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Abstract. Obvious strategyproofness (OSP) has recently emerged as
the solution concept of interest to study incentive compatibility in pres-
ence of agents with a specific form of bounded rationality, i.e., those
who have no contingent reasoning skill whatsoever. We here want to
study the relationship between the approximation guarantee of incentive-
compatible mechanisms and the degree of rationality of the agents, intu-
itively measured in terms of the number of contingencies that they can
handle in their reasoning. We weaken the definition of OSP to accommo-
date for cleverer agents and study the trade-off between approximation
and agents’ rationality for the paradigmatic machine scheduling prob-
lem. We prove that, at least for the classical machine scheduling problem,
“good” approximations are possible if and only if the agents’ rationality
allows for a significant number of contingencies to be considered, thus
showing that OSP is not too restrictive a notion of bounded rationality
from the point of view of approximation.
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1 Introduction

Mechanism design is an established research field, by now rooted in a number
of academic disciplines including theoretical computer science and Al. Its main
objective is that of computing in presence of selfish agents who might misguide
the designer’s algorithm if it is profitable for them to do so. The concept of
strategyproofness (SP-ness) (a.k.a., truthfulness) ensures that the algorithm and
the agents’ incentives are compatible and computation is indeed viable.

SP is based on the assumption of full rationality: agents are able to consider
all possible strategies and their combinations to reason about their incentives.
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Nevertheless, this assumption is seldom true in reality and it is often the case
that people strategize against mechanisms that are known to be truthful [4]. One
then needs a different notion to compute in the presence of agents with bounded
rationality. The problem here is twofold: how can we formalize strategyproofness
for agents with (some kind of) bounded rationality? If so, can we quantify this
bounded rationality and relate that to the performances of the mechanisms?

The first question has been recently addressed by Li [18], who defines the
concept of obvious strategyproofness (OSP-ness); this notion has attracted quite
a lot of interest in the community [3,6,12-14,17,19,21,24]. Here, the mechanism
is seen as an extensive-form game; when a decision upon the strategy to play
has to be made, it is assumed that the reasoning of each agent i is as simple
as the following: the worst possible outcome that she can get when behaving
well (this typically corresponds to playing the game according to the so-called
agent’s true type) must be at least as good as the best outcome when misbehaving
(that is, following a different strategy). Best/Worst are quantified over all the
possible strategies that the players playing in the game after ¢ can adopt. Li [18§]
proves that this is the right solution concept for a model of bounded rationality
wherein agents have no contingent reasoning skills; rather than thinking about
the possible cases of if-then-else’s, an agent is guaranteed that honesty is the
best strategy to follow no matter all the contingencies.

Given the OSP formalization of bounded rationality, we focus, in this work,
on the second question. On the one hand, OSP is too restrictive in that people
might be able, within their computational limitations, to consider some contin-
gent reasoning, that is, a few cases of if-then-else’s. On the other hand, OSP
mechanisms appear to be quite limited, with respect to SP ones, in terms of
their approximation guarantee [12,13]. The question then becomes:

Can we quantify the trade-off between the “degree” of bounded
rationality of the agents and the approximation guarantee of the
mechanisms incentivizing them?

Our Contribution. The concept of lookahead is discussed in the literature in
the context of (strategies to play) games, and agents with limited computational
capabilities. De Groot [9] found that all chess players (of whatever standard)
used essentially the same thought process — one based upon a lookahead heuris-
tic. Shannon [23] formally proposed the lookahead method and considered it a
practical way for machines to tackle complex problems, whilst, in his classical
book on heuristic search, Pearl [20] described lookahead as the technique being
used by “almost all game-playing programs”.

We propose to consider lookahead as a way to quantify bounded rationality,
in relation to OSP. Whilst in OSP the players have no lookahead at all, we here
consider the case in which the agents have lookahead k, k going from 0 (OSP)
to n — 1 (SP). Intuitively, k£ measures the number of players upon which each
player reasons about in her decision making. We allow the set of k£ “lookahead”
players to be player and time specific (that is, different players can reason about
different competitors, and the set of players is not fixed but may change at
different time steps of the mechanism). So when agent ¢ has to decide upon the



Obvious Strategyproofness, Bounded Rationality and Approximation 79

strategy to play, she will consider all the possible cases (strategies) for these k
agents at that time (& la SP) and a no-contingent reasoning (& la OSP) for the
others. This definition, which is somewhat different from that of the next k moves
in the game, is dictated by different subtleties of extensive-form mechanisms. In
particular, these k agents can be chosen in different ways to cover diverse angles.
(A more technical discussion is deferred to Sect.2.) In absence of other formal
definitions of incentive compatibility for different degrees of rationality, we regard
our definition of OSP with k-lookahead (k-OSP, for short) as a major conceptual
contribution of our work.

