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Preface

This volume contains the papers and extended abstracts presented at the 12th
International Symposium on Algorithmic Game Theory (SAGT 2019), held during
September 30-October 3, 2019, at the National Technical University of Athens,
Greece.

This year, SAGT 2019 received 55 submissions, which were all rigorously
peer-reviewed by at least 3 PC members, and evaluated on the basis of originality,
significance, and exposition. The PC eventually decided to accept 26 papers to be
presented at the conference. To accommodate the publishing traditions of different
fields, authors of accepted papers could ask that only a one-page abstract of the paper
appeared in the proceedings. Among the 26 accepted papers, the authors of 1 paper
selected this option. The program also included three invited talks by distinguished
researchers in Algorithmic Game Theory, namely Maria-Florina Balcan (Carnegie
Mellon University, USA), Shahar Dobzinski (Weizmann Institute of Science, Israel),
and Herve Moulin (University of Glasgow, UK, and Higher School of Economics,
Russia). In addition, SAGT 2019 featured a tutorial on “Learning Theory in
Algorithmic Economics,” by Georgios Piliouras (Singapore University of Technology
and Design, Singapore) and Vasilis Syrgkanis (Microsoft Research, USA).

The works accepted for publication in this volume cover most of the major aspects
of Algorithmic Game Theory, including auction theory, mechanism design, two-sided
markets, computational aspects of games, congestion games, resource allocation
problems, and computational social choice. Furthermore, due to the general support by
Springer, we were able to provide a best paper award. The PC decided to give the
award to the paper “The Declining Price Anomaly is not Universal in Multi-buyer
Sequential Auctions (but almost is),” by Vishnu V. Narayan, Enguerrand Prebet, and
Adrian Vetta.

We would like to thank all the authors for their interest in submitting their work to
SAGT 2019, as well as the PC members and the external reviewers for their great work
in evaluating the submissions. We also want to thank EATCS, Springer, Facebook, the
COST Action GAMENET (CA16228), the Athens University of Economics and
Business (AUEB), the National Technical University of Athens (NTUA), and the
Institute of Communication and Computer Systems (ICCS), for their generous financial
support. We are grateful to the National Technical University of Athens for hosting the
event, and special thanks also go to Eleni Iskou for her excellent local arrangements
work and to Antonis Antonopoulos for his help with the conference website.

Finally, we would also like to thank Alfred Hofmann and Anna Kramer at Springer
for helping with the proceedings, and the EasyChair conference management system.

July 2019 Dimitris Fotakis
Evangelos Markakis

The original version of the book was revised: Cover and the front matter pages were
not correct. They have been exchanged. The correction to the book is available at
https://doi.org/10.1007/978-3-030-30473-7_26
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Machine Learning for Mechanism Design

Maria-Florina Balcan

Carnegie Mellon University, Pittsburgh, PA 15213, USA
ninamf@cs.cmu.edu
http://www.cs.cmu.edu/ ~ninamf

Mechanism design is a field of game theory with significant real-world impact,
encompassing areas such as pricing and auction design. A powerful and prominent
approach in this field is automated mechanism design, which uses optimization and
machine learning to design mechanisms based on data. In this talk I will discuss how
machine learning theory tools can be adapted and extended to analyze important
aspects of automated mechanism design.

I will first discuss revenue maximization in the setting where the mechanism
designer has access to samples from the distribution over buyers’ values, not an explicit
description thereof. I will present a general technique for providing sample complexity
bounds, that is, bounds on the number of samples sufficient to ensure that if a mech-
anism has high average revenue over the set of samples, then that mechanism will have
high revenue in expectation over the buyers’ valuation distribution. This technique
applies to mechanisms that satisfy linear delineability, a general structural property that
we show is shared by a myriad of pricing and auction mechanisms. Roughly speaking,
a mechanism is linearly delineable if for any set of buyers’ values, the revenue function
is piecewise linear in the mechanism’s parameters. I will discuss numerous applications
of this result to both pricing mechanisms (including posted-price mechanisms and
multi-part tariffs), and auctions (including second price auctions with reserves and
classes of affine maximizer auctions).

I will also discuss how we can estimate the degree of incentive-compatibility of
potentially non-incentive-compatible mechanisms based on typical inputs, namely
independent samples from the type distribution. Our estimate is based on an empirical
variant of approximate incentive compatibility which measures the maximum utility an
agent can gain by misreporting his type, on average over the samples. I will discuss
how to bound the difference between our empirical incentive compatibility estimate and
the true incentive compatibility approximation factor by using a subtle mixture of tools
from learning theory. This question is of high interest since many real-world mecha-
nisms are not incentive-compatible.

This talk is based on work joint with Tuomas Sandholm and Ellen Vitercik
appearing in [1, 2].
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From Cognitive Biases to the Communication
Complexity of Local Search

Shahar Dobzinski

Weizmann Institute of Science
shahar.dobzinski@weizmann.ac.il

In this talk I will tell you how analyzing economic markets in which agents have
cognitive biases has led to better understanding of the communication complexity of
local search procedures.

We begin the talk with studying combinatorial auctions with bidders that exhibit
endowment effect. In most of the previous work on cognitive biases in algorithmic
game theory (e.g., [3] and its follow-ups) the focus was on analyzing their implications
and mitigating the negative consequences. In contrast, we show how cognitive biases
can sometimes be harnessed to improve the outcome.

Specifically, we study Walrasian equilibria in combinatorial markets. It is well
known that a Walrasian equilibrium exists only in limited settings, e.g., when all
valuations are gross substitutes, but fails to exist in more general settings, e.g., when
the valuations are submodular. We consider combinatorial settings in which bidders
exhibit the endowment effect, that is, their value for items increases with owner-
ship. Our main result here shows that when the valuations are submodular even a mild
level of endowment effect suffices to guarantee the existence of Walrasian equilibrium.
In fact, we show that in contrast to Walrsian equilibria with standard utility maximizers
bidders — in which the equilibrium allocation must be a global optimum — when bidders
exhibit endowment effect any local optimum can be an equilibrium allocation.

This raises a natural question: what is the complexity of computing a local maxi-
mum in combinatorial markets? We reduce it to a communication variant of local
search: there is some commonly known graph G. Alice holds f4 and Bob holds f3, both
are functions that specify a value for each vertex. The goal is to find a local maximum
of fu +f5: a vertex v for which fx(v) +f3(v) > f4(u) 4+ f3(u) for every neighbor u of v.
We prove that finding a local maximum requires polynomial (in the number of vertices)
communication.

Based on joint works with Moshe Babaioff, Yakov Babichenko, Noam Nisan, and
Sigal Oren [1, 2].
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Bidding for a Fair Share

Herve Moulin'?

! University of Glasgow, Glasgow, UK
Herve.Moulin@glasgow.ac.uk
2 Higher School of Economics, St. Petersburg, Russia

The Diminishing Share (DS) algorithm by Steinhaus (generalizing Divide and Choose),
as well as the Moving Knife (MK) algorithm by Dubins and Spanier, guarantee to all
participants a Fair Share of the manna while eliciting very little information from them.
Hence their appeal: they bypass most of the cognitive effort to form full-fledged
preferences; they also preserve the privacy of these preferences to a considerable
degree.

The DS algorithm does not treat the agents symmetrically (namely, it fails the
Anonymity test). The MK algorithm does not treat the manna symmetrically (it fails the
Neutrality test) and severely limits the set of its feasible allocations.

In the classic cake division model with additive utilities, we propose a new family
of division algorithm(s), dubbed the Bid & Choose rules, guaranteeing Fair Shares,
maintaining the informational parsimony of DS and MK, and placing no restrictions on
the allocations of the manna. The B&C rules are Anonymous, and each rule is defined
by a specific interpretation of Neutrality. These properties are characteristic in the
additive domain.

For general monotone preferences, each B&C rule, unlike DS and MK, offers
reasonable guaranteed utility levels to each participant.
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Optimal On-Line Allocation
Rules with Verification

Markos Epitropou’®) and Rakesh Vohra!:?

! Department of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia, USA
mep@seas.upenn.edu
2 Department of Economics, University of Pennsylvania, Philadelphia, USA

Abstract. We consider a principal who allocates an indivisible object
among a finite number of agents who arrive on-line, each of whom prefers
to have the object than not. Each agent has access to private information
about the principal’s payoff if he receives the object. The decision to allo-
cate the object to an agent must be made upon arrival of an agent and is
irreversible. There are no monetary transfers but the principal can verify
agents’ reports at a cost and punish them. A novelty of this paper is a refor-
mulation of this on-line problem as a compact linear program. Using the
formulation we characterize the form of the optimal mechanism and reduce
the on-line version of the verification problem with identical distributions
to an instance of the secretary problem with one fewer secretary and a mod-
ified value distribution. This reduction also allows us to derive a prophet
inequality for the on-line version of the verification problem.

Keywords: Stopping problems - Verification - Prophet inequalities

1 Introduction

In many large organizations scarce resources must be allocated internally with-
out the benefit of prices. Examples include, the headquarters of a firm that must
choose between multiple investment proposals from each of its division managers
and funding agencies allocating a grant among researchers. In these settings the pri-
vate information needed to determine the right allocation resides with the agents
and the principal must rely on verification of agents’ claims, which can be costly.
We interpret verification as acquiring information (e.g., requesting documentation,
interviewing an agent, or monitoring an agent at work), which can be costly. The
headquarters of the diversified firm can hire an external firm to conduct an assess-
ment of any division manager’s claims, for example. The funding agency must allo-
cate time to evaluate the claims of the researcher applying for a grant. Furthermore,
in these settings, the principal can punish an agent if his claim is found to be false.
For example, the head of personnel can reject an applicant, fire an employee or deny
a promotion. Funding agencies can cut off funding.

Research supported in part by DARPA grant HR001118S0045.

© Springer Nature Switzerland AG 2019
D. Fotakis and E. Markakis (Eds.): SAGT 2019, LNCS 11801, pp. 3-17, 2019.
https://doi.org/10.1007/978-3-030-30473-7_1
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Prior work considered an off-line version of this problem. Specifically, there
is a principal who has to allocate one indivisible object among a finite number of
agents all of whom are present. The value to the principal of assigning the object
to a particular agent is the private information of the agent. Each agent prefers
to possess the object than not. The principal would like to give the object to
the agent who has the highest value to her. [4], the first to pose the question,
assumes punishment is unlimited in the sense that an agent can be rejected
and not receive the resource. Punishment can be limited because verification is
imperfect or information arrives only after an agent has been hired for a while.
In [20], verification is free, but punishment is limited. [17] generalizes both papers
by incorporating costly verification and limited punishment.

This paper introduces and analyzes an on-line version of this problem in
which the agents arrive and depart one at a time, and the decision to allocate the
object to an agent must be made upon arrival of an agent. If the principal declines
to allocate the object to an agent, the agent departs and cannot be recalled. If
the principal allocates the object to an agent, the decision is irreversible. The
problem is analogous to the problem of choosing a selling mechanism when facing
a stream of buyers who arrive over time (see for example [11]) except we do not
have access to monetary transfers.

If each agent were to truthfully report the value to the principal, the prin-
cipal faces a cardinal version of the secretary problem [15,16]. In this version,
one is shown n non-negative numbers, sequentially, that are independent draws
from known distributions (not necessarily identical). The goal is to select a single
element (a ‘secretary’) with maximum value. An element of the sequence must
be selected or discarded upon its arrival, and this decision is irrevocable. The
solution involves a sequence of thresholds, indexed by the agent, and the prin-
cipal allocates the object to the first agent whose reported value exceeds their
corresponding threshold.

If the principal were to adopt such a policy in our setting it would encourage
all agents to exaggerate their values. To discourage this, the principal can ration
at the top of the distribution of values or verify an agent’s claim and punish him
if his claim is found to be false. The first reduces allocative efficiency while the
second is costly. The goal of this paper is to find the optimal way to provide
incentives via these two devices in an on-line setting. The contributions of this
paper are as follows:

1. A reformulation of the on-line problem as a compact linear program that may
be useful in other applications.

2. This reformulation allows us to derive a prophet inequality [21] for the on-line
version of the verification problem.

3. Under the assumption of identical distributions, we reduce the on-line version
of the verification problem with its incentive constraints to an instance of the
cardinal secretary problem with one fewer secretary and a modified value
distribution.
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Our paper is related to three lines of work. The first is on costly verification
that begins with [22]. This paper and others that followed such as [10], and [19],
analyze off-line settings with transfers, which we rule out.

The second is on partial but costless verification, see for example [6] or [3], for
example. In these models, verification is costless but imperfect. In our model ver-
ification is perfect but costly. At a high level the two are related because one can
think of partial verification as being costly, but the cost is endogenous, depending
on the nature of the realized allocation. In our case the cost is exogenous.

Our paper is also related to the extensive literature on versions of the secre-
tary problem where the principal can rely on prices that was initiated in [7,12].
This was subsequently extended to include additional constraints such as cardi-
nality constraints [1,12], matroids [14], matchings [2], and knapsack constraints
[8,9]. The absence of money in our setting means that the results from these
papers do not apply. However, our linear programming approach may be useful
in analyzing problems when the principal has access to prices.

In Sect. 2 we introduce our setting and the linear programming formulation.
In Sect.3 we characterize the form of the optimal mechanism and provide a
corresponding prophet inequality. In Sect. 4 we study the variation of the problem
with limited punishment.

2 Model

There is a single indivisible good to allocate among a set of agents denoted
by I = {1,...,n}. The type of agent ¢ € I is t; which is the value to the
principal of allocating the object to agent ¢. We assume that the agents’ types
are independently distributed. The distribution of agent’s i type has strictly
positive density f; over the interval T; = [t;,%;]. The preferences of the agents
are simple: each prefers to possess the object to not. The actual private benefit
enjoyed by an agent from receiving the object does not need to be specified.

Agents arrive one after the other and report their type, not necessarily truth-
fully. The principal can verify the reported type of agent ¢ at cost ¢ > 0 and
determine perfectly if the agent has lied. In the event an agent is discovered
to have lied, we withhold the object from them. This is the case of unlimited
punishment. The case of limited punishment is considered later.

By the revelation principle we can restrict attention to direct mechanisms.
Denote by t<; the profile of reported types made by all agents up to and includ-
ing agent 7. We write t; to denote the profile of reported types made by all
agents up to but not including i. A direct mechanism specifies for each profile
of type reports, an allocation rule and an verification rule for each agent i.
The allocation rule specifies the probability ¢;(¢;) he is allocated the good
conditional on the event that the good is not already allocated. Specifically,
qi(t;) = Pr[choose t;|1,...,i — 1 not allocated]. This fully captures the set of
online allocation rules, since independence means there is no need to condition
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the decision to allocate the good to agent ¢ upon t.;. The verification rule is the
probability that agent ¢ is assigned the good and inspected conditional on the
event that the good is not already allocated and denoted a;(¢;). Therefore:

0< a,»(t,») < qi(ti) <1 Viel VteT;. (1)

Definition 1. A direct mechanism M = (11, ..., T\1,{qi(-), ai(-) }ier) restricts
the strategy set of each agent i to T;, and returns an allocation rule ¢; : T; — [0, 1]
and a verification rule a; : T; — [0,1] for each agent i € 1.

Definition 2. A direct mechanism M = (11, ..., T;,{qi(-), ai(-) }yier) is incen-
tive compatible if each agent i has an incentive to truthfully report her type,
i.€.

qi(t:) > qi(t)) —a;(t)) Viel Vi,t, eT;. (2)

3

The left hand side of (2) is the probability of receiving the good with a
truthful report. The right hand side is the probability of receiving the good
with a misreport adjusted downwards for the possibility of being inspected and
punished for the misreport.

The principal would like to choose the allocation and verification probabilities
g and a satisfying (1) and (2) to maximize:

S BT = a5 (t))E, [tigi(t:) — caa(t:)-

iel j<i

2.1 Reduced Form Representation

We work with a reduced form representation of the allocation and verification

rules (see for example [5,17,23]). Given an allocation and verification rule, (¢, a),

let Qi(t;) = qz‘(ti)EtQ[l;[‘(l —q;(t;))] and A;(t;) = ai(ti)Et«[l}(l —q;(t;))] be
1 K3

the interim allocation ajnd verification probabilities respectivelyj. The interim allo-

cation and verification probabilities are related to the allocation and verification

probabilities as follows:

Lemma 1. Let Q, A, q,a be the interim as well as actual allocation and verifi-
cation rules of a direct mechanism. Then the interim and actual rules are related
as follows:

Qi(t:)
ai(t:) = 1— 3 By, [Qs(t5)] (3)
ailts) Ailt) ()

T 1Y E Q)]

J<i
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Proof. We prove (3). The proof of (4) is similar. Now, Q;(t;) = ¢;(t;)E:_, [

(1 —g;(t;))]. Thus, j<i
_ Qi(ts)
Et<i[H (1- qj (tj))] ’

J<i

qi(t:)

It suffices to prove the following;:

Eo [0 —at)] =1 By [Q;()].

Jj<i Jj<i
We do so by induction. For ¢ = 1, the equality reduces to
B, [1—aq1(t1)] =1 —E, [Q1(t1)]

which holds since Q1 (t1) = ¢1(¢1). Let’s now prove the equality for i. This holds
since

B [JT(0 = a5 )] = Eo[(1 = @s(t)IEe, [[T(1 = a5(1)))]

= (1= Eqfg(t)DEe [T - )
S | (R A))
~ Enla)E [ - t))

=1— iEtj (Q;(t;)] — Et, [Qi(t:)]

=1-) E,[Q;(t;)]
j=1

where the first equality follows from independence, the second equality follows
from linearity of expectations, and the fourth equality follows from the inductive
step and the definition of the interim allocation. O

It follows from Lemma1 that the set of constraints (1) can be reduced to

Qi(t:) + Y By [Qi(t))] <1 Viel V4 eT
7<i
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Using the reduced form representation we can formulate the principal’s problem
as the following linear program (denoted LP):

max ;]Eti [t:Qi(t:) — cAi(t:)] (LP)
s.t. Ql(tl) + ZEti [Qj(ﬁj)} <1 Vi VYVt eT;
7<i
0<Ai(t:) <Qilty) Viel V4 eT;

2.2 Prophet Inequality Under Truthful Reporting

We first provide an alternative proof of a classic prophet inequality for the selec-
tion problem, when the agents truthfully report their types. A prophet inequality
lower bounds the expected value of the number on which one stops with respect
to the expected maximum value in hindsight. The maximum value in hindsight
is the expected value of the n'* order statistic. [16] obtained a tight bound of
1/2 for this problem. In words, the optimal reward of the stopping problem is at
least half the size of the expected value of the largest of the n random numbers.
The study of prophet inequalities has attracted an enthusiastic following. [13] as
well as [18] provide surveys.

This proof below will be replicated to show similar results when incentive
constraints are present. Using the reduced form representation the problem can
be restated as a linear program:

max > B [tiQi(t:)]
el
st Qi(t) + > By [Qi(t:)] <1 Vi V€T,
7<i

Qi(t;) >0 Vi Vt eT;

Notice that the incentive compatibility constraints are absent.

We think of the problem of choosing the maximum value in hindsight as the
off-line version of our problem where all agents are present at the same time.
Here the principal can choose which agent should receive the object based on
the reported types of all agents.

Theorem 1. The optimal online algorithm achieves at least 1/2 of the perfor-
mance of the optimal offline algorithm in expectation.

Proof. Let Qf(t;) be the interim expected probability with which agent ¢ with
type t; receives the item in the optimal off-line solution. The expected total value
to the principal is given by

> E Q5 (ti)t).

iel
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Pick online values Q;(t;) = %Qf (t;). Tt is clear that the objective function
with respect to the reduced form for both problems is linear and coincides. Thus,
a simple scaling approximates the optimal objective:

S B @bt = 5 3 BalQi (0t

i€l icl

The proposed solution is feasible for the online problem. In detail, Q;(¢;) +
B [Q)(t)] = Q5 (1) + 5 - By, [Q(£5)] < 1. The last inequality holds since
j<i j<i
Qi (t;) <1 and the expected offline allocation for the first ¢ — 1 agents is also

less than 1. 0

3 The Optimal Mechanism

In this section we derive the optimal interim allocation and verification rules.
The interim verification rule will be derived as a function of the optimal interim
allocation rule. The optimal interim allocation rule will be given as a solution to
a linear program. The actual allocation and verification rules can be obtained
from the interim ones via Lemma 1.

Given the optimal interim allocation rule, the optimal interim verification
rule can be deduced from the incentive constraints in (LP). They can be reduced
to the following:

Therefore, at optimality,
Ai(ti) = Qi(t;) — min Qs (t)). (6)

t

We use (6) to eliminate the verification variables from (LP). We also intro-
duce a new set of variables {¢; };cr accounting for the minimum interim alloca-
tion per agent. For a given {¢; }icr, the optimal interim allocation rule is given
by the following linear program denoted LP (¢):

V(9) = max > B[t — )Qu(t)] + co ™)

iel
st Qi(ti) + Y By [Qi(t)] <1 Vi Vit €T,
j<i
Qi) >¢; >0 Yiel VYVt eT,;
Whenever > ¢; < 1, V(¢) is well defined, otherwise there is no feasible

solution. This is because 1 > Y. E¢ [Qi(t;)] > >; ¢; should hold. Hence, the
problem of finding the optimal mechanism reduces to

max V(¢),
s B V)

i€l
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which is also a linear program. We now characterize the optimal interim alloca-
tion and verification rules given ¢.

Lemma 2. The optimal solution of LP(¢) is monotonic in type, i.e.
Qi(t:) <Qi(t)) Viel Vt; <t
Proof. Suppose not. Then, there is an ¢ and pair (¢;,t}) such that Q;(¢;) > Q;(t5).
We pick an € > 0 such that
- Qi(tz) fi (t ) > Qz(tl)
- Qz(t,) + ff(tll < Qz( 2)~
If we reduce Q;(t;) by ﬁ and increase Q;(t}) by ﬁ, feasibility is

preserved. The objective function value increases by e(t; — ;) > 0, which is
a contradiction. O

Hence, there exists a threshold #; for all ¢ such that Qi(t;) = ¢; for t; < {; and
Qi(t;) > ¢; otherwise.

We show the optimal strategy is a threshold strategy in each round. A trans-
formation of variables will prove convenient:

Qi(ti) = ¢i + xi(t;) (8)

Given ¢, we can find the optimal strategy by identifying the solution to the
following linear program:

max ZEt )(t; — c)] (XP)

s.t. x;(t +ZEt x;(t <172¢] Viel Vit el

Jj<t 7<i
(XP) is a simplified version of LP (¢) given by the transformation defined in (8).

Lemma 3. Suppose that Q) is the optimal solution to LP (¢). Then, for each
agent i, there exists a threshold t;, such that

{1 — Y B [Qi(t)] if ti > 1

Qi(ti) = j<i (9)

o otherwise

Proof. Suppose we are interested in the allocation and verification rules when we
reach agent . Fix all other variables. We are interested in solving the following
linear program

max Ey, [zi(t:)(ti — c)]

s.t. xi(ti) <1- Z(bj — Z]Etj [.’L’j(tj)] Viel Vt, €T,
i<i 7<i
Et,y [x,(tz)] <1- Zd)] — zk(tk) — Z Etj [ij(tj)] Vk >1 Vit €Ty
J<k J<k,j#i
l‘i(ti)zo Viel Vt, €T
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Now, it is clear that the optimal solution can actually be characterized by a
threshold. All high types will be assigned their upper limit till the constraint on
the aggregate allocation binds. Thus, the optimal solution z is given by

{ 1 — Z d)j — Z Etj [l‘j(tj)} lf ti Z tA,L'
zi(t;) = J<i j<i

0 otherwise
Returning back to @ variables completes the proof. a

Lemma 1 allows us to derive the actual allocation and verification rules given
the interim ones. We also provide the form for the actual allocations, given the
characterization of the optimal interim allocation in terms of parameters ¢, t,

Corollary 1. For each agent i there exists a threshold t; and constant «;, such
that the optimal actual allocation can be written as follows:

1 it¢2£i 1_Oéiiti2£i
qi(t;) = { / ai(t;) = { J

«; otherwise 0 otherwise

Proof. We use Lemma 1 to get the form of the actual allocation:

1= 30 Ee; [Qy(t5)]

Jj<i . ; .
ai(t) = Qi(t:) _ ) TR it >t {1 if t; >4,
YT SR Q4 (8:)] s . ] oy otherwise
];i t; [Q]< J)] 1_j§i ., 1G5 5] otherwise
where
o b
CL= Y E[Q(t))]
1<
The form for the actual verification rule follows by (6). O

Before continuing, we summarize the roadmap for determining the optimal
allocation and verification rules:

1. Solve the linear program . m1x< V(¢) to find the optimal interim allocation
H 171
i€l

rule Q.

2. Derive the optimal interim verification rule A from Eq. (6).

3. Derive the optimal actual allocation and verification rules ¢,a from the
interim ones @, A, via Lemma 1.

3.1 Identical Distributions

We examine the case of identical distributions, i.e., T; = T and f;(t) = f(¢t) for
all i € I,t; € T. In this case, we can give a neat representation of the optimal
strategy.
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Let p = E¢[t]. Now, LP (¢) can be written as

max S Eizit)(t— ) +pY b
el [
stowi(t)+ Y Beloj()]<1-Y ¢, Viel VteT
J<i Jj<i

zi(t) >0 Viel VteT

Let ¢* be the vector ¢ that maximizes V' (¢). We can set ¢; =0 for all i < n
and ¢, = >, ¢;. The objective function does not change while the right hand
side of all inequalities in the above LP increases, but the one for i = n, which
remains the same. Thus, we can restrict our attention to ¢; = 0 for ¢ < n. In the
optimal solution of the initial LP, the last agent’s rule is constrained as follows:

j<n
Since the right hand side coincides for all types, and the objective function is
increasing in the allocation rule, the constraint binds for all types. This means
that Q7 (tn) = ¢}, which implies that x,(¢) = 0 for all .
We can now reduce LP (¢*) to the following linear program to determine the
strategies for the first n — 1 agents:

max Z E¢[x;(t)(t — ¢)]
ie\{n}
stoai(t) + Y Belaw()] <1—¢, VieI\{n} VteT

zi(t) >0 VielI\{n} VteT

By normalizing the right hand sides of this linear program to 1, we can interpret
it as arising from a cardinal secretary problem with n — 1 secretaries, where the
value of each ‘secretary’ is t — ¢, drawn according to a density function f. In case
the object is still available in the last round it is given to the last agent.

3.2 Prophet Inequality

We derive a prophet inequality for the setting with verification using the reduced
form.' It scales the optimal offline solution so as to make it a feasible solution
for the online setting. This technique can also be used in the standard setting.

Theorem 2. The optimal online algorithm achieves at least 1/2 of the perfor-
mance of the optimal offline algorithm on expectation.

! This result does not assume that the distribution of types is IID.
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Proof. Let Q(t;) be the interim expected probability with which agent ¢ with
type t; receives the item in the optimal off-line solution. Let ¢} = i?_f QI (t;) as

proposed in [4]. The expected total value to the principal is given by

D (B [Q (t)(t: — o)] + 65 cl.

i€l

Pick online values Q;(t;) = 2Q; (t;) and ¢; = $¢;. It is clear that the objec-
tive function with respect to the reduced form for both problems is linear and
coincides. Thus, a simple scaling approximates the optimal objective:

1 * *
Z[]Eti [Qi(t:)(t: — )] + dic] = 3 Z[Eti Q7 (t:)(ti — )] + &7 ]
il iel
It suffices to prove that the proposed solution is feasible for the online problem.
— Qi(ty) + X By, [Q;(t))] = 3Q5 (t) + 5 > Ky, [Qj(t;)] < 1: This holds since
Jj<i j<i
Q7 (t;) <1 and the expected offline allocation for the first ¢ — 1 agents is also
less than 1.
— Qi(t) > ¢;: The constraint coincides with the offline constraint. Nothing
changes by scaling both sides of the inequality. 0

4 Limited Punishment

We say that punishment is limited if the principal cannot reduce an agent’s payoff
to his outside option by punishing him. If we interpret verification as acquiring
information, then punishment can be limited because information is imperfect.?
We assume that punishment is proportional to the private benefit enjoyed by
the agent from receiving the object. If v; is the private benefit enjoyed by agent
i, punishment is k;v;, where each k; € [0, 1]. These are the same assumptions as
in [17]. As we show below, limited punishment will cause the principal to ‘ration
at the top’ as well. All types above some threshold face the same probability of
receiving the good.

By the Revelation Principle we can focus on direct mechanisms. In this case,
if an agent is inspected, it is optimal to penalize him if and only if he is found to
have lied. After the allocation is made, the planner will observe the agent’s type
and destroy a fraction k; of the agent’s payoff. A direct mechanism specifies for
each profile of type reports the probability ¢;(¢;) that the good is assigned to
agent ¢ conditional on the event that it is not already assigned. These variables
must satisfy the following feasibility conditions:

0<qt) <1 Viel VYt eT; (10)

2 We take verification cost and punishment level as exogenous but it is possible that
the principal can get more precise information by incurring a higher information
acquisition cost, which, in turn, leads to a more severe expected punishment. The
results in this paper readily extend to the case where the principal can jointly opti-
mize over verification cost and punishment level.
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The incentive compatibility constraints are as follows:
vigi(ti) > (vi — kivi)qi(t;) =
ai(ti) = (1 —ki)gi(t}) Viel Vit eT; (11)
The principal would like to choose the allocation probabilities ¢ to maximize:
D BT - g )E tigi 1),
j<i

As before we work with a reduced form representation. This allows us to
formulate the optimal mechanism as the following linear program:

maX ZEt [t:Q:(t:)]

el
st Qi(t) + D B [Qi(t)] <1 Vi V4 €T

j<i
Qi(t;) > (1 —k)Qui(t)) Vi Vt, €T, Vt,eT,
Qi(t;) >0 Vi Vt €T

4.1 The Optimal Mechanism

We simplify the incentive constraint, as in [20]. We include the proof for com-
pleteness.

Lemma 4. An allocation rule satisfies incentive compatibility if and only if for
all i there exists x; such that

(1—Fk)xi <Qi(ti) <xi YVt eT; (12)
Proof. Tf IC holds then (12) holds with y; = supQ (t;). Conversely, if (12) holds
for some x;, then it also holds with x} = sup Q;(t;), which implies incentive
compatibility. O

We now write down a linear program which finds the optimal strategy. We
know that for optimal x this linear program is going to return the optimal
strategy.

max ZEt [t:Q:(t:)]

@x el

st Qi(t) + Y By [Qi(t)] <1 Viel V4 eT,

j<i
(1—ki)xi <Qi(t;) <xi Viel V€T,
Qi(t;) >0 Viel Vit eT;

We now describe the optimal strategy.
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Lemma 5. Suppose that Q is the optimal online solution. Let x; = sup Q;(t;).
t;€T;

Then for each agent i, there exists a threshold t; such that

Y ift; >
Ql(tz) - { (1 — kz)X@ otherwise (13)

Proof. Suppose we are interested in the allocation rule when we reach agent 1.

Fix all other variables at their optimal value. We are interested in solving the
following linear program:

max Ey, [t:Qi(t:)]

st Qity) 1= Ey[Q(t;)] Viel V4 eT,
j<i
B [Qi(t:)] < 1—-Qute) — > Ey[Q;(t))] Vk>i Vi, €Ty
J<k,j#i
(I=Fki)xi <Qi(ti) <xi YVt €T,

Now, it is clear that the optimal solution can be characterized by a threshold
policy. All high types will be assigned their upper limit till a constraint for the
aggregate allocation binds. The optimal online solution has the following form:

min{x;, 1 — Y By, [Q;(t;)]} if t; > £
Qi(ti)—{ {x j; Q)1 14)

(1 —ki)xe otherwise

The upper limit can be simplified. We prove that

Xi 1= B, [Q;(t)] Viel
j<i
Suppose otherwise. We pick x" = 1— > E¢,[Q;(t;)]. This makes the constraints
j<i
less strict since the upper bound remains the same but the lower bound reduces.
Thus we can reduce the allocation for lower types and increase the allocation of
higher types while holding the aggregate allocation steady. This is a contradiction
since such a change will increase total welfare. O

In the limited penalties case the actual allocation will have a slightly different
form.

Corollary 2. For each agent i there exists a threshold t;, and constant (3;, such
that the optimal actual allocation rule can be written as follows:

=B ifti > f;
qi(ti) = { (1 — k;)0; otherwise
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Proof. We use Lemma 1 to get the form of the actual allocation rule:

Xi if ts £
Qi(t:) 177’;‘&" 19 24)] et Bi ift; >t
i t,L — — W 7,_ ) ) ) — K 1 .7/
qi(t:) 1= ; E., [Q;(t7)] % otherwise { (1 — k;)Bs otherwise
j<i i<i
S Xi

where §; = o5 om0 0

j<i

4.2 Prophet Inequality

We use the same machinery as before to further illustrate that extra constraints
that restrict the optimal solution in both offline and online cases, do not have
an effect on the prophet inequality.

Theorem 3. The optimal online algorithm achieves at least 1/2 of the perfor-
mance of the optimal offline algorithm on expectation.

Proof. Let QF(t;) be the interim probability with which agent ¢ with type t;

receives the item in the optimal off-line solution. Let x = sup Q7 (¢;) as pro-
t;€T;
posed in [20]. The expected total value to the principal is given by

> B [tiQ; (1))

iel

Pick online values Q;(t;) = 3Q;(t;) and x; = x; for all i € I. It is clear
that the objective function with respect to the reduced form for both problems is
linear and coincides. Thus, a simple scaling approximates the optimal objective:

SO B [Qi(t)] = 5 3 B (1 (1)

i€l i€l

It suffices to prove that the proposed solution is feasible for the online
problem.

— Qz(tz) + Z ]Etj [Qj(tj)] = %Q:(tz) + % Z Etj [Q;(tj)} S 1: This holds since
7<t 1<t
Q7 (t;) <1 and the expected offline allocation for the first ¢ — 1 agents is also
less than 1.
— (1 = ki)xi < Qi(t) < x4: The constraint coincides with the offline constraint.
Nothing changes by scaling both sides of the inequalities. O
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Abstract. We consider the facility location problem in a metric space,
focusing on the case of three agents. We show that selecting the reported
location of each agent with probability proportional to the distance
between the other two agents results in a mechanism that is strategyproof
in expectation, and dominates the random dictator mechanism in terms
of utilitarian social welfare. We further improve the upper bound for
three agents on a circle to % (whereas random dictator obtains %); and
provide the first lower bounds for randomized strategyproof facility loca-

tion in any metric space, using linear programming.

1 Introduction

In a facility location problem, a central authority faces a set of agents who report
their locations in some space, and needs to decide where to place a facility. It
is typically assumed that each agent ¢ wants the facility to be placed as close
as possible to her own location a;. We want a strategyproof mechanism, such
that reporting the truthful location is a weakly dominant strategy for every
agent. The designer may have additional goals, where the most common one is
to minimize the utilitarian social cost—the sum of distances to agents’ locations.

Strategyproof facility location mechanisms have been studied at least since
the mid-20th century [5]. In 2009, the agenda of approximation mechanisms
without money was made explicit in a paper by Procaccia and Tennenholtz [28,
29], who used facility location as their primary domain of demonstration due to
its simplicity. Moreover, facility location is often a bridge between mechanism
design and social choice [7,11,23] and has applications to transport [24], disaster
relief [14] and more. Facility location is thus often used as a testbed for ideas
and techniques in mechanism design and noncooperative multiagent systems.

Most problems that include a single facility are by now well understood. For
example, all deterministic strategyproof mechanisms on continuous and on dis-
crete lines have been characterized [9,30], and it is well known that selecting the
median agent location is both strategyproof and optimal in terms of utilitarian
social cost [25,28]. One strand of the literature seeks to characterize domains
where median-like mechanisms exist [17,27].

For other domains, e.g. graphs that contain cycles, research following [28]
has focused on the minimal social cost that can be guaranteed by strategyproof
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mechanisms. For deterministic mechanisms even the existence of a single cycle
in a graph entails that any strategyproof mechanism must be dictatorial on a
subdomain, and thus has an approximation ratio that increases linearly with
the number of agents n [9,30]. Many variations of the problem have since been
explored in the AI and multiagent systems community, including multiple facil-
ities [3,10,31], complex incentives and forms of strategic behavior [13,32-34],
and alternative design goals [1,12,19]. The circle in particular has received much
attention in the facility location literature [1,2,6,9,30], both because it is the
simplest graph for which median-like mechanisms cannot work, and because it
is an abstraction of actual problems like selecting a time-of-the-day or a server
in a ring of computers.

Yet, the fundamental strategyproof facility location problem for randomized
mechanisms remains almost unscathed. It is easy to show that the random dic-
tator (RD) mechanism obtains an approximation ratio of 2 — % for any metric
space [1,23], and of course that 1 is a lower bound. However except for lines
and trees (where the deterministic Median mechanism is optimal), nothing else
is known.

To the best of our knowledge, the literature does not mention mechanisms
that approximate the optimal social cost better than RD even for specific spaces
like the circle, nor is there any lower bound higher than 1.! The current paper
focuses on narrowing this gap by proving tighter upper and lower bounds for
three agents.

A variant of the problem on which there was more (negative) progress is
when we allow arbitrary constraints on the location of the facility (e.g., where
agents can be placed anywhere on a graph, but only 5 vertices are valid loca-
tions for the facility). In the constrained variant, the RD mechanism obtains
3— % approximation and this is known to be tight for all strategyproof mech-
anisms. The upper bound holds for any metric space [23], whereas the lower
bound requires specific constructions on the n-dimensional binary cube [11,22].
Anshelevich and Postl [4] show a smooth transition of the RD approximation
ratio from 2 —% to 3—% as the location of the facility becomes more constrained.
See [20] (Section 5.3) for an overview of approximation results for a single facility.

1.1 Contribution

Our main contribution is the introduction of two randomized mechanisms that
beat the random dictator (RD) mechanism on a circle: the Proportional Circle
Distance (PCD) mechanism, which selects each reported location a; with proba-
bility proportional to the length L; of the arc facing agent ¢; and the g-Quadratic
Circle Distance mechanism (¢-QCD) where the probability of selecting a; is
proportional to (max{(L;)?,¢?}).

! Alon et al. [1] proposed a randomized strategyproof mechanism specifically for cir-
cles, called the hybrid mechanism. They showed that it obtains the best possible
approximation ratio for the minimazx cost, yet for the social cost it achieves a poor
approximation ratio of "Tfl
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We prove that PCD is strategyproof for any odd number of agents. For 3
agents, we show that PCD obtains an approximation ratio of % on the circle
(in contrast to % by RD), and has a natural extension that is strategyproof
and weakly dominates RD on any metric space. The i—QCD mechanism is also
strategyproof for 3 agents, and obtains an approximation ratio of % on the circle.

For any finite graph with m vertices, there is a linear program of polynomial
size that can compute the optimal randomized strategyproof mechanism. We use
such programs to obtain first (but non-tight) lower bounds on the approxima-
tion ratio of any strategyproof mechanism on circles and on general graphs. See
Table1 for a summary.

Some of our proofs use a combination of formal analysis and computer opti-
mization. For most proofs we provide only a sketch due to space constraints, but
all complete proofs appear in the full version on arXiv [21].

2 Preliminaries

A domain of facility location problems is given by (X,d), where X is a set,
and d : X x X — Ry is a distance metric. In this paper, X is a (discrete or
continuous) graph, and d(x,y) is the length of the shortest path between x and
y. An instance in the domain (X, d) is given by a profile a € X™, where n is the
number of agents (implicit in the profile).

We denote by a_; the partial profile that includes all entries in a except a;.

A n-agent facility location mechanism in domain (X, d) (or simply a mecha-
nism) is a function f : X™ — A(X), where A(X) is the set of distributions over
X. We denote the resulting lottery of applying f to profile @ by f,. Mechanism
f is deterministic if f, is degenerated for any profile a, in which case we denote
fa € X. We denote the probability that mechanism f selects z on profile a by
fa(2) €10,1].

When placing a facility on z € &X', an agent located at a; suffers a cost of
d(a;, z). We denote by c¢;(a,h) = E,.p[d(a;, z)] the expected cost of agent ¢ in
profile a, when the facility is placed according to lottery h.

The (utilitarian) social cost of lottery h in profile a is denoted by SC(a, h) =
Zign ci(a,h) = Ezwh[zign d(ai, z)].

We omit the parameter a from the last two definitions when clear from con-
text. We also abuse notation by writing ¢;(a, z), SC(a, z) for a specific location
z € X rather than a lottery.

We denote by OPT(a) = inf,cx SC(a, z) the optimal social cost (note that
this is w.l.o.g. obtained in a deterministic location).

2.1 Common Mechanism Properties

A mechanism f is strategyproof if for any profile @ € X", any agent i, and
any alternative report a; € X, ¢;(a, fa) < ci(a, fa_, o) (i-e., i does not gain in
expectation).
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A mechanism f is ex-post strategyproof if it is a lottery over strategyproof
deterministic mechanisms. Note that ex-post strategyproofness implies strate-
gyproofness, but not vice versa.

A mechanism f is peaks-only if f,(z) = 0 for all z ¢ a. That is, if the facility
can only be realized on agents’ locations.

Mechanism f dominates mechanism g, if for any profile a, SC(a, fo) <
SC(a, gq) and the inequality is strict for at least one profile.

Finally, a mechanism f has an approximation ratio of ¢, if for any profile a,

SC(a, fa) < ¢ - OPT(a).

Familiar mechanisms. The Random Dictator (RD) mechanism selects each
agent ¢ with equal probability, and places the facility on a;. Clearly RD is ex-
post strategyproof, and it is also known to be group-strategyproof [2] (that is,
no subset of agents can gain by a joint deviation). Further, RD has an approxi-
mation ratio of 2 — % (i.e., % for n = 3 agents), and this is tight for any metric
space with at least two distinct locations [1].

On one-dimensional spaces, where agent locations can be sorted, the deter-
ministic median mechanism simply picks the location of the median agent. The
median mechanism is strategyproof and optimal [25]. The median mechanism
also extends to trees, maintaining both properties [30].

3 Circles

A circle is the simplest graph for which there is no median. We denote by Cjy
the circle graph with M equi-distant vertices V. Assume w.l.o.g. that agents
are indexed in clockwise order. For a profile @ € V", and two consequent agents
J,j+1 (the addition is modulo n), we denote by Lq (a;,aj4+1) (or just L(a;, a;41)
when the profile is clear from context) the length of the arc between these agents,
that does not contain any other agent. When L(a;,a;+1) is not larger than a
semicircle, then it also coincides with the distance d(a;,a;j+1).

We also define L; = L(aj,a;41) where j = i + [n/2] (modulo n) to be
the length of the arc that is “facing” agent ¢ (although it may not be antipo-
dal). For 3 agents this simply means that Ly = L(as,as3), L2 = L(as,a1), and
L3 = L(ay,az2). Also note that for 3 agents, the optimal location is always the
agent facing the longest arc. See Fig. la.

3.1 Proportional Distance

Definition 1. The Proportional Circle Distance (PCD) mechanism assigns the

facility to each location a; w.p. ZfilL
j<n “i

Theorem 1. PCD is strategyproof for any odd n.
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ay

(a) (b) (c)

Fig. 1. Examples. (a) The circle C14. Under PCD mechanism, the probabilities that
the facility will be realized on a1, a2 and as, respectively, are (1—34, %, %) Under PD,
the probabilities are (1%, %, 1%) Under i—QCD, the probabilities are proportional to
((3)%, ()%, (3)?), which gives us (0.1161,0.7677,0.1161). The other two examples are
used in the proof of Theorem 1 (b) and Case I of Theorem 2 (c).

Proof sketch. Suppose that a; tries the manipulate by moving (w.l.0.g.) clock-
wise to aj. Note that the probability of selecting agent 1 is not affected. Thus
the agent’s gain comes from increasing the selection probability of a closer agent
at the expense of a farther agent. On the other hand, the agent’s cost increases
proportionally to her distance from her true location, and we show that this
factor is more prominent. a

For 3 agents, the PCD mechanism guarantees an approximation ratio of
% = 1.25. This is not hard to show, but will also follow from stronger results in
Sect. 4. In Sect. 3.3 we further discuss what we know when n > 3.

