIFAR100, ResNet-56 on CIFAR-10, ResNet-164 on
CIFAR-100. Both CIFAR datasets [11] contain 50000 training images and 10000
test images. The CIFAR-10 dataset is categorized into 10 classes, and the CIFAR-
100 is categorized into 100 classes. All the experiments are implemented with
PyTorch [20] framework on NVIDIA GTX TITAN Xp GPU. Moreover, our
method is compared with several state-of-the-art methods [7,9,12,15].

4.1 Implementation Details

Experimental Setting. In the experiments, the initial models are trained from
scratch to calculate the accuracies as their baselines. During the training process,
all images are cropped randomly into 32 × 32 with four paddings and horizontal
flip is also applied. We use mini-batch size 100 to train and mini-batch size 1000
to test VGGNet, and use mini-batch size 64 to train and mini-batch size 256 to
test ResNet. All the models are trained and fine-tuned using SGD for 180 epochs
on two datasets. During training and fine-tuning processes, the initial learning
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Fig. 3. The pruning results of VGG-16 on CIFAR-10 with entropy pruning rate from
10% to 100%.

rate is set to 0.1, and is divided by 10 at 50% and 75% of the total number of
epochs, following the setting in [15]. Besides, the weight initialization described
by [5] is also applied.

Entropy Pruning Rate and Filter Pruning Rate. We use our entropy-
based method to prune less important filters. In our experiments, 1000 images
randomly selected from the datasets are fed into the pre-trained network to gain
the average entropy weights of feature maps. Then, we give entropy pruning rates
for every convolutional layer to calculate the pruning thresholds via the method
described in Sect. 3.2. Figure 3 shows the filter pruning results of VGG-16 on
CIFAR-10 with entropy pruning rate from 10% to 100%. The pruning results
reveal that information distribution varies between different convolution layers.
For some convolutional layers of VGG-16, pruning only 10% information entropy
can lead to more than 70% filters reduction.

4.2 Pruning VGGNet

To evaluate the effectiveness of our proposed method on VGG-16, we test it on
CIFAR-10 and CIFAR-100 datasets.

VGG-16 on CIFAR-10. Considering that convolutional layers of VGGNet are
different in robustness [12] and information concentration, we give each convo-
lution layer a separate pruning ratio. According to the number of filters and
the results shown in Fig. 3, the layers of VGG-16 are divided into 3 levels, the
layers with less than 128 filters, the layers with 256 filters and the layers with
512 filters. For a given entropy pruning rate r, the rates are set to 0.5r, r and
1.5r for the three levels, respectively. We set r = 10% and prune VGG-16 model
iteratively. As shown in Table 1(a), our proposed EFP achieves a better per-
formance than the other filter pruning methods. With only one iteration, our
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Table 1. Pruning results of VGGNet on CIFAR-10 and CIFAR-100. “Baseline” and
“Param. baseline” denote the normal accuracy and number of parameters of the orig-
inal model, respectively. In “Method” column, “iter-1” declares the first iteration of
pruning. The pruned ratio of parameters and FLOPs are also shown in column-7&8.

(a) Pruning results of VGG-16 on CIFAR-10

Method Baseline Accuracy Param. baseline Parameters Pruned Flops
saved

Li et al. [12] 93.25% 93.30% 1.5 × 107 5.4 × 106 64.0% 34.2%

Slimming [15] 93.66% 93.80% – – 88.5% 51.0%

Ours (iter-1) 93.72% 93.97% 1.5 × 107 3.5 × 105 76.4% 49.5%

Ours (iter-4) 93.72% 93.76% 1.5 × 107 1.0 × 105 92.9% 76.0%

(b) Pruning results of VGG-16 on CIFAR-100

Method Baseline Accuracy Param. baseline Parameters Pruned Flops
saved

Slimming [15] 73.26% 73.48% – – 75.1% 37.1%

Ours (iter-1) 73.60% 73.82% 1.5 × 107 9.6 × 106 34.4% 26.2%

Ours (iter-2) 73.60% 73.61% 1.5 × 107 6.4 × 106 56.4% 44.0%

method can prune 50% parameters and even achieve 0.25% accuracy improve-
ment. After four iterations, the parameters saving can be up to 92.9% and the
FLOP reduction is 76% with 0.04% accuracy improvement, which has advanced
the state-of-the-art.

VGG-16 on CIFAR-100. We use the same setting on VGG-16 to evaluate our
method on CIFAR-100. As can be seen from Table 1(b), our model can achieve
44% FLOPs reduction with only two iterations, which is better than the result
of [15]. The pruning ratio is not as high as it in CIFAR-10. It is possibly due to
the fact that CIFAR-100 contains more classes and it needs more information to
classify targets.

4.3 Pruning ResNet

For ResNet architectures, two models ResNet-56 and ResNet-164 with bottleneck
structure are utilized to evaluate the proposed method. In bottleneck blocks, the
BN layer and ReLU are placed before each convolutional layer. Considering that
there are skip connections in the ResNet structures and the information can be
shared across the network, we use the same entropy pruning ratio to prune all
the layers. Moreover, the feature information can be shared across the network
through skip connection, making ResNet structures less sensitive to large-scale
pruning, so we prune ResNet-56 and ResNet-164 in a one-shot manner.

ResNet-56 on CIFAR-10. We first prune a medium depth network ResNet-56
on CIFAR-10. The result is compared with several state-of-the-art methods. As
shown in Table 2(a), we can gain almost the equal accuracy with the original
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Table 2. Pruning results of ResNet on CIFAR-10 and CIFAR-100 datasets. In
“Method” column, “10%” is the one-shot pruning ratio of entropy weights.

(a) Pruning results of Resnet-56 on CIFAR-10

Method Baseline Accuracy Param. baseline Parameters Pruned Flops
saved

Li et al. [12] 93.04% 93.06% 8.5 × 105 7.3 × 105 13.7% 27.6%

He et al. [9] 92.80% 91.80% – – – 50.0%

He et al. [7] 93.59% 93.35% – – – 52.6%

Ours (15%) 94.12% 94.11% 5.9 × 105 4.3 × 105 25.7% 29.4%

Ours (30%) 94.12% 93.31% 5.9 × 105 2.9 × 105 50.8% 53.9%

(b) Pruning results of Resnet-164 on CIFAR-100

Method Baseline Accuracy Param. baseline Parameters Pruned Flops
saved

Slimming1 [15] 76.63% 77.13% – – 15.5% 33.3%

Slimming2 [15] 76.63% 76.09% – – 29.7% 50.6%

Ours (10%) 76.96% 77.59% 1.7 × 106 1.3 × 106 23.5% 24.0%

Ours (20%) 76.96% 77.14% 1.7 × 106 1.0 × 106 41.2% 46.8%

Ours (30%) 76.96% 76.59% 1.7 × 106 8.0 × 105 52.9% 58.7%

model with about 26% parameters pruned and 30% FLOPs reduced. Moreover,
our EFP can also prune 50.8% parameters and 53.9% FLOPs with only 0.79%
accuracy drop. It can be observed that unlike VGGNet has a large number of
parameters and FLOPs, the bottleneck designed ResNet has less redundancy in
parameters and calculations.

ResNet-164 on CIFAR-100. For the deeper network ResNet-164, we adopt
the same setting with ResNet-56. Table 2(b) shows that our method outper-
forms Network Slimming [15]. For ResNet-164, Network Slimming can prune
15% parameters without accuracy loss. When they prune about 30% parame-
ters, there will be 0.54% accuracy drop. However, our proposed method can out-
perform the original model by 0.18% with 41.2% parameters pruned and 46.8%
FLOPs reduced. When we prune 30% entropy weights, our method achieves
52.94% parameters pruned and 58.7% FLOPs saved with only 0.37% accuracy
drop.

To comprehensively understand the impact of our proposed method on the
model, we test model compression ratio and accuracy of different entropy pruning
rates. As shown in Fig. 4, the accuracy of the pruned model first rises above the
baseline model and then drops as the entropy pruning rate increases. When the
entropy pruning ratio is under 25%, almost 50% parameters are pruned, and our
method brings no accuracy loss and even achieves slight accuracy improvement.
This result shows our proposed EFP can reduce redundant information and
improve the effective expression of features.
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Fig. 4. Pruning results of ResNet-164 on CIFAR-100 regarding different entropy prun-
ing ratios.

5 Conclusion

In this paper, we propose a simple yet effective method, which evaluates the useful-
ness of convolution filters based on the information contained in the feature maps
output by these filters. Our method introduces entropy to measure the amount of
information carried by feature maps and evaluate the importance of correspond-
ing convolution filters. Features selection module is designed to formulate pruning
strategies.Tofit different network structures, somepruning strategies are proposed
and address the problem of the dimension mismatch in resnets during pruning.
Moreover, the distribution of information in every convolutional layer of CNNs is
also discussed and the results demonstrate that in some layers most filters make
limited contribution to the performance of the model. Extensive experiments show
the superiority of our approach compared to the existing methods. Notably, for
VGG-16 on CIFAR-10, our proposed method can prune 92.9% parameters and
meanwhile lead to 76% FLOPs reduction without accuracy loss, and this perfor-
mance has advanced recent state-of-the-art methods.
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Abstract. This paper presents a novel method which simultaneously
learns the number of filters and network features repeatedly over mul-
tiple epochs. We propose a novel pruning loss to explicitly enforces the
optimizer to focus on promising candidate filters while suppressing con-
tributions of less relevant ones. In the meanwhile, we further propose to
enforce the diversities between filters and this diversity-based regulariza-
tion term improves the trade-off between model sizes and accuracies. It
turns out the interplay between architecture and feature optimizations
improves the final compressed models, and the proposed method is com-
pared favorably to existing methods, in terms of both models sizes and
accuracies for a wide range of applications including image classification,
image compression and audio classification.

1 Introduction

Large and deep neural networks, despite of their great successes in a wide variety
of applications, call for compact and efficient model representations to reduce
the vast amount of network parameters and computational operations, that are
resource-hungry in terms of memory, energy and communication bandwidth con-
sumption. This need is imperative especially for resource constrained devices
such as mobile phones, wearable and Internet of Things (IoT) devices. Neural
network compression is a set of techniques that address these challenges raised
in real life industrial applications.

Minimizing network sizes without compromising original network perfor-
mances has been pursued by a wealth of methods, which often adopt a three-
phase learning process, i.e. training-pruning-tuning. In essence, network features
are first learned, followed by the pruning stage to reduce network sizes. The sub-
sequent fine-tuning phase aims to restore deteriorated performances incurred by
undue pruning. This ad hoc three phase approach, although empirically justified
e.g. in [12,14,17,20,22], was recently questioned with regards to its efficiency and
effectiveness. Specifically [3,15] argued that the network architecture should be
optimized first, and then features should be learned from scratch in subsequent
steps.
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In contrast to the two aforementioned opposing approaches, the present paper
illustrates a novel method which simultaneously learns both the number of fil-
ters and network features over multiple optimization epochs. This integrated
optimization process brings about immediate benefits and challenges—on the
one hand, separated processing steps such as training, pruning, fine-tuning etc,
are no longer needed and the integrated optimization step guarantees consistent
performances for the given neural network compression scenarios. On the other
hand, the dynamic change of network architectures has significant influences on
the optimization of features, which in turn might affect the optimal network
architectures. It turns out the interplay between architecture and feature opti-
mizations plays a crucial role in improving the final compressed models.

2 Related Work

Network pruning was pioneered [4,6,11] in the early development of neural net-
work, since when a broad range of methods have been developed. We focus on
neural network compression methods that prune filters or channels. For thorough
review of other approaches we refer to a recent survey paper [2].

Li et al. [12] proposed to prune filters with small effects on the output accu-
racy and managed to reduce about one third of inference cost without com-
promising original accuracy on CIFAR-10 dataset. Wen et al. [20] proposed a
structured sparsity regularization framework, in which the group lasso constrain
term was incorporated to penalize and remove unimportant filters and channels.
Zhou et al. [22] also adopted a similar regularization framework, with tensor
trace norm and group sparsity incorporated to penalize the number of neurons.
Up to 70% of model parameters were reduced without scarifying classification
accuracies on CIFAR-10 datasets. Recently Liu et al. [14] proposed an interest-
ing network slimming method, which imposes L1 regularization on channel-wise
scaling factors in batch-normalization layers and demonstrated remarkable com-
pression ratio and speedup using a surprisingly simple implementation. Never-
theless, network slimming based on scaling factors is not guaranteed to achieve
desired accuracies and separate fine-tunings are needed to restore reduced accu-
racies. Qin et al. [17] proposed a functionality-oriented filter pruning method
to remove less important filters, in terms of their contributions to classification
accuracies. It was shown that the efforts for model retraining is moderate but
still necessary, as in the most of state-of-the-art compression methods.

DIVNET adopted Determinantal Point Process (DPP) to enforce diversities
between individual neural activations [16]. Diversity of filter weights defined in
(4) is related to orthogonality of weight matrix, which has been extensively stud-
ied. An example being [5], proposed to learn Stiefel layers, which have orthogonal
weights, and demonstrated its applicability in compressing network parameters.
Interestingly, the notion of diversity regularized machine (DRM) has been pro-
posed to generate an ensemble of SVMs in the PAC learning framework [21], yet
its definition of diversity is critically different from our definition in (4), and its
applicability to deep neural networks is unclear.
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3 Simultaneous Learning of Architecture and Feature

The proposed compression method belongs to the general category of filter-
pruning approaches. In contrast to existing methods [3,12,14,15,17,20,22], we
adopt following techniques to ensure that simultaneous optimization of network
architectures and features is a technically sound approach. First, we introduce an
explicit pruning loss estimation as an additional regularization term in the opti-
mization objective function. As demonstrated by experiment results in Sect. 4,
the introduced pruning loss enforces the optimizer to focus on promising candi-
date filters while suppressing contributions of less relevant ones. Second, based
on the importance of filters, we explicitly turn-off unimportant filters below
given percentile threshold. We found the explicit shutting down of less relevant
filters is indispensable to prevent biased estimation of pruning loss. Third, we
also propose to enforce the diversities between filters and this diversity-based
regularization term improves the trade-off between model sizes and accuracies,
as demonstrated in various applications.

Our proposed method is inspired by network slimming [14] and main differ-
ences from this prior art are two-folds: (a) we introduce the pruning loss and
incorporate explicit pruning into the learning process, without resorting to the
multi-pass pruning-retraining cycles; (b) we also introduce filter-diversity based
regularization term which improves the trade-off between model sizes and accu-
racies.

3.1 Loss Function

Liu et al. [14] proposed to push towards zero the scaling factor in batch normal-
ization (BN) step during learning, and subsequently, the insignificant channels
with small scaling factors are pruned. This sparsity-induced penalty is intro-
duced by regularizing L1-norm of the learnable parameter γ in the BN step
i.e.,

g(γ) = |γ| ; where ẑ =
zin − μB√

σ2 + ε
; zout = γẑ + β, (1)

in which zin denote filter inputs, μB , σ the filter-wise mean and variance of
inputs, γ, β the scaling and offset parameters of batch normalization (BN) and
ε a small constant to prevent numerical un-stability for small variance. It is
assumed that there is always a BN filter appended after each convolution and
fully connected filter, so that the scaling factor γ is directly leveraged to prune
unimportant filters with small γ values. Alternatively, we propose to directly
introduce scaling factor to each filter since it is more universal than reusing BN
parameters, especially considering the networks which have no BN layers.

By incorporating a filter-wise sparsity term, the object function to be mini-
mized is given by:

L =
∑

(x,y)

loss(f(x,W), y) + λ
∑

γ∈Γ

g(γ), (2)
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Fig. 1. Comparison of scaling factors for three methods, i.e., baseline with no reg-
ularization, network-slimming [14], and the proposed method with diversified filters,
trained with CIFAR-10 and CIFAR-100. Note that the pruning loss defined in (3) are
0.2994, 0.0288, 1.3628 × 10−6, respectively, for three methods. Accuracy deterioration
are 60.76% and 0% for network-slimming [14] and the proposed methods, and the
baseline networks completely failed after pruning, due to insufficient preserved filters
at certain layers.

where the first term is the task-based loss, g(γ) = ||γ||1 and Γ denotes the set
of scaling factors for all filters. This pruning scheme, however, suffers from two
main drawbacks: (1) since scaling factors are equally minimized for all filterers,
it is likely that the pruned filters have unignorable contributions that should
not be unduly removed. (2) the pruning process, i.e., architecture selection, is
performed independently w.r.t. the feature learning; the performance of pruned
network is inevitably compromised and has to be recovered by single-pass or
multi-pass fine-tuning, which impose additional computational burdens.

An Integrated Optimization
Let W,W̌,Ŵ denote the sets of neural network weights for, respectively, all
filters, those pruned and remained ones i.e. W = {W̌⋃

Ŵ}. In the same
vein, Γ = {P (Γ )

⋃
R(Γ )} denote the sets of scaling factors for all filters, those

removed and remained ones respectively.
To mitigate the aforementioned drawbacks, we propose to introduce two addi-

tional regularization terms to Eq. 2,

L(Ŵ, R(Γ )) =
∑

(x,y)

loss(f(x,Ŵ), y) + λ1

∑

γ∈R(Γ )

g(γ)

− λ2

∑
γ∈R(Γ ) γ

∑
γ∈Γ γ

− λ3

∑

l∈L

Div(Ŵ
l
), (3)

where loss(·, ·) and
∑

γ∈R(Γ ) g(γ) are defined as in Eq. 2, the third term is the
pruning loss and the forth is the diversity loss which are elaborated below.
λ1, λ2, λ3 are weights of corresponding regularization terms.

Estimation of Pruning Loss
The second regularization term in (3) i.e. γR :=

∑
γ∈R(Γ ) γ

∑
γ∈Γ γ (and its compli-

ment γP :=
∑

γ∈P (Γ ) γ
∑

γ∈Γ γ = 1 − γR) is closely related to performance deterioration
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incurred by undue pruning1. The scaling factors of pruned filters P (Γ ), as in
[14], are determined by first ranking all γ and taking those below the given
percentile threshold. Incorporating this pruning loss enforces the optimizer to
increase scaling factors of promising filters while suppressing contributions of
less relevant ones.

The rationale of this pruning strategy can also be empirically justified in
Fig. 1, in which scaling factors of three different methods are illustrated. When
the proposed regularization terms are added, clearly, we observed a tendency for
scaling factors being dominated by few number of filters — when 70% of filters
are pruned from a VGG network trained with CIFAR-10 dataset, the estimated
pruning loss

∑
γ∈P (Γ ) γ

∑
γ∈Γ γ equals 0.2994, 0.0288, 1.3628 × 10−6, respectively, for

three compared methods. Corresponding accuracy deterioration are 60.76% and
0% for network-slimming [14] and the proposed methods. Therefore, retraining
of pruned network is no longer needed for the proposed method, while [14] has
to retain the original accuracy through single-pass or multi-pass of pruning-
retraining cycles.

Turning off Candidate Filters
It must be noted that the original loss

∑
(x,y) loss(f(x,W), y) is independent of

the pruning operation. If we adopt this loss in (3), the estimated pruning loss
might be seriously biased because of undue assignments of γ not being penal-
ized. It seems likely some candidate filters are assigned with rather small scaling
factors, nevertheless, they still retain decisive contributions to the final classifi-
cations. Pruning these filters blindly leads to serious performance deterioration,
according to the empirical study, where we observe over 50% accuracy loss at
high pruning ratio.

In order to prevent such biased pruning loss estimation, we therefore
explicitly shutdown the outputs of selected filters by setting correspond-
ing scaling factors to absolute zero. The adopted loss function becomes∑

(x,y) loss(f(x,Ŵ), y). This way, the undue loss due to the biased estimation

is reflected in loss(f(x,Ŵ), y), which is minimized during the learning process.
We found the turning-off of candidate filters is indispensable.

Online Pruning. We take a global threshold for pruning which is determined
by percentile among all channel scaling factors. The pruning process is performed
over the whole training process, i.e., simultaneous pruning and learning. To this
end, we compute a linearly increasing pruning ratio from the first epoch (0%) to
the last epoch (100%) where the ultimate pruning target ratio is applied. Such an
approach endows neurons with sufficient evolutions driven by diversity term and
pruning loss, to avoid mis-pruning neurons prematurely which produces crucial
features. Consequently our architecture learning is seamlessly integrated with
feature learning. After each pruning operation, a narrower and more compact
network is obtained and its corresponding weights are copied from the previous
network.
1 In the rest of the paper we refer to it as the estimated pruning loss.
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Algorithm 1. Proposed algorithm
1: procedure Online Pruning
2: Training data ← {xi, yi}N

i=1

3: Target pruning ratio PrN ← p%
4: Initial network weights W ← method by [7]
5: Γ ← {0.5}
6: Ŵ ← W
7: P (Γ ) ← ∅
8: R(Γ ) ← Γ
9: for each epoch n ∈{1, . . . , N} do

10: Current pruning ratio Prn ∈ [0,PrN ]
11: Sort Γ
12: P (Γ ) ← prune filters w.r.t. Prn
13: R(Γ ) ← Γ \ P(Γ )
14: Compute L(Ŵ, R(Γ )) in Eq. (2)
15: Ŵ ← SGD
16: W̌ ← Ŵ \ W̌

Filter-Wise Diversity
The third regularization term in (3) encourages high diversities between filter
weights as shown below. Empirically, we found that this term improves the
trade-off between model sizes and accuracies (see experiment results in Sect. 4).

We treat each filter weight, at layer l, as a weight (feature) vector Wl
i of

length w×h×c, where w, h are filter width and height, c the number of channels
in the filter. The diversity between two weight vectors of the same length is based
on the normalized cross-correlation of two vectors:

div(Wi,Wj) := 1 − |〈W̄i,W̄j〉|, (4)

in which W̄ = W
|W| are normalized weight vectors, and 〈·, ·〉 is the dot product of

two vectors. Clearly, the diversity is bounded 0 ≤ div(Wi,Wj) ≤ 1, with value
close 0 indicating low diversity between highly correlated vectors and values near
1 meaning high diversity between uncorrelated vectors. In particular, diversity
equals 1 also means that two vectors are orthogonal with each other.

The diversities between N filters at the same layer l is thus characterized
by a N-by-N matrix in which elements dij = div(Wl

i,W
l
j), i, j = {1, · · · , N}

are pairwise diversities between weight vectors Wl
i,W

l
j . Note that for diagonal

elements dii are constant 0. The total diversity between all filters is thus defined
as the sum of all elements

Div(Wl) :=
N,N∑

i,j=1,1

di,j . (5)
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Table 1. Results on CIFAR-10 dataset

Models/Pruning ratio 0.0 0.5 0.6 0.7 0.8

VGG-19 (Base-line) 0.9366 – – – –

VGG-19 (Network-slimming) – – – 0.9380 NA

VGG-19 (Ours) – 0.9353 0.9394 0.9393 0.9302

ResNet-164 (Base-line) 0.9458 – – – –

ResNet-164 (Network-slimming) – – 0.9473 NA NA

ResNet-164 (Ours) – 0.9478 0.9483 0.9401 NA

Table 2. Results on CIFAR-100 dataset

Models/Pruning ratio 0.0 0.3 0.4 0.5 0.6

VGG-19 (Base-line) 0.7326 – – – –

VGG-19 (Network-slimming) – – 0.7348 – –

VGG-19 (Ours) – 0.7332 0.7435 0.7340 0.7374

ResNet-164 (Base-line) 0.7663 – – – –

ResNet-164 (Network-slimming) – – 0.7713 – 0.7609

ResNet-164 (Ours) – 0.7716 0.7749 0.7727 0.7745

4 Experiment Results

In this section, we evaluate the effectiveness of our method on various applica-
tions with both visual and audio data.

4.1 Datasets

For visual tasks, we adopt ImageNet and CIFAR datasets. The ImageNet dataset
contains 1.2 million training images and 50,000 validation images of 1000 classes.
CIFAR-10 [10] which consists of 50 K training and 10 K testing RGB images with
10 classes. CIFAR-100 is similar to CIFAR-10, except it has 100 classes. The
input image is 32× 32 randomly cropped from a zero-padded 40× 40 image or
its flipping. For audio task, we adopt ISMIR Genre dataset [1] which has been
assembled for training and development in the ISMIR 2004 Genre Classification
contest. It contains 1458 full length audio recordings from Magnatune.com dis-
tributed across the 6 genre classes: Classical, Electronic, JazzBlues, MetalPunk,
RockPop, World.

4.2 Image Classification

We evaluate the performance of our proposed method for image classification on
CIFAR-10/100 and ImageNet. We investigate both classical plain network, VGG-
Net [18], and deep residual network i.e., ResNet [8]. We evaluate our method on

http://www.Magnatune.com
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two popular network architecture i.e., VGG-Net [18], and ResNet [8]. We take
variations of the original VGG-Net, i.e., VGG-19 used in [14] for comparison
purpose. ResNet-164 which has 164-layer pre-activation ResNet with bottleneck
structure is adopted. As base-line networks, we compare with the original net-
works without regularization terms and their counterparts in network-slimming
[14]. For ImageNet, we adopt VGG-16 and ResNet-50 in order to compare with
the original networks.

To make a fair comparison with [14], we adopt BN based scaling factors for
optimization and pruning. On CIFAR, we train all the networks from scratch
using SGD with mini-batch size 64 for 160 epochs. The learning rate is initially
set to 0.1 which is reduced twice by 10 at 50% and 75% respectively. Nesterov
momentum [19] of 0.9 without dampening and a weight decay of 10−4 are used.
The robust weight initialization method proposed by [7] is adopted. We use the
same channel sparse regularization term and its hyperparameter λ = 10−4 as
defined in [14].

Table 3. Accuracies of different methods before (orig.) and after pruning (pruned).
For CIFAR10 and CIFAR100, 70% and 50% filters are pruned respectively. Note that
‘NA’ indicates the baseline networks completely failed after pruning, due to insufficient
preserved filters at certain layers.

CIFAR10 Methods CIFAR100 Methods

BASE SLIM
[14]

OURS BASE SLIM
[14]

OURS

ACC orig. 0.9377 0.9330 0.9388 ACC orig 0.7212 0.7205 0.75

ACC pruned NA 0.3254 0.9389 ACC pruned NA 0.0531 0.7436

γP 0.2994 0.0288 1.36e−6 γP 0.2224 0.0569 4.75e−4

Overall Performance. The results on CIFAR-10 and CIFAR-100 are shown
in Tables 1 and 2 respectively. On both datasets, we can observe when typically
50–70% filters of the evaluated networks are pruned, the new networks can still
achieve accuracy higher than the original network. For instance, with 70% fil-
ters pruned VGG-19 achieves an accuracy of 0.9393, compared to 0.9366 of the
original model on CIFAR-10. We attribute this improvement to the introduced
diversities between filter weights, which naturally provides discriminative feature
representations in intermediate layers of networks.

As a comparison, our method consistently outperforms network-slimming
without resorting to fine-tuning or multi-pass pruning-retraining cycles. It is
also worth-noting that our method is capable of pruning networks with pro-
hibitively high ratios which are not possible in network-slimming. Take VGG-19
network on CIFAR-10 dataset as an example, network-slimming prunes as much
as 70%, beyond which point the network cannot be reconstructed as some lay-
ers are totally destructed. On the contrary, our method is able to reconstruct
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a very narrower network by pruning 80% filters while producing a marginally
degrading accuracy of 0.9302. We conjecture this improvement is enabled by our
simultaneous feature and architecture learning which can avoid pruning filters
prematurely as in network-slimming where the pruning operation (architecture
selection) is isolated from the feature learning process and the performance of
the pruned network can be only be restored via fine-tuning.

The results on ImageNet are shown in Table 4 where we also present compari-
son with [9] which reported top-1 and top-5 errors on ImageNet. On VGG-16, our
method provides 1.2% less accuracy loss while saving additionally 20.5M param-
eters and 0.8B FLOPs compared with [9]. On ResNet-50, our method saves 5M
more parameters and 1.4B more FLOPs than [9] while providing 0.21% higher
accuracy.

Table 4. Results on ImageNet dataset

Models Top-1 Top-5 Params FLOPs

VGG-16 [9] 31.47 11.8 130.5M 7.66B

VGG-16 (Ours) 30.29 10.62 44M 6.86B

VGG-16 (Ours) 31.51 11.92 23.5M 5.07B

ResNet-50 [9] 25.82 8.09 18.6M 2.8B

ResNet-50 (Ours) 25.61 7.91 13.6M 1.4B

ResNet-50 (Ours) 26.32 8.35 11.2M 1.1B

Ablation Study. In this section we investigate the contribution of each pro-
posed component through ablation study.

Fig. 2. (a) Scaling factors of the VGG-19 network at various epochs during training
trained with diversified filters (b) Sorted scaling factors of VGG-19 network trained
with various pruning ratios on CIFAR-10.
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Filter Diversity. Figure 2(a) shows the sorted scaling factors of VGG-19 network
trained with the proposed filter diversity loss at various training epochs. With
the progress of training, the scaling factors become increasingly sparse and the
number of large scaling factors, i.e., the area under the curve, is decreasing.
Figure 1 shows the sorted scaling factors of VGG-19 network for the baseline
model with no regularization, network-slimming [14], and the proposed method
with diversified filters, trained with CIFAR-10 and CIFAR-100. We observe sig-
nificantly improved sparsity by introducing filter diversity to the network com-
pared with network-slimming, indicated by nsf. Remember the scaling factors
essentially determine the importance of filters, thus, maximizing nsf ensures
that the deterioration due to filter pruning is minimized. Furthermore, the num-
ber of filters associated with large scaling factor is largely reduced, rendering
more irrelevant filter to be pruned harmlessly. This observation is quantita-
tively confirmed in Table 3 which lists the accuracies of three schemes before
and after pruning for both CIFAR-10 and CIFAR-100 datasets. It is observed
that retraining of pruned network is no longer needed for the proposed method,
while network-slimming has to restore the original accuracy through single-pass
or multi-pass of pruning-retraining cycles. Accuracy deterioration are 60.76%
and 0% for network-slimming and the proposed method respectively, whilst the
baseline networks completely fails after pruning, due to insufficient preserved
filters at certain layers.

Online Pruning. We firstly empirically investigate the effectiveness of the pro-
posed pruning loss. After setting λ3 = 0, we train VGG-19 network by switching
off/on respectively (set λ2 = 0 and λ2 = 10−4) the pruning loss on CIFAR-10
dataset. By adding the proposed pruning loss, we observe improved accuracy
of 0.9325 compared to 0.3254 at pruning ratio of 70%. When pruning at 80%,
the network without pruning loss can not be constructed due to insufficient pre-
served filters at certain layers, whereas the network trained with pruning loss can
attain an accuracy of 0.9298. This experiment demonstrates that the proposed
pruning loss enables online pruning which dynamically selects the architectures
while evolving filters to achieve extremely compact structures.

Figure 2(b) shows the sorted scaling factors of VGG-19 network trained with
pruning loss subject to various target pruning ratios on CIFAR-10. We can
observe that given a target pruning ratio, our algorithm adaptively adjusts the
distribution of scaling factors to accommodate the pruning operation. Such a
dynamic evolution warrants little accuracy loss at a considerably high pruning
ratio, as opposed to the static offline pruning approaches, e.g., network-slimming,
where pruning operation is isolated from the training process causing consider-
able accuracy loss or even network destruction.

4.3 Image Compression

The proposed approach is applied on end-to-end image compression task which
follows a general autoencoder architecture as illustrated in Fig. 3. We utilize
general scaling layer which is added after each convolutional layer, with each



Simultaneously Learning Architectures and Features 285

Fig. 3. Network architecture for image compression.

Table 5. Results of image compression on CIFAR-100 dataset

Models PSNR Params Pruned (%) FLOPs Pruned (%)

Base-line 30.13 75888 – 46M –

Ours 29.12 (−3%) 43023 43% 23M 50%

Ours 28.89 (−4%) 31663 58% 17M 63%

Table 6. Results of music genre classification on ISMIR Genre dataset

Models Accuracy Params Pruned (%) FLOPs Pruned (%)

Base-line 0.808 106506 – 20.3M –

Ours 0.818 (+1%) 8056 92.5 4M 80.3

Ours 0.798 (−1.3%) 590 99.5 0.44M 98.4

scaling factor initialized as 1. The evaluation is performed on CIFAR-100 dataset.
We train all the networks from scratch using Adam with mini-batch size 128 for
600 epochs. The learning rate is set to 0.001 and MSE loss is used. The results are
listed in Table 5 where both parameters and floating-point operations (FLOPs)
are reported. Our method can save about 40%–60% parameters and 50%–60%
computational cost with minor lost of performance (PSNR).

4.4 Audio Classification

We further apply our method in audio classification task, particularly music
genre classification. The preprocessing of audio data is similar with [13] and
produces Mel spectrogram matrix of size 80 × 80. The network architecture is
illustrated in Fig. 4, where the scaling layer is added after both convolutional
layers and fully connected layers. The evaluation is performed on ISMIR Genre
dataset. We train all the networks from scratch using Adam with mini-batch size
64 for 50 epochs. The learning rate is set to 0.003. The results are listed in Table 6
where both parameters and FLOPs are reported. Our approach saves about 92%
parameters while achieves 1% higher accuracy, saving 80% computational cost.
With a minor loss of about 1%, 99.5% parameters are pruned, resulting in an
extreme narrow network with ×50 times speedup.
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Fig. 4. Network architecure for music genre classification.

5 Conclusions

In this paper, we have proposed a novel approach to simultaneously learning
architectures and features in deep neural networks. This is mainly underpinned
by a novel pruning loss and online pruning strategy which explicitly guide the
optimization toward an optimal architecture driven by a target pruning ratio or
model size. The proposed pruning loss enabled online pruning which dynamically
selected the architectures while evolving filters to achieve extremely compact
structures. In order to improve the feature representation power of the remaining
filters, we further proposed to enforce the diversities between filters for more
effective feature representation which in turn improved the trade-off between
architecture and accuracies. We conducted comprehensive experiments to show
that the interplay between architecture and feature optimizations improved the
final compressed models in terms of both models sizes and accuracies for various
tasks on both visual and audio data.
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Abstract. Long Short-Term Memory (LSTM) is a powerful recurrent
neural network architecture that is successfully used in many sequence
modeling applications. Inside an LSTM unit, a vector called “memory
cell” is used to memorize the history. Another important vector, which
works along with the memory cell, represents hidden states and is used
to make a prediction at a specific step. Memory cells record the entire
history, while the hidden states at a specific time step in general need to
attend only to very limited information thereof. Therefore, there exists
an imbalance between the huge information carried by a memory cell
and the small amount of information requested by the hidden states at
a specific step. We propose to explicitly impose sparsity on the hidden
states to adapt them to the required information. Extensive experiments
show that sparsity reduces the computational complexity and improves
the performance of LSTM networks (The source code is available at
https://github.com/feiyuhug/SHS LSTM/tree/master).

Keywords: Recurrent neural network (RNN) ·
Long Short-Term Memory (LSTM) · Language modeling ·
Image captioning · Network acceleration

1 Introduction

Recurrent neural networks (RNNs) are widely used in sequence modeling prob-
lems. Generally, a recurrent unit takes actions along a given sequence of inputs
and, step-by-step, produces a sequence of outputs. The current actions attend
to the current inputs or predictions, while a memory records history. Modern
recurrent units like LSTM [8] or Gated Recurrent Unit (GRU) [5] use gate mech-
anisms to control the communication between the memory and the externals.
By selectively retrieving messages from the inputs, and writing and erasing some
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contents in the memory with gates, those recurrent units can learn to process
sequences with complex interdependencies. Their applications span a wide range
such as language modeling [15], machine translation [20], speech recognition [6]
and image captioning [21].

The memory in a recurrent unit is in charge of the whole history of the sequence,
but taking an action (such as prediction) at one step should only require to attend
to a specific part of the memory. In an LSTM unit, a hidden state h is learned
to carry the message from the memory c and used to make the prediction. Since h
should learn to get rid of a large part of the information in c that is unrelated to the
current step, a general priority can be set that h should be “lighter” than c. How-
ever, the hidden state h and memory c are two vectors that share the same dimen-
sion. “Lighter” in this context has two meanings: one is that h should carry less
information than c, reflecting the focus of the current step, which may not require
all information that is kept in memory. The other is that the computational com-
plexity with h should be lower, since h will be passed on to further processing steps.
We achieve both targets by imposing sparsity on h.

Sparse coding has been subject to many modelling studies, and physiological
recordings from sensory neurons indicate that it is employed in several modalities
in the sensory cortex [17]. Forming part of efficient coding [4], sparse distributions
have also been found in the underlying causes of natural stimuli [2]. Hence,
imposing sparse coding on a network state representation may bias the network
to encode compact representations of the causes of sensory stimuli.

Let us refer to the dimensions of the memory cell as “channels”. In vanilla
LSTM units, the output gates modulate the channels softly by multiplying with
a value in (0, 1), which does not affect the dimensionality of h. We zero out many
output gates that are lower than a threshold, as to close many channels in h.
In this way, sparsity is imposed on h. While the hidden state h is central in the
computational graph of the LSTM unit, the computational complexity of a time
step is reduced in proportion to the sparsity ratio of h.

We conduct extensive experiments on language modeling and image caption-
ing tasks. By adjusting the sparsification strength, an optimal sparsity ratio on
h can always be found that improves both the prediction accuracy and inference
efficiency over the baseline. Unlike weight regularization, the proposed hidden
state sparsification method does not reduce the number of adaptable network
parameters θ, i.e. weights. We will show in Sect. 4.1 that hidden state sparsifica-
tion can be combined with weight sparsification methods [16,23] for additional
merit.

2 Related Works

Many works have been proposed to accelerate neural networks. Dynamic net-
works with conditional computations inside reduce the computational cost by
exploring certain computation paths for each input [3,14,19]. Lin et al. propose
to selectively prune some channels in a feed-forward convolutional neural net-
work (CNN) according to the current inputs. They use an external network to
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generate pruning actions that are learned by a reinforcement learning algorithm
[11]. For RNN acceleration, Jernite et al. propose to update only a fraction of
hidden states to reduce computational cost at each step. An external module is
learned to determine which hidden states to update [9]. This method has only
been successfully applied to the vanilla RNN and GRU. In our method, a subset
of channels in the hidden state is selected to open for each input, and this selec-
tion process is modulated by the output gate of an LSTM unit, which incurs no
extra computational cost.

Another line of works proposed sparsity on weight matrices to reduce com-
putational cost [7,16,22], which is different from the proposed hidden states
sparsification method.

3 Methods

The computation for an LSTM unit can be formulated as:

LSTM : xt, ht−1, ct−1 → ht, ct (1)

where subscripts denote time steps. At time step t, it takes an input xt and
updates the hidden state (ht−1 → ht) and memory cell (ct−1 → ct). The com-
putation inside is with four gates: “input”, “forget”, “output” and “input mod-
ulation” (denoted as it, ft, ot, gt respectively),

it = sigm(Wixxt + Wihht−1 + bi), (2)
ft = sigm(Wfxxt + Wfhht−1 + bf ), (3)
ot = sigm(Woxxt + Wohht−1 + bo), (4)
gt = tanh(Wgxxt + Wghht−1 + bg), (5)
ct = ft � ct−1 + it � gt, (6)
ht = ot � tanh(ct). (7)

The memory cell ct ∈ R
n is a vector that stores the long-term memory, and ht ∈

R
n is the hidden state that is usually used to predict the output yt (see Eq. (16)).

“sigm” is the sigmoid function, “tanh” is the hyperbolic tangent function and �
denotes element-wise multiplication.

Multiple LSTM units can be stacked into a hierarchical network, in which
the output of each unit is fed into the next upper unit. The original input xt is
fed into the bottom-most unit, and the final output is taken from the top-most
unit. Let superscripts denote layers, the computation inside the LSTM unit in
the l-th layer at time step t (1 ≤ l ≤ L, 1 ≤ t ≤ T ) can be formulated as [24],
where T denotes the unrolled time steps.

LSTM : hl−1
t , hl

t−1, c
l
t−1 → hl

t, c
l
t, (8)

⎛
⎜⎜⎜⎜⎝

ilt

f l
t

ol
t

gl
t

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

sigm
sigm
sigm
tanh

⎞
⎟⎟⎟⎠ T2n,4n

(
hl−1

t

hl
t−1

)
, (9)
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cl
t = f l

t � cl
t−1 + ilt � gl

t, (10)

hl
t = ol

t � tanh(cl
t). (11)

The input is hl−1
t which is from the lower layer for l > 1, or xt for l = 1. The

computations with four gates are fused in (9), where T2n,4n : R
2n → R

4n is
an affine transform (Wx + b) which contributes the most to the computational
costs.

Equation (10) is the memory update function. Note that there is no non-
linear or parameterized transformation at the memory update. Some parts of
the memory may be kept over many steps, which add LSTM model long-term
dependencies. However, in many scenarios, such as in sequence generation tasks,
the LSTM needs to make a prediction at every time step. The prediction targets
at different steps are usually different, which may be in conflict with the shared
memory. Since the output gate ol

t connects the memory and the prediction layer,
our idea is that it should learn to attend to different parts of the memory for
different predictions, so to resolve the conflicts.

We empirically find that the output gate values learned implicitly in LSTM
are widely distributed (“baseline” shown in the left column of Fig. 2), which may
not produce distinct attention over the memory for different predictions.

In order to impose sparsity, we introduce an L1-norm loss term over the
output gate at layer l as

LS(ol(x, θ)) =
∑

1≤b≤B

∑
1≤t≤T

|ol
t(x

(b))|. (12)

Unlike weight regularization, the output gate sparsification is data-dependent.
Sparsification refers to a training batch x(b)(1 ≤ b ≤ B), where B is the batch
size. ol

t(x
(b)) is computed in Eq. (9) and T denotes the unrolled time steps.

The sparsity loss term is added to the classification loss term LXE(θ) for the
adaptation of model parameters θ by supervised learning, which will be described
in the following sections. Denoting the model weights as w, the updating function
for w via stochastic gradient decent (SGD) is

w ← w −
(
η
∂LXE(θ)

∂w
+

∑
1≤l≤L

λl
∂LS(ol(x, θ))

∂w

)
, (13)

where η is the learning rate and λl are the coefficients that control the strength
of the sparsity term at each LSTM layer (1 ≤ l ≤ L).

By increasing λl, more output gate channels would be driven to zero. We
empirically found that introducing a threshold function ψ after the gates could
obtain better performance:

õl
t(x

(b)
t ) = ψ(ol

t(x
(b)
t ), ξ) =

{
ol

t(x
(b)
t ), ol

t(x
(b)
t ) > ξ

0 , ol
t(x

(b)
t ) <= ξ

, (14)
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where ξ ≥ 0. The threshold function is appended after the output gates, both
in training and testing. As a consequence, the hidden state function defined in
Eq. (11) is reformulated as:

hl
t = õl

t � tanh(cl
t). (15)

During training, the sparsity of the output gates would increase gradually and
become stable after several epochs. The final sparsity that can be reached is
determined by λl(1 ≤ l ≤ L) and ξ. Higher values for λl and ξ both increase the
sparsity.

Fig. 1. Sparse LSTM. Given sparse hidden state vectors (hl
t−1, h

l−1
t ) and hl

t, only a few
rows of the respective transformation matrices T2n,4n and Wy are used. (Color figure
online)

Taking the unit in the top-layer of the LSTM network as an example, the
computational graph of the LSTM unit with the sparse hidden state is shown
in Fig. 1. Compared with a classical LSTM unit, a threshold layer is appended
behind the output gate (shown inside the red box). The major computational
burden in the LSTM unit is two affine transformations: one is defined in Eq. (9)
and the other is the output layer

yt = Wyhl
t. (16)

The input vectors of both affine transformations are from the sparse hidden
states. The dimensions set to zero in the input vector would zero out the corre-
sponding rows in the weight matrices (T2n,4n and Wy) as shown in the two shaded
blocks in Fig. 1, where gray indicates zero rows and black indicates nonzero rows.
Only nonzero rows in the weight matrices take part in the affine transformations
Eqs. (9) and (16). The computational complexity of the two affine transfor-
mations is reduced in proportion to the sparsity ratio of hl

t and (hl
t−1, h

l−1
t )

respectively.
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4 Experiments

4.1 Language Modeling

The language modeling experiments are conducted on the Penn Treebank dataset
[13]. We start by implementing the proposed method in a two-layer LSTM net-
work proposed in [24]. The dimensions of both the LSTM memory and the word
embedding in the input layer are 1500. Given the next word y∗

t as target output,
the cross-entropy loss that we minimize as part of Eq. (13) is:

LXE(θ) = −
T∑

t=1

log(p(θ)t (y∗
t |(y∗

1:t−1))), (17)

We use the PyTorch implementation of the publicly available baseline model1.
The distribution of the output gates o in the baseline model (i.e. ξ = 0, λ = 0) is
shown in Fig. 2. At the training, we set ξ = 0.1, and use the output gate sparsi-
fication to squeeze more gates under ξ as to increase sparsity. The distributions
of the output gates with λ1/λ2 = 1e−6 and λ1/λ2 = 1.6e−6/4.8e−6 are shown
in Fig. 2. The distribution can be further pushed close to zero if λ continues to
increase.

Table 1. Learning sparse output gates from scratch.

Method ξ, λ1/λ2(10−6) Test
perplexity

Output width
(1st, 2nd)
LSTM

Mult-adda

reduction
Time (ms)/
speed-up

Baseline (0.0, 0.0/0.0) 77.88 (1500, 1500) 1.00× 81.7/1×
Ours (0.1, 0.4/0.4) 77.14 (720, 953) 1.56× 53.3/1.53×

(0.1, 1.0/1.0) 76.97 (436, 797) 1.89× 44.6/1.83×
(0.1, 1.6/1.6) 77.05 (344, 706) 2.09× 38.2/2.14×
(0.1, 1.6/4.8) 77.85 (261, 344) 2.75× 29.9/2.73×

aThe reduction of multiplication-add operations in matrix multiplications.

With ξ fixed to 0.1, we search for the optimal λ. The results are shown in
Table 1. All the models are trained from scratch in the same setting with the
baseline. “Test Perplexity” denotes the perplexity on the test set; lower is better.
We find that λ1/λ2 = 1e−6 gets the best perplexity (the improvement is −0.91
compared to the baseline), with λ1/λ2 higher or lower than this value would
lead to inferior results. “Output width” denotes the remaining (non-zero) output
channels at each LSTM layer. Notably, models with sparse output largely reduce
the computational complexity. For λ1/λ2 = 1.6e−6/4.8e−6, the output channel
dimension is reduced to 17%(261/1500) in the first layer and to 23%(344/1500)

1 https://github.com/pytorch/examples/tree/master/word language model.

https://github.com/pytorch/examples/tree/master/word_language_model
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in the second layer, thereby totally reducing Multi-add operations by a factor of
2.75. We measure the inference time on an Intel R© CoreTM i7-6850K @ 3.60 GHz
CPU processor with OpenBLAS library for matrix-multiplication operations.
Testing the time by unrolling the LSTM unit for 100 steps, the maximum speed-
up is 2.73×.

Fig. 2. Distributions of the output gate values olt as defined in Eq. (9) for three pre-
trained models. l = 1 and l = 2 stands for the first and second layers respectively. The
values are calculated with a batch size of 50 and with 35 unrolled steps (t = 1, ..., 35)
on the test set.

Next, we evaluate whether our state sparsification method combined with
weight sparsification yields additional benefit. Intrinsic Sparse Structures (ISS)
[22] is a recently proposed weight-sparsifying LSTM acceleration method, which
yields an impressive performance on the Penn Treebank dataset. Based on group
Lasso regularization, it reduces the dimension of the memory, the hidden state
and the related weight matrices by structured weight pruning. Our method can
be embedded into ISS easily by adjusting ξ to control the output width. The
experimental results are listed in Table 2. The third column lists the memory
size and the output width of the learned model. ISS+Ours (ξ = 0.20) achieves
the highest speed-up ratio of 6.28× with slightly lower test perplexity (78.37)
than the baseline (ISS) (78.57) or ISS alone (78.65).

4.2 Image Captioning

We experiment our methods with the image captioning model Google NIC [21]
as a baseline. Google NIC is an encoder-decoder framework which uses a CNN
as an encoder to extract features from images and then uses an LSTM decoder
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Table 2. ISS with sparse hidden states

Method Test
perplexity

Memory/Output
width (1st, 2nd)
LSTM

Mult-add
reduction

Time (ms)/
Speed-up

Baselinea 78.57 (1500, 1500)/
(1500, 1500)

1.00× 81.7/1.00×

ISS 78.65 (373, 315)/
(373, 315)

7.48× 14.1/5.79×

ISS+Ours (ξ = 0.10) 76.27 (379, 536)/
(229, 445)

5.99× 17.2/4.75×

ISS+Ours (ξ = 0.20) 78.37 (194, 542)/
(63, 375)

8.63× 13.0/6.28×
aThe baseline is different from the baseline in Table 1.

to generate sentences. The CNN image features are input to the LSTM at the
beginning step. The LSTM network generates the sentence word by word with
one word per step and stops when the “stop token” is predicted or when it
reaches the maximum length.

Formally, the inputs for the LSTM are

x1 = CNN(I), (18)
xt = Weyt−1, (t ∈ 2, 3, ..., T ), (19)

where I denotes the raw image and x1 is input once at t = 1. yt−1 is the one-hot
representation of the input word (from the target sentence at training or the
previous prediction at inference). We ∈ RV ×E is the word embedding matrix for
a vocabulary of size V . Words are predicted using Softmax:

pt = Softmax(ht). (20)

The predicted word yt is sampled from pt. ht is the hidden state defined in Eq. (7).
Given a ground-truth sentence y∗

1:T , the cross-entropy loss that we minimize as
part of Eq. (13) is:

LXE(θ) = −
T∑

t=1

log(p(θ)t (y∗
t |(CNN(I), y∗

1:t−1))). (21)

The model is trained and evaluated on MSCOCO [12], which is a widely
used benchmark for image captioning. MSCOCO has 123, 000 images with five
captions annotated for each image. We use the publicly available split [10], where
the validation set and test set each has 5, 000 images. The remaining 113, 000
images are used for training.

Table 3 shows the results. All listed models use ResNet101 or ResNet152 as an
encoder. Compared with state-of-the-art methods [1,18], our Google NIC imple-
mentations (NIC 512/NIC 1024/NIC 2048) achieve new best results on BLEU4
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and METEOR scores, on par with ROUGE-L, but not winning on CIDEr. Note
that while the other works involve dedicated attention networks with learnt
attention weights, our model uses only simple sparsification, which by focusing
activations has an attention-like effect.

Table 3. The results of Google NIC with different memory size and ξ on the MSCOCO
Karpathy test split. B4, M, R-L and C stand for BLEU4, METEOR, ROUGE-L and
CIDEr respectively. Time is in ms.

Model Time B4 M R-L C

[18] – 31.3 26.0 54.3 101.3

[1] – 33.4 26.1 54.4 105.4

NIC 512 239 33.5 25.8 54.4 101.7

NIC 1024 503 32.6 26.0 54.1 101.8

NIC 2048 1070 32.3 26.1 53.9 102.1

NIC 2048 (ξ = 0.3) 721 33.3 26.4 54.4 103.0

NIC 2048 (ξ = 0.4) 616 32.9 26.4 54.4 103.3

NIC 2048 (ξ = 0.5) 436 32.7 26.0 53.9 102.9

Finally, we adjust the parameter ξ directly to close more channels in the
output gates without using the output gate sparsification of Eq. (12). The results
with ξ = 0.3, 0.4, 0.5 on the image caption task are listed in Table 3. It is found
that the optimal setting for ξ is 0.4 which improves the CIDEr from 102.1 to
103.3 while speeding up by a factor of 1.74× (1070 ms/616 ms).

5 Conclusion

We explore novel sparse LSTM networks in which the activations of the out-
put gates are sparsified. This reduces the amount of information that is passed
on for further processing, while not impacting on the memory of the LSTM
cells. Experiments were conducted on three tasks including language modeling
and image captioning. The proposed method obtains better performance on all
tasks at lower computational costs. On the Penn Treebank language modeling
experiments, we found that sparse hidden states can work together with weight
sparsifying regularization methods to achieve better results than when using
them individually.
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Abstract. In this work, we propose a heuristic genetic algorithm (GA)
for pruning convolutional neural networks (CNNs) according to the
multi-objective trade-off among error, computation and sparsity. In our
experiments, we apply our approach to prune pre-trained LeNet across
the MNIST dataset, which reduces 95.42% parameter size and achieves
16 times speedups of convolutional layer computation with tiny accu-
racy loss by laying emphasis on sparsity and computation, respectively.
Our empirical study suggests that GA is an alternative pruning approach
for obtaining a competitive compression performance. Additionally, com-
pared with state-of-the-art approaches, GA can automatically pruning
CNNs based on the multi-objective importance by a pre-defined fitness
function.

Keywords: Genetic algorithm · Convolutional neural networks ·
Multi-objective pruning

1 Introduction

Vision application scenarios often have different requirements in terms of multi-
objective importance about error, computational cost and storage for convolu-
tional neural networks (CNNs), but state-of-the-art pruning approaches do not
take this into account. Thus, we develop the genetic algorithm (GA) that can
iteratively prune redundant parameters based on the multi-objective trade-off
by a two-step procedure. First, we prune the network by taking the advantages
of swarm intelligence. Next, we retrain the elite network and reinitialize the
population by the trained elite. Compared with state-of-the-art approaches, our
approach obtains a comparable result on sparsity and a significant improvement
on computation reduction. In addition, we detail how to adjust the fitness func-
tion for obtaining diverse compression performances in practical applications.

c© Springer Nature Switzerland AG 2019
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2 Proposed Approach

2.1 Evaluation Regulation

Similar to general evolutionary algorithms, we design a fitness function f to
evaluate the comprehensive performance of a genome. In our method, f is defined
by the weighted average of error rate e, computation remained rate c and sparsity
s. And our target is to minimize the fitness function as follows:

min f = min(λ1e + λ2c + λ3(1 − s))
s.t. 0 � e, c, s, λ1, λ2, λ3 � 1, λ1 + λ2 + λ3 = 1

(1)

The coefficients λ1, λ2, and λ3 adjust the importance of the three objec-
tives. e, c and s denote the percentage of misclassified samples, remained
multiplication-addition operations (FLOPs) and zeroed out parameters, respec-
tively. From the experimental analyses in Sect. 3, treating the multi-objective
nature of the problem by linear combination and scalarization is indeed effective
and consistent to our expectation, albeit more sophisticated fitness function may
further improve the results.

Fig. 1. Pruning techniques of CONV layer (a) and FC layer (b) in mutation phase.
For the current CONV layer, we carry out a filter-wise pruning based on mutation rate
Pmc, and then a corresponding channel-wise pruning will also take place for the next
CONV layer. For the current FC layer, we carry out a connection-wise pruning based
on mutation rate Pmf .

2.2 Heuristic Pruning Procedure

Genetic Encoding and Initialization. A CNN is encoded to a genome includ-
ing M parameter genes that denoted by θ1, θ2, ..., θM , where M denotes the
depth of the CNN, θm denotes the mth layer parameter with a 4D tensor of
size FmCmHmWm in convolutional (CONV) layer, or a 2D tensor of size OmIm
in fully-connected (FC) layer, where Fm, Cm, Hm and Wm denote the size of
filters, input channels, height and width of kernels, Om and Im denote the size
of output and input features, respectively. We apply N times mutations on a
pre-trained CNN to generate the initial population consisting of N genomes.
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Selection. We straightforward select the top K genomes with minimum fitness
to reproduce next generation. It is worth mentioning that we have attempted
a variety of selection operations, such as tournament selection, roulette-wheel
selection and truncation selection. Our empirical results indicate that different
selection operations finally obtain the similar performance but the vanilla selec-
tion which we adopt has the fastest convergence speed.

Algorithm 1. Multi-objective Pruning by GA
Input: pre-trained CNN parameter θinitial, maximum number of iterations G, popu-

lation size N , number of selected genomes K, crossover rate Pc, mutation rate Pmc

and Pmf , number of interval iterations T
Output: parameter of elite genome θ̂G

1: for i = 1 → N do
2: Pg=0

i ← mutation(θinitial, Pmc, Pmf )
3: end for
4: for g = 1 → G do
5: Fg−1

1,...,N ← f(Pg−1
1,...,N )

6: elite ← argmaxi∈{1,...,N}Fg−1
i

7: θ̂g−1 ← Pg−1
elite

8: Pg
1,...,K ← selection(Pg−1

1,...,N , Fg−1
1,...,N , K)

9: Pg
1,...,N−1 ← crossover(Pg

1,...,K , Pc)
10: Pg

1,...,N−1 ← mutation(Pg
1,...,N−1, Pmc, Pmf )

11: Pg
1,...,N ← Pg

1,...,N−1 ∪ {θ̂g−1}
12: if mod(g, T ) = 0 then
13: θ̂g ← argmaxθ∈Pg

1,...,N
f(θ)

14: θ̂g ← train(θ̂g)
15: for i = 1 → N − 1 do
16: Pg

i ← mutation(θ̂g, Pmc, Pmf )
17: end for
18: Pg

1,...,N ← Pg
1,...,N−1 ∪ {θ̂g}

19: end if
20: end for
21: θ̂G ← train(θ̂G)

Crossover. Crossover operations are occurred among the selected genomes
based on the crossover rate Pc. We employ the classical microbial crossover
inspired by bacterial conjugation. For each crossover, we choose two genomes
randomly, from which the one with lower fitness is called Winner genome, and the
other one is called Loser genome. Then, each gene in Loser genome is copied from
Winner genome based on 50% probability. Thus, Winner genome can remain
unchanged to preserve the good performance, and Loser genome can be modi-
fied to generate possibly better performance by the infection of Winner genome.
One potential strength of microbial crossover is implicitly remaining the elite
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genome to the next generation, since the fittest genome can win any tourna-
ments against any genomes.

Mutation. Mutation performs for every genome except for the elite with muta-
tion rate Pmc and Pmf in each CONV layer and FC layer, respectively. Follow [5],
we employ the coarse-grained pruning on CONV layers and fine-grained pruning
on FC layers, both of which are sketched in Fig. 1.

Main Procedure. After each heuristic pruning process including selection,
crossover and mutation with T iterations, we retrain the elite genome so
that the remained weights can compensate for the loss of accuracy, and then
reinitialize the population by the trained elite genome. The above procedures
are repeated iteratively until the fitness of the elite genome is convergence.
Algorithm 1 illustrates the whole procedures of multi-objective pruning by GA.

3 Experimental Results and Analyses

Fig. 2. Pruning process of GA with different λ1 ∼ λ3. The blue, orange, green, red
curves reflect the indicator of fitness, error, sparsity and FLOPs of the elite, respectively
(Color figure online)
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Table 1. Comparison against the pruning approaches evaluated on MNIST dataset.
Note that bold entries represent the emphases on objectives laid by GA.

Approach Error:e Computation:c Sparsity:s Accuracy
change

LeNet Baseline [4] 0.8% 100% 0% –

LNA [8] 0.7% – 90.5% +0.1%

SSL [9] 0.9% 25.64% 75.1% −0.1%

TSNN [10] 0.79% 13% 95.84% +0.01%

SparseVD [6] 0.75% 45.66% 92.58% +0.05%

StructuredBP [7] 0.86% 9.53% 79.8% −0.06%

l0 Regularization [2] 1.0% 23.22% 99.14% −0.2%

RA-2-0.1 [3] 0.9% – 97.7% −0.1%

Ours:

GA(λ1 = 0.3, λ2 = 0.4, λ3 = 0.3) 0.93% 6.22% 94.30% −0.13%

GA(λ1 = 0.5, λ2 = 0.5, λ3 = 0) 0.87% 6.10% 71.63% −0.07%

GA(λ1 = 0.5, λ2 = 0, λ3 = 0.5) 0.89% 9.00% 95.42% −0.09%

GA(λ1 = 0.8, λ2 = 0.1, λ3 = 0.1) 0.85% 8.16% 91.00% −0.05%

The hyper-parameter settings of GA are as follows: population size N = 30,
number of selected genomes K = 5, crossover rate Pc = 0.6, mutation rate
Pmc = 0.1 and Pmf = 0.15, iteration number T = 5. Albeit we find that further
hyper-parameter tuning can obtain better results, such as increasing population
size or diminishing mutation rate, but corresponding with more time cost.

Comprehensive comparison against state-of-the-art approaches on LeNet1

across the MNIST [1] is summarized in Table 1. We highlight in particular that
different pruning performances can be obtained by adjusting λ1 ∼λ3. Meanwhile,
we empirically analyze the effectiveness by custom λ1 ∼ λ3 with corresponding
curves which are exhibited in Fig. 2. Note that CONV layers and FC layers are
the main source of computation and parameter size, respectively. And λ1 cannot
be set too tiny in order to ensure the low error.

1. λ1 = 0.3, λ2 = 0.4, λ3 = 0.3. With the approximate weights for λ1 ∼ λ3 as
our baseline, which reach the overall optimal compression performance but
with relatively higher error rate.

2. λ1 = 0.5, λ2 = 0.5, λ3 = 0. This setting aims at high-speed inference for
CNN. In this case, computation achieves maximum reduction, but sparsity is
hard to optimize because GA pays less attention to pruning FC layers which
are not the main source of computation.

3. λ1 = 0.5, λ2 = 0, λ3 = 0.5. This setting aims at a CNN with low storage. In
this case, we obtain the utmost sparsity and high-level computation reduction
simultaneously. Albeit CONV layers only play an unimportant role in the

1 https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10.

https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10
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overall parameter size, it can also obtain the high-level sparsity because of
the tractability with coarse granularity pruning. Thus, λ3 can also indirectly
facilitate computation reduction.

4. λ1 = 0.8, λ2 = 0.1, λ3 = 0.1. This setting aims at minimal performance loss.
In this case, error curve is always at the low level resulting in that GA is
conservative to pruning both CONV and FC layers. Hence, parameter and
FLOPs curves are slower to fall compared with baseline.

Compared with other approaches, albeit we do not obtain a minimal sparsity,
our computation achieves outstanding reduction because of coarse granularity
pruning. While some approaches with larger sparsity always employ fine granu-
larity pruning, which is very tractable for facilitating sparsity but not essentially
reducing the FLOPs of sparse weight tensors. Furthermore, our approach can
perform a multi-objective trade-off according to the actual requirements whereas
state-of-the-art approaches are unable to achieve this task.

4 Conclusion

We propose the heuristic GA to prune CNNs based on the multi-objective trade-
off, which can obtain a variety of desirable compression performances. Moreover,
we develop a two-step pruning framework for evolutionary algorithms, which
may open a door to introduce the biological-inspired methodology to the field of
CNNs pruning. As a future work, GA will be further investigated and improved
to prune more large-scale CNNs.
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Abstract. We study the tradeoff between computational effort and
classification accuracy in a cascade of deep neural networks. During
inference, the user sets the acceptable accuracy degradation which then
automatically determines confidence thresholds for the intermediate clas-
sifiers. As soon as the confidence threshold is met, inference terminates
immediately without having to compute the output of the complete net-
work. Confidence levels are derived directly from the softmax outputs
of intermediate classifiers, as we do not train special decision functions.
We show that using a softmax output as a confidence measure in a cas-
cade of deep neural networks leads to a reduction of 15%–50% in the
number of MAC operations while degrading the classification accuracy
by roughly 1%. Our method can be easily incorporated into pre-trained
non-cascaded architectures, as we exemplify on ResNet. Our main contri-
bution is a method that dynamically adjusts the tradeoff between accu-
racy and computation without retraining the model.

Keywords: Deep learning · Neural networks · Efficient inference

1 Introduction

State-of-the-art Deep Neural Networks (DNNs) usually consist of hundreds of
layers and millions of trainable weights. At inference time, this translates into
billions of multiply-accumulate operations (MACs) for a single input [19]. The
training process of models is a computationally intensive task that is performed
once. After training is completed, the trained model is used for inference. Infer-
ence requires fewer computations than training, however, the inference is per-
formed multiple times. Hence, reducing the amount of computation during the
inference is an interesting ongoing goal [13]. Moreover, modern DNNs usually
apply the same number of operations for every inputs, and the natural question
that arises is whether this amount of computation is indeed required [17].

In this paper, we focus on the computational effort spent on inference in
DNNs. For simplicity, we measure the computational effort in the number of
multiply-accumulate operations (MACs). Many claim that the computational
effort required for classifying images should depend on the image [9,11,17,20].
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We claim that the required computational effort for classification is an intrinsic
yet hidden property of the inputs. Namely, some images are much easier to clas-
sify than others, but the required computational effort needed for classification
is hard to predict before classification is completed.

The desire to spend the “right” computational effort in classification leads
to the first goal in this work.

Goal 1. Given a model M , design a model M ′ in which the computational effort
during the classification of an input x is proportional to the likelihood of mis-
classifying x using M .

Misclassification likelihood indicates and measures the hardness of an input.
The question we pose is whether we can (almost) preserve accuracy while reduc-
ing the computational effort required to classify “easy” instances. The two
extreme cases are: (1) Consider a distribution of inputs D for which the misclassi-
fication likelihood is very low (say 1%) in model M . We view D as a distribution
of “easy” inputs, and would like the new model M ′ to classify x ∈ D while
spending a fraction of the computational effort compared to M . (2) Consider a
distribution of inputs D′ for which the misclassification likelihood is high (say,
25%) in model M . We view D′ as a distribution of “hard” inputs, and would like
the new model M ′ to classify inputs from D′ almost as accurately as M does.
The computational effort of M ′ for inputs in D′ is only slightly higher than that
of M (c.f., an overhead of 1% in the computation). The principle behind our goal
is that an efficient model should achieve a high classification accuracy faster for
“easy” instances than for “harder” ones.

A motivation to reduce the computational effort during the inference can be
exemplified by systems with non-constant power consumption or throughput.
Examples of such settings are: (1) As the battery drains in a mobile device,
one would like to enter a “power saving mode” in which less power is spent
per classification. (2) If the input rate increases in a real-time system (e.g., due
to a burst of inputs), then one must spend less time per input [4]. (3) Timely
processing in a data center during spikes in query arrival rates may require
reducing the computational effort per query [2,5].

Dynamic changes in the computational effort or the throughput lead to the
second goal in this work.

Goal 2. Introduce the ability to dynamically control the computational effort
while sacrificing accuracy as little as possible. Such changes in the computational
effort should not involve retraining of the DNN.

1.1 Contribution

We propose an architecture that is based on a cascade of DNNs [3] depicted in
Fig. 1. The cascade comprises multiple DNNs (e.g., three DNNs), called compo-
nent DNNs. The cascade is organized sequentially so that the next component
DNN is fed by the previous component. Hence previous computations are reused
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and further refined by the next component. Classification takes place by invok-
ing the component DNNs one-by-one and stopping the computation as soon as
the confidence level reaches the desired level. Our setting is applicable to general
multiclass classification in general architectures that terminate with a softmax
function.

The stopping decision is based on the softmax output of each component
DNN. We define a simple confidence threshold, based on the softmax output,
that allows for trading off (a small) decrease in accuracy for (a substantial)
reduction in computational effort. The resulting approach has several advantages
over the previous work [3,17,18]. The main contribution of our work is:

Dynamically change the compromise between accuracy and com-
putational effort without retraining the cascaded model.

In addition, we show how a cascaded architecture can be obtained from an
ordinary feed-forward DNN while requiring only small fine-tuning (see Sect. 6).
We demonstrate the performance of our models on various image classification
datasets: (i) A computation reduction of 34% that sacrifices 1.2% accuracy with
respect to the CIFAR-10 test set. (ii) A computation reduction of 16% that
sacrifices 0.7% accuracy with respect to the CIFAR-100 test set. (iii) A compu-
tation reduction of 54% that sacrifices 1.4% accuracy with respect to the SVHN
test set. (iv) A computation reduction of 17% that sacrifices 1.3% accuracy with
respect to the Imagenet validation set.

Finally, our experimentation demonstrates a monotone relation between soft-
max values and classification accuracy in intermediate classifiers (see Sect. 7.3).

2 Related Work

The two principle techniques that we employ are cascaded classification and
confidence estimation. We elaborate on the recent usage of these techniques
hereinafter.

2.1 Cascaded Classification

Cascaded classification is suggested in the seminal work of Viola and Jones [21].
As opposed to voting or stacking ensembles in which classification is derived
from the outputs of multiple experts (e.g., majority), the decision in a cascaded
architecture is based on the last expert. A cascaded neural network architec-
ture for computer vision is presented in [24]. In their work, as the complexity
of the input increases, the evaluation is performed with increased resolution
and increased number of component DNNs in the cascade. The works of Wang
et al. [22,23] presents the skipping approach, where each input can take a path
composed of a subset of layers of the original architecture. Skipping of layers
requires training of switches that decide whether skipping of layers takes place.
The work by Lerox et al. [15] presented the idea of early stopping in a setting
in which the cascaded DNNs are distributed among multiple devices.

Reinforcement learning is employed by Odena et al. [16] in a cascade of meta-
layers to train controllers that select computational modules per meta-layer.
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2.2 Confidence Estimation

Uncertainty measures of classifiers are discussed in [6,7]. These works address
the issue of the degree of confidence that a classifier has about its output. The
confidence of an assembly of algorithms is investigated by Fagin et al. [8] in
general setup. Fagin et al. define instance optimality and suggest to terminate
the execution according to a criterion based on a threshold.

Rejection refers to the event that a classifier is not confident about its out-
come, and hence, the output is rendered unreliable. Geifman and El-Yaniv [10]
describe a selective classification technique, in which a classifier and a rejection-
function are trained together. The goal is to obtain coverage (i.e., at least one
classifier does not reject) while controlling the risk via rejection functions. They
proposed a softmax-response mechanism for deriving the rejection function and
discussed how the true-risk of a classifier (i.e., the average loss of all the non-
rejected samples) can be traded-off with its coverage (i.e., the mass of the non-
rejected region in the input space). Our work adopts the usage of the softmax
response as a confidence rate function, however, it differs in a way we apply the
confidence threshold. Namely, we propose a cascade of classifiers that terminates
as soon as the desired confidence threshold is reached.

The ability of the softmax output to reflect the true confidence of the classifier
was investigated by Gu et al. [12]. The authors propose the temperature scaling
technique in order to calibrate the softmax output, making it highly correlated
with the expected accuracy.

2.3 Combined Approach: Cascaded Inference with Confidence
Estimation

The work of Cambazoglu et al. [4] presents an additive ensemble machine learn-
ing approach with early exits in a context of the web document ranking. In the
additive approach, the sum of the outputs of a prefix of the classifiers provides
the current output confidence.

The work of Teerapittayanon et al. [20] presents the BranchyNet approach, in
which a neural network architecture has multiple branches, each branch consists
of a few convolutional layers terminated by a classifier and a softmax function.
The approach in [20] does not help to reduce the amount of computation that
takes place outside the “main path”. The confidence of an output vector y in
BranchyNet is derived from the entropy function entropy(y) = −∑

c yc log yc.
Finally, in [20], automatic setting of threshold levels is not developed, and the
gains of their approach were not examined on large datasets.

Cascaded classification with dedicated linear confidence estimations (rather
than softmax) appears in the Conditional Deep Learning (CDL) of [17], how-
ever, this approach was not examined on large datasets and did not discuss an
automatic setting of confidence thresholds. Cascaded classification with confi-
dence estimation appears also in the SACT mechanism [9], an extension of the
prior work by Graves [11] that deals with recurrent neural networks. Confidence
estimation is based on the summation of the halting scores. Computation is
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terminated as soon the cumulative halting score reaches a threshold. An inter-
esting aspect of SACT architecture is the feature of spatial adaptivity. Namely,
different computational efforts are spent on different regions of the input image.

Recently, Bolukbasi et al. [3] proposed an adaptive-early-exit cascaded clas-
sification architecture. The computation may terminate after each convolutional
layer. For every convolutional layer k, a special decision function γk is trained to
whether an exit should be chosen. One of the drawbacks of this approach is that
the decision functions must be re-trained per value of the acceptable accuracy
degradation.

3 Cascaded Inference (CI)

3.1 Cascaded Architecture

A cascade of DNNs is a chain of convolutional layers with branching between
layers to a classifier (see Fig. 1). Early termination in cascaded DNN components
means that intermediate feature maps are evaluated by classifiers. These classi-
fiers attempt to classify the feature map and output a confidence measurement
of their classification. If the confidence level is above a threshold, then execution
terminates, and the classification of the intermediate feature map is output. See
Fig. 1 for an example of a cascaded architecture based on three convolutional lay-
ers. Each component in a cascaded architecture consists of convolutional layers
followed by a branching that leads to (1) a classifier, and (2) the next component.

In our experimentation, we employ ResNet block layers [14] as component
DNNs in our cascade. Moreover, in Sect. 6 we show how a large pre-trained model
(ResNet-50-v2) can be quickly transformed into a cascaded architecture.

Fig. 1. An example of a cascaded architecture of three component DNNs with early
termination. A cascade of convolutional layers (CONV0, . . . , CONV2) ends with a clas-
sifier clf 2. Early termination is enabled by introducing the classifiers clf i after convo-
lutional layers. Each classifier outputs a classification outi and a its confidence δi.

It is tempting to adjust the aforementioned topology of the cascade for even
higher computational reuse. For example, the outi output of the classifier can be
fed to the following component (namely to the CONVi+1). Such an adjustment,
however, is not applicable in the case when the CONV layers are pre-trained in
a non-cascaded setup, losing a major advantage of the method we propose.



Cascaded Inference Based on Softmax Confidence 311

3.2 Early Termination Based on Confidence Threshold

The usage of the threshold for determining early termination in the cascade is
listed as Algorithm 1. The algorithm applies the component DNNs one by one
and stops as soon as the confidence measure reaches the confidence threshold of
this component. This approach differs from previous cascaded architectures in
which a combination (e.g., sum) of the confidence measures of the components
is used to control the execution [4,9].

Instead of having D per-component thresholds, one could suggest using a
single global threshold for the whole cascade. Another alternative is to set D ·C
thresholds for every (component, class) pair. We empirically compared the three
aforementioned approaches and found the first one (per component thresholds)
to be the most effective, which therefore became the approach of our choice.

Algorithm 1. CI(M, δ̂, x)- Cascaded Inference. Early termination takes place
as soon as the confidence level reaches the confidence threshold.
1: Input: cascaded model M , thresholds δ̂, input x
2: for m = 0 to D − 1 do
3: (outm(x), δm(x)) ← Mm(x)
4: if δm(x) ≥ δ̂m then
5: return outm(x)
6: end if
7: end for
8: return outD−1(x)

3.3 Softmax Confidence

Every component DNN is terminated by a classifier with one or more FC layers
followed by a softmax function. Let zm ∈ R

C denote the input to the softmax
function in the m’th component of the cascade. Let sm ∈ [0, 1]C denote the
softmax vector in the m’th component. The softmax vector is defined as follows.

Definition 1 (softmax). sm[i] = ezm[i]
∑C−1

c=0 ezm[c] .

Definition 2 (confidence measure). The confidence measure δm ∈ [0, 1] is
defined by δm � maxc{sm[c] | 0 ≤ c ≤ C − 1}.
Definition 3 (predicted class). The predicted class outm ∈ {0, . . . , C − 1} is
defined to be the class c such that sm[c] = δm.
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4 Training Procedure

In this section we present the training procedure of the component DNNs.
Consider a cascaded architecture with D components. We denote this cas-

cade by M = (M0, . . . , MD−1), where Mm denotes the m’th component in the
cascade. Let Θconv = {θconv0 , . . . , θconvD−1} denote the weights and biases of
the convolutional layers of the component DNNs (M1, . . . , MD−1). Let Θclf =
{θclf0 , . . . , θclfD−1} denote the weights and biases of the classifiers of the com-
ponent DNNs (M1, . . . , MD−1).

Let LM (outm, T ) denote a loss function of the cascade M with respect to
the output of the m’th component, averaged over the labeled dataset T . In
order to train the cascade M , we propose a backtrack-training (Algorithm 2)
BT(M,T ).We emphasize that the training procedure first optimizes all the con-
volutional weights together with the weights of the last classifier. Only then, do
we optimize the weights of the classifiers clfi, for 0 ≤ i ≤ D − 2 (i.e., classifiers
of intermediate components). Our approach differs from previous training pro-
cedures [20,22] in which the loss functions associated with all the classifiers were
jointly optimized. This difference has two following advantages: (1) the longest
computational path of the cascade is trained independently of the intermediate
loss functions, hence the maximum achievable accuracy of the model is not com-
promised. (2) A pre-trained, non-cascaded, architecture can be transformed into
a cascade and then trained according to lines 4–7 of the BT(M,T ) algorithm to
fine-tune only the intermediate classifiers.

Algorithm 2. BT(M,T ) - An algorithm for a backtrack training of the cascade
M = {M0, . . . , MD−1}. The output is the trained weights of the cascade M

1: Input: cascaded model M , training set T
2: Let Θdeep = Θconv ∪ θclfD−1

3: Θdeep = arg minΘdeep
{LM (outD−1, T )}.

4: for m = 0 to D − 2 do
5: θclfm = arg minθclfm

{LM (outm, T )}.
6: end for
7: return Θconv ∪ Θclf

5 Setting of Confidence Thresholds

In this section, we present an automatic methodology for setting the confidence
threshold δ̂m for every component Mm given an acceptable accuracy degradation
ε. We note that the hyper-parameter ε is a single parameter for the whole cascade,
and the automatic methodology we present determines an individual confidence
threshold for every component in the cascade. The important attribute of the
automatic setting of the confidence thresholds is that one can change them on
the fly during the inference stage.
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Let Tm(δ) ⊆ T denote the subset of inputs for which the confidence measure
of the mth component is at least δ.

Tm(δ) � {(x, y) | δm(x) ≥ δ}.

Let γm(δ) denote the number of times the classification output by component
Mm is correct for inputs in Tm(δ).

γm(δ) �
∑

(x,y)∈Tm(δ)

1{outm(x) = y}.

Let αm(δ) denote the accuracy of component Mm with respect to Tm(δ).

αm(δ) �
{

γm(δ)
|Tm(δ)| if |Tm(δ)| > 0

0 otherwise

Let α∗
m denote the maximum accuracy for component Mm.

α∗
m � max

δ∈[0,1]
αm(δ).

For an acceptable accuracy degradation ε > 0, we define the confidence threshold
δm(ε) by

δm(ε) � min {δ | αm(δ) ≥ α∗
m − ε}.

When a cascaded inference is performed using CI(M, δ̂, x) (Algorithm 1),
the confidence threshold vector δ̂ is set as follows. Choose an ε ∈ [0, 1], and
set δ̂m ← δm(ε), for every m. We remark that (i) the threshold for the last
component should be zero, and (ii) one could use separate datasets for training
the weights and setting the confidence threshold.

In some applications, the desired accuracy metric is “top-K”, meaning that
a prediction is regarded as correct if the top K most confident predictions of a
classifier contain the ground truth class. To choose appropriate thresholds for
the top-K metric, the only change to the methodology above is to set δm(x) to
be the sum over the top K elements in the softmax vector.

6 Experimental Setup

In order to examine the usefulness of cascaded inference we performed experi-
ments on CIFAR-10, CIFAR-100 and SVHN datasets using ResNet-110 archi-
tecture and on Imagenet dataset using ResNet-50-v2 architecture. The trans-
formation of the ResNet architecture into a cascade was done by dividing it into
three stages; the choice of the layers after which a new stage begins was based
on the structure of the architecture (i.e., between distinct layer blocks, differ-
ently color-coded in Fig. 3 of [14]). Each component DNN consists of a stage
and a classifier. The analysis of the overhead introduced by our transformation
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Table 1. Number of MAC operations required for a single inference in ordinary ResNet
models and in their cascaded counterparts.

ResNet-110 ResNet-50-v2

non-Cascaded 253, 953, 214 4, 037, 883, 817

Cascade - total 253, 978, 670 4, 044, 633, 979

component DNN 0 86, 000, 922 1, 817, 092, 009

component DNN 1 84, 068, 170 1, 467, 571, 177

component DNN 2 83, 909, 578 759, 970, 793

Computation increase 0.01% 0.17%

is depicted in Table 1. According to this analysis, the increase in the number of
MACs, caused by the transformation of the ResNet into a cascade of 3 compo-
nent DNNs, is less than 0.2%.

We trained the cascaded ResNet-110 from scratch with respect to
algorithm 2. Simple data augmentation was employed only for CIFAR mod-
els as in [14]. The optimization of every classifier was performed with Stochastic
Gradient Descent (SGD) for 160 epochs in CIFAR datasets and for 50 epochs
for SVHN dataset. Learning rate was scheduled as described in [14].

For the Imagenet experiments, we transformed the official pre-trained1

Tensorflow [1] ResNet-50-v2 model into a cascaded architecture by introduc-
ing additional classifiers after every layer block. We then followed lines 4–7 of
the BT(M,T ) algorithm (Algorithm 2) to train the two new classifiers, each of
which has 2 FC layers, while freezing all the pre-trained weights. Source code,
for reproducing our Imagenet results, is publicly available2. This fine tuning of
the pre-trained model took less than 20 h per classifier using 4 GPUs.

7 Results

7.1 Confidence Threshold Effect

We trained the cascaded versions of ResNet-110 and ResNet-50-v2 models as
described in Sect. 6. We evaluated the performance using various ε values. The
tradeoff between the test-accuracy and the number of MACs required for a single
inference is shown in Fig. 2. The MAC counts were obtained analytically by
summing up the linear operations in the convolutional layers and the FC layers,
excluding activations and batch normalization. Quantitative results that appear
in Table 2 demonstrate the ability of the cascaded architectures to trade as little
as 1.3% of accuracy for a reduction of 16%–53% of the computational effort.
Note the reduced effect on accuracy for Imagenet when accuracy is measured
with respect to the top-5 classifications compared to the top-1 classification (see
last two lines in Table 2).
1 https://github.com/tensorflow/models/tree/master/official/resnet.
2 https://github.com/AnonymousConferenceCode/Cascaded Inference.

https://github.com/tensorflow/models/tree/master/official/resnet
https://github.com/AnonymousConferenceCode/Cascaded_Inference
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Table 2. Accuracy-computation tradeoffs. - Column 1 lists the tested datasets.
Columns 2–4 list the accuracy of classifier clfi, for i ∈ {0, 1, 2}, with respect to the
complete test set. Columns 5–10 list the accuracy of our cascaded architecture for
different values of ε - the acceptable accuracy degradation (see Sect. 6 for the details of
which network was used for each dataset). Computational reduction by the cascade for
each ε is relative to the computational effort of the non-cascaded architecture M0,1,2

and is defined by 1 − #MAC Count(Cascade(ε))
#MAC Count(M0,1,2)

.

Dataset Accuracy of M0,...,m−1 Accuracy(top), computation reduction(bottom)

M0 M0,1 M0,1,2 ε = 0% ε = 1% ε = 2% ε = 4% ε = 7% ε = 8%

CIFAR-10 77.50% 81.40% 93.10% 93.10% 92.70% 91.90% 91.10% 87.32% 86.35%

6% 27% 34% 42% 50% 52%

CIFAR-100 48.10% 50.00% 70.50% 70.50% 70.65% 70.50% 70.30% 69.94% 69.78%

1% 4% 7% 10% 15% 16%

SVHN 89.80% 85.20% 97.03% 97.03% 95.60% 94.00% 91.30% 89.76% 89.80%

0% 54% 59% 64% 66% 66%

ε = 0% ε = 1% ε = 2% ε = 5% ε = 6% ε = 7%

Imagenet 46.69% 62.76% 76.51% 76.51% 76.51% 76.50% 75.90% 75.56% 75.19%

top-1 0% 3% 7% 14% 15% 17%

Imagenet 70.22% 84.31% 93.21% 93.21% 92.84% 92.02% 88.54% 87.30% 86.13%

top-5 0% 11% 17% 28% 31% 33%

7.2 Comparison with Bolukbasi et al.

Figure 2e and Table 3 compare the top-5 accuracy-to-computation tradeoffs of
our cascaded inference against adaptive cascaded inference over ResNet-50 with
early exits [3]. We translated the speedups presented in [3] from time to MAC-
count speedups for the purpose of comparison to our work (to exclude the impact
of software and hardware environments differences). Our model demonstrates
higher accuracy for any given computational effort, in addition to being able to
dynamically adjust to different accuracy-to-computation tradeoffs.

Table 3. Comparison of cascaded inference to [3] on Imagenet top-5 metric.
Column 1 lists the accuracy lost relative to the original ResNet-50 model. Columns 2
and 3 list the speedups of the work by Bolukbasi et al. and of our cascaded inference
with respect to the full ResNet-50 model. Speedup is old MACs

new MACs
− 1.

Accuracy reduction Bolukbasi et al. 2017 speedup Our Cascade speedup

1% 8% 20%

2% 18% 27%

5% 22% 41%
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Fig. 2. Cascaded inference with early termination test accuracy vs. average
number of MAC operations per inference. The measured points on the curves are
obtained by considering variable values of ε ∈ {20%, . . . , 1%, 0%}.
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Fig. 3. Softmax as a confidence measure. The line plots show the accuracy αm(δ)
of each classifier in the cascade independently. The bar plot presents the frequency of
the different confidence levels sampled over the test set. All plots were obtained by
separately testing the three component DNNs of the cascaded ResNet.

7.3 Softmax as a Confidence Measure

For the cascaded ResNet models, we analyzed the accuracy αm(δ) (see definition
in Sect. 5) of each classifier independently. The accuracy αm(δ) was measured
for δ ∈ [0, 1] using the test-set rather than to the training set. The plots in Fig. 3
show how the choice of the threshold provides control over the test accuracy.
Note that the range of αm(δ) starts with the accuracy of clfm and ends with the
accuracy that corresponds to the highest confidence measure. The almost linear
behavior of αm(δ) as a function of δ justifies basing the confidence threshold on
the softmax output. We note that these results were obtained without applying
softmax calibration techniques.

In addition, we examined the frequency of the different confidence levels
observed at the output of each classifier in a cascade. This observation is pre-
sented in the form of a bar-plot distribution in Fig. 3. The distribution of the first
two components of the cascade is relatively uniform. Whereas the distribution
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of the confidences of the last classifier has no importance since in our inference
approach the confidence threshold of the last classifier is set to δ̂D−1 = 0.

8 Discussion and Future Work

As further research, cascading can be applied to RNNs or alternatively, the
impact of depth of feed-forward DNNs on the confidence estimation can be
investigated. A gap between the allowed accuracy degradation (ε) and the actual
test accuracy degradation was especially evident in the CIFAR-100 dataset.
This gap can be bridged by performing softmax-calibration, which can serve as
a practical extension of our study.

9 Conclusions

We showed that using a softmax output as a confidence measure in a cascade
of DNNs can provide a reduction of 15%–50% in the number of MAC opera-
tions while degrading the classification accuracy by roughly 1%. This approach
allows to dynamically change the acceptable accuracy degradation (ε) without
retraining because the confidence thresholds are automatically derived from ε.
This achieves the second goal of our work.

Secondly, our approach is easily adoptable, since the transformation of the
trained non-cascaded DNN into a cascade of component DNNs requires only
training of the auxiliary classifiers, which are small relative to the original net-
work. In other words, non-cascaded state-of-the-art models can be transformed
into a cascade of component DNNs with very little training involved. Once the
transformation is complete, these models will benefit from less computation dur-
ing inference.

Finally, we observed a monotone, almost linear, relation between the soft-
max function and the test accuracy. This implies that the softmax output
is a good estimate of the neural network confidence. Our approach explicitly
demands lower computational effort for inputs that indicate higher confidence.
This achieves the first goal of this work.

Acknowledgments. We thank Nissim Halabi, Moni Shahar and Daniel Soudry for
useful conversations.
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Abstract. On-orbit semantic segmentation can produce the target
image tile or image description to reduce the pressure on transmission
resources of satellites. In this paper, we propose a fully convolutional
network for on-orbit semantic segmentation, namely light-weight edge
enhanced network (LEN). For the model to be pruned, we present a new
model pruning strategy based on unsupervised clustering. The method
is performed according to the l1-norm of each filter in the convolutional
layer. And it effectively guides the pruning of filters and correspond-
ing feature maps in a short time. In addition, the LEN uses a trainable
edge enhanced module called enhanced domain transform to further opti-
mize segmentation performance. The module fully exploits multi-level
information of the object to generate the edge map and performs edge-
preserving filtering on the coarse segmentation. Experimental results sug-
gest that the models produce competitive results while containing only
1.53 M and 1.66 M parameters respectively on two public datasets: Inria
Aerial Image Labeling Dataset and Massachusetts Buildings Dataset.

Keywords: Semantic segmentation · Model pruning ·
Enhanced domain transform

1 Introduction

Due to the limitation of transmission bandwidth, there are few images acquired
by satellites can be transmitted to the ground, and most of them are useless.
It is necessary to conduct on-orbit processing of remote sensing (RS) images.
Semantic segmentation performing pixel-level prediction is suitable for RS image
understanding. Based on the results of on-orbit semantic segmentation, only
transmitting the useful images, target image tiles or image description can effec-
tively reduce the pressure on satellite bandwidth. TianZhi-2 satellite equipped
with computing resources supports deep learning and will be launched soon. Lim-
ited by computational capability and energy, it is necessary to reduce resource
consumption while improving the performance of the segmentation method.

Classical machine learning methods require manual feature engineering or
interactive operations, which cannot be applied to satellites. Deep learning based
c© Springer Nature Switzerland AG 2019
I. V. Tetko et al. (Eds.): ICANN 2019, LNCS 11728, pp. 321–333, 2019.
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methods promote the development of semantic segmentation. Maggiori et al. [1]
use a model based on FCN to combine features at different resolutions. Bischke
et al. [2] propose a cascaded multi-task loss to preserve segmentation boundaries.
Khalel and El-Saban [3] exploit stacked models where each model enhances the
results of the previous one. However, these models are large and not accurate
enough. The model pruning and segmentation optimization are required.

Model Pruning. Many compression methods for deep learning models have
been proposed. Han et al. [4] prune redundant connections determined by the
given threshold. The method results in sparse convolutional kernels which require
sparse libraries. Zhou et al. [5] incorporate sparse constraints into the objective
function. Wen et al. [6] present a structured sparsity learning method to regular-
ize filters and layer depth of models. Li et al. [7] use the l1-norm as an effective
measure and we also use it in our work. They prune and retrain each layer inde-
pendently, and then compare the testing accuracies of the pruned model before
and after retraining to observe its sensitivity to pruning. The process of retrain-
ing can take thousands of hours and the method requires artificial determination
of the pruning ratio for each layer. Different from it, we exploit the clustering
based method to obtain the light-weight model in a short time.

Segmentation Optimization. The edge prediction of the target usually has a
great influence on the overall segmentation result. Lin et al. [8] improve the edge
prediction to optimize the segmentation by using the fully connected Condi-
tional Random Fields (CRFs). Bertasius et al. [9] propose predicting boundaries
by exploiting object-level features from a pre-trained model for object classi-
fication. But they consider the edge detection and semantic segmentation as
two separate tasks. In contrast, Chen et al. [10] exploit domain transform as an
edge-preserving filter to improve the segmentation result. However, they only
use several layers from low-level stages which contain limited edge information.

Based on such prior studies, we present the light-weight edge enhanced net-
work (LEN) for the on-orbit semantic segmentation of RS images. The main
contributions of this work can be summarized as follows:

– First, a new pruning strategy is proposed to produce the light-weight model.
By clustering filters according to the sum of absolute weights, the pruning
ratio of each convolutional layer is computed automatically to guide the com-
pression. The method does not require long-term sensitivity analysis of prun-
ing and excessive human intervention.

– Second, the enhanced domain transform uses multi-scale edge features to
filter the coarse segmentation by combining multi-stage convolutional layers.
It makes the LEN pay more attention to the edge prediction and thereby
produce more accurate segmentation results.

Experimental results show that the models regain close to and even out-
perform the original performance while all achieving more than 95% parameters
reduction on two most widely used datasets: Inria Aerial Image Labeling Dataset
(Inria) [1] and Massachusetts Buildings Dataset (Mass) [11].
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Fig. 1. The overall structure of the proposed model. ‘×’ indicates the up-sampling.

2 Proposed Methods

In this section, we introduce the method for semantic segmentation of RS images.
We first prune this backbone model, then integrate the enhanced domain trans-
form into the light-weight network to optimize its segmentation performance.

2.1 Overall Structure

As shown in Fig. 1, the proposed method mainly consists of two components.
First, VGG based DeepLab v2 [12] is used as the backbone model since we have
verified its superiority in five current fully convolutional networks in the previous
work [13]. Second, we use the enhanced domain transform to further optimize
the segmentation. This component is detailed in Sect. 2.3.

Atrous Convolution for Remote Sensing Images. In RS images, some
targets are extremely small while some others are large. Moreover, many targets
are unevenly distributed (buildings, roads, and forests), and the sharpness of
their boundaries are different. The atrous convolution is suitable for segmenting
these RS images. DeepLab v2 uses the atrous convolution with dilation d, which
enlarges the kernel K with a k × k size to ke × ke as the following formula:

ke = k + (k − 1)(d − 1) (1)

The method fills consecutive filter values with d − 1 zeros to avoid increas-
ing parameters of the model. Furthermore, the Atrous Spatial Pyramid Pooling
(ASPP) exploits different dilation to capture multi-scale information of targets.
It extends conv6 as four parallel branches with multiple dilations and sums them
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to produce the coarse segmentation. Different from DeepLab v2 using large dila-
tions as d1 = 6, d2 = 12, d3 = 18, d4 = 24, we use d1 = 2, d2 = 4, d3 = 8, d4 = 12
in our model for capturing more details of objects in RS images.

Since the influence from internal texture and the occlusion between targets,
the fully connected CRFs used in the original DeepLab v2 is useless for RS
images. And it requires more than 0.5 s for the input image of 513 × 513 pixels.
Therefore, the enhanced domain transform is proposed as the replacement.

2.2 Model Pruning Strategy

To reduce the parameters and floating point operations (FLOP) of the model,
we propose the new strategy to prune the model while keeping its performance
levels almost intact. By using the l1-norm as [7], we present the clustering based
method to determine the pruning ratio of the convolutional layer with less human
intervention. The strategy consists of the following three parts.

Measure the Importance of the Filter. As the first part of the model
compression, it is crucial to determine the pruning object and the corresponding
importance measure. To avoid producing sparse connectivity patterns and the
additional regularization as [5,6], we use the filter of the convolutional layer as
the pruning object following [7]. For the jth filter of the ith convolutional layer
fi,j , the l1-norm li,j , i.e., absolute weights sum

∑ |fi,j | is calculated as follows:

li,j =
∑

|fi,j | =
ci∑

n=1

∑
|Kn| (2)

where ci is the number of input channels in the ith convolutional layer, Kn is
the nth kernel of the filter fi,j . The more important filter has a larger l1-norm.

Determine the Pruning Ratio by Clustering. Different from [7], to simplify
the sensitivity analysis of pruning and reduce human intervention, we propose
directly calculating the pruning ratio of each layer in the original model by using
the unsupervised clustering method.

Choose a Suitable Clustering Method. We compare several common clus-
tering methods, such as the k-means clustering [14], the fuzzy c-means clustering
(FCM) [15] and the density-based clustering (DBSCAN) [16]. In this task, the
FCM produces the degree of membership for the filter in the cluster. It is not
conducive to the repeatability of the experiment. Moreover, since the sample
(filter) only has one dimension feature, and the DBSCAN usually predicts some
samples as outliers, it is also not suitable for clustering filters. Therefore, we
choose the k-means for subsequent processing.

Calculate the Pruning Ratio. We propose the procedure of computing the
pruning ratio for the ith convolutional layer as follows:
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Fig. 2. Silhouette plots for the conv1 1 with a different number of clustering centers.

(1) Compute the l1-norm li,j of the jth filter.
(2) Sort filters of the layer according to the l1-norm.
(3) Prune 50% smallest filters of the layer and directly evaluate the pruned

model without retraining. The layer with small accuracy loss (e.g., ≤5%) of
the pruned model can be compressed more, otherwise less compression.

(4) Cluster the filters into Zi categories by li,j , and az is the zth category. The
(Zi + 1)-quantiles are used as initial centers for the reproducibility.

(5) Sort these clusters by li,j , and a1 corresponds to the smallest value.
(6) Calculate the pruning ratio pi using the following formula:

pi =

⎧
⎪⎪⎨

⎪⎪⎩

∑Zi−1
z=1 num(az)

oi
, more compression on the layer, Zi ≥ 3;

num(a1)
oi

, less compression on the layer.
(3)

where oi denotes the number of output channels for the ith convolutional
layer, num(.) is the function for counting filter numbers.

Note: In step (3), the segmentation results usually have a lager visible deterio-
ration when the loss of accuracy is greater than 5%. In step (4), silhouettes [17]
and the gap statistic [18] are used to determine the optimal number of clusters
(Zi). For example, Fig. 2 illustrates silhouette plots for the conv1 1 layer of the
proposed model on Inria. In the silhouette plot, the silhouette value ranges from
−1 to 1. The value −1 indicates the point is assigned to the wrong cluster and
the value 1 is the opposite. The figures indicate that three clusters are better
separated than others for conv1 1. In addition, Fig. 3 shows the l1-norm of sorted
filters for each layer in the model trained on the Inria. Since the shape of each
curve is approximately similar, it is reasonable to exploit the clustering with the
same setting (Zi) for all layers. This part runs very fast, especially when the
validation set used in step (3) is small.

Prune and Retrain the Model. As our model has many convolutional layers,
pruning and retraining it layer-by-layer is very time-consuming. According to
pruning ratios of convolutional layers generated by the clustering, we prune
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Fig. 3. Sort filters by l1-norm for each layer of the proposed model on the Inria.

filters and connecting feature maps across multiple layers at once. After that,
we retrain the pruned model until the accuracy is recovered and even better.

2.3 Enhanced Domain Transform

Since the misclassification usually occurs at the edge of the target, we present the
enhanced domain transform (EDT) to optimize the segmentation performance
by edge filtering. As illustrated in Fig. 1, the EDT is mainly composed of two
parts: the edge enhanced module and domain transform (DT).

Edge Enhanced Module. As one input of the EDT, this module is used to
generate the edge map. Different from natural images with fewer and simpler
edges of targets, RS images have more complex edges. Inspired by [19] which
exploits richer convolutional features to fulfill the edge detection task, we propose
utilizing all of the low-level convolutional layers containing multi-scale structural
information to predict the enhanced edge map. By using the structure as [10],
the feature maps are resized to the original size by bilinear interpolation. The
concat layer is used to concatenate feature maps. The convolutional layer with
1×1 kernel size and ReLU is used to produce the edge map with a single channel.

Domain Transform. After obtaining the coarse segmentation and the edge
map, we use the trainable DT to conduct edge-preserving filtering following [10].
Figure 1 shows the forward propagation. The DT recursively filters the coarse
segmentation (2-D signals) in a separable way through T iterations. Specifically,
it implements 1-D filtering sequentially in four directions (i.e., left-to-right, right-
to-left, top-to-bottom and bottom-to-top) at each iteration. Let x/y denote the
input/output, and g be the edge map, the left-to-right filtering on the 1-D signals
of length M is computed recursively as follows:

ym = (1 − wm)xm + wmym−1 (4)

wm = exp(−
√

2
σt

(1 + gm
σs

σr
))

σt =
√

3σs
2T−t

√
4T − 1
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where m = 2, ...,M , t = 1, ..., T , wm is the mth weight corresponding to the xm,
σs and σr are the standard deviation of the filter kernel over the input’s spatial
domain and the edge map’s range, σt is computed by σs at the tth iteration.

During back-propagation, the DT back-propagates the segmentation errors
at ym onto xm and gm to update them simultaneously. Corresponding to the
forward pass above, the derivatives are calculated as follows:

∂L

∂xm
← (1 − wm)

∂L

∂ym
(5)

∂L

∂ym−1
← ∂L

∂ym−1
+ wm

∂L

∂ym

∂L

∂gm
← −

√
2

σt

σs

σr
wm

∂L

∂wm

∂L

∂wm
← ∂L

∂wm
+ (ym−1 − xm)

∂L

∂ym

where m = M, ..., 2, which is opposite to the forward propagation. We use the
same T as [10], but adjust σs and σr according to our datasets.

3 Experimental Results

3.1 Dataset

We experiment separately on two public building datasets. The available subset
of Inria [1] contains 180 images of size 5000 × 5000 pixels, which has 36 images
for each of five cities. The first 5 images of each city are used for testing and the
remaining 155 images for training as [1]. Mass [11] contains 141 (train) and 10
(test) images of size 1500×1500 pixels. These datasets are labeled as two classes
at the pixel level: building and non-building. 512 × 512 patches with 12 pixels
overlap are extracted from original images. In the end, Inria has 15500 (train)
and 2500 (test) images. Mass has 1201 (train) and 90 (test) images because those
patches with a large blank area are discarded.

3.2 Training Pipeline

The models implemented with Caffe are pre-trained on the PASCAL VOC-2012
datasets [20]. We use a “poly” policy with initial learning rate e-3, momentum 0.9
and weight decay 5e-4. The performance is measured by Intersection over Union
(IoU) and accuracy. All models are trained for 100 epochs and the best results are
reported during the training process. Since Inria is larger and more convincing,
we perform the experiments on Inria as three steps: (1) Train DeepLab v2 as
baseline models. (2) Prune models by using the clustering based method and
the method in [7] as a comparison. (3) Add the EDT to the pruned models and
compare them with DT. Moreover, Mass is used to verify the proposed methods.
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Table 1. The segmentation results (%) of three versions of DeepLab v2 on two datasets.

Method Inria (IoU) Inria (Accuracy) Mass (IoU) Mass (Accuracy)

no CRFs CRFs no CRFs CRFs no CRFs CRFs no CRFs CRFs

DeepLab R 75.21 71.32 96.10 95.60 61.70 41.86 91.79 88.68

DeepLab L 74.86 70.92 96.08 95.58 62.46 45.05 91.61 89.13

DeepLab S 76.13 72.93 96.27 95.87 63.15 47.40 91.69 89.62

Table 2. Compare the different number of clusters. ‘number’ denotes the number of
layers that are judged to use the specified clusters. ‘value’ is the average of evaluation
values for 21 layers, and the largest value corresponds to the optimal clustering.

Criterion Three clusters Four clusters Five clusters

Number Value Number Value Number Value

Silh (Inria) 12 0.69 7 0.65 2 0.67

Gap (Inria) 20 0.87 0 0.79 1 0.75

Silh (Mass) 10 0.70 2 0.68 9 0.69

Gap (Mass) 19 0.97 0 0.89 2 0.85

3.3 Baseline Model Results

As indicated in Table 1, we train DeepLab v2 as the baseline and compare its
three versions: ResNet-101 based model (DeepLab R), VGG-16 based model
with large dilations (DeepLab L) and with small dilations (DeepLab S) as
described in Sect. 2.1. For two datasets, DeepLab S achieves better results than
DeepLab L because the smaller dilation facilitates the prediction of details. And
the ResNet model may not be suitable for our task. Moreover, we find that the
fully-connected CRFs makes results worse caused by occlusion, so we use the
DeepLab S without the fully-connected CRFs as the baseline model.

3.4 Model Pruning Results

Clustering Based Method. First, we prune 50% filters with the smallest
l1-norm of each layer from the models independently. We evaluate the pruned
models directly as shown in Fig. 4(a)(b)(c)(f). Note that these figures also con-
tain results at other pruning ratios (from 10% to 90%), which are used in the
contrast experiments. For results at 50% pruning ratio, we set the upper limit
of the loss of IoU is 30% and 5% for accuracy. Then the first seven layers (from
conv1 1 to conv3 3) of models for both datasets are judged to be used with small
pruning ratios, while large pruning ratios for the remaining layers.

Second, the k-means is used to cluster sorted filters in each layer of the
original models. We use silhouettes (Silh) and the gap statistic (Gap) to find the
optimal number of clusters from three to five for all layers. Table 2 shows that
three clusters are better separated than four and five for both models.
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Table 3. Pruning ratios (%) obtained by pruning strategies (rounded to the nearest
ten). ‘1’-‘21’ indicate 21 convolutional layers from conv1 1 to conv7 4. ‘Acc’ is accuracy.
‘PS 1’-‘PS 7’ are different pruning strategies for the model trained on Inria.

Pruning Strategy (PS) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

PS Mass (cluster, large) 70 60 80 70 80 80 80 80 90 90 80 90 90 90 90 80 90 70 90 80 90

PS Mass (cluster, small) 30 40 40 30 30 30 30 40 50 40 40 40 60 50 50 30 30 20 40 40 50

PS 1 (cluster, large) 80 60 60 80 80 80 80 80 80 80 90 90 90 90 90 90 90 90 90 90 90

PS 1 (cluster, small) 50 30 30 30 30 30 30 40 30 30 40 40 50 50 60 50 60 50 70 50 60

PS 2 (cluster, same) 50 50 30 30 30 30 30 80 80 80 90 90 90 90 90 90 90 90 90 90 90

PS 3 (retraining, IoU) 50 50 30 30 70 50 50 70 70 70 90 90 90 90 90 90 90 90 90 90 90

PS 4 (retraining, same) 50 50 30 30 50 50 50 70 70 70 90 90 90 90 90 90 90 90 90 90 90

PS 5 (retraining, Acc) 50 50 30 20 50 40 30 50 50 30 40 50 50 90 90 90 90 90 90 90 90

PS 6 (before, IoU) 0 0 0 0 0 0 0 0 0 0 0 0 0 80 90 70 10 60 20 0 70

PS 7 (no guidance) 0 0 0 0 0 0 0 0 0 0 0 0 0 50 50 50 50 50 50 50 50

Table 4. Performance of pruned models. ‘LW i’ is the light-weight model produced by
PS i. ‘Pruned’ denotes the pruning ratio of the parameter and FLOP separately.

Model IoU (%) Acc (%) Parameter Pruned (%) FLOP Pruned (%)

LW (Mass) 60.74 91.25 1.66 × 106 95.61 5.13 × 1010 87.27

LW 1 (Inria) 74.30 95.93 1.53 × 106 95.95 5.13 × 1010 87.29

LW 2 73.94 95.88 1.52 × 106 95.98 4.79 × 1010 88.12

LW 3 73.59 95.80 1.37 × 106 96.38 3.61 × 1010 91.04

LW 4 74.11 95.85 1.47 × 106 96.11 3.95 × 1010 90.21

LW 5 74.59 95.96 5.77 × 106 84.74 8.06 × 1010 80.01

LW 6 76.27 96.27 2.46 × 107 34.81 2.92 × 1011 27.56

LW 7 76.26 96.26 2.52 × 107 33.31 2.97 × 1011 26.38

Finally, based on the above results, the pruning ratio of each layer can be
calculated automatically as shown by the bold numbers in Table 3. ‘PS Mass’
is the pruning strategy for the model on Mass and ‘PS 1’ on Inria. The entire
process takes only a few minutes and no human decision is required.

Contrast Experiments. Following [7], we retrain the pruned models on Inria
and test them as shown in Fig. 4(d)(e), which runs for more than one thousand
hours on the TITAN Xp GPU. The sensitivity to the pruning of each layer can
be observed by comparing the performance of the corresponding pruned model
before and after retraining. Then we manually set the pruning ratio for each
layer. Table 3 also shows these pruning strategies as follows:

PS 2. Use the same pruning ratio for layers in the same stage as [7], i.e., change
the pruning ratio from 30% to 50% of the second layer (conv1 2) in PS 1.
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(a) IoU before retraing (Inria) (b) Accuracy before retraing (Inria) (c) IoU before retraing (Mass)

(d) IoU after retraing (Inria) (e) Accuracy after retraing (Inria) (f) Accuracy before retraing (Mass)

Fig. 4. The IoU and accuracies of the pruned models on Inria and Mass.

PS 3. Prune the model according to the sensitivities to pruning of layers, guided
by the IoU of the pruned model after retraining as shown in Fig. 4(d).

PS 4. Change the pruning ratio from 70% to 50% of the fifth layer (conv3 3) in
PS 3 as PS 2 does.

PS 5. Different from PS 3, prune the model by using the accuracy of the pruned
model after retraining as shown in Fig. 4(e).

PS 6. Figure 4(a) indicates that pruning some layers (e.g., conv6 1) without
retraining even makes the IoU higher, so we prune these layers directly.

PS 7. As a comparison with PS 6, empirically prune 50% filters for each of
high-level layers (from conv6 1 to conv7 4) without guidance from Fig. 4.

As shown in Table 4, the light-weight model on Mass which is produced by
the clustering based pruning method achieves more than 95% parameters reduc-
tion while regaining close to the original accuracy (91.69%). Then we compare
several light-weight models on Inria. The pruning ratio of our model (LW 1) is
greater than 95% which is similar to LW 2, LW 3, LW 4, but the segmentation
performance is better than them. And we find that using the same pruning ratio
for layers in the same stage as [7] is useless in our task. In addition, LW 5 shows
little improvement on segmentation with the smaller pruning ratio. So IoU is
more instructive than accuracy. LW 6 and LW 7 achieve the better results but
their pruning ratios are much smaller than others. And LW 6 outperforms LW 7
with smaller parameters indicating that it is reliable to prune the model based
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Fig. 5. Use the PSNR to compare the edge map generated from different epochs.

Table 5. Performance (%) of models with different components on two datasets.

Method Inria Mass

IoU Acc IoU Acc

LW with EDT (LEN) 75.33 96.13 63.55 91.58

LW with DT 74.89 96.06 62.34 91.27

on data rather than human experience. Therefore, the clustering based pruning
strategy is faster and more efficient in this task.

3.5 Segmentation Results

We integrate the EDT into the light-weight models and fine-tune the new models
from them to optimize their segmentation. Note that the EDT has almost no
influence on increasing parameters of the models which are 1.66M for Mass
and 1.53M for Inria. Figure 5 illustrates that the generated edge map becomes
clearer and the Peak Signal-to-Noise Ratio (PSNR) is larger as the number
of epochs increases during the training phase. Table 5 shows that the models
with EDT perform better than DT for both datasets because of richer edge
information. And the LEN on Mass even achieves better IoU than the original
(63.15%). Table 6 indicates the comparison of LEN with other methods on Inria.
By using 700 × 700 pixels images with 100 pixels overlap for testing, the LEN
is further optimized and even superior to other methods with the larger model
sizes. Therefore, the LEN produces the competitive results which regain close to
and even outperform the original with more than 95% parameter reduction.
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Table 6. Results (%) of different methods on the Inria. ‘100’ denotes 100 pixels overlap.