We then look at the trade-off between the value of k and the approxima-
tion guarantee of k-OSP mechanisms. We focus of the well-studied problem of
machine scheduling, where n agents control related machines and the objec-
tive is to schedule a set of m (identical) jobs to the machines so to mini-
mize the makespan (i.e., the latest machine’s completion time). In our main
technical contribution, we prove a lower bound on approximation guarantee of
T(n) = 7”“2*‘24"_’“, thus providing a smooth transition function between the
known approximation factors of y/n for OSP mechanisms [12] and 1 for SP
mechanisms [2]. We also show that this bound is tight, at least for three-values
domains. (Such a restriction is common to the state of the art of OSP mech-
anisms [12].) Our lower and upper bounds significantly extend and generalize
to k-OSP the analysis done in [12] for OSP mechanisms. Specifically, the lower
bound needs to identify some basic properties of the function 74 (n) and prove
what features the implementation tree of a mechanism (i.e., extensive-form game
induced by it) with good approximation guarantee must have. Our upper bound
instead defines a mechanism (algorithm, implementation tree and payment func-
tion) which combines a descending auction phase, to identify a certain number
of slowest machines, with an ascending auction to find out the k£ + 1 fastest
machines. The analysis of the approximation guarantee of our k-OSP mecha-
nism is significantly more involved than the one used in [12] for k£ = 0.

The main message of our work is that having more rational agents only
slightly improves the approximation guarantee of incentive-compatible mecha-
nisms, at least in the case of machine scheduling. In fact, to have a constant
approximation of the optimum makespan one would need agents with w(1)-
lookahead. We can then conclude that, in the cases in which the agents are
not that rational, OSP is not that restrictive a solution concept to study the
approximation of mechanisms for agents with bounded rationality.

Related Work. Recent research in algorithmic mechanism design has suggested
to focus on “simple” mechanisms to deal with bounded rationality [7,16,22]. OSP
provides a formal definition for simple mechanisms, by focusing on a specific
aspect of bounded rationality (see references above for the body of work on this
concept). However, different concepts of simple mechanisms have been recently
adopted in literature, most prominently posted-price mechanisms have received
great attention and have been applied to many different settings [1,5,8,10,11].
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2 The Definition

We have a set N of n agents; each agent ¢ has a domain D; of possible types —
encoding some feature of theirs (e.g., their speed). The actual type of agent i is
her private knowledge.

An extensive-form mechanism M is a triple (f, p, T), where f is an algorithm
that takes as input bid profiles and returns a feasible solution, p = (p1,...,pn)
is the payment function, one for each agent, and 7 is an extensive-form game,
that we call implementation tree'. Intuitively, 7 represents the steps that the
mechanism will take to determine its outcome. More formally, each internal node
u of T is labelled with a player S(u), called the divergent agent at u, and the
outgoing edges from u are labelled with types in the domain of S(u) that are
compatible with the history leading to u; the edge labels denote a partition of
the compatible types. We denote by D;(u) the types in the domain of i that
are compatible with the history leading to node u € 7. The tree models how
M interacts with the agents: at node u the agent S(u) is queried and asked to
choose an action, that corresponds to selecting one of u’s outgoing edges. The
chosen action signals that the type of S(u) is in the set of types labeling the
corresponding edge. The leaves of the tree will then be linked to (a set of) bid
profiles; the mechanism will return (f,p) accordingly; in other words, each leaf
corresponds to an outcome of the mechanism. (Observe that this means that the
domain of f and p is effectively given by the leaves of 7.)

We use b to denote bid profiles, so that b; stands for the type that i signalled
to the mechanism. For simplicity, we use f(b) and pi(b),...,p,(b) to denote
the outcome of (f,p) for the leaf of 7 to which b belongs. We assume that agents
have quasi-linear utilities, that is, agent i of type ¢ who signals (i.e., plays the
game 7 according to) b has utility u;(b, b_;) = p;(b) — t(f(b)), where, with a
slight abuse of notation, ¢(f(b)) is the cost that player i pays to implement the
outcome f(b) when her type is ¢, and b_; is the declaration vector of (i.e. types
signalled by) all agents except ¢. (In general, we let by = (b;);ca for A C N.)

