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Preface

This volume contains the papers and extended abstracts presented at the 12th
International Symposium on Algorithmic Game Theory (SAGT 2019), held during
September 30–October 3, 2019, at the National Technical University of Athens,
Greece.

This year, SAGT 2019 received 55 submissions, which were all rigorously
peer-reviewed by at least 3 PC members, and evaluated on the basis of originality,
significance, and exposition. The PC eventually decided to accept 26 papers to be
presented at the conference. To accommodate the publishing traditions of different
fields, authors of accepted papers could ask that only a one-page abstract of the paper
appeared in the proceedings. Among the 26 accepted papers, the authors of 1 paper
selected this option. The program also included three invited talks by distinguished
researchers in Algorithmic Game Theory, namely Maria-Florina Balcan (Carnegie
Mellon University, USA), Shahar Dobzinski (Weizmann Institute of Science, Israel),
and Herve Moulin (University of Glasgow, UK, and Higher School of Economics,
Russia). In addition, SAGT 2019 featured a tutorial on “Learning Theory in
Algorithmic Economics,” by Georgios Piliouras (Singapore University of Technology
and Design, Singapore) and Vasilis Syrgkanis (Microsoft Research, USA).

The works accepted for publication in this volume cover most of the major aspects
of Algorithmic Game Theory, including auction theory, mechanism design, two-sided
markets, computational aspects of games, congestion games, resource allocation
problems, and computational social choice. Furthermore, due to the general support by
Springer, we were able to provide a best paper award. The PC decided to give the
award to the paper “The Declining Price Anomaly is not Universal in Multi-buyer
Sequential Auctions (but almost is),” by Vishnu V. Narayan, Enguerrand Prebet, and
Adrian Vetta.

We would like to thank all the authors for their interest in submitting their work to
SAGT 2019, as well as the PC members and the external reviewers for their great work
in evaluating the submissions. We also want to thank EATCS, Springer, Facebook, the
COST Action GAMENET (CA16228), the Athens University of Economics and
Business (AUEB), the National Technical University of Athens (NTUA), and the
Institute of Communication and Computer Systems (ICCS), for their generous financial
support. We are grateful to the National Technical University of Athens for hosting the
event, and special thanks also go to Eleni Iskou for her excellent local arrangements
work and to Antonis Antonopoulos for his help with the conference website.

Finally, we would also like to thank Alfred Hofmann and Anna Kramer at Springer
for helping with the proceedings, and the EasyChair conference management system.

July 2019 Dimitris Fotakis
Evangelos Markakis

The original version of the book was revised: Cover and the front matter pages were
not correct. They have been exchanged. The correction to the book is available at
https://doi.org/10.1007/978-3-030-30473-7_26

http://dx.doi.org/10.1007/978-3-030-30473-7_26
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Machine Learning for Mechanism Design

Maria-Florina Balcan

Carnegie Mellon University, Pittsburgh, PA 15213, USA
ninamf@cs.cmu.edu

http://www.cs.cmu.edu/*ninamf

Mechanism design is a field of game theory with significant real-world impact,
encompassing areas such as pricing and auction design. A powerful and prominent
approach in this field is automated mechanism design, which uses optimization and
machine learning to design mechanisms based on data. In this talk I will discuss how
machine learning theory tools can be adapted and extended to analyze important
aspects of automated mechanism design.

I will first discuss revenue maximization in the setting where the mechanism
designer has access to samples from the distribution over buyers’ values, not an explicit
description thereof. I will present a general technique for providing sample complexity
bounds, that is, bounds on the number of samples sufficient to ensure that if a mech-
anism has high average revenue over the set of samples, then that mechanism will have
high revenue in expectation over the buyers’ valuation distribution. This technique
applies to mechanisms that satisfy linear delineability, a general structural property that
we show is shared by a myriad of pricing and auction mechanisms. Roughly speaking,
a mechanism is linearly delineable if for any set of buyers’ values, the revenue function
is piecewise linear in the mechanism’s parameters. I will discuss numerous applications
of this result to both pricing mechanisms (including posted-price mechanisms and
multi-part tariffs), and auctions (including second price auctions with reserves and
classes of affine maximizer auctions).

I will also discuss how we can estimate the degree of incentive-compatibility of
potentially non-incentive-compatible mechanisms based on typical inputs, namely
independent samples from the type distribution. Our estimate is based on an empirical
variant of approximate incentive compatibility which measures the maximum utility an
agent can gain by misreporting his type, on average over the samples. I will discuss
how to bound the difference between our empirical incentive compatibility estimate and
the true incentive compatibility approximation factor by using a subtle mixture of tools
from learning theory. This question is of high interest since many real-world mecha-
nisms are not incentive-compatible.

This talk is based on work joint with Tuomas Sandholm and Ellen Vitercik
appearing in [1, 2].
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From Cognitive Biases to the Communication
Complexity of Local Search

Shahar Dobzinski

Weizmann Institute of Science
shahar.dobzinski@weizmann.ac.il

In this talk I will tell you how analyzing economic markets in which agents have
cognitive biases has led to better understanding of the communication complexity of
local search procedures.

We begin the talk with studying combinatorial auctions with bidders that exhibit
endowment effect. In most of the previous work on cognitive biases in algorithmic
game theory (e.g., [3] and its follow-ups) the focus was on analyzing their implications
and mitigating the negative consequences. In contrast, we show how cognitive biases
can sometimes be harnessed to improve the outcome.

Specifically, we study Walrasian equilibria in combinatorial markets. It is well
known that a Walrasian equilibrium exists only in limited settings, e.g., when all
valuations are gross substitutes, but fails to exist in more general settings, e.g., when
the valuations are submodular. We consider combinatorial settings in which bidders
exhibit the endowment effect, that is, their value for items increases with owner-
ship. Our main result here shows that when the valuations are submodular even a mild
level of endowment effect suffices to guarantee the existence of Walrasian equilibrium.
In fact, we show that in contrast to Walrsian equilibria with standard utility maximizers
bidders – in which the equilibrium allocation must be a global optimum – when bidders
exhibit endowment effect any local optimum can be an equilibrium allocation.

This raises a natural question: what is the complexity of computing a local maxi-
mum in combinatorial markets? We reduce it to a communication variant of local
search: there is some commonly known graph G. Alice holds fA and Bob holds fB, both
are functions that specify a value for each vertex. The goal is to find a local maximum
of fA þ fB: a vertex v for which fAðvÞþ fBðvÞ� fAðuÞþ fBðuÞ for every neighbor u of v.
We prove that finding a local maximum requires polynomial (in the number of vertices)
communication.

Based on joint works with Moshe Babaioff, Yakov Babichenko, Noam Nisan, and
Sigal Oren [1, 2].
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Bidding for a Fair Share

Herve Moulin1,2

1 University of Glasgow, Glasgow, UK
Herve.Moulin@glasgow.ac.uk

2 Higher School of Economics, St. Petersburg, Russia

The Diminishing Share (DS) algorithm by Steinhaus (generalizing Divide and Choose),
as well as the Moving Knife (MK) algorithm by Dubins and Spanier, guarantee to all
participants a Fair Share of the manna while eliciting very little information from them.
Hence their appeal: they bypass most of the cognitive effort to form full-fledged
preferences; they also preserve the privacy of these preferences to a considerable
degree.

The DS algorithm does not treat the agents symmetrically (namely, it fails the
Anonymity test). The MK algorithm does not treat the manna symmetrically (it fails the
Neutrality test) and severely limits the set of its feasible allocations.

In the classic cake division model with additive utilities, we propose a new family
of division algorithm(s), dubbed the Bid & Choose rules, guaranteeing Fair Shares,
maintaining the informational parsimony of DS and MK, and placing no restrictions on
the allocations of the manna. The B&C rules are Anonymous, and each rule is defined
by a specific interpretation of Neutrality. These properties are characteristic in the
additive domain.

For general monotone preferences, each B&C rule, unlike DS and MK, offers
reasonable guaranteed utility levels to each participant.
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Optimal On-Line Allocation
Rules with Verification

Markos Epitropou1(B) and Rakesh Vohra1,2

1 Department of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia, USA

mep@seas.upenn.edu
2 Department of Economics, University of Pennsylvania, Philadelphia, USA

Abstract. We consider a principal who allocates an indivisible object
among a finite number of agents who arrive on-line, each of whom prefers
to have the object than not. Each agent has access to private information
about the principal’s payoff if he receives the object. The decision to allo-
cate the object to an agent must be made upon arrival of an agent and is
irreversible. There are no monetary transfers but the principal can verify
agents’ reports at a cost and punish them. A novelty of this paper is a refor-
mulation of this on-line problem as a compact linear program. Using the
formulation we characterize the form of the optimal mechanism and reduce
the on-line version of the verification problem with identical distributions
to an instance of the secretary problem with one fewer secretary and a mod-
ified value distribution. This reduction also allows us to derive a prophet
inequality for the on-line version of the verification problem.

Keywords: Stopping problems · Verification · Prophet inequalities

1 Introduction

In many large organizations scarce resources must be allocated internally with-
out the benefit of prices. Examples include, the headquarters of a firm that must
choose between multiple investment proposals from each of its division managers
and funding agencies allocating a grant among researchers. In these settings thepri-
vate information needed to determine the right allocation resides with the agents
and the principal must rely on verification of agents’ claims, which can be costly.
We interpret verification as acquiring information (e.g., requesting documentation,
interviewing an agent, or monitoring an agent at work), which can be costly. The
headquarters of the diversified firm can hire an external firm to conduct an assess-
ment of any division manager’s claims, for example. The funding agency must allo-
cate time to evaluate the claims of the researcher applying for a grant. Furthermore,
in these settings, the principal can punish an agent if his claim is found to be false.
For example, the head of personnel can reject an applicant, fire an employee or deny
a promotion. Funding agencies can cut off funding.

Research supported in part by DARPA grant HR001118S0045.

c© Springer Nature Switzerland AG 2019
D. Fotakis and E. Markakis (Eds.): SAGT 2019, LNCS 11801, pp. 3–17, 2019.
https://doi.org/10.1007/978-3-030-30473-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30473-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-30473-7_1


4 M. Epitropou and R. Vohra

Prior work considered an off-line version of this problem. Specifically, there
is a principal who has to allocate one indivisible object among a finite number of
agents all of whom are present. The value to the principal of assigning the object
to a particular agent is the private information of the agent. Each agent prefers
to possess the object than not. The principal would like to give the object to
the agent who has the highest value to her. [4], the first to pose the question,
assumes punishment is unlimited in the sense that an agent can be rejected
and not receive the resource. Punishment can be limited because verification is
imperfect or information arrives only after an agent has been hired for a while.
In [20], verification is free, but punishment is limited. [17] generalizes both papers
by incorporating costly verification and limited punishment.

This paper introduces and analyzes an on-line version of this problem in
which the agents arrive and depart one at a time, and the decision to allocate the
object to an agent must be made upon arrival of an agent. If the principal declines
to allocate the object to an agent, the agent departs and cannot be recalled. If
the principal allocates the object to an agent, the decision is irreversible. The
problem is analogous to the problem of choosing a selling mechanism when facing
a stream of buyers who arrive over time (see for example [11]) except we do not
have access to monetary transfers.

If each agent were to truthfully report the value to the principal, the prin-
cipal faces a cardinal version of the secretary problem [15,16]. In this version,
one is shown n non-negative numbers, sequentially, that are independent draws
from known distributions (not necessarily identical). The goal is to select a single
element (a ‘secretary’) with maximum value. An element of the sequence must
be selected or discarded upon its arrival, and this decision is irrevocable. The
solution involves a sequence of thresholds, indexed by the agent, and the prin-
cipal allocates the object to the first agent whose reported value exceeds their
corresponding threshold.

If the principal were to adopt such a policy in our setting it would encourage
all agents to exaggerate their values. To discourage this, the principal can ration
at the top of the distribution of values or verify an agent’s claim and punish him
if his claim is found to be false. The first reduces allocative efficiency while the
second is costly. The goal of this paper is to find the optimal way to provide
incentives via these two devices in an on-line setting. The contributions of this
paper are as follows:

1. A reformulation of the on-line problem as a compact linear program that may
be useful in other applications.

2. This reformulation allows us to derive a prophet inequality [21] for the on-line
version of the verification problem.

3. Under the assumption of identical distributions, we reduce the on-line version
of the verification problem with its incentive constraints to an instance of the
cardinal secretary problem with one fewer secretary and a modified value
distribution.
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Our paper is related to three lines of work. The first is on costly verification
that begins with [22]. This paper and others that followed such as [10], and [19],
analyze off-line settings with transfers, which we rule out.

The second is on partial but costless verification, see for example [6] or [3], for
example. In these models, verification is costless but imperfect. In our model ver-
ification is perfect but costly. At a high level the two are related because one can
think of partial verification as being costly, but the cost is endogenous, depending
on the nature of the realized allocation. In our case the cost is exogenous.

Our paper is also related to the extensive literature on versions of the secre-
tary problem where the principal can rely on prices that was initiated in [7,12].
This was subsequently extended to include additional constraints such as cardi-
nality constraints [1,12], matroids [14], matchings [2], and knapsack constraints
[8,9]. The absence of money in our setting means that the results from these
papers do not apply. However, our linear programming approach may be useful
in analyzing problems when the principal has access to prices.

In Sect. 2 we introduce our setting and the linear programming formulation.
In Sect. 3 we characterize the form of the optimal mechanism and provide a
corresponding prophet inequality. In Sect. 4 we study the variation of the problem
with limited punishment.

2 Model

There is a single indivisible good to allocate among a set of agents denoted
by I = {1, . . . , n}. The type of agent i ∈ I is ti which is the value to the
principal of allocating the object to agent i. We assume that the agents’ types
are independently distributed. The distribution of agent’s i type has strictly
positive density fi over the interval Ti = [ti, ti]. The preferences of the agents
are simple: each prefers to possess the object to not. The actual private benefit
enjoyed by an agent from receiving the object does not need to be specified.

Agents arrive one after the other and report their type, not necessarily truth-
fully. The principal can verify the reported type of agent i at cost c > 0 and
determine perfectly if the agent has lied. In the event an agent is discovered
to have lied, we withhold the object from them. This is the case of unlimited
punishment. The case of limited punishment is considered later.

By the revelation principle we can restrict attention to direct mechanisms.
Denote by t≤i the profile of reported types made by all agents up to and includ-
ing agent i. We write t<i to denote the profile of reported types made by all
agents up to but not including i. A direct mechanism specifies for each profile
of type reports, an allocation rule and an verification rule for each agent i.
The allocation rule specifies the probability qi(ti) he is allocated the good
conditional on the event that the good is not already allocated. Specifically,
qi(ti) = Pr[choose ti|1, . . . , i − 1 not allocated]. This fully captures the set of
online allocation rules, since independence means there is no need to condition
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the decision to allocate the good to agent i upon t<i. The verification rule is the
probability that agent i is assigned the good and inspected conditional on the
event that the good is not already allocated and denoted ai(ti). Therefore:

0 ≤ ai(ti) ≤ qi(ti) ≤ 1 ∀i ∈ I ∀ti ∈ Ti. (1)

Definition 1. A direct mechanism M = (T1, . . . , T|I|, {qi(·), ai(·)}i∈I) restricts
the strategy set of each agent i to Ti, and returns an allocation rule qi : Ti → [0, 1]
and a verification rule ai : Ti → [0, 1] for each agent i ∈ I.

Definition 2. A direct mechanism M = (T1, . . . , T|I|, {qi(·), ai(·)}i∈I) is incen-
tive compatible if each agent i has an incentive to truthfully report her type,
i.e.

qi(ti) ≥ qi(t′i) − ai(t′i) ∀i ∈ I ∀ti, t
′
i ∈ Ti. (2)

The left hand side of (2) is the probability of receiving the good with a
truthful report. The right hand side is the probability of receiving the good
with a misreport adjusted downwards for the possibility of being inspected and
punished for the misreport.

The principal would like to choose the allocation and verification probabilities
q and a satisfying (1) and (2) to maximize:

∑

i∈I

Et<i
[
∏

j<i

(1 − qj(tj))]Eti [tiqi(ti) − cai(ti)].

2.1 Reduced Form Representation

We work with a reduced form representation of the allocation and verification
rules (see for example [5,17,23]). Given an allocation and verification rule, (q, a),
let Qi(ti) = qi(ti)Et<i

[
∏
j<i

(1 − qj(tj))] and Ai(ti) = ai(ti)Et<i
[
∏
j<i

(1 − qj(tj))] be

the interim allocation and verification probabilities respectively. The interim allo-
cation and verification probabilities are related to the allocation and verification
probabilities as follows:

Lemma 1. Let Q,A, q, a be the interim as well as actual allocation and verifi-
cation rules of a direct mechanism. Then the interim and actual rules are related
as follows:

qi(ti) =
Qi(ti)

1 − ∑
j<i

Etj [Qj(tj)]
(3)

ai(ti) =
Ai(ti)

1 − ∑
j<i

Etj [Qj(tj)]
(4)
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Proof. We prove (3). The proof of (4) is similar. Now, Qi(ti) = qi(ti)Et<i
[
∏
j<i

(1 − qj(tj))]. Thus,

qi(ti) =
Qi(ti)

Et<i
[
∏
j<i

(1 − qj(tj))]
.

It suffices to prove the following:

Et≤i
[
∏

j≤i

(1 − qj(tj))] = 1 −
∑

j≤i

Etj [Qj(tj)].

We do so by induction. For i = 1, the equality reduces to

Et1 [1 − q1(t1)] = 1 − Et1 [Q1(t1)]

which holds since Q1(t1) = q1(t1). Let’s now prove the equality for i. This holds
since

Et≤i
[
∏

j≤i

(1 − qj(tj))] = Eti [(1 − qi(ti))]Et<i
[
∏

j<i

(1 − qj(tj))]

= (1 − Eti [qi(ti)])Et<i
[
∏

j<i

(1 − qj(tj))]

= Et<i
[
∏

j<i

(1 − qj(tj))]

− Eti [qi(ti)]Et<i
[
∏

j<i

(1 − qj(tj))]

= 1 −
i−1∑

j=1

Etj [Qj(tj)] − Eti [Qi(ti)]

= 1 −
i∑

j=1

Etj [Qj(tj)]

where the first equality follows from independence, the second equality follows
from linearity of expectations, and the fourth equality follows from the inductive
step and the definition of the interim allocation. ��

It follows from Lemma 1 that the set of constraints (1) can be reduced to

Qi(ti) +
∑

j<i

Etj [Qj(tj)] ≤ 1 ∀i ∈ I ∀ti ∈ Ti

0 ≤ Ai(ti) ≤ Qi(ti) ∀i ∈ I ∀ti ∈ Ti
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Using the reduced form representation we can formulate the principal’s problem
as the following linear program (denoted LP):

max
Q,A

∑

i∈I

Eti [tiQi(ti) − cAi(ti)] (LP)

s.t. Qi(ti) +
∑

j<i

Etj [Qj(tj)] ≤ 1 ∀i ∀ti ∈ Ti

Qi(ti) ≥ Qi(t′i) − Ai(t′i) ∀i ∈ I ∀ti, t
′
i ∈ Ti

0 ≤ Ai(ti) ≤ Qi(ti) ∀i ∈ I ∀ti ∈ Ti

2.2 Prophet Inequality Under Truthful Reporting

We first provide an alternative proof of a classic prophet inequality for the selec-
tion problem, when the agents truthfully report their types. A prophet inequality
lower bounds the expected value of the number on which one stops with respect
to the expected maximum value in hindsight. The maximum value in hindsight
is the expected value of the nth order statistic. [16] obtained a tight bound of
1/2 for this problem. In words, the optimal reward of the stopping problem is at
least half the size of the expected value of the largest of the n random numbers.
The study of prophet inequalities has attracted an enthusiastic following. [13] as
well as [18] provide surveys.

This proof below will be replicated to show similar results when incentive
constraints are present. Using the reduced form representation the problem can
be restated as a linear program:

max
Q

∑

i∈I

Eti [tiQi(ti)]

s.t. Qi(ti) +
∑

j<i

Eti [Qi(ti)] ≤ 1 ∀i ∀ti ∈ Ti

Qi(ti) ≥ 0 ∀i ∀ti ∈ Ti

Notice that the incentive compatibility constraints are absent.
We think of the problem of choosing the maximum value in hindsight as the

off-line version of our problem where all agents are present at the same time.
Here the principal can choose which agent should receive the object based on
the reported types of all agents.

Theorem 1. The optimal online algorithm achieves at least 1/2 of the perfor-
mance of the optimal offline algorithm in expectation.

Proof. Let Q∗
i (ti) be the interim expected probability with which agent i with

type ti receives the item in the optimal off-line solution. The expected total value
to the principal is given by

∑

i∈I

Eti [Q
∗
i (ti)ti].
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Pick online values Qi(ti) = 1
2Q∗

i (ti). It is clear that the objective function
with respect to the reduced form for both problems is linear and coincides. Thus,
a simple scaling approximates the optimal objective:

∑

i∈I

Eti [Qi(ti)ti] =
1
2

∑

i∈I

Eti [Q
∗
i (ti)ti].

The proposed solution is feasible for the online problem. In detail, Qi(ti) +∑
j<i

Etj [Qj(tj)] = 1
2Q∗

i (ti) + 1
2

∑
j<i

Etj [Q
∗
j (tj)] ≤ 1. The last inequality holds since

Q∗
i (ti) ≤ 1 and the expected offline allocation for the first i − 1 agents is also

less than 1. ��

3 The Optimal Mechanism

In this section we derive the optimal interim allocation and verification rules.
The interim verification rule will be derived as a function of the optimal interim
allocation rule. The optimal interim allocation rule will be given as a solution to
a linear program. The actual allocation and verification rules can be obtained
from the interim ones via Lemma 1.

Given the optimal interim allocation rule, the optimal interim verification
rule can be deduced from the incentive constraints in (LP). They can be reduced
to the following:

min
ti

Qi(ti) ≥ Qi(t′i) − Ai(t′i) ∀i ∈ I ∀t′i ∈ Ti (5)

Therefore, at optimality,

Ai(ti) = Qi(ti) − min
t′
i

Qi(t′i). (6)

We use (6) to eliminate the verification variables from (LP). We also intro-
duce a new set of variables {φi}i∈I accounting for the minimum interim alloca-
tion per agent. For a given {φi}i∈I , the optimal interim allocation rule is given
by the following linear program denoted LP (φ):

V (φ) = max
Q

∑

i∈I

Eti [(ti − c)Qi(ti)] + cφi (7)

s.t. Qi(ti) +
∑

j<i

Etj [Qj(tj)] ≤ 1 ∀i ∀ti ∈ Ti

Qi(ti) ≥ φi ≥ 0 ∀i ∈ I ∀ti ∈ Ti

Whenever
∑
i

φi ≤ 1, V (φ) is well defined, otherwise there is no feasible

solution. This is because 1 ≥ ∑
i Eti [Qi(ti)] ≥ ∑

i φi should hold. Hence, the
problem of finding the optimal mechanism reduces to

max
φ:

∑

i∈I

φi≤1
V (φ),
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which is also a linear program. We now characterize the optimal interim alloca-
tion and verification rules given φ.

Lemma 2. The optimal solution of LP(φ) is monotonic in type, i.e.

Qi(ti) ≤ Qi(t′i) ∀i ∈ I ∀ti ≤ t′i
Proof. Suppose not. Then, there is an i and pair (ti, t′i) such that Qi(ti) > Qi(t′i).
We pick an ε > 0 such that
– Qi(ti) − ε

fi(ti)
≥ Qi(t′i),

– Qi(t′i) + ε
fi(t′

i)
≤ Qi(ti).

If we reduce Qi(ti) by ε
fi(ti)

and increase Qi(t′i) by ε
fi(t′

i)
, feasibility is

preserved. The objective function value increases by ε(t′i − ti) > 0, which is
a contradiction. ��
Hence, there exists a threshold t̂i for all i such that Qi(ti) = φi for ti ≤ t̂i and
Qi(ti) ≥ φi otherwise.

We show the optimal strategy is a threshold strategy in each round. A trans-
formation of variables will prove convenient:

Qi(ti) = φi + xi(ti) (8)

Given φ, we can find the optimal strategy by identifying the solution to the
following linear program:

max
x

∑

i∈I

Eti [xi(ti)(ti − c)] (XP)

s.t. xi(ti) +
∑

j<i

Etj [xj(tj)] ≤ 1 −
∑

j≤i

φj ∀i ∈ I ∀ti ∈ Ti

xi(ti) ≥ 0 ∀i ∈ I ∀ti ∈ Ti

(XP) is a simplified version of LP (φ) given by the transformation defined in (8).

Lemma 3. Suppose that Q is the optimal solution to LP (φ). Then, for each
agent i, there exists a threshold t̂i, such that

Qi(ti) =

{
1 − ∑

j<i

Etj [Qj(tj)] if ti ≥ t̂i

φi otherwise
(9)

Proof. Suppose we are interested in the allocation and verification rules when we
reach agent i. Fix all other variables. We are interested in solving the following
linear program

max
xi

Eti [xi(ti)(ti − c)]

s.t. xi(ti) ≤ 1 −
∑

j≤i

φj −
∑

j<i

Etj [xj(tj)] ∀i ∈ I ∀ti ∈ Ti

Eti [xi(ti)] ≤ 1 −
∑

j≤k

φj − xk(tk) −
∑

j<k,j �=i

Etj [xj(tj)] ∀k > i ∀tk ∈ Tk

xi(ti) ≥ 0 ∀i ∈ I ∀ti ∈ Ti
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Now, it is clear that the optimal solution can actually be characterized by a
threshold. All high types will be assigned their upper limit till the constraint on
the aggregate allocation binds. Thus, the optimal solution x is given by

xi(ti) =

{
1 − ∑

j≤i

φj − ∑
j<i

Etj [xj(tj)] if ti ≥ t̂i

0 otherwise

Returning back to Q variables completes the proof. ��
Lemma 1 allows us to derive the actual allocation and verification rules given

the interim ones. We also provide the form for the actual allocations, given the
characterization of the optimal interim allocation in terms of parameters φ, t̂,

Corollary 1. For each agent i there exists a threshold t̂i and constant αi, such
that the optimal actual allocation can be written as follows:

qi(ti) =
{

1 if ti ≥ t̂i
αi otherwise

ai(ti) =
{

1 − αi if ti ≥ t̂i
0 otherwise

Proof. We use Lemma 1 to get the form of the actual allocation:

qi(ti) =
Qi(ti)

1 − ∑
j<i

Etj [Qj(tj)]
=

⎧
⎪⎪⎨

⎪⎪⎩

1− ∑

j<i

Etj
[Qj(tj)]

1− ∑

j<i

Etj
[Qj(tj)]

if ti ≥ t̂i

φi

1− ∑

j<i

Etj
[Qj(tj)]

otherwise
=

{
1 if ti ≥ t̂i
αi otherwise

where
αi =

φi

1 − ∑
j<i

Etj [Qj(tj)]
.

The form for the actual verification rule follows by (6). ��
Before continuing, we summarize the roadmap for determining the optimal

allocation and verification rules:

1. Solve the linear program max
φ:

∑

i∈I

φi≤1
V (φ) to find the optimal interim allocation

rule Q.
2. Derive the optimal interim verification rule A from Eq. (6).
3. Derive the optimal actual allocation and verification rules q, a from the

interim ones Q,A, via Lemma 1.

3.1 Identical Distributions

We examine the case of identical distributions, i.e., Ti = T and fi(t) = f(t) for
all i ∈ I, ti ∈ T . In this case, we can give a neat representation of the optimal
strategy.
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Let μ = Et[t]. Now, LP (φ) can be written as

max
x

∑

i∈I

Et[xi(t)(t − c)] + μ
∑

i

φi

s.t. xi(t) +
∑

j<i

Et[xj(t)] ≤ 1 −
∑

j≤i

φj ∀i ∈ I ∀t ∈ T

xi(t) ≥ 0 ∀i ∈ I ∀t ∈ T

Let φ∗ be the vector φ that maximizes V (φ). We can set φi = 0 for all i < n
and φn =

∑
i φ∗

i . The objective function does not change while the right hand
side of all inequalities in the above LP increases, but the one for i = n, which
remains the same. Thus, we can restrict our attention to φi = 0 for i < n. In the
optimal solution of the initial LP, the last agent’s rule is constrained as follows:

Qn(tn) ≤ 1 −
∑

j<n

Etj [Qj(tj)] ∀tn.

Since the right hand side coincides for all types, and the objective function is
increasing in the allocation rule, the constraint binds for all types. This means
that Q∗

n(tn) = φ∗
n, which implies that xn(t) = 0 for all t.

We can now reduce LP (φ∗) to the following linear program to determine the
strategies for the first n − 1 agents:

max
x

∑

i∈I\{n}
Et[xi(t)(t − c)]

s.t. xi(t) +
∑

j<i

Et[xj(t)] ≤ 1 − φ∗
n ∀i ∈ I \ {n} ∀t ∈ T

xi(t) ≥ 0 ∀i ∈ I \ {n} ∀t ∈ T

By normalizing the right hand sides of this linear program to 1, we can interpret
it as arising from a cardinal secretary problem with n − 1 secretaries, where the
value of each ‘secretary’ is t−c, drawn according to a density function f . In case
the object is still available in the last round it is given to the last agent.

3.2 Prophet Inequality

We derive a prophet inequality for the setting with verification using the reduced
form.1 It scales the optimal offline solution so as to make it a feasible solution
for the online setting. This technique can also be used in the standard setting.

Theorem 2. The optimal online algorithm achieves at least 1/2 of the perfor-
mance of the optimal offline algorithm on expectation.

1 This result does not assume that the distribution of types is IID.
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Proof. Let Q∗
i (ti) be the interim expected probability with which agent i with

type ti receives the item in the optimal off-line solution. Let φ∗
i = inf

ti
Q∗

i (ti) as

proposed in [4]. The expected total value to the principal is given by
∑

i∈I

[Eti [Q
∗
i (ti)(ti − c)] + φ∗

i c].

Pick online values Qi(ti) = 1
2Q∗

i (ti) and φi = 1
2φ∗

i . It is clear that the objec-
tive function with respect to the reduced form for both problems is linear and
coincides. Thus, a simple scaling approximates the optimal objective:

∑

i∈I

[Eti [Qi(ti)(ti − c)] + φic] =
1
2

∑

i∈I

[Eti [Q
∗
i (ti)(ti − c)] + φ∗

i c]

It suffices to prove that the proposed solution is feasible for the online problem.

– Qi(ti) +
∑
j<i

Etj [Qj(tj)] = 1
2Q∗

i (ti) + 1
2

∑
j<i

Etj [Q
∗
j (tj)] ≤ 1: This holds since

Q∗
i (ti) ≤ 1 and the expected offline allocation for the first i − 1 agents is also

less than 1.
– Qi(t) ≥ φi: The constraint coincides with the offline constraint. Nothing

changes by scaling both sides of the inequality. ��

4 Limited Punishment

We say that punishment is limited if the principal cannot reduce an agent’s payoff
to his outside option by punishing him. If we interpret verification as acquiring
information, then punishment can be limited because information is imperfect.2

We assume that punishment is proportional to the private benefit enjoyed by
the agent from receiving the object. If vi is the private benefit enjoyed by agent
i, punishment is kivi, where each ki ∈ [0, 1]. These are the same assumptions as
in [17]. As we show below, limited punishment will cause the principal to ‘ration
at the top’ as well. All types above some threshold face the same probability of
receiving the good.

By the Revelation Principle we can focus on direct mechanisms. In this case,
if an agent is inspected, it is optimal to penalize him if and only if he is found to
have lied. After the allocation is made, the planner will observe the agent’s type
and destroy a fraction ki of the agent’s payoff. A direct mechanism specifies for
each profile of type reports the probability qi(ti) that the good is assigned to
agent i conditional on the event that it is not already assigned. These variables
must satisfy the following feasibility conditions:

0 ≤ qi(ti) ≤ 1 ∀i ∈ I ∀ti ∈ Ti (10)

2 We take verification cost and punishment level as exogenous but it is possible that
the principal can get more precise information by incurring a higher information
acquisition cost, which, in turn, leads to a more severe expected punishment. The
results in this paper readily extend to the case where the principal can jointly opti-
mize over verification cost and punishment level.
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The incentive compatibility constraints are as follows:

viqi(ti) ≥ (vi − kivi)qi(t′i) ⇒
qi(ti) ≥ (1 − ki)qi(t′i) ∀i ∈ I ∀ti, t

′
i ∈ Ti (11)

The principal would like to choose the allocation probabilities q to maximize:
∑

Et<i
[
∏

j<i

(1 − qj(tj))Eti [tiqi(ti)].

As before we work with a reduced form representation. This allows us to
formulate the optimal mechanism as the following linear program:

max
Q

∑

i∈I

Eti [tiQi(ti)]

s.t. Qi(ti) +
∑

j<i

Eti [Qi(ti)] ≤ 1 ∀i ∀ti ∈ Ti

Qi(ti) ≥ (1 − ki)Qi(t′i) ∀i ∀ti ∈ Ti ∀t′i ∈ Ti

Qi(ti) ≥ 0 ∀i ∀ti ∈ Ti

4.1 The Optimal Mechanism

We simplify the incentive constraint, as in [20]. We include the proof for com-
pleteness.

Lemma 4. An allocation rule satisfies incentive compatibility if and only if for
all i there exists χi such that

(1 − ki)χi ≤ Qi(ti) ≤ χi ∀ti ∈ Ti (12)

Proof. If IC holds then (12) holds with χi = sup
ti

Qi(ti). Conversely, if (12) holds

for some χi, then it also holds with χ′
i = sup

ti

Qi(ti), which implies incentive

compatibility. ��
We now write down a linear program which finds the optimal strategy. We

know that for optimal χ this linear program is going to return the optimal
strategy.

max
Q,χ

∑

i∈I

Eti [tiQi(ti)]

s.t. Qi(ti) +
∑

j<i

Eti [Qi(ti)] ≤ 1 ∀i ∈ I ∀ti ∈ Ti

(1 − ki)χi ≤ Qi(ti) ≤ χi ∀i ∈ I ∀ti ∈ Ti

Qi(ti) ≥ 0 ∀i ∈ I ∀ti ∈ Ti

We now describe the optimal strategy.
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Lemma 5. Suppose that Q is the optimal online solution. Let χi = sup
ti∈Ti

Qi(ti).

Then for each agent i, there exists a threshold t̂i such that

Qi(ti) =
{

χi if ti ≥ t̂i
(1 − ki)χi otherwise

(13)

Proof. Suppose we are interested in the allocation rule when we reach agent i.
Fix all other variables at their optimal value. We are interested in solving the
following linear program:

max
Qi

Eti [tiQi(ti)]

s.t. Qi(ti) ≤ 1 −
∑

j<i

Etj [Qj(tj)] ∀i ∈ I ∀ti ∈ Ti

Eti [Qi(ti)] ≤ 1 − Qk(tk) −
∑

j<k,j �=i

Etj [Qj(tj)] ∀k > i ∀tk ∈ Tk

(1 − ki)χi ≤ Qi(ti) ≤ χi ∀ti ∈ Ti

Qi(ti) ≥ 0 ∀ti ∈ Ti

Now, it is clear that the optimal solution can be characterized by a threshold
policy. All high types will be assigned their upper limit till a constraint for the
aggregate allocation binds. The optimal online solution has the following form:

Qi(ti) =

{
min{χi, 1 − ∑

j<i

Etj [Qj(tj)]} if ti ≥ t̂i

(1 − ki)χi otherwise
(14)

The upper limit can be simplified. We prove that

χi ≤ 1 −
∑

j<i

Etj [Qj(tj)] ∀i ∈ I.

Suppose otherwise. We pick χ′ = 1 − ∑
j<i

Etj [Qj(tj)]. This makes the constraints

less strict since the upper bound remains the same but the lower bound reduces.
Thus we can reduce the allocation for lower types and increase the allocation of
higher types while holding the aggregate allocation steady. This is a contradiction
since such a change will increase total welfare. ��

In the limited penalties case the actual allocation will have a slightly different
form.

Corollary 2. For each agent i there exists a threshold t̂i, and constant βi, such
that the optimal actual allocation rule can be written as follows:

qi(ti) =
{

βi if ti ≥ t̂i
(1 − ki)βi otherwise
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Proof. We use Lemma 1 to get the form of the actual allocation rule:

qi(ti) =
Qi(ti)

1 − ∑

j<i

Etj [Qj(tj)]
=

⎧
⎪⎨

⎪⎩

χi
1− ∑

j<i
Etj

[Qj(tj)]
if ti ≥ t̂i

(1−ki)χi
1− ∑

j<i
Etj

[Qj(tj)]
otherwise

=

{
βi if ti ≥ t̂i

(1 − ki)βi otherwise

where βi = χi

1− ∑

j<i

Etj
[Qj(tj)]

. ��

4.2 Prophet Inequality

We use the same machinery as before to further illustrate that extra constraints
that restrict the optimal solution in both offline and online cases, do not have
an effect on the prophet inequality.

Theorem 3. The optimal online algorithm achieves at least 1/2 of the perfor-
mance of the optimal offline algorithm on expectation.

Proof. Let Q∗
i (ti) be the interim probability with which agent i with type ti

receives the item in the optimal off-line solution. Let χ∗
i = sup

ti∈Ti

Q∗
i (ti) as pro-

posed in [20]. The expected total value to the principal is given by
∑

i∈I

Eti [tiQ
∗
i (ti)]

Pick online values Qi(ti) = 1
2Q∗

i (ti) and χi = 1
2χ∗

i for all i ∈ I. It is clear
that the objective function with respect to the reduced form for both problems is
linear and coincides. Thus, a simple scaling approximates the optimal objective:

∑

i∈I

Eti [tiQi(ti)] =
1
2

∑

i∈I

Eti [tiQ
∗
i (ti)]

It suffices to prove that the proposed solution is feasible for the online
problem.

– Qi(ti) +
∑
j<i

Etj [Qj(tj)] = 1
2Q∗

i (ti) + 1
2

∑
j<i

Etj [Q
∗
j (tj)] ≤ 1: This holds since

Q∗
i (ti) ≤ 1 and the expected offline allocation for the first i − 1 agents is also

less than 1.
– (1 − ki)χi ≤ Qi(t) ≤ χi: The constraint coincides with the offline constraint.

Nothing changes by scaling both sides of the inequalities. ��
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Abstract. We consider the facility location problem in a metric space,
focusing on the case of three agents. We show that selecting the reported
location of each agent with probability proportional to the distance
between the other two agents results in a mechanism that is strategyproof
in expectation, and dominates the random dictator mechanism in terms
of utilitarian social welfare. We further improve the upper bound for
three agents on a circle to 7

6
(whereas random dictator obtains 4

3
); and

provide the first lower bounds for randomized strategyproof facility loca-
tion in any metric space, using linear programming.

1 Introduction

In a facility location problem, a central authority faces a set of agents who report
their locations in some space, and needs to decide where to place a facility. It
is typically assumed that each agent i wants the facility to be placed as close
as possible to her own location ai. We want a strategyproof mechanism, such
that reporting the truthful location is a weakly dominant strategy for every
agent. The designer may have additional goals, where the most common one is
to minimize the utilitarian social cost—the sum of distances to agents’ locations.

Strategyproof facility location mechanisms have been studied at least since
the mid-20th century [5]. In 2009, the agenda of approximation mechanisms
without money was made explicit in a paper by Procaccia and Tennenholtz [28,
29], who used facility location as their primary domain of demonstration due to
its simplicity. Moreover, facility location is often a bridge between mechanism
design and social choice [7,11,23] and has applications to transport [24], disaster
relief [14] and more. Facility location is thus often used as a testbed for ideas
and techniques in mechanism design and noncooperative multiagent systems.

Most problems that include a single facility are by now well understood. For
example, all deterministic strategyproof mechanisms on continuous and on dis-
crete lines have been characterized [9,30], and it is well known that selecting the
median agent location is both strategyproof and optimal in terms of utilitarian
social cost [25,28]. One strand of the literature seeks to characterize domains
where median-like mechanisms exist [17,27].

For other domains, e.g. graphs that contain cycles, research following [28]
has focused on the minimal social cost that can be guaranteed by strategyproof
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mechanisms. For deterministic mechanisms even the existence of a single cycle
in a graph entails that any strategyproof mechanism must be dictatorial on a
subdomain, and thus has an approximation ratio that increases linearly with
the number of agents n [9,30]. Many variations of the problem have since been
explored in the AI and multiagent systems community, including multiple facil-
ities [3,10,31], complex incentives and forms of strategic behavior [13,32–34],
and alternative design goals [1,12,19]. The circle in particular has received much
attention in the facility location literature [1,2,6,9,30], both because it is the
simplest graph for which median-like mechanisms cannot work, and because it
is an abstraction of actual problems like selecting a time-of-the-day or a server
in a ring of computers.

Yet, the fundamental strategyproof facility location problem for randomized
mechanisms remains almost unscathed. It is easy to show that the random dic-
tator (RD) mechanism obtains an approximation ratio of 2 − 2

n for any metric
space [1,23], and of course that 1 is a lower bound. However except for lines
and trees (where the deterministic Median mechanism is optimal), nothing else
is known.

To the best of our knowledge, the literature does not mention mechanisms
that approximate the optimal social cost better than RD even for specific spaces
like the circle, nor is there any lower bound higher than 1.1 The current paper
focuses on narrowing this gap by proving tighter upper and lower bounds for
three agents.

A variant of the problem on which there was more (negative) progress is
when we allow arbitrary constraints on the location of the facility (e.g., where
agents can be placed anywhere on a graph, but only 5 vertices are valid loca-
tions for the facility). In the constrained variant, the RD mechanism obtains
3 − 2

n approximation and this is known to be tight for all strategyproof mech-
anisms. The upper bound holds for any metric space [23], whereas the lower
bound requires specific constructions on the n-dimensional binary cube [11,22].
Anshelevich and Postl [4] show a smooth transition of the RD approximation
ratio from 2− 2

n to 3− 2
n as the location of the facility becomes more constrained.

See [20] (Section 5.3) for an overview of approximation results for a single facility.

1.1 Contribution

Our main contribution is the introduction of two randomized mechanisms that
beat the random dictator (RD) mechanism on a circle: the Proportional Circle
Distance (PCD) mechanism, which selects each reported location ai with proba-
bility proportional to the length Li of the arc facing agent i; and the q-Quadratic
Circle Distance mechanism (q-QCD) where the probability of selecting ai is
proportional to (max{(Li)2, q2}).

1 Alon et al. [1] proposed a randomized strategyproof mechanism specifically for cir-
cles, called the hybrid mechanism. They showed that it obtains the best possible
approximation ratio for the minimax cost, yet for the social cost it achieves a poor
approximation ratio of n−1

2
.
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We prove that PCD is strategyproof for any odd number of agents. For 3
agents, we show that PCD obtains an approximation ratio of 5

4 on the circle
(in contrast to 4

3 by RD), and has a natural extension that is strategyproof
and weakly dominates RD on any metric space. The 1

4 -QCD mechanism is also
strategyproof for 3 agents, and obtains an approximation ratio of 7

6 on the circle.
For any finite graph with m vertices, there is a linear program of polynomial

size that can compute the optimal randomized strategyproof mechanism. We use
such programs to obtain first (but non-tight) lower bounds on the approxima-
tion ratio of any strategyproof mechanism on circles and on general graphs. See
Table 1 for a summary.

Some of our proofs use a combination of formal analysis and computer opti-
mization. For most proofs we provide only a sketch due to space constraints, but
all complete proofs appear in the full version on arXiv [21].

2 Preliminaries

A domain of facility location problems is given by 〈X , d〉, where X is a set,
and d : X × X → R+ is a distance metric. In this paper, X is a (discrete or
continuous) graph, and d(x, y) is the length of the shortest path between x and
y. An instance in the domain 〈X , d〉 is given by a profile a ∈ X n, where n is the
number of agents (implicit in the profile).

We denote by a−i the partial profile that includes all entries in a except ai.
A n-agent facility location mechanism in domain 〈X , d〉 (or simply a mecha-

nism) is a function f : X n → Δ(X ), where Δ(X ) is the set of distributions over
X . We denote the resulting lottery of applying f to profile a by fa . Mechanism
f is deterministic if fa is degenerated for any profile a, in which case we denote
fa ∈ X . We denote the probability that mechanism f selects z on profile a by
fa(z) ∈ [0, 1].

When placing a facility on z ∈ X , an agent located at ai suffers a cost of
d(ai, z). We denote by ci(a, h) = Ez∼h[d(ai, z)] the expected cost of agent i in
profile a, when the facility is placed according to lottery h.

The (utilitarian) social cost of lottery h in profile a is denoted by SC(a, h) =∑
i≤n ci(a, h) = Ez∼h[

∑
i≤n d(ai, z)].

We omit the parameter a from the last two definitions when clear from con-
text. We also abuse notation by writing ci(a, z), SC(a, z) for a specific location
z ∈ X rather than a lottery.

We denote by OPT (a) = infz∈X SC(a, z) the optimal social cost (note that
this is w.l.o.g. obtained in a deterministic location).

2.1 Common Mechanism Properties

A mechanism f is strategyproof if for any profile a ∈ X n, any agent i, and
any alternative report a′

i ∈ X , ci(a, fa) ≤ ci(a, fa−i,a′
i
) (i.e., i does not gain in

expectation).
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A mechanism f is ex-post strategyproof if it is a lottery over strategyproof
deterministic mechanisms. Note that ex-post strategyproofness implies strate-
gyproofness, but not vice versa.

A mechanism f is peaks-only if fa(z) = 0 for all z /∈ a. That is, if the facility
can only be realized on agents’ locations.

Mechanism f dominates mechanism g, if for any profile a, SC(a, fa) ≤
SC(a, ga) and the inequality is strict for at least one profile.

Finally, a mechanism f has an approximation ratio of φ, if for any profile a,
SC(a, fa) ≤ φ · OPT (a).

Familiar mechanisms. The Random Dictator (RD) mechanism selects each
agent i with equal probability, and places the facility on ai. Clearly RD is ex-
post strategyproof, and it is also known to be group-strategyproof [2] (that is,
no subset of agents can gain by a joint deviation). Further, RD has an approxi-
mation ratio of 2 − 2

n (i.e., 4
3 for n = 3 agents), and this is tight for any metric

space with at least two distinct locations [1].
On one-dimensional spaces, where agent locations can be sorted, the deter-

ministic median mechanism simply picks the location of the median agent. The
median mechanism is strategyproof and optimal [25]. The median mechanism
also extends to trees, maintaining both properties [30].

3 Circles

A circle is the simplest graph for which there is no median. We denote by CM

the circle graph with M equi-distant vertices V . Assume w.l.o.g. that agents
are indexed in clockwise order. For a profile a ∈ V n, and two consequent agents
j, j+1 (the addition is modulo n), we denote by La(aj , aj+1) (or just L(aj , aj+1)
when the profile is clear from context) the length of the arc between these agents,
that does not contain any other agent. When L(aj , aj+1) is not larger than a
semicircle, then it also coincides with the distance d(aj , aj+1).

We also define Li = L(aj , aj+1) where j = i + �n/2� (modulo n) to be
the length of the arc that is “facing” agent i (although it may not be antipo-
dal). For 3 agents this simply means that L1 = L(a2, a3), L2 = L(a3, a1), and
L3 = L(a1, a2). Also note that for 3 agents, the optimal location is always the
agent facing the longest arc. See Fig. 1a.

3.1 Proportional Distance

Definition 1. The Proportional Circle Distance (PCD) mechanism assigns the
facility to each location ai w.p. Li∑

j≤n Lj
.

Theorem 1. PCD is strategyproof for any odd n.
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Fig. 1. Examples. (a) The circle C14. Under PCD mechanism, the probabilities that
the facility will be realized on a1, a2 and a3, respectively, are ( 3

14
, 9
14

, 2
14

). Under PD,
the probabilities are ( 3

10
, 5
10

, 2
10

). Under 1
4
-QCD, the probabilities are proportional to

(( 1
4
)2, ( 9

14
)2, ( 1

4
)2), which gives us (0.1161, 0.7677, 0.1161). The other two examples are

used in the proof of Theorem 1 (b) and Case I of Theorem 2 (c).

Proof sketch. Suppose that a1 tries the manipulate by moving (w.l.o.g.) clock-
wise to a′

1. Note that the probability of selecting agent 1 is not affected. Thus
the agent’s gain comes from increasing the selection probability of a closer agent
at the expense of a farther agent. On the other hand, the agent’s cost increases
proportionally to her distance from her true location, and we show that this
factor is more prominent. 	


For 3 agents, the PCD mechanism guarantees an approximation ratio of
5
4 = 1.25. This is not hard to show, but will also follow from stronger results in
Sect. 4. In Sect. 3.3 we further discuss what we know when n > 3.

3.2 The Quadratic Distance Mechanism

Since the optimal location with 3 agents is always the peak facing the longest arc,
to improve the approximation ratio we must put more weight on peaks facing
long arcs (at least in the “bad” instances).

Definition 2. The q-Quadratic Circle Distance (q-QCD) mechanism considers
the arc lengths L1, L2, L3. It then assigns the facility to ai w.p. proportional to
si = max{(Li)2, q2}.
That is, q puts a lower bound on the probability that each agent is selected.

Theorem 2. The 1
4 -QCD mechanism is strategyproof.

Proof sketch. We denote x = L2, z = L3 and y = L1. We denote by sx, sy, sz

the un-normalized weight assigned to the agent facing each respective arc, and
by pi = si

s where s = s1 + s2 + s3 the actual probability that i is selected. Note
that px + py + pz = 1. The notations are demonstrated on Fig. 1c.
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The cost to agent 1 can be written as

c1 = pxz + pzx =
sxz + szx

sx + sy + sz
.

Consider a step of size ε by agent 1 towards agent 3. Intuitively, moving towards
the far agent only increases its probability of selection and is thus never beneficial
for agent 1. Thus w.l.o.g. z ≥ x ≥ ε.

The move changes the arc lengths from (x, y, z) to (x − ε, y, z + ε), and the
cost changes accordingly to

c′
1 = p′

xz + p′
zx + p′

yε =
sx−εz + sz+εx + syε

sx−ε + sy + sz+ε
. (1)

Our general strategy is to write the new cost c′
1 as

c′
1 =

sxz + szx + εγ

sx + sy + sz + εθ
=

c1s + εγ

s + εθ
, (2)

where γ, θ ≥ 0. Then, we show that γ
θ ≥ sxz+szx

sx+sy+sz
(= c1). This would conclude

the proof, as it means that agent 1 does not gain:

c′
1 =

sx−εz + sz+εx + syε

sx−ε + sy + sz+ε
≥ c1s + εc1θ

s + εθ
=

c1(s + εθ)
s + εθ

= c1. (3)

The exact values of γ, θ depend on whether x − ε ≥ q (Case I, see Fig. 1c),
x ≥ q > x − ε (Case II), or q > x (Case III). We only show here Case I, which
captures most of the proof’s ideas. The proofs of the other cases are similar,
with some caveats.

Suppose first that y ≥ q = 1
4 and that z ≤ 1

2 (we later show this does not
matter). Then sx = x2, sy = y2, sz = z2, and

c1 = pxz + pzx =
x2z + z2x

x2 + z2 + y2
.

After the move, we have s′
x = (x − ε)2, s′

z = (z + ε)2, s′
y = sy = y2. Plugging

into Eq. (1),

c′
1 =

(x − ε)2z + (z + ε)2x + y2ε

(x − ε)2 + (z + ε)2 + y2
=

x2z − 2εxz + ε2z + z2x + 2εzx + ε2x + y2ε

x2 − 2εx + ε2 + z2 + 2εz + ε2 + y2

=
x2z + z2x + ε(y2 + ε(z + x))

x2 + z2 + y2 + 2ε(z − x + ε)
=

c1s + εγ

s + εθ
.

It is worthwhile to take a step back and consider what we got so far. Note that
γ in the nominator is always positive because the (linear) derivatives of the
quadratic terms sxz, szx cancel out. This shows why using quadratic probabili-
ties makes sense. However, this is not sufficient, since θ in the denominator is also
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positive, and when sy is too small (specifically, smaller than 1
16 ) then the nomi-

nator grows too slowly to counter the increase in the denominator. This explains
why we need the parameter q—to make sure that the manipulator is selected
with sufficient probability to counter the benefit of the increased probability of
the agent that is closer to a1.