Method Austin Chicago Kitsap West Tyrol Vienna Overall

IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc

LEN (100) 78.70 96.86 69.80 92.54 66.31 99.22 75.82 98.02 79.76 94.10 75.65 96.15

LEN 78.54 96.85 69.57 92.52 66.36 99.24 74.51 97.94 79.54 94.11 75.33 96.13

Stacked [3] 77.29 96.69 68.52 92.4 72.84 99.25 75.38 98.11 78.72 93.79 74.55 96.05

Multi [2] 76.76 93.21 67.06 99.25 73.3 97.84 66.91 91.71 76.68 96.61 73 95.73

MLP [1] 61.2 94.2 61.3 90.43 51.5 98.92 57.95 96.66 72.13 91.87 64.67 94.42

FCN [1] 47.66 92.22 53.62 88.59 33.7 98.58 46.86 95.83 60.6 88.72 53.82 92.79

4 Conclusions

In this paper, we have proposed the light-weight edge enhanced network for on-
orbit semantic segmentation. By using the clustering based pruning strategy, the
models are well compressed without longtime retraining and produce competitive
results. In addition, the method uses the edge enhanced module to exploit more
useful edge information from multi-level layers. It improves the edge prediction of
targets and the overall segmentation performance simultaneously. Experimental
results show that the proposed models have a small number of parameters while
performing well on two public datasets. These models will be deployed on the
TianZhi-2 satellite which will be launched soon for on-orbit testing.
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Abstract. Compression and acceleration of convolutional neural net-
work (CNN) have raised extensive research interest in the past few years.
In this paper, we proposed a novel channel-level pruning method based
on gamma (scaling parameters) of Batch Normalization layer to compress
and accelerate CNN models. Local gamma normalization and selection
was proposed to address the over-pruning issue and introduce local infor-
mation into channel selection. After that, an ablation based beta (shift-
ing parameters) transfer, and knowledge distillation based fine-tuning
were further applied to improve the performance of the pruned model.
The experimental results on CIFAR-10, CIFAR-100 and LFW datasets
suggest that our approach can achieve much more efficient pruning in
terms of reduction of parameters and FLOPs, e.g., 8.64× compression
and 3.79× acceleration of VGG were achieved on CIFAR, with slight
accuracy loss.

Keywords: Convolutional neural network (CNN) ·
Model compression and acceleration · Pruning · Knowledge distillation

1 Introduction

In the past few years, deep learning has achieved remarkable success in com-
puter vision, especially in image classification. A lot of CNN architectures, such
as VGG [1], Inception [2], ResNet [3] and DenseNet [4], have been proposed.
It is still difficult to deploy CNN for real-time applications in edge-computing
devices with limited resources (e.g. CPU, memory, bandwidth and energy), such
as embedded devices, smart phones, wearable devices, drones, etc. Denil et al. [5]
showed that DNN with a small minority of parameters after compression can
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achieve comparable performance. Based on such theory, network pruning is
developed to make the DNN model more compact and slim with slight cost
of accuracy. Generally, pruning is exerted on a trained DNN model to remove
the unnecessary weights or channels for parameters and FLOPs reduction. The
majority of parameters and the calculation overhead are from the fully-connected
and the convolution layers, respectively. To get a well-pruned performance, the
DNN model is usually trained with �1 regularization for sparsity constraint.

In this paper, we developed a Batch Normalization (BN) layer based network
pruning approach including three contributions:

1. For the approach proposed by Liu et al. [6] with high pruning ratio, most
and even all of the channels in the deep layers could be pruned and this is
so called “over-pruning”. To address such issue and make the pruning more
balanced, we proposed local gamma (scaling parameters) normalization and
selection.

2. To relieve the potential loss brought by ignoring and simply removing the cor-
responding beta of pruned channels, we proposed ablation based beta (shifting
parameters) transfer.

3. To further improve the performance of pruned neural network models, we
proposed knowledge distillation based fine-tuning.

2 Related Works

2.1 Knowledge Distillation

Knowledge distillation attempts to extract knowledge from a deeper and more
complex teacher model, and then transfer it to a shallower and simpler student
model so that it can obtain similar performance. To this end, extracting and
transferring knowledge are the two key points of knowledge distillation.

Jimmy et al. [7] claimed that the input of the teacher model’s softmax layer
contains comprehensive supervision information, which can be considered as an
effective generalization of the knowledge learned by the neural network. There-
fore they transformed the training problem into a regression problem.

Hinton et al. [8] calculated Kullback-Leibler divergence loss between the out-
put of teacher model’s and student model’s softmax layers. They suggest that the
output of softmax layer represents the prediction probabilities of each class and
indicates the correlation between classes, which is so called “soft label”. In order
to obtain a better probability distribution, they introduced a hyper-parameter
τ called “Temperature”. However, it is hard to converge when the number of
classes is big, e.g. face recognition [9].

Mirzadeh et al. [10] proposed a two-step distillation. They found out that
student model performance degrades when the gap between student and teacher
is large. Therefore, they alleviated this shortcoming by two-step distillation with
a intermediate-sized model called “Teacher Assistant”, which is considered to
bridge the gap between student and teacher models. Their experiments confirmed
the effectiveness of the proposed approach.
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2.2 Pruning

Network pruning has been proposed to reduce the complexity of neural net-
work and address the over-fitting issue. In the early research of pruning, LeCun
et al. [11] and Hassibi et al. [12] reduced the number of connections between
neurons based on Hessian of the loss function, and their works showed that
pruning can bring better accuracy improvement than the regularization meth-
ods such as weight decay. In view of granularity, we can categorize pruning into
connection-level and channel-level pruning.

Connection-level pruning is unstructured but fine-grained. Han et al. [13]
introduced a simple method to prune the parameters whose values are lower
than a predefined threshold and then fine-tune the network with a L2 regular-
ization term. Based on the previous works, Han et al. [14] proposed a method to
address the sparse matrix issue produced by connection-level pruning. Although
such unstructured pruning can greatly reduce the redundancy of parameters,
it actually cannot lead to faster inference since most hardwares exploit regu-
lar structures in computation to achieve high throughput, and therefore the
connection-level pruning requires specialized hardware and software to achieve
theoretical acceleration.

Channel-level pruning is structured but coarse-grained. The works proposed
by Li et al. [15], He et al. [16], Luo et al. [17], Liu et al. [6], and Ye et al. [18] are
typical cases of channel-level pruning. Li et al. [15] introduced l0 regularization
to the filters to make them sparse and then pruned those filters with small l1
norm. Luo et al. [17] used greedy algorithm to minimize the output loss of each
layer. With structured pruning, neural network can be easily deployed without
any modification to the existing deep learning framework. He et al. [16] used a
LASSO regression for channel selection, which used a l1 regularization to measure
the loss between the output before and after pruning. Liu et al. [6] proposed
a channel-level pruning called “Network Slimming” by leveraging the scaling
factors gamma in BN layers to measure the importance of channels in each
layer. Then they used a global pruning strategy which firstly sorts the absolute
values of gamma across all BN layers in ascending order and then prunes the
channels with small gamma absolute value in a certain proportion. After that,
they transferred the remained parameters to a new model and fine-tuned it.

3 Methods

In this section, we firstly introduce a Batch Normalization based channel-level
pruning method and its potential drawback. Then, we introduce a Batch Nor-
malization based channel-level pruning method with local gamma normalization
and selection, ablation based beta transfer, and knowledge distillation based
fine-tuning.

3.1 Batch Normalization

Batch Normalization [19] is proposed to improve the performance and training
stability of DNN. The main idea is to normalize the inputs of each layer such
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that they have standard gaussian distribution for each batch, and then scale (by
γ) and shift (by β) the results by learning.

x̂i ← xi − μB√
σ2

B + ε
(1)

BNγ,β(xi) ← γix̂i + βi (2)

where μB and σB denote the mean and variance of the mini-batch respectively,
x̂i and BNγ,β(xi) are the normalized result of the ith input and the ith final
output of the Batch Normalization.

3.2 Batch Normalization Based Channel-Level Pruning

In the proposed approach of Liu et al. [6], the global pruning strategy will lead
to a critical issue. We did a statistics on the gamma values of each BN layer and
showed the results in Fig. 1. As shown in Fig. 1, the distribution of gamma in
each BN layer is quite different, where the line within the box, upper and lower
whisker denote average, maximum and minimum value, respectively. Take the
BN layers No. 9, 11 and 12 for example, their maximum and average gamma are
very small, i.e. all their channels will be pruned when the global pruning ratio
is set high. This is so called “over-pruning issue”.

Fig. 1. The distribution of gamma in each BN layer

Another drawback of Liu et al. is that they didn’t take the corresponding
β of the pruned γ into account, i.e. the corresponding β are simply pruned
even when β are large. According to Eq. 2, β is the parameter that shift the
normalized input after scaling, i.e. γ and β jointly defined the final output of
BN layer. When the β of pruned channels are large enough, the BN output will
have great influence to the subsequent convolution layer.
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Fig. 2. Flow chart of our method

3.3 Our Method

As shown in the Fig. 2, our method includes three stages: (1) local γ normaliza-
tion and selection, (2) ablation based β transfer, and (3) knowledge distillation
based fine-tuning. Particularly, Pruning includes two stages: Preprocessing and
Transfer. In Preprocessing, we collect the channel number of each BN layer via
local γ normalization and selection, which will be used to construct a new slim
model. Then, we transfer the retained parameters with ablation based β transfer,
from the old model to the new one in the stage of Transfer. Fine-tuning is used
to improve the accuracy of the new slim model, where we apply the proposed
knowledge distillation based fine-tuning.

Local γ Normalization and Selection. To address the over-pruning issue, we
firstly normalize the values of γ in the lth layer to [0, 1] based on the min-max
rule:

γl
normalized =

γl − γl
min

γl
max − γl

min

(3)

where γl and γl
normalized are the γ values before and after normalization respec-

tively, γl
min and γl

max are the minimum and maximum values of all the γl.

Fig. 3. The distribution of gamma after local normalization in each BN layer
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Then, we sort all the normalized γ across all the BN layers. Finally, we prune
the channels with smallest γ according to the pruning ratio ρ.

We applied local normalization to the gamma of each BN layer and showed
the result in Fig. 3. As shown in Fig. 3, the distribution of gamma after local nor-
malization is more balanced compared to Fig. 1, and all the maximum gamma
of each BN layer are normalized to 1. Due to the local min-max normalization,
we can guarantee that there will be at least one channel retained after prun-
ing. The global sort ignores the local relative information, which exactly lead
to over-pruning issue. We believe local normalization introduces local relative
information into channel selection, which makes the pruning more balanced.

Ablation Based β Transfer. According to Eq. 2, γ and β are used to scale
and shift the normalized feature map, respectively. If the γ is treated as zero,
then the feature map is only defined by the β. In such way, we can treat the
BN output of pruned channels as constant feature maps. In the convolution
operation of the following convolution layer, such constant feature maps will be
convolved and added together with the rest channels. Therefore, the influence
of such constant maps shouldn’t be ignored, especially when the corresponding
β are large enough.

Ye et al. [18] proposed an approach to absorb the corresponding β into the
following convolution layer. However, they only considered the case of ReLU acti-
vation. For the activation function like PReLU, we utilize the retained param-
eters of PReLU for non-linear mapping. The method we proposed is presented
as below and visualized in Fig. 4:

* If the subsequent convolution layer is followed by a non-BN layer:

xl+1 = σ(wl+1 ∗ xl + bl+1) (4)

where xl denotes the output of current BN layer, xl+1, σ, wl+1 and bl+1 are
output, activation function, weight and bias of the subsequent convolution
layer respectively.
Then let βl of the BN layer (the lth layer) be absorbed in the convolution
layer (the (l + 1)th layer)’s bias (bl+1)

bl+1
new = bl+1 +

a∑
(I(βl) · σ(βl)

i∑ j∑
wl+1

:,a,i,j) (5)

where bl+1 and wl+1 are the bias and weight of the subsequent convolution
layer. βl and I(βl) are the values of β and bool matrix of discarded β index in
current BN layer. Specially, wl+1

:,a,i,j denotes the filters with a input channels
and kernel size i × j.

xl+1 ≈ σ¬I(βl)(w
l+1 ∗ xl + bl+1

new) (6)

where ¬I(βl) is the negative matrix of I(βl).
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* If the subsequent convolution layer is followed by a BN layer, then the con-
volution layer’s bias doesn’t work. Therefor, we absorb β into running mean
of next BN layer:

xl+2 = σ(γl+2 · BN μl+2(wl+1 ∗ xl + bl+1) + βl+2) (7)

where xl+2, γl+2, BN μl+2(·) and βl+2 are the output, γ, normalization
by mean μ and β of the BN layer behind the subsequent convolution layer
respectively, wl+1 and bl+1 are the weight and bias of subsequent convolution
layer. Then let βl of the BN layer (the lth layer) be absorbed in the BN layer
(the (l + 2)th layer)’s running mean (μl+2)

μl+2
new = μl+2 −

a∑
(I(βl) · σ(βl)

i∑ j∑
wl+1

:,a,i,j) (8)

where μl+2 is the running mean of the BN layer behind the subsequent con-
volution layer.

xl+2 ≈ σ¬I(βl)(γ
l+2 · BN μl+2

new
(wl+1 ∗ xl + bl+1) + βl+2) (9)

Fig. 4. Consider all the parameters as ice, the ice β melts and flows through the
subsequent convolution layer(s) and is frozen into the (1) bias or (2) running mean.
The blue lines denote the convolution output of corresponding channels and filters.
(Color figure online)
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Knowledge Distillation Based Fine-Tuning. In fine-tuning process, we use
knowledge distillation [7] to help the pruned model restore the accuracy as much
as possible. The total loss of fine-tuning includes classification loss (L(·)) with
ground-truth label, and regression loss (mean square error, MSE) with teacher
model’s output. The hyperparameter ξ is used to control the ratio between the
classification and regression loss. The fine-tuning objective function is given as
below:

min
1
n

n∑

i=1

[ξ · L(Hs(xi), yi) +
(1 − ξ)

2
(Hs(xi) − Ht(xi))2] (10)

where n, xi and yi, H(·) are the number of samples, input, ground-truth label
of the ith sample and network mapping function, respectively, the subscripts s
and t denote student model and teacher model. We select the models trained
without �1 regularization (sparsity constraint) as our teacher models.

Since distillation is hard to converge when the number of classes is big [9], the
fine-tuning objective function of models for face recognition is given as below:

min
1
n

n∑

i=1

[ξ · L(Hs(xi), yi) +
(1 − ξ)

2
(Hfeature

s (xi) − Hfeature
t (xi))2] (11)

where Hfeature
∗ (·) denotes the mapping function of neural network for the face

feature output.

4 Experiments and Results

4.1 Datasets

CIFAR. Both CIFAR-10 and CIFAR-100 datasets consist of 60,000 32 × 32
colour images, including 50,000 training images and 10,000 test images. CIFAR-
10 images are from 10 classes while CIFAR-100 images are from 100 classes.

CASIA-WebFace & LFW. The CASIA-WebFace consists of 49,4414 color
face images from 10,575 classes. The duplicate subjects in CASIA-WebFace and
LFW were removed. CASIA-WebFace + LFW is a suitable combination for large
scale face recognition in the wild. The LFW dataset contains more than 13,000
images of faces collected from the web.

4.2 Models

VGG. We select two variants [20,21] of VGG-16 [1] as representatives of plain
CNN to validate our method on CIFAR-10 and CIFAR-100. Both variants intro-
duce Batch Normalization layer into VGG-16, while the variant No. 1 [20] adds
two more convolution layers and remains only one fully-connection layer, No.
2 [21] introduce Dropout into the model. In our experiments of VGG-16, the
variant No. 1 and No. 2 are the same with Liu’s [6] and Li’s [15], respectively.
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ResNet. We select ResNet-164-pre-activation [22] as a representative of Resid-
ual CNN to validate our method on CIFAR-10 and CIFAR-100. The basic con-
volution block of the model is BN → Activation → Convolution, instead of
Convolution → Activaiton → BN . To compare with the results of Li et al. [15]
directly, we also apply our method to ResNet-56 [3].

SphereFace. We select SphereFace20 [23] with Batch Normalization to validate
our method on CASIA-WebFace and LFW.

4.3 Hyperparameters

In CIFAR dataset, random crop, mirror, and normalization are applied to the
samples and we optimize all the models for 160 epochs by SGD-momentum-
nesterov with initial learning rate of 0.1, momentum of 0.9, weight decay of
0.0001, l1 regularization penalty of 0.0001 and reduce the learning rate by cosine
annealing of SGDR. The same data augmentations, momentum and learning
rate scheduler are reserved in fine-tuning for 60 epochs, the initial learning rate,
l1 regularization penalty and weight decay are changed respectively to 0.01, 0,
0. However, the loss ratio of knowledge distillation should vary with the pruning
ratio, we usually set the loss ratio equal to the pruning ratio.

In CASIA-WebFace dataset, only mirror and normalization are applied to the
samples and the models are trained for 28 epochs by SGD-momentum-nesterov
with initial learning rate of 0.05, momentum of 0.9, weight decay of 0.0005, l1
regularization penalty of 0.0001 and the learning rate is reduced by 0.1 at the
16th and 24th epochs. The same data augmentations, momentum and weight
decay are used in fine-tuning for 28 epochs, the initial learning rate and l1
regularization penalty are changed respectively to 0.0001, 0. And the learning
rate is reduced by cosine annealing of SGDR. For all the BN layers, we initialize
γ and β to 0.5 and 0 respectively.

4.4 Results

As shown in the Table 1, when the pruning ratio was set as 70%, the model
pruned with our local γ normalization and selection achieved 6.19% error on
CIFAR-10 dataset, without any additional process. While ablation based β trans-
fer and knowledge distillation based fine tuning can further reduce the error rate

Table 1. ResNet control experiment on CIFAR10

Model Test error (%) Ablation based β transfer Knowledge distillation

ResNet 6.19

6.07 (−0.12) �
5.61 (−0.58) �
5.41 (−0.78) � �
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Table 2. Performance on CIFAR-10

VGG16 ResNet164

ρ (%) Error (%) Params (M) FLOPs (×108) ρ (%) Error (%) Params (M) FLOPs (×108)

Liu [6] 0 6.34 20.04 7.97 0 5.42 1.70 4.99

70 6.20 2.30 3.91 40 5.08 1.44 3.81

60 5.27 1.10 2.75

Ours 0 6.33 20.04 7.97 0 5.32 1.72 5.00

70 5.96 2.32 3.83 40 4.96 1.00 2.28

60 5.07 0.61 1.33

to 6.07% and 5.61%, respectively, combination of the two processes reduced the
error rate to 5.41%. Therefore, in the following experiments, both ablation based
β transfer and knowledge distillation were applied after the γ based pruning.

Table 3. Performance on CIFAR-100

VGG16 ResNet164

ρ (%) Error (%) Params (M) FLOPs (×108) ρ (%) Error (%) Params (M) FLOPs (×108)

Liu [6] 0 26.74 20.08 7.97 0 23.37 1.73 4.99

50 26.52 5.00 5.01 40 22.87 1.46 3.33

60 23.91 1.21 2.47

Ours 0 26.42 20.08 7.97 0 23.37 1.74 5.00

50 25.87 4.94 4.07 40 22.51 1.02 2.09

60 23.31 0.63 1.32

Tables 2 and 3 show the performance of our approach applied to prune a
variant of VGG-16 [20] and ResNet-164-preactivation [22] on CIFAR-10 and
CIFAR-100, with different pruning ratios ρ. The performance of Liu et al. [6]
is also included for comparison. One can observe from the two tables that our
pruning approach can achieve comparable accuracy with Liu’s approach, but
with much higher reduction in number of parameters and FLOPs. Take ResNet
for example, when prunning ratio is set as 60%, the sizes of our pruned model for
CIFAR-10 and CIFAR-100 are 0.61M and 0.63M, respectively, which are roughly
half the size of the models pruned by Liu’s approach. Similar conclusions can also
be suggested for FLOPs. Regarding to the performance of ResNet on CIFAR-
100 database, while significantly higher reduction in number of parameters and
FLOPs were achieved, our approach achieved even better performance than Liu’s
work in terms of test error.

Table 4 lists the performance of another variant of VGG16 [21] and ResNet56
[3] on CIFAR-10 without accuracy loss, together with that of Li et al. [15] and
Luo et al. [17]. The experimental results of Li are from their paper while Luo’s
are from our implementation. Li’s channel-level pruning is layer-wise, where
Pruned-A is to prune each layer with fixed pruning ratio and skip some pruning-
sensitive layers while Pruned-B is to prune the layers of different depths with
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Table 4. Comparison with other channel-level pruning on CIFAR-10 without accuracy
loss

Method VGG16

Pruning ratio or Policy Error (%) Params (M) Speedup

Li [15] 0 6.75 15.00 1×
Pruned-A 6.60 5.40 1.52×

Luo [17] (our impl.) 0 6.31 14.99 1×
50 6.24 4.09 2.04×

Ours 65 6.20 1.98 2.24×
Method ResNet56

Pruning ratio or Policy Error (%) Params (M) Speedup

Li [15] 0 6.96 0.85 1×
Pruned-B 6.94 0.73 1.37×

Luo [17] (our impl.) 0 6.00 0.86 1×
40 5.99 0.51 1.62×

Ours 50 5.96 0.42 1.99×

different pruning ratio and skip more pruning-sensitive layers. Li’s FLOPs is only
counted from convolution and fully-connection layers while ours is from the whole
neural network, hence we use speedup instead of FLOPs to measure acceleration.
Luo’s channel-level pruning is also layer-wise but convolution-layer-only, they use
greedy algorithm to obtain a minimum subset of filters in convolution layers.
However, Luo takes global average pooling layer in place of fully-connection
layers for VGG16, which we don’t consider as pruning and we didn’t take it into
our implementation. As shown in the table, without accuracy loss on VGG16
and ResNet56, our method achieves 86.79% and 51.46% reduction in parameters
while 55.25% and 49.87% reduction in FLOPs, respectively.

Table 5. Performance on LFW

Model ρ (%) Error (%) Parameters (M) FLOPs (×108)

SphereFace20 0 1.00 22.68 35.04

30 1.20 19.55 24.23

40 1.27 18.34 21.53

50 1.33 17.23 18.65

Table 5 lists the performance on LFW for SphereFace20 using our approach,
when the network was trained using CASIA-WebFace. As shown in the table, our
approach can reduce around 24% of the parameters and 47% of the FLOPs, when
the pruning ratio was set as 50%, with a cost of 0.33% increase in classification
error.
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5 Conclusion

We have proposed a Batch Normalization based channel-level pruning method
with local normalization and selection, ablation based β transfer and knowledge
distillation based fine-tuning. Our approach firstly normalize the values of γ at
each BN layer and then prune the channels whose γ values are smaller than a
layer adaptive threshold. After channel pruning, ablation based β transfer, and
knowledge distillation based fine tuning are also applied to further improve the
performance of pruned model. The experimental results on CIFAR-10, CIFAR-
100 and LFW clearly suggest that our approach can achieve much efficient prun-
ing in terms of reduction in parameters and FLOPs. Take ResNet for example,
when pruning ratio is set as 60%, the sizes of our pruned model for CIFAR-10
and CIFAR-100 are 0.61M and 0.63M, respectively, which are roughly half the
size of the models pruned by Liu’s approach. Similar conclusions can also be
suggested for FLOPs. Compared to other channel-level pruning [15,17] with-
out accuracy loss on VGG16 and ResNet56, our method achieves 86.79% and
51.46% reduction in parameters while 55.25% and 49.87% reduction in FLOPs,
respectively.
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Abstract. The neural network quantization is highly desired procedure
to perform before running the neural networks on mobile devices. Quan-
tization without fine-tuning leads to accuracy drop of the model, whereas
commonly used training with quantization is done on the full set of the
labeled data and therefore is both time- and resource-consuming. Real
life applications require simplification and acceleration of the quantiza-
tion procedure that will maintain the accuracy of full-precision neural
network, especially for modern mobile neural network architectures like
Mobilenet-v1, MobileNet-v2 and MNAS.

Here we present two methods to significantly optimize the training
with the quantization procedure. The first one is introducing the trained
scale factors for discretization thresholds that are separate for each filter.
The second one is based on mutual rescaling of consequent depth-wise
separable convolution and convolution layers. Using the proposed tech-
niques, we quantize the modern mobile architectures of neural networks
with the set of train data of only ∼10% of the total ImageNet 2012 sam-
ple. Such reduction of the train dataset size and a small number of train-
able parameters allow to fine-tune the network for several hours while
maintaining the high accuracy of the quantized model (the accuracy drop
was less than 0.5%). The ready-for-use models and code are available at:
https://github.com/agoncharenko1992/FAT-fast-adjustable-threshold.

Keywords: Machine learning · Quantization · Distillation ·
Neural networks

1 Introduction

Mobile neural network architectures [6,18,21] allow running AI solutions on the
mobile devices due to the small size of models, low memory consumption, and
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high processing speed while providing a relatively high level of accuracy in the
image recognition tasks. In spite of their high computational efficiency, these net-
works continuously undergo the further optimization to meet the requirements
of edge devices. One of the promising optimization directions is to use quan-
tization to int8, which is natively supported by the mobile processors. From a
practical point of view, at the moment there is only one TF-lite framework1

which allows the usage of quantized neural networks. It applies int8 quantiza-
tion, either with or without training. Both methods have the certain advantages
and disadvantages.

Quantization of the neural network without training is a fast process as in this
case a pre-trained model is used. However, the accuracy of the resultant network
is particularly low compared to the one typically obtained in the commonly used
mobile architectures of neural networks [11]. On the other hand, quantization
with training is a resource-intensive task which results in the low applicability
of this approach.

The current article suggests a method which allows speeding up the procedure
of training with quantization and at the same time preserves a high accuracy of
results for 8-bit discretization.

2 Related Work

In general case the procedure of neural network quantization implies the dis-
cretization of weights and input values of each layer. Mapping from the space
of float32 values to the space of signed integer values with n significant digits is
defined by the following formulae:

Sw =
2n − 1

Tw
(1)

Tw = max|W | (2)

Wint = �Sw · W � (3)

Wq = clip(Wint,−(2n−1 − 1), 2n−1 − 1)
= min(max(Wint,−(2n−1 − 1)), 2n−1 − 1)

Here � � is rounding to the nearest integer number, W – weights of some layer
of the neural network, T – quantization threshold, max calculates the maxi-
mum value across all axes of the tensor. Input values can be quantized both to
signed and unsigned integer numbers depending on the activation function on
the previous layer.

Si =
2n − 1

Ti
(4)

1 https://www.tensorflow.org/lite.

https://www.tensorflow.org/lite
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Ti = max|I| (5)

Iint = �Si · I� (6)

Isigned
q = clip(Iint,− (2n−1 − 1), 2n−1 − 1) (7)

Iunsigned
q = clip(Iint, 0, 2n − 1) (8)

After all inputs and weights of the neural network are quantized, the procedure of
convolution is performed in a usual way. It is necessary to mention that the result
of operation must be in higher bit capacity than the operands. For example, in
Ref. [9] the authors use a scheme where weights and activations are quantized
to 8-bits while accumulators are 32-bit values.

Potentially the quantization threshold can be calculated on the fly, which,
however, can significantly slow down the processing speed on a device with the
low system resources. It is one of the reasons why the quantization thresholds
are usually calculated beforehand in a calibration procedure. A set of data is
provided to the network input to find the desired thresholds (in the example
above - the maximum absolute value) of each layer. The calibration dataset
contains the most typical data for the certain network and this data does not
have to be labeled according to the procedure described above.

2.1 Quantization with Knowledge Distillation

The knowledge distillation method was proposed by Hinton [5] as an approach
to neural network quality improvement. Its main idea is training of neural net-
works with the help of the pre-trained network. In Refs. [14,15] this method
was successfully used in the following form: a full-precision model was used as
a model-teacher, and the quantized neural network - as a model-student. Such
paradigm of learning gives not only a higher quality of the quantized network
inference, but also allows reducing the bit capacity of the quantized data while
keeping an acceptable level of accuracy.

2.2 Quantization Without Fine-Tuning

Some frameworks allow using the quantization of neural networks without fine-
tuning. The most known examples are TensorRT2, Tensorflow [1] and Distiller
framework from Nervana Systems3. However, in the last two models the calcu-
lation of quantization coefficients is done on the fly, which can potentially slow
down the operation speed of neural networks on the mobile devices. In addi-
tion, to the best of our knowledge, the TensorRT framework does not support
quantization of neural networks with the architectures like MobileNet.

2 https://developer.nvidia.com/tensorrt - NVIDIA TensorRTTM platform, 2018.
3 https://github.com/NervanaSystems/distiller.

https://developer.nvidia.com/tensorrt
https://github.com/NervanaSystems/distiller


352 A. Goncharenko et al.

2.3 Quantization with Training/Fine-Tuning

One of the main focus points of research publications over the last years is
the development of methods that allow to minimize the accuracy drop after
the neural network quantization. The first results in this field were obtained in
Refs. [4,7,16,22]. The authors used the Straight Through Estimator (STE) [3]
for training the weights of neural networks into 2 or 3 bit integer representation.
Nevertheless, such networks had substantially lower accuracy than their full-
precision analogs.

The most recent achievements in this field are presented in Refs. [13,23] where
the quality of trained models is almost the same as for the original architectures.
Moreover, in Ref. [23] the authors emphasize the importance of the quantized
networks ensembling which can potentially be used for binary quantized net-
works. In Ref. [9] the authors report the whole framework for modification of
the network architecture allowing the further launch of learned quantized models
on the mobile devices.

In Ref. [2] the authors use the procedure of threshold training which is sim-
ilar to the method suggested in our work. However, the reported approach has
substantial shortcomings that prevent its usage for fast conversion of the pre-
trained neural network on the mobile devices. First of all there is a requirement
to train the threshold on the full ImageNet dataset [17], and second of all there
are no examples demonstrating the accuracy of networks which are considered
to be the standards for the mobile platforms.

In the current paper we propose a novel approach to set the quantization
threshold with the fast fine-tuning procedure on a small set of unlabeled data
that allows to overcome the main drawbacks of the known methods. We demon-
strate the performance of our approach on the modern mobile neural network
architectures (MobileNet-v2, MNAS).

3 Method Description

Under the certain conditions (see Fig. 1) the processed model can significantly
degrade during the quantization process. The presence of outliers for weights
distribution shown in Fig. 1 forces to choose a high value for thresholds that
leads to accuracy degradation of the quantized model.

The outliers can appear due to several reasons, namely specific features of
the calibration dataset such as class imbalance or non-typical input data. They
also can be a natural feature of the neural network, that are, for example, weight
outliers formed during training or the reaction of some neurons on the features
with the maximum value.

Overall it is impossible to avoid the outliers completely because they are
closely associated with the fundamental features of the neural networks. How-
ever, there is a chance to find a compromise between the value of threshold and
distortion of other values during quantization, and thus get a better quality of
the quantized neural network.
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Fig. 1. Distribution of weights of ResNet-50 neural network before the quantization
procedure (on the left) and after it (on the right). The number of values appeared in
bins near zero increased significantly.

3.1 Quantization with the Threshold Fine-Tuning

Differentiable Quantization Threshold. In Refs. [3,7,22] it is shown that
the Straight Through Estimator (STE) can be used to define a derivative of a
function which is non-differentiable in the usual sense (round, sign, clip, etc.).
Therefore, the value which is an argument of this function becomes differentiable
and can be trained with the method of steepest descent, also called the gradient
descent method. Such variable is a quantization threshold and its training can
directly lead to the optimal quality of the quantized network. This approach can
be further optimized through some modifications as described below.

Batch Normalization Folding. Batch normalization (BN) layers play an
important role in training of neural networks because they speed up the train
procedure convergence [8]. Before making the quantization of neural network
weights, we suggest to perform the batch normalization folding with the net-
work weights similar to the method described in Ref. [9]. As a result, we obtain
the new weights calculated by the following formulae:

Wfold =
γW√
σ2 + ε

(9)

bfold = β − γμ√
σ2 + ε

(10)

where μ is moving average, σ is moving deviation, γ and β are learnable batch-
norm parameters.

We apply quantization to weights which were fused with the BN layers
because it simplifies the discretization and speeds up the neural network infer-
ence. Further in this article the folded weights will be implied (unless specified
otherwise).
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Threshold Scale. All network parameters except the quantization thresholds
are fixed. The initial value of thresholds for activations is the value calculated
during calibration. For weights it is the maximum absolute value. Quantization
threshold T is calculated as

T = clip(α,minα,maxα) · Tmax (11)

where α is a trainable parameter which takes values from minα to maxα with
the saturation. The typical values of these parameters are found empirically,
which are equal to 0.5 and 1.0 correspondingly. Introducing the scale factor
simplifies the network training since the update of thresholds is done with the
different learning rates for different layers of the neural network as they can have
various orders of values. For example, values on the intermediate layers of VGG
network [20] may increase up to 7 times in comparison with the values on the
first layers.

Therefore the quantization procedure can be formalized as follows:

Tadj = clip(α, 0.5, 1) · Ti (12)

SI =
2n − 1
Tadj

(13)

Iq = �I · SI� (14)

The similar procedure is performed for weights. The current quantization scheme
has two non-differentiable functions, namely round and clip. The derivatives of
these functions can be defined as:

Iq = �I� (15)

dIq

dI
= 1 (16)

Xc = clip(X, a, b) (17)

dXc

dX
=

{
1, if X ∈ [a, b]
0, otherwise

Bias quantization is performed similar to Ref. [9]:

bq = clip(�Si · Sw · b�,− (231 − 1), 231 − 1) (18)

Training of Asymmetric Thresholds. Quantization with the symmetric
thresholds described in the previous sections is easy to implement on the cer-
tain devices, however, it uses an available spectrum of integer values inefficiently
which significantly decreases the accuracy of quantized models. The authors in
Ref. [9] effectively implemented quantization with the asymmetric thresholds for
mobile devices, so it was decided to adapt the described above training procedure
for the asymmetric thresholds.
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There are left (Tl) and right (Tr) range limits for asymmetric thresholds.
However, for quantization procedure it is more convenient to use other two val-
ues: left limit and width, and train these parameters. If the left limit is equal to
0, then scaling of this value has no effect. That is why a shift for the left limit is
introduced. It is calculated as:

R = Tr − Tl (19)

Tadj = Tl + clip(αT ,minαT
,maxαT

) · R (20)

The coefficients minαT
, maxαT

are set empirically. They are equal to −0.2 and
0.4 in the case of signed variables, and to 0 and 0.4 in the case of unsigned. The
range width is selected in a similar way. The values of minαR

, maxαR
are also

empiric and equal to 0.5 and 1.

Radj = clip(αR,minαR
,maxαR

) · R (21)

Vector Quantization. Sometimes due to the high range of weight values it is
possible to perform the discretization procedure more softly, using the different
thresholds for different filters of the convolutional layer. Therefore, instead of
a single quantization factor for the whole convolutional layer (scalar quantiza-
tion) there is a group of factors (vector quantization). This procedure does not
complicate the realization on devices, however, it allows increasing the accuracy
of the quantized model significantly. The considerable improvement of accuracy
is observed for the models with the architecture using the depth-wise separable
convolutions. The most known networks of this type are MobileNet-v1 [6] and
MobileNet-v2 [18].

3.2 Training on the Unlabeled Data

Most articles related to the neural network quantization use the labeled dataset
for training the discretization thresholds or directly the network weights. In
the proposed approach it is recommended to discard the initial labels of train
data which significantly speeds up the transition from a trained non-quantized
network to a quantized one as it reduces the requirements to the train dataset.
We also suggest to optimize the root-mean-square error (RMSE) between the
outputs of the quantized and original networks before applying the softmax
function, while leaving the parameters of the original network unchanged.

The suggested above technique can be considered as a special type of quanti-
zation with the distillation [14] where all components related to the labeled data
are absent.

The total loss function L is calculated by the following formula:

L(x;WT ,WA) = αH(y, zT ) + βH(y, zA) + γH(zT , zA) (22)

In our case α and β are equal to 0, and

H(zT , zA) =

√√√√ N∑
i=1

(zT
i − zA

i )2

N
(23)
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Fig. 2. Scaling the filters of DWS + Convolution layers where the output of DWS +
Convolution remains unchanged. Numbers in square brackets denote the dimension of
the scaling factors. WDWS represents the weights of the DWS layer, and WCONV - the
weights of the convolution layer. Note that the scaling factor SW > 0.

where:

– zT is the output of non-quantized neural network,
– zA is the output of quantized neural network,
– N is batch size,
– y is the label of x example.

3.3 Quantization of the Depth-Wise Separable Convolution

During the quantization of models having the depth-wise separable convolu-
tion layers (or DWS-layers) it was noticed that for some models (MobileNet-v2,
MNasNet with the lower resolution of input images) the vector quantization
gives much higher accuracy than the scalar quantization. Besides, the usage of
vector quantization instead of scalar only for DWS-layers gives the accuracy
improvement.

In contrast to the scalar quantization, the vector quantization takes into
account the distribution of weights for each filter separately - each filter has its
own quantization threshold. If we perform the rescaling of values so that the
quantization thresholds become identical for each filter, then the procedures of
scalar and vector quantization of the scaled data become equivalent.

For some models this approach may be inapplicable because any non-linear
operations on the scaled data as well as addition of the data having the different
scaling factors are not allowed. Scaling the data can be made for the particular
case DWS → [ReLU ] → Conv (see Fig. 2). In this case only the weights of the
model change.
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Scaling the Weights for MobileNet-V2 (with ReLU6). As it is men-
tioned above, the described method is not applicable for models which use the
non-linear activation functions. In the case of MobileNet, there is the ReLU6 acti-
vation function between the convolutional operations. When scaling the weights
of a DWS-filter, the output of the DWS-layer is also scaled. One way to keep the
result of the neural network inference unchanged is to modify the ReLU6 func-
tion, so that the saturation threshold for the k-th channel is equal to 6 · SW [k].
However, it is not suitable for the scalar quantization technique.

In practice, the output data for some channels of a DWS-layer Xk may be
less than 6.0 on a large amount of input data of the network. It is possible to
make the rescaling for these channels, but with the certain restrictions. The
scaling factor for each of these channels must be taken so that the output data
for channels Xk does not exceed the value 6.0.

If Xk < 6 and Xk · SW [k] < 6, then

min(6,Xk · SW [k]) = SW [k] · min(6,Xk) (24)

Consequently:

ReLU6(Xk · SW [k]) = SW [k] · ReLU6(Xk) (25)

We propose the following scheme of scaling the DWS-filter weights.

1. Find the maximum absolute value of weights for each filter of a DWS-layer.
2. Using the set of calibration data, determine the maximum values reached by

each channel of the output of the DWS-layer (before applying ReLU6).
3. Mark the channels where the output values exceed 6.0 or are close to it as

“locked”. The corresponding filters of the DWS layer must stay unchanged.
We propose to lock the channels where the output data is close to the value
6.0, because it could reach this value if we use a different calibration dataset.
In this article we consider 5.9 as the upper limit.

4. Calculate the maximum absolute value of weights for each of the locked filters
T (wfixed

i ). The average of these maximum values T0 = T (wfixed
i ) becomes

a control value that is used for scaling the weights of non-locked filters. The
main purpose of such choice is to minimize the difference between the thresh-
olds of different filters of the DWS-layer.

5. Find the appropriate scaling factors for the non-locked channels.
6. Limit these scaling factors so that the maximum values on the DWS-layer

output for non-locked channels do not exceed the value 6.0.

4 Experiments and Results

4.1 Experiments Description

Researched Architectures. The procedure of quantization for architectures
with the high redundancy is practically irrelevant because such neural networks
are hardly applicable for the mobile devices. The current work is focused on the
experiments on the architectures which are actually considered to be a standard
for mobile devices (MobileNet-v2 [18]), as well as on more recent ones (MNas-
Net [21]). All architectures are tested using the 224 × 224 spatial resolution.
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The Training Procedure. As it is mentioned above in the Sect. 3.2 (“Train-
ing on the unlabeled data”), we use RMSE between the original and quantized
networks as a loss function. Adam optimizer [10] is used for training, and cosine
annealing [12] with the reset of optimizer parameters - for the learning rate.
Training is carried out on approximately 10% part of the ImageNet dataset [17].
Testing is done on the validation set. 100 images from the training set are used
as the calibration data. Training takes approximately 5 h (6-8 epochs depending
on the network) on Nvidia GeForce GTX 1080 Ti, and 50 h on the same graphic
card when training with the quantization from scratch.

4.2 Results

The quality of network quantization is represented in the Tables 1 and 2.

Table 1. Quantization in the 8-bit scalar mode.

Architecture Symmetric thresholds, % Asymmetric thresholds, % Original accuracy, %

MobileNet v2 8.1 19.86 71.55

MNas-1.0 72.42 73.46 74.34

MNas-1.3 74.92 75.30 75.79

Experimental results show that the scalar quantization of MobileNet-v2 has a
very poor accuracy. A possible reason of such quality degradation is the usage of
ReLU6 activation function in the full-precision network. The negative influence
of this function on the process of network quantization is mentioned in Ref. [19].
In the case of using the vector procedure of thresholds calculation, the accuracy of
quantized MobileNet-v2 network and other researched neural networks is almost
the same as the original one.

For implementation, the Tensorflow framework [1] is chosen because it is
rather flexible and convenient for the further porting to mobile devices. The pre-
trained networks are taken from Tensorflow4 repository. To verify the results,
the program code and quantized scalar models in the .lite format, ready to run
on the mobile phones, are presented in the repository specified in the abstract.

Table 2. Quantization in the 8-bit vector mode.

Architecture Symmetric thresholds, % Asymmetric thresholds, % Original accuracy, %

MobileNet v2 71.11 71.39 71.55

MNas-1.0 73.96 74.25 74.34

MNas-1.3 75.56 75.72 75.79

4 https://github.com/tensorflow/tensorflow/blob/master/tensor-flow/lite/g3doc/
models.md - the image classification (Quantized Models).

https://github.com/tensorflow/tensorflow/blob/master/tensor-flow/lite/g3doc/models.md
https://github.com/tensorflow/tensorflow/blob/master/tensor-flow/lite/g3doc/models.md


Uniform Quantization of Non-redundant NN 359

The algorithm described in the Sect. 3.3 (“Quantization of the depth-wise
separable convolution”) gives the following results. After performing the scalar
quantization of the original MobileNetV2 model, its accuracy becomes low (the
top-1 value is about 1.6%). Applying the weights rescaling before the quantiza-
tion increases the accuracy of the quantized model up to 67% (the accuracy of
the original model is 71.55%5). To improve the accuracy of the quantized model
we use fine-tuning of weights for all filters and biases. Fine-tuning is implemented
via the trainable point-wise scale factors where each value can vary from 0.75
to 1.25. The intuition behind this approach is to compensate the disadvantages
of the linear quantization by slight modification of weights and biases, so some
values can change their quantized state. As a result, fine-tuning improves the
accuracy of the quantized model up to 71% (without training the quantization
thresholds). Fine-tuning procedures are the same as described in the Sect. 4.1.

5 Conclusion

This paper demonstrates the methodology of the neural network quantization
with fine-tuning. The quantized networks obtained with the help of our method
demonstrate a high accuracy that is proved experimentally. Our work shows
that setting a quantization threshold as multiplication of the maximum threshold
value and the trained scaling factor, and also training on a small set of unlabeled
data allow using the described method of quantization for fast conversion of the
pre-trained models to the mobile devices.
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Abstract. One of the most important steps in training a neural network
is choosing its depth. Theoretically, it is possible to construct a complex
decision-making function by cascading a number of shallow networks.
It can produce a similar in accuracy result while providing a significant
performance cost benefit. In practice, at some point, just increasing the
depth of a network can actually decrease its performance due to over-
learning. In literature, this is called “vanishing gradient descent”.

Vanishing gradient descent is observed as a vanishing decrease of mag-
nitudes of gradients of weights for each subsequent layer, effectively pre-
venting the weight from changing its value in the lower layers of a deep
network when applying the backward propagation of errors algorithm.

There is an approach called Residual Network (ResNet) to solve this
problem for standard convolutional networks. However, the ResNet solves
the problem only partially, as the resulting network is not sequential, but
is an ensemble of shallow networks with all drawbacks typical for them.

In this article, we investigate a convolutional network with fully con-
nected layers (so-called network in network architecture, NiN) and sug-
gest another way to build an ensemble of shallow networks. In our case,
we gradually reduce the number of parallel connections by using sequen-
tial network connections.

This allows to eliminate the influence of the vanishing gradient descent
and to reduce the redundancy of the network by using all weight coeffi-
cients and not using residual blocks as ResNet does.

For this method to work it is not required to change the network
architecture, but only needed to properly initialize its weights.
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Vanishing gradient descent
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1 Introduction

Recently, the set of commonly used image processing methods has changed sig-
nificantly, and these days the main part of it consists of fast and scalable convo-
lutional neural networks (CNN) [1,2]. CNN allowed to solve many challenging
image processing tasks, such as pattern recognition [3] and object detection [4–
9]. The use of a fully connected network as a convolution kernel, as in NiN [10]
(Fig. 1) has proven to be useful for large strides [11], which is impossible for clas-
sical networks due to the aliasing effect [12,13], and also due to loss of spatial
information in terminal layers as a result of pooling. The stride length can be
chosen equal to the length of a convolution window [11], significantly reducing
amount of convolutional levels. The convolution kernels can be set up with a
required amount of layers. Similar to classical networks, for convolution kernels
with large number of layers the decrease in gradient becomes noticeable when
training a network with the backpropagation algorithm. This effect is more pro-
nounced, the lower the level of the network. With an even greater increase in the
number of layers, the opposite effect occurs when the performance of the network
becomes worse than in its variation with lower depth. This can be explained by
the fact that the lower layers lose their ability to be trained, but the higher layers
are already trained with the data from the previous stages.

Investigating networks like ResNet [14] we discovered, that in spite of lower
actual depth and presence of multiple shallow networks in ensemble [15], these
networks have a good generalization ability even with large number of internal
parameters; they also do not degrade with increase of depth until a certain
threshold. Based on our analysis of such networks, their applicability to NiN type
networks, and also possibility to transform a set of shallow networks to a single
sequential architecture, we have developed an approach, when, instead of parallel
Identity functions, like connections of residual blocks in ResNet, the identity
functions are embedded in useful connections of a fully connected network itself,
with their subsequent gradual and natural weakening in the process of network
training.

Our solution demonstrates that a network can be trained and not to be satu-
rated even with large number of layers in each fully connected convolution kernel.
Performance of a middle-sized neural network (with up to 30 layers) in terms
of its Loss error level, appears to be higher comparing to other networks with
lower depth. Very deep networks (with up to 150 layers) show similar results,
but converge much slower. As for standard networks, convergence halts very fast
for networks with high and even middle depth.

2 Related Work

Effects of vanishing and exploding gradients are very important for neural net-
works. This problem mostly occurs when modeling long-term dependencies in
recurrent neural networks. In [16] it is shown that simple initialization of the
matrix of a recurrent neural network as a unit matrix solves the problem of
vanishing gradients and makes it possible to model long-term connections.
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Fig. 1. Architecture of network in network, NiN

A similar approach was taken in [17], where in the baseline version an update
matrix of a hidden state of a recurrent network was fixed as a unit matrix during
training.

Using a unit matrix allows to preserve distances and, particularly, the length
of the gradient between layers, making training smoother. In some publications,
this restriction is not so strict and a unitary matrix is chosen. The most sim-
ple and obvious way to achieve that would be to replace the matrix with the
closest unitary at each step of training, but this would be computationally inef-
ficient. [18] proposed a method of parametrization of a set of unitary matrices.
This idea was developed further in [19] and, based on [20] a method of param-
eterization of a subset of unitary matrices was suggested, making it possible to
find a balance between computational complexity and the number of parameters.
In [21] another method was suggested with a requirement not to step outside of
the set of unitary matrices.

The type of matrix of a neural network layer is extremely important for
solving the vanishing gradients problem. However, as number of layers grows, it is
also important to account for an activation function. All aforementioned methods
consider only the matrix. In [22] it was suggested how to select an architecture
and initialize a network, and also how to choose an activation functions, for
data, distributed with (μ, σ) at input, to have the same expected value and
standard deviation, while also being stable, meaning that for a small deviation of
parameters (μ, σ) these characteristics at the output closely approach the initial
(μ, σ). This way it is possible to build fully connected networks of arbitrary size
not worrying about the problem of vanishing gradients.

In publications [23–30] neural networks are investigated from the point of
view of mean field theory and of their spectra of layer matrices. There are several
important conclusions from these papers. First, recurrent and fully connected
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networks behave similarly from the point of view of mean field theory, which
means that the approach to initialization and choosing an activation function,
developed for recurrent neural networks, can also be used for fully connected
networks and vice versa, and differences between them decrease with depth of
a network. Second, matrix initialization is the most important procedure. Sig-
nificant improvement in performance and training stability is achieved if, when
initializing, the matrix, described in these papers (Jacobian), has spectrum close
to 1. Disregarding non-linearity of an activation function, this means that eigen-
values of the layer matrix should be close to 1 at initialization. However, the
impact of an activation function grows exponentially with the depth of a net-
work. Third, not any function can be used for a very deep (more than 1000 layers)
fully connected network. An example of such activation function can be the rec-
tified linear unit (RELU), while tanh can be efficiently used if initialization is
done correctly.

3 Description of the Network

Referencing the approach for standard CNN in [31] we have developed a method
for networks with fully connected kernels, which does not employ residual blocks,
but partially solves the problem of vanishing gradient descent and uses shallow
networks only at the first period of training, the step, when gradient increases
significantly.

Let’s look at a simple case of connections between layers of a fully connected
kernel of a convolutional network, when the weight matrix between layers is
square.

In this case the output of the layer Ln+1 is

xl+1 = σ(W 1xl) = σ((W 0 + Sn)xl) = σ(W 0xl + Snxl) (1)

where σ is a non-linear transformation leaky RELU, W 0 ∈ Rnxn, w0ii = 0 for
each i, W 1 ∈ Rnxn, w1ii = λ for each i, λ is a constant, Sn = diag(λ) = λI is
the scalar matrix.

Matrix Sn is analogous to the residual learning Identity in the case of λ = 1.0,
provides lossless transferring of data between layers, and also, during training,
reduces the impact of vanishing descent while calculating gradient.

If a leaky RELU was chosen as the activation function, the parameter λ equal
to 1.0, and, considering that xl is a positive vector and weights W 1 besides the
main diagonal, are very small, then the Eq. 1 becomes equivalent to the standard
equation for residual networks with only one layer inside (we do not use more
than one level in the same block)

xl+1 = σ(W 0xl + Snxl) ≈ σ(W 0xl) + Inxl ≈ σ(W 0xl) + xl (2)

From this equation we can conclude that data from the very first layer of
the network (raw image data) flows throughout the whole network to the final
layer of each fully connected convolution kernel, making the network calculate
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residual F(x) := H(x) − x as in [14], where, in our case, F(x) ≡ σ(W 0xl),
H(x) ≡ xl+1 and x ≡ xl.

In general, the amount of connections is determined by the amount of neurons
in the layer Ln, or in the layer Ln+1 if it has fewer neurons, and the connections
are chosen in parallel and only once when initializing the network. Weights for
those connections are fixed and equal to λ. All other connections are standard
weighted connections, allowing the network to be trained. Figure 2 illustrates
standard weight and Identity connections on the left. For the sake of simplicity,
standard connections are only visible for the top-right neurons of each diagram.
The results of training are on the right of the figure. All Identity connections
are only partially transitioned to standard connection, which is highlighted in
semibold. In the case when there is a difference in amount of neurons between
layers, some Identity connections are left unused.

This type of connections are established between all layers of fully connected
kernels, including the very first layer, directly connected to the image. If it is
not done, training performance becomes noticeably worse due to violation of the
Identity principle for the connections between the input and the output of the
network.

Our network, similar to ResNet, first creates a set of simple networks, which
comes with drawbacks. In our case, natural adjustment of weights during train-
ing (including ones initialized as 1) leads to a partial transit from parallel to
sequential networks. Thus, at the beginning of training, we can clearly see a uni-
form gradient increase while transitioning from parallel to sequential connected
layers. Analyzing how gradient grows at the early stages of training, we see that
it demonstrates a larger increase for all layers of the network, comparing to
the same network with standard initialization. It is important to point out that
all utilized Identity connections after training have the same role as all other
connections in the network, thus not introducing additional redundancy.

4 Experiments

In this section, we provide analysis of the Loss parameter for various network
configurations, based on publically available database of road signs [32]. It is
important to point out that the problem being solved is detection (multi-class
classification and regression), and not classification as in Self-Normalizing net-
work [22]. This distinction can influence measurements of the Loss value, which
is shown below.

4.1 Network Parameters

Structures of deep and shallow networks are shown in Table 1. Each of the
columns C shows a level on convolution and each of the rows R is a level in
a fully connected convolution kernel for each level of convolution. Overall depth
of a network is determined as the sum of levels of a fully connected network for
each level of convolution

∑C
i=1 Num(ri), where r ∈ R.
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Fig. 2. Identity connections (left) are partially transformed to standard ones (right)

For an error function we chose MSE (Mean squared error), initial value of
batch = 16, increasing during training, learning rate of 0.001, the leaky RELU
activation function, ADAM optimization, no regularization and initial weights
are

wij =

√
2

Nl−1
N(μ, σ2) (3)

Initial value of λ for the weight matrix W1 from the Eq. 1 is set at 0.1 at
the beginning and is gradually increasing towards the target value (we tested on
values 0.5 and 1.0) in 10 iterations.

Table 1. Network composition

Network composition

Conv3D 1, 6 × 6, stride 6 Conv3D 2, 4 × 4, stride 4 Conv3D 3, 2 × 2, stride 1

1 FC 1, 24, lrelu FC 1, 128, lrelu FC 1, 256, lrelu

2 FC 2, 16, lrelu FC 2, 64, lrelu FC 2, 128, lrelu

3 FC 3, 16, lrelu FC 3, 64, lrelu FC 3, 128, lrelu

. ... ... ...

16 FC 7, 16, lrelu FC 7, 64, lrelu FC 7, 128, lrelu

17 FC 7, 16, lrelu FC 7, 64, lrelu FC 7, 150, lrelu
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4.2 Improving Convergence in Shallow Networks

For shallow networks (the first and the last rows in the Table 1 for each level
of convolution. Number of levels is 3 * 2 = 6) the suggested initialization method
provides just a minor decrease in the Loss value comparing to shallow networks
with standard initialization (Fig. 3a). Significant here is that using the method,
while a number of weights of the matrix W1 is being used as Identity, it does
not lead to degradation of training for shallow networks. This means that our
method can be applied to shallow networks as well. For comparison with deep
networks we provide results of work of depth residual network-31, which has
even lower Loss value, on the same figure.

4.3 Training Deep Networks

For deep networks (all rows in Table 1, number of levels is 3 * 17 = 51) our method
provides a lower value of the Loss parameter, comparing to the deep networks
with standard initialization (Fig. 3b). A standard network is prone to a rapid
decline in training efficiency, while in our case the network continues to improve
under training much further and its Loss value reaches a lower floor than a shal-
low network. We probed a couple of values for the scaling parameter λ. For the
value of 1 at the beginning of training the error is very high, but it gradually
resolves to norm. When we pick other values, for example 0.5, convergence suf-
fers. It is possible to improve convergence by applying smaller weights outside
of the main diagonals of the weight matrices (in Fig. 3b for 51 depth, labeled
lw). Such if, after initializing in the usual way (the Eq. 3) we divide values of
weights, for example, by 100 or more, then the network converges much faster
and the Loss value is lower. For the same initial conditions even a deeper net-
work can be used (Fig. 3b for 150 levels), but worth noting that it does not
deliver any improvements in performance. The reason for that, most likely, is
the aforementioned conclusion that not any activation function can perform effi-
ciently for deep networks. The figure demonstrates a comparison to the shallow
standard network-6. It loses to the networks with less than 51 levels, which use
the Identity function and lower values of weights outside of the main diagonal.

4.4 Analysis of Weights Changing During Deep Networks Training

We have recorded changes in weights of each network level throughout training.
For each iteration we calculate a Frobenius norm of the matrix W0 via Eq. 1

‖x‖F =
√

Tr(W 0W
T
0 ) (4)

where Tr - trace operator.
Figure 4 demonstrates the dynamic across uniformly chosen levels of a net-

work (conv1 = {1, 8, 15}, conv2 = {18, 25, 32}, conv3 = {35, 42, 49}). For the
standard deep network (Fig. 4a), changes in weights happen differently across
levels of convolution. After some time, changes halt and the network is not
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(a) Learning of shallow networks

(b) Learning of depth networks

Fig. 3. (a) Dynamic of the Loss value change for shallow network with 6 levels and
for depth network-31 for comparison. (b) Dynamic of the Loss value changes for deep
networks with 31, 51, and 150 levels. An example for residual network with λ = 0.5
and λ = 1.0. The best convergence rate and the lowest Loss value is for the network
with small initial weight outside of the main diagonal (lw-low weights)
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(a) Learning of standard depth networks with 51 layers

(b) Learning of residual depth networks with 51 layers

(c) Learning of residual depth networks with 51 layers and low weights

Fig. 4. Dynamics of networks weights changing at each level during training. (a) Stan-
dard deep network. (b) Residual deep network. (c) Residual deep network with low
weights besides main diagonal of weights matrix. For (b) and (c) Frobenius norm has
close values during training for all network levels. For (c) data do not have a transition
period
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improved further during training. For a deep network with initialization pro-
posed (Fig. 4b) we can observe uniform absolute and relative dynamic of changes
in weights for all levels. This fact is very important because the network is deep.
We noticed the same dynamic for a network with 150 levels. For a network with
530 levels (not present in the picture), after some period of time during training
weights on the first couple of levels become frozen and do not change further.
Figure 4c shows the dynamic of changes in the weights for the same network as
in Fig. 4b network but initialized by low values in its weights matrix beside main
diagonal. It is clear that using low weights produces the best results comparing
to the variation from Fig. 4c.

5 Conclusion

In this paper we have demonstrated a method of training a convolutional neural
network with fully connected kernels. The aims of the method are to provide a
more uniform dynamic of changes in weights for all levels of the network, and
also to reduce the influence of the vanishing gradient descent during training for
an already existing network while not reconstructing its architecture. ResNet-
type networks demonstrate their applicability to standard deep convolutional
networks. Nevertheless, it is known that a network of this type is identical to an
ensemble of shallow networks, which leads to redundancy. Similar to ResNet we
also used identity matrices for pushing data throughout the network from start
to finish, but we implemented that by integrating it in the network itself, not
creating additional connections. In experiments we have proven the hypothesis
about the efficiency of using matrices with weights close to zero except the
main diagonal, which makes the network very similar to ResNet. However, our
network differs from ResNet in that its training is done in two steps. At the first
step, it provides fast convergence by training first network levels more efficiently,
and at the second, naturally and uniformly it decreases influence of Identity
connections, which partially get transformed into weights of the network. In our
opinion, this leads to the best use of weights of a network and also results in
shifting from an ensemble of shallow networks to a single sequential network. The
results of our experiments show applicability of this method for deep networks
(up to a certain level) as well as for networks with just several levels. Despite a
small improvement in the Loss value for deep networks comparing to small-sized
networks, we are confident that research in this direction is crucial for discovering
even more differences between them.
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Abstract. Neuro-encoded expression programming (NEEP) that aims to offer a
novel continuous representation of combinatorial encoding for genetic program-
ming methods is proposed in this paper. Genetic programming with linear repre-
sentation uses nature-inspired operators (e.g., crossover, mutation) to tune expres-
sions and finally search out the best explicit function to simulate data. The encod-
ing mechanism is essential for genetic programmings to find a desirable solution
efficiently. However, the linear representation methods manipulate the expression
tree in discrete solution space, where a small change of the input can cause a large
change of the output. The unsmooth landscapes destroy the local information and
make difficulty in searching. The neuro-encoded expression programming con-
structs the gene string with recurrent neural network (RNN) and the weights of
the network are optimized by powerful continuous evolutionary algorithms. The
neural network mappings smoothen the sharp fitness landscape and provide rich
neighborhood information to find the best expression. The experiments indicate
that the novel approach improves training efficiency and reduces test errors on
several well-known symbolic regression problems.
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1 Introduction

Symbolic regression (SR) [27] is to find an explicit function for simulation of user-
defined data. Compared to implicit numerical (linear or nonlinear) regression analysis,
SR can construct a function for a complex data without any prior knowledge and gener-
ally has powerful interpretability due to clear mathematical formula. Currently, genetic
programming methods with linear representation [3,10,25] are mainly used to solve SR,
which adopts a number of nature-inspired operators such as mutation and crossover to
manipulate expressions and has presented decent performances on various applications.
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Fig. 1. A sketch plot of comparison between discrete and continuous space. The discrete space
shows two types of fitness landscape features. Plateau is that the fitness values around point x1 is
the same as central point. The neighborhood of x4 is extremely sharp and fluctuant. Instead, the
continuous space shows that the central point can obtain a slope in a small or large neighborhood.

However, the linear representation approaches encode the expressions in discrete man-
ner, which considers it as a combinatorial problem. Compared to continuous problems,
the combinatorial problem do not provide sufficient and useful neighborhood infor-
mation to aid searching [19,28]. In addition, the local structure of the combinatorial
problem are hard “sharp” style and the fitness landscape is not smooth where a minute
change of the genotype can instill a substantial change of the phenotype [8,30] and
may cause oscillation of converging process [4] (Fig. 1). All the factors above make it
difficult to find a desirable function fitting data for linear representation methods.

Recently neural networks have achieved great success in generative tasks [13,23,
32]. In particular, neural networks have demonstrated considerable potential for gener-
ating texts or strings [2]. The genetic programming methods (such as gene expression
programming) can decode a string to an expression tree that is equivalent to a mathe-
matical function. Then the two facts make it possible to use neural networks to generate
expressions, which converts the purely discrete encoding to continuous encoding and
alleviates the aforementioned difficulties in solution space.

Therefore, we propose a neuro-encoded expression programming (NEEP), which
constructs the mathematical functions with neural networks generating expression
string. Instead of the discrete way, a small change in continuous weights vector only
triggers similar form of function and makes slow-varying effects. Therefore, the con-
tinuous neural network mappings smoothen and soften the hard sharp discrete fitness
landscape and provide more flexible local information. In this manner, the NEEP can
adopt powerful continuous optimizers to finely adjust the weights of network and find
better function.

2 Related Works

2.1 Symbolic Regression

The purpose of symbolic regression is to find an explicit function, which is the pri-
mary difference with numerical regression. For a predefined data, SR finds an explicit
function f : x → y that approximates the data with minimum error.
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2.2 Genetic Programming

There are several types of methods that can be used to solve SR, e.g., analytic program-
ming [39], fast function extraction [21], grammar evolution [26] and genetic program-
ming [16]. Genetic programming methods (such as gene expression programming and
standard genetic programming) are one type of the commonly used methods to solve
symbolic regression. Standard genetic programming (GP) [16] tunes the tree structure
of expression directly by nature-inspired operators, e.g., crossover is the exchange in
subtrees of two chromosomes at certain nodes. GPs maintain good patterns but suffer
from the explosion of tree size. Gene expression programming (GEP) [10,36] constructs
chromosomes with linear expression strings and provides an efficient way to encode
syntactically correct expressions. For readers’ better understanding of our method, we
introduce more details about GEP.

Gene expression programming encodes the expression tree structure into fixed
length linear chromosomes. Structurally, GEP genes consist of head and tail. Head con-
sists of function symbols and terminal symbols and tail contains terminal symbols only.
GEP uses the population of linear expression strings, selects them according to their
fitness values and introduces genetic variation through genetic operators.

The encoding design [40] has a significant influence on the performance of gene
expression programming since it determines the search space as well as the mapping
between genotypes and phenotypes. Traditional GEP adopts the K-expression repre-
sentation [10], which converts a linear string to an expression tree by using a breadth-
first travelling procedure. Li et al. [37] introduced new enhancements (P-GEP), which
improve the encoding design by suggesting the depth-first technique of converting the
string into the expression Tree. P-GEP increases the searching efficiency, but it is not
scalable for complex problems. Automatically defined functions (ADF) [15] were, for
the first time, introduced by Koza as a way of reusing code in genetic programming.
Ferreira [9] introduced improvements (GEP-ADF) to encode the subfunctions into the
expression tree which makes the GEP more flexible and robust. However, these encod-
ing improvements are still based on discrete space, which lacks of sufficient neighbor-
hood information. To the best of our knowledge, there are few approaches encoding
the expression string in a continuous manner. Therefore, the difficulties from discrete
encoding are yet to be solved.

2.3 Neural Network on Generation Task

Neural network has achieved success on generation task such as image [13], audio [23]
and text [2] generation. In particular, several studies on text/string generation by neural
networks are reviewed in this part. Bowman et al. [2] proposed an RNN-based varia-
tional autoencoder (VAE) language model that incorporates distributed latent represen-
tations of entire sentences in a continuous space and explicitly models holistic prop-
erties of sentences. Wang et al. [32] generated texts based on generative adversarial
networks (GANs). This method builds discriminator with a convolutional neural net-
work and constructs generator with RNN and VAE to solve the problem that GANs
always emit the similar data.
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Fig. 2. The framework for neuro-encoded expression programming in a general description. The
black dashed square represents the fitness evaluation of the evolutionary algorithm. The neural
encoding in evaluation is the main contribution of this study, which uses the neural network to
encode the expression string. The network structure details is seen in Fig. 3. The first light-colored
segment of linear string is the head part and the second part is tail. The string is decoded into a
function in breadth-first scheme as GEP. The simulation error will return back to the evolutionary
algorithm as the fitness value in optimization.

To our knowledge, there is little research that uses neural network to solve symbolic
regression by generating expression strings in spite of its success on generating texts.
Liskowski et al. [18] proposed a method in which neural networks play a “pre-training”
role to detect possible patterns in data, and then aids in finding the function rather than
generating expression strings directly. Yin et al. [38] proposed a novel self-organizing
reservoir computing methods by gene regulatory network. This method can process
arbitrary sequences of inputs such as speech recognition, whereas generating expression
is not a sequential problem and there is no external “formula” input for training. Another
type of interesting works are word embedding methods [17], however in reality we do
not have enough formula data to learn their underlying similarity.

3 Methodology

The neuro-encoded expression programming (NEEP) adopts an evolutionary algorithm
(EA) to optimize the network connection weights, then use the neural network to gen-
erate the expression string, and the K-expression method to decode the string into a
function and then calculate the simulation error (Fig. 2). The main contribution of this
paper is the method for encoding and generating the expression tree, which is based on
the output of a neural network.
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3.1 General Framework

The first step of this method is initializing the parameters (e.g., pbest and gbest in parti-
cle swarm optimization [14], distribution mean and step size in covariance matrix adap-
tation evolution strategy [1]) and population (all the net weights to be optimized) of the
evolutionary algorithm. When evaluating each network weights vector, the weights are
inserted into a recurrent neural network that generates the expression strings composed
of function operators (such as +, −, ∗, /) and terminal symbols (e.g., variables). After
that, these strings are decoded into expression trees, which are equivalent to mathemat-
ical functions. By putting the data into the expression, we can compare its value and
to the target value. We use the resulting error as the fitness value of each individual
network in population. Then, we update all the necessary parameters in the evolution-
ary algorithm (e.g., update pbest, gbest and velocity according to fitness in PSO) and
update the current solutions set (weights to be optimized). We repeat the above process
until the termination condition is met (Fig. 2).

3.2 Encoding

Fig. 3. The architecture of the encoder demonstrated in Fig. 2. The black lines in the dashed
circle represent the fixed hidden weights of the recurrent neural network. The blue arrows are
the output weights to be updated. After all the time steps, the model obtains the outputs and
each output neuron corresponds to a function or terminal symbol. Then the output neuron with
maximum value will trigger the single symbol at certain position. L is the current length of the
expression string and r is the output value as position rate in [0, 1]. P denotes the position where
the triggered symbol will be inserted. This general formula is interpreted into two cases of Eqs. 1
and 2. (Color figure online)

Inspired by biological brain, neural network presents flexible learning and powerful
representation capability [33] and has been widely designed and applied in various
fields [12,34]. The fully connected recurrent neural network [33] thus acts as the
encoder which specifies the linear expression string. The neural network consists of
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hidden neurons and the output neurons, and all the hidden neurons are fully connected
with each other. As is shown in Fig. 3, there are no formal input neurons in the network
because no external information is input into the network during the generation of the
string. Instead of back propagation, we use an evolutionary algorithm to optimize the
weights between the output neurons and all the hidden neurons (see optimization part).
The Gaussian shape function f = e−x2

is chosen as the activation function of the hidden
and output neurons instead of a sigmoid function because of premature convergence
during encoding the string.

Firstly, for symmetry, each neuron is initialized to zero. The hidden weights are uni-
formly randomized before the evolution and keep constant during the evolution. This
fixed weights are the same for all the neural networks. As the behavior of the network
can be chaotic, a small change in the initial condition could produce a significant dif-
ference in the later state [20]. As shown in [31], to reduce the instability we introduce
fixed weights among all the hidden neurons and the remaining weights are still capable
of finding the underlying pattern. All the other weights between the hidden and out-
put neurons are uniformly randomized and are further optimized by evolutionary algo-
rithms. After each time step, the output neurons are updated. Then, after all the time
step the output neuron with the maximum value indicates which function or terminal
symbol will be inserted into the expression string at a certain position. The position is
determined by an additional neuron in the output layer in default, naming it the position
insertion neuron. The process keeps inserting the symbols into the expression string
until the desired length is achieved.

The string modeling is based on head and tail [10]. The number of output neurons is
determined by the size of the function and terminal sets of specific problem. For position
identification of head part symbols (terminals and functions), the position insertion in
the head part of the string ph can be assessed by Eq. 1.

ph = round(iout ·L+1), (1)

where iout is output value of insertion neuron as position rate, which is distributed in (0,
1]. L is the current length of the expression string. On the other hand, if L is larger than
the head size h then, the corresponding terminal symbol will be inserted at a certain
point of the tail part according to the value of position insertion neuron iout. The value
of position insertion neuron in the tail part pt can be calculated by the given Eq. 2.

pt = round(iout · (L−h+1)+h). (2)

The whole process of symbol injection can be seen the encoding part in Fig. 2.

3.3 Decoding

The decoder is the translator which transfers the information from the string into the
expression tree. The translation starting position is always the first position of the gene,
whereas the last position of the gene does not necessarily coincide with the termination
point.
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Let us consider the encoded gene “√ +-**xxsinxyyyxyxxy” as represented in Fig. 2.
This encoded gene can be translated into the expression tree by the breadth-first tech-
nique which is further decoded into the mathematical function. The fitness value of each
mathematical function/expression is calculated by measuring how well it fits the data,
using mean square error (MSE) between the predicted values and the desired values.
The decoding process is the same as in GEP (see more details in [10]).

3.4 Optimization

In the NEEP framework, we can choose different evolutionary algorithms to optimize
the neural network for producing the most accurate expression. Three versions of NEEP
are proposed in this work, which is GA-NEEP (based on GA, genetic algorithm [11]),
PSO-NEEP (based on PSO, particle swarm optimization [14]), CMAES-NEEP (based
on CMA-ES, covariance matrix adaptation evolution strategy [1]). In all the evolution-
ary algorithms, the population (chromosomes or particles) are the weight vectors, their
values are uniformly randomized and then insert into the neural network for encoding
the expression strings.

We do not use back propagation (BP) because the problem is different from con-
ventional supervised learning. The evolved function is not fixed during the calculation
of derivative of weights. It is quite hard to obtain gradients with a uniform BP for all
the problems and evolved functions. On the other hand, evolutionary algorithms [5]
can conduct efficient optimization by approximating search direction without gradient
information and become an appropriate choice of optimizer.

3.4.1 Genetic Algorithm
Genetic algorithm (GA) [11] is the search and optimization procedure inspired by the
natural selection process of genetic. For evolving the population selection, crossover
and mutation operators are used for creating better offspring than the parents. GA
is a robust optimization method that is easy to implement and requires few problem
information. In this study, the individuals are the weight vectors whose values are ran-
domly created. Each weight vector is put into the corresponding neural network and
then obtains its fitness value. GA is adopted in this work as a baseline method.

3.4.2 Partials Swarm Optimization
Partials swarm optimization (PSO) [14,35] is a global numerical algorithm inspired
by birds foraging. In PSO the particle migrate towards the direction of a combination
of their former velocity personal best and global best and update its position. In this
work, the particles are the weight vectors, and their values are randomly created. For
the evaluation of these particles, they are inserted into the neural network and calculate
their fitness values. PSO has shown robustness and efficiency in finding global optima.

3.4.3 Covariance Matrix Adaptation Evolution Strategy
Covariance matrix adaptation evolution strategy (CMA-ES) [1] is a leading stochas-
tic and derivative-free method for continuous optimization of non-linear, non-convex
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functions. The CMA-ES samples candidate points with a multivariate normal distri-
bution. It updates the mean vector and covariance matrix so that it encourages repro-
ducing previously successful search steps based on the maximum-likelihood principle.
The CMA-ES has shown advantageous convergence property when compared to many
other evolutionary algorithms for a wide class of problems. CMSA-ES is adopted in
this study as one of the optimizers because of the mentioned advantages and powerful
performances.

4 Experiments

This section explores the performance of the proposed NEEP, and will not devise more
sophisticated wrappers around GEP to improve the encoding way. The analysis will be
limited to synthetic and benchmark regression problems. The three proposed methods
are compared with standard GEP and standard GP. The problem configurations are out-
lined in Table 1, and the algorithm settings are described in the following subsection.
Finally, the convergence behaviors and test accuracy are discussed.

4.1 Benchmark Configurations

We evaluated the proposed methods, GEP and GP on 14 synthetic benchmark prob-
lems [7,22,24] and 2 UCI data sets [6]. The Poly10 function is from [29]. All the
benchmark problems are listed in Table 1. Function Poly10 and Sphere5 use the func-
tion set below

{+, −, ∗, /}.
The other functions use the function set below

{+, −, ∗, /, sin, cos, en, ln(|n|)}.

The division is protected by f = x/(y+ ε), where ε is a very small number (e.g.,
1E-100). Other benchmark details are listed in Table 1. All these difficult benchmark
problems are commonly used due to their unique structural complexities with respect
to objective formula. Several large scale benchmarks (e.g., 10 variables) for symbolic
regression are considered one of the hard cases due to the difficulty of finding the solu-
tion in larger search space.

4.2 Compared Algorithm Configurations

Standard GEP and GP [16], which both are classic and powerful models in the field of
genetic programming methods, are compared with the three instances of the proposed
method (marked as GA-NEEP, PSO-NEEP, and CMAES-NEEP). For a fair comparison,
all common parameters in the listed methods are initialized with the same value. All
the algorithms in the experiments used a population size of 100, and the number of
generations 500. Other parameters of GA, PSO and CMA-ES were specified by default.
For GP, we used tournament size of 3, maximum tree depth of 10, maximum tree length
of 61, maximum mutation depth of 4, maximum crossover of depth 10, maximum grow
depth of 1 and minimum grow depth of 1. For GEP, we used header length of 30,
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Table 1. Test problems used in this paper. U [a, b, c] is c samples uniformly randomized in [a, b]
for the variable. E[a, b, c] are mesh points which are spaced equally with an interval of c, from
a to b inclusive.

Name Variables Function Training set Testing set

Sphere5 5 x2
1 + x2

2 + x2
3 + x2

4 + x2
5 U [1, 11, 1000] U [1, 11, 1000]

Dic1 10 x1 + x2 + x3 + x4 + x5 U [1, 11, 1000] U [1, 11, 1000]

Dic3 10 x1 +
x2x3
x4

+ x3x4
x5

U [1, 11, 1000] U [1, 11, 1000]

Dic4 10 x1x2 + x2x3 + x3x4x5 + x5x6 U [1, 11, 1000] U [1, 11, 1000]

Dic5 10
√
x1 + sin(x2)+ loge (x3) U [1, 11, 1000] U [1, 11, 1000]

Nico9 2 x4
1 − x3

1 + x2
2/2− x2 U [−5, 5, 1000] U [−5, 5, 1000]

Nico14 6 (x5x6)/(x1/x2x3/x4) U [−5, 5, 1000] U [−5, 5, 1000]

Nico16 4 32−3
tan(x1)
tan(x2)

tan(x3)
tan(x4)

U [−5, 5, 1000] U [−5, 5, 1000]

Nico20 10
5
∑
i=1

1
xi

U [−5, 5, 1000] U [−5, 5, 1000]

Poly10 10 x1x2 + x2x3 + x3x4 + x4x5 + x5x6

+x1x7x9 + x3x6x10

U [−1, 1, 250] U [−1, 1, 250]

Pagie1 2 1
1+x−4

1
+ 1

1+x−4
2

E[−5, 5, 0.4] E[−4.95, 5.05, 0.4]

Nguyen6 1 sin(x)+ sin
(
x+ x2

)
U [−1, 1, 20] U [−1, 1, 20]

Nguyen7 1 ln(x+1)+ ln
(
x2 +1

)
U [0, 2, 20] U [0, 2, 20]

Vlad3 2 e−xx3(cosxsinx)(cosxsin2 x−
1)(y−5)

x : E[0.05, 10, 0.1]
y : E[0.05, 10.05, 2]

x : E[−0.5, 10.5, 0.05]
y : E[−0.5, 10.5, 0.5]

Energy 8 Energy efficiency of buildings

Concrete 8 Concrete compressive strength

a crossover rate of 0.7, mutation rate of 0.1, IS transposition of 0.1, RIS transposition
of 0.1, and the inversion rate of 0.1. For the three proposed methods (GA-NEEP, PSO-
NEEP and CMAES-NEEP), we used header length of 30, hidden neurons 40, time steps
of 10, the initial fixed weights sparsity of 0.5 and the initial optimizing weight range of
[−2, 2].

4.3 Results and Discussions

Table 2 summarizes the test errors obtained by GEP, GP and the three versions of NEEP
on all the benchmark problems. The median and standard deviation are summarized
over the 50 independent repeated trials for each of the 16 benchmarks function. It can
be observed that the proposed methods (GA-NEEP, PSO-NEEP, CMAES-NEEP) sig-
nificantly outperformed GEP and GP on 14 out of 16 problems according to the median
of MSE, and perform competitively on the remaining problems. In particular, CMAES-
NEEP reported dramatically lower MSE and more stable performance (according to
their standard deviation values) on all the high dimensional data (Poly10, Dic1, Dic3,
Dic4, Dic5, Nico20), while GEP and GP failed to locate the global optimum for these
problems because the solution expressions of a high dimensional problem become over-
whelming or extremely complicated. Therefore, such problems may become tough for
the traditional GEP and GP due to their lack of capability to encode a complex function
in a single string.
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Table 2. Median, standard deviation and corresponding ranks of testing errors of the five com-
pared algorithms. All differences are statistically significant according to a Wilcoxon test with a
confidence level of 95%. Symbols − and + represent that the proposed method is respectively
significantly worse than and better than the other two methods (GP and GEP). The other cases
are marked with =.

GEP GP GA-NEEP PSO-NEEP CMAES-NEEP

Sphere5 4.87e+04±6.58e+07 3.93e+02±1.40e+02 7.71e+02±4.46e+02 6.27e+02±4.35e+02 6.30e+02±1.17e+02

rank 5 1 4 2 3

= = =

Dic1 6.00e+02±4.91e+07 1.55e+01±1.30e+01 2.04e+01±1.58e+01 2.83e+00±1.40e+01 4.97e-30±7.67e-02

rank 5 3 4 2 1

= + +

Dic3 4.96e+02±5.58e+15 1.29e+02±2.61e+01 1.44e+02±2.39e+01 1.18e+02±2.51e+01 1.20e+02±1.30e+02

rank 5 3 4 1 2

= + +

Dic4 7.00e+04±1.28e+11 6.68e+03±1.40e+04 3.01e+04±1.50e+04 5.12e+03±1.66e+04 3.62e+03±1.79e+03

rank 5 3 4 2 1

= = +

Dic5 6.80e+00±1.35e+19 8.96e-01±8.70e-01 1.00e+00±2.61e-01 5.99e-01±2.50e-01 5.54e-01±1.21e-01

rank 5 3 4 2 1

= + +

Nico9 4.80e+04±1.85e+19 3.64e+02±6.39e+03 1.32e+04±2.07e+05 1.27e+03±3.80e+03 2.65e+03±5.62e+04

rank 5 1 4 2 3

= = =

Nico14 1.18e+07±1.47e+19 1.20e+07±6.95e+07 1.18e+07±1.12e+07 1.18e+07±1.93e+10 1.18e+07±5.89e+06

rank 3 5 1 4 2

= = =

Nico16 4.47e+09±1.20e+18 4.48e+09±2.74e+11 4.46e+09±3.69e+11 4.91e+09±5.25e+12 4.46e+09±1.36e+13

rank 3 4 1 5 2

= - =

Nico20 7.54e+02±1.21e+19 1.86e+03±4.64e+04 6.85e+02±2.15e+04 5.19e+02±5.52e+04 6.80e+02±1.54e+06

rank 4 5 3 1 2

+ + =

Poly10 5.48e-01±7.29e+00 3.24e-01±5.24e-02 3.21e-01±6.11e-02 3.21e-01±3.48e-02 3.17e-01±2.83e-02

rank 5 4 2 3 1

= + +

Pagie1 9.61e-01±1.58e+19 1.26e-01±1.14e-01 1.95e-01±4.03e-02 1.24e-01±3.42e-02 1.21e-01±2.58e-02

rank 5 3 4 2 1

= = =

Nguyen6 2.10e-01±2.57e+19 1.54e-01±1.61e-01 1.10e-01±1.22e-01 1.40e-02±3.28e-02 4.41e-03±1.47e-02

rank 5 4 3 2 1

+ + +

Nguyen7 2.63e-01±1.41e+19 3.92e-02±1.35e-01 3.30e-02±7.07e-01 2.19e-03±8.33e-02 1.15e-03±4.86e-03

rank 5 4 3 2 1

+ + +

Vlad3 7.63e+00±2.57e+20 1.22e+00±1.52e+12 9.47e-01±Inf 1.05e+00±Inf 1.01e+00±1.04e+33

rank 5 4 1 3 2

+ = +

Energy 1.06e+02±3.81e+18 2.58e+01±3.78e+01 4.52e+01±2.20e+01 2.17e+01±7.48e+00 2.34e+01±6.57e+00

rank 5 3 4 1 2

= + +

Concrete 3.39e+02±5.78e+18 2.26e+02±6.63e+01 2.21e+02±2.66e+01 1.80e+02±3.41e+01 1.66e+02±3.38e+01

rank 5 4 3 2 1

= + +

Avg. Rank 4.69 3.38 3.06 2.25 1.63
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Fig. 4. Evolution of the average best training errors of 50 independent trials for all compared
algorithms.

For the two regression data sets Concrete and Energy, the convergence curves in
Fig. 4 and test errors in Table 2 reveal that CMAES-NEEP and PSO-NEEP have remark-
able performance and high stability among all the compared methods. According to the
convergence curves, in some functions (Nico16, Dic1, Dic3) these methods illustrate
premature convergence and get stuck at a local optimum during evolution. For Nico9
and Sphere5 problem, GP sits as the best method among all the compared algorithms,
due to its property of reusability of existing nodes during the encoding of the expression
tree. On the other hand, GEP stands at the worst, and all other proposed methods show
the competitive results concerning GP.

According to the test error results and the convergence curves, we can observe that
the proposed method has shown more stable performance and faster training speed on
most of the listed benchmark functions. In addition, we can obtain a rough conclusion
that among the three evolutionary algorithms, CMA-ES is the most powerful, PSO is
the second, and GA is the last one. These ranks also conform the general impression
of their performances on many artificial benchmark functions in evolutionary compu-
tation. Therefore, it is important for NEEP to choose a strong optimizer for searching
better neural networks.



384 A. Anjum et al.

5 Conclusion

This study proposes a novel continuous neural encoding approach to improve con-
ventional linear representation in genetic programming methods for solving symbolic
regression. Linear representation methods manipulate the expression tree structures in
a discrete manner, which does not assist in a localized search of solution space. The
neuro-encoded expression programming (NEEP) transforms the combinatorial prob-
lem to a continuous problem by using a neural network to generate an expression string,
thus powerful numerical optimization method can be adopted to find a better mathemat-
ical function for symbolic regression. Empirical analysis demonstrates the method has
the potential to deliver improved test accuracy and efficiency.

There are several interesting future research directions, such as to explore more
neural network architectures for encoding and introduce the constant creation in string
encoding mechanism. This new framework for now only improves one of linear repre-
sentation methods and focuses on one application in spite of its potential for applying on
more methods and applications. Therefore, one of the future works is to explore other
types of genetic programming methods with neural networks. Another consideration is
to apply NEEP to more applications (e.g., classification, digital circuit design and path
planning).
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Abstract. A neural network’s topology greatly influences its generaliza-
tion ability. Many approaches to topology optimization employ heuris-
tics, for example genetic algorithms, oftentimes consuming immense com-
putational resources. In this contribution, we present a genetic algorithm
for network topology optimization which can be deployed effectively in
low-resource settings. To this end, we utilize the TensorFlow framework
for network training and operate with several techniques reducing the
computational load. The genetic algorithm is subsequently applied to
the MNIST image classification task in two different scenarios.

Keywords: Neural networks · Neural Architecture Search ·
Genetic algorithms

1 Introduction

Since an ANN’s topology greatly influences its ability to generalize, topology
optimization is a viable means to improve an ANN’s performance. In order to
find ANN topologies that facilitate high generalization performance we have to
explore a huge search space including: hidden layers (types and dimensions), acti-
vation function, weight initialization, loss function, training algorithm, epochs,
mini-batch size, stopping criterion, Neural Architecture Search (NAS) algorithm.

This paper is dedicated to a NAS algorithm based on genetic algorithms
(GAs), which was first introduced in 1989 [12]. In [10] a hierarchical representa-
tion for architecture search is introduced. The first level is composed of primitive
nodes, e.g. convolution, max pooling etc., which are assembled to more complex
nodes in each subsequent level. This algorithm was applied using 200 GPUs for
1.5 days and is therefore considered as computationally demanding.

Besides, in [13] a gradient based evolution of Convolutional Neural Networks
(CNNs) is proposed. The search space is restricted to reduce the computational
demands and facilitate the analysis on consumer hardware. To favor small CNNs
a penalty term, based on the number of multiply-accumulate operations, is added
to the normal fitness value. Unfortunately, the processing time till termination
and the purpose of upscaling the images, e.g. MNIST [9], is left unconsidered.
c© Springer Nature Switzerland AG 2019
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In [3] topologies and learning parameters of CNNs are selected based on GA and
Dynamic Structured Grammatical Evolution (DSGE). The fitness evaluation is
composed of two steps: mapping from genotype to phenotype and training of
the ANN. Furthermore, the correlation between average fitness and the number
of layers per generation is examined. The analysis lacks the reference of the used
hardware and the required time to achieve the results. Additionally, some spe-
cial tweaks of the final training procedure were necessary to achieve the results.
Moreover, in [4] CNNs are evolved by a GA and grammatical evolution. To facil-
itate the introduced NAS in low-resource settings the search space was heavily
restricted. Two fitness measures are applied to prevent sticking to local optima.
The first fitness value is based on the prediction accuracy acquired during the
training. The second one is a penalty term and is influenced by a similarity mea-
sure between newly created and the remaining individuals. Unfortunately, the
computation time required to reach the shown results is not stated.

If we had unrestricted compute resources we could make all the necessary
design decisions automatically. Unfortunately, in a realistic setup we have to
find a path through the space of opportunities and target our search to a low-
resource hardware setup. The main objectives of our research are: 1. development
of a GA for the topology optimization of ANNs with regard to classification accu-
racy and/or model size, 2. implementation of the fitness evaluation component
in TensorFlow (TF), 3. application of various techniques lowering the compu-
tational effort when training a network or restricting the GA’s search space.
Thereby, the non expert user is enabled to obtain ANNs tailored to the problem
at hand, with little demands on the available hardware resources.

The paper is structured as follows: In Sect. 2, the GA implementation and
our chosen parametrization are outlined. In Sect. 3 the results are presented.
Section 4 recapitulates our contribution and gives an outlook on our future work.

2 GA Implementation and Parametrization

This section is structured as follows: First, our GA for NAS is described. Then, its
interaction with TF is presented and an overview of ANN training techniques
incorporated into the GA is provided. Finally, the GA’s parametrization and
several methods to lower the computational load are introduced.

GAs approximate optimal solutions to a certain problem by iteratively
attempting to improve solutions from a subset of solutions already developed. In
the context of NAS, a solution represents an ANN’s architecture. In this paper
a solution’s fitness is primarily regarded as the classification accuracy on the
test set. As an ANN’s ability to generalize is advanced by keeping the num-
ber of free parameters low [15], this value should also be considered when an
ANN’s fitness is determined. That way, selection and population update can be
adapted to specific goals, e.g., they can be based on the number of free parame-
ters after reaching a certain accuracy and thus guide the algorithm to finding an
architecture capable of delivering a desired accuracy while being kept as small
as possible. Aside from better generalization ability, smaller ANNs require less
computation power for training and prediction takes less time.
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New solutions evolve by mutation, i,e., one of the properties changes, or by
recombination (often crossover) with a second solution from the population; the
new solution thus inherits characteristics from each of the two original solutions.
In the present context, a mutation is one of the following operations: inserting or
deleting a layer, modifying a layer (depending on layer type: number of neurons,
dimension of convolution kernel, stride, number of feature maps, type of zero
padding, aggregation operation) or switching two layers. Optionally, the degree
of mutation decays exponentially during the course of the GA’s execution. Thus,
in the early phase architectures are developed which differ significantly from
previous ones and exploration of the solution space advances quickly. Later,
when execution nears termination, modifications become subtle so that solutions
developed so far are refined in order to closely approximate an optimal solution.

Training success of ANNs can vary due to stochastic elements like weight
initialization. It is therefore conceivable that a network may deliver significantly
better performance when retrained from scratch. This consideration is reflected
in our GA which provides the opportunity to repeatedly train a network with a
certain architecture based on two factors: An architecture may be re-evaluated if
it has surpassed a given accuracy value when first evaluated, thereby scrutinizing
the most promising architectures. Furthermore, the maximum number of train-
ing runs during the evaluation phase can be tied to the ANN’s number of free
parameters, allowing more training runs the fewer free parameters a network
has. The repeated training of ANNs necessitates extensive computations. We
utilize TF which offers various techniques, e.g., early stopping and instruments
to improve a network’s training and thus ultimately its predictive performance.

We have chosen the TF Estimator API to create the GA’s evaluation com-
ponent. An object describing the ANN’s architecture is fed into the estimator
model function, where it forms the basis for generating the ANN. The ANN is
then trained, evaluated and finally, its test set accuracy is returned.

Our GA discovered an architecture suitable for classification of MNIST. The
training set is divided in 55,000 training and 5000 validation images. Before
running the GA, adequate parameter values for network training as well as
for the GA have been determined. In this endeavor, we adopted the network
architecture used to classify the MNIST dataset from the TF documentation [1]
and recorded loss, accuracy, and execution time for various training algorithms
and learning rates.

3 Results

We employed the GA to find a suitable ANN topology covering two scenarios:
1. matching the accuracy of the ANN in [1] with the smallest count of free
parameters. 2. surpassing the accuracy of the ANN in [1] while not exceeding its
number of free parameters.

In the first scenario, the GA completed 2000 iterations in 47 h on a
Nvidia GeForce GTX 1050 Ti. The best architecture is shown in Table 1.
It contains 5 hidden layers and reaches a test set accuracy of 0.9940
(i.e. a test error rate of 0.60%) with 61,787 free parameters, which is
about 1.9% the size of the ANN in [1] featuring 3,274,634 free parameters.
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Table 1. Best architecture found for first scenario

Layer type Dimensions Kernel Stride Feature maps

Input 28 × 28

Convolutional 14 × 28 5 × 5 2 × 1 52

Avg. pooling 14 × 28 2 × 3 1 × 1

Convolutional 14 × 28 3 × 2 1 × 1 50

Convolutional 7 × 14 5 × 3 2 × 2 24

Convolutional 4 × 14 2 × 5 2 × 1 33

Dense 10

Here, the GA demonstrates
its ability to reveal small yet
well-performing architectures –
an essential capability when
designing an ANN which will
operate under firm real-time
constraints and must produce
predictions rapidly. By regard-
ing the number of free param-
eters as the decisive fitness cri-
terion after reaching a certain test set accuracy, the GA was steered to favor
ANNs with convolutional and pooling layers as hidden layers, since these layer
types add fewer free parameters to the ANN than dense layers. Consequently,
the only dense layer is the ANN’s output layer.

In the second scenario, a higher computational load is to be expected due
to larger ANN size. Therefore, we implemented further techniques to mitigate
this effect: weight sharing and layer freezing. After an ANN’s evaluation, its
weights are stored and when being selected in a subsequent iteration of the
GA, the evolved ANN retrieves its ancestor’s weights up to the layer where a
change in ANN architecture has occurred. These weights are then exempted
from training, so the computational load for ANN training lessens. The compar-
ative experiments we have performed to quantify the effect of employing these
techniques show that runtime drops to < 1

3 . Moreover, in the second scenario we
introduced another layer type – the residual unit [8]. To determine the influ-
ence of some of the parameters, the GA was executed several times, each time
under slightly different configurations: 1. high mutation rate, no decay of muta-
tion increment/decrement values, 2. high mutation rate, no decay of mutation
increment/decrement values, number of GA iterations greatly increased (8000),
3. high recombination rate, no decay of mutation increment/decrement values,
4. high mutation rate, decay of mutation increment/decrement values, 5. high
mutation rate, no decay of mutation increment/decrement values, local response
normalization (LRN). The evolved architectures of the best performing ANNs
are obtained within days utilizing single Nvidia Pascal consumer graphics cards.

The result from configuration 1 (4 residual, 2 conv. and 2 dense layers,
2,689,180 free parameters), reaches a 0.31% test error rate. In configuration
2, the best architecture is composed of 4 residual, 6 conv., 1 pooling and 2 dense
layers (1,071,154 free parameters) and achieves a slightly higher test error rate
of 0.32%. Despite the deeper architecture, the ANN contains roughly 40% of the
best ANN’s number of free parameters. Configuration 3 results in an architec-
ture consisting of 1 residual, 2 conv., 1 pooling and 4 dense layers (1,984,664 free
parameters). The most notable difference is the larger number of dense layers
compared to the other architectures. However, this does not lead to a lower test
error rate. The results from configuration 4 show that the decay of the muta-
tion operators’ values does not have any impact on the quality of results. The
architecture features 2 residual, 4 conv., 1 pooling and 3 dense layers (1,850,248
free parameters) and accomplishes a 0.32% test set error. In configuration 5, the
application of LRN provided slightly worse results (best test error rate 0.37%)
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and led to a significantly higher runtime of the GA. It should therefore not be
employed in low-resource settings.

In [9] an overview of test error rates on the MNIST dataset attained with
various machine learning methods is given. ANNs, and CNNs in particular,
achieve the lowest values. In [6], a multi-layer perceptron with 12 million free
parameters reaches 0.35% test error rate. To prevent the ANN from overfitting,
data augmentation is applied to the input. A CNN with six convolutional lay-
ers obtaining 0.35% test error rate is presented in [7]. The very best test error
rates of 0.23% and 0.27% are accomplished in [5], where multi-column deep
ANNs are deployed. In each of these cases, input data is preprocessed, which
incurs additional resource consumption. All in all, 2 of the 69 entries in [9] out-
perform the best ANN encountered by the proposed GA. In [4], the authors
list the most competitive recent results on MNIST obtained without data aug-
mentation. The best ANN accomplishes a test error rate of 0.24%, while 12
of the 37 list entries achieve error rates below 0.4%, 3 of which even reach
error rates <0.31%. This demonstrates that our endeavor to reduce resource
consumption does not impair the quality of the results developed by our GA.
Table 2 shows results obtained on the MNIST dataset by other NAS approaches.

Table 2. Results of other NAS
methods

Work Test set accuracy

Ma and Xia [11] 99.72%

Assunção et al. [2] 99.70%

Proposed approach 99.69%

Baldominos et al. [4] 99.63%

Real et al. [14] ≈99.50%

Mitschke et al. [13] 98.67%

The best accuracy of 0.28% test error rate is
achieved by [11] featuring the genetic DCNN
designer and data augmentation. It took 30
GPU days (10 generations à 3 days) on
a Nvidia Titan XP to produce the corre-
sponding architecture. DENSER [2] reaches
a 0.30% test error rate with an approach
based on evolutionary computation compris-
ing not only ANN topology optimization but
also hyperparameter tuning. Furthermore,
for the best result data augmentation was applied. In [4], the authors reach
a test error rate of 0.37% with a grammatical neuroevolution procedure and
report worse results for a genetic algorithm. AmoebaNet-A [14] employs a tour-
nament selection evolutionary algorithm with a focus on the age of an individual,
preferring younger over older ones, which yields a test error rate of ≈0.50%. In
[13], an architecture generated via differential evolution reaches a 1.34% test
error rate. Compared to other approaches, our proposal thus combines compet-
itive accuracy (0.31% test error rate vs. 0.28% best test error rate obtained in
[11]) with moderate computational effort (a few days on a Pascal consumer card)
while refraining from hyperparameter optimization or data augmentation as in
[2], which offers the possibility to further improve the results. Moreover, we have
shown that with our proposed technique, one can trade accuracy for lower ANN
complexity. Thus, architectures can be created which reach a user-specified tar-
get accuracy and at the same time allow for rapid predictions or can be deployed
to computationally less powerful devices.
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4 Conclusions

We have presented a GA for NAS and placed a strong focus on efficiency
by employing various techniques to lower the computational effort. That way,
we aim to facilitate NAS in low-resource settings. Furthermore, it has been
demonstrated that the GA is capable of producing competitive results on the
MNIST dataset with fairly low resource commitment. This especially holds true
in comparison to other NAS methods, where the only approaches delivering
(marginally) better results necessitate more extensive computations as well as
the application of further techniques such as data augmentation or hyperparam-
eter optimization.
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Abstract. A method of simultaneously optimizing both the structure of
neural networks and the connection weights in a single training loop can
reduce the enormous computational cost of neural architecture search.
We focus on the probabilistic model-based dynamic neural network struc-
ture optimization that considers the probability distribution of structure
parameters and simultaneously optimizes both the distribution parame-
ters and connection weights based on gradient methods. Since the exist-
ing algorithm searches for the structures that only minimize the training
loss, this method might find overly complicated structures. In this paper,
we propose the introduction of a penalty term to control the model com-
plexity of obtained structures. We formulate a penalty term using the
number of weights or units and derive its analytical natural gradient. The
proposed method minimizes the objective function injected the penalty
term based on the stochastic gradient descent. We apply the proposed
method in the unit selection of a fully-connected neural network and the
connection selection of a convolutional neural network. The experimen-
tal results show that the proposed method can control model complexity
while maintaining performance.

Keywords: Neural networks · Structure optimization ·
Stochastic natural gradient · Model complexity · Stochastic relaxation

1 Introduction

Deep neural networks (DNNs) are making remarkable progress in a variety of
tasks, such as image recognition and machine translation. While various neu-
ral network structures have been developed to improve predictive performance,
the selection or design of neural network structures remains the user’s task. In
general, tuning a neural network structure improves model performance. It is,
however, tedious, because the user must design an appropriate structure for the
target task through trial-and-error.

To automate neural network structure design processes, methods called neu-
ral architecture search have been developed. A popular approach is to regard
c© Springer Nature Switzerland AG 2019
I. V. Tetko et al. (Eds.): ICANN 2019, LNCS 11728, pp. 393–405, 2019.
https://doi.org/10.1007/978-3-030-30484-3_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30484-3_33&domain=pdf
http://orcid.org/0000-0002-9863-6765
http://orcid.org/0000-0002-4659-6108
https://doi.org/10.1007/978-3-030-30484-3_33


394 S. Saito and S. Shirakawa

the structure parameters (e.g., the numbers of layers and units, the type of lay-
ers, and the connectivity) as the hyperparameters and optimized them through
black-box optimization methods, such as the evolutionary algorithms [15,19]
and Bayesian optimization [9]. Another approach trains the neural network that
generates the network architecture using policy gradient-based reinforcement
learning methods [23]. However, these approaches require huge computational
resources; several works conducted the experiments using more than 100 GPUs
[15,23], as the evaluation of a candidate structure requires model training and
takes several hours in the case of DNNs.

To solve the computational bottleneck, alternative methods that simultane-
ously optimize both the structure and the connection weights in a single training
loop have been proposed [10,14,17]. These methods are promising because they
can find structures with better prediction performance using only one GPU.
In this paper, we employ the dynamic structure optimization framework intro-
duced in [17] as the baseline algorithm. This framework considers the probability
distribution of structure parameters and simultaneously optimizes both the dis-
tribution parameters and weights based on gradient methods.

The above-mentioned methods concentrate on finding neural network struc-
tures demonstrating high prediction performance; that is, they search for a struc-
ture that minimizes validation or training error. The structures found based
on such criteria might become resource-hungry. To deploy such neural net-
works using limited computing resources, such as mobile devices, a compact
yet high-performing structure is required. Several studies introduced the model
complexity-based objective function, such as the total number of weights and/or
FLOPs. Tan et al. [20] introduced latency (delay time with respect to (w.r.t.)
data transfer) to the objective function as the penalty in the policy gradient-
based neural architecture search and searched for a platform-aware structure.
Additionally, multi-objective optimization methods have been applied to obtain
the structures over a trade-off curve of the performance and model complexity
[3,4]. However, such methods require greater computational resource, as existing
methods are based on hyperparameter optimization.

For the purpose of obtaining compact structures, regularization-based con-
nection pruning methods have been investigated. Han et al. [5] used L2 norm
regularization of weights and iterate the weight coefficient-based pruning and
retraining. This method obtained a simpler structure with the same performance
as the original structure. Liu et al. [11] proposed channel-wise pruning for use
with convolutional neural networks (CNNs) with the addition of new weights
for each channel; the weights are penalized through L1 norm regularization. In
general, regularization-based pruning methods impose a penalty on the weight
values. It is, therefore, difficult to directly use aspect of the network size, such
as the number of weight parameters or units, as the penalty.

In this paper, we introduce a penalty term for controlling model complexity
in the dynamic structure optimization method [17]. In accordance with the liter-
ature [17], we assume the binary vector as the structure parameters that can use
to represent the network structure, such as the selection of units or connections
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between layers. Further, we consider the multivariate Bernoulli distribution and
formulate the objective function to be minimized as the expectation of loss func-
tion under the distribution. Then the penalty term w.r.t. the number of weights or
units is incorporated into the loss to control the model complexity. To investigate
the effects of the proposed penalty term, we apply this method in the unit selec-
tion of a fully-connected neural network and the connection selection of densely
connected CNN (DenseNet) [7]. The experimental result shows that the proposed
method can control the model complexity and preferentially remove insignificant
units and connections to maintain the performance.

2 The Baseline Algorithm

We will now briefly explain the dynamic structure optimization framework pro-
posed in [17]. Neural networks are modeled as φ(W,M) by two types of param-
eters: the vector of connection weights W and the structure parameter M . The
structure parameter M ∈ M determines d hyperparameters, such as the connec-
tivity of each layer or the existence of units. Let us consider that the structure
parameter M is sampled from the probabilistic distribution p(M | θ), which is
parameterized by a vector θ ∈ Θ as a distribution parameter. We denote the loss
to be minimized as L(W,M) =

∫
l(z,W,M)p(z)dz, where l(z,W,M) and p(z)

indicate the loss of a datum z and the probability distribution of z, respectively.
Instead of directly optimizing L(W,M), the stochastic relaxation of M is

considered; that is, the following expected loss under p(M | θ) is minimized:

G(W, θ) =
∫

L(W,M)p(M | θ)dM, (1)

where dM is a reference measure on M. To optimize W and θ, we use the
following vanilla (Euclidian) gradient w.r.t. W and the natural gradient w.r.t. θ:

∇W G(W, θ) =
∫

∇W L(W,M)p(M | θ)dM, (2)

∇̃θG(W, θ) =
∫

L(W,M)∇̃θ ln p(M | θ)p(M | θ)dM, (3)

where ∇̃θ = F (θ)−1∇θ is the so-called natural gradient [2] and F (θ) is the
Fisher information matrix of p(M | θ). Optimizing θ using (3) works the same
way as information geometric optimization (IGO) [13], which is a unified frame-
work for probabilistic model-based evolutionary algorithms. Different from the
IGO, Shirakawa et al. [17] proposed the simultaneously updating of W and θ
with the gradient directions using (2) and (3), and produced dynamic struc-
ture optimization. In practice, the gradients (2) and (3) are approximated by
Monte-Carlo methods using the mini-batch data samples and the λ structure
parameters sampled from p(M | θ).
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3 Introducing Penalty Term in Dynamic Structure
Optimization

In this section, we introduce a penalty term to dynamic structure optimization
to control model complexity. We focus on the case that the structure parameter
can be treated as a binary vector, as was done in [17].

Representation of Structure Parameter. We denote neural networks as
φ(W,M) modeled by the two parameters: W is the weight vector, and M =
(m1, . . . ,md)T ∈ M = {0, 1}d is a d-dimensional binary vector that determines
neural network structures. We consider the multivariate Bernoulli distribution
defined by p(M | θ) =

∏d
i=1 θmi

i (1 − θi)1−mi to be the probability distribution
for the random variable M , where θ = (θ1, . . . , θd)T, θi ∈ [0, 1] refers to the
parameters of the Bernoulli distribution. For instance, in the connection selec-
tion, the parameter mi determines whether or not the i-th connection appears,
and θi corresponds to the probability that mi becomes one.

Incorporating Penalty Term into Objective Function. We denote the
original loss function of neural network models by L(W,M), which depends on
W and M . To penalize the complicated structure, we introduce the penalty term
R(M), which depends on M , and obtain the objective function represented by
L(W,M)+εR(M), where ε is a penalty coefficient. In this paper, we particularly
focus on the case that the penalty term can be represented by the weighted sum
of mi, i = 1, . . . d, namely R(M) =

∑d
i=1 cimi where ci indicates the coefficient

representing the model complexity that corresponds to the i-th bit. Here, we
assume that the model complexity increases if the bit mi becomes one. This is
a reasonable assumption because the binary vector is usually used to determine
the existences of connections, layers, and units. Therefore, we can consider that
the model complexity increases as the number of ‘1’ bits increases.

As both the original loss and the penalty term are not differentiable w.r.t.
M , we employ stochastic relaxation by taking the expectation of the objective
function. The expected objective function incorporated with the penalty term
under the Bernoulli distribution p(M | θ) is given by

G(W, θ) =
∑

M∈M
L(W,M)p(M | θ) + ε

d∑

i=1

ciθi. (4)

When ε = 0, the minimization of G(W, θ) recovers the same algorithm with [17].

Gradients for Weights and Distribution Parameters. To simultaneously
optimize W and θ, we derive the gradients of G(W, θ) w.r.t. W and θ. The vanilla
gradient w.r.t. W is given by ∇W G(W, θ) =

∑
M∈M ∇W L(W,M) since the

penalty term R(M) does not depend on W . Note that the gradient ∇W L(W,M)
can be computed through back-propagation.
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Regarding the distribution parameters θ, we derive the natural gradient [2],
defined by the product of the inverse of Fisher information matrix and the
vanilla gradient, that is the steepest direction of θ when the KL-divergence is
considered as the pseudo distance of θ. Since we are considering the Bernoulli
distribution, F (θ)−1 can be obtained analytically by F (θ)−1 = diag(θ(1 − θ)),
where the product of vectors indicates the element-wise product. We then obtain
the analytical natural gradients of the log-likelihood and the penalty term as
∇̃θ ln p(M | θ) = M − θ and ∇̃θ

∑d
i=1 ciθi = cθ(1 − θ), respectively, where

c = (c1, . . . , cd)T is the vector representation of the model complexity coeffi-
cients and ∇̃θ = F (θ)−1∇θ indicates the natural gradient operator. As a result,
we obtain the following gradient:

∇̃θG(W, θ) =
∑

M∈M
L(W,M)(M − θ) + εcθ(1 − θ). (5)

Gradient Approximation. In practice, the analytical gradients are approx-
imated by Monte-Carlo method using λ samples {M1, . . . ,Mλ} drawn from
p(M | θ). Moreover, the loss L(W,Mi) is also approximated using N̄ mini-
batch samples Z = {z1, . . . , zN̄}. Referring to [17], we use the same mini-batch
between different Mi to obtain an accurate ranking of losses. The approximated
loss is given by L̄(W,Mi) = N̄−1

∑
z∈Z l(z,W,Mi), where l(z,W,Mi) represents

the loss of a datum. The gradient for W is estimated by Monte-Carlo method
using λ samples:

∇W G(W, θ) ≈ 1
λ

λ∑

i=1

∇W L̄(W,Mi). (6)

We can update W using any stochastic gradient descent (SGD) method with (6).
To update the distribution parameters θ, we transform the loss value

L̄(W,Mi) into the ranking-based utility ui as was done in [17]: ui = 1 if
L̄(W,Mi) is in top �λ/4�, ui = −1 if it is in bottom �λ/4�, and ui = 0 oth-
erwise. The ranking-based utility transformation makes the algorithm invariant
to the order preserving transformation of L. We note that this utility func-
tion transforms the original minimization problem into a maximization prob-
lem. With this utility transformation, the approximation of (5) is given by
∇̃θG(W, θ) ≈ 1

λ

∑λ
i=1 ui(Mi − θ) − εcθ(1 − θ). As a result, the update rule for θ

at the t-th iteration is given by

θ(t+1) = θ(t) + ηθ

( λ∑

i=1

ui

λ
(M − θ(t)) − εcθ(t)(1 − θ(t))

)

, (7)

where ηθ is the learning rate for θ. If we use the binary vector to select input
units and set c = (1, . . . , 1)T, the algorithm works as feature selection [16]. The
method introduced in this paper targets model complexity control and can be
applied in cases where each bit corresponds to a different number of weights by
introducing the model complexity coefficient c. The optimization procedure of
the proposed method is shown in Algorithm 1.
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Algorithm 1: The training procedure of the proposed method.
Input: Training data D and hyperparameters {λ, ηθ, ε′}
Output: Optimized parameters of W and θ
begin

Initialize the weight and distribution parameters as W (0) and θ(0)

t ← 0
while not stopping criterion is satisfied do

Get N̄ mini-batch samples from D
Sample M1, . . . , Mλ from p(M | θ(t))

Compute the losses L̄(W, Mi) for i = 1, . . . , λ

Update the distribution parameters to θ(t+1) by (7)

Restrict the range of θ(t+1)

Update the weight parameters to W (t+1) using (6) by any SGD
t ← t + 1

Prediction for Test Data. As was proposed in [17], there are two options for
predicting new data using optimized θ and W . In the first method, the binary
vectors are sampled from p(M | θ), and the prediction results are averaged. This
stochastic prediction method will produce an accurate prediction, but it is not a
desirable to obtain a compact structure. The second way is to deterministically
select the binary vector as M∗ = argmaxM p(M | θ) such that mi = 1 if θi ≥ 0.5;
otherwise, mi = 0. In our experiment, we use the second option, deterministic
prediction, and report our results.