3.2 The Quadratic Distance Mechanism

Since the optimal location with 3 agents is always the peak facing the longest arc,
to improve the approximation ratio we must put more weight on peaks facing
long arcs (at least in the “bad” instances).

Definition 2. The g-Quadratic Circle Distance (q-QCD) mechanism considers
the arc lengths Ly, Lo, L3. It then assigns the facility to a; w.p. proportional to
s; = max{(L;)?,¢*}.

That is, ¢ puts a lower bound on the probability that each agent is selected.
Theorem 2. The i—QC’D mechanism is strateqyproof.

Proof sketch. We denote x = Lo,z = L3 and y = L;. We denote by s, sy,s.
the un-normalized weight assigned to the agent facing each respective arc, and
by p; = % where s = s1 + s + s3 the actual probability that ¢ is selected. Note
that p, + py, + p. = 1. The notations are demonstrated on Fig. 1c.
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The cost to agent 1 can be written as

SgpZ + ST

Cl =DPrZ + P = ——.
1 Pz Dz S+ 5y + 52

Consider a step of size € by agent 1 towards agent 3. Intuitively, moving towards
the far agent only increases its probability of selection and is thus never beneficial
for agent 1. Thus w.l.o.g. z >z > ¢.

The move changes the arc lengths from (z,y, 2) to (x — €,y,z + ), and the
cost changes accordingly to

Sp—eZ F+ Sz4eX + SyE
Sg—e T Sy + Szqe

(1)

¢y =Dz +pla 4 e =

Our general strategy is to write the new cost ¢} as

, SpZ+ 8. x+ey  cs+tey

= = 2
“ Sp+ Sy + .+l s+¢e6 "’ (2)

where 7,0 > 0. Then, we show that F > gﬁﬁ(: ¢1). This would conclude

the proof, as it means that agent 1 does not gain:

¢ = Sp—eZ + Sy4e® + SyE > c15 +eci0 _ c1(s + €b) e 3)
Sp—e + Sy + Saye s+¢eh s+ ¢eb

The exact values of +, 0 depend on whether x — ¢ > ¢ (Case I, see Fig. 1c),
x> q>x—e¢ (CaseII), or ¢ > x (Case IIT). We only show here Case I, which
captures most of the proof’s ideas. The proofs of the other cases are similar,
with some caveats.

Suppose first that y > ¢ = i and that z < % (we later show this does not

matter). Then s, = 22, Sy = y2,s, = 22, and
. . x2z + 22z
C1 = P2 + P = m

After the move, we have s, = (z —¢)?, s, = (2 +¢) s,

into Eq. (1),

=5, = y2. Plugging

o = (x—e)’z+ (z+e)’x+y’e 22— 2exz+e°2+ 2w + 2ezx + % + y’e
YT (w—e)?+ (z4e)2 4y 22 — 2ex + €2 + 22 + 262 + €2 + y2
e+ +e(yP te(z+a)  castey

2+ 22+y?+2e(z—x+¢) s+eb

It is worthwhile to take a step back and consider what we got so far. Note that
~ in the nominator is always positive because the (linear) derivatives of the
quadratic terms s, z, s, cancel out. This shows why using quadratic probabili-
ties makes sense. However, this is not sufficient, since # in the denominator is also
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positive, and when s, is too small (specifically, smaller than 1—16) then the nomi-
nator grows too slowly to counter the increase in the denominator. This explains
why we need the parameter ¢—to make sure that the manipulator is selected
with sufficient probability to counter the benefit of the increased probability of
the agent that is closer to a;.

Going back to the technical proof, we need to show that

v yrte(z+a) 2z + 2%z

0 20z—z+e) — a2+422+y%

Rearranging, we should prove that
(v* +e(z+2)(@” + 2% +¢°) — (2°2+ 2%2)(2(2 — 2w + ¢)) (4)

is non-negative. It is easy to see that this expression is monotonically increasing
iny (and y > } in this case). It is a bit less easy to see (not shown here)
that it is also monotonically increasing in €. Thus it is sufficient to lower bound
(&5 + 2z +2) (@ + 22 + 15) — (%2 + 2%2)2(2 — = + x), or, equivalently,

1 ov2 2 L 2
(16+x2+m)(x +z +16) 2z°x(x + 2).

One can check that the minimum of this expression in the range 0 < z < z <
is exactly 0 (at z = 1,2 = 1).2 Thus J > ¢;, and we are done by Eq. (3).
Finally, suppose that z > % The only change is that the underlined z in

Eq. (4) would change to = +y (which is smaller than z). This only increases the
expression and would thus not make it negative. O

1
2

Since the inequality we get in Eq. (4) is tight, the proof also shows that any
¢-QCD mechanism for g < i would not be strategyproof.

Proposition 3. The %—

1.166, and this is tight.

~

QCD mechanism has an approzimation ratio of % ~

Proof. Let a = (aj,a2,a3) be a profile, and denote * = d(ay,a2),y =
d(as,as3),z = d(a1,as). We assume w.l.o.g. z > y > x, thus the optimal point is
az. The optimal social cost is z + y.

We first argue that the approximation only becomes worse by moving as
to the mid point between her neighbors. By decreasing y to ¢y = y — ¢ and
increasing x to ' = x + &, z remains the largest arc, so as is still optimal and
2 + 1y = x + y is still the optimal social cost. The social cost of the mechanism

) . (x (241 s (y+2)+s, +sz(z+
sz (y+2)+sy(x+2)+s.(z+y) to sz (Y z)""jy(w/""Z) sz(z y). We have that
So+Syts: Sytsytss

s, + 8y, < s; + s, since the new partition is more balanced. This means that the
denominator weakly increases and the total weight p, given to the optimal point
as can only decrease. Among the two non optimal points, note that az has the
higher cost (z+y > z+x). Now, s/, > s, so the relative weight of the worst point

changes from

2 We verified this with Wolfram Alpha.
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as only increases. Thus the social cost weakly increases and the approximation
ratio becomes worse.

This means that we are left to find the worst instance among the instances
with distances (z,z,1 — 2z) for some x < 3. The optimum in such an instance
is 22 whereas the social cost of + 7-QCD is:

— for 1 32> > 1 1 We have in partlcular that 1 — 2z > % > i. Then

S0 = 202 (z + (1 — 22)) + (1 — 22)?22 2z — 6% + 623
N 222 + (1 — 27)2 ~ 1 —4x + 622

% The derivative of this expression is
negatlve for x < = so it is maximized at the bottom of the range, at = i
— for x < , we have that

and the approximation ratio is

2(1/4)%3z + (1 — 2x)?2x
21/42 + (1—22)2

3/16+(1—2x)2
2/16+(1—22)2°
1

again we obtain the maximum at x = 3.

SC =

and the approximation ratio is which is increasing in x, so once

Plugging x = to the expression of the approximation ratio above, we get that
in the worst 1nstance a = (0, 411, é) —QCD obtains an approximation ratio of

t1 3/16+(1/2)* _ 7 O
eXactly s+ (1/2)2 = 6'

3.3 Beyond 3 Agents

We already saw that the PCD mechanism is strategyproof for any odd n. How-
ever, calculating its worst-case approximation ratio is more tricky. In particular,
the worst instance is not symmetric w.r.t. the optimal point (in contrast to 3
agents). In the limit, PCD and random dictator have the same approximation:

Proposition 4. When n grows, the approrimation ratio of PCD approaches 2.

Proof. Let n = 2k 4+ 1, and consider the profile in Fig. 2a, where x = ﬁ. The
numbers inside the circle indicate the number of agents in each location.

The optimal point is the bottom concentration, with a social cost of ¢; =
kx + % —z < i\/E%— % The social cost of the left point is co = k(% —x)+ k%,
and of the right point is c3 = kx + % Thus

1 1 1
C(fPCD(a)) _ 501 + xCo + (5 _ x)c;), = Ok’ + (2k‘ — l)x + 5

1 1
= —f 4\f +5 = 5Vk,

and thus the approximation ratio is at least

v
1f +3 >2- ﬁ =

It is an open question whether there is some mechanism (perhaps a variation
of ¢-QCD) that strictly beats 2 approximation for any n. We believe that this is
indeed the case but that would require simplifying the proof technique.
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Fig. 2. Figures used in the proofs of Proposition 4 (a) and Proposition 6 (b).

Peak-only restrictions. We prove a weaker version of the following;:
Conjecture 5. For any n, the best strategyproof mechanism is peaks-only.

Proposition 6. For any n, the optimal strategyproof mechanism w.l.o.g. only
places the facility either on peaks, or on points antipodal to peaks.

Proof sketch. For a profile @ = (a1, ..., a,), denote by b; the point antipodal to
a;, and let A = {a1,...,an,b1,...,b,}. Suppose that in some some profile a,
the mechanism f places the facility with some probability p on point a ¢ A.
Denote by 3, the nearest points to a from A clockwise and counterclockwise,
respectively. Let = d(«, 3),y = d(a, ) (see Fig. 2b).

We define a mechanism f’ that is identical to f, except that it “splits” the
probability mass p of a between the adjacent points 3,v: it sets f/,(a) = 0;
F2(8) = fa(B) + =i and f4(7) = fa(y) + P

We claim that for any agent i, ¢;(a, fo) = ¢i(a, f'(a)). This would show both
that f’ is strategyproof and that SC(a, f,) = SC(a, f'(a)) for all a.

Indeed, consider some agent placed at a;. From the three points «, 3,7, the
one farthest from a; cannot be «, since this would mean that b; (the point antipo-
dal to a;) is strictly in the open interval (3, ), whereas by construction there are
no more points from A in this interval. Thus w.l.o.g. d(a;, 8) < d(a;, &) < d(a;,7)
(see figure). We omit the rest of the proof, which is not hard. O

4 Beyond Circles

Definition 3. The Proportional Distance (PD) mechanism for three agents
selects each a; (i € {1,2,3}) with probability proportional to the distance between
the other pair of agents.

Note that for three agents on a circle, PD and PCD coincide when the agents
are not all on the same semicircle, and otherwise PCD gives higher probability to
the “middle” agent (which is optimal). Therefore PCD dominates PD. See Fig. 1a
for an example. It is also not hard to show that PD dominates RD on any metric
space. In particular, this means that SC(fFP) < §OPT(a) on any graph.
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Theorem 7. The PD mechanism is strategyproof in expectation for 3 agents in any
metric space (in particular on any graph).
In contrast to Theorem 1, the proof is rather technical and is thus omitted.

Observation 8. The approzimation ratio of any peaks-only mechanism (regard-
less of its incentive properties) on a general graph is at least % 2 - % for general

To see why, consider a star graph with n leafs, each containing one agent.

Proposition 9. Let f be any peaks-only mechanism. Then for any profilea € V3,
we have that SC(fEP) < 2SC(fa), and this bound is tight.

Proof. Consider the distances between pairs ¢ < y < z. W.L.o.g. we can denote
x4y = 1. By triangle inequality, z < z +y = 1. The optimal peak location yields
a cost of x + y = 1. The PD mechanism yields a cost of

SC(fPP) = z(y+ 2) n y(z + 2) n z(x +y) :2xy+xz+yz+z
r+y+z xz4+y+z xT+y+z 142
xy + 2 zy+1 9 )
=2 <2 = 1< (0. 1=-
152 S2q5g - wHi=08) +1=7

as required.

For tightness, consider any domain that contains three points a1, as, az such
that as is in the middle between a; and a3 (e.g., aline). If there is one agent on each
point then « = d(a1, a2) = d(az,a3) = y = 0.5 whereas z = d(a1,a3) = z+y = 1.
Then SC(f7P(a)) = 254 = 1.25 = 1.250PT/(a), as the optimal peaks-only
mechanism will select as. O

Since the optimal point on a circle is always a peak, and since PCD dominates
PD, we get the following.

Corollary 10. For 3 agents on a circle, the PD and PCD mechanisms have an
approximation ratio of %, and this is tight.

Remark 1. Since d(a1,a2) + d(as,a3) + d(as,a1) is a constant D given the pro-
file, the PD mechanism selects each agent ¢ with probability proportional to D —
SC'(a;). This allows us to easily extends the PD mechanism to any n, and it remains
an open question whether the PD mechanism remains strategyproof. Recall how-
ever that already on the circle, PCD dominates PD, and is not asymptotically bet-
ter than random dictator.

In [10], the authors suggest a randomized mechanism for placing n — 1 facilities
based on a similar idea: they place facilities on all agents except one (assuming all
locations are distinct), where the placement omitted location a; is selected with
probability inversely proportional to the social cost of this placement (which in
their case is just the distance to the closest agent j # i), and show it is strate-
gyproof for any n and any metric space. Another mechanism that uses a similar
proportional lottery (for two facilities) is in [18].
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This suggests another possible direction for the single facility problem (or per-
haps to more general problems), by considering various probabilities that are pro-
portional to some decreasing function of the social cost.?

4.1 Lower Bounds via Linear Programming

An immediate corollary from Proposition 6, is that in that any upper bound on
continuous circles implies the same upper bound on any finite circle with an even
number of nodes, and thus any lower bound on a finite circle of any even size (or
any size if Conjecture 5 is true) implies a lower bound for continuous circles.

It is well known that mechanism design problems for finite domains can be writ-
ten as linear programs [8]. Automated mechanism design had also been applied to
facility location problems, for one or more facilities on a line [15,26]. Due to the
specifics of the problems they considered, they used advanced machine learning
techniques rather than linear programming.

For a given graph (V, E), finding the optimal randomized strategyproof mech-
anism for three agents can be written as a simple linear optimization program as
follows. There are |[V|* 4 1 variables: (pg,2)acvs 2cv, Where p, . = fq(2) is the
probability that the facility is placed on z in profile a; and o € R which is the
approximation factor. The optimization goal is simply to minimize «. There are
four types of constraints:

1. Feasibility constraints: p, , > 0foralla € V3,2 € V;

2. Probability constraints: ),y pa,. = 1 for alla € V3,

3. Incentive constraints: For every profile @ € V3, any agent i € {1,2,3}, and
any alternative location a) € V', we want to enforce the constraint ¢;(a, f,) <
ci(@, f(a_;,a))- This can be written as the following linear inequality over 2[V|
variables: Y,y d(2,ai)pa,» < > cy d(2,0i)P@a_;.a)).2-

4. Approximation constraints: For every profile @ € V3, we want to
enforce the approximation SC(a, f,) < « - OPT(a). Since OPT(a) =
min,cy Ei€{172’3} d(z,a;) can be computed once for each profile, the
approximation constraint can also be written as a linear inequality:

Die(1.2:3) 2ozev A2, 0i)Pa,z S @ minzev )i 55y d(z, ai).

In total, we get a bit more than 3|V|* linear constraints. This is feasible for small
graphs with commercial solvers, especially such that handle well sparse constraint
matrices (we used Matlab’s linprog function). By coding the graph in Fig. 3, we
get the following:

Theorem 11. There is no strategyproof mechanism for arbitrary graphs whose

approximation ratio is better than % ~ 1.0833.

3 Note that using the reciprocal of the social cost (as in [10]) would lead to a poor outcome
in the single facility problem.
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Fig. 3. A graph for which the best approximation ratio is % The three solid edges have
length 1, all dashed edges have length 2.

Small circles

Lemma 12. For any strategyproof [peaks-only] mechanism f on the circle, there is
a neutral and anonymous strategyproof [peaks-only] g,* such that max, SC(gs) <
maxg SC(fq’).

Proof. Mechanism ¢ simply selects a permutation over agents uniformly at ran-
dom, and direction+rotation for the circle uniformly at random, thereby mapping
profile a to a. Then, it runs f on @ and maps back the outcome. Since this is a lot-
tery over strategyproof mechanisms, it must also be strategyproof. It is also easy to
see that if f is peaks-only then so is g. Finally, for any profile a, SC(g,) is averaging
over several variations of SC(f3), all of which are bounded by max,’ SC(fe/). O

1.051 -

5 o
2 &

Approximation ratio

9
=

1.01F

Circle size IVI

Fig. 4. The worst-case approximation ratio of the optimal 3-agent facility location mech-
anism on a circle with up to 44 vertices. The dashed part is computed only for peaks-only
mechanisms on even M.

Theorem 13. There is no strategyproof mechanism for circle graphs whose
approzimation ratio is better than 1.0456. If we add the peaks-only requirement, the
lower bound s 1.0523.

4 A mechanism is neutral if it is invariant to renaming of vertices, and anonymous if it
is invariant to renaming of agents.
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To prove the theorem, we coded two linear programs: one that computes the opti-
mal mechanism, and one that computes the optimal peaks-only mechanism. Since
the number of variables for a circle with M vertices is M* (or 3M? for peaks-only
mechanisms) increases too fast for efficiently solving except for very small graphs,
we applied the following improvements:

— By Lemma 12, it is sufficient to check mechanisms that are neutral. We thus
fixed the location of the first agent, which reduces the number of variables by a
factor of M.

— Alsoby Lemma 12, it is sufficient to check mechanisms that are anonymous. This
allows us to add many symmetry constraints (both within profiles and between
profiles) that effectively reduce the number of variables even more.

— By Proposition 6, it is sufficient to consider mechanisms that place the facility
on one of the 6 peaks or anti-peaks.

This enables us to solve the obtained program for all mechanism on circles up to
M = 28, and the program for peaks-only mechanisms for circles up to M = 44.
We note that the worst-case approximation bounds in both programs are the same
for any |V'| < 28, which supports Conjecture 5, but leaves the proof as a challenge.
The worst-case approximation ratios of the optimal mechanism for finite circles are
shown in Fig. 4. It is non-monotone due to parity effects.

It remains an open question whether there is a better mechanism than the i—
QCD mechanism for circles of arbitrary size, and what is the best approximation
ratio that can be guaranteed. While we improved the upper bound from % to %,
and the lower bound from 1 to the bounds in Theorem 13, there is still a non-
negligible gap.

5 Discussion

Table 1 summarizes our results for randomized mechanisms, and put them in the
context of known bounds. It remains an open question whether the upper bound of
% (2— % for general n) is tight, and in particular whether general graphs are more
difficult than circles.

The effect of the circle size on the available strategyproof mechanisms was evi-
dent in [9]. There, they showed (also using a computer search) a sharp dichotomy,
where up to a certain size there are deterministic anonymous mechanisms, and
above that size any strategyproof onto mechanism must be near-dictatorial. With
randomized mechanisms, we see a more gradual effect.

The mechanisms we present seem quite specific to the problem at hand. Thus a
natural question is what can be the takeaway messages for readers from the broader
community of algorithmic game theory? We believe there are two.
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Table 1. A summary of approximation bounds for 3-agent randomized mechanisms. (#)
- obtains 2 = 1.25 approximation from best peak (Proposition 9).

Metric space Any Circle

Random dictator % 2 1.333 (from [1]) % = 1.333 (from [1])

Proportional [Circle] distance|§ 22 1.333 (#) 2 =1.25 (Corollary 10)

%—Quadratic circle distance |- % 2 1.166 (Theorem 2, Proposition 3)
best UB 1.333 (RD/PD) 1.166 (1-QCD)

LB (peaks-only) 1.333 (Observation 8) 1.0523 (Theorem 13)

LB 13 >~ 1.0833 (Proposition 11)|1.0456 (Theorem 13)

First, the idea of focusing on the derivative of assignment probabilities as agents
change their reported values. In the case of facility location, misreporting a value
(say, by €) causes the manipulator direct harm that is linear in e, but may change
the outcome probabilities in a way that still makes the manipulation beneficial.
However, since the benefit is proportional to the change in probabilities (i.e., to
their derivatives), using quadratic probabilities (whose derivatives are linear) puts
the harm and benefit on the same scale. It is then left to the designer to tweak the
parameters of the mechanism so as to make sure that the gain of a manipulator
never exceeds the harm. Therefore, while the ¢-QCD mechanism seems more com-
plicated than PCD and is more difficult to technically analyze, in a sense it is the
result of a more structured and general approach to the problem, whereas PCD is
a nice curiosity that happens to work.

The second idea is the combination of analytic and computational tools for solv-
ing a difficult design problem. While in some cases (e.g. in the analysis of our PD
and PCD mechanisms) all the terms in the equations nicely cancel out to leave us
with a clean proof, this is not always so. On the other hand, fully automated mech-
anism design [8] typically explodes with the size of the problem and leaves us with
a solution that cannot be easily explained, modified or adapted to similar prob-
lems. This is true even for our linear programming approach in Sect. 4.1. However,
one can come up with a specific or parametrized class of mechanisms, and use the
computer capabilities to prove certain difficult inequalities, optimize parameters,
or test various conjectures before setting out to prove them analytically. A similar
combined approach has been applied e.g. in auctions [16], albeit with very different
mechanisms.

We leave many open questions for future research. In particular, whether the
PD and QCD mechanisms can be generalized for more agents, and whether there
are classes of graphs that are inherently more difficult than circles.

Acknowledgments. This work was supported in part thanks to the Israeli Science
Foundation grant number 773/16.



32

R. Meir

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: Strategyproof approxi-

mation of the minimax on networks. Math. Oper Res. 35(3), 513-526 (2010)

Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: Walking in circles. Dis-
crete Math. 310(23), 3432-3435 (2010)

Anastasiadis, E., Deligkas, A.: Heterogeneous facility location games. In: Proceed-
ings of 17th AAMAS, pp. 623-631, 2018

Anshelevich, E., Postl, J.: Randomized social choice functions under metric prefer-
ences. J. Artif. Intell. Res. 58, 797-827 (2017)

Black, D.: On the rationale of group decision-making. J. Polit. Econ. 56(1), 23-34
(1948)

Cai, Q., Filos-Ratsikas, A., Tang, P.: Facility location with minimax envy. In: Pro-
ceedings of 25th IJCAI (2016)

Caragiannis, 1., Kalaitzis, D., Markakis, E.: Approximation algorithms and mecha-
nism design for minimax approval voting. In: Proceedings of 24th AAAT (2010)
Conitzer, V., Sandholm, T.: Complexity of mechanism design. In: Proceedings of the
Eighteenth conference on Uncertainty in artificial intelligence, pp. 103-110. Morgan
Kaufmann Publishers Inc. (2002)

Dokow, E., Feldman, M., Meir, R., Nehama, I.: Mechanism design on discrete lines
and cycles. In: Proceedings of 13th ACM-EC, pp. 423-440 (2012)

Escoffier, B., Gourves, L., Kim Thang, N., Pascual, F., Spanjaard, O.: Strategy-
proof mechanisms for facility location games with many facilities. In: Brafman, R.I.,
Roberts, F.S., Tsoukias, A. (eds.) ADT 2011. LNCS (LNAI), vol. 6992, pp. 67-81.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24873-3_6
Feldman, M., Fiat, A., Golomb, I.: On voting and facility location. In: Proceedings
of the 2016 ACM Conference on Economics and Computation, pp. 269-286. ACM
(2016)

Feldman, M., Wilf, Y.: Strategyproof facility location and the least squares objective.
In: Proceedings of 14th ACM-EC, pp. 873-890 (2013)

Filos-Ratsikas, A., Li, M., Zhang, J., Zhang, Q.: Facility location with double-peaked
preferences. Auton. Agents Multi-agent Syst. 31(6), 1209-1235 (2017)

Florez, J.V., Lauras, M., Okongwu, U., Dupont, L.: A decision support system for
robust humanitarian facility location. Eng. Appl. Artif. Intell. 46, 326-335 (2015)
Golowich, N., Narasimhan, H., Parkes, D.C.: Deep learning for multi-facility location
mechanism design. In: IJCAI, pp 261-267 (2018)

Guo, M., Conitzer, V.: Computationally feasible automated mechanism design: gen-
eral approach and case studies. In: AAAI vol. 10, pp. 1676-1679 (2010)

Kalai, E., Muller, E.: Characterization of domains admitting nondictatorial social
welfare functions and nonmanipulable voting procedures. J. Econ. Theory 16, 457—
469 (1977)

Lu, P., Sun, X., Wang, Y., Zhu, Z.A.: Asymptotically optimal strategy-proof mech-
anisms for two-facility games. In: Proceedings of the 11th ACM conference on Elec-
tronic commerce, pp. 315-324. ACM (2010)

Mei, L., Li, M., Ye, D., Zhang, G.: Strategy-proof mechanism design for facility loca-
tion games: revisited. In: Proceedings of 15th AAMAS, pp. 1463-1464 (2016)

Meir, R.: Strategic voting. Synth. Lect. Artif. Intell. Mach. Learn. 13(1), 1-167
(2018). Morgan & Claypool Publishers

Meir, R.: Strategyproof facility location for three agents on a circle. arXiv preprint
arXiv:1902.08070 (2019)


https://doi.org/10.1007/978-3-642-24873-3_6
http://arxiv.org/abs/1902.08070

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Strategyproof Facility Location for Three Agents on a Circle 33

Meir, R., Almagor, S., Michaely, A., Rosenschein, J.S.: Tight bounds for strate-
gyproof classification. In: Proceedings of 10th AAMAS, pp. 319-326 (2011)

Meir, R., Procaccia, A.D., Rosenschein, J.S.: Algorithms for strategyproof classifi-
cation. Artif. Intell. 186, 123-156 (2012)

Moujahed, S., Simonin, O., Koukam, A., Ghédira, K.: A reactive agent based app-
roach to facility location: application to transport. In: 4th Workshop on Agants in
Traffic and Transportation, located at Autonomous Agents and Multiagent Systems
(AAMAS 2006), pp. 63-69, Citeseer (2006)

Moulin, H.: On strategy-proofness and single-peakedness. Public Choice 35, 437—-455
(1980)

Narasimhan, H., Agarwal, S., Parkes, D.C.: Automated mechanism design without
money via machine learning. In: Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, pp. 433-439. AAAT Press (2016)

Nehring, K., Puppe, C.: The structure of strategy-proof social choice - part I: general
characterization and possibility results on median spaces. J. Econ. Theory 135(1),
269-305 (2007)

Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money.
In: Proceedings of the 10th ACM conference on Electronic commerce, pp. 177-186.
ACM (2009)

Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money.
ACM Trans. Econ. Comput. (TEAC) 1(4), 18 (2013)

Schummer, J., Vohra, R.V.: Strategy-proof location on a network. J. Econ. Theory
104(2), 405-428 (2004)

Serafino, P., Ventre, C.: Truthful mechanisms without money for non-utilitarian het-
erogeneous facility location. In: Proceedings of 29th AAAT, pp. 1029-1035, (2015)
Sui, X., Boutilier, C.: Approximately strategy-proof mechanisms for (constrained)
facility location. In: Proceedings of 14th AAMAS, pp. 605-613 (2015)

Todo, T., Iwasaki, A., Yokoo, M.: False-name-proof mechanism design without
money. In: Proceedings of 10th AAMAS, pp. 651-658 (2011)

Zou, A., Li, M.: Facility location games with dual preference. In: Proceedings of 14th
AAMAS, pp. 615-623 (2015)



q

Check for
updates

Sharing Information with Competitors

Simina Branzei' ™), Claudio Orlandi?®™), and Guang Yang?*(®)

! Purdue University, West Lafayette, USA
simina@purdue.edu
2 Department of Computer Science, DIGIT, Aarhus University, Aarhus, Denmark
orlandi@cs.au.dk
3 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
4 Conflux Technology Limited, Beijing, China
guang.research@gmail.com

Abstract. We study the mechanism design problem in the setting where
agents are rewarded using information only, which is motivated by the
increasing interest in secure multiparty computation. Specifically, we con-
sider the setting of a joint computation where different agents have inputs
of different quality and each agent is interested in learning as much as
possible while maintaining exclusivity for information. Our high level
question is how to design mechanisms that motivate all the agents (even
those with high-quality inputs) to participate in the computation; we
formally study problems such as set union, intersection, and average.

1 Introduction

Secure multiparty computation allows a set of parties to compute any func-
tions on their private inputs. In recent years there has been a boom in the
speed achieved by cryptographic protocols for secure multiparty computation
(see e.g., [4,7,10,12,16,18] and references therein), to the point that start-ups
and companies are beginning to offer products based on these technologies [1].
One question that has not been addressed in the cryptographic community so
far is whether parties will have any incentive in participating in such protocols:
In traditional multiparty computation tasks, multiple agents wish to evaluate
some public function on their private inputs, where all agents are equal and
the evaluated result is broadcasted to all of them or at least the honest ones.
However, when viewing through the game-theoretic lens, the function evaluation
process can be realized as the exchanging of private information among those
agents, and hence the agents are not equal. For example, an agent with higher
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influence on the function tends to have a smaller incentive in the cooperation,
and in the extreme case a “dictator” would have zero incentive; or even if the
function is symmetric, an agent may still be less incentivized because of a high
quality private input which provides a better prior than others. An example of
a dictator is an agent with input zero when the function is AND; such an agent
already knows the output of the computation and can learn nothing from others.

To this end we suggest to consider the procedure fairness (rather than the
result fairness) in terms of information benefit, which measures how much an
agent improves the quality of her own private information by participating. We
believe this is a better characterization of the agent incentives. Also from the
game-theoretic point of view, it makes sense to consider the agents as rational
and self-motivated individuals rather than simply “good/bad” or “honest/semi-
honest /malicious” as is typically done in cryptographic scenarios.

In this work, we study mechanisms for exchanging information without mone-
tary transfer among rational agents. These agents are rational and self-motivated
in the sense that they only care about maximizing their own utility defined in
terms of information. More specifically, we focus on utility functions that capture
the following properties about the behavior of the agents:

— Correctness: The agents wish to collect information from other agents.
— FEzxclusivity: The agents wish to have exclusive access to information.

The wish to collect information incentivizes cooperation, while the wish for
exclusivity deters it. By unifying the above competing factors, agents aim to
strike a balance between the two. The value of exclusivity is a concept studied
in many areas of economics (e.g. labor economics, economics of the family, etc);
see, e.g. [20] for a study on the role of exclusivity in contracts between buyers
and sellers and [13] for platform-based information goods.

Utility functions that capture these competing factors are relevant in mod-
eling situations where both cooperation and competition exist simultaneously,
such as several companies wishing to exchange their private but probably over-
lapping information, e.g. training data for machine learning purpose, predictions
for the stock market, etc.

We investigate specific information exchanging problems, such as Multiparty
Set Union, as well as Set Intersection and Average. For example, in the set union
problem there is a number of agents, each owning a set, and the goal is to find
the union of the private sets held by all the agents. Set intersection is similarly
defined except the goal is to find the intersection. Since for such problems the
result is not Boolean and agents with different quality input should get different
results, the value of result is measured by quality (accuracy) rather than by a
Boolean indicator of whether it is the optimal one.

For the behavior of the agents, many of our results are for the “all-or-nothing
model” where every agent either fully participates by truthfully submitting their
input or refuses to participate. We also have several results for games with few
agents in the richer model where agents can partially participate, by submitting
some but not all of their information, as well as open questions.
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The all-or-nothing model captures realistic scenarios where the inputs are
authenticated by some trusted authority (e.g. using digital signatures), or where
the inputs were already collected by some central entity, and the only choice of
the agent is whether to allow their input to be used in the computation. Another
motivation for the all-or-nothing model is when the inputs are later checked (e.g.
in court or in future rounds of repeated games). The participants send their pri-
vate input to the trusted mediator! (i.e. “principal”) who runs a publicly known
protocol (mechanism) to decide the payoff of each agent. Here the payoffs are
customized pieces of information since we are studying the information exchang-
ing mechanism without money.

As a simple example to motivate our work, consider the following scenario:
Suppose there is a group of people and everyone is interested in finding a gold
mine. The gold mine is situated in location ¢. Everyone has some estimate of
where the gold mine is ¢; and some uncertainty given by a radius d;, i.e. each
player i has an interval [t; —d;, t;4+d;]. The players want to join their information
to get a better approximation of the location of the gold mine and know that the
gold mine lies in the intersection of all the estimates (sets). However if a player
i knows that its radius d; is much smaller than that of another player j, then
player ¢ knows that it won’t learn much by interacting with player j. That is,
in the worse case player ¢’s interval is contained in player j’s interval, so there
is no information player ¢ can infer from j. Since player i would rather not have
player j gain free information without receiving anything in return, the problem
is to design a mechanism that incentivizes the players to learn from each other
(as much as possible). This is the problem that, later in the paper, we refer to
as the set intersection problem.

1.1 Owur Contribution

In this paper we propose a framework for non-monetary mechanism design with
utility functions unifying both preferences of correctness and exclusivity. Let
N ={1,...,n} be a set of agents. Suppose each agent has some piece of infor-
mation, the details of which we intentionally leave informal for now. Given some
mechanism M that the agents use to exchange information among themselves,
we define the information benefit v; of an agent ¢ to be the additional “informa-
tion” gained by ¢ after participating in M. For example, in the case of the set
union problem, where each agent owns a set of elements and tries to learn addi-
tional elements from other agents, this gain could be the number of additional
elements learned by an agent compared to what that agent already knew.

The utility function will capture the tension between the wish to learn and
the wish for exclusivity and the simple instantiation that we focus on is u; =
v; — max e\ (i} vj- Thus each agent wishes to learn as much as possible while
maintaining exclusivity over the information, which is captured by minimizing

! In the secure multiparty computation setting this trusted party is usually replaced
by a cryptographic protocol. For the sake of simplicity, we do not further consider
cryptographic protocols in this work.
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the amount obtained by others. This definition is connected to the notion of
envy-freeness; in particular, it captures the maximum “envy” that an agent @
could have towards any another agent, and the goal is to reduce envy.

Our technical contribution is to design mechanisms for natural joint com-
putation tasks such as Multiparty Set Union, as well as Set Intersection and
Average. We focus on mechanisms that incentivize agents to submit the infor-
mation they have as well as ensure properties such as Pareto efficiency? of the
final allocation.

In the Multiparty Set Union Problem each agent owns a set x; drawn from
some universe Y. The utility functions are as described above. The strategy
space of an agent consists of sets they can submit to the mechanism. We assume
that agents can hide elements of their set, but not manufacture elements they
don’t have (i.e. there is a way to detect forgery). The question is to design a
mechanism that incentivizes the agents to show their set of elements to others.

Theorem 1. There is a truthful and Pareto efficient mechanism for set union
among n = 3 agents. The mechanism runs in polynomial time.

We leave open the mechanism design question for any number of agents.

Open Problem 1. Is there a truthful polynomial time mechanism for set union
for any number of agents? Are there randomized such mechanisms?

However, we manage to solve this problem for the special case where each
agent can either submit its whole set or the empty set, i.e. cooperate or not. We
call this the “all-or-nothing” model.

Theorem 2. There is a truthful, Pareto efficient, and welfare mazimizing mech-
anism® for set union among any number n of all-or-nothing agents. The mech-
anism runs in polynomial time for any fixed n.

We further show that this mechanism satisfies several other desirable prop-
erties, such as treating equal agents equally and rewarding more agents that
contribute more.

Beyond multiparty set union, we also consider two case studies of problems
with sets. The first is a set intersection problem, where each agent owns a con-
nected set (interval) on the real line. The agents have to find an element in the
intersection of all the sets and are promised that such an element exists. A high
level example of this problem is when the agents are trying to find a gold mine
as described in the introduction.

Theorem 3. There is a truthful polynomial time mechanism for interval inter-
section among any number n of all-or-nothing agents.

The second case study is a point average problem, where each agent has a
point and the goal is to compute the average value of their inputs.

2 Pareto effiency ensures no agent can be better off without making anyone worse off.
3 Welfare maximization is achieved by maximizing over all Pareto efficient outcomes.
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Theorem 4. There is a truthful polynomial time mechanism for the point aver-
age problem for any number n of all-or-nothing agents.

Finally, two more high-level remarks are in order.

Why not mazimize social welfare? A trivial solution to problems such as set
union can be to have everyone learn everything (i.e. maximize the sum of infor-
mation gains). In traditional settings such as auctions or elections it is unlikely
that every agent maximizes their information benefit simultaneously since their
ideal outputs are usually conflicting, e.g. there is only one indivisible good that
cannot be assigned to more than one agent. However, in the world where infor-
mation replaces material goods, it becomes possible to duplicate the information
at (nearly) zero cost such that every agent gets all information and hence maxi-
mizes their utility at the same time. This straightforward mechanism only works
if all agents are selfless and choose to report truthfully. However, it is unfair
in the sense that the more one agent contributes, the less benefit they could
get (since the information benefit is bounded by the whole information minus
their private information). Furthermore, the straightforward mechanism fails
badly when agents take exclusivity into consideration: e.g. the dominant strat-
egy would be “revealing nothing to the mechanism but combining the output
with the private input afterward” and eventually the equilibrium becomes that
no exchange happens at all (similar to the “rational secret sharing” problem dis-
cussed in [8,9,11]) when partial participation and strategic lies are allowed; and
even in the all-or-nothing model an agent may prefer not participating accord-
ing to their own utility function if their advantage over other competing agents
would decrease.

A Note on Mechanism Design. The intuition behind our constructions is that
every agent, when participating in the cooperation, should get a benefit no less
than the loss they could cause to others by not participating. At first glance it
might seem that the “loss to others” inflicted by a non-participating agent would
be bounded by the exclusive information of that agent. However, it turns out
that agents contribute much more to the mechanism than simply their private
inputs. In particular, the participation of an agent may increase social welfare
by giving incentives for participation to other agents with “better” inputs. An
agent ¢ with a high quality input might choose to join the computation, or
reveal more of their private information, because, by doing so, they can reduce
the information benefit of some other agent j (which is rational when it reduces
©’s own exclusivity loss).

Therefore, the key idea behind our constructions is to characterize the
marginal contribution of every agent and assign information accordingly so that
nobody prefers to leave the cooperation (and in the meanwhile we aim to max-
imize the social welfare among all stable allocations). For example, this idea is
instantiated as a round-by-round exchange mechanism for the Three-Party Set
Union problem (in Sect. 2.2), such that in every single “round” of exchange each
agent gains more benefit than he offers to others.
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1.2 Related Work

Our setting is reminiscent of cooperative game theory and the well-known solu-
tion of Shapley value [2,19,21], except that now the agents are rewarded with
information instead of money. There are two main distinctions: (a) Information
can be duplicated, for free or with negligible cost; (b) Every piece of informa-
tion is unique whereas money is fungible, e.g. the same piece of information
could have different values for different agents. The first property results in an
unfixed total profit (sum of all agents’ payoffs) and so breaks the intuition of
“distribute the total surplus proportionally to each agent’s contribution” used
in Shapley value. The second property requires the mechanism to specify not
only the amount of information but also the details of information allocation. In
particular, the information already contained in an agent’s input cannot be used
to reward that agent. Such a property also leads to a subtle dilemma—the more
an agent contributes, the less they can get as a reward from the mechanism—
e.g. an agent with all information cannot get new information from other agents.
Therefore, the mechanism must be able to motivate the most informed agents
even though they may not benefit as much as those that know less (i.e. with
lower quality inputs). A different line of work has studied the problem of sharing
information when the inputs are substitutes or complements [6], which defined
the value of information (and of a marginal unit of information) and instantiated
it in the context of prediction markets.

Our model can be seen as an extension of the non-cooperative computation
(NCCQC) framework and informational mechanism design (IMD) introduced in
[14,22], where they characterize Boolean functions that are computable by ratio-
nal agents with non-monetary utility functions defined in terms of information.
In their model, the agents are trying to compute a public Boolean function
on their private inputs with the help of a trusted center. Every agent claims
their type (truthfully or not) to the center, and gets a response from the center
(typically but not necessarily the Boolean function evaluated on claimed types).
Agents may lie or refuse to participate, and they can apply any interpretation
function (on the response from the center and their true input, so as to correct
a wrong answer possibly caused by an earlier false declaration). In the setting of
[22], the agents have a two-tiered preference of correctness preceding exclusivity?,
i.e. they are interested in misleading others only if this would not hurt their own
correctness, whereas we generalize this lexicographic preference to a utility func-
tion incorporating both components (The lexicographic preference is a special
case when one component is assigned a very small weight). Another extension is
that we consider non-Boolean functions and allow distinct responses to different
agents, which significantly enriches the space of candidate mechanisms.

The line of work [8,9,11] focuses on the cryptographic implementation of
truthful mechanisms for secret sharing and multiparty computation by ratio-
nal agents without a trusted mediator. In their setting there is an “issuer” who
authenticates the initial shares of all agents so that the agents cannot forge a

* [14] considers other facets, such as privacy, but still in lexicographic ordering.
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share (just as in the all-or-nothing model). Then the agents use simultaneous
broadcast channels (non-simultaneous channels are also considered in [11]) to
communicate in a round-by-round manner. Since all messages are broadcasted
in this setting, a rational agent tends to keep silent so that they can receive
others’ information without revealing their own and hence possibly gain advan-
tage in exclusivity. Therefore, much of the efforts and technical depth along this
line is spent on catching dishonest agents (who do not broadcast their shares
when they are supposed to), based on the key idea that in any given round
the agents do not know whether this is just a test round designed to detect
cheaters, or whether it is the final round for the actual information exchange. [9]
achieve a fair, rational secure multiparty computation protocol which prevents
coalitions and eliminates subliminal channels, despite the drawback of requiring
special purpose hardware such as ideal envelopes and ballot boxes. However, all
of these works assume the two-tiered preference of correctness and exclusivity
as in [22], where in particular the correctness dimension is Boolean, i.e. either
“correctly computed” or not. As a result, these works fall into the category of
“implementing cryptographic protocols with rational agents” rather than the
more game-theoretic topic “informational mechanism design” which we address
in this paper.

There is another line of work [15,17] on mechanism design with privacy-aware
agents who care about their privacy rather than exclusivity. Considering privacy
is relevant in many applications but technically orthogonal to what we study.
(In our work, the privacy of the inputs is only a tool towards limiting the loss
of utility due to the exclusivity preference, not a goal in itself).

The recent works of [5] and [3] investigate non-monetary mechanisms for
cooperation among competing agents. However, an essential difference is that
they consider a sequential delivery of outputs to different agents, such that the
utility function is not merely in terms of information but also depends on the
time or order when the output is delivered. For example, the “treasure hunting
problem” in [5] is in particular very similar to the multiparty set intersection
problem, except that in treasure-hunting only the first agent finding the common
element gets positive utility while all others get zero.

2 Multiparty Set Union

Let N = {1,...,n} be a set of agents. There is a universe U = {uy,..., U} of
possible numbers, from which each agent ¢ owns a subset S; C U/ that is private
to the agent. The goal of the agents is to obtain more elements of the universe
from other agents by sending elements from their own set in exchange.

We study the problem of designing mechanisms that incentivize the partici-
pants to share their information with each other. A mechanism M will take as
input from each agent ¢ a set z; C S; and output a vector y = M(x), so that the
i-th entry of this vector contains the set received by agent ¢ after the exchange.

Strategies. The strategy of an agent is the set it submits to the mechanism.
Agents can hide elements (i.e. submit a strict subset of their true set), but not
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submit elements they don’t actually have. A special case we will study in more
depth is when the strategies of the agents are “all-or-nothing”, i.e. z; € {0, 5;}.
The input of each agent to the mechanism is sent through a private authenticated
channel to the center.

Utility. We say the “information benefit” that agent ¢ receives from sending
their set S; to the mechanism is the number of new elements that ¢ obtains from
the exchange: v;(x) = |[M;(x) \ x;|. The utility of the agent is then defined as
the minimum difference between their own information benefit and that of any
other agent, formally given by u;(x) = v;(x) — max;cn 15} v; ().

The intuition is that each agent wishes to learn as much as possible while
maintaining exclusivity, which is captured by minimizing the amount of infor-
mation obtained by the other agents. This utility function is closely tied with the
notion of envy as it compares the value for an agent with the maximum value of
any other agent and the aim is to compute (approximately) envy-free outcomes.