Going back to the technical proof, we need to show that

γ

θ
=

y2 + ε(z + x)
2(z − x + ε)

≥ x2z + z2x

x2 + z2 + y2
.

Rearranging, we should prove that

(y2 + ε(z + x))(x2 + z2 + y2) − (x2z + z2x)(2(z − x + ε)) (4)

is non-negative. It is easy to see that this expression is monotonically increasing
in y (and y ≥ 1

4 in this case). It is a bit less easy to see (not shown here)
that it is also monotonically increasing in ε. Thus it is sufficient to lower bound
( 1
16 + x(z + x))(x2 + z2 + 1

16 ) − (x2z + z2x)2(z − x + x), or, equivalently,

(
1
16

+ xz + x2)(x2 + z2 +
1
16

) − 2z2x(x + z).

One can check that the minimum of this expression in the range 0 ≤ x ≤ z ≤ 1
2

is exactly 0 (at z = 1
2 , x = 1

4 ).2 Thus γ
θ ≥ c1, and we are done by Eq. (3).

Finally, suppose that z > 1
2 . The only change is that the underlined z in

Eq. (4) would change to x + y (which is smaller than z). This only increases the
expression and would thus not make it negative. 	


Since the inequality we get in Eq. (4) is tight, the proof also shows that any
q-QCD mechanism for q < 1

4 would not be strategyproof.

Proposition 3. The 1
4 -QCD mechanism has an approximation ratio of 7

6
∼=

1.166, and this is tight.

Proof. Let a = (a1, a2, a3) be a profile, and denote x = d(a1, a2), y =
d(a2, a3), z = d(a1, a3). We assume w.l.o.g. z ≥ y ≥ x, thus the optimal point is
a2. The optimal social cost is x + y.

We first argue that the approximation only becomes worse by moving a2

to the mid point between her neighbors. By decreasing y to y′ = y − ε and
increasing x to x′ = x + ε, z remains the largest arc, so a2 is still optimal and
x′ + y′ = x + y is still the optimal social cost. The social cost of the mechanism
changes from sx(y+z)+sy(x+z)+sz(x+y)

sx+sy+sz
to s′

x(y+z)+s′
y(x+z)+sz(x+y)

s′
x+s′

y+sz
. We have that

s′
x + s′

y ≤ sx + sy since the new partition is more balanced. This means that the
denominator weakly increases and the total weight pz given to the optimal point
a2 can only decrease. Among the two non optimal points, note that a3 has the
higher cost (z+y ≥ z+x). Now, s′

x ≥ sx so the relative weight of the worst point

2 We verified this with Wolfram Alpha.



Strategyproof Facility Location for Three Agents on a Circle 25

a3 only increases. Thus the social cost weakly increases and the approximation
ratio becomes worse.

This means that we are left to find the worst instance among the instances
with distances (x, x, 1 − 2x) for some x ≤ 1

3 . The optimum in such an instance
is 2x whereas the social cost of 1

4 -QCD is:

– for 1
3 ≥ x ≥ 1

4 , we have in particular that 1 − 2x ≥ 1
3 > 1

4 . Then

SC =
2x2(x + (1 − 2x)) + (1 − 2x)22x

2x2 + (1 − 2x)2
=

2x − 6x2 + 6x3

1 − 4x + 6x2

and the approximation ratio is 1−3x+3x2

1−4x+6x2 . The derivative of this expression is
negative for x < 1

2 so it is maximized at the bottom of the range, at x = 1
4 .

– for x ≤ 1
4 , we have that

SC =
2(1/4)23x + (1 − 2x)22x

2(1/4)2 + (1 − 2x)2
,

and the approximation ratio is 3/16+(1−2x)2

2/16+(1−2x)2 , which is increasing in x, so once
again we obtain the maximum at x = 1

4 .

Plugging x = 1
4 to the expression of the approximation ratio above, we get that

in the worst instance a = (0, 1
4 , 1

2 ), 1
4 -QCD obtains an approximation ratio of

exactly 3/16+(1/2)2

2/16+(1/2)2 = 7
6 . 	


3.3 Beyond 3 Agents

We already saw that the PCD mechanism is strategyproof for any odd n. How-
ever, calculating its worst-case approximation ratio is more tricky. In particular,
the worst instance is not symmetric w.r.t. the optimal point (in contrast to 3
agents). In the limit, PCD and random dictator have the same approximation:

Proposition 4. When n grows, the approximation ratio of PCD approaches 2.

Proof. Let n = 2k + 1, and consider the profile in Fig. 2a, where x = 1
4
√

k
. The

numbers inside the circle indicate the number of agents in each location.
The optimal point is the bottom concentration, with a social cost of c1 =

kx + 1
2 − x ≤ 1

4

√
k + 1

2 . The social cost of the left point is c2 = k( 12 − x) + k 1
2 ,

and of the right point is c3 = kx + 1
2 . Thus

SC(fPCD(a)) =
1
2
c1 + xc2 + (

1
2

− x)c3 = −2kx2 + (2k − 1)x +
1
2

= −1
8

+
1
2

√
k − 1

4
√

k
+

1
2

≥ 1
2

√
k,

and thus the approximation ratio is at least
1
2

√
k

1
4

√
k+ 1

2
> 2 − 8√

n
. 	


It is an open question whether there is some mechanism (perhaps a variation
of q-QCD) that strictly beats 2 approximation for any n. We believe that this is
indeed the case but that would require simplifying the proof technique.
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Fig. 2. Figures used in the proofs of Proposition 4 (a) and Proposition 6 (b).

Peak-only restrictions. We prove a weaker version of the following:

Conjecture 5. For any n, the best strategyproof mechanism is peaks-only.

Proposition 6. For any n, the optimal strategyproof mechanism w.l.o.g. only
places the facility either on peaks, or on points antipodal to peaks.

Proof sketch. For a profile a = (a1, . . . , an), denote by bi the point antipodal to
ai, and let A = {a1, . . . , an, b1, . . . , bn}. Suppose that in some some profile a,
the mechanism f places the facility with some probability p on point α /∈ A.
Denote by β, γ the nearest points to α from A clockwise and counterclockwise,
respectively. Let x = d(α, β), y = d(α, γ) (see Fig. 2b).

We define a mechanism f ′ that is identical to f , except that it “splits” the
probability mass p of α between the adjacent points β, γ: it sets f ′

a(α) = 0;
f ′
a(β) = fa(β) + p y

x+y ; and f ′
a(γ) = fa(γ) + p x

x+y .
We claim that for any agent i, ci(a, fa) = ci(a, f ′(a)). This would show both

that f ′ is strategyproof and that SC(a, fa) = SC(a, f ′(a)) for all a.
Indeed, consider some agent placed at ai. From the three points α, β, γ, the

one farthest from ai cannot be α, since this would mean that bi (the point antipo-
dal to ai) is strictly in the open interval (β, γ), whereas by construction there are
no more points from A in this interval. Thus w.l.o.g. d(ai, β) < d(ai, α) < d(ai, γ)
(see figure). We omit the rest of the proof, which is not hard. 	


4 Beyond Circles

Definition 3. The Proportional Distance (PD) mechanism for three agents
selects each ai (i ∈ {1, 2, 3}) with probability proportional to the distance between
the other pair of agents.

Note that for three agents on a circle, PD and PCD coincide when the agents
are not all on the same semicircle, and otherwise PCD gives higher probability to
the “middle” agent (which is optimal). Therefore PCD dominates PD. See Fig. 1a
for an example. It is also not hard to show that PD dominates RD on any metric
space. In particular, this means that SC(fPD

a ) ≤ 4
3OPT (a) on any graph.
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Theorem 7. ThePDmechanism is strategyproof in expectation for 3 agents in any
metric space (in particular on any graph).

In contrast to Theorem 1, the proof is rather technical and is thus omitted.

Observation 8. The approximation ratio of any peaks-only mechanism (regard-
less of its incentive properties) on a general graph is at least 4

3 (2 − 2
n for general

n).

To see why, consider a star graph with n leafs, each containing one agent.

Proposition 9. Let f be any peaks-only mechanism. Then for any profile a ∈ V 3,
we have that SC(fPD

a ) ≤ 5
4SC(fa), and this bound is tight.

Proof. Consider the distances between pairs x ≤ y ≤ z. W.l.o.g. we can denote
x + y = 1. By triangle inequality, z ≤ x + y = 1. The optimal peak location yields
a cost of x + y = 1. The PD mechanism yields a cost of

SC(fPD) =
x(y + z)
x + y + z

+
y(x + z)
x + y + z

+
z(x + y)
x + y + z

=
2xy + xz + yz + z

1 + z

= 2
xy + z

1 + z
≤ 2

xy + 1
1 + 1

= xy + 1 ≤ (0.5)2 + 1 =
5
4
,

as required.
For tightness, consider any domain that contains three points a1, a2, a3 such

that a2 is in the middle between a1 and a3 (e.g., a line). If there is one agent on each
point then x = d(a1, a2) = d(a2, a3) = y = 0.5 whereas z = d(a1, a3) = x+y = 1.
Then SC(fPD(a)) = 2xy+z

1+z = 1.25 = 1.25OPT (a), as the optimal peaks-only
mechanism will select a2. 	


Since the optimal point on a circle is always a peak, and since PCD dominates
PD, we get the following.

Corollary 10. For 3 agents on a circle, the PD and PCD mechanisms have an
approximation ratio of 5

4 , and this is tight.

Remark 1. Since d(a1, a2) + d(a2, a3) + d(a3, a1) is a constant D given the pro-
file, the PD mechanism selects each agent i with probability proportional to D −
SC(ai). This allows us to easily extends the PD mechanism to any n, and it remains
an open question whether the PD mechanism remains strategyproof. Recall how-
ever that already on the circle, PCD dominates PD, and is not asymptotically bet-
ter than random dictator.

In [10], the authors suggest a randomized mechanism for placing n−1 facilities
based on a similar idea: they place facilities on all agents except one (assuming all
locations are distinct), where the placement omitted location ai is selected with
probability inversely proportional to the social cost of this placement (which in
their case is just the distance to the closest agent j �= i), and show it is strate-
gyproof for any n and any metric space. Another mechanism that uses a similar
proportional lottery (for two facilities) is in [18].



28 R. Meir

This suggests another possible direction for the single facility problem (or per-
haps to more general problems), by considering various probabilities that are pro-
portional to some decreasing function of the social cost.3

4.1 Lower Bounds via Linear Programming

An immediate corollary from Proposition 6, is that in that any upper bound on
continuous circles implies the same upper bound on any finite circle with an even
number of nodes, and thus any lower bound on a finite circle of any even size (or
any size if Conjecture 5 is true) implies a lower bound for continuous circles.

It is well known that mechanism design problems for finite domains can be writ-
ten as linear programs [8]. Automated mechanism design had also been applied to
facility location problems, for one or more facilities on a line [15,26]. Due to the
specifics of the problems they considered, they used advanced machine learning
techniques rather than linear programming.

For a given graph (V,E), finding the optimal randomized strategyproof mech-
anism for three agents can be written as a simple linear optimization program as
follows. There are |V |4 + 1 variables: (pa,z)a∈V 3,z∈V , where pa,z = fa(z) is the
probability that the facility is placed on z in profile a; and α ∈ R which is the
approximation factor. The optimization goal is simply to minimize α. There are
four types of constraints:

1. Feasibility constraints: pa,z ≥ 0 for all a ∈ V 3, z ∈ V ;
2. Probability constraints:

∑
z∈V pa,z = 1 for all a ∈ V 3;

3. Incentive constraints: For every profile a ∈ V 3, any agent i ∈ {1, 2, 3}, and
any alternative location a′

i ∈ V , we want to enforce the constraint ci(a, fa) ≤
ci(a, f(a−i,a′

i)
). This can be written as the following linear inequality over 2|V |

variables:
∑

z∈V d(z, ai)pa,z ≤ ∑
z∈V d(z, ai)p(a−i,a′

i),z
.

4. Approximation constraints: For every profile a ∈ V 3, we want to
enforce the approximation SC(a, fa) ≤ α · OPT (a). Since OPT (a) =
minz∈V

∑
i∈{1,2,3} d(z, ai) can be computed once for each profile, the

approximation constraint can also be written as a linear inequality:∑
i∈{1,2,3}

∑
z∈V d(z, ai)pa,z ≤ α · minz∈V

∑
i∈{1,2,3} d(z, ai).

In total, we get a bit more than 3|V |4 linear constraints. This is feasible for small
graphs with commercial solvers, especially such that handle well sparse constraint
matrices (we used Matlab’s linprog function). By coding the graph in Fig. 3, we
get the following:

Theorem 11. There is no strategyproof mechanism for arbitrary graphs whose
approximation ratio is better than 13

12
∼= 1.0833.

3 Note that using the reciprocal of the social cost (as in [10])would lead to a poor outcome
in the single facility problem.
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v1 v2 v3

v4 v5 v6

Fig. 3. A graph for which the best approximation ratio is 13
12

. The three solid edges have
length 1, all dashed edges have length 2.

Small circles

Lemma 12. For any strategyproof [peaks-only] mechanism f on the circle, there is
a neutral and anonymous strategyproof [peaks-only] g,4 such that maxa SC(ga) ≤
maxa′ SC(fa′).

Proof. Mechanism g simply selects a permutation over agents uniformly at ran-
dom, and direction+rotation for the circle uniformly at random, thereby mapping
profile a to â. Then, it runs f on â and maps back the outcome. Since this is a lot-
tery over strategyproof mechanisms, it must also be strategyproof. It is also easy to
see that if f is peaks-only then so is g. Finally, for any profilea, SC(ga) is averaging
over several variations of SC(fâ), all of which are bounded by maxa′ SC(fa′). 	
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Fig. 4.The worst-case approximation ratio of the optimal 3-agent facility location mech-
anism on a circle with up to 44 vertices. The dashed part is computed only for peaks-only
mechanisms on even M .

Theorem 13. There is no strategyproof mechanism for circle graphs whose
approximation ratio is better than 1.0456. If we add the peaks-only requirement, the
lower bound is 1.0523.

4 A mechanism is neutral if it is invariant to renaming of vertices, and anonymous if it
is invariant to renaming of agents.
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To prove the theorem, we coded two linear programs: one that computes the opti-
mal mechanism, and one that computes the optimal peaks-only mechanism. Since
the number of variables for a circle with M vertices is M4 (or 3M3 for peaks-only
mechanisms) increases too fast for efficiently solving except for very small graphs,
we applied the following improvements:

– By Lemma 12, it is sufficient to check mechanisms that are neutral. We thus
fixed the location of the first agent, which reduces the number of variables by a
factor of M .

– AlsobyLemma12, it is sufficient to checkmechanisms that are anonymous.This
allows us to add many symmetry constraints (both within profiles and between
profiles) that effectively reduce the number of variables even more.

– By Proposition 6, it is sufficient to consider mechanisms that place the facility
on one of the 6 peaks or anti-peaks.

This enables us to solve the obtained program for all mechanism on circles up to
M = 28, and the program for peaks-only mechanisms for circles up to M = 44.
We note that the worst-case approximation bounds in both programs are the same
for any |V | ≤ 28, which supports Conjecture 5, but leaves the proof as a challenge.
The worst-case approximation ratios of the optimal mechanism for finite circles are
shown in Fig. 4. It is non-monotone due to parity effects.

It remains an open question whether there is a better mechanism than the 1
4 -

QCD mechanism for circles of arbitrary size, and what is the best approximation
ratio that can be guaranteed. While we improved the upper bound from 4

3 to 7
6 ,

and the lower bound from 1 to the bounds in Theorem 13, there is still a non-
negligible gap.

5 Discussion

Table 1 summarizes our results for randomized mechanisms, and put them in the
context of known bounds. It remains an open question whether the upper bound of
4
3 (2 − 2

n for general n) is tight, and in particular whether general graphs are more
difficult than circles.

The effect of the circle size on the available strategyproof mechanisms was evi-
dent in [9]. There, they showed (also using a computer search) a sharp dichotomy,
where up to a certain size there are deterministic anonymous mechanisms, and
above that size any strategyproof onto mechanism must be near-dictatorial. With
randomized mechanisms, we see a more gradual effect.

The mechanisms we present seem quite specific to the problem at hand. Thus a
natural question is what can be the takeawaymessages for readers from the broader
community of algorithmic game theory? We believe there are two.
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Table 1. A summary of approximation bounds for 3-agent randomized mechanisms. (#)
- obtains 5

4
= 1.25 approximation from best peak (Proposition 9).

Metric space Any Circle

Random dictator 4
3

∼= 1.333 (from [1]) 4
3

∼= 1.333 (from [1])

Proportional [Circle] distance 4
3

∼= 1.333 (#) 5
4 = 1.25 (Corollary 10)

1
4 -Quadratic circle distance - 7

6
∼= 1.166 (Theorem 2, Proposition 3)

best UB 1.333 (RD/PD) 1.166 ( 1
4 -QCD)

LB (peaks-only) 1.333 (Observation 8) 1.0523 (Theorem 13)

LB 13
12

∼= 1.0833 (Proposition 11) 1.0456 (Theorem 13)

First, the idea of focusing on the derivative of assignment probabilities as agents
change their reported values. In the case of facility location, misreporting a value
(say, by ε) causes the manipulator direct harm that is linear in ε, but may change
the outcome probabilities in a way that still makes the manipulation beneficial.
However, since the benefit is proportional to the change in probabilities (i.e., to
their derivatives), using quadratic probabilities (whose derivatives are linear) puts
the harm and benefit on the same scale. It is then left to the designer to tweak the
parameters of the mechanism so as to make sure that the gain of a manipulator
never exceeds the harm. Therefore, while the q-QCD mechanism seems more com-
plicated than PCD and is more difficult to technically analyze, in a sense it is the
result of a more structured and general approach to the problem, whereas PCD is
a nice curiosity that happens to work.

The second idea is the combination of analytic and computational tools for solv-
ing a difficult design problem. While in some cases (e.g. in the analysis of our PD
and PCD mechanisms) all the terms in the equations nicely cancel out to leave us
with a clean proof, this is not always so. On the other hand, fully automated mech-
anism design [8] typically explodes with the size of the problem and leaves us with
a solution that cannot be easily explained, modified or adapted to similar prob-
lems. This is true even for our linear programming approach in Sect. 4.1. However,
one can come up with a specific or parametrized class of mechanisms, and use the
computer capabilities to prove certain difficult inequalities, optimize parameters,
or test various conjectures before setting out to prove them analytically. A similar
combined approach has been applied e.g. in auctions [16], albeit with very different
mechanisms.

We leave many open questions for future research. In particular, whether the
PD and QCD mechanisms can be generalized for more agents, and whether there
are classes of graphs that are inherently more difficult than circles.

Acknowledgments. This work was supported in part thanks to the Israeli Science
Foundation grant number 773/16.
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Abstract. We study the mechanism design problem in the setting where
agents are rewarded using information only, which is motivated by the
increasing interest in secure multiparty computation. Specifically, we con-
sider the setting of a joint computation where different agents have inputs
of different quality and each agent is interested in learning as much as
possible while maintaining exclusivity for information. Our high level
question is how to design mechanisms that motivate all the agents (even
those with high-quality inputs) to participate in the computation; we
formally study problems such as set union, intersection, and average.

1 Introduction

Secure multiparty computation allows a set of parties to compute any func-
tions on their private inputs. In recent years there has been a boom in the
speed achieved by cryptographic protocols for secure multiparty computation
(see e.g., [4,7,10,12,16,18] and references therein), to the point that start-ups
and companies are beginning to offer products based on these technologies [1].
One question that has not been addressed in the cryptographic community so
far is whether parties will have any incentive in participating in such protocols:
In traditional multiparty computation tasks, multiple agents wish to evaluate
some public function on their private inputs, where all agents are equal and
the evaluated result is broadcasted to all of them or at least the honest ones.
However, when viewing through the game-theoretic lens, the function evaluation
process can be realized as the exchanging of private information among those
agents, and hence the agents are not equal. For example, an agent with higher
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influence on the function tends to have a smaller incentive in the cooperation,
and in the extreme case a “dictator” would have zero incentive; or even if the
function is symmetric, an agent may still be less incentivized because of a high
quality private input which provides a better prior than others. An example of
a dictator is an agent with input zero when the function is AND ; such an agent
already knows the output of the computation and can learn nothing from others.

To this end we suggest to consider the procedure fairness (rather than the
result fairness) in terms of information benefit, which measures how much an
agent improves the quality of her own private information by participating. We
believe this is a better characterization of the agent incentives. Also from the
game-theoretic point of view, it makes sense to consider the agents as rational
and self-motivated individuals rather than simply “good/bad” or “honest/semi-
honest/malicious” as is typically done in cryptographic scenarios.

In this work, we study mechanisms for exchanging information without mone-
tary transfer among rational agents. These agents are rational and self-motivated
in the sense that they only care about maximizing their own utility defined in
terms of information. More specifically, we focus on utility functions that capture
the following properties about the behavior of the agents:

– Correctness: The agents wish to collect information from other agents.
– Exclusivity : The agents wish to have exclusive access to information.

The wish to collect information incentivizes cooperation, while the wish for
exclusivity deters it. By unifying the above competing factors, agents aim to
strike a balance between the two. The value of exclusivity is a concept studied
in many areas of economics (e.g. labor economics, economics of the family, etc);
see, e.g. [20] for a study on the role of exclusivity in contracts between buyers
and sellers and [13] for platform-based information goods.

Utility functions that capture these competing factors are relevant in mod-
eling situations where both cooperation and competition exist simultaneously,
such as several companies wishing to exchange their private but probably over-
lapping information, e.g. training data for machine learning purpose, predictions
for the stock market, etc.

We investigate specific information exchanging problems, such as Multiparty
Set Union, as well as Set Intersection and Average. For example, in the set union
problem there is a number of agents, each owning a set, and the goal is to find
the union of the private sets held by all the agents. Set intersection is similarly
defined except the goal is to find the intersection. Since for such problems the
result is not Boolean and agents with different quality input should get different
results, the value of result is measured by quality (accuracy) rather than by a
Boolean indicator of whether it is the optimal one.

For the behavior of the agents, many of our results are for the “all-or-nothing
model” where every agent either fully participates by truthfully submitting their
input or refuses to participate. We also have several results for games with few
agents in the richer model where agents can partially participate, by submitting
some but not all of their information, as well as open questions.



36 S. Brânzei et al.

The all-or-nothing model captures realistic scenarios where the inputs are
authenticated by some trusted authority (e.g. using digital signatures), or where
the inputs were already collected by some central entity, and the only choice of
the agent is whether to allow their input to be used in the computation. Another
motivation for the all-or-nothing model is when the inputs are later checked (e.g.
in court or in future rounds of repeated games). The participants send their pri-
vate input to the trusted mediator1 (i.e. “principal”) who runs a publicly known
protocol (mechanism) to decide the payoff of each agent. Here the payoffs are
customized pieces of information since we are studying the information exchang-
ing mechanism without money.

As a simple example to motivate our work, consider the following scenario:
Suppose there is a group of people and everyone is interested in finding a gold
mine. The gold mine is situated in location t. Everyone has some estimate of
where the gold mine is ti and some uncertainty given by a radius di, i.e. each
player i has an interval [ti−di, ti+di]. The players want to join their information
to get a better approximation of the location of the gold mine and know that the
gold mine lies in the intersection of all the estimates (sets). However if a player
i knows that its radius di is much smaller than that of another player j, then
player i knows that it won’t learn much by interacting with player j. That is,
in the worse case player i’s interval is contained in player j’s interval, so there
is no information player i can infer from j. Since player i would rather not have
player j gain free information without receiving anything in return, the problem
is to design a mechanism that incentivizes the players to learn from each other
(as much as possible). This is the problem that, later in the paper, we refer to
as the set intersection problem.

1.1 Our Contribution

In this paper we propose a framework for non-monetary mechanism design with
utility functions unifying both preferences of correctness and exclusivity. Let
N = {1, . . . , n} be a set of agents. Suppose each agent has some piece of infor-
mation, the details of which we intentionally leave informal for now. Given some
mechanism M that the agents use to exchange information among themselves,
we define the information benefit vi of an agent i to be the additional “informa-
tion” gained by i after participating in M . For example, in the case of the set
union problem, where each agent owns a set of elements and tries to learn addi-
tional elements from other agents, this gain could be the number of additional
elements learned by an agent compared to what that agent already knew.

The utility function will capture the tension between the wish to learn and
the wish for exclusivity and the simple instantiation that we focus on is ui =
vi − maxj∈N\{i} vj . Thus each agent wishes to learn as much as possible while
maintaining exclusivity over the information, which is captured by minimizing

1 In the secure multiparty computation setting this trusted party is usually replaced
by a cryptographic protocol. For the sake of simplicity, we do not further consider
cryptographic protocols in this work.
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the amount obtained by others. This definition is connected to the notion of
envy-freeness; in particular, it captures the maximum “envy” that an agent i
could have towards any another agent, and the goal is to reduce envy.

Our technical contribution is to design mechanisms for natural joint com-
putation tasks such as Multiparty Set Union, as well as Set Intersection and
Average. We focus on mechanisms that incentivize agents to submit the infor-
mation they have as well as ensure properties such as Pareto efficiency2 of the
final allocation.

In the Multiparty Set Union Problem each agent owns a set xi drawn from
some universe U . The utility functions are as described above. The strategy
space of an agent consists of sets they can submit to the mechanism. We assume
that agents can hide elements of their set, but not manufacture elements they
don’t have (i.e. there is a way to detect forgery). The question is to design a
mechanism that incentivizes the agents to show their set of elements to others.

Theorem 1. There is a truthful and Pareto efficient mechanism for set union
among n = 3 agents. The mechanism runs in polynomial time.

We leave open the mechanism design question for any number of agents.

Open Problem 1. Is there a truthful polynomial time mechanism for set union
for any number of agents? Are there randomized such mechanisms?

However, we manage to solve this problem for the special case where each
agent can either submit its whole set or the empty set, i.e. cooperate or not. We
call this the “all-or-nothing” model.

Theorem 2. There is a truthful, Pareto efficient, and welfare maximizing mech-
anism3 for set union among any number n of all-or-nothing agents. The mech-
anism runs in polynomial time for any fixed n.

We further show that this mechanism satisfies several other desirable prop-
erties, such as treating equal agents equally and rewarding more agents that
contribute more.

Beyond multiparty set union, we also consider two case studies of problems
with sets. The first is a set intersection problem, where each agent owns a con-
nected set (interval) on the real line. The agents have to find an element in the
intersection of all the sets and are promised that such an element exists. A high
level example of this problem is when the agents are trying to find a gold mine
as described in the introduction.

Theorem 3. There is a truthful polynomial time mechanism for interval inter-
section among any number n of all-or-nothing agents.

The second case study is a point average problem, where each agent has a
point and the goal is to compute the average value of their inputs.
2 Pareto effiency ensures no agent can be better off without making anyone worse off.
3 Welfare maximization is achieved by maximizing over all Pareto efficient outcomes.
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Theorem 4. There is a truthful polynomial time mechanism for the point aver-
age problem for any number n of all-or-nothing agents.

Finally, two more high-level remarks are in order.

Why not maximize social welfare? A trivial solution to problems such as set
union can be to have everyone learn everything (i.e. maximize the sum of infor-
mation gains). In traditional settings such as auctions or elections it is unlikely
that every agent maximizes their information benefit simultaneously since their
ideal outputs are usually conflicting, e.g. there is only one indivisible good that
cannot be assigned to more than one agent. However, in the world where infor-
mation replaces material goods, it becomes possible to duplicate the information
at (nearly) zero cost such that every agent gets all information and hence maxi-
mizes their utility at the same time. This straightforward mechanism only works
if all agents are selfless and choose to report truthfully. However, it is unfair
in the sense that the more one agent contributes, the less benefit they could
get (since the information benefit is bounded by the whole information minus
their private information). Furthermore, the straightforward mechanism fails
badly when agents take exclusivity into consideration: e.g. the dominant strat-
egy would be “revealing nothing to the mechanism but combining the output
with the private input afterward” and eventually the equilibrium becomes that
no exchange happens at all (similar to the “rational secret sharing” problem dis-
cussed in [8,9,11]) when partial participation and strategic lies are allowed; and
even in the all-or-nothing model an agent may prefer not participating accord-
ing to their own utility function if their advantage over other competing agents
would decrease.
A Note on Mechanism Design. The intuition behind our constructions is that
every agent, when participating in the cooperation, should get a benefit no less
than the loss they could cause to others by not participating. At first glance it
might seem that the “loss to others” inflicted by a non-participating agent would
be bounded by the exclusive information of that agent. However, it turns out
that agents contribute much more to the mechanism than simply their private
inputs. In particular, the participation of an agent may increase social welfare
by giving incentives for participation to other agents with “better” inputs. An
agent i with a high quality input might choose to join the computation, or
reveal more of their private information, because, by doing so, they can reduce
the information benefit of some other agent j (which is rational when it reduces
i’s own exclusivity loss).

Therefore, the key idea behind our constructions is to characterize the
marginal contribution of every agent and assign information accordingly so that
nobody prefers to leave the cooperation (and in the meanwhile we aim to max-
imize the social welfare among all stable allocations). For example, this idea is
instantiated as a round-by-round exchange mechanism for the Three-Party Set
Union problem (in Sect. 2.2), such that in every single “round” of exchange each
agent gains more benefit than he offers to others.
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1.2 Related Work

Our setting is reminiscent of cooperative game theory and the well-known solu-
tion of Shapley value [2,19,21], except that now the agents are rewarded with
information instead of money. There are two main distinctions: (a) Information
can be duplicated, for free or with negligible cost; (b) Every piece of informa-
tion is unique whereas money is fungible, e.g. the same piece of information
could have different values for different agents. The first property results in an
unfixed total profit (sum of all agents’ payoffs) and so breaks the intuition of
“distribute the total surplus proportionally to each agent’s contribution” used
in Shapley value. The second property requires the mechanism to specify not
only the amount of information but also the details of information allocation. In
particular, the information already contained in an agent’s input cannot be used
to reward that agent. Such a property also leads to a subtle dilemma—the more
an agent contributes, the less they can get as a reward from the mechanism—
e.g. an agent with all information cannot get new information from other agents.
Therefore, the mechanism must be able to motivate the most informed agents
even though they may not benefit as much as those that know less (i.e. with
lower quality inputs). A different line of work has studied the problem of sharing
information when the inputs are substitutes or complements [6], which defined
the value of information (and of a marginal unit of information) and instantiated
it in the context of prediction markets.

Our model can be seen as an extension of the non-cooperative computation
(NCC) framework and informational mechanism design (IMD) introduced in
[14,22], where they characterize Boolean functions that are computable by ratio-
nal agents with non-monetary utility functions defined in terms of information.
In their model, the agents are trying to compute a public Boolean function
on their private inputs with the help of a trusted center. Every agent claims
their type (truthfully or not) to the center, and gets a response from the center
(typically but not necessarily the Boolean function evaluated on claimed types).
Agents may lie or refuse to participate, and they can apply any interpretation
function (on the response from the center and their true input, so as to correct
a wrong answer possibly caused by an earlier false declaration). In the setting of
[22], the agents have a two-tiered preference of correctness preceding exclusivity4,
i.e. they are interested in misleading others only if this would not hurt their own
correctness, whereas we generalize this lexicographic preference to a utility func-
tion incorporating both components (The lexicographic preference is a special
case when one component is assigned a very small weight). Another extension is
that we consider non-Boolean functions and allow distinct responses to different
agents, which significantly enriches the space of candidate mechanisms.

The line of work [8,9,11] focuses on the cryptographic implementation of
truthful mechanisms for secret sharing and multiparty computation by ratio-
nal agents without a trusted mediator. In their setting there is an “issuer” who
authenticates the initial shares of all agents so that the agents cannot forge a

4 [14] considers other facets, such as privacy, but still in lexicographic ordering.
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share (just as in the all-or-nothing model). Then the agents use simultaneous
broadcast channels (non-simultaneous channels are also considered in [11]) to
communicate in a round-by-round manner. Since all messages are broadcasted
in this setting, a rational agent tends to keep silent so that they can receive
others’ information without revealing their own and hence possibly gain advan-
tage in exclusivity. Therefore, much of the efforts and technical depth along this
line is spent on catching dishonest agents (who do not broadcast their shares
when they are supposed to), based on the key idea that in any given round
the agents do not know whether this is just a test round designed to detect
cheaters, or whether it is the final round for the actual information exchange. [9]
achieve a fair, rational secure multiparty computation protocol which prevents
coalitions and eliminates subliminal channels, despite the drawback of requiring
special purpose hardware such as ideal envelopes and ballot boxes. However, all
of these works assume the two-tiered preference of correctness and exclusivity
as in [22], where in particular the correctness dimension is Boolean, i.e. either
“correctly computed” or not. As a result, these works fall into the category of
“implementing cryptographic protocols with rational agents” rather than the
more game-theoretic topic “informational mechanism design” which we address
in this paper.

There is another line of work [15,17] on mechanism design with privacy-aware
agents who care about their privacy rather than exclusivity. Considering privacy
is relevant in many applications but technically orthogonal to what we study.
(In our work, the privacy of the inputs is only a tool towards limiting the loss
of utility due to the exclusivity preference, not a goal in itself).

The recent works of [5] and [3] investigate non-monetary mechanisms for
cooperation among competing agents. However, an essential difference is that
they consider a sequential delivery of outputs to different agents, such that the
utility function is not merely in terms of information but also depends on the
time or order when the output is delivered. For example, the “treasure hunting
problem” in [5] is in particular very similar to the multiparty set intersection
problem, except that in treasure-hunting only the first agent finding the common
element gets positive utility while all others get zero.

2 Multiparty Set Union

Let N = {1, . . . , n} be a set of agents. There is a universe U = {u1, . . . , um} of
possible numbers, from which each agent i owns a subset Si ⊆ U that is private
to the agent. The goal of the agents is to obtain more elements of the universe
from other agents by sending elements from their own set in exchange.

We study the problem of designing mechanisms that incentivize the partici-
pants to share their information with each other. A mechanism M will take as
input from each agent i a set xi ⊆ Si and output a vector y = M(x), so that the
i-th entry of this vector contains the set received by agent i after the exchange.

Strategies. The strategy of an agent is the set it submits to the mechanism.
Agents can hide elements (i.e. submit a strict subset of their true set), but not
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submit elements they don’t actually have. A special case we will study in more
depth is when the strategies of the agents are “all-or-nothing”, i.e. xi ∈ {∅, Si}.
The input of each agent to the mechanism is sent through a private authenticated
channel to the center.

Utility. We say the “information benefit” that agent i receives from sending
their set Si to the mechanism is the number of new elements that i obtains from
the exchange: vi(x) = |Mi(x) \ xi|. The utility of the agent is then defined as
the minimum difference between their own information benefit and that of any
other agent, formally given by ui(x) = vi(x) − maxj∈N\{i} vj(x).

The intuition is that each agent wishes to learn as much as possible while
maintaining exclusivity, which is captured by minimizing the amount of infor-
mation obtained by the other agents. This utility function is closely tied with the
notion of envy as it compares the value for an agent with the maximum value of
any other agent and the aim is to compute (approximately) envy-free outcomes.

Incentive Compatibility and Efficiency. We are interested in mechanisms that
incentivize agents to share their information and will say that a mechanism is
truthful if truth telling is a dominant strategy for each agent regardless of the
strategies of the other agents. An allocation (outcome) is Pareto efficient (or
Pareto optimal) if there is no other outcome where at least one agent is strictly
better off and nobody is worse off.

Fairness. Some of our mechanisms also satisfy fairness and the fairness notions
we consider are symmetry and strong dominance. Symmetry requires that if
multiple agents report inputs of equivalent quality, then they get the same infor-
mation benefit (and so the same utility). Strong dominance stipulates that if
the information reported by an agent is inferior to the information reported by
another agent under some partial order, then the result sent to the first agent is
also (weakly) inferior to the result sent to the second agent under that order.

2.1 Two Agents

As a warm-up, we give a solution to the exchange problem for n = 2 agents.

Proposition 1. There is a truthful polynomial time mechanism for the set
union problem between two agents.

Proof. W.l.o.g., the set owned by the second agent is larger: |x1| ≤ |x2|. Let
y2 = x1 ∪ x2 and y1 = x1 ∪ y′

1, where y′
1 is a set chosen so that y′

1 ⊆ x2 \ x1

and |y′
1| = |x1 \ x2|. Then agents 1 and 2 can fairly exchange their exclusive

elements until one of them has used up their exclusive elements. Note this type
of exchange performed over multiple rounds can in fact be done in an atomic way
by the principal. It is immediate that this mechanism ensures both agents get
the same information benefit: v1 = v2 = |x1 \ x2| ≥ 0 and it is weakly dominant
for them to report their true information. �	
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2.2 Three Agents

For three agents the problem becomes more subtle, as the mechanism must
specify the order of pairwise exchanging, the number of exchanged elements,
and, more importantly, which elements are exchanged.

Theorem 5. There is a truthful polynomial time mechanism for set union
among n = 3 agents.

Proof. The theorem will follow from the construction in Mechanism 1. Mech-
anism 1 starts by removing the common elements among all three parties,
since these elements will not affect the exchange; these elements are denoted
by the set z0. Then we consider the three pairwise intersections, from which the
agents can exchange a number of elements bounded by the smallest intersec-
tion i.e. s = min {|x1 ∩ x2|, |x2 ∩ x3|, |x3 ∩ x1|}. Note that at the end of these
exchanges at least one of these three intersections will be “used up”. Thus we
assume w.l.o.g. that after this step x2 ∩ x3 = ∅ and |x2| ≥ |x3|. Now we have
reduced the original problem to a setting where there is no common intersection
and only two pairwise intersections are non-empty, namely x1 ∩ x2 and x1 ∩ x3.

Let x2, x3 be partitioned into x2 = x′
2 ∪ x′′

2 , x3 = x′
3 ∪ x′′

3 where x′
2 = x2 ∩

x1, x
′′
2 = x2\x1, and x′

3 = x3 ∩ x1, x′′
3 = x3\x1. The intuition will be that

elements in x′
2 should be used to exchange elements in x′′

3 = x3\(x1 ∪ x2) =
x3 ∩ x1 ∩ x2, and similarly x′′

2 for x′
3.

Next we discuss how exchanging occurs in several situations.

Case 1: |x′
2| ≥ |x′′

3 | and |x′′
2 | ≥ |x′

3|. This is the simplest case, where we can
simply make agent 3 exchange all elements in x3 = x′′

3 ∪ x′
3 with both agents 1

and 2 for an equal amount of elements in z ⊆ x′
2 and w ⊆ x′′

2 respectively. Then,
agent 3 used up all its elements and the problem reduces to the two-party case
between agents 1 and 2 with remaining elements in (x1\x′

3, x2\w).

Case 2: |x′′
3 | > |x′

2| and |x′′
2 | > |x′

3|. Then agent 2 uses |x′
3| many elements in

x′′
2 , denoted by w, to exchange all elements in x′

3 with agents 1 and 3, and by
symmetry agent 3 uses |x′

2| many elements in z to exchange x′
2 with agents 1

and 2. After this exchange all the three agents may have some elements left, but
these are all exclusive elements, so the problem reduces to the easy case of three
party with disjoint elements (x1\(x′

2 ∪ x′
3), x

′′
2\w, x′′

3\z). Then the mechanism
exchanges a number of elements equal to min {|x1\(x′

2 ∪ x′
3)| , |x′′

2\w| , |x′′
3\z|},

further reducing the problem to the two-party case.
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Mechanism 1: Three Party Set Union
Input: Set xi ⊆ U for each player i
Output: Set yi ⊆ U for each player i

1 z0 = x1 ∩ x2 ∩ x3

2 foreach player i do
3 yi = xi

4 xi = xi\z0
5 end

6 s = min {|x1 ∩ x2| , |x2 ∩ x3| , |x3 ∩ x1|} /* W.l.o.g., |x2| ≥ |x3| and

s = |x2 ∩ x3| */

7 z1 = x2 ∩ x3

8 Select arbitrary sets z2 ⊆ x3 ∩ x1 and z3 ⊆ x1 ∩ x2 of sizes |z2| = |z3| = s = |z1|
9 foreach player i do

10 yi = yi ∪ zi
11 xi = xi\ (z1 ∪ z2 ∪ z3)

12 end
13 x′

2 = x2 ∩ x1; x
′′
2 = x2\x1

14 x′
3 = x3 ∩ x1; x

′′
3 = x3\x1

15 (y′
1, y

′
2, y

′
3) = (∅, ∅, ∅) /* Sets to store elements from recursive calls, if

any. */

16 if |x′
2| ≥ |x′′

3 | and |x′′
2 | ≥ |x′

3| then
/* Case 1 */

17 Select arbitrary sets z ⊆ x′
2 and w ⊆ x′′

2 of sizes |z| = |x′′
3 | and |w| = |x′

3|
18 y2 = y2 ∪ x3

19 y3 = y3 ∪ z ∪ w
20 y1 = y1 ∪ w ∪ x′′

3

21 (y′
1, y

′
2) = TwoPartySetUnion (x1\x′

3, x2\w)

22 else if |x′′
3 | > |x′

2| and |x′′
2 | > |x′

3| then
/* Case 2 */

23 Select arbitrary sets w ⊆ x′′
2 and z ⊆ x′′

3 of sizes |w| = |x′
3| and |z| = |x′

2|
24 y2 = y2 ∪ x′

3 ∪ z
25 y3 = y3 ∪ x′

2 ∪ w
26 y1 = y1 ∪ z ∪ w
27 (y′

1, y
′
2, y

′
3) = ThreePartySetUnion (x1\(x′

2 ∪ x′
3) , x′′

2\w, x′′
3\z)

/* Recursive call with disjoint sets. */

28 else
/* Case 3: |x′′

3 | < |x′
2| and |x′′

2 | < |x′
3| */

29 Select arbitrary sets w ⊆ x′
2 and z ⊆ x′

3 of sizes |w| = |x′′
3 | and |z| = |x′′

2 |
30 y2 = y2 ∪ x′′

3 ∪ z
31 y3 = y3 ∪ x′′

2 ∪ w
32 y1 = y1 ∪ x′′

2 ∪ x′′
3

33 (y′
2, y

′
3) = TwoPartySetUnion (x′

2\w, x′
3\z)

34 foreach player i do
35 yi = yi ∪ y′

i /* Add elements obtained from recursive calls, if any,

to the final set for each player. */

36 end
37 return (y1, y2, y3)
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Case 3: |x′′
3 | < |x′

2| and |x′′
2 | < |x′

3|. In this case agent 2 uses x′′
2 in exchange for

|x′′
2 | many elements in z ⊆ x′

3, and, by symmetry, agent 3 uses x′′
3 to exchange

|x′′
3 | many elements in w ⊆ x′

2. After such an exchange the problem reduces to
three parties with (x1\(w ∪ z), x′

2\w, x′
3\z).

Finally, for improved welfare, agent 2 and agent 3 run a näıve two-agent
exchange protocol with their remaining elements in x′

2\w and x′
3\z. This is not

optimal for agent 1, who has already collected full information and wants to end
the exchange. However, agent 1 cannot prevent such exchange between agents 2
and 3 anyhow.

Mechanism 1 guarantees individual rationality because every round of
exchange in its process is “fair” and “necessary”. Every round is fair in the sense
that all participants of that round get equal benefits—each of them gives out
some elements in exchange for more new elements. Every round of such exchange
is necessary because each element appears in at most one round, i.e. the mech-
anism does not reuse previously exchanged elements. Therefore, an agent that
hides elements would suffer a loss lower bounded by the number of private ele-
ments that could have been traded, which is indeed a natural upper bound for
the loss of others. �	

We note that Mechanism 1 is not Pareto efficient since the reduced problem
(that is solved in the recursive call) is dealt with in a näıve way. For example,
consider the last step in Case 1 i.e., after the problem has already been reduced
to the two-party case. Here we could let agents 1 and 2 exchange their remaining
elements without agent 3. This could be seen as fair, since agent 3 does not con-
tribute new elements in those rounds. However, this procedure does not achieve
Pareto efficiency, for that we can improve the social welfare by giving agent 3
some extra elements and, for sufficiently small number of elements, the utilities
of agents 1 and 2 would not change and the solution would ensure that agents 1
and 2 remain truthful as before.

Theorem 6. There is a truthful and Pareto efficient mechanism for set union
among n = 3 agents.
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Proof. For case 1, consider the last step (of this case) in the execution of the
mechanism. Mechanism 1 can be modified to assign randomly selected extra ele-
ments to player 3 so that |y3\x3| = v1 = v2 (recall that Mechanism 1 ensures
v1 = v2). This modification achieves Pareto efficiency since any further improve-
ment on social welfare will decrease the utility of player 1 or player 2, who
already get all elements and cannot get more information benefit. Now we prove
that the above modification also preserves truthfulness. This is immediate for
players 1 and 2 but requires the following observations to see that it continues
to hold from the point of view of player 3:

– each of player 3’s exclusive elements in x′′
3 leads to the same amount of

marginal benefit to player 3 as to players 1 and 2, i.e. it is used to exchange
for either one element in x′

2, which will not be exchanged between players 1
and 2, or two elements when players 1 and 2 exchange elements in x2\w and
x1\(x′

2 ∪ x′
3), respectively.

– all of player 3’s elements in x′
3 do not affect others’ information benefits;

however, such elements can help player 3 since they might prevent the player
from receiving some previously known element as the extra benefit.

We note that the same modification also works to ensure Pareto efficiency
in case 2, while case 3 already ensures a Pareto efficient exchange. Thus there
exists a truthful mechanism that is Pareto efficient. �	

2.3 Any Number of Agents

We observe that the three agent mechanism above relies on a complex analy-
sis that depends on the different intersection sets. The number of intersections
increases exponentially as n grows and we leave open the question of whether it
is possible to achieve an analogue of Mechanism 1 for more than three agents.

Open Problem 1. Is there a truthful polynomial time mechanism for set union
for any number of agents? Are there randomized such mechanisms?

In Mechanism 2, we show a truthful mechanism for set union for any number
of agents in the special case where each agent can either submit its whole set or
the empty set, i.e. cooperate or not. We call this the “all-or-nothing” model and
our main result is:

Theorem 7. There is a truthful, Pareto efficient, and welfare maximizing mech-
anism for set union among any number n of all-or-nothing agents. The mecha-
nism runs in polynomial time for any fixed n.
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Mechanism 2: Multiparty Set Union
Input: (x1, x2, . . . , xn), where each set xi ⊆ U is the input from player i.
Output: (y1, y2, . . . , yn), where each set yi is sent to player i.

1 Fix an ordering π of all elements in U /* π will be used to specify

the exchanged elements */

2 u =
⋃n

i=1 xi

3 V = ComputeV(x1, . . . , xn) /* the function ComputeV is defined

below */

4 foreach player i ∈ [n] do
5 vi = max {V, |u\xi|}
6 Let ri be the set of first vi elements in z−i\xi according to π
7 yi = xi ∪ ri
8 end
9 return (y1, y2, . . . , yn).

10 Function ComputeV(x1, . . . , xn)
11 if n ≤ 1 then
12 return 0
13 foreach player i ∈ [n] do
14 z−i =

⋃
j �=i xj

15 V−i = ComputeV(x−i)

16 end
17 V = min

{
mink∈[n] {|z−k\xk| + V−k} ,maxk∈[n] |z−k\xk|

}

18 return V .

3 Beyond Union: Intersection and Average

Moving beyond the multiparty set union problem, we suggest two other set
problems where the agents own data points and wish to share them.

Intersection. The first problem is interval intersection, where each agent owns
an interval in � and the goal is to find a point in the intersection of all the sets.
A high level scenario motivating this problem is the gold mine example from the
introduction, where there is a group of people trying to find the location of a
gold mine, and each person has an estimate of where the gold mine is, given by
a center and a radius. The agents would like to merge their estimates to get a
better idea of where the mine is situated, but the challenge is that agents with
very good estimates (i.e. small radius) will not learn much from those with worse
estimates (i.e. larger radius).

Theorem 8. There is a truthful polynomial time mechanism for interval inter-
section among any number n of all-or-nothing agents.

Set Average. The second problem is taking the average of a set that is dis-
tributed among the agents.
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Theorem 9. There is a truthful polynomial time mechanism for the average
point problem among any number n of all-or-nothing agents.

4 Discussion

Aside from our concrete open questions, the directions of generalizing the results
to richer strategy spaces, allowing randomization, and more general utility func-
tions are interesting.
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Abstract. We study the classic mechanism design problem of locating
a public facility on a real line. In contrast to previous work, we assume
that the agents are unable to fully specify where their preferred location
lies, and instead only provide coarse information—namely, that their pre-
ferred location lies in some interval. Given such partial preference infor-
mation, we explore the design of robust deterministic mechanisms, where
by robust mechanisms we mean ones that perform well with respect to
all the possible unknown true preferred locations of the agents. Towards
this end, we consider two well-studied objective functions and look at
implementing these under two natural solution concepts for our setting
(i) very weak dominance and (ii) minimax dominance. We show that
under the former solution concept, there are no mechanisms that do bet-
ter than a naive mechanism which always, irrespective of the information
provided by the agents, outputs the same location. However, when using
the latter, weaker, solution concept, we show that one can do significantly
better, and we provide upper and lower bounds on the performance of
mechanisms for the objective functions of interest. Furthermore, we note
that our mechanisms can be viewed as extensions to the classical optimal
mechanisms in that they perform optimally when agents precisely know
and specify their preferred locations.

1 Introduction

We consider the classic problem of locating a public facility on a real line or
an interval, a canonical problem in mechanism design without money. In the
standard version of this problem, there are n agents, denoted by the set [n] =
{1, · · · , n}, and each agent i ∈ [n] has a preferred location xi for the public
facility. The cost of an agent for a facility located at p is given by C(xi, p) =
|p − xi|, the distance from the facility to the agent’s ideal location, and the
task in general is to locate a facility that minimizes some objective function.
The most commonly considered objective functions are (a) sum of costs for the
agents and (b) the maximum cost for an agent. In the mechanism design version
of the problem, the main question is to see if the objective under consideration
can be implemented, either optimally or approximately, in (weakly) dominant
strategies.
c© Springer Nature Switzerland AG 2019
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Table 1. Summary of our results. All the bounds are with respect to deterministic
mechanisms.

Average cost Maximum cost

Upper bound Lower bound Upper bound Lower bound

very weak

dominance

B
2

B
2 [Theorem 1] B

2
B
2 [Theorem 5]

minimax

dominance

3δ
4 [Theorem 3] δ

2 (only for mechanisms with

finite range) [Theorem 4]

B
4 + 3δ

8 [Theorem 6] B
4 [12, Theorem 5]

While the standard version of the problem has received much attention, with
several different variants like extensions to multiple facilities (e.g., [15,19]), look-
ing at alternative objective functions (e.g., [3,10]) etc. being extensively studied,
the common assumption in this literature is that the agents are always precisely
aware of their preferred locations on the real line (or the concerned metric space).
However, this might not always be the case and it is possible that the agents do
not have accurate information about their ideal locations, or their preferences in
general. To illustrate this, imagine a simple scenario where a city wants to build
a school on a particular street (which we assume for simplicity is just a line) and
aims to build one at a location that minimizes the maximum distance any of its
residents have to travel to reach the school. While each of the residents is able
to specify which block they would like the school to be located at, some of them
are unable to precisely pinpoint where on the block they would like it because,
for example, they do not currently have access to information (like infrastruc-
ture data) to better inform themselves, or they are simply unwilling to put in
the cognitive effort to refine their preferences further. Therefore, instead of giv-
ing a specific location x, they end up giving an interval [a, b], intending to say
“I know that I prefer the school to be built between the points a and b, but I am
not exactly sure where I want it.”

The above described scenario is precisely the one we are concerned about in
this paper. That is, in contrast to the standard setting of the facility location
problem, we consider the setting in which the agents are uncertain (or partially
informed) about their own preferred locations xi and the only information they
have is that their preferred location xi ∈ [ai, bi], where bi − ai ≤ δ for some
parameter δ which models the amount of inaccuracy. Now, given such partially
informed agents, our task is to look at the problem from the perspective of a
designer whose goal is to design robust mechanisms under this setting. Here by
robust we mean that, for a given performance measure and when considering
implementation under an appropriate solution concept, the mechanism should
provide good guarantees with respect to this measure for all the possible under-
lying unknown true locations of the agents. The performance measure we use
here is based on the minimax regret solution criterion, which, informally, for a
given objective function, S, is an outcome that has the “best worst case”, or
one that induces the least amount of regret after one realizes the true input.
More formally, if P = [0, B] denotes the set of all points where a facility can be
located and I = [a1, b1] × · · · × [an, bn] denotes the set of all the possible vec-
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tors that correspond to the true ideal locations of the agents, then the minimax
optimal solution, popt, for some objective function S is given by

popt = arg min
p∈P

max
I∈I

(
S(I, p) − min

p′∈P
S(I, p′)

)
︸ ︷︷ ︸

maxRegret(p,I)

,

where S(I, p) denotes the value of S when evaluated with respect to I ∈ I and
a point p.