Implementation Remark. We restrict the range of θ within [1/d, 1 − 1/d]
to retain the possibility of generating any binary vector. To be precise, if the
updated θ through (7) falls outside this range, the values of θ are set at the
boundary value. In addition, the coefficient of ε is normalized as ε = ε′/max(c).
The natural gradient corresponding to L is bounded within the range of [−1, 1]d

due to the utility transformation. In the above normalization, the one corre-
sponding to the penalty term is bounded within [0, ε′/4]d. Therefore, both the
gradients are at approximately the same scale regardless of their encoding scheme
(i.e., the usage of M).

4 Experiment and Result

We apply the proposed method to the two neural network structure optimization
problems with image classification datasets: unit selection of fully-connected neu-
ral networks and connection selection of DenseNet [7]. All algorithms are imple-
mented using Chainer framework [21] (version 4.5.0) and CuPy backend [12]
(version 4.5.0) and run on a single NVIDIA GTX 1070 GPU in the experiment
of unit selection and on a single NVIDIA GTX 1080Ti GPU in the experiment of
connection selection. In both experiments, weights are optimized using the SGD
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with Nesterov’s momentum. The coefficient of the momentum and the weight
decay are set to 0.9 and 10−4, respectively. Based on [7,17], the learning rate for
weights is divided by 10 at 1/2 and 3/4 of the maximum number of epochs. The
weight parameters are initialized by He’s initialization [6]. We used the cross-
entropy loss of l(z,W,M). The experimental setting of the proposed method is
based on [17]; the sample size is λ = 2, the learning rate is ηθ = 1/d, and the
initial distribution parameters is θ(0) = 0.5.

4.1 Unit Selection of the Fully-Connected Neural Network

Experimental Setting. In this experiment, we use a fully-connected neural
network with three hidden layers of 784 units as the base structure, and we
select the units in each hidden layer. The MNIST dataset, which is a 10 class
handwritten digits dataset consisting of 60,000 training and 10,000 test data of
28 × 28 gray-scaled images, is used. We use the pixel values as the inputs and
determine the existence of the units in hidden layers according to the binary
vector M . The i-th unit is active if mi = 1 and inactive if mi = 0. The output of
the i-th unit is represented by miF (Xi), where F and Xi denote the activation
function and the input for the activation of the i-th unit, respectively. We use
rectified linear unit (ReLU) and softmax activation as F in hidden layers and
in an output layer, respectively. When mi = 0, the connections to/from the
i-th unit can be omitted; that is, the active number of weights decreases. The
dimension of θ, the total number of hidden units, is d = 2352. This task is simple,
but we can check how the proposed penalty term works.

We set the mini-batch size to N̄ = 32 and the number of training epochs
to 500 in the proposed method, while the mini-batch size to N̄ = 64 and the
number of training epochs is set to 1000 in other methods. Under these settings,
the number of data samples used in one iteration and the number of iterations
for parameters update become identical in all methods, where the number of
iterations is about 9.5 × 105. We initialize the learning rate for W by 0.01. In
this experiment, we change the coefficient ε′ as 2−6, 2−7, 2−8, 2−9, 0, −2−3, and
−20 to check the effect of the penalty term.1 Since each bit decides whether or
not its corresponding unit is active, we simply use the same coefficients of model
complexity for each unit, c = (1, . . . , 1)T.

To evaluate the proposed method’s performance, we report the experimental
result of the fixed neural network structures with the various numbers of units.
We manually and uniformly remove the units in the hidden layers and control the
number of weights. As the network structures are stochastically sampled in the
training phase of the dynamic structure optimization, our method is somewhat
similar to that of stochastic network models, such as Dropout [18]. We also report
the result using Dropout with a dropout rate of 0.5 for comparison. Note that
the aim of a dropout is to prevent overfitting; thus, all units are kept in the test
phase.

1 The negative value of ε′ encourages the increase of the number of active units.
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Fig. 1. The relationship between the weight usage rate and test error rates of (a)
unit selection of the fully-connected neural network and (b) the connection selection
of DenseNet. The median values and 25% and 75% quantile values of each over five
independent trials are plotted.

Result and Discussion. Figure 1(a) shows the relation between the weight
usage rate and test error rates of the proposed method, the fixed structure, and
Dropout. The median values and the 25% and 75% quantile values of each over
five independent trials are plotted.

Comparing the proposed method and fixed structure, the proposed method
outperforms the fixed structure over the 25% usage rate of weights. In the
fixed structure, the error rate gradually increases as the usage rate of weights
decreases. The performance of the proposed method deteriorates when its
weights usage rate is approximately 6%. This indicates that the proposed method
can control the usage rate of weights by changing the penalty coefficient of ε′

and remove the units while still maintaining its performance. The structures
obtained by the different ε′ settings create a trade-off curve between the model
complexity and performance.

Comparing the proposed method and the original structure (i.e., the fixed
structure with the 100% weight usage rate), the proposed method outperforms
the original structure in the usage rate of 25% to 100%. Remarkably, when ε′ < 0,
although all units are selected after the training procedure (i.e., the structure
is the same as the original structure), the performance improves. Additionally,
dropout training also improves performance. Based on these results, stochastic
training appears to improve prediction performance. Dropout, however, cannot
control the weight usage rate, but the proposed method can reduce the number
of used weights without significant performance deterioration.

Table 1 shows a summary of median values of the number of selected units
in each layer. We observe that the proposed method preferentially removes units
in the second and third hidden layers. Therefore, the proposed method removes
the units selectively rather than at random.
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Table 1. The numbers of selected units
in each hidden layer in the unit selec-
tion experiment.

Weight usage rate 1st layer 2nd layer 3rd layer

6.6% (ε′ = 2−6) 92 31 24

26.1% (ε′ = 2−7) 340 141 126

57.8% (ε′ = 2−8) 599 380 379

77.7% (ε′ = 2−9) 704 544 567

93.7% (ε′ = 0) 770 717 724

100% (ε′ = −2−3) 784 784 784

Table 2. The numbers of selected con-
nections in each block in the connection
selection experiment.

Weight usage rate 1st block 2nd block 3rd block

15.8% (ε′ = 2−2) 36 6 20

24.1% (ε′ = 2−3) 45 8 49

42.3% (ε′ = 2−4) 57 39 67

67.5% (ε′ = 2−5) 59 61 76

80.3% (ε′ = 2−6) 65 64 80

100% (ε′ = −20) 91 91 91

The computational time for training by the proposed method is almost the
same as that required by the fixed structure. Even if we run several different
penalty coefficient ε′ settings to obtain additional trade-off structures, the total
computational time of the structure search more or less increases several times
over. This is reasonable more than the hyperparameter optimization-based struc-
ture optimization.

4.2 Connection Selection of DenseNet

Experimental Setting. We use DenseNet [7] as the base network structure;
it is composed of several dense blocks and transition layers. The dense block
consists of Lblock layers, each of which implements a non-linear transformation
with batch normalization (BN) [8] followed by the ReLU activation and the
3 × 3 convolution. In the dense block, the l-th layer receives the outputs of all
the preceding layers as inputs that are concatenated on the channel dimension.
The size of the output feature-maps in the dense block is the same as that of the
input feature-maps. The transition layer is located between the dense blocks and
consists of the batch normalization, ReLU activation, and the 1 × 1 convolution
layer, which is followed by 2 × 2 average pooling. The detailed structure of
DenseNet can be found in [7]. Unlike [7], however, we do not use Dropout.

We optimize the connections in the dense blocks using the CIFAR-10 dataset,
which contains 50,000 training and 10,000 test data of 32 × 32 color images in
the 10 different classes. During the preprocessing and data augmentation, we use
the standardization, padding, and cropping for each channel, and this is followed
by randomly horizontal flipping. The setting details are the same as in [17].

We determine the existence of the connections between the layers in each
dense block according to the binary vector M . As was done in [17], we use a
simple DenseNet structure with a depth of 40 that contains three dense blocks
with Lblock = 12 and two transition layers. In this setup, the dimension of M
and θ becomes d = 273. We vary the coefficient ε′ as 2−2, 2−3, 2−4, 2−5, 2−6,
0, −2−3, and −20 to assess the effect of the penalty term. Additionally, we
set the coefficients of the model complexity ci to match the number of weights
corresponding to the i-th connection.
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Fig. 2. The obtained DenseNet structure in the case of ε′ = 2−4 on a typical single run.
The numbers in the cells represent the depth of each layer in the original DenseNet
structure. Cells placed in the same column locate the same depth, and the depth of
this DenseNet structure is 32.

For the proposed method, we set the mini-batch size to N̄ = 32 and the
number of training epochs to 300. For the other methods, the mini-batch size is
set to N̄ = 64 and the number of training epochs to 600. With these settings,
the number of iterations for parameter updates become identical in all methods,
where the number of iterations is about 4.7×105. We initialize the learning rate
for W by 0.1.

We also report the result when the connections are removed randomly. We
repeatedly sample the binary vector M such that the weight usage rate becomes
the target percentage, and then we train the fixed network.

Result and Discussion. Figure 1(b) shows the relations between the weight
usage rate and test error rate. Comparing the proposed method and random
selection, the proposed method outperforms the random selection in the 15% to
40% weight usage rate. In the random selection method, important connections
might be lost when the usage rate of weights is less than 40%. In contrast, the
proposed method can selectively remove the number of weights without increas-
ing the test errors, so it does not eliminate important connections. However,
the difference between the test error rates of the random selection and the pro-
posed method is not significant when the weight usage rate exceeds 60%. This
result indicates that a small number of connections in DenseNet can be randomly
removed without performance deterioration, meaning that DenseNet might be
redundant; the proposed method can moderate increase of the test error rate
within 1% in the 40% weight usage rate.

Table 2 summarizes the median values of the number of selected connections
in each block. The proposed method preferentially remove the connections in
the first and second blocks when ε′ = 0 to 2−5, but these deletions do not have a
significant impact on performance. When ε′ = 2−4 to 2−2, the proposed method
actively removes the connections in the second block, so the obtained structure
can reduce the performance deterioration more than random selection.

Figure 2 shows the structure obtained by the proposed method when ε′ = 2−4

on a typical single run. As we can see, the second block in this structure, which is
between ‘Trans1’ and ‘Trans2’ cells, becames sparser and wider than the first and
third blocks. Interestingly, the second block became a wide structure through
removing the connections between its layers. This result might suggest that
wide structures may be able to improve performance with limited computing
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resources. Several works, such as [22], report that widening layers improves the
predictive performance; our findings may also support these wide networks. We
would like to emphasize that it is not easy to manually design a structure, such
as that shown in Fig. 2, due to the differing connectivities in each block.

Finally, we note that the amount of computational time required by our
structure for training is not significantly greater than that required by random
selection, meaning that our proposed structure optimization is computationally
efficient.

5 Conclusion

In this paper, we propose a method of controlling model complexity by adding
a penalty term to the objective function involved in the dynamic structure
optimization of DNNs. We incorporate a penalty term dependent on structure
parameters into the loss function and consider its expectation under the multi-
variate Bernoulli distribution to be the objective function. We derive a modified
update rule that enables us to control model complexity.

In the experiment on unit selection, the proposed method outperforms the
fixed structure in terms of a 25 to 100% weight usage rate. In the connection
selection experiment, the proposed method also outperforms random selection in
the small number of weights and preferentially removing insignificant connections
during the training. Upon checking the obtained structure, it is found that the
intermediate block became a wide structure.

As the increased amount of the computational time required by the proposed
method is not significant, we can take the trade-off between model complexity
and performance with an acceptable computational cost. Our method requires
training only once, whereas the pruning methods, such as that in [11], require
the retraining after pruning.

In future work, we will apply the proposed method to the architecture search
method for more complex neural network structures, such as that proposed in
[1]. Additionally, we should evaluate the proposed penalty term using different
datasets. Another possible future work is modifying the proposed method so
that it can use other types of the model complexity criteria, such as FLOPs of
neural networks.
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Abstract. Prediction strategies in dynamic evolutionary optimization
aim at estimating the moving optimum after a change of the fitness
function. Considering the predicted optimum for re-initialization of the
population, the evolution strategy is led into the direction of the next
optimum. We propose a new way to control the influence of the predic-
tion depending on its estimated uncertainty. In addition, we construct a
new benchmark generator for dynamic optimization problems, Dynamic
Sine Benchmark, tailored to prediction approaches. For prediction of the
moving optimum and uncertainty estimation we apply a temporal convo-
lutional network (TCN) with Monte Carlo dropout. In the experimental
study, we compare our approach to known prediction and re-initialization
strategies. The results show the advantage of the new re-initialization
strategy and TCNs with uncertainty estimation for complex problems
up to a certain dimensionality.

Keywords: Evolutionary optimization · Dynamic optimization ·
Prediction · Temporal convolutional network · Predictive uncertainty

1 Introduction

Dynamic optimization is the task of optimizing a fitness function f (x, t) → R

that changes over time t ∈ N, with x ∈ R
d and problem dimensionality d. Besides

approaches from control theory, common techniques for solving dynamic opti-
mization problems are evolution strategies (ES), see, e.g., [9] for an introduction,
and [10] for a recent contribution in machine learning. During a change period
c ∈ N, the fitness function undergoes no change and the ES can behave like for a
stationary problem. Due to their good convergence properties, ES have to adapt
their population after a fitness function change in order to find the new optimum
position oc that might be far from the previous optimum oc−1. To cope with
this, different approaches exist [15], like random re-initialization of the popu-
lation and prediction. Prediction approaches mostly aim at predicting the new
optimum position ôc and incorporate ôc into the population. The prediction is
based on training data provided by the ES, i.e., the best solutions x∗

i found for
previous change periods i, with 1 ≤ i ≤ c − 1.
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For dynamic ES, different prediction approaches have been proposed, e.g.,
autoregression [6,24], Kalman filter [19], recurrent neural network [13], and oth-
ers, e.g., [3,18,20,24]. They have in common that they might hamper the opti-
mization in case the predicted optimum differs much from the true one. If all
individuals were re-initialized around the falsely predicted optimum the ES pos-
sibly needs some extra generations to find a promising region in the solution
space. Ideally, the closer the prediction is to the true optimum, the more indi-
viduals should be placed near to the prediction. As the true optimum is not
known, it would be useful to have at least an estimate ûc for the predictive
uncertainty, i.e., the uncertainty of the predicted optimum ôc.

To our knowledge, there exists only the work by Rossi et al. [19] that takes
into account predictive uncertainty. They utilize a linear Kalman filter as pre-
diction model. Based on the estimated prediction error they adapt the number
of individuals that are placed around the predicted optimum. As new strategy
for population re-initialization we propose to sample not only some as in [19] but
all new individuals from confidence intervals around the prediction. The width
of the intervals depends on the uncertainty estimate. We also propose to use a
prediction model that might be able to capture more difficult problem dynamics:
a temporal convolutional network equipped with Monte Carlo dropout. Since in
preliminary experiments TCNs seemed to be easier and more stable to train we
do not employ recurrent neural networks that other works propose [13]. However,
also recurrent neural networks can be extended by uncertainty estimation.

The paper is structured as follows. In Sect. 2, we explain predictive uncer-
tainty estimation for Kalman filters and neural networks. We present our ES
framework and propose new re-initialization strategies in Sects. 3 and 4, respec-
tively. In Sect. 5, we describe the experimental setup, and discuss the results in
Sect. 6. A conclusion summarizes the most important findings in Sect. 7.

2 Predictive Uncertainty Estimation

2.1 Kalman Filter

The Kalman filter [7] is a linear time series model that is based on the assumption
that the state of a system is observable by noisy measurements. It can be applied
to both estimating the true state variables ac−1 underlying noisy observations
and predicting the next state âc for that not yet observations are available. It is
a recursive model. First, an a priori estimation of the next system state â−

c and
its error covariance Ê

−
c is computed. After obtaining an observation for the next

time step the filter model is optimized so that the a posteriori covariance error
is minimized. With the updated model the a posteriori estimation for state âc

and its error covariance Êc are computed. For further details on Kalman filter
see, e.g., Rossi et al. [19].

In the context of dynamic optimization, Rossi et al. [19] employ the a priori
state estimation â−

c as the predicted optimum ôc of the changed fitness function
and the a priori error variance, i.e., the diagonal of Ê

−
c , as an estimate for the
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predictive uncertainty ûc. The observations are the solutions x∗
i found by the

ES for previous change periods i, with 1 ≤ i ≤ c − 1.

2.2 Temporal Convolutional Network

TCNs are a kind of convolutional neural network (CNN) specialized to time series
data. In contrast to fully-connected NNs, that consist of layers of neurons and
weighted connections between them, TCNs are based on the concept of filters
that are sliding over the input time series. A complete TCN is constructed by
stacking layers of filters. Among different TCN architectures, we chose the one
proposed by Bai et al. [1], see that work for a detailed explanation on TCNs.

By design, artificial neural networks (NNs) output only a point prediction ŷ
for a given input x ∈ R

d. In order to get an estimate for the uncertainty of
the output, NNs of any type can be combined with Monte Carlo (MC) dropout
without changing the network architecture [5]. With MC dropout, neurons are
dropped not only during training but also for prediction. After training the NN,
for a given input the output and its uncertainty are predicted by conducting m
so-called Monte Carlo runs. The NN output is computed m times for the same
input with other neurons dropped in each run. This leads to m different network
outputs for the given input. The average output and its variance, i.e., predictive
mean and predictive variance, respectively, are computed as follows:

E [ŷ] =
1
m

m∑

i=1

ni(x) (1)

Var [ŷ] =
1
m

m∑

i=1

qi(x) + ni(x)2 − E [ŷ]2 (2)

where ni(x) denotes the network output of the ith MC run for input x. The
predictive variance represents the uncertainty of the prediction. It consists of
the sample variance plus noise qi(x) that is inherently present in the data, i.e.,
aleatoric uncertainty [8]. Aleatoric uncertainty is data-dependent and can auto-
matically be learned by the NN without further information. Only an additional
output layer for q(x) and a corresponding loss function are required. For more
information on uncertainty estimation for deep NNs, see [5,8,16].

In order to estimate the uncertainty of the TCN prediction in dynamic opti-
mization we combine the TCN with MC dropout. The ES employs the predictive
mean E [ŷ] as predicted optimum ôc and the predictive variance Var [ŷ] as pre-
dictive uncertainty ûc.

3 TCN Prediction for Dynamic ES

ES are stochastic population-based optimization algorithms. Each individual
in the population is a position in the solution space and represents a possi-
ble solution. Originally stemming from stationary optimization, ES need a few
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extensions to deal with dynamic problems. Here, we describe the adaptations we
make to apply prediction to an ES variant controlling mutation strength s by
Rechenberg’s 1/5th success rule [17], see Algorithm 1.

If the fitness function does not change, the ES behaves like for stationary
optimization. It generates λ offspring individuals by recombination and mutation
(Line 13), and selects the best μ individuals from the parent and the offspring
population (Line 14). To recognize a change in the fitness function, the ES needs
a detection mechanism (Line 7). We implement this by comparing fitness values
from succeeding generations for some individuals from the population and ran-
dom points in the solution space. If a change occurred, the mutation strength is
reset to its initial value and the best solution x∗

c−1 found for the previous change
period is stored (Lines 9–10). Based on solutions found so far, the prediction
model is trained, and the next optimum position ôc and its uncertainty ûc are
predicted (Line 11). Then, the predicted optimum is employed to re-initialize
the population (Line 12), and the new individuals are inserted as immigrants
into the old population. After the next selection step the population again has
its original size μ.

Algorithm 1. Dynamic (μ+λ)-ES with Prediction

1: P ← initialize population() # randomly within solution space
2: s ← initialize mutation strength() # initial value
3: O ← [ ] # list of found optima
4: c ← 1 # index of change period
5: for generations do
6: s ← adapt mutation strength() # Rechenberg’s 1/5th rule [17]
7: if change detected() then
8: c ← c + 1 # count change period
9: s ← reset mutation strength() # initial value

10: O.append(x∗
c−1) # add solution to list

11: ôc, ûc ← train and predict(O)
12: P ← reinitialize population(P, ôc, ûc)

13: P’ ← create λ offspring individuals(P, s) # recombination, mutation
14: P ← select best μ individuals(P, P’)

4 Re-initialization Strategies

Population re-initialization after a change is important to support exploration
abilities of the ES. Different re-initialization strategies exist both for dynamic
optimization with [3,6,20] and without prediction [4,15,22]. We propose new re-
initialization strategies for ES with prediction (pUNC, pDEV, pRND): one with and
two without predictive uncertainty estimation. The pattern for the strategies’
names is as follows. The first letter signifies whether a prediction model is applied
(p) or not (n). The last letters denote the respective strategy. In this section we
denote the ith immigrant of change period c by xc instead of xci .
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nRND. The new individuals xc are randomly sampled within the lower bound xl

and upper bound xu of the solution space: xc ∼ U (xl,xu) [23].

nVAR. The new individuals are the old ones with additional noise: xc = xc−1+ε.
The noise is sampled with ε ∼ N (

0, 1
4d‖xc−1 − xc−2‖22

)
and depends on the

difference between the current position xc−1 and the position of the nearest
individual xc−2 in the previous population [23].

nPRE. This strategy does not require a separate prediction model but serves itself
as a simple prediction approach [23]. For each individual xc−1 its next position
x̂c is predicted with x̂c = xc−1 +(xc−1 −xc−2) where xc−2 is defined as in nVAR.
The individuals are re-initialized at their predicted positions that are perturbed
with noise ε as in nVAR: xc = x̂c + ε.

pKAL. The only approach that considers uncertainty ûc of prediction ôc, is the
work of Rossi et al. [19] with a Kalman filter prediction model. The new individ-
uals xc are sampled from xc ∼ N (ôc, ûc). Rossi et al. [19] propose to re-initialize
only �h · μ� individuals around the predicted optimum, the remaining ones are
re-initialized with a standard method, e.g., nRND. With increasing uncertainty,
h decreases, where h = χ

1+ûmax
, 0 < χ < 1 + ûmax. Here ûmax denotes the max-

imum entry of ûc, μ the population size, and χ a selectable constant. We set
χ = 0.1 since this setting turned out to be good in the original work.

pUNC. In contrast to pKAL, we propose to locate all individuals around the
predicted optimum with xc ∼ N (

ôc, z · σ2
)

and σ2 =
√
ûc leading to a larger

spread in dimensions with high uncertainty. Employing
√
ûc instead of ûc for

variance σ2 empirically shows better results; for pKAL this is not found. With
z = 1 this is the 68.27% confidence interval. Since other intervals possibly result
in better samplings, we sample from various intervals z ∈ {0.01, 0.1, 1.0, 10.0}.

pDEV. In order to examine whether the uncertainty estimation of the Kalman
filter and the TCN, respectively, are useful we also propose a simpler kind of
uncertainty estimation. Here, the deviation of the predicted and found optimum

is interpreted as uncertainty σ =
√

1
d‖x∗

c−1 − ôc−1‖22. We sample with different

z values like in pUNC: xc ∼ z · N (
ôc, σ

2
)
. In contrast to pKAL and pUNC, here

only one uncertainty estimate for all d dimensions is available.

pRND. Our last strategy does not consider predictive uncertainty and is only
for the sake of comparison. The predicted optimum is randomly perturbed with
different scales z ∈ {0.01, 0.1, 1.0, 10.0}: xc ∼ z ·N (ôc, I), where I is the identity.
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5 Experimental Setup

We equip the same base ES (Algorithm 1) with five different prediction
approaches: no prediction model (npm), a linear autoregressive model (ar) [6],
TCN without (tcn) and with uncertainty estimation (unc), and a Kalman fil-
ter (kal). We combine the prediction approaches with following re-initialization
strategies:

– npm with nRND, nVAR, and nPRE
– ar and tcn with pRND, and pDEV
– kal and unc with pRND, pDEV, pKAL, and pUNC

Settings for the ES. We employ a (50+100)-ES with mutation strength set
to 1.0 initially. After a change, 50 immigrants are generated according to the
respective re-initialization strategy and inserted into the population. The fitness
function changes each 30th generation and the ES is conducted for 554 change
periods. We chose this number in order to get a number of training data that is
divisible by the batch size of the TCNs. All experiments are repeated 20 times.

Settings for the Prediction Models. We predict the next optimum after each
change but re-train the prediction models only every 75 changes to circumvent
excessive runtimes. For training, we use 128 training patterns each consisting
of 50 input time steps and one expected output. The training data are scaled
into range [−1, 1] and overall 5 training phases are conducted. We train the
TCNs with the Adam optimizer for 100 epochs and conduct during training and
prediction 50 and 10 Monte Carlo runs, respectively. Since the training patterns
have a window size of 50 time steps, the TCN has 4 layers [1]. In preliminary
experiments, we tuned the hyperparameters of the TCNs. The best setting is: 27
filters, filter size 6, learning rate 0.001, batch size 32, and dropout probability 0.1.
Our code can be found on GitHub: https://github.com/almuthmeier/DynOpt.

5.1 Benchmarks

We compare the algorithms on the Dynamic Sine Benchmark (DSB), proposed
in this paper, and the Moving Peaks Benchmark (MPB). We initialize the bench-
marks for dimensions d ∈ {2, 5, 10, 20}. The solution space is within [0, 100]d.

Dynamic Sine Benchmark. There exist various benchmarks for dynamic opti-
mization [15], e.g., MPB [2], CEC competition benchmarks [11], and the Free
Peaks benchmark [12]. But they mostly are not tailored to prediction approaches
since the optimum movement either is not predictable or the dynamic is sim-
ple, e.g., noisy linear. Since in real-world applications the optimum might not
follow simple relationships, but, e.g., in control problems, would have rather
complex oscillations, we propose a new benchmark generator with quantifiable
complexity: Dynamic Sine Benchmark (DSB).

https://github.com/almuthmeier/DynOpt
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In each dimension w of the solution space the optimum movement follows a
separate trigonometric function

ζw(c) = τ +
ρ∏

i=1

(ιi · sin (βi · κ · (c − 1) + γi))

which is composed by multiplying ρ sine functions with randomly parametrized
amplitude ιi, frequency βi, phase shift γi, and vertical movement τ . In change
period c the optimum is located at oc = [ζ1(c), ζ2(c), . . . , ζd(c)]. To generate
optimum positions for P change periods, for each dimension w the respective
function ζw is evaluated for c ∈ [1, . . . , P ]. Here, κ (step size) determines the
distance between the points at which ζw is evaluated. Step size κ requires a
careful choice to cover the important parts of function ζw. DSB can be combined
with any stationary fitness function fs. The fitness for individual x in generation t
is f(x, t) = fs(x− (oc −ofs

)) if generation t belongs to change period c and ofs

denotes the global optimum of the unmoved function fs.
In order to quantify the benchmark’s complexity we introduce the concepts

of curviness and velocity. The curviness specifies the number of extremes ζw has
within the base time interval [0, 2π], i.e., how many changes in the direction
of the optimum movement take place. By this means, the curviness indicates
the difficulty for the prediction model to track the optimum. The velocity is the
median distance between succeeding optimum positions and represents the prob-
lem difficulty for the ES. In case the velocity is much higher than the mutation
strength, an ES without prediction might need many more generations to find
the new optimum position. In DSB, all functions ζw are generated with the same
curviness and velocity in order to ensure that the complexity of DSB instances
with different dimensionality only depends on the number of dimensions.

In the experimental study, we combine DSB with the well-known fitness
functions Sphere (unimodal), Rastrigin (multimodal), and Rosenbrock (non-
separable). The parameterization is: curviness 10, velocity 0.5, ρ = 4, κ = π

30 .

Moving Peaks Benchmark. The Moving Peaks Benchmark (MPB) [2] is a
standard test set in evolutionary dynamic optimization. It consists of multiple
peaks with randomly changing positions, heights, and widths. We use a variant,
where the noise of the linear optimum movement is controlled with a correlation
factor η, see, e.g., [14] for an explanation. The optimum movement may employ
jumps when the height of a so far local optimum becomes the global optimum.
We instantiate MPB with ten peaks and noise ν ∈ {0.0, 0.01, 0.05}, η = 1 − ν.

5.2 Metrics

We measure both the performance of the ES (BOG, BEBC, RCS) and the accu-
racy of the prediction models (ACC). The metrics are computed with respect to
the generations, in which a prediction is conducted. Best of generation (BOG)
is a frequent performance measure in dynamic optimization [15]. It averages the
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fitness of the best found solutions over all generations and runs of the experi-
ment, and represents the behavior of the ES during the whole run. Low values are
desirable for minimization problems. Also best error before change (BEBC) [21]
is a well-known performance measure for dynamic optimization. It averages the
fitness difference between the best solution of a change period and the true opti-
mum over all P change periods. Therefore, it ignores, e.g., fitness peaks during
the early generations of a change period. The best value for BEBC is 0. Relative
convergence speed (RCS) [13] measures how fast the ES approaches the global
optimum relatively to the other algorithms included in the comparison. It ranges
from 0 (best value) to 1 (worst value). We introduce prediction accuracy (ACC)
as root mean squared error of the predicted and true optimum positions over all
change periods. The best ACC value is 0.

6 Experimental Results

Both for DSB and MPB we first identify for each prediction model the best
re-initialization strategy. Due to space restrictions the results are not included
in this paper. The main finding from this is that re-initialization strategy pKAL
nearly always is outperformed by our uncertainty-based strategy pUNC.

In the next paragraphs, we compare the different prediction approaches com-
bined with the identified settings. We conduct pairwise Mann-Whitney U tests
with significance level α = 0.05 to examine statistical significance. The resulting
Tables 1, 2 and 3 contain ‘�’ (‘�’), if the algorithm of the respective row achieves
a significantly lower (larger) value than the algorithm in the respective column
regarding the specific metric on the given benchmark. In the columns, the order
of metrics listed for each algorithm is BOG, BEBC, RCS, ACC. The symbol ‘−’
signifies a non-significant test result. With ‘·’ we indicate that the ACC measure
is not computed for npm, since npm has no prediction model. The algorithm name
consists of the prediction model followed by the re-initialization strategy.

6.1 Dynamic Sine Benchmark

No prediction, i.e. npm, is nearly always worst except for good RCS values com-
pared to ar, see Table 2. ar is outperformed by the other approaches as well.
Though it does not take into account predictive uncertainty, tcn is superior to
kal. The comparison of tcn and unc shows that tcn is nearly never better than
unc. Strategy unc outperforms tcn on lower dimensions (d ∈ {2, 5}) and has
even for higher dimensions (d = 10) a better BOG. On Rastrigin, tcn and unc
behave very similarly but also here unc achieves a better BOG for d ∈ {2, 5}.

Overall, the order of performance reaches from best to worst unc, tcn, kal,
ar, npm. The results emphasize the advantage of uncertainty estimation since
kal-pUNC and unc-pUNC outperform their respective counterparts that do not
use predictive uncertainty. The fact that tcn outperforms kal shows that, in case
a prediction approach is not suited to the kind of problem dynamic, even uncer-
tainty estimation cannot compensate the weaknesses of the prediction approach.
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Table 1. tcn-pDEV and
unc-pUNC on Sphere, various
dimensionalities

Algorithm Dim. unc-pUNC

tcn-pDEV 2 � � � �
3 � � � −
4 � � � �
5 � � � −
6 � � � −
7 � � � −
8 � − � −
9 � − − −

10 � − � −
11 � − − −
12 − − − −
13 − − − −
14 − − − −
15 − � − −
16 − � − −
17 − − − −
18 − � − �
19 − � � �
20 − − � −

Fig. 1. Best fitness for selected generations on
Sphere function (d = 10), averaged over runs, with
npm-nVAR , ar-pDEV , tcn-pDEV , kal-
pUNC , unc-pUNC .

In addition, a smaller advantage of uncertainty could be observed for multimodal
and high dimensional problems.

We examine on the Sphere function, up to which dimensionality predictive
uncertainty provides useful information. From Table 1 it is obvious that unc
outperforms tcn for lower dimensions and the use of predictive uncertainty
decreases with increasing dimensions. From d = 12, unc has no advantage over
tcn. Strategy unc outperforms tcn especially regarding BOG and becomes worse
first for BEBC. This finding is confirmed by Fig. 1 that shows for all prediction
approaches the best average fitness achieved in the respective generation. Due
to restricted space not all generations are shown. It can be observed that unc
often starts with a lower fitness value than tcn after a change. Thus, considering
predictive uncertainty for re-initialization prevents high fitness peaks during the
first generations of change periods.
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6.2 Moving Peaks Benchmark

Autoregressive prediction (ar), is worse than all other approaches. It only outper-
forms npm regarding BOG. No prediction (npm) outperforms the other approaches
frequently regarding BEBC. The reason for this might be that the prediction-
based approaches follow a local optimum but not the global one. Therefore, they
have lower fitness values at the beginning of the change period resulting in lower
BOG and RCS. In contrast to that, npm shows more diversity in the population.
Hence, it is more likely to explore the global optimum leading to a better BEBC.

On the multimodal Rastrigin function these effects do not appear, see Table 2.
Possibly, this can be explained by the fitness landscape. MPB is rather flat with
some small peaks whereas Rastrigin has everywhere strong slopes enabling the
ES to find promising directions in the solution space. Therefore, npm might find
good solutions faster, and the prediction-based approaches could easier leave

Table 2. Results on DSB
Algorithm Benchmark Dim. ar-pDEV tcn-pDEV kal-pUNC unc-pUNC

npm-nVAR
sphere

2 � − − · � � � · � − � · � � � ·
5 � − � · � � � · � � � · � � � ·

10 � − � · � � � · � � � · � � � ·
20 � � � · � � � · � � − · � � � ·

rosenbrock

2 � − � · � � � · � � − · � � � ·
5 � − � · � � � · � � � · � � � ·

10 � � � · � � � · � � � · � � � ·
20 � � � · � � � · � � − · � � � ·

rastrigin

2 � − − · � � � · � � � · � � � ·
5 − − � · � − − · − − � · � � − ·

10 � − � · � � − · � − � · � � − ·
20 � − − · � � � · � − � · � � � ·

ar-pDEV
sphere

2 � � � � � − � � � � � �
5 � � � � � � � � � � � �

10 � � � � � � � � � � � �
20 � � � � � � � � � � � �

rosenbrock

2 � � � � � � � � � � � �
5 � � � � � � � � � � � �

10 � � � � � � � � � � � �
20 � � � � � � � � � � � �

rastrigin

2 � � � � � � � � � � � �
5 � − � � − − − � � − � �

10 � � � � − − � � � � � �
20 � � � − � − � � � � � −

tcn-pDEV
sphere

2 � � � � � � � �
5 � � � � � � � −

10 � � � � � − − −
20 � � � � − − � −

rosenbrock

2 � � � � � � − −
5 � � � � � � � −

10 � � � � � − − −
20 � � � � − − − �

rastrigin

2 � � � � � − � −
5 � � � � � − − −

10 � � � � − − − −
20 � � � � − − − −

kal-pUNC
sphere

2 � � � �
5 � � � �

10 � � � �
20 � � � �

rosenbrock

2 � � � �
5 � � � �

10 � � � �
20 � � � �

rastrigin

2 � � � �
5 � � � �

10 � � � �
20 � � � �

Table 3. Results on MPB
Algorithm Noise Dim. ar-pRND tcn-pRND kal-pUNC unc-pUNC

npm-nRND
0.00

2 � � − · � − � · � � − · � − � ·
5 � � � · − � � · � − − · − � − ·

10 − − − · � � � · � − � · − − − ·
20 � � − · � � − · � � � · � � � ·

0.01

2 � � � · � � � · � � � · � � � ·
5 − � − · − − − · − − − · − � − ·

10 � � − · � � � · � � � · � � � ·
20 − � − · � � � · � − � · � � � ·

0.05

2 � � � · � � � · − � � · � − − ·
5 � − − · � − � · − − − · � − � ·

10 � � � · � � � · � � � · � � � ·
20 − � − · − � − · � � � · � � � ·

ar-pRND
0.00

2 − − − − − − − − − − � �
5 − − − − � � � � � � − −

10 � � � � � � � � − − � −
20 − − − � � � � − � � − −

0.01

2 � � � − � � � � � � � �
5 − − − − − − − − − − − −

10 − − � − � � � − − − � −
20 − − − � � � � − − − − −

0.05

2 − − − � − − − − − − � −
5 − − − − − − − − − − � −

10 � � − − � � � − − − � −
20 − − − − � � � − − − � −

tcn-pRND
0.00

2 � − − � − − − −
5 � � � � � � � �

10 − − − − − − − −
20 � � � − � � � �

0.01

2 � � � � � � − �
5 − − − − − − − −

10 � � � � − − − −
20 � � � − − − − −

0.05

2 − − − � � � − �
5 − − − − − − − −

10 � � � − � � � −
20 � � � − − − − �

kal-pUNC
0.00

2 � � � �
5 � � � �

10 � � � −
20 � � − −

0.01

2 � � � �
5 � � − −

10 � � � −
20 � � � −

0.05

2 � � � −
5 − − − −

10 � � � −
20 − − − −
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their tracked local optimum. This might lead to a better RCS for npm on Rastrigin
than on MPB, and to a better BEBC for the prediction-based approaches.

In contrast to DSB, on MPB tcn is almost always outperformed by kal.
Prediction approach unc seems to have advantages over tcn only on low dimen-
sions. Interestingly, tcn sometimes outperforms unc regarding RCS. kal is the
best prediction approach. It outperforms even unc regarding BOG and BEBC
showing its superiority for problems with linear dynamic. Only for high noise
(0.05) the differences are not obvious. The overall order of performance on MPB
is from best to worst kal, unc, tcn, npm, ar.

7 Conclusion

In this paper, we proposed a new re-initialization strategy to consider predictive
uncertainty for population re-initialization. We applied a temporal convolutional
network (TCN) with Monte Carlo dropout as new prediction model with uncer-
tainty estimation for dynamic optimization. Besides, we constructed Dynamic
Sine Benchmark, a new benchmark generator for dynamic problems tailored to
prediction approaches.

The results show the advantage of TCNs with uncertainty estimation on
rather complex problems whereas Kalman filters are superior on noisy linear
problem dynamics. Our new re-initialization strategy turned out to outperform
the existing one that considers predictive uncertainty. We could show that predic-
tive uncertainty only has a positive effect on the ES, if the prediction approach is
combined with the proper re-initialization strategy. In general, the effect vanishes
with increasing problem dimensionality. Especially for the multimodal Rastri-
gin function with higher dimensionality no large differences between prediction
approaches with and without uncertainty estimation could be observed.
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through the Research Training Group SCARE (DFG-GRK 1765/2).
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Abstract. Accurate forecasting of a high variability time series has rel-
evance in many applications such as supply-chain management, price
prediction in stock markets and demand forecasting in the energy seg-
ment. Most often forecasts of such time series depend on many factors
ranging from weather to socio-economic attributes such as GDP or aver-
age income. Dependence on such features can cause the underlying time
series to be highly variable in nature and possess non-stationary shifts.
Most traditional forecasting methods fail to capture such trend shifts
and high variability present in the data. Further, for certain applica-
tions, it may be necessary to estimate the confidence of the forecasts.
In this work, we propose two variants of recurrent mixture density net-
work (RMDN), for time series forecasting, that have the ability to handle
high-dimensional input features, capture trend shifts and high variability
present in the data, and provide a confidence estimate of the forecast.
To this end, we first pass the high-dimensional time series data through
a feedforward layer, which performs dimensionality reduction or feature
selection in an unsupervised manner by inducing sparsity on the weights
of the feedforward layer. The resultant low-dimensional time series is
then fed through recurrent layers to capture temporal patterns. These
recurrent layers also aid in learning the latent representation of the input
data. Thereafter, a mixture density network (MDN) is used to model the
variability and trend shifts present in the input and it also estimates the
confidence of the predictions. The models are trained in an end-to-end
fashion and the efficacy of the proposed models is demonstrated on three
publicly available datasets from energy markets.

Keywords: Recurrent mixture density networks ·
Sparse neural networks · Highly variable time series · Forecasting ·
Confidence estimation of prediction · Dimensionality reduction

1 Introduction

In applications such as supply-chain logistics, stock price prediction or load fore-
casting in energy markets, it is imperative for the prediction model to be accurate
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and posses the ability to handle high-dimensional data with trend shifts and vari-
ability. Among the applications listed above, we choose load-forecasting task as a
test-bed to demonstrate the features of our proposed models since the desiderata
listed above are very useful in energy market applications. For example, accu-
racy in load prediction is critical for maintaining the balance between supply
and demand of electricity. Any imbalance in the energy network can be costly to
all the players in the market [9]. Further, energy consumption pattern of retail
or wholesale customers are typically highly variable in nature with trend shifts
that depend on various factors such as weather, historical consumption patterns
and other socio-economic indicators. Also, dependence of the consumption pat-
tern on these factors results in high-dimensional data. The ability of a model to
provide the confidence estimate of its forecast is useful for power generators and
electricity brokers to manage demand volatility and imbalances better [18].

To achieve the above mentioned desiderata, we propose two variants of sparse
recurrent mixture density networks for time series prediction that output p-step
ahead forecast. Specifically, we consider long short-term memory (LSTM) [17]
and encoder-decoder (ED) [28,30] as the two underlying recurrent architectures.
We use a feedforward dimensionality reduction layer to handle high-dimensional
input data by imposing sparsity constraint on the weights of feedforward layer,
which effectively results in unsupervised feature selection [13,27]. RNNs (LSTM
or ED architectures) are used to capture the temporal patterns present in the
time series data. Finally, mixture density networks [4] are used to model the
trend shifts and variability present in the data and provide a confidence estimate
of the prediction. The performance of the proposed architectures are tested on
three publicly available electricity load forecasting datasets. Specifically, we used
mean squared error (MSE) and mean absolute percentage error (MAPE) as
quantitative metrics to compare the efficacy of the proposed models in time
series forecasting.

We claim that the proposed sparse recurrent neural network based mixture
density networks for forecasting high variability time series have following fea-
tures:

– Performs automatic feature selection of the high-dimensional input data in
an unsupervised fashion by using feedforward dimensionality reduction layer.

– Captures the temporal patterns present in the data with the help of under-
lying RNNs present in the models.

– Captures trend shifts and variability present in the input data with the help
of the mixture density networks.

– Provides a confidence estimate of the forecast.

Further, because of the RNNs present in the proposed networks, these models
have the ability to provide p-step ahead forecast of an input time series with
reliable accuracy.

The outline of the paper is as follows. In Sect. 2, a brief summary of related
work is presented. A detailed description of the sparse RMDN models are given
in Sect. 3. Experimental setup and dataset description are elaborated in Sect. 4.
Results are showcased in Sect. 5, and findings are summarized in Sect. 6.
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2 Related Work

Recurrent neural networks, especially those based on long short-term mem-
ory [17] or gated recurrent units [7], have gained popularity in the recent years
for sequential modeling tasks due to their ability to capture temporal patterns.
These models have achieved state-of-the-art performance on sequence modeling
tasks such as machine translation [7], speech recognition [12], remaining useful
life estimation [14] and anomaly detection [13,15,16,19,26].

RNN-based networks are capable of capturing long-term dependencies, and
hence are relevant in forecasting problems. Recently, recurrent mixture density
network (RMDN) based models have outperformed other existing RNN based
approaches on tasks like sequence generation [11], trajectory generation [33,34],
surgical motion prediction [8], visual attention [2] and in anomaly detection [16].
The use of MDNs along with LSTMs for modeling the variance of predicted
demand in supply-demand logistics has also been explored [21]. The LSTMs
along with MDNs have been used to predict taxi demand [31]. However, these
models do not have any inherent mechanism to handle high-dimensional data.
Our work uses a feedforward layer to automatically select salient features of
the data. In addition, we also propose an encoder-decoder based sparse RMDN
architecture that is known to be better at generating sequences than LSTM-
based architectures.

As mentioned in the introduction, the MDN-based architectures proposed
in this exposition are tested on datasets pertaining to electricity demand from
energy markets. Popular approaches to load forecasting problems have generally
been based on econometric [3,25] and time series [1,10] methods. Of late, data
driven models [23] that use deep neural networks [6,24] have gained importance
due to their generalizability and superior prediction capability. However, these
approaches follow a two-stage process to handle high-dimensional data. The first
stage has the mechanism to find out important features from high-dimensional
data and the second stage uses the important features as input to the forecasting
model. For instance, the authors of [6] have used random forest, while [5] has
used wrapper and embedding based recursive feature elimination technique to
get important features in the first stage. The important features obtained from
the first stage are then fed as input to the LSTM-based forecasting models in the
second stage. Nevertheless, to the best of our knowledge, the models proposed
in the studies mentioned above neither have an inherent mechanism to handle
high-dimensional data nor do they provide confidence estimates of the forecasted
demand. We propose to address these issues through the sparse recurrent MDN
architectures proposed in this work.

3 Sparse Recurrent MDN Models for Forecasting

In this section, we introduce two variants of recurrent MDN architectures that
can be used in forecasting tasks. Let x1,...,T denote a time series of length T ,
where each xt ∈ R

d, d being the input dimension. The objective of the forecasting
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model is to predict future points of a time series y given the historical data for
the time series x. In other words, the model is required to provide a prediction
y

′
t+1,...,t+p of yt+1,...,t+p given the input x1,...,t with the help of a non-linear

mapping function fnet, where p is the prediction length.
Popular neural networks for time series prediction include long short-term

memory (LSTM) and encoder-decoder (ED). An LSTM is a recurrent neural
network with a cell or memory, an input gate, an output gate, and a forget gate.
The role of the cell is to extract temporal relations of the input sequence, while
the gates regulate the information flow in and out of the LSTM cell. An ED is
a seq2seq learning model [28,30] that contains a pair of RNNs (called encoder
and decoder) which are trained simultaneously. Given the input time series the
encoder learns a latent representation zt of the time series. The decoder, which
has the same structure as the encoder, decodes the hidden state zt to predict
y

′
t+1,...,t+p. As we will see later, both LSTM and ED based models do not capture

trend shifts very well. It is also difficult to capture variability very well when
these networks are trained using a mean squared error objective function, which
is equivalent to maximum likelihood estimation under the assumption that the
underlying distribution is Gaussian (and hence unimodal). Furthermore, LSTM
and ED models do not have an inherent mechanism to handle high-dimensional
data and perform unsupervised feature selection. We bring in sparse recurrent
MDNs to address these shortcomings.

3.1 Sparse Recurrent MDN: Architecture

The sparse recurrent MDNs that we present in this exposition are schematically
depicted in Figs. 1(a) and (b) for 1-step ahead forecasting. The MDN models a
mixture of Gaussians with the latent representation zt of the input time series
data x1,...,t. If the latent representation zt of the input time series is obtained
using standard LSTM, then we call the model as sparse LSTM-MDN. If zt is
obtained using standard ED then we refer to the model as sparse ED-MDN.
Every forecasted point of the time series is associated with its own mixture
of Gaussians. Let K be the total number of mixtures, then each component
k ∈ {1, · · · ,K} in the mixture is associated with coefficients ρk, mean μk and
standard deviation σk.

The mathematical description of the proposed sparse MDN models is as
follows. The input sequence is first passed through a feedforward layer with r
units and weight matrix Wf . The output of the feedforward layer for input xi

at time step t (of dimension 1 × d) is given by

x̂i
t = fReLU (Wf · (xi

t)
T + bf ), (1)

where fReLU (·) = max(·, 0) and Wf is r × d. The reduction in dimensionality is
achieved by choosing the number of units in feedforward layer r ≤ d

2 . The feature
selection in an unsupervised manner from the feedforward layer is achieved by
imposing a Lasso penalty [29] on the weights of feedforward layer to make the
input connections sparse. The L1 constraint or the Lasso penalty induces sparsity
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Fig. 1. Proposed sparse RMDNs for 1-step ahead forecasting with two LSTM layers.

on the weights Wf of the fully connected feedforward layer by restricting a
fraction of the weights in Wf to be close to zero and thus results in unsupervised
feature selection. In contrast to our end-to-end training process, [5,6] use a two-
stage process to achieve dimensionality reduction and feature selection. Note
that, convolutions can also be used to achieve the dimensionality reduction as
in [20,22,32].

The intermediate term x̂i is then fed to the subsequent LSTM or ED layers.
Let zt

1 denote the latent representation of the input obtained by the LSTM or
ED. The parameters of the mixture of K Gaussians are estimated as follows:

ρt′ ,K(zt) = softmax(Wρ · zt + bρ)

μt′ ,K(zt) = Wμ · zt + bμ

σt′ ,K(zt) = exp(Wσ · zt + bσ)

(2)

where t
′ ∈ [t+1, · · · , t+p], and Wρ,Wμ,Wσ are the learned parameters of the

MDN with μ·,k and σ·,k representing mean and standard deviation of the kth
Gaussian component respectively. The coefficients ρt′ ,k play the role of proba-
bilities. The softmax ensures that each value ρt′ ,k ∈ [0, 1] and

∑K
k=1 ρt′ ,k = 1 at

any time step t
′
and exp function is used to ensure that the standard deviation

term σ is always positive. The outputs of the MDN as formulated in (2) model
the conditional distribution of the future values yt+1,...,t+p to be predicted given
the latent representation zt expressed as follows:

P (yt+1,...,t+p|x1,...,t; zt) =
t+p∏

t′=t+1

K∑

k=1

ρt′ ,k(zt)N
(
yt′ ;μt′ ,k(zt), σt′ ,k(zt)

)
(3)

1 In case of ED, zt comes from decoder.
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Thus, the MDN layer outputs a well-defined joint probability distribution
obtained for all the time steps in the forecast time horizon. The model parame-
ters are learned by minimizing the negative log-likelihood of the distribution in
(3) as shown below:

LRMDN = − 1
N

N∑

i=1

log P
(
yi

t+1,...,t+p|xi
1,...,t; z

i
t

)
, (4)

where superscript i denotes the ith sample, and N is the total number of samples
in the train set. It is to be noted that ρ, μ and σ depends upon the latent
representation zt of the input time series obtained using the parameters of LSTM
or ED.

The final loss function along with the L1 constraint or the Lasso penalty on
the weights of the feedforward dimensionality layer is thus given by

L = LRMDN +
λ

d × r
||Wf ||1, (5)

The regularization parameter λ controls the level of sparsity in Wf .
Since mixture of Gaussian distribution model a wide class of distributions,

we believe RMDNs are better equipped to capture trend shifts and variability
in the data. To get prediction at time t, we select a mixture k with the one
having more probability ρt,k. We consider selected mixture’s mean μt,k as the
prediction and σt,k as the confidence estimate of the prediction.

4 Performance Evaluation

We compare the performance of the proposed sparse recurrent MDNs, namely,
sparse LSTM-MDN and sparse ED-MDN with the traditional RNN based fore-
casting approaches, namely Standard LSTM and Standard ED. We also consider
following variants of the proposed sparse RMDN models in our comparison.

– Standard LSTM and ED with feedforward dimensionality reduction layer
called as sparse LSTM and sparse ED respectively.

– Sparse LSTM-MDN and sparse ED-MDN without the feedforward dimension-
ality reduction layer referred to as LSTM-MDN and ED-MDN respectively.

– An ensemble of the predictions from eight forecasting approaches considered
in this exposition referred to as Ensemble.

The evaluation of the proposed models was done on three energy market datasets
with MSE and MAPE as metrics. We also evaluated the proposed models using
weighted MAPE metric, but the results are similar to MAPE. Hence, they are
not reported in this paper.
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4.1 Datsets Description

AEMO Dataset2: This dataset is from the Australian energy market oper-
ator (AEMO) and has load information corresponding to five regions of the
Australian energy market. Of these, we considered data from a single region
spanning September 2014 to July 2015. The load information is available at
half-hour interval with corresponding weather data. The task is to predict day-
ahead load of the region at half-hour frequency based on weather, calendar and
past consumption values as features in input data.

UMass Smart HomeA Dataset3: This dataset contains three year electricity
consumption records of a household. Data is available every half-hour, between
years 2014 and 2016. We considered measurements from January to April 2014.
Apart from overall load consumption, the dataset contains readings of 31 elec-
trical appliances from the household and weather information of the region.
Further, since the weather details are available only at one-hour interval other
features were also sampled at the same frequency. The recordings of 17 appli-
ances were zero and hence were discarded. The task is to predict day-ahead
consumption of the household at hourly frequency given past consumption and
other features of the input data.

PowerTAC Dataset4: PowerTAC is an annual trading agent tournament that
simulates crucial elements of a smart-grid system. As a part of the PowerTAC
environment, retail customers of varied nature are simulated whose energy con-
sumption pattern depends on a large range of factors from weather to tariff
subscribed. For the purpose of this work, we simulated data from three cus-
tomer models from the PowerTAC environment called MedicalCenter-1, Cen-
tervilleHomes and BrooksideHomes. This dataset has energy usage at one-hour
intervals along with corresponding weather and calendar information. The task
is to predict day-ahead load at an hourly frequency.

Table 1. Datasets details.

Dataset Window length Prediction length Input dimensions Total windows Sampling rate (hrs)

AEMO 144 48 31 690 0.5

HomeA 72 24 53 217 1.0

PowerTAC 72 21 24 1270 1.0

4.2 Training Details

In our training process, each dataset is divided into train, validation and test sets.
Input sequence of length t were generated by dividing a large time series data into
2 https://www.aemo.com.au/.
3 http://traces.cs.umass.edu/index.php/Smart/Smart.
4 http://powertac.org/.

https://www.aemo.com.au/
http://traces.cs.umass.edu/index.php/Smart/Smart
http://powertac.org/
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small subsequences or windows of length t with shift s. Categorical features like
time-of-day were represented using one-hot encoding. Min-max normalization
was performed for all features on the train, validation and test sets by obtaining
minimum and maximum values from the train set data. The exact values of these
parameters are presented in Table 1.

We use Adam optimizer for optimizing the weights of the networks in all our
experiments. We chose the best architecture as the one with least negative log
likelihood for mixture density networks as in Eq. (5) and the one with least mean
squared error for non-MDN models on the hold-out validation set. To this end, a
grid search over several hyper-parameter values were performed. Specifically, we
considered the following choices for various hyper-parameters: number of layers
L ∈ {1, 2, 3}, number of hidden units h per layer in the range of 50–300 in steps
of 50, number of units in the feedforward layer r ∈ {d

5 , d
4 , d

3 , d
2}, learning rate

lr ∈ {0.01, 0.001, 0.0001}, λ ∈ {0.01, 0.001, 0.0001}, number of mixtures in the
mixture of Gaussians K ∈ {2, 3, 4, 5}, and a dropout rate of 0.3 over feedforward
connections of the RNN.

Table 2. Performance comparison of proposed sparse RMDN based forecasting models.

Approach Dataset

AEMO HomeA MedicalCenter-1 CentervilleHomes BrooksideHomes

MSE MAPE MSE MAPE MSE MAPE MSE MAPE MSE MAPE

Standard LSTM 0.00159 9.03186 0.01182 46.98303 0.00559 17.71834 0.00159 12.6512 0.00276 30.47902

Standard ED 0.00237 11.03585 0.01172 44.10512 0.00586 17.5974 0.00165 13.35113 0.00275 29.24932

Sparse LSTM 0.00137 8.666420.01113 42.77446 0.00596 18.5316 0.00162 12.1824 0.0025628.94780

Sparse ED 0.00170 9.25787 0.01177 43.95304 0.00619 18.5024 0.00154 13.02479 0.00273 31.45647

LSTM-MDN 0.00227 10.36923 0.01295 28.36924 0.00559 17.225580.00157 12.06838 0.0028 28.93074

ED-MDN 0.00199 9.37978 0.01381 35.16026 0.00587 17.26241 0.00155 12.17745 0.00277 28.51284

Sparse LSTM-MDN0.00167 9.14346 0.01188 25.645720.00553 18.54566 0.0015011.961060.00281 26.81967

Sparse ED-MDN 0.00176 9.19194 0.0117029.37821 0.0053618.84936 0.00153 12.42076 0.00299 27.03677

Ensemble 0.00134 8.071250.0101534.10546 0.0051017.119000.0013911.742290.0024227.27441

5 Results

The performance of our models are summarized in Table 2 and Fig. 2. The results
reported in Table 2 are obtained by performing the experiments once. Predictions
from the forecasting models along with their ground truths are plotted in Fig. 2.
More specifically, predictions μ for the MDN-based forecasting models along
with a one-sigma confidence band at the estimated confidence σ are plotted in
Fig. 2. One can form the following inferences from the results.

1. Sparse LSTM and sparse ED outperformed standard LSTM and standard ED
in both metrics on most of the datasets, thus showing the efficacy of having
feedforward dimensionality reduction layer with L1 penalty on its weights to
reduce the dimensions. Recall that feedforward layer with sparsity constraint
on its weights Wf performs unsupervised feature selection, thus resulting in
improved performance.
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Fig. 2. Comparison of proposed sparse Recurrent Mixture Density Networks and stan-
dard RNN based models with the ground truth for forecasting. We did not plot the
predictions from other models for the sake of clarity.
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2. LSTM-MDN and ED-MDN are performing better than standard LSTM and
standard ED in MAPE metric on most of the datasets. They are also per-
forming better than Sparse LSTM and sparse ED, which demonstrates the
ability of MDNs to model the variability and trend shifts present in the data.

3. Sparse LSTM-MDNs and sparse ED-MDNs based forecasting models are per-
forming better than other forecasting approaches on most of the datasets.
As discussed earlier, this suggests that sparse RMDNs based forecasting
approaches are superior in capturing the variability of the load or demand
profile and handling high-dimensional data better than other approaches.

4. Sparse RMDN based forecasting models are performing better than all other
approaches in terms of MSE metric on all datasets except AEMO dataset. The
AEMO dataset differs from the other datasets we have used in that it exhibits
lesser variability. Both these observations suggest that sparse RMDNs are
better suited to peaks and high variability than their non-sparse, non-MDN
counterparts.

5. One can observe from the Figs. 2(b), (c) and (d) that the estimated confidence
σ is low whenever the error between the predicted demand and ground truth
is low and the σ is high otherwise. The model thus provides a confidence
measure on its prediction ability which is very useful in many real-world
applications.

6. The Ensemble formed using the eight proposed forecasting models is perform-
ing better than all other baselines and it is very robust.

7. While the sparsity constraint improves the performance of both the ED and
LSTM models, the improvement depends on the dataset and the performance
metric, and does not show a clear trend.

6 Conclusion

We proposed two variants of sparse RMDN models, namely, sparse LSTM-MDN
and sparse ED-MDN, for the forecasting problem. These models perform point-
wise dimensionality reduction using the feedforward layer and capture the tem-
poral patterns using the underlying RNNs. These architectures can handle vari-
ability and trend shifts present in the data and also output a confidence estimate
for the forecast. Performance of these two sparse RMDN models were compared
with their non-sparse, non-MDN counterparts on three public datasets. Apart
from scoring high on chosen performance measures, the results suggest that using
the feedforward layer for feature selection improves the ability to handle high-
dimensional data. We end this note by remarking that the applicability of these
models is not restricted to datasets from energy markets but can be used in other
domains like supply-chain logistics, manufacturing, retail or transportation.
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Abstract. To improve predictive accuracy on short-term traffic speed, we
proposed a multitask learning neural network (MLNN). MLNN carries out the
speed prediction task for three short-terms by the combination of convolution
neural network (CNN) and gated recurrent units’ network (GRU), and accom-
plishes the confidence estimation task on predicted speed with the confidence
network. A multitask loss function with weighted sub loss terms for multitask
learning is employed. In the experiment, our method was tested on the data set
of Shanghai Expressway at 2014. Conventional methods such as auto-regressive
integrated moving average (ARIMA) and Gaussian maximum likelihood
(GML), and time series models, recurrent neural network (RNN), GRU and long
short-term memory (LSTM), were also used to compare. The results show that
MLNN with square loss obtained the smallest mean squared error (MSE) on
most cases. For four road types, MLNN obtained the overall smallest mean
absolute percentage error (MAPE) on these cases. We also proved that as
compared to single-term prediction, multitask learning outperformed 12.4% in
MSE and 9.91% in MAPE for 10-min and 15-min prediction. To improve the
forecast on low speed, MAP-loss term is additionally used in multitask loss
function. It efficiently improved the predictive accuracy on low speed. The
confidence estimation network gave a 89.93% estimation accuracy on the pre-
dicted speed, efficiently avoiding the inaccurate speed prediction.

Keywords: Short-term speed prediction � Spatial-temporal features �
Multitask learning � Neural network � Confidence estimation �
Multitask loss function

1 Introduction

Traffic congestion has become a bottleneck restricting the economic and social
development of the city. Due to the time cost and economic loss caused by traffic
congestion every year, it is imminent to give accurate prediction on traffic congestion.
With the decrease in prediction time granularity, the difficulty of traffic flow prediction
is greatly increased. Since 1970s, uni-variate time series models have been widely used
for short-term traffic flow prediction, especially auto-regressive integrated moving
average (ARIMA) model [1] and exponential smoothing (ES) model [2]. The results
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showed that this model can obtain limited accuracy. As the volume of traffic data
becomes large, data-driven approaches for short-term prediction on traffic speed are
promising. In recent years, many experts have tried machine learning methods to solve
traffic problems, not only prediction on flow but also on speed. For instance, a forecast
model based on Gaussian maximum likelihood (GML) estimation method is proposed
by Lin [3]. As compared to non-parametric regression (NPR) [4], ARIMA and neural
network (NN), GML obtained the best performance. To deal with new traffic data
added, online-support vector regression (SVR) is proposed for short-term traffic flow
prediction [5].

Deep learning models have attracted many researches to solve traffic problems. Jia
et al. [6] established deep belief net (DBN) to predict short-term traffic flow, adopted
greedy unsupervised learning to train model and fine-tune the data through the marked
data. Wang et al. [7] proposed the traffic speed prediction model based on long short-
term memory (LSTM) with remote sensor data. Polson et al. [8] designed a deep
learning architecture with L1 regularization and a sequence of tanh layers. To give the
prediction on traffic congestion, Tan et al. [9] proposed a model with deep learning. Its
predicted accuracy on peak traffic congestion is about 85%. Fu et al. [10] proposed
recurrent neural network (RNN), LSTM and gated recurrent units (GRU), to predict
short-term traffic flow, and the result showed improvement of LSTM and GRU perform
over ARIMA model. LSTM has also been applied in network-wide traffic speed pre-
diction [11], travel time prediction [12] and mixed traffic trajectory prediction [13]. In
addition, convolution neural network (CNN), which learns the data of traffic flow as an
image, is employed to predict the state of large-scale traffic network [14].

For short-term traffic speed prediction, the spatial-temporal features extraction is a
critical issue. Many works used deep learning models to extract spatial or temporal
information from history traffic data. However, this is not enough. The important
temporal information may not be further extracted because shorter-term data cannot be
collected. In addition, no matter how high the quality of built model, the inaccurate
prediction cannot be fully avoided. It is better to provide a credit probability of the
predicted speed, which can avoid the inaccurate prediction as possible. For time series
uncertainty estimation, Zhu et al. proposed a Bayesian deep model to give confident
prediction [15]. Gal conducted deep study on uncertainty in deep learning [16].

To improve the predicted accuracy and give the confidence estimation, multitask
learning (MTL) [17, 18] is used in this study. It has been proved that learning the tasks
jointly greatly improves over independent task learning (ITL) when the tasks are
related. Huang et.al used DBN with a MTL layer for supervised prediction [19]. They
grouped regression tasks on different roads and stations, which are spatially correlated
with each other. Besides using multitask, spatial correlation for one node can be
achieved by collecting more data of spatially related nodes. As compared to spatially
correlated multitask, time-dependent multitasks may be more beneficial. The speed
forecasting task can be decomposed into two heterogeneous multitask with several
time-related sub multitask. The heterogeneous multitask are the confidence estimation
task and the speed prediction task. Time-dependent sub multitask are within the
heterogeneous multitask. They are simultaneous, not sequential. Hence, multitask
learning is more appropriate than transfer learning. In this work, we propose a multitask
learning neural network (MLNN) to accomplish prediction tasks.
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2 Problem Formulation

First, we give notations in short-term traffic speed prediction. Traffic node indicates a
spatial location of ground loop detector on road. The target node denotes the critical
traffic node, on which it is worthy of speed prediction. Up/down-stream nodes denote
the traffic nodes are spatially before or after the target node.

Spatial Dependencies. Figure 1 shows spatial-temporal dependency of traffic nodes.
The traffic state of target node is significantly related to neighbouring nodes in a period.
The traffic congestion of downstream nodes gradually spreads to the target node and
upstream nodes. It achieves at its peak later.

Temporal Dependencies. For a node, the traffic speed at current time is related to the
speed at the short time before. A low traffic speed of target node occurring at 8am
affected that from 8 am to 8:30am, leading to a traffic congestion during this period.

Let t be the current time and t + ni (i = 1, 2, …, m) be the short-term time after t. ni
indicates a short-term, which is i times of 5-min, and m denotes the number of short-
terms to be predicted. The interval between t and t – 1 is 5-min. The short-term traffic
speed prediction problem is formulated as follows.

Z ¼ ½ZS; ZC� ¼ ½minfeðystþ ni
; f sðxtÞÞg;minfeðyctþ ni

; f cðxtÞÞg�
ni ¼ 5 � i ði ¼ 1; 2. . .;mÞ
xt ¼ fst; st�1; . . .st�sþ 1; rt; rt�1; . . .rt�sþ 1g
st; rt 2 R

ð1Þ

Here, Zs and Zc are accuracy functions of speed prediction and confidence esti-
mation; xt is the input and s is number of time steps before t; st–s+1 and rt–s+1 denote the
speed of target node and its related nodes at the time t – s + 1, respectively.
e(y, x) denotes the error of x to y, e.g. mean squared error (mse); ystþ ni

and yctþ ni
indicate the observed speed of target node and the confidence label at the time t + ni,
respectively; fS(xt) and fc(xt) are the predicted speed and the estimated confidence.
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Fig. 1. Spatial-temporal relationship of traffic nodes
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3 MLNN

A multitask learning neural network (MLNN), composed by CNN+GRU and confi-
dence estimation network (CEN), is proposed to address problem (1). The architecture
of MLNN is shown in Fig. 2.

3.1 Input Data and Multitask Labels

The raw data of a node is a 1-dimension (1D) time series data of a traffic node at 5-min
interval. We extracted data from target node, five up- and downstream nodes at 5 time
steps (i.e. t – 4, t – 3, t – 2, t – 1, t). Hence, each extracted data has 11*5 spatial-
temporal features (11 spatial features for 5 time steps). For each time step, the samples
are arranged in a (3*4) matrix form. This is because the spatial layout of 11 nodes is a
network.

In CNN+GRU, CNN deals with spatial features, while GRU performs on temporal
features. CNN receives the data of (3*4) matrix and runs for 5 time steps. The input of
5 time steps is shown in Fig. 3. s indicates the target node, and r_up_i and r_down_i
denote the up- and downstream-node i.
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Table 1. Service level of highway-express 80 km/h.

Level 1 2 3 4 5 6
Speed (km/h) (0, 40) [40, 55) [55, 64) [64, 72) [72, 80) [80, +∞)
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Two labels are designed for solving problem (1). One label is a six-probability
vector for the confidence estimation task, and the other label is a vector of observed
speed (km/h) for speed prediction tasks at 5-,10- and 15-min, respectively. Confidence
estimation label corresponds to six levels of service in Table 1. Six levels of service for
80 km/h Expressway is drawn from Industry Standard of China “Code for design of
urban and road engineering”. The probability of speed at six levels is obtained as
follow: if the speed v is within the interval of one level, the probability of v at this level
is 100%. If v is outside one level, the probability of v falling in the level is based on the
distance of v to the level. For example, the probability of 56 km/h in level-3 is 100%, at
level-2 is 1 – (56 – 55)/15 = 93.3% and at level-4 is 1 – (64 – 56)/8 = 0%. The label
for confidence estimation is as [0, 0, 0.933, 1, 0, 0].

3.2 Cascade CNN+GRU

A cascade CNN+GRU is designed to accomplish speed prediction task. In this cascade,
CNN contains one convolution layer with identity mapping and a fully connected layer
(FC). GRU contains three layers, namely input layer, hidden layer and the output layer.
The input layer of GRU is exactly the output layer of CNN.

The input to CNN is a single channel. Each time step generates fn feature maps.
The activation function f() is ReLU, the size of kernel is [2, 2], the stride of kernels is 1
and the number of output channels is fn. The pooling layer is not used in CNN+GRU.
This is because the pooling probably ignores important relation information of traffic
nodes during fitting speed of target node. Fully connected layer (FC) with dropout
combines feature maps to implement transformations. The dropout is a regularization
method that makes some neuron nodes inactive with some probability.

In CNN+GRU, the output of CNN is a vector at each time step. GRU runs s time
steps to obtain temporal features from CNN outputs. In GRU, only update gate z and
reset gates r are reserved. The larger the value of the update gate, the more the state
information of the previous moment is brought into the current state. Reset gate con-
trols the degree of forgetting the state information of the previous moment. The more
the value of reset gate is, the more it is forgotten.

3.3 CEN

CEN estimates the confidence by calculating the probability of predicted speed falling
in service levels (Table 1). It has two convolution layers, one max pooling layer, a FC
layer with dropout and a logistic output layer. CEN shares the first convolution layer
with CNN+GRU.

In the second convolution layer, each kernel has s*fn input channels, receiving
feature maps of s time steps from the previous layer. The stride of kernels in the second
convolution layer is also set to 1. Following the convolution layers, the max-pooling is
used. The size of pooling window is [2, 2], reducing input feature map into half size.
The stride is set to [2, 2], and the padding is “SAME”.

In the output layer, softmax function is not adopted to calculate the probability for
multiple outputs. This is because credit probability of predicted speed belonging to
different levels must be independent and non-competitive. Hence, we employ the
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logistics function to provide independent probabilities. Let fl(x,W
c) be the probability of

level-l and f(x,WS) be the predicted speed. WS and WC denote the weights of CNN
+GRU and CEN. The confidence on the predicted speed is of the form.

C ¼ fflðx;WcÞ j f ðx;WsÞ 2 lg ð2Þ

Here, f(x,Ws) falls in level l, and the confidence is the l-th probability. For example,
a probability vector [0.02, 0.01, 0.54, 0.98, 0.04, 0.09] is obtained on the predicted
speed 71 km/h, which falls in level-4. The confidence the predicted speed is 0.98, the
4-th element in the probability vector.

4 Multitask Learning

4.1 Multitask Learning and Corporation

MLNN carries out the regression task for traffic speed prediction and a confidence
estimation task at multiple short-term times. The regression task is to fit the observed
speed without distinguishing the category of road types and give the predicted speed.
The confidence estimation task provides the credible probability estimation on the
predicted speed, which is a limited dependent variable regression. Each task contains
three sub tasks, which are responsible for 5-, 10- and 15-min speed prediction and
confidence estimation, respectively. Time-related information sharing can improve the
accuracy of longer-term speed prediction and heterogeneous information sharing
improve the forecasting credibility. Figure 4 is the schematic of multitask learning.

Generally, the speed prediction task and confidence estimation task are heteroge-
neous multitask. They are worth learning from each other and improve each other. The
speed prediction task minimized the distance of samples to a hyper-plane by extracting
common features from most samples, while the confidence estimation task increases
the dissimilarity gap by extracting features from distant samples and reduces the
similarity variation by extracting features from near samples. Two tasks are mutual
complementary. Within the speed prediction task, sub tasks for three short-term pre-
diction are strongly time-dependent correlated. For instance, the task of 15-min pre-
diction can learn beneficial information from 5-min task. Three sub tasks within the
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confidence estimation task are the same as ones in the regression task. Through joint
learning of time-dependent sub tasks and heterogeneous multitask, more informative
representations can be achieved.

4.2 Multitask Loss Function

For multitask learning, multitask loss function is a weighted combination of loss terms
of sub tasks. Each loss term is the optimization objective of one sub task. The loss
function L of MLNN with multiple sub loss terms is of the form:

L ¼ xs

XN

i¼1
‘Sðysi ; f ðxi;WsÞÞþxc

XN

i¼1
‘Cðyci ; f ðxi;WcÞÞþ k � <ðWc;WsÞ ð3Þ

Here, N is the number of samples, xi 2 R
3�4�5 is the input, ysi 2 R

3 is the observed
speed of three short-term prediction tasks, and yci 2 ½0; 1� 2 R

6�3 is the probability
label for confidence estimation. The first term ‘S is the loss of CNN+GRU and ‘C is the
loss term of confidence estimation network; xc and xs are weight parameters of
two tasks ‘C and ‘S, which indicate the importance of multitask. The third term
k � <ðWc;WsÞ is the L2 regularizer.

Square Loss (L2 Loss). L2 is a conventional loss function, which is used for multitask
and regularizer. Loss terms using L2 loss are of the form.

‘Sðysi ; f ðxi;WsÞÞ ¼ f ðxi;WsÞ � ysi
�� ��2

‘Cðyci ; f ðxi;WcÞÞ ¼ f ðxi;WcÞ � yci
�� ��2

<ðWc;WsÞ ¼ ð Wck k2 þ Wsk k2Þ
ð4Þ

Since the confidence estimation is not a classification problem, least squares function,
not maximum likelihood estimation function, is used as loss function ‘C.

Mean Absolute Percentage Loss (MAP Loss). In the short-term prediction, samples
of low traffic speed are harder to be accurately predicted than that of high and middle
speed. Actually, the predictive accuracy on low traffic speed is very important to the
traffic management, since it always pay more attentions to the congestion state (i.e., low
speed). To improve the accuracy on low speed, MAP loss is used in multitask loss
function. It penalizes the loss only from high speed, while keeping the loss of low
speed samples unchanged. The first term ‘S in L can be changed as follows.

‘Sðysi ; f ðxi;WsÞÞ ¼ 1� f ðxi;WsÞ
ysi

����

���� ð5Þ

Here, l is set to 10 that enlarges the weight of loss term. The second and third terms in
(10) are not changed.
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5 Experiments

5.1 Data Collection

Our data set for test is collected from Shanghai Expressway at the Shanghai Traffic
Information Center, from March 1 to 14, 2014, Shanghai Expressway geomagnetic
loop data. A total of 3,304 in-path loops are located on the expressway, and the loop
detector collects data every 5 min. The volume of daily data can reach 1 million. Each
data contains a loop code, a recording time, section speed, section flow rate, section
occupancy rate and other related information.

First, the quality control on the dataset is conducted. The abnormal data includes
some invalid data in the recording results, abnormality in the monitoring equipment, or
abnormality in external factors, causing quality problems in the recording process. For
example, erroneous data-morning and evening rush hour, the flow rate and occupancy
rate displayed by the detector is 0; the missing data-the loop detector does not record
data at a certain moment. Then, the data of loop detectors is grouped according to the
group. The loop group is defined as a section on the road network. The flow rate is the
sum of the loop flow rates in the group, and the speed is the weighted sum of the loop
speeds in the group.

According to road topology, the traffic data are grouped into normal type, merge
type, diverge type and ramp type, denoted as S1, S2, S3, S4 and S5. For each road type,
training set has 15200 samples and test set has 3800 samples.

5.2 Parameters

All experiments are performed on a PC with a GPU of NVIDIA 1060i. The parameters
of MLNN are given in Table 2. In the loss function, xc, xs and k are set to 200, 1 and
0.02. xc is a large value because the loss term of confidence estimation is a small
dimension. Batch size is equals to the number of samples. This is because both the
number of training samples and features are not too large. We tested many times that
this batch size leads to a good convergence. We can set learning rate to 0.01 and 0.001.
It found that the validation error decreases during training when learning rate is 0.01,
the error decreases too slowly while learning rate is 0.001. The number of iterations is
set to 500. This setting is drawn from the truth that validation error cannot be decreased
after 500 iterations during training.

In the experiment, ARIMA with parameters (p, d, q) = (2,2,2), GML, CNN, RNN,
GRU and LSTM are compared to two MLNNs. In the following tables, MLNN-S
indicates MLNN for a single-term prediction, and MLNN-M denotes MLNN for
multiple short-term speed prediction. Mean squared error (MSE) is a typical measure of
predictive accuracy, and mean absolute percentage error (MAPE) is a measure of
relative error, which biases to low speed samples.
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6 Results and Discussion

6.1 Analysis on Spatial and Temporal Features

Figure 5(a) (b), (c) and (d) are plots of the predicted speed curve in the training step
and five time-step outputs of CNN for three runs. CNN 1–5 indicate output of CNN at
t – 4, t – 3, t – 2, t – 1, t. As plots show, the predicted curve is strongly related to
outputs of CNN at t – 4, t – 3 and t – 2. This illustrates that GRU makes full use of
five time-step information for the speed prediction. Figure 5(e) shows hot maps of
features extracted from four kernels of CNN. Red grids denote the largest value of
convolution/pooling and green grids are the smallest value. The larger value of grid, the
more importance of corresponding feature. In Fig. 5(e), elements (1,3) and (2,1) in
most 3*4 matrices obtained the largest value, e.g. kernel 1, kernel 2 and kernel 3 at
t – 4, kernel 1, kernel 2 and kernel 4 at t – 3, and kernel 3 at t. Elements (1,1), (2,2)
and (2,3) in some matrices attained a large value. It is noted that these elements
mentioned above involved the downstream node-1, -2 and upstream node-1, -2. Hence,
we inferred that the upstream node-1, -2 and downstream node-1, -2 probably have the
largest effect on the speed of target node. This result is assistant with the hypothesis
that adjacent nodes have the strongest correlation with the target node under S1 road
type.

Figure 6 gave scatter plots of MLNN-M vs MLNN-S, ARIMA, RNN and GRU on
S5 for 5-min and on S2 for 15-min prediction. It can be observed that the predicted
speed of MLNN-S is overall the nearest to the identity line at 5-min prediction.
However, for 5-min prediction on low speed, MLNN-M and ARIMA yielded a better
prediction than MLNN-S. In this case, MLNN-S gave higher predicted value than that
of observed samples, while the other methods under-predicted. On high- or middle-
speed, MLNN-M obviously outperformed the other methods. For 15-min prediction,
the predicted data of ARIMA were far away from the identity line. It is noted that
MLNN-S is poorer than MLNN-M on low speed prediction. Hence, MLNN-S doesn’t
suffices. Meanwhile, MLNN-M outperformed RNN and GRU in these cases.

Table 2. MLNN parameters.

Hyper parameters
Input 3*4 Iteration 500
Learning rate 0.01 Batch size All samples
xc 200 Dropout 0.5
xs 1 k 0.02
CNN+GRU parameters
conv 4*cov(2,2,1,1) # hidden nodes 50
FC 96 Output 3
Time step 5 Activation ReLU
CEN parameters
conv 8*cov2(2,2,1,5*4) Pooling 8*max_pooling([2,2],[2,2])
FC 96 Output 3*6
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Fig. 6. Scatter plots of methods on S5 for 5- and S2 for 15-min prediction

Fig. 5. Output curves of CNN in CNN+GRU and features of convolution on S1 (Color figure
online)
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6.2 Confidence Estimation on Predicted Speed

Figure 7 shows predicted curve along with its confidence and absolute error (AE). The
confidence network achieved 83% accuracy on training set and 80% accuracy on test
set. On most samples, the confidence of predicted speed ranged from 0.7 to 1, and the
errors were small. In Fig. 7(a), some confidences are large despite of large absolute
error. When both the observed speed and predicted speed belong to same level, the
error can be ignored. In Fig. 7(b), a large error with respect to the observed speed leads
to a small confidence. This means the predicted and observed speed belong to two
distant levels, and we cannot believe the prediction of MLNN-M in this case. Although
the accurate speed on these samples were not acquired, the confidence estimation
successfully avoided the inaccurate prediction.

Of course, an incorrect confidence will result in abandoning the correct predicted
speed. The incorrect confidence means a confidence smaller than threshold is given to
the predicted speed with error smaller than ɛ (error tolerance), and a confidence larger
than threshold is given to the predicted one with error more than ɛ. This is the case that
should be avoided as much as possible. The confidence threshold of 0.3 and 0.35 leads
to the smallest inaccurate confidence rate (less than 10%) in three cases. As the
threshold increases, the inaccurate confidence rate becomes larger. Meanwhile, as the
error tolerance ɛ increases, the inaccurate confidence rate is generally reduced. In
general, the accurate confidence rate has achieved more than 90%, guaranteeing the
practical value of confidence estimation in MLNN.

6.3 MAPE/MSE on Four Road Types

On each road type, each method runs ten repetitions to achieve the best value. Table 3
gives the average MAPE/MSE of five methods on four road types for 5-,10- and
15-min speed prediction, respectively. For 5-min prediction, MLNN-S got the smallest
MAPE/MES without any doubt. This is because MLNN-M carried out 10- and 15-min
prediction tasks simultaneously, which may hinder 5-min prediction task. For 10- and
15-min prediction, MLNN-M can obtain smaller MAPE on three road types, and had
an improvement over MLNN-S. It can be deduced that 10- and 15-min prediction tasks
learned more useful features from 5-min prediction task. MLNN-S got better MAPE

Fig. 7. Predicted curve of MLNN (a) high confidence (b) low confidence
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than MLNN-M only on S1. This is because as compared to the other types, the
temporal dependency is apparently weaker than the spatial dependency in S1.

For 5-min prediction, CNN has obtained better results than MLNN-M at S1 and S2
in terms of MAPE. These are attributed to the ability of CNN in extracting spatial
features for hard samples. When to perform 5-min prediction, the shorter-term infor-
mation (e.g. the information of 2-,3-,4-min before the given time) cannot be further
acquired. In this case, the spatial features become important for accurate prediction.
Another reason for this is that the temporal dependency of S1 and S2 is poorer than on
that of S3 and S4. In addition, RNN, GRU and LSTM can obtain good results in some
cases. Conventional methods, ARIMA and GML, gave accurate prediction on some
cases. ARIMA obtained the best result on S3 for 15-min prediction. However, on S1
and S4, ARIMA cannot got good accuracy.

Table 3. MAPE/MSE on four road types.

Model MAPE MSE
S1 S2 S3 S4 S1 S2 S3 S4

ARIMA 5-min 14.94 14.15 13.68 18.41 11.45 8.584 7.994 11.46
GML 13.55 13.62 14.92 21.97 5.800 8.702 9.661 3.575
LSTM 10.70 12.42 12.22 8.826 3.423 8.123 7.676 2.101
GRU 10.01 9.93 10.99 9.18 2.157 4.877 5.811 1.911
RNN 10.35 10.23 11.43 9.86 1.989 4.892 5.452 2.000
CNN 8.255 9.034 23.34 10.27 4.100 6.868 8.089 2.187
MLNN-S 9.412 5.922 9.378 5.64 1.212 2.289 3.498 1.293
MLNN-M 10.05 10.54 10.30 10.03 2.127 4.812 5.278 2.118
ARIMA 10-min 17.35 16.43 14.84 21.84 7.448 9.849 7.684 14.38
GML 13.23 14.52 15.01 26.32 6.832 10.96 11.11 4.621
LSTM 15.92 14.48 13.20 11.09 5.852 9.762 9.020 4.324
GRU 13.29 13.04 13.92 11.80 3.233 8.097 8.427 3.000
RNN 13.05 13.39 13.79 12.27 5.382 7.999 7.493 3.162
CNN 19.71 16.55 19.06 14.54 5.523 10.57 11.83 4.589
MLNN-S 12.40 13.70 13.19 13.02 2.801 8.261 7.717 3.357
MLNN-M 12.91 11.11 11.60 10.27 2.376 5.278 6.775 2.762
ARIMA 15-min 19.10 18.60 13.58 21.99 16.54 13.02 7.562 15.83
GML 23.58 16.29 15.89 28.17 7.925 13.20 12.12 5.651
LSTM 15.62 14.76 13.45 15.77 7.101 11.59 9.723 4.832
GRU 16.05 16.27 17.01 13.91 4.160 10.84 10.89 3.832
RNN 15.98 16.35 16.48 14.15 3.604 10.62 9.576 3.689
CNN 16.06 17.13 34.24 14.73 7.910 13.22 23.23 4.598
MLNN-S 14.97 16.31 15.47 14.80 3.432 10.68 9.393 4.084
MLNN-M 15.11 14.35 13.08 12.91 3.232 8.298 8.971 3.642
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6.4 MAP Loss Term Comparison

Although two MTNN with L2 loss yielded a smaller MAPE than that of the other
methods on 5-, 15-min prediction, they got inaccuracy on low speed in some cases. L2
loss can well deal with emergencies in traffic because of its sensitivity to outliers.
However, it is unbiased to low speed samples. Owing to the sensitivity to small value,
MAP loss is able to improve the predictive accuracy on low speed despite of more loss
on normal samples. Table 4 shows the MAPE comparison between different loss term
used in MLNN-M. Shrink loss punishes only the loss of easy samples without changing
the loss of hard samples. L3 loss and L1 loss, are also compared.

Observed from Table 4, MLNN+MAP loss yielded a comprehensive improvement
over MLNN+L2 loss and L3 loss on MAPE at 5-min prediction. Meanwhile, MLNN+
MAP loss did not give a large penalty on MSE. It yielded only average 2.97% increase
in MSE on five road types. The loss of MSE must be worth MAPE reduction. It is
noted that L1 loss obtained smaller MAPE than MAP-loss for 5-min prediction on three
road types. Shrinkloss punishes easy samples and keeps hard samples unchanged.
However, easy samples of high speed may be ignored such that the MAPE cannot be
reduced overall.

Figure 8 shows loss function comparison on low- and high-speed prediction on
ramp section (S5). As compared to the other methods, the predicted points of MAP-loss
is nearest to the identity line at low speed area. Hence, MAP-loss achieved the most
accurate low speed prediction in these cases. Meanwhile, MAP loss yields a higher
accuracy than the other loss function without increasing a large error with respect to
middle- or high speed samples. Although MLNN+MAP loss still gave poorer MAPE
than that of RNN and GRU in some cases, it has achieved as accurate prediction as
RNN and GRU on low speed and outperformed RNN and GRU on middle-speed
prediction. This can be observed from Fig. 8.

Table 4. MAPE comparison between loss functions.

Multitask loss function S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

5-min prediction 15-min prediction

MAP-loss 6.97 6.49 7.99 8.59 10.7 13.3 14.1 13.3 14.1 18.0
L3 loss 13.8 12.8 14.2 15.3 15.8 19.2 18.3 15.3 18.3 24.3
L2 loss 10.1 10.5 10.3 10.0 17.3 15.1 14.4 13.1 12.9 23.9
L1 loss 6.66 6.72 7.94 6.29 17.1 12.3 14.3 12.9 14.1 21.6
Shrinkloss 7.37 11.9 11.8 11.0 15.2 14.3 16.6 15.4 15.2 23.2
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7 Conclusion and Future Works

To solve multiple short-term (e.g., 5-, 10- and 15 min) prediction on traffic speed of
different road types, we proposed MLNN. Features extracted from convolution layers
were analyzed and it was found that the downstream node-1, -2 and upstream node-1,
-2 may be more useful. In terms of MAPE/MSE, MLNN-S is the best one at 5-min
prediction while MLNN-M was best at 10-, and 15-min prediction. The confidence
estimation network gave a highly accurate confidence estimation on predicted speed.
To further improve the forecast on congestion state of traffic, MAP loss function is used
to make multitask learning bias to low speed. The results show that MLNN using L2
loss obtained the smallest MSE on most cases, and MLNN using MAP loss can
efficiently improve the accuracy 41% over L2 loss in terms of MAPE for 5-min pre-
diction, and 8.1% for 15-min prediction.

The future work has three research prospects. The first prospect is to find the other
traffic data sources such as PeMS and GPS data of Shanghai taxi [20] to validate our
method. Currently, we have no other sources except Shanghai Expressway to test the
effectiveness of method. The second prospect is to conduct ablation study demon-
strating the sensitivity of the hyper-parameters of MLNN. The final prospect is to
employ road-type attention and further improve the accuracy on low speed samples.
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China (Grant No. 61872259), the Natural Science Foundation of Jiangsu Province (Grant
No. BK20160324) and the Natural Science Foundation of Jiangsu Colleges and Universities
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Fig. 8. Correlation between MAP loss and the other loss functions
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Abstract. Class incremental learning is widely applied in the classifi-
cation scenarios as the number of classes is usually dynamically chang-
ing. Meanwhile, class imbalance learning often occurs simultaneously in
class incremental learning when the new class emerges. Previous studies
mainly proposed different methods to handle this problem. But these
methods focus on classification tasks with a fixed class set and cannot
adjust the peripheral contour features of the original instance distribu-
tion. As a result, the classification performance degrades seriously in an
open dynamic environment, and the synthetic instances are always clus-
tered within the original distribution. In order to solve class imbalance
learning effectively in class incremental learning, we propose a Central-
diffused Instance Generation Method to generate the instances of minor-
ity class as the new class emerging, called CdIGM. The key is to ran-
domly shoot direction vectors of fixed length from the center of new
class instances to expand the instance distribution space. The vectors
diffuse to form a distribution which is optimized to satisfy properties that
produce a multi-classification discriminative classifier with good perfor-
mance. We conduct the experiments on both artificial data streams with
different imbalance rates and real-world ones to compare CdIGM with
some other proposed methods, e.g. SMOTE, OPCIL, OB and SDCIL.
The experiment results show that CdIGM averagely achieves more than
4.01%, 4.49%, 8.81% and 9.76% performance improvement over SMOTE,
OPCIL, OB and SDCIL, respectively, and outperforms in terms of over-
all and real-time accuracy. Our method is proved to possess the strength
of class incremental learning and class imbalance learning with good
accuracy and robustness.

Keywords: Machine learning · Class incremental learning ·
Class imbalance learning · Supervised learning

1 Introduction

Incremental learning is a learning paradigm which generally makes use of the
information from the new instances to update the original model. In a real
dynamic environment, new classes of the emerging instances may appear at any
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time while these instances keep arriving. For this dynamic environment, class
incremental learning is proposed as a machine learning framework to handle the
new class instances incrementally [6,18]. It focuses on enabling the learning sys-
tem to incorporate instances of classes which have never been seen previously
into a continuous training process as new instances appear successively [11,20].
However, the current research based on class incremental learning is relatively
limited. It has been applied in real world, especially for classification scenar-
ios where the number of classes is dynamically changing, such as data stream
anomaly detection, text classification [14], sound classification [13], etc.

Class incremental learning always involves class imbalance learning during
the stream training process [2]. In many real incremental scenarios, the distri-
bution between new class instances and the existing ones is not well balanced.
In other words, the current classification model contains much more instances
than those of the unseen class which emerges the first time. The class imbal-
ance learning mainly exists in the task of supervised machine learning. And it
is commonly seen in real world applications, such as intrusion detection in com-
puter networks and fault diagnosis of control monitoring systems. The class with
most instances is typically referred to as the majority class, and the other one
as the minority class. Conventional learning algorithms in machine learning and
data mining typically do not work well for class imbalance problems since they
regard the overall classification accuracy as the learning target and their goal
is to minimize the overall error rate, which implicitly treats all misclassification
costs equally [5,17]. As a result, these algorithms may pay too much attention
to the majority classes and produce trivial results, typically classifying all test
instances as the majority classes [3,19]. Additionally, the new class is the one
of greater interest during the process of class incremental learning. It cannot be
regarded as a minority class of conventional learning. Therefore, how to solve
the class imbalance learning effectively during the process of class incremental
learning is a meaningful research.

Many techniques have been proposed to deal with class imbalance problem,
among which ensemble learning methods have been proved more effective than
other algorithms. But these methods are poor at dealing with the emerging
class scenario. On the other hand, many methods for learning from data streams
are also available on class incremental learning, but they do not solve the class
imbalance problems well. Some research focuses on discovering emerging new
classes which can be defined as anomaly classes in data stream [10,23]. One class
learning aims to build a classification model from a training set which mainly
consists of positive class only [4,21]. And one shot learning focuses on the field
of image and vision and learning from one or few training examples, just like
finishing the training process by a shot [7,8]. Although these two issues have been
well studied independently in the past decades, the research on simultaneously
solving both problems is limited.

Our work focuses on handling class imbalance problem during the process of
class incremental learning. We propose a Central-diffused Instance Generation
Method called CdIGM to achieve class imbalance learning with good classifi-
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cation performance in class incremental learning. The contributions of this work
are summarized as follows:

– We propose a class incremental learning method which makes use of several
emerging new class instances to diffuse the random direction vectors to enlarge
the class distribution on data streams. And the instance distribution of the
existing classes can adapt with arrival of new classes.

– Two long separate research areas, class imbalance learning and class incre-
mental learning, are bridged together in this paper. We validate that our
method can handle the class imbalance problem by conducting experiments.

– We conduct different kinds of experiments based on the synthetic dataset
and real-world benchmark datasets respectively. The results can significantly
prove the effectiveness of our method.

The rest of this paper is organized as follows: Sect. 2 describes the related
work about class imbalance learning and class incremental learning; Sect. 3 pro-
vides the details of the proposed method; and experimental results are presented
in Sect. 4; the final conclusion is provided in Sect. 5.

2 Related Works

2.1 Class Imbalance Learning

Most existing algorithms dealing with imbalanced data streams require process-
ing data in batches, such as MuSeRA [15] proposed by Chen et al. Among lim-
ited class imbalance solutions strictly for online processing, two online ensemble
learning methods—OOB and UOB are proposed by Wang [16]. However, the
resampling rate in these two methods does not consider the size ratio between
classes, there exists an issue that the resampling rate is not consistent with the
imbalance degree in data and varies with the number of classes.

SMOTE [1] is a synthetic over-sampling method to solve imbalanced learn-
ing. It mainly calculates the similarity between instance feature distributions
based on a few existing class instances, and then creates synthetic instances [12].
But this algorithm synthesizes new instances for the minority classes based on
“interpolation”. It results in that the synthetic instance space is limited to the
“internal” of the original instance and cannot change the peripheral contour fea-
tures of the original instance distribution. It also means that this algorithm has
little influence on the decision boundary in the classification problem.

2.2 Class Incremental Learning

Class incremental learning is a branch of incremental learning which strengthens
a previously trained classifier to deal with emerging new class. The problem of
Streaming Classification Under Emerging New Class (SENC) is a class incre-
mental learning problem in the data stream context. SENC-MaS is proposed
as a framework for Streaming classification with Emerging New Class emerg-
ing by class Matrix Sketching modelling [10]. An algorithm called SENC-Forest



456 M. Liu and Y. Wang

is proposed for effectively solving class incremental learning problems [9]. The
algorithm can detect the previous exceptions and new classes in the data stream.
These approaches achieved good performance, but most of them are based on
distance or tree structure and few of them focus on imbalanced learning.

Zhu proposed a new instance generation method to generate pseudo instances
which are optimized to satisfy properties that produce a good performing dis-
criminative classifier [22]. However, the GPI algorithm is used to generate the
corresponding pseudo instances space from only one instance. And the process
of generating pseudo instances suffers a higher cost.

3 Class Incremental Learning via CdIGM

To address the class imbalance problem in class incremental learning, we pro-
pose a central-diffused instance generation method called CdIGM to generate
minority class so that the scales of the instances in each class become approx-
imately the same. Our method synthesizes the instances of the minority class
from its center to form a new distribution. As a result, the instance distribu-
tion can effectively upgrade the current multi-classifier of existing classes to a
classifier for both the existing classes and the new class.

3.1 Framework

Let X = Rd be the space of all supervised instances, Y = {1, 2, · · · ,K} be the
class label set, and N = {n1, n2, n3, . . . , nK} be the number set of the instances
in the class i (i ∈ Y ), which d is the dimension of the instance and K is the
number of the total classes.

Algorithm 1. Framework of Class Incremental Learning
Input: Sequence: SK ; number set: N ; the number of the existing classes: M .
Output: Weight W for prediction.

1: Receive M supervised instance sets
{{(xi, yj)}nj

i=1

}M

j=1
from sequence SK ;

2: T ← {{(xi, yj)}nj

i=1

}M

j=1
;

3: W ← Train multi-classification model for T ;
4: repeat
5: Receive a new instance set {(xi, yM+1)}nM+1

i=1 from sequence SK ;
6: S ← {(xi, yM+1)}nM+1

i=1 ;
7: T ← CdIGM(W, S);
8: M ← M + 1;
9: W ← Update(W, T );

10: until M = K;

During the process of class incremental learning, we define a sequence
SK =

{{(xi, yj)}nj

i=1

}K

j=1
, where xi ∈ X is the instance when the number of

the emerging classes is j; and yj ∈ Y is the class label of xi.
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The final goal for class incremental learning is to find a map f : X → Y , so
as to minimize the loss over the sequence SK :

K∑

j=1

I (f(xi) �= yj), i ∈ {1, 2, . . . , nj} , (1)

where I(·) is an indicator function which returns 1 when the argument is true,
and returns 0 otherwise; and f predicts the labels of instances. The framework
of class incremental learning is summarized in Algorithm 1.

3.2 Central-Diffused Instance Generation Method (CdIGM)

We can obtain the following information from the instance distributions of each
class. It can be used to update the existing model when a new class emerges in
our proposed method:

– Centers of existing classes. Let C = [c1, c2, . . . , cK ] be the center set estimated

for all K classes. The center vector set C is easy to calculate as ci = 1
ni

ni∑

j=1

xi,j ,

where ci ∈ C, ni ∈ N are defined above.
– Maximum distance from the center of each existing class. Let D =

[d1, d2, . . . , dK ] be the maximum distance set estimated for all K classes as
well. The maximum distance set D is calculated as di = Max

j∈{1,2,...,ni}
|xi,j − ci|.

The proposed method is described in the following steps, which is also shown
in Algorithm 2 in detail:

– Firstly, after receiving the instances of a new emerging class from the data
stream, we update the center vector set C by absorbing this new central point
cnew. The central point cnew is the starting point to generate instances.

– Secondly, we generate the direction vectors randomly which are randomly
initialized with different lengths and normalize each direction vector’s length
to the step length L in order to generate instances evenly.

– We adopt two different ways to generate instances by judging whether the
center cnew falls into the distribution of any existing class.

– If not, we loop to generate instances for each direction vector evenly until
the synthetic instance q which is also the end of the vector falls into the
distribution of any known class. In addition, the length of the entire vector
cannot be extended beyond the limit length MaxL. After extending all the
direction vectors, the synthetic instance set G is formed.

– If yes, we suppose cnew falls into the distribution of class K. We choose to
generate instances for each direction vector within the distribution of class
K until the synthetic instance falls out of this distribution to get the new
synthetic instance set G. Then the synthetic instance set GK of class K
should update by removing G from itself.

– Eventually, we iterate to merge the new synthetic instance set with the old
one to form a final synthetic instance set.
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Algorithm 2. Central-diffused Instance Generation Method
Input: Current weight: W ; new class instance set: S; number of random vectors: P ;

step length: L
Output: Synthetic instance sets: T
1: Calculate center cnew for the new instance set S = {(xi, yM )}nM

i=1;
2: C ← C ∪ {cnew};
3: G = {cnew};
4: Generate direction vector set DV = {dv1, dv2, . . . , dvP } randomly;

5: Normalize each vector’s length to get NDV =
{

L· dv1
|dv1| , L· dv2

|dv2| , . . . , L· dvP
|dvP |

}
=

{ndv1, . . . , ndvP };
6: if cnew falls out of the distribution of any existing class:
7: for i = 1 : P do
8: repeat
9: q = cnew + ndvi;

10: Send q into the current multi-classifier W ;
11: if q falls into the distribution of any existing class:
12: break;
13: else
14: G ← G ∪ {q};
15: until |q − cM | > MaxL;
16: GM ← G\ {q};
17: T ← T ∪ GM ;
18: else
19: K ← the class which distribution cnew falls in;
20: for i = 1 : P do
21: repeat
22: q = cnew + ndvi;
23: if q falls out of the distribution of K:
24: break;
25: else
26: G ← G ∪ {q};
27: GM ← G\ {q};
28: GK ← GK\GM ;
29: T ← T ∪ GM ;
30: return Synthetic instance set T ;

3.3 Parameter Adjustment

In our proposed method, two main parameters should be determined: the num-
ber of random direction vectors P ; and the step length L. P determines the
exact shape of the distribution, and L affects the density of distribution in some
ways. The generated instances of the minority class should obey the following
properties in order to maintain a high classification performance. The properties
are shown in the following paragraphs.

Property 1. The number of generated instances for minority class should be
roughly the same as the average number of instances for the existing majority
classes.
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The most direct characteristic of imbalanced problem is the difference
between the scales of the existing classes and the new emerging one. Our method
CdIGM is adopted to generate instances for the emerging class to make the num-
ber of instances in each dataset become approximately the same. Based on this
property, the number of the generated instances is limited as following.

ngen =
1
M

M∑

i=1

ni, ni ∈ N, (2)

where M is the number of the existing classes.

Property 2. The upper limit of the direction vector’s length should be roughly
the same as the average maximum distance of the existing majority classes.

We cannot let the direction vectors extend infinitely. So MaxL is defined
as the upper limit of the direction vector’s length. Although we have controlled
the number of generated instances according to Property 1, the distribution of
generated instances directly affects the spatial density of instances, which also
needs to be limited. So, all generated instances are limited within a radius of
MaxL as a cluster.

MaxL =
1
M

M∑

i=1

di, di ∈ D, (3)

where D is the set of the maximum distance in each class.

Property 3. The number of generated instances of the minority class is ideally
evaluated as the direction vectors can be extended to MaxL.

Not all direction vectors can extend to the maximum length MaxL. If they
fall into the distribution region of any other existing classes in advance, they
will stop extending. To approximate the number of generated instances for the
minority class, we make the assumption that the number equals approximately
to the ideal case in which the direction vectors can be extended to MaxL.

Under this assumption, the number of generated instances for minority class
can be calculated as:

ngen ≈ P ·MaxL

L
, (4)

where P is the number of random vectors; L is the step length; and MaxL is
the upper limit of the direction vector’s length.

According to (2) (3) (4), we can deduce the relationship between P and L:

L·
M∑

i=1

ni ≈ P ·
M∑

i=1

di (5)

4 Experiments and Evaluation

This section describes class imbalance data stream used in the experiment,
including 3 artificial data streams and 7 real-world data streams, and explains
the algorithm settings and experimental designs for a clear understanding in the
following analysis.
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4.1 Configuration

Data Stream
To facilitate a deep understanding and accurate analysis, artificial data

streams (named ADS) are generated as desired types of class imbalance data
streams. We produce 3 ten-class data streams (each class has 1000 instances)
with the same multivariate normal distribution of 5 dimensions but different
imbalance rates. The imbalance rate (IR), i.e. the ratio of a minority class to
a majority one, is a direct factor that affects any algorithm’s performance. A
smaller rate means a smaller chance to collect the minority class instances, and
thus a harder case for classification.

In addition, we still conduct experiments on 7 real-world multi-class data
streams, i.e., glass, iris, segment, svmguide2, vehicle, vowel, minst. These multi-
class benchmark datasets cover different application fields and varying degrees
of complexity. And we take 80% of the dataset for training, and the remaining
20% for testing.

Table 1 summarizes the characteristics of the data streams, including the
number of total class, the number of features, number of total instances, the
number of existing classes, and the imbalance rate. Here, the existing classes act
as a root model. During the process of class incremental learning, the new class
keeps arriving in the form of data stream and iteratively updates the root model.
In our experiments, we set the number of existing number to roughly half the
number of total class.

Table 1. The information of data streams used in experiments

Data Total class Feature Total instances Existing classes Imbalance rate

ADS1 10 5 10000 5 30%

ADS2 10 5 10000 5 20%

ADS3 10 5 10000 5 10%

Glass 6 9 214 3

Iris 3 4 150 2

Segment 7 19 2310 4

Svmguide2 3 20 391 2

Vehicle 4 18 846 2

Vowel 11 10 528 6

Minst 10 780 60000 5

Competitors and Parameters
In order to test the classification performance of our method, we compare

CdIGM with other proposed methods:

– SMOTE—calculates the similarity between sample feature distributions
based on a few existing class instances, and then creates synthetic samples;
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– OPCIL—generates pseudo instances which are optimized to satisfy properties
that produce a good performing discriminative classifier;

– OB—achieves online ensemble learning by online bagging which can adjust
the learning bias from the majority to the minority class effectively and adap-
tively through resampling;

– SDCIL—divides the input space into different subregions and determines the
class of the testing instances by judging the distribution where they finally
fall in practice.

There are some parameters that need to be specified. In particular, we use 5
algorithms(including our method) to conduct the experiments. The parameters
of different algorithms are summarized in Table 2.

Table 2. Parameters setting

Algorithms Parameters

CdIGM P = 100
L changes automatically according to (5)

SMOTE Number of neighbors k = 5
Distance d = Euclidean distance

OPCIL m = 1 is used as the default

OB K follows the Poisson(λ=1) distribution

SDCIL ν = 0.3
s is determined by the modified MIES algorithm automatically

Evaluation
To evaluate the classification performance of our method, the overall accuracy

is assessed over one entire data stream which is the average over 5 times on each
dataset. In addition, we also assess the real-time accuracy of the classifier in
each new class emerging step as soon as the classifier has been updated on 3
ADS data streams with different imbalance rates to show the change trend of
the performance in class incremental learning.

4.2 Results

Figure 1 demonstrates the real-time accuracy trend on 3 ADS data streams with
each algorithm. We use line graphs to find out the change trend with the class
number increasing by using different methods based on the same data stream.
All trends are downward but the decline ranges of different methods are not
the same. At any stage of the new class emerging, CdIGM presents the best
classification performance with the least performance degradation among all the
competitor methods. This illustrates the strong robustness of our method.

For each data stream, the experiment is repeated 5 times. Table 3 exhibits
the overall performance of all methods on different data streams. CdIGM is the
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Fig. 1. Real-time accuracy on artificial data streams with different imbalance rate

best performer among these competitors in all artificial data streams. Among
these 3 ADSs with different imbalance rates (30%, 20% and 10%), the overall
classification performance decreases with the decline of imbalance rates. As the
imbalance rates decrease from 30% to 10%, the overall accuracy decreases by
7.59%, 7.92%, 9.91%, 15.48% and 13.37% over CdIGM, SMOTE, OPCIL, OB
and SDCIL, respectively.

Table 3. Overall accuracy on data streams in experiments

Data CdIGM SMOTE OPCIL OB SDCIL

ADS1 94.23± 0.084 88.11± 0.108 82.25± 0.486 84.49± 0.393 79.18± 0.296

ADS2 90.84± 0.035 83.89± 0.075 76.26± 0.349 80.34± 0.486 72.67± 0.834

ADS3 86.64± 0.079 80.19± 0.234 72.34± 0.495 69.01± 0.199 65.81± 0.474

Glass 91.33± 0.934 85.29± 0.278 87.52± 1.134 84.19± 0.157 82.58± 0.837

Iris 93.24± 0.259 90.58± 1.147 92.11± 0.824 89.99± 0.938 85.46± 0.630

Segment 74.13± 1.597 78.43± 0.392 73.90± 0.957 63.65± 0.295 71.96± 0.301

Svmguide2 88.15± 0.949 84.36± 0.395 80.65± 0.284 74.99± 0.851 80.03± 0.047

Vehicle 87.21± 0.385 82.11± 0.884 78.45± 0.955 80.34± 0.751 76.03± 0.937

Vowel 79.31± 0.753 68.48± 0.438 74.57± 0.418 64.23± 0.281 58.92± 0.431

Minst 65.45± 0.413 61.44± 0.294 60.17± 0.538 59.75± 0.369 55.51± 0.199

The average online AUC results (± for standard deviation) are shown in
Table 4. The online AUC is generated by predicting each instance before it is
used for training the classifier. In summary, the preliminary results indicate that
our proposed method is sufficiently flexible to deal with class imbalance problem.

From Table 3, it is observed that CdIGM gets the highest accuracy mostly
based on the real-world data streams. Specifically, our method CdIGM is better
than SMOTE on 6 of 7 real-world data streams except for segment. But CdIGM
remains the second best on this data stream. Significantly, CdIGM performs
better than the other 3 competitors on all real-world data streams. After cal-
culation, CdIGM averagely achieves more than 4.01%, 4.49%, 8.81% and 9.76%
performance improvement over SMOTE, OPCIL, OB and SDCIL, respectively.
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Table 4. Average online AUC

CdIGM SMOTE OPCIL OB SDCIL

ADS1 .7720 ± .0229 .5944 ± .0637 .6348 ± .0372 .5716 ± .0975 .5214 ± .0356

ADS2 .7270 ± .0436 .5547 ± .0435 .5498 ± .0598 .5275 ± .0309 .5439 ± .0607

ADS3 .6834 ± .0444 .5174 ± .0344 .6048 ± .0355 .5648 ± .0372 .5571 ± .0368

5 Conclusion

The class imbalance learning between the new emerging class and the old exist-
ing classes makes it a difficult task to produce a good performing discriminative
classifier in class incremental learning. In this paper, we proposed a Central-
diffused Instance Generation Method called CdIGM for instances of minority
class in class incremental learning. It mainly eliminates the bad effects of class
imbalance learning in class incremental learning. The key is to randomly shoot
direction vectors of fixed length from the center of these new class instances to
expand the instance distribution space. Based on this, it can form a distribution
which is optimized to satisfy properties that produce a multi-classification dis-
criminative classifier with good performance. Substantial experimental results
show that CdIGM significantly outperforms the other 4 competitors on 3 artifi-
cial data streams with different imbalance rates and 7 real-world data streams
in terms of overall and real-time accuracy.
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Abstract. We present a new replay-based method of continual classification
learning that we term “conditional replay” which generates samples and labels
together by sampling from a distribution conditioned on the class. We com-
pare conditional replay to another replay-based continual learning paradigm
(which we term “marginal replay”) that generates samples independently of their
class and assigns labels in a separate step. The main improvement in condi-
tional replay is that labels for generated samples need not be inferred, which
reduces the margin for error in complex continual classification learning tasks.
We demonstrate the effectiveness of this approach using novel and standard
benchmarks constructed from MNIST and FashionMNIST data, and compare to
the regularization-based elastic weight consolidation (EWC) method [17,34].