Figure 1 gives an example of an implementation tree where three players have
a two-value domain {L, H}. The root partitions the domain of machine 1 into
L and H. If we let v denote the left child of the root, then D;(v) = {L} as type
H is no longer compatible with the history of v.

We now define OSP with k-lookahead. OSP informally implies that whenever
an agent is asked to diverge, she is better off acting according to her true type
in any possible future scenario: the worst possible outcome after selecting her
true type is at least as good as the best possible outcome after misreporting her
type, at that particular point in the implementation tree. This models agents
with no contingent reasoning, i.e., those unable to think through hypothetical

! The literature on mechanism design usually omits 7 from the definition of mecha-
nism, since it often focuses only on specific classes of mechanisms defined by a given
implementation tree (e.g., direct revelation mechanisms, posted price mechanisms).
However, it turns out that for OSP (and k-OSP) the design of the extensive-form
implementation is essential to define the incentive constraints.
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scenarios such as “if player 2 will play L and player 3 will play L, then I prefer L;
if they will play L and H respectively, then I prefer L, too; ans so on”. In OSP,
agent thinking is gross-grained: “If I play L, then the outcome will correspond
to leaves Iy, ...,l4, otherwise it will correspond to leaves I5,...,ls”.

However, it would be possible that agents have some limited ability of doing
contingent reasoning: they can think through hypothetical scenarios correspond-
ing to the action profiles of some players, but not all of them. Specifically, we
would like to model a player able to reason as follows: “If player 2 will play L, I
know that by choosing L I will finish either in {1 or in [, otherwise I will finish
in I5 or lg; if player 2 will play R, then my choice will be between the outcomes
corresponding to I3 and I4 and the one corresponding to I; and Ilg”. That is, we
here consider a more finely grained partition of the leaves of the tree, allowing
for some steps of contingent reasoning by the divergent agent. Intuitively, our
definition will allow the agent to reason about the moves of k agents; informally,
OSP with k-lookahead then implies that whenever an agent is asked to diverge,
she is better off acting according to her true type for any fized choice of strate-
gies of the k agents she reasons about (just like truthfulness) and any possible
future scenario of the actions of the remaining n — k — 1 agents.

For the formal definition, we need to introduce some more notation. We call
a bid profile b compatible with u if b is compatible with the history of u for all
agents. We furthermore say that (¢,b_;) and (b, b’ ;) diverge at u if i = S(u)
and t and b are labels of different edges outgoing u (we sometimes will abuse
notation and we also say that t and b diverge at u). E.g., (L, H, H) and (L, L, H)
are compatible with node v on Fig. 1 and diverge at that node, whilst (L, L, H)
and (L, L, L) are compatible with v but do not diverge at v.

Fig. 1. An implementation tree with three players with two-value domains {L, H};
each player separates the domain types upon playing; at each leaf I; the mechanism
computes f(b) and p(b), b being the bid vector at [;.

For every agent 7 and types t,b € D;, we let uf;’b denote a vertex u in the
implementation tree T, such that (¢, b_;) and (b, b”_;) are compatible with u, but
diverge at u for some b_;, b’ ; € D_;(u) = x;»;D;(u). Note that such a vertex

might not be unique as agent ¢ will be asked to separate ¢ from b in different
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paths from the root (but only once for every such path). We call these vertices
of T tb-separating for agent i. For example, the node r in the tree in Fig.1 is a
L H-separating node for agent 1; while v and w are two L H-separating node for
agent 2. These nodes are crucial, as at any point in which an agent distinguishes
two different types we will need to add a (set of) constraints to account for her
incentives. We finally denote i’s lookahead at ujf, as Ly (uj,), that is, a set of
(at most) k agents that move in 7 after i. (When k is clear from the context,
we simply let £(u) be the lookahead of agent S(u) at u.)

Definition 1 (OSP with k-lookahead). An extensive-form mechanism M =
(f,T,p) is OSP with k-lookahead (k-OSP, for short) given Lk(ui’b), if for all 4,
t,b € D;, t being i’s true type, u;b €7,bg € DK(uf;,b) and by, bl € DT(“i,b)f
1t holds that

ui(t, bK, bT) Z ui(b, bK, b{T)’

where K = Ly(uy,), T =N\ (K U{i}) and Da(u) = X jeacnD;(u).