Thus, our aim is to design mechanisms that approximately implement the
optimal minimax value (i.e., maxRegret(popt, I)) w.r.t. two objective functions—
average cost and maximum cost—and under two solution concepts—very weak
dominance and minimax dominance—that naturally extend to our setting (see
Sect. 2 for definitions). In particular, we focus on deterministic and anonymous
mechanisms that additively approximate the optimal minimax value, and our
results are summarized in Table 1.

Before we move on to the rest of the paper, we anticipate that a reader might
have some questions, especially w.r.t. our choice of performance measure and our
decision to use additive as opposed to multiplicative approximations. We try to
preemptively address these briefly in the section below.

1.1 Some Q & A

Why Regret? We argue below why this is a good measure by considering some
alternatives.

1. Why not bound the ratio of the objective values of (a) the outcome that
is returned by the mechanism and (b) the optimal outcome for that input?
This, for instance, is the approach taken by Chiesa et al. [4]. In our case this
is not a good measure because we can quickly see that this ratio is always
unbounded in the worst-case.

2. Why not find a bound X such that for all I ∈ I, S(I, p) − S(I, pI) ≤ X,
where p is the outcome of the mechanism and pI is the optimal solution
associated with I? This, for instance, is the approach taken by Chiesa et al.
[5]. Technically, this is essentially what we are doing when using max. regret.
However, using regret is more informative because if we make a statement of
the form maxRegret(p, I) − maxRegret(popt, I) ≤ Y , then this conveys two
things: (a) for any p′ there is at least one I ∈ I such that S(I, p′)−S(I, pI) ≥
Z, where Z = maxRegret(popt) (i.e. it gives us a sense on what is achievable
at all—which in turn can be thought of as a natural lower bound) and (b)
the point p chosen by the mechanism is at most (Y +Z)-far from the optimal
objective value for any I. Hence, to convey these, we employ the notion of
regret. We refer the reader to Appendix A in the full version of the paper1

for a slightly more elaborate discussion.

1 https://arxiv.org/pdf/1905.09230.pdf.

https://arxiv.org/pdf/1905.09230.pdf
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Why Additive Approximations? We use additive as opposed to multiplica-
tive approximations because one can see that when using the latter and w.r.t.
the max. cost objective function both the solution concepts that we consider in
this paper—which we believe are natural ones to consider in this setting—do
not provide any insight into the problem as there are no bounded mechanisms.
Again, we refer the reader to Appendix A in the full version for a more elaborate
discussion.

1.2 Related Work

There are two broad lines of research that are related to the topic of this paper.
Below we discuss the most relevant papers with respect to each of them.

Designing Mechanisms with Incomplete Preferences. Among work in
this space, the papers that are most relevant are the series of papers by Chiesa
et al. [4–6], and the works of Hyafil and Boutilier [13,14]. The series of papers
by Chiesa et al. [4–6] considers auction settings (single-item, combinatorial, and
multi-unit auctions, respectively) where the agents are uncertain about their
own types and the only information they have about their valuations is that it is
contained in a set K, where K is any subset of the set of all possible valuations.
The partial information model that we use in this paper is inspired by this series
of papers. In particular, our prior-free and absolute worst-case approach under
partial information is similar. However, our work is also different in that, unlike
auctions, the problem we consider falls within the domain of mechanism design
without money and so their results do not carry over to our setting.

Hyafil and Boutilier [13,14] consider the problem of designing mechanisms that
have to make decisions using partial type information. While the overall theme in
both their works is similar to ours, the questions they are concerned with and the
model used are different. For instance, whereas in ours and Chiesa et al.’s mod-
els the agents do not know their true types and are therefore providing partial
inputs, the assumption in the works of Hyafil and Boutilier [13,14] is that the mech-
anism has access to partial types, but agents are aware of their true type. This sub-
tle change in turn leads to the focus being on solution concepts that are different
from ours.

An alternative way to model uncertain agents is to assume that each of
them has a probability distribution which tells them the probability of a point
being their ideal location. For instance, this is the model that is used by Feige
and Tennenholtz [8] in the context of task scheduling. However, in our model
the agents do not have any more information than that they are within some
interval, which we emphasize is not equivalent to assuming that, for a given
agent, every point in the its interval is equally likely to be its true location.

The Facility Location Problem. Starting with the work of Moulin [17] there
has been a flurry of research looking at designing strategyproof mechanisms for
the facility location problem. These can be broadly divided into two branches.
The first one consists of work, e.g., [2,7,16,17,20], that focuses on character-
izing the class of strategyproof mechanisms in different settings (see [1] and



Mechanism Design for Locating a Facility Under Partial Information 53

[18, Chapter 10] for surveys). The second branch consists of more recent papers
which fall under the broad umbrella of approximate mechanism design with-
out money, initially advocated by Procaccia and Tennenholtz [19], that focus
on looking at how well a strategyproof mechanism can perform under differ-
ent objective functions [9–11,15,19]. Our paper falls under this branch of the
literature.

2 Preliminaries

Recall that in the standard (mechanism design) version of the facility location
problem there are n agents, denoted by the set [n] = {1, · · · , n}, and each agent
i ∈ [n] has a true preferred2 location �∗

i ∈ [0, B], for some fixed3 constant B ∈ R.
A vector I = (�1, · · · , �n), where �i ∈ [0, B], is referred to as a location profile
and the cost of agent i for a facility located at p is given by C(�∗

i , p) = |p − �∗
i |

(or equivalently, their utility is −|p − �∗
i |), the distance from the facility to the

agent’s location.4 In general, the task in the facility location problem is to design
mechanisms—which are, informally, functions that map location profiles to a
point (or a distribution over points) in [0, B]—that (approximately) implement
the outcome associated with a particular objective function.

In the version of the problem that we are considering, each agent i, although
they have a true location �∗

i ∈ [0, B], is currently unaware of their true location
and instead only knows an interval [ai, bi] ⊆ [0, B] such that �∗

i ∈ [ai, bi]. The
interval [ai, bi], which we denote by Ki, is referred to as the candidate locations
of agent i, and we use Ki to denote the set of all possible candidate locations
of agent i (succinctly referred to as the set of candidate locations). Now, given
a profile of the set of candidate locations (K1, · · · ,Kn), we have the following
definition.

Definition 1 (δ-uncertain-facility-location-game). For all n ≥ 1, B > 0,
and δ ∈ [0, B], a profile of the set of candidate locations (K1, · · · ,Kn) is said to
induce a δ-uncertain-facility-location-game if, for each i, Ki = {[ai, bi] | bi −ai ≤
δ and [ai, bi] ⊆ [0, B]} (in words, for each i, their set of candidate locations can
only have intervals of length at most δ).

Remark: We refer to δ as the inaccuracy parameter. In general, when proving
lower bounds we assume that the designer knows this δ as this only makes
our results stronger, whereas for positive results we explicitly state what the
designer knows about δ. Additionally, note that if δ = 0, then we have the
2 We often omit the term “preferred” and instead just say that �∗

i is agent i’s location.
3 Here we make the assumption that the domain under consideration is bounded
instead of assuming that the agents can be anywhere on the real line. This is neces-
sary only because we are focusing on additive approximations. (For a slightly more
elaborate explanation, see Sect. 1 in the paper by Golomb and Tzamos [12].).

4 The particular utility function considered here is equivalent to the notion of sym-
metric single-peaked preferences that is often used in the economics literature (see,
e.g., [16]).
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standard facility location setting where the set of candidate locations associated
with every agent is just a set of points in [0, B]. For a given profile of candidate
locations (K1, · · · ,Kn), we say that “the reports are exact” when, for each agent
i, Ki is a single point and not an interval.

2.1 Mechanisms, Solution Concepts, and Implementation

A (deterministic) mechanism M = (X,F ) in our setting consists of an action
space X = (X1, · · · ,Xn), where Xi is the action space associated with agent i,
and an outcome function F : X1 × · · · × Xn → [0, B]. A mechanism is said to be
direct if, for all i, Xi = Ki, where Ki is the set of all possible candidate locations
of agent i. For every i, a strategy is a function si : Ki → Xi, and Σi and Δ(Σi)
respectively denote the set of all pure and mixed strategies of i.

Since the outcome of a mechanism needs to be achieved in equilibrium, it
remains to be defined what equilibrium solution concepts we consider in this
paper. Below we define the two solution concepts that we use here. We note that
the first (very weak dominance) was also used by Chiesa et al. [4].

Definition 2 (very weak dominance). In a mechanism M = (X,F ), an
agent i with candidate locations Ki has a very weakly dominant strategy si ∈ Σi

if ∀s′
i ∈ Σi,∀�i ∈ Ki, and ∀s−i ∈ Σ−i,

C (�i, F (si(Ki), s−i(K−i))) ≤ C (�i, F (s′
i(Ki), s−i(K−i))) .

In words, the above definition implies that for agent i with candidate loca-
tions Ki, it is always best for i to play the strategy si, irrespective of the actions
of the other players and irrespective of which of the points in Ki is her true
location.

Definition 3 (minimax dominance). In a mechanism M = (X,F ), an agent
i with candidate locations Ki has a minimax dominant strategy si ∈ Σi if ∀s′

i ∈
Σi and ∀s−i ∈ Σ−i,

max
�i∈Ki

max
σi∈Δ(Σi)

C(�i, F (si(Ki), s−i(K−i))

− C(�i, F (σi(Ki), s−i(K−i)))
≤ max

�i∈Ki

max
σi∈Δ(Σi)

C(�i, F (s′
i(Ki), s−i(K−i))

− C(�i, F (σi(Ki), s−i(K−i)).

Before explaining what the definition above implies, let p = F (si(Ki), s−i

(K−i)) be the outcome of the mechanism when agent i plays strategy si

and all the others play some s−i. Now, consider the term maxRegreti(p)
= max�i∈Ki

maxσi∈Δ(Σi) C(�i, p) − C(�i, F (σi(Ki), s−i(K−i))), which calculates
agent i’s max. regret (i.e., the absolute worst case loss agent i will experience if
and when she realizes her true location from her candidate locations) for playing
si and for the output p. Then, what the above definition implies is that for a
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regret minimizing agent i with candidate locations Ki, it is always best for i to
play si, irrespective of the actions of the other players, as any other strategy s′

i

results in an outcome p′ w.r.t. which i experiences at least as much max. regret
as she experiences with p.

Remark: Note that both the solution concepts defined above can be seen as
natural extensions of the classical (i.e., the usual mechanism design setting where
the agents know their types exactly) weak dominance notion to our setting. That
is, for all i ∈ [n], if Ki is a single point, then both of them collapse to the classical
weak dominance notion.

As stated in the introduction, given a profile of candidate locations (K1,
· · · ,Kn), we want the mechanism to “perform well” against all the possible
underlying true locations of the agents, i.e., with respect to all the location
profiles I = (�1, · · · , �n) where �i ∈ Ki. Hence, for a given objective function S,
we aim to design mechanisms that achieve a good approximation of the optimal
minimax value, which, for I = K1 × · · · × Kn, is denoted by OMVS(I) and is
defined as

OMVS(I) = maxRegret(popt, I), (1)

where for a point p ∈ [0, B], if S(I, p) denotes the value of the function S when
evaluated with respect to the vector I and p, then the maximum regret associated
with p for the instance I is defined as

maxRegret(p, I) = max
I∈I

(
S(I, p) − min

p′∈[0,B]
S(I, p′)

)
, (2)

and
popt = arg min

p∈[0,B]

maxRegret(p, I). (3)

Throughout, we refer to the point popt as the optimal minimax solution for the
instance I.

Finally, now that we have our performance measure, we define implementa-
tion in very weakly dominant and minimax dominant strategies.

Definition 4 (Implementation in very weakly dominant (minimax
dominant) strategies). For a δ-uncertain-facility-location-game, we say that
a mechanism M = (X,F ) implements α-OMVS, for some α ≥ 0 and some
objective function S, in very weakly dominant (minimax dominant) strategies, if
for some s = (s1, · · · , sn), where si is a very weakly dominant (minimax domi-
nant) strategy for agent i with candidate locations Ki,

maxRegret(F (s1(K1), · · · sn(Kn)), I) − OMVS(I) ≤ α.

3 Implementing the Average Cost Objective

In this section we consider the objective of locating a facility so as to minimize
the average cost (sometimes succinctly referred to as avgCost and written as
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AC). While the standard objective in the facility location setting is to minimize
the sum of costs, here, like in work of Golomb and Tzamos [12], we use average
cost because since we are approximating additively, it is easy to see that in many
cases a deviation from the optimal solution results in a factor of order n coming
up in the approximation bound. Hence, to avoid this, and to make comparisons
with our second objective function, maximum cost, easier we use average cost.

In the standard setting where the agents know their true location, the average
cost of locating a facility at a point p is defined as 1

n

∑
i∈[n] C(xi, p), where xi is

the location of agent i. Designing even optimal strategyproof mechanisms in this
case is easy since one can quickly see that the optimal location for the facility
is the median of x1, · · · , xn and returning the same is strategyproof. In contrast
to the standard setting, for some δ ∈ (0, B] and a corresponding δ-uncertain-
facility-location-game, even computing what the minimax optimal solution for
the average cost objective (see Eq. 3) is is non-trivial, let alone seeing if it can be
implemented with any of the solution concepts discussed in Sect. 2.1. Although
we will need some properties about the minimax optimal solution when proving
properties about the mechanisms we design, we do not state them here, since
due to space constraints we are unable to include any proofs. We refer the reader
to the full version of the paper where we provide a complete discussion on the
computing the minimax optimal solution and provide the proofs of the results
in Sects. 3.1 and 3.2.

3.1 Implementation in Very Weakly Dominant Strategies

While very weak dominance is indeed a natural solution concept which extends
the classical notion of weak dominance, we will see below that it is too strong as
no deterministic mechanism can achieve a better approximation bound than B

2 .
This implies that, among deterministic mechanisms, the naive mechanism which
always, irrespective of the reports of the agents, outputs the point B

2 is the best
one can do.

Theorem 1. Given a δ ∈ (0, B], let M = (X,F ) be a deterministic mechanism
that implements α-OMVAC in very weakly dominant strategies for a δ-uncertain-
facility-location-game. Then, α ≥ B

2 .

Although one could argue that this result is somewhat expected given how
Chiesa et al. also observed similar poor performance for implementation with
very weakly dominant strategies in the context of the single-item auctions [4,
Theorem 1], we believe that it is still interesting because not only do we observe
a similar result in a setting that is considerably different from theirs, but this
observation also reinforces their view that one would likely have to look beyond
very weakly dominant strategies in settings like ours. This brings us to our next
section, where we consider an alternative, albeit weaker, but natural, extension
to the classical notion of weakly dominant strategies.
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3.2 Implementation in Minimax Dominant Strategies

In this section we move our focus to implementation in minimax dominant strate-
gies. We first present a general result that applies to all mechanisms in our setting
that are anonymous and minimax dominant, in particular showing that any such
mechanism cannot be onto. The proof of this result, which can be found in the
full version, is based on a characterization result for strategyproof, anonymous,
and onto mechanisms when agents have symmetric single-peaked preferences
[16, Corollary 2].

Remark: Note that in this section we focus only on direct mechanisms. This
is w.l.o.g. since it turns out that the revelation principle holds in our setting
for minimax dominant strategies. We refer the reader to Appendix B in the full
version for the proof.

Theorem 2. For all δ ∈ (0, B], let M = (X,F ) be a deterministic mechanism
that is anonymous and minimax dominant for a δ-uncertain-facility-location-
game. Then, M cannot be onto.

Given the fact that we cannot have an anonymous, minimax dominant, and
onto mechanism, the natural question to consider is if we can find non-onto
mechanisms that perform well. We answer this question in the next section.

Non-onto Mechanisms. In this section we consider non-onto mechanisms. We
first show a positive result by presenting an anonymous mechanism that imple-
ments 3δ

4 -OMVAC in minimax dominant strategies. Following this, we present
a conditional lower bound that shows that one cannot achieve an bound better
than δ

2 when considering mechanisms that have a finite range.

An Anonymous and Minimax Dominant Mechanism. Consider the δ
2 -

equispaced-median mechanism defined in Algorithm 1, which can be thought
of as an extension to the standard median mechanism. The key assumption in
this mechanism is that the designer knows a δ such that any agent’s candidate
locations has a length at most δ. Given this δ, the main idea is to divide the
interval [0, B] into a set of “grid points” and then map every profile of reports to
one of these points, while at the same time ensuring that the mapping is minimax
dominant. In particular, in the case of the δ

2 -equispaced-median mechanism,
when δ > 0, its range is restricted to the finite set of points A = {g1, g2, · · · gm}
such that, for i ≥ 1, gi+1 − gi = δ

2 , g1 = 0, and gm ≤ B.
Below we state that the δ

2 -equispaced-median mechanism implements 3δ
4 -

OMVAC in minimax dominant strategies. The main idea in its proof, which can
be found in the full version, is that for an agent i with candidate locations [ai, bi]
the �i associated with i in the mechanism is in fact the agent’s “best alternative”
among the alternatives in A. Once we have this, we then show the approximation
bound.

Theorem 3. For a given δ ∈ [0, B], the δ
2 -equispaced-median mechanism is

anonymous and implements 3δ
4 -OMVAC in minimax dominant strategies for a

δ-uncertain-facility-location-game.
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Input: a δ ≥ 0 and for each agent i, their input interval [ai, bi]
Output: location of the facility p
1: A ← {g1, · · · , gk},where g1 = 0, gk ≤ B, gi+1 − gi =

δ
2

2: for each i ∈ {1, · · · , n} do
3: xi ← point closest to ai in A (in case of a tie, break in favour of the point

in [ai, bi] if there exists one, break in favour of point to the left otherwise)
4: yi ← point closest to bi in A (break ties as in line 3)
5: if |[xi, yi] ∩ A| == 1 then � the case when xi = yi

6: �i ← x
7: else if |[xi, yi] ∩ A| == 2 then
8: if |[xi, yi] ∩ [ai, bi]| < 2 then
9: if ai + bi ≤ xi + yi then
10: �i ← xi

11: else
12: �i ← yi

13: end if
14: else
15: �i ← xi

16: end if
17: else if |[xi, yi] ∩ A| == 3 then
18: �i ← zi, where zi ∈ [xi, yi] ∩ A, zi �= xi, zi �= yi

19: end if
20: end for
21: return median(�1, · · · , �n)

Algorithm 1: δ
2 -equispaced-median mechanism

A Conditional Lower Bound. In the context of our motivating example from
the introduction, it is possible, and in fact quite likely, that the city can only
build the school at a finite set of locations on the street. Therefore, an interesting
class of non-onto mechanisms to consider is ones which have a finite range.
Furthermore, seeing our mechanism above, an inquisitive reader might wonder:
“why δ

2 -equispaced? why not δ
3 -equispaced or something smaller than δ

2?” First,
one can easily construct counter-examples to show that any ε-equispaced-median
mechanism is not minimax dominant for ε < δ

2 . However, that still does not rule
out mechanisms whose range is some finite set {g1, · · · , gm}. Below we consider
this question and we show that the approximation bound associated with any
mechanism that is anonymous, minimax dominant, and has a finite range, is
at least δ

2 . The key idea that is required in order to show this bound is the
following lemma, which informally says that if the mechanism has a finite range,
is minimax dominant, and achieves a bound less than 3δ

4 , then there is “sufficient-
gap” between four consecutive points in the range, A, of the mechanism. Once
we have this observation it is then in turn used to construct profiles that will
result in the stated bound. The proofs of both the lemma and theorem make
use of a characterization result by Massó and De Barreda [16, Corollary 1], and
they can be found in the full version. (Below we ignore mechanisms which have
less than six points in their range as one can easily show that such mechanisms
perform poorly.)



Mechanism Design for Locating a Facility Under Partial Information 59

Lemma 1. For all δ ∈ (0, B
6 ], let M be a deterministic mechanism that has

a finite range A (of size at least six), is anonymous, and one that implements
α-OMVAC in minimax dominant strategies for a δ-uncertain-facility-location-
game. Then, either α ≥ 3δ

4 , or there exists four consecutive points g1, g2, g3, g4 ∈
A such that g1 < g2 < g3 < g4 and d1

2 + d2 + d3
2 ≥ δ, where, for i ∈ [3], di =

gi+1 − gi.

Theorem 4. For all δ ∈ (0, B
6 ], let M be a deterministic mechanism that has

a finite range (of size at least six), is anonymous, and one that implements
α-OMVAC in minimax dominant strategies for a δ-uncertain-facility-location-
game. Then, for any ε > 0, α ≥ δ

2 − ε.

4 Implementing the Maximum Cost Objective

In this section we consider the objective of minimizing the maximum cost (suc-
cinctly referred to as maxCost and written as MC). In the standard setting
where the reports are exact, the max. cost associated with locating a facility at
p is defined as maxi∈[n] C(xi, p) and if we assume w.l.o.g. that the xi’s are in
sorted order, then it is easy to see that the optimal solution to this objective is
to locate the facility at p = x1+xn

2 . However, unlike in the case of the avgCost
objective that was considered in Sect. 3, one cannot design an optimal strate-
gyproof mechanism even when the reports are exact, and it is known that the
best one can do in terms of additive approximation is to achieve a bound of B

4
in the case of deterministic mechanisms [12, Theorem 5].

Now, coming to our setting, unlike in the case of the avgCost objective,
calculating the minimax optimal solution is straightforward in this case. In fact,
given the candidate locations [ai, bi] for all i, if L1, · · · , Ln and R1, · · · , Rn denote
the sorted order of the points in {ai}i∈[n] and {bi}i∈[n], respectively, then it is not
too hard to show that the minimax optimal solution is the point L1+R1+Ln+Rn

4 .
Therefore, below we directly move on to implementation. We refer the reader to
the full version for a complete discussion on the minimax optimal solution and
for the proofs of the results that follow.

4.1 Implementation in Very Weakly Dominant Strategies

Here again see that very weak dominance is too strong a solution concept as
we can show that one cannot do better than the naive mechanism which always
outputs the point B

2 . The following theorem, which can be proved by proceeding
exactly like in the proof of Theorem 1, formalizes this statement.

Theorem 5. For all δ ∈ (0, B], ε ∈ (0, δ), let M = (X,F ) be a deterministic
mechanism that implements α-OMVMC in very weakly dominant strategies for
a δ-uncertain-facility-location-game. Then, α ≥ B

2 − ε.

Given this, we consider minimax dominant strategies in the hope of getting
an analogous result as Theorem 3.
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4.2 Implementation in Minimax Dominant Strategies

When it comes to implementation in minimax dominant strategies, we again see
that even in the case of the maxCost objective function one can do a lot better
than under very weak dominance. Before we see the exact bounds, recall that
Theorem 2 rules out the existence of mechanisms that are anonymous, minimax
dominant, and onto. Hence, our focus will be on non-onto mechanisms. We note
that the ideas in the following section are similar to the ones in Sect. 3.2 since
here, too, we focus on “grid-based” mechanisms.

Non-onto Mechanisms. In this section we show that there exists a mecha-
nism that implements

(
B
4 + 3δ

8

)
-OMVMC in minimax dominant strategies. The

mechanism is similar to the δ
2 -equispaced-median mechanism and can be consid-

ered as an extension to the phantom-half mechanism proposed by Golomb and
Tzamos [12]. Hence, we only highlight the changes below.
δ
2 -equispaced-phantom-half. We need to make only two changes to Algo-
rithm 1: (a) redefine A to be the set {g1, · · · , gj , · · · , gm}, where gj = B

2 , gi+1 −
gi = δ

2 , for 1 ≤ i ≤ k − 1, g0 ≥ 0, and gm ≤ B. (b) instead of returning the
median of the lis in line 21, we return the median of the points �min, B

2 , and
�max, where �min = mini{�i} and �max = maxi{�i}.

Below, we state that the mechanism described above implements
(

B
4 + 3δ

8

)
-

OMVMC in minimax dominant strategies. The proof can be found in the full
version.

Theorem 6. For a given δ ∈ [0, 2B
3 ], the δ

2 -equispaced-phantom-half mechanism
is anonymous and one that implements

(
B
4 + 3δ

8

)
-OMVMC in minimax domi-

nant strategies for a δ-uncertain-facility-location-game.

Finally, given this result, it is natural to ask if we have a lower bound like the
one in Sect. 3.2. Unfortunately, the only answer we have is the obvious bound
of B

4 that follows from the result of Golomb and Tzamos [12, Theorem 15] who
showed that under exact reports, and when using deterministic mechanisms, one
cannot achieve a bound lower than B

4 .

5 Conclusions

The standard assumption in mechanism design that the agents are precisely
aware of their preferences may not be realistic in many situations. Hence, we
believe that there is a need to look at models that account for partially informed
agents and, at the same time, design mechanisms that provide robust guarantees.
In this paper we looked at such a model in the context of the classic single-
facility location problem, where an agent specifies an interval instead of an exact
location, and our focus was on designing robust mechanisms that perform well
w.r.t. all the possible underlying true preferred locations of the agents. Towards
this end, we looked at two solution concepts, very weak dominance and minimax
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dominance, and we showed that, with respect to both the objective functions
we considered, while it was not possible to achieve any good mechanism in
the context of the former solution concept, extensions to the classical optimal
mechanisms—i.e., mechanisms that perform optimally in the classical setting
where the agents exactly know their locations—performed significantly better
under the latter, weaker, solution concept.

There are some immediate open questions in the context of the problem we
considered like looking at randomized mechanisms, providing tighter bounds,
and potentially even finding deterministic mechanisms that perform better than
the ones we showed. More broadly, we believe that it will be interesting to
revisit the classic problems in mechanism design, see if one can look at models
which take into account partially informed agents, and design mechanisms where
one can explicitly relate the performance of the mechanism with the quality of
preference information.
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Abstract. The facility location problem has emerged as the benchmark
problem in the study of the trade-off between incentive compatibility
without transfers and approximation guarantee, a research area also
known as approximate mechanism design without money. One limita-
tion of the vast literature on the subject is the assumption that agents
and facilities have to be located on the same physical space. We here ini-
tiate the study of constrained heterogeneous facility location problems,
wherein selfish agents can either like or dislike the facility and facili-
ties can be located on a given feasible region of the Euclidean plane.
In our study, agents are assumed to be located on a real segment, and
their location together with their preferences towards the facilities can
be part of their private type. Our main result is a characterization of the
feasible regions for which the optimum is incentive-compatible in the set-
tings wherein agents can only lie about their preferences or about their
locations. The stark contrast between the two findings is that in the for-
mer case any feasible region can be coupled with incentive compatibility,
whilst in the second, this is only possible for feasible regions where the
optimum is constant.

Keywords: Mechanism design without money · Facility location ·
Incentive compatibility

1 Introduction

Deciding where to locate a public facility, like a school, in order to serve a
group of strategic agents, is a fundamental problem that has received a great
deal of attention. Under such a setting, the city council, or some other public
authority, needs to elicit private information from the concerned (local) people,
or agents, without using money, and choose the location of the school based on
that information. The authority defines the rules of choosing the location with
the objective to maximize the social welfare, i.e., the total satisfaction of the
agents. However, agents might misreport their private information in an attempt
to maximize their own individual utility, which is usually captured using some
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distance measure between their ideal location for the facility, commonly consid-
ered to be (part of) their private information (a.k.a., type), and the location of
the facility itself. The absence of money makes it very challenging to align the
incentives of the authority with those of the individual agents.

The field of mechanism design [12] focuses on the implementation of desired
outcomes in strategic settings. A primary designer goal that has been extensively
studied is that of truthfulness, which informally states that an agent should be
able to optimize her own individual utility by reporting truthfully her private
information. However, achieving this is not always compatible with maintaining a
high social welfare [8,15]. Monetary compensations have been commonly used as
a means towards aligning the incentives of the individuals with those of society,
however, the use of payments is not always allowed due to ethical [12], legal (e.g.,
organ donations), or even just practical reasons. With this motivation in mind,
researchers have started turning their attention to possible ways of achieving
truthfulness without the use of payments, i.e., designing truthful (or strategy-
proof, SP for short) mechanisms that do not use monetary transfers.

Mechanism design without money has been examined from the point of view
of exact and approximate solutions. Exact mechanism design without money
has a rich history in social choice literature (cf., e.g., [11]), while Procaccia and
Tennenholtz [14] were the first to consider achieving truthfulness (or strategy-
proofness) without using payments, by sacrificing the optimality of the solution
and settling for just an approximation; their work has given rise to what is
now known as approximate mechanism design without money. In a nutshell, the
objective is that of finding the best approximation guarantee which guarantees
strategy-proofness for a given optimization problem.

However, in many settings (such as the school location discussed above) the
mechanism designer has some control on the set of feasible solutions (e.g., the
area in the city where a school can be built) and would arguably be more inter-
ested in leveraging this power to marry strategy-proofness and optimality. In this
paper, we initiate the investigation of this research direction and ask whether
we can achieve strategy-proofness without using payments by restricting the
feasibility of the solution space. As a case study, we consider a facility location
problem similarly to Procaccia and Tennenholtz [14]. In our model, the agents
are located on a single-dimensional space, just like in [14], while the facility can
be located in a feasible region in R

2. Contrary to their approach, we keep the
requirement for an optimal solution and study how the shape of the feasible
region for the facility location can impact the incentives. We are interested in
the following general question:

What is the biggest feasible region for the facility that would allow for the
optimal solution to be implemented in a truthful way?

We consider this question in the setting of heterogeneous preferences [1,18,
21], where the facility is not commonly believed to be desirable by the agents;
some agents might find it attractive and wish to have it located as close to them
as possible, but others might have different views and desire to be far away from
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them. This preference might also be part of the private information of each agent
(in addition/place of their location). When the facility is a school, for example,
it is reasonable to expect that families with small children will want to reside
close to a school, yet others might prefer to live as far away as possible from it
in order to avoid possible noise and traffic.

We define the utility of the agents to be quadratic in the distance between
the agent and the facility. On the one hand, the literature on facility location
in higher dimensional spaces has twists in the definition of distance in order to
make this study feasible. On the other, in many problems, one dimension is not
rich enough to fully describe preferences. For example, Barberá et al. [2] mention
the city block metric, i.e., the shortest path between two points on a multidimen-
tional grid, as a possible appropriate metric. Our model captures real-life scenar-
ios wherein the agents are environmentally conscious or have resources that are
depleted quadratically in the distance (as, e.g., power consumption in wireless
communication [13]). In our city planner motivating example, quadratic costs
align with environmentally conscious agents, i.e., agents who suffer quadrati-
cally in the distance to the facility due to the pollution caused by the travel to
cover that distance.

1.1 Our Contribution

We examine whether restricting the solution space for the facility location prob-
lem can be used as a means of achieving the optimal social welfare in a strategy-
proof way. Our findings show a dichotomy result in the sense that all or nothing
can be done in the setting of heterogeneous facility location for exact optimal
solutions.1

Specifically, we consider two different settings, where either the preferences
of the agents are private information but their locations are publicly known
(unknown preferences case), or the opposite, i.e., the locations of the agents are
private information but their preferences are publicly known (unknown locations
case).

In Sect. 3 we treat the case of unknown preferences and we show that the
optimal mechanism (the one that maximizes the social welfare) is group strategy-
proof (GSP) no matter the feasible region. GSP is a stronger requirement than
strategy-proofness as it does not even allow for profitable deviations of coalitions
of agents. Technically, this is proved by reducing the optimization problem of
maximizing the social welfare to the geometric problem of selecting a point in
the feasible region which is at maximum/minimum (depending on the shape of
the instance) distance from a carefully defined point on the line where the agents
reside. This point, which we call β, is a snapshot of the instance and is what the
coalitions of agents can manipulate (together with the rule to choose the point

1 Note that depending on the feasible region, the optimal solution might not be well
defined, e.g. if the feasible region is R

2 and all agents dislike the facility. Our results
implicitly assume that the optimization problem is well-defined and focus on coupling
it with incentive considerations.
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in the feasible region). The proof identifies key properties that must be satisfied
by a successful manipulation and then observes how those are incompatible with
optimality.

We then handle the case of unknown locations in Sect. 4, where we need to
distinguish between different cases depending on the majority of the preferences
(which is, in this setting, public knowledge). In each of these cases, we show that
in order to be able to implement the optimal solution in a strategy-proof way
it would have to hold that the optimal social welfare is constant, i.e., there is a
unique point in the feasible region that maximizes the sum of utilities. From the
conceptual point of view, this result shows that in the unknown location setting
the power coming from the restriction of the feasible region is null as to obtain
a strategy-proof optimum, the incentives have to disappear altogether. This is
a quite strong negative characterizing result, which paves the way for future
research where the interplay between approximation guarantee and the feasible
region is considered (see conclusions). From the technical point of view, the proof
of this result adopts an iterative approach which identifies several instances
showing that the optimum must be the same for both the minimum and the
maximum possible value of β. However, while for the case wherein the preferences
are homogenous, the argument uses SP and optimality constraints to establish
the shape of the feasible region in the limit, the proof for heterogeneous instances
requires a more careful step-by-step argument to prove that the optimum is
constant.

We note that some of the proofs are deferred to the full version, due to lack
of space.

1.2 Related Work

The facility location problem has been studied by many diverse research com-
munities previously. We here discuss some of the most fundamental research
directions that have been explored in the context of facility location.

Relevant research from a Social Choice perspective has mostly focused on
the problem of locating a single facility on the line. In his seminal paper [11],
Moulin characterizes the class of generalized median voter schemes as the only
deterministic SP mechanisms for single-peaked agents on the line. Schummer and
Vohra [17] extend the result of Moulin to trees and continuous graphs. Dokow
et al. [3] prove that for small discrete graphs there are anonymous SP mecha-
nisms, contrarily to the case of continuous cycles studied in [17]. They prove that
SP mechanisms on discrete large cycles are nearly-dictatorial in that all agents
can affect the outcome to a certain extent.

Facility location has also been one of the fundamental problems in the field
of Mechanism Design without money. The work of Procaccia and Tennenholtz
on facility location in [14] initiates the study of approximate mechanism design
without money, where they suggest the idea of sacrificing a factor of the approx-
imation guarantee as a means to obtain strategy-proofness. For the 2-facility
location problem, they propose the Two-Extremes algorithm, that places the
two facilities in the leftmost and rightmost location of the instance, and prove
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that it is group strategy-proof and (n − 2)-approximate, where n is the number
of agents. Furthermore, they provide a lower bound of 3/2 on the approximation
ratio of any SP algorithm for the facility location problem on the line and con-
jecture a lower bound of Ω(n). The latter conjecture has been proven by Fotakis
et al. [7]. Their main result is the characterization of deterministic SP mecha-
nisms with bounded approximation ratio for the 2-facility location problem on
the line. They show that there exist only two such algorithms: (i) a mechanism
that admits a unique dictator or (ii) the Two-Extremes mechanism proposed
in [14]. The authors of [5] show how verification can be used to get truthful
mechanisms with better approximation guarantees for the problem.

Lu et al. [10], improve several bounds studied in [14]. In particular, as regards
deterministic algorithms they prove a better (w.r.t. [14]) lower bound of 2 −
O( 1

n ). Furthermore, they prove a 1.045 lower bound for randomized mechanisms
for the 2-facility location problem on the line and present a randomized n/2-
approximate mechanism.

Our work falls under the category of exact (as opposed to approximate)
mechanism design without money. We consider the restriction of the feasibility
space so that optimality and strategy-proofness are not mutually exclusive. To
the best of our knowledge, this work is the first in the facility location literature
to distinguish the region of the agents’ locations and the feasible region for
the facility. However, similar restrictions have been studied in the judgement
aggregation literature, see [4]. We study the case of heterogeneous preferences
[1,18–21], and distinguish between cases where agents can only misreport their
locations or their preferences (but not both). A similar distinction has been
considered in [6].

In [9], Lu et al. consider general metric spaces for the 2-facility game. They
give an Ω(n) lower bound for the approximation of deterministic strategy-proof
mechanisms and prove that a constant approximation ratio can be achieved by
a natural randomized mechanism, the so-called Proportional Mechanism.

2 Model and Preliminaries

We assume to have k agents, located on the segment [0, �]; we say that agent i
is located at xi in that segment. We let x = (x1, . . . , xk). We need to locate a
facility on a given feasible region Γ ⊆ R

2. (We assume for simplicity that, in the
larger space, the segment has the second coordinate equal to 0; our results hold
no matter this choice, given that this coordinate is known in either the setting
considered.) Each agent might like the facility or dislike it; we let pi ∈ {−1, 1}
denote the preference of agent i with the meaning that if agent i likes (dislikes,
respectively) the facility then pi = 1 (pi = −1, respectively). In this sense, our
model is heterogeneous, in that not all the agents will have the same opinion of
the usefulness of the facility. We let p = (p1, . . . , pk), let m denote the number
of agents whose preference is 1, and let n the number of agents whose preference
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is −1, so that k = m + n. Agent i has a utility which depends on her location
xi and preference pi, and the location f = (xf , yf ) of the facility in Γ , that is,

ui((xi, pi), f) =
{

(xi − xf )2 + y2
f if pi = −1

λ − (xi − xf )2 − y2
f if pi = 1 ,

where λ is a constant which guarantees that the utilities are not negative. Intu-
itively, an agent who likes the facility wants to be close to f , while an agent
who dislikes it wants to be far from it. Our definition of utility captures that
and is similar in spirit to the one in [1]; in our definition, however, the utility is
quadratic in the distance between xi and f (see Sect. 1 for a relevant discussion).

We study this problem from a mechanism design perspective. That is, we
assume that the agents have a private type ti, and we consider the two extreme
cases of type being either the preference or the location of each agent, i.e. ti ∈
{xi, pi}. A mechanism M collects reports from the agents, which are potentially
different bids bi, and on this input returns a location for the facility in Γ . With
a slight abuse of notation, we assume that the bid of agent i to the mechanism is
completed with the public part of {xi, pi}. Our objective is to design a truthful
mechanism (a.k.a., strategy-proof, SP for short) M, i.e., a mechanism such that
for any ti, bi and b−i = (bj)j �=i,

ui(ti,M(ti,b−i)) ≥ ui(ti,M(bi,b−i)).

A stronger requirement is for the mechanism to be group strategy-proof (GSP,
for short). A mechanism M is GSP if for any profile b and any coalition C ⊆ [k],
there is no joint deviation b′

C = (b′
i)i∈C of the agents in C such that no agent

in C loses and at least one gains, that is, for all b, for all C ⊆ [k] and for all b′
C

there exists i ∈ C such that

ui(bi,M(b)) > ui(bi,M(b′
C ,b−C))

or for all i ∈ C,
ui(bi,M(b)) ≥ ui(bi,M(b′

C ,b−C)),

where b−C = (bi)i�∈C . We restrict the focus in this work on optimal mecha-
nisms for the social welfare, that is, we want M to find, on input an instance
b = (b1, . . . , bk), the point f� = arg maxf∈Γ SW (b, f), where SW (b, f) =∑k

i=1 ui(bi, f). Clearly, optimality depends on the choice of the feasible region Γ ,
but we omit this dependence when referring to optimal mechanisms for clarity
of exposition.

3 Unknown Preferences

We begin by introducing some notations, that allow a more useful formulation of
the social welfare and ultimately a geometric characterization of the optimum.

Fix a profile b. Recall that m denotes the number of agents whose preference
is 1 and n the number of agents whose preference is −1. Note that in the case



Mechanism Design for Constrained Heterogeneous Facility Location 69

of unknown preferences, m and n depend on the agents’ strategies. We let γ =
m − n, sp =

∑
i:pi=p xi, for p ∈ {−1, 1} and δ = s1 − s−1. Tedious calculations

can verify that we can rewrite SW (b, (xf , yf )) as follows:

− γ

(
xf − δ

γ

)2

− γy2
f +

δ2

γ
+ mλ −

⎛
⎝ ∑

i:pi=1

x2
i −

∑
i:pi=−1

x2
i

⎞
⎠ if γ �= 0;

2δxf + mλ −
⎛
⎝ ∑

i:pi=1

x2
i −

∑
i:pi=−1

x2
i

⎞
⎠ if γ = 0.

Therefore, for a given instance b, optimizing the social welfare is equivalent
to finding a point (i.e., the xf and yf ) in Γ that maximizes the equations
above, in the respective cases. This amounts to choosing a point in Γ with max-
imum/minimum x-coordinate (depending on the sign of δ) when the number of
players with preference 1 is equal to the number of players whose preference is
−1. In the case in which m �= n (γ �= 0), however, we need to maximize the
quadratic equation. This is equivalent to finding the point in Γ that either max-
imizes (when γ < 0) or minimizes (when γ > 0) the (square of the) distance
from the point β =

(
δ
γ , 0

)
.2

Below, we will let d(·, ·) denote the distance between two points. Moreover,
we will let m,n, s1, s−1, pi, δ denote the parameters for the instance in which
agent i is truthful and f = (xf , yf ) be the output of the mechanism. xβ = δ/γ
naturally corresponds to the x-coordinate of point β defined above. We add a
prime symbol to denote aspects of the instance where agents misreport their
type.

We are now ready to prove the first part of our dichotomy.

Theorem 1. For all Γ ⊆ R
2, the optimum mechanism is GSP.

Proof. We focus on the optimum mechanism that breaks ties between solutions
in a bid-independent way, that is, if there are f, f ′ ∈ Γ that are optimal for two
instances of the problem, then the mechanism will consistently return the same
(e.g., the one with minimum y-coordinate and, in case of further ties, with the
minimum x-coordinate).

Assume that there exists Γ ⊆ R
2 such that this optimum mechanism is not

GSP. This means that there is a coalition C that by joint deviation manages to
change the outcome from f to f ′ while no agent in C loses and at least one gains.
We denote with Cl the subset of C containing the agents in the coalition who lie.
We extend the notations above with a c and −c symbol to restrict the respec-
tive quantities to the agents inside and outside C, respectively; so, for exam-
ple, γc (γ−c, resp.) denotes the difference between the number of agents inside
2 This geometric characterization of the optimum is the only aspect where the

quadratic distances play a fundamental role; with Euclidean distances the optimum is
less well behaved. For the agents’ utilities and the optimum, maximizing/minimizing
distances is equivalent to maximizing/minimizing the square of the distances.
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(outside, resp.) C with preference 1 and those with preference −1. Furthermore,
we use subscripts c, l and c, nl to differentiate the quantities calculated on the
agents in C who lie and do not lie, respectively. So for example, γc,l and γc,nl

correspond to the difference between the numbers of preferences for members of
the coalition that lie and do not lie, respectively.

We begin by showing that if there is a profitable deviation for the coalition,
then xf �= xf ′ . First, consider the case in which the agents in C have hetero-
geneous preferences, that is, there are agents in C with either preference. Since
the mechanism is not GSP then there exist agents i and j in C such that pi = 1
and pj = −1 and it holds that:

d2(xi, f) > d2(xi, f
′)

d2(xj , f) ≤ d2(xj , f
′)

where we assumed w.l.o.g. that i is the agent in C for whom the inequality is
strict (at least one such agent must be in C). By simple algebraic manipulations,
we conclude that

(xj − xi)(xf − xf ′) > 0.

This implies that xf �= xf ′ .
Consider now the case in which all the agents in C have the same preference,

so that γc �= 0. Assume for a contradiction that xf = xf ′ . We shall prove that:

γc(γc,l + γc,nl + γ−c) ≤ 0, (1)
γc(−γc,l + γc,nl + γ−c) ≥ 0. (2)

First observe that γ = γc,l + γc,nl + γ−c and γ′ = −γc,l + γc,nl + γ−c, so it
suffices to prove that γc · γ ≤ 0 and that γc · γ′ ≥ 0. Consider the case in which
γc > 0 (the case γc < 0 is symmetric). Since the coalition finds it profitable to
change the output from f to f ′ then, since xf = xf ′ , it must be the case that
|yf ′ | < |yf |. But then since the optimum for the original instance chooses f but
not f ′ it cannot be that γ > 0. We then have that γc · γ ≤ 0, thus proving
(1). Similarly, given that the optimum for the modified instance (in which the
agents in C lie) returns f ′ and not f it cannot be that γ′ < 0, hence γc · γ′ ≥ 0.
Summing up (1) and (2), we have 2γcγc,l ≤ 0, which is a contradiction since γc

and γc,l have the same sign and γc �= 0.
It now remains to argue only about the case xf �= xf ′ . Contradicting this

case as well will prove that there is no profitable deviation for a coalition, as
desired. Let ε be

ε =
xf + xf ′

2
+

xf + xf ′

2
yf − yf ′

xf − xf ′
. (3)

Intuitively, the point (ε, 0) is the intersection of the x-axis with the perpendicular
crossing the middle of the line segment connecting f and f ′. As xf �= xf ′ , this
intersection must exist. Note that ε is an important parameter to determine
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where β and β′ are in the cases in which γ �= 0 and γ′ �= 0. In fact, (ε, 0)
partitions the points on the x-axis according to the facility they are closer to.
So, for example, by definition of the optimum, β and f must be on the same
side of (ε, 0) for γ > 0.

We continue with two observations (inequalities (4) and (5)) that will be
useful later on. When γc,l = 0, we have

δc,l(xf − xf ′) ≤ 0. (4)

Indeed, since γc,l = 0 then the coalition is heterogeneous and mc,l = nc,l. Assume
that xf ′ < xf (the opposite case being symmetric). Since the coalition prefers
f ′ over f , then it must be that xj ≤ ε ≤ xl, for every j, l ∈ C such that pj = 1
and pl = −1. But then since γc,l = 0 (i.e., there is a bijection between agents
lying in either direction) we can conclude that δc,l ≤ 0.

When γc,l �= 0, we can prove:

γc,l(xβc,l
− ε)(xf − xf ′) ≤ 0. (5)

Indeed, consider the case γc,l > 0, i.e., mc,l > nc,l. Assume that xf ′ < xf ;
as argued above, all the agents in the coalition with preference 1 (−1, resp.)
must be to the left (right, resp.) of point (ε, 0) and at least one must have a
location different from ε. If nc,l = 0, then we can conclude that xβc,l

≤ ε and
prove (5). If nc,l > 0 then choose a subset S of nc,l agents in the coalition
with preference 1 who lie, including one with location not ε (if any). We can
then conclude that

∑
j∈S xj − ∑

l∈Cl,pl=−1 xl < 0. But then, observing that∑
j∈Cl\S,pj=1 xj ≤ (mc,l − nc,l)ε, we can conclude that xβc,l

< ε and prove (5).
(The remaining cases can be proved with the same argument mutatis mutandis.)

In order to conclude the proof of the theorem, we will now show a contradic-
tion with (either) (4) and (5); we will consider three different cases depending
on the values of γ and γ′. Note that δ′ = −δc,l + δc,nl + δ−c and so:

xβ =
δc,l + δ−
γc,l + γ−

and x′
β =

−δc,l + δ−
−γc,l + γ−

,

where the − as a subscript denotes the parameters of the instance that do not
change because of the lies (i.e., the sum of c, nl and −c components).

Case γ �= 0 and γ′ �= 0. Let us only discuss here γ > 0, γ′ > 0; the other
cases can be proved with the same argument. By the definition of optimum for
positive values of γ and γ′, we have:

(xβ − ε)(xf − xf ′) ≥ 0 and (xβ′ − ε)(xf − xf ′) ≤ 0.

Observe that since the optimum uses a fixed-tie breaking rule it cannot be the
case that both the inequalities above are actually equality. In fact, were this the
case, then f and f ′ would be optimal locations for the facility in both instances;
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this would contradict that f �= f ′. We assume without loss of generality that the
first is true with a strict sign. Therefore, for xf > xf ′ we have

δc,l + δ−
γc,l + γ−

> ε and
−δc,l + δ−
−γc,l + γ−

≤ ε.

By simple algebraic manipulations, we can conclude that δc,l − εγc,l > 0. Simi-
larly, we can show that xf < xf ′ yields δc,l − εγc,l < 0. But this contradicts (5),
when γc,l �= 0 and (4) in the case γc,l = 0.

Case γ = 0 and γ′ = 0. We begin by observing that, by summing up the
conditions on γ = 0, γ′ = 0, we get that γc,l = 0 (and then (5) does not hold in
this case). By the definition of optimum, we have :

(δc,l + δ−)(xf − xf ′) > 0
(−δc,l + δ−)(xf − xf ′) ≤ 0,

where, as above, we assume without loss of generality that the first is strictly
true (one has to be strict by the tie-breaking rule of the optimum algorithm).
From the two inequalities, we get δc,l(xf − xf ′) > 0, which contradicts (4).

Case γ = 0 (exclusive) or γ′ = 0. We here discuss only γ > 0, γ′ = 0; the
remaining cases can be proved in the same manner. By the definition of optimum,
we have:

(xβ − ε)(xf − xf ′) > 0
(−δc,l + δ−)(xf − xf ′) ≤ 0.

Again, the former is assumed to be strict by the tie-breaking rule adopted by
the optimum. As γ′ = −γc,l + γ− = 0, we have γc,l = γ− and then since
γ = γc,l + γ− > 0 we can conclude that γc,l > 0 (and so (4) does not hold here).
Thus, from the first inequality, we have:

1
2γc,l

(δc,l + δ− − 2εγc,l)(xf − xf ′) > 0

⇒ (δc,l + δ− − 2εγc,l)(xf − xf ′) > 0.

Combined with the second inequality above, we have

(δc,l − εγc,l)(xf − xf ′) > 0,

which contradicts (5).

4 Unknown Locations

We now prove the second part of our dichotomy result. Given that the value of
γ = m−n changes combinatorially the optimum and that, in the case of unknown
locations, γ is known to the designer, our analysis needs to differentiate all the
three cases about the relative order between m and n.
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4.1 Case m > n

We begin with all the instances where the number of 1’s is bigger than the
number of −1’s. For two points α and ζ on the plane, we let C(α, ζ) denote the
points in the interior of the circle centred in α of radius d(α, ζ); formally,

C(α, ζ) =
{

(x, y)
∣∣∣(x − xα)2 + (y − yα)2 < d2(α, ζ)

}
.

We denote by C̄(α, ζ) the points of the circle including those on the circumfer-
ence.

Theorem 2. When m > n = 0, if the optimum mechanism is strategy-proof,
then Γ is such that the optimum is constant.

Proof. We are going to show, through a sequence of instances, that for the
optimum to be strategy-proof on those instances, Γ must have a certain shape.
We can then observe that given such a shape, the optimum is constant no matter
the instance. Specifically, we will prove that there is f ∈ Γ such that

[
C(βmin, f) ∪ C(βmax, f)

]
∩ Γ = ∅, (6)

where βmax = (�, 0) and βmin = (0, 0).
We let f be the optimum of the instance in which m − 2 agents are on �/2,

one agent i is on xL = �
2ξ and the last one, named j, is on xR = �

2ζ, where
ξ = m

m+1 < 1 and ζ = m+2
m+1 > 1. We call this instance x and note that xβ = �/2.

Assume agent i lies and reports 0 instead of xL. Then the optimum will be
computed according to point β′, which is such that xβ′ = xL. By strategy-
proofness, the outcome cannot be closer to i’s true location (which is the same
as β′), i.e., C((xL, 0), f) ∩ Γ = ∅.

We now will argue that there is a sequence of instances that prove in the
limit that C(βmin, f) ∩ Γ = ∅. We set x1 to be as follows: m − 2 agents are on
�
2ξ, xL1 is ξ2(�/2) and xR1 is such that the point used to calculate the optimum,
denoted β1, satisfies xβ1 = xL (that is, xR1 = �

2
m(m+2)
(m+1)2 < �

2 ). From the previous
step we know that Γ has no intersection with C(β1, f) and then the optimum
in this case will again be f . Now, consider the case in which the true type of i is
xL1 and she misreports to 0. Then the optimum f ′

1 will be computed according
to point β′

1, which satisfies xβ′
1

= xL1 . By strategy-proofness, we must then have
that C((xL1 , 0), f) ∩ Γ = ∅.