Keywords: Continual learning · Generative models · Generative replay

1 Introduction

This contribution is in the context of incremental, continual or lifelong learning, subject
that is gaining increasing recent attention [8,26] and for which a variety of different
solutions have recently been proposed (see below). Briefly put, the problem consists
of repeatedly re-training a deep neural network (DNN) model with new sub-tasks, or
continual learning tasks (CLTs), (for example: new visual classes) over long time peri-
ods, while avoiding the abrupt degradation of previously learned abilities that is known
under the term “catastrophic interference” or “catastrophic forgetting” [6,8,28]. Please
see Fig. 1 for a visualization of the problem setting. Is has long been known that catas-
trophic forgetting (CF) is a problem for connectionist models [6] of which modern
DNNs are a specialized instance, but only recently there have been efforts to propose
workable solutions to this problem for deep learning models [3,15,17,19,32]. A recent
article [27] demonstrates empirically that most proposals fail to eliminate CF when
common-sense application constraints are imposed (e.g., restricting prior access to data
from new sub-tasks, or imposing constant, low memory and execution time require-
ments).
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Fig. 1. Left: The problem setting of continual learning as investigated in this article. DNN models
are trained one after the other on a sequence of sub-tasks (of which three are shown here), and are
continuously evaluated on a test set consisting of the union of all sub-task test sets. This gives rise
to results as shown exemplarily on the right-hand side of the figure, i.e., plots of test set accuracy
over time for different models, where boundaries between sub-tasks (5 in this case) are indicated
by vertical lines.

One aspect of the problem seems to be that gradient-based DNN training is greedy,
i.e., it tries to optimize all weights in the network to solve the current task only. Previ-
ous tasks, which are not represented in the current training data, will naturally be dis-
regarded in this process. While approaches such as [17,19] aim at “protecting” weights
that were important for previous tasks, one can approach the problem from the other
end and simply include samples from previous tasks in the training process each time a
new task is introduced.

This is the generative replay approach, which is in principle model-agnostic, as it
can be performed with a variety of machine learning models such as decision trees,
support vector machines (SVMs) or deep neural networks (DNNs). It is however unfea-
sible for, e.g., embodied agents or embedded devices performing object recognition,
to store all samples from all previous sub-tasks. Because of this, generative replay pro-
poses to train an additional machine learning model (the so-called generator). Thus, the
“essence” of previous tasks comes in the form of trained generator parameters which
usually require far less space than the samples themselves. A downside of this and sim-
ilar approaches is that the time complexity of adapting to a new task is not constant
but depends on the number of preceding tasks that should be replayed. Or, conversely,
if continual learning should be performed at constant time complexity, only a fixed
amount of samples can be generated, and thus there will be forgetting, although it won’t
be catastrophic.

In this paper we decide to investigate two different types of generative models:
Generative adversarial networks (GAN) and variational auto-encoder (VAE). On one
hand GAN are known to generate samples of high quality but on the other hand VAE
directly maximize the likelihood of the learned distribution while training. It was then
interesting to experiment both of them to compare their performances.

This article proposes and evaluates a particular method for performing replay using
DNNs, termed “conditional replay”, which is similar in spirit to [34] but presents impor-
tant conceptual improvements (see next section). The main advantage of conditional
replay is that samples can be generated conditionally, i.e., based on a provided label.
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Thus, labels for generated samples need not be inferred in a separate step as other
replay-based approaches, e.g., [34], which we term marginal replay approaches. Since
inferring the label of a generated sample inevitably requires the application of a pos-
sibly less-than-perfect classifier, avoiding this step conceivably reduces the margin for
error in complex continual learning tasks. The paper organization is the following, first
we introduce the paper contributions and the related works, secondly we describe the
methods used as well as the benchmarks, thirdly we present the paper experiments,
fourthly we show and discuss our results and in a last section we conclude the paper.

1.1 Contribution

The original contributions of this article can be summarized as follows (Figs. 2, 3 and
Table 1):

– Conditional replay as a method for continual classification learning. We exper-
imentally establish the advantages of conditional replay in the field of continual
learning by comparing conditional and marginal replay models on a common set of
benchmarks.

– Improvement of marginal learning. We furthermore propose an improvement
of marginal replay as proposed in [34] by using generative adversarial networks
(GANs, see [10]).

– New experimental benchmarks for generative replay strategies. To measure the
merit of these proposals, we use two experimental settings that have not been pre-
viously considered for benchmarking generative replay: rotations and permutations.
In addition, we promote the “10-class-disjoint” task as an important benchmark for
continual learning as it is impossible to solve for purely discriminative methods (at
no time, samples from different classes are provided for training so no discrimina-
tion can happen).

– Comparison of generative replay to EWC.We show the principled advantage that
generative replay techniques have with respect to regularization methods like EWC
in a “one class per task” setting, which is after all a very common setting in practice
and in which discriminatively trained models strongly tend to assign the same class
label to every sample regardless of content.

Table 1. Hyperparameters for MNIST and Fashion MNIST all models (all CL settings have the
same training hyper parameters with Adam)

Method Epochs LR classifier LR generator beta1 beta2 Batch Size

Marginal replay 25 0.01 2e−4 5e−1 0.999 64

Conditional replay 25 0.01 2e−4 5e−1 0.999 64

EWC 25 0.01 – 5e−1 0.999 64
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(a) sub-task 0 (b) sub-task 1 (c) sub-task 2 (d) sub-task 3 (e) sub-task 4

Fig. 2. MNIST training data for rotation sub-tasks.

Fig. 3.MNIST training data for permutation-type CLTs.

1.2 Related Work

The field of continual learning is growing and has been recently reviewed in, e.g.,
[8,26]. In the context of neural networks, principal recent approaches include ensem-
ble methods [2,5,22,24,30–32,41], regularization approaches [1,3,4,7,12,15,17,19,
23,37], dual-memory systems [9,14,29], distillation-based approaches [16,22,35] and
generative replay methods [13,14,21,34,38]. In the context of single-memory DNN
methods, regularization approaches are predominant: whereas it was proposed in [11]
that the popular Dropout regularization can alleviate catastrophic forgetting, the EWC
method [17] proposes to add a term to the DNN energy function that protects weights
that are deemed to be important for the previous sub-task(s). Whether a weight is impor-
tant or not is determined by approximating and analyzing the Fisher information matrix
of the DNN. A somewhat related approach is pursued with the incremental moment
matching (IMM, see [19]) technique, where weights are transferred between DNNs
trained on successive sub-tasks by regularization techniques, and the Fisher information
matrix is used to “merge” weights for current and past sub-tasks. Other regularization-
oriented approaches are proposed in [3,37] which focus on enforcing sparsity of neural
activities by lateral interactions within a layer, or in [15]. Concerning recent advances
in generative replay improving upon [34]: Several works propose the use of generative
models in continual learning of classification tasks [13,33,38,39] but their results does
not provide comparison between different types of generative models. [21] propose a
conditional replay mechanism similar to the one investigated here, but their goal is the
sequential learning of data generation and not classification tasks. Generally, each app-
roach to continual learning has its advantages and disadvantages:

– ensemble methods suffer from little to no interference between present and past
knowledge as usually different networks or sub-networks are allocated to different
learning tasks. The problem with this approach is that, on the one hand, model com-
plexity is not constant, and more seriously, that the task from which a sample is
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coming from must be known at inference time in order to select the appropriate
(sub-)network.

– regularization approaches are very diverse: in general, their advantage is simplicity
and (often) a constant-time/memory behavior w.r.t. the number of tasks. However,
the impact of the regularizer on continual learning performance is difficult to under-
stand, and several parameters need to be tuned whose significance is unclear (i.e.,
the strengths of the regularization terms)

– distillation approaches can achieve very good robustness and continual learning per-
formance, but either require the retention of past samples, or the occurrence of sam-
ples from past classes in current training data to be consistent. Also, the strength
of the various distillation loss regularizers needs to be tuned, usually by cross-
validation.

– generative replay and dual-memory systems show very good and robust continual
learning performance, although time complexity of learning depends on the number
of previous tasks for current generative replay methods. In addition, the storage of
weights for a sufficiently powerful generator may prove very memory-consuming,
so this approach cannot be used in all settings.

2 Methods

A basic notion in this article is that of a continual (or sequential) learning task (CLT or
SLT, although we will use the abbreviation CLT in this article), denoting a classification
problem that is composed of two or more sub-tasks which are presented sequentially
to the model in question. Here, the CLTs are constructed from two standard visual
classification benchmarks: MNIST and Fashion MNIST, either by dividing available
classes into several sub-tasks, or by performing per-sample image processing operations
that are identical within, and different between, sub-tasks. All continual learning models
are then trained and evaluated in an identical fashion on all CLTs, and performances are
compared by a simple visual inspection of classification accuracy plots.

2.1 Benchmarks

MNIST. [18] is a common benchmark for computer vision systems and classification
problems. It consists of gray scale 28× 28 images of handwritten digits (ten balanced
classes representing the digits 0–9). The train, test and validation sets contain 55.000,
10.000 and 5.000 samples, respectively.

Fashion MNIST. [40] consists of grayscale 28×28 images of clothes. We choose this
dataset because it claims to be a “more challenging classification task than the simple
MNIST digits data [40]” while having the same data dimensions, number of classes,
balancing properties and number of samples in train, test and validation sets.

2.2 Continual Learning Tasks (CLTs)

All CLTs are constructed from the underlying MNIST and FashionMNIST benchmarks,
so the number of samples in train and test sets for each sub-task depend on the precise
way of constructing them, see below (Fig. 4).
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(a) Sub-
task 0

(b) sub-task
1

(c) sub-task
2

(d) sub-task
3

(e) sub-task
4

(f) sub-task
5

(g) sub-task
6

(h) sub-task
7

(i) sub-task
8

(j) sub-task
9

Fig. 4. Samples of MNIST training data for the disjoint CLT. Each sub-task adds one more visual
class, a principle which carries over identically to FashionMNIST.

Rotations. New sub-tasks are generated by choosing a random rotation angle β ∈
[0,π/2] and then performing a 2D in-plane rotation on all samples of the original bench-
mark. As both benchmarks we use contain samples of 28× 28 pixels, no information
loss is introduced by this procedure. We limit rotation angles to π/2 because larger
rotations could mix MNIST classes like 6 and 9. Each sub-task in rotation-based CLTs
contains all 10 classes of the underlying benchmark, leading to 55.000 and 10.000 sam-
ples, respectively, in the train and test sets of each sub-task.

Permutations. New sub-tasks are generated by defining a random pixel permutation
scheme, and then applying it to each data sample of the original benchmark. Each sub-
task in permutation-based CLTs contains all 10 classes of the underlying benchmark,
leading to 55.000 and 10.000 samples, respectively, in the train and test sets of each
sub-task.

Disjoint Classes. For each benchmark, this CLT has as many sub-tasks as there are
classes in the benchmark (10 in this article). Each sub-task contains the samples of a
single class, i.e., roughly 6.000 samples in the train set and 1.000 samples in the test
set. As the classes are balanced for both benchmarks, this does not unduly favor certain
classes. This CLT presents a substantial challenge for machine learning methods since
a normal DNN would, for each sub-task, learn to map all samples to a single class
label irrespective of content. Selective discrimination between any two classes is hard
to obtain except if replay is involved, because then a classifier actually “sees” samples
from different classes at the same time.

2.3 Models

In this article, we compare a considerable number of deep learning models: unless oth-
erwise stated, we employ the Rectified Linear Unit (ReLU) transfer function, cross-
entropy loss for classifier training, and the Adam optimizer.
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EWC.We re-implemented the algorithm described in [17], choosing two hidden layers
with 200 neurons each.

Marginal Replay. In the context of classification, the marginal replay [21,34,38]
method works as follows: For each sub-task t, there is a dataset Dt , a classifier Ct , a
generator Gt and a memory of past samples composed of a generator Gt−1 and a clas-
sifierCt−1. The latter two allow the generation of artificial samples Dt−1 from previous
sub-tasks. Then, by training Ct and Gt on Dt and Dt−1, the model can learn the new
sub-task t without forgetting old ones. At the end of the sub-task, Ct and Gt are frozen
and replace Ct−1 and Gt−1. In the default setting, we use the generator for marginal
replay in a way that ensures a balanced distribution of classes from past sub-tasks Dt−1,
see also Fig. 7. This is achieved by choosing a predetermined number of samples N
to be added for all sub-tasks t, and letting the generator produce tN previous samples
at sub-task t. Thus, the number of generated samples increases linearly over time. We
choose to evaluate two different models for the generator: WGAN-GP as used in [34]
and the original GAN model [10] since it is a competitive baseline [20].

Conditional Replay. The conditional replay method is derived from marginal replay:
instead of saving a classifier and a generator, the algorithm only saves a generator that
can generate conditionally (for a certain class). Hence, for each sub-task t, there is a
dataset Dt , a classifier Ct and two generators Gt and Gt−1. The goal of Gt−1 is to gen-
erate data from all the previous sub-tasks during training on the new sub-task. Since
data is generated conditionally, samples automatically have a label and do not require
a frozen classifier. We follow the same strategy as for marginal replay (previous para-
graph) for choosing the number of generated samples at each sub-task. However, con-
ditional replay does not require this: it can, in principle, keep the number of generated
samples constant for each sub-task since it is trivially possible to generate a balanced
distribution of N

t samples per class, from t different classes, via conditional sample gen-
eration. Ct and Gt learn from generated data Dt−1 and Dt . At the end of a sub-task t,Ct

is able to classify data from the current and previous sub-tasks, and Gt is able to sample
from them also. We choose to use two different popular conditional models: CGAN
described in [25] and CVAE [36].

3 Experiments

We conduct experiments using all models and CLTs described in the previous section.
Each class (regardless of the CLT) is presented for 25 epochs, Results are presented
either based on the time-varying classification accuracy on the whole test set, or on the
class (from the test set) that was presented first. In the first case, accuracy should ideally
increase over time and reach its maximum after the last class has been presented. In the
second case, accuracy should be stable if the model does not forgot or decrease over
time, reflecting that some information about the first class is forgotten. We distinguish
two major experimental goals or questions:

– Establishing the performance of the newly proposed methods (marginal replay with
GAN, conditional replay with CGAN or CVAE) w.r.t. the state of the art. To this
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(a) accuracy for MNIST disjoint CLT
(b) accuracy for Fashion MNIST disjoint
CLT

(c) accuracy for MNIST permutation CLT
(d) accuracy for Fashion MNIST permuta-
tion CLT

(e) accuracy for MNIST rotation CLT
(f) accuracy for Fashion MNIST rotation
CLT

Fig. 5. Test set accuracies during training on different CLTs, shown for all sub-tasks (indicated
by dotted lines).

effect, we conduct experiments that increase the number of generated samples over
time in a way that ensures an effectively balanced class distribution (see Fig. 7). We
do this both for marginal and conditional replay in order to ensure a fair comparison,
although technically conditional replay can generate balanced distribution even with
a constant number of generated samples.
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(a) Unbalanced MNIST Disjoint (b) Unbalanced Fashion Disjoint

(c) Balanced MNIST Disjoint (d) Balanced Fashion Disjoint

Fig. 6.We compare final accuracy when the ratio between size of old task and size of new task is
1 (balanced) or 1/10 (unbalanced, factor was chosen empirically).

– demonstrating the advantages of conditional w.r.t. marginal replay strategies, espe-
cially when only few samples can be generated, thus obtaining a skewed class dis-
tribution for marginal replay (see Fig. 7).

Results shedding light on the first question are presented in Fig. 5 (showing classifi-
cation accuracy on whole test set over time, see Fig. 8 for accuracy on first sub-task),
whereas the second question is addressed in Fig. 6 for the disjoint CTL only due to
space limitations.

4 Results and Discussion

From the experiments described in the previous section, we can state the following prin-
cipal findings:

Replay Methods Outperform EWC. As can be observed from Fig. 5, the novel meth-
ods we propose (marginal replay with GAN and WGAN-GP, conditional replay with
CGAN and conditional replay with CVAE) outperform EWC, on all CLTs, sometimes
by a large margin. Particular attention should be given to the performance of EWC:
while generally acceptable for rotation and permutation CLTs, it completely fails for
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Fig. 7.Why marginal replay must linearly increase the number of generated samples: distribution
of classes produced by the generator of a marginal replay strategy after sequential training of 10
sub-tasks (of 1 class each). This essentially corresponds to the “disjoint” type of CLTs. Shown
are three cases: “balanced: tN” (blue bars) where tN samples are generated for each sub-task t,
“unbalanced: N” (orange bars) where the number of generated samples is constant and equal to
the number of newly trained samples N for each sub-task, and “unbalanced: 0.1tN” where 0.1tN
samples are generated. We observe that, in order to ensure a balanced distribution of classes, the
number of generated samples must be re-scaled, or, in other words, must increase linearly with
the number of sub-tasks. (Color figure online)

the disjoint CLT. This is due to the fact that there is only one class in each sub-task,
making EWC try to map all samples to the currently presented class label regardless
of input, since no replay is available to include samples from previous sub-tasks (as
outlined before in Sect. 1.1).

Marginal Replay with GAN Outperforms WGAN-GP. The clear advantage of GAN
overWGAN-GP is the higher stability of the generative models. This is not only observ-
able in Fig. 5, but also when measuring performance on the first sub-task only during
the course of continual learning (see Fig. 8).

Conditional Replay Can Be Run at Constant Time Complexity. A very important
point in favour of conditional replay is run-time complexity, as expressed by the num-
ber of samples that need to be generated each time a new sub-task is trained. Since
the generators in marginal replay strategies generate samples regardless of class, the
distribution of classes will be proportional to the distribution of classes during the last
training of the generator, which leads to an unbalanced class distribution over time,
with the oldest classes being strongly under-represented (see Fig. 7). This is avoided
by increasing the number of generated samples over time for marginal replay, leading
to a balanced class distribution (see also Fig. 7) while vastly increasing the number of
samples. Conditional replay, on the other hand, can selectively generate samples from
a defined class, thus constructing a class-balanced dataset without needing to increase
the number of generated samples over time. In the interest of accuracy, it can of course
make sense to increase the number of generated samples over time, just as for marginal
replay. This, however, is a deliberate choice and not something required by conditional
replay itself.
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(a) MNIST: disjoint CLT (b) MNIST: permutation CLT (c) MNIST: rotation CLT

(d) Fashion MNIST: disjoint
CLT

(e) Fashion MNIST: permuta-
tion CLT

(f) Fashion MNIST: rotation
CLT

Fig. 8. Comparison of the accuracy of each approach on the first sub-task. This is another, very
intuitive measure of how much is forgotten during continual learning. Means and standard devi-
ations computed over 8 seeds.

Marginal Replay Outperforms Conditional Replay When Many Samples Can Be
Generated. From Fig. 5, it can be observed that marginal replay outperforms condi-
tional replay by a small margin. This comes at the price of having to generate a large
number of samples, which will become unfeasible if many classes are involved in the
retraining.

Conditional Replay is Superior When Few Samples are Generated. The results of
Fig. 6 show that conditional replay is superior to marginal replay when generating fewer
samples at each sub-task (more precisely: 0.1tN samples instead of tN, for sub-task
t and number of new samples per sub-task N). This can be understood quite easily:
since we generate only 0.1tN samples instead of tN samples at each sub-task, marginal
replay produces an unbalanced class distribution, see Fig. 7, which strongly impairs
classification performance. This is a principal advantage that conditional replay has
over marginal replay: generating balanced class distributions while having much more
control over the number of generated samples.
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5 Conclusions

Summary. We have proposed several of performing continual learning with replay-
based models and empirically demonstrated (on novel benchmarks) their merit w.r.t.
the state of the art, represented by the EWC method. A principal conclusion of this
article is that conditional replay methods show strong promise because they have com-
petitive performance, and they impose less restrictions on their use in applications. Most
notably, they can be used at constant time complexity, meaning that the number of gen-
erated samples does not need to increase over time, which would be problematic in
applications with many sub-tasks and real-time constraints.

Concerning the Benchmarks.While one might argue that MNIST and FashionMNIST
are too simple for a meaningful evaluation, this holds only for non-continual learning
scenarios. In fact, recent articles [27] show that MNIST-related CLTs are still a major
obstacle for most current approaches to continual learning under realistic conditions.
So, while we agree that MNIST and FashionMNIST are not suitable benchmarks in
general anymore, we must stress the difficulty of MNIST-related CLTs in continual
learning, thus making these benchmarks very suitable indeed in this particular context.
The use of intrinsically more complex benchmarks, such as CIFAR, SVHN or ImageNet
is at present not really possible since generative methods are not really good enough for
replaying these data [21].

Next Steps. Future work will include a closer study of conditional replay: in particular,
we would like to better understand why they exhibit better performance w.r.t marginal
replay in cases where the number of generated samples is restricted to be low. In addi-
tion, it would be interesting to study the continual learning behavior of conditional
replay models when a fixed number of generated samples is imposed at each sub-task,
for various CLTs. The latter topic is interesting because the success of replay-based
continual learning methods in applications will depend on whether the number of gener-
ated samples (and thereby time and memory complexity) can be reduced to manageable
levels.

Observations. An interesting point is that the disjoint type CLTs pose enormous prob-
lems to conventional machine learning architectures, and therefore represent a very use-
ful benchmark for continual learning algorithms. If each of a CLT’s sub-tasks contains
a single visual class, training them one after the other will induce no between-class dis-
crimination at all since every training step just “sees” a single class. Replay-based meth-
ods nicely bridge this gap, allowing continual learning while allowing between-class
discrimination. To our mind, any application-relevant algorithm for continual learning
therefore must include some form of experience replay.

Outlook. Ultimately, the goal of our research is to come up with replay-based models
where the effort spent on replaying past knowledge is small compared to the effort
of training with new samples, which will require machine learning models that are,
intrinsically, less prone to catastrophic forgetting than DNNs are.
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Abstract. Import recent advances in the domain of incremental or con-
tinual learning with DNNs, such as Elastic Weight Consolidation (EWC)
or Incremental Moment Matching (IMM) rely on a quantity termed the
Fisher information matrix (FIM). While the results obtained in this
way are very promising, the use of the FIM relies on the assumptions
that (a) the FIM can be approximated by its diagonal, and (b) that
FIM diagonal entries are related to the variance of a DNN parameter in
the context of Bayesian neural networks. In addition, the FIM is noto-
riously difficult to compute in automatic differentiation (AD) systems
frameworks like TensorFlow, and existing implementations require an
excessive use of memory due to this problem. We present the Matrix
of SQuares (MaSQ), computed similarly as the FIM, but whose use in
EWC-like algorithms follows directly from the calculus of derivatives and
requires no additional assumptions. Additionally, MaSQ computation in
AD frameworks is much simpler and more memory-efficient FIM com-
putation. When using MaSQ together with EWC we show superior or
equal performance to FIM/EWC on a variety of benchmark tasks.

1 Introduction

This article describes a study in the context of incremental or continual learn-
ing with deep neural networks (DNNs). Essentially, this means that a DNN
is not trained once, on a single task D, but successively on two or more sub-
tasks D1, . . . , Dn, one after another. Learning tasks of this type, which we term
Sequential Learning Tasks (SLTs) (see Fig. 1a), are potentially very common in
real-world applications. They occur wherever DNNs need to update their capa-
bilities on-site and over time: gesture recognition, network traffic analysis, or
face and object recognition in mobile robots. In such scenarios, neural networks
have long been known to suffer from a problem termed “catastrophic forgetting”
(CF) (e.g., [4]) which denotes the abrupt and near-complete loss of knowledge
from previous sub-tasks D1, . . . , Dk−1 after only a few training iterations on
the current sub-task Dk (see Fig. 1b compared to Fig. 1c). In this article, we
focus on SLTs from the visual domain with two sub-tasks each, as DNNs show
pronounced CF behavior even when only two sub-tasks are involved.
c© Springer Nature Switzerland AG 2019
I. V. Tetko et al. (Eds.): ICANN 2019, LNCS 11728, pp. 481–494, 2019.
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Fig. 1. Schema of incremental training experiments conducted in this article (a) and
representative outcomes with (b) and without CF (c). The sequential learning tasks
used in this study only have two sub-tasks: D1 and D2. During training (white back-
ground) and re-training (gray background), test accuracy is measured on D1 (blue, �),
D2 (red, �) and D1∪D2 (green, �). The blue curve allows to determine the presence of
CF by simple visual inspection: if there is significant degradation w.r.t. the red curve,
then CF has occurred. (Color figure online)

1.1 Related Work

The field of incremental learning is large, e.g., [16] and [6]. Recent system-
atic comparisons between different DNN approaches to avoid CF are per-
formed in, e.g., [11,22] or [18]. Principal recent approaches to avoid CF include
ensemble methods [2,21], dual-memory systems [5,10,19,23] and regulariza-
tion approaches. Whereas [7] suggest Dropout for alleviating CF, the EWC
method [13] proposes to add a term to the energy function that protects weights
that are important for the previous sub-task(s). Importance is determined by a
quantity that is claimed to approximate the Fisher information matrix of the
DNN within a framework of Bayesian neural networks inspired by works on the
natural gradient in DNNS [17]. A related approach is pursued by the Incremen-
tal Moment Matching technique (IMM) (see [15]), where weights from DNNs
trained on current and past sub-tasks are “merged” using a similar approxima-
tion to the Fisher information matrix. Other regularization-oriented approaches
are proposed in [1,24] and [12] which focus on enforcing sparsity of neural activ-
ities by lateral interactions within a layer.

Algorithms like EWC are in fact related to very old works on pruning neu-
ral network weights [8,9,20], where the same goal is pursued: to estimate how
“important” a weight is for the performance of the neural network by analyzing
gradient information.

1.2 Motivation and Goals of the Article

We have been extensively analyzing [18] the performance of recently proposed
algorithms for incremental learning like EWC or IMM, see Sect. 1.1. While doing
so, we found that the computation of the FIM required for both methods is both
computationally expensive, as well as conceptually questionable since the math-
ematical justification is at best unclear, and contains assumptions (diagonality
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of the FIM) that are neither proven nor empirically demonstrated. So the goal
of the article is to propose a drop-in replacement for the FIM in regularization-
based approaches to incremental learning like EWC or IMM that is both efficient
to compute, and has a solid theoretical foundation which requires no unclear
assumptions. The Matrix of SQuares (MaSQ) that we propose here has all of
these properties, and we wish to empirically verify that incremental learning
with EWC works just as well when using the MaSQ.

2 Methods

2.1 Dataset and Construction of Sequential Learning Tasks

We construct several sequential learning tasks (SLTs) from MNIST [14], a com-
mon benchmark for visual classification problems. It consists of 70.000 gray scale
images of handwritten digits (0–9) of size 28×28, containing 55.000 training and
10.000 test samples that are approximately equally distributed over 10 classes.
While MNIST may be considered too simple as an outright classification prob-
lem, we recently showed [18] that virtually all approaches to incremental or con-
tinual learning fail on simple two-task SLTs constructed from MNIST already,
so MNIST-derived SLTs definitely do constitute adequate benchmarks here. We
construct three types of two-task SLTs (defined by sub-tasks D1 and D2) from
MNIST, which we term DP10-10 (“permuted”), D9-1 (“disjoint 9-1”) and D5-5
(“disjoint 5-5”). The constructions given below apply equally to training, test
and validation sets contained in MNIST.

Permuted SLT (DP10-10). This SLT is created by defining sub-task D1 as
the original MNIST benchmark containing all 10 classes, and adding sub-task
D2 as a copy of D1 where copied samples all have their pixels spatially per-
muted in the same fashion. This is a benchmark that is widely used in studies
on incremental learning, which we include for reference. As we could show [18],
caution is required when using this benchmark as it seems to intrinsically facil-
itate incremental learning, probably because the patterns in D1 and D2 have
very little overlap.

Disjoint SLTs (D9-1 and D5-5). These SLTs are created by defining D1 as all
samples from zero to eight (zero to four for D5-5) classes from MNIST, whereas
D2 is defined by the remaining classes (one for D9-1, five for D5-5).

2.2 DNN Models and Hyper-parameters

We employ simple fully-connected DNNs with EWC regularization, consisting
of L ∈ {2, 3} layers, all having an identical size of S ∈ {200, 400, 800}, and
using the standard ReLU transfer function. We distinguish two learning rate
parameters ε1 = 0.001 and ε2 ∈ {0.001, 0.0001, 0.00001, 1e−06} for the two sub-
tasks. Presence and effect of EWC regularization is governed by the balancing
parameter λ ∈ {0, 0.1

ε1
, 1

ε1
, 10

ε1
}. Since we are dealing with classification problems,

cross-entropy is used as a loss function LCE. Mini-batch size in stochastic gra-
dient descent (SGD) optimization is always set to B = 100.
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2.3 Elastic Weight Consolidation with FIM and MaSQ

In [13,15], the EWC loss function for training on sub-task D2 is given as

L =
λ

2
LCE +

∑

k

Fk(θk − θD1
k )2 (1)

where the complete parameter set of a DNN (weight and biases) is denoted by θ,
Fk describes the diagonal entries of the FIM (or MaSQ entries, see below), and
θD1 represents the complete set of stored parameters (again weights and biases)
after having trained the DNN on sub-task D1. In order to best describe our
implementation of EWC (with FIM or MaSQ), we change the notation from the
abstract parameter vector θ of the DNN (as used in [13]) in favor of explicitly
denoting the DNN weight matrices W i and the bias vectors bi, i ∈ {0, . . . , L−1}.
The EWC loss function used for re-training on D2 then reads, in this notation:

L = LCE +
λ

2

L−1∑

i=0

∑

kl

FW i

kl

(
W i

kl − W i,D1
kl

)2

+
λ

2

L−1∑

i=0

∑

k

F bi

k

(
bi
k − bi,D1

k

)2

(2)

where we introduce the “lagged variables” W i,D1 , bi,D1 as specified in [13], and
the coefficient matrices FW i

and coefficient vectors F bi that correspond to FIM
diagonal elements or MaSQ entries for the different weight matrices and bias
vectors, both computed after training on D1 is completed.

We implement the EWC algorithm for a two-task SLT by the following strategy:

– train the DNN normally on D1, using a balancing parameter of λ = 0
– copy weight matrices and bias vectors to the set of lagged variables
– perform a single pass through the training data (one epoch) without modify-

ing weights or biases, for FIM or MaSQ computation (only the gradients are
required)

– train the DNN on D2, keeping the previous values of weights and biases, and
using either FIM or MaSQ with a nonzero EWC balancing parameter λ

– test on D2 and D1 ∪ D2 during re-training on D2

2.4 A Critical Discussion of FIM Derivation and Computation

The expression given in [13,15,17] for computing the FIM reads (again denoting
the ensemble of DNN parameters as θ as in [13]):

Fij ≡ 1
N

∑

n

(
∂L
∂θi

∂L
∂θj

∣∣∣
xn

)
, (3)

where the expectation value is taken over all N training samples, indexed by n.
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In [13,15], the FIM is assumed to be diagonal, so these authors use only the
quantity

F ≡ diag (Fij) (4)

Fj ≡ 1
N

∑

n

(
∂L
∂θj

∣∣∣
xn

)2

, (5)

although this simplification is not proven, nor is it, given the generality of Eq. (3),
very likely to hold in general. In our notation, the FIM (with diagonal assump-
tion) is written as

F W i

jk ≡ 1
N

∑

n

(
∂L

∂W i
jk

∣∣∣
xn

)2

(6)

F bi

j ≡ 1
N

∑

n

(
∂L
∂bi

j

∣∣∣
xn

)2

We will verify FIM diagonality experimentally in Sect. 3.3.
A second point we like to raise is the utilization of the FIM diagonal in the

EWC mechanism, given in its general form in Eq. (1), which is simply postulated
in [13] and roughly justified as FIM diagonal entries Fk being equivalent to the
certainty of parameter θk, and thus being a measure for its inverse variance in
a Bayesian NN picture in [15]. The main justification of using FIM diagonal
entries in [13,15] seems to be that the obtained results are very promising and
give good results. We feel, however, that perhaps even better results could be
obtained when using quantities in the EWC loss of Eq. (1) whose computation
requires no diagonality assumptions, and whose use in Eq. (1) is justified by some
rigorously provable mathematical principle. This is exactly what we propose with
MaSQ, which will be detailed in the next section.

2.5 MaSQ Computation and Theoretical Justification

As in [13], the DNN loss function L is considered to depend on a parameter
vector θ, which, in reality, is a concatenation of all (flattened) weight matrices
W i and bias vectors bi of the DNN. Since DNN loss functions are assumed to be
differentiable almost everywhere at least once, we can apply the standard theory
of differential calculus which states that a differentiable function such as L can
be locally approximated by linear functions in all directions δ ∈ R

n, see, e.g.,
[3]:

∀δ ∈ R
n : L(θ + hδ) = L(θ) + hJ · δ +

η(hδ)
h

(7)

where we define a deviation parameter h, the gradient J , Jk = ∂L
∂θk

and a function
η(hδ) that goes to zero faster than h as h → 0. This formula indicates that L gets
better and better approximated by the linear function L(θ +J ·δ) as h → 0. So,
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for sufficiently small h, the rate of change of L(θ) as a reaction to small changes
in a parameter θk are given by the gradient entry Jk. Identifying the parameters
that contribute most to changes of L is then reduced to ranking the entries of J
by their absolute value. Using the squared value for ranking is possible as well,
since squaring is an operation that does not change the ranking.

Since gradients in DNN training are computed as training set (with N sam-
ples) expectation values over per-sample gradients Jnk, samples being denoted
by xn,

Jk =
1
N

∑

n

Jnk =
1
N

∑

n

(
∂L
∂θk

∣∣∣
xn

)
, (8)

the squared gradients are then obtained as

Fk ≡ J2
k =

(
1
N

∑

n

∂L
∂θk

∣∣∣
xn

)2

, (9)

The squared entries of J can thus be directly used to punish changes to cer-
tain parameters more than changes to other parameters, since a higher value
of J2

k will, by the definition of differentiable functions given in Eq. (7), depend
quadratically on the modulus of the linear rate of change Jk of L upon small
changes to the parameter θk. For this argument, it is immaterial whether the
square or the modulus of Jk is used, although squares punish deviations for
critical parameters more strongly. The squared entries J2

k thus form the Matrix
of SQuares (MaSQ). Its entries Fk can be re-written in terms of the individual
weight matrices and bias vectors as

F W i

jk ≡
(

1
N

∑

n

∂L
∂W i

jk

∣∣∣
xn

)2

(10)

F bi

j ≡
(

1
N

∑

n

∂L
∂bi

j

∣∣∣
xn

)2

in order to be inserted into the EWC loss function (2). When comparing Eqs. (10)
and (6), we note that MaSQ and FIM are actually computed in quite a similar
fashion, as expectation values over loss gradients. However, FIM requires to
square the gradients prior to taking the expectation value over training samples,
whereas it is the other way round for MaSQ. Since, in practice, gradients are
summed up over mini-batches and averaged after having traversed all training
samples, FIM and MaSQ are equivalent for batch sizes of B = 1.

Memory Consumption of FIM and MaSQ When Using TensorFlow.
For B > 1 automatic differentiation frameworks like TensorFlow run into prob-
lems because they cannot compute per-sample gradients, which is required for
FIM computation. So current reference implementations1 use a workaround that
1 https://github.com/stokesj/EWC.

https://github.com/stokesj/EWC
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consists of duplicating weight matrices and bias vectors B times, and then tak-
ing the gradient w.r.t each of the copies, which gives the per-sample gradients,
although at the cost of a B-fold increase in memory consumption. MaSQ, in
contrast, performs the squaring operation after having taken the average and
thus does not require per-sample gradients to be computed.

3 Experiments

All DNN training is performed using stochastic gradient descent, and the Adam
optimization strategy in particular. Training on D1 or D2 is always performed
for 5000 iterations which, for MNIST, comes down to approximately 10 epochs.
This value is empirically chosen, longer training times do not improve results.
The code of our experiments is available on GitHub2. It is written in Python 3.6
using TensorFlow 1.12. The code is tested with GPU support, but will probably
run without GPU support as well although much more slowly.

We perform our experiments in several steps:

– Verification of incremental learning capacity of EWC/MaSQ. In
Sect. 3.1, we test whether EWC learning on all three SLTs works with MaSQ.
In order to make sure that results are generalizable (i.e., do not depend
on a particular choice of hyper-parameters), we perform extensive hyper-
parameter optimization w.r.t. DNN topology, and re-training learning rate.

– Consistency check. In Sect. 3.2 we ensure that our EWC implementation is
correct, by performing incremental learning experiments for the DNNs that
performed best in the experiments of Sect. 3.1. This time, however, we work
with a batch size of 1 for MaSQ computation, in which case, as outlined in
Sect. 2.5, it corresponds exactly to the FIM as computed in [13].

– Numerical comparison of FIM and MaSQ. In Sect. 3.4, we compare the
numerical values computed for FIM and MaSQ on the same SLT to determine
whether there are significant deviations. The reasoning for this is as follows:
If there are no significant deviations between FIM and MaSQ, it is not sur-
prising if there are no differences in EWC performance. However, if there are
deviations but EWC works nevertheless with MaSQ, then we can conclude
that MaSQ is a valid alternative to FIM.

– Empirical check of FIM diagonality assumption. In Sect. 3.3, we check
numerically whether the diagonal assumption made in [13,15] holds, at least
approximately.

3.1 Verification of Incremental Learning Capacity of EWC/MaSQ

For these experiments, we adhere to the full experimental paradigm outlined in
Sect. 2.3, computing the MaSQ using a batch size of 1000. While training on
all SLTs, hyper-parameter optimization is performed by exhaustively varying

2 www.github.com/EWC.

http://www.github.com/EWC
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Table 1. Tabulated results of test accuracies for best DNN hyper-parameter settings,
grouped by SLT. Evaluation is conducted using the “best” (above) or “last” (below)
strategies, see text for details. Results for λ = 0 are not given for the “best” strategy
since it is inappropriate in this case (the test accuracy has no peak except at the
beginning, which is meaningless). Entries of −1 for the size of layer 3 mean that this
layer is absent.

b SLT L1 L2 L3 ε2 accuracy in % acc. in % for λ = 0

e DP10-10 800 800 200 1e−05 96.94 x

s D9-1 800 400 400 1e−04 96.93 x

t D5-5 800 800 −1 1e−05 87.81 x

l SLT L1 L2 L3 ε2 acc. in % acc. in % for λ = 0

a DP10-10 800 800 200 1e−04 96.84 89

s D9-1 800 400 400 1e−05 96.27 30

t D5-5 800 800 −1 1e−05 87.29 49

the parameters given in Sect. 2.2 within the given ranges, using classification
accuracy as a selection criterion. We distinguish two possibilities for determining
the quality of a particular training/retraining run: while always relying on the
test accuracy on the whole dataset D1 ∪ D2, one may consider the best or the
last value of the re-training interval (assuming test accuracy is evaluated after
each mini-batch iteration). While it is intuitive to use the best value, using
the last value makes sense, too, since this quantity requires no extra effort to
compute and is usually more robust to variations of the re-training interval. For
completeness, the results given in Table 1 list both possibilities.

0 2500 5000 7500 10000
iteration

0.0

0.5

1.0

te
st

ac
cu
ra
cy

training D1 retraining D2

D2

D1

D1 ∪ D2

0 2500 5000 7500 10000
iteration

0.0

0.5

1.0

te
st

ac
cu
ra
cy

training D1 retraining D2

D2

D1

D1 ∪ D2

0 2500 5000 7500 10000
iteration

0.0

0.5

1.0

te
st

ac
cu
ra
cy

training D1 retraining D2

D2

D1

D1 ∪ D2

Fig. 2. Incremental learning performance of best DNNs (using EWC with MaSQ)
resulting from hyper-parameter search EWC, applying the “best” criterion for eval-
uating an experiment. From left to right: D5-5, DP10-10, D9-1.

3.2 Consistency Check

We select, for each SLT, the DNN that performed best in the hyper-parameter
selection strategy of the previous section, using the “best” criterion. We then
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Fig. 3. Incremental learning performance of best DNNs (using EWC with MaSQ)
resulting from hyper-parameter search EWC, applying the “last” criterion for eval-
uating an experiment. From left to right: D5-5, DP10-10, D9-1.
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Fig. 4. Incremental learning performance of a DNN with fixed parameters with EWC,
using the FIM instead of MaSQ. From left to right: D5-5, DP10-10, D9-1. To be com-
pared to Figs. 2, 3 since the same hyper-parameters are used for each type of SLT.
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Fig. 5. Incremental learning performance of a DNN with fixed parameters without the
EWC mechanism; i.e., setting λ = 0. From left to right: D5-5, DP10-10, D9-1. Strong
forgetting can be observed for all SLTs. To be compared to Figs. 2, 3 since the same
hyper-parameters are used for each type of SLT.

evaluate these three DNNs two times: one time with EWC turned off (balancing
parameter λ = 0), and the second time with EWC turned on (using λ = 1

ε2
)

but the batch size for MaSQ computation set to 1. In this case, the MaSQ and
the FIM are identical, so we essentially perform EWC learning using the FIM.
The results are given in Figs. 5, 4. We first observe in Fig. 5 that accuracy after
re-training drops strongly for the D5-5 and D9-1 SLTs when turning off EWC.
For DP10-10, forgetting is less strong, an effect already known from previous
studies for this SLT [18]. In contrast, using the FIM together with EWC reduces
forgetting for all SLTs and produces results that are very close to those obtained
when using the MaSQ instead of FIM, see Figs. 2, 3. This shows that EWC with
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MaSQ produces similar results as EWC with FIM, so MaSQ can be considered
a drop-in replacement.

3.3 Empirical Check of FIM Diagonality Assumption

Table 2. Comparison of diagonal and off-diagonal entries of the FIM computed for SLT
D5-5. For weight matrices W 1 and W 2, computation was too memory-consuming. We
see that the average diagonal entry is, as a rule, several orders of magnitude larger than
the off-diagonal entries. However, for the sums of diagonal and off-diagonal entries, this
picture is reversed, a problem that grows worse with increasing number of weights in
a DNN.

weight/bias→ W 3 b1 b2 b3

diag. sum 170.04 0.33 0.01 0.004

off-diag. sum 2023.41 1.36 0.04 0.004

diag. mean 0.002 0.0004 1.24e−06 4e−05

off-diag. mean 2.5e−07 1.7e−06 5.8e−08 4e−07

It is in principle rather simple to verify whether the FIM supports a diagonal
assumption by evaluating Eq. (6) numerically (separately for each weight matrix
and bias vector), although in practice memory limitations impose constraints: if
a particular weight matrix W i has dimension of, e.g., 100×100 weights, then the
associated matrix FW i

kj would have 10000× 10000 entries (approximately half a
gigabyte at 32-bit floating point precision). In order to test FIM diagonality, we
therefore use a very small, fixed DNN of dimensions 784-30-30-10 and train it
on the SLT D5-5 for 5.000 iterations. Then we compute, for all weight matrices
and bias vectors, the FIM Fkl defined in Eq. (3), with the parameter vector θ
being restricted to parameters from a particular weight matrix or bias vector.

The results for this very small DNN are given, for all SLTs, in Table 2.
They show that, while individual diagonal entries of the full FIM are indeed
much larger than off-diagonal entries, but that the sum of off-diagonal entries
for exceeds the sum of diagonal entries. In an EWC-like mechanism including
off-diagonal elements, these off-diagonal elements would therefore outweigh the
diagonal elements, thus rendering the diagonal assumption questionable.

3.4 Numerical Comparison of FIM and MaSQ

In order to perform a numerical comparison between the FIM and the MaSQ,
we analyze both quantities for all weight matrices W i and bias vectors bi in the
DNNs, again using the hyper-parameters of the DNNs that performed best in the
hyper-parameter optimization of Sect. 3.1. The results for SLTs D5-5, D9-1 and
DP10-10 are given in Figs. 6, 7, 8, respectively. We find a pronounced difference
in maximal values of about a factor of 2, uniformly through all weight matrices,
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bias vectors and SLTs. This indicates that the FIM and the MaSQ are indeed
substantially different quantities, and that the fact of EWC working with MaSQ
is not because the MaSQ is equal, or proportional, to the FIM.

Fig. 6. Numerical comparison of maximal FIM and MaSQ values, given separately
for all weight matrices (wh1:W 1, wh2:W 2, wh3:W 3, wo:W 4) and bias vectors (bh1:b1,
bh2:b2, bh3:b3, bo:b4).

4 Discussion and Principal Conclusions

In this investigation, we introduce the Matrix of SQuares (MaSQ) as a drop-in
replacement for the Fisher Information Matrix (FIM) in EWC-type incremen-
tal DNN learning algorithms. MaSQ is simple to compute and has a simple,
mathematically well-founded interpretation.

MaSQ is Effective in Preventing Catastrophic Forgetting. By the results
of Sect. 3.1, we find that using MaSQ performs at least as good as FIM on
all considered tasks, and that both effectively prevent catastrophic forgetting
if correct parameter choices are made, which we do by an exhaustive search
procedure.

MaSQ and FIM Are Different. Results of Sect. 3.4 indicate that the MaSQ
and the FIM are really numerically different, so similar performance cannot be
explained by numerical similarity, but rather by the fact that the use of the
MaSQ is motivated by intuitive considerations about gradients of differentiable
functions, in this case the DNN loss function L.

The FIM Diagonal Assumption is Problematic. As we show for a simple
setting in Sect. 3.3, the assumption that the FIM is diagonal is justified at first
glance since diagonal elements are uniformly larger by at least an order of mag-
nitude than off-diagonal elements. This is not really surprising since diagonal
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Fig. 7. Numerical comparison of maximal FIM and MaSQ values, given separately
for all weight matrices (wh1:W 1, wh2:W 2, wh3:W 3, wo:W 4) and bias vectors (bh1:b1,
bh2:b2, bh3:b3, bo:b4).

Fig. 8. Numerical comparison of maximal FIM and MaSQ values, given separately for
all weight matrices (wh1, wh2, wh3, wo) and bias vectors (bh1, bh2, bh3, bo).

elements can only be positive due to the squaring, whereas off-diagonal elements
have no such constraints and show lower average value simply because of this
fact. We argue, however, that in an EWC-like mechanism using off-diagonal ele-
ments as well, these will have a much stronger impact since their number is far
greater. Thus, neglecting the off-diagonal elements is not really justified when
using the FIM for incremental EWC learning.

MaSQ is Efficient and Mathematically Well-Founded. This is not really a
problem when using the MaSQ, since it requires no diagonality assumption, and
its use in EWC-like algorithms can be rigorously motivated from the calculus of
derivatives. The fact that MaSQ computation is much more memory-efficient in
frameworks like TensorFlow is an interesting by-product of our investigation.
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Why FIM is Problematic. Even when leaving aside the issue of the diagonal
assumption in FIM computation, one may ask whether there is really a big
difference between Eqs. (3) and (10): computing the expectation of squares or the
square of the expectation does not really seem a noteworthy difference. However,
when considering Jensen’s inequality (which, as a particular case, states that
for any convex function f and an integrable random variable X: f(E(X)) ≤
E(f(X))), we can very easily construct cases where FIM would grossly over-
estimate the importance of a weights that is actually irrelevant. For example,
let us consider the case where a weight’s MaSQ value, i.e., E[dL/dW ])2, gives
approximately 0, reflecting that W is unimportant w.r.t to the loss function.
By Jensen’s inequality, the corresponding FIM entry, that is, E[(dL/dW )2], can
be arbitrarily large since it is the upper bound on the MaSQ value. This case
occurs when there are both positive and negative contributions to the gradient
that approximately cancel: with FIM, we would have assigned high importance
to a weight that is actually useless.

Probabilistic Interpretation of MaSQ. What is often confusing is that the
FIM is computed in terms of the loss function, yet is attributed a probabilistic
meaning. To resolve this, is must be recalled that, in the probabilistic view of
machine learning the loss function is defined as the log likelihood of the data
under the model: minimizing the loss corresponds to maximizing this likelihood.
From this probabilistic interpretation of the loss function, a probabilistic inter-
pretation of the FIM and its various approximations may be motivated. MaSQ,
on the other hand, relies solely on multi-variate calculus for its interpretation
and treats the loss like any other multi-variate function, making it much clearer
to see what MaSQ values actually mean: if they are high, the corresponding
model parameter is important w.r.t. the loss, which may or may not have a
probabilistic interpretation.

5 Future Work

A straightforward corollary of this article is that all algorithms that make use of
the FIM should work just as well or better when using MaSQ. In particular, we
will test this approach for the very promising IMM [15] algorithm that strongly
relies on FIM. All things considered, MaSQ should actually show better per-
formance for EWC and its variants, so another line of investigation will consist
of analyzing and comparing MaSQ/EWC performance and comparing this to
existing work in terms of accuracy, but also speed and memory consumption.
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Abstract. This paper introduces a novel approach for querying samples
to be labeled in active learning for image recognition. The user is able
to efficiently label images with a visualization for training a classifier.
This visualization is achieved by using dimension reduction techniques
to create a 2D feature embedding from high-dimensional features. This
is made possible by a querying strategy specifically designed for the visu-
alization, seeking optimized bounding-box views for subsequent labeling.
The approach is implemented in a web-based prototype. It is compared
in-depth to other active learning querying strategies within a user study
we conducted with 31 participants on a challenging data set. While using
our approach, the participants could train a more accurate classifier than
with the other approaches. Additionally, we demonstrate that due to the
visualization, the number of labeled samples increases and also the label
quality improves.

Keywords: Active learning · Classification · Pattern recognition ·
Image recognition · Object recognition · User interface · Visualization ·
Dimension reduction

1 Motivation

In a classification task, there are machine learning models that can be trained
incrementally and samples can be labeled step-wise by the user. Active learning
[14] is an efficient training technique, where the samples, which are predicted to
deliver the highest improvement for the classifier, are chosen for being labeled.
There are several approaches for selecting the samples to be queried. However,
it depends on the actual data which approach yields the best accuracy [16].

Having this in mind, we try to find a more efficient way for applying active
learning. The common practice is to ask the human for a label of one single
sample at a time [15]. Since this is a monotonous task and therefore often leads
to mislabeled samples, we want to intervene already at this point by using a
c© Springer Nature Switzerland AG 2019
I. V. Tetko et al. (Eds.): ICANN 2019, LNCS 11728, pp. 495–506, 2019.
https://doi.org/10.1007/978-3-030-30484-3_40
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labeling user interface which is not only capable of boosting the performance
of the classifier and increase the number of labeled samples, but also gives the
human a more pleasurable experience while training the classifier. Another goal
is to give the human a better idea about the inner representation of the trained
model. This insight may lead to a better understanding where strengths and
weaknesses of a feature representation are. To facilitate human labeling of high-
dimensional samples, we use dimension reduction techniques to visualize the data
in a 2D feature embedding space. We use this for improving active querying in
an image recognition task.

There are some approaches towards machine learning using such a visualiza-
tion. Recently, Cavallo et al. [1] introduced an approach for not only visualizing
high-dimensional data, but also changing both the data in the feature embedding
space and in high-dimensional space. For instance, after changing data in feature
embedding space it can be explored what effect this has in the high-dimensional
data and vice versa. Iwata et al. [6] introduced an approach where the user can
relocate the data in a visualization to be more representative for him. This can
be useful if data is clustered in different categories and a category should be
located in one region of the visualization space. It is also useful for ordering
data, if it has a natural ordering like numbers or letters.

More related to active learning, there are approaches using scatter plots for
visualizing data to facilitate labeling. Huang et al. [5] improved the labeling pro-
cess of text documents showing the human visualizations of the feature space.
The text data is visualized by t-SNE [13], force-directed graph layout and chord
diagrams. Liao et al. [9] used semi-supervised metric learning to train a visualiza-
tion of video data. In both approaches, the data is displayed next to the scatter
plot for labeling. The querying of samples is done manually by the user, so there
is no active learning strategy involved directly, which we want to accomplish for
image recognition.

We introduce an active querying technique which utilizes the visualization
and enables an efficient training by finding bounding-box views in the visualiza-
tion for labeling images. Within a user study on a challenging outdoor object
data set, we show that using a visualization is favorable and that using our
adaptive interface together with the proposed querying method is more efficient
than state-of-the-art approaches.

2 Active Learning

Active learning is an efficient technique for training a classifier incrementally.
One variant of it is pool-based active learning, where the features X with labels
Y are divided in an unlabeled pool U and a labeled pool L. A querying function
selects the most relevant samples from U to be labeled by an oracle, which is
in most cases a human annotator. As the training progresses, samples from the
unlabeled pool U are labeled and put in the labeled pool L. Simultaneously, the
classifier c is trained online with the new labeled samples.

There were many research contributions in the past proposing querying
methods for high performance gain of the classifier. An often used app-
roach is Uncertainty Sampling (US), originally proposed by Lewis et al. [8].
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In US the classifier’s confidence estimation cp of the samples from the unla-
beled pool are used to select those with the lowest certainty for querying:
argminu∈Ucp(u). Another technique is query by committee (QBC) [17], where
the query is chosen that maximizes the disagreement of the classifiers. In our
evaluation we use the vote entropy for measuring the disagreement of classi-
fiers: argmaxu∈U − ∑

i
V (yi)
C log V (yi)

C where yi is a particular label and V (yi) is
the number of classifiers voted for this label, C is the number of classifiers in
the committee. In our evaluation we chose a linear Support Vector Machine, a
Decision Tree and Logistic Regression as a committee of diverse classifiers.

3 Dimension Reduction for Visualization
There are many dimension reduction approaches to visualize a high-dimensional
feature space in lower dimensions. Their training is usually unsupervised. An
early approach is Principal Component Analysis (PCA) [4], where a small set
of linearly uncorrelated variables having the highest variance in the data, called
principal components, are extracted. Multidimensional Scaling (MDS) [19] is a
technique for dimension reduction, which preserves the spatial relation of the
high-dimensional data in the lower-dimensional space. A Self Organizing Map
(SOM) [7], introduced by Kohonen in 1982, can be used for dimension reduction.
By applying competitive learning SOMs can preserve topological properties in
the lower dimensional map.

Fig. 1. General workflow diagram describing active
learning using a visualization.

In 2008, van der Maaten
et al. proposed t-SNE [13],
which is a variant of
Stochastic Neighbor Embed-
ding (SNE) [3]. By mod-
eling data points as pair-
wise probabilities in both
the original space and the
embedding, using a gradi-
ent decent method to min-
imize the sum of Kullback-
Leibler divergences, it is
possible to create an embed-
ding of high quality. Espe-
cially if there are classes
with different variances in
high-dimensional space, t-
SNE delivers reasonable
results. Our preliminary experiments also show, that t-SNE is delivering best
results compared to PCA and MDS for image data where classes consist of
objects showed from different viewing positions, like in the OUTDOOR data
set [12] that we will also use in our evaluation. Because of these advantages, we
use t-SNE as a dimension reduction technique in our experiments, but basically
every other approach can be used as well.
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4 Adaptive Visualization View Querying (A2VQ)

The underlying idea is to query the samples within a bounding-box view of the
visualization which we denote as a view v. The goal of our approach is to query
the optimal view for labeling of its enclosed samples.

In the following we introduce the Adaptive Visualization View Querying
(A2VQ) approach for querying in active learning using an adaptive visualization.
The overall workflow is illustrated in Fig. 1. First, we use the t-SNE algorithm to
reduce the high dimensionality of X (usually a high dimensional feature descrip-
tion of an image using e.g. a CNN) to 2D for visualization. We normalize the
output by applying feature scaling so that values of each of the two dimensions
are between 0 and 1, naming this normalized embedding feature space Z. In the
following we refer Zi as the visualization of sample Ui.

Fig. 2. t-SNE visualization of 50 objects from
the OUTDOOR data set with illustrated slid-
ing window approach. In one iteration of sliding
window, all views of the visualization are scored
by A2VQ’s scoring function. The possible views
are generated by moving the squared template
with side length s in overlap o steps from the
upper left to the bottom right corner. The view
with highest score is queried for labeling and dis-
played in our web-based user interface.

Since we assume to have no
label information at the begin-
ning, active training starts with
an empty L. So labeling of one or
more randomly generated views
is necessary to initially train a
classifier for our approach. Then
confidences for samples of U
are calculated by the classifier,
used to query the optimal view
(described in detail in the next
section). The queried view can be
labeled e.g. by a user with our
proposed user interface. Then the
classifier is trained incrementally
with the newly labeled samples.
After this training epoch, a new
optimal view is queried with the
retrained classifier and the pro-
cess repeats.

We think, a querying method
is necessary for an efficient label-
ing because a visualization of
more complex data sets can be

confusing for the human as there are too many classes and the images are highly
overlapping as one can see in Fig. 2. Also we want to be able to actively query
the samples which the classifier demands for efficient training.

4.1 Visualization View Querying

To query the optimal view we use a sliding window technique to cycle through
a grid of possible bounding-box views that arises from a view size s and overlap
amount o. The first view is positioned at (0, 0) in Z. By shifting the square s − o
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in each dimension (illustrated in Fig. 2), there is a total number of (1 + 1−s
s−o )2

views to be evaluated. We therefore calculate a scoring function r(v) for each
view:

r(v) =
∑

u∈Uv

(1 − cp(u))
m

(1)

where Uv are the samples lying in the particular view, cp(u) is the classifier’s
confidences of the most certain class for sample u and m is the number of samples
in the view with the most enclosed samples. By dividing by m not only the
classifier’s confidences of the view’s samples are taken into account, but also the
number of samples in the view. We do this for not querying views with few outlier
samples with low confidences, as they can occur for instance at border areas in
a t-SNE visualization (see Fig. 2). After calculating r for each view generated
by the sliding window approach, the view with the highest score r is queried for
labeling.

4.2 User Interface

Fig. 3. Querying user interface showing a view
queried by A2VQ. The user can label samples via
selecting their thumbnails by dragging rectangles in
the visualization. The class name can be entered in
an input formula. With the button Label the selected
samples are labeled and removed from the view.
The button Remove Selection removes the rectan-
gles. There are certain possible labeling strategies,
like label everything, label only the biggest clusters
or label only outliers. With a click on the button
Query next view the classifier is retrained with the
new labeled samples and a new view is queried with
A2VQ.

The samples of the optimal
view can be labeled with our
user interface, also available
at github1 together with all
implemented querying tech-
niques. By applying an affine
transformation the view is
shown in full size with
the corresponding sample
images as scatter plot sym-
bols. The resulting display is
shown in Fig. 3. Due to the
visualization most neighbor-
ing samples will receive the
same label. Interactive selec-
tion techniques (see Fig. 3)
allow economic labeling of
the samples within the view.

4.3 Adaptive View
Size

In addition to querying the
best view for labeling, there
is the question of finding the
best view size s. A small
s would not be efficient for
labeling and a too large s

1 https://github.com/limchr/A2VQ.

https://github.com/limchr/A2VQ
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makes it impossible for the human to recognize the images because there are
too many. We investigated two heuristics for finding a suitable view size.

Number of Classes: In this heuristic we assume that showing the user about
c = 3 different classes within a view results in best usability. We incrementally
increase or shrink s we use a heuristic that is evaluated after each labeled view:

s = s + σ(λ ∗ (c − n)) − 0.5 (2)

where λ is the learning rate, n are the number of individual classes in the view
after removing outlier classes with less than 5 samples and σ is the sigmoid
function. Using the learning rate inside the sigmoid function, which is centered
vertically by subtracting 0.5, enables us to incrementally change the view size
to match c.

Preliminary (automated) experiments showed, that adjusting view size with
upper heuristic converges to a proper view size with λ = 0.05. However, in our
automated experiments we assumed that the user has perfect ability in labeling
the samples and that he labels all samples within a view, whereas in our user
study we also train ambiguous objects. So we want to give the human the change
to skip samples. Since we can not evaluate n then, we used another heuristic for
choosing the view size:

Number of Samples: We assume that a view should not have more than
b = 100 samples so that the user is able to recognize them while using our label
interface. To determine the s that fits this assumption, we count the number of
samples within all possible views. We sort this array in descending order and
choose the highest 20% for calculating a mean, naming it m. We do this for
several view sizes {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40} and choose the view size
with the minimum |b − m|. In our user study we evaluated s = 0.25 and chose
o = 0.5s. A smaller overlap would be possible but requires longer calculation
time because more views have to be evaluated while querying.

5 Evaluation

5.1 Experiment

We did a user study for comparing A2VQ to the baselines US, QBC and random
querying (RAND).

Participants. 31 participants (gender : 16 males, 13 females, 2 others. status: 27
students, 2 employees, 2 others) joined the study. The median of their age was
28 years. The participants were paid 5e for completing the whole study which
took 30 to 45 min. Three of the participants refused the money. The protocol
was approved by the Bielefeld University Ethics Committee.
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User Interfaces. In the study, participants labeled images with two different user
interfaces. For A2VQ they used the already described user interface (see Fig. 3).
Participants were told, that it is not necessary to label all images within one view
because we wanted to give them the ability to skip samples in all approaches.
If none of the images within a view could be labeled, the view with the next
higher score was displayed. A classic user interface was used for labeling with
US, QBC and RAND (see Fig. 4). To label an image, participants had to choose
a label from the upper left drop down menu and click the Label button. If they
were not sure about the label of an image, they could click the Skip button.
After skipping an image we use DBQE [11] to prevent the querying of similar
ambiguous images again, to speed up training.

Fig. 4. Classic labeling interface for
comparing with the baseline approa-
ches US, QBC and RAND.

Data Set. We chose the OUTDOOR data
set [12] for labeling in the experiment.
The data set consists of 5000 images
showing objects of 50 classes in a gar-
den environment. Since this are too many
classes to be labeled properly within a
feasible time, we decided to reduce the
data set to only seven classes. To make
the labeling challenging for the partici-
pants, we selected object classes which
might look very similar: Onion, Orange,
Potato, RedApple, RedBall, Tomato and
YellowApple. As a preprocessing step,
the objects are cropped using a color
segmentation. For feature extraction we
used the penultimate layer of the VGG19
CNN [18] trained for the imagenet com-
petition, resulting in a 4096 dimensional
feature vector. For evaluation we used a

80/20 train-test split. The test images are used to evaluate the classifier’s per-
formance. The images of the train set were presented in the user interfaces and
labeled by the participants. We have chosen a 1 nearest Neighbor classifier with
the same parameters for all the approaches. For estimating classifier confidences
cp we chose relative similarity [10]. The classifier is trained in an online fashion
after each labeled image in the classic labeling interface, or after each labeled
image batch in A2VQ.

Task and Procedure. At the beginning participants signed an informed consent.
They read the global task instructions telling them that the main task is to label
images to train a service robot to distinguish objects. Afterwards, they performed
four experimental trials. They all followed the same procedure. First, participants
had to read specific task instructions. It contained information about which of the
two user interfaces they will use in the following trial and how to interact with it.
Before using the user interface for the first time, they watched a short video about
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the user interface’s usage. Thereafter, the trial started and participants had to
label images for five minutes. They were told to be as fast as possible but also
as accurate as possible. After five minutes the trial was stopped automatically
by the system.

Data Recording. Whenever a participant labeled an image with any of the tested
approaches, several information were saved. We saved the time in milliseconds since
the start of the experiment, the index of the labeled image, the given label, the
ground truth label and the classifier’s 0/1 accuracies on both train and test set.

Experimental Design. Since each participant labeled once with each approach,
they performed four trials in which they labeled the same images. Therefore, it
is likely that participants become familiar with the images and improve their
labeling performance during the experiment. To avoid such effects having an
impact on the analysis, we varied the order of the experimental trials between
the 31 participants. There are 24 different possibilities to order four experimental
trials. Seven of them were chosen randomly to take place twice resulting in 31
orders which were matched to the participants randomly.

5.2 Analysis

We investigated the impact of the querying approaches A2VQ, US, QBC and
RAND on three different parameters. The first one is the classifier’s accuracy for
the test data set. The accuracy’s temporal progress and the final accuracy after
5 min of training was explored. The second parameter was the human label quality
which describes how much of the data was labeled correctly by the participants.
Finally, we analyzed whether the querying approaches have an impact on the
number of samples which are labeled during five minutes.

We aimed at analyzing whether there are significant differences in the three
parameters influenced by the querying approaches. Therefore, we first checked
whether the data meets the assumptions to perform an ANOVA with repeated
measures. Inspection of box-plots showed outliers in all three parameters’ data.
Furthermore the data were not normally distributed as assessed by Shapiro-
Wilk’s test (p < .05). According to this, we performed a two-sided Friedman’s
test (with α = .05) instead of the ANOVA. For each of the three parameters,
which showed significant results in Friedman’s test, we checked which of the
querying approaches differs significantly from each other (see Table 1). Hence,
we conducted multiple comparisons with a Bonferroni correction. Statistical tests
were conducted with IBM, SPSS Statistics, Version 23.

5.3 Results and Discussion

Classifier’s Accuracy. Figure 5 shows the temporal progress of the classifier’s
accuracy on the test data during training. A2VQ had a slower increase of accu-
racy in early training while having a higher accuracy at the end (4.8% better
than US). The slow rise might be because labeling with A2VQ is comparable
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Table 1. Overview of means, medians and standard deviation as well as results of
Friedman’s test.

M Mdn SD χ2(3) p

Classifier’s accuracy in % 0.73 0.74 0.15 10.869 .012*
Human label quality in % 0.79 0.81 0.11 9.311 .025*
Number of labeled samples 148.63 62 171.13 60.650 <.001*
Note: An asterisk marks significant differences between the querying
approaches on a level of α = .05.

with a depth-first search in a tree. Contrariwise the other approaches are rather
comparable with a breadth-first search, having a representation of each object
class early in training. Most of the time QBC performed better then US, which
performed better than RAND. All baseline approaches started to converge near
the end of the experiment.

Fig. 5. Classifier’s accuracy on held out test set while active training.

Friedman’s test, comparing the accuracies of the different approaches after
five minutes training, showed significant results. Post hoc tests revealed signif-
icant differences between A2VQ and QBC with p = .021 and between A2VQ
and RAND with p = .002. This implies A2VQ delivers a better accuracy than
RAND and QBC after five minutes training. Even if we did not find any signif-
icant differences between A2VQ and US, we can state that in our study A2VQ
had the best mean accuracy compared with the other approaches after training
the classifier for five minutes.

Human Label Quality. In Fig. 6, a confusion matrix is displayed showing the true
labels and the labels given by the participants averaged over all approaches. The
labeling task was challenging for the participants who were not perfect oracles
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while labeling. This is especially noticeable at classes RedApple, RedBall and
Tomato with a label quality of 80% and below.

Fig. 6. Confusion matrix of human labels from all
compared querying approaches.

To compare the label accu-
racy of the participants between
the tested approaches, we per-
formed Friedman’s test. Results
were significant and, therefore,
we performed multiple compar-
isons with a Bonferroni correc-
tion. There were significant dif-
ferences between A2VQ and all
baseline approaches (A2VQ and
US with p = .005, A2VQ and
QBC with p < .021, A2VQ and
RAND with p = .030). Figure 7
demonstrates the results. Using
A2VQ results in the best label
quality, which is around 4%
better than the second best.
The reason for this may be an
improved human capability to
see the objects in context with
similar other objects and then to decide. Furthermore the RAND querying app-
roach results in the second best label quality. This may lead to the assumption
that classifier’s uncertainty, which is used in US and QBC to query the most
uncertain samples, is related to human uncertainty. Another interesting insight
is, that even with a worse mean labeling quality, using US and QBC resulted in
a better performing classifier than RAND (see Fig. 5).

Fig. 7. Human label quality for tested
approaches.

Figure 8 shows how many
samples were labeled within five
minutes in the different exper-
imental trials. The figure indi-
cates, that people could label
more samples using A2VQ while
the number of labeled sam-
ples of the baseline approaches
were comparable. The result of
the statistical tests confirmed
this observations. This outcome
is as expected, because with
A2VQ people can label multi-
ple images with the same label
while in baseline approaches

just one image can be labeled at a time.
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6 Conclusion

In this paper we have proposed to use dimension reduction techniques for apply-
ing active learning with a visualization. Therefore we introduced the querying
approach A2VQ which queries optimal views for labeling by the user. We devel-
oped a user interface which implements A2VQ and was also evaluated in a user
study. For the used OUTDOOR data set, the study showed that using A2VQ
improves the classifier’s accuracy, the number of labeled samples and also the
label quality compared to US, QBC and random querying.

Fig. 8. Number of labeled samples of the different
approaches.

There are some possible
directions for interesting fur-
ther research in this field. The
user study showed that base-
line methods have the advan-
tage to faster respond at the
start of training. When train-
ing samples can be ambigu-
ous, we showed that the used
DQBE [11] approach has a huge
impact in boosting the speed
by querying only meaningful
samples. However, our study
showed that after 100 s the fast
increase in accuracy of the base-
line methods saturates. So it may be worth to evaluate a hybrid model, that first
uses a baseline technique to query a few samples of each class for the fast train-
ing of an initial classifier. Following this, A2VQ could be used to label in depth.
Using A2VQ also results in a higher label quality, as our study showed. There-
fore, it may also correct former contradictions in labels, since we think that
seeing patterns in contrast to other patterns facilitate to give the correct label.

It may be possible to use semi-supervised dimension reduction techniques
[20] for a better visualization. Doing so, after each trained view not only the
classifier is retrained, but also the visualization is regenerated with new label
information.

In the near future we will integrate A2VQ together with the labeling interface
within a service robot [2], which interacts in a smart lobby environment. By
showing the user interface on the robot’s front touch screen we want to allow
the user not only to teach the robot objects by a finger swipe, but also give him
a feeling what the robot’s internal representation of the objects might be.
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Abstract. Evaluation of incremental classification algorithms is a com-
plex task because there are many aspects to evaluate. Besides the aspects
such as accuracy and generalization that are usually evaluated in the
context of classification, we also need to assess how the algorithm han-
dles two main challenges of the incremental learning: the concept drift
and the catastrophic forgetting. However, only catastrophic forgetting
is evaluated by the current methodology, where the classifier is evalu-
ated in two scenarios for class addition and expansion. We generalize the
methodology by proposing two new scenarios of incremental learning for
class inclusion and separation that evaluate the handling of the concept
drift. We demonstrate the proposed methodology on the evaluation of
three different incremental classifiers, where we show that the proposed
methodology provides a more complete and finer evaluation.

Keywords: Incremental learning · Classification ·
Catastrophic forgetting · Concept drift · Methodology

1 Introduction

Evaluation of incremental learning algorithms is a complex task since there are
many possible evaluation scenarios. Each scenario can evaluate multiple aspects
of the incremental algorithm such as accuracy convergence, robustness against
catastrophic forgetting (CF), or concept drift (CD) handling. Testing multiple
aspects at once, however, does not usually help in the identification of the par-
ticular issues of the examined learning algorithm. Therefore, we need some basic
evaluating scenarios, each addressing a specific aspect of the incremental learning
algorithm, to tackle one issue at the time.

An incrementally trained classifier is a classifier that is being trained on con-
secutive tasks. Each task, the classifier is fed with labeled samples which cannot
be stored but must be integrated into the classifier during the training. Such
multiple training over the long period has two main challenges that are called
concept drift and the catastrophic forgetting [2]. The symptom of catastrophic
c© Springer Nature Switzerland AG 2019
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forgetting is a decrease of classifier performance, where the performance is mea-
sured on the previously trained tasks [4]. Such evaluation of the performance
decrease is used as a metric for many proposed incremental algorithms [3,6,9],
where authors introduce incremental class learning and data permutation sce-
narios [4].

In the incremental class learning scenario, the classifier is learning a different
class each task, while in the data permutation scenario, the classifier learns on the
same classes but with shuffled feature-vector components. Both scenarios exam-
ine how well is the classifier able to aggregate the new data without forgetting
the learned class distributions, but it does not examine the algorithm adaptabil-
ity to the concept drift. The concept drift is a consequence of a non-stationary
environment where the class distribution changes in time [10]. The distribution
change detection is still an open problem, and its solutions are dependent on the
type of the concept drift [1,13]. A scenario where the concept drift is evident has
to be designed to evaluate the concept drift handling on different incremental
algorithms. An example of such evident concept drift is when the previously
presented sample is presented again but with a different label [7,13]. The change
of label requires the classifier to un-train the old label on the sample, and then
train the new label. Such an operation should be tested during the evaluation of
an incremental algorithm.

The evaluation methodology for incrementally trained classifiers observed
from various papers [3,6,7,12] can be generally divided into three steps:

1. Test the basic properties of the classifier (e.g., accuracy, generalization, how
fast it converges) within just one task.

2. Test the behavior of the classifier in the minimal incremental classification
problem, where we have two tasks during which we train the classifier on given
samples of two classes.

3. Test scalability by adding more classes and by increasing the number of tasks.

The main contribution of this paper relates to the second step for which we intro-
duce basic evaluation scenarios. We show that there are 29 possible scenarios
that can be inferred from the basic presuppositions for the minimal incremental
classification problem. In the context of the incremental algorithm evaluation,
we filter symmetric and redundant scenarios to get four basic evaluation sce-
narios. We propose the following basic evaluation scenarios (depicted in Fig. 1):
class addition (ADD), expansion (EXP), inclusion (INC), and separation (SEP).
Scenarios ADD and EXP correspond to incremental class learning and data per-
mutation [4], respectively, which are used to evaluate how the algorithm handles
the catastrophic forgetting. The new scenarios INC and SEP introduce the label
change described in various concept drift cases [7,13]. The benefit of using these
basic scenarios is that they are easy to construct with existing datasets (e.g.,
MNIST [8]) and the classifier can be considered as a black box. Furthermore, by
evaluating the classifier with each basic scenario, we can analyze its properties
separately. The proposed evaluation is demonstrated on multiple incremental
classifiers.
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Fig. 1. Illustration of four basic evaluation scenarios for evaluation of the catastrophic
forgetting and concept drift handling. Each scenario has two consecutive tasks T1, T2

during which the classifier trains on the presented samples. The third right-most part
of each sub-figure depicts the target state of the classes after the classifier is trained
on T1 and T2. The blue and orange disks represent sample clusters labeled with the
first l1 and the second l2 label, respectively. (a) All scenarios extends the ADD scenario
which starts at T1 with training on the cluster of the samples labeled with l1 (blue)
and ends with training on the cluster labeled with l2 (orange). (b) In the EXP at T2,
we expand the class l1 with new samples. (c) In the INC, the samples labeled as l2 at
T1 are relabeled as l1 at T2. (d) In the SEP, a part of the class l1 is relabeled as l2 at
T2. Each disk contains the base set name defined in Sect. 2. (Color figure online)

The rest of the paper is organized as follows. The formal definition and infer-
ence of scenarios are provided in Sect. 2. The evaluated incremental algorithms
are introduced in Sect. 3 and the evaluation results are reported in Sect. 4 with a
detailed discussion and interpretation of the evaluation results in Sect. 4.1. The
paper is concluded in Sect. 5.

2 Basic Scenarios of Incremental Classification

The incrementally trained classifier is being trained during consecutive tasks T1,
T2, T3, . . . , where for each consecutive task Ti, the classifier FTi is trained on
batch DTi = {(xj , lj)}1≤j≤m of m labeled samples. Samples x ∈ X are labeled
by one of n labels l ∈ L = {L1, . . . , Ln}. We are interested in the minimal
incremental classification problem where we have just two tasks T1, T2 and two
labels L1, L2. Having just two labels, during each task Ti, each sample x ∈ X
is in one of three states S = {S1, S2, S0}; the sample x is either
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– S1: presented with the first label,
– S2: or the second label,
– S0: or not presented.

Having just two tasks, each sample x ∈ X has tuple of states (s, s′) ∈ S2, where
s and s′ are states of x during T1 and T2, respectively. Let a base set Cs,s′ ⊂ X
be a set of samples with the state tuple (s, s′). All nine base sets are pairwise
disjoint, and their union gives X (see Fig. 2).

Fig. 2. Illustration of possible intersections of labeled sets that are presented during
tasks T1 (dashed border) and task T2 (full line border). Sets labeled by the first and
second labels l1, l2 are distinguished by the blue and orange color, respectively. For
example, we can see that the base sets C1,1 and C2,2 are presented to the classifier at
T1 and T2 while the base sets C1,0 and C2,0 are presented only at T1. Note that this is
a scenario where all base sets are non-empty. (Color figure online)

Each base set Cs,s′ is either empty or non-empty. The base sets C1,1, C1,2,
C2,1, and C2,2 are sets that contain samples that are sampled twice (in T1 and
then in T2). If samples are taken from a continuous probability distribution,
the base sets with samples presented twice are always empty (the probability of
sampling the same point twice is zero). However, in the context of the classifier
evaluation, we present to a classifier the same sample x with different labels l, l′

to examine whether the classifier can change its model in such a way, that after
the task T2, the classifier labels x as l′. Thus, in the evaluation scenarios, the
base sets C1,1, C1,2, C2,1, and C2,2 can be non-empty.

Let scenario be an assignment function r : S2 → {0, 1}, where r(s, s′) = 1
if Cs,s′ is non-empty else r(s, s′) = 0. There are 29 scenarios, which we prune
with the following constraints. First, we consider that labels are symmetric and
assume that the base set C0,0 is always non-empty. Second, in the context of the
incremental algorithm evaluation, we want to measure how well the classifier
can classify samples trained only in T1 despite changes in T2. The base set C1,0

(or C2,0) is a set of samples that are trained only in T1, and the base sets with
samples that change labels in T2 are C0,2, C0,1, C2,1, and C1,2. The combination
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of non-empty C1,0 with each of the above mentioned four base sets gives us
four basic evaluation scenarios. Additionally, C0,2 is non-empty in all four basic
scenarios to ensure that after the task T2, there are always two classes to classify.
The basic evaluation scenarios are listed in Table 1 and illustrated in Fig. 1.

Table 1. Basic evaluation scenarios: class addition (ADD), expansion (EXP), inclusion
(INC), and separation (SEP). Each presented scenario evaluates certain feature of incre-
mental learning algorithm which handles catastrophic forgetting (CF) or concept drift
(CD).

Scenario Non-empty sets Tested feature Possible problem

ADD C1,0, C0,2 Adding a new class CF

EXP C1,0, C0,2, C0,1 Expanding a class CF

INC C1,0, C0,2, C2,1 Untraining a class CF, CD

SEP C1,0, C0,2, C1,2 Untraining part of a class CF, CD

Thus the evaluation of a binary classifier FTi : X → {1, 2} is the examination
of its performance for T1 and T2 in all basic scenarios, i.e.,

FT1(x) =

{
1 if x ∈ {C1,0 ∪ C1,1 ∪ C1,2}
2 if x ∈ {C2,0 ∪ C2,2 ∪ C2,1}

, (1)

FT2(x) =

{
1 if x ∈ {C1,0 ∪ C1,1 ∪ C2,1 ∪ C0,1}
2 if x ∈ {C2,0 ∪ C2,2 ∪ C1,2 ∪ C0,2}

. (2)

3 Incremental Classifiers

We introduce three incremental classifiers: ENS, ENSGEN, and ENSGENDEL, to
present the proposed evaluation using the minimal scenarios listed in Table 1.
The ENS is an ensemble of two multilayer perceptrons (MLPs), where each MLP
is trained to classify its respective class. Each MLP is trained independently in
the ADD scenario, and thus it should be robust to catastrophic forgetting. The
ENS is trained each task with Algorithm1 and the label prediction is made by
F (x) = arg maxl∈L fl(x).

The ENSGEN is an extension of ENS where we generate (replay) samples from
autoencoder. The technique where we generate samples to prevent catastrophic
forgetting is called the memory replay [11]. Many implementations of the mem-
ory replay (i.e., sample generation) use autoencoders, e.g., [14]. For each label
l ∈ {L1, L2}, we have an autoencoder that is composed of the encoder el : X → Z
and decoder dl : Z → X, where we call Z = [0, 1]N the latent space. The
autoencoder dl ◦ el is trained on samples labeled with l (along with the classifier
fl), and during the next task, we let the autoencoder to generate samples that
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resemble the samples from the previous task. The sample generation method
generate(d, f) is defined as

generate(d, f) := {d(z)|z ∈ sample uniformly(Z); f(d(z)) > 0.9}, (3)

where sample uniformly(Z) gets M random samples of the latent space, which
are first decoded by decoder d and then filtered by the classifier f . The update
method of the ENS can be used also for the ENSGEN for which Algorithm1 is
modified as follows. Line 4 and Line 5 of Algorithm1 are modified to

AL1 ←Ao
L1

∪ generate(dL1 , fL1), (4)
AL2 ←Ao

L2
∪ generate(dL2 , fL2). (5)

The condition in the minimization iterator (Line 7, Algorithm 1) is changed to

∃x ∈ Al : ||x − dl(el(x))|| > θ, (6)

where we prioritize training of the autoencoder dl ◦ el over the classifier fl for
two reasons. First, preliminary experiments showed that the classifier fl is easier
to train. Second, if the autoencoder is not well trained, then the generate(d,
f) method returns a small amount of samples in (4) and (5). The optimization
of the autoencoder dl ◦ el is implemented by adding

J ′
l ← 1

|Al|
∑
x∈Al

||x − dl(el(x))||, (7)

dl, el ←minimize(Jl, dl, el). (8)

after Line 9 of Algorithm 1.
On the other hand, the ENSGEN classifier can fail to relabel some of the sam-

ples from task T1 in the INC and SEP scenarios. The samples that need to be
relabeled (C2,1 and C1,2) can be within the cluster of the generated samples
(see (4) and (5)). The cost functions of the autoencoder e ◦ d and classifier f
are both smooth (differentiable), thus by minimizing the cost function over the
set of samples Al (see Line 8, in Algorithm 1 and (7)), we also minimize the
cost in the close neighborhood1 of samples Al. Therefore, if two sets of samples
share the close neighborhood but have conflicting minimization objectives (e.g.,
the two sets have different labels), the minimization process will slow down. We
propose an extension of ENSGEN: the ENSGENDEL classifier, that “subtracts” the
close neighborhood of the new samples Ao

l′ from the generated samples of label l.
Hence, it cannot happen the classifier fl will be trained to label Ao

l′ as l. The
modification of ENSGEN is to replace Line 4 and Line 5 of Algorithm1 to

AL1 ← Ao
L1

∪ {x ∈ generate(dL1 , fL1)|∀a ∈ Ao
L2

: ||x − a|| > ε}, (9)
AL2 ← Ao

L2
∪ {x ∈ generate(dL2 , fL2)|∀a ∈ Ao

L1
: ||x − a|| > ε}, (10)

where ε is the minimum distance between the generated and new samples.
1 In a metric space X, a neighborhood of the point x is defined as a ball of the radius

r with x in the center: Bd(x, r) = {y|d(x,y) < r;y ∈ X}, where d is a metric
function. A close neighborhood is a neighborhood with a very small radius r.
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Algorithm 1. Update method for ensemble classifier ENS. The algorithm can be
used as an update method for the ENSGEN or ENSGENDEL using the modifications
described in Sect. 3.

Variables During one task, the algorithm gets a dataset batch D =
{(x1, l1), (x2, l2), . . . }, where x ∈ X and l ∈ {L1, L2}. The dataset is used to train
two binary classifiers fL1 , fL2 , where fl : X → [0, 1]. Parameters M and θ are the
maximum epoch and threshold, respectively.

Result fL1 , fL2 : updated binary classifiers

1: function update(D, θ, fL1 , fL2)
2: ALo

1
← {x|l = L1; (x, l) ∈ D} � Separate samples by the label into two sets

3: ALo
2

← {x|l = L2; (x, l) ∈ D}
4: AL1 ← Ao

L1 � See Eqs. 4, 5 and Eqs. 9, 10
5: AL2 ← Ao

L2

6: for (l, l′) in {(L1, L2), (L2, L1)} do
7: for M times if ∃x ∈ Al : (1 − fl(s)) > θ do

8: Jl ← − 1
|AL1 |+|AL2 |

( ∑
x∈Al

ln(fl(x)) +
∑

x∈Al′
ln(1 − fl(x))

)

9: fl ← minimize(Jl, fl)
10: end for
11: end for
12: end function

4 Results

In this section, we report how the proposed evaluation scenarios (see Sect. 2)
can improve the analysis of incremental classifiers that is demonstrated on the
classifiers described in Sect. 3. Moreover, to set a baseline, we also train a single
MLP classifier SNG with the layer sizes 728-500-500-2 with the softmax layer
and cross-entropy loss function. The ENS classifier has θ = 0.1, M = 1000, and
two binary MLPs, each has the layer sizes 728-500-250-125-1. The ENSGEN and
ENSGENDEL classifiers have θ = 7, M = 10, ε = 0.1, and two autoencoders,
each composed of encoder and decoder with the layer sizes 784-500-200-8 and
8-200-500-784, respectively. A rectifier is used as the activation function for all
hidden layers. The output layers of the encoder and MLP in ENS have a sigmoid
activation function. All neural networks are trained with Adam [5] with the
learning rate set to 0.0001. All the hyperparameters were found empirically.

Different scenarios are created by using the MNIST [8] dataset which has
roughly 7000 samples per MNIST class (zero, one, . . . , nine), where each MNIST
sample is a 28 × 28 image of a digit. The dataset is divided into a training and
testing set with the ratio 6 to 1. We construct scenarios by assigning some of the
MNIST classes to the base sets Ci,j . Two assignment configurations are described
in Table 2: the 021 assignment which is made from easily distinguishable digits
(zeroes, twos, and ones), and the 197 assignment which contains digits that are
harder to distinguish (ones, nines, and sevens). The classifiers are trained on
scenarios created from the training set, and the evaluation is calculated on the
scenarios created from the testing set. The results are shown in Tables 3 and 4.
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Table 2. Configurations of the assignment of the MNIST classes to base sets that are
used in the basic evaluation scenarios. The MNIST dataset has ten classes represented
by the number 0 to 9. Since base sets C0,1, C2,1, and C1,2 never appear together in the
same scenario, the same MNIST class can be assigned to them.

Assignment C1,0 C0,2 C0,1 C2,1 C1,2

021 0 2 1 1 1

197 1 9 7 7 7

Table 3. Accuracy of classifiers after being trained on both tasks. The classifier accu-
racy is evaluated with respect to testing datasets for tasks T1 and T2 (see first and
third columns in Fig. 1). The column T2 shows the overall performance of the classifier,
where the higher accuracy is always better. The low values in the T1 column indicate
the catastrophic forgetting since the classifier performs worse on the previous task.
However, for the INC and SEP scenarios, values lower than one are expected because a
classifier needs to forget (relabel) some of the previously presented samples.

Assignment Classifier ADD EXP INC SEP

T1 T2 T1 T2 T1 T2 T1 T2

021 SNG 0.00 0.51 0.00 0.68 0.01 0.68 0.00 0.68

ENS 0.69 0.84 0.00 0.68 0.00 0.68 0.22 0.48

ENSGEN 0.99 0.98 0.96 0.98 0.46 0.98 0.58 0.90

ENSGENDEL 0.99 0.98 0.95 0.97 0.45 0.98 0.47 0.98

197 SNG 0.00 0.47 0.07 0.62 0.54 0.97 0.00 0.64

ENS 1.00 0.88 0.99 0.99 0.91 0.69 0.99 0.53

ENSGEN 1.00 0.99 0.99 0.97 0.54 0.97 0.72 0.85

ENSGENDEL 1.00 0.99 0.99 0.97 0.54 0.97 0.70 0.87

4.1 Discussion

The overall accuracy of the classifiers can be compared from the results in
Table 3, where the regular evaluation on the ADD and EXP scenarios [3,6,7,12]
is extended with the proposed INC and SEP scenarios. In the 197 assignment of
the INC scenario, we can see that the ENS classifier is unable to relabel some of
the previously presented samples (the accuracy in the T1 column should be at
most roughly 0.5, but it is 0.91 in the case of the ENS classifier). Such a low per-
formance at relabeling is most likely caused by the similarity of the digits used
in the 197 assignment (ones, nines, and sevens) because in the 021 assignment,
the ENS classifier can relabel the previously presented samples (the ENS has 0
accuracy in the T1 column of the INC scenario). With the SEP scenario, we can
distinguish the performance of the ENSGEN and ENSGENDEL classifiers, which have
almost identical results in all other scenarios. Thus we gain more information
about the evaluated classifiers by evaluation with the proposed scenarios SEP
and INC.
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Table 4. The accuracy of each evaluated classifier calculated after the task T2 for each
respective base set Ci,j . The intuitive interpretation of the table values is as follows: the
C1,0 column represents the ratio of C1,0 that the classifier is able to “remember” after
T2, the C2,1 and C1,2 columns represent the ratio of the respective base set that the
classifier was able to relabel during T2, the C0,1 and C0,2 columns are just accuracies
evaluated on the respective base set.

Assignment Classifier ADD EXP INC SEP

C1,0 C0,2 C1,0 C0,2 C0,1 C1,0 C0,2 C2,1 C1,0 C0,2 C1,2

021 SNG 0.00 1.00 0.01 0.99 0.99 0.01 0.99 0.98 0.00 1.00 1.00

ENS 0.70 0.98 0.00 0.99 0.99 0.00 0.99 1.00 0.03 0.78 0.60

ENSGEN 1.00 0.98 0.96 1.00 0.99 0.99 1.00 0.98 1.00 0.97 0.78

ENSGENDEL 1.00 0.98 0.99 0.99 0.98 0.98 0.99 0.99 1.00 0.98 0.98

197 SNG 0.00 1.00 0.07 0.97 0.91 1.00 0.96 0.95 0.00 1.00 1.00

ENS 1.00 0.76 1.00 0.99 0.98 0.99 0.98 0.09 1.00 0.55 0.00

ENSGEN 1.00 0.99 1.00 0.97 0.97 1.00 0.97 0.96 1.00 0.97 0.57

ENSGENDEL 1.00 0.99 0.99 0.99 0.96 0.99 0.98 0.94 1.00 0.98 0.63

The regular evaluation listed in Table 3 is good for a comparison of multiple
classifiers. However, for a finer analysis of the classifiers, we propose to evaluate
the accuracy on each base set, like it is shown in Table 4, where the column
C1,0 shows how well the classifier “remembers” the base set C1,0 after the task
T2. The accuracies in the column C1,0 show that the classifiers ENSGEN and
ENSGENDEL remember the previously learned samples almost perfectly. Other
interesting columns are C2,1 and C1,2, which show how well the classifier relabel
the previously trained samples. In assignment 021 of the SEP scenario, the ENSGEN
classifier has been able to relabel only 0.78 of samples, while ENSGENDEL has been
able to relabel almost all of them. Such explicit information is lost in the regular
overall evaluation (see Table 3) because the regular evaluation is evaluated over
multiple base sets.

The results in assignment 197 are worse than results in assignment 021 in
most of the cases. From this difference, we can draw a lesson that it is important
to try more assignments, as it is pointed out in [12] because each MNIST class
(or any other class of different dataset) has different qualities. The quantity is
another aspect to consider: in this paper, the base sets are of equal cardinality
(roughly). Scenarios with the base sets that have different cardinalities could
evaluate the classifier robustness against unbalanced data. Thus, it is good prac-
tice to use basic evaluation scenarios with multiple different assignments for a
thorough examination of the incremental classifier.

5 Conclusion

In this paper, we propose a generalization of the current methodology for incre-
mental classifier evaluation by proposing four basic evaluation scenarios: class
addition, expansion, inclusion, and separation. Three incremental classifiers are
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presented to demonstrate the methodology within the proposed evaluation sce-
narios. Each classifier has been evaluated with the proposed methodology, and
we assess how well the classifier handles the catastrophic forgetting and the con-
cept drift issues. Moreover, the proposed generalization allows us to design a
finer evaluation that can test particular aspects of incremental learning; such
are remembering the previously trained samples or selective relabeling of the
previously learned samples. Such a detailed methodology for incremental learn-
ing evaluation should improve the development of incremental classifiers, and
therefore, researchers are encouraged to consider it in their developments.
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Abstract. In classification tasks, the set of training examples for each
class can be viewed as a limited sampling from an ideal infinite manifold
of all sensible representants of this class. A layered artificial neural net-
work model trained for such a task can then be interpreted as a stack of
continuous transformations which gradually mold these complex mani-
folds from the original input space to simpler dissimilar internal repre-
sentations on successive hidden layers – the so-called manifold disentagle-
ment hypothesis. This, in turn, enables the final classification to be made
in a linear fashion. We propose to assess the extent of this separation
effect by introducing a class of measures based on the embedding complex-
ity of the internal representations, with evaluation of the KL-divergence
of t-distributed stochastic neighbour embedding (t-SNE) appearing as
the most suitable method. Finally, we demonstrate the validity of the
disentanglement hypothesis by measuring embedding complexity, classi-
fication accuracy and their relation on a sample of image classification
datasets.

Keywords: Neural networks · Manifold disentanglement ·
Embedding complexity

1 Introduction

As an analogue to biological neural networks found in nature, artificial neural
networks are constructed as graphical models of directionally connected units
– neurons. While biological neurons can have complex and time dependent
behaviours, artificial neurons are usually (but not always, for example spiking
neural networks) modelled in an extremely simplified fashion:

– the output of an artificial neuron is represented by a single scalar real value
(basically a frequency, or more precisely a time-average of virtual spike trains)

– each input synapse is given a single real-valued coefficient, weight
– output of a neuron is determined by an activation function on the weighted-

sum of the inputs
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This simplified model is then trained by a variety of mostly similarly simple, often
biologically-implausible methods (usually variants of error back-propagation).

Parts of biological neural networks, for example in the mammalian visual cor-
tex [3,4], are structured in a simple layered fashion – each layer of neurons takes
its inputs directly from the previous layer. This leads to a simple formulation of
a neural network, called the feedforward neural network, which is easy to con-
ceptualize and implement and also leads to increased computational efficiency
due to the apparent potential for parallelization. Overwhelming proportion of
neural models used in practice are either directly of this type, contain only small
modifications (e.g. in residual networks each layer also connects to some of the
indirectly preceding layers), or are constructed of blocks of this type (e.g. RNNs).

This simple layered construction also lends itself to a reinterpretation of the
mechanics of a neural network – instead of viewing individual connected units,
we can view the activations of entire layers of neurons at once as vectors in a
n-dimensional space, where n is the number of units of a particular layer. The
transition between each pair of successive layers then consists of two portions:
a simple linear transformation (by the complete matrix of individual neuron
weights) and an activation function (assuming that it’s shared across the layer),
which is almost always monotonous and continuous. The transition between two
layers can then be viewed as a smooth non-linear transformation.

This interpretation allows us to examine the process of classifying an input
from a manifold perspective. Each sample from the dataset represents a point
in a high-dimensional space, belonging to a certain class. While the number of
samples of a class in a practical dataset is usually limited, we may consider any
such set a sampling from an infinite set of potential inputs (e.g. all images of
dogs). This ideal infinite set S is then assumed to be continuous (a smoothness
prior), i.e. for any input x and real positive ε there is an x′ also in the set
S, which is close to x (i.e. ‖x − x′‖ ≤ ε). This ideal set then forms a low-
dimensional manifold in the input space and the classification problem can be
viewed as partitioning the input space such that no partition contains parts of
more than one manifold.

Complex classifiers usually construct this partition in multiple stages, with
the interim stages transforming and simplifying the input and the final stage
performing the partition in a less complex way. In the case of conventional arti-
ficial neural network classifiers, the final layer has one output neuron for each of
the classes, and the classification is determined by which neuron has the largest
activation.1 This in turn produces a Voronoi-esque partition of the output space,
whereas the preceding layers disentangle [1] the class manifolds from their com-
plex structure in the input space into separable regions in the output space.

1 Output neurons usually have softmax activation, but this is immaterial for the
argmax selection, wherein any strictly-increasing function produces the same results.
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2 Datasets

To study the process of untangling class manifolds, datasets of medium com-
plexity are required. The complexity should be high enough so that the problem
cannot be solved in the input space by a simple classifier, but a complex transfor-
mation, such as by an artificial neural network, is necessary. However, at the same
time, the untransformed or partially transformed inputs cannot be inscrutable
to available embedding methods as to remain interpretable. These restrictions
led us to select two suitable datasets, both inadvertently being visual tasks.

2.1 MNIST

MNIST [6] is the quintessential basic dataset for optical character recognition,
consisting of 50 000 training and 10 000 testing images in ten classes (digits).
Each input is a grayscale 28 × 28 pixel bitmap of a hand-written digit, pre-
processed to be centered and upright. Few examples:

2.2 SVHN

The StreetView House Numbers dataset [8] (further referred to only as SVHN)
is a more challenging task for digit recognition, which adds color, distracting
surroundings, blurring and oblique perspectives. Each input image is a full-color
32×32 cutout from a StreetView photo, including the following random samples:

3 Models

To evaluate the manifold disentanglement process, we will employ simple (deep)
feed-forward networks that are minimally powerful enough to satisfactorily
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classify the selected datasets. For simplicity, we will only use fully-connected
layers of 100 neurons and use the same activation function at each hidden layer,
one of:

– logistic sigmoid:

logsig(x) :=
1

1 + exp(−x)

– hyperbolic tangent:

tanh(x) :=
exp(x) − exp(−x)
exp(x) + exp(−x)

– softsign function (introduced in [2]):

softsign(x) :=
x

1 + |x|
– rectified linear units (ReLU):

relu(x) :=

{
x, if x ≥ 0
0, otherwise

With final classification layer having a neuron for each class with a softmax
activation. All of these networks can be satisfactorily trained within a 100 epochs
using simple stochastic gradient descent with momentum.

4 Methods

To assess the progress of the manifold disentanglement process we propose to
measure the embedding complexity, i.e. how difficult is to embed the activation
vectors for a balanced sample of training inputs to a lower dimensional space. To
utilize both numeric and visual examination of the resulting quality of embed-
dings, we chose to realize the embedding into an output space of two dimensions.
We examined several popular embedding methods (in order of increasing sophis-
tication):

– PCA – Principal Component Analysis
– LLE – Locally-Linear Embedding [9] (not pictured)
– MDS – Multi-Dimensional Scaling [5]
– Isomap [10]
– t-SNE – t-distributed Stochastic Neighbour Embedding [7]

Figure 1 shows the differences in the resulting embedding. As the t-SNE
embedding proves to be qualitatively superior, we will resort to only using this
method. The method is also powerful enough that in the case of the MNIST
dataset it manages to mostly separate the clusters even directly on the input
data, therefore further qualitative comparisons will be restricted to the SVHN
dataset.
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Fig. 1. A comparison of embedding methods applied to the final 7th hidden layer with
a softsign activation, in a network classifying images of the StreetView House Numbers
dataset. A thousand input images, one hundred from each of the classes, were provided
as inputs for this network. Each of the inputs gradually transforms to an activation
vector of one hundred real numbers, represented in this plot by a single point of the
final embedding. The t-SNE method showcases its clearly superior clustering ability.

4.1 t-SNE

The t-distributed Stochastic Neighbour Embedding by [7], or t-SNE, is a popular
non-linear embedding method, which is based on preserving the stochastic neigh-
bourhood of elements, i.e. for every (oriented) pair of datapoints, we assign a prob-
ability (hence stochastic) that the two datapoints are close. This is in contrast
to more conventional methods which usually use a fixed neighbourhood, either
an adjustable parameter of the algorithm (e.g. k nearest neighbours in Locally-
Linear Embedding or Isomap), or optimized to satisfy an internal condition, or fac-
tor all data points into consideration (e.g. Multi-dimensional Scaling or Principal
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Component Analysis). This probability is modelled using Gaussian distributions
in the input space (with xi being the i-th input point):

pj|i :=
1√
2πσ2

i

· exp
(

−
∥∥xi − xj

∥∥2

2σ2
i

)

p̂j|i :=
pj|i∑

k �=m pk|m

p̂i,j :=
p̂i|j + p̂j|i

2
where the pj|i represents the (directed) probability that j is a neighbour i, the p̂j,i
is the normalized neighbourhood score and the p̂i,j is its symmetric (undirected)
version. (The σi parameter is programmatically tuned for a desired perplexity.)

The original, less successful SNE variant also uses Gaussian distribution in
the output space yi, which doesn’t take into account the difference in the num-
ber of dimensions between the spaces (i.e. embedding). The improved t-SNE
method uses a t-Student distribution with a single degree of freedom (also called
the Cauchy distribution), with a heavy-tail which alleviates this quantitative
difference:

qi,j = qj|i = qi|j :=
1

1 + ‖yi − yj‖2

q̂i,j :=
qi,j∑

k �=m qk,m

The disparity between the distributions of probabilities in the input and output
spaces is quantified by the Kullback-Leibner or KL-divergence:

KL := −
∑
i�=j

pi,j log
qi,j
pi,j

The desired embedding is then produced by minimizing this divergence with
respect to the placement of points in the output space. This turns out to be a
convex optimization problem well-suited for a range of gradient-based methods.

5 Results

For each combination of dataset (MNIST or SVHN) and model (one to seven
layers, one of the four activation functions), we train five independent networks
(or runs). We then sample activations of each hidden neuron for 100 randomly
selected input samples for each of the 10 input classes (MNIST and SVHN
both), totalling 1000 activation vectors for each layer. In each independent run,
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we then embed those activation into two dimensions using t-SNE and mea-
sure the resulting KL-divergence as the hardness score. For a quantitative
overview, we plot the result of all runs into a single bar chart, with the aver-
aged value shown as the bold line and individual runs as translucent overlap-
ping rectangles (this is an alternate version of a boxplot, which puts the great-
est emphasis on the mean value). To better visualize the qualitative differences
between the embeddings, we also plot the actual embeddings (for a single run;
see Figs. 5, 7 and 8).

Fig. 2. The hardness score (KL-divergence) of the embedding of the activations of
successive layers of a five-layer network classifying MNIST digits with four choices of
the activation function. Transforming the inputs through the layers of the network
makes subsequent embedding much easier.

Fig. 3. The same dataset, MNIST, transformed by networks having three to five hidden
layers of rectified linear units (ReLU) in total. Fewer layers lead to a quick decrease in
hardness, but the final embedding is easier in larger networks.
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Fig. 4. Hardness scores for seven layer networks with inputs from the SVHN dataset.
While the embedding is much harder, the decreasing trend still persists.

Fig. 5. Embeddings of a single run of SVHN in seven layer networks.
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Fig. 6. Four to seven layers of rectified linear units on the SVHN dataset. Smaller
networks on this complex task lead to embeddings that are much worse.

Fig. 7. Actual embeddings of the final layers of networks evaluated above.
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Fig. 8. Embeddings of the activations of the last four layers of a seven layer network,
with inputs from the SVHN dataset. Clusterings computed on the higher layers are
not only better scoring, but also visually more focused.

The embedding complexity scores, measured by the KL-divergence of the t-
SNE embeddings, are plotted in Figs. 2 and 3 for the MNIST dataset (all runs).
For the more challenging SVHN dataset, the selected scores for multiple runs and
selected resulting embeddings for a single run are depicted in Figs. 4, 5, 6, 7, 8.

6 Conclusion

In this paper, we propose a novel method for gaining both quantitative and
qualitative insight into the inner workings of deep neural networks, by examining
the complexity of embedding their learned representations – the activations of
their hidden layers. The inputs of modern machine learning tasks, especially of
the visual variety, are highly complex and cannot be easily embedded to a low-
dimensional space. In classification tasks, however, the activations of the final
hidden layer are classified in a linear fashion (linear weighting usually followed
by softmax and winner-takes-all classification), and therefore must be easily
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embeddable. We proceed to quantify this process in which intermediate layers
of the network gradually transform the activation manifolds from complex to
simple ones. This was previously postulated as the manifold disentanglement
hypothesis.

Examining several popular methods of embedding, we find that only t-
distributed stochastic neighbour embedding (t-SNE) is sufficiently capable of deal-
ing with the complex activations encountered. We measure the criterion explic-
itly optimized in t-SNE, the KL-divergence between the pairwise “closeness”
distributions of the input and output datapoints, as our embedding hardness
score across two datasets, MNIST and StreetView House numbers (SVHN). For
every dataset, we perform measurements across several different network archi-
tectures (defined by the number of hidden layers and the choice of the activation
function) and with multiple independently initialized and trained instances. Our
experimental results robustly show that the complexity of internal representa-
tions in the network decreases towards the output layer.
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Abstract. In many computer vision tasks, images or image sets can be modeled
as a Gaussian distribution to capture the underlying data distribution. The chal-
lenge of using Gaussians to model the vision data is that the space of Gaussians is
not a linear space. From the perspective of information geometry, the Gaussians
lie on a specific Riemannian Manifold. In this paper, we present a joint metric
learning (JML) model on Riemannian Manifold of Gaussian distributions. The
distance between two Gaussians is defined as the sum of the Mahalanobis dis-
tance between the mean vectors and the log-Euclidean distance (LED) between
the covariance matrices. We formulate the multi-metric learning model by jointly
learning the Mahalanobis distance and the log-Euclidean distance with pairwise
constraints. Sample pair weights are embedded to select the most informative
pairs to learn the discriminative distance metric. Experiments on video based
face recognition, object recognition and material classification show that JML is
superior to the state-of-the-art metric learning algorithms for Gaussians.

Keywords: Gaussians · Riemannian Manifold · Joint metric learning

1 Introduction

Gaussian distributions have been widely used to represent the data variability of images
or videos in many computer vision tasks, e.g., face recognition [26], image classifica-
tion [11], person re-identification [16]. Gaussians that precisely capture both the first-
and second-order information are experimentally verified to achieve superior perfor-
mance to those using either zero-order [22] or first order information [8], or their com-
bination [30]. To involve more variations, each image or image set can be represented
by a Gaussian mixture model (GMM) as well [29]. Nakayama et al. proposed a global
Gaussian approach for scene categorization by representing a distribution using a Gaus-
sian in the entire feature space [17]. Matsukawa et al. presented a hierarchical Gaussian
descriptor for person re-identification by modeling the region as a set of multiple Gaus-
sian distributions [16]. Li et al. used a collection of Gaussians as visual words to repre-
sent the universal probability distribution of features from all classes [13].

In the light of information geometry, a set of Gaussians lie on a specific Manifold.
The space N(d) of d-dimensional Gaussians N (μ,Σ), where μ is the mean vector and
c© Springer Nature Switzerland AG 2019
I. V. Tetko et al. (Eds.): ICANN 2019, LNCS 11728, pp. 531–542, 2019.
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Σ is the covariance matrix, forms a Riemannian Manifold equipped with the Fisher
metric rather than a Euclidean space. As the space of Gaussians forms a manifold
space, the traditional distance metrics in Euclidean space cannot apply. To measure the
difference between global Gaussian distributions, similarity or dissimilarity measures
are defined, e.g., Kullback-Leibler Divergence (KLD), Bhattacharyya Distance (BD),
Hellinger Distance (HD) and distance based on Lie Group (LGD). Although Gaussians
can well capture the variations in data, the (dis) similarity measures for Gaussians lack
discrimination ability for accurate matching. Hence, distance metrics should be learned
for Gaussians to boost the recognition performance [25,26].

The challenge of metric learning for Gaussian distributions lies in how to well
exploit both the first- and second-order information while respect the geometry property
of Gaussians. Most existing metric learning methods emphasize on the second-order
information while ignore the first-order statistics, which has proved to be important in
classification tasks [18]. The covariance matrices, i.e., the second-order information,
form a Riemannian manifold of symmetric positive definite (SPD) matrices. For SPD
manifold, distance metrics are learned on the original manifold [4,6], in the tangent
space [7] or the high-dimensional Hilbert space [5]. Additionally, the performance of
metric learning is significantly affected by the pairwise constraints, e.g., positive (sim-
ilar) and negative (dissimilar) sample pairs. Most existing metric learning methods,
especially the ones for Gaussians, ignored the importance of different sample pairs.

Towards addressing the above issues, we propose a joint metric learning (JML)
model on Riemannian Manifold of global Gaussian distributions. The distance between
two Gaussians is defined as the sum of the Mahalanobis distance between the mean vec-
tors and the log-Euclidean distance between the covariance matrices. The contribution
of this paper can be summarized in three aspects:

– A novel joint metric learning model is proposed for Gaussian distributions. The
distance metrics of the first-order and second-order are simultaneously optimized
in the similar manner, which fuses the complementary information of both orders
effectively.

– The weights of sample pairs (i.e., pairs of Gaussians) are embedded to select the
most simply Gaussian pairs for metric learning. Compared with the traditional met-
ric learning methods that treats all pairs equally, JML takes the difference of sample
pairs into account.

– Experiments on video based face recognition, object recognition and classification
show that JML outperforms the state-of-the-art metric learning algorithms.

2 Related Work

2.1 Learning with Global Gaussian Distributions

There are generally three categories of learning methods in terms of Gaussian distri-
butions. The first one learns on the Manifold of Global Gaussian distributions directly.
Gong et al. proposed shape of Gaussians, which is embedded into an affine group and
the Riemannian metric is used to measure the distance [3]. Gaussians are also identi-
fied as SPD matrices by embedding them in the Siegel group [1] or the Riemannian
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symmetric space [15]. Wang et al. proposed a global Gaussian distribution embed-
ding network by plugging Gaussian distribution into deep CNN in an end-to-end man-
ner [27]. The second kind of methods first map the Gaussians to a vector space and
then apply the classical discriminative learning methods in the Euclidean space. Serra
et al. represented an image as a weighted Pyramid of Gaussians of local descriptors,
and mapped the covariance matrix on the tangent space to concatenate the mean for
classification [20]. Wang et al. embedded Gaussian distributions into the space of SPD
matrices and then projected SPD manifold to the tangent space by logarithm opera-
tor [23]. Li et al. equipped the space of n−dimensional Gaussians with a Lie group
structure and embedded it by matrix logarithm into a linear space [11]. The third one
maps the Gaussian to the high-dimensional Hilbert Space using kernels derived for
Gaussian distributions [4,26]. Kernel based methods involve great computation burden
and therefore lack scalability in large-scale tasks.