Incentive Compatibility and Efficiency. We are interested in mechanisms that
incentivize agents to share their information and will say that a mechanism is
truthful if truth telling is a dominant strategy for each agent regardless of the
strategies of the other agents. An allocation (outcome) is Pareto efficient (or
Pareto optimal) if there is no other outcome where at least one agent is strictly
better off and nobody is worse off.

Fairness. Some of our mechanisms also satisfy fairness and the fairness notions
we consider are symmetry and strong dominance. Symmetry requires that if
multiple agents report inputs of equivalent quality, then they get the same infor-
mation benefit (and so the same utility). Strong dominance stipulates that if
the information reported by an agent is inferior to the information reported by
another agent under some partial order, then the result sent to the first agent is
also (weakly) inferior to the result sent to the second agent under that order.

2.1 Two Agents
As a warm-up, we give a solution to the exchange problem for n = 2 agents.

Proposition 1. There is a truthful polynomial time mechanism for the set
union problem between two agents.

Proof. W.l.o.g., the set owned by the second agent is larger: |z1| < |x2|. Let
y2 = x1 Uz and y; = x1 U y), where y] is a set chosen so that yj C a2 \ 21
and |yj| = |z1 \ x2|. Then agents 1 and 2 can fairly exchange their exclusive
elements until one of them has used up their exclusive elements. Note this type
of exchange performed over multiple rounds can in fact be done in an atomic way
by the principal. It is immediate that this mechanism ensures both agents get
the same information benefit: v1 = vy = |21 \ 22| > 0 and it is weakly dominant
for them to report their true information. O
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2.2 Three Agents

For three agents the problem becomes more subtle, as the mechanism must
specify the order of pairwise exchanging, the number of exchanged elements,
and, more importantly, which elements are exchanged.

Theorem 5. There is a truthful polynomial time mechanism for set union
among n = 3 agents.

Proof. The theorem will follow from the construction in Mechanism 1. Mech-
anism 1 starts by removing the common elements among all three parties,
since these elements will not affect the exchange; these elements are denoted
by the set zg. Then we consider the three pairwise intersections, from which the
agents can exchange a number of elements bounded by the smallest intersec-
tion i.e. s = min {|x; N 2|, |z2 Nas|, |z3 N x1|}. Note that at the end of these
exchanges at least one of these three intersections will be “used up”. Thus we
assume w.l.o.g. that after this step z2 N3 = 0 and |z2| > |z3]. Now we have
reduced the original problem to a setting where there is no common intersection
and only two pairwise intersections are non-empty, namely x1 N x5 and x; N x3.

Let x2,x3 be partitioned into zo = x4 U zf, x5 = x4 U z¥ where 2}, = x5 N
x1,xy = x2\x1, and x5 = x3 N 1, 24§ = x3\z1. The intuition will be that
elements in 24 should be used to exchange elements in x4 = z3\(z1 U xza) =
x3 NT1 N T3, and similarly af for z5.

Next we discuss how exchanging occurs in several situations.

Case 1: |zh| > |z4| and |z§| > |a%|. This is the simplest case, where we can
simply make agent 3 exchange all elements in z3 = x4 U x4 with both agents 1
and 2 for an equal amount of elements in z C a5, and w C z} respectively. Then,
agent 3 used up all its elements and the problem reduces to the two-party case
between agents 1 and 2 with remaining elements in (x1\x%, z2\w).

two-party case

@) &l B
(w3

Case 2: |z4| > |z4| and |z5| > |z5|. Then agent 2 uses |z5| many elements in
x4, denoted by w, to exchange all elements in 2% with agents 1 and 3, and by
symmetry agent 3 uses |z5| many elements in z to exchange x}, with agents 1
and 2. After this exchange all the three agents may have some elements left, but
these are all exclusive elements, so the problem reduces to the easy case of three
party with disjoint elements (z1\(x4 U %), 25 \w, 24 \z). Then the mechanism
exchanges a number of elements equal to min {|z1\(z5 U a%)|, |25 \w|, |z5\z]},
further reducing the problem to the two-party case.
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Mechanism 1: Three Party Set Union

[ B B U VN

~

10
11
12
13
14

15

16

17
18
19
20
21

22

23
24
25
26
27

28

29
30
31
32
33

34
35

36
37

Input: Set z; C U for each player ¢
Output: Set y; C U for each player ¢

zo=x1Nxz2NxT3
foreach player i do
Yi = T4
r; = xi\zo
end

s =min{|z1 Nx2|,|z2 Nas|,|zsNz1|} /* W.1.0.g9., |x2]| > |z3| and
s = |z2 N3] */
Z1 = X2 n T3
Select arbitrary sets zo C x3 N1 and z3 C z1 N x2 of sizes |z2] = |z3] = s = |21]
foreach player i do
Yi =yi Uz
T; = 1’7\ (21 Uz U 2’3)
end
x5 = xa Nay; o5 = T2\11
Ty =3 Nx1; o5 = x3\T1

(yi,yé,yé) = (@,@,@) /* Sets to store elements from recursive calls, if
any. */
if |z5| > |z4| and |z5| > |z3| then
/* Case 1 */
Select arbitrary sets z C x5 and w C x4 of sizes |z| = |z%]| and |w| = |z35|
Y2 = y2 U3
ys =ysUzUw
y1 =y UwUzy
(y1,95) = TWOPARTYSETUNION (z1\z5, z2\w)
else if |z5| > |z5] and |z%| > |z5| then
/* Case 2 */
Select arbitrary sets w C z% and z C zj of sizes |w| = |z5] and |z| = |z5]
y2 =y2 Uz Uz
ys=ysUazs Uw
n=y1UzUw
(y1,v2,y5) = THREEPARTYSETUNION (z1\(z5 U x3), z5\w, x4 \z)
/* Recursive call with disjoint sets. */
else
/* Case 3: |x%| < |zb| and |24| < |x5] */
Select arbitrary sets w C x5 and z C x5 of sizes |w| = |z3| and |2]| = |z
Y2 = Y2 U x4 Uz
ys =ysUzy Uw
y1 =y Uzy Uy
(y3,y5) = TWOPARTYSETUNION (z5\w, 75\ 2)
foreach player i do
yi =y Uy; /* Add elements obtained from recursive calls, if any,
to the final set for each player. x/
end
return (y1, y2,ys3)
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disjoint three-party

S )

Case 3: |25| < |zh| and |af| < |z%]. In this case agent 2 uses z§ in exchange for
|#| many elements in z C x4, and, by symmetry, agent 3 uses z§ to exchange
|#%| many elements in w C 4. After such an exchange the problem reduces to
three parties with (z1\(w U 2), 25 \w, 5\z).

g

Finally, for improved welfare, agent 2 and agent 3 run a naive two-agent
exchange protocol with their remaining elements in z4\w and z5\z. This is not
optimal for agent 1, who has already collected full information and wants to end
the exchange. However, agent 1 cannot prevent such exchange between agents 2
and 3 anyhow.

Mechanism 1 guarantees individual rationality because every round of
exchange in its process is “fair” and “necessary”. Every round is fair in the sense
that all participants of that round get equal benefits—each of them gives out
some elements in exchange for more new elements. Every round of such exchange
is necessary because each element appears in at most one round, i.e. the mech-
anism does not reuse previously exchanged elements. Therefore, an agent that
hides elements would suffer a loss lower bounded by the number of private ele-
ments that could have been traded, which is indeed a natural upper bound for
the loss of others. O

We note that Mechanism 1 is not Pareto efficient since the reduced problem
(that is solved in the recursive call) is dealt with in a naive way. For example,
consider the last step in Case 1 i.e., after the problem has already been reduced
to the two-party case. Here we could let agents 1 and 2 exchange their remaining
elements without agent 3. This could be seen as fair, since agent 3 does not con-
tribute new elements in those rounds. However, this procedure does not achieve
Pareto efficiency, for that we can improve the social welfare by giving agent 3
some extra elements and, for sufficiently small number of elements, the utilities
of agents 1 and 2 would not change and the solution would ensure that agents 1
and 2 remain truthful as before.

two-party inside x,

:> x’z\vD KX';\Z

Theorem 6. There is a truthful and Pareto efficient mechanism for set union
among n = 3 agents.
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Proof. For case 1, consider the last step (of this case) in the execution of the
mechanism. Mechanism 1 can be modified to assign randomly selected extra ele-
ments to player 3 so that |ys\zs| = v1 = vy (recall that Mechanism 1 ensures
v1 = vg). This modification achieves Pareto efficiency since any further improve-
ment on social welfare will decrease the utility of player 1 or player 2, who
already get all elements and cannot get more information benefit. Now we prove
that the above modification also preserves truthfulness. This is immediate for
players 1 and 2 but requires the following observations to see that it continues
to hold from the point of view of player 3:

— each of player 3’s exclusive elements in 24 leads to the same amount of
marginal benefit to player 3 as to players 1 and 2, i.e. it is used to exchange
for either one element in x4, which will not be exchanged between players 1
and 2, or two elements when players 1 and 2 exchange elements in xo\w and
21\ (x5 U x5), respectively.

— all of player 3’s elements in 5 do not affect others’ information benefits;
however, such elements can help player 3 since they might prevent the player
from receiving some previously known element as the extra benefit.

We note that the same modification also works to ensure Pareto efficiency
in case 2, while case 3 already ensures a Pareto efficient exchange. Thus there
exists a truthful mechanism that is Pareto efficient. O

2.3 Any Number of Agents

We observe that the three agent mechanism above relies on a complex analy-
sis that depends on the different intersection sets. The number of intersections
increases exponentially as n grows and we leave open the question of whether it
is possible to achieve an analogue of Mechanism 1 for more than three agents.

Open Problem 1. Is there a truthful polynomial time mechanism for set union
for any number of agents? Are there randomized such mechanisms?

In Mechanism 2, we show a truthful mechanism for set union for any number
of agents in the special case where each agent can either submit its whole set or
the empty set, i.e. cooperate or not. We call this the “all-or-nothing” model and
our main result is:

Theorem 7. There is a truthful, Pareto efficient, and welfare maximizing mech-
anism for set union among any number n of all-or-nothing agents. The mecha-
nism runs in polynomial time for any fixed n.
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Mechanism 2: Multiparty Set Union

Input: (x1,29,...,z,), where each set z; C U is the input from player .
Output: (y1,Y2,.-.,Yn), where each set y; is sent to player i.

1 Fix an ordering = of all elements in U /* 7m will be used to specify
the exchanged elements */

2 u=J 2
V = ComputeV(zy,...,x,) /* the function ComputeV is defined
below */
foreach player i € [n] do

v; = max {V, Ju\z;|}

Let r; be the set of first v; elements in z_;\x; according to 7

Yi =2 UTy
end
return (y1,y2, ..., Yn)-

w

© ® N o A

10 Function ComputeV(zy,...,z,)

11 if n <1 then

12 ‘ return 0

13 foreach player i € [n] do

14 Zi = Ujp @

15 V_; = ComputeV(x_;)

16 end

17 V = min {mingep {[z—p\wr| + Vor} , maxpepn) [2—x\zk| }
18 return V.

3 Beyond Union: Intersection and Average

Moving beyond the multiparty set union problem, we suggest two other set
problems where the agents own data points and wish to share them.

Intersection. The first problem is interval intersection, where each agent owns
an interval in R and the goal is to find a point in the intersection of all the sets.
A high level scenario motivating this problem is the gold mine example from the
introduction, where there is a group of people trying to find the location of a
gold mine, and each person has an estimate of where the gold mine is, given by
a center and a radius. The agents would like to merge their estimates to get a
better idea of where the mine is situated, but the challenge is that agents with
very good estimates (i.e. small radius) will not learn much from those with worse
estimates (i.e. larger radius).

Theorem 8. There is a truthful polynomial time mechanism for interval inter-
section among any number n of all-or-nothing agents.

Set Average. The second problem is taking the average of a set that is dis-
tributed among the agents.
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Theorem 9. There is a truthful polynomial time mechanism for the average
point problem among any number n of all-or-nothing agents.

4

Discussion

Aside from our concrete open questions, the directions of generalizing the results
to richer strategy spaces, allowing randomization, and more general utility func-
tions are interesting.
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Abstract. We study the classic mechanism design problem of locating
a public facility on a real line. In contrast to previous work, we assume
that the agents are unable to fully specify where their preferred location
lies, and instead only provide coarse information—namely, that their pre-
ferred location lies in some interval. Given such partial preference infor-
mation, we explore the design of robust deterministic mechanisms, where
by robust mechanisms we mean ones that perform well with respect to
all the possible unknown true preferred locations of the agents. Towards
this end, we consider two well-studied objective functions and look at
implementing these under two natural solution concepts for our setting
(i) very weak dominance and (i7) minimax dominance. We show that
under the former solution concept, there are no mechanisms that do bet-
ter than a naive mechanism which always, irrespective of the information
provided by the agents, outputs the same location. However, when using
the latter, weaker, solution concept, we show that one can do significantly
better, and we provide upper and lower bounds on the performance of
mechanisms for the objective functions of interest. Furthermore, we note
that our mechanisms can be viewed as extensions to the classical optimal
mechanisms in that they perform optimally when agents precisely know
and specify their preferred locations.

1 Introduction

We consider the classic problem of locating a public facility on a real line or
an interval, a canonical problem in mechanism design without money. In the
standard version of this problem, there are n agents, denoted by the set [n] =
{1,--- ,n}, and each agent i« € [n] has a preferred location z; for the public
facility. The cost of an agent for a facility located at p is given by C(z;,p) =
|p — z;|, the distance from the facility to the agent’s ideal location, and the
task in general is to locate a facility that minimizes some objective function.
The most commonly considered objective functions are (a) sum of costs for the
agents and (b) the maximum cost for an agent. In the mechanism design version
of the problem, the main question is to see if the objective under consideration
can be implemented, either optimally or approximately, in (weakly) dominant
strategies.

© Springer Nature Switzerland AG 2019
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Table 1. Summary of our results. All the bounds are with respect to deterministic
mechanisms.

Average cost Maximum cost
Upper bound Lower bound Upper bound Lower bound
very weak % g [Theorem 1] % g [Theorem 5]
dominance
minimax EL [Theorem 3] s (only f hani ith |2 4+ 3% [Th 6]/ £ [12, Th 5
1 3 y for mechanisms wi 7 t g [Theorem 6]| 7 [12, eorem 5]
dominance finite range) [Theorem 4]

While the standard version of the problem has received much attention, with
several different variants like extensions to multiple facilities (e.g., [15,19]), look-
ing at alternative objective functions (e.g., [3,10]) etc. being extensively studied,
the common assumption in this literature is that the agents are always precisely
aware of their preferred locations on the real line (or the concerned metric space).
However, this might not always be the case and it is possible that the agents do
not have accurate information about their ideal locations, or their preferences in
general. To illustrate this, imagine a simple scenario where a city wants to build
a school on a particular street (which we assume for simplicity is just a line) and
aims to build one at a location that minimizes the maximum distance any of its
residents have to travel to reach the school. While each of the residents is able
to specify which block they would like the school to be located at, some of them
are unable to precisely pinpoint where on the block they would like it because,
for example, they do not currently have access to information (like infrastruc-
ture data) to better inform themselves, or they are simply unwilling to put in
the cognitive effort to refine their preferences further. Therefore, instead of giv-
ing a specific location x, they end up giving an interval [a,b], intending to say
“I know that I prefer the school to be built between the points a and b, but I am
not exactly sure where I want it.”

The above described scenario is precisely the one we are concerned about in
this paper. That is, in contrast to the standard setting of the facility location
problem, we consider the setting in which the agents are uncertain (or partially
informed) about their own preferred locations z; and the only information they
have is that their preferred location x; € [a;,b;], where b; — a; < 6 for some
parameter 6 which models the amount of inaccuracy. Now, given such partially
informed agents, our task is to look at the problem from the perspective of a
designer whose goal is to design robust mechanisms under this setting. Here by
robust we mean that, for a given performance measure and when considering
implementation under an appropriate solution concept, the mechanism should
provide good guarantees with respect to this measure for all the possible under-
lying unknown true locations of the agents. The performance measure we use
here is based on the minimax regret solution criterion, which, informally, for a
given objective function, S, is an outcome that has the “best worst case”, or
one that induces the least amount of regret after one realizes the true input.
More formally, if P = [0, B] denotes the set of all points where a facility can be
located and Z = [a1,b1] X - -+ X [ap, by] denotes the set of all the possible vec-
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tors that correspond to the true ideal locations of the agents, then the minimax
optimal solution, po,:, for some objective function S is given by

= i I,p) — mi Iy
popt argerglnr}lea%( <S( 7p) ;pel% S( P ))7

maxRegret(p,T)

where S(I,p) denotes the value of S when evaluated with respect to I € Z and
a point p.

Thus, our aim is to design mechanisms that approximately implement the
optimal minimax value (i.e., maxRegret(popt,Z)) w.r.t. two objective functions—
average cost and maximum cost—and under two solution concepts—very weak
dominance and minimax dominance—that naturally extend to our setting (see
Sect. 2 for definitions). In particular, we focus on deterministic and anonymous
mechanisms that additively approximate the optimal minimax value, and our
results are summarized in Table 1.

Before we move on to the rest of the paper, we anticipate that a reader might
have some questions, especially w.r.t. our choice of performance measure and our
decision to use additive as opposed to multiplicative approximations. We try to
preemptively address these briefly in the section below.

1.1 Some Q & A

Why Regret? We argue below why this is a good measure by considering some
alternatives.

1. Why not bound the ratio of the objective values of (a) the outcome that
is returned by the mechanism and (b) the optimal outcome for that input?
This, for instance, is the approach taken by Chiesa et al. [4]. In our case this
is not a good measure because we can quickly see that this ratio is always
unbounded in the worst-case.

2. Why not find a bound X such that for all I € Z,S(I,p) — S(I,p;) < X,
where p is the outcome of the mechanism and p; is the optimal solution
associated with I7 This, for instance, is the approach taken by Chiesa et al.
[5]. Technically, this is essentially what we are doing when using max. regret.
However, using regret is more informative because if we make a statement of
the form maxRegret(p, I) — maxRegret(popt, I) < Y, then this conveys two
things: (a) for any p’ there is at least one I € T such that S(I,p")—S(I,p;) >
Z, where Z = maxRegret(p,,:) (i-e. it gives us a sense on what is achievable
at all—which in turn can be thought of as a natural lower bound) and (b)
the point p chosen by the mechanism is at most (Y + Z)-far from the optimal
objective value for any I. Hence, to convey these, we employ the notion of
regret. We refer the reader to Appendix A in the full version of the paper!
for a slightly more elaborate discussion.

! https://arxiv.org/pdf/1905.09230.pdf.
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Why Additive Approximations? We use additive as opposed to multiplica-
tive approximations because one can see that when using the latter and w.r.t.
the max. cost objective function both the solution concepts that we consider in
this paper—which we believe are natural ones to consider in this setting—do
not, provide any insight into the problem as there are no bounded mechanisms.
Again, we refer the reader to Appendix A in the full version for a more elaborate
discussion.

1.2 Related Work

There are two broad lines of research that are related to the topic of this paper.
Below we discuss the most relevant papers with respect to each of them.

Designing Mechanisms with Incomplete Preferences. Among work in
this space, the papers that are most relevant are the series of papers by Chiesa
et al. [4-6], and the works of Hyafil and Boutilier [13,14]. The series of papers
by Chiesa et al. [4-6] considers auction settings (single-item, combinatorial, and
multi-unit auctions, respectively) where the agents are uncertain about their
own types and the only information they have about their valuations is that it is
contained in a set K, where K is any subset of the set of all possible valuations.
The partial information model that we use in this paper is inspired by this series
of papers. In particular, our prior-free and absolute worst-case approach under
partial information is similar. However, our work is also different in that, unlike
auctions, the problem we consider falls within the domain of mechanism design
without money and so their results do not carry over to our setting.

Hyafil and Boutilier [13,14] consider the problem of designing mechanisms that
have to make decisions using partial type information. While the overall theme in
both their works is similar to ours, the questions they are concerned with and the
model used are different. For instance, whereas in ours and Chiesa et al.’s mod-
els the agents do not know their true types and are therefore providing partial
inputs, the assumption in the works of Hyafil and Boutilier [13,14] is that the mech-
anism has access to partial types, but agents are aware of their true type. This sub-
tle change in turn leads to the focus being on solution concepts that are different
from ours.

An alternative way to model uncertain agents is to assume that each of
them has a probability distribution which tells them the probability of a point
being their ideal location. For instance, this is the model that is used by Feige
and Tennenholtz [8] in the context of task scheduling. However, in our model
the agents do not have any more information than that they are within some
interval, which we emphasize is not equivalent to assuming that, for a given
agent, every point in the its interval is equally likely to be its true location.

The Facility Location Problem. Starting with the work of Moulin [17] there
has been a flurry of research looking at designing strategyproof mechanisms for
the facility location problem. These can be broadly divided into two branches.
The first one consists of work, e.g., [2,7,16,17,20], that focuses on character-
izing the class of strategyproof mechanisms in different settings (see [1] and
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[18, Chapter 10] for surveys). The second branch consists of more recent papers
which fall under the broad umbrella of approximate mechanism design with-
out money, initially advocated by Procaccia and Tennenholtz [19], that focus
on looking at how well a strategyproof mechanism can perform under differ-
ent objective functions [9-11,15,19]. Our paper falls under this branch of the
literature.

2 Preliminaries

Recall that in the standard (mechanism design) version of the facility location
problem there are n agents, denoted by the set [n] = {1,--- ,n}, and each agent
i € [n] has a true preferred? location ¢} € [0, B], for some fixed® constant B € R.
A vector I = (¢4,---,4,), where ¢; € [0, B], is referred to as a location profile
and the cost of agent ¢ for a facility located at p is given by C(¢F,p) = |p — £F]
(or equivalently, their utility is —|p — £f]), the distance from the facility to the
agent’s location.? In general, the task in the facility location problem is to design
mechanisms—which are, informally, functions that map location profiles to a
point (or a distribution over points) in [0, B]—that (approximately) implement
the outcome associated with a particular objective function.

In the version of the problem that we are considering, each agent 4, although
they have a true location £f € [0, B], is currently unaware of their true location
and instead only knows an interval [a;, b;] C [0, B] such that ¢ € [a;,b;]. The
interval [a;, b;], which we denote by Kj, is referred to as the candidate locations
of agent ¢, and we use K; to denote the set of all possible candidate locations
of agent i (succinctly referred to as the set of candidate locations). Now, given
a profile of the set of candidate locations (Ki,---,K,), we have the following
definition.

Definition 1 (§-uncertain-facility-location-game). For alln > 1, B > 0,
and § € [0, B], a profile of the set of candidate locations (Ky,--+ ,Kp,) is said to
induce a 0-uncertain-facility-location-game if, for each i, K; = {[a;, b;] | bi—a; <
0 and [a;,b;] C [0, B]} (in words, for each i, their set of candidate locations can
only have intervals of length at most §).

Remark: We refer to § as the inaccuracy parameter. In general, when proving
lower bounds we assume that the designer knows this § as this only makes
our results stronger, whereas for positive results we explicitly state what the
designer knows about ¢. Additionally, note that if § = 0, then we have the

2 We often omit the term “preferred” and instead just say that £; is agent i’s location.

3 Here we make the assumption that the domain under consideration is bounded
instead of assuming that the agents can be anywhere on the real line. This is neces-
sary only because we are focusing on additive approximations. (For a slightly more
elaborate explanation, see Sect. 1 in the paper by Golomb and Tzamos [12].).

4 The particular utility function considered here is equivalent to the notion of sym-
metric single-peaked preferences that is often used in the economics literature (see,

e.g., [16]).
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standard facility location setting where the set of candidate locations associated
with every agent is just a set of points in [0, B]. For a given profile of candidate
locations (K1, - -, K,,), we say that “the reports are exact” when, for each agent
i, K; is a single point and not an interval.

2.1 Mechanisms, Solution Concepts, and Implementation

A (deterministic) mechanism M = (X, F') in our setting consists of an action
space X = (X3,---,X,), where X; is the action space associated with agent 4,
and an outcome function F: X x --- x X,, — [0, B]. A mechanism is said to be
direct if, for all 7, X; = K;, where K; is the set of all possible candidate locations
of agent i. For every i, a strategy is a function s;: K; — X;, and X; and A(X})
respectively denote the set of all pure and mixed strategies of 3.

Since the outcome of a mechanism needs to be achieved in equilibrium, it
remains to be defined what equilibrium solution concepts we consider in this
paper. Below we define the two solution concepts that we use here. We note that
the first (very weak dominance) was also used by Chiesa et al. [4].

Definition 2 (very weak dominance). In a mechanism M = (X, F), an
agent © with candidate locations K; has a very weakly dominant strategy s; € X;
ZfVSi e XVl € K;, andVs_; € X_;,

C (b, F(si(Ki), s-i(K-4))) < C (i, F(si(Ki), s-i(K_4))) -

In words, the above definition implies that for agent ¢ with candidate loca-
tions K, it is always best for ¢ to play the strategy s;, irrespective of the actions
of the other players and irrespective of which of the points in K; is her true
location.

Definition 3 (minimax dominance). In a mechanism M = (X, F), an agent
i with candidate locations K; has a minimax dominant strategy s; € X; if Vs, €
X and Vs_; € X4,

- F(s:(K; (K.
ZranaKXz aigka()éi)c(é“ (31( 1),8 z( 1))
—C;, F(oi(K;),s—:(K_;)))
= i F / Ki y O —1 K—i
_é%ajéalénﬁ}él)c(é’ (Sz( ) S ( ))

— C(&, F(O’Z(Ki), S,i(K,Z‘)).

Before explaining what the definition above implies, let p = F(s;(K;), s—;
(K_;)) be the outcome of the mechanism when agent ¢ plays strategy s;
and all the others play some s_;. Now, consider the term maxRegret,(p)
= maxy, cx, MaX,,cA(x,) C(li,p) — C(l;, F(oi(K;),s—:(K_;))), which calculates
agent ¢’s max. regret (i.e., the absolute worst case loss agent ¢ will experience if
and when she realizes her true location from her candidate locations) for playing
s; and for the output p. Then, what the above definition implies is that for a
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regret minimizing agent ¢ with candidate locations Kj, it is always best for i to
play s;, irrespective of the actions of the other players, as any other strategy s/
results in an outcome p’ w.r.t. which 7 experiences at least as much max. regret
as she experiences with p.

Remark: Note that both the solution concepts defined above can be seen as
natural extensions of the classical (i.e., the usual mechanism design setting where
the agents know their types exactly) weak dominance notion to our setting. That
is, for all i € [n], if K; is a single point, then both of them collapse to the classical
weak dominance notion.
As stated in the introduction, given a profile of candidate locations (K7,
-, K,), we want the mechanism to “perform well” against all the possible
underlying true locations of the agents, i.e., with respect to all the location
profiles I = (¢y,--- ,£,) where ¢; € K;. Hence, for a given objective function S,
we aim to design mechanisms that achieve a good approximation of the optimal
minimax value, which, for Z = Kj x --- x K,,, is denoted by OMVg(Z) and is
defined as
OMVg(Z) = maxRegret(popt, Z), (1)

where for a point p € [0, B], if S(I,p) denotes the value of the function S when
evaluated with respect to the vector I and p, then the maximum regret associated
with p for the instance 7 is defined as

Regret(p,7) = S(I,p)— in S(I,p 2
maxRegret(p, Z) I}lgg( (Z,p) i ( ,p)), (2)
and
Popt = arg min maxRegret(p, 7). (3)
p€[0,B]

Throughout, we refer to the point p,,: as the optimal minimax solution for the
instance 7.

Finally, now that we have our performance measure, we define implementa-
tion in very weakly dominant and minimax dominant strategies.

Definition 4 (Implementation in very weakly dominant (minimax
dominant) strategies). For a §-uncertain-facility-location-game, we say that
a mechanism M = (X, F) implements a-OMVg, for some o > 0 and some
objective function S, in very weakly dominant (minimaz dominant) strategies, if
for some s = (s1,--+ ,sy,), where s; is a very weakly dominant (minimaz domi-
nant) strategy for agent i with candidate locations K,

mazRegret(F(s1(K1), - $n(Ky)),Z) — OMVs(Z) < a.

3 Implementing the Average Cost Objective

In this section we consider the objective of locating a facility so as to minimize
the average cost (sometimes succinctly referred to as avgCost and written as
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AC). While the standard objective in the facility location setting is to minimize
the sum of costs, here, like in work of Golomb and Tzamos [12], we use average
cost because since we are approximating additively, it is easy to see that in many
cases a deviation from the optimal solution results in a factor of order n coming
up in the approximation bound. Hence, to avoid this, and to make comparisons
with our second objective function, maximum cost, easier we use average cost.

In the standard setting where the agents know their true location, the average
cost of locating a facility at a point p is defined as % Zie[n] C(z;,p), where x; is
the location of agent 7. Designing even optimal strategyproof mechanisms in this
case is easy since one can quickly see that the optimal location for the facility
is the median of x1, - - , x, and returning the same is strategyproof. In contrast
to the standard setting, for some § € (0, B] and a corresponding d-uncertain-
facility-location-game, even computing what the minimax optimal solution for
the average cost objective (see Eq. 3) is is non-trivial, let alone seeing if it can be
implemented with any of the solution concepts discussed in Sect.2.1. Although
we will need some properties about the minimax optimal solution when proving
properties about the mechanisms we design, we do not state them here, since
due to space constraints we are unable to include any proofs. We refer the reader
to the full version of the paper where we provide a complete discussion on the
computing the minimax optimal solution and provide the proofs of the results
in Sects. 3.1 and 3.2.

3.1 Implementation in Very Weakly Dominant Strategies

While very weak dominance is indeed a natural solution concept which extends
the classical notion of weak dominance, we will see below that it is too strong as
no deterministic mechanism can achieve a better approximation bound than %.
This implies that, among deterministic mechanisms, the naive mechanism which
always, irrespective of the reports of the agents, outputs the point g is the best
one can do.

Theorem 1. Given a d € (0, B], let M = (X, F) be a deterministic mechanism
that implements a-OMV g¢ in very weakly dominant strategies for a d-uncertain-
facility-location-game. Then, o > g.

Although one could argue that this result is somewhat expected given how
Chiesa et al. also observed similar poor performance for implementation with
very weakly dominant strategies in the context of the single-item auctions [4,
Theorem 1], we believe that it is still interesting because not only do we observe
a similar result in a setting that is considerably different from theirs, but this
observation also reinforces their view that one would likely have to look beyond
very weakly dominant strategies in settings like ours. This brings us to our next
section, where we consider an alternative, albeit weaker, but natural, extension
to the classical notion of weakly dominant strategies.
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3.2 Implementation in Minimax Dominant Strategies

In this section we move our focus to implementation in minimax dominant strate-
gies. We first present a general result that applies to all mechanisms in our setting
that are anonymous and minimax dominant, in particular showing that any such
mechanism cannot be onto. The proof of this result, which can be found in the
full version, is based on a characterization result for strategyproof, anonymous,
and onto mechanisms when agents have symmetric single-peaked preferences
[16, Corollary 2].

Remark: Note that in this section we focus only on direct mechanisms. This
is w.l.o.g. since it turns out that the revelation principle holds in our setting
for minimax dominant strategies. We refer the reader to Appendix B in the full
version for the proof.

Theorem 2. For all § € (0,B], let M = (X, F) be a deterministic mechanism
that is anonymous and minimaz dominant for a 0-uncertain-facility-location-
game. Then, M cannot be onto.

Given the fact that we cannot have an anonymous, minimax dominant, and
onto mechanism, the natural question to consider is if we can find non-onto
mechanisms that perform well. We answer this question in the next section.

Non-onto Mechanisms. In this section we consider non-onto mechanisms. We
first show a positive result by presenting an anonymous mechanism that imple-
ments 3I‘S—OMV Ac in minimax dominant strategies. Following this, we present
a conditional lower bound that shows that one cannot achieve an bound better
than % when considering mechanisms that have a finite range.

An Anonymous and Minimax Dominant Mechanism. Consider the g—
equispaced-median mechanism defined in Algorithm 1, which can be thought
of as an extension to the standard median mechanism. The key assumption in
this mechanism is that the designer knows a § such that any agent’s candidate
locations has a length at most §. Given this §, the main idea is to divide the
interval [0, B] into a set of “grid points” and then map every profile of reports to
one of these points, while at the same time ensuring that the mapping is minimax
dominant. In particular, in the case of the %—equispaced—median mechanism,
when § > 0, its range is restricted to the finite set of points A = {g1,92, - gm }
such that, for i > 1, g;41 — g; = %, g1 =0, and g, < B.

Below we state that the g—equispaced—median mechanism implements %6—
OMV 4¢ in minimax dominant strategies. The main idea in its proof, which can
be found in the full version, is that for an agent ¢ with candidate locations [a;, b;]
the ¢; associated with ¢ in the mechanism is in fact the agent’s “best alternative”
among the alternatives in A. Once we have this, we then show the approximation
bound.

Theorem 3. For a given 6 € [0,B], the g-equispaced-median mechanism is
anonymous and implements %J-OM Vac in minimaz dominant strategies for a
d-uncertain-facility-location-game.
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Input: a § > 0 and for each agent i, their input interval [a;, b;]
Output: location of the facility p
1: A—{g1, - ,gk},where g1 = 0,95 < B, git1 — gi = g
2: for each i € {1,--- ,n} do
3: x; < point closest to a; in A (in case of a tie, break in favour of the point
in [a;, b;] if there exists one, break in favour of point to the left otherwise)
4: yi < point closest to b; in A (break ties as in line 3)
5: if |[zi,y:] N A| == 1 then > the case when z; = y;
6: U; — x
7 else if |[z;,y;] N A| == 2 then
8: if HJZ-“ yi] n [(J,i7 bz” < 2 then
9: if a; + b1 S xi + Yi then
10: b — x5
11: else
12: él — Y
13: end if
14: else
15: bi — x5
16: end if
17: else if |[z;,y;] N A| == 3 then
18: Ui — Zi, where z; € [‘T“yl] n A, Zi 7é Ti, Zi 74— Yi
19: end if
20: end for
21: return median(f1,--- ,£y)

Algorithm 1: g—equispaced—median mechanism

A Conditional Lower Bound. In the context of our motivating example from
the introduction, it is possible, and in fact quite likely, that the city can only
build the school at a finite set of locations on the street. Therefore, an interesting
class of non-onto mechanisms to consider is ones which have a finite range.
Furthermore, seeing our mechanism above, an inquisitive reader might wonder:
“why %—equispaced? why not g—equispaced or something smaller than g?” First,
one can easily construct counter-examples to show that any e-equispaced-median
mechanism is not minimax dominant for € < g. However, that still does not rule
out mechanisms whose range is some finite set {g1,- - , gm }. Below we consider
this question and we show that the approximation bound associated with any
mechanism that is anonymous, minimax dominant, and has a finite range, is
at least %. The key idea that is required in order to show this bound is the
following lemma, which informally says that if the mechanism has a finite range,
is minimax dominant, and achieves a bound less than 3757 then there is “sufficient-
gap” between four consecutive points in the range, A, of the mechanism. Once
we have this observation it is then in turn used to construct profiles that will
result in the stated bound. The proofs of both the lemma and theorem make
use of a characterization result by Massé and De Barreda [16, Corollary 1], and
they can be found in the full version. (Below we ignore mechanisms which have
less than six points in their range as one can easily show that such mechanisms

perform poorly.)
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Lemma 1. For all 6 € (0, %], let M be a deterministic mechanism that has
a finite range A (of size at least six), is anonymous, and one that implements
a-OMV e in minimax dominant strategies for a §-uncertain-facility-location-
game. Then, either o > %, or there exists four consecutive points g1, ga, g3, ga €
A such that g1 < g2 < g3 < g4 and %1 + do + d2—3 > &, where, fori € [3],d; =

gi+1 — Gi-

Theorem 4. For all 6 € (0, %], let M be a deterministic mechanism that has
a finite range (of size at least six), is anonymous, and one that implements
a-OMV e in minimax dominant strategies for a d-uncertain-facility-location-
game. Then, for any e >0, a > g — €.

4 Implementing the Maximum Cost Objective

In this section we consider the objective of minimizing the maximum cost (suc-
cinctly referred to as maxCost and written as MC). In the standard setting
where the reports are exact, the max. cost associated with locating a facility at
p is defined as max;ep,) C(z4,p) and if we assume w.l.o.g. that the z;’s are in
sorted order, then it is easy to see that the optimal solution to this objective is
to locate the facility at p = MTI" However, unlike in the case of the avgCost
objective that was considered in Sect. 3, one cannot design an optimal strate-
gyproof mechanism even when the reports are exact, and it is known that the
best one can do in terms of additive approximation is to achieve a bound of %
in the case of deterministic mechanisms [12, Theorem 5].

Now, coming to our setting, unlike in the case of the avgCost objective,
calculating the minimax optimal solution is straightforward in this case. In fact,
given the candidate locations [a;, b;] for all 4, if Ly, - , L, and Ry, - - , R,, denote
the sorted order of the points in {a; };c,) and {b; }se[n], respectively, then it is not
too hard to show that the minimax optimal solution is the point %.
Therefore, below we directly move on to implementation. We refer the reader to
the full version for a complete discussion on the minimax optimal solution and
for the proofs of the results that follow.

4.1 Implementation in Very Weakly Dominant Strategies

Here again see that very weak dominance is too strong a solution concept as
we can show that one cannot do better than the naive mechanism which always
outputs the point %. The following theorem, which can be proved by proceeding
exactly like in the proof of Theorem 1, formalizes this statement.

Theorem 5. For all 6 € (0,B], € € (0,9), let M = (X, F) be a deterministic
mechanism that implements a-OM Vo in very weakly dominant strategies for
a §-uncertain-facility-location-game. Then, o > % — €.

Given this, we consider minimax dominant strategies in the hope of getting
an analogous result as Theorem 3.
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4.2 Implementation in Minimax Dominant Strategies

When it comes to implementation in minimax dominant strategies, we again see
that even in the case of the maxCost objective function one can do a lot better
than under very weak dominance. Before we see the exact bounds, recall that
Theorem 2 rules out the existence of mechanisms that are anonymous, minimax
dominant, and onto. Hence, our focus will be on non-onto mechanisms. We note
that the ideas in the following section are similar to the ones in Sect. 3.2 since
here, too, we focus on “grid-based” mechanisms.

Non-onto Mechanisms. In this section we show that there exists a mecha-
nism that implements (% + %)—OMV Mc in minimax dominant strategies. The
mechanism is similar to the g—equispaced—median mechanism and can be consid-
ered as an extension to the phantom-half mechanism proposed by Golomb and

Tzamos [12]. Hence, we only highlight the changes below.

%-equispaced-phantom-half. We need to make only two changes to Algo-
rithm 1: (a) redefine A to be the set {g1,---,9;, -, gm}, where g; = g,gi_l,_l —
gi = g, for1<i<k-1,g0 >0, and g,, < B. (b) instead of returning the
median of the I;s in line 21, we return the median of the points £,,in, g, and
Lz, where £ = ming{4;} and £,,4, = max;{¢;}.

Below, we state that the mechanism described above implements (% + %‘S)—
OMV ;¢ in minimax dominant strategies. The proof can be found in the full
version.

Theorem 6. For a given § € [0, %}, the %—equispaced—phantom—half mechanism
is anonymous and one that implements (% + %)—OMVMC mn minimax domi-
nant strategies for a §-uncertain-facility-location-game.

Finally, given this result, it is natural to ask if we have a lower bound like the
one in Sect. 3.2. Unfortunately, the only answer we have is the obvious bound
of £ that follows from the result of Golomb and Tzamos [12, Theorem 15] who
showed that under exact reports, and when using deterministic mechanisms, one

cannot achieve a bound lower than %.

5 Conclusions

The standard assumption in mechanism design that the agents are precisely
aware of their preferences may not be realistic in many situations. Hence, we
believe that there is a need to look at models that account for partially informed
agents and, at the same time, design mechanisms that provide robust guarantees.
In this paper we looked at such a model in the context of the classic single-
facility location problem, where an agent specifies an interval instead of an exact
location, and our focus was on designing robust mechanisms that perform well
w.r.t. all the possible underlying true preferred locations of the agents. Towards
this end, we looked at two solution concepts, very weak dominance and minimax
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dominance, and we showed that, with respect to both the objective functions
we considered, while it was not possible to achieve any good mechanism in
the context of the former solution concept, extensions to the classical optimal
mechanisms—i.e., mechanisms that perform optimally in the classical setting
where the agents exactly know their locations—performed significantly better
under the latter, weaker, solution concept.

There are some immediate open questions in the context of the problem we
considered like looking at randomized mechanisms, providing tighter bounds,
and potentially even finding deterministic mechanisms that perform better than
the ones we showed. More broadly, we believe that it will be interesting to
revisit the classic problems in mechanism design, see if one can look at models
which take into account partially informed agents, and design mechanisms where
one can explicitly relate the performance of the mechanism with the quality of
preference information.
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Abstract. The facility location problem has emerged as the benchmark
problem in the study of the trade-off between incentive compatibility
without transfers and approximation guarantee, a research area also
known as approximate mechanism design without money. One limita-
tion of the vast literature on the subject is the assumption that agents
and facilities have to be located on the same physical space. We here ini-
tiate the study of constrained heterogeneous facility location problems,
wherein selfish agents can either like or dislike the facility and facili-
ties can be located on a given feasible region of the Euclidean plane.
In our study, agents are assumed to be located on a real segment, and
their location together with their preferences towards the facilities can
be part of their private type. Our main result is a characterization of the
feasible regions for which the optimum is incentive-compatible in the set-
tings wherein agents can only lie about their preferences or about their
locations. The stark contrast between the two findings is that in the for-
mer case any feasible region can be coupled with incentive compatibility,
whilst in the second, this is only possible for feasible regions where the
optimum is constant.

Keywords: Mechanism design without money - Facility location -
Incentive compatibility

1 Introduction

Deciding where to locate a public facility, like a school, in order to serve a
group of strategic agents, is a fundamental problem that has received a great
deal of attention. Under such a setting, the city council, or some other public
authority, needs to elicit private information from the concerned (local) people,
or agents, without using money, and choose the location of the school based on
that information. The authority defines the rules of choosing the location with
the objective to maximize the social welfare, i.e., the total satisfaction of the
agents. However, agents might misreport their private information in an attempt
to maximize their own individual utility, which is usually captured using some
© Springer Nature Switzerland AG 2019
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distance measure between their ideal location for the facility, commonly consid-
ered to be (part of) their private information (a.k.a., type), and the location of
the facility itself. The absence of money makes it very challenging to align the
incentives of the authority with those of the individual agents.

The field of mechanism design [12] focuses on the implementation of desired
outcomes in strategic settings. A primary designer goal that has been extensively
studied is that of truthfulness, which informally states that an agent should be
able to optimize her own individual utility by reporting truthfully her private
information. However, achieving this is not always compatible with maintaining a
high social welfare [8,15]. Monetary compensations have been commonly used as
a means towards aligning the incentives of the individuals with those of society,
however, the use of payments is not always allowed due to ethical [12], legal (e.g.,
organ donations), or even just practical reasons. With this motivation in mind,
researchers have started turning their attention to possible ways of achieving
truthfulness without the use of payments, i.e., designing truthful (or strategy-
proof, SP for short) mechanisms that do not use monetary transfers.

Mechanism design without money has been examined from the point of view
of exact and approximate solutions. Exact mechanism design without money
has a rich history in social choice literature (cf., e.g., [11]), while Procaccia and
Tennenholtz [14] were the first to consider achieving truthfulness (or strategy-
proofness) without using payments, by sacrificing the optimality of the solution
and settling for just an approximation; their work has given rise to what is
now known as approximate mechanism design without money. In a nutshell, the
objective is that of finding the best approximation guarantee which guarantees
strategy-proofness for a given optimization problem.