We can now iterate the reasoning above and define instance xr, as follows:
xLr

= (�/2)ξr+1, m − 2 agents are on xβr−1 and xRr
≤ � is such that the point

used to calculate the optimum, denoted βr satisfies xβr
= xLr−1 . Using similar

reasoning, we conclude that C(βr, f) ∩ Γ = ∅. Given that ξ < 1, in the limit we
have that C(βmin, f) ∩ Γ = ∅, as desired.

We can use the same argument now on the right side of β to conclude that
C(βmax, f) ∩ Γ = ∅.
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We adopt a different argument to account for the case in which there are agents
who dislike the facility.

Theorem 3. When m > n > 0, if the optimum mechanism is strategy-proof,
then Γ is such that the optimum is constant.

4.2 Case m < n

The arguments used for the case m > n can be used in a very similar manner
to prove the following claim. The only change is in the definition of optimum
(maximum distance from Γ as opposed to minimum distance as for m > n) and,
consequently, the constraints on the shape of the feasible region Γ . We omit the
details.

Theorem 4. When m < n, if the optimum mechanism is strategy-proof, then
Γ is such that the optimum is constant.

4.3 Case m = n

We now complete our proof for the case in which m = n > 1; we leave the
arguably less interesting case of two agents open for future research.

Theorem 5. When m = n > 1, if the optimum mechanism is strategy-proof,
then Γ is such that the optimum is constant.

Proof. Recall that when m = n (γ = 0), the optimum requires to choose the
point in Γ with maximum/minimum x-coordinate (depending on the sign of δ).
We will then prove that for all f, f ′ ∈ Γ , it holds xf ′ = xf .

Consider the instance x comprised of four agents, where

0 < x1 < x2 < x3 < x4 < �

p1 = p3 = 1, p2 = p4 = −1,

x1 + � − x2 − x4 > 0,

x1 + x3 − x4 > 0.

The above can be satisfied for example if x1 = 2ξ, x2 = 3ξ, x3 = 4ξ, x4 = 5ξ,
and ξ = �/7. Let f be the optimum for instance x. Observe that δ has negative
sign and therefore f has minimum x-coordinate in Γ . Assume by contradiction
that the claim is not true and let f ′ be one of the rightmost points in Γ (a point
with the maximum x-coordinate), such that xf ′ > xf . Let ε be the quantity
defined in (3) for f and f ′ and recall that (ε, 0) partitions the points on the
x-axis according to the facility they are closer to.

If ε < x3, then the third agent has an incentive to declare x′
3 = � so that

δ′ > 0 (this is guaranteed by the definition of the instance) and the optimum
becomes f ′, which is closer to x3 than f . Similarly, when ε > x2, the second
agent has an incentive to declare x′

2 = 0 to change the sign of δ and move the
(undesirable) facility further from her location. Observe that one of these two
conditions on ε must be true, since x3 �= x2. Thus, wherever ε is, there exists at
least one agent who has an incentive to lie – a contradiction.
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5 Conclusions

We have introduced a new perspective in the research on mechanism design
without money. Whereas the quality of the solutions, in terms of their approx-
imation guarantee, has been used as a way to obtain truthfulness (or strategy-
proofness), we propose here to use the feasibility of the solution space as a way
to get incentive-compatibility. The former is usually detrimental to the designer,
who instead might well be in charge of defining feasibility. Just as one aims at the
best possible approximation, here we would aim at having the largest possible
set of feasible solutions.

In addition to this conceptual contribution, our work has given a set of
involved technical contributions showing a dichotomy in the case study of het-
erogeneous facility location problem. Whilst any feasible region can be used to
design optimal GSP mechanisms when agents can lie about their preferences,
very little can be done for SP mechanisms facing agents who can misreport their
location.

Our work leaves a number of compelling open questions. Even only for the
variant of facility location considered, one might wonder to what extent the two
sides of our dichotomy generalize. For the positive side of the coin of unknown
preferences, we wonder whether a similar theorem holds in the case in which the
agents are located on a bidimensional subset of R2 rather than a segment; possi-
ble interesting case studies include agents located on the boundary of a circle, a
region expressed by a quadratic function, or even an arbitrary shape. The neg-
ative part of our dichotomy for unknown locations is reminiscent of the known
characterization for collusion-resistant mechanisms with money [16]. Differently
from that, our constant-outcome characterization is qualified by optimality. The
natural next question is then to relax the requirement of optimality to (constant)
approximations. One question of interest could be: What approximation guar-
antee allows us to achieve truthfulness for every possible combination of positive
and negative preferences? More generally, our research agenda can be applied
to other mechanism design optimization problems studied in the literature; how
many feasible solutions can we allow to get truthfulness?
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Abstract. Obvious strategyproofness (OSP) has recently emerged as
the solution concept of interest to study incentive compatibility in pres-
ence of agents with a specific form of bounded rationality, i.e., those
who have no contingent reasoning skill whatsoever. We here want to
study the relationship between the approximation guarantee of incentive-
compatible mechanisms and the degree of rationality of the agents, intu-
itively measured in terms of the number of contingencies that they can
handle in their reasoning. We weaken the definition of OSP to accommo-
date for cleverer agents and study the trade-off between approximation
and agents’ rationality for the paradigmatic machine scheduling prob-
lem. We prove that, at least for the classical machine scheduling problem,
“good” approximations are possible if and only if the agents’ rationality
allows for a significant number of contingencies to be considered, thus
showing that OSP is not too restrictive a notion of bounded rationality
from the point of view of approximation.
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1 Introduction

Mechanism design is an established research field, by now rooted in a number
of academic disciplines including theoretical computer science and AI. Its main
objective is that of computing in presence of selfish agents who might misguide
the designer’s algorithm if it is profitable for them to do so. The concept of
strategyproofness (SP-ness) (a.k.a., truthfulness) ensures that the algorithm and
the agents’ incentives are compatible and computation is indeed viable.

SP is based on the assumption of full rationality: agents are able to consider
all possible strategies and their combinations to reason about their incentives.
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Nevertheless, this assumption is seldom true in reality and it is often the case
that people strategize against mechanisms that are known to be truthful [4]. One
then needs a different notion to compute in the presence of agents with bounded
rationality. The problem here is twofold: how can we formalize strategyproofness
for agents with (some kind of) bounded rationality? If so, can we quantify this
bounded rationality and relate that to the performances of the mechanisms?

The first question has been recently addressed by Li [18], who defines the
concept of obvious strategyproofness (OSP-ness); this notion has attracted quite
a lot of interest in the community [3,6,12–14,17,19,21,24]. Here, the mechanism
is seen as an extensive-form game; when a decision upon the strategy to play
has to be made, it is assumed that the reasoning of each agent i is as simple
as the following: the worst possible outcome that she can get when behaving
well (this typically corresponds to playing the game according to the so-called
agent’s true type) must be at least as good as the best outcome when misbehaving
(that is, following a different strategy). Best/Worst are quantified over all the
possible strategies that the players playing in the game after i can adopt. Li [18]
proves that this is the right solution concept for a model of bounded rationality
wherein agents have no contingent reasoning skills; rather than thinking about
the possible cases of if-then-else’s, an agent is guaranteed that honesty is the
best strategy to follow no matter all the contingencies.

Given the OSP formalization of bounded rationality, we focus, in this work,
on the second question. On the one hand, OSP is too restrictive in that people
might be able, within their computational limitations, to consider some contin-
gent reasoning, that is, a few cases of if-then-else’s. On the other hand, OSP
mechanisms appear to be quite limited, with respect to SP ones, in terms of
their approximation guarantee [12,13]. The question then becomes:

Can we quantify the trade-off between the “degree” of bounded
rationality of the agents and the approximation guarantee of the
mechanisms incentivizing them?

Our Contribution. The concept of lookahead is discussed in the literature in
the context of (strategies to play) games, and agents with limited computational
capabilities. De Groot [9] found that all chess players (of whatever standard)
used essentially the same thought process – one based upon a lookahead heuris-
tic. Shannon [23] formally proposed the lookahead method and considered it a
practical way for machines to tackle complex problems, whilst, in his classical
book on heuristic search, Pearl [20] described lookahead as the technique being
used by “almost all game-playing programs”.

We propose to consider lookahead as a way to quantify bounded rationality,
in relation to OSP. Whilst in OSP the players have no lookahead at all, we here
consider the case in which the agents have lookahead k, k going from 0 (OSP)
to n − 1 (SP). Intuitively, k measures the number of players upon which each
player reasons about in her decision making. We allow the set of k “lookahead”
players to be player and time specific (that is, different players can reason about
different competitors, and the set of players is not fixed but may change at
different time steps of the mechanism). So when agent i has to decide upon the
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strategy to play, she will consider all the possible cases (strategies) for these k
agents at that time (à la SP) and a no-contingent reasoning (à la OSP) for the
others. This definition, which is somewhat different from that of the next k moves
in the game, is dictated by different subtleties of extensive-form mechanisms. In
particular, these k agents can be chosen in different ways to cover diverse angles.
(A more technical discussion is deferred to Sect. 2.) In absence of other formal
definitions of incentive compatibility for different degrees of rationality, we regard
our definition of OSP with k-lookahead (k-OSP, for short) as a major conceptual
contribution of our work.

We then look at the trade-off between the value of k and the approxima-
tion guarantee of k-OSP mechanisms. We focus of the well-studied problem of
machine scheduling, where n agents control related machines and the objec-
tive is to schedule a set of m (identical) jobs to the machines so to mini-
mize the makespan (i.e., the latest machine’s completion time). In our main
technical contribution, we prove a lower bound on approximation guarantee of
τk(n) =

√
k2+4n−k

2 , thus providing a smooth transition function between the
known approximation factors of

√
n for OSP mechanisms [12] and 1 for SP

mechanisms [2]. We also show that this bound is tight, at least for three-values
domains. (Such a restriction is common to the state of the art of OSP mech-
anisms [12].) Our lower and upper bounds significantly extend and generalize
to k-OSP the analysis done in [12] for OSP mechanisms. Specifically, the lower
bound needs to identify some basic properties of the function τk(n) and prove
what features the implementation tree of a mechanism (i.e., extensive-form game
induced by it) with good approximation guarantee must have. Our upper bound
instead defines a mechanism (algorithm, implementation tree and payment func-
tion) which combines a descending auction phase, to identify a certain number
of slowest machines, with an ascending auction to find out the k + 1 fastest
machines. The analysis of the approximation guarantee of our k-OSP mecha-
nism is significantly more involved than the one used in [12] for k = 0.

The main message of our work is that having more rational agents only
slightly improves the approximation guarantee of incentive-compatible mecha-
nisms, at least in the case of machine scheduling. In fact, to have a constant
approximation of the optimum makespan one would need agents with ω(1)-
lookahead. We can then conclude that, in the cases in which the agents are
not that rational, OSP is not that restrictive a solution concept to study the
approximation of mechanisms for agents with bounded rationality.

Related Work. Recent research in algorithmic mechanism design has suggested
to focus on “simple” mechanisms to deal with bounded rationality [7,16,22]. OSP
provides a formal definition for simple mechanisms, by focusing on a specific
aspect of bounded rationality (see references above for the body of work on this
concept). However, different concepts of simple mechanisms have been recently
adopted in literature, most prominently posted-price mechanisms have received
great attention and have been applied to many different settings [1,5,8,10,11].
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2 The Definition

We have a set N of n agents; each agent i has a domain Di of possible types –
encoding some feature of theirs (e.g., their speed). The actual type of agent i is
her private knowledge.

An extensive-form mechanism M is a triple (f, p, T ), where f is an algorithm
that takes as input bid profiles and returns a feasible solution, p = (p1, . . . , pn)
is the payment function, one for each agent, and T is an extensive-form game,
that we call implementation tree1. Intuitively, T represents the steps that the
mechanism will take to determine its outcome. More formally, each internal node
u of T is labelled with a player S(u), called the divergent agent at u, and the
outgoing edges from u are labelled with types in the domain of S(u) that are
compatible with the history leading to u; the edge labels denote a partition of
the compatible types. We denote by Di(u) the types in the domain of i that
are compatible with the history leading to node u ∈ T . The tree models how
M interacts with the agents: at node u the agent S(u) is queried and asked to
choose an action, that corresponds to selecting one of u’s outgoing edges. The
chosen action signals that the type of S(u) is in the set of types labeling the
corresponding edge. The leaves of the tree will then be linked to (a set of) bid
profiles; the mechanism will return (f, p) accordingly; in other words, each leaf
corresponds to an outcome of the mechanism. (Observe that this means that the
domain of f and p is effectively given by the leaves of T .)

We use b to denote bid profiles, so that bi stands for the type that i signalled
to the mechanism. For simplicity, we use f(b) and p1(b), . . . , pn(b) to denote
the outcome of (f, p) for the leaf of T to which b belongs. We assume that agents
have quasi-linear utilities, that is, agent i of type t who signals (i.e., plays the
game T according to) b has utility ui(b,b−i) = pi(b) − t(f(b)), where, with a
slight abuse of notation, t(f(b)) is the cost that player i pays to implement the
outcome f(b) when her type is t, and b−i is the declaration vector of (i.e. types
signalled by) all agents except i. (In general, we let bA = (bj)j∈A for A ⊂ N .)

Figure 1 gives an example of an implementation tree where three players have
a two-value domain {L,H}. The root partitions the domain of machine 1 into
L and H. If we let v denote the left child of the root, then D1(v) = {L} as type
H is no longer compatible with the history of v.

We now define OSP with k-lookahead. OSP informally implies that whenever
an agent is asked to diverge, she is better off acting according to her true type
in any possible future scenario: the worst possible outcome after selecting her
true type is at least as good as the best possible outcome after misreporting her
type, at that particular point in the implementation tree. This models agents
with no contingent reasoning, i.e., those unable to think through hypothetical

1 The literature on mechanism design usually omits T from the definition of mecha-
nism, since it often focuses only on specific classes of mechanisms defined by a given
implementation tree (e.g., direct revelation mechanisms, posted price mechanisms).
However, it turns out that for OSP (and k-OSP) the design of the extensive-form
implementation is essential to define the incentive constraints.
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scenarios such as “if player 2 will play L and player 3 will play L, then I prefer L;
if they will play L and H respectively, then I prefer L, too; ans so on”. In OSP,
agent thinking is gross-grained: “If I play L, then the outcome will correspond
to leaves l1, . . . , l4, otherwise it will correspond to leaves l5, . . . , l8”.

However, it would be possible that agents have some limited ability of doing
contingent reasoning: they can think through hypothetical scenarios correspond-
ing to the action profiles of some players, but not all of them. Specifically, we
would like to model a player able to reason as follows: “If player 2 will play L, I
know that by choosing L I will finish either in l1 or in l2, otherwise I will finish
in l5 or l6; if player 2 will play R, then my choice will be between the outcomes
corresponding to l3 and l4 and the one corresponding to l7 and l8”. That is, we
here consider a more finely grained partition of the leaves of the tree, allowing
for some steps of contingent reasoning by the divergent agent. Intuitively, our
definition will allow the agent to reason about the moves of k agents; informally,
OSP with k-lookahead then implies that whenever an agent is asked to diverge,
she is better off acting according to her true type for any fixed choice of strate-
gies of the k agents she reasons about (just like truthfulness) and any possible
future scenario of the actions of the remaining n − k − 1 agents.

For the formal definition, we need to introduce some more notation. We call
a bid profile b compatible with u if b is compatible with the history of u for all
agents. We furthermore say that (t,b−i) and (b,b′

−i) diverge at u if i = S(u)
and t and b are labels of different edges outgoing u (we sometimes will abuse
notation and we also say that t and b diverge at u). E.g., (L,H,H) and (L,L,H)
are compatible with node v on Fig. 1 and diverge at that node, whilst (L,L,H)
and (L,L,L) are compatible with v but do not diverge at v.

1r

2v

3

l1

L

l2

H

L

3

l3

L

l4

H

H

L

2w

3

l5

L

l6

H

L

3

l7

L

l8

H

H

H

Fig. 1. An implementation tree with three players with two-value domains {L, H};
each player separates the domain types upon playing; at each leaf li the mechanism
computes f(b) and p(b), b being the bid vector at li.

For every agent i and types t, b ∈ Di, we let ui
t,b denote a vertex u in the

implementation tree T , such that (t,b−i) and (b,b′
−i) are compatible with u, but

diverge at u for some b−i,b′
−i ∈ D−i(u) = ×j �=iDj(u). Note that such a vertex

might not be unique as agent i will be asked to separate t from b in different
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paths from the root (but only once for every such path). We call these vertices
of T tb-separating for agent i. For example, the node r in the tree in Fig. 1 is a
LH-separating node for agent 1; while v and w are two LH-separating node for
agent 2. These nodes are crucial, as at any point in which an agent distinguishes
two different types we will need to add a (set of) constraints to account for her
incentives. We finally denote i’s lookahead at ui

t,b as Lk(ui
t,b), that is, a set of

(at most) k agents that move in T after i. (When k is clear from the context,
we simply let L(u) be the lookahead of agent S(u) at u.)

Definition 1 (OSP with k-lookahead). An extensive-form mechanism M =
(f, T , p) is OSP with k-lookahead (k-OSP, for short) given Lk(ui

t,b), if for all i,
t, b ∈ Di, t being i’s true type, ui

t,b ∈ T , bK ∈ DK(ui
t,b) and bT ,b′

T ∈ DT (ui
t,b),

it holds that
ui(t,bK ,bT ) ≥ ui(b,bK ,b′

T ),

where K = Lk(ui
t,b), T = N \ (K ∪ {i}) and DA(u) = ×j∈A⊂NDj(u).

In words, a mechanism is OSP with lookahead if each agent is willing to behave
truthfully at each node of the tree in which she interacts with the mechanism,
provided that she exactly knows the types of agents in K (bK is the same either
side of the inequality) but has no information about agents in T , except that
their types are compatible with the history.

We remark that with k = 0 we get the definition of OSP – wherein K is
empty – and with k = n − 1 we have truthfulness, T being empty.

Discussion. The set Lk(u) in the definition above crucially captures our notion
of lookahead. We highlight the following features of our definition. The size of set
Lk(u) tells us how many players, agent S(u) can contingently reason about. This
means that the boundaries of k indeed go from 0, which corresponds to OSP,
to n − 1, which is equivalent to strategyproofness. In this sense, our definition
represents a smooth transition between the two notions, measuring the degree
of rationality of the players. For example, consider Fig. 1 and focus on player
1; when k = 0 then our notion is exactly OSP and the constraints require to
compare the utility of 1 in the leaves l1, . . . , l4 with her utility in l5, . . . , l8; when,
instead, k = 1 and L1(r) = {2} then the constraints compare the utility of 1 in
the leaves l1, l2 with that in l5, l6 (this corresponds to the case in which 2 plays
L) and the utility of 1 in the leaves l3, l4 with that in l7, l8 (this corresponds to
the case in which 2 plays H); finally, for k = 2 we get truthfulness as we need to
compare the utility of 1 in lj and l4+j for j = 1, . . . , 4. We note that intermediate
values of k are consistent with the vast literature stating that human reasoning
only has limited depth: for example, it is known that in chess most professional
players are usually able to think ahead few steps only [9]. We remark that k-OSP
differs from k-level reasoning: the latter considers a Nash equilibrium in which
an agent plays a best response to what happens in the next k steps; the former
considers a(n obviously) dominant strategy.

The set Lk(u) depends on u; this means that the number and the identities
of players on which S(u) can reason about can (in principle) adaptively depend
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on the actual position in the implementation tree. This in particular allows us
to also capture extensive-form games where the choice of the players to query
is adaptive and a definition of lookahead where the players on which S(u) can
reason about are (a subset of) those who move next: this is for example the
case in many multi-player board games in which the player can take actions
that change who is the next player to play, e.g., by blocking some opponents or
reversing the order of play.

Note that whenever Lk(u) = Lk(v) for S(u) = S(v) then we model the case
in which the lookahead is independent from the actual implementation tree and
only depends on S(u)’s prior knowledge of the other agents.

Differently from the examples of chess and multi-player board games in which
a player only looks ahead to opponents that play in the next rounds, our defi-
nition of Lk(u) allows this set to contain also players that will play far away in
the future. This clearly makes our definition more general.

Moreover, we observe that this definition of Lk(u) also allows us to overcome
a paradox that would arise if one defines the set of opponents that one looks
ahead only with respect to the implementation tree. For the sake of argument,
let us fix k = 1. Consider an adaptive implementation tree, where at node u
different actions taken by agent S(u) correspond to different players taking the
next move. As a limit case, one can imagine that S(u) has n−1 different available
actions and each of them enables a different opponent to react (e.g., this is the
case for those board games where each player can decide who plays next). Hence,
assuming that S(u) can look ahead to players moving in the next step means
that S(u) has the ability to look ahead to all of them. Hence, in this setting
limited look-ahead is not limiting at all the ability of contingent reasoning of
S(u) (that is, in this setting every mechanism that is 1-OSP according to this
tree-only definition of lookahead is actually SP).

This is not surprising, since in this setting we are giving each agent i the
chance to “reason about” each opponent regardless of the action that i takes.
A more realistic alternative would be to assume that the agent exactly knows
the actions of an opponent j only when i takes an action that enables j to be
the next player to play (e.g., in the board game example described above, the
current player i is assumed to know which actions player j will take when i
chooses j as the next player to play, but i has no hint about the actions of j if
she chooses k �= j as the next player to play). However, in this case i would have
to reason about all the possible action combinations of all the different players
that move after her; this might not weaken OSP and indeed means that the
agent is not more rational at all. In fact, a careful inspection shows that, in this
case, 1-OSP according to this alternative definition of tree-only lookahead has
the same constraints of OSP.

Anyway, it must be highlighted that in non-adaptive trees, i.e., trees where
the identity of the next player to move after S(u) is the same irrespectively
of S(u)’s action, tree-only lookahead would indeed weaken OSP and effectively
capture a more rational agent capable of one step of contingent reasoning. Since
this is a special case of our notion, our lower bound continues to hold.
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Our definition requires that an agent with k-lookahead is capable of exactly
pinpointing the type of the agents in K. This is in fact the same assumption that
is implicitly done in the classical definition of truthfulness. Moreover, this makes
our definition of k-OSP mechanism a special case of mechanisms implementable
with partition dominant strategy as defined in [24]. Consequently, our definition
satisfies a natural generalization of the standard decision theory axioms of mono-
tonicity, continuity and independence, necessary to model the reasoning of agents
with a knowledge of the state of nature (e.g., the type profiles) limited only to
partitions of the set of these states (e.g., the type profiles that are compatible
with the history of the mechanism). We also observe that this requirement only
reinforces our lower bound below (even if they were so rational to do that, still
the approximation guarantee would be a constant only for non-constant values
of k). However, we leave open the problem of understanding whether our upper
bound is tight even for a weaker notion of rationality where the types of the
agents in K are not fully known but only have further restricted domains (e.g.,
an agent with k-lookahead only knows the next � actions, for some � > 0, that
will be taken by the agents in K).

3 The Case of Machine Scheduling

We now study the relationship between lookahead and approximation for the well-
studied problem of machine scheduling. Here, we are given a set of m identical
jobs to execute and the n agents control related machines. Agent i’s type is a job-
independent processing time ti per unit of job (equivalently, an execution speed
1/ti that is independent from the actual jobs). The algorithm f must choose a
possible schedule f(b) = (f1(b), . . . , fn(b)) of jobs to the machines, where fi(b)
denotes the job load assigned to machine i when agents take actions signalling b.
The cost that agent i faces for the schedule f(b) is ti(f(b)) = ti · fi(b). We focus
on algorithms f∗ minimizing the makespan, i.e., f∗(b) ∈ arg minx maxn

i=1 bi(x); f
is α-approximate if it returns a solution with cost at most α times the optimum.

3.1 Lower Bound

Let τk(n) =
√

k2+4n−k
2 . That is, τk is a function of n such that n = τk(n)(τk(n)+

k). Observe that τ0(n) =
√

n and τn−1(n) = 1. In this section, we prove the
following theorem, that states the main result of our work. Henceforth, for sake
of readability, let us denote τ := τk(n).

Theorem 1. For the machine scheduling problem, no k-OSP mechanism can be
better than τ -approximate, regardless of the value of the sets Lk(·). This even
holds for homogeneous three-value domains, i.e., Di = {L,M,H} for each i.

Proof. Consider m = n. Moreover, consider a domain Di = {L,M,H} for every
i, with M ≥ τ

⌈
m

	τ


⌉
L and H ≥ τ · mM .
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The proof will work in three steps. First, we prove some algebraic property
of τ (cf. Lemma 1). We then characterize implementation tree and algorithm of
a k-OSP mechanism with approximation better than τ (cf. Lemma 2). Finally,
we identify an instance for which any such mechanism cannot return an approx-
imation better than τ – a contradiction.

Lemma 1. τ = c + δ, with δ ∈
[
0, k

τ+k−1

]
, where c = max

{
α ∈ N : k ≤ n−c2

c

}
.

Suppose now that a mechanism M with approximation ratio ρ < τ exists for
the setting at the hand, and let T be its implementation tree. Let us rename the
agents as follows: Agent 1 is the 1st distinct agent that diverges in T ; because
of its approximation guarantee, the mechanism must have at least one divergent
agent for our domain. We now call agent 2, the 2nd distinct agent that diverges
in the subtree of T defined by agent 1 taking an action signalling type H;
if no agent diverges in this subtree of T we simply call 2 an arbitrary agent
different from 1. More generally, agent i is the ith distinct agent that diverges, if
any, in the subtree of T that corresponds to the case that the actions taken by
agents that previously diverged are signalling their type being H. As above, if no
agent diverges in the subtree of interest, we just let i denote an arbitrary agent
different from 1, 2, . . . , i − 1. We denote with ui the node in which i diverges in
the subtree in which all the other agents have taken actions signalling H; if i
got her id arbitrarily, then we denote with ui a dummy node. We then have the
following lemma.

Lemma 2. Any k-OSP M which is ρ-approximate, with ρ < τ , must satisfy the
following conditions:

1. For every i ≤ n + 1 − 	τ
 − k, if agent i diverges at node ui, it must diverge
on M and H.

2. For every i ≤ n − �τ� − k, if agent i diverges at node ui and takes an action
signalling type H, then M does not assign any job to i whenever the action
of agents in L(ui) are all signalling H.

Proof. Let us first prove part 1. Suppose that there is i ≤ n + 1 − 	τ
 − k such
that at node ui i does not diverge on M and H (i.e., any action signalling M
is signalling also H). Then it must diverge on L and M , since ui must have at
least two outgoing edges (since i is assumed to diverge at ui), and the remaining
edges can only be labeled with L. Consider the type profile x such that xi = M ,
and xj = H for every j �= i. Observe that, by definition of ui, xj ∈ Dj(ui) for
every agent j. The optimal allocation for the type profile x assigns all jobs to
machine i, with cost OPT (x) = mM . Since M is ρ-approximate, then it also
assigns all jobs to machine i. Indeed, if a job is assigned to a machine j �= i, then
the cost of the mechanism would be at least H ≥ τ · mM > ρ · OPT (x), that
contradicts the approximation bound.

Consider now the profile y such that yi = L, yj = H for every j < i
and j ∈ L(ui), and yj = L for every j > i such that j /∈ L(ui). (We
stress that our lower bound holds no matter the definition of the sets L(ui).)
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Observe that, as for x, we have that yj ∈ Dj(ui) for every agent j. It is not

hard to see that OPT (y) ≤
⌈

m
n−i−k+1

⌉
L. Let μ be the number of jobs that M

assigns to machine i in this case. Since M is ρ-approximate, then μ < m. Indeed,
if μ = m, then the cost of the mechanism contradicts the approximation bound,
since mL ≥ τ

⌈
m

n−i−k+1

⌉
L > ρ · OPT (y), where we used that

τ

⌈
m

n − i − k + 1

⌉
≤ τ

⌈
n

	τ


⌉
= τ

⌈
τ(τ + k)
τ + 1 − δ

⌉

≤ τ
τ(τ + k) + (τ − δ)

τ + 1 − δ
≤ τ(τ + k) = m,

where the last inequality follows from δ ≤ k
τ+k−1 by Lemma 1.

Hence, for the mechanism to be OSP with k-lookahead we need that both
the following conditions are satisfied: (i) pi(x) − mM ≥ pi(y) − μM , and
(ii) pi(y) − μL ≥ pi(x) − mL, where pi(x) and pi(y) denote the payment that
i receives from the mechanism M when agents’ actions are signalling x and y,
respectively. However, this leads to the contradiction that L ≥ M .

Let us now prove part 2. Suppose that there is i ≤ n−�τ�− k and x−i, with
xj ∈ Dj(ui) for every agent j and xj = H for every j ∈ L(ui), such that if i
takes an action signalling type H, then M assigns at least a job to i. According
to part 2, machine i diverges at node ui on H and M .

Consider then the profile y such that yi = M , yj = H for j ≤ i + k with

i �= j, and yj = L for j > i + k. Observe that OPT (y) =
⌈

m
n−i−k

⌉
· L. Since

M is ρ-approximate, then it does not assign any job to machine i, otherwise its
cost would be at least M ≥ τ

⌈
m

	τ


⌉
L ≥ τ

⌈
m

n−i−k

⌉
L > ρ · OPT (x).

Hence, for the mechanism to be OSP with k-lookahead we need that both the
following conditions are satisfied: (i) pi(x) − H ≥ pi(y) − 0, and (ii) pi(y) − 0 ≥
pi(x) − M . However, this leads to the contradiction that H ≤ M . �

Roughly speaking, Lemma 2 states that any k-OSP mechanism must have
an implementation tree such that the first n − �τ� − k agents interacting with
the mechanism, must be asked if their type is H, and, in the case of affirmative
answer, they must not receive any job.

We next observe that such a mechanism cannot have approximation lower
than τ , contradicting our hypothesis that M was k-OSP and ρ-approximate.

To this aim, assume first that for each agent i ≤ n − �τ� − k diverges at ui.
We consider the profile x such that xi = H for every i. The optimal allocation
consists in assigning a job to each machine, and has cost OPT (x) = H. Accord-
ing to Part 2 of Lemma 2, since M is supposed to be k-OSP, if machines take
actions that signal x, then the mechanism M does not assign any job to machine
i, for every i ≤ n − �τ� − k. Hence, the best outcome that M can return for x
consists in fairly assigning the m jobs to the remaining �τ�+k machines. Observe
that, if δ = 0, i.e., τ is an integer, then each machine receives τ job, and thus
the cost of M is at least τH > ρOPT (x), which contradicts the approximation
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ratio of M. Otherwise, there is at least one machine that receives at least 	τ

jobs, since �τ� (�τ� + k) < τ (τ + k) = m. In this case, the cost of M is at least
	τ
H > τH = τOPT (x), contradicting again the approximation ratio of M.

Consider now the case that there is 1 < i ≤ n−�τ�−k that does not diverge
at ui. It is not hard to see that this would contradict the approximation of M
given that it would be unaware of the type of too many machines. �

3.2 Upper Bound

We next show that for every k and every possible choice of lookahead sets
{Lk(u)}u∈T , the bound above is tight, for three-values domains, i.e., Di =
{Li,Mi,Hi} for every i. To this aim, consider the following mechanism Mk,
that consists of a Descending Phase (Algorithm 1) followed by an Ascending
Phase (Algorithm 2). The algorithmic output is augmented with a payment, to
agent i, of Mi for each unit of job load received.

1 Set A = [n], and ti = max{d ∈ Di}
2 while |A| > �τ� + k do
3 Set p = maxa∈A{ta} and i = min{a ∈ A : ta = p}
4 Ask machine i if her type is equal to p
5 if yes then remove i from A, and set ti = p
6 else set ti = max{t ∈ Di : t < p}
Algorithm 1: The descending phase keeps in A the machines that are still
alive and in ti the maximum non-discarded type for each agent; then proceeds
by removing from A the slowest machines, until there are only 	τ
 + k left.

1 Set si = min {d ∈ Di}
2 Set B = ∅
3 while |B| ≤ k do
4 Set p = mina∈A\B{sa} and i = min{a ∈ A \ B : sa = p}
5 Ask machine i if her type is equal to p
6 if yes then Set ti = p and insert i in B
7 else set si = min{d ∈ Di : d > p}
8 Consider the profile ẑ with ẑi = ti for i ∈ B and ẑj = minw/∈A tw for j ∈ A \ B
9 Let f�(ẑ) = (f�

i (ẑ))i∈A be the optimal assignment of jobs on input profile ẑ
10 Assign f�

j (ẑ) jobs to each machine j ∈ A
Algorithm 2: The ascending phase adds to B the k fastest machines; then it
computes the optimal assignment by using the revealed type for machines in
B and a suitably chosen placeholder type for the remaining machines.

In case of multiple optimal assignments in line 9 of Algorithm 2, we assume
that the mechanism returns the one that maximizes the number of jobs assigned
to machines in B. This is exactly the solution returned by the optimal greedy
algorithm, and thus can be computed in polynomial time.
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Roughly speaking, mechanism Mk works by discovering in the descending
phase the n − �τ� − k slowest machines and discarding them (i.e., no job will be
assigned to these machines). (Our mechanism satisfies the conditions of Lemma 2
thus showing that our analysis is tight for both approximation and design of the
mechanism.) The ascending phase then serves to select a good assignment to the
non-discarded machines. To this aim, the mechanism discovers in the ascending
phase the k + 1 fastest machines. The assignment that is returned is then the
optimal assignment to the non-discarded machines in the case that the type of
the k +1 fastest machines is as revealed, whereas the type of the remaining non-
discarded machines is supposed to be as high as possible, namely equivalent to
the type of the last discarded machine (i.e., the fastest among the slow machines).

Proposition 1. Mechanism Mk is k-OSP if Di = {Li,Mi,Hi} for each i.

Proof. We prove that Mi · fi(Mk(x)) − xi · fi(Mk(x)) ≥ Mi · fi(Mk(y)) − xi ·
fi(Mk(y)) for each machine i, for each node u in which the mechanism makes
a query to i, for every zL(u) such that zj ∈ Dj(u) for j ∈ L(u), for every xi and
yi that diverge at u, for each pair of type profiles x,y such that xj ∈ Dj(u),
yj ∈ Dj(u) for every agent j and xj = yj = zj for every j ∈ L(u).

This is obvious for xi = Mi. We next prove that xi = Hi implies fi(Mk(x)) ≤
fi(Mk(y)), that immediately implies the desired claim. Let us first consider a
node u corresponding to the descending phase of the mechanism. In this case,
xi = p, where p is as at node u. Moreover, in all profiles as described above there
are at least 	τ
 + k machines that either have a type lower than p, or they have
type p but are queried after i. However, for every x−i satisfying this property,
we have that fi(Mk(x)) = 0 ≤ fi(Mk(y)) for every alternative profile y.

Suppose now that node u corresponds to the ascending phase of the mecha-
nism. In this case, yi = p, where p is as at node u. Observe that fi(Mk(y)) =
f�

i (yi, zL(u), ẑ−i,L(u)), where f�
i (yi, zL(u), ẑ−i,L(u)) is the number of jobs assigned

to machine i by the optimal outcome on input profile (yi, zL(u), ẑ−i,L(u)), ẑ−i,L(u)

being such that ẑj = maxk∈A tk for every j ∈ A \ ({i} ∪ L(u)).
Observe that for every x as described above, it must be the case that xj ≥ yi

for every j ∈ A \ L(u). Hence, we distinguish two cases: if minj∈A\L(u) xj = xi,
then fi(Mk(x)) = f�

i (xi, zL(u), ẑ−i,L(u)) ≤ f�
i (yi, zL(u), ẑ−i,L(u)) = fi(Mk(y));

if instead minj∈A\L(u) xj = xk, for some k �= i, then

fi(Mk(x)) = f�
i (xk, zL(u), ẑ−k,L(u)) ≤ f�

k (xk, zL(u), ẑ−k,L(u))
≤ f�

i (yi, zL(u), ẑ−i,L(u)) = fi(Mk(y)),

where we used that ẑ−k,L(u) = ẑ−i,L(u) and the inequalities follow since: (i) in
the optimal outcome the fastest machine must receive at least as many jobs as
slower machines; (ii) in the optimal outcome, given the speeds of other machines,
the number of jobs assigned to machine i decreases as its speeds decreases. �

Proposition 2. Mechanism Mk is
(

m+k+�τ�−1
m 	τ


)
-approximate.
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Proof (Sketch). We denote with OPT (x) the makespan of the optimal assign-
ment when machines have type profile x. We will use the same notation both if
the optimal assignment is computed on n machines and if it is computed and on
	τ
 + k machines, since these cases are distinguished through the input profile.

Fix a type profile x. Let A and B as at the end of the mechanism when
agents behave according to x. Let β be the smallest multiple of |A| such that
β ≥

∑
i∈A OPT i(x). Moreover, let t = minj /∈A tj . We define the profile y as

follows: yi = w for every i ∈ A and yi = t otherwise, where w is chosen so that
β

|A| ·w = maxj∈A (xj · OPT j(x)). Consider then the assignment a that assigns β

jobs equally split among agents in A and m − β jobs equally split among agents
not in A. It is immediate to see that OPT (x) ≥ MS(a,y), where MS(a,y) is
the makespan of the assignment a with respect to the type profile y.

Let M(x) be the makespan of the assignment returned by our mechanism
if agents behave according to x. Then, M(x) is equivalent to OPT (ẑ), where
ẑ is such that ẑj = xj for j ∈ B and ẑj = t for j ∈ A \ B. Let α be the
smallest multiple of |B| such that α ≥

∑
i∈B OPT i(ẑ). We define the profile ŷ

as follows: ŷi = ŵ for every i ∈ B and yi = t otherwise, where ŵ is chosen so that
α

|B| · ŵ = maxj∈B (xj · OPT j(ẑ)). Consider then the assignment â that assigns α

jobs equally split among agents in B and m − α jobs equally split among agents
in A\B. It is immediate to see then M(x) = OPT (ẑ) = MS(â, ŷ). The theorem
then follows, since it occurs that OPT (ŷ)

MS(a,y) ≤ m+k+�τ�−1
m 	τ
. �

The next corollary follows by simple algebraic manipulations.

Corollary 1. Mechanism Mk is (	τ
 + 1)-approximate for m > 	τ
 (k + 	τ
)
and the approximation tends to 	τ
 as m increases.

4 Conclusions

We have studied the relationship between the bounded rationality of the agents
and the approximation guarantee of mechanisms incentivizing these agents. We
have relaxed the popular notion of OSP [18] to allow for more fine grained notions
of rationality. For machine scheduling, we proved that more rational agents do
not help in getting close to the optimum, unless the level of rationality is signif-
icant to a point where the meaning of bounded becomes questionable. On one
hand, our findings motivate the focus on OSP for future work on the approxima-
tion guarantee of mechanisms for agents with bounded rationality. On the other
hand, one might wonder whether similar results hold also for different optimiza-
tion problems. To this aim, we observe that the techniques that we use in our
proof have a resemblance with the ones used in [13] for proving the inapprox-
imability of OSP mechanisms for the facility location problem (with money).
Hence, we believe that results similar to the ones we give for machine scheduling
may be proved for facility location. As for other problems, we highlight that
no approximation result is known even for OSP mechanisms. In particular, for
binary allocation problems (that have been considered already in [18]), only a
characterization of optimal OSP mechanism is known.



90 D. Ferraioli and C. Ventre

References

1. Adamczyk, M., Borodin, A., Ferraioli, D., de Keijzer, B., Leonardi, S.: Sequential
posted price mechanisms with correlated valuations. In: Markakis, E., Schäfer, G.
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Abstract. Consider the revenue maximization problem of a risk-neutral
seller with m heterogeneous items for sale to a single additive buyer,
whose values for the items are drawn from known distributions. If the
buyer is also risk-neutral, it is known that a simple and natural mecha-
nism, namely the better of selling separately or pricing only the grand
bundle, gives a constant-factor approximation to the optimal revenue.
In this paper we study revenue maximization without risk-neutral buy-
ers. Specifically, we adopt cumulative prospect theory, a well established
generalization of expected utility theory.

Our starting observation is that such preferences give rise to a very
rich space of mechanisms, allowing the seller to extract arbitrary revenue.
Specifically, a seller can construct extreme lotteries that look attractive to
a mildly optimistic buyer, but have arbitrarily negative true expectation.
Therefore, giving the seller absolute freedom over the design space results
in absurd conclusions; competing with the optimal mechanism is hope-
less. Instead, in this paper we study four broad classes of mechanisms,
each characterized by a distinct use of randomness. Our goal is twofold: to
explore the power of randomness when the buyer is not risk-neutral, and
to design simple and attitude-agnostic mechanisms—mechanisms that
do not depend on details of the buyer’s risk attitude—which are good
approximations of the optimal in-class mechanism, tailored to a specific
risk attitude. Our main result is that the same simple and risk-agnostic
mechanism (the better of selling separately or pricing only the grand
bundle) is a good approximation to the optimal non-agnostic mechanism
within three of the mechanism classes we study.

1 Introduction

Expected utility theory (EUT) has long reigned as the prevailing model of deci-
sion making under uncertainty. However, a substantial body of evidence, includ-
ing the famous Allais paradox [1], shows that most people make choices that
violate this theory. Cumulative prospect theory [27] is arguably the most promi-
nent alternative. A key element of this theory is a non-linear transformation of
cumulative probabilities by a probability weighting function. This transformation

c© Springer Nature Switzerland AG 2019
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can model a person’s tendency towards optimism or pessimism.1 On the other
hand, as mechanism designers we use randomization as an important tool in
optimizing our objective, typically (and crucially) assuming that agents make
choices according to the tenets of expected utility theory. While we have vastly
deepened our understanding of mechanism design under this assumption, it is
essential to study empirically validated models of human decision-making. In
this paper we study the revenue-maximization problem of a risk-neutral seller
with m heterogeneous items for sale to a single, additive buyer with cumula-
tive prospect theory preferences. Our goal is to design simple mechanisms that
are agnostic to the underlying probability weighting function of the buyer, yet
achieve a good approximation to the revenue of the optimal mechanism tailored
to this weighting function. To understand our results in context, we begin by
briefly reviewing cumulative prospect theory.

1.1 Prospect Theory Basics

In full generality, cumulative prospect theory (CPT) asserts that preferences
are parameterized by a reference point (or status quo) r, a value function U
that maps (deterministic, i.e. certain) outcomes into utils (or dollars), and two
probability weighting functions, w+ and w−, for weighting the cumulative prob-
abilities of positive and negative outcomes (relative to r). By taking r = 0 and
the weighting functions w+ and w− to be the identity function, one recovers
expected utility theory; thus, CPT generalizes EUT. However, like most works
in mechanism design, we assume linear utility for money: U(x) = x. That is, our
agents have value 1 for $1 and value 1000 for $1000. What remains, then, are
the weighting functions w+ and w− and the reference point r.

For intuition, consider first a simple event E which occurs with probability
1
2 , and assume that r = 0. Suppose that E corresponds to an agent receiving
value 10; if E does not occur, the agent receives nothing. A risk-neutral agent
would value this potential income at 10 · Pr[E] = 5. An optimistic agent, over-
estimating the possibility of receiving 10, might value E at slightly more than 5,
whereas a pessimistic agent might value it at slightly less. CPT uses a weight-
ing function w+ which modifies probabilities of positive outcomes: the agent
values event E at 10 · w+(Pr[E]). Then w+(x) > x corresponds to optimism,
and w+(x) < x corresponds to pessimism. CPT captures much more complex
behavior than merely optimism and pessimism. For example, in experiments
(e.g. [6,27]), subjects tend to overweight extreme events: in a sense, people are
optimistic about very good outcomes and pessimistic about very bad outcomes.
This sort of behavior can be readily captured by CPT.

In general, the event of interest might correspond to a positive or negative
outcome. For example, E might correspond to the agent losing value 10. In
that case, we expect the optimistic agent to underweight the probability of E
occurring. For this reason, CPT models probability weighting for gains and losses

1 As we discuss below, real-world attitudes are not merely “optimistic” or “pes-
simistic”, but such simplistic attitudes are easily and naturally captured by this
model.
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with functions w+ and w−, respectively. When the random variable is supported
on multiple non-zero values, applying w+ (or w−) directly to the probability of
each event leads to violations of first-order stochastic dominance. For this reason,
[23] proposed to weight the cumulative distribution function, rather than the
probability mass function; hence cumulative prospect theory.

Our interest here is highlighting the effects of nonlinear probability weight-
ing. We will therefore focus on a special case of cumulative prospect theory,
namely rank dependent utility theory (RDUT). This theory is rich enough to
explain a number of known violations of expected utility theory, e.g., the Allais
paradox [24], general enough to include expected utility theory as a special case,
while at the same time simple enough to be mathematically tractable. This the-
ory is equivalent to the following assumption.

Assumption 1 ([23]). For all p ∈ [0, 1], w−(p) = 1 − w+(1 − p).

Assumption 1 allows us to rank all the outcomes from worst to best, independent
of whether they are gains or losses, and weight their probabilities with a single
weighting function w(x). Furthermore, it makes the reference point r irrelevant.
[7] have previously studied the same model, giving a class of mechanisms which
optimally sell a single item to a pessimistic buyer. However, they restrict them-
selves to convex weighting functions. Here we study general weighting functions
and multi-item auctions. We postpone more details about rank dependent utility
theory until Sect. 2, and refer the reader to the full version of this paper for what
the expected utility of a general CPT agent (that is, without Assumption 1) for
even a simple lottery looks like.

1.2 Our Results

Our starting point is the observation that even very mild probability weighting
gives rise to rich seller behavior, which allows the seller to extract unbounded
revenue. Specifically, we show that under assumptions satisfied by most weighting
functions in the literature, the seller can design a bet that has arbitrarily negative
(risk-neutral) expectation, but looks attractive to a RDUT buyer. This bet can
be easily turned into an auction for selling any number of items by giving the
items for free if and only if the buyer takes the bet. Similar behavior has been
observed before this work for more general models, e.g. [2,12].

In light of these negative results for arbitrary buyer-seller interaction, we focus
our attention to specific classes ofmechanisms, imposing various restrictions on the
mechanism’s description and implementation. These restrictions are not onerous:
when offered to a risk-neutral buyer, two of the classes are equivalent to the class
of all mechanisms, and another is equivalent to all deterministic mechanisms. Our
restrictions thus serve to isolate particular uses of randomization and to illustrate
the various effects RDUT preferences have on mechanism design.

The first class we consider is that of deterministic price mechanisms, which
we denote Cdp. Here, the seller offers a menu of (possibly correlated) distributions
over the items, each at a fixed price. The buyer may pay the price for a distri-
bution, after which she receives a draw from the distribution. To bypass some
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technical barriers, we also consider a special case of this class, nested deter-
ministic price mechanisms, or Cndp, which impose certain constraints on the
distributions over items in a menu. These constraints are very mild (for example
they are always satisfied by independent distributions) and are without loss of
generality for a risk-neutral buyer. Next, we consider the class of deterministic
allocation mechanisms, Cda, where the mechanism deterministically allocates a
bundle of items for a possibly randomized, non-negative payment. Cda is equiva-
lent to deterministic mechanisms for a risk neutral buyer. Finally, we consider a
multi-item generalization of the single-item class of mechanisms that is optimal
for convex weighting functions (as shown by [7]). We call this class binary-lottery
mechanisms and denote it by Cb.

Our main result is that, for classes Cndp, Cda and Cb, a single simple mecha-
nism, agnostic to the underlying weighting function, gives a good approximation
on the revenue of the optimal in-class mechanism tailored to w. That mecha-
nism is the better of selling every item separately at a fixed price (henceforth
SRev) and selling the grand bundle as a single item at a fixed price (hence-
forth BRev), which is a valid mechanism in all classes considered. Furthermore,
this mechanism is deterministic, which implies that its expected revenue is the
same for all weighting functions w, and only depends on the buyer’s value dis-
tribution D. Our proof is by relating the revenue of each class of mechanisms
to the revenue obtainable from a risk-neutral buyer via any mechanism, com-
bined with a result of [3], which shows that max{SRev,BRev} is a constant
approximation to this risk-neutral revenue. For Cdp our understanding is partial;
we show that max{SRev,BRev} approximates the optimal, risk non-agnostic
Cdp auction within a factor that is doubly exponential in the number of items.
This implies a constant approximation for a constant number of items (in fact,
for two items we can show an approximation factor of 2 for just SRev), but we
leave it as an open problem whether a constant approximation is possible for
the general case. All our results can be extended to a unit-demand and additive
up to a downward closed constraint buyer by paying an extra factor of 4 and
31.1, respectively, using the results of [8].

Intuitively, the difficulty with analyzing mechanisms for RDUT buyers (and
especially optimal mechanisms) is that, given a mechanism, we cannot generally
argue about how much a buyer type t values the menu item purchased by a type
t′. This is especially the case for general deterministic price mechanisms, where
allocations over items could be arbitrarily correlated. This, in turn, prevents us
from using basic “simulation arguments”: starting from an auction M, manip-
ulate the allocation rule and pricing rule to get a different auction M′. Such
arguments are very useful in getting meaningful upper bounds on the optimal
revenue. For example, [17] upper bound the optimal revenue from a product
distribution, Rev(D × D′), by Rev(D) + VAL(D′)2 using such an argument,
where they give a concrete auction for D by manipulating the allocation and
payment rule of the optimal auction for D × D′. Similar “marginal mechanism”

2 D and D′ here are distribution over m1 and m2 items, respectively. VAL(D′) =∑
j∈[m2]

E[D′
j ], i.e. the total expected sum of values from items in D′.
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arguments are crucial in many works that give simple and approximately optimal
mechanisms for additive buyers, e.g. [3,19,31]; for example, the so-called core-tail
decomposition technique depends on such arguments. On the other hand, the
recently developed Lagrangian duality based approach ([4,5,9,13,14,20]) also
seems to fail here. This technique has been successful in getting benchmarks
in a number of settings, by giving a solution to the dual of the mathematical
program that computes the optimal auction. To the best of our knowledge, all
works that use this technique start from a linear program. Here, the mathemat-
ical program for the optimal, risk non-agnostic auction is not even convex. Even
though in theory only weak duality is necessary for this technique to work, we
haven’t been successful in applying it to our problem.

1.3 Related Work and Roadmap

Prospect theory was originally defined by [18] but, though successful in explain-
ing experimentally observed behavior, it suffered from a number of weaknesses,
namely violations of first-order stochastic dominance between random variables.
Several works ([23,26,29,30]) proposed solutions to these issues, resulting in
cumulative prospect theory ([27]). Next to expected utility theory, cumulative
prospect theory is likely the best studied theory of decision-making under uncer-
tainty. We refer the reader to the book of [28] for a thorough exposition of the
model. Also see [21] for a survey of non-EUT models. Although widely studied
in behavioral economics, prospect theory has received much less attention in the
game theory and mechanism design literature. Our work is most closely related
to that of [7], who study optimal and robust mechanisms for a single buyer and
a single item. Their work, unlike ours, places much stronger assumptions on
the weighting function: namely, they assume convexity (which in turn implies
w(x) ≤ x). In this paper we consider general weighting functions, but restrict the
mechanism design space. Further afield, [11] study contract design in a crowd-
sourcing setting with a prospect-theoretic model of workers. [15] demonstrate
that equilibria may not exist in two-player games when players have prospect-
theoretic preferences. [10] and [16] study mechanism design with risk-averse
agents in a setting where risk-averse behavior is represented by a concave utility
function, while more recently, in a similar setting, [22] study optimal mechanisms
for risk-loving agents.

Our main result is that the better of selling separately and selling the grand
bundle is a risk robust approximation to the optimal revenue. The approximation
ratio of this mechanism has been studied extensively for risk-neutral buyers
having a large class of valuations [3–5,5,8,25]. Our result relies on this work,
but our techniques are very different.

Roadmap. Section 2 poses our model and some preliminaries. We discuss the lim-
its of our model in Sect. 3, and show that if the seller is allowed to use an arbitrary
mechanism, then he can extract arbitrarily large revenue. In Sect. 3.1 we formally
define two of the four mechanism classes considered in this paper. We proceed to
analyze deterministic price mechanisms in Sect. 4. We study deterministic alloca-
tion mechanisms and binary lottery mechanisms in the full version of this paper.
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2 Preliminaries

A risk-neutral seller, whose aim is to maximize revenue, is auctioning off m items
to a single buyer with cumulative prospect theory preferences. The value of the
buyer for item i is vi, and is distributed according to a known distribution Di.
We assume that the item distributions are independent, and denote the joint
distribution by D. We first go over the buyer’s preference model in detail, and
then formulate our mechanism design problem.