In words, a mechanism is OSP with lookahead if each agent is willing to behave
truthfully at each node of the tree in which she interacts with the mechanism,
provided that she exactly knows the types of agents in K (bg is the same either
side of the inequality) but has no information about agents in 7', except that
their types are compatible with the history.

We remark that with £ = 0 we get the definition of OSP — wherein K is
empty — and with K = n — 1 we have truthfulness, T being empty.

Discussion. The set £ (u) in the definition above crucially captures our notion
of lookahead. We highlight the following features of our definition. The size of set
L (u) tells us how many players, agent S(u) can contingently reason about. This
means that the boundaries of k£ indeed go from 0, which corresponds to OSP,
to n — 1, which is equivalent to strategyproofness. In this sense, our definition
represents a smooth transition between the two notions, measuring the degree
of rationality of the players. For example, consider Fig.1 and focus on player
1; when k& = 0 then our notion is exactly OSP and the constraints require to
compare the utility of 1 in the leaves [y, ..., l4 with her utility in [5, ..., ls; when,
instead, k = 1 and £4(r) = {2} then the constraints compare the utility of 1 in
the leaves [y, ly with that in l5,ls (this corresponds to the case in which 2 plays
L) and the utility of 1 in the leaves l3,l4 with that in l7,ls (this corresponds to
the case in which 2 plays H); finally, for £k = 2 we get truthfulness as we need to
compare the utility of 1 in [; and l44; for j = 1,...,4. We note that intermediate
values of k are consistent with the vast literature stating that human reasoning
only has limited depth: for example, it is known that in chess most professional
players are usually able to think ahead few steps only [9]. We remark that k-OSP
differs from k-level reasoning: the latter considers a Nash equilibrium in which
an agent plays a best response to what happens in the next k steps; the former
considers a(n obviously) dominant strategy.

The set L (u) depends on u; this means that the number and the identities
of players on which S(u) can reason about can (in principle) adaptively depend
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on the actual position in the implementation tree. This in particular allows us
to also capture extensive-form games where the choice of the players to query
is adaptive and a definition of lookahead where the players on which S(u) can
reason about are (a subset of) those who move next: this is for example the
case in many multi-player board games in which the player can take actions
that change who is the next player to play, e.g., by blocking some opponents or
reversing the order of play.

Note that whenever Ly (u) = Li(v) for S(u) = S(v) then we model the case
in which the lookahead is independent from the actual implementation tree and
only depends on S(u)’s prior knowledge of the other agents.

Differently from the examples of chess and multi-player board games in which
a player only looks ahead to opponents that play in the next rounds, our defi-
nition of L (u) allows this set to contain also players that will play far away in
the future. This clearly makes our definition more general.

Moreover, we observe that this definition of £ (u) also allows us to overcome
a paradox that would arise if one defines the set of opponents that one looks
ahead only with respect to the implementation tree. For the sake of argument,
let us fix k = 1. Consider an adaptive implementation tree, where at node
different actions taken by agent S(u) correspond to different players taking the
next move. As a limit case, one can imagine that S(u) has n—1 different available
actions and each of them enables a different opponent to react (e.g., this is the
case for those board games where each player can decide who plays next). Hence,
assuming that S(u) can look ahead to players moving in the next step means
that S(u) has the ability to look ahead to all of them. Hence, in this setting
limited look-ahead is not limiting at all the ability of contingent reasoning of
S(u) (that is, in this setting every mechanism that is 1-OSP according to this
tree-only definition of lookahead is actually SP).

This is not surprising, since in this setting we are giving each agent i the
chance to “reason about” each opponent regardless of the action that ¢ takes.
A more realistic alternative would be to assume that the agent exactly knows
the actions of an opponent j only when ¢ takes an action that enables j to be
the next player to play (e.g., in the board game example described above, the
current player ¢ is assumed to know which actions player j will take when i
chooses j as the next player to play, but ¢ has no hint about the actions of j if
she chooses k # j as the next player to play). However, in this case ¢ would have
to reason about all the possible action combinations of all the different players
that move after her; this might not weaken OSP and indeed means that the
agent is not more rational at all. In fact, a careful inspection shows that, in this
case, 1-OSP according to this alternative definition of tree-only lookahead has
the same constraints of OSP.