2.2 Metric Learning for Gaussian Distributions

Metric learning aims to learn a discriminative metric by pulling similar sample pairs
together and enlarging the distance between two samples in dissimilar pairs. Almost all
existing methods focus on metric learning for Gaussian mixture model (GMM) rather
than global Gaussian distributions. Li et al. presented a earth mover’s distance method-
ology for image matching with Gaussian mixture models [12]. Wang et al. derived a
series of provably positive definite probabilistic kernels for Gaussians and mapped them
to a high-dimensional reproducing kernel Hilbert space (RKHS), where the classical
kernel discriminative analysis algorithms can be applied [26]. To exploit the weights of
the components in each GMM, a graph embedding method was developed by construct-
ing the adjacency graph using the distance between Gaussians [25]. The problem with
metric learning for GMM lies in that it is time-consuming to model images or videos
by mixture Gaussians and therefore matching with GMM lacks efficiency.

3 Global Gaussian Distributions Modeling

Gaussian distribution is the most common probability distribution model. It is often
used to describe random variations such as noise, feature distribution, pixel gray scale
and so on. Gaussian distributions are widely used in identification and classification in
that it captures both the first- and second-order statistics. For an image or image set, it
can be modelled as a Gaussian distribution. As shown in Fig. 1, for an image set clas-
sification tasks, a handcrafted feature vector can be extracted from each image of an
image set. We can also use convolutional neural network to extract the fully connected
layer as deep features. For an image, the output matrix X ∈ R

mi×d of the final convo-
lution layer is used as the deep features, where mi is the size of feature map and d is
the number of kernels. For an image set, mi means the number of images in this set and
d represents the dimension of the feature vectors.

To build a Gaussian distribution N (μ,Σ), the first order statistics (mean) μ and the
second order statistics (covariance matrix) Σ should be computed.

μ =
1
m

m∑

i=1

xi, (1)
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Fig. 1. Global Gaussian distribution modelling of images and image sets. For an image set, hand-
crafted features and deep features (fully connected layer) can be extracted for each image. For an
image, we use convolutional neural network to extract the output of the final convolution layer as
deep features. Thus, a feature matrix X ∈ R

mi×d can be extracted for both an image or image
set.

Σ =
1
m

m∑

j=1

(xj − μ)T (xj − μ), (2)

where μ represent mean statistic of the set, μ ∈ R
d, Σ ∈ R

d×d represent covariance
statistic. The average vector μ roughly reflects the average of the overall features, while
the covariance matrix describes the correlation of different features. The space of Gaus-
sians forms a Riemannian manifold, where the classical discriminative learning meth-
ods in Euclidean space cannot apply.

For a Gaussian distribution, there are two component, i.e. mean μ and covariance
matrix Σ. For μ, the distance between the means can be measured by Mahalanobis
distance (MD). For Σ, as covariance matrices forms a Riemannian Manifold of SPD
matrices, i.e., SPD manifold. Two most widely used Riemannian metric on SPD mani-
fold, i.e., affine invariant metric (AIM) and Log-Euclidean metric (LEM), are qualified
to derive the truce geodesic on the SPD manifold. Compared with AIM that is compu-
tationally expensive, LEM breaks the computation limitations while keeps good theo-
retical properties. Hence, LEM based distance, i.e., Log-Euclidean distance (LED) has
been widely used and achieved superior performance. The Mahalanobis distance (MD)
is used to calculate the similarity between means:

MD(μi, μj) =
√

(μi − μj)T (Σ−1
i + Σ−1

j )(μi − μj). (3)
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Log-Euclidean distance (LED) is used to measure the difference between two covari-
ance matrices,

LED(Σi,Σj) = ‖log(Σi) − log(Σj)‖F . (4)

The joint distance between two Gaussian distribution is defined as:

d(gi, gj) = MD(μi, μj) + LED(Σi,Σj). (5)

Equation (5) fuses the distances of the first and second statistics.

4 Proposed Approach

4.1 Model

Given an image or image set, a feature matrix Xi ∈ R
mi×d can be extracted by using

handcrafted features or deep features. By computing the mean and covariance matrix of
Xi, an image or image set can be modelled by a Gaussian distribution N (μi,Σi) The
Mahalanobis distance between the means can be defined as:

dμ = (μi − μj)
T A(μi − μj) = tr(ATij), (6)

where Tij = (μi − μj)
T (μi − μj) and A is a d × d SPD matrix. When A is

an identity matrix, the distance metric in Eq. (6) is the classical Euclidean distance.
Here A is the distance metric we need to learn for the first-order statistics of Gaus-
sians. For covariance matrices, the distances in Euclidean space, e.g., Euclidean dis-
tance and Mahalanobis distance cannot apply. A set of covariance matrices form a
SPD manifold. Hence, the distance that measures the difference between two points
on the SPD manifold can be utilized. The most widely used distance metric on SPD
manifold is log-Euclidean distance. For Gaussian distribution modelling, firstly a set
of covariance matrices are computed for a set of images or features (denoted as
Σ = {Σ1,Σ2, ...,Σn}). Let f : Σd

+ → Σr
+ be a smooth mapping from original SPD

manifold to a new manifold Σr
+. Thus, for a point Σi, the mapping of tangent space

from Σd
+ to Σr

+ is defined as:

TF (Σi) : TΣi
Σd

+ → Tf(Σi)Σ
r
+, (7)

where the mapping TF (Σi) is an injection and mapping f is a smooth map [7]. Thus
if we can find a transformation M ∈ Rd×r of point Σi from original tangent space
TΣi

Σd
+ to space Tf(Σi)Σ

r
+, geodesic distance between Σi, Σj on original SPD mani-

fold can be represented as:

dΣ (Σi,Σj) =
∥∥MT log (Σi)M − MT log (Σj)M

∥∥2

F
, (8)

where MMT is a rank-r symmetric positive semi-definite (SPSD) matrix ensuring that
the converted space is a tangent space of SPD matrices in the logarithm domain. Let
C = log (Σ), and Q = MMT . We can rewrite the formulation (8) as:

dΣ (Ci,Cj) = tr((Ci − Cj)
T Q (Ci − Cj)Q)

= tr (B (Ci − Cj) (Ci − Cj)),
(9)
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where Q is a rank-r SPSD matrix, so B = QQ is also a rank-r SPSD matrix. We
can see that metric in Eq. (9) involves the parameter B, which will be learned for more
discriminative matching or classification. If we further letHij = (Ti−Tj)

T (Ti−Tj),
the distance in terms of the second-order statistics becomes:

dΣ(gi, gj) = tr(BHij). (10)

Here we can see that the distance of covariance matrices shares similar formula with
that of the means in Eq. (6). This motivates us to solve the distance metrics jointly.

Considering the difference between the first-order and second-order statistics, the
weighted joint distance between two Gaussians is defined as follows:

d(gi, gj) = rdμ(gi, gj) + (1 − r)dΣ(gi, gj), (11)

where r is a constant between 0 and 1.
When the label information is available or the side information (e.g., pairwise con-

straints) is given, we can get two sets of sample pairs, one set P consisting of similar
sample pairs while the other set N with dissimilar ones. Motivated by geometric mean
metric learning in [28], different from the traditional metric learning methods that mini-
mize the distance over all similar pairs while enlarging that over all dissimilar pairs, the
distance metrics A and B are learned by minimizing the geodesic distance of similar
pairs and the interpoint geodesic distance (described by A−1 and B−1) of dissimilar
ones. The joint metric learning model is formulated as follows:

min(
∑

ij∈P

d(gi, gj) +
∑

ij∈N

d−1(gi, gj))), (12)

where gi and gj represent two Gaussians,
∑

ij∈P

d(gi, gj) represents the geodesic dis-

tance of similar pairs and
∑

ij∈N

d−1(gi, gj) represent the interpoint geodesic distance of

dissimilar ones. By minimizing
∑

ij∈P

d(gi, gj), the distance between a pair of Gaussians

with similar labels is decreased, while the minimization of
∑

ij∈N

d−1(gi, gj) attempts

to enhance the difference between samples with different labels. For metric learning,
a large number of sample pairs are generated firstly. However, not all sample pairs are
necessary for metric learning and the importance of samples also varies greatly during
the metric learning process. To this end, we embed the weight of sample pairs into the
metric learning model.

min

⎧
⎨

⎩

∑
ij∈P

(rtr(αυ
ijATij) + (1 − r)tr(αυ

ijBHij))+
∑

ij∈N

(rtr(βυ
ijA

−1Tij) + (1 − r)tr(βυ
ijB

−1Hij))

⎫
⎬

⎭ (13)

s.t.
∑

ij∈P

αij = 1,
∑

ij∈N

βij = 1,∀ij, αij ≥ 0, βij ≥ 0.

where αij and βij are the weights for similar pairs and dissimilar pairs, respectively.
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4.2 Optimization and Algorithm

For the objective function in Eq. (13), there are four variables {A,B, α, β} to solve.
Alternation minimization is used to solve the optimization problem. WhenA andB are
fixed, we can set the derivation of Eq. (13) with respect to α and β to zero. We can get
the closed-form solution to αij and βij as follows:

αij =
(rtr(ATij) + (1 − r)tr(BHij))

−1
υ−1

∑
ij∈P

(rtr(ATij) + (1 − r)tr(BHij))
−1

υ−1

. (14)

βij =
(rtr(A−1Tij) + (1 − r)tr(B−1Hij))

−1
υ−1

∑
ij∈N

(rtr(A−1Tij) + (1 − r)tr(B−1Hij))
−1

υ−1

. (15)

Note that tr(A−1Tij), tr(B−1Hij), tr(A−1Tij), and tr(B−1Hij) are all non-
negative. We can ensure that αij and βij satisfy the non-negative constraints.

When the weight vectors α and β are solved, we get the following two subproblems
with respect to A and B

f(A) = min
A�0

tr(AP1) + tr(A−1N1), (16)

f(B) = min
B�0

tr(BP2) + tr(B−1N2), (17)

where P1 =
∑

ij∈P

αυ
ijTij , P2 =

∑
ij∈P

αυ
ijHij , N1 =

∑
ij∈N

βυ
ijTij , N2 =

∑
ij∈N

βυ
ijHij . In order to compute the total loss, we defined as follows:

f(A,B) = rf(A) + (1 − r)f(B) (18)

P1 and P2 might be non-invertible or near singular, that is, P1−1 and P2−1 might
not exist or be unsolvable. Following the regularization strategy in [28], a LogDet Diver-
gence regularization is imposed on A to get a stable solution.

F (A) = min
A�0

λDld (A,A0) + tr (AP1) + tr
(
A−1N1

)
, (19)

where A0 is the prior of A, λ is regular coefficient and Dsld (A,A0) is the LogDet
Divergence.

Dsld (A,A0) = tr
(
AA0

−1
)
+ tr

(
A−1A0

) − 2d. (20)

We can rewrite the objective function of the regularized version

FR (A) = min
A�0

tr
(
A

(
P1 + λA0

−1
))

+ tr
(
A−1 (N1 + λA0)

) − 2d
(21)

and the solution is

AR =
(
P1 + λA0

−1
)−1

#1/2 (N1 + λA0) . (22)
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When the regularization parameter λ = 0, AR = A.
From the Riccati equation we can know that the solution of this minimum problem

is the midpoint of geodesic curve joining P1−1 and N1. For the regularized version,

the solution becomes the midpoint of geodesic curve joining
(
P1 + λA0

−1
)−1

and
(N1 + λA0). When we consider the weight of the distance between two positive points
and that between two negative points, a weight parameter t can be introduced to balance
the two distances.

Fw (A) = min
A�0

(1 − t) δ2R
(
A,P1−1

)
+ tδ2R (A,N1) , (23)

where δR denotes the Riemannian distance on SPD matrices,

δR(X,Y) =
∥∥∥log

(
Y−1/2XY−1/2

)∥∥∥
F
. (24)

It can be proved that the new objective function is still geodesic convex and thus the
solution is

A = P1−1#tN1 = P1−1/2
(
P11/2N1P11/2

)t

P1−1/2, (25)

where t is a positive constant.
Thus, by combining regularization and weighting, we get the final solution of matrix

A
Afinal =

(
P1 + λA0

−1
)−1

#t (N1 + λA0) , (26)

where λ ≥ 0 and 0 ≤ t ≤ 1 is the regularization parameter and weight parameter,
respectively.

Similarly, we can get the solution to B, i.e.,

Bfinal = (P2 + λA−1
0 )−1#t(N2 + λA0). (27)

The algorithm of joint metric learning on Riemannian manifold of Gaussian distribu-
tions is summarized in Algorithm 1.

Algorithm 1. JML
Input: A set of Gaussians, gi, i = 1, 2, ..., n, ε = 0.001, T = 5
Output: Distance Metric matrix A,B;
Step1: Initialized A,B using an identify matrix;
Step2:For t =1,2,. . . ,T , repeat
2.1 Computer αij and βij using (14), (15) ;
2.2 Computer A andB using (26), (27) ;
2.3 If t ≥ 2 and

∣
∣f(A,B)t − f(A,B)t−1

∣
∣ < ε go to Step3

Step3: Output the matrix A,B.
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4.3 Convergence and Complexity

For the optimization problem in Eq. (13), we use alternation minimization to solve the
problem. For each subproblem with respect to A, B, α, β, a closed-form solution is
derived. It has been shown in [19], for general convex problem, the alternating mini-
mization approach would converge to the correct solution. We experimentally find that
JML can converge fast in few iterations. The main computation burden is solving the
inverse of a d × d matrix. Therefore, the time complexity is o(d3).

5 Experiments

5.1 Datasets

To ensure a broad assessment of the different approaches, four common public datasets
are used to conduct comparative experiments.

ETH-80 [10] contains 3,280 high-resolution color images. We randomly select half
of the data set as the training set and others as the test set. For each image is resized to
20 × 20. Intensity feature of the dataset is utilized in the experiment. UIUC contains
216 images and 18 categories, each category includes 12 images [14]. For the sake of
extracting local features, which the size of the feature is mi ×512, each image throughs
a VGG-VD16 model pre-trained on ImageNet dataset and employs the outputs from
the last convolution layer as local features. We randomly select 6 images to form the
training set and use the rest as the test set. YouTube Celebrities (YTC) dataset is a
collection of celebrities from YouTube [9]. In the experiment, in order to divide the
training and test sets, we adopt the method in [7] by randomly selecting 3 images set
objects as train set and 6 image sets of the test to ensure all the images used. Flickr
material dataset (FMD) [21] contains 1000 images and 10 categories [21]. We randomly
select half for the training set and the other half for the test set. The feature extraction
strategy is took the same as UIUC dataset.

5.2 Parameter Setting and Performance Comparison

For our method, there are three parameters: r, t, and υ. In our experiments, we set r
from 0 to 1 at 0.1 intervals. Respectively, to the solution of A and B with Eq. (26),
Eq. (27), we set t from 0.3 to 0.8 at 0.1 intervals. Considering υ is a index parameter,
from the Eq. (14), in order to solve αij , βij , υ �= 1. In the experiment, υ is set from 2
to 4, it was found that αij set to 3 is more suitable. To prevent Σi matrix singularity,
a small positive perturbation (0.001 × tr(Σi)), is added to the covariance matrix the
same as [7]. For fair comparison of competitive methods, we exploit the source codes
provided by the authors and the parameters are empirically tuned by the original papers.
For MMD, a set-based method which are directly applicable for image set classification,
PCA was adopted to learn the linear subspace of each image set. We select 95% of
data energy with PCA to reduce the dimension. For the linear AHISD and CHISD [2],
we employ PCA to learn 98% of the data energy. While for non-linear, there are two
parameters τ , the error penalty term of the SVM C, we set τ between 1 and 5 and
C = 100 the same as [2]. MAD mainly consists of three parameters: the number of
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local models ni, the number of between-class NN local models k
′
and the dimension

of MDA embedding space 4l. Parameters is tuned the same as original paper (i.e., for
YTC ni = 9, k

′
= 10, l = 70) [24].

The performance comparison on four datasets, i.e., ETH-80, FMD, UIUC and YTC,
is shown in Table 1. Here JML(A) means that we only learn the distance metric using
the fist-order statistics while JML(B) means that the distance metrics are learned for
covariances matrices. JML(A+B) means that the distance metrics for both the mean
and covariance matrices are learned jointly. LEML and SPDML learn distance metric
based on SPD manifold. MMD and MDA are based on nonlinear manifold assumption
while AHISD and CHISD are linear subspace based methods. Compare with the state-
of-the-art metric learning algorithms, our proposed JML achieve superior performance.
Besides, compared with learning distance metric for the first-order and second-order
statistics separately, joint metric learning boosts the performance in that it combine the
complementary information of both orders.

Table 1. Accuracies of different methods on four datasets

Method ETH-80 FMD UIUC YTC

MMD 85.75 60.60 62.78 69.60

MDA 87.75 63.50 67.31 64.72

AHISD(linear) 72.50 46.72 55.37 64.65

AHISD(non-linear) 72.00 46.72 55.37 64.65

CHISD(linear) 79.75 47.52 65.09 67.24

CHISD(non-linear) 72.50 63.90 65.65 68.09

SPDML-AIRM 90.75 63.42 62.00 67.50

SPDML-Stein 90.75 66.80 61.12 68.10

LEML 93.50 66.60 62.96 69.85

JML(A) 77.50 68.40 75.56 70.96

JML(B) 90.00 64.88 66.05 61.99

JML(A+B) 100.0 70.13 78.47 73.76

In order to prove to the effect of adaptive pair weights, we compare the performance
of JML and JMLwith equal weights. The recognition accuracy showed that the adaptive
weights improve the accuracy by 2.25%, 2.43%, 2.21%, and 2.96% on four datasets,
which verifies the effectiveness of adaptive weight learning (Table 2).

Table 2. Compare equal weight and adaptive pair weights on four datasets

Method ETH-80 FMD UIUC YTC

Equal weight JML 0.975 67.77 76.26 70.92

Adaptive weight JML 100 70.13 78.47 73.76
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6 Conclusions and Future Work

In this paper, we proposed a joint metric learning (JML) model for global Gaussian
distributions. The distance between Gaussians are defined as the sum of the sum of
the Mahalanobis distance of the first-order statistics and the log-Euclidean distance
(LED) of the second order statistics. JML effectively combines the information of the
means and covariance matrices by joint metric learning and embeds the weights of
Gaussian pairs into the learning model. Experiments on video based face recognition,
object recognition, and material classification show that our proposed JML achieves
superior performance compared with the state-of-the-art metric learning algorithms. In
the future, we will extend JML to Gaussian mixture models.
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Abstract. With the ubiquitous usage of digital devices, social networks
and industrial sensors, heterogeneous data explosively increase. Metric
learning can boost the classification performance via jointly learning a
set of distance metrics from heterogeneous data. The metric learning
algorithms are affected by the noisy doublets, i.e., the similar and dis-
similar sample pairs. It is also a challenging issue to balance common-
ality and individuality for multi-view metric learning. To address the
above issues, in this paper, we propose a novel multi-task group sparse
regression metric learning (MT-SRML) for heterogeneous classification.
Metric learning is formulated as sparse regression problem. The group
sparse regularization on the repression coefficients of the doublets can
restrain the effect of the noisy sample pairs jointly for multiple views.
Experiments on heterogeneous data show that the proposed MT-SRML
outperforms the state-of-the art metric learning algorithms in terms of
both accuracy and efficiency.

Keywords: Heterogeneous data · Metric learning · Sparse regression ·
Multi-task learning

1 Introduction

With the development of digital devices, industrial sensors and the ubiquitous of
social networks, there are explosive growth of heterogeneous data from different
sources. In the field of information technology, a web page can be described either
by the text information in the web page or by the image information attached to
the anchor chain of the web page. In computer vision, images are often described
with different types of descriptors (such as HOG [4], SIFT [17] and LBP [21]).
As shown in Fig. 1, different types of local descriptors, including LBP, GIST
and EDH, are extracted for an image labeled as a bird. Heterogeneous data
contain complementary information, which can be combined together to boost
the recognition or clustering performance. To match heterogeneous data, great
efforts have been devoted to learn a unified representation of the information
in different sources so we can use heterogeneous data more accurately and effi-
ciently [1,3]. For multi-view learning, the key challenge is how to balance the
c© Springer Nature Switzerland AG 2019
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Fig. 1. An example of multi-view learning

commonality and individuality of different views so that the multi-view infor-
mation can be well fused.

Distance metric learning aims to learn a distance metric to measure the
difference between two samples. Compared with the distance metric learning
that defines generalized or task-driven metrics, metric learning exploits the label
information to learn a discriminative distance metric, which can boost the clas-
sification and regression performance. Metric learning has been widely applied
in real-world applications including face recognition [11], face identification [8],
image classification [11] and person re-identification [30]. Eric P. Xing proposed
a global distance metric learning algorithm (PGDM) [29] based on probability
by solving a constrained convex problem. Hu [10] proposed a multi-view deep
metric learning (MvDML) approach by jointly learning an optimal combination
of multiple distance metrics on multi-view representations.

Compared with traditional single-view data, heterogeneous data contain
more information which helps improve the classification or regression perfor-
mances. Existing metric learning methods, such as ITML (Information-Theoretic
Metric Learning) and GMML (Geometric Mean Metric Learning), achieve good
performance in traditional single view learning tasks. However, they fail to jointly
exploit the complementary information from the heterogeneous data if they are
directly applied to multi-view tasks.

In this paper, we propose a novel multi-task group sparse regression metric
learning (MT-SRML) for heterogeneous classification. We use a 2-degree polyno-
mial kernel for sample pairs in each tasks to get the sample pair relationships in
the feature space. Inspired by multi-task dictionary learning, MT-SRML jointly
learns distance metrics from heterogeneous data and imposes a group sparse reg-
ularization item on the coefficient vectors. The proposed model aims to fuse the
discriminative capabilities of different views to help improve the efficiency and
accuracy of classification results. Experiments on four benchmark datasets show
that MT-SRML outperforms the state-of-the art metric learning algorithms, and
achieves much better performance than single view learning.

The remainder of this paper is organized as follows. In Sect. 2, we give a
brief review of metric learning and sparse regression. The proposed algorithm
is described in Sect. 3. Data sets used in the experiments and the results are
presented in Sect. 4. Conclusion are summarized in Sect. 5.
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2 Related Work

2.1 Metric Learning

Metric learning aims to learn a distance function to improve the performance in
the tasks of classification and regression. Good distance metrics are crucial to
many computer vision tasks, such as image classification, face recognition and
person re-identification tasks. In this section, we give a brief review of traditional
metric learning approaches.

Early metric learning approaches use Euclidean distance to measure relation-
ships of sample pairs. These methods only consider the local attributes of samples
and ignore the discriminative capabilities of different sample features. The Maha-
lanobis distance overcomes the incompatibility of the traditional methods to the
structure of samples. It considers the correlation between the different dimen-
sional features of the samples and accomplishes the distance metric learning by
calculating the covariance matrix between the samples. Most metric learning
methods are based on Mahalanobis distance. In [27], the author proposed the
LMNN (Large Margin Nearest Neighbor) method in 2009 to improve the per-
formance of kNN (k-Nearest Neighbor) by maximizing the marginal distances of
different categories. The ITML (Information-Theoretic Metric Learning) method
proposed in [5] aims to minimize the relative entropy between two multivariate
Gaussian distribution, leading to a Bregman optimization problem. The work
in [19] presents a multiple kernel learning technique for integrating heterogeneous
data into a single, unified similarity space to learn a holistic similarity measure
on multiple modalities of data. Method HMML (Heterogeneous Multi-Metric
Learning) [33] proposes a multiple-metric learning algorithm to learn jointly a
set of optimal homogenous/heterogeneous metrics in order to fuse the data col-
lected from multiple sensors for classification. The work in [28] raised a general
framework of multi-modal distance metric learning based on the multi-wing har-
monium model in which an optimal distance metric can be learned under proper
supervision. In [24], Quadrianto formulated an objective function that express
the intuitive concept that matching samples are mapped closely together in the
output space. It addressed the problem of metric learning for multi-view data,
namely the construction of embedding projections from data in different repre-
sentations into a shared feature space.

Due to the impact of deep learning on traditional metric learning meth-
ods, many approaches have been extended to deep metric learning methods. [9]
proposed a deep metric learning method using triplet network, which aims to
learn useful representations by distance comparisons. In person re-identification
field, [31] uses a “siamese” deep neural network to jointly learn different features
and metric in a unified framework.

2.2 Sparse Regression

In statistics, the problem of regression is that of learning a function that allows
to estimate a certain quantity of interest from several observed variables, known
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Fig. 2. The flowchart of multi-task sparse regression metric learning model.

as covariates, features or independent variables. However, in many modern appli-
cations, under the high-dimension-low-sample-size settings, heterogeneous data
is sometimes largely redundant, making it hard to find the linear function. Dic-
tionary learning aims to find the proper representation of data sets by means of
reduced dimensionality subspaces, which can help relieve the pressure of learning
tasks and reduce the involved computation and storage costs. One of the ear-
liest dictionary learning works appeared for image representation. In 1997, [22]
proposed a maximum likelihood (ML) dictionary learning method for natural
images under the sparse approximation assumption, which is called the sparse
coding. In [2], the author proposed an algorithm base on dictionary learning
called KSVD, which learns an over-complete dictionary from a training set of
natural image patches for sparse coding. [23] proposed a joint learning and dictio-
nary construction method with consideration of the linear classifier performance
and applied the method to object categorization and FR.

During the last few years, sparsity has become a general principle for mod-
eling, and sparse coding has been successfully applied to tasks such as image
and video denoising, inpainting, demosaicing, super-resolution [7] and segmen-
tation [18]. Donoho [6] obtains parallel results in a general setting, where the
dictionary can arise from two or several bases, frames, or even less structured
systems. Jain [12] rised a novel framework based on sparse regression to auto-
matically trim the redundant parameters, dealing with Blood Pressure (BP)
monitoring problems. In [13], Kowalski proposed sparse expansion methods that
explicitly introduce a notion of structured sparsity and combined this approach
with multilayered signal expansion approaches, which aim at decomposing sig-
nals as sums of significantly different components.

3 Multi-task Sparse Regression Metric Learning

In this section, we propose a multi-task sparse regression metric learning model
and algorithm.
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3.1 Sample Pair Kernel

Suppose we have a heterogeneous training set X = [Xm
1 , ...,Xm

J ], where m =
1, ...,M denotes each view/feature of the data and j = 1, ..., J denotes each
category of the data. xi ∈ X represents the ith training sample, and scalar yi

represents the class label of xi. We extract two samples from the training set and
form a sample pair (xi, xj), and we assign a label h to this doublet as follows:
h = −1 if yi = yj and h = 1 if yi �= yj . In our experiments, we generate sample
pairs according to their categories and Euclidean distances between them. Then
we use a 2-degree polynomial kernel method for the selected sample pairs. Let
ui denote the sample pair (xi1, xi2). The 2-degree polynomial kernel is defined
as:

K(ui, uj)
= tr

(
(xi1 − xi2) (xi1 − xi2)

T (xj1 − xj2) (xj1 − xj2)
T
)

=
(
(xi1 − xi2)

T (xj1 − xj2)
)2

(1)

We record the labels of all the doublets as z.

3.2 Model and Optimization

The flowchart of the proposed metric learning model is given in Fig. 2. For an
image, different types of feature descriptors can be extracted to construct a
multi-view learning task. Then sample pairs are generated from each view and
kernel matrices are calculated by the predefined sample pair kernels. A multi-task
sparse regression problem is solved and the regression coefficients are obtained
for all views. Finally, a set of distance metrics for each view are got. The multi-
task sparse regression metric learning model is formulated as follows:

min
∑m

i=1 ‖z − aiKi‖22 + λR(a1, ...,ai, ...,am)
s.t.i = 1, 2,...,M.

(2)

Here z represents the decision space information of doublets samples and we
suppose (1) generated N doublets samples. ai is the reconstruction coefficient
vectors associated with each view of the heterogeneous data and i = 1, 2,...,M.
K is the 2-degree polynomial kernel for doublets sample pairs calculated by (1).
λ is a positive constant and R is the joint regularization item imposed on ai. Our
model is formulated as the solution to the following problem of multi-task sparse
regression metric learning with �2 mixed-norm regularization, then we rewrite
(2) as:

min
∑m

i=1 ‖z − aiKi‖22 + λ
N∑

n=1
‖an‖2

s.t.i = 1, 2,...,M.
(3)

As for model optimization, we chose the popularly applied Accelerated Proximal
Gradient (APG) model [20] to efficiently solve problem (3). The proposed APG
algorithm aims to learn the coefficient vector a by updating a weight matrix
sequence Ât = an

m,t and an aggregation matrix sequence V̂t = vn
m,t where t ≥ 1.
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For the generalized gradient mapping step, given the current matrix V̂t, we
update Ât according to the result in [25] as follows:

âm,t+1 = v̂m,t − η�m,t, m = 1, ...,M

ân
t+1 =

[
1 − λη

‖ân
t+1‖2

]

+

ân
t+1, n = 1, ..., N

(4)

where �m,t = −z + Kmv̂m,t, η is the step size parameter which is set to 0.002,
and [·]+ = max(·, 0).

For the aggregation step, we construct a linear combination of Ât and Ât+1

to update V̂t+1 as follows:

V̂t+1 = Ât+1 + αt+1(1−αt)
αt

(Ât+1 − Ât) (5)

where the sequence {αt} is set to α = 2/(t + 2) [26].

3.3 Metric Learning and Classification

After the above steps, we aim to learn the discriminative matrix D for Maha-
lanobis distance. Define Ti = (xi1 − xi2) (xi1 − xi2)

T , then the metric learning
can be formulated as follows:

Dm =
∑N

i=1 amTi, m = 1, ...,M (6)

Due to the particularity of heterogeneous data, we need to jointly consider the
influence of each view/feature. We define the weights that measure the confidence
of different views as 1/m. We calculate the Mahalanobis distance of each view by
the discriminative matrix D. Then we combine the distance matrix calculated
from each view and get a final distance matrix.

The details of our method MT-SRML are given in Algorithm 1.

4 Experiments

To evaluate the effectiveness of our proposed MT-SRML method, we apply it
to four heterogeneous data and compare with existing state-of-the-art methods.
The details of our experiments are as follows.

4.1 Datasets

The heterogeneous data employed are as follows:
handwritten:1 This dataset contains 2000 images of 10 categories from 0

to 9. It contains 6 types of descriptors exacted: Pix, Fou, Fac, ZER, KAR and
MOR.

1 https://archive.ics.uci.edu/ml/datasets/Multiple+Features.

https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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Algorithm 1. The algorithms of our proposed MT-SRML
Require:
1: Generate sample pairs (xi1, xi2),i = 1, 2, ..., N . and kernel K
2: Compute sample relation z.
3: Initialization: Properly initialize v̂m,0 and âm,0. Set α0 = 1, t ← 0 and η ← 0.002
4: repeat:
5: âm,t+1 = v̂m,t − η�m,t

6: ân
t+1 =

[
1 − λη

‖ân
t+1‖2

]
+

ân
t+1, n = 1, ..., N

7: αt+1 = 2
t+2

8: V̂t+1 = Ât+1 +
αt+1(1−αt)

αt
(Ât+1 − Ât)

9: t ← t + 1
10: until convergence
Ensure:

Dm =
∑N

i=1 amTi, m = 1, ..., M

Table 1. Comparison with metric learning methods on heterogeneous data

Method handwritten Caltech101 MSRA football

kNN 0.941 ± 0.015 0.882 ± 0.012 0.700 ± 0.092 0.631 ± 0.077

ITML 0.948 ± 0.013 0.915 ± 0.016 0.769 ± 0.057 0.580 ± 0.078

LMNN 0.922 ± 0.020 0.830 ± 0.061 0.767 ± 0.098 0.416 ± 0.053

LDML 0.944 ± 0.012 0.882 ± 0.012 0.700 ± 0.092 0.627 ± 0.078

GMML 0.939 ± 0.011 0.881 ± 0.013 0.702 ± 0.095 0.651 ± 0.070

HMML 0.927 ± 0.013 0.921 ± 0.013 0.798 ± 0.044 0.522 ± 0.093

EMGMML 0.839 ± 0.012 0.919 ± 0.007 0.802 ± 0.030 0.702 ± 0.088

Ours 0.983±0.006 0.925±0.010 0.905±0.050 0.864±0.034

MSRA: [16] This dataset has 210 images labeled with 7 classes: tree, build-
ing, airplane, cow, face, car and bicycle. There are 6 types of descriptors exacted:
CENT, CMT, GIST, HOG, LBP and SIFT.

football:2 This dataset contains 248 football players on Twitter labeled
with 20 communities, which means 20 categories. There are 6 views describ-
ing relationships between two users: follows, followed by, mentions, mentioned
by, retweets and retweeted by.

Caltech101-7: [14] This dataset is a subset of Caltech101. It contains 7
classes with 1474 images: faces, motorbikes, dollar-bill, garfield, snoopy, stop-
sign, and windsor-chair. There are 6 features used in this dataset: Gabor, WM,
CENTRIST, HOG, GIST and LBP.

2 http://mlg.ucd.ie/aggregation/index.html.

http://mlg.ucd.ie/aggregation/index.html
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4.2 Comparison Methods

We compared our method with state-of-the-art metric learning methods. The
details of the methods are as follows:

kNN (k-nearest neighbor classification): kNN completes classification tasks
by measuring the distance between different eigenvalues. For each feature, we
use Euclidean distance to distinguish different categories.

ITML (Information-Theoretic Metric Learning) [5]: This method learns a
Mahalanobis distance by formulating the problem as that of minimizing the dif-
ferential relative entropy between two multivariate Gaussians under constraints
on the distance function.

LMNN (Large Margin Nearest Neighbors) [27]: This method learns Maha-
lanobis metric with the goal that the k-nearest neighbors always belong to the
same class while examples from different classes are separated by a large margin.

LDML (Logistic Discriminant Metric Learning) [8]: This method propose a
logistic discriminant approach which learns the metric from a set of labelled
image pairs.

HMML (Heterogeneous Multi-Metric Learning) [33]: This method learns an
optimal heterogeneous metric to improve the classification performance.

GMML (Geometric Mean Metric Learning) [32]: The method learns a
Euclidean metric by formulating it as a surprisingly simple optimization
problem.

EMGMML (Efficient Multi-modal Geometric Mean Metric Learning) [15]:
The method learns a distinctive distance metric for each view by minimizing the
distance between similar pairs while maximizing the distance between dissimilar
pairs.

4.3 Experimental Analysis

Due to the particularity of heterogeneous data, we first conduct our method on
every feature of four datasets. As shown in Table 2, the first six rows represent
6 different features of our datasets while the last row shows the result of our

Table 2. Comparison on each feature of heterogeneous datasets

Feature football handwritten MSRA Caltech101

1 0.814 0.975 0.143 0.733

2 0.747 0.768 0.643 0.829

3 0.814 0.778 0.833 0.829

4 0.651 0.560 0.738 0.959

5 0.628 0.910 0.738 0.860

6 0.512 0.583 0.452 0.949

All 0.864 0.983 0.905 0.971
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method on the entirety heterogeneous data. The result shows that our jointly
learning method achieves a remarkable effect on heterogeneous data.

As shown in Table 1, we compared our method with other 7 multi-view met-
ric learning methods. Among these approaches, HMML (Heterogeneous Multi-
Metric Learning) and EMGMML (Efficient Multi-modal Geometric Mean Metric
Learning) are designed for heterogeneous data. As for the other 5 approaches,
we preprocess the heterogeneous data in an unified method. We combine each
feature of the heterogeneous data for these single-view metric learning methods
as input. We can see from Table 1 that our method outperforms all the compar-
isons on these four heterogeneous datasets which proves our MT-SRML method
is more appropriate than the other method when dealing with heterogeneous
data.

5 Conclusions

In this paper, we proposed a novel multi-task sparse regression metric learning
(MT-SRML), which aims to jointly learn distance metrics from heterogeneous
data. Metric learning is formulated as a sample pair regression task. A two-
degree polynomial kernels is introduced to measure the relation of sample pairs.
Metric learning for heterogeneous data is modelled as a multi-task sparse regres-
sion problem. The proposed model jointly learns a set of distance metrics from
heterogeneous data to fuse the discriminative capabilities of different views to
help improve the efficiency and accuracy of classification. Experiments on four
heterogeneous datasets validated the superiority of the proposed model to the
state-of-the-art metric learning algorithms.
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Abstract. The length of the geodesic between two data points along
a Riemannian manifold, induced by a deep generative model, yields
a principled measure of similarity. Current approaches are limited to
low-dimensional latent spaces, due to the computational complexity of
solving a non-convex optimisation problem. We propose finding shortest
paths in a finite graph of samples from the aggregate approximate poste-
rior, that can be solved exactly, at greatly reduced runtime, and without
a notable loss in quality. Our approach, therefore, is hence applicable to
high-dimensional problems, e.g., in the visual domain. We validate our
approach empirically on a series of experiments using variational autoen-
coders applied to image data, including the Chair, FashionMNIST, and
human movement data sets.

Keywords: Deep generative model · Geodesic · A� search

1 Introduction

Estimating the similarity between data points is central to data processing
pipelines. In computer vision it is employed for matching points from frames [32]
and for visual place recognition [27], where it is used for the visual detection of
places despite visual changes due to weather or lighting conditions. For a method
to be successful, certain invariances have to either be used as an inductive bias
or presented through data. This necessitates for highly expressive models.

Recently, deep learning has enabled training generative models on large-scale
databases, as typically found in computer vision [7,22]. Such models have been
used for similarity estimation from the perspective of Riemannian manifolds
in the context of Gaussian process latent variable models [34]. As such non-
parametric approaches scale poorly with data set size, several authors [2,9,10]
proposed the marriage of Riemannian manifold-based metric learning with deep
generative models. This results in a principled measure of similarity between
two members of the data distribution by relating it to the shortest path, or,
geodesic between two corresponding points in latent space. A downside of this
approach is that the geodesic has to be obtained as the solution to a non-linear
c© Springer Nature Switzerland AG 2019
I. V. Tetko et al. (Eds.): ICANN 2019, LNCS 11728, pp. 554–566, 2019.
https://doi.org/10.1007/978-3-030-30484-3_45
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optimisation problem. Consequently, there is high computational demand and
no guarantee of the quality of the solution. The representation of this shortest
path is also not obvious, as it is continuous in nature but ultimately has to be
represented in a discrete fashion.

In contrast, local and global descriptors [26] do not suffer from said compu-
tational challenges. As their representation is a vector over real numbers, it is
compactly represented as an array of floating point numbers, paving the way for
efficient indexing techniques for nearest neighbour lookup [5,21].

This work takes a step in making Riemannian manifold based approaches
faster, and hence applicable in high-dimensional settings. We show that spanning
the latent space with a discrete and finite graph allows us to apply a classic
search algorithm, A�, to obtain accurate approximations of the geodesic, that are
superior to the previously proposed ODE and neural network based approaches
in terms of computation performance, without loss in quality. Once the graph
has been built, estimating the geodesic is bounded for any pair of points.

We apply the proposed framework to a toy example, that of a visual pen-
dulum, to foster intuition of the approach, as it can be easily visualised. The
practical applicability to more challenging data sets is then illustrated for the
Chair, FashionMNIST and human motion capture data sets.

2 Related Work

A wide range of approaches has been proposed for estimating the similarity
between data points. Typically, distance metrics are assumed to be given, how-
ever they often come with certain assumptions about the data. For example
instances of the Minkowski distance require the data to be invariant to rotation
under the L2-norm. The Mahalanobis distance is a popular choice when the
data are multivariate Gaussian distributed, as it is invariant to translation and
scaling.

Transforming the data can further allow applying a known metric, even when
the data does not directly fulfill all the assumptions. In [17,36], the authors pro-
posed the use of linear transformations for supervised learning. To enable an
accurate measurement of even more complicated data, non-linear transforma-
tions based on neural networks were introduced in [31]. Additionally, transfor-
mations of time-series data to constant-length spaces have been proposed in [4],
which allow applying similarity measures using recurrent neural networks.

To alleviate the problem of manually specifying a distance metric, learning
distances directly from data has been proposed [12,24,35,38]. This is especially
useful in high-dimensional spaces, where obtaining a meaningful distance metric
is challenging. Traditional metrics may not even be qualitatively meaningful,
since the ratio of the distances of the nearest and farthest neighbours to a given
data point is almost 1 for a wide variety of distributions [1].

In recent work, [34] suggested perceiving the latent space of Gaussian process
latent variable models as a Riemannian manifold, where the distance between
two data points is given as the shortest path along the data manifold. Treating
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the latent space as a Riemannian manifold enables the use of interpolation [28]
and trajectory-generation [11] algorithms between given points, with the advan-
tage that the observable-space trajectory remains sufficiently close to the pre-
viously used training data [2,9,10,25]. The geodesics, i.e. the length-minimising
curve given the curvature of the manifold, have been approximated by neural
networks [9,10] or represented by ODEs [2].

Beside interpolation, using the geometry of the manifold has been proposed
and used in other approaches based on generative models. For instance, in [14]
the authors used task manifolds for meta-learning and in [19] the authors devel-
oped a constant-curvature manifold prior for adversarial autoencoders used for
graph data.

Similarly to our approach, ISOMAP [33], computes the distance between two
points using a graph and uses it for modelling the latent space. Our method,
in contrast, computes the geodesic for trained models and, therefore, enables its
use in state-of-the-art deep generative models, e.g., VAEs and GANs [18].

3 Methods

In this section, first, we provide the necessary background approaches that our
work is based on, i.e., the variational autoencoders and the associated Rieman-
nian geometry, and, second, we provide a detailed description of our approach.

3.1 Variational Autoencoders

Latent-variable models (LVMs) are defined by

p(x) =
∫

p(x|z) p(z) dz, (1)

where the observable data x ∈ R
Nx are represented through latent variables

z ∈ R
Nz , that are based on hidden characteristics in x. The integral of Eq. (1)

is usually intractable and has to be approximated through sampling [15,20] or
variational inference (VI) [23,29]. Using VI, the problem is rephrased as the
maximisation of the evidence lower bound (ELBO), i.e.,

ln p(x) ≥ Eq(z)

[
ln

p(x|z) p(z)
q(z)

]
=: LELBO, (2)

where p(x|z) is the likelihood, p(z) the prior, and q(z) approximates the
intractable posterior. The distribution parameters of q(z) = qφ(z|x) and
p(x|z) = pθ(x|z) can be expressed by neural networks to obtain the variational
autoencoder (VAE) [23,29]. A tighter bound was proposed in the importance-
weighted autoencoders (IWAEs) [8] through importance sampling, i.e.,

LIWAE = Ez1,...,zK∼qφ(z|x)
[
ln

1
K

K∑
k=1

pθ(x|zk) pθ(zk)
qφ(zk|x)

]
, (3)

where ln p(x) ≥ LIWAE ≥ LELBO. In our experiments we used IWAEs.
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3.2 Riemannian Geometry in Variational Autoencoders

A Riemannian space is a differentiable manifold M with an additional metric
to describe its geometric properties. This enables assigning an inner product in
the tangent space at each point z in the latent space through the corresponding
metric tensor G ∈ R

Nz×Nz , i.e.,

〈z′, z′〉z := z′T G(z) z′, (4)

with z′ ∈ TzM and z ∈ M . TzM is the tangent space. Treating the latent space
of a VAE as a Riemannian manifold allows us to compute the observation space
distance of latent variables. Assuming we have a trajectory γ : [0, 1] → R

Nz in the
Riemannian (latent) space that is transformed by a continuous function f(γ(t))
(decoder) to an Nx-dimensional Euclidean (observation) space. The length of
this trajectory in the observation space, referred to as the Riemannian distance,
is defined by

L(γ) =
∫ 1

0

φ(t) dt, φ(t) =
√〈

γ̇(t), γ̇(t)
〉

γ(t)
, (5)

with the Riemannian velocity φ(t) and γ̇(t) denoting the time-derivative of the
trajectory. The metric tensor is defined as G = JTJ, with J as the Jacobian of
the decoder. The trajectory which minimises the Riemannian distance L(γ) is
referred to as the shortest path geodesic. We integrate the metric tensor with n
equidistantly spaced sampling points along γ to approximate the distance, i.e.,

L̃(γ) ≈ 1
n

n∑
i=1

φ(ti). (6)

In our approach, we use a stochastic approximation of the Jacobian, as presented
in [30],

J(z) = lim
σ→0

1
σ
E[f(z + ε) − f(z)], (7)

with ε ∼ N (0, σ2I), to reduce the computation time.

3.3 Graph-Based Geodesics

Obtaining the geodesic is a challenging task, as for minimizing Eq. (5), we need
the Hessian of the decoder during the optimisation process. Computing it is
a time consuming optimisation procedure that scales poorly with the dimen-
sionality of the observable and the latent space, intractable for a lot of appli-
cations. In addition, computing the Hessian limits the selection of the neural
network’s activation function [2,9]. To bypass the above-mentioned hurdles we
introduce a graph-based approach, where a discrete and finite graph is built in
the latent space using a binary tree data structure, a k-d tree, with edge weights
based on Riemannian distances. Once the graph has been built, geodesics can
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Algorithm 1. Graph based geodesic
1. Graph building process
Train IWAE
Sample n nodes nodes
Build a graph using K-D tree
for i ← 1 to n nodes do

for k ← 1 to n neighbours do
Index j is the k-th neighbour
if edge(ij) or edge(ji) empty then

edge(ij) = L(γ(ij))
end if

end for
end for

2. Path search process
Given two points z(i)

if z(i) /∈ nodes then
Insert z(i) into the graph in K-D tree
for k ← 1 to n neighbours do

Index j is the k-th neighbour
edge(ij) = L(γ(ij))

end for
end if
Search geodesic using A�

return path nodes

be approximated by applying a classic search algorithm, A� [13]. Our approach
is summarized in Algorithm 1.

Building the Graph. The graph is structured as a k-d tree, a special case
of binary space partitioning trees, where each leaf node corresponds to a k-
dimensional vector. The nodes of the graph are obtained by encoding the observ-
able data X = {x(1), . . . ,x(N)} into their latent representations z(i). This is done
by using the respective mean values of the approximate posterior qφ(z(i)|x(i)).
Each node is connected by an undirected edge to its k-nearest neighbours. The
edge weights are set to Riemannian distances L(γ), where γ is the straight line
between the related pair of nodes.

Approximating Geodesics. A classic graph-traversing method to obtain the
shortest path between nodes is A� search. It is an iterative algorithm that, given
a graph G, maintains a sorted list of nodes that can be visited in the current
state. The list is typically initialised with the starting node and is being sorted
according to the estimated cost of including node n into the optimal path. The
estimated cost is computed by f(n) = g(n) + h(n), where g(n) is the cost of
the path from the starting node nstart to n and h(n) is a heuristic function that
estimates the remaining cost from n to the target node ntarget.

The cost function we use in our approach is the Riemannian distance between
two subsequent nodes on the path, whereas the distance on the Remannian
manifold with Euclidean interpolation on the latent space is used as heuristic.
A�, in order to operate, requires a heuristic function that underestimates the true
cost. It can be shown that the proposed heuristic fulfills this requirement. The
performance of the algorithm is optimal among any other similar algorithm to
the number of nodes that are being expanded. When the target node is reached,
the algorithm terminates. The result is the shortest path through the graph
regarding the Riemannian distance. This path approximates the geodesic well
as shown in Sect. 4.
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Fig. 1. Box plot of distances and searching time using 100 pairs of randomly
selected data points. The box plot illustrates the median, as well as [25, 75] and [5,
95] percentiles. Our approach produces shorter distances and scales well to higher
latent dimensions. (a) The geodesic distances are normalised to enable comparison
across different generative models. The normalised distance is computed by dnorm =
dGeod./mean(dEucl.). (b) The mean of the graph-based A� searching time is 0.09 s.

4 Results

We present an empirical evaluation of our graph-based approach for approximat-
ing geodesics in deep generative models. We compare the geodesics to Euclidean
trajectories and show that following the geodesic leads to a smoother inter-
polation in the observation space. Additionally, we compare the graph-based
approximation to a neural network (NN) based method, proposed in [9], to show
that our approach does not degrade the approximation of the geodesic and scales
significantly better.

In our comparisons, the NN-based method approximates the curve γ with
NNs, which weights are updated during the minimisation of the trajectory length
L(γ). Euclidean interpolation is linear interpolation in the latent space. Piecewise
Euclidean interpolation uses A� search on a graph in which the edges are the
distances in the latent space. The distances of Euclidean and piecewise Euclidean
interpolations are computed in Riemannian manifold after interpolation.

We use the magnification factor (MF) [6] to show the sensitivity of the gen-
erative models in 2D latent space and evaluate the approximated geodesic. The
MF(z) =:

√
detG(z) can be interpreted as the scaling factor when moving from

the Riemannian (latent) to the Euclidean (observation) space, due to the change
of variables.

4.1 Pendulum Experiment

The pendulum dataset contains 16 × 16-pixel images of a simulated pendulum
and has T = 15 · 103 images for two different joint angle ranges, R1 = [0, 150)
and R2 = [180, 330) degrees. To avoid overfitting, we augmented the dataset
by adding 0.05 Gaussian noise to each pixel. We present our results using
{2, 3, 5, 10, 20} latent dimensions for the IWAE and used 15 samples for the
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Fig. 2. (left) Latent space and MF of pendulum in two dimensions. With blue and
magenta we show the approximate geodesics and with orange the Euclidean interpola-
tions. (right) The respective reconstructed images. The upper images series is the recon-
struction using the geodesic and the lower the Euclidean interpolation. The geodesic
reconstruction is significantly smoother, as we can also see from the velocity φ. (Color
figure online)

Fig. 3. The distribution of distances in Fashion MNIST and chairs from 100 randomly
sampled trajectories based on geodesic, Euclidean interpolation or piecewise Euclidean
interpolation. Both of the datasets are with 20D latent space.

importance weighting step. After training, 1000 points were chosen to build the
graph. Each node had four nearest neighbours based on the distance in the latent
space. We generated 100 random pairs of data points, as shown in Fig. 1, for com-
puting the distances and search time. We show that with the increasing latent
dimensionality, the search time does not increase, as it is dependent solely on
the number of nodes. Comparing to [10] and [2], our approach does not require
second-order derivatives and is significantly faster. The [2] approach takes more
time than the NN-based method, so we only used latter for this comparison.

Two of the generated geodesic and Euclidean interpolant trajectories, in the
case of two latent dimensions are illustrated in Fig. 2. Our approach finds a tra-
jectory in the latent space which is significantly longer than a simple Euclidean
interpolation, but significantly smoother as it does not cross a region of large
MF. The effects of crossing such a region are shown in Fig. 2(right).
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Fig. 4. (left) MF of Fashion MNIST using a 2D latent space. Points are sampled from
the validation dataset. (right) Respective graph of Fashion MNIST. The edges are
weighted by the geodesic distance. Darker color signifies a transition with a higher
MF.

Fig. 5. Reconstruction of Fashion MNIST with 20 latent dimensions. The geodesic
outperforms Euclidean interpolation by producing interpolations that visually stay on
the manifold and the objects are recognisable.

4.2 Fashion MNIST

For the Fashion MNIST [37] evaluation, we used the standard training set, i.e.
28 × 28 pixel images, for fitting an IWAE consisting of eight 128-neuron lay-
ers with ReLU activation [16]. We use 20 latent dimensions for our evaluations.
Additionally, standard augmentation strategies were used, e.g., horizontal flip-
ping and jitter, and 20% dropout, to avoid overfitting. To generate the nodes of
the geodesic graph, we randomly selected 2000 validation data points, encoded
into the latent space. For each node, we selected the 20 nearest data samples,
based on a Euclidean distance. For each edge we calculated the velocity and
geodesic of the trajectory, using fifteen interpolation points.

As shown in Fig. 3, we sampled 100 trajectories between data points and cal-
culated the geodesic distance and a distance based on Euclidean interpolation.
The search time of 100 trajectories between data points is 0.018 s±0.010 (mean ±
STD). The Euclidean-based trajectories result in consistently higher MF values,
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for all latent dimensions used. Therefore, the Euclidean-based trajectories cross
more areas with high MF, resulting in fewer smooth transitions in the obser-
vational space. However, following the geodesic, smoothness is not guaranteed.
There are cases where it is unavoidable for certain trajectories to cross an area
of high magnification factor. Rather, following the geodesic can be interpreted
as the minimisation of the overall Riemannian distance for a trajectory and it
is expected that the MF will be lower than a simple Euclidean interpolation.
Although piecewise Euclidean interpolation mainly follows the data manifold, it
still cannot detect the high MF values; therefore, it is reasonable higher than
Euclidean interpolation. Figure 4 demonstrates this property on a 2D manifold,
where the edges between data samples are lighter for lower magnification factors.
The areas where the MF is high, the edges are darker even if the samples are
adjacent in the observational space. In such situations, the graph-based approach
will therefore produce a more complex trajectory, but with a lower MF.

In Fig. 5 we present visual examples of such trajectories. The image recon-
structions are produced from the decoder of the VAE by moving through the
latent space along the trajectory specified by either the geodesic or Euclidean
interpolation. The geodesic produces images that are almost always recognisable,
despite transiting over different classes.

Fig. 6. Reconstruction of Chairs dataset, with 20 latent dimensions. The geodesic
produces a smoother interpolation in the observation space, as we can observe by both
the image sequences and the velocity φ.

4.3 Chairs

For the chairs dataset [3], we split chair sequences 80/20 for training and val-
idation, using 74400 and 11966 images respectively. The zoom factor was set
to 1.3 and the images rescaled to 64 × 64 pixels. We generated the geodesic
graph in exactly as for Fashion MNIST. In Fig. 7 we present a comparison of
the graph building time, the average distance of the geodesic, and the trajectory
search time to the number nodes and neighbors. Our approach scales well to the
increase of the number of nodes and neighbors.
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Additionally, we compare the performance of our approach to Euclidean-
based interpolation in Fig. 3, using 2000 nodes and 20 neighbors. Our app-
roach outperforms the Euclidean-based, producing consistently lower MF values.
Reconstructions are shown in Fig. 6.

Fig. 7. (a) The effects of the graph architectures for 20 latent dimensional latent space
of the Chair dataset. (b) Geodesic distances using a different amount of neighbours in
comparison to the Euclidean distance shown in red. (c) Search time averaged over 100
interpolations for a different number of neighbours. (Color figure online)

Fig. 8. Interpolation of human motions using three latent dimensions. Our approach
produces a smoother interpolation in comparison to the Euclidean.

4.4 Human Motions

We evaluate our approach in a different domain, i.e., the CMU human motion
dataset1, that includes various movements. We selected walking (subject 35),
jogging (subject 35), balancing (subject 49), punching (subject 143) and waving
(subject 143). The input data is a 50-dimensional vector of the joint angles. In
Fig. 8 we present the results using three latent dimensions. We observe that the
Euclidean interpolation generates trajectories crossing high MF regions. How-
ever, using the geodesic we are able to find similar gestures between the classes
and, subsequently, generate smoother interpolations.
1 http://mocap.cs.cmu.edu/.

http://mocap.cs.cmu.edu/
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5 Conclusion and Future Work

In this paper, we demonstrate how the major computational demand of applying
Riemannian geometry to deep generative models, can be sidestepped by solving
a related graph-based shortest path problem instead. Although our approach is
only approximate, in our experiments on a wide variety of data sets show little
loss in quality of interpolations while linear paths are consistently outperformed.
The machinery paves the way towards the application of Riemannian geometry
to more applied problems that require the expressivity of deep generative models
and the robustness of distance based approaches.

Further research in this topic can be how to efficiently choose the nodes such
as using sigma points of unscented transform. Additionally, we use equidistance
on the hidden space between two nodes for reconstruction. However, if we use
equidistance on the Riemannian manifold instead, we might further improve our
approach.
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Abstract. Metric learning is one of the feasible approaches to few-shot
learning. However, most metric learning methods encode images through
CNN directly, without considering image contents. The general CNN fea-
tures may lead to hard discrimination among distinct classes. Based on
observation that feature maps correspond to image regions, we assume
that image regions relevant to target objects should be salient in image
features. To this end, we propose an effective framework, called Spatial
Attention Network (SAN), to exploit spatial context of images. SAN
produces attention weights on clustered regional features indicating the
contributions of different regions to classification, and takes weighted
sum of regional features as discriminative features. Thus, SAN high-
lights important contents by giving them large weights. Once trained,
SAN compares unlabeled data with class prototypes of few labeled data
in nearest-neighbor manner and identifies classes of unlabeled data.
We evaluate our approach on three disparate datasets: miniImageNet,
Caltech-UCSD Birds and miniDogsNet. Experimental results show that
when compared with state-of-the-art models, SAN achieves competitive
accuracy in miniImageNet and Caltech-UCSD Birds, and it improves
5-shot accuracy in miniDogsNet by a large margin.

Keywords: Few-Shot Learning · Attention module ·
Discriminative features

1 Introduction

Recently, deep learning models such as AlexNet [10], VGG [18] and ResNet [6]
have achieved great success in image classification tasks [2]. However, these mod-
els are trained in a supervised manner using large amounts of labeled data.
Moreover, these models can only recognize images from specific classes appear-
ing in training data. Furthermore, in a case that we have few training samples
from some classes, models trained using these data would perform poorly due
to overfitting. Many attempts such as fine-tuning [25], data augmentation [10]
and dropout [20] are proposed to alleviate overfitting, however, this problem
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still exists. Focusing on above issues, One- or Few-Shot Learning aims to learn
new knowledge from one or few instances under the inspiration of human’s quick
learning ability.

Few-Shot Learning has attracted much attention recently, and most of exist-
ing few-shot approaches adopt meta-learning training strategy that learns a task-
agnostic knowledge from various tasks and quickly adapts to new target tasks.
These methods can be grouped in three categories: learning an optimiza-
tion algorithm with initialization and parameters update [3,11,15], gener-
ative models [17] that produce images or features to enlarge scarce dataset
and metric-learning [9,21,22] that embeds instances into a new space and
compares embeddings via distance function. The prior two techniques either
fine-tune parameters on target problems with learnt initialization and update,
or are hard to manipulate the quality of produced examples. Therefore, our work
is focused on metric-learning.

Previous works in metric-learning have achieved satisfactory results, but most
of these methods directly embed an image into new vector space [21,22] with lit-
tle consideration of spatial context in image. We assume that exploiting spatial
information of image can bring improvement in few-shot classification. Specifi-
cally, Luo et al. [12] observe that a position in feature map relies on an image
region. It means that we can view feature map as a set of cells, each of which is
a vector with dimension of channel size. These cells include spatial context and
correspond to different receptive fields of input image. Based on this observation,
we cluster feature map and obtain clusters of cells. We believe that cells contain-
ing relevant contents would belong to the same cluster. Later, these clusters are
processed by attention module to produce a set of attention weights on feature
map cells. The weighted sum of cells is output as image feature. Therefore, we
associate salient regions in image with output feature by attention weights. The
architecture described above is called Spatial Attention Network (SAN). Inspired
by [19], we compute class prototypes of labeled data. Prediction on unlabeled
data depends on the nearest prototype of labeled data.

Overall, our contribution can be summarized that we (i) propose an archi-
tecture called Spatial Attention Network (SAN) to produce a set of weights rep-
resenting how much attention the model needs to pay on different image regions,
(ii) evaluate our model on three standard benchmarks of few-shot learning, and
SAN achieves comfortable results in comparison with previous state-of-the-art
methods, and (iii) visualize clusters of image contents, attention module and
discriminative features to understand what SAN learns.

2 Related Work

2.1 Few-Shot Meta-learning

Meta-Learning aims to teach a learner model “how to learn”. These methods in
few-shot learning are trained on few training instances from different tasks to
learn a learner that tackles a variety of learning tasks in testing. In [15], Ravi
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and Larochelle propose a LSTM-based meta-learner to learn an optimization algo-
rithm to update parameters in another classification learner in few-shot mech-
anism. In MAML [3], Finn et al. promote the above meta-learner, and provide
a model-agnostic method that initializes learned parameters of specific model
and updates these parameters with small gradient steps and few training data.
Li et al. [11] propose Meta-SGD that has faster and easier training procedure
than method in Meta-LSTM [15], and components of an optimizer (initialization,
update direction and learning rate) are inclusively learned. Our proposed app-
roach utilizes meta-learning in training stage.

2.2 Few-Shot Metric Learning

Previous works [9,16,19] use a large number of training samples to learn a neu-
ral network that appropriately embeds images into a new vector space. Some
distance functions (cosine or Euclidean distance) can be used to classify unla-
beled data. For examples, in new embedding space, if one unlabeled instance
has the nearest distance with one labeled instance, they would share identical
class. Another approach in [21] employs distance measure that is learned on
neural networks instead of cosine or Euclidean distance. Furthermore, in some
cases [21,22], their proposed networks adopt meta-learning training method to
boost accuracy in testing.

2.3 Attention Modules

Recently, attention modules have widely existed in computer vision tasks such
as image classification [4,23,27], image caption [24,26] and object detection [5].
Although attention modules have unfixed structures in applications, their aim is
to learn from training data to capture key regions of an image. In zero-shot learn-
ing, [8] proposed attention network instructed by class semantic descriptions to
focus on effective image patches, and these patches are relevant to class seman-
tic descriptions. Our approach has similar intention with [8], however, SAN has
different attention structure and is supervised by class-level label only.

3 Methodology

At this section, we describe the details of our network architecture and define
the task of few-shot classification. We assume that the whole dataset can be
divided into Dbase and Dnovel. Each category of Dbase is rich in image exam-
ples, while each category of Dnovel has fewer images. We ensure that Dbase and
Dnovel have disjoint label space. For Dnovel set, we randomly sample Q disparate
classes with M examples for each class, and these data consist of support set. In
testing episodes, query images are made up of n samples with prior knowledge
that they have identical label space {label1, label2, · · · , labelQ} with support set,
and images in query set are unseen in support set. The task of Q-way, M -shot
classification is to assign labels {yi, yi ∈ {label1, label2, · · · , labelQ}}n

i=1 to images
{xi}n

i=1 in query set.
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An overview of our network architecture is presented in Fig. 1. Our network
has two stages: feature extractor stage and few-shot learning stage. In feature
extractor stage, we train a ConvNet based on Dbase to learn extracting features
from input images. In few-shot learning stage, attention module is trained to
identify informative regions related to target objects.

3.1 Feature Extractor

To extract features from input images, we train a ConvNet based on Dbase from
scratch. ConvNet has two components: feature extractor G(·|θ) and classifier
Wbase, where θ and Wbase are trainable parameters. ConvNet is made up of
stacked feature maps which contain regional information of input image. At this
stage, we ignore these feature maps and choose the last d-dimensional vector
z = G(x|θ) ∈ R

d to represent the feature of input image x. Wbase is a set of
weight vectors {wi ∈ R

d}Cbase
i=1 , where each vector represents the classifier of

that category. Therefore, the probability of input image x belonging to the i-th
category is as follow:

pi =
ezT ·wi

∑Cbase

j=1 ezT ·wj

(1)

We employ sum of cross entropy loss of all images as loss function.

3.2 Few-Shot Learning

The purpose of SAN is to find informative regions of input image. To achieve
this goal, we fully exploit spatial context of an image via clustering and attention
module (see Fig. 1).

Clustering. For a given feature map with size of W×H×C, where W,H and
C represent width, height and channels of the feature map respectively, a set of
feature map cells S = {f1, f2, · · · , fW×H}, fi ∈R

C diversely correspond to W×H
patches in the input image. We assume that the feature map cells containing
related parts of object are “closer” in c-dimensional vector space. For example,
distance between f1 and f2 is shorter than distance between f1 and f3 or f2 and
f3 with the assumption that f1 and f2 cover the regions of a bird’s wing and tail
respectively, while f3 contains background patch. Therefore, we cluster feature
map cells and obtain the clusters {c1, c2, · · · , ck}, where k is a hyper-parameter
indicating the number of clusters. For every fj∈ci, we add these features to gener-
ate Fi =

∑
j∈ci

fj . The feature Fi(i = 1, 2, · · · , k) incorporates relevant regions
of an image. Finally, the sequence of {F1,F2, · · · ,Fk} is output. Notice that,
due to the property of clustering algorithm, the above sequence is unordered.
For example, both x1 and x2 are images of bird. After clustering, the bird’s
wing of x1 is included in c1 while that of x2 in c2, which causes the order of
{F1,F2, · · · ,Fk} various from different images.



Spatial Attention Network for Few-Shot Learning 571

Fig. 1. An illustration of the overview architecture of proposed spatial attention net-
work. It consists of feature extractor and attention module. The figure illustrates an
example of attention module applied on one layer in Conv4 Block. Feature map cells
drawn with identical color belong to identical cluster. The output feature (gray) is
weighted sum of regional features.

Attention Module. In a specific layer of ConvNet, feature map cells that
correspond to target objects are included in {F1,F2, · · · ,Fk}, and the sequence
{F1,F2, · · · ,Fk} involves spatial context of input image. The essence of attention
module is to highlight effective contents in the sequence. Inspired by [14] which
employes sequential model to tackle image regions, we thus proposed a method
applying bi-directional LSTM which reduces the impact of sequence order to
exploit contextual relations in {F1,F2, · · · ,Fk} and generates attention weights
αi(i = 1, 2, · · · , k) assigned to Fi(i = 1, 2, · · · , k). The bi-directional LSTM and
attention weights are defined as follow.

−→
h i,

−→c i = LSTM(Fi,
−→
h i−1,

−→c i−1) (2)

←−
h i,

←−c i = LSTM(Fi,
←−
h i+1,

←−c i+1) (3)

α̂i = g(
[−→

h i,
←−
h i

]
) (4)

αi =
eα̂i

∑k
j=1 eα̂j

(5)
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−→
h i and

←−
h i are outputs of LSTM at the i-th step with different direction.

−→
h i and←−

h i are concatenated together, and then the concatenated vector is put through
a multiple neural network g(·) which outputs a score α̂i. We resort to softmax
function (Eq. 5) that normalizes scores {α̂1, α̂2, · · · , α̂k} and generates attention
weights {α1, α2, · · · , αk}. Therefore, the final feature in this layer is obtained as
follow.

f =
k∑

i=1

αi · Fi (6)

Training Procedure. We adopt meta-learning strategy to train our few-shot
model. Images in Dbase are viewed as Dnovel at this stage, for Dnovel cannot be
seen in few-shot training and is used to check model’s generalization. In order to
train attention module, we randomly sample Q classes in Dbase, with each class
including N examples. The total Q×N examples make up of a training episode
and are input into Feature Extractor G(·|θ) appended with attention module.
We do not freeze parameters of G(·|θ) during the training. For each instance,
we can compute the probability of its label with output feature f and Wbase via
Eq. 1. We employ cross-entropy loss function with above probability and ground
truth label at this stage.

Prediction on Novel Classes. For Q-way, M -shot classification in Dnovel, we
need to compute class prototypes of support set. The details of class prototype
can be seen in [19]. At prediction phase, output features of unlabeled query data
and class prototypes of labeled support data would be compared in nearest-
neighbor manner to determine classes for unlabeled data.

4 Experiment

In this section, we firstly describe our experimental design. Then we conduct
the experiment about exploring how to choose cluster number k. We present
experimental results evaluated on three few-shot learning benchmark datasets
with appropriate cluster number. Finally, visualization is posted to understand
what SAN learns.

4.1 Experimental Design

We conduct 5-way 1 and 5-shot classification in all our experiments. In one
training episode, we randomly choose 5 classes with 16 images for each class.
With regard to one testing episode, we reference to experiments in [17]. Besides
randomly sampling 5 classes with 1 image (5 images in 5-shot setting) for each
class as support set, the remaining unseen images for each sampled classes make
up of query set on both 1 and 5-shot tasks. Average accuracy is computed on
10 such testing episodes.
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In all experiments, we train our model using Adam optimization with initial
learning rate 10−3. The learning rate is multiplied by 0.5 after every 1,000 train-
ing episodes. We use weight decay 10−4. Simple ConvNet is selected as feature
extractor. ConvNet has 4 convolutional blocks, each of which is consisted of 3
× 3 convolutions with 64 filters, batch normalization, ReLU non-linearity, and
2 × 2 max-pooling. ConvNet takes images of 84 × 84 as input. To evaluate our
method on deep network, we also try ResNet as backbone network, which takes
images of 224 × 224 as input. Attention module is applied on the last CNN
feature map. Our implementation of all experiments is based on PyTorch [1].

4.2 Comparison

Dataset Description. Three public benchmark datasets in our experiments are
miniImageNet, Caltech-UCSD Birds and miniDogsNet. MiniImageNet dataset
is consisted of 60,000 color images, which contains 100 classes with 600 examples
for each class. We follow the split introduced by [17], with 80 for training, and the
remaining 20 classes for testing. Caltech-UCSD Birds (CUB) is a fine-grained
classification dataset which includes 12K images with 200 categories of wild
birds. We conduct an experiment on CUB to evaluate the performance of our
proposed approach on fine-grained few-shot classification. For 200 categories of
bird species, we randomly split them into 150 for training and 50 for testing.
MiniDogsNet is an alternative fine-grained classification dataset. We follow [7]
to create the dataset which contains 100 classes of dogs randomly selected from
ImageNet dog categories. To mimic the experimental setting on miniImageNet,
we divide miniDogsNet into 80 for training and 20 for testing.

Discussion on Cluster Number. In order to explore the effect of different
cluster number k on accuracy in various tasks, we test the hyper-parameter in
{2, 5, 7, 10, 15, 20}. For simplicity, the experiment is conducted on 5-way 1-shot
classification in three datasets and our backbone network is ConvNet. We can
perceive that choosing k = 10, 7, 10 leads to best accuracies in these datasets,
respectively. The result is shown in Table 1 and visualization about clusters of
image contents is presented in Fig. 2. In later experiments, we thus select k = 10
for miniImageNet and miniDogsNet, k = 5 for CUB.

Table 1. 5-way 1-shot accuracies with different cluster k

Dataset k = 2 k = 5 k = 7 k = 10 k = 15 k = 20

miniImageNet 49.33 52.82 53.82 54.16 47.31 45.63

CUB 56.37 61.53 63.13 60.57 58.74 50.14

miniDogsNet 45.39 45.78 45.74 46.32 45.07 45.47
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5-Way 1/5-Shot Result. We post our experimental results in Table 2.
The state-of-the-art models are implemented by simple ConvNet that is
described above. It is obvious that our proposed method achieves competitive
results (54.16% on 1-shot classification and 69.35% on 5-shot classification) in
miniImageNet dataset. For evaluation on fine-grained dataset, SAN achieves the
highest 1-shot accuracy in CUB, but does not overtake Relation Net on 5-shot
learning. In miniDogsNet, our method achieves the highest results on both 1
and 5-shot classification, and enhances 5-shot result by a large margin. Further-
more, backbone network based on ResNet can boost classification performance
because of its strong ability on feature representation.

Table 2. 5-way 1-shot/5-shot accuracy results

Method miniImageNet CUB miniDogsNet

Matching Network [22] 45.91/57.66 49.34/59.31 46.01/57.38

Prototypical Network [19] 49.42/68.20 51.31/70.77 –

Meta-Learner LSTM [15] 43.44/60.60 40.43/49.65 38.37/53.65

MAML [3] 48.70/63.11 55.92/72.09 31.52/59.66

MACO [7] 41.09/58.32 60.76/74.96 39.10/54.45

RELATION NET [21] 57.02/71.07 62.45/76.11 –

SAN(ConvNet) 54.16/69.35 63.13/72.70 46.32/64.37

SAN(ResNet) 58.17/75.92 66.47/78.46 57.39/71.08

4.3 Visualization

In order to figure out what attention module learns, we conduct the following
three visualizations and analyze why Spatial Attention Network works in few-
shot classification.

Image Contents Clustering. We firstly observe that whether relevant image
contents are gathered together by clustering. Specifically, last feature map of
ResNet has size of 7 × 7 × 512, and we divide input image into 7 × 7 regions.
We assume that clusters of feature map cells approximate to clusters of these
regions. Visualization results can be seen in Fig. 2. Note that relevant image
contents belong to one or several clusters. For example, the dog in Fig. 2(a) is
nearly covered by blue bounding boxes, implying that features related to the
dog are in the same cluster. In Fig. 2(b), the target object is clearly divided into
multiple clusters. Furthermore, we can perceive that option of cluster number
k = 10 is better than cluster number k = 15, which might explain why the result
of choosing 10 clusters is higher than that of choosing 15 clusters in Table 1.
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(a) Cluster k = 10 (b) Cluster k = 15

Fig. 2. Cluster visualization. (a) and (b) represent clusters of image contents in dog
category. Bounding boxes with different colour indicate different clusters. (Color figure
online)

Features Embedding. In this visualization, we sample 5 categories from
the three datasets respectively, and each category contains 30 examples. The
total 150 images of each dataset are input into Spatial Attention Network, and
obtain 150 attention features. We reduce dimension of the features into two-
dimensional points via t-SNE [13], and plot them in a 2D figure. The visualized
result can be seen in Fig. 3. Note that embeddings in CUB show promising with
large inter-class variance and small intra-class variance. Although embeddings in
miniImageNet and miniDogsNet have no absolutely obvious boundaries between
disparate categories, it makes sense that most of features in the same category
gather together and keep a certain distance with features in disjoint categories.

(a) miniImageNet (b) CUB (c) miniDogsNet

Fig. 3. 2D embedding figure. (a), (b), and (c) represent embeddings in miniImageNet,
CUB and miniDogsNet respectively. Points with the same color come from identical
category.

Attention Module. We visualize attention module in feature maps to see
whether Spatial Attention Network works as our hypothesis. According to
Sect. 3.2, attention module generates attention weights {α1, α2, · · · , αk}. For fea-
ture map with size of W×W×C, we can produce a mask of W×H which exhibits
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weights of corresponding feature map cells. Following [28], the mask is resized
to 224×224 (input image’s shape) and covered on input image. Figure 4 demon-
strates this visualization from bird and dog category. Heat maps indicate that
attention module endeavors to capture the key region related to target objects
in images. From 4(d), (e) and (f), we can see that our model tackles the issues of
distinguishing targets from multi-object images and occlusion of other objects.

Fig. 4. Visualization of attention module. (a), (b), (c) are from bird category, and
(d), (e), (f) are from dog category

5 Conclusion

In this paper, we have proposed a novel Spatial Attention Network architecture
for few-shot learning. Spatial Attention Network applies attention module on
feature map to generate discriminative features. We evaluate our approach on
miniImageNet, Caltech-UCSD Birds and miniDogsNet datasets, and Spatial
Attention Network has achieved promising performance on these datasets in
comparison with previous state-of-the-art models. We visualize clusters of image
contents, features embedding and attention module to figure out what Spatial
Attention Network learns, and observe that in the new embedding space, features
in identical category are grouped together and the model tries to focus on salient
image area with target objects.
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Abstract. Traditionally, the automatic recognition of human activities
is performed with supervised learning algorithms on limited sets of spe-
cific activities. This work proposes to recognize recurrent activity pat-
terns, called routines, instead of precisely defined activities. The mod-
eling of routines is defined as a metric learning problem, and an archi-
tecture, called SS2S, based on sequence-to-sequence models is proposed
to learn a distance between time series. This approach only relies on
inertial data and is thus non intrusive and preserves privacy. Experimen-
tal results show that a clustering algorithm provided with the learned
distance is able to recover daily routines.

Keywords: Metric learning · Sequence-to-sequence model ·
Activity recognition · Time series · Inertial data

1 Introduction

Human Activity Recognition (HAR) is a key part of several intelligent systems
interacting with humans: smart home services [10], actigraphy and telemedecine,
sport applications [3], etc. It is particularly useful for developing eHealth services
and monitoring a person in its everyday life. It has been so far mainly performed
in supervised contexts with data annotated by experts or with the help of video
recordings [8]. Not only is this approach time consuming, but it also restricts
the number of activities that can be recognized. It is associated with scripted
datasets where subjects are asked to perform sequences of predefined tasks. This
approach is thus unrealistic and difficult to set up for real environments where
people do a vast variety of specific activities everyday and can diverge from a pre-
established behavior in many different ways (e.g., falls, accidents, contingencies
of life, etc.). Besides, most people present some kind of habitual behavior, called
routines in this paper: the time they go to sleep, morning ritual before going
to work, meal times, etc. Results from behavioral psychology show that habits
are hard and long to form but also hard to break when well installed [20]. From
a data-driven perspective, Gonzalez et al. [14] observed the high regularity of
human trajectories thanks to localization data and show that “humans follow
c© Springer Nature Switzerland AG 2019
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simple reproducible patterns”. Routines produce distinguishable patterns in the
data which, if not identifiable semantically, could be retrieved over time and
so produce a relevant signature of the daily life of a person. In this paper, we
advocate for the modeling of such routines instead of activity recognition, and
we propose a machine learning model able to identify routines in the daily life of
a person. We want this system to be unintrusive and to respect people’s privacy
and therefore to rely only on inertial data that can be gathered by a mobile
phone or a smart watch. Moreover, routines do not need to be semantically
characterized, and the model does not have to use any activity labels. The daily
routines of a person may present characteristics of almost-periodic functions,
periodic similarity, regarding a certain metric which we propose to learn. To do
so, we adapted the siamese neural network architecture proposed by Bromley et
al. [7] to learn a distance from pairs of sequences and propose experiments to
evaluate the quality of the learned metric on the problem of routine modeling.
The contributions of this paper are threefold:

1. a formulation of routine modeling as a metric learning problem by defining
routines as almost-periodic functions,

2. an architecture to jointly learn a representation and a metric for time series
using siamese sequence-to-sequence models and an improvement of the loss
functions to minimize,

3. results showing that the proposed architecture is effectively able to recover
human routines from inertial data without using any activity labels.

The remainder of the paper is organized as follows. Section 2 is dedicated to
routine modeling definition. Section 3 gives an overview of time series metrics.
The proposed approach to recognize routines is presented in Sect. 4 and Sect. 5
presents experimental protocols and results. Finally, conclusions and perspec-
tives are drawn in the last section.

2 Routine Modeling

A routine can be seen as a recurrent behavior of an individual’s daily life. For
example, a person roughly does the same thing in the same order when waking
up or going to work. These sequences of activities should produce distinguishable
patterns in the data and can thus be used to monitor the life of an individual
without knowing what he or she is doing exactly. The purpose of this work is to
design an intelligent system which is able to recognize routines. To tackle routines
with machine learning, we propose a starting principle similar to the one used
in natural language processing: similar words appear in similar contexts. The
context surrounding a word designates the previous and following words of the
sentence, for example. The context of a routine corresponds here to the moment
of the day or the week, etc. it generally happens.

Principle 1. Similar routines occur at similar moments, almost periodically.
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From this principle, we seek now to propose a mathematical formulation of rou-
tines which would include the notions of periodicity and similarity. The almost
periodic functions defined by Bohr [6] show similar properties:

Definition 1. Let f : R → C be a continuous function. f is an almost-periodic
function with respect to the uniform norm if ∀ε > 0, ∃T > 0 called an ε-almost
period of f such as:

sup |f(t + T ) − f(t)| � ε. (1)

Obviously, the practical issue of routine modeling presents several divergences
from this canonical definition: data are discrete time series and the periodicity
of activities cannot be evaluated point-wise. Nevertheless, it is possible to adapt
it to our problem. Let S : N → R

n be an ordered discrete sequence of vectors
of dimension n. If the frequency of S is sufficiently high, it is possible to get a
continuous approximation of it, by interpolation for example. We now consider
a function fS of the following form with a fixed interval length l:

fS : R+ → R
n×l

t �→ [S(t) : S(t + l)[,
(2)

where [S(t) : S(t + l)] is the set of vectors between S(t) and S(t + l) sampled
at a certain frequency from the continuous approximation. l is typically one or
several hours: a sufficiently long period of time to absorb the little changes from
one day to another (e.g., waking up a little earlier or later, etc.). The objective
is to define almost-periodicity with respect to a distance d between sequences,
such that ∀ε > 0, ∃T > 0:

d(fS(t), fS(t + T )) � ε. (3)

The parameter T can be a day, a week or a sufficiently long period of time to
observe repetitions of behavior. The metric d must be sufficiently flexible to han-
dle the high variability of activities which can be similar but somewhat different
in their execution while exhibiting a similar pattern. We therefore postulate that
d may be learned for a specific user from its data and we will now show that
fS respects the condition established in Eq. (3) with respect to d. To learn d
if pairs of similar and dissimilar sequences are known, a Recurrent Neural Net-
work (RNN) encoder parametrized by W , called GW , can encode the sequences
into vector representations and the contrastive loss [15] can be used to learn the
metric from pairs of sequence encodings:

L(W,Y1, Y2, y) = (1 − y)
1
2
d(Y1, Y2)2 + y

1
2
max(0,m − d(Y1, Y2))2, (4)

where y is equal to zero or one depending if the sequences are respectively similar
or not, Y1 and Y2 are the last output of the RNN for both sequences and m > 0
a margin that defines the minimal distance between dissimilar samples. Several
justifications arise for the use of a margin in metric learning. It is necessary
to prevent flat energy surface, according to energy-based learning theory [21],
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a situation where the energy is low for every input/output associations, not only
those in the training set. It also insures that metric learning models are robust
to noise [29]. As the learning process aims to minimize the distances between
similar sequences which are, by definition, shifted by a period T , we get, for a
fixed T > 0 and ∀t ∈ R+:

d(GW (fS(t)), GW (fS(t + T ))) � m. (5)

The margin m can be chosen as close to zero as possible and thus Eq. (5)
identifies itself with Eq. (3). In practice, this optimization is only possible up to
some point, depending on the model and the data. This argumentation suggests
the interest of modeling routines with metric learning as, in this case, the main
property of almost-periodic functions is fulfilled.

3 Related Work

The traditional approach to compute distances between sequences (or time series,
or trajectories) is to perform Dynamic Time Warping (DTW) [25] which was
introduced in 1978. Since then, several improvements of the algorithm have been
published, notably a fast version by Salvador et al. [26]. DTW is considered one
of the best metric to use for sequence classification [31] combined with k-nearest
neighbors. Recently, Abid et al. [1] proposed a neural network architecture to
learn the parameters of a warping distance accordingly to the euclidean distances
in a projection space. However, DTW, as other shaped-based distances [11], is
only able to retrieve local similarities when time series have a relatively small
length and are just shifted or not well aligned.

Similar routines could present different data profiles which would necessitate
a more complex and global notion of similarity. This justifies the extraction of
high-level features to produce a vector representation of the structure and the
semantics of the data [22]. Traditional metrics can be used to compare vector
representations: Euclidean, cosine or Mahalanobis. These vectors can be build
with features extracted by various methods such as discrete Fourier and Wavelet
transforms, signal processing, singular value decomposition or Hidden Markov
Models (HMM) [2]. HMM belong to a category of approaches which suppose
the existence of an underlying model which has produced the data; other exam-
ples include AutoRegressive-Moving-Average (ARMA) or multivariate exten-
sions (VARIMA), Markov chains, etc. In this case, similarity can be assess by
comparing model parameters. More theoretical approaches based on the study of
the spectral properties of these models have also been proposed in [18,23]. The
problem with these approaches is that it is difficult to select relevant features
and/or to chose an accurate model and parameters for a given task. It would
be better if an appropriate representation of the data could automatically be
extracted accordingly to the problem, by a Neural Network (NN) for example.

Besides, Bromley et al. [7] proposed a Siamese Neural Network (SNN) archi-
tecture to learn a metric. They have since then been used for many applications
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Fig. 1. Proposed SS2S architecture.

with feedforward or convolutionnal NN such as person reidentification [32], ges-
ture recognition [4], object tracking [5], etc. RNN and particularly Long-Short
Term Memory (LSTM) NN [16] are well-adapted to work with long sequential
data as they are able to deal with long-term dependencies. Müller et al. [24]
used a siamese recurrent architecture to learn sentence similarity by encoding
sequence of word vectors previously extracted belonging to the same sentence.

In the following section, we propose a novel Siamese Sequence to Sequence
(SS2S) neural network architecture to learn to model routines without label
supervision. The model effectively combines automatic feature extraction and
a similarity metric by jointly learning a robust projection of time series in a
metric space. This approach is able to deal with long sequences by using LSTM
networks and do not necessitate to choose a model to fit or features to extract.

4 Siamese Sequence to Sequence Model

4.1 Feature Extraction Approach

The time series data obtained from inertial sensors may be very noisy and cer-
tainly vary for the same general activity (e.g., cooking). Robust feature repre-
sentations of time series should therefore be learned before learning a metric.
We thus propose (Fig. 1) to map each sequence to a vector using a Sequence
to Sequence model [1,9,27]. The sequence is given as input to the first LSTM
network (the encoder) to produce an output sequence, the last output vector
is considered as the learned representation. This representation is then given to
the second LSTM (the decoder) which tries to reconstruct the input sequence.
Typically, an autoencoder is trained to reconstruct the original sequence with
the Mean Squared Error (MSE):

MSE(S, Ŝ) =
1
l

l−1∑

t=0

(S(t) − Ŝ(t))2, (6)
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where S is the sequence and Ŝ the output sequence produced by the autoencoder
from the vector. Similarly, we propose a new Reconstruction Loss (RL) based
on cosine similarity, the Cosine Reconstruction Loss (CRL):

CRL(S, Ŝ) = l −
l−1∑

t=0

cos(S(t), Ŝ(t)). (7)

CRL is close to 0 if the cosine similarity between each pair of vectors is close to
one when the vectors are collinear.

4.2 Metric Learning

Our architecture is a siamese network [7], that is to say it is constituted of
two subnetworks sharing the same parameters W (see Fig. 1). It takes pairs of
similar or dissimilar sequences as input constituted with what is called equiva-
lence constraints. The objective of our architecture is therefore to learn a metric
which makes close similar elements and separates the dissimilar ones in the pro-
jection space. Three metric forms can generally be used: Euclidean, cosine or
Mahalanobis [12,15,32]. The first two are not parametric and only a projec-
tion is learned. Learning a Mahalanobis-like metric implies not only learning the
projection but also the matrix which will be used to compute the metric. One
different Metric Loss (MeL) is proposed to learn each metric form. Y1 and Y2 are
the representations learned by the autoencoder from the inputs of the siamese
network. The first is the contrastive loss [15] (see Eq. (4)) to learn an euclidean
distance. The second is a cosine loss to learn a cosine distance:

L(W,Y1, Y2, y) =
{

1 − cos(Y1, Y2), if y = 1
max(0, cos(Y1, Y2) − m), if y = −1.

(8)

Finally, Mahalanobis metric learning can be performed with the KISSME algo-
rithm [19] which can be integrated into a NN [12]. This algorithm aims to maxi-
mize the dissimilarity log-likelihood of dissimilar pairs and conversely for similar
pairs. The model learns a mapping under the form of a matrix W and an associ-
ated metric matrix M of the dimension of the projection space. W is integrated
into the network as a linear layer (just after the recurrent encoding layers in
SS2S) trained with backpropagation while M is learned in a closed-form manner
and updated after a fix number of epochs with the following formula:

M = Proj((WTΣSW )−1 − (WTΣDW )−1). (9)

ΣS and ΣD are the covariance matrices of similar and dissimilar elements in the
projection space and Proj is the projection onto the positive semi definite cone.
We propose a modified version of the KISSME loss proposed in [12] which we
found was easier to train based on the contrastive loss (Eq. (4)):

L(W,Y1, Y2, y) =(1 − y)
1
2
(Y1 − Y2)M(Y1 − Y2)T

+ y
1
2
max(0,m − (Y1 − Y2)M(Y1 − Y2)T ).

(10)
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4.3 Training Process

Two training processes can be considered for this architecture. Train the autoen-
coder and then “freeze” the network parameters to learn the metric if it is para-
metric. Or, add the metric loss to the reconstruction loss and learn jointly both
tasks. In this case, several difficulties could appear. Both losses must have similar
magnitudes to have similar influences on the training process. The interaction
between the two must also be considered. Both tasks could have eventually diver-
gent or not completely compatible objectives. Indeed, we proposed the CRL with
the a priori that it should better interact with the learning of a cosine metric
than MSE due to the similar form between the two. This leads to our first
hypothesis (H1):

Hypothesis 1. Learning a cosine distance along a representation with CRL
gives better results than with MSE.

Despite the possible issues, we hope that learning both tasks jointly should lead
to the learning of more appropriate representations and thus to better results.
This leads to our second hypothesis (H2):

Hypothesis 2. Jointly learning a metric and a representation with a sequence
to sequence model gives better results than learning both separately.

5 Experiments

5.1 Experimental Setup

Dataset Presentation. Long-term unscripted data from wearable sensors are
difficult to gather. The only dataset we found that could fit our requirements
has been obtained by Weiss et al. [30] and is called Long Term Movement Mon-
itoring dataset (LTMM)1. This dataset contains recordings of 71 elderly people
which have worn an accelerometer and a gyroscope during three days with no
instructions. This dataset contains no labels. Figure 2a presents two days of data
coming from one axis of the accelerometer: similar profiles can be observed at
similar moment. Figure 2b presents the autocorrelation of the accelerometer sig-
nal: the maximum of 0.4 is reached for a phase of 24 h. These figures show the
interest of this dataset as the data show periodic nature while presenting major
visual differences. That said, the definition of periodicity that our algorithm is
made to achieve is stronger as it is based on a metric between extracted feature
vectors, not just correlations of signal measurements.

To constitute our dataset, we selected in the original dataset a user who did
not remove the sensor during the three days to avoid missing values. We set up
a data augmentation process to artificially increase the quantity of data while
preserving its characteristic structure. The dataset is sampled at 100 Hz and
thus, to multiply the number of days by ten, each vector measurement at the

1 https://www.physionet.org/physiobank/database/ltmm.

https://www.physionet.org/physiobank/database/ltmm
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same index modulo 10 will be affected to a new day (the order is respected). This
new dataset has a sampling rate of 10 Hz which means that one hour of data is
a sequence of size 36000, we consider only non overlapping sequences. Thus, to
make the computation more tractable, polyphase filtering is applied to resample
each sequence of one hour to a size of 100. Finally, equivalence constraints need
to be defined in order to make similar and dissimilar pairs: two sequences of
one hour, not from the same day but recorded at the same time are considered
similar, all other combinations are considered dissimilar. This approach does not
therefore require semantic labels.

Model Parameters and Training Details. We describe here the hyperpa-
rameters used to train the models. The autoencoders are constituted of one
layer of 100 LSTM neurons for the encoder and the decoder. For the KISSME
version, the encodings are then projected into a 50-dimensional space, and the
distance matrix, which thus has also dimension 50, was updated with the closed-
form every 30 epochs. These parameters were determined after preliminary tests
where deeper architectures and higher dimensional spaces were tested. Models
are trained with 20 similar pairs for each time slot and the same total number of
dissimilar pairs for a total of 960 training pairs coming from 12 different days of
data. The training was stopped based on the loss computed on the validation set
which contains three days of data i.e., 72 sequences. The testing set is composed
of 15 days or 360 sequences. The data in the training set were standardized to
have a mean of 0 and a variance of 1, the same parameters were applied on the
testing set. A learning rate of 0.001 was used and divided by 10 if the loss did
not decrease anymore during 10 epochs. A batch size of 50, a margin of 1 for the
contrastive loss and of 0.5 for the cosine loss were chosen. We also observed that
changing to zero 30% of the values of the training sequences sliglty improved the
results as suggested in [28].

5.2 Experimental Results and Discussion

Since the only available labels are time indications and to keep minimal super-
vision, the evaluation metrics rely on clustering. We report average values on 20
tests for 4 clustering evaluation metrics. Completeness assesses if sequences pro-
duced at the same hour are in the same clusters. Silhouette describes the cluster
shapes, if they are dense and well-separated. Normalized Mutual Information
(NMI) is a classical metric for clustering and measures how two clustering assig-
ments concur, the second being the time slots. Adjusted Mutual Information
(AMI) is the adjusted against chance version of NMI. A spectral clustering into
5 clusters is performed with the goal not to find the precise number of clus-
ters maximizing the metrics but to choose a number which will make appear
coherent and interpretable routines of the day, namely sleep moments, meals
and other daily activities performed every day. Finally, to make our distances
usable by the spectral clustering, they are converted to kernel functions. The
following transformation was applied to the Euclidean, Mahalanobis and DTW
distances: exp(−dist·γ) where γ is the inverse of the length of an encoding vector
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(a) 2 days of accelerometer data.

(b) Input signal autocorrelation for accelerometer data.

Fig. 2. LTMM dataset used to evaluate routine modeling procedure.

(respectively number of features time length of sequence for DTW). 1 was added
to the cosine similarity so it becomes a kernel.

Evaluation of Cosine Reconstruction Loss. The performance of the CRL
on LTMM is first evaluated. An experiment was performed by jointly train-
ing models for Euclidean or cosine distances with CRL or MSE. The results are



588 P. Compagnon et al.

reported in Table 1. An asterisk means the average results are significantly higher
according to a Welch’s test. The results demonstrate a significant improvement
of the proposed CRL over MSE when trained with the cosine similarity for Com-
pleteness, NMI and AMI. For the Silhouette score, better results are obtained
with the MSE. However, the standard deviations are large, and this improvement
is thus not significant. With the Euclidean distance, the same improvement is
not realized with a slight advantage of MSE over CRL. These results confirm our
hypothesis H1 that it is more appropriate to learn a cosine distance with CRL.
They also suggest a positive interaction between the two as the same effect could
not be observed with the Euclidean distance. We then use CRL in the remaining
of the paper.

Table 1. Evaluations of CRL and MSE on LTMM dataset.

Evaluation of the SS2S Architecture. Next, we investigated the benefit of
the SS2S architecture over DTW and Siamese LSTM (SLSTM) [24] as well as
the interest of jointly learning the encoder-decoder and the metric on the LTMM
dataset. Results are presented in Table 2. To test the DTW, the better radius was
selected on the validation set and the spectral clustering was performed using
DTW as kernel. Although Completeness, NMI and AMI are higher than every
SS2S architectures except one, we observe a negative silhouette value which
indicates a poor quality of the clustering and seems to confirm than indeed
shaped based distances are not suitable for this type of data. Concerning the
encoding architecture, SS2S gives overall better results than SLSTM and the best
results are achieved by using the disjoint version of KISSME with a completeness
of 0.983 and an NMI of 0.619. These results are not surprising as KISSME uses
a parametric distance which can therefore be more adapted to the data. For the
silhouette score, cosine distances performed best, i.e., they learned more compact
and well-defined clusters. We also note that disjoint versions of the architectures
performed better than the joint versions, thus invalidating our hypothesis H2.
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To investigate the reasons of this difference which could be due to the autoen-
coder not being learned properly, Table 3 reports average best Reconstruction
Errors on Validation set (REV). The lowest errors are systematically achieved
when the encoder is learned alone before the metric therefore supporting the
hypothesis that learning the metric prevents the autoencoder from being trained
at its full potential. It explains why the joint learning does not perform best.
For the CRL, results are closer than for MSE suggesting why this reconstruction
loss is easier to learn jointly.

Finally, Fig. 3 shows clustering representations for two approaches: DTW and
disjoint KISSME. The clusterings reflect the sequences of one hour that were
found similar across the days on the testing set. If these sequences are at the
same hour or cover the same time slots, we can argue it is a recurrent activity (or
succession of activities) and therefore a routine. The disjoint KISSME version
exhibits more coherent discrimination of routines, which, according to the 4
evaluation metrics reported was predictable. Several misclassified situations seem
to appear for DTW which is coherent with the negative silhouette score. High
regularities can be observed, and it is actually possible to make interpretations:
yellow probably corresponds to sleeping moments and nights, and purple to
activities during the day. Other clusters seem to correspond to activities at the
evening or during meal time. Consequently, the SS2S architecture is able to learn
a metric which cluster and produce a modeling of the daily routines of the person
without labels. In this example, the clusters are coarse, the granularity of this
analysis could be improved simply by working with sequences of half an hour or
even shorter and produce more clusters.

Table 2. Evaluations on LTMM dataset of the SS2S architecture (x means non appli-
cable).

Metric Model Joint Completeness Silhouette NMI AMI

DTW [26] x x 0.804 −0.93 0.528 0.32

Euclidean SLSTM x 0.616 ± 0.032 0.427 ± 0.053 0.414 ± 0.022 0.246 ± 0.019

Cosine SLSTM x 0.617 ± 0.06 0.572 ± 0.143 0.372 ± 0.052 0.192 ± 0.046

Euclidean SS2S no 0.674 ± 0.04 0.528 ± 0.07 0.458 ± 0.03 0.28 ± 0.027

Euclidean SS2S yes 0.635 ± 0.064 0.408 ± 0.042 0.434 ± 0.047 0.264 ± 0.038

Cosine SS2S no 0.71 ± 0.05 0.756* ± 0.089 0.467 ± 0.028 0.275 ± 0.024

Cosine SS2S yes 0.714 ± 0.048 0.618 ± 0.105 0.449 ± 0.032 0.253 ± 0.03

KISSME SS2S no 0.983* ± 0.016 0.439 ± 0.077 0.619* ± 0.035 0.363* ± 0.046

KISSME SS2S yes 0.667 ± 0.021 0.316 ± 0.039 0.446 ± 0.012 0.266 ± 0.012
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Table 3. Average reconstruction errors on the validation set of LTMM.

(a) DTW [26].

(b) SS2S and KISSME, disjoint learning.

Fig. 3. Examples of clustering obtained with our model on LTMM.

6 Conclusions and Perspectives

We presented a metric learning model to cluster routines in the daily behavior of
individuals. By defining routines as almost-periodic functions, we have been able
to study them in a metric learning framework. We thus proposed an approach
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which combines metric learning and representation learning of sequences. Our
proposed architecture relies on no labels and is learned only from time slots.
A new reconstruction loss was also proposed to be learned jointly with a cosine
metric and it showed better results than MSE in this case. Our SS2S architecture
with KISSME and disjoint learning process achieved stimulating results with
0.983 of completeness and 0.619 of NMI. A visual evaluation analysis allows
to interpret the recurrent behaviors discovered by the architecture. However,
these results invalidate in this case our second hypothesis that combining metric
learning and sequence to sequence learning would give better results.

In the future, we will investigate more deeply joint learning of representa-
tions and metrics. Several architecture improvements could also be made, for
examples: work with triplets instead of pairs, replace the LSTM with a convo-
lutionnal neural network [13] or an echo states network [17]. This last approach
works quite differently from a normal neural network and would require subse-
quent modifications of the architecture. Finally, we will study in further details
the link between almost-periodic functions and metric learning.
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Abstract. Despite the success of reinforcement learning methods in
various simulated robotic applications, end-to-end training suffers from
extensive training times due to high sample complexity and does not scale
well to realistic systems. In this work, we speed up reinforcement learning
by incorporating domain knowledge into policy learning. We revisit an
architecture based on the mean of multiple computations (MMC) prin-
ciple known from computational biology and adapt it to solve a “reacher
task”. We approximate the policy using a simple MMC network, exper-
imentally compare this idea to end-to-end deep learning architectures,
and show that our approach reduces the number of interactions required
to approximate a suitable policy by a factor of ten.

1 Introduction

Recent progress in training deep neural networks has facilitated the use of deep
reinforcement learning (RL) at large scales. Even in complex domains, RL agents
can now learn diverse behaviours ranging from playing games [14,22] over nav-
igating complex environments [13,28] to controlling robots [7,20]. Nevertheless,
RL faces two main challenges inherent to the learning approach which is purely
based on reward signals.

On the one hand, agents often learn sub-optimal behavior because of the
nature of reward signals, which are usually sparse and available only when agents
are in a goal state. On the other hand, the training process suffers from very high
sample complexity. While even simple tasks already require millions of interac-
tions, the problem becomes more severe for high dimensional control tasks.

Another drawback of modern RL systems is the lack of interpretability
regarding their decisions. Deep reinforcement learning uses function approxi-
mators such as deep neural networks to learn policy functions that map states
to actions. Although effective, the resulting networks are largely black-boxes
which, for mainly legal reasons, can not be applied in safety critical systems
such as autonomous vehicles where decisions must be transparent. Accordingly,
recently there has been a increased interest in interpretable deep reinforcement
learning and human-readable policies [11,27].
c© Springer Nature Switzerland AG 2019
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Here, we address the problem of high sample complexity as well as the black-
box nature of RL systems. By injecting expert knowledge into the models, we
intend to improve transparency and to build more reliable systems. In particular,
we inform the architecture of policy networks with domain knowledge to create
transparent, modular, and data-efficient policy networks.

We demonstrate our approach in the context of a reacher task where the
agent (a 2D multi joint arm) has to reach an unknown target based on feedback
and rewards. We first revisit a model based on the mean of multiple computations
(MMC) principle [24]. It has previously been successfully applied to biological
system modeling, e.g. for analyzing walking behaviors of six-legged insects [4].
An MMC Net has several attractive properties. First, it is a simple recurrent
neural network that can produce geometrically correct solution by predicting a
trajectory to reach a target. Second, it can easily be extended to other tasks,
e.g. a 3D 6-DoF arm, with little domain knowledge. Third, it has two compo-
nents: a linear part which can be optimized numerically based on rewards and
a known off-the-shelf non-linear component. This way, it is inherently modular
and enables easy transfer of learned policies.

Our main contributions are: (i) we introduce the idea of MMCs to build
modular policy networks using expert knowledge (ii) we extend MMC nets by
adapting recurrent connections through reward signals and use it to solve the
reacher task (iii) we experimentally compare the performance and sample com-
plexity of MMC nets against end-to-end policy networks.

2 Related Work

Earlier work on injecting prior knowledge into RL focused extensively on design-
ing reward signals by considering multiple sub-goals and intermediate rewards
based on the relative progress made [6,12]. More recent work [3,9] considers
hand-designed behavioural characteristics (BCs) to incorporate a novelty objec-
tive into the existing reward objective. This improves exploration in situations
where no explicit reward signals are available to the agents.

Another approach to use domain expertise is to learn from expert demonstra-
tions through inverse reinforcement learning [8,25,29]. Approaches that involve
human interaction [10,16], rely on attaining positive and negative feedback about
policies from human trainers to learn desired optimal behavior.

Prior work on building modular policy networks focused on transfer learning
by sharing layers of networks across different tasks [2,5]. Interesting work in
autonomous systems [15] uses networks which are decomposed into modules for
perception and controllers and has proven to be deployable to other vehicles and
environmental conditions with ease.

Differing from these approaches, we here focus on designing policy architec-
tures using domain knowledge. In particular we focus on modular networks with
hand-designed components rather than learning them in an end-to-end fashion.
Importantly, by designing components as MMC networks, we derive a simple
method which learns from a reduced number of interactions.
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3 Preliminaries

Markov Decision Processes: We consider a standard reinforcement learning
setting where an agent interacts with an environment. At time t, the agent
receives an observation ot about the environment state st , performs an action at ,
and receives a reward rt. Typically, the environment is stochastic and formulated
as a Markov Decision Process (MDP) defined by a tuple: 〈S,A,T ,Ra〉 where S
is a set of states, A is a set of actions, Ra is the reward function, and T is the
transition probability. Upon an action at , the environment moves to a new state
st+1 according to the transition function T (st+1, st ,at) and responds with a
scalar reward rt = Ra(st+1, st , at). The agent’s behavior is characterized by
a policy function π(st ,at) which maps each state-action pair (st ,at) to the
probability of selecting the action in the particular state. In RL, the goal of the
agent is to maximize the return discounted by λ ∈ (0, 1) over a period of time
T given as

GT =
T∑

t=1

λt−1rt. (1)

Policy Networks: For high-dimensional state and action spaces, it is not feasi-
ble to tabulate the probabilities for each state-action pair. Therefore, the policy
π is often represented as a deep neural network πθ with weights θ. The goal is
to determine optimal weights θ∗ that maximize the expected cumulative reward

θ∗ = argmax
θ

Eπθ

[
GT

]
. (2)

Optimization is typically achieved via stochastic gradient ascent where the
gradient ∇θEπθ

[
GT

]
is obtained using sampled sequences (st ,at , rt, st+1 . . . )

of interactions with the environment and can be computed via various policy
gradient methods [17,19,21].

Reacher Task: To test our methods, we consider a reacher task where a planar
three-segmented robotic arm with end effector has to reach a target position.
The target is generated randomly in every episode and its position is unknown
to the agent. The observation available to the agent consists of joint angles and
a feedback signal. The actions are desired joint angles in the trajectory. And
the reward is given as the negative norm of the distance of end effector to the
target. This setup is similar to the simulation available on OpenAI Gym [1] and
DeepMind’s control suite [26] but varies slightly w.r.t. observations and actions.

4 Background

Linear MMC Networks: Consider a simple manipulator (a robotic arm) with
three joints operating in a 2D space as shown in Fig. 1. Orientation and length
of the three segments of the arm are denoted as vectors L1, L2 and L3 in
a Cartesian coordinate system with the origin located at the shoulder joint.
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Fig. 1. Reacher environment: (a) A simple three-segmented robot arm with a ran-
domized target. (b) A robotic arm consisting of three segments denoted as L1, L2 and
L3. The relative angles at the joints are denoted as α, β, and γ. The vector pointing
to the end-effector (in green) is described as R. (Color figure online)

Two additional vectors D1, D2 connect the shoulder to the second joint and the
first joint to the end effector respectively; a vector R connects shoulder and end
effector. This setting provides the following over-determined system of equations

L1 + L2 + L3 − R = 0
L2 + R − D2 − D1 = 0
L1 − L3 + D2 − D1 = 0

L1 + L2 − D1 = 0
L2 + L3 − D2 = 0
L3 − R + D1 = 0
L1 − R + D2 = 0

(3)

In (3) each vector appears exactly four times and according to the MMC
principle, we can write every vector as a mean of the corresponding entries in
the four equations. For instance, L1 can be computed as

L1 =
1
4
(−2L2 + 2R − 2D2 + 2D1) (4)

Given a desired target position R, this setting is an instance of inverse kine-
matics in which the goal is to solve for the values L1,2,3 in an iterative manner.
Thus, the mean values are fed back as input to the system for the next iteration
until the system relaxes to the desired position. Note that R is kept constant
throughout and its mean value is suppressed during the feedback. Furthermore,
self-excitations are introduced via damping factors d1, d2, d3, with the goal
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Fig. 2. A sketch of MMC architecture described in this paper; it consists of components
for MMC Net sandwiched by forward and inverse transformations.

to suppress oscillations. In summary, the system represents a simple form of a
recurrent neural network whose dynamics can be written as

L1(t + 1) =
1

4 + d1
[d1L1(t) − 2L2(t) + 2R − 2D2(t) + 2D1(t)]

L2(t + 1) =
1

4 + d2
[−2L1(t) + d2L2 − 2L3(t) + 2D2(t) + 2D1(t)]

L3(t + 1) =
1

4 + d3
[−2L2(t) + d3L3 + 2R + 2D2(t) − 2D1(t)]

The coefficients of this system of equations can be collected in a matrix θ
(scaling factors are ignored for readability)

θ =

⎡

⎣
d1 −2 0 2 −2 2
−2 d2 −2 0 2 2

0 −2 d3 2 2 −2

⎤

⎦ (5)

which will later be subject to a reinforcement learning policy.
During the relaxation the lengths of the arm vectors may change, which is, of

course, undesirable. Rather the system should find a suitable joint configurations
to reach the target while leaving the arm lengths constant. This can be achieved
via a non-linear model.

Non-linear MMC Networks: In order to keep the lengths of the three arm
segments fixed, we follow [24] and describe the arm segments in terms of their
lengths L1, L2 and L3 and orientations α, β, γ. At time t, αt, βt, γt are given as
input to the system and the outputs are the predicted orientations αt+1, βt+1,
γt+1 that will serve as the input for the next iteration.
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The architecture is divided into three components, a forward component
for non-linear transformations, an MMC network component and an inverse
component. A sketch of the non-linear MMC architecture is shown in Fig. 2.

In the forward pass, the joint angles are first transformed to arm vectors using
the transformations V and T. V takes a constant length of an arm segment L
and a joint angle α as inputs to compute the corresponding arm vector

L = L

[
cos α
sinα

]
(6)

The transformation T takes an arm vector L and an angle α as input and applies
a corresponding rotation

L′ =
[
L′

x

L′
y

]
=

[
cos α − sin α
sinα cos α

] [
Lx

Ly

]
(7)

The transformations are applied in sequence; for instance, γt is transformed
by (V, T, T), where the latter two transformations are necessary because the
joint angles are all relative to their own axis [Fig. 1].

The output of the forward pass are the arm vectors L1(t), L2(t), L3(t) which
are then fed to the linear MMC Net to compute the predicted arm vectors for
the next time step, L1(t + 1), L2(t + 1), L3(t + 1).

Finally, in the inverse component, these vectors are converted back to the
corresponding arm orientations αt+1, βt+1, γt+1 using the inverse of T and A,
which is the inverse of V and computes the arm orientation given an arm vector

α = arctan(Ly, Lx) (8)

5 Learning a Modular Policy Network

So far we discussed the planning of a trajectory towards a target position using
MMC networks. However, in an RL setting, the agent does not have access target
positions directly. For instance, in the reacher task, the agent instead receives a
feedback vector which is usually the distance between the end-effector and the
target denoted as Rt . Thus, it can be treated as a proxy for the actual target
position. In this case, too, the coefficients of the MMC Net have to be solved but
instead of solving by hand, they can now be trained based on reward signals.
To this end, we define the policy π as a MMC policy network πθ with weights θ
which can be then adapted by a policy learning method.

5.1 Approach for Solving Reacher Tasks

The main idea is to decompose our MMC policy network πθ into linear and
non-linear components and to adapt only the linear component while non-linear
components are used off-the-shelf. At time t, observation ot is processed as



Leveraging Domain Knowledge for RL 601

1. Forward Component: This part of the network converts the joint angles
contained in the given observation ot = (αt, βt, γt,Rt) into input vectors
L1(t), L2(t) and L3(t) via transformations V and T.

2. MMC Component: This is a linear MMC net with weights θ which are
adapted by a learning method through interaction with the environment. This
component then acts as a planning module which predicts the next point in
the trajectory L1(t + 1), L2(t + 1) and L3(t + 1).