However, in many settings (such as the school location discussed above) the
mechanism designer has some control on the set of feasible solutions (e.g., the
area in the city where a school can be built) and would arguably be more inter-
ested in leveraging this power to marry strategy-proofness and optimality. In this
paper, we initiate the investigation of this research direction and ask whether
we can achieve strategy-proofness without using payments by restricting the
feasibility of the solution space. As a case study, we consider a facility location
problem similarly to Procaccia and Tennenholtz [14]. In our model, the agents
are located on a single-dimensional space, just like in [14], while the facility can
be located in a feasible region in R2. Contrary to their approach, we keep the
requirement for an optimal solution and study how the shape of the feasible
region for the facility location can impact the incentives. We are interested in
the following general question:

What is the biggest feasible region for the facility that would allow for the
optimal solution to be implemented in a truthful way?

We consider this question in the setting of heterogeneous preferences [1,18,
21], where the facility is not commonly believed to be desirable by the agents;
some agents might find it attractive and wish to have it located as close to them
as possible, but others might have different views and desire to be far away from
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them. This preference might also be part of the private information of each agent
(in addition/place of their location). When the facility is a school, for example,
it is reasonable to expect that families with small children will want to reside
close to a school, yet others might prefer to live as far away as possible from it
in order to avoid possible noise and traffic.

We define the utility of the agents to be quadratic in the distance between
the agent and the facility. On the one hand, the literature on facility location
in higher dimensional spaces has twists in the definition of distance in order to
make this study feasible. On the other, in many problems, one dimension is not
rich enough to fully describe preferences. For example, Barbera et al. [2] mention
the city block metric, i.e., the shortest path between two points on a multidimen-
tional grid, as a possible appropriate metric. Our model captures real-life scenar-
ios wherein the agents are environmentally conscious or have resources that are
depleted quadratically in the distance (as, e.g., power consumption in wireless
communication [13]). In our city planner motivating example, quadratic costs
align with environmentally conscious agents, i.e., agents who suffer quadrati-
cally in the distance to the facility due to the pollution caused by the travel to
cover that distance.

1.1 Our Contribution

We examine whether restricting the solution space for the facility location prob-
lem can be used as a means of achieving the optimal social welfare in a strategy-
proof way. Our findings show a dichotomy result in the sense that all or nothing
can be done in the setting of heterogeneous facility location for exact optimal
solutions.!

Specifically, we consider two different settings, where either the preferences
of the agents are private information but their locations are publicly known
(unknown preferences case), or the opposite, i.e., the locations of the agents are
private information but their preferences are publicly known (unknown locations
case).

In Sect.3 we treat the case of unknown preferences and we show that the
optimal mechanism (the one that maximizes the social welfare) is group strategy-
proof (GSP) no matter the feasible region. GSP is a stronger requirement than
strategy-proofness as it does not even allow for profitable deviations of coalitions
of agents. Technically, this is proved by reducing the optimization problem of
maximizing the social welfare to the geometric problem of selecting a point in
the feasible region which is at maximum/minimum (depending on the shape of
the instance) distance from a carefully defined point on the line where the agents
reside. This point, which we call (3, is a snapshot of the instance and is what the
coalitions of agents can manipulate (together with the rule to choose the point

! Note that depending on the feasible region, the optimal solution might not be well
defined, e.g. if the feasible region is R? and all agents dislike the facility. Our results
implicitly assume that the optimization problem is well-defined and focus on coupling
it with incentive considerations.
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in the feasible region). The proof identifies key properties that must be satisfied
by a successful manipulation and then observes how those are incompatible with
optimality.

We then handle the case of unknown locations in Sect. 4, where we need to
distinguish between different cases depending on the majority of the preferences
(which is, in this setting, public knowledge). In each of these cases, we show that
in order to be able to implement the optimal solution in a strategy-proof way
it would have to hold that the optimal social welfare is constant, i.e., there is a
unique point in the feasible region that maximizes the sum of utilities. From the
conceptual point of view, this result shows that in the unknown location setting
the power coming from the restriction of the feasible region is null as to obtain
a strategy-proof optimum, the incentives have to disappear altogether. This is
a quite strong negative characterizing result, which paves the way for future
research where the interplay between approximation guarantee and the feasible
region is considered (see conclusions). From the technical point of view, the proof
of this result adopts an iterative approach which identifies several instances
showing that the optimum must be the same for both the minimum and the
maximum possible value of 3. However, while for the case wherein the preferences
are homogenous, the argument uses SP and optimality constraints to establish
the shape of the feasible region in the limit, the proof for heterogeneous instances
requires a more careful step-by-step argument to prove that the optimum is
constant.

We note that some of the proofs are deferred to the full version, due to lack
of space.

1.2 Related Work

The facility location problem has been studied by many diverse research com-
munities previously. We here discuss some of the most fundamental research
directions that have been explored in the context of facility location.

Relevant research from a Social Choice perspective has mostly focused on
the problem of locating a single facility on the line. In his seminal paper [11],
Moulin characterizes the class of generalized median voter schemes as the only
deterministic SP mechanisms for single-peaked agents on the line. Schummer and
Vohra [17] extend the result of Moulin to trees and continuous graphs. Dokow
et al. [3] prove that for small discrete graphs there are anonymous SP mecha-
nisms, contrarily to the case of continuous cycles studied in [17]. They prove that
SP mechanisms on discrete large cycles are nearly-dictatorial in that all agents
can affect the outcome to a certain extent.

Facility location has also been one of the fundamental problems in the field
of Mechanism Design without money. The work of Procaccia and Tennenholtz
on facility location in [14] initiates the study of approximate mechanism design
without money, where they suggest the idea of sacrificing a factor of the approx-
imation guarantee as a means to obtain strategy-proofness. For the 2-facility
location problem, they propose the Two-Extremes algorithm, that places the
two facilities in the leftmost and rightmost location of the instance, and prove
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that it is group strategy-proof and (n — 2)-approximate, where n is the number
of agents. Furthermore, they provide a lower bound of 3/2 on the approximation
ratio of any SP algorithm for the facility location problem on the line and con-
jecture a lower bound of {2(n). The latter conjecture has been proven by Fotakis
et al. [7]. Their main result is the characterization of deterministic SP mecha-
nisms with bounded approximation ratio for the 2-facility location problem on
the line. They show that there exist only two such algorithms: (4) a mechanism
that admits a unique dictator or (i) the Two-Extremes mechanism proposed
n [14]. The authors of [5] show how verification can be used to get truthful
mechanisms with better approximation guarantees for the problem.

Lu et al. [10], improve several bounds studied in [14]. In particular, as regards
deterministic algorithms they prove a better (w.r.t. [14]) lower bound of 2 —
O(%) Furthermore, they prove a 1.045 lower bound for randomized mechanisms
for the 2-facility location problem on the line and present a randomized n/2-
approximate mechanism.

Our work falls under the category of exact (as opposed to approximate)
mechanism design without money. We consider the restriction of the feasibility
space so that optimality and strategy-proofness are not mutually exclusive. To
the best of our knowledge, this work is the first in the facility location literature
to distinguish the region of the agents’ locations and the feasible region for
the facility. However, similar restrictions have been studied in the judgement
aggregation literature, see [4]. We study the case of heterogeneous preferences
[1,18-21], and distinguish between cases where agents can only misreport their
locations or their preferences (but not both). A similar distinction has been
considered in [6].

In [9], Lu et al. consider general metric spaces for the 2-facility game. They
give an £2(n) lower bound for the approximation of deterministic strategy-proof
mechanisms and prove that a constant approximation ratio can be achieved by
a natural randomized mechanism, the so-called Proportional Mechanism.

2 Model and Preliminaries

We assume to have k agents, located on the segment [0, £]; we say that agent ¢
is located at x; in that segment. We let x = (x1,...,2%). We need to locate a
facility on a given feasible region I' C R2. (We assume for simplicity that, in the
larger space, the segment has the second coordinate equal to 0; our results hold
no matter this choice, given that this coordinate is known in either the setting
considered.) Each agent might like the facility or dislike it; we let p; € {—1,1}
denote the preference of agent ¢ with the meaning that if agent 4 likes (dislikes,
respectively) the facility then p; = 1 (p; = —1, respectively). In this sense, our
model is heterogeneous, in that not all the agents will have the same opinion of
the usefulness of the facility. We let p = (p1,...,pr), let m denote the number
of agents whose preference is 1, and let n the number of agents whose preference
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is —1, so that £ = m + n. Agent ¢ has a wutility which depends on her location
x; and preference p;, and the location f = (zy,yy) of the facility in I', that is,
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where A is a constant which guarantees that the utilities are not negative. Intu-
itively, an agent who likes the facility wants to be close to f, while an agent
who dislikes it wants to be far from it. Our definition of utility captures that
and is similar in spirit to the one in [1]; in our definition, however, the utility is
quadratic in the distance between z; and f (see Sect. 1 for a relevant discussion).

We study this problem from a mechanism design perspective. That is, we
assume that the agents have a private type t;, and we consider the two extreme
cases of type being either the preference or the location of each agent, i.e. t; €
{z;, p;}. A mechanism M collects reports from the agents, which are potentially
different bids b;, and on this input returns a location for the facility in I". With
a slight abuse of notation, we assume that the bid of agent ¢ to the mechanism is
completed with the public part of {z;, p;}. Our objective is to design a truthful
mechanism (a.k.a., strategy-proof, SP for short) M, i.e., a mechanism such that
for any ti, b, and b_i = (bj)j?éi7

wi(ti, M(ti,b_i)) > uy(ts, M(bs, b_;)).

A stronger requirement is for the mechanism to be group strategy-proof (GSP,
for short). A mechanism M is GSP if for any profile b and any coalition C' C [k],
there is no joint deviation bl, = (b});cc of the agents in C' such that no agent
in C loses and at least one gains, that is, for all b, for all C' C [k] and for all by,
there exists i € C such that

u; (bi, M(b)) > u;(bi, M(by, b_¢))

or for all 1 € C,
u;(bi; M(b)) > u;(bi, M(bg,b_c)),

where b_¢ = (b;)igc. We restrict the focus in this work on optimal mecha-
nisms for the social welfare, that is, we want M to find, on input an instance
b = (b1,...,bs), the point f* = argmaxscp SW(b, f), where SW(b, f) =
Zle u; (b;, f). Clearly, optimality depends on the choice of the feasible region I,
but we omit this dependence when referring to optimal mechanisms for clarity
of exposition.

3 Unknown Preferences

We begin by introducing some notations, that allow a more useful formulation of

the social welfare and ultimately a geometric characterization of the optimum.
Fix a profile b. Recall that m denotes the number of agents whose preference

is 1 and n the number of agents whose preference is —1. Note that in the case
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of unknown preferences, m and n depend on the agents’ strategies. We let v =
m—mn, s, =73 _, T for p€{-1,1} and § = s; — s_1. Tedious calculations
can verify that we can rewrite SW (b, (zf,ys)) as follows:

5\° 52
7<xf7) “wi Tk mA - Yoai- Y @i| A0

1:pi=1 :p;=—1
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Therefore, for a given instance b, optimizing the social welfare is equivalent
to finding a point (i.e., the z; and yy) in I' that maximizes the equations
above, in the respective cases. This amounts to choosing a point in I" with max-
imum/minimum a-coordinate (depending on the sign of §) when the number of
players with preference 1 is equal to the number of players whose preference is
—1. In the case in which m # n (y # 0), however, we need to maximize the
quadratic equation. This is equivalent to finding the point in I" that either max-
imizes (when v < 0) or minimizes (when v > 0) the (square of the) distance
from the point G = (%,O).2

Below, we will let d(-,-) denote the distance between two points. Moreover,
we will let m,n, s1,s_1,p;,0 denote the parameters for the instance in which
agent ¢ is truthful and f = (zy,ys) be the output of the mechanism. zg = §/v
naturally corresponds to the z-coordinate of point 8 defined above. We add a
prime symbol to denote aspects of the instance where agents misreport their

type.
We are now ready to prove the first part of our dichotomy.

Theorem 1. For all I’ C R2, the optimum mechanism is GSP.

Proof. We focus on the optimum mechanism that breaks ties between solutions
in a bid-independent way, that is, if there are f, f/ € I" that are optimal for two
instances of the problem, then the mechanism will consistently return the same
(e.g., the one with minimum y-coordinate and, in case of further ties, with the
minimum z-coordinate).

Assume that there exists I" € R2 such that this optimum mechanism is not
GSP. This means that there is a coalition C' that by joint deviation manages to
change the outcome from f to f’ while no agent in C' loses and at least one gains.
We denote with C; the subset of C' containing the agents in the coalition who lie.
We extend the notations above with a ¢ and —c symbol to restrict the respec-
tive quantities to the agents inside and outside C, respectively; so, for exam-
ple, Ve (7—¢, resp.) denotes the difference between the number of agents inside

2 This geometric characterization of the optimum is the only aspect where the
quadratic distances play a fundamental role; with Euclidean distances the optimum is
less well behaved. For the agents’ utilities and the optimum, maximizing/minimizing
distances is equivalent to maximizing/minimizing the square of the distances.
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(outside, resp.) C with preference 1 and those with preference —1. Furthermore,
we use subscripts ¢,l and ¢,nl to differentiate the quantities calculated on the
agents in C' who lie and do not lie, respectively. So for example, v.; and v .
correspond to the difference between the numbers of preferences for members of
the coalition that lie and do not lie, respectively.

We begin by showing that if there is a profitable deviation for the coalition,
then xy # xy. First, consider the case in which the agents in C' have hetero-
geneous preferences, that is, there are agents in C' with either preference. Since
the mechanism is not GSP then there exist agents ¢ and j in C' such that p; = 1
and p; = —1 and it holds that:

dz(xiaf) > dQ(zhf/)
d2($j’f) < dQ(xjaf/)

where we assumed w.l.o.g. that i is the agent in C' for whom the inequality is
strict (at least one such agent must be in C). By simple algebraic manipulations,
we conclude that

(xj —xi)(xf —ap) > 0.

This implies that x¢ # .
Consider now the case in which all the agents in C' have the same preference,
so that 7. # 0. Assume for a contradiction that x; = x ;. We shall prove that:

76('7071 + Yenl + ’ch) <0, (1)
Ye(=Yer + Yent +7—-c) > 0. (2)

First observe that v = ~vci + Vet + V—c and v = —7ei + Vel + Y—e, SO it
suffices to prove that 7. -y < 0 and that . -y > 0. Consider the case in which
~ve > 0 (the case 7. < 0 is symmetric). Since the coalition finds it profitable to
change the output from f to f’ then, since x; = x4, it must be the case that
lyg/| < |yg|- But then since the optimum for the original instance chooses f but
not f’ it cannot be that v > 0. We then have that 7. -~y < 0, thus proving
(1). Similarly, given that the optimum for the modified instance (in which the
agents in C' lie) returns f' and not f it cannot be that 4" < 0, hence v, -y > 0.
Summing up (1) and (2), we have 2v.v.; < 0, which is a contradiction since .
and . ; have the same sign and . # 0.

It now remains to argue only about the case z; # x. Contradicting this
case as well will prove that there is no profitable deviation for a coalition, as
desired. Let € be

Tr+xp X+ Tp — Yy

B e Y ) sk e 3)
2 2 Tf—Tyf

Intuitively, the point (e, 0) is the intersection of the z-axis with the perpendicular

crossing the middle of the line segment connecting f and f’. As xy # x/, this

intersection must exist. Note that € is an important parameter to determine
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where 3 and (3’ are in the cases in which v # 0 and v # 0. In fact, (¢,0)
partitions the points on the z-axis according to the facility they are closer to.
So, for example, by definition of the optimum, 5 and f must be on the same
side of (e, 0) for v > 0.

We continue with two observations (inequalities (4) and (5)) that will be
useful later on. When ~.; = 0, we have

bealay —2p) <. (4)

Indeed, since 7.; = 0 then the coalition is heterogeneous and m.; = n.,;. Assume
that ¢y < x5 (the opposite case being symmetric). Since the coalition prefers
f" over f, then it must be that z; < e < x, for every j,l € C such that p; =1
and p; = —1. But then since v.; = 0 (i.e., there is a bijection between agents
lying in either direction) we can conclude that é.; < 0.

When ~.,; # 0, we can prove:

Yei(@p,, —€)(xy —xp) <O0. (5)

Indeed, consider the case v.; > 0, i.e., mc; > ney. Assume that xp < xy;
as argued above, all the agents in the coalition with preference 1 (—1, resp.)
must be to the left (right, resp.) of point (e,0) and at least one must have a
location different from e. If n.; = 0, then we can conclude that x5, , < € and
prove (5). If n.; > 0 then choose a subset S of n.; agents in the coalition
with preference 1 who lie, including one with location not e (if any). We can
then conclude that > . o ®; — > 1cc, =1 @1 < 0. But then, observing that
> jecn\S,py=1%i < (Mey — ney)e, we can conclude that x5, , < e and prove (5).
(The remaining cases can be proved with the same argument mutatis mutandis.)

In order to conclude the proof of the theorem, we will now show a contradic-
tion with (either) (4) and (5); we will consider three different cases depending
on the values of v and 4. Note that §' = —d.; + ¢ + d_. and so:

_ 5071 +d_

—5071 +0_
T3 = _
Ye,l + Y-

and zj3 = ,
—Ve,l + V-

where the — as a subscript denotes the parameters of the instance that do not
change because of the lies (i.e., the sum of ¢,nl and —c¢ components).

Case v # 0 and v # 0. Let us only discuss here v > 0,7 > 0; the other
cases can be proved with the same argument. By the definition of optimum for
positive values of v and ', we have:

(xg —€)(xf —xp)>0and (xg —€)(xf —xp) <O0.

Observe that since the optimum uses a fixed-tie breaking rule it cannot be the
case that both the inequalities above are actually equality. In fact, were this the
case, then f and f’ would be optimal locations for the facility in both instances;
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this would contradict that f # f/. We assume without loss of generality that the
first is true with a strict sign. Therefore, for z; > x4 we have

et -0 S
Oed +0-  apd et 0- o
Ve, + 7= —Ve,l + -

By simple algebraic manipulations, we can conclude that d.; — ey.; > 0. Simi-
larly, we can show that ; <z yields d.; — €y, < 0. But this contradicts (5),
when v.; # 0 and (4) in the case v.; = 0.

Case v = 0 and 7/ = 0. We begin by observing that, by summing up the
conditions on v = 0,7" = 0, we get that 7.; = 0 (and then (5) does not hold in
this case). By the definition of optimum, we have :

(6671 + 57)($f — xf/) >0
(8ot + 6 ) (g —2p7) <0,

where, as above, we assume without loss of generality that the first is strictly
true (one has to be strict by the tie-breaking rule of the optimum algorithm).
From the two inequalities, we get . ;(z; — ) > 0, which contradicts (4).

Case 7 = 0 (exclusive) or 7/ = 0. We here discuss only v > 0,7 = 0; the
remaining cases can be proved in the same manner. By the definition of optimum,
we have:

(zp —€)(xy —xp) >0

(=0 +0-)(xy —xp) <0
Again, the former is assumed to be strict by the tie-breaking rule adopted by
the optimum. As v = —v.; +v- = 0, we have v,; = v_ and then since

¥ = Ye +7- > 0 we can conclude that vy.; > 0 (and so (4) does not hold here).
Thus, from the first inequality, we have:

5 (O +0- —2evc)(zp —xpr) > 0
27c,l

= (0c +0- — 2evc)(zp —xp1) > 0.
Combined with the second inequality above, we have

(0c1 — €Yey)(xy —xypr) >0,

which contradicts (5).

4 Unknown Locations

We now prove the second part of our dichotomy result. Given that the value of
~ = m—n changes combinatorially the optimum and that, in the case of unknown
locations, 7y is known to the designer, our analysis needs to differentiate all the
three cases about the relative order between m and n.
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4.1 Casem >n

We begin with all the instances where the number of 1’s is bigger than the
number of —1’s. For two points o and ¢ on the plane, we let C'(a, ¢) denote the
points in the interior of the circle centred in « of radius d(a, ¢); formally,

Q) = {@ )| (e = 2a)” + (v = 9a)? < d*(@. )}

We denote by C(a, () the points of the circle including those on the circumfer-
ence.

Theorem 2. When m > n = 0, if the optimum mechanism is strategy-proof,
then I' is such that the optimum is constant.

Proof. We are going to show, through a sequence of instances, that for the
optimum to be strategy-proof on those instances, I" must have a certain shape.
We can then observe that given such a shape, the optimum is constant no matter
the instance. Specifically, we will prove that there is f € I" such that

C(ﬁmim f) U C(ﬁmaxa f) nr= Q)v (6)

where Bmax = (£,0) and Bmin = (0,0).

We let f be the optimum of the instance in which m — 2 agents are on £/2,
one agent iis on xp = ?25 and the last one, named j, is on g = 2(:, where
§ =17 <land (= 75 > 1. We call this instance x and note that x5 = £/2.
Assume agent i lies and reports 0 instead of xy. Then the optimum will be
computed according to point (', which is such that g = zp. By strategy-
proofness, the outcome cannot be closer to #’s true location (which is the same
as ), i.e., C((x1,0), f)nT = 0.

We now will argue that there is a sequence of instances that prove in the
limit that C'(Bmin, f) NI = 0. We set x; to be as follows: m — 2 agents are on

%f, xr, is €2(¢/2) and xR, is such that the point used to calculate the optimum,

denoted f31, satisfies xg, = z, (that is, zp, = ng(:ZT)Zz)

step we know that I" has no intersection with C(0, f) and then the optimum
in this case will again be f. Now, consider the case in which the true type of i is
2y, and she misreports to 0. Then the optimum f] will be computed according
to point 31, which satisfies Ty = xr,. By strategy-proofness, we must then have
that C((zr,,0), /)N =0.

We can now iterate the reasoning above and define instance x,., as follows:
zr, = (£/2)€" 1, m — 2 agents are on zg. , and xp, < ¢ is such that the point
used to calculate the optimum, denoted (3, satisfies xg. =z, ,. Using similar
reasoning, we conclude that C(8,, f) N I" = (). Given that £ < 1, in the limit we
have that C(Bmin, f) N I" = 0, as desired.

We can use the same argument now on the right side of § to conclude that

C(Bmax, f)NIT =10.

< %) From the previous
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We adopt a different argument to account for the case in which there are agents
who dislike the facility.

Theorem 3. When m > n > 0, if the optimum mechanism is strategy-proof,
then I' is such that the optimum is constant.

4.2 Casem<n

The arguments used for the case m > n can be used in a very similar manner
to prove the following claim. The only change is in the definition of optimum
(maximum distance from I" as opposed to minimum distance as for m > n) and,
consequently, the constraints on the shape of the feasible region I'. We omit the
details.

Theorem 4. When m < n, if the optimum mechanism is strategy-proof, then
I is such that the optimum is constant.

43 Casem=n

We now complete our proof for the case in which m = n > 1; we leave the
arguably less interesting case of two agents open for future research.

Theorem 5. When m = n > 1, if the optimum mechanism is strateqy-proof,
then I' is such that the optimum is constant.

Proof. Recall that when m = n (y = 0), the optimum requires to choose the
point in I” with maximum/minimum a-coordinate (depending on the sign of ¢).
We will then prove that for all f, f' € I', it holds = = .

Consider the instance x comprised of four agents, where

O<zi <z <z <24 </
pr=p3=1 pa=ps=-—1,
1+ € — 19 — 24 >0,

Ty +x3 — 24 > 0.

The above can be satisfied for example if z; = 2£, 29 = 3¢, 23 = 4&, x4 = BE,
and £ = £/7. Let f be the optimum for instance x. Observe that § has negative
sign and therefore f has minimum z-coordinate in I". Assume by contradiction
that the claim is not true and let f’ be one of the rightmost points in I" (a point
with the maximum z-coordinate), such that xy > xy. Let € be the quantity
defined in (3) for f and f’ and recall that (e,0) partitions the points on the
z-axis according to the facility they are closer to.

If € < x5, then the third agent has an incentive to declare 25 = ¢ so that
0" > 0 (this is guaranteed by the definition of the instance) and the optimum
becomes f’, which is closer to x3 than f. Similarly, when € > s, the second
agent has an incentive to declare 2, = 0 to change the sign of § and move the
(undesirable) facility further from her location. Observe that one of these two
conditions on € must be true, since x3 # x3. Thus, wherever € is, there exists at
least one agent who has an incentive to lie — a contradiction.
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5 Conclusions

We have introduced a new perspective in the research on mechanism design
without money. Whereas the quality of the solutions, in terms of their approx-
imation guarantee, has been used as a way to obtain truthfulness (or strategy-
proofness), we propose here to use the feasibility of the solution space as a way
to get incentive-compatibility. The former is usually detrimental to the designer,
who instead might well be in charge of defining feasibility. Just as one aims at the
best possible approximation, here we would aim at having the largest possible
set of feasible solutions.

In addition to this conceptual contribution, our work has given a set of
involved technical contributions showing a dichotomy in the case study of het-
erogeneous facility location problem. Whilst any feasible region can be used to
design optimal GSP mechanisms when agents can lie about their preferences,
very little can be done for SP mechanisms facing agents who can misreport their
location.

Our work leaves a number of compelling open questions. Even only for the
variant of facility location considered, one might wonder to what extent the two
sides of our dichotomy generalize. For the positive side of the coin of unknown
preferences, we wonder whether a similar theorem holds in the case in which the
agents are located on a bidimensional subset of R? rather than a segment; possi-
ble interesting case studies include agents located on the boundary of a circle, a
region expressed by a quadratic function, or even an arbitrary shape. The neg-
ative part of our dichotomy for unknown locations is reminiscent of the known
characterization for collusion-resistant mechanisms with money [16]. Differently
from that, our constant-outcome characterization is qualified by optimality. The
natural next question is then to relax the requirement of optimality to (constant)
approximations. One question of interest could be: What approximation guar-
antee allows us to achieve truthfulness for every possible combination of positive
and negative preferences? More generally, our research agenda can be applied
to other mechanism design optimization problems studied in the literature; how
many feasible solutions can we allow to get truthfulness?
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Abstract. Obvious strategyproofness (OSP) has recently emerged as
the solution concept of interest to study incentive compatibility in pres-
ence of agents with a specific form of bounded rationality, i.e., those
who have no contingent reasoning skill whatsoever. We here want to
study the relationship between the approximation guarantee of incentive-
compatible mechanisms and the degree of rationality of the agents, intu-
itively measured in terms of the number of contingencies that they can
handle in their reasoning. We weaken the definition of OSP to accommo-
date for cleverer agents and study the trade-off between approximation
and agents’ rationality for the paradigmatic machine scheduling prob-
lem. We prove that, at least for the classical machine scheduling problem,
“good” approximations are possible if and only if the agents’ rationality
allows for a significant number of contingencies to be considered, thus
showing that OSP is not too restrictive a notion of bounded rationality
from the point of view of approximation.

Keywords: Mechanism design - Machine scheduling -
Simple mechanisms + Bounded rationality - Lookahead

1 Introduction

Mechanism design is an established research field, by now rooted in a number
of academic disciplines including theoretical computer science and Al. Its main
objective is that of computing in presence of selfish agents who might misguide
the designer’s algorithm if it is profitable for them to do so. The concept of
strategyproofness (SP-ness) (a.k.a., truthfulness) ensures that the algorithm and
the agents’ incentives are compatible and computation is indeed viable.

SP is based on the assumption of full rationality: agents are able to consider
all possible strategies and their combinations to reason about their incentives.

An extended abstract of the paper appeared as [15].

D. Ferraioli—Partially supported by GNCS-INAAM and by the Italian MIUR PRIN
2017 Project ALGADIMAR “Algorithms, Games, and Digital Markets”.

© Springer Nature Switzerland AG 2019

D. Fotakis and E. Markakis (Eds.): SAGT 2019, LNCS 11801, pp. 77-91, 2019.
https://doi.org/10.1007/978-3-030-30473-7_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30473-7_6&domain=pdf
http://orcid.org/0000-0002-7962-5200
http://orcid.org/0000-0003-1464-1215
https://doi.org/10.1007/978-3-030-30473-7_6

78 D. Ferraioli and C. Ventre

Nevertheless, this assumption is seldom true in reality and it is often the case
that people strategize against mechanisms that are known to be truthful [4]. One
then needs a different notion to compute in the presence of agents with bounded
rationality. The problem here is twofold: how can we formalize strategyproofness
for agents with (some kind of) bounded rationality? If so, can we quantify this
bounded rationality and relate that to the performances of the mechanisms?

The first question has been recently addressed by Li [18], who defines the
concept of obvious strategyproofness (OSP-ness); this notion has attracted quite
a lot of interest in the community [3,6,12-14,17,19,21,24]. Here, the mechanism
is seen as an extensive-form game; when a decision upon the strategy to play
has to be made, it is assumed that the reasoning of each agent i is as simple
as the following: the worst possible outcome that she can get when behaving
well (this typically corresponds to playing the game according to the so-called
agent’s true type) must be at least as good as the best outcome when misbehaving
(that is, following a different strategy). Best/Worst are quantified over all the
possible strategies that the players playing in the game after ¢ can adopt. Li [18§]
proves that this is the right solution concept for a model of bounded rationality
wherein agents have no contingent reasoning skills; rather than thinking about
the possible cases of if-then-else’s, an agent is guaranteed that honesty is the
best strategy to follow no matter all the contingencies.

Given the OSP formalization of bounded rationality, we focus, in this work,
on the second question. On the one hand, OSP is too restrictive in that people
might be able, within their computational limitations, to consider some contin-
gent reasoning, that is, a few cases of if-then-else’s. On the other hand, OSP
mechanisms appear to be quite limited, with respect to SP ones, in terms of
their approximation guarantee [12,13]. The question then becomes:

Can we quantify the trade-off between the “degree” of bounded
rationality of the agents and the approximation guarantee of the
mechanisms incentivizing them?

Our Contribution. The concept of lookahead is discussed in the literature in
the context of (strategies to play) games, and agents with limited computational
capabilities. De Groot [9] found that all chess players (of whatever standard)
used essentially the same thought process — one based upon a lookahead heuris-
tic. Shannon [23] formally proposed the lookahead method and considered it a
practical way for machines to tackle complex problems, whilst, in his classical
book on heuristic search, Pearl [20] described lookahead as the technique being
used by “almost all game-playing programs”.

We propose to consider lookahead as a way to quantify bounded rationality,
in relation to OSP. Whilst in OSP the players have no lookahead at all, we here
consider the case in which the agents have lookahead k, k going from 0 (OSP)
to n — 1 (SP). Intuitively, k£ measures the number of players upon which each
player reasons about in her decision making. We allow the set of k£ “lookahead”
players to be player and time specific (that is, different players can reason about
different competitors, and the set of players is not fixed but may change at
different time steps of the mechanism). So when agent ¢ has to decide upon the
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strategy to play, she will consider all the possible cases (strategies) for these k
agents at that time (& la SP) and a no-contingent reasoning (& la OSP) for the
others. This definition, which is somewhat different from that of the next k moves
in the game, is dictated by different subtleties of extensive-form mechanisms. In
particular, these k agents can be chosen in different ways to cover diverse angles.
(A more technical discussion is deferred to Sect.2.) In absence of other formal
definitions of incentive compatibility for different degrees of rationality, we regard
our definition of OSP with k-lookahead (k-OSP, for short) as a major conceptual
contribution of our work.

We then look at the trade-off between the value of k and the approxima-
tion guarantee of k-OSP mechanisms. We focus of the well-studied problem of
machine scheduling, where n agents control related machines and the objec-
tive is to schedule a set of m (identical) jobs to the machines so to mini-
mize the makespan (i.e., the latest machine’s completion time). In our main
technical contribution, we prove a lower bound on approximation guarantee of
T(n) = 7”“2*‘24"_’“, thus providing a smooth transition function between the
known approximation factors of y/n for OSP mechanisms [12] and 1 for SP
mechanisms [2]. We also show that this bound is tight, at least for three-values
domains. (Such a restriction is common to the state of the art of OSP mech-
anisms [12].) Our lower and upper bounds significantly extend and generalize
to k-OSP the analysis done in [12] for OSP mechanisms. Specifically, the lower
bound needs to identify some basic properties of the function 74 (n) and prove
what features the implementation tree of a mechanism (i.e., extensive-form game
induced by it) with good approximation guarantee must have. Our upper bound
instead defines a mechanism (algorithm, implementation tree and payment func-
tion) which combines a descending auction phase, to identify a certain number
of slowest machines, with an ascending auction to find out the k£ + 1 fastest
machines. The analysis of the approximation guarantee of our k-OSP mecha-
nism is significantly more involved than the one used in [12] for k£ = 0.

The main message of our work is that having more rational agents only
slightly improves the approximation guarantee of incentive-compatible mecha-
nisms, at least in the case of machine scheduling. In fact, to have a constant
approximation of the optimum makespan one would need agents with w(1)-
lookahead. We can then conclude that, in the cases in which the agents are
not that rational, OSP is not that restrictive a solution concept to study the
approximation of mechanisms for agents with bounded rationality.

Related Work. Recent research in algorithmic mechanism design has suggested
to focus on “simple” mechanisms to deal with bounded rationality [7,16,22]. OSP
provides a formal definition for simple mechanisms, by focusing on a specific
aspect of bounded rationality (see references above for the body of work on this
concept). However, different concepts of simple mechanisms have been recently
adopted in literature, most prominently posted-price mechanisms have received
great attention and have been applied to many different settings [1,5,8,10,11].
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2 The Definition

We have a set N of n agents; each agent ¢ has a domain D; of possible types —
encoding some feature of theirs (e.g., their speed). The actual type of agent i is
her private knowledge.

An extensive-form mechanism M is a triple (f, p, T), where f is an algorithm
that takes as input bid profiles and returns a feasible solution, p = (p1,...,pn)
is the payment function, one for each agent, and 7 is an extensive-form game,
that we call implementation tree'. Intuitively, 7 represents the steps that the
mechanism will take to determine its outcome. More formally, each internal node
u of T is labelled with a player S(u), called the divergent agent at u, and the
outgoing edges from u are labelled with types in the domain of S(u) that are
compatible with the history leading to u; the edge labels denote a partition of
the compatible types. We denote by D;(u) the types in the domain of i that
are compatible with the history leading to node u € 7. The tree models how
M interacts with the agents: at node u the agent S(u) is queried and asked to
choose an action, that corresponds to selecting one of u’s outgoing edges. The
chosen action signals that the type of S(u) is in the set of types labeling the
corresponding edge. The leaves of the tree will then be linked to (a set of) bid
profiles; the mechanism will return (f,p) accordingly; in other words, each leaf
corresponds to an outcome of the mechanism. (Observe that this means that the
domain of f and p is effectively given by the leaves of 7.)

We use b to denote bid profiles, so that b; stands for the type that i signalled
to the mechanism. For simplicity, we use f(b) and pi(b),...,p,(b) to denote
the outcome of (f,p) for the leaf of 7 to which b belongs. We assume that agents
have quasi-linear utilities, that is, agent i of type ¢ who signals (i.e., plays the
game 7 according to) b has utility u;(b, b_;) = p;(b) — t(f(b)), where, with a
slight abuse of notation, ¢(f(b)) is the cost that player i pays to implement the
outcome f(b) when her type is ¢, and b_; is the declaration vector of (i.e. types
signalled by) all agents except ¢. (In general, we let by = (b;);ca for A C N.)

Figure 1 gives an example of an implementation tree where three players have
a two-value domain {L, H}. The root partitions the domain of machine 1 into
L and H. If we let v denote the left child of the root, then D;(v) = {L} as type
H is no longer compatible with the history of v.

We now define OSP with k-lookahead. OSP informally implies that whenever
an agent is asked to diverge, she is better off acting according to her true type
in any possible future scenario: the worst possible outcome after selecting her
true type is at least as good as the best possible outcome after misreporting her
type, at that particular point in the implementation tree. This models agents
with no contingent reasoning, i.e., those unable to think through hypothetical

! The literature on mechanism design usually omits 7 from the definition of mecha-
nism, since it often focuses only on specific classes of mechanisms defined by a given
implementation tree (e.g., direct revelation mechanisms, posted price mechanisms).
However, it turns out that for OSP (and k-OSP) the design of the extensive-form
implementation is essential to define the incentive constraints.
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scenarios such as “if player 2 will play L and player 3 will play L, then I prefer L;
if they will play L and H respectively, then I prefer L, too; ans so on”. In OSP,
agent thinking is gross-grained: “If I play L, then the outcome will correspond
to leaves Iy, ...,l4, otherwise it will correspond to leaves I5,...,ls”.

However, it would be possible that agents have some limited ability of doing
contingent reasoning: they can think through hypothetical scenarios correspond-
ing to the action profiles of some players, but not all of them. Specifically, we
would like to model a player able to reason as follows: “If player 2 will play L, I
know that by choosing L I will finish either in {1 or in [, otherwise I will finish
in I5 or lg; if player 2 will play R, then my choice will be between the outcomes
corresponding to I3 and I4 and the one corresponding to I; and Ilg”. That is, we
here consider a more finely grained partition of the leaves of the tree, allowing
for some steps of contingent reasoning by the divergent agent. Intuitively, our
definition will allow the agent to reason about the moves of k agents; informally,
OSP with k-lookahead then implies that whenever an agent is asked to diverge,
she is better off acting according to her true type for any fized choice of strate-
gies of the k agents she reasons about (just like truthfulness) and any possible
future scenario of the actions of the remaining n — k — 1 agents.

For the formal definition, we need to introduce some more notation. We call
a bid profile b compatible with u if b is compatible with the history of u for all
agents. We furthermore say that (¢,b_;) and (b, b’ ;) diverge at u if i = S(u)
and t and b are labels of different edges outgoing u (we sometimes will abuse
notation and we also say that t and b diverge at u). E.g., (L, H, H) and (L, L, H)
are compatible with node v on Fig. 1 and diverge at that node, whilst (L, L, H)
and (L, L, L) are compatible with v but do not diverge at v.

Fig. 1. An implementation tree with three players with two-value domains {L, H};
each player separates the domain types upon playing; at each leaf I; the mechanism
computes f(b) and p(b), b being the bid vector at [;.

For every agent 7 and types t,b € D;, we let uf;’b denote a vertex u in the
implementation tree T, such that (¢, b_;) and (b, b”_;) are compatible with u, but
diverge at u for some b_;, b’ ; € D_;(u) = x;»;D;(u). Note that such a vertex

might not be unique as agent ¢ will be asked to separate ¢ from b in different
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paths from the root (but only once for every such path). We call these vertices
of T tb-separating for agent i. For example, the node r in the tree in Fig.1 is a
L H-separating node for agent 1; while v and w are two L H-separating node for
agent 2. These nodes are crucial, as at any point in which an agent distinguishes
two different types we will need to add a (set of) constraints to account for her
incentives. We finally denote i’s lookahead at ujf, as Ly (uj,), that is, a set of
(at most) k agents that move in 7 after i. (When k is clear from the context,
we simply let £(u) be the lookahead of agent S(u) at u.)

Definition 1 (OSP with k-lookahead). An extensive-form mechanism M =
(f,T,p) is OSP with k-lookahead (k-OSP, for short) given Lk(ui’b), if for all 4,
t,b € D;, t being i’s true type, u;b €7,bg € DK(uf;,b) and by, bl € DT(“i,b)f
1t holds that

ui(t, bK, bT) Z ui(b, bK, b{T)’

where K = Ly(uy,), T =N\ (K U{i}) and Da(u) = X jeacnD;(u).

In words, a mechanism is OSP with lookahead if each agent is willing to behave
truthfully at each node of the tree in which she interacts with the mechanism,
provided that she exactly knows the types of agents in K (bg is the same either
side of the inequality) but has no information about agents in 7', except that
their types are compatible with the history.

We remark that with £ = 0 we get the definition of OSP — wherein K is
empty — and with K = n — 1 we have truthfulness, T being empty.

Discussion. The set £ (u) in the definition above crucially captures our notion
of lookahead. We highlight the following features of our definition. The size of set
L (u) tells us how many players, agent S(u) can contingently reason about. This
means that the boundaries of k£ indeed go from 0, which corresponds to OSP,
to n — 1, which is equivalent to strategyproofness. In this sense, our definition
represents a smooth transition between the two notions, measuring the degree
of rationality of the players. For example, consider Fig.1 and focus on player
1; when k& = 0 then our notion is exactly OSP and the constraints require to
compare the utility of 1 in the leaves [y, ..., l4 with her utility in [5, ..., ls; when,
instead, k = 1 and £4(r) = {2} then the constraints compare the utility of 1 in
the leaves [y, ly with that in l5,ls (this corresponds to the case in which 2 plays
L) and the utility of 1 in the leaves l3,l4 with that in l7,ls (this corresponds to
the case in which 2 plays H); finally, for £k = 2 we get truthfulness as we need to
compare the utility of 1 in [; and l44; for j = 1,...,4. We note that intermediate
values of k are consistent with the vast literature stating that human reasoning
only has limited depth: for example, it is known that in chess most professional
players are usually able to think ahead few steps only [9]. We remark that k-OSP
differs from k-level reasoning: the latter considers a Nash equilibrium in which
an agent plays a best response to what happens in the next k steps; the former
considers a(n obviously) dominant strategy.

The set L (u) depends on u; this means that the number and the identities
of players on which S(u) can reason about can (in principle) adaptively depend
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on the actual position in the implementation tree. This in particular allows us
to also capture extensive-form games where the choice of the players to query
is adaptive and a definition of lookahead where the players on which S(u) can
reason about are (a subset of) those who move next: this is for example the
case in many multi-player board games in which the player can take actions
that change who is the next player to play, e.g., by blocking some opponents or
reversing the order of play.

Note that whenever Ly (u) = Li(v) for S(u) = S(v) then we model the case
in which the lookahead is independent from the actual implementation tree and
only depends on S(u)’s prior knowledge of the other agents.

Differently from the examples of chess and multi-player board games in which
a player only looks ahead to opponents that play in the next rounds, our defi-
nition of L (u) allows this set to contain also players that will play far away in
the future. This clearly makes our definition more general.

Moreover, we observe that this definition of £ (u) also allows us to overcome
a paradox that would arise if one defines the set of opponents that one looks
ahead only with respect to the implementation tree. For the sake of argument,
let us fix k = 1. Consider an adaptive implementation tree, where at node
different actions taken by agent S(u) correspond to different players taking the
next move. As a limit case, one can imagine that S(u) has n—1 different available
actions and each of them enables a different opponent to react (e.g., this is the
case for those board games where each player can decide who plays next). Hence,
assuming that S(u) can look ahead to players moving in the next step means
that S(u) has the ability to look ahead to all of them. Hence, in this setting
limited look-ahead is not limiting at all the ability of contingent reasoning of
S(u) (that is, in this setting every mechanism that is 1-OSP according to this
tree-only definition of lookahead is actually SP).

This is not surprising, since in this setting we are giving each agent i the
chance to “reason about” each opponent regardless of the action that ¢ takes.
A more realistic alternative would be to assume that the agent exactly knows
the actions of an opponent j only when ¢ takes an action that enables j to be
the next player to play (e.g., in the board game example described above, the
current player ¢ is assumed to know which actions player j will take when i
chooses j as the next player to play, but ¢ has no hint about the actions of j if
she chooses k # j as the next player to play). However, in this case ¢ would have
to reason about all the possible action combinations of all the different players
that move after her; this might not weaken OSP and indeed means that the
agent is not more rational at all. In fact, a careful inspection shows that, in this
case, 1-OSP according to this alternative definition of tree-only lookahead has
the same constraints of OSP.

Anyway, it must be highlighted that in non-adaptive trees, i.e., trees where
the identity of the next player to move after S(u) is the same irrespectively
of S(u)’s action, tree-only lookahead would indeed weaken OSP and effectively
capture a more rational agent capable of one step of contingent reasoning. Since
this is a special case of our notion, our lower bound continues to hold.
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Our definition requires that an agent with k-lookahead is capable of exactly
pinpointing the type of the agents in K. This is in fact the same assumption that
is implicitly done in the classical definition of truthfulness. Moreover, this makes
our definition of k-OSP mechanism a special case of mechanisms implementable
with partition dominant strategy as defined in [24]. Consequently, our definition
satisfies a natural generalization of the standard decision theory axioms of mono-
tonicity, continuity and independence, necessary to model the reasoning of agents
with a knowledge of the state of nature (e.g., the type profiles) limited only to
partitions of the set of these states (e.g., the type profiles that are compatible
with the history of the mechanism). We also observe that this requirement only
reinforces our lower bound below (even if they were so rational to do that, still
the approximation guarantee would be a constant only for non-constant values
of k). However, we leave open the problem of understanding whether our upper
bound is tight even for a weaker notion of rationality where the types of the
agents in K are not fully known but only have further restricted domains (e.g.,
an agent with k-lookahead only knows the next ¢ actions, for some ¢ > 0, that
will be taken by the agents in K).