Anyway, it must be highlighted that in non-adaptive trees, i.e., trees where
the identity of the next player to move after S(u) is the same irrespectively
of S(u)’s action, tree-only lookahead would indeed weaken OSP and effectively
capture a more rational agent capable of one step of contingent reasoning. Since
this is a special case of our notion, our lower bound continues to hold.
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Our definition requires that an agent with k-lookahead is capable of exactly
pinpointing the type of the agents in K. This is in fact the same assumption that
is implicitly done in the classical definition of truthfulness. Moreover, this makes
our definition of k-OSP mechanism a special case of mechanisms implementable
with partition dominant strategy as defined in [24]. Consequently, our definition
satisfies a natural generalization of the standard decision theory axioms of mono-
tonicity, continuity and independence, necessary to model the reasoning of agents
with a knowledge of the state of nature (e.g., the type profiles) limited only to
partitions of the set of these states (e.g., the type profiles that are compatible
with the history of the mechanism). We also observe that this requirement only
reinforces our lower bound below (even if they were so rational to do that, still
the approximation guarantee would be a constant only for non-constant values
of k). However, we leave open the problem of understanding whether our upper
bound is tight even for a weaker notion of rationality where the types of the
agents in K are not fully known but only have further restricted domains (e.g.,
an agent with k-lookahead only knows the next ¢ actions, for some ¢ > 0, that
will be taken by the agents in K).

3 The Case of Machine Scheduling

We now study the relationship between lookahead and approximation for the well-
studied problem of machine scheduling. Here, we are given a set of m identical
jobs to execute and the n agents control related machines. Agent i’s type is a job-
independent processing time t; per unit of job (equivalently, an execution speed
1/t; that is independent from the actual jobs). The algorithm f must choose a
possible schedule f(b) = (f1(b),..., fn(b)) of jobs to the machines, where f;(b)
denotes the job load assigned to machine ¢ when agents take actions signalling b.
The cost that agent ¢ faces for the schedule f(b) is ¢;(f(b)) = t; - fi(b). We focus
on algorithms f* minimizing the makespan, i.e., f*(b) € arg miny max?_; b;(x); f
is a-approximate if it returns a solution with cost at most a times the optimum.

3.1 Lower Bound

Let 7(n) = 7W. That is, 7% is a function of n such that n = 7% (n) (7% (n) +
k). Observe that 79(n) = y/n and 7,,—1(n) = 1. In this section, we prove the
following theorem, that states the main result of our work. Henceforth, for sake
of readability, let us denote 7 := 7 (n).

Theorem 1. For the machine scheduling problem, no k-OSP mechanism can be
better than T-approxzimate, regardless of the value of the sets Li(-). This even
holds for homogeneous three-value domains, i.e., D; = {L, M, H} for each i.

Proof. Consider m = n. Moreover, consider a domain D; = {L, M, H} for every

i,witthr[ﬁWLandef-mM.



Obvious Strategyproofness, Bounded Rationality and Approximation 85

The proof will work in three steps. First, we prove some algebraic property
of 7 (cf. Lemma 1). We then characterize implementation tree and algorithm of
a k-OSP mechanism with approximation better than 7 (cf. Lemma 2). Finally,
we identify an instance for which any such mechanism cannot return an approx-
imation better than 7 — a contradiction.

Lemma 1. 7 =c+ 6, with§ € {O wherec:max{aeN:kS"_—CC?},

=

) Tk—1 |

Suppose now that a mechanism M with approximation ratio p < 7 exists for
the setting at the hand, and let 7 be its implementation tree. Let us rename the
agents as follows: Agent 1 is the 1st distinct agent that diverges in 7; because
of its approximation guarantee, the mechanism must have at least one divergent
agent for our domain. We now call agent 2, the 2nd distinct agent that diverges
in the subtree of 7 defined by agent 1 taking an action signalling type H;
if no agent diverges in this subtree of 7 we simply call 2 an arbitrary agent
different from 1. More generally, agent 7 is the 7th distinct agent that diverges, if
any, in the subtree of 7 that corresponds to the case that the actions taken by
agents that previously diverged are signalling their type being H. As above, if no
agent diverges in the subtree of interest, we just let ¢ denote an arbitrary agent
different from 1,2,...,7 — 1. We denote with u; the node in which ¢ diverges in
the subtree in which all the other agents have taken actions signalling H; if 4
got her id arbitrarily, then we denote with u; a dummy node. We then have the
following lemma.