3. Inverse Component: This complements the forward component. Outputs
of the MMC net, such as the predicted arm vectors L1(t + 1), L2(t + 1) and
L3(t + 1), will be converted back to joint angles αt+1, βt+1, γt+1 resulting in
an action vector at

Using such a modular system, forward- and inverse components can be shared
between similar tasks or can be engineered using domain knowledge to solve
different tasks. Only the MMC net needs to be trained for the given task. Most
importantly, by designing the inputs that are passed to MMC net, the task can
be solved efficiently.

5.2 Learning Method

Our goal is to find the optimal value for coefficients θ of MMC net such that
the expected cumulative reward is maximized θ∗ = argmaxθ J(θ) where J(θ) =
Eπθ

[
GT

]
. To train θ of the MMC net, we use a stochastic approximation, namely

Simultaneous Perturbation Stochastic Approximation (SPSA). SPSA [23] offers
a simple approach to iteratively update θ by using gradient estimates

θk+1 = θk + ak ĝk(θk) (9)

where ĝk(θk) is an estimator of the gradient at θk and ak is the learning rate in
iteration k. To estimate the gradient, two perturbations are generated, namely
(θk + ck δk) and (θk − ck δk) where δk is a perturbation vector and ck is a
scaling parameter. The objective function at J(θk + ck, δk) and J(θk − ck δk) is
measured by rolling out an episode with MMC network with weights (θk +ck δk)
and (θk − ck δk) respectively. Then, the gradient is estimated using a two-sided
gradient approximation

ĝk(θk) =
J(θk + ck δk) − J(θk − ck δk)

2 ck δk
. (10)

For the convergence of the algorithm, the learning rate ak must satisfy Robbins-
Monro conditions [18], namely ak > 0 and

∑∞
k=1 ak = ∞, therefore a typical

choice in practice is ak = a
(A+k)η where a, η,A > 0. Similarly, the scaling factor

ck must satisfy
∑∞

k=1

(
ak

ck

)2
< ∞ so that a good choice would be ck = c

kτ where
c, τ > 0. And, finally, each element of the perturbation vector δk is sampled from
a uniform distribution over the set {−1,+1}.
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(a) Variant I (b) Variant II

Fig. 3. Learning curves: Evolution of episodic total reward in learning of Reacher
task with two variants; (a) Variant I: in which target position as given in the observation
and (b) Variant II: in which target position is not directly available, but as a feedback
signal in the observation. As observed, MMC networks outperform end-end approaches
in both variants.

6 Results and Discussion

In this section, we demonstrate the performance of the proposed MMC pol-
icy network using a simulation environment as shown in Fig. 1. In particular, we
focus on performance metrics such as episodic total reward and sample complex-
ity. Furthermore, we consider Variant I, where the agent observes the target
position directly, and Variant II, where the agent receives a feedback signal
based on the difference between end effector position and target position. We
evaluate our MMC policy network against end-end policy networks on learning
a deterministic policy which predicts joint angles. Since angular velocities are
not included in the observation, we also consider a recurrent neural network as
a baseline treating it as a partially observable task.

In each experiment, the length of an episode is limited to 30 time steps.
Therefore, the goal is not just to reach fast but also to maintain the end effector
around the target. Our MMC net is a linear model consisting of 8 input neu-
rons and 6 output neurons. Our baselines are (i) a fully connected multi-layer
perceptrons (MLP) with 3 hidden layers consisting of 30 neurons with tanh acti-
vation, (ii) a recurrent neural network (RNN) of gated recurrent units (GRU)
with 3 hidden layers consisting of 30 neurons. All networks are trained using
SPSA parameters a = 0.01, A = 10, η = 0.1, c = 0.01, τ = 0.1. Gradients are
smoothed via RMSprop with decay 0.9. Finally, for stable learning, K pairs of
perturbations are evaluated to compute average gradients; K is tuned to the size
of the network (100 for the baseline models and 50 for the MMC net).
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(a) MLP (b) RNN (c) MMC

(d) MLP (e) RNN (f) MMC

Fig. 4. Agent behaviors: Initial and final arm positions are shown in orange and
red respectively; (a), (d) trajectories toward the target with MLP agent; (b), (e) with
RNN agent; (c), (f) with MMC agent. MMC agents quickly approach the target and
maintain their position around the target throughout an episode. (Color figure online)

6.1 Learning Performance

In order to evaluate the performance of the MMC network quantitatively, we
consider the learning of an optimal policy using MMC networks and compare
them to baseline techniques. Figure 3 shows the evolution of episodic total reward
(averaged over different random seeds) in the learning process (the higher the
better) for both variants of the task. These results suggest that the MMC policy
network is able to learn optimal behaviors in only a few iterations. MMC net-
works also perform similarly well in both variants of the task which shows the
robustness of the proposed modular architecture. On the other hand, the end-
to-end approaches seem to have more difficulties when learning a suitable policy
for variant II than in the case of variant I. Finally, we compare the performance
of the best policies of each network in 100 episodes and summarize their average
performance in Table 1.

In order to compare the behavior of agents, we ran the task with two ran-
dom seeds with final trained best policies from each network and plotted their
behaviors observed throughout the episode in Fig. 4. Figure 4(a), (d) show the
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Table 1. Performance in terms of episodic total reward of best policies averaged over
100 episodes; MMC nets outperform other end-end architectures

Variants MLP RNN MMC

Variant I −7.37 −9.06 −3.18

Variant II −10.01 −12.64 −4.12

(a) In-Episode Reward (b) Sample Complexity

Fig. 5. (a) In-Episode Reward: Evolution of reward averaged over 100 runs; MMC
networks quickly relax to high reward gaining trajectories as soon as an episode starts.
(b) Sample Complexity: A summary of total interactions with environment to learn
an optimal policy with different networks and variants of Reacher task; MMC networks
are 10 times sample-efficient than end-end approaches

behavior of agents whose policies were learned using multi-layer perceptrons;
(b), (e) reflect policies learned by gated recurrent units, and, finally (c) and (f)
were obtained from MMC policy networks. These examples suggest that agents
trained with the MMC policy network quickly approach the target thus gaining
high rewards whereas the other methods slowly adapt to the feedback signal.
Figure 5(a) captures the similar behavior in terms of reward obtained at each
step in an episode. By averaging over 100 runs, we observe that MMC networks
are able to stabilize themselves to high reward positions from very early in the
episode (approx t = 2) when compared to end-to-end approaches.

6.2 Sample Complexity

To evaluate the sample complexity of policy learning with MMC networks, we
consider the number of interactions with the environment required for achieving
the best performance of the baseline models. To this end, we consider the learn-
ing curves in Fig. 3. For variant I, the baseline models required 2000 iterations
to reach their best performance whereas a similar performance was achieved by



Leveraging Domain Knowledge for RL 605

MMC within only about 250 iterations. While training the baseline networks,
gradient updates in each iteration are computed after evaluating 100 pairs of
perturbations. Similarly, with our MMC policy network, an update is performed
after evaluating 50 pairs of perturbations. Therefore, a total of 200.000 interac-
tions is required for the baselines. However, the MMC approach required only
250 × 50 = 12.500 interactions with the data. This shows that our MMC net-
work is 16 times more data-efficient than the end-to-end approaches. A similar
analysis for variant II shows a 12 fold speed up for the MMC networks. These
results are summarized in Fig. 5(b).

7 Conclusion

We presented a novel way of using MMC architectures for reinforcement learning.
The proposed approach allows experts to inject domain knowledge into policy
networks by designing and building task specific modular components. In our
experiments, we showed that the proposed policy network learns better policies
for variants of the “reacher” task in a more sample-efficient manner than several
baseline techniques and attains over 10× speed up compared to competing archi-
tectures. The resulting modular structure has the advantage that the non-linear
part is known in terms of explicit transformations which, in practical applica-
tions, is often an advantage over black box end-to-end systems composed of
neural networks. Therefore, the injection of domain knowledge not only reduces
the sample complexity but is also an important step towards more explainable
systems.

MMC networks can be extended in several ways. First, forward and inverse
components for other continuous control tasks such as a bi-pedal walking, hop-
ping, etc. [26] can be engineered using expert domain knowledge. Second, the
inherent recurrent nature of the approach and the capability to predict the next
states in a trajectory towards the target enables unrolling trajectories over time.
This unrolling can then be used for the planning of extended actions, i.e., actions
that are performed over extended periods of time. Thus, systems which learn
hierarchical policies can also be developed. Third, the architecture itself is bio-
logically inspired. By evolving just the MMC component, we can create systems
that can learn to imagine and choose actions effectively based on imagined tra-
jectories. In future work, we intend to solve similar robotic tasks with reinforce-
ment learning and MMC architectures by incorporating domain knowledge in
particular pertaining to bi-pedal walking.
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Abstract. A main property of support vector machines consists in the
fact that only a small portion of the training data is significant to deter-
mine the maximum margin separating hyperplane in the feature space,
the so called support vectors. In a similar way, in the general scheme of
learning from constraints, where possibly several constraints are consid-
ered, some of them may turn out to be unnecessary with respect to the
learning optimization, even if they are active for a given optimal solu-
tion. In this paper we extend the definition of support vector to support
constraint and we provide some criteria to determine which constraints
can be removed from the learning problem still yielding the same opti-
mal solutions. In particular, we discuss the case of logical constraints
expressed by �Lukasiewicz logic, where both inferential and algebraic
arguments can be considered. Some theoretical results that character-
ize the concept of unnecessary constraint are proved and explained by
means of examples.

Keywords: Support vectors · First–order logic · Kernel machines

1 Introduction

Support vector machines (SVMs) are a class of kernel methods originally con-
ceived by Vapnik and Chervonenkis [3]. One of the main advantages of this app-
roach is the capacity to create nonlinear classifiers by applying the kernel trick
to maximum–margin hyperplanes [1,3]. This property derives from the implicit
definition of a (possibly infinite) high–dimensional feature representation of data
determined by the chosen kernel. In the supervised case, the learning strategy
consists in the optimization of an objective function, given by a regularization
term, subject to a set of constraints that enforce the membership of the exam-
ple points to the positive or negative class, as specified by the provided targets.
The satisfaction of these constraints can be obtained also by the minimization
of a hinge loss function that does not penalize output values “beyond” the tar-
get. As a consequence, the solution of the optimization problem will depend
only on a subset of the given training data, namely those that contribute to
the definition of the maximum–margin hyperplane separating the two classes in
the feature space. In fact, if we approach the problem in the framework of con-
strained optimization, these points will correspond to the active constraints in
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the Lagrangian formulation. This means that we can split the training examples
into two categories, the support vectors, that completely determine the optimal
solution of the problem, and the straw vectors. By solving the Lagrangian dual
of the optimization problem, the support vectors are those supervised examples
corresponding to constraints whose Lagrangian multiplier is not null. In this
paper we extend this paradigm to a class of semi–supervised learning problems
where logical constraints are enforced on the available samples.

Learning from constraints has been proposed in the framework of kernel
machines as an approach to combine prior knowledge and learning from examples
[9]. In particular, some techniques to exploit knowledge expressed in a description
logic language [4] and by means of first-order logic (FOL) rules have been pro-
posed in the literature [5,15]. In general, these techniques assume a multi–task
learning paradigm where the functions to be learnt are subject to a set of logical
constraints, which provide an expressive and formally well–defined representa-
tion for abstract knowledge. For instance, logical formulas may be translated
into continuous functions by means of t-norms theory [6]. This mapping allows
the definition of an optimization problem that integrates supervised examples
and the enforcement of logical constraints on a set of available groundings. In
general, the resulting optimization problem is not guaranteed to be convex as in
the original SVM framework due to contribution of the constraints. However, it
turns out to be convex when considering formulas expressed with a fragment of
the �Lukasiewicz logic [7]. In this case, the problem can be formulated as quadratic
optimization since the constraints are convex piece-wise linear functions. Other
related methods to embed logical rules into learning schemes have been consid-
ered, such as [18,19], where a framework called Logic Tensor Networks has been
proposed, and [13], where logic rules are combined with neural network learning.

The notion of support constraints has been proposed in [10,11] to provide
an extension of the concept of support vector when dealing with learning from
constraints. The idea is based on the definition of entailment relations among
constraints and the possibility of constraint checking on the data distribution.
In this paper, we provide a formal definition of unnecessary constraints that
refines the concept of support constraint and we provide some theoretical results
characterizing the presence of such constraints. These results are illustrated by
examples that show in practice how the conditions are verified. The main idea is
that unnecessary constraints can be removed from a learning problem without
modifying the set of optimal solutions. Similarly, with the specific goal to define
algorithms accelerating the search for solutions in optimization problems, it is
worth to mention the works in the Constraint Reduction (CR) field. In particular,
in [14] it is shown how to reduce the computational burden in a convex optimiza-
tion problem by considering at each iteration the subset of the constraints that
contains only the most critical (or necessary) ones. In this sense, our approach
allows us to determine theoretically which are the unnecessary constraints as
well as to enlighten their logical relations with the other constraints.

The paper is organized as follows. In Sect. 2 we introduce the notation and
the problem formulation. Then, Sect. 3 analyzes the structure of the optimal
solutions, providing the conditions to determine the presence of unnecessary



610 F. Giannini and M. Maggini

constraints. The formal definition of unnecessary constraint and the related the-
orems are reported in Sect. 3.2. In Sect. 4 we show how the proposed method
is applied by means of some examples and finally, some conclusions and future
directions are discussed in Sect. 5.

2 Learning from Constraints in Kernel Machines

We consider a multi–task learning problem with P = {pj : Rnj → R : j ≤ J}
denoting a set of J > 0 functions to be learned. We assume that each pj belongs
to a Reproducing Kernel Hilbert Space (RKHS) [16] Hj and it is expressed as

pj(x) = ωj · φj(x) + bj ,

where φj is a function that maps the input space into a feature space (possibly
having infinite dimensions), such that kj(x, y) = φj(x)T · φj(y), where kj ∈ Hj

is the j-th kernel function. The notation is quite general to take into account the
fact that predicates (f.i. unary or binary) can be defined on different domains
and approximated by different kernel functions1.

We assume a semi-supervised scheme in which each pj is trained on two
datasets, Lj containing the supervised examples and Uj containing the unsu-
pervised ones, while all the available input samples for pj are collected in Sj , as
follows

Lj = {(xl, yl) : l ≤ lj , xl ∈ R
nj , yl ∈ {−1,+1}},

Uj = {xu : u ≤ uj , xu ∈ R
nj},

Sj = {xs : s ≤ sj} = {xl : (xl, yl) ∈ Lj} ∪ Uj , S =
∑J

j=1 sj .

In the following, whenever we write pj(xs), we assume xs ∈ Sj . Functions in
P are assumed to be predicates subject to some prior knowledge expressed by
a set of First–Order Logic (FOL) formulas ϕh with h ≤ H in a knowledge base
KB, and evaluated on the available samples for each predicate.

2.1 Constraints

The learning problem is formulated to require the satisfaction of three classes of
constraints, defined as follows.

– Consistency constraints derive from the need to limit the values of predicates
into [0, 1], in order to be consistent with the logical operators:

0 ≤ pj(xs) ≤ 1, xs ∈ Sj , j ≤ J .

– Pointwise constraints derive from the supervisions by requiring the output of
the functions to be 1 for target yl = 1 and 0 for yl = −1:

yl(2pj(xl) − 1) ≥ 1, (xl, yl) ∈ Lj , j ≤ J .

1 Predicates sharing the same domain may be approximated in the same RKHS by
using the same kernel function.
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Table 1. Logic connectives and their algebraic semantics for the �Lukasiewicz logic.
From left to right: negation, strong conjunction (t-norm), weak conjunction, weak dis-
junction, strong disjunction (t-conorm), implication (residuum).

¬x x ⊗ y x ∧ y x ∨ y x ⊕ y x ⇒ y

1 − x max{0, x + y − 1} min{x, y} max{x, y} min{1, x + y} min{1, 1 − x + y}

– Logical constraints are obtained by mapping each formula ϕh in KB into a
continuous real-valued function fh according to the operations of a certain
t-norm fuzzy logic2 (see Table 1 for the �Lukasiewicz fuzzy logic) and then
forcing their satisfaction by

1 − fh(p) ≤ 0, h ≤ H,

where for any j ≤ J , pj = [pj(x1), . . . , pj(xsj
)] ∈ [0, 1]sj is the vector of

the evaluations (groundings) of the j-th predicate on the samples in Sj and
p = [p1, . . .pJ ] ∈ [0, 1]S is the concatenation of the groundings of all the
predicates.

2.2 Optimization Problem

Given the previously defined constraints, the learning problem can be formulated
as primal optimization as,

Problem 1.

min
ωj

1

2

J∑

j=1

||ωj ||2 subject to:

0 ≤ pj(xs) ≤ 1, for xs ∈ Sj , j ≤ J
yl(2pj(xl) − 1) ≥ 1, for (xl, yl) ∈ Lj , j ≤ J
1 − fh(p) ≤ 0, for h ≤ H

This problem was shown to be solvable by quadratic optimization provided the
formulas in KB belong to the convex �Lukasiewicz fragment (i.e. formulas exploit-
ing only the operators (∧,⊕) in Table 1 [8]) and, in the following, we keep this
assumption. This yields the functional constraints to be both convex and piece-
wise linear functions, hence they can be expressed as the max of a set of Ih affine
functions3 (see Theorem 2.49 in [17])

1 − fh(p) = max
i≤Ih

(Mh,i · p + qh,i) (1)

where Mh,i = [mh,i
1,1, . . . , m

h,i
1,s1

, . . . , mh,i
J,sJ

] ∈ R
S is a vector defining the i-th linear

piece depending on the structure of the h-th formula, and qh,i ∈ R. Basically

2 See e.g. [12] for more details on fuzzy logics.
3 The number of linear pieces Ih depends on both the formula and the number of

groundings used in that formula.
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any mh,i
j,s weighs the contribution of the s-th sample in Sj for the j-th predicate

in the i-th linear piece deriving from the �Lukasiewicz formula of the h-th logic
constraint. The matrix M , obtained concatenating all the Mh,i by row, may have
several null elements, as shown in the examples reported in the following.

Example 1. Let p1, p2 be a unary and a binary predicate, respectively, evaluated
on S1 = {x1, x2} and S2 = {(x1, x1), (x1, x2), (x2, x1), (x2, x2)} = S1 × S1

so that p1 = [p1(x1), p1(x2)], p2 = [p2(x1, x1), p2(x1, x2), p2(x2, x1), p2(x2, x2)]
denote their grounding vectors. Given the formula ϕ = ∀x∀y (p1(x) ∧ p1(y)) ⇒
p2(x, y), according to the convex �Lukasiewicz operators, its corresponding func-
tional constraint 1 − fϕ can be rewritten as the max of a set of affine functions,
i.e. maxx,y{0, p1(x)+p1(y)−p2(x, y)−1}, that can be made explicit with respect
to the grounding vectors of p1 and p2 by:

max{0, 2p1(x1) − p2(x1, x1) − 1, p1(x1) + p1(x2) − p2(x1, x2) − 1,
p1(x1) + p1(x2) − p2(x2, x1) − 1, 2p1(x2) − p2(x2, x2) − 1}.

In this case Ih = 5, and, for instance, Mϕ,2 = [2, 0,−1, 0, 0, 0] and qh,1 = −1.

According to Eq. (1), any logical constraint 1 − fh(p) ≤ 0 for h ≤ H can
be replaced by Ih linear constraints Mh,i · p + qh,i ≤ 0, yielding Problem 1
to be reformulated as quadratic programming. Hence, assuming to satisfy the
associated KKT–conditions and that the feasible set of solutions is not empty,
for any j ≤ J the optimal solution obtained by differentiating the Lagrangian
function of Problem 1 (see [8]) is computed as:

p∗
j (x) = 2

lj∑

l=1

λ∗
jlylkj(xl, x) −

H∑

h=1

Ih∑

i=1

λ∗
hi

·
sj∑

s=1

mh,i
j,s · kj(xs, x)

+

sj∑

s=1

(η∗
js − η̄∗

js)kj(xs, x) + b∗
j . (2)

Each solution can be written as an expansion of the j-th kernel kj with respect
to the three different types of constraints on the corresponding sample points. As
in classical SVMs, we may study the constraints whose optimal Lagrange mul-
tipliers λ∗

j,l, λ
∗
h,i, η

∗
j,s, η̄

∗
j,s are not null, namely the support (active) constraints.

3 Unnecessary Constraints

The optimal solution of Problem 1 is determined only by the support constraints.
The problem is convex if the Gram matrix of the chosen kernel is positive-
semidefinite and strictly convex if it is positive-definite. The solution is guaran-
teed to be unique only in this second case [2]. For both cases, different multiplier
vectors λ, η may yield an optimal solution for the Lagrangian function associated
to the problem, e.g. see Example 3.

In this study, we are interested in constraints that are not necessary for
the optimization, even if they may turn out to be active for a certain solution.
The main results of this paper establish some criteria to discover unnecessary
constraints and their relationship with the underling consequence relation among
formulas in �Lukasiewicz logic.
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3.1 About Multipliers for Logical Constraints

By construction, pointwise and consistency constraints are both related to a
single sample x for a given predicate. This means that the contribution of the
active constraints of this type in any point is weighted by a specific multiplier,
as expressed by the first and third summations in Eq. (2). On the opposite, each
logical constraint involves in general more predicates eventually evaluated on
different points (each Lagrange multiplier in the second summation of Eq. (2)
is associated to a set of samples). Hence we may wonder if it exists a vector
of Lagrange multipliers yielding the same contribution to the solution for each
point, for which as much as possible multipliers are null.

For simplicity, Eq. (2) can be rewritten more compactly by grouping the
terms with respect to any sample xs as

p∗
j (x) =

sj∑

s=1

(
α

∗(P )
j,s + α

∗(L)
j,s + α

∗(C)
j,s

)
kj(xs, x) =

sj∑

s=1

α∗
j,skj(xs, x) (3)

where α
∗(P )
j (λ∗

j,l), α
∗(L)
j (λ∗

h,i), α
∗(C)
j (η∗

j,s, η̄
∗
j,s) denote the vectors of optimal coef-

ficients (depending on optimal Lagrange multipliers) of the kernel expansion for
pointwise, logical and consistency constraints respectively. In particular, the term
for the logical constraints is defined as

α
∗(L)
j,s =

H∑

h=1

Ih∑

i=1

λ∗
h,im

h,i
j,s . (4)

Since (4) corresponds to the overall contribution of the logical constraints to the
j-th optimal solution in its s-th point, we are interested in the case where we
obtain the same term with different values for the multipliers λ∗

h,i. In particular,
we would like to verify if there exists h̄ ≤ H such that for every j ≤ J and for
every s ≤ sj , it is possible to compute λ̄h,i such that

α
∗(L)
j,s =

H∑

h=1
h�=h̄

Ih∑

i=1

λ̄h,im
h,i
j,s . (5)

This condition yields the same solution to the original problem but without
any direct dependence on the h̄-th constraint. This case can be determined as
defined in the following Problem 2, where a matrix formulation is considered,
and then by looking for a solution (if there exist) with null components for the
h̄-th constraint.

Problem 2. Given an optimal solution α∗ for Problem 1, find λ ∈ R
N such that

M · λ = α∗,

where N =
∑H

h=1 Ih and M = [M1,1, . . . , Mh,Ih ] ∈ R
S×N .
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Let v1, . . . , vn be an orthonormal base of the space generated by Ker(M) = {λ :
M · λ = 0}, such that any solution can be expressed as

λ = λ∗ +
n∑

i=1

tivi ,

for some ti ∈ R. We have the following cases:

(i) if dim(Ker(M)) = 0 then the system allows the unique solution λ∗;
(ii) if dim(Ker(M)) �= 0 then there exist infinite solutions.

In the first case, the only constraints whose multipliers give null contribution to
the optimal solution are the original straw constraints. Whereas in the second
case, we look for a solution λ̄ (if there exists) where λ̄h̄,i = 0 for any i ≤ Ih̄ for
some h̄ ≤ H. Indeed in such a case, we can replace λ∗ with λ̄ by transferring
the contribution of the h̄-th constraint to the other constraints still obtaining
the same optimal solution for the predicates. This is carried out by solving the
linear system with Ih̄ equations λ̄h̄,i = 0 and n variables t1, . . . , tn.

Remark 1. In the following, we will say that a vector (λh,i)h≤H, i≤Ih is a solution
of Problem 2 with respect to h̄, if it is a solution and λh̄,i = 0 for every i ≤ Ih̄.

3.2 Unnecessary Hard–Constraints

Roughly speaking, we say that a given constraint is unnecessary for a certain
optimization problem if its enforcement does not affect the solution of the prob-
lem. The main idea is that if we consider two problems (defined on the same
sample sets and with the same loss), one with and one without the considered
constraint, both have the same optimal solutions. The relation between logical
inference and deducible constraints arises naturally in this frame, indeed log-
ical deductive systems involve truth-preserving inference. In addition, logical
constraints are quite general to include both pointwise and consistency con-
straints. A supervision (xl, yl) for a predicate p can be expressed by 1 → p(xl)
if yl = 1 and by p(xl) → 0 if yl = −1, while the consistency constraints by
(0 → p(xl)) ∧ (p(xl) → 1). We note that in this uniform view, Problem 2 applies
to all the constraints.

Definition 1. Let us consider the learnable functions in P evaluated on a sam-
ple S and KB = {ϕ1, . . . , ϕH}. We say that ϕh̄ ∈ KB is unnecessary for HP
if the optimal solutions of problems HP and HP coincide, where

(HP) min
α

Loss(α), with 1 − fh(p) ≤ 0, for h ≤ H ,

(HP) min
α

Loss(α), with 1 − fh(p) ≤ 0, for h ≤ H, h 
= h̄

Loss(α) =
∑

j≤J

α′
jKjαj and Kj = (kj(xi, xk))i,k≤sj

is the Gram matrix of kj.
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If F and F are the feasible sets of HP and HP respectively, we have F ⊆ F ,
however in general they are not the same set.

Since all the considered constraints correspond to logical formulas, we can
also exploit some consequence relation among formulas in �Lukasiewicz logic. In
the following, we will write Γ |= φ, where Γ ∪ {φ} is a set of propositional
formulas, to express the true-preserving logical consequence in �L, stating that φ
has to be evaluated as true for any assignation satisfying all the formulas in Γ .

Proposition 1. If {ϕh : h ≤ H, h �= h̄} |= ϕh̄ then ϕh̄ is unnecessary for HP.

Proof. By hypothesis, any solution satisfying the constraints of HP satisfies the
constraints of HP as well, namely we have F = F . The conclusion easily follows
since the two problems have the same loss function with the same feasible set.

One advantage of this approach is providing some criteria to determine the con-
straints that are not necessary for a learning problem. Indeed, in presence of a large
amount of logical rules, Proposition 1 guarantees we can remove all the deducible
constraints simplifying the optimization still getting the same solutions.

The vice versa of Proposition 1 is not achievable, since the logical consequence
has to hold for every assignation. The notion of unnecessary constraint is local
to a given dataset, indeed the available sample is limited and fixed in general.
However, if a constraint is unnecessary then the optimal solutions with or without
it coincide and we have that such constraint is satisfied whenever the other ones
are satisfied by any optimal assignations. Such consequence among constraints,
taking into account only the assignations leading to best solutions on a given
dataset, provides an equivalence with the notion of unnecessary constraint. It
is interesting to notice that a slightly different version of this consequence has
already been considered in [10].

3.3 Towards an Algebraic Characterization

In Sec. 3.1 we introduced a criterion to discover if a given constraint ϕh̄ can
be deactivated solving Problem 2. The method consists in finding a vector of
Lagrange multipliers with null components corresponding to ϕh̄. We are now
interested in discovering the relation between this criterion and the notion of
unnecessary constraint. Some results are stated by the following propositions.

Proposition 2. If ϕh̄ is unnecessary for HP then for any optimal solution of
this problem there exists a KKT -solution λ̄ of Problem 2 with respect to h̄.

Proof. If ϕh̄ is unnecessary then HP and HP have the same optimal solutions.
Let us consider one of them, lets say α∗, where α∗ = α(λ∗

h,i) = α(λ̂∗
h,i) for

the two problems with respect to some multipliers vectors (λ∗
h,i)h≤H, i≤Ih and

(λ̂∗
h,i)h≤H, h�=ĥ, i≤Ih

. Since the two vectors of multipliers yield the same optimal
solution, then we can define for every h ≤ H, i ≤ Ih a solution still satisfying
the KKT-conditions (also called a KKT-solution) λ̄ of Problem 2 as:

λ̄h,i =

{
λ̂∗

h,i for h 
= h̄

0 otherwise .
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This has to be thought of as a necessary condition to discover which logi-
cal constraints can be removed from HP still preserving its optimal solutions.
However, the other way round does hold in case either HP or HP has a unique
solution α∗, but in general we can only prove a weaker result.

Proposition 3. If there exists a KKT -solution λ̄ of Problem 2 with respect
to h̄ (for a certain optimal solution ᾱ∗ = α(λ̄) of HP), then the set of optimal
solutions of HP is included in the set of optimal solutions of HP.

Proof. Given any optimal solution α∗ of HP, since the problem is (at least)
convex, we have Loss(α∗) = Loss(ᾱ∗). At this point, we note that ᾱ∗ is also
feasible for HP and that the restriction of λ̄ on components h �= h̄ is a vector
of Lagrange multipliers for HP satisfying the KKT-conditions. The convexity
of the problem guarantees that the KKT-conditions are sufficient as well. This
means that ᾱ∗ is also an optimal solution for HP, hence its loss value is a global
minimum and the same holds for α∗.

In this case we can not conclude that any optimal solution of HP is an optimal
solution for HP because in general this solution could be not feasible for this
problem. However as we pointed out above, we have the following result.

Corollary 1. If either HP or equivalently HP has a unique solution then the
premise of Proposition 3 is also sufficient.

Proof. The solution is unique if the Gram matrix K, that is the same in both the
problems, is positive-definite. Hence, requiring the uniqueness of the solution for
the two problems is equivalent and the claim is trivial from Proposition 3.

4 Some Examples

Here we illustrate, by means of some cases solved in MATLAB with the interior-
point-convex algorithm, how the method works and we discuss the results to
clarify what described so far. In particular, we exploit the transitive law as an
example to enlighten how the presented theoretical results apply.

Example 2. We are given the predicates p1, p2, p3 subject to ∀x p1(x) → p2(x),
∀x p2(x) → p3(x), ∀x p1(x) → p3(x). Given a common evaluation dataset S ,
the logical formulas can be translated into the following linear constraints

maxx∈S {0, p1(x) − p2(x)}, maxx∈S {0, p2(x) − p3(x)}, maxx∈S {0, p1(x) − p3(x)}

and yield the following terms for the Lagrangian associated to Problem 1,

λ1,1(p1(x1) − p2(x1)), . . . , λ3,s(p1(xs) − p3(xs)) .

At first we solve the optimization problem where, to avoid trivial solutions,
we provide few supervisions for the predicates and we exploit a polynomial
kernel. To keep things clear, we consider only two points defined in R

2,
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Fig. 1. From left to right we report the evaluation of the learnt functions p1, p2, p3 in
the example space for Example 2 and Example 3, respectively. Filled squares correspond
to the provided sample points.

S = {(1, 0.5), (0.4, 0.3)}. Hence, given the solution α(λ∗) (uniqueness holds)
of Problem 1 (see Fig. 1), where λ∗ = (0.5549, 0, 0, 0.5706, 0, 0), we have

M2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0
0 1 0 0 0 1

−1 0 1 0 0 0
0 −1 0 1 0 0
0 0 −1 0 −1 0
0 0 0 −1 0 −1

⎞

⎟⎟⎟⎟⎟⎟⎠
, α = M2 · λ∗ =

⎛

⎜⎜⎜⎜⎜⎜⎝

λ∗
1,1 + λ∗

3,1

λ∗
1,2 + λ∗

3,2

−λ∗
1,1 + λ∗

2,1

−λ∗
1,2 + λ∗

2,2

−λ∗
2,1 − λ∗

3,1

−λ∗
2,2 − λ∗

3,2

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

0.5549
0

−0.5549
0.5706

0
−0.5706

⎞

⎟⎟⎟⎟⎟⎟⎠
.

In this case all the solutions of Problem 2 are given for any t1, t2 ∈ R by

λ = λ∗ + t1 ·

⎛

⎜⎜⎜⎜⎜⎜⎝

−1
0

−1
0
1
0

⎞

⎟⎟⎟⎟⎟⎟⎠
+ t2 ·

⎛

⎜⎜⎜⎜⎜⎜⎝

0
−1
0

−1
0
1

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

λ∗
1,1 − t1

λ∗
1,2 − t2

λ∗
2,1 − t1

λ∗
2,2 − t2

λ∗
3,1 + t1

λ∗
3,2 + t2

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

0.5549 − t1
−t2
−t1

0.5706 − t2
t1
t2

⎞

⎟⎟⎟⎟⎟⎟⎠
,

where the pair of vectors v1 = (−1, 0,−1, 0, 1, 0)′, v2 = (0,−1, 0,−1, 0, 1)′ is a
base for Ker(M2). From this, we get that the only way to obtain the same α
nullifying the contribution of the third constraint is taking t1 = t2 = 0, namely
taking λ = λ∗. It is worth to notice that we can also decide to nullify the
contribution of the first or of the second constraint taking t1 = 0.5549, t2 = 0 or
t1 = 0, t2 = 0.5706. In these cases we get λ∗

1 = (0, 0,−0.5549, 0.5706, 0.5549, 0)′,
λ∗
2 = (0.5549,−0.5706, 0, 0, 0, 0.5706)′, but the third one is a support constraint.

Although it is easy to see that the third constraint is deducible from the other
ones, Problem 1 may give a different perspective in terms of support constraints.

Example 3. Given the same problem as Example 2 with the additional point
(0.2, 0.5) in S , we get λ∗ = (0.3520, 0.3453, 0, 1.1529, 0, 0.5631, 0.4202, 0, 0),
hence the third constraint turns out to be initially supporting. However we may
wonder if there is another solution of Problem 2 where the components of the
third constraint are null. The matrix M3 is obtained from M2 by adding three



618 F. Giannini and M. Maggini

rows and three columns corresponding to the additional grounding of the pred-
icates and to the components for the logical constraints on the new point.

M3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1

−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 −1 0 0
0 0 0 0 −1 0 0 −1 0
0 0 0 0 0 −1 0 0 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In this case, the dimension of Ker(M3) is increased exactly by one, as the number
of affine components of any involved logical constraint. This means, we can try
to find a λ̄∗ in which a certain constraint has null values. For instance, the
vector λ̄∗= (0.7722, 0.3453, 0, 1.5731, 0, 0.5631, 0, 0, 0) is a solution of Problem 2
with respect to the third constraint. However, as in Example 2, it is the only
KKT-solution allowing us to remove the contribution of a constraint.

4.1 From Support to Necessary Constraints

Combining pointwise and consistency constraints brings any optimal solution to
be evaluated exactly to 0 or 1 on any supervised sample and all the corresponding
Lagrange multipliers to be different from zero, namely they will turn out to be
support constraints. However, they could be unnecessary constraints for the
problem and we could actually remove them from the optimization.

Example 4. We consider the same problem as Example 2 where S = {(0.4, 0.3)}
is labelled as negative for p1 and positive for both p2 and p3. We express the
pointwise and the consistency constraints in logical form. All the constraints are
obtained requiring the following linear functions to be less or equal to zero:

(logical) (pointwise) (consistency)

p1(x1) − p2(x1), p1(x1), −p1(x1), p1(x1) − 1,
p2(x1) − p3(x1), 1 − p2(x1), −p2(x1), p2(x1) − 1,
p1(x1) − p3(x1), 1 − p3(x1), −p3(x1), p3(x1) − 1.

Exploiting the complementary slackness and the condition for the Lagrange mul-
tipliers given by Problem 2, we can provide several combinations of values for
the multipliers yielding the same solution. The Gram matrix K is positive-
definite (K = 1.25) and the solution α∗ = (0, 0.8, 0.8) provided by a linear
kernel is unique. For this simple example we have only two possible KKT-
solutions of Problem 2 minimizing the number of necessary constraints, they are
λ̄ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0.8, 0, 0.8)′ and λ̂ = (0, 0.8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.6)′.
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This may be easily shown since the complementarity slackness force λ1 = λ3 =
λ8 = λ9 = λ11 = 0 and multiplying by M the remaining multipliers, they have
to satisfy:

⎧
⎪⎨

⎪⎩

λ4 − λ7 = 0

λ2 − λ5 + λ10 = 0.8

−λ2 − λ6 + λ12 = 0.8.

Since HP has a unique solution, from Corollary 1, we have two different min-
imal optimization problems. One with only p2(x1) − 1 ≤ 0 and p3(x1) − 1 ≤ 0
as necessary constraints and the other with only p2(x1) − p3(x1) ≤ 0 and
p3(x1) − 1 ≤ 0 once again.

5 Conclusions

In general, in learning from constraints, several constraints are combined into
an optimization scheme and often it is quite difficult to identify the contribu-
tion of each of them. In particular, some constraints could turn out to be not
necessary for finding a solution. In this paper, we propose a formal definition of
unnecessary constraint as well as a method to determine which are the unnec-
essary constraints for a learning process in a multi-task problem. The necessity
of a certain constraint is related to the notion of consequences among the other
constraints that are enforced at the same time. This is a reason why we suppose
to deal with logical constraints that are quite general to include both pointwise
and consistency constraints. The logical consequence among formulas is a suffi-
cient condition to conclude that a constraint, corresponding to a certain formula,
is unnecessary. However, we also provide an algebraic necessary condition that
turns out to be sufficient in case the Gram matrices associated to the kernel
functions are positive-definite.
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Abstract. High-dimensional data sequences constantly appear in prac-
tice. State-of-the-art models such as recurrent neural networks suffer
prediction accuracy from complex relations among values of attributes.
Adopting unsupervised clustering that clusters data based on their
attribute value similarity results data in lower dimensions that can be
structured in a hierarchical relation. It is essential to consider these data
relations to improve the performance of training models. In this work, we
propose a new approach to synthesize and predict sequences of data that
are structured in a hierarchy. Specifically, we adopt a new hierarchical
data encoding and seamlessly modify loss functions of SeqGAN as our
training model to synthesize data sequences. In practice, we first use the
hierarchical clustering algorithm, GHSOM, to cluster our training data.
By relabelling a sample with the cluster that it falls to, we are able to
use the GHSOM map to identify the hierarchical relation of samples. We
then converse the clusters to the coordinate vectors with our hierarchical
data encoding algorithm and replace the loss function with maximizing
cosine similarity in the SeqGAN model to synthesize cluster sequences.
Using the synthesized sequences, we are able to achieve better perfor-
mance on high-dimension data training and prediction compared to the
state-of-the-art models.

Keywords: Hierarchical sequence · Sequence synthesis · SeqGAN ·
GHSOM · Cosine similarity

1 Introduction

With the progress and the fast development of technology, artificial intelligence
forecasting techniques have been receiving much attention in recent years. Deep
learning is one of the advanced machine learning technique which is highly used
in artificial intelligence. It relies on sophisticated mathematical and statistical
computations for solving complicated real-world problems. Since AlphaGo [3],
an application of deep neural network, gained victory with a Chinese Go mas-
ter, there have been a lot of applications of deep learning in our lives such as
automatic classification of emails [2,29], chatbot [26] and image recognition [30].
Among all the deep learning algorithms, three most commonly used models are
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convolutional neural network (CNN) [17], recurrent neural network (RNN) [35]
and generative adversarial network (GAN) [11].

CNN is a model which is most commonly applied to analyze visual imagery.
It is built by the visual cortex of the human brain and consists of convolu-
tional layers and pooling layer. The former applies a convolution operation to
the input and pass the result to the next layer. And then the convolution emu-
lates the response of an individual neuron to visual stimuli. The latter com-
bines the outputs of neuron clusters at one layer into a single neuron in the
next layer. Through the structure, CNN can optimize the correlation between
pattern recognition and adjacent data, which shows excellent performance on
recognition especially in the data type of image [30] and sound [1].

Sequence modeling has been one of the most complicated tasks in real-world
problems. When it comes to sequence modeling, noise, the length of time and
pattern variabilities always hamper the progress. RNN is a model that heavily
used in sequence modeling. It is different from the general feedforward neural
network since the neurons in the RNN have a temporary internal memory that
remembers the previous output state, and then the neuron can calculate different
output values based on the previous state. Also because RNN can remember
the feature of a previous output state, this model can handle input data of
different lengths, which has a good performance in applications such as automatic
translation [31] and speech recognition [12].

However, RNN encounters vanishing gradient problem and exploding gradi-
ent problem in the practice training. These problems lead the stochastic gradient
descent method to produce volatile results, and this situation also affects the
performance of analyzing longer sequence data. In order to solve these problem
encountered by RNN, long-short-term memory (LSTM) is proposed by Hochre-
iter et al. [15]. In the neurons of LSTM, three gates for input, forget, and output
is added to this model. After inputting the data, it determines the opening
and closing of each gate according to the respective weight calculation results.
According to Gers et al. [10], when training data are longer sequences, the for-
get gate can reset the neuron state to zero or reduce the value of the neuron
state slowly, thereby effectively avoiding the problem of over-amplification of the
neuron.

GAN proposed by Goodfellow et al. [11] has shown excellent performance
for data generation. It is an unsupervised learning method in deep learning that
learns through two neural networks, generator and discriminator. The generator
samples the data randomly as input from the latent pace and is similar to a forger
who tries to mimic the real-world data in training, while the discriminator is a
policeman who tries to distinguish the fake data generated by the generator.
Through iterative training on generator and discriminator, both the generator
and the discriminator advance.

Nevertheless, GAN has limitations on training discrete sequences. The first
reason is that the generator usually needs an LSTM model, so when the generator
passes data to the discriminator, it gets a sequence of discrete values, which
makes the gradient update challenging to handle. The second reason is that the
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discriminator can only accept a complete sentence. The generation process is
a sequential decision process, and it is crucial to balance its current score and
future score. The sequence generative adversarial nets (SeqGAN) [39] adopts
reinforcement learning and policy gradient to solve this problem. It is the first
work that extends GAN to generate sequences of discrete tokens.

However, for high-dimensional data sequences, we have observed that Seq-
GAN suffers from complex computations on relations of attributes. It is challeng-
ing to model and draw data samples from high dimensional distributions. We
can learn the parameters of conditional probability distributions that map inter-
mediate, latent variables from simpler distributions to more complex ones [4].
Some researches also use the learned intermediate representations on retrieval
and classification [22,25,28,33]. Myszkowski et al. [23] use hierarchical cluster-
ing to build a hierarchy of documents which gives them a useful advantage in
navigation of document search on visual content.

In this work, we propose a two phase analysis. We first adopt growing hier-
archical self-organizing maps (GHSOM) as the unsupervised clustering means
to construct high-dimensional data into hierarchical clusters. Samples that fall
into the same cluster have relatively similar attribute values. This enables us to
use clusters, instead of the high-dimension values, to represent the input data,
and turn the problem of synthesizing high-dimensional data sequences into the
problem of synthesizing hierarchical data sequences. In the second phase of our
analysis, we propose HiSeqGAN that adopts the SeqGAN model to synthesize
sequences that have their data in a hierarchical relation. To this aim, we propose
a novel coordinate encoding to represent clusters in a hierarchical relation. We
modify the reward function in HiSeqGAN on maximizing sequence cosine simi-
larity to integrate the hierarchical relations of clusters into SeqGAN. Compared
to loss function on mean square errors, considering the hierarchical relations
improves the quality of data that we have generated. In our experiments, we
showed that the synthesized sequences can be used as new input data to train
a better RNN model. Furthermore, we synthesize sequences that have lengths
longer than the training set, and show how to use them to predict the future
movement of sequences that are similar to the prefix of synthesized sequences.
Finally, we discuss how to predict actual attribute values from the predicted
cluster. We are able to achieve better accuracy compared to the state-of-the-art
model.

2 Related Work

Many researchers show interest in the generative aspects of CNN recently to
figure out what the model learn and how to improve the model. Dai et al. [5]
have constructed a generative model for the CNN and have proposed a method of
visualization which can directly draw synthetic samples for any given node in a
trained CNN by the Hamiltonian Monte Carlo (HMC) algorithm. Xie et al. [38]
used the Gaussian distribution which is used initially in convolutional neural
networks as an example to simulate the way of probability distribution in the
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process of CNN. Moreover, they used auto-encoder which is commonly used in
unsupervised learning and Langevin dynamics algorithm to learn reconstructed
pictures. Also, they found a generative random field model has the potential to
learn from big unlabeled data. After that, they proposed a CoopNets [37] which
can train a bottom-up descriptor network and a top-down generator network
simultaneously. Both the descriptor and the generator are involved in Langevin
sampling and are in the form of alternating back-propagation.

Recently, GAN has shown excellent performance especially in the field of com-
puter visions. However, Dai et al. [6] explained the doubts about semi-supervised
learning with GAN. In their research, they improved the drawbacks of feature
matching GAN and presented a semi-supervised learning framework. Also, Sali-
mans et al. [28] focused on semi-supervised learning and the generation of images
in their research. Moreover, they proposed an evaluation metric for comparing
the quality of these models. Radford et al. [25] proposed a deep convolutional
generative adversarial networks (DCGAN) and demonstrated its efficacy through
image data, which proved that unsupervised learning has excellent and stable
results. Besides, it is an essential issue for models to produce high-resolution
images. Denton et al. [8] proposed the LAPGAN model with a Laplacian pyra-
mid framework to create a pyramid structure, which uses a generation network
at each level of the pyramid to produce a higher resolution image.

Besides, many research proposed a variant based on the original architecture.
Ho et al. [14] have implemented the imitation learning of deep reinforcement
learning in a given environment. They combined this method with GAN, and it
can ultimately be implemented in robots and self-driving vehicles. Luc et al. [20]
applied the GAN model to semantic segmentation for the first time. They add
a discriminator to the semantic segmentation model and finally proved that this
method could improve the consistency of high-order potentials in their experi-
ments. Liu et al. [19] proposed coupled generative adversarial networks (CoGAN)
which enforced a weight sharing constraint on learning a joint distribution of
multi-domain images. Finally, they applied this model to several learning tasks,
including color and depth images, and face images with different attributes. All
of the tasks show successful results by learning the joint distribution without
any tuple of corresponding images. Besides, Zhu et al. [40] proposed a cycle-
consistent adversarial network (CycleGAN) in conjunction with the concept of
cycle consistency. They presented a method that can learn to capture the unique
characteristics of one images collection and to translate these characteristics into
the other image collection.

Besides, Tulyakov et al. [32], Saito, Matsumoto et al. [27] and Vondrick et al.
[34] have researched for recent video generative models based on GAN. Neverthe-
less, GAN does not infer the latent noise vectors while VAE needs to design an
inference model for the sequence of noise vectors, which is a non-trivial task due
to the complex dependency structure. Xie et al. [36] proposed a learning dynamic
generator model, using alternating back-propagation through time to learn realis-
tic models for dynamic textures and action patterns. It does not require an extra
model such as a discriminator in GAN or an inference model in VAE.
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3 Hierarchical Data Construction and Representation

The first phase of our analysis is to cluster high-dimensional data into a hierar-
chical relation. In this way, we are able to reduce the data dimension. Similar to
symbolic dynamics, we seek for a partition of the state space that describes
the trajectories of points to represent the dynamics in a simple way. How-
ever, it is hard to extract the best partition associated to Markov process [13].
In this paper, we propose hierarchical clustering to achieve unsupervised par-
tition, where number of partitions is dynamically determined based on sam-
ple variations. Particularly, we adopt growing hierarchical self-organizing map
(GHSOM) algorithm [9] to cluster our data first, and then investigate hierarchi-
cal data sequence model training in the second phase. One can predict actual
attribute values from samples that fall into the predicted cluster as we show in the
experiments.

3.1 Growing Hierarchical Self-Organizing Map (GHSOM)

Unsupervised clustering is one common way to reduce data dimensions.
GHSOM [9] is a self-organizing map that grows hierarchically based on data
distribution. It expands self-organization maps in a hierarchy according to the
variance between and within clusters. When the horizontal and vertical expan-
sion thresholds are set, the algorithm continuously grows the map and checks
whether variations between the clusters and within the clusters meet the set
requirement. Unlike K-means [21] or SOM [16] where number of clusters is given
in advance, using GHSOMs, given tolerances on variations of between and within
clusters, samples are separated and clustered iteratively on the fly until the given
tolerances are satisfied.

Fig. 1. A GHSOM structure
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3.2 Hierarchical Data Encoding

The GHSOM map results data in clusters of a tree-like structure. We use decimal
encoding [18] to label the clusters. Each digit in the decimal number corresponds
to a cluster of a layer. We append zero at the end of the decimal number as a
padding symbol to indicate clusters that have no child clusters in the next layer.
As shown in Fig. 2, labels 230, 164 and 475 represent some clusters in a three
layer map, and the 230 refers to a cluster that does not has any of its child
clusters in the third layer.

Fig. 2. Decimal number labelling on clusters of a GHSOM map

After using the decimal number to label clusters, we converse each number to
the two-dimensional coordinate vector. The idea is to squeeze all the clusters in
one square layer by layer as shown in Fig. 3. Each label can then be encoded as
the coordinate of the center point of each square that represents to the cluster.

Equations (1) to (4) show how we calculate coordinates of the center point of
each square that represents a cluster in a GHSOM map. Px (Py) is the coordinate
of x-axis (y-axis) that we aim to calculate for the center point of the square that
represents the label of the target cluster; m refers to the number of the GHSOM
layers; P x

i (P y
i ) refers to the coordinate in the ith layer and Bx

i (By
i ) refers to

the unit width of x-axis (y-axis) of the square in the ith layer, where xi (yi)
refers to the position of the target cluster in the ith layer. Both Bx

0 and By
0 are

set to 1, i.e., the square of the whole space is initially set to 1, where its central
point is set (0.5, 0.5). nx

i (ny
i ) refers to size of the SOM map, i.e., the number of

x-axis (y-axis) clusters, in the ith layer; rx (ry) refers to the offset as the width
of x-axis (y-axis) of the last square (the last layer of the cluster). The coordinate
of x-axis Px (of y-axis Py), can be calculated using the following formulas.

Px = rx +
m∑

i=1

P x
i ; Py = ry +

m∑

i=1

P y
i , (1)
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Fig. 3. Coordinate encoding of clusters with decimal labels

where

Bx
i = Bx

i−1 × 1
nx

i

; By
i = By

i−1 × 1
ny

i

(Bx
0 = 1 and By

0 = 1) (2)

P x
i = Bx

i × xi; P y
i = By

i × yi (3)

rx = Bx
m × 1

2
; ry = By

m × 1
2

(4)

4 Hierarchical Data Synthesis with SeqGAN

In the second phase of our analysis, we propose HiSeqGAN as our primary
training model on hierarchical data sequence synthesis. HiSeqGAN adopts the
sequence generation framework of SeqGAN [39] but with its optimization func-
tion on maximizing sequence similarity based on cosine similarity of coordinates
to take the hierarchical relations among data into account.

4.1 HiSeqGAN

Figure 4 shows the structure of HiSeqGAN, similar to the proposed framework
in [39]. The generator used in the sequence generation is an RNN model with
LSTM cells, while the discriminator is a CNN model. First, HiSeqGAN uses
the real-world data and the native samples generated by the generator (fake
samples) to train the discriminator, so that the discriminator can distinguish
real-world data from fake samples. Then, the reward is passed back to the inter-
mediate state-action steps by using the Monte Carlo search. Second, the gener-
ator updates by reinforcement learning (RL). To be more specific, the generator
is treated as an RL agent; the state refers to the currently produced tokens; the
action refers to the next token to be generated. In a stochastic parameterized
policy, the actions are drawn from a distribution that parameterizes the policy
and the objective of the policy is to generate a sequence from the start state in
such a way that maximizes the expected end reward.
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Fig. 4. The HiSeqGAN framework

4.2 Sequence Similarity

As defined in Sect. 3, we represent the cluster in a GHSOM map as the coor-
dinates of the center point of its square. To evaluate the prediction on clusters
between two labels, we propose three-dimensional cosine similarity on their coor-
dinates. The reason that we extend two-dimensional to three-dimensional is to
prevent the distortion of the original point on the same plane. As shown in Fig. 5,
the 2D cosine similarity of point A and point B is larger than point A and point
C at two-dimensional coordinate while the variance between point A and point
C is smaller since they have the same first layer in the hierarchical cluster. To
increase the accuracy of our generated points, we add a dimension to separate
the points and the origin of the coordinate at the different planes. That is to say,
point A, point B and point C are transformed into (38 , 3

4 , 1), (58 , 7
8 , 1) and ( 7

16 ,
13
24 , 1) respectively while O is (0, 0, 0). Then, the cosine similarity of point A and
point C is larger than point A and point B at a three-dimensional coordinate,
which means the variance between point A and point C is also smaller.

Given the synthesized sequence as Y1:t = (y1, . . . , yt) and Y c
1:t = (yc

1, . . . , y
c
t )

as raw sequence of clusters. We define the metric of sequence similarity as Eq. (5),
where

⇀
p i and

⇀
p

c

i are the three-dimensional vectors, which refer to the coordinate
transformation of yi and yc

i respectively.

SequenceSimilarity(Y1:t, Y
c
1:t) =

t∑

i=1

⇀
p i · ⇀

p
c

i∥∥∥⇀
p i

∥∥∥
∥∥∥⇀

p
c

i

∥∥∥
(5)
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Fig. 5. Clusters with 2D coordinates and 3D coordinates

4.3 Sequence Synthesis

Following SeqGAN, our generator model is updated by employing a policy gra-
dient and Monte Carlo search, where the final reward signal is provided by the
discriminator based on Eq. (5) and is passed back to the intermediate action
value. Given a dataset, train a generative model Gθ of parameter θ to produce a
sequence Y1:T = (y1, . . . , yt), and train a discriminative model Dφ of the param-
eter φ to distinguish real or fake data for improving the generator. Then, we use
an N time Monte Carlo search with a roll-out policy Gβ to sample the unknown
last T − t tokens. Equation (6) shows how we use the roll-out policy to get a
batch of output samples.

Q
Gθ
Dφ

(s = Y1:t−1, a = yt) ={
1
N

∑N
n=1 Dφ

(
Y n
1:T

)
,
(
Y n
1:T

) ∈ MCGβ (Y1:t;N) , for t < T

Dφ (Y1:t) , for t = T
(6)

To keep a good pace with the generator, the discriminator shall re-train as
long as the generator generates more realistic sequences.

min
φ

−EY∼p
[log Dφ (Y )] − EY ∼Gθ

[log (1 − Dφ (Y ))] (7)

After a new discriminator model has been obtained, we update the gener-
ator for optimizing a parameterized policy to maximize the long-term reward.
Following, the objective function can be derived as Eq. (8)

∇θJ(θ) =
T∑

t=1

EY1:t−1∼Gθ

[
∑

ytεy

∇θGθ(yt|Y1:t−1) · QGθ

Dφ
(Y1:t−1, yt)

]
(8)
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Then, the parameters of generator can be updated by Eq. (9). αh refers to
the corresponding learning rate at ith step.

θ ← θ + αh∇θJ(θ) (9)

Algorithm 1 shows full details of our model. Firstly, we use the maximum
likelihood estimation (MLE) to pre-train generator on the training dataset. Sec-
ondly, we pre-train discriminator by maximizing the cosine similarity, the out-
put of the pre-trained generator can be our negative samples whereas the given
dataset is our positive examples. Next, we re-train our discriminator when the
generator has improvement. Also, to reduce the variability of the estimation, we
combine different datasets of negative samples with positive ones [24].

Algorithm 1. Sequence Synthesis Algorithm
Initialize Gθ, Dφ with random parameter θ, φ
Pre-train Gθ via MLE
Assign parameter θ to the roll-out policy
Pre-train Dφ by Eq. (5)
repeat

for g-steps do
Generate a sequence
for t in 1:T do

Compute Q by Eq. (6)
end for
Update θ by Eq. (9)

end for
for d-steps do

Train Dφ by Eq. (7)
end for
Update the parameter of roll-out policy

until model converges

4.4 Sequence Prediction

In order to predict next tokens of training sequences, we use the trained generator
Gθ to generate sequences that have more periods, and the extended tokens are
used as our prediction on sequences that have similar prefix.

Formally speaking, given the length of sequences of our training data, denoted
as t, to predict the next t′ periods of the sequence, we synthesize sequence
Y = (y1, . . . , yt, yt+1, . . . , yt+t′).
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Given a set of synthesized sequences S, and a real item sequence Y item

that has its length t, Eq. (10) defines the way to find a synthesized sequence
Y1:t+t′ ∈ S that has its prefix Y1:t most similar to the item sequence Y item. Then,
we use the postfix Yt+1:t+t′ = (yt+1, . . . , yt+t′) to predict the future movement.

max
Y ∈S

SequenceSimilarity(Y1:t, Y
item) (10)

5 Experiments

In this section, we evaluate our approach against supply chain management data
from real worlds. All the experiment data are collected from real transactions of
the company W, one of the world’s largest semiconductor component distributor
in the Asia Pacific area. With more than 30 branches and over 60 international
electronics component suppliers, company W plays a key role as a supply chain
buffer for a franchise partner, including Intel, Philips, Texas Instruments, Hynix,
Vishay and Omni Vision. Our goal is to predict at the item level the values of
essential attributes on demand and inventory.

5.1 Data Settings

The raw data of transactions contain more than eighty thousand weekly transac-
tion records over thousands of semiconductor component items and customers.
Each item-customer pair has records up to 96 weeks. (Weeks that have no
demands have no transaction records). For each record, we label it with nomi-
nal attributes including item, customer and date (on week), and use numerical
attributes including all the predefined indicators of demand and inventory in
supply chain management as the sample attributes of that record. Each item-
week record consists of 8 demand and inventory attributes as shown in Table 1.

5.2 From Hi-Dimension Data to Hierarchical Data

We first apply GHSOM to cluster samples based on these numerical attributes.
(All the values are normalized with max and min, i.e., n(d) = d-min/max-min.)
Figure 6 shows the partition result, a GHSOM map (in decimal encoding) that
consists of three layers with 70 clusters. Based on the GHSOM map, one can
label each item-week 8-dimension record with its corresponding cluster. We gen-
erate 5712 cluster sequences from raw transaction records, where each cluster
sequence refers to an item-customer trajectory movement on demand and inven-
tory attributes. We denote this set as Dataraw.
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Table 1. Numerical attributes

Indicators Name Description

Inventory Actual AWU Average weekly usage (i.e., actual demand) in the
past

FCST M Managers forecast of monthly demand for the future

Demand BL <= 9WKs In-transit inventory to be delivered by upstream
supplier within 9 weeks

Backlog (BL) Total in-transit inventory (to be delivered)

DC-OH On-hand (OH) inventory in the distribution center
(DC)

Hub-OH On-hand (OH) inventory in warehouse nearby
downstream customer production plant

TTL OH In stock quantities

Available Company backlog

5.3 Sequence Synthesis

In our first experiment, we use Dataraw and the GHSOM map to train our
HiSeqGAN model and synthesize another 2500 cluster sequences (denoted as
the set Datasyn). To evaluate the quality of our synthesized sequences, we use
RNN as the training model that uses the cluster sequence of week 1 to 95 to
predict the cluster in week 96. We first train the RNN model [18] with Dataraw,
the prediction accuracy rate (on average over 5712 item-customer pairs) is 82%
on the first layer, 61% on the second layer and 45% on the third layer. That is
to say, for an item has its week 96 cluster in 164, the prediction as 1xx (first-
layer accurate) is 82%, 16x (second-layer accurate) is 61%, and 164 (third-layer
accurate) is 45%. Under the same setting of the RNN, but using both Dataraw

and Datasyn as training inputs, we can improve the precision to 85% on the first
layer, 72% on the second layer and 52% on the third layer. The performance is
shown in Table 2. The result shows our first contribution that we can synthesize
additional training inputs for the state of the art models and improve their
performance.

Table 2. Layer Accuracy of Exp.1

Dataset Layer Accuracy

l1 l1, l2 l1, l2, l3

Dataraw 0.82 0.61 0.45

DataHiSeqGAN 0.85 0.72 0.52
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Fig. 6. GHSOM clustering result

5.4 Sequence Prediction

We conduct experiments on sequence prediction in the second experiment and
compare the prediction accuracy against (1) the Naive Bayes method, and (2) the
RNN model. The setting is to use week 1–95 to predict week 92–96. The Naive
Bayes method [7] is the learning algorithm based on a conditional probabilistic
model, which counts observed sequences for prediction. The RNN has the same
setting as the previous experiment but this time it has to use its prediction to
predict next periods. For both NaiveBayes and RNN models, we use Dataraw

with week 1 to 91 for training, and for each item, predict its week 92 cluster,
and then with week 2 to 92, to predict week 93, and so on so forth until the
prediction on week 96. For our HiSeqGAN model, we use Dataraw with week
1 to 91 to synthesize 3840 sequences with week 1 to 96 (denoted as the set S).
Then for each item (Y item), we use Eq. (10) to find a synthesized sequence Y
that has its prefix best match to Y item, and then use the postfix (clusters on
week 92 to 96) of the selected synthesized sequence for prediction.
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Table 3 summarizes the results on prediction accuracy on different layers. As
one can see that the NaiveBayes model has the worst accuracy rate and drops its
accuracy rate significantly after multiple periods. Compared to the HiSeqGAN
model, the RNN model has a slight better accuracy rate on the prediction in the
first two weeks, but loses its advantage after the third week. This confirms that
RNN suffers from error propagation. On the other hand, our HiSeqGAN model
is more stable and has better performance on average for long run prediction.

Table 3. Layer accuracy on multi-periods prediction

Method Accuracy

Period 92 93 94 95 96 Average

NaiveBayes l1 0.28 0.01 0.04 0.06 0.01 0.08

l2 0.27 0.0007 0.0017 0.0007 0.0026 0.06

l3 0.26 0.0003 0.0001 0 0.0001 0.05

RNN l1 0.82 0.71 0.69 0.55 0.53 0.66

l2 0.61 0.58 0.51 0.42 0.43 0.51

l3 0.46 0.47 0.43 0.42 0.38 0.43

HiSeqGAN l1 0.79 0.74 0.74 0.68 0.63 0.72

l2 0.62 0.59 0.57 0.54 0.49 0.56

l3 0.54 0.51 0.49 0.48 0.43 0.49

5.5 From Cluster Prediction to Actual Value Prediction

Finally, we discuss how we use the predicted cluster to estimate attribute values.
This is done by computing the distribution of attribute values with samples that
fall into the cluster. For instance, consider that we are interested in the attribute
value of AWU (demand on the item). Figure 7 shows the five period prediction
on the AWU value of item itemA. The points are the actual value of itemA in
the 92nd to 96th weeks and the boxplots refer to the statistics on AWU values
of samples that fall into our predicted clusters.

5.6 Discussion

Note that predicted values have their variation depending on the layer accuracy.
The variations are smaller when the accurate layer of the predicted cluster is
higher. Since clusters in 1xx contain more samples than clusters in 16x, the
second layer accuracy can have better prediction on actual values than the first
layer accuracy. We can get most precise estimation when we have the third layer
accuracy.
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Fig. 7. A sampled item for prediction on the AWU value of five periods

6 Conclusion

We present a GAN-like model for synthesizing and predicting sequences of struc-
tured data effectively. By using coordinate and cosine similarity to express hier-
archical data and loss functions, we are able to adopt SeqGAN to generate more
realistic and representative sequences of structured data. In our experiments,
we show that the synthesized sequences can be used in two folds: (1) as input
data to improve the training process of the state-of-the-art models, and (2) as
the prediction of sequences that match the prefix and achieve higher accuracy
compared to the state-of-the-art models.
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Abstract. Artificial Intelligence (AI) can roughly be categorized into
two streams, knowledge driven and data driven both of which have their
own advantages. Incorporating knowledge into Deep Neural Networks
(DNN), that are purely data driven, can potentially improve the over-
all performance of the system. This paper presents such a fusion scheme,
DeepEX, that combines these seemingly parallel streams of AI, for multi-
step time-series forecasting problems. DeepEX achieves this in a way that
merges best of both worlds along with a reduction in the amount of data
required to train these models. This direction has been explored in the
past for single step forecasting by opting for a residual learning scheme.
We analyze the shortcomings of this simple residual learning scheme and
enable DeepEX to not only avoid these shortcomings but also scale to
multi-step prediction problems. DeepEX is tested on two commonly used
time series forecasting datasets, CIF2016 and NN5, where it achieves
competitive results even when trained on a reduced set of training exam-
ples. Incorporating external knowledge to reduce network’s reliance on
large amount of accurately labeled data will prove to be extremely effec-
tive in training of neural networks for real-world applications where the
dataset sizes are small and labeling is expensive.

Keywords: Deep Neural Networks · Knowledge incorporation ·
Time-Series · Residual learning

1 Introduction

Recent advances in computational hardware have made it possible to achieve state-
of-the-art performance in various domains, by utilizing DNNs, ranging from image
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classification [21], playing board games [15], natural language processing [6] to
speech recognition [8]. As a result, there is heightened interest, both academically
and industrially, inDNNswith deep learning being listed at the top ofGartner hype
cycle for emerging technologies [5]. This increased interest coupled with advances
in hardware has paved the way for the development of more sophisticated DNN
algorithms, which may contain millions of parameters to train and optimize. Ver-
sion of NASNet-A [21] model, for example, with highest accuracy on ImageNet
dataset contains around 88.9M parameters. Optimizing such a huge number of
parameters is a challenge itself and requires equivalently bigger training dataset
that allows themodel to extract enough features to train its parameters.As a result,
these models perform exceptionally well in domains where ample data is available
but in data scarce domains, these model suffer as they can easily overfit. This is
even more so true for time-series domain, where scantiness of data is further com-
pounded by the fact that time-series often do not have enough features for deep net-
works to work with. Leveraging information present in the form of knowledge can
be particularly useful here. These techniques, especially the statistical ones, have
shown considerable success in time-series domain which is evident from results of
forecasting competitions, likeM3 [11],M4 [12] andNN5 [16],whichwere dominated
by statistical based techniques.

In contrast to DNNs, humans tend to rely on their knowledge while solving
problems. This knowledge is acquired not only from problem specific examples
but also from other sources, like education and experiences [10]. However, the
very notion of “knowledge” is tricky to explain and equivalently difficult to
collect and store in a form that is understandable or transferable to a comput-
ing program. Knowledge-Based Systems (KBS) aims to store such knowledge
expressed in the form of logic rules or some other declarative language which
can then be used to find solution to complex problems [19]. Similarly, there
are statistical methods that are based on strong logical reasoning, like Auto-
Regressive Integrated Moving Average (ARIMA), that do perform exceptionally
well in their respective domains and are used by many experts to aid them in
decision-making process. Hence, it is undeniable that knowledge about the prob-
lem is equally important for its solution. Nevertheless, exceptional performance
of DNNs also prove that apart from knowledge, the raw data itself contains
many hidden features which are useful in solving problems. In a nutshell, both
of these streams i.e knowledge driven and data driven, have their own strengths
and advantages. A natural step forward is to bridge the gap between these two
streams to improve the overall performance of the system.

In fact, complementing DNNs with expert knowledge or some form of extra
knowledge has been actively researched upon [3,9,20]. Most of the work in the
literature, although improves performance of the DNNs but adds extra depen-
dency on the network on quality of expert information used [9,17]. The focus
of this work is to combine knowledge driven and data driven streams in a way
that retains advantages of both while suppressing their individual disadvantages.
Specifically, we aim to reduce the dependency of DNNs on the data by lever-
aging information contained in the knowledge stream. Finding state-of-the-art
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knowledge-based system or DNN model is not the focus here, but instead, the
goal is to devise a knowledge incorporation scheme that bridges the gap between
data and knowledge driven approaches and combines their strengths. Chattha
et al. [4] recently introduced Knowledge Integrated Neural Network (KINN),
a residual framework that combined information contained in the knowledge
stream with the data stream in order to reduce the dependence of DNN on
large amount of accurately labeled data. However, KINN [4] failed to produce
acceptable results on benchmark time-series datasets. KINN particularly suf-
fered when dealing with time-series that encapsulated significant trend variation.
This resulted in poor performance on more sophisticated time-series datasets.
In this paper, we present DeepEX, that not only addresses the shortcomings
of KINN [4], but also strengthens the network allowing information in the two
streams to complement each other. We tested DeepEX on the CIF2016 and
NN5 time-series forecasting benchmark datasets to signify its performance. In
particular, following are the contributions of DeepEX:

– We introduce a novel approach to combine knowledge and data driven systems
in an end-to-end learning framework

– We introduce new regularization on the activity of the network that helps the
network in identifying strengths and weakness of both domains and decide
optimal combination of both

– Introduction of a new network to capture the trend in order to decompose the
problem into sub-problems which can be effectively solved

– Scale DeepEX to multi-step ahead prediction which is significantly difficult
for the current generation of expert knowledge incorporation techniques

The rest of the paper is structured as follows. We will first briefly cover the
previous literature in the direction of expert knowledge incorporation in Sect. 2.
Then we will describe the proposed method in detail in Sect. 3. We will present
the results from the various experiments, and discuss the findings in Sect. 3.5.
Finally, we conclude the paper with concluding remarks in Sect. 3.6.

2 Related Work

Integrating domain knowledge or any sort of extra information to boost DNN’s
performance has been actively researched upon. Ghazvininejad et al. [7] pre-
sented a knowledge-grounded conversation model based on neural networks. In
addition to utilizing data containing the conversation history, they also con-
ditioned the output of their sequence-to-sequence (seq2seq) model on external
details within the context of conversation. The resulting conversation model was
able to produce more accurate responses that were labeled as more informative
and appropriate by human judges. Although such schemes encouraged knowl-
edge incorporation to improve the performance of the system, however, it made
the system more dependent on both the external contextual information data.
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Knowledge-based Artificial Neural Networks (KBANN) were proposed by
Towell et al. [17]. They utilized propositional rules for knowledge representation
which were structured in a hierarchical manner. The neural network was designed
to have a one-to-one correspondence with the elements of the rule set. The
rule set directly defined the number of neurons along with their corresponding
weights. Additional neurons were also introduced to learn features not specified
in the rule set. Tran et al. [18] followed a similar approach where the network
defined a logic rule set. Such techniques directly incorporates the information
contained in the knowledge stream into the neural network. However, as a result
of this direct incorporation, the network is confined to a structure that strictly
complies to the hierarchical structure defined in the rule set. Additionally, this
also abolishes the flexibility to be able to use different network architectures.

Venugopalan et al. [20] also proposed a neural network based video descriptor
model that leveraged knowledge from both a neural language model as well as
semantics obtained from a large text corpus in a LSTM based architecture. The
results demonstrated significant improvements in grammar while also improving
the overall descriptive quality. They introduced two fusion techniques, namely
Late fusion and Deep fusion where they concatenated the hidden states from
both video to text network and language LSTM network, fusing the information
contained in both of the domains. The system is strongly dependent on the
quality of the expert which in turn is dependent of large amount of data.

Buda et al. [3] used statistical forecasting models to aid neural network in
producing forecasting results for an anomaly detection problem. They utilized
multiple statistical forecasting models in conjunction with deep learning model.
Predictions made by all of these individual models were combined into one frame-
work. The predicted values from all models were compared with the ground-truth
and value giving the lowest Root Mean Square Error (RMSE) score was selected
as the final prediction. They refer this approach as single-step merge. Another
voting based approach was also proposed where RMSE score is used to select a
single model for all of the predictions. The system treats the predictions form the
individual models separately, hence, it not able to leverage the advantages from
both streams simultaneously. Munir et al. [13] also used statistical methods to
enhance performance of the neural network in anomaly detection problem. Here
auto-ARIMA was employed to forecast future values of the time series. These
predictions were then integrated into neural network by using a residual scheme.
The resulting model, FuseAD, achieves better performance compared to individ-
ual networks when used separately.

Hu et al. [9] again leveraged expert knowledge in the form of first order logic
rules. Iterative knowledge distillation technique is used to transfer knowledge to
network parameters. The expert network acts as a teacher network to the stu-
dent network, the DNN. DNN tries to follow the teacher network by mimicking
its predictions. Both the student and the teacher networks are updated at each
iteration step. The goal is to find the best teacher network that fits the predic-
tion of the rule set while also staying close to prediction made by the student
network. KL-divergence between the probability distribution of the predictions
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made by the teacher network and the output distribution of predictions made
by the student network is used to minimize the difference between the two dis-
tributions. The proposed framework achieved state-of-the-art performance for
the evaluated classification tasks. However, the framework strongly relied on the
expert network and as the student network is trying to emulate predictions made
by the teacher network.

Chattha et al. [4] proposed a residual learning scheme, called as KINN, where
they incorporated expert knowledge in the form of prediction in the network by
adding it to the network’s output. Although the approach is highly promising, it
couldn’t be scaled for multi-step predictions. The first limitation is its inability
to control the network’s correction factor. The network makes useless corrections
even in cases where it is not necessary. The second limitation is its inability to
cope up with trend present in the sequence. This proves to be an impediment
in the production of convincing results for complex time-series data. DeepEX
addresses both these limitations.

3 DeepEX: The Proposed Method

Fig. 1. Overview of DeepEX architecture

Fig. 1 shows the overall architecture of the DeepEX framework. There are sev-
eral different components in DeepEX each targeted to cater for specific task.
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The first component is the expert module which contains information about
expert opinion. The second component is the STL decomposition module which
decomposes the input signal into its constituent parts. Finally, there are two
CNN models, where one model is dedicated to handle the trend part while the
other one handles the remaining signal.

The data and the expert model output is log normalized before feeding it to
the STL decomposition layer. Log normalization has two major advantages: (i)
re-scaling values and (ii) transformation of the multiplicative relation between
the STL components to an additive one, which makes it easier to decouple the
decomposed components. We will now describe each of these components in
detail.

3.1 STL Decomposition

The Seasonal and Trend decomposition using Loess (STL) is a well-known time-
series decomposition method which splits a time-series into three components
namely (i) trend, (ii) seasonality, and the (iii) residual. In DeepEX, input data
and output of the expert model are both fed into the STL decomposition module
and trend from each of the signals is extracted from the rest of the signal.
Residual and seasonal components are added together since only the trend is of
relevance to us. Hence, output of STL decomposition contains two signals, trend
and the rest of the signal which is a de-trended version of the input comprising
of the seasonal and the residual components. These signals are then given to
their respective CNN estimators as inputs. Although it is a common notion
that neural networks are capable of modeling complex structures in data owing
to their strong self adapting generalizing capabilities, more recent studies argue
decomposing input signal or filtering out some component prior to modelling can
produce better forecasting results [1,14,16]. Hence, we opt for a similar approach
and decompose the original signal into two relatively less complex components.

3.2 Expert Model

Knowledge driven techniques offer their own advantages. Knowledge, however,
can take many shapes and forms. It can be in the form of a human expert,
logic rules or even some statistical method. One of the strengths of DeepEX is
that it does not limit itself to any specific knowledge model as it is not depen-
dent on architecture of the expert model but rather its predictions. Therefore,
any knowledge model capable of producing predictions can be used. The expert
model can be human feedback integrated into the system or a KBS or some
other technique. For this particular paper, we used the 4Theta method1 as our
expert network. 4Theta is based on theta model that decomposes the original
signal into theta lines, where theta lines are derived by modifying the local cur-
vature of the time-series through the coefficient θ. This θ is then applied to the

1 https://github.com/M4Competition/M4-methods/blob/master/005%20-
%20vangspiliot/Method-Description-4Theta.pdf.

https://github.com/M4Competition/M4-methods/blob/master/005%20-%20vangspiliot/Method-Description-4Theta.pdf
https://github.com/M4Competition/M4-methods/blob/master/005%20-%20vangspiliot/Method-Description-4Theta.pdf
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second differences of the data. 4Theta is an improvement to the Theta model,
enabling it to handle complex time-series more efficiently which is evident from
its performance M4 benchmark dataset [12].

3.3 CNN Models

DeepEX has two different CNN models aimed to estimate trend and de-trended
signal which are obtained after STL decomposition. Although the focus of this
work was to develop a knowledge incorporation technique and not the individual
DNN or knowledge models but considerable effort has been invested in estimating
hyperparameters of DNN. It was particularly observed that simple CNN model
struggled the most in modeling the trend component of the signal, hence, model
responsible for the estimation of trend is relatively complex compared to the
seasonal and residual signal estimator. The trend estimation network comprises
of three residual blocks, each containing two convolutional layers with 32 filters
each. The other CNN model comprises of two convolution layers with each layer
each having 64 filters. It is important to mention that although we have chosen
convolutional neural network as our DNN, because CNNs are generally easier to
optimize, DeepEX is flexible enough to work with any other DNN architecture.

3.4 Knowledge Incorporation Scheme

Expert predictions are incorporated in the form of a residual scheme, where
expert predictions are added to the output of the DNN model and are also used
for conditioning the DNN. This conditioning is achieved by sequentially stacking
the expert predictions (xtr′

t ) to the input from the data. The proposed residual
scheme changes the underlying mapping learned by the network and instead of
learning the complete input to output projection, the network only learns the
modification factor needed in the input to give the desired output. In a way it
can be said that the DeepEX framework estimates efficacy of expert model and
makes corrections to it by using information from the data. As we have used a
statistical method (Sect. 3.2) as our expert model, some portion of the data (25%
of the training set) is used to estimate parameters of 4Theta model. The resulting
expert model is then used for making predictions on remaining portion of the
dataset, by employing a rolling window approach where forecast for the next
horizon is obtained by using all of the previous data. Hence, DeepEX is trained
on 75% of the training data, which is the only portion of the dataset where
expert predictions are available, since we do not have any expert predictions on
25% of the data on which 4Theta is trained. It should be noted that the test
set was never used in either estimating parameters of the 4Theta model or in
training DeepEX. Validation set was obtained by max(0.2 ∗ |X|,H) where |X|
denotes the cardinality of the training set, while H denotes the horizon.

The input signal and expert predictions both are decomposed using STL
(Sect. 3.1). Trend from both, the expert predictions and the data is fed into
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CNN responsible for trend estimation. This optimization problem for the trend
estimating CNN (Φ : Rh �→ R

h) can be represented as:

[x̂tr
t , x̂tr

t+1, . . . , x̂tr
t+h−1] = Φ([xtr

t−1, xtr
t−2, . . . , xtr

t−w;xtr′
t , xtr′

t+1, . . . , xtr′
t+h−1];W)

+[xtr′
t , xtr′

t+1, . . . , xtr′
t+h−1] (1)

where xtr′
t represents the decomposed trend values predicted by the expert

model, xtr
t−1 represents the decomposed trend values of the original input and

x̂tr
t output trend values by the network. As the network is just producing an

offset, i.e the required change in the input signal to produce the desired output,
instead of finding the complete input to output mapping it makes the optimiza-
tion problem significantly easier to tackle. Expert predictions are incorporated in
a similar fashion as in case of other CNN model. Finally, the overall output of the
system is the sum of the output of the two CNNs, which can be represented as:

[x̂t, x̂t+1, . . . , x̂t+h−1] = [x̂tr
t , x̂tr

t+1, . . . , x̂
tr
t+h−1] + [x̂sr

t , x̂rr
t+1, . . . , x̂

rr
t+h−1]

(2)
where x̂sr

t represents the output from the trend network, x̂rr
t represents the

output of the seasonality and residual network, and x̂t represents the output
of the overall system. Both of the CNN models are optimized separately. A
regularization term β is also added on top of the network activations in order
to hinder the network from making unnecessary modifications. Therefore, The
optimization problem for the CNN can be represented as:

W∗ = arg min
W

‖[xtr
t , xtr

t+1, .., x
tr
t+h−1] −

(
Φ([xtr

t−1, x
tr
t−2, . . . , x

tr
t−w; xtr′

t , xtr′
t+1, . . . , x

tr′
t+h−1]; W) + [xtr′

t , xtr′
t+1, . . . , x

tr′
t+h−1]

)‖2

+β‖Φ([xtr
t−1, x

tr
t−2, . . . , x

tr
t−w; xtr′

t , xtr′
t+1, . . . , x

tr′
t+h−1]; W)‖2 (3)

where β is a hyperparameter which controls the activity of the network. This
formulation is used for both of the CNN models and the value of β is obtained
via validation.

3.5 Results and Discussion

CIF2016 and NN5 forecasting benchmark datasets were chosen to evaluate the
performance of DeepEX. Figure 2 shows the performance of DeepEX on a ran-
domly selected time-series from the NN5 dataset. It is evident from the Fig. 2b
that DeepEX does a better job at following the trend of the time-series compared
to the expert network, which struggled in correctly modeling the magnitude of
the peaks. KINN [4] also closely followed the expert model. Similar pattern can
be observed from Fig. 2a where DeepEX was able to capture minor variations in
seasonal and residual components, especially in cases of minimas, as compared
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to the other models. DeepEX had a Symmetric Mean Absolute Percentage Error
(SMAPE) score of 15.04 on this particular time-series whereas the SMAPE score
of the expert model was 22.40, highlighting the efficacy of DeepEX in modeling
the sequence. This dominance of DeepEX was found to be consistent on the
entire dataset.

(a) Prediction of seasonal and residual com-
ponents

(b) Prediction of trend component

(c) Overall prediction of the time-series

Fig. 2. Prediction of DeepEX and other networks on a randomly selected time-series
from the NN5 dataset with a horizon 1

We performed a series of experiments in order to validate the effectiveness of
DeepEX’s knowledge incorporation scheme in helping DNN to reduce its depen-
dence on data, along with its ability to scale to multi-step ahead prediction. As
mentioned previously, for the first set of experiments, only 75% of the training
data was utilized to train parameters of the DNNs. For NN5 dataset, the per-
formance was evaluated for a horizon of 1, 3, 8 and 56. While for CIF2016, the
performance was evaluated for a horizon of 1, 3 and 6/12. In the next set of
experiments, training data was further reduced to 50% while the horizons were
kept same. When the size of the dataset was reduced to half, many time-series
in CIF2016 became so small that even having a horizon of one in the validation
set was not possible. Hence, in this particular experimental setting, CIF2016
dataset was not evaluated for a horizon of 6/12.

Table 1 shows the results of the aforementioned experiments. In almost all of
the experiments, DeepEX achieved lower SMAPE score compared to the other
techniques. Even in data scarce scenarios, DeepEX showed an improvement of
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Table 1. SMAPE scores for the different models

Dataset Percentage Horizon Dataset

CIF2016 NN5

4Theta KINN [4] DeepEX 4Theta KINN [4] DeepEX

75% 1 9.2 99.2 7.5 20.1 24.4 17.2

3 10.1 117 9.4 20.6 27.2 18.2

6/12/8 13 96 12.8 20.6 29.3 19.8

56 – – – 21.5 65 21.4

50% 1 30.4 99 18.9 35.3 39.5 19.0

3 32.3 105 22.5 35.1 44.8 21.3

6/12/8 – – – 34.9 46.8 28.1

56 – – – 34.0 93 32.8

almost 46% in terms of SMAPE score when trained on only 50% of the data
from the NN5 dataset with a horizon of 1. Similarly, for the same experimental
setting, it showed an improvement of 38% in case of CIF2016 dataset. It was
also observed that for bigger horizon, the percentage gain in terms of SMAPE
was lower compared to experiments with smaller horizon since the complexity of
the task was significantly enhanced. Nevertheless, even in these cases, DeepEX

Table 2. Results of CIF2016 dataset of different techniques ordered by mean SMAPE

Method Mean SMAPE

LSTM.Cluster 10.53

LSTMs and ETS 10.83

ETS 11.87

MLP 12.13

REST 12.45

ES 12.73

DeepEX(trained on 75% data) 12.80

FRBE 12.90

HEM 13.04

Avg 13.05

BaggedETS 13.13

LSTM 13.33

Fuzzy c-regression 13.73

PB-GRNN 14.50

PB-RF 14.50

ARIMA 14.56

Theta 14.76
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still outperformed other techniques. KINN [4] particularly struggled on these
datasets as could not handle time series with trend component.

We compared DeepEX with the top performing techniques for both of these
competitions i.e NN5 and CIF2016. Table 2 shows the comparison of results
on CIF2016 dataset. DeepEX trained with 75% of the training data outper-
formed most of the other techniques, including BaggesETS [2], ARIMA and
Theta methods, which were considered as benchmarks, in the competition and
achieved comparative performance with that of the top performing models.

Table 3 shows the results obtained on the NN5 dataset including both
DeepEX and other state-of-the-art models. Similar to the case of CIF2016,

Table 3. Results of NN5 dataset of different techniques ordered by Mean SMAPE

Name Mean SMAPE

Wildi 19.9

Andrawis 20.4

Vogel 20.5

D’yakonov 20.6

Noncheva 21.1

DeepEX(trained on 75% data) 21.4

LSTM.Cluster 21.6

Rauch 21.7

Luna 21.8

Lagoo 21.9

Wichard 22.1

Gao 22.3

LSTM.All 23.4

Puma-Villanueva 23.7

Autobox(Reilly) 24.1

Lewicke 24.5

Brentnall 24.8

Dang 25.3

Pasero 25.3

Adeodato 25.3

undisclosed 26.8

undisclosed 27.3

Tung 28.1

Naive Seasonal 28.8

DeepEx(trained on 50% data) 32.8

undisclosed 33.1
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DeepEX trained on 75% of the data outperformed most of the techniques and is
even slightly better then LSTM.Cluster [1] which was the best performing model
for the CIF2016 dataset. This demonstrates the robustness of DeepEX and its
ability to work on a different datasets.

3.6 Conclusion

We have presented a new knowledge incorporating residual framework that com-
bines best of both knowledge as well as data driven approaches. In particular
the aim of this work was to use information contained in the knowledge stream
to reduce the dependence of DNNs on large amount of data without compromis-
ing the performance. Results obtained by DeepEX show that DeepEX not only
alleviates data dependence but also significantly boosts the performance of the
network. DeepEX trained on only 75% of the data ranked at 6th place overall
in the NN5 competition and 7th in the CIF2016 competition. This is achieved
by separating the forecasting model into two different components where the
first one captures the trend while the second one captures the rest of the signal.
Finally, these two outputs are added to the prediction made by the expert. Reg-
ularization term is also added that controls the activation of the DNN model
which inhibits the neural network from making unnecessary modifications. High
rank achieved by DeepEX on different datasets belonging to different domains
demonstrates that the model indeed generalizes well by leveraging a combination
of the two streams.

This is only a step in the direction of merging knowledge and data driven
techniques. There is still a large room for improvement, particularly in cases
where forecasting horizon is large.
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Abstract. Domain adaption is definitely critical for success in bridging source
and target domains that data distribution shifts exist in domain or task. The
state-of-the-art of the adversarial feature learning model named Bidirectional
Generative Adversarial Networks (BiGAN), forces generative models to align
with an arbitrarily complex distribution in a latent space. However, BiGAN
only matches single data distribution without exploiting multi-domain structure,
which means the learned latent representation could not transfer to related target
domains. Recent research has proved that GANs combined with Cycle Consistent
Constraints are effective at image translation. Therefore, we propose a novel
framework named Transferable Bidirectional Generative Adversarial Networks
combining with Cycle-Consistent Constraints (Cycle-TBiGAN) be applied in
cross-domain translation, which aims at learning an alignment latent feature rep-
resentation and achieving a mapping function between domains. Our framework
is suitable for a wide variety of domain adaption scenarios. We show the surpris-
ing results in the task of image translation without prior ground-truth knowledge.
Extensive experiments are presented on several public datasets. Quantitative com-
parisons demonstrate the superiority of our approach against previous methods.

Keywords: Domain adaption · Cycle constraints ·
Transferable alignment · GAN · Image translation

1 Introduction

Domain adaptation is an actively researched topic inmany areas of Artificial Intelligence.
Earlier approaches of domain adaptation focused on building the feature representations
[1]. This was accomplished by exploring the inner structure of unlabeled data, such as
Self-taught Learning [13,16], Traditional methods, including Feature Reweighting and
Selection [7,9,10,20,21], Adversarial Alignment [2,5], Regularization Methods [6,14],
Matrix Completion and Mapping [22,23,25], Kernel Methods [3,15]. The underlying
idea behind these methods is to minimize a specific objective that reduces domain dis-
crepancy or to learn a public feature mapping that aligns distribution between domains.

Generative Adversarial Networks (GANs) was first proposed by Goodfellow et al.
[11]. When GANs are applied in domain adaption, existing domain divergence forces
GAN’s training easily to suffer from model collapse and become barbaric. For image
domain adaption, cycle constraint [24] provides an assumption that a mapping between
c© Springer Nature Switzerland AG 2019
I. V. Tetko et al. (Eds.): ICANN 2019, LNCS 11728, pp. 655–672, 2019.
https://doi.org/10.1007/978-3-030-30484-3_52
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domains should be reversible. Donahue et al. [8] independently proposed an unsuper-
vised feature learning method, Bidirectional GAN, an approach contains an encoder
which maps data to a latent representation space and learns to invert the generator’s
operation.

Based on Transferable BiGAN, we proposed a novel framework that integrating
the Adversarial Feature Learning with Cycle Consistent Constraints, namely Cycle-
TBiGAN. The Cycle-TBiGAN is different from previous approaches as the following
advantages: (1). TBiGAN aims to learn a distribution alignment space from domains
thus we can transfer this space to any supervised task. (2). Cycle-TBiGAN is two-way
and ensures the one-to-one relationship between domains.

2 Related Work

2.1 Structural Risk Minimization

Domain adaptation is a challenging field since the target domain almost has no labeled
sample with respect to the source domain follows different distributions. Many meth-
ods aim to bound the target error by source error plus a discrepancy metric between
the source and target distributions [4], which is theoretically supported by domain adap-
tation learning bounds. SRM theory aims to minimize the distribution discrepancy for
mismatched features so that the model achieves adaption by reducing even removing the
domain discrepancy. Based on the SRM principle [18], domain adaption model needs
to learn an unbiased and invariant feature space so that the structural target model risk
of R̂xt

(f) is minimized as [4]:

R̂xt
(f) ≤ R̂xs

(f) +
1
2
Df (xs, xt) + λ (1)

As (1) shows, the target risk R̂xt
(f) is the upper-bounded by summation of pre-trained

source model risk R̂xs
(f), a constant λ (an expected complexity of target hypothesis

VC-dimensionality space) and Df (·) (a divergence measurement between source dis-
tribution p and target distribution q). Only minimizing the risk of source model or esti-
mating the optimal error λ is not enough to extract the invariant feature space because
the cross-domain distribution discrepancy can’t be estimated. In order to measure the
difference between the data distributions, the feature-based methods learn a mapping
function that projects the data from the original domain to a latent code space where the
distribution divergence could be bounded with a distance measurement.

2.2 Adversarial Feature Learning

The Generative Adversarial Networks (GAN) has an ability to learn a function or a
distribution that generates the latent code or feature from an arbitrarily noise simple dis-
tribution. Therefore, we could use the generator to predict the latent representation for
more complex data distribution based on the prerequisite that model has already learned
a semantically related feature space from different distributions. Aim at transferring the
invariant and relevant semantic information to any target domain.
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Most of the existing methods only focus on one-way generation or extraction, which
means only generate the latent code from original data without inverse operation. Inter-
polations in the latent space of the generator produce smooth and plausible semantic
variations, and meaningful directions in this space correspond to particular semantic
attributes along which the data distribution varies. Donahue et al. [8] put forward an
intuitive question: can GAN be applied in unsupervised learning with sufficient latent
features for any arbitrary data distribution?

Therefore, we proposed a Transferable Bidirectional Generative Adversarial Net-
works - TBiGAN, which is a significant improvement for existing Bidirectional Gener-
ative Adversarial Networks (BiGAN) framework and endued with a Transferable ability.
The above generic adversarial learning framework can also be extended to tackle multi-
ple target domains directly.

2.3 Cycle Consistency

A number of recently proposed cycle-consistent adversarial learning methods have
achieved remarkable success in addressing cross-domain image generation problem, as
a new Cycle Consistency GAN framework, called CycleGAN [24], it highlights superi-
ority in image-to-image translation problem.

More recently, variant forms of cycle consistency have been applied in structured
data transformation. Some scholars regard cycle consistency loss as a transitivity mea-
surement for supervised Deep Neural Networks. CycleGAN provides an effective
adversarial learning inference by cycle-consistency estimation and invertible mapping
between two domains, which could effectively solve the visual domain adaption prob-
lem, like image generation. Combining the cycle consistency loss with the original
adversarial objective loss in domain adaption could obtain a complete learning objective
for unpaired image-to-image translation problem.

3 Method

Existing methods aim to learn an alignment representation space to imple-
ment the image translation. There are still several fundamental challenging prob-
lems: (1). How to ensure the distribution discrepancy keep measurement consis-
tency between low-dimensional latent space and high-dimensional original space;
(2). How to transfer an alignment latent representation space to target domain; (3). How
to alleviate GAN highly unstable and model collapse issues during training; (4). How
to obtain an integrated framework to solve the above issues simultaneously; Next, we
will introduce the optimization work for the proposed framework correspond to these
problems in detail.

3.1 Adversarial Feature Learning - Transferable Bidirectional GAN

Adversarial Feature Learning: BiGANs [8] has been trained to extract the latent
code given a source domain space with effective semantic representation. However, how
to successfully apply this framework in unsupervised domain adaption, the goal is to
train a model that could learn a cross-domain invariant feature representation space.
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We need to extend BiGANs to target domain by (1). Forcing the shared Encoder to be
domain-invariant; (2). Training separately generators that contain the domain-specific
properties. Moreover, transfer the source semantic information to the target domain in
order to obtain an invariant latent feature space.

Definition 1. Let pxs
(XS) presents the probability distribution of a source domain for

XS ∈ ΩXS
and pxt

(XT ) be the probability distribution of target domain for XT ∈
ΩXT

.
Let pzs(ZS) be the distribution of latent code of source feature representation for

ZS ∈ ΩZS
and pzt(ZT ) be the distribution of latent code of target feature representa-

tion for ZT ∈ ΩZT
.

The goal of Encoder E is capturing data distribution with encoding result for Z
that Z ∈ ΩZS

∪ ΩZT
.

The goal of source Generator GS is reconstructing the source data XS given the
latent code ZS .

The goal of target Generator GT is reconstructing the target data XT given the
latent code ZT .

Based on the Definition 1, we need to train a shared Encoder that extracts latent codes
from both domains so as to obtain a feature representation space without domain dis-
crepancy. Furthermore, the shared encoder should learn a cross-domain semantic justice.
However, two generators should be situated out of the crossing-domain, which means
training such two generators will focus on domain private semantic justice. As a result,
two generators should have the ability to reconstruct the corresponding original domain
data.

Assumption 1. Transferable BiGAN (TBiGAN) instead of modeling the data proba-
bility distribution as a generative model for a fixed latent distribution pz(Z) where
Z ∈ ΩZS

∪ΩZT
. This generation process is bidirectional, is represented as a determin-

istic feed-forward networks:
GS : ΩZS

→ ΩXS
with pGS

(XS |ZS) = δ
(
X − GS(ZS)

)
, pGS

(XS) =
Ez∼pzs

[pGS
(XS |ZS)]

GT : ΩZT
→ ΩXT

with pGT
(XT |ZT ) = δ

(
X − GT (ZT )

)
, pGT

(XT ) =
Ez∼pzt

[pGT
(XT |ZT )]

The objective is to train source and target generators such that pGS
(X) = pxs

(XS)
and pGT

(X) = pxt
(XT ).

GS : ΩZT
→ ΩXS

with pGS
(XT→S |ZT ) = δ

(
X − GS(ZT )

)
, pGS

(XT→S) =
Ez∼pzt

[pGS
(XT→S |ZT )]

GT : ΩZS
→ ΩXT

with pGT
(XS→T |ZS) = δ

(
X − GT (ZS)

)
, pGT

(XS→T ) =
Ez∼pzs

[pGT
(XS→T |ZS)]

At the same time, minimize the distribution divergence between pxs
(XS) with

pGT
(XS→T ), pxt

(XT ) with pGS
(XT→S)

From Fig. 1, Discriminator D1 needs distinguish the
(
ZS , GS(ZS)

)
versus

(
ZS ,XS

)

and
(
ZT , GT (ZT )

)
versus

(
ZT ,XT

)
pairs, which means the latent code Z could be

considered as conditional information for D1 while the Generators G ∈ {GS , GT }
could learn how to generate the real-like data given latent code.
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Fig. 1. Transferable Bidirectional Generative Adversarial Networks. Thence, given two Genera-
tors for the specific domain (GS for source domain andGt for target domain), which could gener-
ate the real-like instances based on the latent representation space Z. The objective of adversarial
learning is to learn an invariant feature representation from both domains. Blue lines for source
domain and red lines for target domain. (Color figure online)

Domain Divergence Alignment: In order to obtain an alignment feature representation
space, we need an optimal discriminator decouple the domain generators from encoder,
where the discriminator allows us to define the objective and demonstrate that it could
reduce the divergence between the joint probability distributions PE

⋃
X and PG

⋃
Z .

Additionally, in order to “confuse” an expected discriminator, a deterministic encoder
and generators should implement inverse operation each other [19].

Given a Bidirectional discriminator with the input pair denotes as (x, z), which
should satisfy both adversarial and alignment objective. The objective of generators
G ∈ {GS , GT } and encoder E provided an optimal discriminator maxD1V (E,G,D1)
[8] can be rewritten as a autoencoder loss function. Formally, define the objective func-
tion for Discriminator D1 as:

minG,EmaxD1V (E,G,D1) = Ex∼px(x)[logD1
(
x,E(x)

)
]

+ Ez∼pz(z)[1 − logD1
(
G(z), z

)
]

(2)

minD1lossD1 = maxD1V (E,G,D1)
= lossD1−E + lossD1−G

(3)

where lossD1−E , lossD1−G defined as:

lossD1−E = Lb

(
D1

(
x,E(x)

)
, 1

)
(4)

lossD1−G = Lb

(
D1

(
z,G(z)

)
, 0

)
(5)

where Lb(·) is a binary cross-entropy loss.
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The distributional alignment is enforced by training a discriminator D1 to discrim-
inate

(
zs, GS(zs)

)
from

(
E(xs), xs

)
,
(
zt, GT (zt)

)
from

(
E(xt), xt

)
pairs. Only stan-

dard GAN adversarial constraint was not insufficient for cross-domain alignment. Addi-
tional reconstruction and divergence constraints should be added to quantify the recon-
struction and distribution discrepancy loss. In this case, two-way inversion mappings
are presented as z = E

(
G(z)

)
and x = G

(
E(x)

)
.

Reconstruction loss (lossE−Rec) (8) ensures that the domain data x mapping
to feature representation space E(x) and back to reconstructed data G

(
E(x)

)
keep

unchanged.
Divergence loss (lossG−Div) (9) minimizes the distribution discrepancy between

original data with reconstructed data generated by different domain generator that uses
original data latent code as input. We could define the objective function for E and G
as:

minElossE = minEV (E,G,D1)
= (lossD1−E + lossE−Rec)

(6)

minGlossG = minGV (E,G,D1)
= (lossD1−G + lossG−Div)

(7)

where lossE−Rec and lossG−Div defined as:

lossE−Rec = {
L1

(
xs, GS

(
E(xs)

))

L1

(
xt, GT

(
E(xt)

)) (8)

lossG−Div = {
Ld

(
xs, GT

(
E(xs)

))

Ld

(
xt, GS

(
E(xt)

)) (9)

where L1(·) is a L1 loss and Ld(·) denotes a “divergence loss” measurement, which
is based on domain distribution measurements, such as Maximum Mean Discrepancy
(MMD), Wasserstein Metric and etc.

3.2 Image Translation Cross Domain - Cycle TBiGAN

Image-to-image translation is a task of image processing whereby the goal of transla-
tion is to learn the mapping between different image domains with aligned pairs. To
enforce simple binary-directional and forward-backward consistency became a funda-
mental solution for image translation task in recent years.

Previous methods were proposed for the image translation objective without prior
ground-truth knowledge in the form of correspondences [12]. Most existing models
aim to use similar minds to guarantee that the generative domain is indistinguishable
from the original domain. However, these methods more or less suffer from known
training instability and model collapse issues. Additionally, in order to obtain a one-to-
one mapping, most methods rely on “cycle” relationships between domains.

We introduce a method: Cycle-Consistent Constraints combine with the TBiGAN
framework, name as Cycle-TBiGAN, which takes advantage of the invariant feature
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representation space learned from TBiGAN. Cycle-TBiGAN relies heavily on pre-
trained generators from source and target domains. Furthermore, the most important
pre-trained Encoder could align both domains in the latent code space while jointly
optimizing a cross-domain mapping function.

Cross-Domain Translation Alignment: Suppose we have obtained the generators
and encoder in the previous Sect. 3.1. Specifically, Generator GS , target Generator GT

and Encoder E, all of these components are depicted in Definition 1 and learned from
TBiGAN framework. The objective of the task aims to match every source image XS

against with an analogous target fake image XT−fake derived from the target domain
but preserves the unique style or properties of the original target image. The same oper-
ation for a target image XT matches a source fake image XS−fake.

Definition 2. The objective is jointly to learn a mapping function Gc(·), which maps
the latent code of source domain ZS and target domain ZT to the synthesized latent
code Zsyn, denotes as Zsyn = Gc(ZS , ZT ).
Based on source Generator (GS), we could generate a source-fake image XS−fake =
GS(Zsyn) corresponding to every target input image XT . Mathematical expression as:

XT → XS−fake = GS

(
Gc

(
E(XS), E(XT )

))

Based on target Generator (GT ), we could generate a target-fake image XT−fake =
GT (Zsyn) corresponding to every source input image XS . Mathematical expression as:

XS → XT−fake = GT

(
Gc

(
E(XS), E(XT )

))

The distribution alignment is required by training another discriminator D2 to distin-
guish mapped fake images XS−fake from original source images XS ∈ ΩXS

, where
the distribution of XS is denoted by pxs

(XS), pGS(Zsyn)(XS−fake) denotes the dis-
tribution of XS−fake instances be mapped by GS(Zsyn). At the same time, Gc(·) is
optimized so that the discriminator will not have an ability to discriminate between the
pxs

(XS) and pGS(Zsyn)(XS−fake). As a result, the loss functions of Discriminator D2
and mapping function Gc are:

minD2lossD2 = Lb

(
D2

(
GS(Zsyn)

)
, 0

)
+Lb

(
D2(XS), 1

)
(10)

minGC
lossGC

= Lb

(
D2

(
GS(Zsyn)

)
, 1

)
(11)

Where Lb(·) is a binary cross-entropy loss, lossD2 and lossGC
are trained

iteratively.

Cycle Consistent Constraints: Mode collapse appears when the generator drops into
parameters setting in which always generates the same value [17]. Reflected in image
translation problem that the generator produces a single mode with fixed images in
respect to target domain, while the gradient of the GAN model will go towards sev-
eral fixed directions with similar points. But the original data space is complex high-
dimensional and it is almost impossible to ensure adaptive learning direction during the
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Fig. 2. A mapping function Gc could be regarded as a generative model trained under standard
GAN. For each source or target latent code there is a synthetic code Zsyn = Gc(ZS , ZT ) exists,
which could be used to reconstruct the domain fake images XS−fake or XT−fake given corre-
sponding domain Generators G.

Fig. 3. Cycle-Consistent Constraints map source-fake image XS−fake back to reconstruction
target domain image XT−rec.

training. But the latent space is low-dimensional and controllable for learning adaptive
direction as expected. For the problem that GAN is not invertible to map the data back
to the original space thus could be solved by Cycle-Consistent Constraints effectively.

Therefore, we propose a method to constrain the model and enforce no such mode
collapse issue appears during training. Figures 2 and 3 show two-sided approaches
implement cycle reversible mapping from XT to XS−fake and then reconstructs
XS−fake back to XT−rec.

Cycle Consistent Reconstruction (losscyc) provides a matching between every tar-
get sample XT with a reconstruction target domain image XT−rec, it could be defined
as:

XT−rec = GT

(
GC

(
E(XS−fake), E(XT )

))
(12)

From the Fig. 4, the complete Cycle Consistent loss is given by:

min losscyc = Lp(XT , XT−rec) (13)

Where Lp(·) is a “perceptual loss”, which is based on image representation measure-
ments, such as Laplacian pyramid by VGG, L1 or L2 loss. Finally, we summarize
the objective of Adversarial Featuring Learning with Cycle Consistent Constraints for
image translation is:

minD2lossD2 = Lb

(
D2

(
GS(Zsyn)

)
, 0

)
+Lb

(
D2(XS), 1

)
(14)

minGC
lossGC

= Lb

(
D2

(
GS(Zsyn)

)
, 1

)
+ losscyc (15)

Where Lb(·) is a binary cross-entropy loss, losscyc is defined in (13).
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Fig. 4. The framework of Cycle-TBiGAN. The black line shows cross-domain translation flow
and the red line shows the Cycle-Consistent Constraints measurement flow. (Color figure online)

4 Experiment

We demonstrate the performance of Cycle-TBiGAN against two benchmarks with 4
public exact datasets (including MNIST, MNIST m, USPS, SVHN). (1). Attempt to
verify whether TBiGAN can learn an invariant latent code space between domains. (2).
A task of learning a mapping function between the different distributions of domain
images so as to verify whether Cycle-TBiGAN can implement cross-domain transla-
tion.

– TBiGAN: We work with a quantitative evaluation for the quality of reconstruction
images and the stability of the model training. Compared with TBiGAN, original
GAN [11], Bidirectional GAN (BiGAN) [8] and Cycle-GAN [24] are trained under
the same datasets. The Cycle-GAN learns pairwise translation functions between
pairs of datasets (rather than mapping through a central latent space). We obtain
BiGAN through objective loss defined in [8]. TBiGAN needs to achieve the Dis-
criminator, Encoder, and Generators separately by (3), (6) and (7).

– Cycle-TBiGAN: Implement the translation from source domain images to target
domain images. The source generator, target generator (GS , GT ) and shared encoder
(E) are obtained from TBiGAN. The discriminator (D2) and generator (Gc) of
Cycle-TBiGAN are trained by (14) and (15). The Non-Adversarial Mapping model
[12] and Cycle-GAN [24] are used for comparison.

4.1 Transferable Bidirectional Generative Adversarial Networks (TBiGAN)

Implementation Detail. All the network architectures are repetition by two blocks,
full connected block and convolutional (deconvolutional) block, each defined by a
Batch Normalization layer and a Dropout layer followed by a Convolutional layer with
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RELU or Leak RELU activation function. The generator consists of the Deconvolu-
tion layers with a sigmoid unit and full connected output layers. In particular, MNIST,
USPS, MNIST m datasets, all components consist of simple fully connected layers. For
MNIST→MNIST m, we use three hidden layers with ReLU units throughout the archi-
tectures. For MNIST→ MNIST m and SVHN→MNIST m, the discriminator has five
hidden layers followed by two full-connected layers that be activated by sigmoid units.

Fig. 5. Example results for MNIST are reconstructed by the different frameworks’ Generator at
the different training epochs. (a) TBiGAN (40 epochs). (b) GAN (300 epochs). (c) BiGAN (400
epochs). (d) Cycle-GAN (200 epochs). (e) Real MNIST.

Experiment Result. Evaluating the TBiGAN on adversarial feature learning task while
comparing with original GAN, BiGAN and Cycle-GAN benchmarks. From Fig. 5, TBi-
GAN only needs 40 training epochs that have almost the same reconstruction result
corresponds to 400 epochs of BiGAN and 200 epochs of Cycle-GAN. From Fig. 6, we
could easily find TBiGAN has obtained expected reconstruction result at the number of
50 epoch compared with other algorithms that have the same network architecture at
the same epoch. Figure 7 presents that TBiGAN initialized by source pre-trained model
(GS) even could reduce the loss reconstruction error of the target model (GT ) from
e − 3 to e − 4 and converge to optimal value faster.

From the reconstruction results, it is easy to find that the source Generator and
Encoder are actually pre-trained models for the target domain. In other words, we obtain
a domain invariant feature space and transfer it to the target domain effectively. For the
same random noise input, the output generated by TBiGAN has better performance than
BiGAN and Cycle-GAN.

A quantitative comparison of images reconstruction quality from representative
datasets is presented in Table 1. We can easily find that the TBiGAN demonstrates
higher accuracies, especially for SVHN dataset with more complex context noise.
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Fig. 6. Example results for MNIST m that reconstructed by the different frameworks’ Generator
at same training epoch (50 epochs). (a) TBiGAN. (b)GAN. (c) BiGAN. (d) Cycle-GAN. (e) Real
MNIST m.

Fig. 7. Reconstruction loss of MNIST m: Target Generator model learned from scratch (orange)
against initialized by pre-trained source domain model (blue) (Color figure online)

4.2 Cycle-Consistent Cross-Domain Translation

Implementation Detail. Our task is to find for every target domain image xt, a syn-
thetic source domain latent code Zsyn when mapped to the source domain XS−fake =
GS(Zsyn). The task is therefore twofold: (i) for each target image, we need to find the
latent code Zsyn which will synthesize the source fake XS−fake image, and (ii) the
mapping function Gc(·) needs to be learned.

The Generator Gc(·) is actually a translator that maps the latent code space of target
domain ZT and source domain ZS to a synthesized code space Zsyn. Let us assume
that every target image latent code zti there exists a corresponding source image code
zsj . Let ωi,j be the proposed match matrix or weight coefficient between zsj and zti ,
i.e., every zti matches a mixture of related latent code subset zsj in source latent code
space, using weights ωi,:, and similarly for zsj for a weighing using ω:,j of the subset
from target latent code space. Ideally, we would like a binary matrix with ωi,j = 1 for
the proposed match and 0 for the rest. This task is formally written as:

Zsyn = Gc(ZS , ZT ) =
∑

zti ,zsj

ωi,j · Lm(zti , zsj ) (16)
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Table 1. Reconstruction images measured by digit classification accuracy (%). Pre-trained classi-
fier from the original target domain (accuracies around 99.5% on real MNIST and 95.0% on real
SVHN).

Dataset MNIST SVHN

GAN 81.5± 0.8 52.6± 0.8

Cycle-GAN 89.5± 0.2 57.5± 0.2

BiGAN 88.6± 0.4 48.3± 0.4

TBiGAN 90.5± 0.4 68.3± 0.3

Where the Lm(·) is a “similarity measurement”, which is used to find a subset of zsj
that similar to target image latent code zti , like clustering and etc. The optimization is
continuous on Gc and coefficient ωi,j .