3 The Case of Machine Scheduling

We now study the relationship between lookahead and approximation for the well-
studied problem of machine scheduling. Here, we are given a set of m identical
jobs to execute and the n agents control related machines. Agent i’s type is a job-
independent processing time t; per unit of job (equivalently, an execution speed
1/t; that is independent from the actual jobs). The algorithm f must choose a
possible schedule f(b) = (f1(b),..., fn(b)) of jobs to the machines, where f;(b)
denotes the job load assigned to machine ¢ when agents take actions signalling b.
The cost that agent ¢ faces for the schedule f(b) is ¢;(f(b)) = t; - fi(b). We focus
on algorithms f* minimizing the makespan, i.e., f*(b) € arg miny max?_; b;(x); f
is a-approximate if it returns a solution with cost at most a times the optimum.

3.1 Lower Bound

Let 7(n) = 7W. That is, 7% is a function of n such that n = 7% (n) (7% (n) +
k). Observe that 79(n) = y/n and 7,,—1(n) = 1. In this section, we prove the
following theorem, that states the main result of our work. Henceforth, for sake
of readability, let us denote 7 := 7 (n).

Theorem 1. For the machine scheduling problem, no k-OSP mechanism can be
better than T-approxzimate, regardless of the value of the sets Li(-). This even
holds for homogeneous three-value domains, i.e., D; = {L, M, H} for each i.

Proof. Consider m = n. Moreover, consider a domain D; = {L, M, H} for every

i,witthr[ﬁWLandef-mM.
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The proof will work in three steps. First, we prove some algebraic property
of 7 (cf. Lemma 1). We then characterize implementation tree and algorithm of
a k-OSP mechanism with approximation better than 7 (cf. Lemma 2). Finally,
we identify an instance for which any such mechanism cannot return an approx-
imation better than 7 — a contradiction.

Lemma 1. 7 =c+ 6, with§ € {O wherec:max{aeN:kS"_—CC?},

=

) Tk—1 |

Suppose now that a mechanism M with approximation ratio p < 7 exists for
the setting at the hand, and let 7 be its implementation tree. Let us rename the
agents as follows: Agent 1 is the 1st distinct agent that diverges in 7; because
of its approximation guarantee, the mechanism must have at least one divergent
agent for our domain. We now call agent 2, the 2nd distinct agent that diverges
in the subtree of 7 defined by agent 1 taking an action signalling type H;
if no agent diverges in this subtree of 7 we simply call 2 an arbitrary agent
different from 1. More generally, agent 7 is the 7th distinct agent that diverges, if
any, in the subtree of 7 that corresponds to the case that the actions taken by
agents that previously diverged are signalling their type being H. As above, if no
agent diverges in the subtree of interest, we just let ¢ denote an arbitrary agent
different from 1,2,...,7 — 1. We denote with u; the node in which ¢ diverges in
the subtree in which all the other agents have taken actions signalling H; if 4
got her id arbitrarily, then we denote with u; a dummy node. We then have the
following lemma.

Lemma 2. Any k-OSP M which is p-approximate, with p < T, must satisfy the
following conditions:

1. For everyi <n+1—[7| —k, if agent i diverges at node u;, it must diverge
on M and H.

2. For everyi <mn— |7] —k, if agent i diverges at node u; and takes an action
signalling type H, then M does not assign any job to i whenever the action
of agents in L(u;) are all signalling H.

Proof. Let us first prove part 1. Suppose that there is i <n+ 1 — [7] — k such
that at node w; i does not diverge on M and H (i.e., any action signalling M
is signalling also H). Then it must diverge on L and M, since u; must have at
least two outgoing edges (since 7 is assumed to diverge at u;), and the remaining
edges can only be labeled with L. Consider the type profile x such that x; = M,
and z; = H for every j # i. Observe that, by definition of w;, z; € D;(u;) for
every agent j. The optimal allocation for the type profile x assigns all jobs to
machine 4, with cost OPT(x) = mM. Since M is p-approximate, then it also
assigns all jobs to machine i. Indeed, if a job is assigned to a machine j # 4, then
the cost of the mechanism would be at least H > 7-mM > p- OPT(x), that
contradicts the approximation bound.

Consider now the profile y such that y; = L, y; = H for every j < ¢
and j € L(u;), and y; = L for every j > i such that j ¢ L(u;). (We
stress that our lower bound holds no matter the definition of the sets L£(u;).)
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Observe that, as for x, we have that y; € D;(u;) for every agent j. It is not
hard to see that OPT(y) < {ﬁ—‘ L. Let p be the number of jobs that M

assigns to machine ¢ in this case. Since M is p-approximate, then y < m. Indeed,
if 4 = m, then the cost of the mechanism contradicts the approximation bound,

since mL > T [ L > p-OPT(y), where we used that

. m_
n—i—k+1

== Rl
T(r+ k) + (r = 0)

=7 T+1-6

<7(r+k)=m,

where the last inequality follows from § < — - k 7 by Lemma 1.

Hence, for the mechanism to be OSP with k lookahead we need that both
the following conditions are satisfied: (i) p;(x) — mM > p;(y) — uM, and
(ii) pi(y) — nL > p;i(x) — mL, where p;(x) and p;(y) denote the payment that
i receives from the mechanism M when agents’ actions are signalling x and y,
respectively. However, this leads to the contradiction that L > M.

Let us now prove part 2. Suppose that there is i <n—|7] —k and x_;, with
z;j € Dj(u;) for every agent j and x; = H for every j € L(u;), such that if ¢
takes an action signalling type H, then M assigns at least a job to . According
to part 2, machine i diverges at node u; on H and M.

Consider then the profile y such that y; = M, y; = H for j < i+ k with

i # j,and y; = L for j > i+ k. Observe that OPT(y) = [m—‘ - L. Since

M is p-approximate, then it does not assign any job to machine i, otherwise its

cost would be at leastMZTh"ﬂL>T — k—‘L>p OPT(x).

Hence, for the mechanism to be OSP with k-lookahead we need that both the
following conditions are satisfied: (i) p;(x) — H > p;(y) — 0, and (ii) p;(y) — 0 >
pi(x) — M. However, this leads to the contradiction that H < M. O

Roughly speaking, Lemma 2 states that any k-OSP mechanism must have
an implementation tree such that the first n — | 7| — k agents interacting with
the mechanism, must be asked if their type is H, and, in the case of affirmative
answer, they must not receive any job.

We next observe that such a mechanism cannot have approximation lower
than 7, contradicting our hypothesis that M was k-OSP and p-approximate.

To this aim, assume first that for each agent i <n — |7| — k diverges at u;.
We consider the profile x such that x; = H for every i. The optimal allocation
consists in assigning a job to each machine, and has cost OPT(x) = H. Accord-
ing to Part 2 of Lemma 2, since M is supposed to be k-OSP, if machines take
actions that signal x, then the mechanism M does not assign any job to machine
i, for every i < n — |7] — k. Hence, the best outcome that M can return for x
consists in fairly assigning the m jobs to the remaining | 7| +% machines. Observe
that, if § = 0, i.e., 7 is an integer, then each machine receives 7 job, and thus
the cost of M is at least 7TH > pOPT(x), which contradicts the approximation
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ratio of M. Otherwise, there is at least one machine that receives at least [7]
jobs, since |7] (|7] + k) < 7 (7 + k) = m. In this case, the cost of M is at least
[T|H > 7H = TOPT(x), contradicting again the approximation ratio of M.
Consider now the case that there is 1 < i <n—|7| —k that does not diverge
at u;. It is not hard to see that this would contradict the approximation of M
given that it would be unaware of the type of too many machines. O

3.2 Upper Bound

We next show that for every k£ and every possible choice of lookahead sets
{Lr(u)},cr, the bound above is tight, for three-values domains, ie., D; =
{L;, M;, H;} for every i. To this aim, consider the following mechanism My,
that consists of a Descending Phase (Algorithm 1) followed by an Ascending
Phase (Algorithm 2). The algorithmic output is augmented with a payment, to
agent 7, of M; for each unit of job load received.

1 Set A= [n], and t; = max{d € D;}

2 while |A| > [7] + k do

3 Set p = maxaca{ta} and ¢ = min{a € A: t, = p}

Ask machine 7 if her type is equal to p

if yes then remove i from A, and set t; = p

else set t; = max{t € D;: t < p}

Algorithm 1: The descending phase keeps in A the machines that are still
alive and in t; the maximum non-discarded type for each agent; then proceeds
by removing from A the slowest machines, until there are only [7] 4 & left.

(=

Set s; = min{d € D;}
Set B=10
while |B| < k do

Set p = mingca\p{sa} and i = min{a € A\ B: s, = p}

Ask machine 7 if her type is equal to p

if yes then Set t; = p and insert i in B

else set s; = min{d € D;: d > p}
Consider the profile z with 2; =¢; for s € B and 2; = minyg A tw forj€ A\ B
Let f*(z) = (f{(2));c4 be the optimal assignment of jobs on input profile z
Assign f7(z) jobs to each machine j € A
Algorithm 2: The ascending phase adds to B the k fastest machines; then it
computes the optimal assignment by using the revealed type for machines in
B and a suitably chosen placeholder type for the remaining machines.

© 00 N O A W N
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In case of multiple optimal assignments in line 9 of Algorithm 2, we assume
that the mechanism returns the one that maximizes the number of jobs assigned
to machines in B. This is exactly the solution returned by the optimal greedy
algorithm, and thus can be computed in polynomial time.
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Roughly speaking, mechanism M), works by discovering in the descending
phase the n — | 7] — k slowest machines and discarding them (i.e., no job will be
assigned to these machines). (Our mechanism satisfies the conditions of Lemma 2
thus showing that our analysis is tight for both approximation and design of the
mechanism.) The ascending phase then serves to select a good assignment to the
non-discarded machines. To this aim, the mechanism discovers in the ascending
phase the k + 1 fastest machines. The assignment that is returned is then the
optimal assignment to the non-discarded machines in the case that the type of
the k41 fastest machines is as revealed, whereas the type of the remaining non-
discarded machines is supposed to be as high as possible, namely equivalent to
the type of the last discarded machine (i.e., the fastest among the slow machines).

Proposition 1. Mechanism My, is k-OSP if D; = {L;, M;, H;} for each i.
Proof. We prove that M; - f;(Mg(x)) — z; - fi(Mg(x)) > M; - fi( Mp(y)) — z; -

fi(My(y)) for each machine ¢, for each node w in which the mechanism makes
a query to i, for every z.(, such that z; € D;(u) for j € L(u), for every z; and
y; that diverge at w, for each pair of type profiles x,y such that z; € D;(u),
y; € D;(u) for every agent j and z; = y; = z; for every j € L(u).

This is obvious for z; = M;. We next prove that z; = H; implies f;(My(x)) <
fi(My(y)), that immediately implies the desired claim. Let us first consider a
node u corresponding to the descending phase of the mechanism. In this case,
r; = p, where p is as at node u. Moreover, in all profiles as described above there
are at least [7] 4+ k machines that either have a type lower than p, or they have
type p but are queried after i. However, for every x_; satisfying this property,
we have that f;(My(x)) =0 < fi(My(y)) for every alternative profile y.

Suppose now that node u corresponds to the ascending phase of the mecha-
nism. In this case, y; = p, where p is as at node u. Observe that f;(My(y)) =
T Wi 2o(uys Z—ic(u)), Where f(yi, Zo(u)s Z—i,c(u)) is the number of jobs assigned
to machine i by the optimal outcome on input profile (yi, Z2(v), Z—i,£(u))s Z—i,c(u)
being such that Z; = maxyea ty for every j € A\ ({i} U L(uw)).

Observe that for every x as described above, it must be the case that z; > y;
for every j € A\ L(u). Hence, we distinguish two cases: if min;ec 4\ () z; = @i,
then fi(My(x)) = f(zisZo0u) 2-icw) < FiWir 2o Z2-icw) = [ilMe(y));

if instead min;e o\ £(u) T; = T, for some k # i, then

[ilMy (%) = f5 (@, 2o0), 2=k, c(w) < Fi Tk Zo(u)s 2ok, o(u))
f (wa,C —i,ﬁ(u)) = fz(Mk(y))7
where we used that z_j, £(,) = Z_; £(4) and the inequalities follow since: (i) in
the optimal outcome the fastest machine must receive at least as many jobs as

slower machines; (ii) in the optimal outcome, given the speeds of other machines,
the number of jobs assigned to machine 7 decreases as its speeds decreases. 0O

Proposition 2. Mechanism My, is (%m_l [ﬂ) -approzrimate.
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Proof (Sketch). We denote with OPT(x) the makespan of the optimal assign-
ment when machines have type profile x. We will use the same notation both if
the optimal assignment is computed on n machines and if it is computed and on
[7] 4+ k machines, since these cases are distinguished through the input profile.

Fix a type profile x. Let A and B as at the end of the mechanism when
agents behave according to x. Let § be the smallest multiple of |A| such that
B > > ea OPT(x). Moreover, let ¢ = min g4 t;. We define the profile y as
follows: y; = w for every i € A and y; = t otherwise, where w is chosen so that
% -w =max;jec (z; - OPT;(x)). Consider then the assignment a that assigns
jobs equally split among agents in A and m — (3 jobs equally split among agents
not in A. It is immediate to see that OPT(x) > M S(a,y), where M S(a,y) is
the makespan of the assignment a with respect to the type profile y.

Let M(x) be the makespan of the assignment returned by our mechanism
if agents behave according to x. Then, M(x) is equivalent to OPT(z), where
z is such that 2; = z; for j € B and 2; = t for j € A\ B. Let a be the
smallest multiple of |B| such that a >}, 5 OPT;(z). We define the profile y
as follows: g; = w for every ¢« € B and y; = ¢ otherwise, where w is chosen so that
1] W = maxjep (xj - OPT;(2z)). Consider then the assignment a that assigns o
jobs equally split among agents in B and m — « jobs equally split among agents
in A\ B. Tt is immediate to see then M(x) = OPT(z) = M S(4a,y). The theorem

then follows, since it occurs that 1\31;?;1(&) < mtktlrl=lrg O
Y) m

The next corollary follows by simple algebraic manipulations.

Corollary 1. Mechanism My, is ([T] + 1)-approzimate for m > [7]| (k + [7])
and the approzimation tends to [T] as m increases.

4 Conclusions

We have studied the relationship between the bounded rationality of the agents
and the approximation guarantee of mechanisms incentivizing these agents. We
have relaxed the popular notion of OSP [18] to allow for more fine grained notions
of rationality. For machine scheduling, we proved that more rational agents do
not help in getting close to the optimum, unless the level of rationality is signif-
icant to a point where the meaning of bounded becomes questionable. On one
hand, our findings motivate the focus on OSP for future work on the approxima-
tion guarantee of mechanisms for agents with bounded rationality. On the other
hand, one might wonder whether similar results hold also for different optimiza-
tion problems. To this aim, we observe that the techniques that we use in our
proof have a resemblance with the ones used in [13] for proving the inapprox-
imability of OSP mechanisms for the facility location problem (with money).
Hence, we believe that results similar to the ones we give for machine scheduling
may be proved for facility location. As for other problems, we highlight that
no approximation result is known even for OSP mechanisms. In particular, for
binary allocation problems (that have been considered already in [18]), only a
characterization of optimal OSP mechanism is known.
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Abstract. Consider the revenue maximization problem of a risk-neutral
seller with m heterogeneous items for sale to a single additive buyer,
whose values for the items are drawn from known distributions. If the
buyer is also risk-neutral, it is known that a simple and natural mecha-
nism, namely the better of selling separately or pricing only the grand
bundle, gives a constant-factor approximation to the optimal revenue.
In this paper we study revenue maximization without risk-neutral buy-
ers. Specifically, we adopt cumulative prospect theory, a well established
generalization of expected utility theory.

Our starting observation is that such preferences give rise to a very
rich space of mechanisms, allowing the seller to extract arbitrary revenue.
Specifically, a seller can construct extreme lotteries that look attractive to
a mildly optimistic buyer, but have arbitrarily negative true expectation.
Therefore, giving the seller absolute freedom over the design space results
in absurd conclusions; competing with the optimal mechanism is hope-
less. Instead, in this paper we study four broad classes of mechanisms,
each characterized by a distinct use of randomness. Our goal is twofold: to
explore the power of randomness when the buyer is not risk-neutral, and
to design simple and attitude-agnostic mechanisms—mechanisms that
do not depend on details of the buyer’s risk attitude—which are good
approximations of the optimal in-class mechanism, tailored to a specific
risk attitude. Our main result is that the same simple and risk-agnostic
mechanism (the better of selling separately or pricing only the grand
bundle) is a good approximation to the optimal non-agnostic mechanism
within three of the mechanism classes we study.

1 Introduction

Expected utility theory (EUT) has long reigned as the prevailing model of deci-
sion making under uncertainty. However, a substantial body of evidence, includ-
ing the famous Allais paradox [1], shows that most people make choices that
violate this theory. Cumulative prospect theory [27] is arguably the most promi-
nent alternative. A key element of this theory is a non-linear transformation of
cumulative probabilities by a probability weighting function. This transformation
© Springer Nature Switzerland AG 2019
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can model a person’s tendency towards optimism or pessimism.’ On the other
hand, as mechanism designers we use randomization as an important tool in
optimizing our objective, typically (and crucially) assuming that agents make
choices according to the tenets of expected utility theory. While we have vastly
deepened our understanding of mechanism design under this assumption, it is
essential to study empirically validated models of human decision-making. In
this paper we study the revenue-maximization problem of a risk-neutral seller
with m heterogeneous items for sale to a single, additive buyer with cumula-
tive prospect theory preferences. Our goal is to design simple mechanisms that
are agnostic to the underlying probability weighting function of the buyer, yet
achieve a good approximation to the revenue of the optimal mechanism tailored
to this weighting function. To understand our results in context, we begin by
briefly reviewing cumulative prospect theory.

1.1 Prospect Theory Basics

In full generality, cumulative prospect theory (CPT) asserts that preferences
are parameterized by a reference point (or status quo) r, a value function U
that maps (deterministic, i.e. certain) outcomes into utils (or dollars), and two
probability weighting functions, w™ and w™, for weighting the cumulative prob-
abilities of positive and negative outcomes (relative to r). By taking r = 0 and
the weighting functions w™ and w™ to be the identity function, one recovers
expected utility theory; thus, CPT generalizes EUT. However, like most works
in mechanism design, we assume linear utility for money: U(x) = x. That is, our
agents have value 1 for $1 and value 1000 for $1000. What remains, then, are
the weighting functions w™ and w™ and the reference point .

For intuition, consider first a simple event F which occurs with probability
%, and assume that » = 0. Suppose that E corresponds to an agent receiving
value 10; if F does not occur, the agent receives nothing. A risk-neutral agent
would value this potential income at 10 - Pr[E] = 5. An optimistic agent, over-
estimating the possibility of receiving 10, might value E at slightly more than 5,
whereas a pessimistic agent might value it at slightly less. CPT uses a weight-
ing function w™ which modifies probabilities of positive outcomes: the agent
values event E at 10 - wt(Pr[E]). Then w*(z) > z corresponds to optimism,
and wt(x) < x corresponds to pessimism. CPT captures much more complex
behavior than merely optimism and pessimism. For example, in experiments
(e.g. [6,27]), subjects tend to overweight extreme events: in a sense, people are
optimistic about very good outcomes and pessimistic about very bad outcomes.
This sort of behavior can be readily captured by CPT.

In general, the event of interest might correspond to a positive or negative
outcome. For example, E might correspond to the agent losing value 10. In
that case, we expect the optimistic agent to underweight the probability of E
occurring. For this reason, CPT models probability weighting for gains and losses

! As we discuss below, real-world attitudes are not merely “optimistic” or “pes-
simistic”, but such simplistic attitudes are easily and naturally captured by this
model.
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with functions w* and w~, respectively. When the random variable is supported
on multiple non-zero values, applying w™ (or w™) directly to the probability of
each event leads to violations of first-order stochastic dominance. For this reason,
[23] proposed to weight the cumulative distribution function, rather than the
probability mass function; hence cumulative prospect theory.

Our interest here is highlighting the effects of nonlinear probability weight-
ing. We will therefore focus on a special case of cumulative prospect theory,
namely rank dependent wutility theory (RDUT). This theory is rich enough to
explain a number of known violations of expected utility theory, e.g., the Allais
paradox [24], general enough to include expected utility theory as a special case,
while at the same time simple enough to be mathematically tractable. This the-
ory is equivalent to the following assumption.

Assumption 1 (/25]). For allp € [0,1], w(p) =1 —w™ (1 —p).

Assumption 1 allows us to rank all the outcomes from worst to best, independent
of whether they are gains or losses, and weight their probabilities with a single
weighting function w(z). Furthermore, it makes the reference point r irrelevant.
[7] have previously studied the same model, giving a class of mechanisms which
optimally sell a single item to a pessimistic buyer. However, they restrict them-
selves to convex weighting functions. Here we study general weighting functions
and multi-item auctions. We postpone more details about rank dependent utility
theory until Sect. 2, and refer the reader to the full version of this paper for what
the expected utility of a general CPT agent (that is, without Assumption 1) for
even a simple lottery looks like.

1.2 Our Results

Our starting point is the observation that even very mild probability weighting
gives rise to rich seller behavior, which allows the seller to extract unbounded
revenue. Specifically, we show that under assumptions satisfied by most weighting
functions in the literature, the seller can design a bet that has arbitrarily negative
(risk-neutral) expectation, but looks attractive to a RDUT buyer. This bet can
be easily turned into an auction for selling any number of items by giving the
items for free if and only if the buyer takes the bet. Similar behavior has been
observed before this work for more general models, e.g. [2,12].

In light of these negative results for arbitrary buyer-seller interaction, we focus
our attention to specific classes of mechanisms, imposing various restrictions on the
mechanism’s description and implementation. These restrictions are not onerous:
when offered to a risk-neutral buyer, two of the classes are equivalent to the class
of all mechanisms, and another is equivalent to all deterministic mechanisms. Our
restrictions thus serve to isolate particular uses of randomization and to illustrate
the various effects RDUT preferences have on mechanism design.

The first class we consider is that of deterministic price mechanisms, which
we denote Cgp,. Here, the seller offers a menu of (possibly correlated) distributions
over the items, each at a fixed price. The buyer may pay the price for a distri-
bution, after which she receives a draw from the distribution. To bypass some
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technical barriers, we also consider a special case of this class, nested deter-
ministic price mechanisms, or Cyqp, Which impose certain constraints on the
distributions over items in a menu. These constraints are very mild (for example
they are always satisfied by independent distributions) and are without loss of
generality for a risk-neutral buyer. Next, we consider the class of deterministic
allocation mechanisms, C4,, where the mechanism deterministically allocates a
bundle of items for a possibly randomized, non-negative payment. Cq, is equiva-
lent to deterministic mechanisms for a risk neutral buyer. Finally, we consider a
multi-item generalization of the single-item class of mechanisms that is optimal
for convex weighting functions (as shown by [7]). We call this class binary-lottery
mechanisms and denote it by Cp.

Our main result is that, for classes Cpqp, Cqq and Cyp, a single simple mecha-
nism, agnostic to the underlying weighting function, gives a good approximation
on the revenue of the optimal in-class mechanism tailored to w. That mecha-
nism is the better of selling every item separately at a fixed price (henceforth
SREV) and selling the grand bundle as a single item at a fixed price (hence-
forth BREV), which is a valid mechanism in all classes considered. Furthermore,
this mechanism is deterministic, which implies that its expected revenue is the
same for all weighting functions w, and only depends on the buyer’s value dis-
tribution D. Our proof is by relating the revenue of each class of mechanisms
to the revenue obtainable from a risk-neutral buyer via any mechanism, com-
bined with a result of [3], which shows that max{SREvV, BREV} is a constant
approximation to this risk-neutral revenue. For Cq, our understanding is partial;
we show that max{SREV, BREV} approximates the optimal, risk non-agnostic
Cap auction within a factor that is doubly exponential in the number of items.
This implies a constant approximation for a constant number of items (in fact,
for two items we can show an approximation factor of 2 for just SREV), but we
leave it as an open problem whether a constant approximation is possible for
the general case. All our results can be extended to a unit-demand and additive
up to a downward closed constraint buyer by paying an extra factor of 4 and
31.1, respectively, using the results of [8].

Intuitively, the difficulty with analyzing mechanisms for RDUT buyers (and
especially optimal mechanisms) is that, given a mechanism, we cannot generally
argue about how much a buyer type ¢ values the menu item purchased by a type
t’. This is especially the case for general deterministic price mechanisms, where
allocations over items could be arbitrarily correlated. This, in turn, prevents us
from using basic “simulation arguments”: starting from an auction M, manip-
ulate the allocation rule and pricing rule to get a different auction M’. Such
arguments are very useful in getting meaningful upper bounds on the optimal
revenue. For example, [17] upper bound the optimal revenue from a product
distribution, REV(D x D’), by REV(D) + VAL(D’)? using such an argument,
where they give a concrete auction for D by manipulating the allocation and
payment rule of the optimal auction for D x D’. Similar “marginal mechanism”

2D and D' here are distribution over m; and mgy items, respectively. VAL(D') =
> jeims) E[Dj]; ie. the total expected sum of values from items in D’".
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arguments are crucial in many works that give simple and approximately optimal
mechanisms for additive buyers, e.g. [3,19,31]; for example, the so-called core-tail
decomposition technique depends on such arguments. On the other hand, the
recently developed Lagrangian duality based approach ([4,5,9,13,14,20]) also
seems to fail here. This technique has been successful in getting benchmarks
in a number of settings, by giving a solution to the dual of the mathematical
program that computes the optimal auction. To the best of our knowledge, all
works that use this technique start from a linear program. Here, the mathemat-
ical program for the optimal, risk non-agnostic auction is not even convex. Even
though in theory only weak duality is necessary for this technique to work, we
haven’t been successful in applying it to our problem.

1.3 Related Work and Roadmap

Prospect theory was originally defined by [18] but, though successful in explain-
ing experimentally observed behavior, it suffered from a number of weaknesses,
namely violations of first-order stochastic dominance between random variables.
Several works ([23,26,29,30]) proposed solutions to these issues, resulting in
cumulative prospect theory ([27]). Next to expected utility theory, cumulative
prospect theory is likely the best studied theory of decision-making under uncer-
tainty. We refer the reader to the book of [28] for a thorough exposition of the
model. Also see [21] for a survey of non-EUT models. Although widely studied
in behavioral economics, prospect theory has received much less attention in the
game theory and mechanism design literature. Our work is most closely related
to that of [7], who study optimal and robust mechanisms for a single buyer and
a single item. Their work, unlike ours, places much stronger assumptions on
the weighting function: namely, they assume convexity (which in turn implies
w(zx) < x). In this paper we consider general weighting functions, but restrict the
mechanism design space. Further afield, [11] study contract design in a crowd-
sourcing setting with a prospect-theoretic model of workers. [15] demonstrate
that equilibria may not exist in two-player games when players have prospect-
theoretic preferences. [10] and [16] study mechanism design with risk-averse
agents in a setting where risk-averse behavior is represented by a concave utility
function, while more recently, in a similar setting, [22] study optimal mechanisms
for risk-loving agents.

Our main result is that the better of selling separately and selling the grand
bundle is a risk robust approximation to the optimal revenue. The approximation
ratio of this mechanism has been studied extensively for risk-neutral buyers
having a large class of valuations [3-5,5,8,25]. Our result relies on this work,
but our techniques are very different.

Roadmap. Section 2 poses our model and some preliminaries. We discuss the lim-
its of our model in Sect. 3, and show that if the seller is allowed to use an arbitrary
mechanism, then he can extract arbitrarily large revenue. In Sect. 3.1 we formally
define two of the four mechanism classes considered in this paper. We proceed to
analyze deterministic price mechanisms in Sect. 4. We study deterministic alloca-
tion mechanisms and binary lottery mechanisms in the full version of this paper.
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2 Preliminaries

A risk-neutral seller, whose aim is to maximize revenue, is auctioning off m items
to a single buyer with cumulative prospect theory preferences. The value of the
buyer for item i is v;, and is distributed according to a known distribution D;.
We assume that the item distributions are independent, and denote the joint
distribution by D. We first go over the buyer’s preference model in detail, and
then formulate our mechanism design problem.

Weighted Expectation. In this paper we focus on a special case of cumulative
prospect theory, rank dependent utility theory. In rank dependent utility theory
a weighting function w distorts cumulative probabilities ([23]). The weighting
function w satisfies the following properties: (1) w : [0,1] — [0, 1], (2) w is non-
decreasing, (3) w(0) = 0 and w(1) = 1. We use the notation Z to indicate the
risk-neutral weighting function; that is Z(x) = x. For a random variable Z over
k outcomes, where the i-th outcome occurs with probability p; and gives utility
u;, and u; < u;y1, an agent with weighting function w has expected utility

Eu [Z] = Zf:_f Us (w (Zle pj) —w (Z?:i+1 pj)) + Ukw(pk)
=up + 30 (s — uim1) - w (Zf:ﬂ’j) ~

The intuitive interpretation (for the last expression) is that the agent always
gets utility u;. Then, the event that the agent gets an additional utility of at
least us — u; occurs with probability 1 — p; = 2522 p; (which is weighted by
the function w). The agent gets an additional utility of at least uz — ug with
probability Z§:3 pj, and so on. Note that this definition makes no assumption
about the sign of w;; that is, the u;s can be positive (corresponding to gains) or
negative (corresponding to losses).

Mechanism Design. Back to mechanism design, any mechanism can be described
by the allocation it makes and the payment it charges as a function of the buyer’s
report. For a report v = (v1,...,v,), we denote by X (v) the random variable
for the allocation, giving a probability to each possible allocation of the items
in {0,1}™. Similarly, P(v) is the random variable for the payment when the
report is v. X (v) and P(v) may be correlated. Importantly, common practices
from mechanism design in the risk-neutral setting, like treating the allocation as
a vector in [0, 1]™ or the payment as a real number (i.e. replacing the random
variable of the payment with its expectation), are with loss of generality here.
We assume that the buyer has additive utility for the items and is quasilinear
with respect to payments: if she receives a set of items S for a payment p, her
total value for this outcome is ) ;. g v; — p. The buyer’s weighted expected util-
ity from the mechanism’s outcome is E,[v - X (v) — P(v)]; we say that a mech-
anism is incentive compatible (IC) for a buyer with weighting function w if
for all possible values v,v" of the buyer, it holds that E,[v- X (v) — P(v)] >
Eyp[v- X(v'") — P(v')]. It is without loss of generality to express an incentive
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compatible mechanism in the form of a menu M, with each menu item cor-
responding to a particular (allocation, payment) pair of correlated random
variables (X, P). Then, the allocation and payment of a buyer with value
v and weighting function w is given by the utility-maximizing menu item?
(Xw(v), Py(v)) = argmax x pyeaq Ew[v- X — PJ. The revenue of the mecha-
nism is given by REVo¢(w, D) = E[P(v)], where the expectation is with respect
to the random valuation v (drawn from D), as well as the random outcome of
the payment random variable P(v). A mechanism is individually rational (IR)
if the buyer has non-negative expected utility when participating. Throughout
the paper we focus on IC and IR mechanisms.

We slightly overload notation: let REV(w, D) denote the optimal revenue
achievable by an incentive compatible mechanism from selling m items to a
buyer with weighting function w and values drawn from D. We will frequently
drop w to indicate the risk-neutral optimal revenue, i.e. we use REV(D) to mean
REV(Z, D) (recall that Z is the risk-neutral weighting function, Z(z) = z), and
DREV(D) for the optimal revenue from a deterministic mechanism. Note that
DREV(w, D) = DREV(w’, D), for all w,w'.

In this paper we show that the best of SREV(D) (or just SREV), the auction
that sells each item separately at its optimal posted price, and BREV(D) (or
just BREV), the auction that sells the grand bundle as a single item, is a risk-
robust approximation for a prospect theoretic buyer. For a risk-neutral buyer,
the following result is known.

Theorem 1 (/3,/]). For a single, risk-neutral, additive bidder and any inde-
pendent item distribution D it holds that

REV(Z,D) < 2BREV(D) + 4SREV(D) < 6 max{SREV(D), BREV(D)}.

3 Limits of the Model and Mechanism Classes

In this section, we demonstrate how our model, absent any additional assump-
tions on the mechanism or the weighting function, can lead to absurd results.
Such results were known before our work. [2] show that under assumptions on
the weighting functions a principal can extract unbounded revenue from a CPT
agent, simply by offering a bet on a single coin-flip. Furthermore, [12] show that
CPT behavior gives rise to time inconsistency, allowing a seller to extract the
buyer’s entire wealth over multiple rounds of interaction. We reproduce similar
results in our context for completeness and to illustrate the variety of behaviors
possible in this model. In later sections, we develop restrictions on the mech-
anism which preclude this sort of unreasonable behavior. First, the following
simple lemma is instructive.

Lemma 1. For every distribution D, constant R € R>g, and weighting function
w such that there exists x* < 1 with w(x*) = 1, there exists a mechanism M
such that REV((w, D) = R.

3 We assume that any ties are broken in favor of menu items with a higher expected
price.
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Proof. Consider the following lottery, where (positive) Z represents a transfer
to the agent.
7 O,R w%th probab%l?ty x* (1)
1—»- Wwith probability 1 —z*.
The agent’s utility is E,,[Z] = =% (1—w(z*)) = 0, while the seller’s revenue
is E[-Z] = & (1—2*) = R. This lottery can be transformed into a mechanism
for selling any number of items, by giving everything for free to the buyer,

requiring only that she participates in the lottery. a

Lemma 1 relies on the dubious assumption that the buyer would assign
no weight at all to an extremely negative—albeit potentially highly unlikely—
outcome. However, even seemingly reasonable weighting functions can be
exploited, as our next result shows.

Lemma 2. For every distribution D, constant R € R>q, and weighting function
w such that there exists x* with 1 > w(x™) > x*, there exists a mechanism M
such that REV((w, D) = R.

Proof. Consider the following lottery, where (positive) Z represents a transfer
to the agent.
7 {a with probability z* @)

—pa  with probability 1 — x*,

where a > 0. The expected value of an agent with weighting function w is
Ey[Z] = aw(x*) — pa (1 — w(z*)). Pick p = li(f(m)), then, for all a, E,,[Z] = 0.
That is, the buyer has utility exactly zero for this lottery.

On the other hand, the expected revenue of the seller, who pays a with

probability x* and gets paid pa with probability 1 — x*, is equal to

The lemma follows by setting a = qu(;ifi)(f;)*; similarly to Lemma 1, this
lottery can be turned into an auction by giving all the items for free to the agent

after participating in the lottery. O

We note that the conditions of Lemma 2 are satisfied for nearly all weighting
functions implied by experiments in the literature; we refer the reader to [27,28]
for concrete examples. Furthermore, the issue exhibited by Lemma 2 persists
even if one enforces ex-post individual rationality, so long as the seller is allowed
to utilize a multi-round protocol.

Lemma 3. For every distribution D, constant € > 0 and weighting function w

such that there exists x* with 1 > w(x™) > a* + 15, there exists a multi-round,

ex-post individually rational mechanism M such that REV pm(w, D) = E[D].
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Proof. For simplicity we only prove the m = 1 item case; the general case is iden-
tical. Consider again the random transfer defined in (2). Picking p =

1—w(x
provides the buyer strictly positive utility. The seller’s revenue is eoiual to
E[-Z] =a- (% —€(l — z*) — x*), which is again strictly positive for
every a > 0. By picking a and x* appropriately the seller can thus make both
E,[Z] and E[—Z] very small positive numbers.

This suffices to extract full buyer welfare as follows. The buyer and seller
will interact over T rounds. In the first round, the buyer reports a bid b. In
rounds ¢t > 1, the seller will offer lottery Z (and the buyer has the option to not
participate), unless the seller has already extracted an amount larger than the
bid b. After T rounds have passed, the item will be awarded to the buyer for free.
Of course, since E,[Z] > 0, the buyer always chooses to participate in round
t, and (in expectation) loses a little bit of money. By picking T' large enough,
the buyer eventually goes bankrupt at some intermediate round, but since she
eventually gets the item this mechanism is in fact ex-post IR. Notice that this
mechanism is also truthful! Precisely because when the buyer is calculating (in
the first round) her expected utility from reporting b she thinks that she will
“come out on top”, and therefore is indifferent between all bids b (and thus
reports her true value v). O

As the previous lemmas exhibit, practical mechanisms cannot hope to com-
pete against the theoretically optimal revenue maximizing mechanism in this
model, and thus this theory does not give accurate predictions for the simple
mechanisms that we observe in practice. There are multiple ways to proceed. A
natural one is to put restrictions on the weighting functions considered. Indeed,
this is the approach taken by [7] for the single item case, where the weighting
function is restricted to be convex (therefore the buyer is always risk-averse).
Another is to put restrictions on the mechanisms considered. In this paper we
restrict our attention to specific mechanism classes; for some of our results this
does not suffice and some mild restrictions on w are necessary as well.

3.1 Mechanism Classes

Here we define two classes of mechanisms; see the full version of this paper
for the other mechanisms we consider. Recall that REV A (w,D) denotes the
seller’s expected revenue from a mechanism M, given that the buyer has weight-
ing function w and her values are distributed according to D. We denote the
expected revenue of the optimal mechanism in a class C by REV (w, D, C). That
is, REV (w, D, C) = maxyec REV (’LU, D)

The Class Cg, of Deterministic Price Allocations. First, we consider mech-
anisms which use randomness only in the allocation. That is, the seller offers a
menu of distributions over the items, each at a fixed price. The buyer may pay
the price for a distribution over the items, after which she receives a draw from
the distribution. We call this class deterministic price (DP) mechanisms, and
denote it by Cgp. It will be convenient to think of a mechanism M in this class
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as a menu, where the buyer selects her favorite menu item, of the form (p, X),
where p is the payment and X is a (possibly correlated) distribution over items.
This class remains completely general for risk-neutral buyers.

Unfortunately, general deterministic price mechanisms are technically diffi-
cult to work with. The arbitrary correlation allowed between items (in the alloca-
tion) makes arguing about the buyer’s expected utility problematic. Specifically,
different buyer types order outcomes of X differently, and therefore could have
wildly different expected weighted utility for the same distribution X (since
arbitrary correlation allows us to assign arbitrary probabilities to outcomes);
this property can be used to tailor to each type v an allocation X (v) that is
attractive only to this type. Our understanding of general C4, mechanisms is
therefore partial. We show that max{SREvV, BREV} gives a doubly exponential
(in the number of items) approximation to the optimal deterministic price mech-
anism. This trivially implies a constant approximation for a constant number of
items; we leave it as an open problem whether a constant approximation can be
achieved for an arbitrary number of items.

To mitigate the problems caused by arbitrary correlation, we also consider
a special case of deterministic price mechanisms, which imposes a specific form
of correlation on the distribution over allocations: we ask that the allocations in
the support of the allocation distribution form a nested set. We term this class
nested deterministic price (NDP) mechanisms and denote it by Cyq,. We say a
random variable X supported in 2[™ is a monotone lottery if X is supported on
a chain of subsets S1,---,Sk, K < m, such that S; C S;4+1 for all ¢ € [k — 1].
We use Ay(2I™) to denote the set of such correlated distributions over the set
of m items. For a mechanism M € C,q4, the allocation distributions for each
menu item are restricted to be in Ay(2["). Observe that nested deterministic
price mechanisms are again completely general for risk-neutral buyers. This is
so because the optimal mechanism for a risk-neutral buyer can be specified in
terms of the marginal probabilities of allocation for each item. For any marginal
probabilities, we can find a monotone lottery having the same marginal proba-
bilities.

Observation 1. For any distribution D, the class Cnap of nested deterministic
price mechanisms contains an optimal mechanism for a risk-neutral buyer. That
is, REV(Z, D) = REV(Z, D, Cpap)-

4 Deterministic Price Mechanisms

We first investigate general deterministic price mechanisms. We show that the
optimal revenue of a deterministic price mechanism on independent items for a
RDUT buyer can be upper bounded by doubly exponential times the optimal
risk-neutral revenue of some items and the welfare on the distribution of the
remaining items. Missing proofs can be found in the full version of this paper.
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Theorem 2. Let w be a weighting function, D1 be the product distribution of
my independent items, and Dy be the product distribution of mo independent
items. D =Dy x Dy and m = mq1 +mso. Then

REV(w, D, Cyp) < 227 (M= 3106M)REV(T, Dy) + VAL (Dy).
Using standard techniques we get the following corollary.
Corollary 1. REv(w,D,Cqp) € O(2™2") max{SREV, BREV}.

Though this approximation is doubly exponential in the number of items,
we do get a constant approximation when the number of items is a constant.
Notably, for the case of two items, we get REV(w,D,Cq,) < 17SREV; an
improved analysis can reduce this to a factor of 2. We leave it as an open problem
whether a constant approximation is possible for an arbitrary number of items.

4.1 Nested Deterministic Price Mechanisms

Our main result is that the class of nested deterministic price mechanisms does
not offer the seller any means of exploiting the buyer’s risk attitude: the optimal
revenue within the class is equivalent to the optimal revenue obtainable from a
risk-neutral mechanism.

Theorem 3. Let w be an invertible weighting function and D be any distribution
supported in RY,. Then REV(w, D, Chap) = REV(Z, D).

Combining with Theorem 1 of [3] we get the following corollary.

Corollary 2. Let D and w satisfy the conditions of Theorems 1 and 3. Then,
it holds that REV(w, D, Cpap) < 6 max{SREV(D), BREV(D)}.

We prove Theorem 3 in two lemmas. We start by showing that for any invert-
ible weighting function, there exists an NDP mechanism which recovers the opti-
mal risk-neutral revenue. Next, we show the converse: that we can construct a
mechanism for a risk-neutral buyer which obtains the same revenue as any DP
mechanism for a buyer with weighting function w.

Lemma 4. Let w be an invertible weighting function and D be any distribution
supported in RY,. Then REV(w, D, Crap) > REV(Z, D).

Lemma 5. Let w be any weighting function and D any distribution supported
in RYy. Then REV(w, D, Chap) < REV(Z, D).

Proof. Consider a mechanism M € Cyqp. Let X (v) and p(v) be the allocation and
payment rule, respectively, of M, where X (v) is a random variable in Ax(2m])

and p(v) € Rsq. We construct a mechanism M = (X (v),p(v)) for a risk-neutral
buyer such that REV (Z, D) = REV mq(w, D).
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Fix v. X(v) is a monotone lottery by definition of C,qp, so let Sy, -, Sk
be the support of X(v), where S; C S;41 for i € [k], and let 1 — F; =
Pr[S; € X(v)]. Then the utility of an RDUT buyer is wuy,(v, X(v),p(v)) =
Zle (v(S;) — v(Si_1)) w(1 — F};), where we take Sy = 0. Let 1 — F; = w(1—F;
and define X (v) such that Pr {X(U) = Si] = Fi11 — F. Lastly, let p(v) = p(v

A risk-neutral buyer with any valuation v’ has expected utility for the lottery

(X (v),p(v)) equal to

),
).

u(v', X (v),p(v)) = S5, (V(Si) —v'(Sic1)) (1 = F) — (o)
= Zf:l (v'(8:) = v'(Si—1))w(l — Fy) — p(v),

which is just u, (v, X (v), p(v)). Because this equality holds for every valuation
v, (X(v),ﬁ(v)) is an IC, IR mechanism for a buyer with weighting function w,
and furthermore obtains the same revenue from a buyer with weighting function

w as M obtains from a risk-neutral buyer. O

Observe that the assumption of monotone lotteries was critical to the proof of
Lemma 5. If X (v) were an arbitrary distribution over subsets S € 2lml " a buyer
with valuation v" would order the outcomes differently from v. This would make
it impossible to define the unweighted probability of allocation in the mecha-
nism M in a way that would be simultaneously consistent with the weighted
probability assigned to the outcome by all valuations v'.