Lemma 2. Any k-OSP M which is p-approximate, with p < T, must satisfy the
following conditions:

1. For everyi <n+1—[7| —k, if agent i diverges at node u;, it must diverge
on M and H.

2. For everyi <mn— |7] —k, if agent i diverges at node u; and takes an action
signalling type H, then M does not assign any job to i whenever the action
of agents in L(u;) are all signalling H.

Proof. Let us first prove part 1. Suppose that there is i <n+ 1 — [7] — k such
that at node w; i does not diverge on M and H (i.e., any action signalling M
is signalling also H). Then it must diverge on L and M, since u; must have at
least two outgoing edges (since 7 is assumed to diverge at u;), and the remaining
edges can only be labeled with L. Consider the type profile x such that x; = M,
and z; = H for every j # i. Observe that, by definition of w;, z; € D;(u;) for
every agent j. The optimal allocation for the type profile x assigns all jobs to
machine 4, with cost OPT(x) = mM. Since M is p-approximate, then it also
assigns all jobs to machine i. Indeed, if a job is assigned to a machine j # 4, then
the cost of the mechanism would be at least H > 7-mM > p- OPT(x), that
contradicts the approximation bound.

Consider now the profile y such that y; = L, y; = H for every j < ¢
and j € L(u;), and y; = L for every j > i such that j ¢ L(u;). (We
stress that our lower bound holds no matter the definition of the sets L£(u;).)



86 D. Ferraioli and C. Ventre

Observe that, as for x, we have that y; € D;(u;) for every agent j. It is not
hard to see that OPT(y) < {ﬁ—‘ L. Let p be the number of jobs that M

assigns to machine ¢ in this case. Since M is p-approximate, then y < m. Indeed,
if 4 = m, then the cost of the mechanism contradicts the approximation bound,

since mL > T [ L > p-OPT(y), where we used that

. m_
n—i—k+1

== Rl
T(r+ k) + (r = 0)

=7 T+1-6

<7(r+k)=m,

where the last inequality follows from § < — - k 7 by Lemma 1.

Hence, for the mechanism to be OSP with k lookahead we need that both
the following conditions are satisfied: (i) p;(x) — mM > p;(y) — uM, and
(ii) pi(y) — nL > p;i(x) — mL, where p;(x) and p;(y) denote the payment that
i receives from the mechanism M when agents’ actions are signalling x and y,
respectively. However, this leads to the contradiction that L > M.

Let us now prove part 2. Suppose that there is i <n—|7] —k and x_;, with
z;j € Dj(u;) for every agent j and x; = H for every j € L(u;), such that if ¢
takes an action signalling type H, then M assigns at least a job to . According
to part 2, machine i diverges at node u; on H and M.

Consider then the profile y such that y; = M, y; = H for j < i+ k with

i # j,and y; = L for j > i+ k. Observe that OPT(y) = [m—‘ - L. Since

M is p-approximate, then it does not assign any job to machine i, otherwise its

cost would be at leastMZTh"ﬂL>T — k—‘L>p OPT(x).

Hence, for the mechanism to be OSP with k-lookahead we need that both the
following conditions are satisfied: (i) p;(x) — H > p;(y) — 0, and (ii) p;(y) — 0 >
pi(x) — M. However, this leads to the contradiction that H < M. O

Roughly speaking, Lemma 2 states that any k-OSP mechanism must have
an implementation tree such that the first n — | 7| — k agents interacting with
the mechanism, must be asked if their type is H, and, in the case of affirmative
answer, they must not receive any job.

We next observe that such a mechanism cannot have approximation lower
than 7, contradicting our hypothesis that M was k-OSP and p-approximate.