Experiment Result. Figure 8 shows the translation result, Cycle-TBiGAN not only
can successfully find the corresponding image in USPS domains but also preserve the
domain-specific properties like written style in respect to USPS. Compare with NAM
and Cycle-GAN models, our framework has better clarity.

Fig. 8. Translation results from target MNIST (bottom row) to source USPS (top three rows)

Since the USPS has a relatively simple image structure, which means the domain
shifts or distribution discrepancy between MNIST and USPS datasets is well learned
by TBiGAN. From Fig. 9, we can easily observe our method presents a precise match-
ing in a more complicated cross-domain from SVHN to MNIST m. Therefore, cycle
Consistent mapping outperforms NAM and Cycle-GAN.
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Fig. 9. Translation results from target SVHN (bottom row) to source MNIST m (top three rows)

Comparing the translation results of MNIST→USPS and SVHN→MNIST m, the
latter of invariant feature space contains more complex domain structure whereby cap-
tures more generic information from domains. As SVHN contains too much noise and
confusion context, it requires more training time to avoid model collapse and keep train-
ing stable. We perform using the median residuals (average pixel difference median) to
measure the quality of translated images in Table 2. Cycle-TBiGAN significantly has
better performance than Non-Adversarial Mapping.

Table 2. Image-to-image median pixel difference from linear comparison (lower is better)

Dataset MNIST → USP SVNH → MNIST m

Cycle-GAN 0.077± 0.05 0.105± 0.05

Non-Adversarial 0.089± 0.02 0.153± 0.02

Cycle-TBiGAN 0.053± 0.01 0.087± 0.02

5 Conclusion

In this paper, we proposed a novel method (Cycle-TBiGAN) that integrating the Trans-
ferable Bi-GAN with Cycle Consistent Constraints by learning a mapping function
for image translation task, specifically aimed to reduce even remove the distribution
discrepancy between domains and relieved the training instability and model collapse
issues. Combine with domain alignment objective to transfer the invariant feature rep-
resentation to a target domain.
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A Supplement for Experiment Implementation

As we have described in Sects. 4.1 and 4.2, all the network architectures are repeti-
tion by two blocks, full connected block and convolutional or deconvolutional block,
each defined by a fully connected layer at the last top layer, a Batch Normalization
layer (BN), and a Dropout layer(P), followed by a fully connected (FC) layer or Con-
volutional layer (CON) with RELU or Leak RELU activation functions. The Generator
consists of Deconvolution layers (DCON) and the full connected output layers with
sigmoid hidden units. Image preprocessing includes linear scaling all image sizes to
28× 28, each image is represented by a 256-dimensional feature vector in feature rep-
resentation space, which encodes the pixel information of the image.

In this section, we will give a detailed introduction about the specific design used to
generate the result presented for Transferable Bidirectional Generative Adversarial Net-
works (TBiGAN) and Cycle-Consistent TBiGAN. A detailed description of architec-
tures and hyperparameters (learning rate, batch sizes, etc.) is displayed in the following
sections. We provide a basic necessary understanding of our experiments.

A.1 Transferable Bidirectional Generative Adversarial Networks (TBiGAN)

We apply TBiGAN to a task that aims at learning an invariant feature representation
from the different domain distributions. We attempt to verify whether TBiGAN can
learn a latent code space between domains by the objective we define in (3), (6) and (7).

For MNIST→USPS, MNIST→MNIST m in Table 3, the generative model net-
works only contain several fully connected layers, the discriminator and Encoder both
have the same structure with the generator. Since MNIST and USPS have similar
domain distributions, a relatively simple network structure is proposed.

Table 3. Network architectures of TBiGAN for MNIST→USPS, MNIST→MNIST m experi-
ments

Layer Encoder, Generator and Discriminator

1 FC-(1024), BN, PReLU

2 FC-(1024), BN, PReLU

3 FC-(784=28 * 28), Sigmoid

For MNIST→MNIST m in Table 4, we define a different network like conv-pool-
conv-pool-fc-softmax. The Discriminator contains three conv-pool layers followed by
two fully connected layers (depends on the different image preprocessing methods)
activated by sigmoid units. In particular the Encoder for MNIST m domain only has
two hidden layers activated by ReLU units. A fully connected layer still be used as the
last output layer.

Since SVHN has its own domain-specific properties, a single image contains several
adjacent digits. The architectures of network need more convolutional layers to capture
the domain information. Therefore, the discriminator has five conv-pool layers followed
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by last two full-connected layers activated with a sigmoid unit. The specific details of
the Generator and Encoder are shown in Table 5.

A.2 Cycle-Consistent Crossing Domain Translation

The fundamental network architectures of Cycle-TBiGAN are similar to TBiGAN. We
assume that necessary components such as generators (GS , GT ) and encoder (E) cor-
responding to specific domain have been obtained from TBiGAN. The Generator Gc(·)
is actually a translator that maps the latent code space of target domain ZT and source
domain ZS to a synthesized code space Zsyn, which means the invariant feature repre-
sentation space is regarded as input for Gc(·). A specific network description of map-
ping function Gc(·) is showed in Table 6.

As defined in (16), the Lm(·) is a “similarity measurement”, which is used to find
a subset of zsj that similar to target image latent code zti . Since the training of Cycle-
TBiGAN is high computational cost and it should be relaxed, we use the K-Nearest-
Neighbor (KNN) algorithm to find a subset of zs1···k with size k from source latent
code space. In other words, the latent subset should be similar to zti . Therefore, the
relaxed (16) could be presented as:

Zsyn = Gc(ZS , ZT ) =
∑

zti

ωi,j · KNNk(zti , zsj ) (17)

The relaxed objective could be optimized using SGD.

Table 4. Network architectures of TBiGAN for MNIST→MNIST m

Layer Encoder

1 CON-(N32,K5x5,S1), POOL-(MAX,2)

2 CON-(N48,K5x5,S1), POOL-(MAX,2)

3 FC-(N1024), BN, PReLU

4 FC-(N256), None

Layer Discriminator

1 CON-(N32,K5x5,S1), POOL-(MAX,2)

2 CON-(N48,K3x3,S1), Latent Feature

3 CON-(N48,K5x5,S1), POOL-(MAX,2)

CONCAT(Image, Latent Feature)

4 FC-(N1024), BN, PReLU

5 FC-(N1), None

Layer Generator

1 FC-(N7x7x48), BN, Normal(0, 0.05)

2 DECONV-(N48,K5x5,S2), PLeakRELU

3 DECONV-(N32,K5x5,S2), PLeakRELU

4 FC-(N1024), BN, PReLU

5 FC-(N784 = 28x28), Sigmoid
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Table 5. Network architectures of TBiGAN for SVHN→ MNIST m

Layer Encoder

1 CON-(N32,K5x5,S1), POOL-(MAX,2)

2 CON-(N64,K5x5,S1), POOL-(MAX,2)

3 CON-(N128,K5x5,S1), POOL-(MAX,2)

4 FC-(N1024), BN, PReLU

5 FC-(N256), None

Layer Discriminator

1 CON-(N64,K3x3,S1), POOL-(MAX,2)

2 CON-(N128,K3x3,S1), Latent Feature

3 CON-(N128,K3x3,S1), POOL-(MAX,2)

CONCAT(Image, Latent Feature)

4 CON-(N256,K3x3,S1), POOL-(MAX,2)

5 CON-(N128,K3x3,S1), POOL-(MAX,3)

6 FC-(N1024), BN, PLeakRELU

7 FC-(1), None

Layer Generator

1 DECONV-(N512,K4x4,S2), PLeakRELU

2 DECONV-(N126,K4x4,S2), PLeakRELU

3 DECONV-(N128,K4x4,S2), PLeakRELU

4 DECONV-(N64,K4x4,S2), PLeakRELU

5 DECONV-(N3,K4x4,S2), PLeakRELU

6 FC-(N784 = 28 * 28), Sigmoid

Table 6. Network architectures of Cycle-TBiGAN for MNIST→USPS, SVHN→MNIST m
image translation

Layer Discriminator

1 CON-(N64,K3x3,S1), POOL-(MAX,2)

2 CON-(N128,K3x3,S1), Latent Feature

3 CON-(N128,K3x3,S1), POOL-(MAX,2)

CONCAT(Image, Latent Feature)

4 CON-(N256,K3x3,S1), POOL-(MAX,2)

5 CON-(N128,K3x3,S1), POOL-(MAX,3)

6 FC-(N1024), BN, PLeakRELU

7 FC-(N1), None
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Abstract. Most machine learning algorithms require that training data
are identically distributed to ensure effective learning. In biological stud-
ies, however, even small variations in the experimental setup can lead to
substantial deviations. Domain adaptation offers tools to deal with this
problem. It is particularly useful for cases where only a small amount of
training data is available in the domain of interest, while a large amount
of training data is available in a different, but relevant domain.

We investigated to what extent domain adaptation was able to
improve prediction accuracy for complex biological data. To that end, we
used simulated data and time-lapse movies of differentiating blood stem
cells in different cell cycle stages from multiple experiments and com-
pared three commonly used domain adaptation approaches. EasyAdapt,
a simple technique of structured pooling of related data sets, was able
to improve accuracy when classifying the simulated data and cell cycle
stages from microscopic images. Meanwhile, the technique proved robust
to the potential negative impact on the classification accuracy that is
common in other techniques that build models with heterogeneous data.
Despite its implementation simplicity, EasyAdapt consistently produced
more accurate predictions compared to conventional techniques.

Domain adaptation is therefore able to substantially reduce the
amount of work required to create a large amount of annotated training
data in the domain of interest necessary whenever the domain changes
even a little, which is common not only in biological experiments, but
universally exists in almost all data collection routines.
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1 Introduction

Over the last decade, machine learning, especially supervised learning, has
become increasingly important in biological and medical research. Example
applications range from protein structure prediction [1,2] and the identification
of new disease subgroups from gene expression data [3,4], to the identification
of cell connectivity [5] and the prediction of phenotypes from time-lapse [6] data
and high throughput imaging [7]. With improving capabilities of data collection
and growing computational resources, machine learning will be playing an even
more important role in understanding of underlying biological processes.

One of the most well-known limitations of supervised learning, however, is the
need for a large amount of annotated data. In biological and medical research,
this requirement is often difficult to meet, as it necessitates expert knowledge
and intensive manual work. With an increase in high-throughput data it becomes
more and more unrealistic to annotate all observations. An appealing alternative
is to combine already-annotated data from one or multiple sources in order to
build a model for a new problem for which there is only little annotated data.

Another limitation of classic supervised learning techniques is the poor per-
formance in dealing with data from multiple sources. A typical problem in bio-
logical research are batch effects. Batch effects describe qualitative changes in
measurements because of experimental changes that are unrelated to the bio-
logical feature under investigation [8]. Typically, differences in the experimental
setup, the use of different protocols, reagents or different machine settings can all
lead to such effects. Conventional machine learning techniques are less effective
in data with batch effects, due to differences in underlying distributions. Even in
the case of an experiment being designed to be a replicate, the classifier trained
with data from one experiment often tends to have lower predictive accuracy
when applied to data from another replicate [9]. While it is possible to build a
new model using only data from one experiment, this would mean wasting expert
knowledge and involve labor-intensive annotation for each separate experiment.
Consequently, it is desirable to have a model that can achieve a high performance
with limited additional annotation work.

Domain adaptation describes the case where at least a part of the data used
to train a model follows a different distribution from the data on which the model
is finally applied [10]. It is closely related to the notion of transfer learning and
mutlitask learning [10–12]. We follow Pan and Yang [11] and consider transfer
learning as the more general term, with domain adaptation being one special
form of transfer learning. Domain adaptation can be applied where a large num-
ber of annotated data are available in one or more domains that are not of
direct interest (the source domain), while only a limited amount of annotated
data is available in the domain of interest (the target domain) (Fig. 1). The idea
of domain adaptation is to transfer the knowledge from the source to improve
the learning in the target domain. Technically, it can be understood that the
pre-trained decision boundary only requires some ‘minor’ tuning from a smaller
amount of data to be applied to the new domain. Domain adaptation techniques
have originally been developed to address text classification problems [13–15].
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Domains in this context correspond to different types, styles or topics, e.g., a
model trained with news articles can be adapted to classify a corpus containing
fiction texts [14]. However, the concept is very broad and can be applied to any
variable that is likely to lead to differences in the data distribution, e.g. different
machines, protocols or reagents. Here, we consider domains representing differ-
ent replicates of a biological experiment, where each replicate can be seen as a
different domain.

Fig. 1. Illustration of a domain adaptation classifier in the target domain that lever-
ages knowledge from a related, but different problem in the source domain. A direct
application of the source domain (left) classifier (solid line) would lead to a poor clas-
sification in the target domain (right). On the other hand, using only data available
in the target domain to train a target domain classifier (dotted line) would also lead
to poor performance, as the available data is not sufficient to fully learn the deci-
sion boundary. Transferring the knowledge from the source to the target domain using
domain adaptation leads to an enhanced classification performance.

2 Methodology

2.1 Definitions

We define a domain D as a feature space X with the marginal probability distri-
bution P (X) and a label space Y . A function f(·) maps xi to yi, where xi ∈ X
and yi ∈ Y . We consider problems with an arbitrary number of source domains
Ds1 , . . . , Dsm(m ≥ 1) and a single target domain Dt. For a multi-class classifica-
tion problem, we convert to a set of binary classification problems in a one-vs-all
manner, i.e. by training a single classifier per class, with the observations of that
class as the positive examples and all other observations as negative examples.
The aim of domain adaptation is to use the knowledge from the source domains
and limited labeling information from the target domain to effectively learn the
objective predictive function f(·) for the target domain.
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2.2 Learning Techniques

We compare a particular domain adaptation algorithm, the EasyAdapt technique
[16], with four more conventional techniques of building classifiers. We refer to
these as the ‘Source’, ‘Target ’, ‘Combined ’ and ‘Domain’ techniques. In this
study, all domains share the same feature space X. In general, the techniques
require a common feature subspace across domains. The details of these tech-
niques are outlined below and illustrated in Fig. 2. For all techniques, we assume
that the number of observations in the source domains is sufficiently large to
estimate a model that will generalize to unseen data from the same distribu-
tion. In the Source technique, we only use labeled data from the source domains
Ds1 , . . . , Dsm to train the model. The model trained on the source domains is
then evaluated on data from the target domain, giving an indirect measure of
proximity between source and target domains. In the Target technique, we only
use labeled data from the target domain Dt to train the model, without consid-
ering the data from the source domains. Given enough training data in the target
domain, this model should perform the best. In the Combined technique, we use
labeled data from both the source and the target domains without any reference
to the domain membership when training the models (where every data point
is weighted equally). This is arguably one of the most common approaches in
practice [17–19], where a typical scenario consists of a relatively large amount of
labeled data from the source domains and a limited amount of data from the tar-
get domain. In the Domain technique, we slightly adapt the Combined approach.
An additional set of binary variables encoding the domain membership, in the
form of one-hot-encoding, is added to the existing feature set [20]. It is expected
to enable the estimated function to have a different offset for each domain, while
making use of all the other predictors from all domains to define the shape of the
function in common. The EasyAdapt domain adaptation technique [16,21], uses
a simple transformation to create a representation for the general data struc-
ture common to source and target domains and a separate representation for
each domain. The transformations Φs1 , Φs2 , . . . , Φsm , Φt : X �→ X̌ between the
features spaces of the different domains have the following form:

Φs1(XDs1) = 〈XDs1 ,XDs1 ,0Ds2 , . . . ,0Dsm
,0Dt

〉
Φs2(XDs2) = 〈XDs2 ,0Ds1 ,XDs2 , . . . ,0Dsm

,0Dt
〉

...

Φt(XDt
) = 〈XDt

,0Ds1 ,0Ds2 , . . . ,0Dsm
,XDt

〉

0Dd
denotes a matrix of dimensions corresponding to the dimensions of

domain d filled with zeros. EasyAdapt can be applied to an arbitrary number
m of source domains Ds1 , . . . , Dsm and a single target domain Dt (see Fig. 2 for
a visualization and a comparison with other techniques). Features only avail-
able in the target domain could also be incorporated by setting the relevant
entries for the other domains to 0. The technique is simple and flexible and can
be used with any supervised classifier. However, it is recommended that the
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number of features per domain is not too large, because the feature space
increases to R

(m+2)p dimensions with p being the dimension of the shared feature
space.

Fig. 2. Schematic overview over the different learning techniques. We denote the feature
matrices with xs1 to xsm for the m source domains and with xt for the target domain.
Label vectors are denoted by ysi and yt, respectively. Single underlined zeros and ones
are column vectors, while double underline indicates matrices of dimensions matching
the dimensions of xi. The Domain technique is adding an additional feature encoding
the domain membership in the form of a one-hot encoding, where the kth domain
is encoded via a 1 at position k. The EasyAdapt technique creates both a unified
representation of the data across all domains (analogously to the Combined technique)
and a separate representation for each domain (diagonal entries).

3 Results

3.1 Simulation Study

In order to visualize how the different techniques work and to test their perfor-
mance, we created a two dimensional artificial data set with one source domain
and one target domain (each with 200 data points), where the ground truth is
known (see Fig. 3A). The data was created as follows: In the source domain,
we simulate the positive class by sampling 200 data points uniformly around a
central point with coordinates (1.0, 0.0). The distance from the centre is sampled
from a uniform distribution with mean 0.5 and a range between 0.1 and 0.9. The
radial angle is uniformly distributed between 0 and 360◦. For the negative class,
200 data points are sampled uniformly around the same central point, but the
distance from the centre is sampled from a uniform distribution with mean 0.9
and a range between 0.5 and 1.3. Again, the radial angle is uniformly distributed
between 0 and 360◦. In order to create the data for the target domain, we trans-
late both classes in the source domain by y′ = y−0.60, where y is the horizontal
coordinate in the source domain while y′ is the horizontal coordinate in the tar-
get domain. 15% of the data in the target domain was used for training. The
remainder of data in the target domain was used for performance evaluation.
Support Vector Machine (SVM) [22,23] with a radial basis function (RBF) ker-
nel was chosen as the basic classifier for all the five learning techniques described
in the previous section. Parameters were selected using a grid search with 5-fold
cross-validation. From both the contour lines (Fig. 3B–F) and the ROC curves
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(Fig. 3G) it is evident that the EasyAdapt technique captured the distribution
of the target domain most accurately (AUC = 0.91), by leveraging information
from both the source domain and the limited amount of training data from the
target domain in building the classifier. Figure 3B illustrates that due to the lim-
ited amount of training data in the target domain, the Target technique (AUC
= 0.86) learned a decision boundary that was much more complicated than the
underlying distribution. The Source technique (AUC = 0.55, Fig. 3C) directly
applied the decision boundary learned from the source to the target domain,
leading to an evident discrepancy with respect to the target domain distribu-
tion. The Combined technique (AUC = 0.64, Fig. 3D), shifts towards the target
domain when building the model. Due to the comparatively large number of
source domain data, however, the model is strongly biased towards the source
distribution. The Domain technique (AUC = 0.89, Fig. 3E) learned a model that
describes the target domain quite well, especially in regions close to the centre.
In regions that were farther away, however, the contour lines were clearly dis-
tracted by source domain information. Compared with these four techniques,
the EasyAdapt technique (Fig. 3F) learned a model that described the target
distribution the best, by successfully integrating the information from the two
domains.

3.2 Imaging Data Set

For a realistic evaluation case, we applied the techniques to a biological data
set [25] consisting of 2888 cells with 186 cell texture and shape features from
time lapse microscopy experiments, where 8 different cell cycle stages have been
manually annotated. The data comes from three experiments, with 1468, 726,
and 694 cells, respectively. It is important to note that the experiments differ
regarding the microscope objectives and the magnification factor (10x for exper-
iments 1 and 3, and 20x for experiment 2) used, and were conducted by different
lab technicians [25]. The different techniques were trained and tested in a one-
vs-all manner on the 8 cell cycle stages (where each stage is treated as a separate
class). We always picked two experiments to represent the source domains and
the remaining experiment as the target domain. We tested all three possible
combinations of two source domains and one target domain. All data from the
source domains together with the data from the target train set were centered
and scaled to unit variance. Subsequently, we applied a principal component
analysis (PCA) to the data, (i) keeping only factors explaining 98% of variance
(reducing the number of features to roughly 20–30), and (ii) keeping only the
16 highest loaded principal components. We used 4-fold cross-validation and a
grid search to select parameters and subsequently evaluated performance on a
test set in the target domain. The procedure was repeated 50 times for differ-
ent target training set sizes of 100, 120, 150, 200, 250, 300, and 400 samples in
order to obtain robust estimates for variable performance, especially when using
small training set sizes. Independent of the amount of data available in the tar-
get domain, we used a fixed-sized test set with 240 samples for performance
evaluation, which was randomly chosen for every iteration and for every new
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Fig. 3. Simulated data: with limited training data and sufficient domain similarity,
EasyAdapt has the best classification performance on the target domain. (A) Distribu-
tion of the two classes in the source (light blue and orange symbols, right) and target
domain (blue and red symbols, left). The target domain was divided into a training set
and a test set. The target training set consisted of 15% randomly sampled data from
the target domain. Classifiers were trained using RBF kernel SVM. (B-F) Classifiers
created using Target (B), Source (C), Combined (D), Domain (E) and EasyAdapt (F).
Contour lines represent different thresholds of the decision boundary of the correspond-
ing classifier. (G) ROC curves for the different techniques. (Color figure online)
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Fig. 4. EasyAdapt outperforms other techniques in particular for small training set
sizes. Performance for (A) linear SVM, (B) radial basis function (RBF) kernel SVM,
and (C) random forest classifiers for learning with experiments 1 and 3 as source
domains and experiment 2 as the target domain. Performance is measured as micro-
averaged AUC (mean±standard deviation, n= 50 iterations) [24]. We do not plot the
Source technique since it is independent of the training set size.

training set. In order to evaluate and compare performance of techniques, we
chose the micro-averaged AUC. Using this metric, class imbalances were taken
into account by computing cumulative values for true positives, false negatives,
true negatives and false positives for every label and then computing the per-
formance measure from the aggregated values [24]. We compared three different
base classifiers, namely a linear SVM [23], an RBF kernel SVM [22], and a ran-
dom forest classifier [26].

We found that the EasyAdapt technique is particularly robust when working
with a small set of training samples in the target domain and consistently per-
formed among the top techniques in the regime of small training set sizes (Fig. 4).
As expected, with increasing training set size the Target technique catches up
and for 400 training samples (the maximum training set size in the study), the
performance for this technique was among the best performing techniques. In
general performance improved for all techniques with increasing training set size
with exception of the Source technique, which was not trained with any of the
target domain data. Results from all experiments are summarised in Table 1,
showing the performances of the five learning techniques across three different
base classifiers, two different feature selection methods and three different target
domains (each combination of a base classifier, a feature selection method and
a target domain is referred to as a ‘setting’ below).
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Fig. 5. Relative performance, measured as area under the curve for each of the 50
iterations that were used to generate the average performance lines in 4. Each data
point shows performance over the range of training set sizes (100–400) for one iteration
of the target domain; each box plot comprises data from 50 iterations. Performance
is shown for (A) linear SVM, (B) radial basis function (RBF) kernel SVM, and (C)
random forest classifiers.

To assess performance of the different techniques across training set sizes
(Fig. 4), we measured the area under the curve for each of the 50 iterations
for a given setting. This renders an aggregated performance for each train/test
split across the range of training set sizes we used and gives us an estimate of
performance for small to medium training set sizes. In contrast to the micro-
averaged AUC across different training set sizes, this measure takes into account
the fact that we tested more smaller training set sizes (in the range of 100–200
samples) and is a more conservative measure than simple averaging in our case.
This is achieved by weighting performance according to train set size sampling
frequency. Additionally, we normalized performance, so that a perfect classifier
would achieve an relative performance of 1, corresponding to an AUC of 1 for
all training set sizes in the range from 100 to 400 samples. Figure 5 shows the
distribution of this performance measure for different techniques, classifiers and
transfer directions. Across all settings, the EasyAdapt technique consistently
showed superior performance over other techniques: Among 18 different settings,
EasyAdapt ranked 15 times the best or tied for the best and 3 times as the
second best. This not only demonstrates the effectiveness of knowledge transfer
of EasyAdapt, but also shows its generality with respect to base classifiers and
feature selection methods under different transfer situations. The second best
technique was the Domain technique, with 8 times the best or tied for the
best and 3 times in the second place. This indicated that in many cases the
membership feature used by the Domain technique was also able to leverage some
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knowledge from related domains. The technique with the lowest performance was
the Source technique, which ranked last in every setting.

Table 1. Mean micro-averaged AUC for different classification methods, learning tech-
niques, feature sets (see text for explanation), and target domains. The best performing
technique in a row is marked in bold. Note that the performance is averaged over the
full range of training set sizes and that one value in the table corresponds to an average
of the performance across different training set sizes. Thus, while the average perfor-
mance for the Target technique appears relatively high, it is much lower when the
target training size is small. EasyAdapt, on the other hand, consistently outperforms
other methods, when the target training data size is small (e.g., 100–200 instances, see
Fig. 4).

Method Number of
features

Target
domain

EasyAdapt Domain
technique

Target
technique

Combined
technique

Source
technique

linear
SVM

16 1 0.972 0.970 0.971 0.959 0.952

2 0.978 0.949 0.976 0.941 0.803

3 0.987 0.987 0.986 0.983 0.981

98% 1 0.976 0.974 0.974 0.966 0.958

2 0.982 0.958 0.978 0.951 0.800

3 0.991 0.990 0.988 0.987 0.983

RBF
kernel
SVM

16 1 0.976 0.976 0.974 0.973 0.956

2 0.982 0.967 0.982 0.963 0.512

3 0.991 0.992 0.990 0.990 0.985

98% 1 0.979 0.979 0.976 0.967 0.955

2 0.984 0.970 0.983 0.966 0.531

3 0.993 0.993 0.991 0.991 0.977

Random
forest

16 1 0.970 0.970 0.967 0.965 0.943

2 0.980 0.976 0.977 0.970 0.693

3 0.988 0.989 0.986 0.986 0.979

98% 1 0.972 0.971 0.967 0.968 0.950

2 0.979 0.971 0.975 0.965 0.696

3 0.989 0.990 0.985 0.989 0.982

In practice, it is hard to predict whether pooling of data will actually improve
prediction performance or lead to negative transfer, i.e. learning in the target
domain might be negatively affected by the use of additional information, if
domains are too different [11,27]. An example for such negative transfer is the
case of experiment 2 as the target domain. Here, both the Combined and Domain
techniques performed considerably worse compared to the Target technique (see
Table 1). This can probably be explained by stronger differences in distributions
between experiments 1 and 3 on the one hand, and experiment 2 on the other, as
experiment 2 used a different magnification. This difference can also be seen from
the extremely poor performance of the Source technique for experiment 2 as the
target domain. It is worth noting that the negative transfer that affected the
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Combined and Domain techniques with experiment 2 as target domain appears
stable across different training set sizes (Fig. 4). Importantly, we do not observe
such negative transfer in the case of the EasyAdapt technique. Performance of
EasyAdapt was comparable or even slightly better than the Target technique
when looking at experiment 2 as the target domain.

4 Discussion

In the present study, we investigated whether accounting for experimental vari-
ation in biological data using a domain adaptation techniques can help improve
prediction performance and reduce the need for labeled data. We show that
indeed, given only limited training data, the EasyAdapt domain adaptation tech-
nique boosts prediction performance both in a simulation study and a data set
of imaged single cells [25] and leads to more robust predictions in the presence
of experimental variation.

Recently, there have been a number of approaches that try to improve gen-
eralization of deep neural network performance across multiple domains. This is
important, as neural networks have been known to generalize relatively poorly
[28]. Often, the approach is to learn transferable representations that both iden-
tify the factors driving variation within the data and match feature distributions
across domains [29,30]. Recent work has used models that are able to adapt to
different domain very quickly by using an efficient parametrization of deep neu-
ral networks and adapter residual modules [31,32]. There is also interesting work
combining generative adversarial networks with domain adaptation [33–35]. It
is worth noting that the approach described in this work is orthogonal to these
models, and can be used with any type of supervised machine learning algorithm,
including but not limited to deep neural networks.

Applications of domain adaptation techniques in biological research have
so far been mostly restricted to genomic sequence analysis [36,37]. Widmer et
al. [38,39] used a more general multi-task learning framework in conjunction
with regularization based supervised learning methods, such as SVM and logis-
tic regression for splice-site and binding site prediction and to transfer model
parameters learned on 2D images to 3D images in order to enhance learning. In
contrast to [39], we do not learn domain specific differences explicitly. In prac-
tice, this information is also often hard to quantify. Here, we rather focus on
the effect of training set size and the pooling of heterogeneous data without
quantitative knowledge about the relationship between domains. We compare
performance of the EasyAdapt technique across three different machine learn-
ing algorithms. Furthermore, we consider a range of common ways of combining
information from different domains, e.g. via explicit encoding of domain mem-
bership, a procedure that is often used in practice. We demonstrate that the
EasyAdapt technique is relatively robust to negative effects of data pooling.

Our results have implications for dealing with biological batch effects in
machine learning tasks and for improving learning in settings with limited train-
ing data, if additional source data is available. The EasyAdapt technique allows
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the reuse of existing data sets as source data and avoids cost-intensive manual
labelling of training data. Results confirm the problem that is one major moti-
vation of this work: a model trained using data from one biological experiment is
likely to have much inferior performance when applied to a different experiment,
despite the experiments sharing similar experimental setups. Importantly, the
EasyAdapt technique is general in that it does not change the machine learning
method used and can therefore be applied to a wide set of problems. Because
the feature space grows linearly in the number of domains, the approach is not
applicable in cases with very large feature spaces or a large number of domains.

In general, classification accuracy in the transfer learning setting will be
an increasing function of both the number of training samples available and the
homogeneity and level of relatedness of the training samples to the test set. Given
a limited set of training samples and reasonable relatedness between training and
test set, transfer learning can help to improve classification accuracy. However,
in the case when the relatedness between training and test set is insufficient to
enable transfer, there is potential for negative impact when adding additional
data from a different domain (known as negative transfer). EasyAdapt strikes
a balance between improving performance in cases when additional information
is available and robustness to experimental variations. Compared with classic
techniques such as the Domain and Combined techniques, the EasyAdapt tech-
nique is less affected by negative transfer and for small to medium training set
sizes it can improve learning in the target domain.

The technique is limited by the necessity to identify domains, i.e. it is neces-
sary to have domain knowledge about potential differences in experimental con-
ditions and fundamental differences in feature distributions that define domains.
Furthermore, it requires that the domains have a shared feature subspace and are
distinct [16]. Both requirements are typically fulfilled in biological data. Further
research will be necessary to develop empirical measures of domain relation-
ships that help to identify cases where the use of domain adaptation in machine
learning can be particularly helpful.
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Abstract. Recent years have seen a surge of interest in natural language
processing (NLP) for social media because the massive unstructured data
from social media provide valuable information. However, natural lan-
guage processing in this domain often suffers from the lack of large scale
labeled data used for building models. In this paper, we focus specifically
on the task of named entity recognition (NER) for Chinese social media.
We propose a neural network model for domain adaptation which builds
on domain-adversarial training and language modeling. The model is
capable of learning from multiple sources of training data: labeled in-
domain data, labeled out-of-domain data, as well as (large-scale) unla-
beled in-domain data. To demonstrate the effectiveness of our approach,
we experiment on an enlarged Chinese social media corpus. Results show
that the approach outperforms baselines significantly.

Keywords: Named entity recognition · Language model ·
Domain-adversarial training

1 Introduction

Named entity recognition (NER) is one of the most important natural language
processing (NLP) tasks. Many NLP tasks such as relation extraction [3], entity
linking [22], and question answering [18] take NER as a preceding processing
step. Their performance highly depends on how accurate named entities can be
recognized. In brief, the task of NER is defined to be identifying names in formal
or informal texts and then assigning appropriate semantic categories [5,15,25].

Most state-of-the-art NER systems are built with supervised learning on
the base of large-scale human-labeled corpora. For domains in which NER has
been extensively studied, for example the newswire domain, large-scale labeled
datasets are readily available. However, for domains like social media, there is
a lack of such corpora. One example is NER for Chinese social media, where
a dataset of 1,897 posts from the Chinese microblogging service Sina Weibo is
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Fig. 1. An example of Weibo posts annotated with named entities (highlighted in
blue); the text contains nonstandard orthography, ungrammaticality, and noises like
user IDs and nicknames (highlighted in red). (Color figure online)

constructed and used for supervised learning and evaluation [20,21]. A corpus
of such a size is less than enough for supervised learning of NER models. Lack
of large-scale labeled data renders NER for social media a challenging task.

Another factor hindering NER for social media is attributed to informality
of social media texts. Figure 1 presents an example of Sina Weibo posts with
named entity annotations. We can see that the text is ungrammatical and con-
tains nonstandard orthography and noises that would disturb recognition of enti-
ties. Moreover, social media texts tend to contain entity mentions which seldom
appear in formal texts. For this reason, NER systems trained on formal texts,
for example newswire corpora, often see a dramatic performance drop when they
are applied to processing informal texts.

In such a situation, a widely accepted idea is to resort to domain adap-
tation approaches that can learn from multiple datasets of diverse domains,
including labeled out-of-domain data, labeled in-domain data and unlabeled in-
domain data. In this direction, He and Sun [10] propose a unified framework
that utilizes domain similarities to adjust learning rates for data from different
domains. In this paper we instead examine the problem of NER domain adap-
tation from the perspective of domain discrimination [2,7]. We propose a neural
network model whose major building block is conditional random fields based
on character-level bidirectional long short-term memory (Bi-LSTM) CRF [12].
In addition, the model defines an auxiliary objective function through a network
called domain adversarial training which could learn common representations
between domains. Moreover, language models can learn general representations
from unlabeled in-domain data, so we define a second auxiliary objective function
through a network of Bi-LSTM language model. To demonstrate the effective-
ness of our approach, we focus on the task of NER for Chinese social media and
conduct domain adaptation experiments from the newswire domain to the social
media domain. To make experimental results more reliable, we also expand the
corpus released by Peng and Dredze [20] to the double size and use the new
corpus in our experiments. The final results show that our approach improves
over the baselines significantly. This paper makes the following contributions.

– We propose a novel neural model for domain adaptation of NER whose build-
ing blocks are domain adversarial training and language modeling. Experi-
ments on Chinese social media data show the effectiveness of the model.
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– To experiment with a bigger Chinese NER corpus in social media, we expand
a previously released dataset and render the new corpus publicly available for
research in this direction.1

Fig. 2. Architecture of our neural network model for NER domain adaptation.

2 Approach

2.1 Overview of the Adaptation Model

Figure 2 depicts the architecture of the proposed model. The model is an inte-
gration of several neural networks. The lowermost position is a layer of charac-
ter embeddings. Although richer representations like concatenation of character
embeddings and word-level embeddings have been proven beneficial to overall
NER accuracy [21], we stick to character embedding in this paper in order to
focus on the discussion of domain adaptation model. On the top of embedding
layer, there are two bidirectional recurrent neural networks (RNNs) [1] which
adopt long short-term memory (LSTM) units [11]. The BiLSTM on the left is
used as common representations between domains and the one on the right one
is used to learn private representations. LSTM is a sophisticated implementa-
tion of RNNs which can capture long-distance information in the input sentence.
Bidirectional LSTM is an extension of LSTM to capture information from both
directions [8].

On the basis of the two BiLSTM representation, we implement a CRF net-
work for the purpose of recognizing named entities. In addition, two auxiliary
objective function are defined by (1) the domain adversarial training network
which builds on the common BiLSTM only, and (2) the language modeling net-
work which builds on the private BiLSTM only.2 The domain adversarial network
1 Data will be made available upon acceptance.
2 A previous work on cross-lingual learning [13] builds language models on both com-

mon and private BiLSTM, but our preliminary experiments show that language
modeling on private BiLSMT can achieve better performance.
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is where domain adaptation takes effect. Finally, the overall objective function
of the NER model is defined to be the weighted sum of the objectives of the
component networks:

Loss = LCRF + λ1LDA + λ2LLM

Here, DA refers to the domain adversarial training network and LM refers to
the language model network. λ1 and λ2 are used to weight component objectives.

Fig. 3. Illustration of bidirectional LSTM-CRF.

2.2 BiLSTM CRF for NER

In this paper, the task of NER is formalized as a sequence labeling problem where
each character is assigned to one of the following labels: B-TYPE, I-TYPE, and
O. Here the label B-TYPE refers to the case that the current character is at the
leading position of an entity of the specified type; the label I-TYPE means that
the current character is inside an entity of the specified type but does not appear
at the beginning; the label O tells that the current character is not inside any
entity. So the sequence labeling problem is to seek an optimal label sequence Y
given an input sentence X.

BiLSTM-CRFs [12] are well-suited for sequence labeling. BiLSTM-CRF can
be regarded as a combination of bidirectional LSTM and CRF, as shown in
Fig. 3. In CRF [16], the probability of output sequence Y given input sequence
X of length m could be formalized as:

p(Y |X) =
Ψ(Y |X)

∑
Y ′∈ζn Ψ(Y ′|X)
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Here, Ψ(Y |X) is the potential function, and we only consider interactions
between two adjacent labels:

Ψ(Y |X) =
n∏

i=2

ψ(X, i, yi−1, yi)

ψ(X, i, y′, y) = exp(s(X, i)y + by′y)

where by′y are trainable parameters representing transition scores between labels
(y′, y). s(X, i) assigns a score for each plausible label on the i-th character:

s(X, i) = WT
s hi + bs

where hi is the hidden state of Bi-LSTM at position i. In our model, hi refers to
the concatenation of the hidden states of common BiLSTM and private BiLSTM
at the same position, that is, hi = [hcommon

i , hprivate
i ].

2.3 Domain-Adversarial Training

We encourage the outputs of the common BiLSTM to be domain-agnostic by
using domain-adversarial training [2,7]. The first layer of the domain-adversarial
training network is a convolutional neural network (CNN), which is implemented
in the same way as a CNN for text classification [14]. The CNN encoder consists
of three convolutional filters whose sizes are 3, 4, and 5, respectively. For each
filter, we pass the hidden state sequence of BiLSTM as the input to the filter
and then apply max-pooling to obtain a single vector as the output of the filter.
The output of a filter is then fed to a non-linear activation function tanh to get
a transformed vector. Then, the vectors from the three filters are concatenated
and forwarded to the domain discriminator through the gradient reversal layer.
The discriminator is implemented as a fully-connected neural network with a
single hidden layer, whose activation function is Leaky ReLU [17].

Note the necessity of the gradient reversal layer. Since the gradient reversal
layer is below the domain discriminator, the gradients minimizing domain classi-
fication errors are passed back with opposed sign to the sentence encoder, which
adversarially encourages the sentence encoder to be domain-agnostic. The loss
function of the domain classifier is formulated as:

LDA = −
S∑

i=1

dilog(d̂i)

where d̂i is the output of the domain discriminator and di is the corresponding
domain category.

2.4 Bidirectional LSTM Language Model

Rei [23] show the effectiveness of bidirectional language models as an auxiliary
objective for sequence labeling. The objective of language models is designed
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to predict the next word in the sequence based on the previous hidden rep-
resentation. So the prediction are two directional: (1) in the forward-moving
direction, predict the word wi+1 give the hidden representation

−→
hi , and (2) in

the backward-moving direction, predict the next word wi−1 given the hidden
representation

−→
hi . We first map hidden representations into a new space.

−→mi = tanh(
−−→
Wm

−→
hi)

←−mi = tahn(
←−−
Wm

←−
hi)

where
−−→
Wm and

←−−
Wm are parameters to be learned. These representation are then

passed to a softmax layer to predict the next word.

p(wi+1|−→mi) = softmax(
−→
Wq

−→mi)

p(wi−1|←−mi) = softmax(
←−
Wq

←−mi)

The negative log-likelihood of a sequence is thus defined to be the sum of the
probability that a next word is predicted.

−→
E = −

T−1∑

i=1

p(wi+1|−→mi)

←−
E = −

T∑

i=2

p(wi−1|←−mi)

The final loss of bidirectional language models is simply defined to the negation
of the sum of

−→
E and

←−
E , that is, LLM = −(

−→
E +

←−
E ).

2.5 Training Strategies

We still need to decide strategies for model training. One consideration is what
data should be used for the three component objectives. For BiLSTM-CRF,
labeled in-domain and out-of-domain data are used together to optimize its
objective. Regarding the objective of domain adversarial training which is actu-
ally a binary classification problem, we assign labeled in-domain data to the
positive class and labeled out-of-domain data to the negative class. Note that
reversion of class assignment does not change the essence of the training prob-
lem. Finally, language models are trained on unlabeled in-domain data which
are generally larger in size than labeled in-domain and out-of-domain data.

Another noteworthy issue is that gradients from language models are bigger
than the gradients from the other two components. So we choose not to optimize
all the objectives at the same rate. Instead, we first train language models on
unlabeled data with a relatively big learning rate. This stage acts as “warm
up” for model training. Then we learn the three objectives alternatively with a
smaller learning rate.
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3 Experiments

To demonstrate the effectiveness of our approach, we conducted experiments
for domain adaptation of NER from the newswire domain to the social media
domain. We focus specifically on NER for Chinese texts.

3.1 Datasets

We utilized the MSR corpus of the sixth SIGHAN Workshop on Chinese language
processing as the labeled out-of-domain corpus. For the labeled in-domain data,
we reused the Chinese NER corpus released by Peng and Dredze [20]. The corpus
contains 1,890 Weibo posts annotated with both named and nominal entities
of four types: person (PER), location (LOC), organization (ORG), and
geo-political entities (GPE). Because the MSR corpus only annotates named
entities of three types: PER, LOC, and ORG, we thus omitted the annotations
of nominal entities in the Weibo NER corpus and changed named entities of the
type GPE to the type of ORG. This way, we ensure that labeled in-domain and
out-of-domain data contain named entities only and the named entities belong
to the same set of entity types.

In addition, taking into consideration the fact that the Weibo NER corpus
is small in size, we chose not to split the corpus into training, development, and
test set, as previous works do [10,20]. Instead, we used the corpus as in-domain
data only for system development and performance evaluation. In order to obtain
labeled in-domain training data, we additionally annotated 2,000 Weibo posts
with named entities of the three types mentioned above. Regarding unlabeled
in-domain data for training language models, we collected 1M Weibo posts. The
statistics of all the above mentioned datasets are presented in Table 1.

3.2 Baseline Systems

We built three baseline systems for performance comparison. The baseline sys-
tem named BiLSTM-CRF-OOD is a BiLSTM-CRF model trained on labeled

Table 1. Statistics of the out-of-domain and in-
domain data. ∗ We regard each Weibo post as
a sentence.

Data partitions #Sent∗ #Char #Entity

MSR Train 46,364 2,169,879 74,703

MSR Test 4,365 172,601 6,181

Weibo Train 2,000 119,714 8,092

Weibo Dev 890 52,719 698

Weibo Test 1,000 50,336 744

Weibo Unlabeled 1,000,000 Weibo posts

Table 2. Results of the baseline
systems and our models on the in-
domain test set. †Here the symbol
∗ refers to Bi-LSTM CRF.

Systems† Precision Recall F1

∗-OOD 30.3 34.1 32.1

∗-ID 46.5 37.6 41.6

∗-Merge 47.4 42.3 44.7

∗+DA 50.0 41.4 45.3

∗+DA+LM 55.9 46.2 50.6
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out-of-domain training data (MSR training data); the baseline system named
BiLSTM-CRF-ID is a BiLSTM-CRF model trained on labeled in-domain
training data (Weibo training data); the baseline called BiLSTM-CRF-Merge
is a BiLSTM-CRF model trained on the combination of labeled out-of-domain
and in-domain training data. Combining labeled data from multiple-source
domains is a simple but strong baseline approach to domain adaptation.

3.3 Settings

We pre-trained character embeddings using word2vec [19] on a dataset of 5M
Weibo posts. The resulting character embeddings were used to initialize all the
models that we experimented in the paper. The dimension of character embed-
ding was set to 100. We used one layer of bidirectional LSTM and the hidden
vector dimension was set to 200. Our models are trained using stochastic gra-
dient descent with L2 regularizer. When training language models for “warm
up”, the learning rate was set to 0.1; when we come to the stage of training the
component objectives jointly, the learning rate was set to 0.01. Finally, we did
not tune λ1 and λ2 for weighting objective functions and set them to 1.

3.4 Main Results

Table 2 shows the results of the baseline systems and our models on the Weibo
test set, in terms of NER precision, recall, and F1 scores. BiLSTM-CRF+DA
denotes the model which consists of BiLSTM-CRF and domain adversarial train-
ing. BiLSTM-CRF+DA+LM refers to the model with domain adversarial
training and language models being combined with BiLSTM-CRF. For the exper-
iments here, we sampled 40,000 sentences from the MSR training set and used
the sample as labeled out-of-domain training data; the whole set of Weibo train-
ing data (2,000 Weibo posts) was used as labeled in-domain training data.

By comparing the results of the three baselines we can get two observations:
(1) The CRF model trained on labeled out-of-domain data (BiLSTM-CRF-
OOD) dramatically lags behind the model trained on labeled in-domain data
(BiLSTM-CRF-ID), though the size (the number of sentences) of out-of-domain
training data is about 20 times the size (the number of posts) of in-domain train-
ing data, and (2) Merging the labeled out-of-domain and in-domain training data
(BiLSTM-CRF-Merge) can build a better model than using labeled in-domain
data only. These two observations suggest that labeled out-of-domain data helps
improve performance in the target domain, though it is not a good idea to train
a model solely on labeled out-of-domain data. By comparing the baseline sys-
tems and our models, we can see that BiLSTM-CRF+DA outperforms BiLSTM-
CRF-Merge by 0.6% F1 score, which implies that domain-adversarial training is
better at capturing cross-domain information than simply merging training data
from multiple domains. Finally, adding language models as an auxiliary objec-
tive can achieve an absolute improvement of 5.3% over BiLSTM-CRF-DA, which
demonstrates the effectiveness of language models on learning general-domain
representations.
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Fig. 4. Varying sizes of labeled out-of-
domain training data.

Fig. 5. Varying sizes of labeled in-domain
training data.

We also examined how the sizes of labeled in-domain and out-of-domain
training data affected the performance of our model. To this end, we conducted
two comparison experiments. One experiment varies the size of labeled out-of-
domain training data while fixing the in-domain training data to 2,000 Weibo
posts. The results are depicted in Fig. 4 where we compare two models: BiLSTM-
CRF-Merge and BiLSTM-CRF+DA+LM. Another experiment varies the size
of labeled in-domain training data while fixing the size of labeled out-of-domain
training data to 5,000 sentences. Here, we set the size of labeled out-of-domain
training data to 5,000 for the purpose of training efficiency. The results are
depicted in Fig. 5 where we also compare BiLSTM-CRF-Merge and BiLSTM-
CRF+DA+LM. In the experiments we always used the 1M unlabeled Weibo
posts to train language models in BiLSTM-CRF+DA+LM.

From the results in Fig. 4, we can see that increase of labeled out-of-domain
training data continues to benefit BiLSTM-CRF+DA+LM, although there is
an exception when 20,000 labeled out-of-domain data were used. For BiLSTM-
CRF-Merge, however, the performance starts to level off when the size of labeled
out-of-domain data reaches 20,000. This observation suggests that BiLSTM-
CRF+DA+LM makes better use of labeled out-of-domain data than BiLSTM-
CRF-Merge does. From the results in Fig. 5 we can see that increase of labeled
in-domain training data improves the performance of BiLSTM-CRF-Merge and
BiLSTM-CRF+DA+LM. A more interesting observation is that the accuracy
of BiLSTM-CRF+DA+LM with 500 labeled in-domain training data is higher
than the accuracy achieved by BiLSTM-CRF-Merge with 2,000 labeled in-
domain training data. This observation implies that learning from unlabeled
data through language models can help to reduce the demands for labeled in-
domain data.

3.5 Analysis

Although our approach outperforms the baselines, the performance on social
media data still lags behind the state of the art on formal texts (for example,
the state-of-the-art performance of NER on the MSR corpus is 92.81%). We need
conduct analysis to find out where the errors come from. For this purpose, we
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CONTAIN

21.3%

BE-CONTAINED

16.9%CROSS

4.1%

NO-CROSS

47.2%
CATE

10.5%

Fig. 6. Error types and theirs dis-
tribution by BiLSTM-CRF-Merge
on the Weibo test.

Table 3. Effect of our models changing the
numbers of errors of each error type: CON-
TAIN(CO), BE-CONTAIN(BC), CROSS(CR),
NO-CROSS(NC), CATEGORY(CA).

System CO BC CR NC CA All

Base 73 58 14 162 36 343

+DA 62 51 11 136 37 297

+DA+LM 70 36 7 129 31 273

follow the methodology used in He and Sun [10] and conducted error analysis
on the main results (Table 2) from the following metrics.

Error Types: He and Sun [10] group errors into five categories: CONTAIN
(some gold entity contains the predicted one), BE-CONTAINED (some gold
entity is contained in the predicted one), SPLIT (there are gaps in the predic-
tions), CROSS (some gold entity cross the predicted one), and NO-CROSS
(there are no common words between a gold entity and the prediction one). He
and Sun [10] find that there are no wrong predictions belonging to SPLIT error
type. This is also the case with our experiments. So we omitted this type and
add a new type CATEGORY which means a gold entity and the predicted one
span the same character subsequence but have different entity types. Figure 6
shows the distribution of the five error types produced by the baseline BiLSTM-
CRF-Merge on the Weibo test set. From the figure we can see that NO-CROSS
is the most frequent error type, although its percentage is not so high as the per-
centage of this error type reported in He and Sun [10] (47.2% vs. 83.55%). We
also examined how BiLSTM-CRF+DA and BiLSTM-CRF+DA+LM changed
the number of each error type compared to the baseline BiLSTM-CRF-Merge.
The comparison is shown in Table 3. From the table we can see that adding
domain adversarial training and language models help to reduce errors of all the
types, especially BE-CONTAIN, CROSS, and NO-CROSS.
Entity Length: We counted correct and wrong predictions in different entity
lengths when BiLSTM-CRF, BiLSTM-CRF+DA, and BiLSTM-CRF+DA+LM
were evaluated on the Weibo test set. The results are depicted in Fig. 7 where
x coordinates 0, 1, 2 denote the ranges of [1,4], [5,8], [9,12], respectively. The
ranges refers to entity lengths measured in the number of characters contained
in entities. From the figure we can see that using domain-adversarial training
and language models manages to improve prediction precision, just as we expect.
In addition, we can infer from the results that domain-adversarial training and
language models tend to predict relatively short entities because the ratio of
entities whose lengths are bigger than 5 is reduced.
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4 Related Work

English NER has been extensively studied [5,15,25]. Moreover, the performance
gap of NER in English social media and formal domains has been narrowed [4].
NER For Chinese social media is still relatively new and remains very challenging
due to the lack of enough manually annotated texts. Peng and Dredze [20] anno-
tate occurrences of names (NAM) and nominal phrase (NOM) in 1,890 Weibo
posts with four types: person (PER), organization (ORG), geo-political entities
(GPE), and locations (LOC). On the curated dataset, Peng and Dredze [20]
explore several types of embeddings and study a joint training model for embed-
ding and NER. Peng and Dredze [21] continue in this direction to examine how
word segmentation representation improved NER.
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Fig. 7. Correct and wrong prediction numbers in different entity lengths with BiLSTM-
CRF, BiLSTM-CRF+DA, and BiLSTM-CRF+DA+LM. The x coordinates 0, 1, 2 refer
to the length ranges of [1,4], [5,8], and [9,12], respectively.

Previous works on domain adaptation can be grouped into two categories.
One relies on computation of domain similarities. Shimodaira [24] use covariant
to assign weights to out-of-domain instances. He and Sun [10] utilize the simi-
larities between domains as weights to adjust learning rates. Another category
is to learn common representations between domains. Hal [6] construct common
and private feature space by simply copying feature vectors to different posi-
tions. Recent years have seen interest in learning common representations using
adversarial training. Ganin et al. [7] propose a deep neural architecture to incor-
porate in-domain unlabeled data and labeled out-of-domain data. The idea is
to learn domain-specific and domain-invariant features separately. However, the
proposed model is designed specifically for classification tasks. Zhang et al. [26]
apply adversarial networks to sentiment analysis. The most related work is Gui
et al. [9] that is designed for cross-lingual POS tagging. Our model is similar to
the model there with the difference that we only apply language models to learn-
ing private BiLSTM instead of both common and private BiLSTM. Preliminary
experiments show that the simple change affects the performance a lot.
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5 Conclusion

We proposed a novel neural network model for domain adaptation of named
entity recognition in Chinese social media. The model builds its capability on
domain adversarial training and language modeling. Thus the model can learn
from labeled out-of-domain data, labeled in-domain data, and unlabeled in-
domain data. We experimented the model with a new Chinese social medial
corpus by considering the MSR corpus as out-of-domain data. Results showed
that the proposed approach could improve over the baselines significantly.
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Abstract. Learning generic and robust representations with data from
multiple domains is a big challenge in Person ReID. In this paper, we
propose an end-to-end framework called Deep Domain Knowledge Distil-
lation (D2KD) for leaning more generic and robust features with Convo-
lutional Neural Networks (CNNs). Domain-specific knowledge learned by
the auxiliary network is transferred to the domain-free subnetwork and
guides the optimization of the feature extractor. While person identity
information is transferred to the auxiliary network to further accurately
identify domain classes. In the test period, just with a single base model
as the feature extractor, we improve the Rank-1 and mAP by a clear
margin. Experiments on Market-1501, CUHK03 and DukeMTMC-reID
demonstrate the effectiveness of our method.

Keywords: Person re-identification · Domain · Knowledge distillation

1 Introduction

Person Re-identification is a cross-camera retrieval task, which aims at retrieving
images of a specific pedestrian in a large dataset when given a specific query.
The key challenge in this task is the large appearance and background variations,
caused by changes in human body poses and camera views as shown in Fig. 1.

Recent years, deep convolutional neural networks have led to a series of break-
throughs for image classification [5,9] and these architectures can be easily trans-
ferred into other computer vision tasks. CNNs are also successfully employed in
Person ReID with significant performance. For example, several works [3,17,25]
employ deep classification model to learn feature representations of images.

In addressing the challenge of camera variations, a previous body of litera-
ture chooses to learn stable feature representations that have invariant properties
under different cameras. Some networks [21,25] are trained with a pairwise veri-
fication loss, which measures the similarity between two images. However, these
methods have to be used in a cross-image representation mode. During test time,
the query image has to pair with each image in the gallery dataset and passes
through the forward network, which is time inefficient and intolerant for large-
scale real-world applications. Methods such as [6] directly optimize the distance
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Fig. 1. Example of images from two person re-identification datasets [23,27]. In both
datasets, samples in each line have the same identity but are observed from different
cameras. Our goal is to extract generic feature representations for each specific identity.

of the images in embedding space and easy to employ in real task, but it does not
take advantage of person identity label and waste abundant domain information.

Upon above discussions, this paper focuses on finding the robust feature
representations for each person identity among different domains. Based on
TriNet [6], we propose a Deep Domain Knowledge Distillation (D2KD) method
for further obtaining more robust features, by taking full advantage of pedestrian
labels and wasted abundant domain information.

Inspired by [7], we are trying to find a higher soft bound for the feature
extractor to optimize. Based on a traditional end-to-end classification model,
we further apply dynamic label smoothing regularization on the training data
via knowledge distillation [7], whose typical application is to transfer knowledge
from a teacher network to a student network.

We propose an end-to-end framework named Deep Domain Knowledge Dis-
tillation which contains two subnetworks, one for extracting domain-free infor-
mation and the other for domain-specific information. In the training period, we
exchange the information between the two networks to generate more discrimi-
native features. While at test time, only the domain-free part is used for further
evaluation.

Our experiments improve the Rank-1 and mAP on image based dataset
Market-1501, CUHK03 and DukeMTMC-reID by a clear margin.

The main contributions of this paper are summarized as follows:

– We propose an end-to-end framework that helps to learn higher quality
camera-invariant property.

– We make full use of domain-specific information and obtain a theoretically
higher bound for the classifier to optimize and demonstrate the effectiveness
through the experiments.

– In the test period, domain-specific network only plays an auxiliary role. That is
to say, there is no additional parameter but a pure base model like ResNet-50.
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2 Related Works

2.1 Deep Learning for Person Re-identification

Recent years, feature representations learned by Convolutional Neural Networks
have shown great effectiveness in a wide range of computer vision tasks including
Person Re-identification. And these methods mainly focus on two categories:
learning robust metrics [1,19,21,25] and extracting discriminative features [3,6,
16,17,24].

Some methods focus on the similarity between instances. In [1], a pair of
cropped pedestrian images passed through a specifically designed CNN with a
binary verification loss function for person re-identification. In [21], to formulate
the similarity between pairs, images were partitioned into three horizontal parts
respectively and calculated the cosine similarity through a siamese CNN [2]
model.

Another strategy is directly learning discriminative embeddings which makes
full use of the ReID labels. [24] proposed the ID-discriminative embedding (IDE)
to train the ReID model in an image classification manner based on imagenet
pretrained model. [17] simply partitioned image into several horizontal parts
and gave each part a pedestrian identity label supervision individually which
helps learn stable part features. And [3] extracted features from multiple sizes
to enhance the stability of features.

2.2 Knowledge Distillation

Knowledge distillation [7] is an effective and widely used technique to transfer
knowledge from a teacher to a student network. The typical application is to
transfer from a cumbersome network to a small network, making the model
memory-efficient and fast execution.

3 The Proposed D2KD Method

In this section, we firstly provide necessary background and notion for person
Re-identification. Then we introduce our network architecture in detail and give
an insight into our Deep Domain Knowledge Distillation (D2KD) method.

The overall framework is illustrated in Fig. 2. Our pipeline consists of two sub-
networks, one focus on extracting domain-free features and another mainly learns
domain-specific features and plays an auxiliary role during the training period.
Besides, a Deep Domain Knowledge Distillation (D2KD) module is implemented
to exchange information between two subnetworks.

3.1 Problem Formulation

Suppose the training set contains n labeled images from C persons, we denote
the training set as T = {xi, yi}n

i=1, where xi is the i-th image and yi is a C-
dimentional one hot vector which indicates the label of xi.
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Fig. 2. Structure of our D2KD framework. The input image passes through the two
distinct backbone networks and obtains two 2048-dimentional feature vectors fid and
fca respectively. A following fully-connected layer is added to both feature vectors for
the classification task. After that we concatenate fid and fca together and force the
classifier to learn a joint distribution p(id, ca|x). Conditional probabilities p(id|ca, x)
and p(ca|id, x) are then used as the supervision of two subnetworks. By the way, we
take full advantage of triplet loss and apply it in the feature space to learn stable
domain-free features. The dash line means we ignore the gradient from the output in
this way at training time.

Based on the training set T , Person Re-identification is to learn a function
fθ(x) : RF → R

D which maps semantically similar points RF from data manifold
to be closer in the embedding space R

D, where D � F .
When given a query person image xq, ReID targets to return images which

contain identical person in xq from a gallery set G. Formally, for a specific query
instance xq, we rank the images in G by the distance D(fθ(xq), fθ(xg)) in an
ascending order, where xg means image sampled from G, D(., .) is some kind of
distance function like Euclidean distance. Larger distance D(., .) is equivalent to
lower similarity.

3.2 Domain-Free Network

We formulate the domain-free subnetwork as fid(x) : R
F → R

D and use the
ResNet-50 [5] architecture with parameters pretrained on imagenet. Given an
image x with identical person label, we can obtain a D-dimentional features
fid(x) by feeding the image to the network.



704 J. Yan

Suppose there are C pedestrian labels in the dataset, we obtain pedestrian
label probability by passing fid(x) through a single fully connected layer. That
is to say:

ŷid(x) = softmax(WT
idfid(x) + bid) (1)

where Wid is a D×C parameter matrix and bid is a C-dimentional bias. In order
to learn discriminative and domain-free features, we apply cross entropy on ŷid.
The cross entropy loss can be formulated as:

Lid = − 1
n

n∑

i=1

yT
id(xi)log(ŷid(xi)) (2)

yid(xi) is the ground truth identity label of the specific instance xi. Meanwhile,
we apply triplet loss in the feature space. For a minibatch B, there are P distinct
person identities, and each identity has K specific instances, thus resulting in a
batch of B = PK images, we formulate the function as:

Ltri batch(θ;B) =
B=PK∑

a=1

[m + max
p=1...B
yp=ya

D(fa, fp)

− min
n=1...B
yn �=ya

D(fa, fn)]+
(3)

That is to say in a minibatch, for an anchor point xa, we optimize its distance
from a positive data point xp to be lower than a negative data point xn by at
least a margin m in the embedding space.

The triplet loss directly optimizes the distance among instances in feature
space. However, only applying the triplet loss does not make use of domain-
specific information, resulting in the decrease of the classification ability.

3.3 Domain-Specific Network

Similar to domain-free network, we use another auxiliary ResNet-50 network to
learn domain-specific features. We formulate the network as fca(x) : RF → R

D,
and the domain(camera) classification probability can be formulated as:

ŷca(x) = softmax(WT
cafca(x) + bca) (4)

where WT
ca is a D × M matrix and M is the number of domains(cameras), bca

is a M -dimentional bias. And the cross entropy loss can also be applied as:

Lca = − 1
n

n∑

i=1

yT
ca(xi)log(ŷca(xi)) (5)

where yca(xi) is ground truth camera label for xi in the dataset.
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3.4 Distillation Module

In order to make the embeddings more discriminative while applying triplet loss
at the same time, we propose Deep Domain Knowledge Distillation (D2KD)
method which aims at finding a higher soft bound for the identity classifier to
optimize. By smoothing label in a dynamic manner, our method improves the
classification accuracy bound while taking advantage of triplet loss at the same
time.

Given an input image x, We concatenate the features fid(x) and fca(x)
together and denote φ(x) = [fid(x), fca(x)] which contains person identity and
domain information at the same time. We detach the gradient from φ(x) to
fid(x).

Since φ(x) contains both person identity information and domain specific
information, we choose to pass it through a simple classifier (here we use fc-relu-
fc-softmax layers), and resize the outputs to a C × M matrix which represents
the joint distribution P (id, ca|x). And the cross entropy loss function for the
joint distribution is given by:

Ljoint(x) = − 1
n

n∑

i=1

C∑

j=1

M∑

k=1

yj,k(xi)log(p(j, k|xi))

= − 1
n

n∑

i=1

C∑

j=1

M∑

k=1

yj,k(xi)log(ŷj,k(xi))

(6)

where yj,k(x) is the ground truth one-hot label for the joint distribution
p(id, ca|x), and yj,k(x) = 1 when the image instance x belongs to the i-th
person identity and j-th domain(camera), otherwise yj,k(x) = 0. ŷj,k(x) is a
element of the output probability matrix in the j-th row and k-th column
(0 ≤ j < C, 0 ≤ k < M).

Apparently, from the bayes perspective, the posteriori P (id|ca, x) should be
a soft target to the prior ŷid(x) = P (id|x), and similarly P (ca|id, x) is a soft
higher bound to ŷca(x) = P (ca|x), this greatly correspond to the knowledge
distillation condition. It seems quite simple that the conditional probability can
be computed like:

P (id|ca = k, x) =
[ŷ1,k(x), ŷ2,k(x), . . . , ŷC,k(x)]

∑C
j=1 ŷj,k(x)

P (ca|id = j, x) =
[ŷj,1(x), ŷj,2(x), . . . , ŷj,M (x)]

∑C
k=1 ŷj,k(x)

(7)

Upon the conditional probability P (id|ca, x) and P (ca|id, x), we apply the pedes-
trian identity and the camera label as the supervision for the conditional prob-
ability, the loss function can be written as:
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Lcond = − 1
n

n∑

i=1

yT
id(xi)log(P (id|ca = yca(xi), xi))

− 1
n

n∑

i=1

yT
ca(xi)log(P (ca|id = yid(xi), xi))

(8)

After exchanging information between two subnetworks, we hope to distillate
useful knowledge from the joint distribution. The distillation loss can be formu-
lated as:

LKD =
1
n

n∑

i=1

[H(ŷid(xi), P (id|ca = yca(xi), xi))

+H(ŷca(xi), P (ca|id = yid(xi), xi))]

(9)

where ŷid and ŷca is the probability produced by the two subnetworks respec-
tively. H(., .) is the binary cross entropy loss function as follows:

H(P,Q) = −
C∑

i=1

[qilog(pi) + (1 − qi)log(1 − pi)] (10)

Our total loss function is:

Ltotal = Lxent + λ1Ltri + λ2LKD (11)

where Lxent = Lid + Lca + Ljoint + Lcond is the total cross entropy loss for
classification. λ1 and λ2 are loss tradeoffs.

By exchanging the information between two subnetworks, our D2KD method
take the predicted probability P (id|x, ca) as a soft target for the base feature
extractor and P (ca|x, id) a supervision for the auxiliary network to obtain higher
quality domain- specific features. With the collaboration of two subnetworks, our
method can learn more generic and robust features.

3.5 Test Strategy

At test time, we only apply the domain-specific network to extract feature vectors
from images. That is to say, the domain specific features just play an auxiliary
role in the training period and were not used in the test phase. The network
architecture is shown in Fig. 3, images are fed into the domain-free network and
obtain a D-dimentional feature representation.

Our D2KD method offers a soft target for the domain-free network and
erases domain information by applying the triplet loss at the same time, making
the backbone network generate more discriminative features.
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Fig. 3. Test network for our D2KD method. Only the domain-free subnetwork is used
to extract features for further evaluation.

4 Experiment

4.1 Datasets and Settings

Datasets. We conduct experiments mainly on three large scale image-based
person re-identification benchmark datasets that contain multiple positive sam-
ples for each query in the gallery: including Market-1501 [23], CUHK03 [11] and
DukeMTMC-reID [27]. The overview of these datasets is in Table 1.

Market-1501 [23] is the most famous large image-based ReID benchmark
dataset. It contains 1,501 identities and 32,668 labeled bounding boxes captured
from 6 different view points. The bounding boxes are detected using Deformable
Part Model (DPM) [4]. The dataset is split into two parts: the training set
contains 12,936 bounding boxes of 751 identities, the rest 19,732 images with
750 identities are included in the test set. In the test period, 3,368 images with
750 identities are used for the query to identify the correct identities on the
gallery set. We use the single-query (SQ) evaluation for this dataset.

Table 1. Statistics on three person re-id datasets.

Datasets Cams IDs Identity split Person bounding box split

Training Test Training Gallery Query

Market-1501 [23] 6 1,501 751 750 12,936 19,732 3,368

CUHK03 [11] 2 1,467 767 700 7,368 5,328 1,400

DukeMTMC-reID [27] 8 1,404 702 702 16,522 17,661 2,228

CUHK03 [11] is constructed by both manual labeling and auto-detection
(DPM) [4]. It contains 14,096 images of 1,467 identities and each identity is
captured from 2 cameras in the CUHK campus. Each identity has an average
of 4.8 images in each camera. The dataset is split into the training set and the
test set. The training set contains 7,368 images with 767 identities and the test
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set contains the rest 6,728 images with 700 identities. In the test period 1400
queries are given to identity corresponding identities in the gallery dataset.

DukeMTMC-reID [27] is a subset of the DukeMTMC website in the for-
mat of Market-1501 dataset. The DukeMTMC-reID dataset has 34,611 images
belonging to 1,404 identities from 8 cameras. Similar to Market-1501, it consists
of 16,522 training images from 702 identities, 2,228 query images and 17,661
gallery images from the other 702 identities.

Backbone CNN Model for ReID. To train our model, we resize all images
of size H × W to 1 1

8 (H × W ), of which we take random cropping and random
horizontal flipping and get H × W cropped images. Specifically, we keep the
aspect ratio H × W of all the images to 256 × 128.

We performed all our experiments using the Pytorch [14] framework. We use
the Imagenet pretrained ResNet-50 [5] model from Pytorch official repository
for both subnetworks and replace the last 1000-dimensional classification layer
with a new fully connected layer on both two networks, with output dimensions
equal to the count of identities and camera classes respectively.

The network generates D = 2048 dimentional feature vector for each image.
In the test period, the D-dimentional Pool-5 feature vector are used for fur-
ther evaluation and we apply the Euclidean distance to compute the similarity
between pairs.

We use the Adam optimizer [8] with the default hyper-parameter (ε =
10−3, β1 = 0.9, β2 = 0.999) for all experiments. The distillation temperature
T is set to be a constant 1 all over the experiments. The loss tradeoffs λ1 and
λ2 are set to a constant 1 during all the experiments.

Data Sampling and Batch Generation. In each training epoch, we shuffle all
the images in the training set together and map the images with their identities.
Then for each specific identity, we sample K different instances. After that, we re-
rank the dataset with random permutation of person identities. This preprocess
is quite convenient when we apply triplet loss in the following training schedule.

Since the triplet loss in Eq. 3 requires slightly different mini-batches. At each
iteration, we sequentially sample PK images from the training preprocessed
dataset. Under above sampling settings, we train our model on quite a different
dataset at every epoch.

Evaluation Metrics. In the test period, for each instance sequentially sampled
from the query dataset, we rank the images from the gallery dataset by the
distance to the specific instance for further evaluation.

We employ two evaluation metrics to evaluate the performance. The first
one is the Cumulated Matching Characteristics (CMC) and the other one is the
mean average precision (mAP) while considering ReID as an object retrieval
problem, as describe in [23].
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Table 2. Comparison of several methods on Market-1501. Rank-1, Rank-5 and mAP
are shown. We use ResNet-50 as backbone. ‘-’: No reported result available

Methods Rank-1 Rank-5 mAP

BoW + KISSME [23] 44.4 63.9 20.8

LOMO + Null Space [22] 55.43 - 29.87

Gated siamese CNN [18] 65.88 - 39.55

CAN [13] 60.3 - 35.9

ResNet 50(I+V) [25] 79.51 90.91 59.87

Latent Parts(Fusion) [10] 80.31 - 57.53

IDE(R)(Re-ranked) [28] 74.85 - 59.87

MultiScale [3] 88.9 - 73.1

TriNet [6] 84.92 94.21 69.14

TriNet [6] (Re-ranked) 86.67 93.38 81.07

AACN [20] 85.90 - 66.87

AACN [20] (Re-ranked) 88.69 - 82.96

PSE [15] 87.7 - 69.0

PSE [15] (Re-ranked) 90.2 - 83.5

D2KD 91.09 97.03 76.76

D2KD(Re-ranked) 92.73 96.11 88.93

4.2 Performance Evaluation

Evaluation on Market1501. We compare the ReID performance of sev-
eral existing methods against the proposed D2KD method on the Market-1501
benchmark. Every epoch we sample K = 8 images from each person identity
as the training dataset and set the batch size equal to 128. So each iteration
contains P = 128/K = 16 different identities. By taking above sampling strat-
egy, we are able to make our training dataset spread more uniformly and this
can be quite helpful. Since all bounding boxes were given by auto-detection, this
dataset represents a more scalable deployment scenario than other datasets with
manually labelled bounding boxes.

Table 2 shows the superiority of our D2KD model over all the competitions.
The left column lists several methods these years, Rank-1, Rank-5 and mAP
of these methods are given at the same time. Without any additional parame-
ters, our model’s performance is substantially better. Our method outperforms
TriNet [6] by a clear margin, improving Rank-1 by 6.17% and mAP by 7.62 %.
And after re-ranking [28], the difference changes to 6.06% and 7.86%, which
means re-ranking methods still can significantly enhance our model’s perfor-
mance. This indicates the robustness of features generated by our method by
transferring domain-specific knowledge to guide the optimization of the domain-
free feature extractor.
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Table 3. Comparison of several methods on CUHK03. Rank-1 accuracy (%) and mAP
(%) are shown. We apply the new evaluation protocal on the CUHK03 proposed in [28].
We use ResNet-50 as backbone.

Methods CUHK03 DukeMTMC-reID

Rank-1 mAP Rank-1 mAP

BoW + KISSME [23] 6.4 6.4 25.1 12.2

LOMO + XQDA [12] 12.8 11.5 30.8 17.0

IDE [24] 21.3 19.7 65.2 45.0

PAN [26] 36.3 34.0 71.6 51.5

MultiScale [3] 40.7 37.0 79.2 60.6

SVDNet [16] 41.5 37.2 76.7 56.8

TriNet [6] 50.5 46.5 72.4 53.5

D2KD 60.9 56.3 80.5 64.1

Evaluation on CUHK03 and DukeMTMC-reID. We also evaluate the
ReId performance of our method compared to several existing methods on
CUHK03 and DukeMTMC-reID. Unlike Market-1501, CUHK03 provides both
manually labeled and auto detected bounding boxes of the same identity. We
only apply our experiments on the detected bounding box since it’s enough
to test our model’s ability. In DukeMTMC-reID the person bounding boxes of
images are manually cropped in a labour-intensive manner.

Table 3 shows the competition between our model and others. From the statis-
tics we can see that our model outperforms other methods by a clear margin.
This further validates that our model can maintain more information via apply-
ing a knowledge distillation strategy.

4.3 Further Evaluation and Discussion

Experiments on all three above mentioned benchmark datasets show that our
method is superior to several state-of-the-art methods these years.

D2KD Improve the Baseline Performance. In order to further prove the
effectiveness of our methods. We compare our D2KD method with two baselines.
Both based on TriNet and choose ResNet-50 as the backbone network, one is
optimized with only the triplet loss, while another is optimized with both the
triplet loss and the classification loss. Figure 4 illustrates the CMC curve for
both above mentioned baselines and our D2KD methods. Rank-1 to Rank-20
accuracy is shown in the Fig. 4.

D2KD Outperforms Traditional Label Smoothing. Label smoothing (LS)
is a method which assigns less confidence on the ground-truth label and assigns
small weights to the other classes.

Formally, in the classification task, we assume y(x) is the ground truth one-
hot label for instance x. We assign yi(x) = 1 when x belongs to the i-th person
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Fig. 4. CMC curve for pure TriNet, TriNet with classification loss and our D2KD
method. All the three methods output a 2048-dimentional feature vector for evaluation.
We use ResNet-50 as backbone and single-query setting. The tag “TriNet” means pure
ResNet-50 trained with triplet loss. “TriNet+CE” is the baseline when we apply a
classification loss on TriNet.

identity otherwise yi(x) = 0. In label smoothing, yi(x) = 1 − ε for ground-truth
label and otherwise yi(x) = ε/(C −1), where C is total class number, ε is usually
set to 0.1.

Table 4. Comparison of our D2KD method to label smoothing (LS)

Methods Rank-1

TriNet 88.0

TriNet + CE 89.3

TriNet + LS 89.8

D2KD 91.1

The results are shown in Table 4. Compared to label smoothing (LS), our
D2KD method smooths the label in a dynamic manner. Our method outper-
forms traditional label smoothing.

From the results, we have the following observations: (1) TriNet with cross
entropy loss can achieve higher performance. We can infer that applying the
classification task can help to generate more discriminative features. (2) Our
Deep Domain Knowledge Distillation (D2KD) method outperforms both two
baselines and label smoothing (LS). This indicates that our D2KD method
which smooths the label in a dynamic manner can lead to a better performance
in the person re-identification task.

5 Conclusion

In this paper, we propose a method named Deep Domain Knowledge Distilla-
tion (D2KD) by learning to provide a higher soft bound for the subnetwork
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to optimize and it is easy to implement. By transferring domain-specific knowl-
edge to the domain-free network, the base model is capable of extracting more
discriminative features. Extensive comparative evaluations on three person re-
identification benchmark datasets were conducted to validate the advantages of
the proposed D2KD method over a wide range of models on three benchmark
datasets. We hope that in the future work we can find a more satisfied higher
soft bound for the base model to optimize.
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Abstract. We present a systematic study of Catastrophic Forgetting
(CF), i.e., the abrupt loss of previously acquired knowledge, when
retraining deep recurrent LSTM networks with new samples. CF has
recently received renewed attention in the case of feed-forward DNNs,
and this article is the first work that aims to rigorously establish whether
deep LSTM networks are afflicted by CF as well, and to what degree.
In order to test this fully, training is conducted using a wide variety of
high-dimensional image-based sequence classification tasks derived from
established visual classification benchmarks (MNIST, Devanagari, Fash-
ionMNIST and EMNIST). We find that the CF effect occurs universally,
without exception, for deep LSTM-based sequence classifiers, regardless
of the construction and provenance of sequences. This leads us to con-
clude that LSTMs, just like DNNs, are fully affected by CF, and that
further research work needs to be conducted in order to determine how
to avoid this effect (which is not a goal of this study).

Keywords: LSTM · Catastrophic Forgetting

1 Introduction

This article is in the context of deep recurrent neural networks (more specifically:
deep Long Short-Term Memory (LSTM) networks [12]) applied to the classifica-
tion of sequences. Sequence classification presents many challenges, such as their
variable length and the fact that their elements are often presented one after the
other (see [36] for a more in-depth review of this topic). Typical applications
of sequence classifiers are hand gesture recognition [7], human activity recog-
nition [33] and natural language processing [22]. Prominent recent methods for
sequence classification are Recurrent Neural Networks (RNNs), and in particu-
lar LSTM networks and their deep “extensions”, see [11] and references therein.
These classification architectures are based on a similar concept as prior work
on echo state networks or reservoir computing [13], where the dynamical state
of a recurrent system (reservoir, LSTM layer) represents the current and pre-
viously presented sequence elements, and a linear read-out mechanism is added
“on top” of that to infer the sequence class. LSTM networks are attractive for
this purpose since they are trained by gradient descent, so the “reservoir” can
be adapted to the sequences it should represent.
c© Springer Nature Switzerland AG 2019
I. V. Tetko et al. (Eds.): ICANN 2019, LNCS 11728, pp. 714–728, 2019.
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Especially in situations where sequence classifiers need to be retrained in situ,
typically based on user interaction (e.g., learning a new hand gesture by demon-
stration), the question of incremental or continual learning becomes relevant:
what happens to knowledge of previously trained sequences when a new sequence
class is presented to a deep LSTM sequence classifier? In addition, sequence ele-
ments in common applications, like hand gesture or human activity recognition,
are typically images (or depth images) and thus quite high-dimensional and
hard to classify in their own right. So a study on Catastrophic Forgetting in
deep LSTM networks should be sure to address this case in particular.

1.1 Related Work

The Catastrophic Forgetting Effect. Catastrophic forgetting in feed-forward
neural networks was first observed in [24] and subsequently studied in, e.g., [6].
Recent studies in the context of Deep Neural Networks (DNNs) are described
below. Essentially, CF is observed when a neural network is first trained on a
dataset D1 and subsequently re-trained on a disjunct dataset D2. Very counter-
intuitively, the typical outcome of such an experimental scheme is that all that
was learned from D1 is forgotten virtually immediately, within one or two mini-
batch steps. We consider exactly such a scenario in this article, a minor difference
being that samples from D1 and D2 are image sequences, which is why LSTM
classifiers are used.

Catastrophic Forgetting in Deep Neural Networks. The field of incre-
mental learning is broad, e.g., [25] and [8]. Recent systematic comparisons
between different DNN approaches to avoid CF are performed in, e.g., [17,29] or
[26]. Principal recent approaches to avoid CF include ensemble methods [5,28],
dual-memory systems [9,16,27,30] and regularization approaches. Whereas [10]
suggest Dropout for alleviating CF, the Elastic Weight Consolidation (EWC)
method [19] proposes to add a term to the energy function that protects weights
that are important for the previous sub-task(s). Importance is determined by
approximating the Fisher information matrix of the DNN. A related approach
is pursued by the Incremental Moment Matching technique (IMM) (see [21]),
where weights from DNNs trained on current and past sub-tasks are “merged”
using the Fisher information matrix. Other regularization-oriented approaches
are proposed in [2,32] and [18] which focus on enforcing sparsity of neural activ-
ities by lateral interactions within a layer.

Catastrophic Forgetting in (Deep) LSTM Networks. Although there is
little to no previous work on measuring Catastrophic Forgetting in LSTM net-
works, it seems to be a tentative consensus that LSTM might subject to CF,
but we found no scientific work documenting this systematically for complex,
high-dimensional sequence classification problems. A simpler recurrent sequence
classification model is tested for CF in [4] with the result that this model (with-
out modifications) exhibits strong CF. This article uses short image sequences
derived from MNIST as a basis for its investigation, and individual sequence ele-
ments are further reduced in dimensionality by Principal Component Analysis
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(PCA). A modified form of LSTM based on the EWC method [19] is presented
in [22], but CF behavior is not systematically analyzed as the objective of the
article is the incremental training of conversational agents. A dual-memory app-
roach to incremental LSTM is presented in [14] for the purpose of land cover
prediction in high-dimensional images, again without documenting the CF effect
systematically.

Table 1. Overview of each dataset’s detailed properties. Image dimensions are given
as width × height × channels. Concerning data imbalance, the largest percentual dif-
ference in sample count between any two classes is given for training and test data, a
value of 0 indicating a perfectly balanced dataset.

Dataset Properties

Image size Number of elements Class balance (%)

Train Test Train Test

Devanagari 32×32×1 18.000 2.000 0.3 2.7

EMNIST 28×28×1 345.035 57.918 2.0 2.0

FashionMNIST 28×28×1 60.000 10.000 0 0

MNIST 28×28×1 55.000 10.000 2.2 2.4

1.2 Goals and Contributions of the Article

We aim at determining unambiguously whether LSTM and deep LSTM-based
sequence classifiers are prone to the Catastrophic Forgetting effect or not when
retrained with samples from one or more additional sequence classes, especially
for the case where sequence elements are high-dimensional images that require
deep networks in order to be solved satisfactorily. We do not impose application
constraints on memory consumption or execution time when performing incre-
mental learning experiments as it is done in [26] since LSTM training is memory-
consuming in any case. However, we ensure realism w.r.t. causality, meaning that
the number and nature of additional classes are not known beforehand (i.e., in
order to select a good topology for deep LSTM), which is in accordance with [26].

Regardless of the actual outcome (CF, no CF or CF in some cases), such
an investigation is important because it provides solid justification for further
work on avoiding the CF effect in deep LSTM classifiers, or else why CF can be
ignored in applications of such architectures.

We wish to make it clear that this study does not propose methods to get rid
of Catastrophic Forgetting (which has proven difficult for DNNs): for the time
being, we just aim at clearly showing that this effect is an universally occurring
one for LSTM networks.
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MNIST EMNIST

Devanagari Fashion MNIST

Fig. 1. Visualization of one sample per class from the four visual classification bench-
marks used in this article.

2 Methods

The experimental paradigm is based on the notion of an incremental sequence
classification task (ISCT), which is, simply put, a sequence classification problem
divided into two disjunct parts. The first part is used for the initial training of a
deep LSTM network, whereas the second part is used for subsequent retraining.
While training on the second part of the ISCT, accuracy on the union of test
sets from both parts is monitored to detect Catastrophic Forgetting.

2.1 Visual Benchmarks for Constructing Sequence Classification
Tasks

We construct incremental sequence classification tasks based on images taken
from the following visual classification benchmarks (see Table 1 for details about
the benchmarks and Fig. 1 for a visual impression).

MNIST [20] is the common benchmark for computer vision systems and clas-
sification problems. It consists of gray scale images of handwritten digits (0–9).

EMNIST [3] is an extended version of MNIST with additional classes of hand-
written letters. There are different variations of this dataset: we extract the ten
best-represented classes from the By Class variation containing 62 classes.

Devanagari [1] contains gray-scale images of Devanagari handwritten letters.
From the 46 character classes (1.700 images per class) we extract ten random
classes.

FashionMNIST [35] consists of images of clothes in ten classes and is structured
like the MNIST dataset. We use this dataset for our investigations because it is
a “more challenging classification task than the simple MNIST digits data [35]”.

2.2 Incremental Sequence Classification Tasks

Construction of Sequence Classes. We construct a common pool of ten
(k = 0, . . . , 9) sequence classes characterized by vectors sk ∈ R

Nk , whose length
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Table 2. All ten sequence classes, with sequence class k being characterized by the
vector sk that defines the visual classes where individual sequence elements (frames)
are chosen from, see text for details. Please note that a visual class (e.g., the digit
class “1” from MNIST) can appear more than once in a given sequence class. Using
these definitions, the ten sequence classes are generated for each of the four visual
benchmarks.

Seq. class Seq. def sk Seq. class Seq. def sk

0 44671365876 1 1373561961

2 35445909328241 3 9314487292918

4 3675082469 5 45406816421282

6 7534519793178 7 02890

8 69959 9 21024269755

Nk is randomly varied between 5 and 15, and whose integer entries ski are ran-
domly chosen from the range [0, 9]. Each sample from a sequence class k thus
has Nk elements (frames) ei, i = 0, . . . , Nk − 1, each being a (flattened) image
randomly taken from class ski of one of the four visual benchmarks (see Sect. 2.1).
An overview of the constructed sequence classes is given in Table 2, and Fig. 2
gives a visual impression of actual sequence samples. The chosen sequence con-
struction strategy assumes the presence of ten visual classes in each benchmark:
where more than ten classes are available, we keep the ten best-represented ones
(EMNIST), or we keep ten random ones if all classes are equally well represented
(Devanagari).

Construction of Incremental Sequence Classification Tasks. From the
pool of ten sequence classes, we construct four incremental sequence classification
tasks (ISCT) for measuring Catastrophic Forgetting. Two of them (denoted 5-
5a and 5-5b) use a subset of five sequence classes for initial training and five
sequence classes for retraining, whereas the two others (denoted 5-1a and 5-1b)
use five sequence classes for initial training and one sequence class for retraining.
Each ISCT contains training and test sets that are constructed from an 80/20
partition of available sequence samples. Table 3 gives an overview of the ISCTs
used for measuring Catastrophic Forgetting in this article.

Table 3. Incremental sequence classification tasks (ISCTs) used for measuring Catas-
trophic Forgetting. Shown are the sequence classes (see Table 2) used for initial training
and retraining of deep LSTM models. Each ISCT is constructed for all the benchmarks:
MNIST, FashionMNIST, EMNIST and Devanagari.

ISCT Initial Retrain

5-5a 0,4,5,6,9 1,2,3,7,8

5-5b 0,1,2,3,4 5,6,7,8,9

5-1a 0,4,5,6,9 8

5-1b 0,1,2,3,4 9
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Fig. 2. Visualization of 3 samples (sequences), taken from an exemplary sequence class
with 13 elements (frames) shown for Devanagari (top) and FashionMNIST (bottom).

2.3 Deep LSTM Models

We use a standard deep LSTM architecture with linear softmax readout layer
and cross-entropy loss function as outlined in [12]. Number and size of hidden
layers, which are all set to have the same number of LSTM cells, will be varied
in the experiments and are denoted (L, S). The LSTM model equations for
computing activations ht of a single LSTM layer read as follows:

it = σ (Wxixt + Whiht−1 + Wcict−1 + bi)
f t = σ (Wxfxt + Whfht−1 + Wcfct−1 + bf )
ct = f tct−1 + it tanh (Wxcxt + Whcht−1 + bc)
ot = σ (Wxoxt + Whoht−1 + Wcoct + bo)
ht = ot tanh(ct) (1)

3 Experiments

For our experiments we use the TensorFlow (v1.11) implementation of a Recur-
rent Neural Network with multiple LSTM cells under Python (v3.6). We always
use the Adam optimizer included in TensorFlow for performing gradient descent.
We distinguish two principal experimental objectives:

– Consistency of deep LSTM models In this step, we verify that our archi-
tecture is working correctly on the given classification problems by comparing
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them to the known performance of present-day DNNs on the visual bench-
marks we use. For all visual benchmarks we train deep LSTM models on ten
sequence classes, each sequence class containing one element randomly cho-
sen from a single, distinct image class in the benchmark. The classification
of such one-element sequences amounts to classifying the images themselves,
with recurrency being effectively switched off since the sequences have length
one. If the deep LSTM architecture is chosen correctly, the classification accu-
racy should be comparable to the known accuracy of DNNs on a particular
benchmark, thus establishing that our deep LSTMs are correctly used and
parameterized.

– Investigation of Catastrophic Forgetting Here, we introduce incremental
learning to our architecture: we train deep LSTM networks as described in
Sect. 2.3 on the incremental sequence classification tasks (see Sect. 2.2) in two
steps as outlined in Table 3: first on an initial set of sequence classes followed
by retraining on a different set of sequence classes. During retraining, an
evaluation of test accuracy is conducted on the union of test samples from
both parts of the ISCT, with the aim of detecting Catastrophic Forgetting
after the onset of retraining.

3.1 Consistency

Fig. 3. Consistency test results

We vary the number of hidden layers and their size (L, S) ∈ {(1, 100), (1, 200),
(1, 500), (3, 800), (5, 200)} and use a fixed learning rate of ε = 0.0001, a fixed
batch size of b = 1.000 and a fixed number of iterations I = 1.000. To make sure
the results are significant and consistent we repeat every experiment five times
and calculate the average loss and accuracy. Table 4 shows the results for this
preliminary experiment. As can be seen, our networks achieve accuracies that
are generally comparable to those one would obtain when using simple DNN
architectures. This makes it very plausible that our deep LSTMs are correctly
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parameterized and excludes gross errors in the deep LSTM setup. Figure 3 shows
the best result for each benchmark (in percent).

Table 4. Results of the consistency tests: Averaged accuracy over five experiments.

(L, S) (1, 100) (1, 200) (1, 500) (3, 800) (5, 200)

MNIST 94.6 95.7 96.8 97.4 95.2

EMNIST 87.1 88.8 91.0 97.1 95.2

Devanagari 87.9 93.3 97.1 99.4 98.4

Fashion MNIST 86.7 87.7 88.5 88.4 85.8

3.2 Investigation of Catastrophic Forgetting

To test whether deep LSTM networks are prone to Catastrophic Forgetting when
retraining an already trained one with new sequences we perform initial training
and retraining using the generated ISCTs (see Fig. 2 and Sect. 2.2). To exclude
that results are due to a particular choice of topology we vary the number and size
of hidden layers (L, S) ∈ {(1, 100), (1, 200), (1, 500), (3, 800), (5, 200)} and use

Fig. 4. Results of incremental learning for the 5-1 ISCTs.
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a fixed learning rate ε = 0.0001, a fixed batch size b = 1.000 and a fixed number
of iterations for initial training and retraining IT = IR = 1.000. To make sure
the results are significant we repeat every experiment five times and calculate
the average classification accuracy. To ensure the results are not influenced by
our choice of sequence classes for initial training and retraining we additionally
average results over the 5-5a/5-5b and 5-1a/5-1b experiments. In total, we run
400 different incremental learning experiments:

– 5 different topologies: (L, S) ∈ {(1, 100), (1, 200), (1, 500), (3, 800), (5, 200)}
– 4 different ISCTs (5-5a, 5-5b, 5-1a, 5-1b) from 4 visual benchmarks
– 10 repetitions for each ISCT

Table 5 shows the averaged accuracy for the 5-1 ISCTs for all tested architec-
tures at the end of initial training and during retraining (IT = 1000, t < IR, t ∈
{1, 1000}). The best achieved results for those experiments are shown in Fig. 4.
As can be seen, the first part of the experiments where we perform initial train-
ing shows similar results to the ones achieved in our consistency tests (which is
unsurprising). In the majority of cases, the results on five-element sequences are
even better than those we obtain on single-element sequences in the consistency
tests. As soon as we retrain the network with additional sequence classes the
accuracy decreases drastically and almost instantaneously to 60–80% after one

Table 5. Results of incremental learning for the 5-1 ISCTs: Averaged test accuracy
(in percent) over ten experiments. During initial training, test accuracy is measured
on the first part of each ISCT, during retraining on the six sequence classes included
in either training or retraining.

(L, S) (1, 100) (1, 200) (1, 500) (3, 800) (5, 200)

MNIST

IT = 1.000 99.9 99.9 99.9 99.9 99.9

IR = 1 83.2 83.1 81.9 67.2 68.8

IR = 1.000 16.6 16.6 16.4 16.7 16.8

Fashion MNIST

IT = 1.000 99.9 99.9 99.9 99.9 99.9

IR = 1 83.2 82.8 74.3 64.1 61.9

IR = 1.000 16.6 16.6 16.7 18.4 16.8

Devanagari

IT = 1.000 69.7 71.3 77.7 98.9 97.1

IR = 1 57.9 58.9 64.9 59.4 57.4

IR = 1.000 17.4 17.1 16.7 16.0 16.6

EMNIST

IT = 1.000 93.0 93.4 95.0 99.9 99.9

IR = 1 77.5 77.6 78.9 56.6 68.4

IR = 1.000 17.6 16.7 16.5 16.8 16.8
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Table 6. Results of incremental learning for the 5-5 ISCTs: averaged test accuracy (in
percent) over ten experiments. During initial training, test accuracy is measured on
the first part of each ISCT, during retraining on all ten sequence classes.

(L, S) (1, 100) (1, 200) (1, 500) (3, 800) (5, 200)

MNIST

IT = 1.000 99.9 99.9 99.9 99.9 99.9

IR = 1 50.1 49.8 48.3 32.1 20.2

IR = 1.000 55.3 55.0 55.1 54.8 54.9

Fashion MNIST

IT = 1.000 99.9 99.9 99.9 99.9 99.9

IR = 1 49.9 49.2 44.6 32.2 19.9

IR = 1.000 55.0 55.1 54.9 55.3 55.0

Devanagari

IT = 1.000 70.1 71.0 78.3 98.8 96.7

IR = 1 34.9 36.3 38.6 39.1 25.7

IR = 1.000 46.1 46.2 49.2 55.5 53.9

EMNIST

IT = 1.000 92.9 93.4 95.4 99.9 99.9

IR = 1 46.5 46.8 47.6 37.7 24.1

IR = 1.000 54.4 54.1 54.1 55.0 54.9

iteration and then to about 17% during the next few iterations, where it remains.
This is indeed the result one would expect for a classifier that has learned about
one sequence class and has totally forgotten about the other five it has learned
before.

Similarly, Table 6 shows the averaged accuracy for the 5-5 ISCTs for all tested
architectures at the end of initial training and during retraining (IT = 1000, t <
IR, t ∈ {1, 1000}). The best results for this part of our study are shown in Fig. 4.
During the first couple iterations of retraining the network, the accuracy drops
to between 20% and 50% (depending on the architecture). It then increases to
about 50–55% during the next 25 iterations and remains there until we stop the
tests after 1.000 iterations. Again, this is the accuracy one would expect if half
of the ten sequence classes has been well learned during retraining, but the other
half has been completely forgotten.

4 Discussion and Conclusions

Principal Outcomes. We find that sequence classifiers based on deep LSTM
networks are heavily afflicted by Catastrophic Forgetting for complex, high-di-
mensional incremental sequence classification tasks. Within only a few mini-
batch iterations, almost all knowledge about previously trained data is lost and
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the network is able to perform an accurate classification only on the newly
trained sequences. The LSTM topology has no influence at all on this effect, to
the extent we were able to test this, which is different from feed-forward DNNs
where topology has a small influence without however in any way eliminating the
problem [26]. It is relatively intuitive why this should be the case, since recurrent
networks are conceivably more sensitive to even small changes in weights due
to retraining, since each change is amplified by recurrent connections. Also in
slight contrast to feed-forward DNNs, it does not make a difference whether a
single or many classes are added during re-training, although the effect is slim
at best even for DNNs, see [26].

Significance of Results. We find this to be a very important result about
LSTM sequence classifiers: Catastrophic Forgetting is a universally occurring
effect. So it is not possible to add new knowledge to a trained LSTM classifier in
a naive way without losing all previously acquired knowledge. While forgetting
in such a scenario is not unreasonable to expect simply due to limited network
resources, it should be gradual so that re-training can be stopped whenever the
onset of forgetting is detected. This “graceful decay” behavior is however not
what is observed in our experiments and once forgetting is detected it is already
too late to stop re-training.

Justification of Using LSTMs. We employ deep LSTM classifiers in this
article because the problems treated here are inherently high-dimensional and,
above all, sequential. The most important property of sequences, for the purpose
of this article, is that the different sequence classes do not have to be of the
same length, i.e., samples from different sequence classes may very well contain
a different number of frames. This, together with the high-dimensional nature of
the images, effectively excludes strategies that concatenate all images in a given
sequence and present the result to a feed-forward DNN. First of all, memory
usage would be excessive. More importantly, a sequence could only be classified
once its end was reached: but to determine that, its class would have to be
known. Of course, a fixed upper limit on sequence length could be imposed, but
this would incur even higher memory requirements. For all these reasons, we
believe that the use of deep LSTMs is the only feasible choice for the problems
presented here, which are typical representatives for, e.g., video classification
tasks.

Datasets Used for this Study. The datasets, that is, the incremental sequence
classification tasks (ISCTs) used in this study consist of image sequences and are
thus related to videos. The reason for not using datasets containing real videos
is that we wish to treat problems which, when not treating sequential learning
problems, can be solved to a high degree of precision so that the forgetting effect
is pronounced enough to be observed. Thus, while it might be argued that we
used artificial data that are really too simple to give meaningful results, we point
out that if CF occurs even for relatively simple problems like these, it is sure to
occur for more complex problems as well (as it is the case for DNNs, see, e.g.,
[26]).
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Context and Next Steps. This study deliberately does not propose a solu-
tion to the problem because we believe the existence of the problem needs to
be rigorously established first. It is conceivable that EWC or IMM-like mecha-
nisms [19,21] may alleviate Catastrophic Forgetting for deep LSTM networks,
and approaches based on generative replay [15,30,34] presumably generalize to
sequence classification although the generation of sequences as opposed to single
images may prove challenging. Approaches based on the so-called “distillation
loss” regularization [23,31] will be looked into as well, mostly because they should
be pretty straightforward to implement for LSTM networks. We hope, by pre-
senting these results, to encourage researchers to investigate continual training
methods not only for DNNs, but for LSTM sequence classifiers as well.

Fig. 5. Results of incremental learning for the 5-5 ISCTs.
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29. Serrà, J., Suŕıs, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forget-
ting with hard attention to the task. arXiv preprint arXiv:1801.01423 (2018)

30. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual Learning with Deep Generative
Replay (NIPS) (2017)

31. Shmelkov, K., Schmid, C., Alahari, K.: Incremental learning of object detectors
without catastrophic forgetting. In: Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 3400–3409 (2017). https://doi.org/10.1109/ICCV.
2017.368

32. Srivastava, R.K., Masci, J., Kazerounian, S., Gomez, F., Schmidhuber, J.: Compete
to Compute, pp. 2310–2318 (2013). http://papers.nips.cc/paper/5059-compete-to-
compute.pdf

33. Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-
based activity recognition: a survey. Pattern Recogn. Lett. (2018). https://doi.
org/10.1016/j.patrec.2018.02.010, http://www.sciencedirect.com/science/article/
pii/S016786551830045X

https://doi.org/10.1007/978-3-030-00928-1_59
https://doi.org/10.1007/978-3-030-00928-1_59
https://doi.org/10.1073/pnas.1611835114
http://arxiv.org/abs/1612.00796
https://doi.org/10.1109/5.726791
http://papers.nips.cc/paper/7051-overcoming-catastrophic-forgetting-by-incremental-moment-matching.pdf
http://papers.nips.cc/paper/7051-overcoming-catastrophic-forgetting-by-incremental-moment-matching.pdf
http://papers.nips.cc/paper/7051-overcoming-catastrophic-forgetting-by-incremental-moment-matching.pdf
http://arxiv.org/abs/1712.09943
https://doi.org/10.1109/TPAMI.2017.2773081
https://doi.org/10.1016/S0079-7421(08)60536-8
http://www.sciencedirect.com/science/article/pii/S0079742108605368
http://www.sciencedirect.com/science/article/pii/S0079742108605368
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1016/j.neunet.2019.01.012
http://arxiv.org/abs/1905.08101
http://arxiv.org/abs/1905.08101
https://doi.org/10.1109/CVPR.2017.587
https://doi.org/10.1109/CVPR.2017.587
https://doi.org/10.1016/j.asoc.2017.03.005
https://doi.org/10.1016/j.asoc.2017.03.005
http://arxiv.org/abs/1801.01423
https://doi.org/10.1109/ICCV.2017.368
https://doi.org/10.1109/ICCV.2017.368
http://papers.nips.cc/paper/5059-compete-to-compute.pdf
http://papers.nips.cc/paper/5059-compete-to-compute.pdf
https://doi.org/10.1016/j.patrec.2018.02.010
https://doi.org/10.1016/j.patrec.2018.02.010
http://www.sciencedirect.com/science/article/pii/S016786551830045X
http://www.sciencedirect.com/science/article/pii/S016786551830045X


728 M. Schak and A. Gepperth

34. Wu, C., Herranz, L., Liu, X., Wang, Y., van de Weijer, J., Raducanu, B.: Mem-
ory replay GANs: learning to generate images from new categories without for-
getting. arXiv preprint arXiv:1809.02058 (2018). http://dl.acm.org/citation.cfm?
id=3327345.3327496

35. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. CoRR abs/1708.07747 (2017). http://arxiv.
org/abs/1708.07747

36. Xing, Z., Pei, J., Keogh, E.: A brief survey on sequence classification. ACM
SIGKDD Explor. Newsl. 12(1), 40–48 (2010). https://doi.org/10.1145/1882471.
1882478

http://arxiv.org/abs/1809.02058
http://dl.acm.org/citation.cfm?id=3327345.3327496
http://dl.acm.org/citation.cfm?id=3327345.3327496
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://doi.org/10.1145/1882471.1882478
https://doi.org/10.1145/1882471.1882478


Multiclass



A Label-Specific Attention-Based
Network with Regularized Loss
for Multi-label Classification

Xiangyang Luo , Xiangying Ran , Wei Sun , Yunlai Xu ,
and Chongjun Wang(B)

National Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China

lxypaul2016@gmail.com, lebronran@gmail.com, weisun @outlook.com,

yunlaixu@gmail.com, chjwang@nju.edu.cn

Abstract. In a multi-label text classification task, different parts of a
document do not contribute equally to predicting labels. Most existing
approaches failed to consider this problem. Several methods have been
proposed to take this problem into account. However, they just utilized
hidden representations of neural networks as input of attention mech-
anism, not combining with label information. In this work, we propose
an improved attention-based neural network model for multi-label text
classification, which can obtain the weights of attention mechanism by
computing the similarity between each label and each word of documents.
This model adds the label information into text representations which
can select the most informative words accurately for predicting labels.
Besides, compared with single-label classification, the labels of multi-
label classification may have some correlations such as co-occurrence or
conditional probability relationship. So we also propose a special regular-
ization term for this model, which can help to exploit label correlations
by using label co-occurrence matrix. Experimental results on AAPD and
RCV1-V2 datasets demonstrate that the proposed model yields a signif-
icant performance gain compared to many state-of-the-art approaches.

Keywords: Multi-label classification · Attention-based Network ·
Label correlations

1 Introduction

Multi-label classification (MLC) is one of the most important tasks in natural
language processing. Different from single-label classification, it aims to assign
multiple labels to an instance. Besides, the output label space can have more
multiple combinations. Therefore, it is a more difficult and challenging task.

Binary Relevance (BR) [1] is one of the simplest methods, which decom-
poses the MLC task into multiple single-label classification problems. However,
it ignores the correlations between labels. Other methods take the issue of resolv-
ing the correlations between labels into consideration, such as Classifier Chains
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(CC) [2], Ranking Support Vector Machine (Rank-SVM) [3], Calibrated Label
Ranking(CLR) [4], and so on. But the calculation becomes more complicated
when the number of labels increases.

Recently, deep learning methods have achieved good results in MLC tasks.
Kurata et al. [5] proposed to utilize the Convolutional Neural Network (CNN)
for multi-label classification. Chen et al. [6] used CNN and Recurrent Neural
Network (RNN) to capture the semantic information of texts. However, they
either neglected the fact that different words do not contribute equally when
predicting labels or ignored the correlations between labels.

In this paper, we propose a Label-specific Attention-based Network (LSABN)
for multi-label text classification. We verify the hypothesis that better document
representations can be obtained by incorporating the relationship between texts
and labels into the attention mechanism. Our model utilizes attention mechanism
with Bidirectional Long Short-Term Memory Network (Bi-LSTM) to capture
the most important semantic information in a document. Unlike other attention
mechanisms which only utilize hidden representations of neural networks to build
attention weights, we use the similarity between each label and each word of
documents to construct attention weights. Experimental results on AAPD and
RCV1-V2 datasets demonstrate that our model performs better than most of
the existing methods in the literature.

Our main contributions can be listed as follows:

(1) We propose a Label-specific Attention-based Network (LSABN) model
which can utilize label information to assign different attention weights to
words in a document.

(2) We propose a special regularization term by making use of label co-
occurrence matrix to capture the correlations between labels.

(3) Experimental results demonstrate that our proposed model can achieve sig-
nificant improvement on two widely used datasets.

The remainder of the paper is structured as follows. In Sect. 2, we review related
work about multi-label classification. Section 3 presents our LSABN model in
details. In Sect. 4, we describe the experiments and make analysis and discus-
sions. Finally Sect. 5 concludes this paper.

2 Related Work

The traditional MLC methods can be classified into two main types: problem
transformation methods and algorithm adaptation methods.

Problem transformation methods are the most direct ways to deal with
multi-label classification. They transform a multi-label classification problem
into single-label problems, such as several binary problems, multi-class problems
or label ranking problems. Binary Relevance (BR) [1] decomposes the MLC task
into independent binary classification problems. But Unfortunately, it ignores
the correlations between labels. Classifier Chains (CC) [2] transforms the MLC
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task into a chain of binary classification problems which considers the correla-
tions. Label Powerset (LP) [7] transforms a multi-label learning problem into a
multi-class (single-label) classification problem.

Algorithm adaptation methods extend existing single-label classification
algorithms to deal with multi-label classification. Multi-Label k-Nearest-
Neighbor-hood(MLKNN) [8] is a lazy approach which utilizes maximum a pos-
teriori (MAP) to determine the label set for prediction. Ranking Support Vector
Machine (Rank-SVM) [3] adapts maximum margin strategy to deal with multi-
label data and minimizes the empirical ranking loss. Collective Multi-Label Clas-
sifier (CML) [9] adapts maximum entropy principle to deal with multi-label data
where correlations among labels are encoded as constraints.

Recently, neural network (NN) approaches have achieved surprising results
in MLC tasks. Zhang et al. [10] proposed the BP-MLL model, which is adapted
from a 3-layer forward neural network, to take dependencies between labels into
account by utilizing a pairwise ranking loss function. Nam et al. [11] replaced
the ranking loss with a neural network using cross-entropy loss. Kurata et al. [5]
utilized word embeddings based on CNN to capture label correlations. Chen
et al. [6] proposed to combine CNN with RNN to model high-order label cor-
relations. Lin et al. [12] proposed a new model for extracting an interpretable
sentence embedding by introducing self-attention. Different from [12], our model
use the similarity between each label and each word of documents to construct
attention weights.

Fig. 1. Label-specific attention-based network with regularized loss

3 Model

In this section, we propose our LSABN model in details. As shown in Fig. 1, our
model contains five components:
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(1) Input layer: input a document to this model;
(2) Embedding layer: map each word in this document and descriptions of labels

into a low dimension vector;
(3) Bi-LSTM layer: utilize Bi-LSTM to get high level features from step (2);
(4) Label-specific attention layer: construct a weight vector, and merge word-

level features into a document-level feature vector by multiplying the weight
vector;

(5) Output layer: the document-level feature vector is finally used for multi-label
classification.

These components will be presented in details in the following.

3.1 Multi-label Classification

Before going into the details of our model, we first introduce some notations
and describe the MLC task. Suppose L = {l1 , l2 , ..., lL} is a finite domain of
L possible labels. Formally, Multi-label classification may be defined as follows:
Given the dataset D = {(Xk ,Yk ) |k = 1 , 2 , ...,N } where N is the number of
examples in D , the task is to assign a subset Yk containing n labels in the label
space L to Xk .

3.2 Word Embeddings and Label Embeddings

Given a document which consists of M words X = {x1 , x2 , ..., xM }, every word
xi in this document is transformed into a real-valued vector ei . For each word
in X , we first look up the embedding matrix W d|V | ∈ R

d×|V |, where d is the
dimension of the embedding vector, and |V | is the size of vocabulary. The matrix
W d|V | is a parameter to be learned, and d is a hyper-parameter to be chosen
by user. We can transform a word xi into an embedding vector ei by using the
following equation:

ei = W d|V |pi (1)

where pi is the one-hot representation of the i -th word. After calculation, we
can get a document embedding matrix embX = {e1 , e2 , ..., eM }.

In the same way, given label space which consists of L labels L =
{l1 , l2 , ..., lL}, we can transform L into its embedding form by using the fol-
lowing equation:

ti = W d|V |vi (2)

where vi is the one-hot representation of the i -th label. After calculation, we can
get an embedding matrix embL = {t1 , t2 , ..., tL}. The words out of the vocabu-
lary are randomly initialized. If the description of the label uses more than one
word, we just use the average of the word embeddings.
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3.3 Bidirectional Network

LSTM units are firstly proposed by Hochreiter et al. [13], which can overcome
gradient vanishing problem. The main idea of LSTM is to introduce an adaptive
gating mechanism, which decides the degree to which LSTM units keep the
previous state and memorize the extracted features of the current data input.

We use a bidirectional LSTM used in [14] to read the input document X
from both directions and compute the hidden states for each word,

−→
hi =

−−−−→
LSTM

(
ei ,

−−→
hi−1

)
(3)

←−
hi =

←−−−−
LSTM

(
ei ,

←−−
hi+1

)
(4)

We obtain the final hidden representation of the i -th word by concatenating
the hidden states from both directions, hi =

[−→
hi ,

←−
hi

]
, which ensures that the

i -th word can have the information near it. H is a matrix consisting of output
vectors [h1 , h2 , ..., hM ] that the BiLSTM layer produced, where M is the docu-
ment length. The hidden unit number for each unidirectional LSTM is u, so H
has the size M -by-2u.