Weighted Expectation. In this paper we focus on a special case of cumulative
prospect theory, rank dependent utility theory. In rank dependent utility theory
a weighting function w distorts cumulative probabilities ([23]). The weighting
function w satisfies the following properties: (1) w : [0, 1] → [0, 1], (2) w is non-
decreasing, (3) w(0) = 0 and w(1) = 1. We use the notation I to indicate the
risk-neutral weighting function; that is I(x) = x. For a random variable Z over
k outcomes, where the i-th outcome occurs with probability pi and gives utility
ui, and ui ≤ ui+1, an agent with weighting function w has expected utility

Ew [Z] =
∑k−1

i=1 ui

(
w

(∑k
j=i pj

)
− w

(∑k
j=i+1 pj

))
+ ukw(pk)

= u1 +
∑k

i=2(ui − ui−1) · w
(∑k

j=i pj

)
.

The intuitive interpretation (for the last expression) is that the agent always
gets utility u1. Then, the event that the agent gets an additional utility of at
least u2 − u1 occurs with probability 1 − p1 =

∑k
j=2 pj (which is weighted by

the function w). The agent gets an additional utility of at least u3 − u2 with
probability

∑k
j=3 pj , and so on. Note that this definition makes no assumption

about the sign of ui; that is, the uis can be positive (corresponding to gains) or
negative (corresponding to losses).

Mechanism Design. Back to mechanism design, any mechanism can be described
by the allocation it makes and the payment it charges as a function of the buyer’s
report. For a report v = (v1, . . . , vm), we denote by X(v) the random variable
for the allocation, giving a probability to each possible allocation of the items
in {0, 1}m. Similarly, P (v) is the random variable for the payment when the
report is v. X(v) and P (v) may be correlated. Importantly, common practices
from mechanism design in the risk-neutral setting, like treating the allocation as
a vector in [0, 1]m or the payment as a real number (i.e. replacing the random
variable of the payment with its expectation), are with loss of generality here.

We assume that the buyer has additive utility for the items and is quasilinear
with respect to payments: if she receives a set of items S for a payment p, her
total value for this outcome is

∑
i∈S vi − p. The buyer’s weighted expected util-

ity from the mechanism’s outcome is Ew[v · X(v) − P (v)]; we say that a mech-
anism is incentive compatible (IC) for a buyer with weighting function w if
for all possible values v, v′ of the buyer, it holds that Ew[v · X(v) − P (v)] ≥
Ew[v · X(v′) − P (v′)]. It is without loss of generality to express an incentive
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compatible mechanism in the form of a menu M, with each menu item cor-
responding to a particular (allocation, payment) pair of correlated random
variables (X,P ). Then, the allocation and payment of a buyer with value
v and weighting function w is given by the utility-maximizing menu item3

(Xw(v), Pw(v)) = arg max(X,P )∈M Ew[v · X − P ]. The revenue of the mecha-
nism is given by RevM(w,D) = E[P (v)], where the expectation is with respect
to the random valuation v (drawn from D), as well as the random outcome of
the payment random variable P (v). A mechanism is individually rational (IR)
if the buyer has non-negative expected utility when participating. Throughout
the paper we focus on IC and IR mechanisms.

We slightly overload notation: let Rev(w,D) denote the optimal revenue
achievable by an incentive compatible mechanism from selling m items to a
buyer with weighting function w and values drawn from D. We will frequently
drop w to indicate the risk-neutral optimal revenue, i.e. we use Rev(D) to mean
Rev(I,D) (recall that I is the risk-neutral weighting function, I(x) = x), and
DRev(D) for the optimal revenue from a deterministic mechanism. Note that
DRev(w,D) = DRev(w′,D), for all w,w′.

In this paper we show that the best of SRev(D) (or just SRev), the auction
that sells each item separately at its optimal posted price, and BRev(D) (or
just BRev), the auction that sells the grand bundle as a single item, is a risk-
robust approximation for a prospect theoretic buyer. For a risk-neutral buyer,
the following result is known.

Theorem 1 ([3,4]). For a single, risk-neutral, additive bidder and any inde-
pendent item distribution D it holds that

Rev(I,D) ≤ 2BRev(D) + 4SRev(D) ≤ 6max{SRev(D),BRev(D)}.

3 Limits of the Model and Mechanism Classes

In this section, we demonstrate how our model, absent any additional assump-
tions on the mechanism or the weighting function, can lead to absurd results.
Such results were known before our work. [2] show that under assumptions on
the weighting functions a principal can extract unbounded revenue from a CPT
agent, simply by offering a bet on a single coin-flip. Furthermore, [12] show that
CPT behavior gives rise to time inconsistency, allowing a seller to extract the
buyer’s entire wealth over multiple rounds of interaction. We reproduce similar
results in our context for completeness and to illustrate the variety of behaviors
possible in this model. In later sections, we develop restrictions on the mech-
anism which preclude this sort of unreasonable behavior. First, the following
simple lemma is instructive.

Lemma 1. For every distribution D, constant R ∈ R≥0, and weighting function
w such that there exists x∗ < 1 with w(x∗) = 1, there exists a mechanism M
such that RevM(w,D) = R.
3 We assume that any ties are broken in favor of menu items with a higher expected

price.
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Proof. Consider the following lottery, where (positive) Z represents a transfer
to the agent.

Z =

{
0 with probability x∗
−R
1−x∗ with probability 1 − x∗.

(1)

The agent’s utility is Ew[Z] = −R
1−x∗ (1−w(x∗)) = 0, while the seller’s revenue

is E[−Z] = R
1−x∗ (1−x∗) = R. This lottery can be transformed into a mechanism

for selling any number of items, by giving everything for free to the buyer,
requiring only that she participates in the lottery. ��

Lemma 1 relies on the dubious assumption that the buyer would assign
no weight at all to an extremely negative—albeit potentially highly unlikely—
outcome. However, even seemingly reasonable weighting functions can be
exploited, as our next result shows.

Lemma 2. For every distribution D, constant R ∈ R≥0, and weighting function
w such that there exists x∗ with 1 > w(x∗) > x∗, there exists a mechanism M
such that RevM(w,D) = R.

Proof. Consider the following lottery, where (positive) Z represents a transfer
to the agent.

Z =

{
a with probability x∗

−ρa with probability 1 − x∗,
(2)

where a > 0. The expected value of an agent with weighting function w is
Ew[Z] = aw(x∗) − ρa (1 − w(x∗)). Pick ρ = w(x∗)

1−w(x∗) ; then, for all a, Ew[Z] = 0.
That is, the buyer has utility exactly zero for this lottery.

On the other hand, the expected revenue of the seller, who pays a with
probability x∗ and gets paid ρa with probability 1 − x∗, is equal to

E[−Z] = ρa(1 − x∗) − ax∗ = a ·
(

w(x∗)(1 − x∗)
1 − w(x∗)

− x∗
)

= a · w(x∗) − x∗

1 − w(x∗)
.

The lemma follows by setting a = R 1−w(x∗)
w(x∗)−x∗ ; similarly to Lemma 1, this

lottery can be turned into an auction by giving all the items for free to the agent
after participating in the lottery. ��

We note that the conditions of Lemma 2 are satisfied for nearly all weighting
functions implied by experiments in the literature; we refer the reader to [27,28]
for concrete examples. Furthermore, the issue exhibited by Lemma 2 persists
even if one enforces ex-post individual rationality, so long as the seller is allowed
to utilize a multi-round protocol.

Lemma 3. For every distribution D, constant ε > 0 and weighting function w
such that there exists x∗ with 1 > w(x∗) > x∗ + ε

1+ε , there exists a multi-round,
ex-post individually rational mechanism M such that RevM(w,D) = E[D].
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Proof. For simplicity we only prove the m = 1 item case; the general case is iden-
tical. Consider again the random transfer defined in (2). Picking ρ = w(x∗)

1−w(x∗) − ε

provides the buyer strictly positive utility. The seller’s revenue is equal to
E[−Z] = a · (w(x∗)(1−x∗)

1−w(x∗) − ε(1 − x∗) − x∗), which is again strictly positive for
every a > 0. By picking a and x∗ appropriately the seller can thus make both
Ew[Z] and E[−Z] very small positive numbers.

This suffices to extract full buyer welfare as follows. The buyer and seller
will interact over T rounds. In the first round, the buyer reports a bid b. In
rounds t > 1, the seller will offer lottery Z (and the buyer has the option to not
participate), unless the seller has already extracted an amount larger than the
bid b. After T rounds have passed, the item will be awarded to the buyer for free.
Of course, since Ew[Z] > 0, the buyer always chooses to participate in round
t, and (in expectation) loses a little bit of money. By picking T large enough,
the buyer eventually goes bankrupt at some intermediate round, but since she
eventually gets the item this mechanism is in fact ex-post IR. Notice that this
mechanism is also truthful! Precisely because when the buyer is calculating (in
the first round) her expected utility from reporting b she thinks that she will
“come out on top”, and therefore is indifferent between all bids b (and thus
reports her true value v). ��

As the previous lemmas exhibit, practical mechanisms cannot hope to com-
pete against the theoretically optimal revenue maximizing mechanism in this
model, and thus this theory does not give accurate predictions for the simple
mechanisms that we observe in practice. There are multiple ways to proceed. A
natural one is to put restrictions on the weighting functions considered. Indeed,
this is the approach taken by [7] for the single item case, where the weighting
function is restricted to be convex (therefore the buyer is always risk-averse).
Another is to put restrictions on the mechanisms considered. In this paper we
restrict our attention to specific mechanism classes; for some of our results this
does not suffice and some mild restrictions on w are necessary as well.

3.1 Mechanism Classes

Here we define two classes of mechanisms; see the full version of this paper
for the other mechanisms we consider. Recall that RevM (w,D) denotes the
seller’s expected revenue from a mechanism M, given that the buyer has weight-
ing function w and her values are distributed according to D. We denote the
expected revenue of the optimal mechanism in a class C by Rev (w,D, C). That
is, Rev (w,D, C) = maxM∈C RevM (w,D).

The Class Cdp of Deterministic Price Allocations. First, we consider mech-
anisms which use randomness only in the allocation. That is, the seller offers a
menu of distributions over the items, each at a fixed price. The buyer may pay
the price for a distribution over the items, after which she receives a draw from
the distribution. We call this class deterministic price (DP) mechanisms, and
denote it by Cdp. It will be convenient to think of a mechanism M in this class
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as a menu, where the buyer selects her favorite menu item, of the form (p,X),
where p is the payment and X is a (possibly correlated) distribution over items.
This class remains completely general for risk-neutral buyers.

Unfortunately, general deterministic price mechanisms are technically diffi-
cult to work with. The arbitrary correlation allowed between items (in the alloca-
tion) makes arguing about the buyer’s expected utility problematic. Specifically,
different buyer types order outcomes of X differently, and therefore could have
wildly different expected weighted utility for the same distribution X (since
arbitrary correlation allows us to assign arbitrary probabilities to outcomes);
this property can be used to tailor to each type v an allocation X(v) that is
attractive only to this type. Our understanding of general Cdp mechanisms is
therefore partial. We show that max{SRev,BRev} gives a doubly exponential
(in the number of items) approximation to the optimal deterministic price mech-
anism. This trivially implies a constant approximation for a constant number of
items; we leave it as an open problem whether a constant approximation can be
achieved for an arbitrary number of items.

To mitigate the problems caused by arbitrary correlation, we also consider
a special case of deterministic price mechanisms, which imposes a specific form
of correlation on the distribution over allocations: we ask that the allocations in
the support of the allocation distribution form a nested set. We term this class
nested deterministic price (NDP) mechanisms and denote it by Cndp. We say a
random variable X supported in 2[m] is a monotone lottery if X is supported on
a chain of subsets S1, · · · , Sk, k ≤ m, such that Si ⊂ Si+1 for all i ∈ [k − 1].
We use Δn(2[m]) to denote the set of such correlated distributions over the set
of m items. For a mechanism M ∈ Cndp the allocation distributions for each
menu item are restricted to be in Δn(2[m]). Observe that nested deterministic
price mechanisms are again completely general for risk-neutral buyers. This is
so because the optimal mechanism for a risk-neutral buyer can be specified in
terms of the marginal probabilities of allocation for each item. For any marginal
probabilities, we can find a monotone lottery having the same marginal proba-
bilities.

Observation 1. For any distribution D, the class Cndp of nested deterministic
price mechanisms contains an optimal mechanism for a risk-neutral buyer. That
is, Rev(I,D) = Rev(I,D, Cndp).

4 Deterministic Price Mechanisms

We first investigate general deterministic price mechanisms. We show that the
optimal revenue of a deterministic price mechanism on independent items for a
RDUT buyer can be upper bounded by doubly exponential times the optimal
risk-neutral revenue of some items and the welfare on the distribution of the
remaining items. Missing proofs can be found in the full version of this paper.
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Theorem 2. Let w be a weighting function, D1 be the product distribution of
m1 independent items, and D2 be the product distribution of m2 independent
items. D = D1 × D2 and m = m1 + m2. Then

Rev(w,D, Cdp) ≤ 22
m1 (m− 1

2 log m1)Rev(I,D1) + VAL (D2) .

Using standard techniques we get the following corollary.

Corollary 1. Rev(w,D, Cdp) ∈ O(2m2m)max{SRev,BRev}.
Though this approximation is doubly exponential in the number of items,

we do get a constant approximation when the number of items is a constant.
Notably, for the case of two items, we get Rev(w,D, Cdp) ≤ 17SRev; an
improved analysis can reduce this to a factor of 2. We leave it as an open problem
whether a constant approximation is possible for an arbitrary number of items.

4.1 Nested Deterministic Price Mechanisms

Our main result is that the class of nested deterministic price mechanisms does
not offer the seller any means of exploiting the buyer’s risk attitude: the optimal
revenue within the class is equivalent to the optimal revenue obtainable from a
risk-neutral mechanism.

Theorem 3. Let w be an invertible weighting function and D be any distribution
supported in R

m
≥0. Then Rev(w,D, Cndp) = Rev(I,D).

Combining with Theorem 1 of [3] we get the following corollary.

Corollary 2. Let D and w satisfy the conditions of Theorems 1 and 3. Then,
it holds that Rev(w,D, Cndp) ≤ 6max{SRev(D),BRev(D)}.

We prove Theorem 3 in two lemmas. We start by showing that for any invert-
ible weighting function, there exists an NDP mechanism which recovers the opti-
mal risk-neutral revenue. Next, we show the converse: that we can construct a
mechanism for a risk-neutral buyer which obtains the same revenue as any DP
mechanism for a buyer with weighting function w.

Lemma 4. Let w be an invertible weighting function and D be any distribution
supported in R

m
≥0. Then Rev(w,D, Cndp) ≥ Rev(I,D).

Lemma 5. Let w be any weighting function and D any distribution supported
in R

m
≥0. Then Rev(w,D, Cndp) ≤ Rev(I,D).

Proof. Consider a mechanism M ∈ Cndp. Let X(v) and p(v) be the allocation and
payment rule, respectively, of M, where X(v) is a random variable in Δn(2[m])
and p(v) ∈ R≥0. We construct a mechanism M̃ =

(
X̃(v), p̃(v)

)
for a risk-neutral

buyer such that RevM̃(I,D) = RevM(w,D).
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Fix v. X(v) is a monotone lottery by definition of Cndp, so let S1, · · · , Sk

be the support of X(v), where Si ⊂ Si+1 for i ∈ [k], and let 1 − Fi =
Pr[Si ⊆ X(v)]. Then the utility of an RDUT buyer is uw(v,X(v), p(v)) =
∑k

i=1 (v(Si) − v(Si−1)) w(1−Fi), where we take S0 = ∅. Let 1− F̃i = w(1−Fi),

and define X̃(v) such that Pr
[
X̃(v) = Si

]
= F̃i+1 − F̃i. Lastly, let p̃(v) = p(v).

A risk-neutral buyer with any valuation v′ has expected utility for the lottery
(X̃(v), p̃(v)) equal to

u(v′, X̃(v), p̃(v)) =
∑k

i=1

(
v′(Si) − v′(Si−1)

)
(1 − F̃i) − p̃(v)

=
∑k

i=1

(
v′(Si) − v′(Si−1)

)
w(1 − Fi) − p(v),

which is just uw(v′,X(v), p(v)). Because this equality holds for every valuation
v′,

(
X̃(v), p̃(v)

)
is an IC, IR mechanism for a buyer with weighting function w,

and furthermore obtains the same revenue from a buyer with weighting function
w as M obtains from a risk-neutral buyer. ��

Observe that the assumption of monotone lotteries was critical to the proof of
Lemma 5. If X(v) were an arbitrary distribution over subsets S ∈ 2[m], a buyer
with valuation v′ would order the outcomes differently from v. This would make
it impossible to define the unweighted probability of allocation in the mecha-
nism M̃ in a way that would be simultaneously consistent with the weighted
probability assigned to the outcome by all valuations v′.

Indeed a general deterministic-price mechanism (without the restriction to
monotone lotteries) could exploit this discrepancy to obtain more revenue than
a risk-neutral mechanism. That is, Lemma 5 does not hold for the class Cdp, as
the next claim shows.

Claim. There exists a distribution D over two items, and a weighting function
w, such that Rev(w,D, Cdp) > Rev(I,D).

Proof. Let D1,D2 be independent and identical uniform distributions on {1, 3}.
The revenue optimal auction that sells the two items to a risk-neutral buyer is
the deterministic auction that sells the bundle of two items at the price 4. So
Rev(I,D1 × D2) = 4 × 3

4 = 3. Consider the weighting function

w(p) =

⎧
⎪⎨

⎪⎩

0, p ≤ 1
2

4p − 2, 1
2 < p < 3

4

1, 3
4 ≤ p

.

Consider the auction M selling the two items in the following way: if the buyer
reports type (1, 1), the buyer gets the first item with probability 1

2 and inde-
pendently, get the second item with probability 1

2 , and the buyer pays 1 to the
seller. Otherwise, the buyer gets both items and pays 4. It is easy to see that
M is incentive compatible for a buyer with weighting function w. Furthermore,
RevM(w,D1 × D2) = 1 × 1

4 + 4 × 3
4 = 13

4 > 3. ��
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Abstract. The declining price anomaly states that the price weakly
decreases when multiple copies of an item are sold sequentially over time.
The anomaly has been observed in a plethora of practical applications.
On the theoretical side, Gale and Stegeman [10] proved that the anomaly
is guaranteed to hold in full information sequential auctions with exactly
two buyers. We prove that the declining price anomaly is not guaranteed
in full information sequential auctions with three or more buyers. This
result applies to both first-price and second-price sequential auctions.
Moreover, it applies regardless of the tie-breaking rule used to generate
equilibria in these sequential auctions. To prove this result we provide
a refined treatment of subgame perfect equilibria that survive the iter-
ative deletion of weakly dominated strategies and use this framework
to experimentally generate a very large number of random sequential
auction instances. In particular, our experiments produce an instance
with three bidders and eight items that, for a specific tie-breaking rule,
induces a non-monotonic price trajectory. Theoretical analyses are then
applied to show that this instance can be used to prove that for every
possible tie-breaking rule there is a sequential auction on which it induces
a non-monotonic price trajectory. On the other hand, our experiments
show that non-monotonic price trajectories are extremely rare. In over
six million experiments only a 0.000183 proportion of the instances vio-
lated the declining price anomaly.

1 Introduction

In a sequential auction identical copies of an item are sold over time. In a private
values model with unit-demand, risk neutral buyers, Milgrom and Weber [19,26]
showed that the sequence of prices forms a martingale. In particular, expected
prices are constant over time.1 In contrast, on attending a wine auction, Ashen-
felter [1] made the surprising observation that prices for identical lots declined
over time: “The law of the one price was repealed and no one even seemed to
notice!” This declining price anomaly was also noted in sequential auctions for
1 If the values are affiliated then prices can have an upwards drift.
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the disparate examples of livestock (Buccola [7]), Picasso prints (Pesando and
Shum [21]) and satellite transponder leases (Milgrom and Weber [19]). Indeed,
the possibility of decreasing prices in a sequential auction was raised by Sosnick
[23] nearly sixty years ago. In the case of wine auctions, proposed causes include
absentee buyers utilizing non-optimal bidding strategies (Ginsburgh [11]) and
the buyer’s option rule where the auctioneer may allow the buyer of the first
lot to make additional purchases at the same price (Black and de Meza [6]).
Minor non-homogeneities amongst the items can also lead to falling prices. For
example, in the case of art prints the items may suffer slight imperfections or
wear-and-tear, and the auctioneer may sell the prints in decreasing order of qual-
ity (Pesando and Shum [21]). More generally, a decreasing price trajectory may
arise due to risk-aversion, such as non-decreasing, absolute risk-aversion (McAfee
and Vincent [17]) or aversion to price-risk (Mezzetti [18]); see also Hu and Zou
[13]. Further potential economic and behavioural explanations have been pro-
vided in [2,11,25]. Of course, most of these explanations are context-specific.
However, in practice the anomaly is ubiquitous: it has now been observed in
sequential auctions for, among several other things, antiques (Ginsburgh and
van Ours [12]), commercial real estate (Lusht [16]), flowers (van den Berg et al.
[5]), fur (Lambson and Thurston [15]), jewellery (Chanel et al. [8]), paintings
(Beggs and Graddy [4]) and stamps (Thiel and Petry [24]).

Given the plethora of examples, the question arises as whether this property
is actually an anomaly. In groundbreaking work, Gale and Stegeman [10] proved
that it is not in sequential auctions with two bidders. Specifically, in second-
price sequential auctions with two multiunit-demand buyers, prices are weakly
decreasing over time at the unique subgame perfect equilibrium that survives the
iterative deletion of weakly dominated strategies. This result applies regardless
of the valuation functions of the buyers, and also extends to the correspond-
ing equilibrium in first-price sequential auctions. It is worth highlighting that
Gale and Stegeman consider multiunit-demand buyers whereas prior theoretical
work had focused on the simpler setting of unit-demand buyers. As well as being
of more practical relevance (see the many examples above), multiunit-demand
buyers can implement more sophisticated bidding strategies. Therefore, it is
not unreasonable that equilibria in multiunit-demand setting may possess more
interesting properties than equilibria in the unit-demand setting. The restriction
to full information in [10] is extremely useful here as it separates away informa-
tional aspects and allows one to focus on the strategic properties caused purely
by the sequential sales of items and not by a lack of information.

1.1 Results and Overview of the Paper

The result of Gale and Stegeman [10] prompts the question of whether or not
the declining price anomaly is guaranteed to hold in general, that is, in sequen-
tial auctions with more than two buyers. We answer this question in the negative
by exhibiting a sequential auction with three buyers and eight items where prices
initially rise and then fall. In order to run our experiments that find this coun-
terexample (to the conjecture that prices are weakly decreasing for multi-buyer
sequential auctions) we study in detail the form of equilibria in sequential auctions.
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First, it is important to note that there is a fundamental distinction between
sequential auctions with two buyers and sequential auctions with three or more
buyers. In the former case, each subgame reduces to a standard auction with inde-
pendent valuations. In contrast, in a multi-buyer sequential auction each subgame
reduces to an auction with interdependent valuations. We present these models in
Sects. 2.1 and 2.2. Consequently to study multi-buyer sequential auctions we must
study the equilibria of auctions with interdependent valuations. A theory of such
equilibria was recently developed by Paes Leme et al. [20] via a correspondence
with an ascending price mechanism. In particular, as we discuss in Sect. 2.3, this
ascending price mechanism outputs a unique bid value, called the dropout bid βi,
for each buyer i. For first-price auctions it is known [20] that these dropout bids
form a subgame perfect equilibrium and, moreover, the interval [0, βi] is the exact
set of bids that survives all processes consisting of the iterative deletion of strate-
gies that are weakly dominated. In contrast, we show that for second-price auctions
it may be the case that no bids survive the iterative deletion of weakly dominated
strategies; however, we prove in Sect. 2.3 that the interval [0, βi] is the exact set
of bids for any losing buyer that survives all processes consisting of the iterative
deletion of strategies that are weakly dominated by a lower bid.

In Sect. 3 we describe the counter-example. We emphasize that the form of the
valuation functions used for the buyers are standard, namely, weakly decreasing
marginal valuations. Furthermore, the non-monotonic price trajectory does not
arise because of the use of an artificial tie-breaking rule; the three most natural
tie-breaking rules, see Sect. 2.4, all induce the same non-monotonic price trajec-
tory. Indeed, we present an even stronger result in Sect. 4: for any tie-breaking rule,
there is a sequential auction on which it induces a non-monotonic price trajectory.
This lack of weakly decreasing prices provides an explanation for why multi-buyer
sequential auctions have been hard to analyze quantitatively. We provide a second
explanation in the full paper, where we present a three-buyer sequential auction
that does satisfy weakly decreasing prices but which has subgames where some
agent has a negative value from winning against one of the two other agents. Again,
this contrasts with the two-buyer case where every agent always has a non-negative
value from winning against the other agent in every subgame.

Finally in Sect. 5, we describe the results obtained via our large scale exper-
imentations. These results show that whilst the declining price anomaly is not
universal, exceptions are extremely rare. Specifically, from a randomly generated
dataset of over six million sequential auctions only a 0.000183 proportion of the
instances produced non-monotonic price trajectories. Consequently, these exper-
iments are consistent with the practical examples discussed in the introduction.
Of course, it is perhaps unreasonable to assume that subgame equilibria arise in
practice; we remark, though, that the use of simple bidding algorithms by bidders
may also lead to weakly decreasing prices in a multi-buyer sequential auction. For
example, Rodriguez [22] presents a method called the residual monopsonist proce-
dure inducing this property in restricted settings.
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2 The Sequential AuctionModel

Here we present the full information sequential auction model. There are T iden-
tical items and n buyers. Exactly one item is sold in each time period over T time
periods. Buyer i has a value Vi(k) for winning exactly k items. Thus Vi(k) =
∑k

�=1 vi(�), where vi(�) is the marginal value buyer i has for an �th item. This
induces an extensive form game. To analyze this game it is informative to begin by
considering the 2-buyer case studied by Gale and Stegeman [10].

2.1 The Two-Buyer Case

During the auction, the relevant history is the number of items each buyer has
currently won. Thus we may compactly represent the extensive form (“tree”) of
the auction using a directed graph with a node (x1, x2) for any pair of non-negative
integers that satisfies x1 + x2 ≤ T . The node (x1, x2) induces a subgame with
T −x1 −x2 items for sale and where each buyer i already possesses xi items. Note
there is a source node, (0, 0), corresponding to the whole game, and sink nodes
(x1, x2), where x1 + x2 = T . The values Buyer 1 and Buyer 2 have for a sink node
(x1, x2) are Π1(x1, x2) = V1(x1) and Π2(x1, x2) = V2(x2), respectively. Take a
node (x1, x2), where x1 + x2 = T − 1. This node corresponds to the final round
of the auction, where the last item is sold, and has directed arcs to the sink nodes
(x1+1, x2) and (x1, x2+1). For the case of second-price auctions, it is then a weakly
dominant strategy for Buyer 1 to bid its marginal value v1(x1 +1) = V1(x1 +1)−
V1(x1); similarly for Buyer 2. Of course, this marginal value is just v1(x1 + 1) =
Π1(x1+1, x2)−Π1(x1, x2+1), the difference in value between winning and losing
the final item. If Buyer 1 is the highest bidder at (x1, x2), that is, Π1(x1 +1, x2)−
Π1(x1, x2 + 1) ≥ Π2(x1, x2 + 1) − Π2(x1 + 1, x2), then we have that

Π1(x1, x2) = Π1(x1 + 1, x2) − (
Π2(x1, x2 + 1) − Π2(x1 + 1, x2)

)

Π2(x1, x2) = Π2(x1 + 1, x2)

Symmetric formulas apply if Buyer 2 is the highest bidder. Hence we may recur-
sively define a value for each buyer for each node. The iterative elimination of
weakly dominated strategies leads to a subgame perfect equilibrium [3,10].

Example: Consider a two-buyer sequential auction with two items, where the
marginal valuations are {v1(1), v1(2)} = {10, 8} and {v2(1), v2(2)} = {6, 3}. This
game is illustrated in Fig. 1. The base case with the values of the sink nodes is
shown in Fig. 1(a). The first row in each node refers to Buyer 1 and shows the num-
ber of items won (in plain text) and the corresponding value (in bold); the second
row refers to Buyer 2. The outcome of the second-price sequential auction, solved
recursively, is then shown in Fig. 1(b). Arcs are labelled by the bid value; here arcs
for Buyer 1 point left and arcs for Buyer 2 point right. Solid arcs represent win-
ning bids and dotted arcs are losing bids. The equilibrium path is shown in bold.
Figure 1(c) shows the corresponding first-price auction, where we make the stan-
dard assumption of a fixed small bidding increment, and the notation p+ and p
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are respectively used to denote a winning bid of value p and a losing bid equal to
the maximum value smaller than p. For simplicity, all the figures we present in the
rest of the paper will be for first-price auctions; equivalent figures can be drawn for
the case of second-price auctions. Observe that this example exhibits the declining
price anomaly: in the equilibrium, the first item has price 5 and the second item
has price 3. As stated, Gale and Stegeman [10] showed that this example is not an
exception.

Theorem 1 [10]. In a 2-buyer second-price sequential auction there is a unique
equilibrium that survives the iterative deletion of weakly dominated strategies.
Moreover, at this equilibrium prices are weakly declining. ��

(a) 0 : -
0 : -

1 : -
0 : -

0 : -
1 : -

2 : 18
0 : 0

1 : 10
1 : 6

0 : 0
2 : 9

(b) 0 : 7
0 : 1

1 : 12
0 : 0

0 : 7
1 : 6

2 : 18
0 : 0

1 : 10
1 : 6

0 : 0
2 : 9

5 6

8 6 10 3

(c) 0 : 7
0 : 1

1 : 12
0 : 0

0 : 7
1 : 6

2 : 18
0 : 0

1 : 10
1 : 6

0 : 0
2 : 9

5 5+

6+ 6 3+ 3

Fig. 1. Sequential auction examples

We remark that the subgame perfect equilibrium that survives iterative elim-
ination is unique in terms of the values at the nodes. Moreover, given a fixed tie-
breaking rule, the subgame perfect equilibrium also has a unique equilibrium path
in each subgame. In addition, Theorem 1 also applies to first-price sequential auc-
tions. The question of whether or not it applies to sequential auctions with more
than two buyers remained open. We resolve this question in the rest of this paper.
To do this, let’s first study equilibria in the full information sequential auction
model when there are more than two buyers.

2.2 The Multi-buyer Case

Theunderlyingmodel of [10] extends simply to sequential auctionswithn ≥ 3 buy-
ers. There is a node (x1, x2, . . . , xn) for each set of non-negative integers satisfying∑n

i=1 xi ≤ T . There is a directed arc from (x1, x2, . . . , xn) to (x1, x2, . . . , xj−1, xj+
1, xj+1, . . . xn) for each 1 ≤ j ≤ n. Thus each non-sink node has n out-going arcs.
This is problematic: whilst in the final time period each buyer has a value for win-
ning and a value for losing, this is no longer the case recursively in earlier time
periods. Specifically, buyer i has a value for winning, but n − 1 (different) values
for losing depending upon the identity of the buyer j �= i who wins. Thus each node
in the multi-buyer case corresponds to an auction with interdependent valuations.
Formally, this is a single-itemauctionwhere each buyer ihas a value vi,i forwinning
the item and a value vi,j if buyer j wins the item, for each j �= i. These auctions,
also called auctions with externalities, were introduced by Funk [9] and by Jehiel
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and Moldovanu [14]. Their motivations were applications where losing participants
were not indifferent to the identity of the winner; examples include firms seeking to
purchase a patented innovation, take-over acquisitions of a smaller company in an
oligopolistic market, and sports teams competing to sign a star athlete. Therefore
to understand multi-buyer sequential auctions we must first understand equilibria
in auctions with interdependent valuations. This is not a simple task; indeed, such
an understanding was only recently provided by Paes Leme et al. [20].

2.3 Equilibria in Auctions with Interdependent Valuations

We can explain the result of [20] via an ascending price auction. Imagine a two-
buyer ascending price auction where the valuations of the buyers are v1 > v2.
The requested price p starts at zero and continues to rise until the point where the
second buyer drops out. Of course, this happens when the price reaches v2, and
so Buyer 1 wins for a payment p+ = v2, which is exactly the outcome expected
from a first-price auction. To generalize this to multi-buyer settings we can view
this process as follows. At a price p, buyer i remains in the auction as long as there
is at least one buyer j still in the auction who buyer i is willing to pay a price p to
beat; that is, vi,i − p > vi,j . The last buyer to drop out wins at the corresponding
price. Even in this setting, this procedure produces a unique dropout bid βi for each
buyer i, as illustrated in Fig. 2. In these diagrams the label of an arc from buyer i
to buyer j is wi,j = vi,i − vi,j . That is, buyer i is willing to pay up to wi,j to win if
the alternative is that buyer j wins the item. Now consider running our ascending
price procedure for these auctions. In Fig. 2(a), Buyer 1 drops out when the price
reaches 18. Since Buyer 1 is no longer active, Buyer 4 drops out at 23. Buyer 3 wins
when Buyer 2 drops out at 31. Thus the drop-out bid of Buyer 3 is 31+. Observe
that Buyer 2 loses despite having very high values for winning against Buyer 1 and
Buyer 4. The example of Fig. 2(b) is more subtle. Here Buyer 2 drops out at price
24. But Buyer 3 only wanted to beat Buyer 2 at this price so it then immediately
drops out at the same price. Now Buyer 1 only wanted to beat Buyer 2 and Buyer 3
at this price, so it then immediately drops out at the same price. This leaves Buyer 4
the winner at price 24+.

(a) Buyer 1

Buyer 2 Buyer 3

Buyer 4
18

13

14

97

31

74

33

12
11

10
23

35 (b) Buyer 1

Buyer 2 Buyer 3

Buyer 4
37

22

59

17

13

24

63

19
21

10
14

35

Fig. 2. Drop-Out Bid Examples. In these two examples the dropout bid vectors
(β1, β2, β3, β4) are (18, 31, 31+, 23) and (24, 24, 24, 24+), respectively.
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As well as being solutions to the ascending price auction, the dropout bids have
a much stronger property that makes them the natural and robust prediction for
auctions with interdependent valuations. Specifically, Paes Leme et al. [20] proved
that, for each buyer i, the interval [0, βi] is the set of strategies that survive any
sequence consisting of the iterative deletion of weakly dominated strategies. This is
formalized as follows. Take an n-buyer game with strategy sets S1, S2, . . . , Sn and
utility functions ui : S1 × S2 × · · · × Sn → R. Then {Sτ

i }i,τ is a valid sequence for
the iterative deletion of weakly dominated strategies if for each τ there is a buyer i
such that (i) Sτ

j = Sτ−1
j for each buyer j �= i and (ii) Sτ

i ⊂ Sτ−1
i where for each

strategy si ∈ Sτ−1
i \ Sτ

i there is an ŝi ∈ Sτ
i such that ui(ŝi, s−i) ≥ ui(si, s−i) for

all s−i ∈ ∏
j:j �=i Sτ

j , and with strict inequality for at least one s−i. We say that
a strategy si for buyer i survives the iterative deletion if for any valid sequence
{Sτ

i }i,τ we have si ∈ ⋂
τ Sτ

i .

Theorem 2 [20]. Given a first-price auction with interdependent valuations, for
each buyer i, the set of bids that survive the iterative deletion of weakly dominated
strategies is exactly [0, βi]. ��

An exact analogue of Theorem 2 does not hold for second-price auctions with
interdependent valuations. Indeed, there exist examples in which the set of strate-
gies that survive iterative deletion is empty. However, consideration of these exam-
ple shows that the problem occurs when a strategy is deleted because it is weakly
dominated by a higher value bid. Observe that this can never happen for a poten-
tially winning bid. Thus Theorem 2 still holds in first-price auctions when we
restrict attention to sequences consisting of the iterative deletion of strategies that
are weakly dominated by a lower bid. We can also show that the corresponding
theorem holds for second-price auctions. The full technical details of the proof are
deferred to the full paper.

Theorem 3. Given a second-price auction with interdependent valuations, for
each losing buyer i, the set of bids that survive the iterative deletion of strategies
that are weakly dominated by a lower bid is exactly [0, βi]. ��

We are now almost ready to be able to find equilibria in the sequential auction
experiments we will conduct. This, in turn, will allow us to present a sequential
auction with non-monotonic prices. Before doing so, one final factor remains to be
discussed regarding the transition from equilibria in auctions with interdependent
valuations to equilibria in sequential auctions.

2.4 Equilibria in Sequential Auctions: Tie-Breaking Rules

As stated, the dropout bid of each buyer is uniquely defined. However, our descrip-
tion of the ascending auction may leave some flexibility in the choice of winner.
Specifically, it may be the case that simultaneously more than one buyer wishes to
drop out of the auction. If this happens at the end of the ascending price procedure
then any of these buyers could be selected as the winner. To fully define the ascend-
ing auction we must incorporate a tie-breaking rule to order the buyers when more
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than one wish to drop out simultaneously. In an auction with interdependent valu-
ations the tie-breaking rule only affects the choice of winner, but otherwise has no
structural significance. However, in a sequential auction, the choice of winner at
one node may affect the valuations at nodes higher in the tree. In particular, the
equilibrium path may vary with different tie-breaking rules, leading to different
prices, winners, and utilities.

As we will show in Sect. 4 there are a massive number of tie-breaking rules
even in small sequential auctions. We emphasize, however, that our main result
holds regardless of the tie-breaking rule: for any tie-breaking rule there is a
sequential auction on which it induces a non-monotonic price trajectory. First,
though, we will show that non-monotonicity occurs for perhaps the three most
natural choices, namely preferential-ordering, first-in-first-out and
last-in-first-out. Interestingly, these rules correspond to the fundamental
data structures of priority queues, queues, and stacks in computer science.

Preferential Ordering (Priority Queue): In preferential-ordering each
buyer is given a distinct rank. In case of a tie the buyer with the worst rank is
eliminated. Without loss of generality, we may assume that the ranks correspond
to a lexicographic ordering of the buyers. That is, the rank of a buyer is its index
label and given a tie amongst all the buyers that wish to dropout of the auction we
remove the buyer with the highest index. The preferential ordering tie-breaking
rule corresponds to the data structure known as a priority queue.

First-In-First-Out (Queue): The first-in-first-out tie-breaking rule cor-
responds to the data structure known as a queue. The queue consists of those buy-
ers in the auction that wish to dropout. Amongst these, the buyer at the front of
the queue is removed. If multiple buyers request to be added to the queue simul-
taneously, they will be added lexicographically. Note though that this is different
from preferential ordering as the entire queue will not, in general, be ordered lex-
icographically. For example, when at a fixed price p we remove the buyer i at the
front of the queue this may cause new buyers to wish to dropout at price p, who
will be placed behind the other buyers already in the queue.

Last-In-First-Out (Stack): The last-in-first-out tie-breaking rule corre-
sponds to the data structure known as a stack. Again the stack consists of those
buyers in the auction that wish to dropout. Amongst these, the buyer at the top
of the stack (i.e. the back of the queue) is removed. If multiple buyers request to
be added to the stack simultaneously, they will be added lexicographically. At first
glance, this last-in-first-out rule appears more unusual than the previous two,
but it still has a natural interpretation: it corresponds to settings where the buyer
whose situation has changed most recently reacts the quickest.

In order to understand these tie-breaking rules it is useful to see how they
apply on an example. In Fig. 3 the dropout vector is (β1, β2, β3, β4, β5) =
(40, 40, 40, 40, 40), but the three tie-breaking rules select three different winners.

On running the ascending price procedure, both Buyer 3 and Buyer 4 wish
to drop out when the price reaches 40. In preferential-ordering, our choice
set is then {3, 4} and we remove the highest index buyer, namely Buyer 4.
With the removal of Buyer 4, neither Buyer 1 nor Buyer 5 have an incentive to
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Buyer 1

Buyer 2 Buyer 3

Buyer 4

Buyer 5

25

83

34

31

38

31

74

91

40

37
1829

40

36

23

19
30

33 35

54

Fig. 3. An example to illustrate the three tie-breaking rules.

continue bidding so they both decide to dropout.Thus our choice set is now {1, 3, 5}
and preferential-ordering removes Buyer 5. With the removal of Buyer 5, now
Buyer 2 no longer has an active participant it wishes to beat so the choice set is
updated to {1, 2, 3}. The preferential-ordering rule now removes the buyers
in the order Buyer 3, then Buyer 2 and lastly Buyer 1. Thus Buyer 1 wins under
the preferential-ordering rule.

Now consider first-in-first-out. To allow for a consistent comparison
between the three methods, we assume that when multiple buyers are simultane-
ously added to the queue they are added in decreasing lexicographical order. Thus
our initial queue is 4 : 3 and first-in-first-out removes Buyer 4 from the front
of the queue. With the removal of Buyer 4, neither Buyer 1 nor Buyer 5 have an
incentive to continue bidding so they are added to the back of the queue. Thus the
queue is now 3 : 5 : 1 and first-in-first-out removes Buyer 3 from the front of
the queue. It then removes Buyer 5 from the front of the queue. With the removal
of Buyer 5, we again have that Buyer 2 now wishes to dropout. Hence the queue is
1 : 2 and first-in-first-out then removes Buyer 1 from the front of the queue.
Thus Buyer 2 wins under the first-in-first-out rule.

Finally, consider the last-in-first-out rule. Again, to allow for a consis-
tent comparison we assume that when multiple buyers are simultaneously added
to the stack they are added in increasing lexicographical order. Thus our initial
stack is 4

3 and last-in-first-out removes Buyer 4 from the top of the stack.
Again, Buyer 1 and Buyer 5 both now wish to drop out so our stack becomes

5
1
3
.

Therefore Buyer 5 is next removed from the the top of the stack. At this point,
Buyer 2 wishes to dropout so the stack becomes

2
1
3
. The last-in-first-out rule

now removes the buyers in the order Buyer 2, then Buyer 1 and lastly Buyer 3.
Thus Buyer 3 wins under the last-in-first-out rule.

We have now developed all the tools required to implement our sequential auc-
tion experiments. We describe these experiments and their results in Sect. 5. Before
doing so, we present in Sect. 3 one sequential auction obtained via these experi-
ments and verify that it leads to a non-monotonic price trajectory with each of the
three tie-breaking rules discussed above. We then explain in Sect. 4 how to gener-
alize this conclusion to apply to every tie-breaking rule.
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3 AnAuction with Non-monotonic Prices

Here we prove that the decreasing price anomaly is not guaranteed for sequential
auctions with more than two buyers. Specifically, in Sect. 4 we prove the following
result:

Theorem 5. For any tie-breaking rule τ , there is a sequential auction on which it
produces non-monotonic prices.

In the rest of this section, we show that for all three of the tie-breaking
rules discussed (namely, preferential-ordering, first-in-first-out and
last-in-first-out) there is a sequential auction with with non-monotonic
prices. Specifically, we exhibit a sequential auction with three buyers and eight
items that exhibits non-monotonic prices.

Theorem 4. There is a sequential auction which exhibits a non-monotonic price
trajectory for the preferential-ordering, the first-in-first-out and the
last-in-first-out rules.

Proof. Our counter-example to the conjecture is a sequential auction with three
buyers and eight identical items for sale. We present the first-price version where at
equilibrium the buyers bid their dropout values in each time period; as discussed,
the same example extends to second-price auctions. In our example, Buyer 1 has
marginal valuations {55, 55, 55, 55, 30, 20, 0, 0}, Buyer 2 has marginal valuations
{32, 20, 0, 0, 0, 0, 0, 0}, and Buyer 3 has marginal valuations {44, 44, 44, 44, 0, 0,
0, 0}. Let’s now compute the extensive forms of the auction under the three tie-
breaking rules. We begin with the preferential-ordering rule. To compute its
extensive form, observe that Buyer 1 is guaranteed to win at least two items in the
auction because Buyer 2 and Buyer 3 together have positive value for six items.
Therefore, the feasible set of sink nodes in the extensive form representation are
shown in Fig. 4.

6: 270
2: 52
0: 0

6: 270
1: 32
1: 44

6: 270
0: 0
2: 88

5: 250
2: 52
1: 44

5: 250
1: 32
2: 88

5: 250
0: 0

3: 132

4: 220
2: 52
2: 88

4: 220
1: 32
3: 132

4: 220
0: 0

4: 176

3: 165
2: 52
3: 132

3: 165
1: 32
4: 176

2: 110
2: 52
4: 176

Fig. 4. Sink nodes of the extensive form game.

Given the valuations at the sink nodes we can work our way upwards recursively
calculating the values at the other nodes in the extensive form representation. For
example, consider the node (x1, x2, x3) = (4, 1, 2). This node has three children,
namely (5, 1, 2), (4, 2, 2) and (4, 1, 3); see Fig. 5(a). These induce a three-buyer auc-
tion as shown in Fig. 5(b). This can be solved using the ascending price procedure
to find the dropout bids for each buyer. Thus we obtain that the value for the node
(x1, x2, x3) = (4, 1, 2) is as shown in Fig. 5(c). Of course this node is particularly
simple as, for the final round of the sequential auction, the corresponding auction
with interdependent valuations is just a standard auction. That is, when the final
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(a)
4: -
1: -
2: -

5: 250
1: 32
2: 88

4: 220
2: 52
2: 88

4: 220
1: 32
3: 132

(b) Buyer 1

Buyer 2 Buyer 3

30

20

30

20 44

44

(c)
4: 127
1: 32
2: 48

5: 250
1: 32
2: 88

4: 220
2: 52
2: 88

4: 220
1: 32
3: 132

30 20 30+

Fig. 5. Solving a subgame above the sinks.

item is sold, for any buyer i the value vi,j is independent of the buyer j �= i. Nodes
higher up the game tree correspond to more complex auctions with interdependent
valuations. For example, the case of the source node (x1, x2, x3) = (0, 0, 0) is shown
in Fig. 6. In this case, on applying the ascending price procedure, Buyer 1 is the first
to dropout at price 15. At this point, both Buyer 2 and Buyer 3 no longer have a
competitor that they wish to beat at this price, so they both want to dropout. With
the preferential-ordering tie-breaking rule, Buyer 2 wins the item.

0: -
0: -
0: -

1: 125
0: 1
0: 66

0: 110
1: 35
0: 176

0: 110
0: 22
1: 176

Buyer 1

Buyer 2 Buyer 3

15

34

15

13 0

110

0: 110
0: 22
0: 176

1: 125
0: 1
0: 66

0: 110
1: 35
0: 176

0: 110
0: 22
1: 176

15 15+ 15

Fig. 6. Solving the subgame at the root.

Using similar arguments at each node verifies the concise extensive form rep-
resentation of this example under the preferential-ordering tie-breaking rule.
A figure showing the full extensive form tree is present in the full paper. The resul-
tant price trajectory on the equilibrium path is {15, 17, 0, 0, 0, 0, 0, 0}. That is, the
price rises and then falls to zero – a non-monotonic price trajectory.

Exactly the same example works with the other two tie-breaking rules. The
node values under preferential-ordering and first-in-first-out are the
same, but these two rules do produce different winners at some nodes, for example
the node (3, 0, 2). In contrast, the last-in-first-out rule gives an extensive for
where some nodes have different valuations than those produced by the other two
rules. For example, for the node (2, 0, 0) and its subgame the equilibrium paths and
their prices differ. However, for all three rules the equilibrium path and price tra-
jectory for the whole game is exactly the same. We remark that these observations
will play a role when we prove that, for any tie-breaking rule, there is a sequential
auction with non-monotonic prices. ��

Again, we emphasize that there is nothing inherently perverse about this exam-
ple. The form of the valuation functions, namely decreasing marginal valuations, is
standard. As explained, the equilibrium concept studied is the appropriate one for
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sequential auctions. Finally, the non-monotonic price trajectory is not the artifact
of an aberrant tie-breaking rule; we will now prove that non-monotonic prices are
exhibited under any tie-breaking rule.

4 General Tie-Breaking Rules: Non-monotonic Prices

Next we prove that for any tie-breaking rule there is a sequential auction on which
it produces a non-monotonic price trajectory. To do this, we must first formally
define the set of all tie-breaking rules. Our definition will utilize the concept of an
overbidding graph, introduced by Paes Leme et al. [20]. For any price p and any
set of bidders S, the overbidding graph G(S, p) contains a labelled vertex for each
buyer in S and an arc (i, j) if and only if vi,i − p > vi,j . For example, recall the
auction with interdependent valuations seen in Fig. 3. This is reproduced in Fig. 7
along with its overbidding graph G({1, 2, 3, 4, 5}, 40).

Buyer 1

Buyer 2 Buyer 3

Buyer 4

Buyer 5

25

83

34

31

38

31

74

91

40

37
1829

40

36

23

19
30

33 35

54

1

2

34

5

Fig. 7. The overbidding graph G({1, 2, 3, 4, 5}, 40).

But what does the overbidding graph have to do with tie-breaking rules? First,
recall that the drop-out bid βi is unique for any buyer i, regardless of the tie-
breaking rule. Consequently, whilst the tie-breaking rule will also be used to order
buyers that are eliminated at prices below the final price p∗, such choices are irrel-
evant with regards to the final winner. Thus, the only relevant factor is how a deci-
sion rule selects a winner from amongst those buyers S∗ whose drop-out bids are
p∗. Second, recall that a buyer cannot be eliminated if there remains another buyer
still in the auction that it wishes to beat at price p∗. That is, buyer i must be elim-
inated after buyer j if there is an arc (i, j) in the overbidding graph. Thus, the
order of eliminations given by the tie-breaking rule must be consistent with the
overbidding graph. In particular, the winner can only be selected from amongst
the source vertices2 in the overbidding graph G(S∗, p∗). For example, in Fig. 7
the source vertices are {1, 2, 3}. Note that this explains why the tie-breaking rules
preferential-ordering, first-in-first-out and last-in-first-out chose
Buyer 1, Buyer 2 and Buyer 3 as winners but none of them selected Buyer 4 or
Buyer 5. Observe that the overbidding graph G(S∗, p∗) is acyclic; if it contained

2 A source is a vertex v with in-degree zero; that is, there no arcs pointing into v.
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a directed cycle then the price in the ascending auction would be forced to rise
further. Because every directed acyclic graph contains at least one source vertex,
any tie-breaking rule does have at least one choice for winner. Thus a tie-breaking
rule is simply a function τ : H → σ(H), where the domain is the set of labelled,
directed acyclic graphs and σ(H) is the set of source nodes in H. Consequently,
two tie-breaking rules are equivalent if they correspond to the same function τ .
We are now ready to present our main result.

Theorem 5. For any tie-breaking rule, there is a sequential auction with non-
monotonic prices.

We present here a sketch of our proof of this theorem; due to length restrictions
the full proof is deferred. We consider the same example as in Theorem 4, and
analyze the set of all possible tie-breaking rules in three-buyer auctions. We show
that each tie-breaking rule produces an outcome from a set of exactly ten possible
distinct extensive forms for this example. Of these ten classes, exactly five classes
result in non-monotonicity. We then show that for any given tie-breaking rule from
the other five classes it is possible to relabel the buyers in a way that the resulting
equilibrium has a non-monotonic price trajectory.