Indeed a general deterministic-price mechanism (without the restriction to
monotone lotteries) could exploit this discrepancy to obtain more revenue than
a risk-neutral mechanism. That is, Lemma 5 does not hold for the class Cqp, as
the next claim shows.

Claim. There exists a distribution D over two items, and a weighting function
w, such that REV(w, D, Cqp) > REV(Z, D).

Proof. Let D1, Dy be independent and identical uniform distributions on {1, 3}.
The revenue optimal auction that sells the two items to a risk-neutral buyer is
the deterministic auction that sells the bundle of two items at the price 4. So
REV(Z,D; x D;) =4 x 3 = 3. Consider the weighting function

0, p<3
w(p)=<4p—2, F<p<?
1, $<»p

Consider the auction M selling the two items in the following way: if the buyer
reports type (1,1), the buyer gets the first item with probability 1 and inde-
pendently, get the second item with probability %, and the buyer pays 1 to the
seller. Otherwise, the buyer gets both items and pays 4. It is easy to see that
M is incentive compatible for a buyer with weighting function w. Furthermore,
REVum(w,Dy x Do) =1x 1 +4x 3 =13>3 O
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Abstract. The declining price anomaly states that the price weakly
decreases when multiple copies of an item are sold sequentially over time.
The anomaly has been observed in a plethora of practical applications.
On the theoretical side, Gale and Stegeman [10] proved that the anomaly
is guaranteed to hold in full information sequential auctions with exactly
two buyers. We prove that the declining price anomaly is not guaranteed
in full information sequential auctions with three or more buyers. This
result applies to both first-price and second-price sequential auctions.
Moreover, it applies regardless of the tie-breaking rule used to generate
equilibria in these sequential auctions. To prove this result we provide
a refined treatment of subgame perfect equilibria that survive the iter-
ative deletion of weakly dominated strategies and use this framework
to experimentally generate a very large number of random sequential
auction instances. In particular, our experiments produce an instance
with three bidders and eight items that, for a specific tie-breaking rule,
induces a non-monotonic price trajectory. Theoretical analyses are then
applied to show that this instance can be used to prove that for every
possible tie-breaking rule there is a sequential auction on which it induces
a non-monotonic price trajectory. On the other hand, our experiments
show that non-monotonic price trajectories are extremely rare. In over
six million experiments only a 0.000183 proportion of the instances vio-
lated the declining price anomaly.

1 Introduction

In a sequential auction identical copies of an item are sold over time. In a private
values model with unit-demand, risk neutral buyers, Milgrom and Weber [19, 26]
showed that the sequence of prices forms a martingale. In particular, expected
prices are constant over time.! In contrast, on attending a wine auction, Ashen-
felter [1] made the surprising observation that prices for identical lots declined
over time: “The law of the one price was repealed and no one even seemed to
notice!” This declining price anomaly was also noted in sequential auctions for

L If the values are affiliated then prices can have an upwards drift.
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the disparate examples of livestock (Buccola [7]), Picasso prints (Pesando and
Shum [21]) and satellite transponder leases (Milgrom and Weber [19]). Indeed,
the possibility of decreasing prices in a sequential auction was raised by Sosnick
[23] nearly sixty years ago. In the case of wine auctions, proposed causes include
absentee buyers utilizing non-optimal bidding strategies (Ginsburgh [11]) and
the buyer’s option rule where the auctioneer may allow the buyer of the first
lot to make additional purchases at the same price (Black and de Meza [6]).
Minor non-homogeneities amongst the items can also lead to falling prices. For
example, in the case of art prints the items may suffer slight imperfections or
wear-and-tear, and the auctioneer may sell the prints in decreasing order of qual-
ity (Pesando and Shum [21]). More generally, a decreasing price trajectory may
arise due to risk-aversion, such as non-decreasing, absolute risk-aversion (McAfee
and Vincent [17]) or aversion to price-risk (Mezzetti [18]); see also Hu and Zou
[13]. Further potential economic and behavioural explanations have been pro-
vided in [2,11,25]. Of course, most of these explanations are context-specific.
However, in practice the anomaly is ubiquitous: it has now been observed in
sequential auctions for, among several other things, antiques (Ginsburgh and
van Ours [12]), commercial real estate (Lusht [16]), flowers (van den Berg et al.
[5]), fur (Lambson and Thurston [15]), jewellery (Chanel et al. [8]), paintings
(Beggs and Graddy [4]) and stamps (Thiel and Petry [24]).

Given the plethora of examples, the question arises as whether this property
is actually an anomaly. In groundbreaking work, Gale and Stegeman [10] proved
that it is mot in sequential auctions with two bidders. Specifically, in second-
price sequential auctions with two multiunit-demand buyers, prices are weakly
decreasing over time at the unique subgame perfect equilibrium that survives the
iterative deletion of weakly dominated strategies. This result applies regardless
of the valuation functions of the buyers, and also extends to the correspond-
ing equilibrium in first-price sequential auctions. It is worth highlighting that
Gale and Stegeman consider multiunit-demand buyers whereas prior theoretical
work had focused on the simpler setting of unit-demand buyers. As well as being
of more practical relevance (see the many examples above), multiunit-demand
buyers can implement more sophisticated bidding strategies. Therefore, it is
not unreasonable that equilibria in multiunit-demand setting may possess more
interesting properties than equilibria in the unit-demand setting. The restriction
to full information in [10] is extremely useful here as it separates away informa-
tional aspects and allows one to focus on the strategic properties caused purely
by the sequential sales of items and not by a lack of information.

1.1 Results and Overview of the Paper

The result of Gale and Stegeman [10] prompts the question of whether or not
the declining price anomaly is guaranteed to hold in general, that is, in sequen-
tial auctions with more than two buyers. We answer this question in the negative
by exhibiting a sequential auction with three buyers and eight items where prices
initially rise and then fall. In order to run our experiments that find this coun-
terexample (to the conjecture that prices are weakly decreasing for multi-buyer
sequential auctions) we study in detail the form of equilibria in sequential auctions.
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First, it is important to note that there is a fundamental distinction between
sequential auctions with two buyers and sequential auctions with three or more
buyers. In the former case, each subgame reduces to a standard auction with inde-
pendent valuations. In contrast, in a multi-buyer sequential auction each subgame
reduces to an auction with interdependent valuations. We present these models in
Sects. 2.1 and 2.2. Consequently to study multi-buyer sequential auctions we must
study the equilibria of auctions with interdependent valuations. A theory of such
equilibria was recently developed by Paes Leme et al. [20] via a correspondence
with an ascending price mechanism. In particular, as we discuss in Sect. 2.3, this
ascending price mechanism outputs a unique bid value, called the dropout bid (;,
for each buyer i. For first-price auctions it is known [20] that these dropout bids
form a subgame perfect equilibrium and, moreover, the interval [0, ;] is the exact
set of bids that survives all processes consisting of the iterative deletion of strate-
gies that are weakly dominated. In contrast, we show that for second-price auctions
it may be the case that no bids survive the iterative deletion of weakly dominated
strategies; however, we prove in Sect. 2.3 that the interval [0, 3;] is the exact set
of bids for any losing buyer that survives all processes consisting of the iterative
deletion of strategies that are weakly dominated by a lower bid.

In Sect. 3 we describe the counter-example. We emphasize that the form of the
valuation functions used for the buyers are standard, namely, weakly decreasing
marginal valuations. Furthermore, the non-monotonic price trajectory does not
arise because of the use of an artificial tie-breaking rule; the three most natural
tie-breaking rules, see Sect. 2.4, all induce the same non-monotonic price trajec-
tory. Indeed, we present an even stronger result in Sect. 4: for any tie-breaking rule,
there is a sequential auction on which it induces a non-monotonic price trajectory.
This lack of weakly decreasing prices provides an explanation for why multi-buyer
sequential auctions have been hard to analyze quantitatively. We provide a second
explanation in the full paper, where we present a three-buyer sequential auction
that does satisfy weakly decreasing prices but which has subgames where some
agent has a negative value from winning against one of the two other agents. Again,
this contrasts with the two-buyer case where every agent always has a non-negative
value from winning against the other agent in every subgame.

Finally in Sect. 5, we describe the results obtained via our large scale exper-
imentations. These results show that whilst the declining price anomaly is not
universal, exceptions are extremely rare. Specifically, from a randomly generated
dataset of over six million sequential auctions only a 0.000183 proportion of the
instances produced non-monotonic price trajectories. Consequently, these exper-
iments are consistent with the practical examples discussed in the introduction.
Of course, it is perhaps unreasonable to assume that subgame equilibria arise in
practice; we remark, though, that the use of simple bidding algorithms by bidders
may also lead to weakly decreasing prices in a multi-buyer sequential auction. For
example, Rodriguez [22] presents a method called the residual monopsonist proce-
dure inducing this property in restricted settings.
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2 The Sequential Auction Model

Here we present the full information sequential auction model. There are T' iden-
tical items and n buyers. Exactly one item is sold in each time period over T' time
periods. Buyer ¢ has a value V;(k) for winning exactly k items. Thus V;(k) =
Zif:l v; (), where v;(€) is the marginal value buyer ¢ has for an ¢th item. This
induces an extensive form game. To analyze this game it is informative to begin by
considering the 2-buyer case studied by Gale and Stegeman [10].

2.1 The Two-Buyer Case

During the auction, the relevant history is the number of items each buyer has
currently won. Thus we may compactly represent the extensive form (“tree”) of
the auction using a directed graph with anode (z1, z2) for any pair of non-negative
integers that satisfies 1 + z2 < T. The node (1, z2) induces a subgame with
T — x1 — xo items for sale and where each buyer i already possesses z; items. Note
there is a source node, (0,0), corresponding to the whole game, and sink nodes
(21, 22), where 21 + 22 = T. The values Buyer 1 and Buyer 2 have for a sink node
(z1,22) are IT1(z1,x2) = Vi(x1) and IIx(x1,22) = Va(xs), respectively. Take a
node (z1,x3), where 1 + 22 = T — 1. This node corresponds to the final round
of the auction, where the last item is sold, and has directed arcs to the sink nodes
(141, 22) and (21, 22+1). For the case of second-price auctions, it is then a weakly
dominant strategy for Buyer 1 to bid its marginal value vy (z1 +1) = Vi (21 +1) —
Vi(z1); similarly for Buyer 2. Of course, this marginal value is just vy (z; + 1) =
I (z1+ 1, 29) — II1 (21, 22+ 1), the difference in value between winning and losing
the final item. If Buyer 1 is the highest bidder at (x1, x2), that is, II1(z1 + 1, z2) —
I (1,22 + 1) > s (21,29 + 1) — a(z1 + 1, 23), then we have that

Hl(xl,l'z) = Hl(.’tl =+ ].,CCQ) — (HQ(I’l,ZL'Q + ].) — HQ(ZL’l + 1,1’2))
IIy(x1,22) = (21 + 1, 22)

Symmetric formulas apply if Buyer 2 is the highest bidder. Hence we may recur-
sively define a value for each buyer for each node. The iterative elimination of
weakly dominated strategies leads to a subgame perfect equilibrium [3,10].

Example: Consider a two-buyer sequential auction with two items, where the
marginal valuations are {v1(1),v1(2)} = {10, 8} and {va(1),v2(2)} = {6,3}. This
game is illustrated in Fig. 1. The base case with the values of the sink nodes is
shown in Fig. 1(a). The first row in each node refers to Buyer 1 and shows the num-
ber of items won (in plain text) and the corresponding value (in bold); the second
row refers to Buyer 2. The outcome of the second-price sequential auction, solved
recursively, is then shown in Fig. 1(b). Arcs are labelled by the bid value; here arcs
for Buyer 1 point left and arcs for Buyer 2 point right. Solid arcs represent win-
ning bids and dotted arcs are losing bids. The equilibrium path is shown in bold.
Figure 1(c) shows the corresponding first-price auction, where we make the stan-
dard assumption of a fixed small bidding increment, and the notation p™ and p
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are respectively used to denote a winning bid of value p and a losing bid equal to
the maximum value smaller than p. For simplicity, all the figures we present in the
rest of the paper will be for first-price auctions; equivalent figures can be drawn for
the case of second-price auctions. Observe that this example exhibits the declining
price anomaly: in the equilibrium, the first item has price 5 and the second item
has price 3. As stated, Gale and Stegeman [10] showed that this example is not an
exception.

Theorem 1 [10]. In a 2-buyer second-price sequential auction there is a unique
equilibrium that survives the iterative deletion of weakly dominated strategies.
Moreover, at this equilibrium prices are weakly declining. a

Fig. 1. Sequential auction examples

We remark that the subgame perfect equilibrium that survives iterative elim-
ination is unique in terms of the values at the nodes. Moreover, given a fixed tie-
breaking rule, the subgame perfect equilibrium also has a unique equilibrium path
in each subgame. In addition, Theorem 1 also applies to first-price sequential auc-
tions. The question of whether or not it applies to sequential auctions with more
than two buyers remained open. We resolve this question in the rest of this paper.
To do this, let’s first study equilibria in the full information sequential auction
model when there are more than two buyers.

2.2 The Multi-buyer Case

The underlying model of [10] extends simply to sequential auctions withn > 3 buy-
ers. There is anode (z1, 22, . . ., 2,,) for each set of non-negative integers satisfying
Z?=1 x; < T.Thereisadirected arc from (21, z2, ..., 2,) to (z1,Z2,...,Tj-1,T;+
1,2j41,...2p) for each 1 < j < n. Thus each non-sink node has n out-going arcs.
This is problematic: whilst in the final time period each buyer has a value for win-
ning and a value for losing, this is no longer the case recursively in earlier time
periods. Specifically, buyer i has a value for winning, but n — 1 (different) values
for losing depending upon the identity of the buyer j # i who wins. Thus each node
in the multi-buyer case corresponds to an auction with interdependent valuations.
Formally, this is a single-item auction where each buyer ¢ has a value v; ; for winning
the item and a value v; ; if buyer j wins the item, for each j # . These auctions,
also called auctions with externalities, were introduced by Funk [9] and by Jehiel
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and Moldovanu [14]. Their motivations were applications where losing participants
were not indifferent to the identity of the winner; examples include firms seeking to
purchase a patented innovation, take-over acquisitions of a smaller company in an
oligopolistic market, and sports teams competing to sign a star athlete. Therefore
to understand multi-buyer sequential auctions we must first understand equilibria
in auctions with interdependent valuations. This is not a simple task; indeed, such
an understanding was only recently provided by Paes Leme et al. [20].

2.3 Equilibria in Auctions with Interdependent Valuations

We can explain the result of [20] via an ascending price auction. Imagine a two-
buyer ascending price auction where the valuations of the buyers are v > ws.
The requested price p starts at zero and continues to rise until the point where the
second buyer drops out. Of course, this happens when the price reaches vy, and
so Buyer 1 wins for a payment p™ = vy, which is exactly the outcome expected
from a first-price auction. To generalize this to multi-buyer settings we can view
this process as follows. At a price p, buyer i remains in the auction as long as there
is at least one buyer j still in the auction who buyer 7 is willing to pay a price p to
beat; that is, v; ; — p > v; ;. The last buyer to drop out wins at the corresponding
price. Even in this setting, this procedure produces a unique dropout bid 3; for each
buyer 4, as illustrated in Fig. 2. In these diagrams the label of an arc from buyer 4
to buyer j is w; j = v;,; — v4,;. That is, buyer 7 is willing to pay up to w; ; to win if
the alternative is that buyer j wins the item. Now consider running our ascending
price procedure for these auctions. In Fig. 2(a), Buyer 1 drops out when the price
reaches 18. Since Buyer 1 is no longer active, Buyer 4 drops out at 23. Buyer 3 wins
when Buyer 2 drops out at 31. Thus the drop-out bid of Buyer 3 is 317. Observe
that Buyer 2 loses despite having very high values for winning against Buyer 1 and
Buyer 4. The example of Fig. 2(b) is more subtle. Here Buyer 2 drops out at price
24. But Buyer 3 only wanted to beat Buyer 2 at this price so it then immediately
drops out at the same price. Now Buyer 1 only wanted to beat Buyer 2 and Buyer 3
at this price, so it then immediately drops out at the same price. This leaves Buyer 4
the winner at price 24%.

18 u 19 23 37 2 10 14
97 7 o 1 17 o 1. 21

Fig. 2. DrorP-OuT BID EXAMPLES. In these two examples the dropout bid vectors
(B1, B2, B3, Ba) are (18,31,317,23) and (24,24, 24,24™), respectively.

Ed
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As well as being solutions to the ascending price auction, the dropout bids have
a much stronger property that makes them the natural and robust prediction for
auctions with interdependent valuations. Specifically, Paes Leme et al. [20] proved
that, for each buyer i, the interval [0, 3;] is the set of strategies that survive any
sequence consisting of the iterative deletion of weakly dominated strategies. This is
formalized as follows. Take an n-buyer game with strategy sets Sy, 59, ...,.S, and
utility functions u; : S1 x Sg X --- x S, — R. Then {S7 }, - is a valid sequence for
the iterative deletion of weakly dominated strategies if for each 7 there is a buyer ¢
such that (i) ST = S;fl for each buyer j # i and (ii) S] C S7 " where for each
strategy s; € SiT*l \ ST thereis an §; € ST such that w;(8;,s—;) > u;(s;, s—;) for
all s_; € [ oy S7, and with strict inequality for at least one s_;. We say that
a strategy s; for buyer i survives the iterative deletion if for any valid sequence
{S7}i,- we have s; € ), S7.

Theorem 2 [20]. Given a first-price auction with interdependent valuations, for
each buyer i, the set of bids that survive the iterative deletion of weakly dominated
strategies is exactly [0, B;]. O

An exact analogue of Theorem 2 does not hold for second-price auctions with
interdependent valuations. Indeed, there exist examples in which the set of strate-
gies that survive iterative deletion is empty. However, consideration of these exam-
ple shows that the problem occurs when a strategy is deleted because it is weakly
dominated by a higher value bid. Observe that this can never happen for a poten-
tially winning bid. Thus Theorem 2 still holds in first-price auctions when we
restrict attention to sequences consisting of the iterative deletion of strategies that
are weakly dominated by a lower bid. We can also show that the corresponding
theorem holds for second-price auctions. The full technical details of the proof are
deferred to the full paper.

Theorem 3. Given a second-price auction with interdependent valuations, for
each losing buyer i, the set of bids that survive the iterative deletion of strategies
that are weakly dominated by a lower bid is exactly [0, 3;]. O

We are now almost ready to be able to find equilibria in the sequential auction
experiments we will conduct. This, in turn, will allow us to present a sequential
auction with non-monotonic prices. Before doing so, one final factor remains to be
discussed regarding the transition from equilibria in auctions with interdependent
valuations to equilibria in sequential auctions.

2.4 Equilibria in Sequential Auctions: Tie-Breaking Rules

As stated, the dropout bid of each buyer is uniquely defined. However, our descrip-
tion of the ascending auction may leave some flexibility in the choice of winner.
Specifically, it may be the case that simultaneously more than one buyer wishes to
drop out of the auction. If this happens at the end of the ascending price procedure
then any of these buyers could be selected as the winner. To fully define the ascend-
ing auction we must incorporate a tie-breaking rule to order the buyers when more
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than one wish to drop out simultaneously. In an auction with interdependent valu-
ations the tie-breaking rule only affects the choice of winner, but otherwise has no
structural significance. However, in a sequential auction, the choice of winner at
one node may affect the valuations at nodes higher in the tree. In particular, the
equilibrium path may vary with different tie-breaking rules, leading to different
prices, winners, and utilities.

As we will show in Sect.4 there are a massive number of tie-breaking rules
even in small sequential auctions. We emphasize, however, that our main result
holds regardless of the tie-breaking rule: for any tie-breaking rule there is a
sequential auction on which it induces a non-monotonic price trajectory. First,
though, we will show that non-monotonicity occurs for perhaps the three most
natural choices, namely preferential-ordering, first-in-first-out and
last-in-first-out. Interestingly, these rules correspond to the fundamental
data structures of priority queues, queues, and stacks in computer science.

Preferential Ordering (Priority Queue): In preferential-ordering each
buyer is given a distinct rank. In case of a tie the buyer with the worst rank is
eliminated. Without loss of generality, we may assume that the ranks correspond
to a lexicographic ordering of the buyers. That is, the rank of a buyer is its index
label and given a tie amongst all the buyers that wish to dropout of the auction we
remove the buyer with the highest index. The preferential ordering tie-breaking
rule corresponds to the data structure known as a priority queue.

First-In-First-Out (Queue): The first-in-first-out tie-breaking rule cor-
responds to the data structure known as a queue. The queue consists of those buy-
ers in the auction that wish to dropout. Amongst these, the buyer at the front of
the queue is removed. If multiple buyers request to be added to the queue simul-
taneously, they will be added lexicographically. Note though that this is different
from preferential ordering as the entire queue will not, in general, be ordered lex-
icographically. For example, when at a fixed price p we remove the buyer ¢ at the
front of the queue this may cause new buyers to wish to dropout at price p, who
will be placed behind the other buyers already in the queue.

Last-In-First-Out (Stack): The last-in-first-out tie-breaking rule corre-
sponds to the data structure known as a stack. Again the stack consists of those
buyers in the auction that wish to dropout. Amongst these, the buyer at the top
of the stack (i.e. the back of the queue) is removed. If multiple buyers request to
be added to the stack simultaneously, they will be added lexicographically. At first
glance, this last-in-first-out rule appears more unusual than the previous two,
but it still has a natural interpretation: it corresponds to settings where the buyer
whose situation has changed most recently reacts the quickest.

In order to understand these tie-breaking rules it is useful to see how they
apply on an example. In Fig.3 the dropout vector is (81,02, 0s,04,05) =
(40, 40, 40, 40, 40), but the three tie-breaking rules select three different winners.

On running the ascending price procedure, both Buyer 3 and Buyer 4 wish
to drop out when the price reaches 40. In preferential-ordering, our choice
set is then {3,4} and we remove the highest index buyer, namely Buyer 4.
With the removal of Buyer 4, neither Buyer 1 nor Buyer 5 have an incentive to
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Fig. 3. An example to illustrate the three tie-breaking rules.

continue bidding so they both decide to dropout. Thus our choice set isnow {1, 3,5}
and preferential-ordering removes Buyer 5. With the removal of Buyer 5, now
Buyer 2 no longer has an active participant it wishes to beat so the choice set is
updated to {1,2,3}. The preferential-ordering rule now removes the buyers
in the order Buyer 3, then Buyer 2 and lastly Buyer 1. Thus Buyer 1 wins under
the preferential-ordering rule.

Now consider first-in-first-out. To allow for a consistent comparison
between the three methods, we assume that when multiple buyers are simultane-
ously added to the queue they are added in decreasing lexicographical order. Thus
our initial queueis 4 : 3 and first-in-first-out removes Buyer 4 from the front
of the queue. With the removal of Buyer 4, neither Buyer 1 nor Buyer 5 have an
incentive to continue bidding so they are added to the back of the queue. Thus the
queueisnow 3 : 5 : 1 and first-in-first-out removes Buyer 3 from the front of
the queue. It then removes Buyer 5 from the front of the queue. With the removal
of Buyer 5, we again have that Buyer 2 now wishes to dropout. Hence the queue is
1:2and first-in-first-out then removes Buyer 1 from the front of the queue.
Thus Buyer 2 wins under the first-in-first-out rule.

Finally, consider the last-in-first-out rule. Again, to allow for a consis-
tent comparison we assume that when multiple buyers are simultaneously added
to the stack they are added in increasing lexicographical order. Thus our initial
stack is 3 and last-in-first-out removes Buyer 4 from the top of the stack.
Again, Buyer 1 and Buyer 5 both now wish to drop out so our stack becomes 1.
Therefore Buyer 5 is next removed from the the top of the stack. At this point,
Buyer 2 wishes to dropout so the stack becomes z . The last-in-first-out rule
now removes the buyers in the order Buyer 2, then Buyer 1 and lastly Buyer 3.
Thus Buyer 3 wins under the last-in-first-out rule.

We have now developed all the tools required to implement our sequential auc-
tion experiments. We describe these experiments and their results in Sect. 5. Before
doing so, we present in Sect. 3 one sequential auction obtained via these experi-
ments and verify that it leads to a non-monotonic price trajectory with each of the
three tie-breaking rules discussed above. We then explain in Sect. 4 how to gener-
alize this conclusion to apply to every tie-breaking rule.
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3 An Auction with Non-monotonic Prices

Here we prove that the decreasing price anomaly is not guaranteed for sequential
auctions with more than two buyers. Specifically, in Sect. 4 we prove the following
result:

Theorem 5. For any tie-breaking rule T, there is a sequential auction on which it
produces non-monotonic prices.

In the rest of this section, we show that for all three of the tie-breaking
rules discussed (namely, preferential-ordering, first-in-first-out and
last-in-first-out) there is a sequential auction with with non-monotonic
prices. Specifically, we exhibit a sequential auction with three buyers and eight
items that exhibits non-monotonic prices.

Theorem 4. There is a sequential auction which exhibits a non-monotonic price
trajectory for the preferential-ordering, the first-in-first-out and the
last-in-first-out rules.

Proof. Our counter-example to the conjecture is a sequential auction with three
buyers and eight identical items for sale. We present the first-price version where at
equilibrium the buyers bid their dropout values in each time period; as discussed,
the same example extends to second-price auctions. In our example, Buyer 1 has
marginal valuations {55, 55, 55, 55, 30, 20, 0, 0}, Buyer 2 has marginal valuations
{32, 20,0,0,0,0,0,0}, and Buyer 3 has marginal valuations {44, 44, 44, 44, 0, 0,
0, 0}. Let’s now compute the extensive forms of the auction under the three tie-
breaking rules. We begin with the preferential-ordering rule. To compute its
extensive form, observe that Buyer 1 is guaranteed to win at least two items in the
auction because Buyer 2 and Buyer 3 together have positive value for six items.
Therefore, the feasible set of sink nodes in the extensive form representation are
shown in Fig. 4.

6: 270 5: 250 4: 220
0: 0 1:32 2: 52
2: 88 2: 88 2: 88

Fig. 4. Sink nodes of the extensive form game.

Given the valuations at the sink nodes we can work our way upwards recursively
calculating the values at the other nodes in the extensive form representation. For
example, consider the node (x1,x2,x3) = (4,1,2). This node has three children,
namely (5, 1,2), (4,2,2) and (4, 1, 3); see Fig. 5(a). These induce a three-buyer auc-
tion as shown in Fig. 5(b). This can be solved using the ascending price procedure
to find the dropout bids for each buyer. Thus we obtain that the value for the node
(x1,22,23) = (4,1,2) is as shown in Fig. 5(c). Of course this node is particularly
simple as, for the final round of the sequential auction, the corresponding auction
with interdependent valuations is just a standard auction. That is, when the final
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30, 30
30 - 20
20 44 B
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Fig. 5. Solving a subgame above the sinks.

item is sold, for any buyer ¢ the value v; ; is independent of the buyer j # . Nodes
higher up the game tree correspond to more complex auctions with interdependent
valuations. For example, the case of the source node (21, z2, 23) = (0, 0,0) is shown
in Fig. 6. In this case, on applying the ascending price procedure, Buyer 1 is the first
to dropout at price 15. At this point, both Buyer 2 and Buyer 3 no longer have a
competitor that they wish to beat at this price, so they both want to dropout. With
the preferential-ordering tie-breaking rule, Buyer 2 wins the item.

110
0 0 i% 0 C

Fig. 6. Solving the subgame at the root.

Using similar arguments at each node verifies the concise extensive form rep-
resentation of this example under the preferential-ordering tie-breaking rule.
A figure showing the full extensive form tree is present in the full paper. The resul-
tant price trajectory on the equilibrium path is {15,17,0,0,0,0,0,0}. That is, the
price rises and then falls to zero — a non-monotonic price trajectory.

Exactly the same example works with the other two tie-breaking rules. The
node values under preferential-ordering and first-in-first-out are the
same, but these two rules do produce different winners at some nodes, for example
the node (3,0, 2). In contrast, the last-in-first-out rule gives an extensive for
where some nodes have different valuations than those produced by the other two
rules. For example, for the node (2, 0, 0) and its subgame the equilibrium paths and
their prices differ. However, for all three rules the equilibrium path and price tra-
jectory for the whole game is exactly the same. We remark that these observations
will play a role when we prove that, for any tie-breaking rule, there is a sequential
auction with non-monotonic prices. a

Again, we emphasize that there is nothing inherently perverse about this exam-
ple. The form of the valuation functions, namely decreasing marginal valuations, is
standard. As explained, the equilibrium concept studied is the appropriate one for
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sequential auctions. Finally, the non-monotonic price trajectory is not the artifact
of an aberrant tie-breaking rule; we will now prove that non-monotonic prices are
exhibited under any tie-breaking rule.

4 General Tie-Breaking Rules: Non-monotonic Prices

Next we prove that for any tie-breaking rule there is a sequential auction on which
it produces a non-monotonic price trajectory. To do this, we must first formally
define the set of all tie-breaking rules. Our definition will utilize the concept of an
overbidding graph, introduced by Paes Leme et al. [20]. For any price p and any
set of bidders S, the overbidding graph G(.9, p) contains a labelled vertex for each
buyer in S and an arc (4, 7) if and only if v; ; — p > v; ;. For example, recall the
auction with interdependent valuations seen in Fig. 3. This is reproduced in Fig. 7
along with its overbidding graph G({1, 2, 3,4, 5}, 40).

Fig. 7. The overbidding graph G({1,2, 3,4, 5}, 40).

But what does the overbidding graph have to do with tie-breaking rules? First,
recall that the drop-out bid (; is unique for any buyer ¢, regardless of the tie-
breaking rule. Consequently, whilst the tie-breaking rule will also be used to order
buyers that are eliminated at prices below the final price p*, such choices are irrel-
evant with regards to the final winner. Thus, the only relevant factor is how a deci-
sion rule selects a winner from amongst those buyers S* whose drop-out bids are
p*. Second, recall that a buyer cannot be eliminated if there remains another buyer
still in the auction that it wishes to beat at price p*. That is, buyer ¢ must be elim-
inated after buyer j if there is an arc (,5) in the overbidding graph. Thus, the
order of eliminations given by the tie-breaking rule must be consistent with the
overbidding graph. In particular, the winner can only be selected from amongst
the source vertices® in the overbidding graph G(S*,p*). For example, in Fig.7
the source vertices are {1,2, 3}. Note that this explains why the tie-breaking rules
preferential-ordering, first-in-first-out and last-in-first-out chose
Buyer 1, Buyer 2 and Buyer 3 as winners but none of them selected Buyer 4 or
Buyer 5. Observe that the overbidding graph G(S*, p*) is acyclic; if it contained

2 A source is a vertex v with in-degree zero; that is, there no arcs pointing into v.
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a directed cycle then the price in the ascending auction would be forced to rise
further. Because every directed acyclic graph contains at least one source vertex,
any tie-breaking rule does have at least one choice for winner. Thus a tie-breaking
rule is simply a function 7 : H — o(H), where the domain is the set of labelled,
directed acyclic graphs and o(H) is the set of source nodes in H. Consequently,
two tie-breaking rules are equivalent if they correspond to the same function 7.
We are now ready to present our main result.

Theorem 5. For any tie-breaking rule, there is a sequential auction with non-
monotonic prices.

We present here a sketch of our proof of this theorem; due to length restrictions
the full proof is deferred. We consider the same example as in Theorem 4, and
analyze the set of all possible tie-breaking rules in three-buyer auctions. We show
that each tie-breaking rule produces an outcome from a set of exactly ten possible
distinct extensive forms for this example. Of these ten classes, exactly five classes
result in non-monotonicity. We then show that for any given tie-breaking rule from
the other five classes it is possible to relabel the buyers in a way that the resulting
equilibrium has a non-monotonic price trajectory.

5 Experiments

Our experiments were based on a dataset of over six million multi-buyer sequential
auctions with non-increasing valuation functions randomly generated from differ-
ent natural discrete probability distributions. Our goal was to observe the pro-
portion of non-monotonic price trajectories and see how this varied with (i) the
number of buyers, (ii) the number of items, (iii) the distribution of valuation func-
tions, and (iv) the tie-breaking rule. For each auction we computed the subgame
perfect equilibrium corresponding to the dropout bids and evaluated the prices on
the equilibrium path to test for non-monotonicity. We repeated this test for each
of the three tie breaking rules described in Sect. 2.4. The main conclusion to be
drawn from these experiments is that non-monotonic prices are extremely rare. Of
the 6,240,000 auctions, the preferential-ordering, first-in-first-out and
last-in-first-out rules gave just 1,100, 986, and 1,334 violations of the declin-
ing price anomaly respectively. The overall observed rate of non-monotonicity over
these 18 million tests was 0.000183. A detailed description of our dataset genera-
tion process and results are in the full paper.
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Abstract. We study risk-free bidding strategies in combinatorial auc-
tions with incomplete information. Specifically, what is the maximum
profit a complement-free (subadditive) bidder can guarantee in an auc-
tion against individually rational bidders? Suppose there are n bidders
and B; is the value bidder 7 has for the entire set of items. We study the
above problem from the perspective of the first bidder, Bidder 1. In this
setting, the worst case profit guarantees arise in a duopsony, that is when
n = 2, so this problem then corresponds to playing an auction against
an individually rational, budgeted adversary with budget B2. We present
worst-case guarantees for two simple combinatorial auctions; namely, the
sequential and simultaneous auctions, for both the first-price and second-
price case. In the general case of distinct items, our main results are for
the class of fractionally subadditive (XOS) bidders, where we show that
for both first-price and second-price sequential auctions Bidder 1 has a
strategy that guarantees a profit of at least (v/B1— @)2 when Bs < By,
and this bound is tight. More profitable guarantees can be obtained for
simultaneous auctions, where in the first-price case, Bidder 1 has a strat-
egy that guarantees a profit of at least %, and in the second-price
case, a bound of B; — Bs is achievable. We also consider the special case
of sequential auctions with identical items. In that setting, we provide
tight guarantees for bidders with subadditive valuations.

1 Introduction

What strategy should a bidder use in a combinatorial auction for a collection
I of items? This paper studies this question for sequential and simultaneous
auctions. To motivate this question and to formalize the resultant problem, let’s
begin with sequential auctions which are perhaps the simplest and most natural
method by which to sell multiple items. These auctions, where the items are
ordered and sold one after another, are commonplace in auction house and online
sale environments. The inherent simplicity of a sequential auction arises because
a standard single-item mechanism, such as an ascending-price, first-price, or
second-price auction, can then be used for each item in the collection. But there
is a catch! Whilst a single-item auction is very well understood from both a
theoretical perspective — see, for example, the seminal works of Vickrey [22]
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and Myerson [18] — and a practical perspective, the concatenation of single-item
auctions is not.

From a bidder’s viewpoint, sequential auctions are perplexing for a variety
of reasons. To understand this, observe that a sequential auction can be mod-
elled as an extensive form game. In such games the basic notion of equilibrium
is a subgame perfect equilibrium (SGPE). Unfortunately, these equilibria are, in
general, hard to compute; see, for example, [7,8,20]. Intriguing structural prop-
erties can be derived for the equilibria of sequential auctions; see [12,19,21], but
the recursive nature of this structure makes reasoning about equilibria complex.
These equilibria suffer from an additional drawback in that they can change sig-
nificantly with small changes to the payoff values. It follows that prescriptions
derived from the complete information setting are unlikely to extend to more
practical settings with incomplete information. Given that SGPE are very com-
plex and informationally sensitive, it is extremely unlikely that the other bidders
will be able to play their equilibrium strategies. In which case, why would you
wish to play yours? But then what bidding strategy should you use instead?
Similar computational and informational motivations also arise for the case of
simultaneous auctions. In this paper, we consider the above question for both
types of auctions.

Evidently, the answer to this question will depend upon the objective of the
bidders, their computational resources, the informational structure inherent in
the auction, etc. We study this problem from the perspective of Bidder 1 in the
following very general incomplete information setting. What is the maximum
risk-free profit that Bidder 1 can make assuming the other bidders are rational?
Here the bidder knows her own entire valuation function but does not know the
valuation function of Bidder 2 (we will see that the critical case to analyze is
when there are just two bidders). Assume that the only information Bidder 1 has
on the other bidder is an estimate that his value for the entire collection of items
is at most Bs; beyond this trivial upper bound, she has no specific information
on the values the other bidder has for any subset of the items. We will show that,
in the worst case, to maximize her guaranteed profit, we can model this problem
as Bidder 1 competing in the auction against an individually rational' adversary
with a budget Bs. This type of approach is analogous to that of a safety strategy
in bimatrix games. In this paper, we will then quantify the maximum risk-free
profitability when the valuation function of Bidder 1 belongs to the class of
subadditive (complement-free) functions and its subclasses. Interestingly, given
the valuation class, tight bounds can be obtained that depend only on By (the
value Bidder 1 has for the entire set of items) and Bs. For example, the risk-free
profitability of the class of fractionally subadditive (XOS) valuation functions is
(VB1 — v/Bs2)?, for By < By, and this bound is tight. For simultaneous auctions

the risk-free profitability of the XOS class is at least % and (B; — Bs)

for first-price and second-price auctions, respectively. Similarly, we present tight

! Recall that the only constraint on an individually rational agent is that it play a
strategy that is guaranteed to provide non-negative utility; thus, an individually
rational agent need not be utility maximizing (rational).
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(but more complex) bounds for the class of subadditive valuation functions when
the items are identical.

1.1 Related Literature

There is an extensive literature on sequential auctions. The study of incomplete
information games was initiated by Milgrom and Weber [17,23]. Theoretical
studies on equilibria in complete information games include [12,19,21]. Given the
abundance of sequential auctions in practice, there is also a very large empirical
literature covering an assortment of applications ranging from antiques [14] to
wine [1] and from fish [13] to jewellery [5].

Recently there has been a strong focus in the computer science community
on the design of simple mechanisms. For combinatorial auctions, simultaneous
auctions are a notable example. These auctions are simple in that, as with a
sequential auction, a standard single-item auction mechanism is used to sell
each item. But in contrast, as the nomenclature suggests, these auctions are
now held simultaneously rather than sequentially. Two important streams of
research in this area concern the price of anarchy in simultaneous auctions (see,
for example, [3,6,10,15]) and the hardness of computing an equilibrium (see [4]).

There has also been a range of papers examining the welfare of equilibria in
sequential auctions. Bae et al. [2] consider the case of identical items and show
that equilibria provide a factor 1 — % approximation guarantee if there are two
bidders with non-decreasing marginal valuations. Paes Leme et al. [21] study
the case of multi-bidder auctions. For sequential first-price auctions, they prove
a factor 2 approximation guarantee for unit-demand bidders. In contrast, they
show that equilibria can have arbitrarily poor welfare guarantees for bidders
with submodular valuations. Feldman et al. [11] extend this result to the case
where each bidder has either a unit-demand or additive valuation function.

Partly because of these negative results, a common assumption is that sequen-
tial auctions may not be a good mechanism by which to sell a collection of items.
However, there are reasons to believe that, in practice, sequential auctions have
the potential to proffer high welfare. For example, consider the influential paper
of Lehmann et al. [16]. There, they present a simple greedy allocation mechanism
with a factor 2 welfare guarantee for allocating items to agents with submodu-
lar valuation functions. One interesting implication of this result is that if the
items are sold via a second-price sequential auction and every agent (assuming
submodular valuations) truthfully bids their marginal value in each round then
the outcome will have at least half the optimal social welfare.

1.2 Overview and Results

In Sect. 2 we explain the sequential auction model and give necessary definitions.
We present our measure, the risk-free profitability of a bidder in incomplete
information multi-bidder auctions, and explain how to quantify it via a two-
bidder adversarial sequential auction. In Sect.3 we present a simple sequential
auction example (uniform additive auctions) to motivate the problem and to
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illustrate the difficulties that arise in designing risk-free bidding strategies, even
in very small sequential auctions with at most three items.

Sections4 and 5 contain our main results. In Sect.4 we begin by presenting
tight upper and lower bounds on the risk-free profitability of a fractionally sub-
additive (XOS) bidder. For the lower bound, in Sect.4.1 we exhibit a bidding
strategy that guarantees Bidder 1 a profit of at least (v By — v/B2)%.

In Sect.4.2 we describe a sequence of sequential auctions that provide an
upper bound that is asymptotically equal to the aforementioned lower bound as
the number of items increases. We prove these bounds for first-price sequential
auctions, but nearly identical proofs show the bounds also apply for second-price
sequential auctions. Next we prove that the risk-free profitability of an XOS bid-
der is lower in sequential auctions than in simultaneous auctions. Equivalently,
an individually rational adversary is stronger in a sequential auction than in the
corresponding simultaneous auction. Specifically, in Sect. 4.3, we prove that an
XOS bidder has a risk-free profitability of at least % in a first-price simul-
taneous auction and of at least By — By in a second-price simultaneous auction.
Several other interesting observations arise from these results. First, unlike for
sequential auctions, the power of the adversary differs in a simultaneous auc-
tion depending on whether a first-price or second-price mechanism is used: the
adversary is stronger in a first-price auction. Second, the risk-free strategies we
present for simultaneous auctions require no information about the adversary at
all. The performance of the strategy (its risk-free profitability) is a function of
Bs, but the strategy itself does not require that Bidder 1 have knowledge of By
(nor an estimate of it). Third, for the case of first-price simultaneous auctions,
it is necessary that Bidder 1 use randomization in its risk-free strategy.

Finally, in Sect. 5 we study the risk-free profitability of a bidder with a subad-
ditive valuation function. We give a possible explanation for why simple strate-
gies fail to perform well in the general case. We then examine the special case
where the items are identical. We derive tight lower and upper bounds for this
setting. Due to space restrictions, most proofs are deferred to the full paper.

2 The Model

2.1 Sequential Auctions and Valuation Functions

There are n bidders and a collection I = {ay,...,a,} of m items to be sold
using a sequential auction. In the ¢th round of the auction item a, is sold via a
first-price (or second-price) auction. We view the auction from the perspective
of Bidder 1 who has a publicly-known valuation function v; : 2/ — R>( that
assigns a non-negative value to every subset of items. We denote v; by v where
no confusion arises. This valuation function is assumed to satisfy v(f)) = 0 and
to be monotone, that is, v(S) < v(T), for all S C T. When all the items have
been auctioned, the wtility or profit w1 of Bidder 1 is her value for the set of
items she was allocated minus the sum of prices of these items.

The sequential auction setting is captured by extensive form games. A strat-
egy for player 7 is a function that assigns a bid b} for the item a;, depending on the
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previous bids {b] }; -« of all players (and the allocation of the first t — 1 items).
The utility (profit) of a strategy profile b for Bidder 1 is the profit Bidder 1
obtains when all bidders bid according to b.

The question we then study is how much profit Bidder 1 can guarantee itself.
We examine the case where v is in the class of subadditive or complement-free
valuation functions. Belonging to this class, of particular interest in this paper
are additive functions, submodular functions, and fractionally subadditive or XOS
functions. These functions are defined as follows.

— Subadditive (Complement-Free). A function v is subadditive if v(SUT) <
v(S) +v(T) for all S,T C I.

— Additive (Linear). A function v is additive if v(S) = >, .qv(a) for each
SCI.

— Submodular (Decreasing Marginal Valuations). A function v is sub-
modular if v(SUT) +v(SNT) <v(S)+v(T) for all S,T C I.

— Fractionally Subadditive (X0S). A function v is fractionally subadditive
if there exists a non-empty collection of additive functions {y1,72...,7¢} on
I such that for every S C I, v(S) = max;eq v;(S).