To this aim, assume first that for each agent i <n — |7| — k diverges at u;.
We consider the profile x such that x; = H for every i. The optimal allocation
consists in assigning a job to each machine, and has cost OPT(x) = H. Accord-
ing to Part 2 of Lemma 2, since M is supposed to be k-OSP, if machines take
actions that signal x, then the mechanism M does not assign any job to machine
i, for every i < n — |7] — k. Hence, the best outcome that M can return for x
consists in fairly assigning the m jobs to the remaining | 7| +% machines. Observe
that, if § = 0, i.e., 7 is an integer, then each machine receives 7 job, and thus
the cost of M is at least 7TH > pOPT(x), which contradicts the approximation
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ratio of M. Otherwise, there is at least one machine that receives at least [7]
jobs, since |7] (|7] + k) < 7 (7 + k) = m. In this case, the cost of M is at least
[T|H > 7H = TOPT(x), contradicting again the approximation ratio of M.
Consider now the case that there is 1 < i <n—|7| —k that does not diverge
at u;. It is not hard to see that this would contradict the approximation of M
given that it would be unaware of the type of too many machines. O

3.2 Upper Bound

We next show that for every k£ and every possible choice of lookahead sets
{Lr(u)},cr, the bound above is tight, for three-values domains, ie., D; =
{L;, M;, H;} for every i. To this aim, consider the following mechanism My,
that consists of a Descending Phase (Algorithm 1) followed by an Ascending
Phase (Algorithm 2). The algorithmic output is augmented with a payment, to
agent 7, of M; for each unit of job load received.

1 Set A= [n], and t; = max{d € D;}

2 while |A| > [7] + k do

3 Set p = maxaca{ta} and ¢ = min{a € A: t, = p}

Ask machine 7 if her type is equal to p

if yes then remove i from A, and set t; = p

else set t; = max{t € D;: t < p}

Algorithm 1: The descending phase keeps in A the machines that are still
alive and in t; the maximum non-discarded type for each agent; then proceeds
by removing from A the slowest machines, until there are only [7] 4 & left.

(=

Set s; = min{d € D;}
Set B=10
while |B| < k do

Set p = mingca\p{sa} and i = min{a € A\ B: s, = p}

Ask machine 7 if her type is equal to p

if yes then Set t; = p and insert i in B

else set s; = min{d € D;: d > p}
Consider the profile z with 2; =¢; for s € B and 2; = minyg A tw forj€ A\ B
Let f*(z) = (f{(2));c4 be the optimal assignment of jobs on input profile z
Assign f7(z) jobs to each machine j € A
Algorithm 2: The ascending phase adds to B the k fastest machines; then it
computes the optimal assignment by using the revealed type for machines in
B and a suitably chosen placeholder type for the remaining machines.

© 00 N O A W N
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In case of multiple optimal assignments in line 9 of Algorithm 2, we assume
that the mechanism returns the one that maximizes the number of jobs assigned
to machines in B. This is exactly the solution returned by the optimal greedy
algorithm, and thus can be computed in polynomial time.
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Roughly speaking, mechanism M), works by discovering in the descending
phase the n — | 7] — k slowest machines and discarding them (i.e., no job will be
assigned to these machines). (Our mechanism satisfies the conditions of Lemma 2
thus showing that our analysis is tight for both approximation and design of the
mechanism.) The ascending phase then serves to select a good assignment to the
non-discarded machines. To this aim, the mechanism discovers in the ascending
phase the k + 1 fastest machines. The assignment that is returned is then the
optimal assignment to the non-discarded machines in the case that the type of
the k41 fastest machines is as revealed, whereas the type of the remaining non-
discarded machines is supposed to be as high as possible, namely equivalent to
the type of the last discarded machine (i.e., the fastest among the slow machines).

Proposition 1. Mechanism My, is k-OSP if D; = {L;, M;, H;} for each i.
Proof. We prove that M; - f;(Mg(x)) — z; - fi(Mg(x)) > M; - fi( Mp(y)) — z; -

fi(My(y)) for each machine ¢, for each node w in which the mechanism makes
a query to i, for every z.(, such that z; € D;(u) for j € L(u), for every z; and
y; that diverge at w, for each pair of type profiles x,y such that z; € D;(u),
y; € D;(u) for every agent j and z; = y; = z; for every j € L(u).

This is obvious for z; = M;. We next prove that z; = H; implies f;(My(x)) <
fi(My(y)), that immediately implies the desired claim. Let us first consider a
node u corresponding to the descending phase of the mechanism. In this case,
r; = p, where p is as at node u. Moreover, in all profiles as described above there
are at least [7] 4+ k machines that either have a type lower than p, or they have
type p but are queried after i. However, for every x_; satisfying this property,
we have that f;(My(x)) =0 < fi(My(y)) for every alternative profile y.