5 Experiments

Our experiments were based on a dataset of over six million multi-buyer sequential
auctions with non-increasing valuation functions randomly generated from differ-
ent natural discrete probability distributions. Our goal was to observe the pro-
portion of non-monotonic price trajectories and see how this varied with (i) the
number of buyers, (ii) the number of items, (iii) the distribution of valuation func-
tions, and (iv) the tie-breaking rule. For each auction we computed the subgame
perfect equilibrium corresponding to the dropout bids and evaluated the prices on
the equilibrium path to test for non-monotonicity. We repeated this test for each
of the three tie breaking rules described in Sect. 2.4. The main conclusion to be
drawn from these experiments is that non-monotonic prices are extremely rare. Of
the 6,240,000 auctions, the preferential-ordering, first-in-first-out and
last-in-first-out rules gave just 1,100, 986, and 1,334 violations of the declin-
ing price anomaly respectively. The overall observed rate of non-monotonicity over
these 18 million tests was 0.000183. A detailed description of our dataset genera-
tion process and results are in the full paper.
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Abstract. We study risk-free bidding strategies in combinatorial auc-
tions with incomplete information. Specifically, what is the maximum
profit a complement-free (subadditive) bidder can guarantee in an auc-
tion against individually rational bidders? Suppose there are n bidders
and Bi is the value bidder i has for the entire set of items. We study the
above problem from the perspective of the first bidder, Bidder 1. In this
setting, the worst case profit guarantees arise in a duopsony, that is when
n = 2, so this problem then corresponds to playing an auction against
an individually rational, budgeted adversary with budget B2. We present
worst-case guarantees for two simple combinatorial auctions; namely, the
sequential and simultaneous auctions, for both the first-price and second-
price case. In the general case of distinct items, our main results are for
the class of fractionally subadditive (XOS) bidders, where we show that
for both first-price and second-price sequential auctions Bidder 1 has a
strategy that guarantees a profit of at least (

√
B1−

√
B2)

2 when B2 ≤ B1,
and this bound is tight. More profitable guarantees can be obtained for
simultaneous auctions, where in the first-price case, Bidder 1 has a strat-

egy that guarantees a profit of at least (B1−B2)
2

2B1
, and in the second-price

case, a bound of B1 −B2 is achievable. We also consider the special case
of sequential auctions with identical items. In that setting, we provide
tight guarantees for bidders with subadditive valuations.

1 Introduction

What strategy should a bidder use in a combinatorial auction for a collection
I of items? This paper studies this question for sequential and simultaneous
auctions. To motivate this question and to formalize the resultant problem, let’s
begin with sequential auctions which are perhaps the simplest and most natural
method by which to sell multiple items. These auctions, where the items are
ordered and sold one after another, are commonplace in auction house and online
sale environments. The inherent simplicity of a sequential auction arises because
a standard single-item mechanism, such as an ascending-price, first-price, or
second-price auction, can then be used for each item in the collection. But there
is a catch! Whilst a single-item auction is very well understood from both a
theoretical perspective – see, for example, the seminal works of Vickrey [22]
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and Myerson [18] – and a practical perspective, the concatenation of single-item
auctions is not.

From a bidder’s viewpoint, sequential auctions are perplexing for a variety
of reasons. To understand this, observe that a sequential auction can be mod-
elled as an extensive form game. In such games the basic notion of equilibrium
is a subgame perfect equilibrium (SGPE). Unfortunately, these equilibria are, in
general, hard to compute; see, for example, [7,8,20]. Intriguing structural prop-
erties can be derived for the equilibria of sequential auctions; see [12,19,21], but
the recursive nature of this structure makes reasoning about equilibria complex.
These equilibria suffer from an additional drawback in that they can change sig-
nificantly with small changes to the payoff values. It follows that prescriptions
derived from the complete information setting are unlikely to extend to more
practical settings with incomplete information. Given that SGPE are very com-
plex and informationally sensitive, it is extremely unlikely that the other bidders
will be able to play their equilibrium strategies. In which case, why would you
wish to play yours? But then what bidding strategy should you use instead?
Similar computational and informational motivations also arise for the case of
simultaneous auctions. In this paper, we consider the above question for both
types of auctions.

Evidently, the answer to this question will depend upon the objective of the
bidders, their computational resources, the informational structure inherent in
the auction, etc. We study this problem from the perspective of Bidder 1 in the
following very general incomplete information setting. What is the maximum
risk-free profit that Bidder 1 can make assuming the other bidders are rational?
Here the bidder knows her own entire valuation function but does not know the
valuation function of Bidder 2 (we will see that the critical case to analyze is
when there are just two bidders). Assume that the only information Bidder 1 has
on the other bidder is an estimate that his value for the entire collection of items
is at most B2; beyond this trivial upper bound, she has no specific information
on the values the other bidder has for any subset of the items. We will show that,
in the worst case, to maximize her guaranteed profit, we can model this problem
as Bidder 1 competing in the auction against an individually rational1 adversary
with a budget B2. This type of approach is analogous to that of a safety strategy
in bimatrix games. In this paper, we will then quantify the maximum risk-free
profitability when the valuation function of Bidder 1 belongs to the class of
subadditive (complement-free) functions and its subclasses. Interestingly, given
the valuation class, tight bounds can be obtained that depend only on B1 (the
value Bidder 1 has for the entire set of items) and B2. For example, the risk-free
profitability of the class of fractionally subadditive (XOS) valuation functions is
(
√

B1 −√
B2)2, for B2 ≤ B1, and this bound is tight. For simultaneous auctions

the risk-free profitability of the XOS class is at least (B1−B2)
2

2B1
and (B1 − B2)

for first-price and second-price auctions, respectively. Similarly, we present tight

1 Recall that the only constraint on an individually rational agent is that it play a
strategy that is guaranteed to provide non-negative utility; thus, an individually
rational agent need not be utility maximizing (rational).
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(but more complex) bounds for the class of subadditive valuation functions when
the items are identical.

1.1 Related Literature

There is an extensive literature on sequential auctions. The study of incomplete
information games was initiated by Milgrom and Weber [17,23]. Theoretical
studies on equilibria in complete information games include [12,19,21]. Given the
abundance of sequential auctions in practice, there is also a very large empirical
literature covering an assortment of applications ranging from antiques [14] to
wine [1] and from fish [13] to jewellery [5].

Recently there has been a strong focus in the computer science community
on the design of simple mechanisms. For combinatorial auctions, simultaneous
auctions are a notable example. These auctions are simple in that, as with a
sequential auction, a standard single-item auction mechanism is used to sell
each item. But in contrast, as the nomenclature suggests, these auctions are
now held simultaneously rather than sequentially. Two important streams of
research in this area concern the price of anarchy in simultaneous auctions (see,
for example, [3,6,10,15]) and the hardness of computing an equilibrium (see [4]).

There has also been a range of papers examining the welfare of equilibria in
sequential auctions. Bae et al. [2] consider the case of identical items and show
that equilibria provide a factor 1 − 1

e approximation guarantee if there are two
bidders with non-decreasing marginal valuations. Paes Leme et al. [21] study
the case of multi-bidder auctions. For sequential first-price auctions, they prove
a factor 2 approximation guarantee for unit-demand bidders. In contrast, they
show that equilibria can have arbitrarily poor welfare guarantees for bidders
with submodular valuations. Feldman et al. [11] extend this result to the case
where each bidder has either a unit-demand or additive valuation function.

Partly because of these negative results, a common assumption is that sequen-
tial auctions may not be a good mechanism by which to sell a collection of items.
However, there are reasons to believe that, in practice, sequential auctions have
the potential to proffer high welfare. For example, consider the influential paper
of Lehmann et al. [16]. There, they present a simple greedy allocation mechanism
with a factor 2 welfare guarantee for allocating items to agents with submodu-
lar valuation functions. One interesting implication of this result is that if the
items are sold via a second-price sequential auction and every agent (assuming
submodular valuations) truthfully bids their marginal value in each round then
the outcome will have at least half the optimal social welfare.

1.2 Overview and Results

In Sect. 2 we explain the sequential auction model and give necessary definitions.
We present our measure, the risk-free profitability of a bidder in incomplete
information multi-bidder auctions, and explain how to quantify it via a two-
bidder adversarial sequential auction. In Sect. 3 we present a simple sequential
auction example (uniform additive auctions) to motivate the problem and to
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illustrate the difficulties that arise in designing risk-free bidding strategies, even
in very small sequential auctions with at most three items.

Sections 4 and 5 contain our main results. In Sect. 4 we begin by presenting
tight upper and lower bounds on the risk-free profitability of a fractionally sub-
additive (XOS) bidder. For the lower bound, in Sect. 4.1 we exhibit a bidding
strategy that guarantees Bidder 1 a profit of at least (

√
B1 − √

B2)2.
In Sect. 4.2 we describe a sequence of sequential auctions that provide an

upper bound that is asymptotically equal to the aforementioned lower bound as
the number of items increases. We prove these bounds for first-price sequential
auctions, but nearly identical proofs show the bounds also apply for second-price
sequential auctions. Next we prove that the risk-free profitability of an XOS bid-
der is lower in sequential auctions than in simultaneous auctions. Equivalently,
an individually rational adversary is stronger in a sequential auction than in the
corresponding simultaneous auction. Specifically, in Sect. 4.3, we prove that an
XOS bidder has a risk-free profitability of at least (B1−B2)

2

2B1
in a first-price simul-

taneous auction and of at least B1 − B2 in a second-price simultaneous auction.
Several other interesting observations arise from these results. First, unlike for
sequential auctions, the power of the adversary differs in a simultaneous auc-
tion depending on whether a first-price or second-price mechanism is used: the
adversary is stronger in a first-price auction. Second, the risk-free strategies we
present for simultaneous auctions require no information about the adversary at
all. The performance of the strategy (its risk-free profitability) is a function of
B2, but the strategy itself does not require that Bidder 1 have knowledge of B2

(nor an estimate of it). Third, for the case of first-price simultaneous auctions,
it is necessary that Bidder 1 use randomization in its risk-free strategy.

Finally, in Sect. 5 we study the risk-free profitability of a bidder with a subad-
ditive valuation function. We give a possible explanation for why simple strate-
gies fail to perform well in the general case. We then examine the special case
where the items are identical. We derive tight lower and upper bounds for this
setting. Due to space restrictions, most proofs are deferred to the full paper.

2 The Model

2.1 Sequential Auctions and Valuation Functions

There are n bidders and a collection I = {a1, . . . , am} of m items to be sold
using a sequential auction. In the �th round of the auction item a� is sold via a
first-price (or second-price) auction. We view the auction from the perspective
of Bidder 1 who has a publicly-known valuation function v1 : 2I → R≥0 that
assigns a non-negative value to every subset of items. We denote v1 by v where
no confusion arises. This valuation function is assumed to satisfy v(∅) = 0 and
to be monotone, that is, v(S) ≤ v(T ), for all S ⊆ T . When all the items have
been auctioned, the utility or profit π1 of Bidder 1 is her value for the set of
items she was allocated minus the sum of prices of these items.

The sequential auction setting is captured by extensive form games. A strat-
egy for player i is a function that assigns a bid bt

i for the item at, depending on the



Risk-Free Bidding in Complement-Free Combinatorial Auctions 127

previous bids {bτ
i }i,τ<t of all players (and the allocation of the first t − 1 items).

The utility (profit) of a strategy profile b for Bidder 1 is the profit Bidder 1
obtains when all bidders bid according to b.

The question we then study is how much profit Bidder 1 can guarantee itself.
We examine the case where v is in the class of subadditive or complement-free
valuation functions. Belonging to this class, of particular interest in this paper
are additive functions, submodular functions, and fractionally subadditive or XOS
functions. These functions are defined as follows.

– Subadditive (Complement-Free). A function v is subadditive if v(S∪T ) ≤
v(S) + v(T ) for all S, T ⊆ I.

– Additive (Linear). A function v is additive if v(S) =
∑

a∈S v(a) for each
S ⊆ I.

– Submodular (Decreasing Marginal Valuations). A function v is sub-
modular if v(S ∪ T ) + v(S ∩ T ) ≤ v(S) + v(T ) for all S, T ⊆ I.

– Fractionally Subadditive (XOS). A function v is fractionally subadditive
if there exists a non-empty collection of additive functions {γ1, γ2 . . . , γ�} on
I such that for every S ⊆ I, v(S) = maxj∈[�] γj(S).2

Lehmann et al. [16] showed that these valuation classes form the following
hierarchy:

Additive ⊆ Submodular ⊆ Fractionally Subadditive ⊆ Subadditive

Other important classes in this hierarchy include unit-demand and gross
substitutes valuation functions, but they will not be needed here.

2.2 Bidding Against an Adversary

To quantify the maximum profit that Bidder 1 can obtain, without loss of gen-
erality, we may normalize the valuation function (and corresponding auction)
by scaling the values so that v(I) = v1(I) = 1. Now the maximum guaranteed
profit will depend on the strength of the other bidders. We quantify this by
a parameter B: in the setting where each player j ≥ 2 has valuation function
vj , B is the sum of the total values of the other bidders, i.e., B =

∑n
j=2 vj(I).

This corresponds to an incomplete information auction where the only common
knowledge are upper bounds on the value each agent has for the entire set of
items. From the perspective of Bidder 1, it will be apparent that the worst case
arises when n = 2, and so B = B2 = v2(I). Thus we may assume that n = 2,
and can view Bidder 1 as playing against an adversary with a budget B. To see
this, observe that for a fixed B =

∑n
j=2 vj(I) if there are n >= 3 bidders then

the worst case for Bidder 1 arises when the other bidders coordinate to act as a
single adversary: however, when the budget is split between two or more other
bidders then their ability to buy a single item of high value decreases.

2 This is the standard definition of XOS functions. Fractionally subadditive functions
are defined in terms of fractional set covers; the equivalence between fractionally
subadditive and XOS functions was shown by Feige [9].
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Here the adversary is individually rational in that the budget constraint is
tight: in time step t, if Bidder 2 paid pt−1

2 for the items that have already sold,
then his next bid bt

2 is at most B − pt−1
2 . Bidder 1’s profit π1 in this game

is her value for her allocated set minus the sum of the prices of the items.
Viewing Bidder 2 as an adversary lets us take π2 = −π1, making this auction a
special case of a zero-sum game. We call this the risk-free sequential auction game
R(v,B). The guaranteed profit for Bidder 1 is the minimum profit obtainable
by playing a safety strategy in this game (i.e. the value of this game). For any
normalized valuation v, we denote this profit by π∗

1(v,B) or simply π∗
1 where

there is no ambiguity. For any class of set functions C and any budget B ∈ (0, 1),
we want to find the maximum profit Bidder 1 can guarantee in any instance
R(v,B) where v ∈ C, which is precisely infv∈C π∗

1(v,B). We call this the risk-free
profitability P(C, B) of the class C (and define risk-free profitability analogously
for simultaneous auctions). The focus of this paper is to quantify the risk-free
profitability of the aforementioned classes of valuation functions.

3 Example: Uniform Additive Auctions

We now present a simple example of a sequential auction with an agent (Bidder 1)
that strategizes against an adversary (Bidder 2), which will be helpful for two
reasons. First, it illustrates some of the strategic issues facing the agent and,
implicitly, the adversary in a sequential auction. Second, these examples form
base cases in our proof in Sect. 4.2.

The auction is defined as follows. Bidder 1 has an additive valuation function
where each item has exactly the same value. That is, for an auction with m items,
we have that v(at) = 1

m . The adversary Bidder 2 has a budget B. We call this
the uniform additive auction on m items and denote it by Am. For our example,
we are interested in uniform additive auctions where m ≤ 3. We denote by bj

i

Bidder i’s bid on item j.

One Item. First, consider the case A1. We have a single item a1 with v({a1}) = 1
for Bidder 1. Clearly if b1 < B then the adversary’s best response is to bid
b2 = b+1 and win, so π1 = π2 = 0. If b1 ≥ B, then the adversary is constrained
by his budget, thus Bidder 1 wins and obtains a profit of π1 = 1 − b1. So we
have

π∗
1 =

{
1 − B if 0 ≤ B < 1
0 if 1 ≤ B

(1)

Two Items. Now consider the case A2. So there are two items a1 and a2 and
Bidder 1 has an additive valuation function with v({a1}) = v({a2}) = 1

2 and
v({a1, a2}) = 1. We divide our analysis into three cases.

– B < 1
4 : If B < 1

4 , then Bidder 1 can bid B on each item and win both items at
price B each, so her guaranteed profit is at least 1− 2B > 1

2 . If Bidder 1 bids
less than B on either item, then Bidder 2 can win that item, ensuring that
Bidder 1’s profit is less than her value of the other item, that is 1

2 . Bidder 1’s
risk-free strategy is thus to bid B on both items for a profit π∗

1 = 1 − 2B.
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– 1
4 ≤ B < 1

2 : If Bidder 1 bids b11 = x on a1, with 0 ≤ x ≤ 1
2 , then Bidder 2 can

either win by bidding b12 > x or lose by bidding b12 < x (for now, we assume
x < B). In the former case, the adversary’s budget in the second auction is
B − b12, and there is only one item remaining. It is easy to see that Bidder 1’s
profit from the second item is π1 = 1

2−(B−b12) = 1
2−B+b12. This is minimized

(with value 1
2 − B + x) when Bidder 2 bids an amount negligibly larger than

x. In the latter case, the adversary loses the first item, so he has budget B
in the second auction. Bidder 1’s combined profit (on both items) is then
π1 = (12 −x)+ (12 −B) = 1−B −x. For x = 0 we have 1

2 −B +x < 1−B −x
and for x = B we have 1

2 − B + x ≥ 1 − B − x, since B ≥ 1
4 . But 1

2 − B + x is
increasing in x and 1−B −x is decreasing in x. Therefore, assuming Bidder 2
plays a best response, we see that π1 is maximized when the minimum of these
values is maximized. That is π∗

1 = max0≤x<B min
[
1
2 − B + x, 1 − B − x

]
.

The optimal choice is x = 1
4 giving π∗

1 = 3
4 − B. Note that our assumption

that x < B is validated: if Bidder 1 bids an amount x that is greater than
or equal to B on the first item the she will win both items for a total profit
( 12 − x) + (12 − B) = 1 − x − B ≤ 1 − 2B ≤ 3

4 − B.
– 1

2 ≤ B < 1: Reasoning as we did for the previous case, we see that π∗
1 = 1

2 − B
2

when 1
2 ≤ B < 1.

Putting this all together we have that

Budget 0 ≤ B < 1
4

1
4 ≤ B < 1

2
1
2 ≤ B < 1 1 ≤ B

Profit π∗
1 1 − 2B 3

4 − B 1
2 − B

2 0
(2)

Before proceeding to the three-item case, we emphasize that even the very
simple case A2 illustrates many of the strategic considerations that arise in more
complex sequential auctions. To wit, in the first time period Bidder 1 faces the
standard conundrum that bidding high increases her chances of winning but at
the expense of receiving a smaller profit if she does win. Interestingly, in this
adversarial setting, Bidder 1 has an additional incentive for bidding high: if she
bids high and loses then adversary’s budget is significantly reduced in the auc-
tion for the second item. Counterintuitively, therefore, in adversarial sequential
actions, Bidder 1 has an incentive to lose some of the items! More interestingly,
the adversary has perhaps even stronger incentives to lose than Bidder 1. Whilst
winning the first item does hurt Bidder 1, this also reduces the strength of the
adversary in the subsequent round. Thus, the optimal outcome for adversary is
that he lose the first item at a high price; this keeps the profit of Bidder 1 low
and increases the relative strength of the adversary in the second auction. This
is in stark contrast with the simultaneous case, where both Bidder 1 and the
adversary have an incentive to win every item.
Three Items. Now there are three items a1, a2 and a3 and Bidder 1 has an
additive valuation function with v({a1}) = v({a2}) = v({a3}) = 1

3 . Applying a
similar case analysis, her maximum guaranteed profits are then:

B B < 1
9

1
9

≤ B < 1
6

1
6

≤ B < 1
3

1
3

≤ B < 5
9

5
9

≤ B < 2
3

2
3

≤ B < 1 1 ≤ B

π∗
1 1 − 3B 8

9
− 2B 7

9
− 4B

3
7
12

− 3B
4

4
9

− B
2

1
3

− B
3

0
(3)
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We remark that this profit function is still piecewise linear and is so for Am

in general. However the complexity of the profit function grows rapidly as the
number of items increases.

4 Tight Bounds for XOS Valuation Functions

In this section we prove tight bounds on the risk-free profitability of Bidder 1
with a fractionally subadditive (XOS) valuation function. In Sect. 4.1, we show
that the agent has a strategy in the normalized auction that gives a guaranteed
profit of (1−√

B)2, equivalent to a profit of (
√

B1 −√
B2)2 in the unnormalized

auction. In Sect. 4.2, we prove that no strategy can guarantee a profit that is
greater than this by an (asymptotically zero) additive amount.

4.1 The XOS Lower Bound

It is quite straightforward to obtain a lower bound: for each item, Bidder 1
computes her marginal value under the assumption that she wins every other
item and bids a fixed fraction of this value. This guarantees a profit of at least
(1−√

B)2 against any strategy utilized by an adversary with budget B ∈ (0, 1).

Theorem 4.1. P(XOS,B) ≥ (1 − √
B)2.

Let I = {a1, . . . , am} be the set of auctioned items, and v be Bidder 1’s valua-
tion function. Since v is XOS, there is a set {γ1, γ2, . . . , γ�} of (normalized) addi-
tive set functions on I, such that for any S ⊆ I we have v(S) = maxi∈[�] γi(S).
Let γ∗ = argmaxi∈[�] γi(I) be an additive function that induces the value of v
on the entire set of items I. Thus v(I) = γ∗(I). Moreover, by definition of v, we
have that

v(S) ≥ γ∗(S) ∀S ⊆ I (4)

Bidder 1’s strategy is then to bid bt
1 =

√
B ·γ∗(at) on item at ∈ I, for all t ∈ [m].

It can be seen that with this strategy, Bidder 1 wins a bundle of items of value
at least (1−√

B) and makes a profit of at least a (1−√
B)-fraction of the value,

giving π1 ≥ (1 − √
B)2 as required. Full details are provided in the full paper.

Next we will show this bound is tight by providing instances where the adver-
sary has a strategy limiting the profitability of Bidder 1 to this amount. This
is surprising because the bidding strategy described above is non-adaptive – it
does not adapt to the history of the auction. Given the extra flexibility afforded
by adaptive strategies, one would expect a priori the optimal risk-free strategy
to be adaptive. However, as we will see in the next section, the simple bidding
strategy presented above is optimal for Bidder 1.

4.2 The XOS Upper Bound

In this section, we present a sequential auction with an XOS valuation function
where the game value is at most (1 − √

B)2 + 1√
m

. Specifically, we use the uni-
form additive auction Am. Consequently, rather surprisingly, the upper bound
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applies to every class of valuation functions that contains the additive func-
tions! Together with the lower bound, this resolves the profitability of several
well-studied classes, including the additive, submodular and gross substitutes
valuation classes. We will see later on, in Sect. 5, that the situation is not as
simple for subadditive valuations (that are not contained in XOS). Denote by
XOSm the class of XOS functions on m items. The following theorem, together
with the lower bound, gives our main result: P(XOS,B) is asymptotically equal
to (1 − √

B)2 when B ∈ (0, 1).

Theorem 4.2. P(XOSm, B) ≤ (1 − √
B)2 + 1√

m
.

Proof. We prove this result by induction on m. We start with a simple observa-
tion: after the first item has been sold in the uniform additive auction Am then
the sequential auction on items {a2, . . . , am} is simply the auction Am−1 but
with the additive values scaled by a multiplicative factor m−1

m . Consequently, by
appropriately scaling the values and the budget of the adversary we will be able
to analyze the auction Am by studying the first round of that auction and then
applying induction on the remaining rounds.

Formally, for any positive integer m let fm : R≥0 → [0, 1] be a function
giving the highest guaranteed profit fm(x) of a risk-free strategy in Am given
the adversary has a budget B = x. Clearly, for all m, we have that fm(0) = 1
and that fm(x) = 0 for any x ≥ 1. Set f(x) = (1−√

x)2. Then we want to prove
by induction that

fm(x) ≤ f(x) +
1√
m

∀m ≥ 1,∀x ∈ (0, 1) (5)

Base Cases: For the base cases, consider m ∈ {1, 2, 3}. Note that we have
already studied the auctions A1,A2 and A3 in Sect. 3. Specifically, we found
that f1(x) = (1 − x), and that f2(x) is given by (2) and f3(x) is given by (3).
It can be easily verified that each of the above functions fm(x), m ∈ {1, 2, 3}, is
at most f(x) + 1√

m
, for any x ∈ [0, 1].

Induction Hypothesis: Assume that fk(x) ≤ f(x) + 1√
k

for all k < m.

Induction Step: We will now prove that fm(x) ≤ f(x)+ 1√
m

. We will present a
strategy for the adversary and prove that this strategy guarantees that Bidder 1
cannot make a profit greater than f(x) + 1√

m
in the uniform additive auction

Am. Specifically, we consider the auction for the first item a1 in Am, and we let
b12 = α · 1

m be the adversary’s bid on this item. Since Bidder 1 has an additive
value 1

m for this item, the adversary will never make a bid b12 > 1
m . Thus we may

assume that the adversary makes a bid b12 = α · 1
m for some 0 ≤ α ≤ 1. We then

show that for some particular choice of α, even with an optimal response Bidder 1
does not make a profit greater than f(x)+ 1√

m
. In determining Bidder 1’s optimal

response, we have two possibilities:

• Bidder 1 wins item a1.
In this case it is easy to see that Bidder 1 will bid b11 = b1+2 (which is b12 + ε
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for any negligibly small ε) as any higher bid will lead to a strictly smaller
profit as this is a first price auction. Thus, Bidder 1 makes an immediate
profit of 1

m −α · 1
m = 1−α

m on the first item. The rest of the sequential auction
is an instance of Am−1, where the additive valuations of Bidder 1 and the
budget of the adversary are both scaled. As the adversary lost the first item
his budget remains x, which corresponds to a budget of B = m

m−1 · x in the
scaled auction Am−1. Then, assuming that the bidders play optimal strategies
in the remaining rounds, the maximum profit Bidder 1 can make is:

gm(x, α) =
1 − α

m
+

m − 1
m

· fm−1

(
mx

m − 1

)

(6)

• Bidder 1 loses item a1.
If Bidder 1 loses the first item, then Bidder 1 makes no profit on a1. Since this
is a first-price auction the adversary will pay b12 if he wins regardless of the bid
of Bidder 1. Thus Bidder 1 is indifferent between any bids less than b12. After
the first round we again have a scaled version of Am−1. As the adversary won
the first item his scaled budget is now B = m

m−1 · (
x − α

m

)
= mx−α

m−1 . Then,
assuming that the bidders play optimal strategies in the remaining rounds
the maximum profit Bidder 1 can make is:

hm(x, α) =
m − 1

m
· fm−1

(
mx − α

m − 1

)

(7)

Evidently, the best response of Bidder 1 to a bid b12 = α · 1
m is given by

the maximum of gm(x, α) and hm(x, α). Thus, the adversary should select α to
minimize this maximum. Specifically,

fm(x) = min
0≤α≤1

max
(
gm(x, α), hm(x, α)

)
.

Thus, our goal is to prove that there exists a bid b12 = α̃ · 1
m by the adversary

such that both gm(x, α̃) and hm(x, α̃) are at most f(x) + 1√
m

. This will ensure
that the maximum guaranteed profit of Bidder 1 is fm(x) ≤ f(x) + 1√

m
as

required. Our proof of this fact requires examination of three cases depending
upon the magnitude of the budget of the adversary. The low budget case (where
0 ≤ x < 1

m2 ) and high budget case (where m−1
m < x ≤ 1) do not require the

induction hypothesis (nor consideration of the functions gm(x, α̃) and hm(x, α̃))
but constitute a part of our inductive step. The proofs of these cases are quite
straightforward and are in the full paper. For the remainder of this section, we
assume that we are in the third case, where 1

m2 ≤ x ≤ m−1
m . This case is more

difficult and represents one of the main technical contributions of this paper.
Recall that by the induction hypothesis fm−1(x) ≤ f(x) + 1√

m−1
. Rather

than calculate fm(x) exactly, our approach is to find a feasible choice α̃ for the
adversary that ensures that both gm(x, α̃) and hm(x, α̃) are at most f(x)+ 1√

m
.

To do this, we begin by investigating the properties of the functions gm(x, α)
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and hm(x, α). Using these properties, we find a candidate choice α̃ which we first
prove is feasible and second prove gives the desired upper bound.

Let’s start by showing that gm(x, α) and hm(x, α) are both monotonic func-
tions. For any fixed m, since the valuation is additive and the space of strate-
gies for the adversary is constrained only by his budget, any strategy available
with budget x̄ < x is also available with budget x. Hence fm is non-increasing
in x. So for fixed x gm(x, α) is non-increasing and hm(x, α) is non-decreasing
in α. Now the minimum choice the adversary can make for α is zero. Since
gm(x, 0) = 1

m + m−1
m fm−1

(
mx

m−1

)
and hm(x, 0) = m−1

m fm−1

(
mx

m−1

)
, we have

gm(x, 0) ≥ hm(x, 0).
Now consider the maximum choice the adversary can make for α. We denote

this value by αmax. We have two cases. Suppose x ≥ 1
m . Then the adver-

sary may set α = 1 and bid 1
m on the first item. In this case, both gm(x, 1)

and hm(x, 1) are well defined, and we have gm(x, 1) = m−1
m fm−1

(
mx

m−1

)
and

hm(x, 1) = m−1
m fm−1

(
mx−1
m−1

)
. Because fm−1 is non-increasing, we have that

gm(x, 1) ≤ hm(x, 1). Now suppose x < 1
m . Because of the budget constraint,

the maximum possible value of α is mx. Suppose the adversary bids x on the
first item (corresponding to the choice α = mx) and loses. Bidder 1 then makes
a profit of 1

m − x on the first item. The adversary can subsequently play the
following strategy: bid x on every item until he wins an item. It can be seen that
Bidder 1’s best response to this strategy is to give up the first item at price x
and wins the remaining m − 1 items for free. Thus gm(x,mx) ≤ hm(x,mx).

So we have shown that αmax = min(1,mx), and that gm(x, 0) ≥ hm(x, 0)
and gm(x, αmax) ≤ hm(x, αmax). Then, because gm(x, α) is non-increasing in
α and hm(x, α) is non-decreasing in α when x is fixed, our upper bound of
max(gm(x, α), hm(x, α)) is minimized at any bid ᾱ · 1

m such that 0 ≤ ᾱ ≤ αmax

and gm(x, ᾱ) = hm(x, ᾱ). This is also precisely equal to a risk-free bid α∗ · 1
m

placed by Bidder 1 on the first item, since from her perspective, if the adversary
plays a best response then she gets the minimum of gm(x, α∗) and hm(x, α∗),
and this minimum is maximized when they are equal.

We now use the above observations to establish an upper bound on the
highest guaranteed profit of a risk-free strategy. We choose α̃ = 1 − 2m(1 −√

x)+2
√

m(m − 1)(1−√
x), where the adversary bids α̃ 1

m . We then prove that
both gm(x, α̃) and hm(x, α̃) are well-defined for all x ∈ [ 1

m2 , m−1
m ], and are both

at most f(x) + 1√
m

. We rely on the three technical claims below.

Claim 4.3. For any x ∈ [ 1
m2 , m−1

m ], 0 ≤ α̃ ≤ αmax.

Claim 4.4. gm(x, α̃) ≤ f(x) + 1√
m
.

Claim 4.5. hm(x, α̃) ≤ f(x) + 1√
m
.

Since fm(x) ≤ max(gm(x, α̃), hm(x, α̃)), we have fm(x) ≤ f(x) + 1√
m

when
1

m2 ≤ x ≤ m−1
m . With this third case (intermediate budget) completed so is the

proof of Theorem 4.2. �
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4.3 Risk-Free Bidding in Simultaneous Auctions

In this section we consider risk-free bidding in a simultaneous auction. Here, for
an individually rational adversary, the analogue of budget-constrained bidding
is that the sum of the adversary’s bids is at most B. Intuitively, an individually
rational adversary is weaker in a simultaneous auction than in a sequential auc-
tion, since in the sequential case he has the option to “overbid” on an item but
suffers no consequence if he loses the item. The issue then is whether or not the
resultant broader range of strategies available to an adversary in a sequential
auction makes it provably more powerful than the corresponding adversary in
a simultaneous auction. We show that this is indeed the case in the following
theorems.

Theorem 4.6. The two-player simultaneous first-price auction with a normal-
ized XOS valuation function and an adversary with normalized budget B ∈ (0, 1)
has a (randomized) risk-free strategy for Bidder 1 that guarantees a profit of at
least (1−B)2

2 in expectation.

Theorem 4.7. The two-player simultaneous second-price auction with a nor-
malized XOS valuation function and an adversary with normalized budget B ∈
(0, 1) has a risk-free strategy for Bidder 1 that guarantees a profit of at least
(1 − B).

The proof of Theorem 4.7 is quite simple; the proof of Theorem 4.6 is more
intricate and relies on consideration of the Lagrangian dual of an appropriate
quadratic program. We also show that an analogue of Theorem 4.7 does not hold
for first-price auctions. We remark that the strategies used in proving these the-
orems require no knowledge of the adversary’s budget. Bidder 1 can implement
them based solely on her own valuation function so these profit guarantees are
extremely robust. In addition, unlike for sequential auctions, the power of the
adversary differs in a simultaneous auction depending on whether a first-price or
second-price mechanism is used: the adversary is stronger in a first-price auction.

5 Bounds for Subadditive Valuation Functions

In this section we return to sequential auctions, and study the risk-free prof-
itability of Bidder 1 when her valuation function is subadditive. The relation-
ship between XOS and subadditive functions was explored by Bhawalkar and
Roughgarden [3], via the class of β-fractionally subadditive valuation functions.
The following proposition is tight.

Prop. 5.1. [3] Every subadditive valuation is ln m-fractionally subadditive.

Since there exist subadditive functions that are not XOS, the simple strategy
from Sect. 4.1 is no longer guaranteed to work. Indeed, we show in the full paper
that an analogous strategy fails to guarantee non-zero profit for Bidder 1 when
her valuation is subadditive but not XOS. However, we make progress on an
important special case, namely subadditive valuations on identical items.
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5.1 The Subadditive Lower Bound with Identical Items

We obtain our lower bound on the profitability of Bidder 1 with a simple strategy:
Bidder 1 chooses a constant price p̃ and a target allocation q̃ in advance, and
bids p̃ on every item, stopping when she wins q̃ items.

Claim 5.2. For any set S ⊆ I, where |S| = q, v(S) ≥ v(I)
�m

q 	 .

Now, for an appropriate choice of p̃ and q̃, we show that Bidder 1 can guar-
antee a profit of at least t∗(B) − O( 1

m ), where

t∗(B) = max
k∈Z≥1

tk(B).

Interestingly, tk(B) = 1
k+1 − B

k is the tangent to our earlier lower bound of
f(B) = (1 − √

B)2 at B = ( k
k+1 )2. Denote by SIm the subadditive valuation

functions on m identical items.

Theorem 5.3. P(SIm, B) ≥ t∗(B) − O( 1
m ).

5.2 The Subadditive Upper Bound with Identical Items

Interestingly, we can show a matching upper bound for the range 0 < B < 1
4 ,

so the lower bound is fully tight when the budget B is in (0, 1
4 ) and at every B

of the form ( k
k+1 )2 for any positive integer k. We conjecture that this tightness

extends to all B ∈ (0, 1).

Theorem 5.4. P(SIm, B) ≤ t∗(B) + O( 1√
m

) when B ∈ (0, 1
4 ) and m is larger

than some constant m0 that depends only on B.

An important consequence of the above result is that the lower bound for
XOS valuations does not hold for subadditive valuations. This differentiates the
class of subadditive valuations from the additive, submodular and XOS classes
in that Bidder 1 can no longer guarantee a profit of (1−√

B)2 when his valuation
function is subadditive.

References

1. Ashenfelter, O.: How auctions work for wine and art. J. Econ. Perspect. 3(3), 23–36
(1989)

2. Bae, J., Beigman, E., Berry, R., Honig, M., Vohra, R.: On the efficiency of sequen-
tial auctions for spectrum sharing. In: 2009 International Conference on Game
Theory for Networks, pp. 199–205 (2009)

3. Bhawalkar, K., Roughgarden, T.: Welfare guarantees for combinatorial auctions
with item bidding. In: Proceedings of the 22nd Symposium on Discrete Algorithms
(SODA), pp. 700–709 (2011)

4. Cai, Y., Papadimitriou, C.: Simultaneous Bayesian auctions and computational
complexity. In: Proceedings of 15th ACM Conference on Economics and Compu-
tation (EC), pp. 895–910 (2014)



136 V. V. Narayan et al.

5. Chanel, O., Gérard-Varet, L., Vincent, S.: Auction theory and practice: evidence
from the market for jewellery. In: Ginsburgh, V., Menger, P. (eds.) Economics of
the Arts: Selected Essays, pp. 135–149. North-Holland, Amsterdam (1996)
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Abstract. We consider computational games, sequences of games G =
(G1, G2, . . .) where, for all n, Gn has the same set of players. Computa-
tional games arise in electronic money systems such as Bitcoin, in crypto-
graphic protocols, and in the study of generative adversarial networks in
machine learning. Assuming that one-way functions exist, we prove that
there is 2-player zero-sum computational game G such that, for all n, the
size of the action space in Gn is polynomial in n and the utility function
in Gn is computable in time polynomial in n, and yet there is no ε-Nash
equilibrium if players are restricted to using strategies computable by
polynomial-time Turing machines, where we use a notion of Nash equi-
librium that is tailored to computational games. We also show that an
ε-Nash equilibrium may not exist if players are constrained to perform
at most T computational steps in each of the games in the sequence.
On the other hand, we show that if players can use arbitrary Turing
machines to compute their strategies, then every computational game
has an ε-Nash equilibrium. These results may shed light on competitive
settings where the availability of more running time or faster algorithms
can lead to a “computational arms race”, precluding the existence of
equilibrium. They also point to inherent limitations of concepts such as
“best response” and Nash equilibrium in games with resource-bounded
players.

Keywords: Nash equilibrium · Bounded rationality ·
Turing machines

1 Introduction

One of the most widely used solution concepts in game theory is Nash equilib-
rium (NE). In a Nash equilibrium, no player can improve his utility by deviating
unilaterally from his strategy. A key property of NE is that it exists in every
normal-form game, making it a potential candidate for an equilibrium rational
players may end up in. However, the proof of existence of NE is silent with
respect to the computational resources players may or may not have. But if a
Nash equilibrium is hard to compute, it is hard to imagine how computationally
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bounded players could play it.1 The importance of taking computational con-
cerns into account in game theory has been recognized since at least the work
of Simon [26]. Our goal here is to examine how considering computationally
bounded players influences notions such as best response and NE.

We will be mainly interested in players that are polynomially bounded,
continuing a long line of work in game theory on resource-bounded players
(e.g., [16,19,21,23]). To make sense of polynomial-time players, we need to have
a set of inputs that grow as a function of n. But game theorists typically study
individual games, which have a fixed size. To deal with this, we consider not
single games, but computational games [12], which have the form (G1, G2, . . .),
where for all n, Gn is a finite game. We assume that each player chooses a Tur-
ing machine (TM) that, given n, computes a strategy for the player in Gn. If
a player is polynomial-time bounded, then the player’s action in the nth game
can be computed in time polynomial in n.

Computational games arise in a number of settings of interest. One example
is “crypto-currencies” such as Bitcoin. An essential ingredient of Bitcoin [17]
is miners who solve challenging cryptographic problems, whose solution is later
used in verifying transactions in the system. Bitcoin keeps the average time at
which puzzles are solved a constant, despite technological advances, by making
the cryptographic problem needed to be solved harder and harder over time,
forcing miners to examine a larger number of possible solutions. This can be
modeled by viewing Bitcoin as a sequence of games, where in the nth game the
miner is required to solve a cryptographic puzzle Pn such that the number of
candidate solutions that need to be examined in order to solve Pn is a function
of n.

Cryptographic protocols such as commitment schemes [2] provide another
example of computational games. A commitment scheme consists of two parties;
a sender and a receiver. In the first step of this protocol, the sender chooses a
bit b and sends an encryption of b to the receiver, committing the sender to b
without revealing b to the receiver. Next, the receiver chooses a bit. Finally the
sender reveals the bit to the receiver. This protocol can be viewed as a game
where the receiver wins if the bit he chooses matches the bit revealed; the sender
wins if they do not match. Clearly, if the receiver can break the scheme and
deduce the sender’s bit, the receiver wins; if the sender can cheat (“reveal” a
bit that does not necessarily match what he committed to), the sender wins.
The encryption at the first step involves a security parameter k, where larger
security parameters provide more security (i.e., more running time is required
to break the scheme). This can be modeled as a sequence of games, where in the
kth game the sender encrypts the bit using a security parameter k [12]. Many
cryptographic protocols, including secret sharing and multiparty computation,
can be viewed as computational games in this way.

1 The celebrated PPAD-completeness results [3,5] indicate that finding a NE in a fixed
game is intractable. Our setting is very different from the setting that is considered
in these PPAD-hardness results. For more details see the discussion of related work
in the end of this section.
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Yet one more example of computational games arises in the study of GANs
generative advsersarial networks in machine learning; as argued by Oliehook
et al. [22], GANs can be viewed as computational games that end up converging
to a “local resource-bounded NE”.

The computational games that we consider are actually sequences of Bayesian
games, where the action of a player may depend on his type, which encodes
some private information that the player may have. In a computational game,
the action spaces and types spaces all have to be finite, and the utility functions
and probability distribution over types have to be computable. We focus here
on a subclass of computational games that we call polynomial games; these are
sequences of games where the action space and type space in the nth game
have size polynomial in n, and the utility function and probability distribution
over types in the nth game can be computed in time polynomial in n. These
restrictions all apply to the games that we are interested in, such as Bitcoin.2

An analogue of NE can be defined in computational games (G1, G2, . . .) [12].
We assume that every game Gj is a k-player game and that for 1 ≤ i ≤ k, player
i uses a TM Mi that computes his actions in Gj given j. Roughly speaking,
a machine profile (M1, . . . ,Mk) consisting of TMs is a NE if, for every player,
replacing his TM by a different TM gives him at most a negligible improvement
to his utility. We can get a notion of polynomial-time NE by replacing “TM”
with “polynomial-time TM” everywhere in the definition. (There are certain
subtleties in this definition; see Definition 5 and the discussion thereafter for
more detail.)

In contrast to fixed games, where NE always exists, we show that in com-
putational games, NE may not exist. Specifically, we show (Theorem 1) that,
assuming the existence of one-way functions, there are polynomial 2-player zero-
sum games for which no polynomial-time Nash equilibrium exists. This is done
by simulating the “largest integer game” in this setting, the game where players
simultaneously output an integer, and the player who chooses the largest integer
wins. Clearly this game has no Nash equilibrium [15]. We can effectively simulate
this game by presenting players with multiple one-way function puzzles, requir-
ing players to invert as many puzzles as possible. We can ensure that a player
with sufficiently more (but only polynomially more) running time can invert
more puzzles. Thus, we get an “arms race” with no equilibrium. This example
points to an inherent difficulty in analyzing games with polynomially-bounded
players. Namely, in such games, there is often no best response; players can use
longer and longer running times to improve their payoffs. Interestingly, a similar
phenomenon has been observed in Bitcoin, where miners use increasingly more
sophisticated computational devices for the mining operation (see [4] and the
reference therein).

2 The games used to model protocols such as Bitcoin are actually extensive-form
games, which are played over time. Our impossibility results show that there are
computational Bayesian games where there is no NE when we restrict to polynomial-
time players. Since Bayesian games are a special case of extensive-form games, our
non-existence results carry over to extensive-form games.
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We then demonstrate (Theorem 2) that Nash equilibrium may fail to exist
even if players are constrained to run for at most T steps for a fixed integer
T , without asymptotics kicking in. The idea is to let players first play a game
(matching pennies) that requires randomization to achieve equilibrium, and then
effectively give the player with greater remaining running time an additional
bonus. Assuming that the generation of a random bit requires computational
effort, this game cannot have a Nash equilibrium. Our impossibility results hold
even if we replace “Nash equilibrium” by “ε-Nash equilibrium”. By way of con-
trast, we show (Theorem 3) that if players are not computationally bounded
(i.e., can use arbitrary Turing machines), then there is always an ε-NE in a com-
putational game. The key idea behind Theorem 3 is that an algorithm similar
to that of Lipton and Markakis [14] for finding an ε-NE in a fixed game can be
used by the players to find ε-NE in computational games.

It is worthwhile at this point to examine our result in the context of the
literature on bounded rationality in game theory. Two high-level approaches to
incorporating complexity-theoretic considerations into game theory have been
considered:

– Rubinstein [24] did not limit the complexity, but charged for it.
– Neyman [20] limited the players (e.g., to being finite automata).

Halpern and Pass [10] extended Rubinstein’s approach to TMs: players
choose a TM, and then they are charged for the running time/space used/amount
of randomization used by the TM on a given input. The approach of charging for
complexity of Turing machines was also considered by Fortnow and Santhanam
[9], who discount the payoffs of players by the amount of time they use to com-
pute their response. The effect of charging players for the strategies they use on
the convergence of learning dynamics to Nash Equilibrium was considered by
Ben-Sasson, Tauman-Kalai, and Kalai [1].

In this work we follow the approach of Neyman [20]: we limit players to using
polynomial-time TMs, but don’t charge for computation. Thus, unlike Halpern
and Pass [10] and Fortnow and Santhanam [9], we limit computation, rather than
charging for it. Just as we do, Halpern and Pass [10] prove both the existence
and non-existence of NE, depending on assumptions. However, the reasons for
these results are very much framework-dependent. For example, Halpern and
Pass [10] show that NE may not exist if we charge players for randomness and
it does exist in their framework if we do not charge for randomness. By way
of contrast, our main result concerning the non-existence of NE (Theorem 1)
holds even if we do not charge for the time taken to generate a random bit.
Fortnow and Santhanam’s result on the existence of ε-NE in their version of
computational games [9] depends heavily on their assumption that utilities are
discounted; we have no analogue of this assumption, and thus must use quite
different techniques in our proof of the existence of ε-NE.

Despite all the work on resource-bounded players, to the best of our knowl-
edge, very little work has been done on games where players are limited to using
polynomial-time Turing Machines. One exception is the work of Megiddo and
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Wigderson [16], who consider playing repeated prisoner dilemma (for finitely
many rounds) with TMs. Their main interest is whether, in finitely repeated
prisoners dilemma, there exist “almost cooperative” equilibria (where “defect”
is played o(n) times). They restrict attention to deterministic TM. With this
restriction it is not difficult to give examples of games (with polynomially-
bounded players) for which an ε-NE does not exist.

Polynomial games bear some similarities to succinct games. In succinct
games, there exists a circuit C that calculates the utility C(x1, x2, . . . , xk) of
the players once they choose the actions x1, x2, . . . , xk ∈ {0, 1}m. It is known
that, given a 2-player zero-sum succinct game, it is EXP-hard to find a NE
[7,8] (see also [25]). Our results regarding the non-existence of NE in polynomial
games are incomparable to these results. We are concerned with polynomial-time
computable strategies. Considering polynomially-bounded players (as opposed to
unbounded players) may drastically change the set of Nash equilibria in succinct
games. Indeed, a NE for a computational game (G1, G2, . . .) with polynomially-
bounded players may fail to be a Nash equilibrium for Gn for all n ≥ 1: for an
example, see the end of Sect. 3. Moreover, for any fixed game G, a computational
NE for the computational game (G,G,G, . . .) can always be found in polynomial
time. Thus, the PPAD-hardness results of finding a Nash equilibrium in a fixed
game [3,5] cannot be applied in our setting either.

2 Preliminaries

We begin by defining Bayesian games.

Definition 1. A k-player normal-form Bayesian game is described by a tuple
(J,B, T, P, v), where

– J is a set of k players (we identify J with [k] = {1, . . . , k});
– B =

∏k
i=1 Bi, where Bi is a finite set for all i ∈ [k] consisting of the available

actions of player i;
– T =

∏k
i=1 Ti, where Ti is a finite set called the type space of player i;

– P is a probability distribution over T ;
– v = (v1, . . . , vk), where for all i, vi is a function from B × T to the real

numbers.

In our settings, it will often be the case that all types are perfectly correlated:
all players have the same type and all players know the type of every other player.
Observe that normal-form games can be viewed as a special case of Bayesian
games (where the type space is a singleton). Finally, since we are concerned here
mainly with Bayesian games, when we write “game” we mean “Bayesian game”,
unless explicitly stated otherwise.

A pure strategy si for player i is a map si : Ti → Bi; a strategy si maps the
type ti ∈ Ti of player i to an action si(ti) ∈ Bi. We denote by Δ(Bi) the set
of all probability distribution over Bi; let Δ = Πk

i=1Δ(Bi). A mixed-strategy
si for player i is a function mapping type ti ∈ Ti to an element of Δ(Bi). We
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denote by si(ti, bi) the probability assigned by a mixed strategy si(ti) to bi ∈ Bi.
The expected utility of player i with the mixed strategy profile s = (s1, . . . , sk)
(where t = (t1, . . . , tk) ∈ T , b = (b1, . . . , bk) ∈ B, and (s1(t1), . . . , sk(tk)) ∈ Δ)
is given by

Vi(s) =
∑

t∈T

P (t)
∑

b∈B

⎛

⎝
k∏

j=1

sj(tj , bj)

⎞

⎠ vi(t, b). (1)

Note that there are two sources of uncertainty in the utility of a player choosing
a mixed action: the probability distribution over other players actions and the
distribution P over the type space.

Definition 2. Let G = (J,B, T, P, v) be a k-player Bayesian game and suppose
that ε ≥ 0. A mixed-strategy profile s = (s1, . . . , sk) is an ε-Nash equilibrium
(ε-NE for short) if, for all players i and all mixed strategies s′

i, we have that

Vi(s) ≥ Vi(s′
i, s−i) − ε.

(As usual, if s = (s1, . . . , sk) then s−i = (s1, . . . , si−1, si+1, . . . , sk) is the tuple
excluding si.) When ε = 0, we have a Nash equilibrium.

To reason about resource-bounded players in games, we consider a sequence
(G1, G2, . . .) of games where, for all n, Gn = (J,Bn, Tn, Pn, vn) is a k-player
game (k is fixed and does not depend on n). We adapt the definition of [12],
which in turn is based on earlier definitions by Dodis, Halevi and Rabin [6] and
is applied to Bayesian games. For an integer s, recall that {0, 1}≤s is the set of
all bit strings of length at most s.

Definition 3. A computational game G = (G1, G2, . . .) is a sequence of normal-
form Bayesian games, where Gn = ([k], Bn, Tn, Pn, vn), such that

– The set of players in Gn, [k], is the same for all n.3
– For all n and all i, Bn

i ⊆ {0, 1}≤m for some finite m (that may depend on
n).

– For all n and all i, Tn
i ⊆ {0, 1}≤r for some finite r (that may depend on n).

– For all i ∈ [k] and n, there is a TM M such that, given b ∈ Bn, t ∈ Tn, and
1n, computes vn

i (b, t).
– For all i ∈ [k] and n, there is a TM M ′ such that given t ∈ Tn and 1n,

computes Pn(t).4

G is bounded if there exist constants 0 < c < C such that for all n, b ∈ Bn, and
t ∈ Tn we have that vn

i (b, t) �= 0 ⇒ |vn
i (b, t)| ∈ [c, C].

When dealing with games with polynomial-time players, we require slightly
stronger properties summarized in the definition below. Following the definition
of polynomial games for extensive- form games [12], we define polynomial games
for a sequence of Bayesian games.
3 It is also possible to allow k to depend on n, but we focus on the case where k is a

constant for concreteness.
4 We restrict our attention to utilities and probabilities that are rational numbers.
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Definition 4. A computational game G = (G1, G2, . . .) is a polynomial game if
the following conditions hold:

– There exist a polynomial p such that, for all n and all i, Bn
i = {0, 1}≤p(n).

– There exist a polynomial q such that, for all n and all i, Tn
i = {0, 1}≤q(n).

– For all i ∈ [k] and n, there is a TM M such that, given b = (b1, . . . , bk) ∈ Bn,
t ∈ Tn, and 1n, computes vn

i (b, t) and runs in time polynomial in n.
– For all i ∈ [k] and n, there is a TM M ′ such that given t ∈ Tn and 1n,

computes Pn(t) in time polynomial in n.

Throughout, we take the size of the action set (or type set) to be the maxi-
mal number of bits needed to encode an action (or type). Observe that while
we require that size in polynomial games is polynomial in n for every n, the
cardinality of the action or type set can be exponential.