Lehmann et al. [16] showed that these valuation classes form the following
hierarchy:

ADDITIVE C SUBMODULAR C FRACTIONALLY SUBADDITIVE C SUBADDITIVE

Other important classes in this hierarchy include unit-demand and gross
substitutes valuation functions, but they will not be needed here.

2.2 Bidding Against an Adversary

To quantify the maximum profit that Bidder 1 can obtain, without loss of gen-
erality, we may normalize the valuation function (and corresponding auction)
by scaling the values so that v(I) = v1(I) = 1. Now the maximum guaranteed
profit will depend on the strength of the other bidders. We quantify this by
a parameter B: in the setting where each player j > 2 has valuation function
vj, B is the sum of the total values of the other bidders, i.e., B = Z?:z v (I).
This corresponds to an incomplete information auction where the only common
knowledge are upper bounds on the value each agent has for the entire set of
items. From the perspective of Bidder 1, it will be apparent that the worst case
arises when n = 2, and so B = By = v9(I). Thus we may assume that n = 2,
and can view Bidder 1 as playing against an adversary with a budget B. To see
this, observe that for a fixed B = Z?:z v;(I) if there are n >= 3 bidders then
the worst case for Bidder 1 arises when the other bidders coordinate to act as a
single adversary: however, when the budget is split between two or more other
bidders then their ability to buy a single item of high value decreases.

2 This is the standard definition of XOS functions. Fractionally subadditive functions
are defined in terms of fractional set covers; the equivalence between fractionally
subadditive and XOS functions was shown by Feige [9].
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Here the adversary is individually rational in that the budget constraint is
tight: in time step ¢, if Bidder 2 paid pg_l for the items that have already sold,
then his next bid b4 is at most B — pé_l. Bidder 1’s profit 71 in this game
is her value for her allocated set minus the sum of the prices of the items.
Viewing Bidder 2 as an adversary lets us take mo = —mq, making this auction a
special case of a zero-sum game. We call this the risk-free sequential auction game
R(v, B). The guaranteed profit for Bidder 1 is the minimum profit obtainable
by playing a safety strategy in this game (i.e. the value of this game). For any
normalized valuation v, we denote this profit by n7(v, B) or simply 7 where
there is no ambiguity. For any class of set functions C and any budget B € (0,1),
we want to find the maximum profit Bidder 1 can guarantee in any instance
R (v, B) where v € C, which is precisely inf,cc 7} (v, B). We call this the risk-free
profitability P(C, B) of the class C (and define risk-free profitability analogously
for simultaneous auctions). The focus of this paper is to quantify the risk-free
profitability of the aforementioned classes of valuation functions.

3 Example: Uniform Additive Auctions

We now present a simple example of a sequential auction with an agent (Bidder 1)
that strategizes against an adversary (Bidder 2), which will be helpful for two
reasons. First, it illustrates some of the strategic issues facing the agent and,
implicitly, the adversary in a sequential auction. Second, these examples form
base cases in our proof in Sect. 4.2.

The auction is defined as follows. Bidder 1 has an additive valuation function
where each item has exactly the same value. That is, for an auction with m items,
we have that v(a;) = % The adversary Bidder 2 has a budget B. We call this
the uniform additive auction on m items and denote it by A,,. For our example,
we are interested in uniform additive auctions where m < 3. We denote by b
Bidder 4’s bid on item j.

One Item. First, consider the case .A;. We have a single item a; with v({a1}) =1
for Bidder 1. Clearly if by < B then the adversary’s best response is to bid
by = bi‘ and win, so m; = my = 0. If by > B, then the adversary is constrained
by his budget, thus Bidder 1 wins and obtains a profit of 73 = 1 — b;. So we
have

., [1-Bifo<B<1 .
=0  if1<B (1)

Two Items. Now consider the case As. So there are two items a; and ap and
Bidder 1 has an additive valuation function with v({a1}) = v({az}) = % and
v({a1,a2}) = 1. We divide our analysis into three cases.

- B< i: If B < i, then Bidder 1 can bid B on each item and win both items at
price B each, so her guaranteed profit is at least 1 —2B > % If Bidder 1 bids
less than B on either item, then Bidder 2 can win that item, ensuring that
Bidder 1’s profit is less than her value of the other item, that is % Bidder 1’s
risk-free strategy is thus to bid B on both items for a profit 77 =1 — 2B.
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- i <B< %: If Bidder 1 bids b} = z on a1, with 0 < z < %, then Bidder 2 can
either win by bidding b3 > x or lose by bidding b} < z (for now, we assume
z < B). In the former case, the adversary’s budget in the second auction is
B — b}, and there is only one item remaining. It is easy to see that Bidder 1’s
profit from the second item is 7 = §—(B—b}) = 1 —B+bj. This is minimized
(with value § — B + x) when Bidder 2 bids an amount negligibly larger than
z. In the latter case, the adversary loses the first item, so he has budget B
in the second auction. Bidder 1’s combined profit (on both items) is then
m=k-2)+(3-B)=1-B—z.Forz=0wehave 1 —B+2z<1-B—uz
and for x = B we have %—B—i—xz 1— B —z, since B > i. But %—B—i—xis
increasing in x and 1 — B — x is decreasing in x. Therefore, assuming Bidder 2
plays a best response, we see that 7 is maximized when the minimum of these
values is maximized. That is 7] = maxp<,<p min [% —-B+z,1-B— :1:}
The optimal choice is z = i giving 7} = % — B. Note that our assumption
that x < B is validated: if Bidder 1 bids an amount = that is greater than
or equal to B on the first item the she will win both items for a total profit

(3—2)+(3-B)=1-2—-B<1-2B<32-B.

- % < B < 1: Reasoning as we did for the previous case, we see that 7} = % — g
when % <B<1.
Putting this all together we have that
Budget 0<B<ili<B<lll<B<l1/1<B
udget V= aa = 22 =2~ = 2)

Before proceeding to the three-item case, we emphasize that even the very
simple case Aj illustrates many of the strategic considerations that arise in more
complex sequential auctions. To wit, in the first time period Bidder 1 faces the
standard conundrum that bidding high increases her chances of winning but at
the expense of receiving a smaller profit if she does win. Interestingly, in this
adversarial setting, Bidder 1 has an additional incentive for bidding high: if she
bids high and loses then adversary’s budget is significantly reduced in the auc-
tion for the second item. Counterintuitively, therefore, in adversarial sequential
actions, Bidder 1 has an incentive to lose some of the items! More interestingly,
the adversary has perhaps even stronger incentives to lose than Bidder 1. Whilst
winning the first item does hurt Bidder 1, this also reduces the strength of the
adversary in the subsequent round. Thus, the optimal outcome for adversary is
that he lose the first item at a high price; this keeps the profit of Bidder 1 low
and increases the relative strength of the adversary in the second auction. This
is in stark contrast with the simultaneous case, where both Bidder 1 and the
adversary have an incentive to win every item.

Three Items. Now there are three items aj,as and az and Bidder 1 has an
additive valuation function with v({a1}) = v({az}) = v({as}) = 3. Applying a
similar case analysis, her maximum guaranteed profits are then:

111 1
B||B<i|t <B<3:
7i||1-3B| $-2B
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We remark that this profit function is still piecewise linear and is so for A,,
in general. However the complexity of the profit function grows rapidly as the
number of items increases.

4 Tight Bounds for XOS Valuation Functions

In this section we prove tight bounds on the risk-free profitability of Bidder 1
with a fractionally subadditive (XOS) valuation function. In Sect. 4.1, we show
that the agent has a strategy in the normalized auction that gives a guaranteed
profit of (1 —+/B)?, equivalent to a profit of (y/By —v/Bz)? in the unnormalized
auction. In Sect. 4.2, we prove that no strategy can guarantee a profit that is
greater than this by an (asymptotically zero) additive amount.

4.1 The XOS Lower Bound

It is quite straightforward to obtain a lower bound: for each item, Bidder 1
computes her marginal value under the assumption that she wins every other
item and bids a fixed fraction of this value. This guarantees a profit of at least
(1 —+/B)? against any strategy utilized by an adversary with budget B € (0,1).

Theorem 4.1. P(XOS,B) > (1 — \/E)2

Let I ={ay,...,am} be the set of auctioned items, and v be Bidder 1’s valua-
tion function. Since v is XOS, there is a set {71, 72, ...,7¢} of (normalized) addi-
tive set functions on I, such that for any S C I we have v(S) = max;epy 7i(S5).
Let v* = argmax;ec(g 7i(I) be an additive function that induces the value of v
on the entire set of items I. Thus v(I) = v*(I). Moreover, by definition of v, we
have that

o(8) > 7(8) Vs C1 (1)

Bidder 1’s strategy is then to bid b} = v/B-~*(a;) on item a; € I, for all ¢ € [m].
It can be seen that with this strategy, Bidder 1 wins a bundle of items of value
at least (1 —+/B) and makes a profit of at least a (1 —+/B)-fraction of the value,
giving m > (1 — \/E)2 as required. Full details are provided in the full paper.

Next we will show this bound is tight by providing instances where the adver-
sary has a strategy limiting the profitability of Bidder 1 to this amount. This
is surprising because the bidding strategy described above is non-adaptive — it
does not adapt to the history of the auction. Given the extra flexibility afforded
by adaptive strategies, one would expect a priori the optimal risk-free strategy
to be adaptive. However, as we will see in the next section, the simple bidding
strategy presented above is optimal for Bidder 1.

4.2 The XOS Upper Bound

In this section, we present a sequential auction with an XOS valuation function
where the game value is at most (1 — \/E)2 + \/% Specifically, we use the uni-
form additive auction A,,. Consequently, rather surprisingly, the upper bound
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applies to every class of valuation functions that contains the additive func-
tions! Together with the lower bound, this resolves the profitability of several
well-studied classes, including the additive, submodular and gross substitutes
valuation classes. We will see later on, in Sect.5, that the situation is not as
simple for subadditive valuations (that are not contained in XOS). Denote by
XOS,, the class of XO.S functions on m items. The following theorem, together
with the lower bound, gives our main result: P(XOS, B) is asymptotically equal
to (1 —+/B)? when B € (0,1).

Theorem 4.2. P(XO0S,,,B) < (1 —vB)?+ \/%

Proof. We prove this result by induction on m. We start with a simple observa-
tion: after the first item has been sold in the uniform additive auction A,, then
the sequential auction on items {as,...,ay,} is simply the auction A,,_1 but
with the additive values scaled by a multiplicative factor mT_l Consequently, by
appropriately scaling the values and the budget of the adversary we will be able
to analyze the auction A,, by studying the first round of that auction and then
applying induction on the remaining rounds.

Formally, for any positive integer m let f,, : R>¢ — [0,1] be a function
giving the highest guaranteed profit f,,(x) of a risk-free strategy in A,, given
the adversary has a budget B = z. Clearly, for all m, we have that f,,,(0) =1
and that f,,(x) = 0 for any z > 1. Set f(z) = (1 —+/x)?. Then we want to prove
by induction that

fm(@) < f(z) + Vm > 1,Vx € (0,1) (5)

Vm
Base Cases: For the base cases, consider m € {1,2,3}. Note that we have
already studied the auctions A;, A5 and Az in Sect. 3. Specifically, we found
that fi(z) = (1 — ), and that fo(x) is given by (2) and f3(x) is given by (3).
It can be easily verified that each of the above functions f,,(x), m € {1,2,3}, is
at most f(z) + —=, for any x € [0,1].

Induction Hypothesis: Assume that fir(z) < f(z) + ﬁ for all k < m.

Induction Step: We will now prove that f,,(z) < f(z)+ \/% We will present a
strategy for the adversary and prove that this strategy guarantees that Bidder 1
cannot make a profit greater than f(z) + ﬁ in the uniform additive auction
A,.. Specifically, we consider the auction for the first item a; in A,,, and we let
bl =a- % be the adversary’s bid on this item. Since Bidder 1 has an additive
value % for this item, the adversary will never make a bid b} > % Thus we may
assume that the adversary makes a bid b3 = - i for some 0 < o« < 1. We then
show that for some particular choice of «, even with an optimal response Bidder 1
does not make a profit greater than f (I’)+\/% In determining Bidder 1’s optimal
response, we have two possibilities:

e Bidder 1 wins item a;.
In this case it is easy to see that Bidder 1 will bid b} = bs* (which is b} + ¢
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for any negligibly small €) as any higher bid will lead to a strictly smaller
profit as this is a first price auction. Thus, Bidder 1 makes an immediate
profit of % —a- % = 129 on the first item. The rest of the sequential auction

“m
is an instance of A,,_1, where the additive valuations of Bidder 1 and the
budget of the adversary are both scaled. As the adversary lost the first item

his budget remains z, which corresponds to a budget of B = ™5 -z in the

scaled auction A,,_1. Then, assuming that the bidders play optimal strategies
in the remaining rounds, the maximum profit Bidder 1 can make is:

11—«

) = 0 MLy () ()

m—1

o Bidder 1 loses item a;.

If Bidder 1 loses the first item, then Bidder 1 makes no profit on a;. Since this
is a first-price auction the adversary will pay b} if he wins regardless of the bid
of Bidder 1. Thus Bidder 1 is indifferent between any bids less than b}. After
the first round we again have a scaled version of A4,,, 1. As the adversary won
the first item his scaled budget is now B = 5 - (x — %) = ==, Then,
assuming that the bidders play optimal strategies in the remaining rounds
the maximum profit Bidder 1 can make is:

m—1

T (3, 0) = mT_l s (”H> (7)

Evidently, the best response of Bidder 1 to a bid b} = « - % is given by
the maximum of g,,(z, @) and hp,(z, ). Thus, the adversary should select « to
minimize this maximum. Specifically,

fun(a) = min, max (g.,(z,0), hun(, ).

‘ =

Thus, our goal is to prove that there exists a bid b3 = &- L by the adversary

such that both g,,(z, &) and h,,(x,&) are at most f(x) + \/% This will ensure

that the maximum guaranteed profit of Bidder 1 is f,(x) < f(z) + \/% as

required. Our proof of this fact requires examination of three cases depending

upon the magnitude of the budget of the adversary. The low budget case (where
0 < 2 < -1) and high budget case (where Z=1 < 2 < 1) do not require the
induction hypothesis (nor consideration of the functions g, (z, &) and hy, (2, &))
but constitute a part of our inductive step. The proofs of these cases are quite

straightforward and are in the full paper. For the remainder of this section, we
assume that we are in the third case, where # <z< mT’l This case is more
difficult and represents one of the main technical contributions of this paper.
Recall that by the induction hypothesis f,,—1(z) < f(z) + \/ﬁ Rather
than calculate f,,(z) exactly, our approach is to find a feasible choice & for the

adversary that ensures that both g, (z, &) and h,,(x, &) are at most f(z)+ ﬁ

3

To do this, we begin by investigating the properties of the functions g, (x, @)
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and h, (z, ). Using these properties, we find a candidate choice & which we first
prove is feasible and second prove gives the desired upper bound.

Let’s start by showing that g,,(x, @) and h,,(z, «) are both monotonic func-
tions. For any fixed m, since the valuation is addltlve and the space of strate-
gies for the adversary is constrained only by his budget, any strategy available
with budget T < x is also available with budget x. Hence f,, is non-increasing
in z. So for fixed x g, (x, ) is non-increasing and h,,(x, «) is non-decreasing
in a. Now the minimum choice the adversary can make for « is zero. Since

gm(2,0) = &+ 222y (222 and hon(e,0) = 2t fr oy (2

gm(x,0) > hpy(x,0).
Now consider the maximum choice the adversary can make for a. We denote
this value by aynq.. We have two cases. Suppose =z > % Then the adver-

sary may set a« = 1 and bid % on the first item. In this case, both g, (z,1)

) , we have

and hy,(z,1) are well defined, and we have g, (z,1) = 2=Lf, ( mr ) and
o (z,1) = %fm,l (%) Because f,,_1 is non-increasing, we have that

gm(z,1) < hy(z,1). Now suppose z < % Because of the budget constraint,

the maximum possible value of « is ma. Suppose the adversary bids x on the
first item (corresponding to the choice & = ma) and loses. Bidder 1 then makes
a profit of % — x on the first item. The adversary can subsequently play the
following strategy: bid = on every item until he wins an item. It can be seen that
Bidder 1’s best response to this strategy is to give up the first item at price x
and wins the remaining m — 1 items for free. Thus g,,(x, mz) < hy,(x, mz).

So we have shown that a4, = min(l,mz), and that gm,(z,0) > hy,(z,0)
and gm (Z, ¥maz) < (X, Qmasz). Then, because g, (z,a) is non-increasing in
a and h,,(x,«) is non-decreasing in « when z is fixed, our upper bound of
max(gm (2, @), bp (z,@)) is minimized at any bid &- -1 such that 0 < & < aunas
and g, (2,&) = Ay, (2, @). This is also precisely equal to a risk-free bid a* - L
placed by Bidder 1 on the first item, since from her perspective, if the adversary
plays a best response then she gets the minimum of g, (x,a*) and hy,(x,a*),
and this minimum is maximized when they are equal.

We now use the above observations to establish an upper bound on the
highest guaranteed proﬁt of a risk-free strategy. We choose a=1-2m(l-

VZ)+2y/m(m — 1)(1 — y/z), where the adversary bids &--. We then prove that
both gm(z, a) and h (x, ) are well-defined for all z € [z, =1], and are both
at most f(x) + \/—% We rely on the three technical claims below

Claim 4.3. For anyxe[mi %], 0<a<amaz-
Claim 4.4. g,,(z,&) < f(z) + \/%
Claim 4.5. h,,(z,a) < f(z)+ ﬁ

Since fm () < max(gm(x, &), hm(x, &)), we have f,(x) < f(x) + ﬁ when
# <z < % With this third case (intermediate budget) completed so is the
proof of Theorem 4.2. O
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4.3 Risk-Free Bidding in Simultaneous Auctions

In this section we consider risk-free bidding in a simultaneous auction. Here, for
an individually rational adversary, the analogue of budget-constrained bidding
is that the sum of the adversary’s bids is at most B. Intuitively, an individually
rational adversary is weaker in a simultaneous auction than in a sequential auc-
tion, since in the sequential case he has the option to “overbid” on an item but
suffers no consequence if he loses the item. The issue then is whether or not the
resultant broader range of strategies available to an adversary in a sequential
auction makes it provably more powerful than the corresponding adversary in
a simultaneous auction. We show that this is indeed the case in the following
theorems.

Theorem 4.6. The two-player simultaneous first-price auction with a normal-
ized XOS valuation function and an adversary with normalized budget B € (0,1)
has a (randomized) risk-free strategy for Bidder 1 that guarantees a profit of at

(1-B)*
least ~—

i expectation.

Theorem 4.7. The two-player simultaneous second-price auction with a nor-
malized XOS valuation function and an adversary with normalized budget B €
(0,1) has a risk-free strategy for Bidder 1 that guarantees a profit of at least
(1-DB).

The proof of Theorem 4.7 is quite simple; the proof of Theorem 4.6 is more
intricate and relies on consideration of the Lagrangian dual of an appropriate
quadratic program. We also show that an analogue of Theorem 4.7 does not hold
for first-price auctions. We remark that the strategies used in proving these the-
orems require no knowledge of the adversary’s budget. Bidder 1 can implement
them based solely on her own valuation function so these profit guarantees are
extremely robust. In addition, unlike for sequential auctions, the power of the
adversary differs in a simultaneous auction depending on whether a first-price or
second-price mechanism is used: the adversary is stronger in a first-price auction.

5 Bounds for Subadditive Valuation Functions

In this section we return to sequential auctions, and study the risk-free prof-
itability of Bidder 1 when her valuation function is subadditive. The relation-
ship between XOS and subadditive functions was explored by Bhawalkar and
Roughgarden [3], via the class of §-fractionally subadditive valuation functions.
The following proposition is tight.

Prop. 5.1. [3] Every subadditive valuation is Inm-fractionally subadditive.

Since there exist subadditive functions that are not XOS, the simple strategy
from Sect. 4.1 is no longer guaranteed to work. Indeed, we show in the full paper
that an analogous strategy fails to guarantee non-zero profit for Bidder 1 when
her valuation is subadditive but not XOS. However, we make progress on an
important special case, namely subadditive valuations on identical items.
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5.1 The Subadditive Lower Bound with Identical Items

We obtain our lower bound on the profitability of Bidder 1 with a simple strategy:
Bidder 1 chooses a constant price p and a target allocation ¢ in advance, and
bids p on every item, stopping when she wins ¢ items.

Claim 5.2. For any set S C I, where |S| = ¢, v(S) > F(f%
Now, for an appropriate choice of p and ¢, we show that Bidder 1 can guar-
antee a profit of at least t*(B) — O(L1), where

m

t*(B) = krgza; tx(B).

Interestingly, tx(B) = %ﬂ — % is the tangent to our earlier lower bound of

f(B) = (1 = vB)* at B = () Denote by SI,, the subadditive valuation

functions on m identical items.

Theorem 5.3. P(SI,,, B) > t*(B) — O(%).

5.2 The Subadditive Upper Bound with Identical Items

Interestingly, we can show a matching upper bound for the range 0 < B < i,
so the lower bound is fully tight when the budget B is in (0, i) and at every B
of the form (kiﬂ)2 for any positive integer k. We conjecture that this tightness
extends to all B € (0,1).

Theorem 5.4. P(SI,,,B) < t*(B) + O(ﬁ) when B € (0,1) and m is larger
than some constant mq that depends only on B.

An important consequence of the above result is that the lower bound for
XOS valuations does not hold for subadditive valuations. This differentiates the
class of subadditive valuations from the additive, submodular and XOS classes
in that Bidder 1 can no longer guarantee a profit of (1— \/§)2 when his valuation
function is subadditive.
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Abstract. We consider computational games, sequences of games G =
(G1,Ga,...) where, for all n, G, has the same set of players. Computa-
tional games arise in electronic money systems such as Bitcoin, in crypto-
graphic protocols, and in the study of generative adversarial networks in
machine learning. Assuming that one-way functions exist, we prove that
there is 2-player zero-sum computational game G such that, for all n, the
size of the action space in G,, is polynomial in n and the utility function
in G, is computable in time polynomial in n, and yet there is no e-Nash
equilibrium if players are restricted to using strategies computable by
polynomial-time Turing machines, where we use a notion of Nash equi-
librium that is tailored to computational games. We also show that an
e-Nash equilibrium may not exist if players are constrained to perform
at most T computational steps in each of the games in the sequence.
On the other hand, we show that if players can use arbitrary Turing
machines to compute their strategies, then every computational game
has an e-Nash equilibrium. These results may shed light on competitive
settings where the availability of more running time or faster algorithms
can lead to a “computational arms race”, precluding the existence of
equilibrium. They also point to inherent limitations of concepts such as
“best response” and Nash equilibrium in games with resource-bounded
players.

Keywords: Nash equilibrium - Bounded rationality -
Turing machines

1 Introduction

One of the most widely used solution concepts in game theory is Nash equilib-
rium (NE). In a Nash equilibrium, no player can improve his utility by deviating
unilaterally from his strategy. A key property of NE is that it exists in every
normal-form game, making it a potential candidate for an equilibrium rational
players may end up in. However, the proof of existence of NE is silent with
respect to the computational resources players may or may not have. But if a
Nash equilibrium is hard to compute, it is hard to imagine how computationally
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bounded players could play it.! The importance of taking computational con-
cerns into account in game theory has been recognized since at least the work
of Simon [26]. Our goal here is to examine how considering computationally
bounded players influences notions such as best response and NE.

We will be mainly interested in players that are polynomially bounded,
continuing a long line of work in game theory on resource-bounded players
(e.g., [16,19,21,23]). To make sense of polynomial-time players, we need to have
a set of inputs that grow as a function of n. But game theorists typically study
individual games, which have a fixed size. To deal with this, we consider not
single games, but computational games [12], which have the form (G1,Ga,...),
where for all n, G, is a finite game. We assume that each player chooses a Tur-
ing machine (TM) that, given n, computes a strategy for the player in G,,. If
a player is polynomial-time bounded, then the player’s action in the nth game
can be computed in time polynomial in n.

Computational games arise in a number of settings of interest. One example
is “crypto-currencies” such as Bitcoin. An essential ingredient of Bitcoin [17]
is miners who solve challenging cryptographic problems, whose solution is later
used in verifying transactions in the system. Bitcoin keeps the average time at
which puzzles are solved a constant, despite technological advances, by making
the cryptographic problem needed to be solved harder and harder over time,
forcing miners to examine a larger number of possible solutions. This can be
modeled by viewing Bitcoin as a sequence of games, where in the nth game the
miner is required to solve a cryptographic puzzle P, such that the number of
candidate solutions that need to be examined in order to solve P, is a function
of n.

Cryptographic protocols such as commitment schemes [2] provide another
example of computational games. A commitment scheme consists of two parties;
a sender and a receiver. In the first step of this protocol, the sender chooses a
bit b and sends an encryption of b to the receiver, committing the sender to b
without revealing b to the receiver. Next, the receiver chooses a bit. Finally the
sender reveals the bit to the receiver. This protocol can be viewed as a game
where the receiver wins if the bit he chooses matches the bit revealed; the sender
wins if they do not match. Clearly, if the receiver can break the scheme and
deduce the sender’s bit, the receiver wins; if the sender can cheat (“reveal” a
bit that does not necessarily match what he committed to), the sender wins.
The encryption at the first step involves a security parameter k, where larger
security parameters provide more security (i.e., more running time is required
to break the scheme). This can be modeled as a sequence of games, where in the
kth game the sender encrypts the bit using a security parameter k [12]. Many
cryptographic protocols, including secret sharing and multiparty computation,
can be viewed as computational games in this way.

! The celebrated PPAD-completeness results [3,5] indicate that finding a NE in a fixed
game is intractable. Our setting is very different from the setting that is considered
in these PPAD-hardness results. For more details see the discussion of related work
in the end of this section.
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Yet one more example of computational games arises in the study of GANs
generative advsersarial networks in machine learning; as argued by Oliehook
et al. [22], GANs can be viewed as computational games that end up converging
to a “local resource-bounded NE”.

The computational games that we consider are actually sequences of Bayesian
games, where the action of a player may depend on his type, which encodes
some private information that the player may have. In a computational game,
the action spaces and types spaces all have to be finite, and the utility functions
and probability distribution over types have to be computable. We focus here
on a subclass of computational games that we call polynomial games; these are
sequences of games where the action space and type space in the nth game
have size polynomial in n, and the utility function and probability distribution
over types in the nth game can be computed in time polynomial in n. These
restrictions all apply to the games that we are interested in, such as Bitcoin.?

An analogue of NE can be defined in computational games (G1,Ga,...) [12].
We assume that every game G is a k-player game and that for 1 <+¢ < k, player
i uses a TM M, that computes his actions in G; given j. Roughly speaking,
a machine profile (M, ..., My) consisting of TMs is a NE if, for every player,
replacing his TM by a different TM gives him at most a negligible improvement
to his utility. We can get a notion of polynomial-time NE by replacing “TM”
with “polynomial-time TM” everywhere in the definition. (There are certain
subtleties in this definition; see Definition 5 and the discussion thereafter for
more detail.)

In contrast to fixed games, where NE always exists, we show that in com-
putational games, NE may not exist. Specifically, we show (Theorem 1) that,
assuming the existence of one-way functions, there are polynomial 2-player zero-
sum games for which no polynomial-time Nash equilibrium exists. This is done
by simulating the “largest integer game” in this setting, the game where players
simultaneously output an integer, and the player who chooses the largest integer
wins. Clearly this game has no Nash equilibrium [15]. We can effectively simulate
this game by presenting players with multiple one-way function puzzles, requir-
ing players to invert as many puzzles as possible. We can ensure that a player
with sufficiently more (but only polynomially more) running time can invert
more puzzles. Thus, we get an “arms race” with no equilibrium. This example
points to an inherent difficulty in analyzing games with polynomially-bounded
players. Namely, in such games, there is often no best response; players can use
longer and longer running times to improve their payoffs. Interestingly, a similar
phenomenon has been observed in Bitcoin, where miners use increasingly more
sophisticated computational devices for the mining operation (see [4] and the
reference therein).

2 The games used to model protocols such as Bitcoin are actually eztensive-form
games, which are played over time. Our impossibility results show that there are
computational Bayesian games where there is no NE when we restrict to polynomial-
time players. Since Bayesian games are a special case of extensive-form games, our
non-existence results carry over to extensive-form games.
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We then demonstrate (Theorem 2) that Nash equilibrium may fail to exist
even if players are constrained to run for at most T steps for a fixed integer
T, without asymptotics kicking in. The idea is to let players first play a game
(matching pennies) that requires randomization to achieve equilibrium, and then
effectively give the player with greater remaining running time an additional
bonus. Assuming that the generation of a random bit requires computational
effort, this game cannot have a Nash equilibrium. Our impossibility results hold
even if we replace “Nash equilibrium” by “e-Nash equilibrium”. By way of con-
trast, we show (Theorem 3) that if players are not computationally bounded
(i.e., can use arbitrary Turing machines), then there is always an e-NE in a com-
putational game. The key idea behind Theorem 3 is that an algorithm similar
to that of Lipton and Markakis [14] for finding an ¢-NE in a fixed game can be
used by the players to find e-NE in computational games.

It is worthwhile at this point to examine our result in the context of the
literature on bounded rationality in game theory. Two high-level approaches to
incorporating complexity-theoretic considerations into game theory have been
considered:

— Rubinstein [24] did not limit the complexity, but charged for it.
— Neyman [20] limited the players (e.g., to being finite automata).

Halpern and Pass [10] extended Rubinstein’s approach to TMs: players
choose a TM, and then they are charged for the running time/space used/amount
of randomization used by the TM on a given input. The approach of charging for
complexity of Turing machines was also considered by Fortnow and Santhanam
[9], who discount the payoffs of players by the amount of time they use to com-
pute their response. The effect of charging players for the strategies they use on
the convergence of learning dynamics to Nash Equilibrium was considered by
Ben-Sasson, Tauman-Kalai, and Kalai [1].

In this work we follow the approach of Neyman [20]: we limit players to using
polynomial-time TMs, but don’t charge for computation. Thus, unlike Halpern
and Pass [10] and Fortnow and Santhanam [9], we limit computation, rather than
charging for it. Just as we do, Halpern and Pass [10] prove both the existence
and non-existence of NE, depending on assumptions. However, the reasons for
these results are very much framework-dependent. For example, Halpern and
Pass [10] show that NE may not exist if we charge players for randomness and
it does exist in their framework if we do not charge for randomness. By way
of contrast, our main result concerning the non-existence of NE (Theorem 1)
holds even if we do not charge for the time taken to generate a random bit.
Fortnow and Santhanam’s result on the existence of e-NE in their version of
computational games [9] depends heavily on their assumption that utilities are
discounted; we have no analogue of this assumption, and thus must use quite
different techniques in our proof of the existence of e-NE.

Despite all the work on resource-bounded players, to the best of our knowl-
edge, very little work has been done on games where players are limited to using
polynomial-time Turing Machines. One exception is the work of Megiddo and
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Wigderson [16], who consider playing repeated prisoner dilemma (for finitely
many rounds) with TMs. Their main interest is whether, in finitely repeated
prisoners dilemma, there exist “almost cooperative” equilibria (where “defect”
is played o(n) times). They restrict attention to deterministic TM. With this
restriction it is not difficult to give examples of games (with polynomially-
bounded players) for which an e-NE does not exist.

Polynomial games bear some similarities to succinct games. In succinct
games, there exists a circuit C' that calculates the utility C'(zq,xa,...,zx) of
the players once they choose the actions x1,xa,...,z € {0,1}™. It is known
that, given a 2-player zero-sum succinct game, it is EXP-hard to find a NE
[7,8] (see also [25]). Our results regarding the non-existence of NE in polynomial
games are incomparable to these results. We are concerned with polynomial-time
computable strategies. Considering polynomially-bounded players (as opposed to
unbounded players) may drastically change the set of Nash equilibria in succinct
games. Indeed, a NE for a computational game (G1,Ga,...) with polynomially-
bounded players may fail to be a Nash equilibrium for G,, for all n > 1: for an
example, see the end of Sect. 3. Moreover, for any fixed game G, a computational
NE for the computational game (G, G, G, ...) can always be found in polynomial
time. Thus, the PPAD-hardness results of finding a Nash equilibrium in a fixed
game [3,5] cannot be applied in our setting either.

2 Preliminaries

We begin by defining Bayesian games.

Definition 1. A k-player normal-form Bayesian game is described by a tuple
(J,B,T, P,v), where

— J is a set of k players (we identify J with [k] = {1,...,k});

- B= Hle B;, where B; is a finite set for all i € [k] consisting of the available
actions of player i;

-T= Hle T;, where T; is a finite set called the type space of player i;

— P is a probability distribution over T’;

- v = (v1,...,v%), where for all i, v; is a function from B x T to the real
numbers.

In our settings, it will often be the case that all types are perfectly correlated:
all players have the same type and all players know the type of every other player.
Observe that normal-form games can be viewed as a special case of Bayesian
games (where the type space is a singleton). Finally, since we are concerned here
mainly with Bayesian games, when we write “game” we mean “Bayesian game”,
unless explicitly stated otherwise.

A pure strategy s; for player ¢ is a map s; : T; — By; a strategy s; maps the
type t; € T; of player i to an action s;(¢;) € B;. We denote by A(B;) the set
of all probability distribution over B;; let A = ITF | A(B;). A mixed-strategy
s; for player i is a function mapping type t; € T; to an element of A(B;). We
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denote by s;(¢;,b;) the probability assigned by a mixed strategy s;(t;) to b; € B;.
The expected utility of player ¢ with the mixed strategy profile s = (s1,..., )
(where t = (t1,...,tx) € T, b= (b1,...,br) € B, and (s1(t1),...,sk(tr)) € Q)
is given by
k
Vi(s) =Y P> | T si(ts:05) | vilt, 0. (1)

teT beB \j=1

Note that there are two sources of uncertainty in the utility of a player choosing
a mixed action: the probability distribution over other players actions and the
distribution P over the type space.

Definition 2. Let G = (J, B, T, P,v) be a k-player Bayesian game and suppose
that € > 0. A mized-strategy profile s = (s1,...,8k) is an e-Nash equilibrium
(e-NE for short) if, for all players i and all mized strategies s}, we have that

Vi(s) = Vi(s},s-i) — €.

(As usual, if s = (81,...,8%) then s_; = (S1,...,8i—1,Sit+1,---,5k) 1S the tuple
excluding s;.) When € = 0, we have a Nash equilibrium.

To reason about resource-bounded players in games, we consider a sequence
(G1,Ga,...) of games where, for all n, G,, = (J,B™,T", P" v™) is a k-player
game (k is fixed and does not depend on n). We adapt the definition of [12],
which in turn is based on earlier definitions by Dodis, Halevi and Rabin [6] and
is applied to Bayesian games. For an integer s, recall that {0,1}=* is the set of
all bit strings of length at most s.

Definition 3. A computational game G = (G1,Ga, . ..) is a sequence of normal-
form Bayesian games, where G,, = ([k], B",T™, P",v"™), such that

— The set of players in G, [k], is the same for all n.3

~ For all n and all i, B® C {0,1}=™ for some finite m (that may depend on

~ For alln and all i, T C {0,1}=" for some finite r (that may depend on n ).

— For alli € [k] and n, there is a TM M such that, given b € B™, t € T™, and
1™, computes vl (b,1).

— For all i € [k] and n, there is a TM M’ such that given t € T™ and 1™,
computes P™(t).*

G is bounded if there exist constants 0 < ¢ < C' such that for all n,b € B", and
t € T" we have that v*(b,t) # 0 = |v(b,t)| € [¢, C].

When dealing with games with polynomial-time players, we require slightly
stronger properties summarized in the definition below. Following the definition
of polynomial games for extensive- form games [12], we define polynomial games
for a sequence of Bayesian games.

3 1t is also possible to allow k to depend on n, but we focus on the case where k is a
constant for concreteness.
4 We restrict our attention to utilities and probabilities that are rational numbers.
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Definition 4. A computational game G = (G1,Ga,...) is a polynomial game if
the following conditions hold:

— There exist a polynomial p such that, for all n and all i, B = {0, l}gp(").

— There exist a polynomial q such that, for all n and all i, T]* = {0, 1}5‘1(”).

— For alli € [k] and n, there is a TM M such that, given b = (by,...,b;) € B™,
te T, and 1", computes v}*(b,t) and runs in time polynomial in n.

— For all i € [k] and n, there is a TM M’ such that given t € T" and 1™,
computes P™(t) in time polynomial in n.

Throughout, we take the size of the action set (or type set) to be the maxi-
mal number of bits needed to encode an action (or type). Observe that while
we require that size in polynomial games is polynomial in n for every n, the
cardinality of the action or type set can be exponential.

A strategy for player j in a computational game G is a TM M, that, given
1" and the type t; € T}, outputs a distribution M;(1",t;) over actions in B in
the game G,, (so that, given some additional random bits, it outputs an action
in B}).> M;(1") is the strategy defined by taking M;(1")(t;) = M;(1"t;).
Observe that there are two sources of randomness in M;(1™): the distribution of
the type t; and the randomness of M; once ¢; has been determined. We stress
that randomized strategies in our setting are obtained by using probabilistic
TMs rather than by mixing over TMs. That is, the randomization is part of the
computation, not external to it. The utility of player ¢ in G,, given a machine
profile (My ... My) is V(M1 (1™), ..., My(1™)) (as defined in (1)).

To analyze computational games G = (G1,Ga,...), we would like to be able
to apply classical game-theoretic notions, such as best response and Nash equi-
librium, to sequences of games. However, there are certain difficulties in gener-
alizing these notions to computational games. A first obstacle is that sequences
of infinite games may allow resource-bounded players to improve over any strat-
egy by doing additional polynomial-time computations. For example, consider
a player who gets a payoff of 1 by breaking an encrypted massage F(s) with
s € {0,1}™ and a payoff of 0 if he does not break it, where the player’s running
time is polynomial in n. Assuming that there is no polynomial-time algorithm
(in n) for finding s given E(s), there is no best response in this game, as a
player can always make polynomially many additional “guesses” on top of his
current action, increasing his expected utility. As pointed out by Dodis, Halevi,
and Rabin [6], this observation applies to many problems of interest, such as
those arising from cryptographic protocols.

One way around this problem, suggested by Dodis, Haley and Rabin [6] and
Halpern, Pass, and Seeman [12], is to ignore negligible additive changes in the

5 One question is how to deal with players who use Turing machines that fail to halt
or return an action that does not belong to the action space. We deal with this issue
by assigning to each player i a special action a) that we take to be the action played
if ©’s TM does not halt or if ¢’s output is not an action in the action space. Any
profile that includes a{ gives utility —oo to all players, thus discouraging players
from using TMs that fail to halt or return inappropriate actions.
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utility of players, where a sequence §(n) is negligible if for every polynomial
p,p(n) = o(6(n)~1). That is, deviations that result in a negligible increase in
utility are not considered to be improvements. Ignoring negligible terms suffices
to ensure the existence of equilibrium in a number of games of interest for which
there would not be an equilibrium otherwise [6].

If we ignore negligible change, then given a machine profile M, changing the
behavior of a TM M in finitely many games will not be a deviation breaking
an alleged equilibrium, as altering a sequence 6(n) on finitely many n’s does
not change the fact that §(n) is negligible. On the other hand, a deviation that
improves a given player utility on infinitely many n’s by a constant 6 > 0 implies
that the machine profile is not a NE. Finally, it is worth noting that if the utilities
of players are exponentially small (say, on the order of 1/2™ in the game G,,),
a negligible additive term can have a noticeable effect on the utility of players;
on the other hand, if utilities are exponentially large, even a (non-negligible)
constant change in utilities would be viewed as negligible. In order to avoid such
scaling issues, we deal exclusively with bounded games when considering solution
concepts for computational games.5

Definition 5. Let M be a set of TMs and let € > 0 be a constant independent
of n. A profile M = (M, ..., My) of TMs is an e-M-NE for a bounded com-
putational game G with respect to M, if (a) for all i, M; € M, and (b) there
exists a negligible sequence 6(n) such that, for all M! € M and alln > 0 and all
i € [k] we have that

Vi(M;(17), M_i(1")) = Vi(M{(1"), M_;(1")) — € — 5(n). (2)

When € = 0, we say that M is a M-Nash equilibrium. If M is the set of all
probabilistic polynomial-time TMs, we say M is a polynomial e-NF.

We can consider polynomial-time players, best response, and equilibrium even
if the action space of every player is of super-polynomial size. However, in this
case, there are trivial examples showing that a NE may not exist. For example,
one can take G, to be the 2-player zero-sum game where each player outputs an
integer of length at most 22" (written in binary) and the player outputting the
larger integer receives payoff 1, with both players getting 0 in case of equality.
Clearly this sequence of games does not have a polynomial equilibrium.

In contrast to previous work [9], we require the utilities of players to be
computable. Without this requirement, it is not difficult to give examples of
polynomial games that do not have a NE. Indeed, let x1, x5 . .. be an enumeration
of {0, 1}* and let L be an arbitrary non-recursive language. Furthermore, suppose
that for all 4,4, ¢ < j implies that |z;| < |z;| (ensuring that for every n the
type z, can be represented by at most poly(n) bits). Consider the sequence
G = (G1,Gs,...) of two-player games such that the type of each player in G,, is
z, and a player gets a payoff of 1 if it correctly determines whether x,, belongs
to L and 0 otherwise. Clearly, G does not have a polynomial-time NE (and the
utility function in G is not computable).

5 Our results also hold in a more general setting where the absolute value of a (nonzero)
utility is at most polynomial and at least inversely polynomial in n.
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3 Polynomial Games with No Polynomial Equilibrium

As we now show, there is a polynomial game for which there is no polynomial
NE, assuming one-way functions exist. We find it convenient to use the definition
of one-way function given in [13].

Definition 6. Givens: IN — IN,t: IN — IN, a one-way function with security
parameter s against a t-bounded inverter is a family of functions fy : {0,1}* —
{0,1}™, k =1,2,3,..., satisfying the following properties:

— m = kP for some positive constant b;

— there is a TM M such that, given x with |x| = k computes fr(x) in time
polynomial in k;

— for all but finitely many k’s and all probabilistic TM M’, running in time at
most t(k) for a given input fi(x),

L
s(k)’

where the probability Pr is taken over x sampled uniformly from {0,1}* and
the randomness of M'.

Pr(fi(M'(fr(2))) = fr(@)] <

We assume that exponential one-way functions exist. Specifically, we assume
that there exists a one-way function that is 2¢/10-secure against a 2¥/3%-bounded
inverter. The existence of a one-way function with these parameters follows from
an assumption made by Wee [27] regarding the existence of exponential non-
uniform one-way functions. Given fi(z), we say an algorithm inverts fi(x) if it
finds some z such that fi(z) = fr(2).

We can now demonstrate the non-existence of polynomial-time computable
equilibrium in a polynomial game.

Theorem 1. If there exists a one-way function that is 25/10-secure against a
2K/30 inverter, then, for all € > 0, there exists a 2-player zero-sum polynomial
game G that has no polynomial e-NE.