Suppose now that node u corresponds to the ascending phase of the mecha-
nism. In this case, y; = p, where p is as at node u. Observe that f;(My(y)) =
T Wi 2o(uys Z—ic(u)), Where f(yi, Zo(u)s Z—i,c(u)) is the number of jobs assigned
to machine i by the optimal outcome on input profile (yi, Z2(v), Z—i,£(u))s Z—i,c(u)
being such that Z; = maxyea ty for every j € A\ ({i} U L(uw)).

Observe that for every x as described above, it must be the case that z; > y;
for every j € A\ L(u). Hence, we distinguish two cases: if min;ec 4\ () z; = @i,
then fi(My(x)) = f(zisZo0u) 2-icw) < FiWir 2o Z2-icw) = [ilMe(y));

if instead min;e o\ £(u) T; = T, for some k # i, then

[ilMy (%) = f5 (@, 2o0), 2=k, c(w) < Fi Tk Zo(u)s 2ok, o(u))
f (wa,C —i,ﬁ(u)) = fz(Mk(y))7
where we used that z_j, £(,) = Z_; £(4) and the inequalities follow since: (i) in
the optimal outcome the fastest machine must receive at least as many jobs as

slower machines; (ii) in the optimal outcome, given the speeds of other machines,
the number of jobs assigned to machine 7 decreases as its speeds decreases. 0O

Proposition 2. Mechanism My, is (%m_l [ﬂ) -approzrimate.
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Proof (Sketch). We denote with OPT(x) the makespan of the optimal assign-
ment when machines have type profile x. We will use the same notation both if
the optimal assignment is computed on n machines and if it is computed and on
[7] 4+ k machines, since these cases are distinguished through the input profile.

Fix a type profile x. Let A and B as at the end of the mechanism when
agents behave according to x. Let § be the smallest multiple of |A| such that
B > > ea OPT(x). Moreover, let ¢ = min g4 t;. We define the profile y as
follows: y; = w for every i € A and y; = t otherwise, where w is chosen so that
% -w =max;jec (z; - OPT;(x)). Consider then the assignment a that assigns
jobs equally split among agents in A and m — (3 jobs equally split among agents
not in A. It is immediate to see that OPT(x) > M S(a,y), where M S(a,y) is
the makespan of the assignment a with respect to the type profile y.

Let M(x) be the makespan of the assignment returned by our mechanism
if agents behave according to x. Then, M(x) is equivalent to OPT(z), where
z is such that 2; = z; for j € B and 2; = t for j € A\ B. Let a be the
smallest multiple of |B| such that a >}, 5 OPT;(z). We define the profile y
as follows: g; = w for every ¢« € B and y; = ¢ otherwise, where w is chosen so that
1] W = maxjep (xj - OPT;(2z)). Consider then the assignment a that assigns o
jobs equally split among agents in B and m — « jobs equally split among agents
in A\ B. Tt is immediate to see then M(x) = OPT(z) = M S(4a,y). The theorem

then follows, since it occurs that 1\31;?;1(&) < mtktlrl=lrg O
Y) m

The next corollary follows by simple algebraic manipulations.

Corollary 1. Mechanism My, is ([T] + 1)-approzimate for m > [7]| (k + [7])
and the approzimation tends to [T] as m increases.

4 Conclusions

We have studied the relationship between the bounded rationality of the agents
and the approximation guarantee of mechanisms incentivizing these agents. We
have relaxed the popular notion of OSP [18] to allow for more fine grained notions
of rationality. For machine scheduling, we proved that more rational agents do
not help in getting close to the optimum, unless the level of rationality is signif-
icant to a point where the meaning of bounded becomes questionable. On one
hand, our findings motivate the focus on OSP for future work on the approxima-
tion guarantee of mechanisms for agents with bounded rationality. On the other
hand, one might wonder whether similar results hold also for different optimiza-
tion problems. To this aim, we observe that the techniques that we use in our
proof have a resemblance with the ones used in [13] for proving the inapprox-
imability of OSP mechanisms for the facility location problem (with money).
Hence, we believe that results similar to the ones we give for machine scheduling
may be proved for facility location. As for other problems, we highlight that
no approximation result is known even for OSP mechanisms. In particular, for
binary allocation problems (that have been considered already in [18]), only a
characterization of optimal OSP mechanism is known.
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