A strategy for player j in a computational game G is a TM Mj that, given
1n and the type tj ∈ Tn

j , outputs a distribution Mj(1n, tj) over actions in Bn
j in

the game Gn (so that, given some additional random bits, it outputs an action
in Bn

j ).5 Mj(1n) is the strategy defined by taking Mj(1n)(tj) = Mj(1n, tj).
Observe that there are two sources of randomness in Mj(1n): the distribution of
the type tj and the randomness of Mj once tj has been determined. We stress
that randomized strategies in our setting are obtained by using probabilistic
TMs rather than by mixing over TMs. That is, the randomization is part of the
computation, not external to it. The utility of player i in Gn given a machine
profile (M1 . . . Mk) is V n

i (M1(1n), . . . ,Mk(1n)) (as defined in (1)).
To analyze computational games G = (G1, G2, . . .), we would like to be able

to apply classical game-theoretic notions, such as best response and Nash equi-
librium, to sequences of games. However, there are certain difficulties in gener-
alizing these notions to computational games. A first obstacle is that sequences
of infinite games may allow resource-bounded players to improve over any strat-
egy by doing additional polynomial-time computations. For example, consider
a player who gets a payoff of 1 by breaking an encrypted massage E(s) with
s ∈ {0, 1}n and a payoff of 0 if he does not break it, where the player’s running
time is polynomial in n. Assuming that there is no polynomial-time algorithm
(in n) for finding s given E(s), there is no best response in this game, as a
player can always make polynomially many additional “guesses” on top of his
current action, increasing his expected utility. As pointed out by Dodis, Halevi,
and Rabin [6], this observation applies to many problems of interest, such as
those arising from cryptographic protocols.

One way around this problem, suggested by Dodis, Haley and Rabin [6] and
Halpern, Pass, and Seeman [12], is to ignore negligible additive changes in the

5 One question is how to deal with players who use Turing machines that fail to halt
or return an action that does not belong to the action space. We deal with this issue
by assigning to each player i a special action ai

0 that we take to be the action played
if i’s TM does not halt or if i’s output is not an action in the action space. Any
profile that includes ai

0 gives utility −∞ to all players, thus discouraging players
from using TMs that fail to halt or return inappropriate actions.
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utility of players, where a sequence δ(n) is negligible if for every polynomial
p, p(n) = o(δ(n)−1). That is, deviations that result in a negligible increase in
utility are not considered to be improvements. Ignoring negligible terms suffices
to ensure the existence of equilibrium in a number of games of interest for which
there would not be an equilibrium otherwise [6].

If we ignore negligible change, then given a machine profile M , changing the
behavior of a TM M in finitely many games will not be a deviation breaking
an alleged equilibrium, as altering a sequence δ(n) on finitely many n’s does
not change the fact that δ(n) is negligible. On the other hand, a deviation that
improves a given player utility on infinitely many n’s by a constant δ > 0 implies
that the machine profile is not a NE. Finally, it is worth noting that if the utilities
of players are exponentially small (say, on the order of 1/2n in the game Gn),
a negligible additive term can have a noticeable effect on the utility of players;
on the other hand, if utilities are exponentially large, even a (non-negligible)
constant change in utilities would be viewed as negligible. In order to avoid such
scaling issues, we deal exclusively with bounded games when considering solution
concepts for computational games.6

Definition 5. Let M be a set of TMs and let ε ≥ 0 be a constant independent
of n. A profile M = (M1, . . . ,Mk) of TMs is an ε-M-NE for a bounded com-
putational game G with respect to M, if (a) for all i, Mi ∈ M, and (b) there
exists a negligible sequence δ(n) such that, for all M ′

i ∈ M and all n > 0 and all
i ∈ [k] we have that

Vi(Mi(1n),M−i(1n)) ≥ Vi(M ′
i(1

n),M−i(1n)) − ε − δ(n). (2)

When ε = 0, we say that M is a M-Nash equilibrium. If M is the set of all
probabilistic polynomial-time TMs, we say M is a polynomial ε-NE.

We can consider polynomial-time players, best response, and equilibrium even
if the action space of every player is of super-polynomial size. However, in this
case, there are trivial examples showing that a NE may not exist. For example,
one can take Gn to be the 2-player zero-sum game where each player outputs an
integer of length at most 22

n

(written in binary) and the player outputting the
larger integer receives payoff 1, with both players getting 0 in case of equality.
Clearly this sequence of games does not have a polynomial equilibrium.

In contrast to previous work [9], we require the utilities of players to be
computable. Without this requirement, it is not difficult to give examples of
polynomial games that do not have a NE. Indeed, let x1, x2 . . . be an enumeration
of {0, 1}∗ and let L be an arbitrary non-recursive language. Furthermore, suppose
that for all i, j, i < j implies that |xi| ≤ |xj | (ensuring that for every n the
type xn can be represented by at most poly(n) bits). Consider the sequence
G = (G1, G2, . . .) of two-player games such that the type of each player in Gn is
xn and a player gets a payoff of 1 if it correctly determines whether xn belongs
to L and 0 otherwise. Clearly, G does not have a polynomial-time NE (and the
utility function in G is not computable).
6 Our results also hold in a more general setting where the absolute value of a (nonzero)

utility is at most polynomial and at least inversely polynomial in n.
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3 Polynomial Games with No Polynomial Equilibrium

As we now show, there is a polynomial game for which there is no polynomial
NE, assuming one-way functions exist. We find it convenient to use the definition
of one-way function given in [13].

Definition 6. Given s : IN → IN , t : IN → IN , a one-way function with security
parameter s against a t-bounded inverter is a family of functions fk : {0, 1}k →
{0, 1}m, k = 1, 2, 3, . . ., satisfying the following properties:

– m = kb for some positive constant b;
– there is a TM M such that, given x with |x| = k computes fk(x) in time

polynomial in k;
– for all but finitely many k’s and all probabilistic TM M ′, running in time at

most t(k) for a given input fk(x),

Pr[fk(M ′(fk(x))) = fk(x)] <
1

s(k)
,

where the probability Pr is taken over x sampled uniformly from {0, 1}k and
the randomness of M ′.

We assume that exponential one-way functions exist. Specifically, we assume
that there exists a one-way function that is 2k/10-secure against a 2k/30-bounded
inverter. The existence of a one-way function with these parameters follows from
an assumption made by Wee [27] regarding the existence of exponential non-
uniform one-way functions. Given fk(x), we say an algorithm inverts fk(x) if it
finds some z such that fk(x) = fk(z).

We can now demonstrate the non-existence of polynomial-time computable
equilibrium in a polynomial game.

Theorem 1. If there exists a one-way function that is 2k/10-secure against a
2k/30-inverter, then, for all ε > 0, there exists a 2-player zero-sum polynomial
game G that has no polynomial ε-NE.

Proof. Let G = (G1, G2, . . .) be the following polynomial game, which we call
the one-way function game. For all n, we define Gn as follows. There are two
players, 1 and 2. Fix a one-way function {fk}k≥1 that is 2k/10-secure against a
2k/30-bounded inverter. The type space is the same for each player, and consists
of tuples of l = 	log n
 bitstrings of the form (f�log n	(x1), . . . , f�log n	2(xl)). The
distribution on types is generated by choosing xi ∈ {0, 1}i�log n	 uniformly at
random, and choosing the xi’s independently. Given his type tn, player j outputs
yj
1, . . . , y

j
l . A hit for player j is an index i such that fi�logn	(y

j
i ) = fi�logn	(xi). Let

aj denote how many hits player j gets. The payoff of player j is 1 if aj−a3−j > 0.
If aj − a3−j = 0, both players receive a payoff of 0. Observe that the utility
function of each player is polynomial-time computable in n. Clearly the length
of every action of Gn is polynomial in n and so is the length of the type tn.
Hence the one-way function game is a polynomial game. In the full paper [11],
we prove that there cannot be a polynomial-time ε-NE for G.
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Similar ideas can be applied to show there is a 2-player extensive-form poly-
nomial game that has no polynomial ε-NE, where we no longer need to use a
type space. (See [12] for the definition of extensive-form polynomial game and
polynomial ε-NE in extensive-form polynomial games; we hope that our discus-
sion suffices to give the reader an intuitive sense.) In the game Gn, instead of
the tuple (f�logn	(x

j
1), . . . , fl�log n	(x

j
l )) being player j’s type, player j chooses

xj
1, . . . , x

j
l at random and sends this tuple to player 3−j. Again, player j attempts

to invert as many of f�logn	(x
3−j
1 ), . . . , fl�log n	(x

3−j
l ) as it can; their payoffs are

just as in the Bayesian game above. A proof similar to that of Theorem 1 shows
that this game does not have a polynomial NE.

The one-way function game also shows the effect of restricting strategies to
be polynomial-time computable. Clearly, without this restriction, the game has a
trivial NE: all players correctly invert every element of their tuple. On the other
hand, consider a modification of the game where in Gn, a player’s type consists
of a single element fn(xn), with xn a bitstring of length n chosen uniformly at
random. If both players simultaneously invert or fail to invert fn(xn), then both
get zero. Otherwise, the player who correctly inverts gets 1 and the other player
gets −1. Again, it is easy to see that if we take M to be the family of all TMs,
the only Nash equilibrium is to find yn, zn such that fn(yn) = fn(zn) = f(xn).
But if M consists of only polynomial-time TMs, then it is a polynomial-time NE
for both players to simply output a random string, as neither player can invert
f with non-negligible probability, and we ignore negligible additive increase to
the utilities of players.

4 Equilibrium with Respect to Concrete Time Bounds

The previous example may lead one to speculate that lack of Nash equilibrium in
computational games hinges on asymptotic issues, namely, our ability to consider
larger and larger action and type spaces. This raises the question of what happens
if we restrict our attention to games where players are constrained to execute at
most T computational steps, where T > 0 is a fixed integer. It turns out that
if the use of randomness is counted as a computational action, then there may
not be Nash equilibria, as the following example shows. We assume from now on
that T > 2.

In our computational game, the family of admissible TMs, which we denote
by MT , is the set of all probabilistic TMs whose running time is upper-bounded
by T . The operation of printing a character takes one computational step, and
so does the movement of the cursor to a different location on the tape. The
generation of a random bit (or alternatively querying a bit in a designated tape
that contains random bits) requires at least one computational step (we allow
arbitrary bias of a bit, as it does not affect the proof).

Consider the following 2-player zero-sum normal-form computational game F
between Alice (A) and Bob (B). For every n, Fn is the same game F . The action
space of each player is {0, 1}T . By our choice of MT , both players are constrained
to perform at most T computational steps. The game proceeds as follows. A
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and B use TMs MA,MB ∈ MT respectively, to compute their strategies. MA

outputs a single bit a1. MB outputs b1 ∈ {0, 1}. Based on a1 and b1, a game of
matching pennies is played. Namely, if a1 = b1, A gets 1, otherwise B gets 1. In
the second phase of the game, the TM of each player prints as many characters
as possible without violating the constraint of performing at most T steps. If
the final number of characters is the same for both players, then both get a
payoff of 0 for the second phase. Otherwise the player with a larger number
of printed characters gets an additional bonus of 1, and the player with fewer
printed characters incurs a loss of 1.

Theorem 2. The computational game F does not have an ε-MT -NE, for all
ε < 1.

Proof. Assume, by way of contradiction, that (MA,MB) is a Nash equilibrium
for F . Since TMs in MT are constrained to query at most T bits, it follows that
the strategy computed by MA (or MB) given 1n, will be the same for all n > T .
As the outcomes of the games Fm, m ≤ T , do not effect, by our definition of NE
in computational games, whether (MA,MB) is an equilibrium, we can assume
w.l.o.g that both MA and MB compute the same strategy (whether mixed or
pure) in all games Fn, n ≥ 1.

Suppose that one of the players uses randomization. Assume this is player A.
Namely, MA generates a random bit before outputting a1. Then A can guarantee
a payoff for the first phase (the matching pennies game) that is no smaller than
his current payoff by choosing a TM M ′

A that outputs a deterministic best
response a1 against the strategy of B in the matching penny game. Observe
that we can assume that a1 is “hardwired” to M ′

A. In particular outputting a1

can be done in a single computational step. Then A can print strictly more 1’s
in the second phase of the game by configuring M ′

A to print T − 1 1’s (which
can be done in T − 1 steps). If B prints T − 1 in the second phase of the game,
we have that A can increase its payoff in Fn for all n by switching to M ′

A. If,
on the other hand, MB prints less than T − 1 characters in the second step, an
analogous argument shows that B can strictly increase its payoff in Fn for all n,
by using a TM that runs in at most T steps. In any event, we get a contradiction
to the assumption that (MA,MB) is a NE.

Suppose now that A does not use randomization. In this case, it follows
immediately by the definition of matching-pennies that either A or B can strictly
improve their payoff in the first phase of Fn for all n, by outputting the (deter-
ministic) best response to their opponent and printing T − 1 characters after-
wards. As before, we can assume this response is hardwired to the appropriate
TM, such that outputting it consumes one computational step, allowing players
to print T − 1 characters in the second phase of the game.

Finally, it is not difficult to verify that the argument above establishes that
F does not have an ε-NE for ε-NE for all ε ∈ (0, 1). This concludes the proof.

One might wonder whether the non-existence of NE in computational games
follows from the fact that we are dealing with an infinite sequence of games with
infinitely many possible TMs (e.g., |M| = ∞). Nash Theorem regarding the
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existence of NE requires that the action space of every player is finite; without
this requirement a NE may fail to exist. Hence it is natural to ask whether
limiting |M| to be finite (for example, taking M to be the family of all TMs
over a fixed alphabet with at most S states for some bound S) may force the
existence of NE in computational games. Theorem 2 illustrates that this is not
the case: F will not have a NE even if we take M to consist only of TMs
whose number of states is upper bounded by a large enough positive number S
(S should allow for using the TM that is hardwired to output the appropriate
best response in the matching pennies game and print T − 1 characters in the
second phase). The reason why NE does not exist despite the finiteness of M,
is that in contrast to ordinary games, where a mixed actions of best responses
is a best response, in our setting this is not necessarily true: mixing over actions
may consume computational resources, forcing players to choose actions that are
suboptimal when using randomized strategies.

5 The Existence of ε-NE in Computational Games

Our previous results show that if we restrict players to be computationally
bounded, then there are polynomial games with no ε-NE. Here we demonstrate
that the restriction to computationally bounded players is critical. If we allow
players to choose arbitrary TMs (or TMs that are guaranteed to halt on every
input), we show that for all ε > 0, there is an ε-NE in every computational game
(and thus, a fortiori, in every polynomial game). The reason that we need ε-NE
rather than NE (although ε can be arbitrarily small) is that there are 3-player
games in which, in every NE, some actions are chosen with irrational probabili-
ties (even if all utilities are rational and nature’s moves are made with rational
probabilities) [18]. By considering ε-NE, we can avoid representational issues
involving irrational numbers.

Let ε > 0 be a fixed constant. Suppose that G = (G1, G2, . . .) is a computa-
tional game. Let M be any set of TMs that includes all TMs that are guaranteed
to halt on every input (thus, M could consist of all TMs). At a high level, the
argument for the existence of ε-NE is a straightforward application of ideas of
Lipton and Markakis [14]. As they observe, given a game G, we can represent the
conditions required for a strategy to be a NE using a single algebraic equation (in
several variables), where a NE must be a root of the equation. We can compute
a strategy profile that is arbitrarily close to a root of this algebraic equation; it
can be shown that a strategy vector that is sufficiently close to a root is an ε-NE.
We can now obtain an ε-NE for the computational game G = (G1, G2, . . .) as
follows: Given ε, the nth game Gn, and type t ∈ Ti, player i computes a profile
(sn1 , sn2 . . . snk ) of distributions over actions that is an ε-NE of Gn (conditional on
t) and plays according to sni (t). (If there are several ε-NEs, one is chosen in a
consistent way, so that all players are playing a component of the same profile.)
Using these ideas we can prove the following result, whose proof can be found
in the full paper [11].
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Theorem 3. If G = (G1, G2 . . .) is a computational game, ε > 0, and M
includes all TMs that halt on all inputs, then G has an ε-M-NE.

6 Conclusion

We have considered computational games, where TMs compute strategies of
players. We showed that a NE for polynomial-time players may not exist. This
suggests that classic notions in game theory, such as best response, must be
treated carefully when considering computational games with resource-bounded
players.

As we showed, for unbounded players, an ε-NE always exists in a compu-
tational game. Even for bounded players, there may exist circumstances under
which an ε-NE exists. For example, it may be that there exists an equilibrium
if we bound the number of states in TMs used by players. Studying properties
of games or TMs used by players that ensure the existence of (ε)-NE in com-
putational games is an interesting direction for future research. It might also
prove worthwhile to study the effect of limiting resources other than time, such
as space or the amount of randomness used by players. Finally, our paper also
leaves open the question as to whether there exists a NE in our model when we
restrict players to TM whose running time is at most nr for a fixed integer r.
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Abstract. We study the computational complexity of decision problems
about Nash equilibria in m-player games. Several such problems have
recently been shown to be computationally equivalent to the decision
problem for the existential theory of the reals, or stated in terms of
complexity classes, ∃R-complete, when m ≥ 3. We show that, unless
they turn into trivial problems, they are ∃R-hard even for 3-player zero-
sum games.

We also obtain new results about several other decision problems.
We show that when m ≥ 3 the problems of deciding if a game has
a Pareto optimal Nash equilibrium or deciding if a game has a strong
Nash equilibrium are ∃R-complete. The latter result rectifies a previous
claim of NP-completeness in the literature. We show that deciding if a
game has an irrational valued Nash equilibrium is ∃R-hard, answering a
question of Biló and Mavronicolas, and address also the computational
complexity of deciding if a game has a rational valued Nash equilibrium.
These results also hold for 3-player zero-sum games.

Our proof methodology applies to corresponding decision problems
about symmetric Nash equilibria in symmetric games as well, and in
particular our new results carry over to the symmetric setting. Finally
we show that deciding whether a symmetric m-player games has a non-
symmetric Nash equilibrium is ∃R-complete when m ≥ 3, answering a
question of Garg, Mehta, Vazirani, and Yazdanbod.

1 Introduction

Given a finite strategic form m-player game the most basic algorithmic problem
is to compute a Nash equilibrium, shown always to exist by Nash [20]. The
computational complexity of this problem was characterized in seminal work by
Daskalakis, Goldberg, and Papadimitriou [12] and Chen and Deng [10] as PPAD-
complete for 2-player games and by Etessami and Yannakakis [13] as FIXP-
complete for m-player games, when m ≥ 3. Any 2-player game may be viewed
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as a 3-player zero-sum game by adding a dummy player, thereby making the
class of 3-player zero-sum games a natural class of games intermediate between
2-player and 3-player games. The problem of computing a Nash equilibrium for
a 3-player zero-sum game is clearly PPAD-hard and belongs to FIXP, but its
precise complexity appears to be unknown.

Rather than settling for any Nash equilibrium, one might be interested in a
Nash equilibrium that satisfies a given property, e.g. giving each player at least
a certain payoff. Such a Nash equilibrium might of course not exist and therefore
results in the basic computational problem of deciding existence. In the setting
of 2-player games, the computational complexity of several such problems was
proved to be NP-complete by Gilboa and Zemel [16]. Conitzer and Sandholm [11]
revisited these problems and showed them, together with additional problems,
to be NP-complete even for symmetric games.

Only recently was the computational complexity of analogous problems in m-
player games determined, for m ≥ 3. Schaefer and Štefankovič [22] obtained the
first such result by proving ∃R-completeness of deciding existence of a Nash equi-
librium in which no action is played with probability larger than 1

2 by any player.
Garg,Mehta,Vazirani, andYazdanbod [14] used this to also show∃R-completeness
for deciding if a game has more than one Nash equilibrium, whether each player can
ensure a given payoff in a Nash equilibrium, and for the two problems of deciding
whether the support sets of the mixed strategies of a Nash equilibrium can belong
to given sets or contain given sets. In addition, by a symmetrization construction,
they show that the analogue to the latter two problems for symmetric Nash equi-
libria are ∃R-complete as well. Biló and Mavronicolas [4,5] subsequently extended
the results of Garg et al. to further problems both about Nash equilibria and about
symmetric Nash equilibria. They show ∃R-completeness of deciding existence of a
Nash equilibrium where all players receive at most a given payoff, where the total
payoff of the players is at least or at most a given amount, whether the size of the
supports of the mixed strategies all have a certain minimum or maximum size, and
finally whether a Nash equilibrium exists that is not Pareto optimal or that is not a
strong Nash equilibrium. All the analogous problems about symmetric Nash equi-
libria are shown to be ∃R-complete as well.

1.1 Our Results

We revisit the problems about existence of Nash equilibria in m-player games,
with m ≥ 3, considered by Garg et al. and Biló and Mavronicolas. In a zero-sum
game the total payoff of the players in any Nash equilibrium is of course 0, and
any Nash equilibrium is Pareto optimal. This renders the corresponding decision
problems trivial in the case of zero-sum games. We show that except for these,
all the problems considered by Garg et al. and Biló and Mavronicolas remain
∃R-hard for 3-player zero-sum games. We obtain our results building on a recent
more direct and simple proof of ∃R-hardness of the initial ∃R-complete problem
of Schaefer and Štefankovič due to Hansen [17]. We can also give comparably
simpler proofs of ∃R-hardness for the problems about total payoff and existence
of a non Pareto optimal Nash equilibrium.
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We next show that deciding existence of a strong Nash equilibrium in an
m-player game with m ≥ 3 is ∃R-complete, and likewise for the similar problem
of deciding existence of a Pareto optimal Nash equilibrium. Gatti, Rocco, and
Sandholm [15] proved earlier that deciding if a given (rational valued) strategy
profile x is a strong Nash equilibrium can be done in polynomial time. They
then erroneously concluded that the problem of deciding existence of a strong
Nash equilibrium is, as a consequence NP-complete. A problem with this rea-
soning is that if a strong Nash equilibrium exists, there is no guarantee that a
rational valued strong Nash equilibrium exists. Even if one disregards a concern
about irrational valued strong Nash equilibria, it is possible that even when a
rational valued strong Nash equilibrium exists, any rational valued strong Nash
equilibrium would require exponentially many bits to describe in the standard
binary encoding of the numerators and denominators of the probabilities of the
equilibrium strategy profile. Nevertheless, our proof of ∃R-membership builds
on the idea behind the polynomial time algorithm of Gatti et al.

In another work, Biló and Mavronicolas [3] considered the problems of decid-
ing whether an irrational valued Nash equilibrium exists and whether a rational
valued Nash equilibrium exists, proving both problems to be NP-hard. Biló and
Mavronicolas asked if the problem about existence of irrational valued Nash
equilibria is hard for the so-called square-root-sum problem. We confirm this,
showing the problem to be ∃R-hard. We relate the problem about existence of
rational valued Nash equilibria to the existential theory of the rationals.

We next use a symmetrization construction similar to Garg et al. to translate
all problems considered to the analogous setting of decision problems about
symmetric Nash equilibria. Here we do not obtain qualitative improvements
on existing results. A final problem we consider is of deciding existence of a
nonsymmetric Nash equilibrium in a given symmetric game. Mehta, Vazirani,
and Yazdanbod [19] proved that this problem is NP-complete for 2-player games,
and Garg et al. [14] raised the question of the complexity for m-player games
with m ≥ 3. We show this problem to be ∃R-complete.

Our results about irrational valued and rational valued Nash equilibrium, all
results about symmetric games, as well as several other proofs are omitted in
this version of the paper due to lack of space.

2 Preliminaries

2.1 Existential Theory of the Reals and Rationals

The existential theory Th∃(R) of the reals is the set of all true sentences over R

of the form ∃x1, . . . , xn ∈ R : φ(x1, . . . , xn), where φ is a quantifier free Boolean
formula of equalities and inequalities of polynomials with integer coefficients. The
complexity class ∃R is defined [22] as the closure of Th∃(R) under polynomial
time many-one reductions. Equivalently, ∃R is the constant-free Boolean part of
the class NPR [7], which is the analogue class to NP in the Blum-Shub-Smale
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model of computation [6]. It is straightforward to see that Th∃(R) is NP-hard
(cf. [8]) and the decision procedure by Canny [9] shows that Th∃(R) belongs to
PSPACE. Thus it follows that NP ⊆ ∃R ⊆ PSPACE.

The basic complete problem for ∃R is the problem Quad of deciding whether
a system of quadratic equations with integer coefficients has a solution over R [6].

2.2 Strategic Form Games and Nash Equilibrium

A finite strategic form game G with m players is given by sets S1, . . . , Sm of
actions (pure strategies) together with utility functions u1, . . . , um : S1 × · · · ×
Sm → R. A choice of an action ai ∈ Si for each player together form a pure
strategy profile a = (a1, . . . , am).

The game G is symmetric if S1 = · · · = Sm and for every permutation π
on [m], every i ∈ [m] and every (a1, . . . , am) ∈ S1 × · · · × Sm it holds that
ui(a1, . . . , am) = uπ(i)(aπ(1), . . . , aπ(m)). In other words, a game is symmetric
if the players share the same set of actions and the utility function of a player
depends only on the action of the player together with the multiset of actions of
the other players.

Let Δ(Si) denote the set of probability distributions on Si. A (mixed) strat-
egy for Player i is an element xi ∈ Δ(Si). The support Supp(xi) is the set of
actions given strictly positive probability by xi. We say that xi is fully mixed if
Supp(xi) = Si. A strategy xi for each player i together form a strategy profile
x = (x1, . . . , xm). The utility functions naturally extend to strategy profiles by
letting ui(x) = Ea∼x ui(a1, . . . , am). We shall also refer to ui(x) as the payoff of
Player i.

Given a strategy profile x we let x−i = (x1, . . . , xi−1, xi+1, . . . , xm) denote
the strategies of all players except Player i. Given a strategy y ∈ Si for Player i,
we let (x−i; y) denote the strategy profile (x1, . . . , xi−1, y, xi+1, . . . , xm) formed
by x−i and y. We may also denote (x−i; y) by x \ y. We say that y is a best reply
for Player i to x (or to x−i) if ui(x \ y) ≥ ui(x \ y′) for all y′ ∈ Δ(Si).

A Nash equilibrium (NE) is a strategy profile x where each individual strategy
xi is a best reply to x. As shown by Nash [20], every finite strategic form game G
has a Nash equilibrium. In a symmetric game G, a symmetric Nash equilibrium
(SNE) is a Nash equilibrium where the strategies of all players are identical. Nash
also proved that every symmetric game has a symmetric Nash equilibrium.

A strategy profile x is Pareto optimal if there is no strategy profile x′ such
that ui(x) ≤ ui(x′) for all i, and uj(x) < uj(x′) for some j. A Nash equilib-
rium strategy profile need not be Pareto optimal and a Pareto optimal strategy
profile need not be a Nash equilibrium. A strategy profile that is both a Nash
equilibrium and is Pareto optimal is called a Pareto optimal Nash equilibrium.
The existence of a Pareto optimal Nash equilibrium is not guaranteed.

A strong Nash equilibrium [1] (strong NE) is a strategy profile x for which
there is no non-empty set B ⊆ [m] for which all players i ∈ B can increase their
payoff by different strategies assuming players j ∈ [m] \ B play according to x.
Equivalently, x is a strong Nash equilibrium if for every strategy profile x′ �= x
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there exist i such that xi �= x′
i and ui(x′) ≤ ui(x). The existence of a strong

Nash equilibrium is not guaranteed.

3 Decision Problems About Nash Equilibria

Below we define the decision problems under consideration with names generally
following Biló and Mavronicolas [4]. The given input is a finite strategic form
game G, together with auxiliary input depending on the particular problem. We
let u denote a rational number, k an integer, and Ti ⊆ Si a set of actions of
Player i, for every i. We describe the decision problem by stating the property
a Nash equilibrium x whose existence is to be determined should satisfy. The
problems are grouped together in four groups which we cover separately.

Problem Condition

∃NEWithLargePayoffs ui(x) ≥ u for all i

∃NEWithSmallPayoffs ui(x) ≤ u for all i

∃NEWithLargeTotalPayoff
∑

i ui(x) ≥ u

∃NEWithSmallTotalPayoff
∑

i ui(x) ≤ u

∃NEInABall xi(ai) ≤ u for all i and ai ∈ Si

∃SecondNE x is not the only NE

∃NEWithLargeSupports |Supp(xi)| ≥ k for all i

∃NEWithSmallSupports |Supp(xi)| ≤ k for all i

∃NEWithRestrictingSupports Ti ⊆ Supp(xi) for all i

∃NEWithRestrictedSupports Supp(xi) ⊆ Ti for all i

∃NonParetoOptimalNE x is not Pareto optimal

∃NonStrongNE x is not a strong NE

∃ParetoOptimalNE x is Pareto optimal

∃StrongNE x is a strong NE

∃IrrationalNE xi(ai) �∈ Q for some i and ai ∈ Si

∃RationalNE xi(ai) ∈ Q for all i and ai ∈ Si

Except for the last four problems above, it is straightforward to prove mem-
bership in ∃R by an explicit existentially quantified first-order formula. We prove
∃R membership of ∃ParetoOptimalNE and ∃StrongNE in Subsect. 3.3.

A key step (implicitly present) in the proof of the first ∃R-hardness result
about Nash equilibrium in 3-player games by Schaefer and Štefankovič is a result
due to Schaefer [21] that Quad remains ∃R-hard under the promise that either
the given quadratic system has no solutions or a solution exists in the unit ball
B(0, 1). For our purposes the following variation [17, Proposition 2] will be more
directly applicable (and may easily be proved from the former). Here we denote
by Δn

c the standard corner n-simplex {x ∈ R
n | x ≥ 0 ∧ ∑n

i=1 xi ≤ 1}.
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Proposition 1. It is ∃R-hard to decide if a given system of quadratic equations
in n variables and with integer coefficients has a solution under the promise that
either the system has no solutions or a solution z exists that is in the interior
of Δn

c and also satisfies zi ≤ 1
2 for all i and that

∑n
i=1 zi ≥ 1

2 .

Schaefer and Štefankovič showed that ∃NEInABall is ∃R-hard for 3-player
games by first proving that the following problem is ∃R-hard: Given a contin-
uous function f : B(0, 1) → B(0, 1) mapping the unit ball to itself, where each
coordinate function fi is given as a polynomial, and given a rational number r,
is there a fixed point of f in the ball B(0, r)? The proof was then concluded
by a transformation of Brouwer functions into 3-player games by Etessami and
Yannakakis [13]. This latter reduction is rather involved and goes though an
intermediate construction of 10-player games. More recently, Hansen [17] gave
a simple and direct reduction from the above promise version of Quad to
∃NEInABall.

The first step of this as well as our reductions is to transform the given
quadratic system over the corner simplex Δn

c into a homogeneous bilinear system
over the standard n-simplex {x ∈ R

n+1 | x ≥ 0∧∑n+1
i=1 xi = 1} which we denote

by Δn. We can obtain the following statement (cf. [17, Proposition 3]).

Proposition 2. It is ∃R-complete to decide if a system of homogeneous bilinear
equations qk(x, y) = 0, k = 1, . . . , � with integer coefficients has a solution x, y ∈
Δn. It remains ∃R-hard under the promise that either the system has no such
solution or a solution (x, x) exists where x belongs to the relative interior of Δn

and further satisfies xi ≤ 1
2 for all i.

3.1 Payoff Restricted Nash Equilibria

For proving the ∃R-hardness results we start by showing that it is ∃R-hard to
decide if a given zero-sum game has a Nash equilibrium in which each player
receives payoff 0. This is in contrast to the earlier work of Garg et al. [14] and
Biló and Mavronicolas [4,5] that reduce from the ∃NEInABall problem. On
the other hand we do show ∃R-hardness even under the promise that the Nash
equilibrium also satisfies the condition of ∃NEInABall. The construction and
proof below are modification of proofs by Hansen [17, Theorem 1 and Theorem 2].

Definition 3 (The 3-player zero-sum game G0). Let S be a system of
homogeneous bilinear polynomials q1(x, y), . . . , q�(x, y) with integer coefficients
in variables x = (x1, . . . , xn+1) and y = (y1, . . . , yn+1),

qk(x, y) =
n+1∑

i=1

n+1∑

j=1

a
(k)
ij xiyj .

We define the 3-player game G0(S) as follows. The strategy set of Player 1
is the set S1 = {1,−1}×{1, 2, . . . , �}. The strategy sets of Player 2 and Player 3
are S2 = S3 = {1, 2, . . . , n+1}. The (integer) utility functions of the players are
defined by 1

2u1((s, k), i, j) = −u2((s, k), i, j) = −u3((s, k), i, j) = sa
(k)
ij .
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When the system S is understood by the context, we simply write G0 = G0(S).
We think of the strategy (s, k) of Player 1 as corresponding to the polynomial
qk together with a sign s, the strategy i of Player 2 as corresponding to xi and
the strategy j of Player 3 as corresponding to yj . We may thus identify mixed
strategies of Player 2 and Player 3 as assignments to variables x, y ∈ Δn ⊆ R

n+1.
The following observation is immediate from the definition of G0.

Lemma 4. Any strategy profile (x, y) of Player 2 and Player 3 satisfies for every
(s, k) ∈ S1 the equation

1
2u1((s, k), x, y) = −u2((s, k), x, y) = −u3((s, k), x, y) = sqk(x, y). (1)

Hence u1(z, x, y) = u2(z, x, y) = u3(z, x, y) = 0 when z is the uniform distribu-
tion on S1. Consequentially, any Nash equilibrium payoff profile is of the form
(2u,−u,−u), where u ≥ 0.

Next we relate solutions of the system S to Nash equilibria in G0.

Proposition 5. Let S be a system of homogeneous bilinear polynomials qk(x, y).
If S has a solution (x, y) ∈ Δn × Δn, then letting z be the uniform distri-
bution on S1, the strategy profile σ = (z, x, y) is a Nash equilibrium of G0 in
which every player receives payoff 0. If in addition (x, y) satisfies the promise of
Proposition 2, then σ is fully mixed, Player 2 and Player 3 use identical strate-
gies, and no action is chosen with probability more than 1

2 by any player. Con-
versely, if (z, x, y) is a Nash equilibrium of G0 in which every player receives
payoff 0, then (x, y) is a solution to S.

Proof. Suppose first that (x, y) ∈ Δn × Δn is a solution to S and let z be the
uniform distribution on S1. By Eq. (1) the strategy profile (x, y) of Player 2 and
Player 3 ensures that all players receive payoff 0 regardless of which strategy
is played by Player 1, and likewise the strategy z of Player 1 ensures that all
players receive payoff 0 regardless of the strategies of Player 2 and Player 3. This
shows that σ is a Nash equilibrium of G0, in which by Lemma 4 every player
receives payoff 0. If (x, y) in addition satisfies the promise of Proposition 2 we
have 0 < xi = yi ≤ 1

2 . From this and our choice of z, we have that σ is a fully
mixed and that no action is chosen by a strategy of σ with probability more
than 1

2 .
Suppose on the other hand that σ = (z, x, y) is a Nash equilibrium of G0

with payoff 0 for every player and suppose that qk(x, y) �= 0 for some k. Then
by Eq. (1) we get that u1((sgn(qk(x, y)), k), x, y) = |2qk(x, y)| > 0, contradicting
that σ is a Nash equilibrium. Thus (x, y) is a solution to S.

Theorem 6. ∃NEWithLargePayoffs and ∃NEWithSmallPayoffs are
∃R-complete, even for 3-player zero-sum games.

Proof. For a strategy profile x in a zero-sum game G we have that ui(x) = 0, for
all i, if and only if ui(x) ≥ 0, for all i, if and only if ui(x) ≤ 0, for all i. Thus
Proposition 5 gives a reduction from the promise problem of Proposition 2,
thereby establishing ∃R-hardness of the problems ∃NEWithLargePayoffs
and ∃NEWithSmallPayoffs.
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A simple change to the game G0 gives ∃R-hardness for the two problems
∃NEWithLargeTotalPayoff and ∃NEWithSmallTotalPayoff. Natu-
rally we must give up the zero-sum property of the game. We omit the proof.

Theorem 7 (Biló and Mavronicolas [4]). ∃NEWithLargeTotalPayoff
and ∃NEWithSmallTotalPayoff are ∃R-complete, even for 3-player games.

3.2 Probability Restricted Nash Equilibria

A key property of the game G0 is that Player 1 may ensure all players receive
payoff 0. We now give all players this choice by playing a new additional action ⊥.
We then design the utility functions involving ⊥ in such a way that the pure
strategy profile (⊥,⊥,⊥) is always a Nash equilibrium, and every other Nash
equilibrium is a Nash equilibrium in G0 in which all players receive payoff 0.

Definition 8. For u ≥ 0, let H1 = H1(u) be the 3-player zero-sum game where
each player has the action set {G,⊥} and the payoff vectors are given by the
entries of the following two matrices, where Player 1 selects the matrix, Player 2
selects the row, Player 3 selects the column.

G ⊥
G (2u,−u,−u) ( 1,−1, 0)
⊥ ( 1, 0, −1) (−4, 2, 2)

G

G ⊥
G (0, 0, 0) ( 2,−3, 1)
⊥ (2, 1,−3) (−2, 1, 1)

⊥
It is straightforward to determine the Nash equilibria of H1.

Lemma 9. When u > 0, the only Nash equilibrium of H1(u) is the pure strategy
profile (⊥,⊥,⊥). When u = 0 the only Nash equilibria of H1(u) are the pure
strategy profiles (G,G,G) and (⊥,⊥,⊥).

We use the game H1(u) to extend the game G0. The action G of H1 represents
selecting an action from G0, and the payoff vector (2u,−u,−u) that is the result
of all players playing the action G is precisely of the form of the Nash equilibrium
payoff profile of G0.

Definition 10 (The 3-player zero-sum game G1). Let G1 = G1(S) be the
game obtained from G0(S) as follows. Each player is given an additional action
⊥. When no player plays the action ⊥, the payoffs are the same as in G0. When
at least one player is playing the action ⊥ the payoff are the same as in H1,
where each action different from ⊥ is translated to action G.

We next characterize the Nash equilibria in G1.

Proposition 11. The pure strategy profile (⊥,⊥,⊥) is a Nash equilibrium of
G1. Any other Nash equilibrium x in G1 is also a Nash equilibrium of G0 and is
such that every player receives payoff 0.
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Proof. By Lemma 4 any Nash equilibrium of G1 induces a Nash equilibrium of
H1(u), where (2u,−u,−u) is a Nash equilibrium payoff profile of G0, by letting
each player play the action G with the total probability of which the actions of
G0 are played. By Lemma 9, any Nash equilibrium in G1 different from (⊥,⊥,⊥)
must then be a Nash equilibrium of G0 with Nash equilibrium payoff profile
(0, 0, 0) as claimed.

Theorem 12. The following problems are ∃R-complete, even for 3-player
zero-sum games: ∃NEInABall, ∃SecondNE, ∃NEWithLargeSupports,
∃NEWithRestrictingSupports, and ∃NEWithRestrictedSupports.

Proof. Propositions 5 and 11 together gives a reduction from the promise
problem of Proposition 2 to all of the problems under consideration when
setting the additional parameters as follows. For ∃NEInABall we let u =
1
2 , for ∃NEWithLargeSupports we let k = 2, and lastly for both of
∃NEWithRestrictingSupports and ∃NEWithRestrictedSupports we
let Ti be the set of all actions of Player i except ⊥.

To adapt the reduction of Theorem 12 to ∃NEWithSmallSupports we
need to replace the trivial Nash equilibrium (⊥,⊥,⊥) by a Nash equilibrium
with large support. We define a game H2(k) for this purpose and omit its easy
analysis.

Definition 13. Define the 2-player zero-sum game H2(k) as follows. The two
players, which we denote Player 2 and Player 3, have the same set of pure strate-
gies S2 = S3 = {0, 1, . . . , k − 1}. The utility functions u2(a2, a3) = −u3(a2, a3)
are defined by u2(a2, a3) = 1 if a2 = a3, u2(a2, a3) = −1 if a2 ≡ a3 +1 (mod k),
and u2(a2, a3) = 0 otherwise.

Lemma 14. For any k ≥ 2, in the game H2(k) the strategy profile in which
each action is played with probability 1

k is the unique Nash equilibrium and yields
payoff 0 to both players.

Definition 15 (The 3-player zero-sum game G2). Let G2 = G2(S) be the
game obtained from G1 as follows. The action ⊥ of Player 2 and Player 3 are
replaced by the set of actions (⊥, i), i ∈ {0, 1, . . . , k−1}, where k is the maximum
number of actions of a player in G1. The payoff vector of the pure strategy profile
(⊥, (⊥, a2), (⊥, a3)) is (−2, 1 + u2(a2, a3), 1 + u3(a2, a3)), where u2 and u3 are
the utility functions of the game H2(k). Otherwise, when at least one player
plays the action G, the payoff is as in H1, where actions of the form (⊥, i) are
translated to the action ⊥.

Theorem 16. ∃NEWithSmallSupports is ∃R-complete, even for 3-player
zero-sum games.

Proof. In G2, the strategy profile where Player 1 plays ⊥ and Player 2 and
Player 3 play (⊥, i), with i chosen uniformly at random, is a Nash equilibrium
that takes the role of the Nash equilibrium (⊥,⊥,⊥) in G1. Consider now an
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arbitrary Nash equilibrium in G2. In case all players play the action G with
probability less than 1, Player 2 and Player 3 must choose each action of the
form (⊥, i) with the same probability, since H2 has a unique Nash equilibrium.
The Nash equilibrium induces a strategy profile in G1, letting Player 2 and
Player 3 play the action ⊥ with the total probability each player placed on
the actions (⊥, i). By definition of H2(k) the payoff vector of (⊥,⊥,⊥) in G1

differs by at most 1 in each entry from the payoff vectors of (⊥, (⊥, a2), (⊥, a3)).
The proof of Lemma 9 and Proposition 11 still holds when changing the payoff
vector of (⊥,⊥,⊥) by at most 1 in each coordinate. The strategy profile induced
in G1 must therefore be a Nash equilibrium in G1. We conclude that in a Nash
equilibrium x of G2, either Player 2 and Player 3 use strategies with support
of size k or x is a Nash equilibrium of G0, where every player uses a strategy
of support size strictly less than k and where every player receives payoff 0.
Proposition 5 thus give a reduction showing ∃R-hardness.

3.3 Pareto Optimal and Strong Nash Equilibria

For showing ∃R-hardness for ∃NonStrongNE we first analyze the strong Nash
equilibria in the game H1.

Lemma 17. For u ≥ 0, the Nash equilibrium (⊥,⊥,⊥) of H1(u) is a strong
Nash equilibrium. For u = 0, the Nash equilibrium (G,G,G) of H1(u) is not a
strong Nash equilibrium.

Proof. Consider first u = 0 and the Nash equilibrium (G,G,G). This is not a
strong Nash equilibrium, since for instance Player 1 and Player 2 could both
increase their payoff by playing the strategy profile (⊥,⊥, G). Consider next
u ≥ 0 and the Nash equilibrium (⊥,⊥,⊥). Since H1 is a zero-sum game it is
sufficient to consider possible coalitions of two players. Player 2 and Player 3 are
already receiving the largest possible payoff given that Player 1 is playing the
strategy ⊥, and hence they do not have a profitable deviation. Consider then,
by symmetry, the coalition formed by Player 1 and Player 2, and let them play
G with probabilities p1 and p2. A simple calculation shows that to increase the
payoff of Player 1 requires p1p2 + 4p2 − 2p1 > 0 and to increase the payoff of
Player 2 requires p1p2 − 4p2 + p1 > 0. Adding these gives p1(2p2 − 1) > 0 which
implies p2 > 1

2 . But then p1p2 − 4p2 + p1 < 0. Thus (⊥,⊥,⊥) is a strong Nash
equilibrium.

Theorem 18. ∃NonStrongNE is ∃R-complete, even for 3-player zero-sum
games.

Proof. Propositions 5 and 11 together gives a reduction showing ∃R-hardness,
since by Lemma 17 the Nash equilibrium (⊥,⊥,⊥) is a strong Nash equilibrium,
and a Nash equilibrium of G0 where every player receives payoff 0 is not a strong
Nash equilibrium.
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In a zero-sum game, every strategy profile is Pareto optimal. Thus for showing
∃R-hardness of ∃NonParetoOptimalNE we need to consider non-zero-sum
games, thus leading to the result of Biló and Mavronicolas.

We next consider the problems ∃StrongNE and ∃ParetoOptimalNE. We
first outline a proof of membership in ∃R, building on ideas of Gatti et al. [15] and
Hansen, Hansen, Miltersen, and Sørensen [18]. Gatti et al. proved that deciding
whether a given strategy profile x of an m-player game G is a strong Nash
equilibrium can be done in polynomial time. The crucial insight behind this
result is that the question of whether a coalition of k ≤ m players may all
improve their payoff by together changing their strategies can be recast into a
question in a derived game about the minmax value of an additional fictitious
player that has only k strategies. Hansen et al. proved that in such a game,
the minmax value may be achieved by strategies of the other players that have
support size at most k.

Lemma 19 (Hansen et al. [18]). Let G be a m + 1 player game and let
k = |Sm+1|. If there exists a strategy profile x of the first m players such that
um+1(x; a) ≤ 0 for all a ∈ Sm+1 then there also exists a strategy profile x′

of the first m players in which each strategy has support size at most k and
um+1(x′; am+1) ≤ 0 for all a ∈ Sm+1.

We next give a generalization of the auxiliary game construction of
Gatti et al. that also allows us to treat Pareto optimal Nash equilibria at the
same time.

Definition 20 (cf. Gatti et al. [15]). Let G be an m-player game with strat-
egy sets Si and utility functions ui. Let x be a strategy profile of G and let
B1∪̇B2∪̇B3 = [m] be a partition of the players, let ki = |Bi| and k = k1 + k2.
For ε > 0 consider the (m+1)-player auxiliary game G′ = G′

x,ε,(B1,B2,B3)
defined

as follows. For i ∈ B1 ∪ B2 the strategy set of Player i is S′
i = Si. For i ∈ B3

the strategy set of Player i is S′
i = {⊥}. Finally, the strategy set of Player m+1

is B1 ∪ B2. The utility function of Player m + 1 is defined as follows. Let
a = (a′

1, . . . , a
′
m, j) be a pure strategy profile of G′. Define the strategy profile

xa of G letting xa
i = ai for i ∈ B1 ∪ B2 and xa

i = xi for i ∈ B3. We then let
u′

m+1(a) = uj(x) − uj(xa) + ε for j ∈ B1 and u′
m+1(a) = uj(x) − uj(xa) for

j ∈ B2.

The following is immediate from the definition of G′.

Lemma 21. There exist a strategy profile x′ in G that satisfies ui(x′) > ui(x)
when i ∈ B1, ui(x′) ≥ ui(x) when i ∈ B2, and x′

i = xi when i ∈ B3 if and only
if there exist ε > 0 and a strategy x′ in G′

x,ε,(B1,B2,B3)
of the first m players such

that u′
m+1(x

′, j) ≤ 0 for all j ∈ B1 ∪ B2.

The task of deciding if a strategy x is Pareto optimal amounts to checking the
condition of Lemma 21 for B1 = {i} and B2 = [m] \ {i} for all i and to decide
whether x is a strong Nash equilibrium amounts to checking the condition for
all nonempty B1 ⊆ [m] while letting B2 = ∅.



164 M. L. T. Berthelsen and K. A. Hansen

According to Lemma 19 we may restrict our attention to strategies x′ in G′ of
supports of size at most m. Fixing such a set of supports Ti ⊆ Si for i ∈ B1∪B2,
we may formulate the question of existence of a strategy x′, with Supp(x′

i) ⊆ Ti

for i ∈ B1 ∪ B2 that satisfies the conditions of Lemma 21 as an existentially
quantified first-order formula over the reals. For a fixed x we need only 1 + m2

existentially quantified variables to describe ε and the strategy x′. Since this is
a constant number of variables, when as in our case m is a constant, the general
decision procedure of Basu, Pollack, and Roy [2] runs in polynomial time in the
bitsize of coefficients, number of polynomials, and their degrees, resulting in an
overall polynomial time algorithm. Now, adding a step of simply enumerating
over all nonempty B1 ⊆ [m] and all support sets of size m we obtain the result
of Gatti et al. that deciding whether a given strategy profile x is a strong Nash
equilibrium can be done in polynomial time. The same holds in a similar way
for checking that a strategy profile is a Pareto optimal Nash equilibrium.

In our case, when proving ∃R membership the only input is the game G,
whereas the strategy profile x will be given by a block of existentially quantified
variables. We then need to show how to express that x is a Pareto optimal or
a strong Nash equilibrium by a quantifier free formula over the reals with free
variables x. This will be possible by the fact that quantifier elimination, rather
than just decision, is possible for the first order theory of the reals. The quantifier
elimination procedure of Basu et al. [2] runs in time exponential in the number
of free variables, so we cannot apply it directly with x being the set of free
variables.

Instead we express the condition of Lemma 21 for a strategy profile x′ that is
constrained by Supp(x′

i) ⊆ Ti for i ∈ B1 ∪B2 in terms of auxiliary free variables
ũ′ that take the place of the values of the utility function u′ of G′. Since the
supports of x′ are restricted to size m, we need just mm+1 variables to represent
the utility to Player m + 1 on every such pure strategy profile. Since this is a
constant number of variables, the quantifier elimination procedure of Basu et al.
runs in polynomial time and outputs a quantifier free formula over the reals with
free variables ũ′ that expresses the condition of Lemma 21 when the utilities
u′ are given by ũ′. After this we substitute expressions for the utilities u′ in
terms of the variables x for the variables ũ′. The final formula is obtained, in an
analogous way to the decision question, by enumerating over the appropriate sets
B1 and B2 as well as all possible supports Ti, obtaining a formula for each such
choice and combining them to a single formula with free variables x expressing
either that x is Pareto optimal or that x is a strong Nash equilibrium. To the
former we add the simple conditions of x being a Nash equilibrium. Finally we
existentially quantify over x and obtain a formula expressing either that G has a
Pareto optimal Nash equilibrium or that G has a strong Nash equilibrium. Since
this formula was computed in polynomial time given G we obtain the following
result.

Proposition 22. ∃StrongNE and ∃ParetoOptimalNE both belong to ∃R.

For showing ∃R-hardness we construct a new extension of G0.
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Definition 23. For u ≥ 0, let H4 = H4(u) be the 3-player game given by the
following matrices, where Player 1 selects the matrix, Player 2 selects the row,
Player 3 selects the column.

G ⊥
G ( 2u,−u,−u) (−3,−3, 0)
⊥ (−3, 0, −3) (−2,−2,−2)

G

G ⊥
G ( 0,−3,−3) (−2,−2,−2)
⊥ (−2,−2,−2) (−1,−1,−1)

⊥

Lemma 24. When u > 0, the only Nash equilibrium of H4(u) is the pure strat-
egy profile (⊥,⊥,⊥). When u = 0, the only Nash equilibria of H4(u) are the pure
strategy profiles (G,G,G) and (⊥,⊥,⊥). Furthermore, when u = 0, the Nash
equilibrium (G,G,G) is both Pareto optimal and a strong Nash equilibrium.

Proof. When u = 0, clearly (G,G,G) is a Nash equilibrium, which is both Pareto
optimal and a strong Nash equilibrium. Likewise, clearly (⊥,⊥,⊥) is always
a Nash equilibrium. When u > 0, the action G is strictly dominated by the
action ⊥ for Player 2 and Player 3, and hence they play ⊥ with probability 1 in
a Nash equilibrium. The only best reply of Player 1 is to play ⊥ with probability 1
as well.

Analogously to Definition 10 we define the game G4 = G4(S) to be the game
extending G0 with H4 replacing the role of H1. We next establish ∃R-hardness

Theorem 25. ∃ParetoOptimalNE and ∃StrongNE are ∃R-complete, even
for 3-player games.

Proof. In G4, the strategy profile (⊥,⊥,⊥), with payoff profile (−1,−1,−1), is
a Nash equilibrium that is neither Pareto optimal or a strong Nash equilibrium,
since by Lemma 4 a strategy profile in G0 in which Player 1 plays an action
according to the uniform distribution has payoff profile (0, 0, 0).

Similarly to the proof of Theorem 12, any Nash equilibrium x in G4 different
from (⊥,⊥,⊥) must by Lemma 24 be a Nash equilibrium of G0 with payoff profile
(0, 0, 0). Since G0 is a zero-sum game, any strategy that is Pareto dominating x
must involve the strategy ⊥ and is thus ruled out by Lemma 24. Therefore x
is Pareto-optimal. Now, x is not necessarily a strong Nash equilibrium, but by
Lemma 4, letting Player 1 instead play an action of G0 according to the uniform
distribution is also a Nash equilibrium of G0 with payoff profile (0, 0, 0), that
furthermore ensures that any strategy profile of Player 2 and Player 3 in G0 does
not improve their payoffs. Also, by Lemma 4, no coalition involving Player 1
can improve their payoff without playing the action ⊥. No coalition can however
improve their payoff by a strategy profile involving the action ⊥, since all such
payoff profiles result in a player receiving negative payoff. Thus x′ is a strong
Nash equilibrium.