Proof. Let G = (G1,Ga,...) be the following polynomial game, which we call
the one-way function game. For all n, we define G,, as follows. There are two
players, 1 and 2. Fix a one-way function {fj}x>1 that is 2k/10_gecure against a
2k/30_bounded inverter. The type space is the same for each player, and consists
of tuples of I = [logn| bitstrings of the form (friogn](71),- -+, frogn12(21)). The
distribution on types is generated by choosing z; € {0, 1}"“0g »1 uniformly at
random, and choosing the z;’s independently. Given his type t,, player j outputs
Y1, .-,y A hitfor player j is an index i such that fifiogn] (7) = fiflogn] (¢4)- Let
a; denote how many hits player j gets. The payoff of player j is 1 if a; —az—; > 0.
If a; — as—; = 0, both players receive a payoff of 0. Observe that the utility
function of each player is polynomial-time computable in n. Clearly the length
of every action of G,, is polynomial in n and so is the length of the type t,.
Hence the one-way function game is a polynomial game. In the full paper [11],
we prove that there cannot be a polynomial-time e-NE for G. i
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Similar ideas can be applied to show there is a 2-player extensive-form poly-
nomial game that has no polynomial e-NE, where we no longer need to use a
type space. (See [12] for the definition of extensive-form polynomial game and
polynomial e-NE in extensive-form polynomial games; we hope that our discus-
sion suffices to give the reader an intuitive sense.) In the game G,,, instead of
the tuple (friogn (), .., firlog n1 (x7)) being player j’s type, player j chooses
x{, e ,x{ at random and sends this tuple to player 3—j. Again, player j attempts
to invert as many of ffiogn] (x‘;’_j), <oy JiMog nl (x?_j) as it can; their payoffs are
just as in the Bayesian game above. A proof similar to that of Theorem 1 shows
that this game does not have a polynomial NE.

The one-way function game also shows the effect of restricting strategies to
be polynomial-time computable. Clearly, without this restriction, the game has a
trivial NE: all players correctly invert every element of their tuple. On the other
hand, consider a modification of the game where in G,,, a player’s type consists
of a single element f,(z,), with =, a bitstring of length n chosen uniformly at
random. If both players simultaneously invert or fail to invert f,(z,), then both
get zero. Otherwise, the player who correctly inverts gets 1 and the other player
gets —1. Again, it is easy to see that if we take M to be the family of all TMs,
the only Nash equilibrium is to find y,,, z, such that f,(y,) = fn(zn) = f(xn).
But if M consists of only polynomial-time TMs, then it is a polynomial-time NE
for both players to simply output a random string, as neither player can invert
f with non-negligible probability, and we ignore negligible additive increase to
the utilities of players.

4 Equilibrium with Respect to Concrete Time Bounds

The previous example may lead one to speculate that lack of Nash equilibrium in
computational games hinges on asymptotic issues, namely, our ability to consider
larger and larger action and type spaces. This raises the question of what happens
if we restrict our attention to games where players are constrained to execute at
most T computational steps, where T' > 0 is a fixed integer. It turns out that
if the use of randomness is counted as a computational action, then there may
not be Nash equilibria, as the following example shows. We assume from now on
that T > 2.

In our computational game, the family of admissible TMs, which we denote
by M, is the set of all probabilistic TMs whose running time is upper-bounded
by T'. The operation of printing a character takes one computational step, and
so does the movement of the cursor to a different location on the tape. The
generation of a random bit (or alternatively querying a bit in a designated tape
that contains random bits) requires at least one computational step (we allow
arbitrary bias of a bit, as it does not affect the proof).

Consider the following 2-player zero-sum normal-form computational game F
between Alice (A) and Bob (B). For every n, F,, is the same game F. The action
space of each player is {0, 1}7. By our choice of M7, both players are constrained
to perform at most T computational steps. The game proceeds as follows. A
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and B use TMs My, Mg € M7 respectively, to compute their strategies. M4
outputs a single bit a;. Mp outputs b; € {0,1}. Based on a; and by, a game of
matching pennies is played. Namely, if a3 = by, A gets 1, otherwise B gets 1. In
the second phase of the game, the TM of each player prints as many characters
as possible without violating the constraint of performing at most T steps. If
the final number of characters is the same for both players, then both get a
payoff of 0 for the second phase. Otherwise the player with a larger number
of printed characters gets an additional bonus of 1, and the player with fewer
printed characters incurs a loss of 1.

Theorem 2. The computational game F does not have an e-M-NE, for all
e < 1.

Proof. Assume, by way of contradiction, that (M4, Mp) is a Nash equilibrium
for F. Since TMs in M7 are constrained to query at most 7" bits, it follows that
the strategy computed by M4 (or M) given 1", will be the same for all n > T
As the outcomes of the games F,,,, m < T, do not effect, by our definition of NE
in computational games, whether (M4, Mp) is an equilibrium, we can assume
w.l.o.g that both M4 and Mp compute the same strategy (whether mixed or
pure) in all games F,,n > 1.

Suppose that one of the players uses randomization. Assume this is player A.
Namely, M4 generates a random bit before outputting a;. Then A can guarantee
a payoff for the first phase (the matching pennies game) that is no smaller than
his current payoff by choosing a TM M/, that outputs a deterministic best
response a; against the strategy of B in the matching penny game. Observe
that we can assume that a1 is “hardwired” to M/. In particular outputting a;
can be done in a single computational step. Then A can print strictly more 1’s
in the second phase of the game by configuring M’y to print T — 1 1’s (which
can be done in T — 1 steps). If B prints T'— 1 in the second phase of the game,
we have that A can increase its payoff in F), for all n by switching to M. If,
on the other hand, Mp prints less than T"— 1 characters in the second step, an
analogous argument shows that B can strictly increase its payoff in F,, for all n,
by using a TM that runs in at most T steps. In any event, we get a contradiction
to the assumption that (M4, Mp) is a NE.

Suppose now that A does not use randomization. In this case, it follows
immediately by the definition of matching-pennies that either A or B can strictly
improve their payoff in the first phase of F, for all n, by outputting the (deter-
ministic) best response to their opponent and printing 7' — 1 characters after-
wards. As before, we can assume this response is hardwired to the appropriate
TM, such that outputting it consumes one computational step, allowing players
to print 7' — 1 characters in the second phase of the game.

Finally, it is not difficult to verify that the argument above establishes that
F does not have an e-NE for e-NE for all € € (0, 1). This concludes the proof. i

One might wonder whether the non-existence of NE in computational games
follows from the fact that we are dealing with an infinite sequence of games with
infinitely many possible TMs (e.g., M| = o). Nash Theorem regarding the
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existence of NE requires that the action space of every player is finite; without
this requirement a NE may fail to exist. Hence it is natural to ask whether
limiting |M] to be finite (for example, taking M to be the family of all TMs
over a fixed alphabet with at most S states for some bound S) may force the
existence of NE in computational games. Theorem 2 illustrates that this is not
the case: F will not have a NE even if we take M to consist only of TMs
whose number of states is upper bounded by a large enough positive number S
(S should allow for using the TM that is hardwired to output the appropriate
best response in the matching pennies game and print 7' — 1 characters in the
second phase). The reason why NE does not exist despite the finiteness of M,
is that in contrast to ordinary games, where a mixed actions of best responses
is a best response, in our setting this is not necessarily true: mixing over actions
may consume computational resources, forcing players to choose actions that are
suboptimal when using randomized strategies.

5 The Existence of e-NE in Computational Games

Our previous results show that if we restrict players to be computationally
bounded, then there are polynomial games with no e-NE. Here we demonstrate
that the restriction to computationally bounded players is critical. If we allow
players to choose arbitrary TMs (or TMs that are guaranteed to halt on every
input), we show that for all € > 0, there is an e-NE in every computational game
(and thus, a fortiori, in every polynomial game). The reason that we need e-NE
rather than NE (although € can be arbitrarily small) is that there are 3-player
games in which, in every NE, some actions are chosen with irrational probabili-
ties (even if all utilities are rational and nature’s moves are made with rational
probabilities) [18]. By considering e-NE, we can avoid representational issues
involving irrational numbers.

Let € > 0 be a fixed constant. Suppose that G = (G1, Gs,...) is a computa-
tional game. Let M be any set of TMs that includes all TMs that are guaranteed
to halt on every input (thus, M could consist of all TMs). At a high level, the
argument for the existence of e-NE is a straightforward application of ideas of
Lipton and Markakis [14]. As they observe, given a game G, we can represent the
conditions required for a strategy to be a NE using a single algebraic equation (in
several variables), where a NE must be a root of the equation. We can compute
a strategy profile that is arbitrarily close to a root of this algebraic equation; it
can be shown that a strategy vector that is sufficiently close to a root is an e-NE.
We can now obtain an e-NE for the computational game G = (G1,Ga,...) as
follows: Given ¢, the nth game G, and type t € T;, player i computes a profile
(sT,s5...s}%) of distributions over actions that is an e-NE of G,, (conditional on
t) and plays according to s'(¢). (If there are several e-NEs, one is chosen in a
consistent way, so that all players are playing a component of the same profile.)
Using these ideas we can prove the following result, whose proof can be found
in the full paper [11].
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Theorem 3. If G = (G1,G>...) is a computational game, ¢ > 0, and M
includes all TMs that halt on all inputs, then G has an e-M-NE.

6 Conclusion

We have considered computational games, where TMs compute strategies of
players. We showed that a NE for polynomial-time players may not exist. This
suggests that classic notions in game theory, such as best response, must be
treated carefully when considering computational games with resource-bounded
players.

As we showed, for unbounded players, an e-NE always exists in a compu-
tational game. Even for bounded players, there may exist circumstances under
which an e-NE exists. For example, it may be that there exists an equilibrium
if we bound the number of states in TMs used by players. Studying properties
of games or TMs used by players that ensure the existence of (¢)-NE in com-
putational games is an interesting direction for future research. It might also
prove worthwhile to study the effect of limiting resources other than time, such
as space or the amount of randomness used by players. Finally, our paper also
leaves open the question as to whether there exists a NE in our model when we
restrict players to TM whose running time is at most n” for a fixed integer .
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Abstract. We study the computational complexity of decision problems
about Nash equilibria in m-player games. Several such problems have
recently been shown to be computationally equivalent to the decision
problem for the existential theory of the reals, or stated in terms of
complexity classes, IR-complete, when m > 3. We show that, unless
they turn into trivial problems, they are IR-hard even for 3-player zero-
sum games.

We also obtain new results about several other decision problems.
We show that when m > 3 the problems of deciding if a game has
a Pareto optimal Nash equilibrium or deciding if a game has a strong
Nash equilibrium are JR-complete. The latter result rectifies a previous
claim of NP-completeness in the literature. We show that deciding if a
game has an irrational valued Nash equilibrium is IR-hard, answering a
question of Bilé and Mavronicolas, and address also the computational
complexity of deciding if a game has a rational valued Nash equilibrium.
These results also hold for 3-player zero-sum games.

Our proof methodology applies to corresponding decision problems
about symmetric Nash equilibria in symmetric games as well, and in
particular our new results carry over to the symmetric setting. Finally
we show that deciding whether a symmetric m-player games has a non-
symmetric Nash equilibrium is JR-complete when m > 3, answering a
question of Garg, Mehta, Vazirani, and Yazdanbod.

1 Introduction

Given a finite strategic form m-player game the most basic algorithmic problem
is to compute a Nash equilibrium, shown always to exist by Nash [20]. The
computational complexity of this problem was characterized in seminal work by
Daskalakis, Goldberg, and Papadimitriou [12] and Chen and Deng [10] as PPAD-
complete for 2-player games and by Etessami and Yannakakis [13] as FIXP-
complete for m-player games, when m > 3. Any 2-player game may be viewed
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as a 3-player zero-sum game by adding a dummy player, thereby making the
class of 3-player zero-sum games a natural class of games intermediate between
2-player and 3-player games. The problem of computing a Nash equilibrium for
a 3-player zero-sum game is clearly PPAD-hard and belongs to FIXP, but its
precise complexity appears to be unknown.

Rather than settling for any Nash equilibrium, one might be interested in a
Nash equilibrium that satisfies a given property, e.g. giving each player at least
a certain payoff. Such a Nash equilibrium might of course not exist and therefore
results in the basic computational problem of deciding existence. In the setting
of 2-player games, the computational complexity of several such problems was
proved to be NP-complete by Gilboa and Zemel [16]. Conitzer and Sandholm [11]
revisited these problems and showed them, together with additional problems,
to be NP-complete even for symmetric games.

Only recently was the computational complexity of analogous problems in m-
player games determined, for m > 3. Schaefer and Stefankovic [22] obtained the
first such result by proving IR-completeness of deciding existence of a Nash equi-
librium in which no action is played with probability larger than % by any player.
Garg, Mehta, Vazirani, and Yazdanbod [14] used this to also show IR-completeness
for deciding if a game has more than one Nash equilibrium, whether each player can
ensure a given payoff in a Nash equilibrium, and for the two problems of deciding
whether the support sets of the mixed strategies of a Nash equilibrium can belong
to given sets or contain given sets. In addition, by a symmetrization construction,
they show that the analogue to the latter two problems for symmetric Nash equi-
libria are IR-complete as well. Bilé and Mavronicolas [4,5] subsequently extended
the results of Garg et al. to further problems both about Nash equilibria and about
symmetric Nash equilibria. They show JR-completeness of deciding existence of a
Nash equilibrium where all players receive at most a given payoff, where the total
payoff of the players is at least or at most a given amount, whether the size of the
supports of the mixed strategies all have a certain minimum or maximum size, and
finally whether a Nash equilibrium exists that is not Pareto optimal or that is not a
strong Nash equilibrium. All the analogous problems about symmetric Nash equi-
libria are shown to be JR-complete as well.

1.1 Owur Results

We revisit the problems about existence of Nash equilibria in m-player games,
with m > 3, considered by Garg et al. and Bilé and Mavronicolas. In a zero-sum
game the total payoff of the players in any Nash equilibrium is of course 0, and
any Nash equilibrium is Pareto optimal. This renders the corresponding decision
problems trivial in the case of zero-sum games. We show that except for these,
all the problems considered by Garg et al. and Bil6 and Mavronicolas remain
JR-hard for 3-player zero-sum games. We obtain our results building on a recent
more direct and simple proof of FR-hardness of the initial IR-complete problem
of Schaefer and Stefankovi¢ due to Hansen [17]. We can also give comparably
simpler proofs of dR-hardness for the problems about total payoff and existence
of a non Pareto optimal Nash equilibrium.
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We next show that deciding existence of a strong Nash equilibrium in an
m-player game with m > 3 is IR-complete, and likewise for the similar problem
of deciding existence of a Pareto optimal Nash equilibrium. Gatti, Rocco, and
Sandholm [15] proved earlier that deciding if a given (rational valued) strategy
profile z is a strong Nash equilibrium can be done in polynomial time. They
then erroneously concluded that the problem of deciding existence of a strong
Nash equilibrium is, as a consequence NP-complete. A problem with this rea-
soning is that if a strong Nash equilibrium exists, there is no guarantee that a
rational valued strong Nash equilibrium exists. Even if one disregards a concern
about irrational valued strong Nash equilibria, it is possible that even when a
rational valued strong Nash equilibrium exists, any rational valued strong Nash
equilibrium would require exponentially many bits to describe in the standard
binary encoding of the numerators and denominators of the probabilities of the
equilibrium strategy profile. Nevertheless, our proof of IR-membership builds
on the idea behind the polynomial time algorithm of Gatti et al.

In another work, Bil6 and Mavronicolas [3] considered the problems of decid-
ing whether an irrational valued Nash equilibrium exists and whether a rational
valued Nash equilibrium exists, proving both problems to be NP-hard. Bil6 and
Mavronicolas asked if the problem about existence of irrational valued Nash
equilibria is hard for the so-called square-root-sum problem. We confirm this,
showing the problem to be dR-hard. We relate the problem about existence of
rational valued Nash equilibria to the existential theory of the rationals.

We next use a symmetrization construction similar to Garg et al. to translate
all problems considered to the analogous setting of decision problems about
symmetric Nash equilibria. Here we do not obtain qualitative improvements
on existing results. A final problem we consider is of deciding existence of a
nonsymmetric Nash equilibrium in a given symmetric game. Mehta, Vazirani,
and Yazdanbod [19] proved that this problem is NP-complete for 2-player games,
and Garg et al. [14] raised the question of the complexity for m-player games
with m > 3. We show this problem to be FR-complete.

Our results about irrational valued and rational valued Nash equilibrium, all
results about symmetric games, as well as several other proofs are omitted in
this version of the paper due to lack of space.

2 Preliminaries

2.1 Existential Theory of the Reals and Rationals

The existential theory Th3(R) of the reals is the set of all true sentences over R
of the form 3z1,...,z, € R: ¢(x1,...,2z,), where ¢ is a quantifier free Boolean
formula of equalities and inequalities of polynomials with integer coefficients. The
complexity class IR is defined [22] as the closure of Th3(R) under polynomial
time many-one reductions. Equivalently, IR is the constant-free Boolean part of
the class NPg [7], which is the analogue class to NP in the Blum-Shub-Smale



156 M. L. T. Berthelsen and K. A. Hansen

model of computation [6]. It is straightforward to see that Th3(R) is NP-hard
(cf. [8]) and the decision procedure by Canny [9] shows that Th3(R) belongs to
PSPACE. Thus it follows that NP C 9JR C PSPACE.

The basic complete problem for IR is the problem QUAD of deciding whether
a system of quadratic equations with integer coefficients has a solution over R [6].

2.2 Strategic Form Games and Nash Equilibrium

A finite strategic form game G with m players is given by sets Sy,...,S,, of
actions (pure strategies) together with wtility functions wy,...,Upy : S1 X -+ X
Sm — R. A choice of an action a; € S; for each player together form a pure
strategy profile a = (ay,...,am).

The game G is symmetric if S = --- = 5, and for every permutation 7
on [m], every i € [m] and every (ai,...,am,) € S1 X -+ X Sy, it holds that
wi(ar, ... am) = Un(i)(Ar(1) -+ Ar(m))- In other words, a game is symmetric

if the players share the same set of actions and the utility function of a player
depends only on the action of the player together with the multiset of actions of
the other players.

Let A(S;) denote the set of probability distributions on S;. A (mized) strat-
egy for Player i is an element x; € A(S;). The support Supp(z;) is the set of
actions given strictly positive probability by x;. We say that x; is fully mized if
Supp(z;) = S;. A strategy z; for each player i together form a strategy profile
x = (x1,...,Zm). The utility functions naturally extend to strategy profiles by
letting u;(x) = Eqmg wi(ag, - . ., am). We shall also refer to u;(x) as the payoff of
Player i.

Given a strategy profile  we let x_; = (21,...,2;-1,Tit1,...,Zm) denote
the strategies of all players except Player i. Given a strategy y € 5; for Player i,
we let (z_;;y) denote the strategy profile (z1,...,Ti—1,Y, Tit1,...,ZLm) formed

by z_; and y. We may also denote (x_;;y) by =\ y. We say that y is a best reply
for Player i to x (or to x_;) if u;(z \ y) > w;(x \ ¢/) for all y’ € A(S;).

A Nash equilibrium (NE) is a strategy profile x where each individual strategy
x; is a best reply to x. As shown by Nash [20], every finite strategic form game G
has a Nash equilibrium. In a symmetric game G, a symmetric Nash equilibrium
(SNE) is a Nash equilibrium where the strategies of all players are identical. Nash
also proved that every symmetric game has a symmetric Nash equilibrium.

A strategy profile x is Pareto optimal if there is no strategy profile 2’ such
that u;(z) < w;(2’) for all 4, and u;j(z) < u;j(z’) for some j. A Nash equilib-
rium strategy profile need not be Pareto optimal and a Pareto optimal strategy
profile need not be a Nash equilibrium. A strategy profile that is both a Nash
equilibrium and is Pareto optimal is called a Pareto optimal Nash equilibrium.
The existence of a Pareto optimal Nash equilibrium is not guaranteed.

A strong Nash equilibrium [1] (strong NE) is a strategy profile « for which
there is no non-empty set B C [m] for which all players i € B can increase their
payoff by different strategies assuming players j € [m] \ B play according to z.
Equivalently, z is a strong Nash equilibrium if for every strategy profile ' # x
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there exist i such that x; # x} and u;(z') < w;(z). The existence of a strong
Nash equilibrium is not guaranteed.

3 Decision Problems About Nash Equilibria

Below we define the decision problems under consideration with names generally
following Bilé and Mavronicolas [4]. The given input is a finite strategic form
game G, together with auxiliary input depending on the particular problem. We
let u denote a rational number, k an integer, and T; C S; a set of actions of
Player i, for every i. We describe the decision problem by stating the property
a Nash equilibrium = whose existence is to be determined should satisfy. The
problems are grouped together in four groups which we cover separately.

Problem Condition
INEWITHLARGEPAYOFFS u;(z) > w for all ¢
INEWITHSMALLPAYOFFS u;(z) < wu for all ¢

INEWITHLARGETOTALPAYOFF | > wi(z) > u
INEWITHSMALLTOTALPAYOFF | > wi(z) < u

IANEINABALL zi(a;) <wu for all ¢ and a; € S;
JSECONDNE x is not the only NE
INEWITHLARGESUPPORTS |Supp(z;)| > k for all 4
INEWITHSMALLSUPPORTS |Supp(z;)| < k for all 4

INEWITHRESTRICTINGSUPPORTS | T; C Supp(z;) for all ¢
INEWITHRESTRICTEDSUPPORTS | Supp(z;) C T; for all 4

INONPARETOOPTIMALNE x is not Pareto optimal
INONSTRONGNE x is not a strong NE
dPARETOOPTIMALNE x is Pareto optimal

ISTRONGNE z is a strong NE
JIRRATIONALNE zi(as) € Q for some ¢ and a; € S;
JRATIONALNE zi(a;) € Q for all 7 and a; € S;

Except for the last four problems above, it is straightforward to prove mem-
bership in IR by an explicit existentially quantified first-order formula. We prove
IR membership of IPARETOOPTIMALNE and ISTRONGNE in Subsect. 3.3.

A key step (implicitly present) in the proof of the first IR-hardness result
about Nash equilibrium in 3-player games by Schaefer and Stefankovic is a result
due to Schaefer [21] that QUAD remains JR-hard under the promise that either
the given quadratic system has no solutions or a solution exists in the unit ball
B(0, 1). For our purposes the following variation [17, Proposition 2] will be more
directly applicable (and may easily be proved from the former). Here we denote
by A the standard corner n-simplex {zx € R" |z > 0A Y. | x; < 1}.
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Proposition 1. [t is IR-hard to decide if a given system of quadratic equations
in n variables and with integer coefficients has a solution under the promise that
either the system has no solutions or a solution z exists that is in the interior
of Al and also satisfies z; < % for all i and that Y ;| z; > %

Schaefer and Stefankovi¢ showed that SNEINABALL is 3R-hard for 3-player
games by first proving that the following problem is JR-hard: Given a contin-
uous function f : B(0,1) — B(0,1) mapping the unit ball to itself, where each
coordinate function f; is given as a polynomial, and given a rational number r,
is there a fixed point of f in the ball B(0,7)? The proof was then concluded
by a transformation of Brouwer functions into 3-player games by Etessami and
Yannakakis [13]. This latter reduction is rather involved and goes though an
intermediate construction of 10-player games. More recently, Hansen [17] gave
a simple and direct reduction from the above promise version of QUAD to
INEINABALL.

The first step of this as well as our reductions is to transform the given
quadratic system over the corner simplex A7 into a homogeneous bilinear system
over the standard n-simplex {z € R"* |z > 0A " 2; = 1} which we denote
by A™. We can obtain the following statement (cf. [17, Proposition 3]).

Proposition 2. [t is dR-complete to decide if a system of homogeneous bilinear
equations qx(z,y) =0, k = 1,..., £ with integer coefficients has a solution x,y €
A™. It remains IR-hard under the promise that either the system has no such
solution or a solution (x,x) exists where x belongs to the relative interior of A™
and further satisfies x; < % for all i.

3.1 Payoff Restricted Nash Equilibria

For proving the dR-hardness results we start by showing that it is JR-hard to
decide if a given zero-sum game has a Nash equilibrium in which each player
receives payoff 0. This is in contrast to the earlier work of Garg et al. [14] and
Bil6 and Mavronicolas [4,5] that reduce from the INEINABALL problem. On
the other hand we do show JdR-hardness even under the promise that the Nash
equilibrium also satisfies the condition of INEINABALL. The construction and
proof below are modification of proofs by Hansen [17, Theorem 1 and Theorem 2].

Definition 3 (The 3-player zero-sum game Gj). Let S be a system of

homogeneous bilinear polynomials q1(x,y),...,q(x,y) with integer coefficients
in variables x = (x1,...,Znt1) and y = (Y1, ..., Ynt1),
n+1ln+1
ar(z,y) = Z Z agf)ziyj-
i=1 j=1

We define the 3-player game Go(S) as follows. The strategy set of Player 1
is the set S1 = {1,—1} x {1,2,...,¢}. The strategy sets of Player 2 and Player 3
are So = S3 ={1,2,...,n+1}. The (integer) utility functions of the players are

deﬁned by %ul((87 k)7l7.j) = _UQ((S) k)77/7.7) = —U?,((S,k),i,j) = Sa/(k)

L)
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When the system S is understood by the context, we simply write Go = Go(S).
We think of the strategy (s, k) of Player 1 as corresponding to the polynomial
qx together with a sign s, the strategy ¢ of Player 2 as corresponding to x; and
the strategy j of Player 3 as corresponding to y;. We may thus identify mixed
strategies of Player 2 and Player 3 as assignments to variables =,y € A™ C R**1,

The following observation is immediate from the definition of Gg.

Lemma 4. Any strategy profile (z,y) of Player 2 and Player 3 satisfies for every
(s, k) € Sy the equation

%ul((s’k)axay) = 7“2((87k)7x3y) = 7“3((’9’ k),x,y) = qu(iﬂ,y) (1)

Hence uy(z,x,y) = ua(z, x,y) = uz(z,x,y) = 0 when z is the uniform distribu-
tion on Sy. Consequentially, any Nash equilibrium payoff profile is of the form
(2u, —u, —u), where u > 0.

Next we relate solutions of the system S to Nash equilibria in Gy.

Proposition 5. LetS be a system of homogeneous bilinear polynomials qi(x, y).
If § has a solution (z,y) € A™ x A", then lelting z be the uniform distri-
bution on Sy, the strategy profile o = (z,xz,y) is a Nash equilibrium of Gy in
which every player receives payoff 0. If in addition (x,y) satisfies the promise of
Proposition 2, then o is fully mized, Player 2 and Player 3 use identical strate-
gies, and no action is chosen with probability more than % by any player. Con-
versely, if (z,z,y) is a Nash equilibrium of Gy in which every player receives
payoff 0, then (z,y) is a solution to S.

Proof. Suppose first that (z,y) € A™ x A" is a solution to S and let z be the
uniform distribution on S7. By Eq. (1) the strategy profile (z,y) of Player 2 and
Player 3 ensures that all players receive payoff 0 regardless of which strategy
is played by Player 1, and likewise the strategy z of Player 1 ensures that all
players receive payoff 0 regardless of the strategies of Player 2 and Player 3. This
shows that ¢ is a Nash equilibrium of Gy, in which by Lemma 4 every player
receives payoff 0. If (z,y) in addition satisfies the promise of Proposition 2 we
have 0 < z; = y; < % From this and our choice of z, we have that o is a fully
mixed and that no action is chosen by a strategy of ¢ with probability more
than %

Suppose on the other hand that ¢ = (z,,y) is a Nash equilibrium of Gy
with payoff 0 for every player and suppose that gx(x,y) # 0 for some k. Then
by Eq. (1) we get that u; ((sgn(qx(x,v)), k), z,y) = |2qx(x,y)| > 0, contradicting
that o is a Nash equilibrium. Thus (z,y) is a solution to S.

Theorem 6. INEWITHLARGEPAYOFFS and INEWITHSMALLPAYOFFS are
JR-complete, even for 3-player zero-sum games.

Proof. For a strategy profile x in a zero-sum game G we have that u;(x) = 0, for
all 4, if and only if u;(x) > 0, for all ¢, if and only if w;(x) < 0, for all ¢. Thus
Proposition 5 gives a reduction from the promise problem of Proposition 2,
thereby establishing JdR-hardness of the problems INEWITHLARGEPAYOFFS
and INEWITHSMALLPAYOFFS.
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A simple change to the game Gy gives dR-hardness for the two problems
INEWITHLARGETOTALPAYOFF and INEWITHSMALLTOTALPAYOFF. Natu-
rally we must give up the zero-sum property of the game. We omit the proof.

Theorem 7 (Bilé and Mavronicolas [4]). INEWITHLARGETOTALPAYOFF
and AINEWITHSMALLTOTALPAYOFF are dR-complete, even for 3-player games.

3.2 Probability Restricted Nash Equilibria

A key property of the game Gy is that Player 1 may ensure all players receive
payoff 0. We now give all players this choice by playing a new additional action L.
We then design the utility functions involving L in such a way that the pure
strategy profile (L, L, 1) is always a Nash equilibrium, and every other Nash
equilibrium is a Nash equilibrium in Gy in which all players receive payoff 0.

Definition 8. For u > 0, let Hy = Hi(u) be the 3-player zero-sum game where
each player has the action set {G, L} and the payoff vectors are given by the
entries of the following two matrices, where Player 1 selects the matriz, Player 2
selects the row, Player 3 selects the column.

G € G i
G (2u7 —u, —U) ( 1) _170) G (07 Oa O) ( 2a _37 1)
1 ( 17 Oa 71) (745 272) 1 (27 1a 73) (723 171)
G 1

It is straightforward to determine the Nash equilibria of Hj.

Lemma 9. When u > 0, the only Nash equilibrium of H1(u) is the pure strategy
profile (L, 1, 1). When u = 0 the only Nash equilibria of Hi(u) are the pure
strategy profiles (G,G,G) and (L, L, 1).

We use the game H; (u) to extend the game Gy. The action G of H; represents
selecting an action from Gy, and the payoff vector (2u, —u, —u) that is the result
of all players playing the action G is precisely of the form of the Nash equilibrium
payoff profile of Gy.

Definition 10 (The 3-player zero-sum game G;). Let G = G1(S) be the
game obtained from Go(S) as follows. Each player is given an additional action
L. When no player plays the action L, the payoffs are the same as in Gy. When
at least one player is playing the action L the payoff are the same as in Hy,
where each action different from 1 is translated to action G.

We next characterize the Nash equilibria in G;.

Proposition 11. The pure strategy profile (L, L, 1) is a Nash equilibrium of
G1. Any other Nash equilibrium x in Gy is also a Nash equilibrium of Gy and is
such that every player receives payoff 0.
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Proof. By Lemma 4 any Nash equilibrium of G; induces a Nash equilibrium of
Hi(u), where (2u, —u, —u) is a Nash equilibrium payoff profile of Gy, by letting
each player play the action G with the total probability of which the actions of
Go are played. By Lemma 9, any Nash equilibrium in G; different from (L, 1, 1)
must then be a Nash equilibrium of Gy with Nash equilibrium payoff profile
(0,0,0) as claimed.

Theorem 12. The following problems are JR-complete, even for 3-player
zero-sum games: INEINABALL, 3SECONDNE, INEWITHLARGESUPPORTS,
INEWITHRESTRICTINGSUPPORTS, and INEWITHRESTRICTEDSUPPORTS.

Proof. Propositions 5 and 11 together gives a reduction from the promise
problem of Proposition 2 to all of the problems under consideration when
setting the additional parameters as follows. For INEINABALL we let u =
%, for ANEWITHLARGESUPPORTS we let & = 2, and lastly for both of
INEWITHRESTRICTINGSUPPORTS and INEWITHRESTRICTEDSUPPORTS we
let T; be the set of all actions of Player i except L.

To adapt the reduction of Theorem 12 to INEWITHSMALLSUPPORTS we
need to replace the trivial Nash equilibrium (L, L, L) by a Nash equilibrium
with large support. We define a game Hy (k) for this purpose and omit its easy
analysis.

Definition 13. Define the 2-player zero-sum game Ha(k) as follows. The two
players, which we denote Player 2 and Player 3, have the same set of pure strate-
gies So = S3 = {0,1,...,k — 1}. The utility functions uz(as,a3) = —us(az,as)
are defined by us(asz,a3) =1 if as = a3, us(as,a3) = —1 if ap = az+1 (mod k),
and uz(az,a3) = 0 otherwise.

Lemma 14. For any k > 2, in the game Ho(k) the strategy profile in which
each action is played with probability % is the unique Nash equilibrium and yields
payoff 0 to both players.

Definition 15 (The 3-player zero-sum game Gs). Let G = Go(S) be the
game obtained from Gi as follows. The action L of Player 2 and Player 3 are
replaced by the set of actions (L,i),1 € {0,1,...,k—1}, where k is the maximum
number of actions of a player in G1. The payoff vector of the pure strateqy profile
(L, (L,a2),(L,as3)) is (=2,1 + uz(az,as), 1 + ug(az,as)), where us and us are
the wtility functions of the game Ha(k). Otherwise, when at least one player
plays the action G, the payoff is as in Hiy, where actions of the form (L,1) are
translated to the action L.

Theorem 16. AINEWITHSMALLSUPPORTS is JR-complete, even for 3-player
zero-sum games.

Proof. In Gs, the strategy profile where Player 1 plays 1 and Player 2 and
Player 3 play (L, ), with 4 chosen uniformly at random, is a Nash equilibrium
that takes the role of the Nash equilibrium (L, 1, 1) in G;. Consider now an
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arbitrary Nash equilibrium in G5. In case all players play the action G with
probability less than 1, Player 2 and Player 3 must choose each action of the
form (L,4) with the same probability, since Hs has a unique Nash equilibrium.
The Nash equilibrium induces a strategy profile in Gp, letting Player 2 and
Player 3 play the action 1 with the total probability each player placed on
the actions (L,). By definition of Ha(k) the payoff vector of (L, L, 1) in Gy
differs by at most 1 in each entry from the payoff vectors of (L, (L, az), (L, a3)).
The proof of Lemma 9 and Proposition 11 still holds when changing the payoff
vector of (L, L, 1) by at most 1 in each coordinate. The strategy profile induced
in G; must therefore be a Nash equilibrium in G;. We conclude that in a Nash
equilibrium x of Gs, either Player 2 and Player 3 use strategies with support
of size k or x is a Nash equilibrium of Gy, where every player uses a strategy
of support size strictly less than k and where every player receives payoff 0.
Proposition 5 thus give a reduction showing JR-hardness.

3.3 Pareto Optimal and Strong Nash Equilibria

For showing dR-hardness for INONSTRONGNE we first analyze the strong Nash
equilibria in the game H;.

Lemma 17. For uw > 0, the Nash equilibrium (L, L, L) of Hi(u) is a strong
Nash equilibrium. For u = 0, the Nash equilibrium (G,G,G) of Hi(u) is not a
strong Nash equilibrium.

Proof. Consider first u = 0 and the Nash equilibrium (G, G, G). This is not a
strong Nash equilibrium, since for instance Player 1 and Player 2 could both
increase their payoff by playing the strategy profile (L, 1, G). Consider next
u > 0 and the Nash equilibrium (L, L, 1). Since H; is a zero-sum game it is
sufficient to consider possible coalitions of two players. Player 2 and Player 3 are
already receiving the largest possible payoff given that Player 1 is playing the
strategy L, and hence they do not have a profitable deviation. Consider then,
by symmetry, the coalition formed by Player 1 and Player 2, and let them play
G with probabilities p; and ps. A simple calculation shows that to increase the
payoff of Player 1 requires p1ps + 4p2 — 2p1 > 0 and to increase the payoff of
Player 2 requires p1ps — 4ps + p1 > 0. Adding these gives p1(2p2 — 1) > 0 which
implies ps > % But then p1ps — 4py + p1 < 0. Thus (L, L, 1) is a strong Nash
equilibrium.

Theorem 18. INONSTRONGNE is dR-complete, even for 3-player zero-sum
games.

Proof. Propositions 5 and 11 together gives a reduction showing dR-hardness,
since by Lemma 17 the Nash equilibrium (L, L, 1) is a strong Nash equilibrium,
and a Nash equilibrium of Gy where every player receives payoff 0 is not a strong
Nash equilibrium.
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In a zero-sum game, every strategy profile is Pareto optimal. Thus for showing
JR-hardness of INONPARETOOPTIMALNE we need to consider non-zero-sum
games, thus leading to the result of Bilé6 and Mavronicolas.

We next consider the problems 3ISTRONGNE and FJPARETOOPTIMALNE. We
first outline a proof of membership in IR, building on ideas of Gatti et al. [15] and
Hansen, Hansen, Miltersen, and Sgrensen [18]. Gatti et al. proved that deciding
whether a given strategy profile z of an m-player game G is a strong Nash
equilibrium can be done in polynomial time. The crucial insight behind this
result is that the question of whether a coalition of & < m players may all
improve their payoff by together changing their strategies can be recast into a
question in a derived game about the minmax value of an additional fictitious
player that has only k strategies. Hansen et al. proved that in such a game,
the minmax value may be achieved by strategies of the other players that have
support size at most k.

Lemma 19 (Hansen et al. [18]). Let G be a m + 1 player game and let
k = |Smy1l|. If there exists a strategy profile x of the first m players such that
Ums1(x;a) < 0 for all a € S,q1 then there also exists a strategy profile x’
of the first m players in which each strategy has support size at most k and
Um+1 (2’ amg1) <0 for all a € Sppqr.

We next give a generalization of the auxiliary game construction of
Gatti et al. that also allows us to treat Pareto optimal Nash equilibria at the
same time.

Definition 20 (cf. Gatti et al. [15]). Let G be an m-player game with strat-
egy sets S; and utility functions u;. Let x be a strategy profile of G and let
B1UB3UB3 = [m] be a partition of the players, let k; = |B;| and k = k1 + ko.
For e > 0 consider the (m+1)-player auziliary game G' = 9;75_’(31732733) defined
as follows. For i € By U By the strategy set of Player i is S, = S;. For i € Bs
the strategy set of Playeri is S; = {L}. Finally, the strategy set of Player m+1
is By U By. The utility function of Player m + 1 is defined as follows. Let
a = (a},...,al,,j) be a pure strategy profile of G'. Define the strategy profile
z® of G letting x¢ = a; for i € By U By and z} = x; for 1 € Bs. We then let
u,1(a) = uj(x) —uj(xz®) + ¢ for j € By and ul,,(a) = uj(x) — uj(xz*) for
j € By.

The following is immediate from the definition of G’.

Lemma 21. There exist a strategy profile ' in G that satisfies u;(x') > u;(x)
when i € By, u;(z') > u;(x) when i € By, and x;, = x; when i € Bs if and only
if there exist € > 0 and a strategy 2’ in G, _ (By,Bs,Bs) of the first m players such
that u), ,(x',j) <0 for all j € By U Bs.

The task of deciding if a strategy x is Pareto optimal amounts to checking the
condition of Lemma 21 for By = {i} and By = [m] \ {i} for all ¢ and to decide
whether z is a strong Nash equilibrium amounts to checking the condition for
all nonempty By C [m] while letting By = 0.
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According to Lemma 19 we may restrict our attention to strategies z’ in G’ of
supports of size at most m. Fixing such a set of supports T; C S; for i € B;UBs,
we may formulate the question of existence of a strategy z’, with Supp(z}) C T;
for ¢ € By U By that satisfies the conditions of Lemma 21 as an existentially
quantified first-order formula over the reals. For a fixed x we need only 1 4 m?
existentially quantified variables to describe ¢ and the strategy 2. Since this is
a constant number of variables, when as in our case m is a constant, the general
decision procedure of Basu, Pollack, and Roy [2] runs in polynomial time in the
bitsize of coefficients, number of polynomials, and their degrees, resulting in an
overall polynomial time algorithm. Now, adding a step of simply enumerating
over all nonempty B; C [m] and all support sets of size m we obtain the result
of Gatti et al. that deciding whether a given strategy profile x is a strong Nash
equilibrium can be done in polynomial time. The same holds in a similar way
for checking that a strategy profile is a Pareto optimal Nash equilibrium.

In our case, when proving IR membership the only input is the game G,
whereas the strategy profile z will be given by a block of existentially quantified
variables. We then need to show how to express that = is a Pareto optimal or
a strong Nash equilibrium by a quantifier free formula over the reals with free
variables x. This will be possible by the fact that quantifier elimination, rather
than just decision, is possible for the first order theory of the reals. The quantifier
elimination procedure of Basu et al. [2] runs in time exponential in the number
of free variables, so we cannot apply it directly with x being the set of free
variables.

Instead we express the condition of Lemma 21 for a strategy profile 2’ that is
constrained by Supp(z}) C T; for ¢ € By U By in terms of auxiliary free variables
' that take the place of the values of the utility function v’ of G’. Since the
supports of =’ are restricted to size m, we need just m™*! variables to represent
the utility to Player m + 1 on every such pure strategy profile. Since this is a
constant number of variables, the quantifier elimination procedure of Basu et al.
runs in polynomial time and outputs a quantifier free formula over the reals with
free variables ' that expresses the condition of Lemma 21 when the utilities
u' are given by u’. After this we substitute expressions for the utilities u' in
terms of the variables x for the variables @’. The final formula is obtained, in an
analogous way to the decision question, by enumerating over the appropriate sets
B; and By as well as all possible supports T;, obtaining a formula for each such
choice and combining them to a single formula with free variables x expressing
either that x is Pareto optimal or that x is a strong Nash equilibrium. To the
former we add the simple conditions of x being a Nash equilibrium. Finally we
existentially quantify over  and obtain a formula expressing either that G has a
Pareto optimal Nash equilibrium or that G has a strong Nash equilibrium. Since
this formula was computed in polynomial time given G we obtain the following
result.

Proposition 22. ISTRONGNE and FPARETOOPTIMALNE both belong to AR.

For showing JR-hardness we construct a new extension of Gg.
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Definition 23. For u > 0, let Hy = Ha(u) be the 3-player game given by the
following matrices, where Player 1 selects the matriz, Player 2 selects the row,
Player 3 selects the column.

G 1 G 1
G ( 2“7 —u, _u) (_3, _37 0) G ( 07 _33 _3) (_27 _27 _2)
L{(=3, 0,-3)|(-2,—-2,-2) 1)(-2,-2,-2)|(-1,-1,-1)

G 1

Lemma 24. When u > 0, the only Nash equilibrium of Ha(u) is the pure strat-
egy profile (L, L, 1). When u = 0, the only Nash equilibria of H4(u) are the pure
strategy profiles (G,G,G) and (L, L, 1). Furthermore, when u = 0, the Nash
equilibrium (G, G, G) is both Pareto optimal and a strong Nash equilibrium.

Proof. When u = 0, clearly (G, G, G) is a Nash equilibrium, which is both Pareto
optimal and a strong Nash equilibrium. Likewise, clearly (L, 1, 1) is always
a Nash equilibrium. When v > 0, the action G is strictly dominated by the
action | for Player 2 and Player 3, and hence they play 1 with probability 1 in
a Nash equilibrium. The only best reply of Player 1 is to play L with probability 1
as well.

Analogously to Definition 10 we define the game G4 = G4(S) to be the game
extending Gy with Hy replacing the role of H;. We next establish IJR-hardness

Theorem 25. IPARETOOPTIMALNE and 3STRONGNE are dR-complete, even
for 3-player games.

Proof. In Gy, the strategy profile (L, L, L), with payoff profile (-1, —1,—1), is
a Nash equilibrium that is neither Pareto optimal or a strong Nash equilibrium,
since by Lemma 4 a strategy profile in Gy in which Player 1 plays an action
according to the uniform distribution has payoff profile (0,0, 0).

Similarly to the proof of Theorem 12, any Nash equilibrium x in G4 different
from (L, L, L) must by Lemma 24 be a Nash equilibrium of Gy with payoff profile
(0,0,0). Since Gy is a zero-sum game, any strategy that is Pareto dominating x
must involve the strategy 1 and is thus ruled out by Lemma 24. Therefore x
is Pareto-optimal. Now, x is not necessarily a strong Nash equilibrium, but by
Lemma 4, letting Player 1 instead play an action of Gy according to the uniform
distribution is also a Nash equilibrium of Gy with payoff profile (0,0,0), that
furthermore ensures that any strategy profile of Player 2 and Player 3 in Gy does
not improve their payoffs. Also, by Lemma 4, no coalition involving Player 1
can improve their payoff without playing the action L. No coalition can however
improve their payoff by a strategy profile involving the action 1, since all such
payoff profiles result in a player receiving negative payoff. Thus z’ is a strong
Nash equilibrium.

We conclude that Proposition 5 gives a reduction showing JR-hardness
of both FPARETOOPTIMALNE and ISTRONGNE, thereby together with
Proposition 22 completing the proof.
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