3.4 Label-Specific Attention Mechanism

In this section, we propose the label-specific attention mechanism. Firstly, we
calculate the cosine similarity matrix S between embX and embL. We can obtain
the element of matrix S by using the following equation:

s (ti , ej ) = cos (ti , ej ) (5)

where cos is the cosine similarity given by cos (a, b) = a·b
|a||b| . The element s (ti, ej)

is the similarity between i -th label and j -th word. All the elements form the
similarity matrix S = [sij ]L×M . We can transform embedding matrix embX and
embL into unit matrix so that matrix S can be calculated as following:

S = embLT embX (6)

The element s (ti, ej) in cosine similarity matrix S means the importance of
the j -th word to predicting i -th label. So what we need to do is transforming the
matrix S into a weight vector z with size M . Then we use nonlinear activation
functions to achieve approximation of complex functions:

z = w2 tanh (W1S) (7)

Here W1 is a weight matrix with a shape of q-by-L. And w2 is a vector of
parameters with size q, where q is a hyperparameter we can set arbitrarily. Since
H is sized M -by-2u, the attention weight vector z will have a size M . The element
zt in the attention weight vector z means the importance of the t-th word to the
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prediction of labels. Then we can get a normalized importance weight vector α
for the document through a softmax function:

α = softmax(z) (8)

where the t-th element of α is calculated as: αt = expzt∑
t expzt

.
The representation c of the document is formed by a weighted sum of these

output vectors:
c =

∑
t

αtht (9)

Fig. 2. The co-occurrence frequency of the labels on the AAPD dataset

3.5 Regularized Loss

The document vector c is a high level representation of the document and we
can use the feature vector to obtain label scores by fully connected layer:

p = softmax(cWc + bc) (10)

where Wc is a weight matrix with a shape of 2u-by-L, and bc is a vector of
parameters with size L. So p is a label score vector with size L.
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Our model can be trained in a supervised manner by minimizing the following
Binary Cross Entropy (BCE) loss function:

L =
L∑
i

(yi log pi + (1 − yi) (1 − log pi)) + λ||θ||2 (11)

Here, y is the vector representation of the ground truth (for instance y =
(1, 0, 0, 1, 0)), and p is the estimated probability for each instance by softmax
(the subscript i represents the i -th element of the vector). λ is the weight for
L2-regularization, and θ denotes the set of all parameters. In this paper, we
combine dropout with L2 regularization to alleviate overfitting.

Inspired by the idea that the co-occurrence relationship between labels may
have a significant impact on the prediction of labels, we further proposed to
incorporate the label correlations into the BCE loss.

As shown in Fig. 2, we found that if the co-occurrence frequency between i -th
label and j -th label is high we can think that these two labels are more likely to
appear together. On this basis, the union loss function is defined as:

L =
L∑
i

(yi log pi + (1 − yi) (1 − log pi)) + λ1

L∑
i,j

mi,j ||ti − tj ||2 + λ2||θ||2 (12)

Here, mi,j is the co-occurrence frequency between i -th label and j -th label. The
behind motivation is that if the two labels are highly correlated, we hope the
two label embeddings remain similar.

4 Experiments

4.1 Datasets

In this paper, we evaluate our model on two datasets.
Arxiv Academic Paper Dataset (AAPD): This dataset is provided by Yang

et al. [15]. They collected the abstract and the corresponding subjects of 55840
papers in the computer science field from the arxiv website. An academic paper
may have multiple subjects and there are 54 subjects in total. The target is to
predict corresponding subjects of an academic paper according to the content of
the abstract.

Reuters Corpus Volume I (RCV1-V2): This dataset is provided by
Glewis et al. [16]. It consists of over 800000 manually categorized newswire sto-
ries made available by Reuters Ltd for research purposes. Multiple topics can be
assigned to each newswire story and there are 103 topics in total.

We divide each dataset into training, validation and test sets as [15]. The
statistics of the two datasets are shown in Table 1. Total Samples, Label Sets
denote the total number of samples and labels, respectively. Words/Sample is the
average number of words per sample and Labels/Sample is the average number
of labels per sample.



738 X. Luo et al.

Table 1. Summary of datasets

Dataset Total Samples Label Sets Words/Sample Labels/Sample

AAPD 55840 54 163.42 2.41

RCV1-V2 804414 103 123.94 3.24

4.2 Evaluation Metrics

We use four evaluation metrics which is widely used in multi-label learning in this
paper, i.e., hamming loss [17], micro-precision, micro-recall, micro-F1 score [18].
For hamming loss, a lower value indicates a better performance. For the last
three metrics, the higher the metric value is, the better the performance is.

4.3 Experimental Details

For both of the datasets, the dimension of word embedding vectors is set as
300 and the size of hidden layer is set as 200. We extract the vocabulary from
the training sets. For the AAPD dataset, the size of the vocabulary is 32872
and out-of-vocabulary (OOV) words are randomly initialized. Each document is
truncated at the length of 250.

For the RCV1-V2 dataset, the size of the vocabulary is 49128 and OOV words
are randomly initialized. Each document is truncated at the length of 500.

All weight matrices and bias are randomly initialized by a uniform distribu-
tion U(−0.1, 0.1). TensorFlow is used to implement our neural network model.
In model training, learning rate is set as 0.001, L2-norm regularization is set as
1e-4, the parameter λ1 are set as 0.1 and 0.025 on two datasets, respectively.
We use the stochastic gradient descent (SGD) algorithm and Adam update rule
with shuffled mini-batch for parameter optimization.

4.4 Experimental Results

We compare our proposed methods with Binary Relevance (BR) [1], Classifier
Chains (CC) [2], Label Powerset (LP) [7], CNN [19], CNN-RNN [6], SGM and
SGM+GE [15]. The compared algorithms are shown as follows:

• BR decomposes the MLC task into some independent binary classification
problems which does not take label correlations into consideration.

• CC transforms the MLC task into a chain of binary classification problems
which considers the label correlations.

• LP transforms the MLC task into a multi-class (single-label) classification
problem.

• CNN uses a simple CNN with one layer of convolution to extract sentence
feature.

• CNN − RNN utilizes an ensemble application of convolutional and recurrent
neural networks that is capable of efficiently representing textual features.
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• SGM uses a sequence generation model with a novel decoder structure to
solve the MLC task.

• SGM + GE is derived on the basis of SGM. To alleviate exposure bias, it
optimizes combination of the original embedding and the weighted average
embedding by using transform gate.

Table 2 compares our LSABN model with other baseline methods of multi-
label classification on the AAPD dataset. Table 3 compares our LSABN model
with other baseline methods of multi-label classification on the RCV1-V2
dataset.

Table 2. Experimental results in comparison with all baseline methods on the AAPD
dataset. ‘↓’ means that the smaller the value is, the better the performance is. ‘↑’ is
the opposite. Boldface highlights the best performance.

Models Hamming loss(↓) Precision(↑) Recall(↑) Micro F1-score(↑)

BR 0.0316 0.644 0.648 0.646

CC 0.0306 0.657 0.651 0.654

LP 0.0312 0.662 0.608 0.634

CNN 0.0256 0.849 0.545 0.664

CNN-RNN 0.0278 0.718 0.618 0.664

SGM 0.0251 0.746 0.659 0.699

SGM+GE 0.0245 0.748 0.675 0.710

LSABN 0.0229 0.766 0.698 0.729

Table 3. Experimental results in comparison with all baseline methods on the RCV1-
V2 dataset. ‘↓’ means that the smaller the value is, the better the performance is. ‘↑’
is the opposite. Boldface highlights the best performance.

Models Hamming loss(↓) Precision(↑) Recall(↑) Micro F1-score(↑)

BR 0.0086 0.904 0.816 0.858

CC 0.0087 0.887 0.828 0.857

LP 0.0087 0.896 0.824 0.858

CNN 0.0089 0.922 0.798 0.855

CNN-RNN 0.0085 0.889 0.825 0.856

SGM 0.0081 0.887 0.850 0.869

SGM+GE 0.0075 0.897 0.860 0.878

LSABN 0.0068 0.892 0.887 0.889

From Tables 2 and 3, the fact is that the differences between LSABN and
the compared models are statistically significant. On the AAPD dataset, we can
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Table 4. The performance of LSABN and two reduced versions of LSABN on the
AAPD dataset. ‘↓’ means that the smaller the value is, the better the performance is.
‘↑’ is the opposite. Boldface highlights the best performance.

Models Hamming loss(↓) Precision(↑) Recall(↑) Micro F1-score(↑)

LSABN 0.0229 0.766 0.698 0.729

LSABN-S-Att 0.0241 0.745 0.696 0.719

LSABN-No-RLoss 0.0236 0.753 0.696 0.724

Table 5. The performance of LSABN and two reduced versions of LSABN on the
RCV1-V2 dataset. ‘↓’ means that the smaller the value is, the better the performance
is. ‘↑’ is the opposite. Boldface highlights the best performance.

Models Hamming loss(↓) Precision(↑) Recall(↑) Micro F1-score(↑)

LSABN 0.0068 0.892 0.887 0.889

LSABN-S-Att 0.0073 0.902 0.856 0.879

LSABN-No-RLoss 0.0071 0.891 0.880 0.885

find that the LP model is the worst, and CNN and CNN-RNN model perform
better than tradition models, such as BR, CC, LP. Among all the baseline meth-
ods, SGM+GE performs the best. However, our model improves the SGM+GE
method with an significant improvement in all four evaluation metrics, i.e., 1.6%
reduction in hamming loss, 1.8% increase in precision, 2.3% increase in recall
and 1.9% increase in micro F1-score. On the RCV1-V2 dataset, the difference
is smaller than above. But compare to SGM+GE model, we still can get 0.8%
reduction in hamming loss, 0.5% increase in precision, 2.7% increase in recall
and 1.1% increase in micro F1-score.

In short, it can be observed that our LSABN model performs consistently
the best on almost all evaluation measures. The improvements are significant on
the two datasets.

4.5 Ablation Study

In order to verify the effectiveness of our model and find out if every part of our
model has contribution, we design the following two models:

(1) LSABN-S-Att model is a simplified version of LSABN, where we remove the
attention and just use the hidden state vector to produce attention vector.

(2) LSABN-No-RLoss just utilizes the BCE loss function, which has not incor-
porated the label correlations.

Table 4 shows the performances of all these models on the AAPD dataset.
Table 5 shows the performances of all these models on the RCV1-V2 dataset.

From the Tables 4 and 5, we can see that the LSABN-S-Att model performs
much worse than LSABN. The results verify that the LSABN model may capture
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more important words than the self attention model. Experimental results on the
LSABN-No-RLoss model prove that utilizing the co-occurrence matrix leads to
performance improvement for multi-label text classification. In summary, label-
specific attention mechanism contributes more than label relations in our model.

5 Conclusion

In this paper, we propose a Label-specific Attention-based Network (LSABN) for
multi-label classification. Unlike existing multi-label learning neural networks,
our model considers the fact that different words in a document do not contribute
equally to predicting labels. In addition, we add the label information into text
representations which can better select the most informative words for predicting
labels. Furthermore, the label co-occurrence prior is also utilized to capture the
correlations between labels. The experimental results on AAPD and RCV1-V2
datasets show that our model yields a significant performance gain compared to
both traditional multi-label classification methods and the representative neural
network models.
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Abstract. Named entity recognition (NER) often suffers from lack of anno-
tation data. Multi-domain and multi-task learning solve this problem in some
degree. However, previous multi-domain and multi-task learning are often stud-
ied in English. In the other part, multi-domain and multi-task learning are often
researched independently. In this manuscript, we first summarize the previous
works of multi-domain and multi-task learning in NER. Then, we introduce the
multi-domain and multi-task learning in Chinese NER. Finally, we explore the
universal models between multi-domain and multi-task learning. Experiments
show that the universal models can be used in Chinese NER and outperform the
baseline model.

Keywords: Chinese named entity recognition ·
Multi-domain learning · Multi-task learning

1 Introduction

Name entity recognition is a fundamental Natural Language Processing task. The NER
system labels each word in sentences with predefined types, such as Person (PER),
Location (LOC), Organization (ORG) and so on. The results of NER can be used in
many downstream NLP tasks, such as question answering [27] and relation extraction
[1]. The neural network methods [4,10] are used to realize the NER system recently.
Large annotated data is required in neural network methods. However, the annotated
data is usually scarce.

In order to improve the performance of NER system in low resource, multi-domain
and multi-task methods are often used [2,7,18,26]. Multi-domain learning tries to trans-
fer information from the source domain to the target domain [7]. Multi-task learning
tries to transfer information from the source task to the target task [2].

There existing some challenges in previous works. First, most of the previous mod-
els only test in English. Can the models work well in Chinese NER? For example,
the tasks are part-of-speech (POS) tagging and named entity recognition in English
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multi-task learning [4], however, the tasks are Chinese Word Segmentation (CWS) and
named entity recognition in Chinese multi-task learning [17]. Second, previous works
often consider the multi-domain methods and multi-task methods separately. For exam-
ple, Cao et al. only consider the multi-task learning [2]. Can the multi-task models be
directly used in multi-domain, vice versa?

In this manuscript, we do an empirical study in Chinese NER. First, we summarize
the previous multi-domain and multi-task models according to the model architecture.
The neural network methods are considered in this manuscript. Second, we suppose that
the multi-domain and multi-task learning methods are independent of languages. We
use Chinese social media domain as the target domain and Chinese news domain as the
source domain. The Chinese NER task is the target task and CWS task is the source task.
These domains and tasks are similar and the information can be transferred. Third, we
suppose that the methods used in multi-domain and multi-task are similar. The methods
come from transfer learning. The methods used in multi-domain can be directly used
in multi-task, vice versa. In other words, the model architecture is not required to be
changed when the model is used in multi-domain or in multi-task, and only the data is
required to be changed. Three types of universal model architectures are demonstrated:
SHA (share model), FEAT (feature used model) and ADV (adversarial network model).
Experiments show that the universal models are useful in Chinese NER and outperform
the baseline model.

Specifically, we make contributions as follows:

– We summarize the previous multi-domain and multi-task models in NER.
– We explore the performance of the multi-domain and multi-task methods in Chinese
NER task.

– We demonstrate three types of universal model architectures in multi-domain and
multi-task learning.

2 Overview

2.1 Previous Summaries of NER

The existing surveys mainly focus on summarizing the methods used in named entity
recognition, including supervised, semi-supervised, and unsupervised methods [14,20].
Yadav et al. provided recent advances in NER from deep learning models [25]. The
transfer learning surveys mainly focus on general methods in multi-domain and multi-
task learning [15]. Tan et al. presented a survey of deep transfer learning [21]. Compared
with the previous summaries of NER, we focus on multi-domain and multi-task learning
in Chinese NER.

2.2 Domains and Tasks in Multi-domain and Multi-task NER

Previous works show that multi-domain and multi-task learning improve the perfor-
mance of English NER [4,12]. In multi-domain and multi-task learning, the target
domains and tasks are often similar to the source domains and tasks. In English, the
target domain is often twitter domain and the source domain is news domain. The target
task is NER and the source task is chunk or POS. In this manuscript, the source domain
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is Chinese news domain, and the target domain is Chinese weibo domain. The source
task is CWS, and the target task is NER. An example is shown in Fig. 1. We suppose
that Chinese weibo NER is similar to Chinese news NER. The weibo NER and news
NER are the same task and use different domain data. Some tokens and labels are the
same in two domains. For example, the “ ” is labeled as “LOC” in both news
and weibo domains. We suppose that CWS task is similar to the NER. The CWS and
NER all belong to sequence labeling task. CWS tries to find the word boundary. For
example, “ ” is an independent word. NER tries to find the word boundary
and types. For example, “ ” is seen as an independent word and the entity type
of “ ” is “LOC”.

Fig. 1. The first block is the Chinese-English translation pair for understanding. The second block
is from weibo NER. The third block is from weibo CWS. The fourth block is from news NER.

2.3 Methods in Multi-domain and Multi-task NER

A list of neural multi-domain and multi-task learning models are shown in Table 1. The
multi-domain and multi-task models are divided into four types: SHA, FEAT, ADV and
BV (variant of base model). The SHA model is prevalent in previous works [4,8,18,
26]. The multi-task learning of English named entity recognition was first proposed by
Collobert et al. using neural network model [4]. Lee et al. trained the model using the
source data and retrained the model using the target data [8]. Yang et al. explored the
transferring module in multi-domain and multi-task separately [26]. Peng and Dredze
used domain projection and specific task Conditional Random Fields (CRF) combining
the multi-domain and multi-task [18]. The FEAT model was first proposed by [17]
used for multi-task in NER. Cao et al. used the adversarial network to integrate the
task-shared word boundary information into Chinese NER task [2]. The BV models are
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variant of base model. The BV models can not be directly used between multi-domain
and multi-task.

Table 1. A summary of the multi-domain and multi-task learning.

Multi-domain Multi-task Model

Yang et al. [26] English English SHA

Peng and Dredze [18] Chinese Chinese SHA

Lee et al. [8] English − SHA

Collobert et al. [4] − English SHA

Peng and Dredze [17] − Chinese FEAT

Cao et al. [2] − Chinese ADV

Peng and Dredze [16] − Chinese BV

Changpinyo et al. [3] − English BV

He and Sun [7] Chinese − BV

Wang et al. [22] Chinese − BV

Lin et al. [12] English − BV

3 Model

3.1 Module

All the models are composed by some basic modules. We discuss the basic modules
first. Four types of modules are considered: Character embedding, Bi-LSTM, CRF and
Classifier.

Character Embedding. Character embedding is the first step of neural network mod-
els in Chinese NER. Character embedding is similar to the word embedding in English.
For example, “ ” is a character and is mapped to a low dimension vector in Character
embedding layer. Pre-trained character embedding is often used to utilize the informa-
tion from the large unannotated data. For a sequence of character c = {x1, x2, ..., xn},
we obtain x = {ex1 , ex2 , ..., exn

} though looking up pre-trained character embedding.

Bi-LSTM. Bi-LSTM is used to extract the features from the sentence. The Bi-LSTM
concatenates the forward LSTM output and backward LSTM output as the final output
and can capture the information of a character from right context and left context [6].
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A common LSTM unit is composed of a cell, an input gate, an output gate and a forget
gate. The implementations of LSTM are as follows:

it = σ(Wiht−1 + Uiext
+ bi) (1)

ft = σ(Wfht−1 + Ufext
+ bf ) (2)

c̃t = tanh(Wcht−1 + Ucext
+ bc) (3)

ct = ft � ct−1 + it � c̃t (4)

ot = σ(Woht−1 + Uoext
+ bo) (5)

ht = ot � tanh(ct) (6)

where ext
is the input vector at time t, ht is the output of LSTMmodel, σ is the element-

wise sigmoid function, and � is the element-wise product.

CRF. The CRF is used to predict the label sequence y = {y1, y2, ..., yn}. The CRF
uses the feature extracted by the Bi-LSTM and considers the neighborhood information
in a sequence to make prediction. We define the source s of the sentence when X is
used as the input sequence list and y is used as the output NER tag list:

s(X, y) =
n∑

i=0

Ayi,yi+1 +
n∑

i=1

Phi,yi
(7)

where Ayi,yi+1 describes the cost from tag yi transferring to yi+1, and P represents
the probability from hi predicting the tag yi. The probability of tag sequences can be
represented as:

P (y|X) =
es(X,Y )

∑
ỹ∈Yall

es(X,ỹ)
(8)

where ỹ is the possible NER tags and Yall is all the possible NER tags. When the model
is trained, we maximize the log-probability of the correct sequence:

logP (y|X) = s(X, y) − log(
∑

ỹ

es(X,ỹ)) (9)

When the model is tested, we can obtain the best NER tag sequence y∗ by:

y∗ = argmax
ỹ∈Yall

s(X, ỹ) (10)

Classifier. For the multi-domain models, the classifier discriminates the sentence from
news domain or weibo domain. For the multi-task models, the classifier discriminates
the sentence from NER or CWS. The classifier contains maxpooling and softmax.

h = Maxpooling(H) (11)

D(h, θd) = softmax(Wdh + bd) (12)

where H is the feature representation of the sentences and θd is the parameters in soft-
max, including Wd and bd.
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(a) Base model (b) SHA model

(c) FEAT model (d) ADV model

Fig. 2. Four types of architectures in multi-domain and multi-task learning. The blue block is
source part, the black block is target part, and the red block is the share part. (Color figure online)

3.2 Base Model

We use LSTM-CRF model as the base model which is widely used for a single domain
and task NER [5,10]. The architecture of the model is shown in Fig. 2(a). The model
contains three parts. The character embedding part is used to utilize the word level
features from the large unannotated data. The Bi-LSTM is used to extract the sentence
level features. The features are fed into CRF to predict the sequence labels. Compared
with the multi-domain and multi-task model, the LSTM-CRF model is a single task and
domain model, which only uses weibo NER dataset as input.

3.3 Multi-domain and Multi-task Model

Multi-domain and multi-task methods are shown to improve the single task and
domain NER performance. However, most of the models only focus on English NER.
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In the other part, most of the models are only used in one specific situation: in multi-
domain learning or in multi-task learning. In this manuscript, we do an empirical study
in 3 types of Chinese named entity recognition models: SHA, FEAT and ADV. For the
specificity of the BV model, we will do the experiments in the future. In the multi-
domain and multi-task model, the models use two types of data as inputs. For the
multi-domain model, the weibo NER dataset and news NER dataset are used. For the
multi-task model, the weibo NER dataset and weibo CWS dataset are used.

SHA. The SHA model shares the feature extractor between different tasks or domains
[4,8,18,26]. The feature extractor trained by source data can contain useful information
for target task or domain. The architecture of the SHA model is shown in Fig. 2(b).
The character embedding layer and the Bi-LSTM layer are shared. Different domains
or tasks have specific CRFs. With different training methods, the SHA model can be
divided into three different sub-models.

SHA-INIT. The training method is divided into two steps. First, the model uses the
source data as the input to train the model until convergence. In the second step, target
data is fed as the input of the model to continually train until convergence. Two steps
use different CRFs. The parameters in character embedding layer and the Bi-LSTM
layer are all updated in two steps.

SHA-CRF. The training method is the same as SHA-INIT except for the second
step. In the second step, the parameters of character embedding and Bi-LSTM layer are
frozen and we only update the parameters in CRF layer.

SHA-MUL. The model trains the source data and target data simultaneously. In one
epoch, source data and target data are fed to the model alternatively. A hyper-parameter
α can be used to control the size between source data and target data.

FEAT. The FEAT model supposes that the features extracted by the source part can be
used as auxiliary information for the target part [17]. The architecture of the model is
shown in Fig. 2(c). The target part uses the intermedia results of the source part. The Bi-
LSTM output of the target part is concatenated with the output of the source part before
being fed into CRF layer. Three different training methods lead to three sub-models.

FEAT-INIT. The model first uses the source data to train a base model. Then, the
source part of the model is initialized by the pre-trained model. Finally, the target data
is used to train the model. All parameters are updated in the model.

FEAT-CRF. The training method is the same as FEAT-INIT except for the final
parameters updating step. In the FEAT-CRF model, the source part is initialized by the
pre-trained model and then the parameters are frozen. The model only updates the target
part parameters.

FEAT-MUL. The source part and the target part are trained alternatively. When the
source data is used as input, the parameters in the source part are updated. When the
target data is used as input, the parameters in the source part and target part are updated.

ADV. The ADV model uses the private feature extractor extracts the private informa-
tion, and uses the shared feature extractor extract the shared information [2]. The archi-
tecture of the model is shown in Fig. 2(d). The model uses private character embedding,
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Bi-LSTM and CRF to capture the different information between source domain and
target domain, and uses shared Bi-LSTM to capture the common information between
source domain and target domain. Character embedding tries to capture the word level
representation. Bi-LSTM tries to extract the sentence level feature representation of the
words. The classifier tries to guarantee that specific features of tasks do not exist in
shared space. The source data and target data are fed to the model alternatively.

BV. The BV models are the models that can not find the universal models in multi-
domain and multi-task learning [3,7,12,22]. For example, Wang et al. required the
source domain and the target domain has the same label sets [22]. However, differ-
ent tasks have different label sets. Lin et al. used a domain adaptation layer to reduce
the disparity between different pre-trained character embeddings [12]. However, pre-
trained embeddings are the same in different tasks.

4 Experiments and Results

4.1 Datasets

The Chinese weibo NER corpus is from [16]. The Chinese news NER corpus is from
Sighan NER [11]. The Chinese weibo word segmentation corpus is from [19]. The
sentence numbers of the different corpora are shown in Table 2.

Table 2. The details of the corpora.

#Train #Dev #Test

Weibo NER 1350 270 270

News NER 16814 1868 4636

Weibo CWS 38086 3834 16673

4.2 Parameters Setting

The character embedding is initialized by pre-trained character embedding. The news
embedding is pre-trained on Chinese Wikipedia data using word2vec [13]. The weibo
embedding is pretrained on Chinese social media data using word2vec. The embedding
dimension is 100. The LSTM dimension in both source and target part are 100. The
optimization method we used is adam [9].

4.3 Results

The overview results of Chinese weibo NER are shown in Table 3. The results show
that the multi-domain and multi-task learning can be used in Chinese named entity
recognition. The FEAT and ADV models can always outperform the baseline model.
The SHA-CRF model obtains the worst F1 score which is far worse than the baseline
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model. The reason may be that the CRF is hard to process the features extracted by
a source feature extractor. Meanwhile, the experiments show that multi-domain and
multi-task learning can use the universal models. The same model architecture can
directly be used in both multi-domain and multi-task learning.

Table 3. The overview results of multi-domain and multi-task learning in Chinese weibo NER. P
represents precision, R represents recall, and F represents F1 score.

Multi-domain Multi-task

P R F P R F

Base 56.07 44.50 49.62 56.07 44.50 49.62

SHA-INIT 58.06 41.28 48.25 62.00 42.66 50.54

SHA-CRF 65.52 17.43 27.53 69.49 18.81 29.61

SHA-MUL 61.64 46.39 52.94 60.65 48.45 53.87

FEAT-INIT 53.55 49.11 51.23 62.93 44.13 51.88

FEAT-CRF 59.64 45.41 51.56 62.24 46.77 53.41

FEAT-MUL 59.86 45.36 51.61 61.39 50.00 55.11

ADV 57.06 52.06 54.45 60.92 47.42 53.33

In Table 4, we make a survey in the performance of previous works in Chinese
weibo NER. Compared with previous performances, the three types of models achieve
competitive results.

Table 4. The performance of previous Chinese weibo NER models.

P R F Model

Peng and Dredze [17] 66.67 47.22 55.28 FEAT

Cao et al. [2] 59.51 50.00 54.34 ADV

Peng and Dredze [16] 74.78 39.81 51.96 BV

He and Sun [7] 52.94 51.18 52.05 BV

To show the generalization of the models in Chinese NER, the Ontonote NER
dataset is also tested [23]. The broadcast news domain is used as the source domain,
and the web text domain is used as the target domain. The Chinese weibo word seg-
mentation is used as the source task, and the Chinese Ontonote web text named entity
recognition is used as the target task. The broadcast news data contains 10083 sen-
tences, and the web text contains 8405 sentences. In Table 5, the results show that the
universal models can be used in different datasets.
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5 Discussion

Experiments show that the multi-domain and multi-task learning can improve the per-
formance of Chinese NER. More works can be done in the future.

Table 5. The overview results of multi-domain and multi-task learning in Ontonote dataset.

Multi-domain Multi-task

P R F P R F

Base 48.23 44.60 46.34 48.23 44.60 46.34

SHA-INIT 48.39 43.45 45.79 47.84 44.26 45.98

SHA-CRF 36.34 25.17 29.74 30.31 19.43 23.68

SHA-MUL 59.78 55.24 57.42 62.93 44.85 52.37

FEAT-INIT 52.79 49.49 51.09 51.56 47.70 49.55

FEAT-CRF 51.90 51.15 51.52 52.45 47.75 49.99

FEAT-MUL 53.32 58.37 55.73 57.24 45.52 50.71

ADV 55.40 55.60 55.50 50.56 50.47 50.51

First, Chinese specific features can be considered in multi-domain and multi-task
learning. In this manuscript, we only use the Chinese models which is similar to the
English models. Some Chinese specific features are shown very helpful in Chinese
NER, such as radical feature [5], glyph representation of Chinese character [24]. We
will explore these features in multi-domain and multi-task learning.

Second, the BV model can be universal model through small changes. For example,
some models require the same labels in source and target domain. The requirement can
extend to that the source and target domain labels are related. The model architecture
required small changes in the future.

Third, the multi-domain and multi-task have high similarity. Two works can be com-
bined together. For example, Peng and Dredze used domain projection and specific task
CRF combining the multi-domain and multi-task [18]. However, the Peng and Dredze
only processed the situation that the domains have the same label sets. In the future,
more general models could be considered.

6 Conclusion

In this manuscript, we focus on utilizing Chinese news domain information and Chinese
word segmentation information to improve the performance of Chinese weibo named
entity recognition by multi-domain and multi-task learning. Three types of universal
model architectures are explored. Experiments show that the universal models outper-
form the baseline model.
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Abstract. The main concept behind designing a multiple classifier system is to
combine a number of classifiers such that the resulting system succeeds to topple
the individual classifiers by pooling together the decisions of all classifiers.
Uniting relatively simple pattern recognition models with limited performance is
commonly found in the literature. It performs better when each learner be
trained well, but different learners have different working principles which adds
diversity in the ensemble. In this paper, we first select three optimal subsets of
features using three different filter methods namely Mutual Information (MI),
Chi-square, and Anova F-Test. Then with the selected features we build three
learning models using Multi-layer Perceptron (MLP) based classifier. Class
membership values provided by these three classifiers for each sample are
concatenated which is then fed to next MLP based classifier. Experimentation
performed on five UCI Machine Learning Repository, namely Arrhythmia,
Ionosphere, Hill-Valley, Waveform, Horse Colic shows the effectiveness of the
proposed ensemble model.

Keywords: Ensemble � Neural networks � Feature selection

1 Introduction

An ensemble of classifiers combines individual decisions from base classifiers using
unweighted or weighted procedures. The notion behind using ensembles is such that
they prove to be more accurate in comparison to when individual classifiers are used on
their own. It has been well-established in literature that an ensemble is more accurate
when it is diverse is nature. This diversity is required to be maintained to ensure that the
member classifiers do not make correlated errors, i.e. they do not make the same errors
on the same dataset. This ensures that when these methods are combined, they, by
some means of combination, provide the correct results. If diversity does not prevail,
then an ensemble might even function worse than a single classifier. Dietterich [1] goes
onto explain the statistical, computational and representational advantages of an
ensemble. The first advantage is observed when the hypothesis space is too extensive to
explore the limited training data. As a result, many hypotheses may give the same
results on the training data. If a single such hypothesis is chosen, then the learner runs
the risk of being misguided. A simple average voting reduces the chances of choosing
an incorrect classification. The computational superiority is attained as starting the
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search from several different points, for finding the true unknown hypothesis, increases
the chance of finding one and reduces the probability of the learner getting stuck at a
local optimum. In many learning cases, the true hypothesis function cannot be repre-
sented in the search space. By using ensembles, the search space representation is
expanded which gives the learning a better chance at approximation of the true
hypothesis. The process of combining these individual classifier’s decisions also plays
an important part, as this phase decides the weightage given to each classifier. The
weighted procedure might be static in nature, for example the usage of majority voting
[2] or it might be dynamic as to use a meta-classifier [3] to choose which base learners
are added to the ensemble at each stage. Kittler [4] explains the importance of using
different training sets for the base classifiers. The different sets allow each classifier to
interpret the data in its own way, therefore allowing the efficient exploration of the
search space which would otherwise be not possible. Due to its robust nature, ensemble
techniques have thereby been used in various domains such as financial decision
applications [5], power demand prediction [6], bioinformatics [7] environmental sci-
ences [8] and image processing [9].

Hereby, we propose a two-level neural network ensemble method, where which
makes use of standard feature selection techniques, to ensure the best training samples
for classification, at every step, followed by a Multi-Layer Perceptron ensemble, each
of which are fitted by a unique training set sampled of the same dataset. This training
process generates a matrix of class membership degrees per every MLP, which are then
concatenated and used as an input to another MLP, which outputs the class label of the
validation set. The method firstly, is robust in nature, because we only train the most
optimized set of feature sets at every step and secondly, is shown to generate high
classification accuracies, on a range of datasets, which vary in their number of classes
as well as their feature lengths.

2 Preliminaries

In this section the feature selection methods used in the proposed method are described
in brief.

2.1 Chi-square

The chi-square [10] statistics give a quantitative measure of the amount of dependence
between a particular feature and the target class, and can be compared with chi-square
distribution to judge the extremeness. If the feature assumes continuous values, it is
discretized into intervals. The frequency of a class (may be due to the split) is then
compared against the expected frequency. If we have a c – class problem and the range
of values for the concerned feature has been split into I intervals, then the chi-square
statistic is given by,

v2 ¼
Xc

i¼1

XI

j¼1

Nij � Eij
� �2

Eij
ð1Þ
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Here, Nij represents the number of instances of class Ci in the interval j and Eij is
the expected number of samples, which is computed as Ei ¼ num � pi, where pi is the
probability of occurrence of event i and num is the total number of events. Higher the
value of chi-square, higher is the level of dependence.

2.2 Mutual Information

Mutual information [11] between two random variables X and Y quantifies the
reduction in uncertainty of the outcome of one random variable Xð Þ upon knowing the
outcome of the other random variable Yð Þ, by determining how similar the joint dis-
tribution p X; Yð Þ is to the products of the factored marginal distribution p Xð Þ � p Yð Þ. It
is intricately linked to the concept of entropy of a random variable.

2.3 Anova F-Test

The Analysis of Variance (ANOVA) and the F-Test is used to determine the variation
present in a sample. The observed variance gives a measure of the well-spread nature of
a particular component (or feature) of a dataset. ANOVA uses Sum of Squared Errors
(SSE), Treatment sum of squares (SST) and Total Sum of Squares (TotalSS), to cal-
culate the variance exhibited by a feature:

TotalSS ¼ SSEþ SST ð2Þ

Variance ¼ SST=TotalSS ð3Þ

The SSE in ANOVA indicates the proportion of variance explained by the feature
to the total variance in the data. The features that explain the largest proportion of the
variance are retained as more informative entities.

The methods have been selected such that each function on different principles and
are thus able to select different kind of features which capture different aspects of the
dataset.

3 Proposed Method

We use a two-stage MLP architecture. Following gives a step-by-step overview of the
model employed.

1. The entire dataset is divided into three disjoint sets of samples – a train set, a
validation set and a test set. The train set is used for training the MLP1, MLP2 and
MLP3 in the first stage. The validation set is used to train the MLP4 in the second
stage. Finally, the test set is used to evaluate the performance of the whole
ensemble. Figure 1 shows a flowchart depicting the overall training process.
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3.1 Stage 1 (Use Train Set)

2. Three optimum feature sets were selected independently using the three feature
selection techniques described in Section. In order to find the optimum number of
features, we started by selecting a few of the top ranked features for each filter
method and evaluating the performance of the corresponding MLP, thereby
repeating the process by increasing the number of features each time. When there
was no significant improvement in performance by increasing the size of feature set,
the iterations were stopped and the current feature length was used to proceed.

3. The selected feature sets were used to train the corresponding MLPs separately.

Fig. 1. Flowchart showing overview of the training process
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3.2 Stage 2 (Use Validation Set)

4. The specified features were picked up for each sample and these were provided as
input to the respective MLPs. For a given sample, the output probability of each
class was normalized to give the Class Membership Degree for each class. M1, M2,
M3 are the vector of Class Membership Degrees output by MLP1, MLP2, MLP3
respectively for the sample.

5. M1, M2, M3 were concatenated to give M ¼ M1 M2 M3½ �
6. Treating M for each sample as input, MLP4 is trained with the encoded class label

as target output.

3.3 Testing Phase (Use Test Set)

7. Perform Step 4 and Step 5 for each sample.
8. Provide M as input to MLP4. The corresponding output denotes the predicted class

label.
9. Compare the predicted class label for each sample with the ground truth value to

compute final accuracy of model.

Thus, an intelligent ensemble has been devised for different feature selection
techniques using a neural network in the second stage that tries to capture as much
complementary information as possible from the different methods and removes
manual mathematical formulation.

4 Results, Analysis and Discussion

This section gives a brief description of the datasets used for the experiments and a
comparative study of results of the proposed method with other existing methods on
these datasets.

4.1 Datasets Used

The experiments have been carried out on 5 different datasets from UCI Machine
Learning Repository, namely Arrhythmia, Ionosphere, Hill-Valley, Waveform, Horse
Colic. Given below is a brief description of each dataset and Table A gives a summary
of all of the datasets. Note that experiments have been performed on datasets of greatly
varying sizes as well as number of features and classes, in order to prove the versatility
and robustness of the model.

(1) Arrhythmia [12] – This dataset was designed to demarcate between the presence
and absence of cardiac arrythmia. In this, the first class denotes a normal heart-
beat, the next 14 denote various cases of arrythmia while the 16th class is the class
assigned in case of misclassification in the other 15th. It is a popular dataset used
in outlier analysis. Some features used in the dataset are height, weight, QRS
duration, heart beat etc.
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(2) Ionosphere [13] – This dataset is used for binary classification, which was
originally used to train a neural network to distinguish between bad and good
radar returns from the ionosphere. The feature set represents 17 pairs of discrete
values of the real and imaginary part of the Autocorrelation function.

(3) Hill-Valley [14] – Two class classification is performed on this dataset which was
originally used to classify a set of points which either generated a hill or a valley.
The feature set denotes 100 points on the y-axis, which when plotted sequentially
would either lead to a bump (hill) or a plunge (valley) on the plane.

(4) Waveform [15] – The waveform dataset is a 3-class problem identifying 3
waveforms, with each sampled at 21 intervals. Each class is a random convex
combination of 2 of the 3 base classes. The dataset consists of 40 attributes, of
which the latter 19 attributes are all noise, with a mean of 0 and variance of 1.

(5) Horse Colic [16] – Dataset used to predict the life and death of a horse based on
its past medical conditions. The data types range from continuous to discrete in
nature. Some features which are continuous are pulse and respiratory rate, while
discrete features include mucous membrane color and capillary refill time. Table 1
gives a summary of the datasets used.

4.2 Results and Analysis

The experiments have been performed separately on each dataset five times, and the
mean accuracy has been noted. For the proposed method, the entire dataset has been
split into a separate train set, validation set, and test set, each one disjoint of the other.
The split has been made in the ratio of 0.3:0.3:0.4 respectively. In order to compare the
performance of the proposed method with other traditional ensemble paradigms like the
sum rule, product rule, weighted sum rule, experiments have also been performed using
these paradigms, keeping all parameters same as that of the proposed method. For the
other methods, each dataset has been split into an independent train and test set in the
ratio of 0.6:0.4. Initially, the features were ranked according to the order of importance
for each filter method. In order to find the optimum number of features, we started by
selecting a few of the top ranked features for each filter method and evaluating the
performance of the corresponding Neural Network, thereby repeating the process by
increasing the number of features each time. When there was no significant improve-
ment in performance by increasing the size of feature set, the iterations were stopped
and the current feature length was used to proceed. In this way, the redundant features
were removed and the feature length was also reduced for training without much

Table 1. Summary of the datasets

Name of dataset No. of samples No. of classes No. of features

Arrhythmia 452 16 279
Ionosphere 351 2 34
Hill-Valley 606 2 101
Waveform 5000 3 40
Horse Colic 368 2 27
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degradation in performance. Table 2 shows the accuracy obtained by each individual
Neural Network and also the optimum number of features selected by each filter
method. It also shows the accuracy obtained by the proposed ensemble.

It is to be noted that the accuracy of the proposed ensemble is greater than the
accuracy of the individual neural networks in most of the cases.

In order to optimize performance, each filter method tries to select the set of
features which it considers most relevant for the classification at hand. Each uses its
own metric for selection and thus the features selected by each method is completely
independent of the other. For example, for the ionosphere dataset, out of the 20 features
selected by the methods: chi2 and mutual-info-classif, 13 of them are common while
the 7 others are distinct for each method. Thus, one method may overlook some of the
important features which can be captured by the other methods. In this way, we can
capture some of the complementary information provided by each. The second stage
neural network takes into account the decisions of each of the networks of the first
stage and arrives at a consensus. This results in noticeable increase in the classification
performance. Sometimes, as for the horse-colic dataset where 4 of the 6 features
selected by the two methods: chi2 and mutual-info-classif are same, each of the
methods may separately be able to capture most of the information. In such cases, the
performance of the ensemble is not drastically better than the individual classifiers.
However, as the votes of all the classifiers are considered, the ensemble still gives a
better performance.

Table 3 gives the statistical measures of the experiment and Fig. 2 gives the sta-
bility graph of for the different datasets.

Table 2. Accuracy of the proposed method at different stages

Name of
dataset

Number of features selected Average accuracy (%)
Chi2 ANOVA

F-Test
Mutual-
info-
classif

MLP1 MLP2 MLP3 Proposed
ensemble

Arrhythmia 20 10 30 60.52 52.31 54.50 63.30
Ionosphere 20 20 20 89.86 91.55 91.55 94.36
Hill-Valley 50 50 50 51.11 55.31 51.60 60.74
Waveform 20 20 20 86.38 87.08 87.16 86.83
Horse
Colic

6 6 6 85.41 88.10 87.30 88.65
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Table 4 provides a comparison of the performance of the proposed ensemble with
other traditional ensemble paradigms such as sum rule [17], product rule [17], weighted
sum rule [18].

Table 3. Statistical measures of the experiments performed

Name of dataset Accuracy (%)
Max Average Standard deviation

Arrythmia 68.13 63.30 4.29
Ionosphere 97.18 94.36 3.58
Hill Valley 67.08 60.74 3.87
Waveform 88.00 86.83 1.03
Horse Colic 90.12 88.65 2.05
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Fig. 2. Stability graph of the experiment on various datasets

Table 4. Comparison of the results of the proposed method with traditional ensemble
techniques

Name of dataset Accuracy (%)
Sum rule Product rule Weighted sum rule Proposed ensemble

Arrhythmia 55.16 53.84 55.16 63.30
Ionosphere 91.83 91.83 91.83 94.36
Hill-Valley 55.14 55.06 55.39 60.74
Waveform 87.20 86.83 87.2 86.83
Horse Colic 88.91 88.91 88.91 88.65
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The proposed method outperforms the traditional methods in 3 out of the 5 cases.
Thus, it can be said that the proposed ensemble is more robust than all of the others.
The traditional ensemble methods such as sum rule, product rule assign equal
importance to the decisions of each classifier regardless of its individual performance.
For the arrhythmia dataset, one neural network (61.54% accuracy) clearly outperforms
the other two (48.35% and 56.04% accuracies). However, equal weightage is assigned
to each of their results. Such phenomena significantly degrade the performance of the
ensemble. The weighted sum rule does take the individual accuracies into account but
there may be other important indicators of performance which it overlooks. Table 5
provides a comparison of our method against state-of-the art ensemble techniques such
as boosting [19].

As discernible from the above table, our proposed method achieves a better
accuracy in comparison to most of the state-of-the art ensemble techniques. Due to its
consistent superior performance, it is clear that the ensemble neural network learns to
spot many dependencies which may not have been possible by manual tuning. An
individual classifier may perform poorly in a particular region of the feature space. The
ensemble network notices this pattern during its training and thus, assigns less
importance to it in such cases. We suspect that some of the neurons activate for even
more complex phenomena than we are able to find by intuition, such as spotting high
entropy for a classifier to indicate low classification confidence and consequently, low
importance. Overall, not only does the ensemble network remove the hassle of manual
tuning of the weights, it also provides a better performance than the traditional models.

All the training was performed on a machine with Intel Core i5-7200U CPU @
2.5 GHz � 4 with 4 GB of RAM. As feature selection is performed on the dataset the
dimensionality is reduced and hence the number of nodes in the layers of the MLPs
used in the first stage of training are also reduced thus reducing the computational cost
and the time taken to train the MLPs. For the Ionosphere dataset, MLP1 takes 1.75 s,
MLP2 takes 1.85 s, MLP3 takes 2.11 s, while the MLP4 (second stage) took 3.53 s.
Though in total 4 MLPs have been trained, the 3 MLPs in the first stage are trained
independently and hence can be parallelized. Thus effectively, the equivalent time
taken in the first stage is the time taken to train 1 MLP. Total equivalent time for the

Table 5. Comparison of the results of the proposed method with state-of-the-art ensemble
techniques.

Name of dataset Accuracy (%)
Ada boost Stochastic gradient boosting XG boost Proposed ensemble

Arrhythmia 60.22 70.71 70.165 63.30
Ionosphere 95.03 90.78 89.36 94.36
Hill-Valley 58.35 59.58 58.73 60.74
Waveform 78.35 82.45 81.85 86.83
Horse Colic 81.75 82.43 85.135 88.65
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two stages is the time taken to train two MLPs. Hence, for the first stage, the time taken
was 2.13 s (about the maximum of the first three) and the total turnaround time was
5.66 s (= 2.13 + 5.13). For the horse-colic dataset, the total time was 5.63 s.

5 Conclusion

In this paper, an ensemble of classification models has been proposed following a two-
stage approach. In the first stage we have used three filter methods for feature ranking –
MI, Chi-square and ANOVA F-Test. These three optimized feature subsets are used to
train three MLP classifiers. Outcomes of three such learning models are concatenated
and fed to the next MLP classifier. The proposed ensemble model has been evaluated
on five datasets taken from UCI Machine learning data repository and it has been
observed that the proposed model outperforms some conventionally used ensemble
approaches.

Limitations with future scope:

• Only one classifier - MLP has been used; so, in future other popularly used and
standard classifiers can be applied.

• More real-life datasets can be used for experimentation so the robustness of the
proposed approach can be established.

• Information fusion at the initial stage can be thought of – i.e. we can make a
consensus among the features selected by the three filter methods. Even more varied
filter methods can be applied.
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Abstract. The imbalance problem is receiving an increasing atten-
tion in the literature. Studies on binary cases are recurrent but limited
when considering the multiple classes approach. Solutions to imbalance
domains may be divided into two groups, data level approaches, and algo-
rithmic approaches. The first approach is more common and focuses on
changing the training data aiming to balance the data set, oversampling
the smallest classes, undersampling the biggest ones or using a combi-
nation of both. Instance reduction is another approach to the problem.
It tries to find the best-reduced set of instances that represent the orig-
inal training set. In this work, we propose a new Prototype Generation
method called DCIA. It dynamically inserts new prototypes for each
class and then adjusts their positions with a search algorithm. The set
of generated prototypes may be used to train any classifier. Experiments
showed its potentiality by enabling an 1NN classifier to perform some-
times as well or even better than some ensemble classifiers created for
different multiclass imbalanced domains.

Keywords: Prototype Generation · Imbalanced domains · Multiclass

1 Introduction

Machine learning algorithms usually assumed that in the training data the num-
ber of observations for each class is equal or at least quite similar. In the last
decade the impact of data imbalance to the machine learning algorithms came to
attention [8] due to some inference problems, like performance reduction, mis-
leading metrics, border overlapping, small disjuncts, rare classes and data set
shift [6,10,11,16,19,21]. These problems are well studied in the case of binary
data sets [5,26], when only two classes are present (in which one is the majority
(or negative) class and the other is the minority (or positive) class). Consider-
ing multiple classes the learning process may be harder and literature solutions
proposed for the binary case may not be directly applicable or may achieve a
lower performance than expected [5]. A multiclass problem may also require a
different focus, i.e., there will not be a single minority class to be focused and
the method needs to focus on all classes simultaneously.
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There are two main approaches to the imbalance domain, the data level solu-
tions and the algorithmic level solutions [6]. The first approach tries to preprocess
the data by oversampling the minority classes or undersampling the majority
ones [11]. On the other hand, the second approach tries to adapt classifiers and
learning models to deal with the imbalance problem. Classifiers can be modified
to become ad hoc or be trained with cost-sensitive learning techniques [8].

For the first approach the goal usually is to balance the number of samples in
each class, growing the smaller ones, reducing the biggest ones, or using hybrid
techniques to resize all classes. However, there is an alternative that still receives
little attention, the use of instance reduction methods. These methods aim to find
the best-reduced set that represents the original training data set [12]. Reduction
methods can be divided into Prototype Selection (PS) and Prototype Generation
(PG) [12]. PS methods try to select a subset of the original training set while
PG methods build a new set of instances which can be completely different from
the original training set.

In [14] authors suggest that resampling a training set followed by simple
PS techniques increases the performance of the used classifiers. In [25] a Fuzzy
Rough Imbalanced Prototype Selection (FRIPS) is used to improve SMOTE
and the performance of the 1NN classifier. On the other hand, an Adaptive Self-
Generating Prototype (ASGP) is proposed as a PG method to handle imbalanced
classes [17]. Its improvement called Evolutionary Adaptive Self-Generating Pro-
totypes (EASGP) is proposed in [18]. In [12] the authors proposed IPADE-ID, a
position adjustment PG method to deal with imbalanced datasets. Their results
suggest that Instance Reduction algorithms are suitable options for imbalance
domains.

However, all of these algorithms deal only with binary data sets. For the best
of our knowledge, a centroid-based PG method called VDBC [22] is the only
algorithm that investigates Instance Reduction on the imbalanced multiclass
scenario. After investigations, we verify that VDBC did not perform as well as
some ad hoc algorithms but had potentialities as a new approach to the problem.

Some authors suggest that among the PG methods, position adjustment is
more likely to stand out [12,24]. Exploring this characteristic may result in per-
formance improvement for the VDBC algorithm. In this work, we explore this
assumption proposing a Dynamic Centroid Insertion and Adjustment (DCIA)
algorithm for multiclass imbalanced domains. The proposed algorithm is based
on IPADE-ID concepts and dynamically inserts centroids in the problem space
and adjust their positions using some search algorithm. As the search algo-
rithm, we also propose a new approach named Simple Gravity Search Algorithm
(SGSA).

We evaluate DCIA by comparing its performance to VDBC and some differ-
ent state-of-the-art algorithms. Nominally AdaBoost.NC [26], which combines
AdaBoost with negative correlation learning; AdaC2.M1 [23], which is an exten-
sion of the cost-sensitive AdaC2 to multiclass case; AMCS [27], which is an adap-
tive junction of several methods of feature selection, resampling and ensemble
learning; and DECOC [3], a combination of Diversified OVO (DOVO) and an
improved ECOC (imECOC).
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DCIA is a simple data level solution that gives a transformed training set to
the 1NN classifier, which is one of the simplest classifiers found in the literature.
On the other hand, the related state-of-the-art algorithms are, at different levels,
complex ensemble methods. It is not expected that 1NN using DCIA performs
better than ensemble solutions. Therefore the objective of this work is to analyze
how close the performance of the 1NN classifier can get to the ensemble methods
just after processing and improving the training data.

The rest of the paper is organized as follows. In Sect. 2 the proposed algo-
rithms are presented. Section 3 describes the experimental analyses. Conclusions
and future works are shown in Sect. 4.

2 Dynamic Centroid Insertion and Adjustment: DCIA

DCIA is a Prototype Generation algorithm for multiclass imbalanced domains.
The generated prototypes are also adjusted in space to allow classifiers to get
better performance. The method may be divided into two phases, i.e., a prepro-
cessing phase and then a three steps phase.

In the preprocessing phase, data normalization and an attribute selection
occur. Data normalization attempts to give all attributes an equal weight. It
transforms the data to fall within a smaller or common range, e.g., [0, 1]. Normal-
ization is particularly useful for classification algorithms including those based
on distance measurements such as kNN [9]. Furthermore, experimentally we
observed that DCIA gets better performance with normalized data.

Feature, or attribute selection is recently gaining some interest from
researchers as a way to address the imbalanced class problem [15]. Within fea-
ture selection, there are three further sub-approaches: filter, wrapper and hybrid
(also known as embedded). The second and third approaches were proposed to
produce a more targeted feature subset [15]. The wrapper approach aims to find
a subset that gives a better performance. If one uses a metric proper to imbal-
ance domains this approach might select a subset of attributes that will improve
the generalization of all classes.

The data normalization is carried out with z − score:

A′
i =

Ai − Ā

σA
(1)

where A is an attribute, Ai is the value of the attribute A in the instance i, A′
i

is the new value of Ai, Ā is the arithmetic mean of all values of A, and σA is
the respective standard deviation. Test set instances can be normalized following
the training instances mean and standard deviation. This is possible due to the
assumption that test samples have similar characteristics of training samples. At
the same time, this is necessary to keep test samples unknown.

The attribute selection is executed with a wrapper approach [15]. In this app-
roach, the best subset of attributes is selected through a search process and vali-
dated by classifying data with the selected subset [13]. The search algorithm used
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is the Competitive Swarm Optimizer (CSO) [4] as suggested in [7]. The valida-
tion of the best set is accomplished with the 1NN classifier and AUCarea metric,
which is more sensitive to lower AUC values obtained by pairs of classes [27].

The second phase is based on IPADE-ID concepts, hence the three steps:
initialization, adjustment of centroids and addition of prototypes. In the first
step, one centroid is selected for each class. The adjustment, or optimization
step, is carried out with SGSA. The third step consists of extracting a random
instance of each class from the training set and insert it into the best solution
so far. The main differences between IPADE-ID and DCIA are the following:

1. DCIA begins with a preprocess phase consisting of data normalization and
attribute selection to reduce the space dimensionality;

2. IPADE-ID treats each prototype as an individual population while DCIA
treats as individual a set of prototypes;

3. IPADE-ID is initialized with one centroid of each class, and DCIA begins
with several sets of prototypes, including the set with one centroid of each
class;

4. The former tries to insert new prototypes for classes marked as optimiz-
able; this attempt occurs with more adjustment for each new prototype being
inserted. DCIA selects an instance of each class randomly and tries to insert
it into the best prototype set without further adjustment. In case of success,
all other sets are updated.

In the following subsections, we present the three steps of DCIA in detail. Fur-
thermore, Algorithm 1 shows the pseudo-code of DCIA.

2.1 Initialization

The selection of a good initial set is important as it guides the search towards
promissory solutions and the prototypes that are selected in this stage are main-
tained or modified into the final generated training set [12]. At the same time,
it could be a good practice to allow a wide search area since the beginning.

As the number of prototypes may increase, all individuals start with one
prototype per class. The first created individual holds each class centroid (lines
11 and 12). All other solutions are filled with one random instance from each
class (lines 13 and 14).

2.2 Adjustment

Each solution is a set of centroids which are used to classify the data with the
1-NN algorithm. Therefore, each solution has its performance calculated over
the training instances.

The search algorithm is used to adjust the position of centroids aiming the
maximization of the AUCarea metric. The adjustment step is performed with
SGSA, which is a simplification of the Gravity Search Algorithm (GSA) [20].
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Algorithm 1. DCIA Pseudo-code
1: Inputs: Training set, S as the pool of solutions, N as the size of population, C as number of

classes, I as number of iterations.
2:
3: Preprocess
4: Normalize data;
5: for iter = 1 to I do
6: Execute CSO to select the best subset of attributes;
7: end for
8:
9: Initialization
10: for n = 1 to N do
11: if n == 1 then
12: For each class, find it’s respective centroid;
13: else
14: Select a random instance from the class as centroid;
15: end if
16: end for
17:
18: Adjustment and Addition of Prototypes
19: for i = 1 to Stop Criterion do
20: Execute the search algorithm to adjust the centroids of each solution Si;
21:
22: Create S′ as a copy of the solution set S;
23: Select the best solution of S′;
24: for c = 1 to C do
25: Select a random instance and add it to the solution;
26: Verify the performance of the current solution with the training set;
27: if current performance > existent performance then
28: Select a random instance for all other solutions;
29: Override S with S′;
30: end if
31: end for
32: end for

Gravity Search Algorithm. The GSA [20] is a recent swarm based search
technique, which has a flexible and well-balanced mechanism to enhance explo-
ration and exploitation abilities. It has been inspired by Newtonian laws of grav-
ity and motion. In this algorithm, mass interactions are simulated and objects
move through a search space under the influence of gravitation [20].

All objects attract each other by a gravity force, and this force causes the
movement of all objects globally toward objects with heavier masses, which
correspond to good solutions of the problem.

Each object has its fitness value and mass influenced by a gravitational force,
which is the sum of its gravitational interaction with all other objects. From
this force, the resulting acceleration is used to calculate the current object’s
velocity. Finally, the object’s new position is calculated with the sum of its
current position and velocity. More details may be consulted in [20].

Simple Gravity Search Algorithm. SGSA is a new approach proposed in
this paper. Its main idea is to simplify GSA without loss of performance. The
modifications are detailed below.
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Instead of all objects influencing each other from the beginning, in SGSA only
the best solution influences all others. The first consequence is the reduction of
parameters and calculations. In SGSA there is no more force, acceleration, and
velocity, but only what we call the pull :

pulli = best(t)/dist2 (2)

where best(t) is the best solution at the iteration t and dist2 is the squared
distance between current object and best(t). At each iteration, all solutions move,
except the best one. The distance they move depends on how good is the best
solution and how close they are from each other.

However, in SGSA the best solution does not stay idle. It performs micro
movements in the space, exploiting its vicinity for improvements. For each dimen-
sion in each centroid, it is randomly decided if a small movement may occur. In
the positive case, it is randomly decided if the value of the current dimension
is increased or decreased. At the end of the movement, if the exploiter solu-
tion improves the performance, it replaces the best solution. The entire cycle is
repeated until it reaches a stop criterion.

Comparisons between GSA and SGSA were carried out with statistical anal-
ysis. The conclusion is that SGSA is indeed similar to GSA in terms of perfor-
mance.

2.3 Addition of New Prototypes

DCIA starts with one centroid per class as prototypes. These initial prototypes
go through an adjustment process resulting in an improved set of prototypes.
However, some classes may need more prototypes for a better representation
of their distribution. In DCIA the addition of new prototypes is performed as
follows.

Create a solution set S′ and copy S. Select the best solution S′
best. For each

class select a random instance from the training set, insert it into S′
best and

classify the training set. If S′
best performance is better than Sbest, insert a random

instance of the same class in every other solution of S′ and override S.
After the final override, the solution set S has an improved best solution with

new prototypes. All other solutions have also the same amount of prototypes
for each class. The execution of DCIA continues with adjustment and addition
process until a stop criterion is reached.

3 Experiments and Analysis of Results

In this work we use seventeen data sets with multiple imbalanced classes from
KEEL [1] and UCI [2] repositories. They are presented in Table 1, in which the
columns refer respectively to the name of the data set, the number of instances,
the number of features, the number of classes and the Multiclass Imbalance Ratio
(MIR) [22]. Missing values were replaced with the arithmetic mean from other
instances of the same class.
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3.1 Comparisons

We compare DCIA with other related algorithms found in the literature. Results
of VDBC [22] were obtained after running the online available source code1. The
metric used is the MAUC.

Results of AdaBoost.NC [26], AdaC2.M1 [23] and DECOC [3] were obtained
after running the codes provided by DECOC authors [3]2. The results of
AMCS [27] were also obtained by running a source code provided online3. No
modifications were performed in the codes, and the results are expressed in terms
of the AUCarea metric.

We use 5-fold cross-validation before all algorithms. However, not all data
sets could be tested in all algorithms, due to time shortage and mainly because
of some inherent limitations of the algorithms. Table 2 shows which data sets
were tested in each classifier. In the second column, Several refers to VDBC,
AdaBoost.NC and AdaC2.M1 algorithms.

Table 1. Summary of the used data sets

Name #Inst. #Feat. #Cls. MIR

Balance Scale 625 4 3 2.6985

Contraceptive 1473 9 3 0.2159

Gene 3190 60 3 0.4134

Glass 214 9 6 5.0133

Horse 366 14 3 1.2592

Landsat 2000 36 6 0.7463

Lymphography 148 18 4 24.8133

Nursery 12960 8 5 1300.8

Page Blocks 5473 10 5 59.5996

Penbased 1100 16 10 0.0162

Post Operative 90 8 3 13.7188

Satimage 6435 36 6 0.9564

Shuttle 58000 9 7 1676.8

Thyroid 7200 21 3 18.3396

Wine 178 13 3 0.0774

Yeast 1484 8 10 44.7543

Zoo 101 16 7 4.9225

The values of parameters used in DCIA during feature selection with CSO
were the same as suggested in [7]. During the second and third steps of DCIA the
1 https://github.com/EvandroJRSilva/VDBC.
2 https://github.com/chongshengzhang/Multi Imbalance.
3 https://github.com/liyijing024/AMCS.

https://github.com/EvandroJRSilva/VDBC
https://github.com/chongshengzhang/Multi_Imbalance
https://github.com/liyijing024/AMCS
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Table 2. Data sets tested in each classifier.

Dataset/Classifier Several AMCS DECOC

Balance Scale • • •
Contraceptive • • •
Gene • •
Glass • •
Horse • •
Landsat •
Lymphography •
Nursery •
Page Blocks • • •
Penbased •
Post Operative •
Satimage • •
Shuttle •
Thyroid • •
Wine • • •
Yeast • •
Zoo • •

size of the population is equal to 50, the stop criterion is 50 iterations, and the
distance of exploitation is rand/100, in which rand is a random number between
0 and 1. TWe defined these values empirically. Both adjustment and insertion
of new prototypes are validated with MAUC metric and 1NN classifier. It was
also found that using AUCarea in this part of the algorithm may be harmful.

Statistical analyses were carried out with t-student and Wilcoxon’s ranksum
for parametric and non-parametric tests respectively.

Figure 1 shows a comparison between VDBC and DCIA. The performance
of each algorithm for each data set is shown as a small circle, which marks the
obtained mean value. Each circle is followed by bars, which represent the stan-
dard deviation. As VDBC’s base classifier is also 1NN the comparison demon-
strate that DCIA is able to generate a better set of prototypes than its competi-
tor, allowing the classifier to achieve better performance in almost all data sets.
The performance was statistically equivalent in data sets with a high number of
classes and a low number of instances, i.e., Glass and Zoo. It was also equiva-
lent in Horse data set due to the high value of DCIA standard deviation, which
was caused by an outlier. Besides, only in Satimage data set VDBC performed
statistically better with a small advantage.

Performance comparisons among DCIA and state-of-the-art algorithms are
shown in Fig. 2. The diagonal line represents DCIA’s performance. For each
data set, if another algorithm performs better than DCIA, its marker is placed
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Fig. 1. Comparison of performance results between DCIA and VDBC.

above the diagonal line. Otherwise, the marker is set in the line for equivalent
performance or under the line when the performance is worst.

Statistical analyses show that DCIA’s performance is equivalent to or better
than AdaBoost.NC’s in seven data sets, i.e., half the time. When compared to
AdaC2.M1, DCIA is equivalent or better in 9 out of 14 data sets. AMCS has
better performance, and DCIA is equivalent or better only in 3 out of 9 data
sets. Finally, DCIA is equivalent to DECOC in 8 out of 9 data sets, yet it was
never statistically better.

It is interesting to notice that a simple Prototype Generation algorithm allows
the 1NN classifier to be sometimes better than ensemble classifiers, and several
times perform equivalently. In a few data sets, DCIA was also able to reach
AMCS, probably the most complex algorithm among its pairs which has better
performances overall.

It also should be noticed that these ensembles were built specifically for the
multiclass imbalance problem. That is the reason it was not expected for DCIA
to outperform any of the algorithmic level competitors. However, it could be
observed that a data level approach, which can be seen as a third approach
besides oversampling and undersampling, is able to help a very simple classifier
to increase its performance.

Despite being a simple algorithm, DCIA has a relatively high computational
cost. The wrapper attribute selection is usually computationally expensive [7].
The same training set is classified several times for each different set of attributes,
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Fig. 2. Summary comparison among DCIA and AdaBoost.NC, AdaC2.M1, AMCS and
DECOC.

i.e., the pool of solutions. The cost increases with more instances and more fea-
tures. In this work, we implemented a solution proposed by [7], i.e., use memory
to keep track of visited solutions avoiding the reclassification of training data
with a specific attribute subset.

The adjustment and prototype addition steps are also costly. Several sets of
prototypes move in problem space; then the training set is classified with all
solutions. For each class, each attempt to add a new prototype requires a new
classification. As the validation is made with the 1NN classifier, each instance
classification is made with some distance calculations. The cost increases as
the number of prototypes increases and as high is the number of instances.
In summary, small to medium size data sets do not take long to be classified.
However, large to huge data sets require some time to be classified.

4 Conclusion

In this paper we have presented DCIA, a new approach to deal with the problem
of classification with multiple imbalanced classes. The proposal modifies the
training set with a PG technique and a search algorithm. In this work, it was
used the SGSA, a modification to the recent GSA algorithm.

The experimental study focused on comparing DCIA with its direct competi-
tor VDBC and some state-of-the-art classifiers. We observed that the proposed



776 E. J. R. Silva and C. Zanchettin

method performs better than VDBC. At the same time, an adequately generated
set of prototypes enables a very simple classifier as 1NN to perform as well as
some ensemble algorithms on multiclass imbalanced domains.

As a data level approach, the Prototype Generation showed its potentiality to
compete with other resampling techniques, such as oversampling and undersam-
pling. As future works, we will verify how DCIA may influence other classifiers,
including ensemble algorithms, and how it can be compared to other data level
approaches in multiclass imbalanced domains. It is also interesting to research
how other search algorithms beyond SGSA may influence DCIA.

Acknowledgment. The authors would like to thank CNPq and FACEPE (Brazilian
research agencies) for financial support.
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Abstract. We address the problem of one-to-many mappings in super-
vised learning, where a single instance has many different solutions of
possibly equal cost. The framework of conditional variational autoen-
coders describes a class of methods to tackle such structured-prediction
tasks by means of latent variables. We propose to incentivise informa-
tive latent representations for increasing the generalisation capacity of
conditional variational autoencoders. To this end, we modify the latent
variable model by defining the likelihood as a function of the latent vari-
able only and introduce an expressive multimodal prior to enable the
model for capturing semantically meaningful features of the data. To val-
idate our approach, we train our model on the Cornell Robot Grasping
dataset, and modified versions of MNIST and Fashion-MNIST obtaining
results that show a significantly higher generalisation capability.

Keywords: Structured prediction · Latent variable models ·
Conditional variational autoencoders · Empirical bayes

1 Introduction

The problem of approximating conditional probability distributions p(y |x) is
a central point in the field of supervised learning. Although, learning a com-
plex many-to-one mapping is straightforward if a sufficient amount of data is
available [7,13], most methods fail when it comes to structured-prediction prob-
lems, where a distribution with multiple modes (one-to-many mapping) has to
be modelled [16].

Conditional variational autoencoders (CVAEs) [14] are a class of latent vari-
able models for approximating one-to-many functions. They define a lower bound
on the intractable marginal likelihood by introducing a variational posterior dis-
tribution. The learned generative model and the corresponding (approximate)
posterior distribution of the latent variables provide a decoder/encoder pair that
captures semantically meaningful features of the data. In this paper we address
the issue of learning informative encodings/latent representations with the goal
of increasing the generalisation capacity of CVAEs.
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In contrast to variational autoencoders (VAEs) [6,12], the decoder of CVAEs
is a function of the latent variable and the condition x. Thus, the model is not
incentivised to learn an informative latent representation. To tackle this problem,
we propose to apply a VAE-like decoder that depends only on the latent variable.
This modification requires that the model is capable of learning a rich encoding.
We follow the line of argument in [4]—where the expressiveness of the generative
model is increased by introducing a flexible prior—and show that a multimodal
prior substantially improves optimisation.

Building on that, we propose to apply a learnable mixture distribution as
prior. We show that the classical mixture of Gaussians prior suffers from focus-
ing on outliers during optimisation causing a badly trained generative model.
Instead of learning the means and variances of the respective mixture compo-
nents directly, we address this issue by introducing a Gaussian mixture prior,
inspired by [17], that is parameterised through both the encoder and the decoder,
and evaluated at learned pseudo latent variables.

2 Methods

2.1 Preliminaries: Conditional VAEs

In structured prediction problems each condition x can be related to several
targets y (one-to-many mapping), which results in a multimodal conditional
distribution pθ(y |x). Conditional-latent-variable models (CLVM), defined by

pθ(y |x) =
∫

pθ(y |x, z) pθ(z |x) dz, (1)

are capable of modelling multimodality by means of latent variables z. How-
ever, in most cases the integral in Eq. (1) is intractable. Amortised variational
inference [6,12] allows to address this issue by approximating pθ(y |x) through
maximising the evidence lower bound (ELBO):

log pθ(y |x) ≥ Eqφ(z|x,y)

[
log

pθ(y |x, z) pθ(z |x)
qφ(z |x,y)

]
=: LELBO(θ, φ), (2)

where the parameters of the approximate posterior qφ(z |x,y), the likelihood
pθ(y |x, z), and the prior pθ(z |x) are defined as neural-network functions of the
conditioning variables. This model is known as conditional variational autoen-
coder (CVAE) [14]. Consequently, we will refer to the neural networks represent-
ing qφ(z |x,y) and pθ(y |x, z) as encoder and decoder, respectively.

2.2 Incentivising Informative Latent Representations

In the CVAE, the likelihood is conditioned on z and x. Therefore, the model
is not incentivised to learn an informative latent representation. Rather, latent
variables can be viewed as an assistance for enabling multimodality in pθ(y |x).
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For being able to fully exploit the generalisation capacity of CVAEs, we argue
that an informative latent representation is necessary. Thus, z determines y
completely, i.e. the mutual information I(x ; y | z) = 0. Following this line of
argument, we obtain x ⊥ y | z, and thus pθ(y |x, z) = pθ(y | z), leading to the
following CLVM:

pθ(y |x) =
∫

pθ(y | z) pθ(z |x) dz. (3)

This modification enforces the model to learn a richer latent representation
because all the information given by the training data has to be encoded.

However, the model must also be capable of learning such a complex latent
representation. In case of CVAEs, the prior pθ(z |x) is usually defined as a Gaus-
sian distribution, leading to limited flexibility of the model, and hence to a worse
generalisation, as addressed in [4] and shown in Sects. 4.2 and 4.3. We build
on the line of argumentation in [4], where the above limitation is tackled by
introducing an expressive prior. The KL-divergence KL

(
qφ(z |x,y)‖ pθ(z |x)

)
in Eq. 2 can be viewed as a regulariser to avoid over-fitting. Therefore, a flex-
ible prior allows for learning a more complex latent representation and leads
automatically to a more expressive generative model pθ(y | z) pθ(z |x).

2.3 Modelling Low-Density Regions

In the previous section, we discussed the need of expressive priors in our setting.
Next, we will specify an important property the prior has to posses. In most
models within the VAE/CVAE framework, the prior is defined as a unimodal
distribution. This leads to a significant shortcoming illustrated by the follow-
ing structured-prediction task: generating grasping poses (targets) for a certain
object (condition). Imagine a generated grasping pose is located in the middle
of a plate instead of on the edge. Hence, generating targets between modes of
pθ(y |x) might be an exclusion criterion.

To understand the cause, let us assume a dataset consisting of only a single
condition with different targets. Thus, qφ(z |x,y) = qφ(z |y), pθ(y |x) = pθ(y),
and pθ(z |x) = pθ(z) (note that this is equivalent to a vanilla VAE). We want
to represent pθ(y) by transforming pθ(z) through a bijective function g(·), i.e.
y = g(z). By applying the change of variables, we derive:

pθ(g(z)) =
1√

det(JT J)
pθ(z), with J =

∂g(z)
∂z

.

In this context, we define the magnification factor MF :=
√

det(JT J) [2]. Setting
pθ(g(z)) = 0 requires either pθ(z) = 0 or MF → ∞. Thus, zero-density regions
can only be represented at y if either the original density is zero or the MF
becomes infinitely large (see Sect. 4.1 for visualisation). For example, when using
a Gaussian distribution as prior, near-zero density regions occur only at its
tails. If g(·) is the likelihood neural network and we assume it to be continuous,
zero-density regions can only be obtained in tails. For zero densities elsewhere,
infinitely large MF-values are required. Thus, the derivative of g(·) becomes
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infinitely large: J → ∞, leading to a badly-conditioned optimisation problem.
The above line of argument applies equally to datasets with multiple conditions.

2.4 Expressive Priors for Conditional VAEs

A natural approach to address the difficulties introduced in Sects. 2.2 and 2.3 is
a flexible multimodal prior. This could be realised by a conditional mixture of
Gaussians (CMoG) prior pθ(z |x) = 1

K

∑K
k=1 N (

μk(x),diag(σ2
k(x))

)
, where K is

the number of mixture components. As in case of the vanilla CVAE, the param-
eters of the prior

{
μk(x),diag(σ2

k(x))
}K

k=1
∈ R

Nz are represented by a neural
network. Unfortunately, this approach performs badly, especially in high dimen-
sional latent spaces (see Sect. 4.2).

We suspect this mainly due to the following reason: the prior is optimised
through minimising KL

(
qφ(z |x,y)‖ pθ(z |x)

)
(see Eq. 2). The optimal Bayes

prior is the aggregated posterior p∗(z |x) = Ey∼p̂(x,y) qφ(z |x,y)—representing
the manifold of the encoded data. Since the parameters of each mixture com-
ponent of the CMoG prior are learned independently, it is not possible to avoid
that mixture components leave the manifold of the encoded data by focusing on
outliers (see Sect. 4.2 for experimental support). This leads to a badly trained
generative model. Thus, the problem is that the prior is not incentivised to stay
on the manifold of the encoded data.

Instead of learning the mean and variance of each mixture component of
the prior directly, we tackle the above issue by introducing a parameterisation
through both the encoder and the decoder. This approach is inspired by the
VampPrior [17] (VAE framework), which is parameterised through the encoder.
When extending it to the CVAE framework, we obtain the conditional Vamp-
Prior p(z |x) = 1

K

∑K
k=1 qφ

(
z |x, ỹk

)
, which is evaluated at learned pseudo

targets
{
ỹk

}K

k=1
∈ R

Ny . However, pseudo latent variables z̃ would require less
parameters and thus are less complex to optimise for representing the manifold
of the encoded data. Evaluating the conditional VampPrior at decoded z̃ would
make use of this advantage (see Sect. 4.2 for experimental support). Below, we
introduce the conditional decoder-based Vamp (CDV) prior:

pπ(z |x) =
1
K

K∑
k=1

qφ

(
z |x, μθ(z̃k(x))

)
, (4)

where μθ(·) is the mean of the likelihood and
{
z̃k(x)

}K

k=1
∈ R

Nz are defined as
functions of the condition and approximated by a single neural network fψ(x),
which is trained through backpropagation. Thus, the parameters of the prior are
π = {ψ, θ, φ}. As an additional feature, this approach requires less parameters
than the CMoG prior, since only the pseudo latent variables (∈ R

Nz)) have to
be learned instead of the means and variances (each ∈ R

Nz) of the CMoG prior.
The CLVM in Eq. 3 was introduced to incentivise a more informative latent

representation for achieving a higher generalisation capacity. This step demands
a flexible multimodal prior that allows the model for capturing semantically
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meaningful features of the data. The CDV prior meets these requirements and,
in contrast to a classical Gaussian mixture prior, it facilitates a well trained
generative model.

3 Related Work

Learning informative latent representations in VAEs is an ongoing field of
research [1,5,15]. The connection between informative latent representations
and a flexible prior was pointed out in [4] and motivated through Bits-Back
Coding. Several additional works improved VAEs by learning more complex pri-
ors [10,17]. The reason for increasing the expressiveness of the prior is a lower
KL-divergence—and thus a better trained decoder, leading to more qualitative
samples of the generative model. Based on that, it can be derived that the opti-
mal Bayes prior is the aggregated posterior [17]. The VampPrior [17] approxi-
mates the aggregated posterior by a uniform mixture of approximate posteriors,
evaluated at learned pseudo inputs in the observable space.

In contrast to the (conditional) VampPrior, the CDV prior is parameterised
through both the encoder and the decoder, and evaluated at learned pseudo
latent variables. Since the latent space has in general a lower dimension than
the observable space, pseudo latent variables need less parameters and are easier
to optimise for approximating the aggregated posterior.

Several applications based on the concept of CVAEs were published: they
can be used for filling pixels given a partial image [14], for image inpainting
conditioned on visual attributes (e.g., colour and gender) [21], or for predicting
events by conditioning the distribution of possible movements on a scene [19]. As
in [14], we use CVAEs to complete images—with the aim of obtaining a widest
possible variety of generations, thus a classical one-to-many mapping. However,
with an additional difficulty: it is learned from a dataset of one-to-one mappings
to validate the generalisation capacity of the models.

Another important field where CVAEs are applied is robot grasping: earlier
work has focused on detecting robust grasping poses [9,11], while recent work
is often based on structured prediction with the idea of learning multimodal
conditional probability distributions for generating grasping poses [18]. In [9,11],
classifiers are applied to detect whether a grasping pose is robust. A problem here
is that suitable grasping poses need to be proposed by hand. In our approach,
CVAEs are used to generate grasping poses for unknown objects. Afterwards,
similar to [9], a discriminator is applied to validate them.

4 Experiments

We conduct five experiments to compare the introduced models: first, we visu-
alise on a simplified task the difficulty of unimodal priors. Building on that,
we demonstrate on a synthetic toy dataset that CMoG- and CDV-CVAEs are
capable of modelling near-zero-density regions. Second, we show on a modified
version of MNIST and Fashion-MNIST that the variety of generated samples is
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significantly larger when combining the CVAE with the CMoG or CDV prior.
Finally, we compare the CVAE with the CDV-CVAE on real world data, the
Cornell Robot Grasping dataset.

To train our models we applied a linear annealing scheme [3] for the first
epoch. This is especially important for the CDV-CVAE because it is sensitive to
over-regularisation by the KL-term in the initial optimisation phase.

(a) Latent representation of four Gaussians (b) Generated samples

Fig. 1. Effect of unimodal priors on the performance of VAEs/CVAEs. For illustration,
we use a dataset of four Gaussian distributions arranged in a square. Latent represen-
tation (a): the colours encode the four different Gaussians. The greyscale indicates the
gradients of the decoder, which are required to map from a unimodal to a multimodal
distribution. 1,000 generated samples (b): we also obtain samples between modes, since
the decoder is a continuous function approximated by a neural network. (see Sect. 4.1)

4.1 Modelling Low-Density Regions

Visualisation of the Problem. To reduce complexity, we trained a vanilla
VAE with a Gaussian prior on a simple toy dataset consisting of four Gaussian
distributions. This toy dataset can be interpreted as a simplified structured-
prediction task with only one condition and four targets.

Figure 1a shows the two-dimensional latent space, which depicts the aggre-
gated posterior of the model. Each of the four Gaussians is encoded by a different
colour. To map from a unimodal to a multimodal distribution, the decoder has to
model large gradients, as discussed in Sect. 2.3. The magnification factor is visu-
alised by the greyscale in Fig. 1a, which represents the Jacobian of the decoder.
The support of the aggregated posterior is noticeably smaller than the support
of the prior. Since the decoder is a continuous function, a gap at the boundaries
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of different classes in the latent space (as shown in Fig. 1a) represents the dis-
tance between the modes in the observable space. The size of the gap depends
on the gradients that our model is able to achieve: the higher the gradient, the
smaller the gap in the latent space.

When sampling from the generative model, we first sample from the prior.
If the sample comes from a region which is not supported by the aggregated
posterior, the decoded sample will end up between two modes, as demonstrated
in Fig. 1b.

(a) Training data (b) CVAE (c) CMoG-CVAE (d) CDV-CVAE

Fig. 2. Synthetic toy dataset (a) of one-dimensional one-to-many mappings. The hor-
izontal axis represents the conditions, the vertical axis the targets. Generated sam-
ples (b–d): a near-zero-density between different modes is only achieved through mul-
timodal priors, as shown in (c) and (d). (see Sect. 4.1)

(a) x = 0 (b) x = 1 (c) x = 2 (d) x = 3

Fig. 3. Samples from the CDV prior depending on the condition x (trained on the
synthetic toy dataset Fig. 2a). The number of modes of the prior and of the likelihood
distribution are similar (see Fig. 2d). If the number of targets changes, the prior modes
merge, as shown in (a) and (c). (see Sect. 4.1)

Synthetic Toy Dataset. In this experiment we reused a synthetic toy
dataset [16] for validating models for structured-prediction tasks. It consists
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of one-dimensional one-to-many mappings (see Fig. 2a): the horizontal-axis rep-
resents the conditions and the vertical-axis the targets. Even though the dataset
is simple, the abrupt changes of the number and location of the targets are quite
challenging to model.

For all three models, we used latent spaces with two dimensions. CMoG-
CVAE (LELBO = −0.586) and CDV-CVAE (LELBO = −0.518) outperformed the
original CVAE (LELBO = −1.12) as shown in Fig. 2. Multimodal priors facilitate
the modelling of near-zero-density regions between different modes (Fig. 2c, d),
as discussed in Sect. 2.3. Figure 3 shows how the CDV prior distribution changes
with the condition x.

(a) CVAE (b) CMoG-CVAE (c) CDV-CVAE

Fig. 4. Modified MNIST and Fashion-MNIST: the goal is to validate whether the
models can generalise and learn a one-to-many from a dataset of one-to-one mappings.
The respective first column shows images of the test set, consisting of a condition (lower
third) and a target (upper two-thirds). The remaining nine columns show generations
conditioned on the lower third of the first image (marked by the white line). The variety
of generated targets in (b) and (c) is significantly larger than in (a). However, in case
of the CMoG prior (b) we obtained a high amount of poor generations. (see Sect. 4.2)
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4.2 Verifying the Generalisation Capacity

We created a modified version of MNIST [8] and Fashion-MNIST [20] to evaluate
the generalisation capacity of the different models. For this purpose, we split
binarised MNIST/Fashion-MNIST images into two parts: a conditional part,
the lower third (last 28 × 10 pixels) of the image—and a target part, the upper
two-thirds (first 28 × 18 pixels). The dataset has therefore only one target per
condition. The goal is to investigate whether the models are able to define a set
of new targets for each condition of the test set. In other words, whether they
can learn a one-to-many from a one-to-one mapping.

(a) MNIST (b) Fashion-MNIST

Fig. 5. Variety of generated targets: for each condition in the test dataset, 10 targets
were generated. A classifier was used to determine the number of different classes per
condition. The box plots in (a) and (b) show that CMoG- and CDV-CVAEs generate
targets with a larger variety for both datasets. (see Sect. 4.2)

In all three models, we used a 32-dimensional latent space. CMoG-CVAEs
(Fig. 4b) and CDV-CVAEs (Fig. 4c) were able to represent a multimodal likeli-
hood distribution, in contrast to vanilla CVAEs (Fig. 4a). This is shown by the
significantly larger variety of generated targets per condition.

To measure the variety of the generated targets, we trained a classifier on
MNIST/Fashion-MNIST and sampled 10 targets for each condition of the test
set. Afterwards, we used the classifier to determine how many different classes
were generated per condition. Figure 5 shows the results for the different models
and datasets. Note that we only took sampled targets into account, which could
be clearly assigned to a class—especially to avoid treating poor generations as
additional classes. In case of both datasets, CMoG- and CDV-CVAEs learned
to generate several classes per condition, and thus a one-to-many from a one-to-
one mapping. Additionally, CMoG- and CDV-CVAEs achieved a larger variety
of generations within the same class (see Fig. 4).

Based on the above results, we can deduce that CMoG- and CDV-CVAEs
have a higher generalisation capacity. The larger variety of the generations is due
to the structure of the priors: since they are mixtures of K distributions, each
target is represented by one or more mixture components. However, as discussed
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(a) CMoG prior (b) conditional VampPrior (c) CDV prior

Fig. 6. The plots show the number of nearest neighbours (encoded MNIST data points)
as a function of the Euclidean distance to the mean of the respective mixture compo-
nent. Each line belongs to one mixture component. Four mixture components of the
CMoG prior (a) and one of the conditional VampPrior (b) have a significantly larger
distance to the encoded data, reinforcing the conclusion that they focused on out-
liers during optimisation. Samples from one of these mixture components lead to poor
generations like in Fig. 4b. (see Sect. 4.2)

in Sect. 2.4, CMoG priors perform badly, especially in high dimensional latent
spaces. This becomes evident by the high amount of poor generations in Fig. 4b.
To verify our hypothesis—that the poor generations are caused by mixture com-
ponents of the CMoG prior that focused on outliers during optimisation—we
encoded our training data (MNIST) and measured the Euclidean distance to the
respective mean of each prior component. Figure 6 shows the number of near-
est neighbours (encoded data points) as a function of the Euclidean distance
in the latent space. Each line represents one of the 32 mixture components.
In contrast to the CDV prior (Fig. 6c), four mixture components of the CMoG
prior (Fig. 6a) have a significantly larger distance to the encoded data. This rein-
forces the conclusion that these mixture components focused on outliers during
the optimisation process. We obtain poor generations like in Fig. 4b if a gener-
ated target is based on one of these four components, because pθ(x | z) is only
optimised (see Eq. 2) to decode samples that lie on the manifold of the encoded
training data.

Additionally, we show that the CDV prior outperforms the conditional Vamp-
Prior (Fig. 6b), where one mixture component has a significantly larger distance
to the encoded data. As discussed in Sect. 2.4, we suspect this due to the higher
dimension of the pseudo targets ỹ, making them more complex to optimise than
pseudo latent variables z̃.

4.3 Generating Grasping Poses

In this experiment we want to assess the generalisation capabilities of CVAE
and CDV-CVAE on a real-world dataset. To this end, we use the Cornell Robot
Grasping dataset, which consists of 885 conditions (250 × 250 pixels greyscale
images of objects) and 5,110 targets (proposed grasping poses) [9]. The latent
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(a) Test objects with proposed grasping poses

(b) CVAE

(c) CDV-CVAE

Fig. 7. Cornell Robot Grasping dataset: (a) objects (conditions) with proposed grasp-
ing poses (targets) defined by the test dataset. The CDV-CVAE (c) generates more
realistic grasping poses for unknown objects than the original CVAE (a). 29% of the
grasping poses generated by the CDV-CVAE were above a discrimination score of 0.99,
whereas the CVAE reached 22%. (see Sect. 4.3)

spaces of both models are 16-dimensional. For training, we resized the conditions
to 64 × 64 pixels. Furthermore, we adapted the way how the grasping poses are
represented: the rectangles (original representation) were redefined by a centre,
a short and long axis, and a rotation angle.

Figure 7a shows a selection of objects and proposed grasping poses defined by
the test dataset. Figures 7b and c depict grasping poses generated by the CVAE
and CDV-CVAE, respectively. As discussed in Sects. 4.1 and 4.2, CDV-CVAEs
have a higher capability of modelling one-to-many mappings and enable a larger
variety of generated targets.

To verify whether the CDV-CVAE has actually learned to generate more
realistic grasping poses for unknown objects, we apply a similar approach as pro-
posed in [9]. It is based on a discriminator for validating proposed grasping poses.
For this purpose, we trained the discriminator in equal parts with samples from
joint and marginal empirical distribution (x,y) ∼ p̂(x,y) and (x,y) ∼ p̂(x) p̂(y),
respectively. Subsequently, we generated 10 grasping poses for each condition in
the test set and filtered out those with a discrimination score below 0.99. As a
result, 29% of the grasping poses generated by the CDV-CVAE were above this
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threshold, whereas the CVAE reached 22%. This allows the conclusion that the
CDV-CVAE is a useful extension to the CVAE framework.

5 Conclusion

In this paper, we have introduced a modified conditional latent variable model to
incentivise informative latent representations. To enable the model for capturing
semantically meaningful features of the data, we have proposed an expressive
multimodal prior that facilitates, in contrast to a classical Gaussian mixture
prior, a well trained generative model.

We have shown that our approach increases the generalisation capacity of
CVAEs on a modified version of MNIST and Fashion-MNIST by achieving
a significantly larger variety of generated targets—and on the Cornell Robot
Grasping dataset by generating more realistic grasping poses. Additionally, we
have demonstrated that a straightforward application of CVAEs to structured-
prediction problems suffers from a difficulty to represent multimodal distribu-
tions and that our approach overcomes this limitation.
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Abstract. We propose a large margin preference learning model based
on game theory to solve the label ranking problem. Specifically, we show
the proposed formulation is able to perform multiclass classification by
solving a single convex optimization problem. Generally, such formula-
tion, although theoretically well-founded, requires to learn a large num-
ber of parameters. To reduce the computational complexity, we propose
a strategy based on the solution of smaller subproblems, that can be
further optimized by exploiting techniques borrowed from multi-armed
bandits literature. Finally, we show how the proposed framework exhibits
state-of-the-art results on many benchmark datasets.

Keywords: Game theory · SVM · Large margin · Kernel method ·
Large scale

1 Introduction

For many years, Support Vector Machine (SVM) has been one of the most stud-
ied and heavily used Machine Learning (ML) method. Besides its state-of-the-art
performance in many learning tasks, its success is mainly due to its theoretical
foundation. SVM roots in statistical learning theory [20] and follows the principle
of structural risk minimization to control the generalization ability of a learning
machine. It belongs to the family of large margin models and its elegant for-
mulation makes it suitable for connections with other theoretical fields, e.g., its
strong relation with game theory (GT). For instance, it is well known that hard
margin SVM can be cast into a two-players zero-sum game [1]. GT has also been
related to other ML techniques, including, boosting [8] and linear regression [13].
More recently, similar connections have been made between Preference Learning
(PL) and GT [16].

Starting from this last finding, we present a theoretically well-founded pref-
erence learning framework inspired by game theory for multi-class classification
problems. Specifically, we define a (generalized) linear PL model in which the
large margin problem is cast into a two-players zero-sum game. The proposed
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framework is general enough to be easily used with kernels in order to handle
non-linear problems. We show how this model can be trained by solving a simple
convex optimization problem. However, akin other kernel methods, like SVM, it
could not be suited for large scale problems. To this regard we also propose a
technique inspired by multi-armed bandits to speed up the learning process.

The remainder of the paper is structured as follows: Sect. 2 introduces all
the necessary background. Sections 3 and 4 describe the main contributions of
the paper. Finally, Sects. 5 and 6 show the experimental assessment and discuss
possible future research directions.

2 Background

2.1 Preference Learning

Preference learning (PL) is a sub-task in machine learning in which the input
data consists of preference relations. In PL problems, the goal is to construct
a preference model able to predict preferences for previously unseen items. The
typical assumption is that preferences are in agreement with some utility function
gθ. The task then becomes to find the parameters θ of the utility function g.

Label ranking is one of the main PL tasks [10]: given a set of input patterns
xi ∈ X , i ∈ [1, . . . , n], and a finite set of labels Y ≡ {y1, y2, . . . , ym} the goal
is to learn the utility function gθ : X × Y → R which assigns a fitness score
for each instance-label pair (x, y). Label ranking represents a generalization of
a classification task, since, given an instance x, gθ implicitly defines a total
order over Y. In the label ranking context, the training set consists of pairwise
preferences yi �x yj , i �= j, i.e., for the pattern x, yi is preferred to yj . In the
special case of classification, in which x is associated to a unique label yi, the
preferences’ set is

{yi �x yj | 1 ≤ j �= i ≤ m}.

In this work we focus on (generalized) linear preference models [2,19] on
some feature space F induced by an embedding function φ, i.e., gw(φ(x), y) =
wᵀψ(φ(x), y), where w is the parameters vector, ψ is a joint representation of
instance-label pairs, and φ : X → R

d is the embedding function.
Since the preferences are ranked according to the utility function, given a

preference yi �x yj then gw(φ(x), yi) > gw(φ(x), yj) should hold, and thus

wᵀψ(φ(x), yi) > wᵀψ(φ(x), yj) ⇒ wᵀ(ψ(φ(x), yi) − ψ(φ(x), yj)) > 0,

which can be interpreted as the margin (or confidence) of the preference.
The instance-label joint representation used in this work is based on the

Kesler’s construction for multi-class classification [6,11,15]. Kesler’s construc-
tion is a very powerful tool for extending learning algorithms for binary clas-
sifiers to the multi-class setting. The Kesler’s construction allows, by using an
appropriate instances’ representation, to solve multi-class problems using a sin-
gle linear function instead of decomposing them into many binary sub-problems.
The construction can be formalized as in the following.
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Given an instance (possibly embedded in a feature space) φ(x) with label y,
we define the instance-label representation ψ : Rd × Y → R

d·m as ψ(φ(x), y) =
em

y ⊗ φ(x), where the symbol ⊗ indicates the Kronecker product and em
y is the

y-th canonical basis of Rm:

ψ(φ(x), y) = em
y ⊗ φ(x) = (0

↑
1

; 0
↑
2

; . . . ; φ(x)
↑
y

;0; . . . ; 0
↑
m

) ∈ R
d·m,

where 0 are d-dimensional zero vectors. Therefore, given a preference yi �x yj

we construct its corresponding embedding z ∈ R
d·m as

z = ψ(φ(x), yi) − ψ(φ(x), yj) = (em
yi

− em
yj

) ⊗ φ(x)

= (0; . . . ; φ(x)
↑
yi

;0; . . . ; −φ(x)
↑
yj

;0; . . . ;0) ∈ R
d·m.

At prediction time, given a new instance xnew, labels are ranked according
to the score gw(φ(xnew), y), ∀y ∈ Y. In case of classification, the predicted label
for xnew is ŷ = arg maxy∈Y gw(φ(xnew), y).

2.2 Game Theory

Game theory is the science of strategic reasoning that studies the behaviour of
rational game players who are trying to maximize their utility. Specifically, in
this paper, we focus on finite two-players zero-sum games. The strategic form
of a two-players zero-sum game is defined by a triplet (P,Q,M), where P and
Q are finite non-empty set of strategies for player P and Q, respectively, and
M : P × Q → R is a function that associates a value M(i, j) to each pair of
strategies (i, j) s.t. i ∈ P , and j ∈ Q. M(i, j) represents the payoff of Q and
the loss of P. Since P and Q are finite sets, M can be represented as a matrix
M ∈ R

|P |×|Q|, called payoff matrix (or game matrix), such that Mij = M(i, j),
where |P | and |Q| are the number of available strategies for P and Q, respectively.
Each matrix entry Mi,j represents the loss of P, or equivalently the payoff of Q,
when the strategies i and j are played by the players. The game takes place in
rounds in which the two players play simultaneously: the row player (P) picks a
row p ∈ P , and the column player (Q) picks a column q ∈ Q of M. The goal of the
player P is to define a strategy that minimizes its expected loss V . Conversely, the
player Q aims at finding a strategy that maximizes its payoff. Players strategies
are typically represented as stochastic vectors p ∈ SP and q ∈ SQ, respectively,
where SP = {p ∈ R

|P |
+ | ‖p‖1 = 1} and SQ = {q ∈ R

|Q|
+ | ‖q‖1 = 1}. It is well

known [14] that the best pair of optimal strategies (p∗,q∗), i.e., the saddle-point
(or Nash equilibrium) of M, can be computed by

V ∗ = p∗ᵀMq∗ = min
p

max
q

pᵀMq = max
q

min
p

pᵀMq,

where V ∗ is the value of the game.



Playing the Large Margin Preference Game 795

3 Maximal Margin PL as a Two-Players Zero-Sum Game

In Sect. 2.1 we have introduced the concept of margin of a preference. Akin clas-
sical classification scenarios [17], also in PL contexts large margins correspond
to good generalization capability of the ranker [1].

As mentioned previously, we consider a hypothesis space H composed by lin-
ear functions, i.e., H ≡ {z → wᵀz | w, z ∈ R

d·m}, ‖w‖2 = 1}. Given a hypothesis
w, we say that w satisfies a preference z if its margin is strictly positive, that is,
iff ρw(z) = wᵀz > 0. We consider classification tasks, hence we assume to have
a set of training preferences of the form T ≡ {(y+ �x y−)} (|T | = n(m − 1))
which can be easily transformed to their corresponding vectorial representation
as previously described. According to the maximum margin principle, we aim
to select w such that it maximizes the minimum margin over the training pref-
erences. Following the line of [1,16], we cast the margin maximization problem
into a two-players zero-sum game. Specifically, let Q ≡ H, and let P ≡ T be
the set of strategies for the player Q and P, respectively. The game takes place
in rounds, where Q selects an hypothesis w ∈ H and P selects a preference z
from T . Q wants to maximize its payoff, which is the margin achieved by w
on z. Conversely, P aims to minimize its loss by defining a mixed strategy over
the set of training preferences, which can be seen as a probability distribution
p ∈ SP over the preferences. The value of this game, i.e., the expected margin,
is computed by solving

V ∗ = min
p

max
‖w‖2=1

Ep [ρw(z)] = min
p

max
‖w‖2=1

|P |∑

i=1

piρw(zi) (1)

= min
p

max
‖w‖2=1

|P |∑

i=1

piwᵀzi = min
p

max
‖w‖2=1

wᵀ

⎛

⎝
|P |∑

i=1

pizi

⎞

⎠ . (2)

It is well known that the unitary norm maximizer of Eq. (2) is

w ∝
|P |∑

i=1

pizi = Zᵀp,

where Z ∈ R
|P |×(d·m) is the matrix with the preference embeddings arranged in

the rows, and hence we can rewrite Eq. (2) as

V ∗ = min
p

|P |∑

i=1

pi

|P |∑

j=1

pjz
ᵀ
i zj = min

p
pᵀKzp, (3)

where Kz ∈ R
|P |×|P | is a kernel matrix between preferences, that is Kz[i, j] =

zᵀ
i zj . Given the Kesler’s construction described in Sect. 2.1, then Kz can be

computed as:

Kz[i, j] = (0, . . . , φ(xi)
↑

y+
i

; . . . ; −φ(xi)
↑

y−
i

; . . . ;0)ᵀ(0; . . . ; φ(xj)
↑

y+
j

; . . . ; −φ(xj)
↑

y−
j

; . . . ;0)
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= (�y+
i = y+

j � + �y−
i = y−

j � − �y+
i = y−

j � − �y−
i = y+

j �)κ(xi,xj),

where κ(xi,xj) = φ(xi)ᵀφ(xj) is the kernel function induced by φ, and �·� is the
indicator function. Equation (3) shows that it is possible to learn the maximal
margin hypothesis in the preference space by solving a quadratic optimization
problem. This formulation allows to solve a multi-class classification problem
without the need of decomposing it in multiple binary classification problems.
However, when the number of preferences is huge, computing (3) on the whole
kernel matrix Kz can be prohibitive. For this reason in the next section we
provide a technique for efficiently approximating the value of the game, and
thus learning the model.

4 Approximating the Value of the PL Game

There is a large body of research in the game theory community which deals with
the problem of approximating the value of the game for huge game matrices [3–5,
7,9]. However, such techniques assume the availability of the whole game matrix
which is not always feasible in our context. More recently [16], an incremental
approach for solving large game matrices w.r.t. the number of columns has been
proposed in which only a budget of columns are considered at each iteration.
Unfortunately, limiting the number of columns only could not be enough when
the number of preferences is huge. For this reason, we propose a method that
approximates the value of the game (as well as the strategies of the players)
by combining the solutions of many sub-games that consider only squared sub-
matrices of the whole game matrix Kz.

Specifically, let T be the number of sub-games we want to solve, and let
Πt ∈ {0, 1}|P |×s be the selection matrix used to select rows/columns from Kz

for the t-th game. Thus, each sub-game matrix Kt ∈ R
s×s (s � |P |) can be

obtained as Kt = Πᵀ
t KzΠt. Let p̂t be the optimal strategy for the t-th sub-

game, then we can project back the solution by computing pt = Πtp̂t.
Once all pt have been computed, we aim to combine these sub-strategies in

order to get a strategy for the whole game. The best convex combination of the
pt’s can be achieved by solving the following convex optimization problem

α∗ = min
α∈S T

αᵀ (PᵀKzP) α = min
α∈S T

αᵀGα, (4)

where P ∈ R
T×|P | is the matrix where the strategies (pt) of the sub-games are

arranged in the rows, and G = PᵀKzP ∈ R
T×T . Clearly, the value of the game

Ṽ = α∗Gα∗ is an approximation of V ∗ and specifically V ∗ ≤ Ṽ .
From the formulation given in (4) it seems that it is still necessary to compute

the whole kernel matrix Kz. However, it can be observed that since P is built
upon the best strategies of the sub-games, in each row at most s entries are
non zero. Hence, computing G can be highly optimized, e.g., by computing each
row individually. Nevertheless, when the number of preferences is particularly
large computing G remains computationally expensive. Anyhow, it is possible
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to get a reasonable approximation avoiding to solve the optimization problem
by fixing α∗ to the uniform distribution, which corresponds to computing the
average over pt.

4.1 Sub-game Selection Strategy

Even though Ṽ is the best we can achieve from the combination of the partial
strategies pt, the sub-game selection plays a key role to get good value of the
game with the proposed method.

A näıve way of computing the sub-game matrix is by randomly drawing
rows/columns from the uniform distribution. This strategy has the advantage of
being highly parallelizable, since each sub-game can be solved independently.

Borrowing from the reinforcement learning literature, we propose a general-
ization of the strategy presented above in which samples are randomly drawn
from a distribution that depends on the solution of the previous sub-games. The
main idea is to iteratively adjust the distribution according to how much the pre-
viously selected preferences (i.e., strategies) contributed to the mixed-strategy
(i.e., their weight in the hypothesis). Specifically, let dt ∈ S |P | be probability
distributions over all the training preferences at iteration t, and let d1 = 1 1

|P |
be the uniform distribution over all preferences. At iteration t+1 a new random
sample of preferences is drawn according to dt+1 which is defined as

dt+1 = (1 − λ)dt + λpt

where 0 ≤ λ ≤ 1, and pt is the solution of the t-th game as in Sect. 4. Essentially,
λ defines how much the previous strategies influence the sampling distribution
for the next games. λ = 0 means that the previous games have no influence in
the next sampling. Conversely, λ = 1 indicates that all random samples will be
drawn according to p1 (i.e., the solution of the first sub-game). In other words
λ is a trade-off between exploration (λ → 0) and exploitation (λ → 1), with
a similar effect of ε in the ε-greedy algorithm [18] for the multi-armed bandit
problem.

Finally, the ranker hypothesis is computed as a combination over all pt,
that is

w ∝
[

T∑

t=1

αtpt

]ᵀ

Z,

where α can be optimized as in Eq. (4), or fixed, for example, to the uniform
distribution. Algorithm 1, dubbed LMPG (Large Margin Preference Game), pro-
vides the pseudo-code of the method just described. In the following we will indi-
cate with LMPG∗ the algorithm when s = |P |, LMPG-α when α is optimized
according to (4), and with LMPG when α is fixed to the uniform distribution.

5 Experiments

In this section all the performed experiments are described.
The proposed techniques have been evaluated on five different publicly avail-

able datasets:
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Algorithm 1: LMPG: Large Margin Preference Game
Input:

P : set of training preferences
s : sample size
λ: exploration-exploitation trade-off hyper-parameter
T : number of iterations

Output:
w̃: preference ranking model

1 d1 ← 1 1
|P |

2 for t ← 1 to T do
3 Q ← random sampling (w/o replacement) over P of s preferences according

to dt

4 Kt ← kernel matrix s.t. Kt[i, j] = zᵀ
i zj , ∀zi, zj ∈ Q

5 pt ← min
p

pᵀKtp

6 dt+1 ← (1 − λ)dt + λpt

7 end
8 computing α (e.g., by means of (4))

9 p ← ∑T
t=1 αtpt

10 w̃ ← ∑|P |
i=1 pizi, zi ∈ P

11 return w̃

tic-tac-toe is a dataset containing 958 ending positions of the game tic-tac-
toe, and the task is to classify whether the × is the winner;

breast-cancer is the well known Breast Cancer Wisconsin Diagnostic Dataset,
where the task is to classify a tumor as malignant or benign. For more details
about the dataset please refer to [12];

mnist-49 mnist is a (well known) dataset of handwritten digits. We extracted
from it a single classification task which consists in classifying the digit 4
against the digit 9;

segment This dataset is an image segmentation database. 7 outdoor images are
possible instances and images have been randomly selected. The images were
hand-segmented to create a classification for every pixel. Each instance is a
3 × 3 region;

w8a Dataset used for fast training of support vector machines using sequential
minimal optimization;

vehicle The dataset was originally used to distinguish 3D objects within a 2D
image using a feature extractor on 2D silhouettes of objects. Four classes of
vehicles were used for the experiment: a double decker bus, Cheverolet van,
Saab 9000 and an Opel Manta 400.
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Table 1. Datasets information: number of classes, training set and test set size, and
number of features. In parenthesis the corresponding number of preferences. When not
indicated the number of preferences is equal to the number of examples.

Dataset # Classes Training set size Test set size # Features

tic-tac-toe 2 766 192 27

breast-cancer 2 545 137 90

mnist-49 2 11025 2757 779

segment 7 1848 (11088) 462 19

w8a 2 39799 9950 300

vehicle 4 677 (2031) 169 18
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Fig. 1. Value of the game on the breast-cancer dataset varying both the sample size
and λ. (Color figure online)

Table 1 summarizes the information of the selected datasets. Note that, since
segment is a multiclass dataset, the number of preferences correspond to the
number of examples, multiplied the number of classes (minus 1), for a total of
11088 preferences.

All experiments concerning the LMPG method have been carried out using
the same procedure. We set T = 500, λ have been tested in the set of values
{0, 0.01, 0.02, 0.1, 0.2} and we considered as sample size 5%, 10%, 15% and 20%
of the whole number of preferences.
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Table 2. Performance of all proposed methods against SVM with polynomial kernel.
For each dataset the best results are highlighted in boldface. Missing values (−)
indicate the computation did not end in a reasonable amount of time.

Method Hyper-parameters Accuracy Precision Recall F1

b
r
e
a
s
t

LMPG∗ 0.9635 0.9625 0.9585 0.9605

LMPG-α 0.9635 0.9625 0.9585 0.9605

LMPG λ = 0.1, s = 0.05|P | 0.9708 0.9685 0.9685 0.9685

SVM C = 1, d = 2 0.9708 0.9685 0.9685 0.9685

t
-
t
-
t

LMPG∗ 1.0000 1.0000 1.0000 1.0000

LMPG-α 1.0000 1.0000 1.0000 1.0000

LMPG λ = 0.01, s = 0.2|P | 1.0000 1.0000 1.0000 1.0000

SVM C =10, d = 5 1.0000 1.0000 1.0000 1.0000

m
n
i
s
t
-
4
9 LMPG∗ 0.9935 0.9935 0.9935 0.9935

LMPG-α 0.9935 0.9935 0.9935 0.9935

LMPG λ = 0.01, s = 0.2|P | 0.9938 0.9938 0.9938 0.9938

SVM C = 103, d = 4 0.9935 0.9935 0.9935 0.9935

s
e
g
m
e
n
t

LMPG∗ 0.9524 0.9561 0.9569 0.9560

LMPG-α 0.9545 0.9600 0.9586 0.9587

LMPG λ = 0.1, s = 0.15|P | 0.9654 0.9692 0.9682 0.9684

SVM C = 10, d = 2 0.9632 0.9670 0.9670 0.9665

w
8
a

LMPG∗ – – – –

LMPG-α – – – –

LMPG λ = 0.01, s = 0.2|P | 0.9853 0.9340 0.7947 0.8502

SVM C = 10, d = 2 0.9861 0.9147 0.8308 0.8677

v
e
h
i
c
l
e

LMPG∗ 0.8471 0.8294 0.8289 0.8290

LMPG-α 0.7706 0.7738 0.7686 0.7651

LMPG λ = 0.01, s = 0.2|P | 0.8647 0.8486 0.8518 0.8501

SVM C = 10, d = 2 0.8095 0.7662 0.7662 0.7652

The plots presented in Figs. 1 and 2 describe how the value of the game
changes according to the dimension of the sample size, and λ. The baseline (red
line) describes the optimal value of the game obtained by LMPG∗, the continuous
curve is the value given by LMPG−α, while the dashed one is the value obtained
using LMPG.

Both figures exhibit the same pattern: the game values produced using λ = 0
are significantly worse than the one achieved by LMPG∗. The best value for λ to
obtain small values of the game seems to be 0.01. It is possible to observe that,
with sufficient sample size and a small λ > 0, the approximated value obtained
thanks to sampling and without the optimization of α is close enough to the
optimal value and thus is able to perform well also in classification tasks. These
findings reflect what was supposed theoretically in previous sections, especially
about the values’ magnitude ordering.
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Fig. 2. Value of the game on the tic-tac-toe dataset varying both the sample size
and λ. (Color figure online)

Figure 3 presents the accuracy results obtained by our algorithms using dif-
ferent sample sizes and λ. These charts show a pattern that follows the previous
findings: generally speaking, a small λ produces the best results and again the
sample size seems to be relevant to obtain good results, although in segment
best results are obtained using the sample size equal to the 15% of the dataset.

The proposed strategies have been compared to soft SVM. SVMs have been
validated using 5-fold validation: C has been validated in the set {1, 10, 102, 103}
and the degree of the homogeneous polynomial kernel in the range [1,5]. For
our methods we used the best performing kernel (during validation) for SVM.
Table 2 shows the comparison of the proposed technique with the λ and sam-
ple size that produce the best results against validated SVM. It is possible to
observe that the proposed strategy performs better or as good as SVM in 4
out of 5 datasets (tic-tac-toe, mnist-49, segment and breast-cancer). The
ranker produced by averaging over different strategies performs almost always
(except on tic-tac-toe) better than the hypothesis obtained considering the
optimal strategy distribution. This phenomenon can be explained by the fact
that the optimal distribution corresponds to solving a hard margin problem,
while the averaged one might represent a more soft solution. Note that this can
be correlated with the low values for C obtained when validating SVM.
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Fig. 3. Accuracy of the proposed method varying the sample size (curves) and the
value of λ (x axis) on (a) breast-cancer, (b) tic-tac-toe, (c) mnist-49, (d) segment,
(e) w8a, and (f) vehicle.

6 Conclusions

We proposed a principled game theoretical framework used for the multi-class
classification task. We presented the mathematical formulation of a prefer-
ence learning model able to solve the multi-class classification task as a sin-
gle optimization problem. To reduce the complexity of the problem, we pre-
sented optimization strategies that exploit typical properties of reinforcement
learning and solves reduced-size subproblems. In the experimental section, the
proposed framework has exhibited state-of-the-art results. Among the future
research paths we plan to explore, we aim to study the efficiency of the pro-
posed algorithms. As already pointed out, using uniform sampling leads to a
highly parallelizable version of the algorithm, yet results are not as good as
those obtained by using adaptive sampling for preferences selection. One aspect
of the theoretical framework that needs to be further developed is the study of
theoretical bounds limiting the differences in the value of the games when using
different approaches. Empirical results suggest that these bounds can be strict
provided mild assumptions, thus our technique can be easily applied to other
domains.
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