We conclude that Proposition 5 gives a reduction showing ∃R-hardness
of both ∃ParetoOptimalNE and ∃StrongNE, thereby together with
Proposition 22 completing the proof.



166 M. L. T. Berthelsen and K. A. Hansen

References

1. Aumann, R.J.: Acceptable points in games of perfect information. Pacific J. Math.
10(2), 381–417 (1960). https://doi.org/10.2140/pjm.1960.10.381

2. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry, 2nd
edn. Springer, Heidelberg (2008). https://doi.org/10.1007/3-540-33099-2
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Abstract. We study the computational complexity of finding Stackel-
berg Equilibria in general-sum games, where the set of pure strategies of
the leader and the followers are exponentially large in a natural repre-
sentation of the problem.

In zero-sum games, the notion of a Stackelberg equilibrium coincides
with the notion of a Nash Equilibrium (Korzhyk et al. 2011b). Find-
ing these equilibrium concepts in zero-sum games can be efficiently done
when the players have polynomially many pure strategies or when (in
additional to some structural properties) a best-response oracle is avail-
able (Ahmadinejad et al. 2016; Dud́ık et al. 2017; Kalai and Vempala
2005). Despite such advancements in the case of zero-sum games, little
is known for general-sum games.

In light of the above, we examine the computational complexity of
computing a Stackelberg equilibrium in large general-sum games. We
show that while there are natural large general-sum games where the
Stackelberg Equilibria can be computed efficiently if the Nash equilib-
rium in its zero-sum form could be computed efficiently, in general, struc-
tural properties that allow for efficient computation of Nash equilibrium
in zero-sum games are not sufficient for computing Stackelberg equilibria
in general-sum games.

1 Introduction

Recent years have witnessed significant interest in Stackelberg games and their
equilibria. A Stackelberg game models an interaction between two players, a
leader and a follower, where the leader’s goal is to commit to a randomized strat-
egy that yields the highest utility, given that the follower responds by choosing
an action that is best for itself. Such a pair of strategies is called a Stackelberg
equilibrium (SE). The interest in these games is driven, in part, by their appli-
cations to security (Tambe 2011) and their adoption by major security agencies
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such as the US Coast Guard, the Federal Air Marshals Service, and the Los
Angeles Airport Police.

Standard approaches for finding a Stackelberg equilibrium, such as the Mul-
tiple LPs approach of Conitzer and Sandholm (2006), run in time polynomial in
the number of pure strategies of the leader and follower. As Stackelberg games
and their applications have become more prevalent, they are increasingly used
to model complex scenarios where one or both players’ strategy sets are expo-
nentially large in a natural representation of the problem, in which case exist-
ing approaches are not computationally feasible. In this work, we consider such
“large” games and ask whether there are computationally efficient algorithms
for finding their Stackelberg equilibria.

Of course, such algorithms cannot exist without some assumptions on the
problem structure. Here, we review the common assumptions and approaches
for computing minimax-optimal solutions in large zero-sum games, where mini-
max strategies, Nash equilibria, and Stackelberg equilibria all coincide. Comput-
ing these equilibrium concepts in 2-player zero-sum games has received signifi-
cant attention (Ahmadinejad et al. 2016; Behnezhad et al. 2018a, 2019, 2017a,
2018b; Conitzer and Sandholm 2006; Dud́ık et al. 2017; Freund and Schapire
1995; Garg et al. 2011; Immorlica et al. 2011; Von Neumann and Morgenstern
1945; Wang and Shroff 2017; Xu 2016). For large zero-sum games, two structural
assumptions that have proven useful in computing a Nash equilibrium are the
ability to efficiently optimize a linear function over the strategy space of each
player (Ahmadinejad et al. 2016) and the ability to compute the best-response
of each player against a mixed strategy of the other combined with a decomposi-
bility property of the action set (Dud́ık et al. 2017).

In general-sum games, however, Stackelberg, Nash, and Minimax equilibria
diverge. In general-sum games the leader can benefit from committing to a mixed
strategy and obtain a more favorable Stackelberg equilibrium than any Nash
equilibrium. From the algorithmic perspective, a Stackelberg equilibrium in a
general-sum game can be computed efficiently when the game is small. That
is, there are algorithms, such as the Multiple LPs approach of Conitzer and
Sandholm (2006), that run in time poly(|SL|, |SF|) where SL and SF are the set
of pure strategies of the leader and follower, respectively. While this method is
an efficient approach for computing a Stackelberg equilibrium in small games,
it become computationally inefficient in many natural scenarios where the set
of actions of the leader or follower is exponential in a natural representation
of the game. Examples of such settings include games inspired by applications
to security, where either the actions of the leader or the follower represent sets
of edges in a graph. As opposed to the zero-sum case for which existence of
certain structural properties are known to lead to efficient computation of the
equilibrium concepts, computation of Stackelberg equilibrium in large general-
sum games has remained mostly unexplored.
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1.1 Our Results and Contributions

In light of the above, we examine the computational complexity of computing
Stackelberg equilibria in large general-sum games. Specifically, we consider two
classes of general-sum games, both of which demonstrate structural properties
that under the zero-sum assumption would lead to efficient algorithms for com-
puting the minimax optimal strategies. For the first class of games, we give an
efficient algorithm for computing a Stackelberg Equilibrium. In the second class
of games, we show that even approximating the Stackelberg equilibrium is NP-
Hard. This drives home the main message of this work, that is while there are
natural large general-sum games where the Stackelberg Equilibria can be com-
puted efficiently if the Nash equilibrium in its zero-sum form could be computed
efficiently, in general, structural properties that allow for efficient computation of
Nash equilibrium in zero-sum games are not sufficient for computing Stackelberg
equilibria in general-sum games.

In more details, the two classes of games we work with are as follow.

Incentive Games. In Sect. 3, we introduce a class of games called Incentive
Games. In these games, the actions of the leader can be described as two-part
actions, the first part of the action is an element of a set and the second part of
the action is a set of incentives to the follower for playing certain actions.

As a motivating example consider a taxation scenario. In this setting, a gov-
ernment agency (e.g., IRS) takes the role of the leader and a taxpayer is the
follower. A number of investments, indicated by the set E, are available to the
taxpayer. Each investment e has a return of ce to the taxpayer. The taxpayer
invests in a package of investments S ⊆ E that has the highest net payoff. The
government agency is interested in taxing these investments in order to max-
imize the tax revenue. To do so, the agency allocates 1 unit of taxes between
these investments. There are two types of taxation mechanisms. First is tax-
ing an individual investment e by some amount xe. The second is to provide
tax relief vS for a package of options the taxpayer has invested in. Examples
of the second type of taxation mechanism include United States federal resi-
dential renewable energy tax credit that offers a tax break to individuals who
have invested in home electric power storage, e.g., batteries, and home-generated
renewable energy, e.g., solar panels, but no tax break to those who have invested
in the former without the latter (EnergySage 2019; U.S. Department of Energy
2019). The tax revenue and the net payoff the taxpayer respectively receive from
individual taxes xe and combinatorial tax reliefs vS when the taxpayer invests in
investments S are

∑
e∈S xe − vS and

∑
e∈S(−xe + ce) + vS . It is not hard to see

that these tax breaks play an essential role in the design of tax systems. Not only
they increase the total tax revenue obtainable by a tax system (See Example 1
for an illustration) but they can also be used to incentivize the taxpayers to take
actions that are more beneficial to the government.

More generally, we consider Stackelberg games and we consider a family of
sets S ⊆ {0, 1}E and leader and follower element payoffs, Ce and ce, respectively,
for all e ∈ E. A pure strategy of the leader is to choose e ∈ E and a vector of
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incentives v ∈ [0, 1]|S|, such that ‖v‖0 ∈ poly(|E|).1 A pure strategy of the
follower is to choose one set S ∈ S. The payoff of the leader and follower are
defined, respectively, by

UL((e,v), S) = 1e∈S − vS + Ce,

UF((e,v), S) = −1e∈S + vS +
∑

e′∈S

ce′ ,

that is, the players receive non-zero-sum utilities from their individual choices,
i.e., Ce and

∑
e∈S ce′ , and zero-sum utilities from choosing actions that intersect,

i.e., ±1e∈S , and from the incentives provided on the followers actions sets, i.e.,
±vS .

We first note that when ce and Ce are set to 0 for all e ∈ E, this game is zero-
sum and can be efficiently solved when each player can compute its best-response
to any choice of mixed strategy of the other player, i.e., optimize a linear function
over the strategy space of the other player using existing results (Ahmadinejad
et al. 2016; Dud́ık et al. 2017; Kalai and Vempala 2005).

When ce and Ce are non-zero, we show that the leader can obtain a higher
payoff equilibrium if it could make additional commitments in the form of incen-
tives for the follower, i.e., can play non-zero v. An interesting aspect of this game
is that it is derived from a simple Stackelberg game model (where v = 0) by
adding zero-sum payoffs that only benefit the follower. Yet, the leader’s payoff
in the Stackelberg equilibrium of the new game is much higher than its payoff
in the original game. Moreover, as we show in Theorem 1 there is a polynomial
time algorithm for finding the Stackelberg equilibrium of such games when the
leader can optimize a linear function over the actions of the follower, which is a
similar condition to the ones used for computing Stackelberg equilibria in large
zero-sum games (Ahmadinejad et al. 2016; Dud́ık et al. 2017; Kalai and Vempala
2005).

Permuted Matching Game. In Sect. 4, we introduce a non-zero-sum game
called Permuted Matching. In this game, there is a graph G = (V,E) and a
permutation π : E → E. The set of pure strategies of the leader and follower is
the set of all matchings in G. The goal of the leader is to maximize the intersec-
tion of its matching with the π-transformation of the matching of the follower.
On the other hand, the goal of the follower is to maximize the intersection of
the two matchings, with no regards to π. More formally, for S ⊆ E we define
π(S) = {e ∈ S|π(e)}. Then the utility of the leader and follower are defined,
respectively, by

UL(M1,M2) = |M1 ∩ π(M2)| UF(M1,M2) = |M1 ∩ M2|.

It is not hard to see that, in this game, the problem of finding a best response
for a player reduces to computing maximum weighted matching of G and can

1 The sparsity requirement is such that the leader can communicate its strategy to
the follower efficiently.
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be solved in polynomial time. This would have been sufficient for getting a
polynomial time algorithm for finding a Stackelberg equilibrium had the game
been a zero-sum (Ahmadinejad et al. 2016; Dud́ık et al. 2017; Kalai and Vempala
2005). In a sharp contrast, however, we show that computing a Stackelberg
equilibrium of this general-sum game is APX-hard, even though, we can compute
player’s best-response efficiently.

We obtain this hardness result via two reductions. First, we define the fol-
lowing computational problem:

π-transformation-identical-matching: Given a graph G and a map-
ping π : E(G) → E(G) over the edges of G, find a matching M of G that
maximizes |M ∩ π(M)|.

We next show that computing an approximate Stackelberg equilibrium of the
Permuted Matching game is at least as hard as computing an approximate
solution for the π-transformation-identical-matching problem. The crux
of the argument is that if in an instance of the π-transformation-identical-
matching problem there exists a matching which is almost identical to its
π-transformation, then a Stackelberg equilibrium of the Permuted Match-
ing game is closely related to that matching. Thus, any solution for the Per-
muted Matching game can be turned into a solution for π-transformation-
identical-matching with almost the same quality. In the second step, we
reduce the π-transformation-identical-matching problem to the Maxi-
mum 3D Matching problem, which is known to be APX-hard (Petrank 1994).

We note that our results strengthen the existing hardness results of Letchford
and Conitzer (2010), Li et al. (2016) that showed that computing Stackelberg
equilibrium is NP-hard2. Our APX-hardness result shows that one cannot even
approximate the Stackelberg equilibria of large games within an arbitrary con-
stant factor, even when best-response can be efficiently computed.

1.2 Related Work

There is an extensive body of work investigating the complexity of solving Secu-
rity games, which is a special case of computing Stackelberg equilibria (see
e.g. Basilico et al. (2009), Behnezhad et al. (2017b), Letchford and Vorobey-
chik (2011), Tambe (2011), Xu (2016), Xu et al. (2014)).

Zero-Sum Games. Several algorithms have been proposed for finding the Stack-
elberg equilibria of a special case of security games called the spatio-temporal
security games (Behnezhad et al. 2017b; Xu et al. 2014). These games are zero-
sum by definition, where Stackelberg equilibria, Nash equilibria, and Minimax
equilibria all coincide. In comparison, our work focuses on general-sum games.

2 Interestingly, it is not hard to show that player best-response can also be computed
efficiently in the games used by Letchford and Conitzer (2010), Li et al. (2016),
although this was not central to their results.
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Smaller General-Sum Games. Several works have introduced polynomial time
algorithms for computing Stackelberg equilibria in games where only one player’s
strategy set is exponentially large (Kiekintveld et al. 2009; Xu 2016). A com-
mon approach used in this case is the Multiple LPs approach of Conitzer and
Sandholm (2006) that runs in poly(|SL|, |SF|). In this approach one creates a sep-
arate Linear Program for every action y ∈ SF of the follower, where the variables
represent the probability assigned to the actions of the leader, the objective max-
imizes the expected payoff of the leader, and the constraints assure that action y
is the best-response of the follower. This method can be implemented efficiently
even when the leader’s strategy set is exponentially large, e.g., when a separation
oracle can be implemented efficiently. In comparison, our main computational
result focus on settings where both the leader and follower have exponentially
many strategies.

Existing Hardness Results. Letchford and Conitzer (2010) studied the computa-
tional complexity of extensive form games and proved a closely related hardness
result.

They showed that computing Stackelberg equilibrium of a game is weakly
NP-hard using a reduction from Knapsack. Interestingly, one can efficiently com-
pute player best-response in their setting. In comparison, our hardness result
improves over these results by showing that Stackelberg equilibria are hard to
approximate within arbitrary constant factor even when player best-response
can be computed efficiently.

A number of works have investigated the relationship between the Stackelberg
equilibria and Nash equilibria of security games and have shown that computing
a Stackelberg equilibrium is at least as hard as computing a Nash equilibrium
of general-sum games. Korzhyk et al. (2011a) studied a special class of general-
sum Stackelberg Security games where any Stackelberg Equilibrium is also a
Nash equilibrium. This shows that computing Stackelberg equilibria is harder
than computing Nash equilibria. Li et al. (2016) studied Bayesian Stackelberg
Games, where there is additional uncertainty about the attacker and show that
computing the Stackelberg equilibrium is hard, and introduce an exponential
time algorithm for computing the Nash equilibria. In comparison, our work shows
that Stackelberg equilibria are hard to approximate even when players best-
response is easy to compute. That is, we show a gap between the computational
complexity of approximating Stackelberg equilibrium of a general-sum game and
that of its corresponding zero-sum variant.

2 Preliminaries

Throughout this paper, we study Stackelberg equilibria of large games. Our
emphasis is on two player games and therefore we denote the players by L (leader)
and F (follower). Let SL and SF be the set of actions (pure strategies) of players
L and F. For a pair of pure strategies x ∈ SL and y ∈ SF, we denote the payoffs
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of players L and F by UL(x, y) and UF(x, y), respectively. Similarly, for a pair of
mixed strategies X and Y we denote the payoffs by

UL(X,Y ) = Ex∼X,y∼Y [UL(x, y)]
UF(X,Y ) = Ex∼X,y∼Y [UF(x, y)].

In Stackelberg games, the leader commits to a (possibly mixed) strategy X
and plays this strategy. The follower then plays a best response against X, b(X),
according to her payoff function. Since the follower goes second its best-response
is a deterministic action b(X) = maxy UF(X, y). In case there is more than one
best response for the follower, we assume she plays the one that maximizes the
payoff of the leader. A pair of strategies X and y are in Stackelberg equilibrium
if y is a best response of the follower against X and X maximizes the payoff of
the leader, subject to the follower playing a best response.

3 INCENTIVE GAMES

In this section, we discuss a class of Stackelberg games where the leader has
the ability to make additional commitments in the form of additional incentives
to the follower. Recall that a natural scenario that can be addressed by this
Stackelberg model is taxation. In this case the leader can set taxes on individual
investments but can also provide tax breaks on bundles of investments that
the tax payer has invested in. We first show how these additional combinatorial
incentives can improve the leader’s payoff significantly and then show polynomial
time algorithms for computing a Stackelberg equilibrium in this model.

Let us first recall the definition of Incentive Games. In this model, we
consider a set of elements E, a family of its subsets S ⊆ {0, 1}E and rewards Ce

and ce for all e ∈ E. The set of pure strategies of the leader is SL = E × [0, 1]|S|.
That is, each action of the leader has two parts, the first part is an element e ∈ E
and the second part is a vector of incentives v ∈ [0, 1]|S|. We assume that the
leader is restricted to playing incentive vectors ‖v‖0 ∈ poly(|E|).3 The follower’s
strategy set is SF = S. The leader and follower payoffs are as follows.

UL((e,v), S) = 1e∈S − vS + Ce, and UF((e,v), S) = −1e∈S + vS +
∑

e′∈S

ce′ , (1)

that is, the players receive non-zero-sum utilities from their individual choices,
i.e., Ce and

∑
e∈S ce′ , and zero-sum utilities from choosing actions that intersect,

i.e., ±1e∈S , and from the incentives provided on the followers actions sets, i.e.,
±vS . For ease of exposition and by the linearity of the payoffs, we denote a
mixed strategy of the leader by (x,V), where xe is the probability with which
the first part of the leader’s action is e and VS is the expected incentive provided

3 The sparsity requirement is such that the leader can communicate its strategy to
the follower efficiently.
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on action S in the second part of the leader’s action. Note that in this case, the
expected utilities of the leader and follower are

UL((x,V), S) =
∑

e∈S

xe − VS +
∑

e∈E

xeCe (2)

UF((x,V), S) =
∑

e∈S

(−xe + ce) + VS . (3)

Let us first consider a variation of Incentive Games where the leader can-
not provide additional incentives to the follower, i.e, SL = E ×0. The only differ-
ence between these games is that Incentive Games are amended by allowing
zero-sum non-negative payments v that benefit the follower solely. One might
wonder if the commitment to make additional payments v to the follower can
ever be beneficial to the leader. This is exactly what we demonstrate in the next
example. That is, by allowing the leader to make additional zero-sum payoffs
that only benefit the follower, we can obtain Stackelberg equilibria that have
much higher payoff to the leader.

Example 1. Consider a graph instance in Fig. 1, E is the set of all edges, S is
the set of all s-t paths, there are no edge payoff to the leader, i.e., Ce = 0 for all
e ∈ E, and the edge payoff to the follower, ce, are the negative of the edges costs
that are denoted below each edge. That is, this is an instance where the follower
is responding by choosing a shortest path with respect to the edge weights that
correspond to the probability with which the leader plays them. Note that, since
there are many parallel edges sb and at, the leaders optimal strategy (with or
without additional commitment) is only supported on edges, sa, ab, and bt. It
is not hard to see that without any additional commitment, the Stackelberg
equilibrium involves the leader playing edge sa with probability xsa = 0.4 and
edge bt with probability xbt = 0.6, and all other edges with probability xe = 0.
Note that in such a mixed strategy the follower chooses path a, b, t and the
leader’s payoff is 0.6. On the other hand, when the leader commits to providing
additional incentive (or discount in the cost of a path) of vsabt = 0.2 on path
s, a, b, t, the follower best responds by choosing path s, a, b, t and the leader’s
payoff is 0.8.

Our main theorem in this section show that there is a polynomial time algo-
rithm for finding the Stackelberg equilibrium of this modified game.

Theorem 1. There is a polynomial time algorithm for finding a Stackelberg
equilibrium if one can solve the following problem in polynomial time: Given x
and value W , return S ∈ S, such that

∑
e∈S(−xe+ce) ≤ −W , or return “None”

if no such S ∈ S exists.4

At a high level, we show that a Stackelberg equilibrium, (x∗,V∗), can be
found by finding the optimal solution (x,0) (with no additional incentives) that
4 An example of a game where this linear program can be solved efficiently is the

shortest path game in Example 1.
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s ta b
1 1 1

2.4

2.2
0.4 0.6

Fig. 1. An example where additional commitment increases the leader’s payoff in the
Stackelberg equilibrium. The follower’s cost for each edge is denoted below the edge,
i.e., −csa = −cab = −cbt = 1 and −cab = 2.2 and −cat = 2.4 for all the edges between
s and b, and between a and t. The mixed strategy of the leader is denoted in gray above
the edges.

involves maximizing the followers payoff of the best response, and then providing
enough incentive on one of the follower’s actions. In particular, we choose to
provide incentive on the specific S ∈ S that constitutes the best response of the
follower to the mixed strategy (0,0).

For the first step of this proof, we consider the following LP, which can be
efficiently solved by the separation oracle given in Theorem 1,

max
x,W

W +
∑

e∈E

xeCe

∀S ∈ S,
∑

e∈S

(−xe + ce) ≤ −W.
(4)

Let x∗,W ∗ be the solution to the above LP. Furthermore, let S∗ =
arg maxS∈S

∑
e∈S ce, and consider the incentive commitments V ∗

S∗ = −W ∗ −∑
e∈S∗(−xe + ce), and V ∗

0 = 0 for all S 	= S∗. That is, we provide enough
incentive on set S∗ such that it becomes the best response for the follower.

To prove Theorem 1, we first prove a lower bound on the incentive needed to
make an action the best response of the follower.

Lemma 1. Let (x′,V′) be any mixed strategy of the leader and let S′ =
b(x′,V′) be the corresponding best response of the follower. Let W ′ =
−maxS∈S

∑
e∈S(−x′

e + ce). We have,

V ′
S′ ≥ −W ′ −

∑

e∈S′
(−x′

e + ce).

In the interest of space, we skip the proof of Lemma 1 here. The reader may find
a complete proof in the full-version of the paper.

Proof (of Theorem 1). Let (x∗,W ∗) be the solution to Eq. 4. Let S∗ =
arg maxS∈S

∑
e∈S ce, and let V ∗

S∗ = −W ∗ − ∑
e∈S∗(−x∗

e + ce), and V ∗
S = 0

for all S 	= S∗. It is clear that b(x∗,V∗) = S∗. Here, we show that (x∗,V∗) is
indeed the optimal leader strategy.
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For any leader strategy (x′,V′), let S′ = b(x′,V′) be the follower’s best
response. Moreover, let W ′ = −maxS∈S

∑
e∈S(−x′

e + ce). We have

UL((x∗,V∗), S∗) =
∑

e∈S∗
x∗
e +

∑

e∈E

x∗
eC

∗
e − V ∗

S∗ (5)

=
∑

e∈S∗
x∗
e +

∑

e∈E

x∗
eC

∗
e + W ∗ +

∑

e∈S∗
(−x∗

e + ce) (6)

=
∑

e∈E

x∗
eC

∗
e + W ∗ +

∑

e∈S∗
ce (7)

≥
∑

e∈E

x′
eC

′
e + W ′ +

∑

e∈S′
ce, (8)

where the second equation is by the definition of V ∗
S∗) and the last inequality

follows by the fact that (x′,W ′) form a valid solution for the LP in Eq. 4, for
which (x∗,W ∗) is the optimal solution and the fact that S∗ is chosen to maximize∑

e∈S∗ ce.
Using Lemma 1 on the value of V ′

S′ , we have

UL((x′,V′), S′) =
∑

e∈S′
x′
e +

∑

e∈E

x′
eC

′
e − V ′

S′ (9)

≤
∑

e∈S′
x′
e +

∑

e∈E

x′
eC

′
e + W ′ +

∑

e∈S′
(−x′

e + ce) (10)

=
∑

e∈E

x′
eC

′
e + W ′ +

∑

e∈S′
ce. (11)

Equations 8 and 11 complete the proof.

4 The PERMUTED MATCHING Game

In this section, we introduce a large but structured general-sum Stackelberg
game, called Permuted Matching, and examine the computational complexity
of computing its Stackelberg equilibrium. We show two sets of results for this
game. In Sect. 4.1, we show that this problem is APX-hard. This implies that
unlike zero-sum games, finding a Stackelberg equilibrium is computationally hard
even if best-response oracles are provided.

The Permuted Matching game is defined as follows. Consider the leader
and follower, L and F. Consider a multigraph G = (V,E) and a one-to-one
mapping (permutation) π : E → E. Note that π may take different values on
parallel edges of a multi-graph. In the remainder of this section, we refer to a
multi-graph G as a graph. In Permuted Matching, the set of pure strategies
of both players is the set of all matchings in G. Given matchings ML and MF

played by the leader and follower, respectively, we define

UL(ML,MF) = |ML ∩ π(MF)|, and UF(ML,MF) = |ML ∩ MF|,
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where for a set S ⊆ E, we define π(S) = {e ∈ S|π(e)}. Note that G and π are
fixed and known to both players.

Let us highlight an important aspect of our hardness result in advance. As
the next observation shows, the strategy space of the players in Permuted
Matching, though large, is very structured. At a high level, the reward of
each player is a linear function of the action of the other and each player can
efficiently optimize a linear function over the strategy space of the other player,
for example, each player can compute a best-response to a mixed strategy of the
other.

Observation 1. There is a polynomial time algorithm such that for every vector
w ∈ [0, 1]|E| finds a strategy of the players whose corresponding representation
vector v maximizes v · w.

Proof (Sketch). This problem reduces to computing a maximum weighted match-
ing of a graph with edge weights we for all e ∈ E, which can be performed
efficiently Cormen (2009).

In a zero-sum game, existence of such a structure leads to efficient algorithms
for computing the Nash or Stackelberg equilibria Ahmadinejad et al. (2016),
Dud́ık et al. (2017), Kalai and Vempala (2005). On the other hand, our APX-
hardness result for the Permuted Matching game shows that existence of
this structure does not necessarily lead to efficient algorithms for computing
Stackelberg equilibria in general-sum games. With this in mind, we present our
hardness results next.

4.1 Hardness of Approximation

In this section, we show that it is impossible to approximate a Stackelberg equi-
librium of the Permuted Matching game in polynomial time within an arbi-
trarily small constant factor unless P=NP.

Before we proceed to the proof, we define an auxiliary problem and show a
hardness result for this problem. Then, we take advantage of this hardness result
and show that computing a Stackelberg equilibrium of Permuted Matching is
APX-hard. We call the intermediary problem π-transformation-identical-
matching and define it as follows: In the input comes an unweighted undirected
graph G = (V,E) and a permutation π : E → E. The goal is to find A matching
M of G that maximizes |M ∩ π(M)|. For an instance I of π-transformation-
identical-matching, we denote by Opt(I) the optimal solution to I and refer
to the value of this solution by Val(I).

We show that π-transformation-identical-matching has a hard gap at
gap location 1. That is, it is NP-hard to decide whether for a given graph G with
n vertices and a function π, the solution of the π-transformation-identical-
matching problem is exactly equal to n/2 or at most (1−ε)n/2 for some ε > 0.

Lemma 2. There exists an ε > 0 such that it is NP-hard to decide whether the
solution of the π-transformation-identical-matching problem is exactly
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equal to n/2 or less than (1 − ε)n/2 where n is the number of the vertices of the
input graph.

In the interest of space, we defer the proof of Lemma 2 to the full-version of the
paper and just show how this lemma can be used to prove the main result of
this section.

Theorem 2. Computing a Stackelberg equilibrium of Permuted Matching
is APX-hard.

Proof. More generally, we show that approximating a Stackelberg equilibrium
of the Permuted Matching game has a hard gap at gap location 1. This
immediately implies a hardness of approximation. We show this by a reduction
from the π-transformation-identical-matching problem. Suppose we are
given an instance I = 〈G, π〉 of the π-transformation-identical-matching
problem and wish to decide for some ε′ > 0, whether the solution of this problem
achieves a value that is exactly n/2 or is bounded above by (1 − ε′)n/2 where n
is the size of G. Based on I, we construct an instance Cor(I) of the Permuted
Matching game with the same graph G and permutation π and seek to find
a Stackelberg equilibrium in this game. Note that by definition, Val(I) is equal
to n/2 if and only if G contains a perfect matching that is identical to its π-
transformation. Otherwise, Val(I) is at most (1 − ε′)n/2 and thus any matching
of G shares no more than (1 − ε′)n/2 edges with its π-transformation.

Since for small enough ε′, it is NP-hard to distinguish the two cases (Lemma 2),
we show that it is NP-hard to approximate a Stackelberg equilibrium of the leader
in Cor(I). If Val(I) = n/2, then there exists a perfect matching in G that is identical
to its π-transformation. Thus, if both players play this matching in Cor(I), they
both get a payoff of n/2. Notice that n/2 is the maximum possible payoff for any
player in this game, therefore, such a strategy pair is a Stackelberg equilibrium.
Hence, in case Val(I) = n/2, the leader achieves a payoff of n/2 in a Stackelberg
equilibrium of the corresponding Permuted Matching game.

Now, suppose for ε < ε′/13 we have a 1 − ε approximation solution for
Cor(I). If Val(I) = n/2, then the payoff of the leader in an exact solution of Cor(I)
is n/2 and therefore a 1 − ε approximation solution guarantees a payoff of at
least n(1 − ε)/2 for the leader. Let the strategies of the leader and follower be
X and y in such a solution. Therefore, UL(X, y) ≥ n(1 − ε)/2. Notice that X
may be a mixed strategy, but we can assume w.l.g that y is a pure strategy
since there always exists a best response for the follower which is pure. Also,
let y∗ be the π-transformation of strategy y. Let for two matchings x and y,
common(x, y) denote the number of edges that x and y have in common and
define dist(x, y) = |x| + |y| − 2common(x, y). Recall that the payoff of the leader
in this game can be formulated as Ex∼X [common(x, y∗)]. Since this value is at
least n(1 − ε)/2 we have:

Ex∼X [common(x, y∗)] = UL(X, y) ≥ n(1 − ε)/2
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and thus

Ex∼X [dist(x, y∗)] = Ex∼X [|x| + |y∗| − 2common(x, y∗)]
≤ Ex∼X [n − 2common(x, y∗)]
= n − 2Ex∼X [common(x, y∗)]
≤ n − 2n(1 − ε)/2
= nε.

(12)

Inequality (12) shows that y∗ is very similar (in expectation) to a random match-
ing drawn from strategy X. This intuitively implies that pure strategies of X
should have a considerable amount of edges in common. It follows from the defini-
tion that for three matchings x, y, and z we have dist(x, z) ≤ dist(x, y)+dist(y, z).
Therefore, we have

Ex∼X,x′∼X [dist(x, x′)] ≤ Ex∼X,x′∼X [dist(x, y∗) + dist(y∗, x′)]
= Ex∼X,x′∼X [dist(x, y∗) + dist(x′, y∗)]
= Ex∼X [dist(x, y∗)] + Ex′∼X [dist(x′, y∗)]
= 2Ex∼X [dist(x, y∗)]
≤ 2εn

(13)

Recall that the payoff of the follower is determined by the number of edges his
matching shares with that of the leader. Moreover, since UL(X, y) ≥ n(1 − ε)/2,
this implies that Ex∼X [|x|] ≥ n(1 − ε)/2. What Inequality (13) implies is that if
the follower plays X instead of y, he gets a payoff of at least Ex∼X |x| − 2εn ≥
(1 − 5ε)n/2 against X. In other words UF(X,X) ≥ (1 − 5ε)n/2. Since y is a
best response of the follower against the leader’s strategy, we have UF(X, y) ≥
UF(X,X) ≥ (1 − 5ε)n/2 and thus

Ex∼X [common(x, y)] = UF(X, y)
≥ UF(X,X)
= Ex∼X,x′∼X [common(x, x′)]
≥ (1 − 5ε)n/2.

Hence
Ex∼X [dist(x, y)] = Ex∼X [|x| + |y| − 2common(x, y)]

≤ Ex∼X [n − 2common(x, y)]
= n − 2Ex∼X [common(x, y)]
≤ n − 2(1 − 5ε)n/2
≤ 5εn.

(14)

Combining Inequalities (12) and (14) yields

dist(y, y∗) ≤ Ex∼X [dist(x, y)] + Ex∼X [dist(x, y∗)] ≤ 6εn.

Therefore, we have common(y, y∗) ≥ |y∗| − 6εn and since |y∗| ≥ (1 − ε)n/2 we
have common(y, y∗) ≥ (1 − 13ε)n/2 > (1 − ε′)n/2. If Val(I) 	= n/2, then Val(I)
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is bounded by (1 − ε′)n/2. Therefore, common(y, y∗) > (1 − ε′)n/2 holds if and
only if Val(I) = n/2. Thus, an approximation solution for Cor(I) within a factor
(1 − ε) > (1 − ε′/13) can be used to decide if the solution of I is n/2 or bounded
by (1−ε′)n/2. This implies a hard gap for the π-transformation-identical-
matching problem at gap location 1.
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Abstract. We explore the impact of mutual altruism among the players
belonging to the same set – their tribe – in a partition of all players
in arbitrary strategic games upon the quality of equilibria attained. To
this end, we introduce the notion of a τ -tribal extension of an arbitrary
strategic game, in which players’ subjective cost functions are updated
to reflect this, and the associated Price of Tribalism, which is the ratio
of the social welfare of the worst Nash equilibrium of the tribal extension
to that of the optimum of social welfare. We show that in a well-known
game of friendship cliques, network contribution games as well as atomic
linear congestion games, the Price of Tribalism is higher than the Price
of Anarchy of either the purely selfish players or fully altruistic players
(i.e. ones who seek to maximise the social welfare). This phenomenon is
observed under a variety of equilibrium concepts. In each instance, we
present upper bounds on the Price of Tribalism that match the lower
bounds established by our example.

1 Introduction

According to the standard narrative around the concept of Nash equilibrium,
one of its great contributions is that it shed light on why multi-agent systems in
the real world often “race to the bottom”, or otherwise fail to exhibit behaviour
anywhere near the social optimum. Perhaps fortunately, the picture suggested
by the theory is not always reflected in real-world systems, which often appear
to stabilise in states that are better than self-interested Nash equilibria. On the
other hand, many a carefully designed political and economic system fails to
deliver on its theoretical promises in reality.

Beside the “spherical cow” class of model-reality disagreements such as com-
putational limitations and insufficient rationality of the agents, the good half of
this discrepancy is often rationalised by saying that players exhibit a degree of

We would like to thank Jerry Anunrojwong, Ioannis Caragiannis, Artur Gorokh, Bart
de Keijzer, Bobby Kleinberg, Guido Schaefer and Éva Tardos, as well as the anonymous
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altruism – that is, they seek to optimise not just their own welfare but some
weighted combination of it with the sum of the welfare of all players. This app-
roach may partially explain the more favourable dynamics we observe. However,
recent results [CKK+10,CdKKS14] demonstrate that in some cases, altruism
can give rise to equilibria that are even worse than those that exist if all players
are purely self-interested.

Once identified, this might not seem that unrealistic: for instance, all his-
torical industrial revolutions, implemented by arguably selfish agents seeking to
maximise profit, were accompanied by a temporary dip in social welfare [Szr04].
A society whose members are altruistic but do not coordinate may therefore
never have implemented these changes, remaining stuck in the pre-industrial
local optimum without electricity, mass production or modern medicine. Look-
ing at the workings of the lower bounds for “altruistic anarchy”, we find that
the ways in which altruistic players get stuck in local optima appear quite dif-
ferent from those enabling bad selfish equilibria. Could it then be that there are
realistic settings in which both mechanisms occur together?

Tribalism and political polarisation are often argued to be a feature of
human interactions that predates those interactions even being, strictly speak-
ing, human at all, but according to news media and sociological analyses alike,
their impact on public life in Western societies has been steadily increasing
[Eco17,CRF+11,FA08,BB07]. A tribalistic agent, broadly speaking, is concerned
with the welfare of other agents belonging to the same tribe, rather than the
overall social welfare of everyone participating in the system. A game or system
in which the agents are tribalistic, then, could be said to exhibit both altruism
(within a tribe) and selfishness (in how the tribes interact with each other).
Inspired by the failure of real-world systems, we set out to investigate if this
mixture of altruism and selfishness could in fact lead to even worse outcomes
than either altruism or selfishness alone.

We find that this is indeed the case. In the following sections, we will show
that tribalism leads to a greater Price of Anarchy than either altruism or selfish-
ness in a folklore model of friend cliques, network contribution games [AH12] and
atomic linear routing games [Ros73b]. In each case, we also present upper bounds
for the tribal Price of Anarchy that match the lower bounds demonstrated by
our examples.

2 Main Results

2.1 Definition of Tribalism

Our definition of games in which the players exhibit tribalism is designed to
resemble the definition of α-altruistic extensions that [CdKKS14] make for their
analysis of universal altruism. An analogous definition can be made for utility-
maximisation games. We will represent cost-minimisation games G as the triple
(N, (Σi)i∈N , (ci)i∈N ), where N is the set of players, Σi are the strategies available
to player i and ci(s) is the cost for player i when the vector of strategies chosen
by all players is s ∈

∏
i∈N Σi. We will use (t; s−i) to denote the vector s with

player i’s entry replaced with t.



The Impact of Tribalism on Social Welfare 187

Definition 1. Suppose G = (N, (Σi)i∈N , (ci)i∈N ) is a finite cost-minimisation
game. Let τ : N → N be a function that assigns each player a unique tribe, iden-
tified by a natural number. The τ -tribal extension of G is the cost-minimisation
game Gτ = (N, (Σi)i∈N , (cτ

i )i∈N ), where the cost experienced by every player is
the sum of costs of all players in the same tribe in the original game: for every
i ∈ N and s ∈ Σ = Σ1 × · · · × Σn,

cτ
i (s) =

∑

j∈N :τ(i)=τ(j)

cj(s).

When the partition function τ is constant, our definition agrees with the one
in [CdKKS14] with α = 1, and we say the players are (fully) altruistic. When
τ(i) �= τ(j) for all i �= j, Gτ = G and we say the players are selfish.

We then define the Price of Tribalism for a class of games G and class of
partition functions {TG}G∈G as the supremum of ratios between the social welfare
CG(s) =

∑
i∈N ci(s) of any Nash equilibrium of any τ -tribal extension for τ ∈ TG

and the social optimum, i.e. the lowest attainable social cost. In other words,
the PoT captures how bad a “tribal equilibrium” can get for any game in G
and any pattern of tribal allegiance of the players therein. The definition for
utility-maximisation games is again analogous.

Definition 2. The pure (resp. correlated, strong, mixed...) tribal Price of Anar-
chy (Price of Tribalism, PoT) of a class of games G and class of partition func-
tions for each game T = {TG}G∈G is

PoT(T ,G) = sup
G∈G,τ∈TG

sups∈SGτ CG(s)
infs∈Σ CG(s)

,

where SGτ is the set of pure (correlated, strong, mixed...) Nash equilibria of Gτ .

We can control the tribal structures that we want to consider by choosing
an appropriate class T of partition functions. We will denote the class of all
functions which sort the players into exactly k tribes by T (k)

G = {τ : |τ(N)| = k},
and that of all possible functions as T (∗)

G =
⋃∞

i=1 T (k)
G . The Price of Anarchy

given full altruism (i.e. in the game G1 of [CdKKS14]) then equals PoT(T (1),G).

2.2 Impact of Tribalism on Known Games

We first consider a folklore game which is often invoked as a simple model of
friendship. This game can be seen as a special case of the party affiliation game
of [FPT04], with positive payoffs only. Players choose to associate with one of
two cliques A and B. Each pair of players has an associated utility of being
friends uij , which they can only enjoy if they choose to associate with the same
clique. For this game, a folklore bound we revisit shows that the pure Price of
Anarchy is 2.
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Game PoA Altruistic PoA PoT

Social grouping with 2

cliques

2 (folklore) 2 (Theorem 5) 3 (Theorem 6 )

Social grouping with k

cliques [HSW19]

k (Theorem B.1) k (Theorem B.1) 2k − 1 (Theorem B.2)

Network contribution with

additive rewards

1 [AH12] 1 ( [AH12] , Cor 1 ) 2 (Theorem 7 )

Network contribution with

convex rewards

2 [AH12] 2 (Theorem B.3 [HSW19] ) 4 (Theorem 8 )

Atomic linear routing 5/2 [CK05,AAE13] 3 [CKK+10] 4 (Theorem 9 )

Theorem 1 (Theorems 5; 6; Theorem B.2 in [HSW19]). The pure Price of
Anarchy for the social 2-grouping game F2 under full altruism satisfies

PoT(T (1),F2) = 2

as well. However, the pure Price of Tribalism is

PoT(T (∗),F2) = 3.

More generally, in the social k-grouping game (i.e. with k cliques) with at least
k tribes Fk,

PoT(T (1),Fk) = k and PoT(T (∗),Fk) = 2k − 1,

while the pure Price of Anarchy is k.

A more involved model of friendship networks was first described by Anshele-
vich and Hoefer [AH12]. In the network contribution game NF , we are given a
social graph of vertices representing players and edges representing potential
relationships between them. Each player has a fixed budget bi, which they seek
to allocate among the edges adjacent to them. They then receive a payoff from
each edge based on a symmetric function fe(x, y) = fe(y, x) ∈ F of their own
and the other player’s contribution to that edge.

In the original paper, the authors show different bounds on the Price of Anar-
chy for this game depending on the form the functions fe can take: among others,
for fe(x, y) = ce(x + y) (we call this class of games N+), they show a PoA of 1,
and when fe(x, y) satisfies fe(x, 0) = 0 and each fe is convex in each coordinate
(denoted by NC), the PoA is 2. Moreover, instead of pure Nash equilibria, they
invoke pairwise ones, which are resilient against any pair of associated players
deviating together. In the presence of tribalism, we demonstrate that both of
these bounds deteriorate.

Theorem 2 (Theorems 7; 8; Theorem B.3 in [HSW19]). The pure and pairwise
Price of Tribalism for the network contribution game with additive rewards is

PoT(T (∗),N+) = 2.

The pure and pairwise Price of Tribalism for each of the network contribution
games with coordinate-convex reward functions is

PoT(T (∗),NC) = 4.

Meanwhile, the altruistic Price of Anarchy is still 1 for N+ and 2 for NC .
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Finally, we will turn our attention to atomic linear routing games R [Ros73a],
a popular class of games that model a set of players seeking to each establish a
point-to-point connection over a shared network (such as the internet or roads)
represented by a graph, where the cost to all players using an edge increases
linearly with the number of players using it. In the case of selfish behaviour, these
games are well-known to exhibit a pure Price of Anarchy of 5/2 [CK05,AAE13].
Caragiannis et al. [CKK+10] show that in the case of universal altruism, this
deteriorates to PoT(T (1),R) = 3. We show matching lower and upper bounds
that demonstrate that in the face of tribalism, significantly worse equilibria can
arise. It should be noted that in fact, our result applies to the more general class
of atomic linear congestion games.

Theorem 3 Theorem (9). The Price of Tribalism for the atomic linear routing
game is

PoT(T (2),R) = PoT(T (∗),R) = 4.

3 Related Work

A number of papers [CKK+10,CK08,CdKKS14] concern themselves with how
the Price of Anarchy is affected if players exhibit some concern for social welfare.
In [CKK+10], the players of an atomic linear congestion game are taken to
optimise for a linear combination of their own utility and social welfare, and this
is shown to result in a greater price of anarchy. We draw particular inspiration
from the later treatment by [CdKKS14]. The authors of this paper define a
generalisation of this construction, called the α-altruistic extension of a game,
where α is a parameter determining the level of altruism.

A separate line of work (e.g. [KLS01,AKT08]) considers altruism as a more
localised phenomenon, where the degree of mutual concern between players is
captured by a weighted graph called the social context graph. The model obtained
by augmenting a given game with arbitrary social context graphs defines a
strictly larger class of games than the tribal extensions of this paper, which
accordingly may enable still greater Prices of Anarchy – e.g. 17/3 for atomic
linear congestion games in [BCFG13]. It is in this context that [RS13] defines a
generalisation of Roughgarden’s smoothness [Rou09], which we use a close ana-
logue of. A more comprehensive discussion of related work can be found in the
extended version of this paper [HSW19].

4 Examples

4.1 Social Grouping Games

A simple folklore example of a game with nontrivial and clearly suboptimal Nash
equilibria is the social (k-)grouping game. In this game, the players are nodes of
a directed graph, with edge weights uij ≥ 0 to be thought of as the benefit a
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friendship between players i and j would give player j. We can assume the graph
to be complete, with previously absent edges having weight 0. In general, we do
not assume uij = uji, but both our lower and upper bounds satisfy this assump-
tion. Each player must declare their membership in one of two, or more generally
k “cliques” or “friend groups”, and receives utility ui(s) =

∑
j:s(i)=s(j) uji, that

is, the sum of benefits from all other players in the same clique.
Here, we will focus on the lower bounds 2-clique case; for the fully general

version of these theorems and proofs of the upper bounds, see [HSW19]. It is
not hard to see that in this game, it is optimal for everyone to declare member-
ship in the same clique, therefore being able to reap the benefits of all possible
friendships. However, there exist locally optimal pure Nash equilibria that fall
short of the optimum by up to a factor of two. The following theorem is known
to us from private communication with Éva Tardos.

Theorem 4. The pure Price of Anarchy for the social 2-grouping game is 2.
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Fig. 1. Left: An OPT/2 selfish equilibrium. Right: An OPT/3 tribal equilibrium. (Color
figure online)

This circumstance does not change when players are fully altruistic, and in
fact, the lower bound is established by the following Nash equilibrium in the
same example as seen for the preceding theorem.

In Fig. 1 on the left, we see that by switching to the other clique, each player
would gain (from the unique player that benefits them in the other group) 1
unit of utility, and lose (from the unique player that benefits them in the current
group) 1 as well. Also, the net loss to the rest of the community (as the person
sharing the clique with the switching player would no longer benefit from their
friendship) and the net gain (as one person in the clique they are switching to
would now benefit) each are 1 as well, and so switching would indeed make no
difference to the player’s subjective utility. On the other end, we can establish a
matching upper bound with little effort.

Theorem 5. The Price of Tribalism for the social 2-grouping game and constant
partition functions τ ∈ T (1) is 2.

What happens once different tribes enter the picture? In the above example,
the player’s own loss due to lost friends was neatly cancelled by gained benefit
due to newly gained friends, and likewise the loss to the community was cancelled
by the gain experienced by the members of the defector’s new peer group.
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With multiple tribes, we no longer have to make a putative defector value
the gains and losses of all other players equally. How much worse could we make
the equilibrium by making the player care about the friends he is currently in a
clique with, but wouldn’t care about the benefit he could bring to the members
of the other clique? The defector would have to value the benefit to himself of
the other group’s friendship higher than the sum of the benefit to himself of his
current group’s and the benefit his current group derives from him. Therefore,
the foregone friendship of those who are in the other clique could be worth up to
twice as much to the player before he is incentivised to switch: if we mark the
members of one tribe red and the members of the other tribe blue, the choice of
cliques shown in Fig. 1 on the right is pure Nash. Here, each player would gain
2 by defecting, and their tribe would gain 0; at the same time, they would lose
1, and their community would also lose 1, and so defecting is zero-sum. This
example turns out to be tight for 2-grouping, regardless of how many tribes we
allow the players to belong to.

Theorem 6. The Price of Tribalism for the social 2-grouping game and arbi-
trary partition functions τ ∈ T (∗) is 3.

The above argument can be extended to show that k tribes are in fact always
strictly worse than k −1 whenever there are at least k distinct friendship cliques
to be formed; see Theorem B.2 in [HSW19].

To the extent to which the social grouping game is a useful model of real-
world social networks, we see this result as confirmation of an intuitively relatable
phenomenon: when individuals “fall in with the wrong crowd”, they can get stuck
in local minima that are quite bad for everyone.

4.2 Network Contribution Games

A more involved model of social relationships are the network contribution games
N described by Anshelevich and Hoefer [AH12]. We model a social graph in
which the vertices represent players who can divide up a personal budget of effort
Bi ≥ 0 among their potential relationships, represented by edges. The benefit
each player derives from a relationship e = {i, j} is given by a non-negative,
non-decreasing and symmetric reward function fe : R2

≥0 → R≥0 in terms of the
amount of effort each of them invests, and each player’s total utility is just the
sum of benefits from all relationships.

In the original paper, players are both allowed to deviate individually if it
benefits themselves and to coordinate a joint deviation with a neighbouring
player if it benefits them both; this is both seen as more realistic for pairwise
relationships, and necessary to enable interesting defection patterns for some
classes of payoff functions to exist at all. We will follow this approach in the tribal
extension, calling deviations by single players and connected pairs unilateral
and bilateral respectively. We will denote an equilibrium stable against bilateral
deviations as a pairwise equilibrium, giving rise to a pairwise Price of Tribalism.
Furthermore, we note that all lower-bound examples in this section work even
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when entire tribes are allowed to coordinate their deviation; we will call the
corresponding PoT coordinated.

Definition 3. Some notation for the rest of this section.

(i) Denote by si(e) the amount that player i contributes into edge e in strategy s.
(ii) For each edge e = {i, j}, let we(s) = fe(si(e), sj(e)) be the reward that the

edge pays to both i and j.
(iii) An edge e = {i, j} is called tight in strategy s if si(e) ∈ {0, Bi} and

sj(e) ∈ {0, Bj}, and a strategy s is tight if all edges are tight.

When the reward is just a weighted sum of investments, [AH12] shows that
the PoA is 1. It is easy to establish that this is also the case when players are
altruistic. The proof of the following corollary, as well as the remaining missing
proofs in this section, can be found in the extended version [HSW19].

Corollary 1 (of Theorem 2.8 in [AH12]). PoT(T (1),N+) = 1. However:

Theorem 7. Suppose all reward functions are of the form ce(x + y), where
ce > 0. Then the pure, pairwise and coordinated PoT each is PoT(T (∗),N+) = 2.

Proof (upper bound). As noted in the proof of Theorem 2.8 in [AH12], the social
optimum s∗ is attained when all players invest their entire budget in the respec-
tive adjacent edge e∗ with maximum ce. For a configuration s to be a Nash
equilibrium, no player may want to deviate to investing their budget like this.
If a player i invests si(e) units into an adjacent edge e ∼ i, their tribe earns
2si(e)ce units of utility if the player on the other end is also in the same tribe,
and si(e)ce units otherwise. So

∑
e∼i 2si(e)ce ≥ Bice∗ . Summing over all players,

we find that

U(s) =
∑

i

∑

e∼i

si(e)ce ≥ 1
2

∑

i

Bice∗(i) = U(s∗),

and so the PoT is bounded above by 2. ��

Proof (lower bound). A tight lower bound is given by the following graph:

0 1 0

2(x + y) (x + y)

Here, the two players on the right are in the same tribe, but only the middle
player has any budget. It would be socially optimal for them to invest this in
the edge on the left, attaining a social welfare of 4; however, the configuration
where they instead invest in the edge on the right – yielding a social welfare of
2 – is stable, since the blue tribe’s total utility is 2 regardless of how the middle
player’s budget is allocated. ��

When all reward functions are convex in each coordinate, [AH12] shows a
PoA of 2. In Theorem B.3 of [HSW19], we show that this is also the case given
altruism. Again, though, tribalism leads to deterioration.
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Theorem 8. Suppose all reward functions are convex in each coordinate. Then
the pure, pairwise and coordinated Price of Tribalism each is PoT(T (∗),NC) = 4.

Proof (upper bound). By Claim 2.10 in [AH12], since all reward functions are
coordinate convex, we can assume that the optimum s∗ is tight. Fix a pairwise
tribal Nash equilibrium s. Note that we can normalise the fe’s so that fe(0, 0) =
0. Since the reward functions are non-decreasing, the normalised functions will
still be valid reward functions, and subtracting a constant from utility at both
OPT and Nash can only increase their ratio.

In a tight strategy, each player can invest their budget in at most one edge.
When a player i invests in an edge e in the optimum solution s∗, we will say that
i is a witness to e. Let e = {i, j} be an edge where s∗

i (e) = Bi and s∗
j (e) = Bj ,

so i and j are both witnesses to e. By the Nash condition, if i and j were to
bilaterally deviate to their strategies in s∗, then it must not be beneficial for at
least one of the two players’ tribes. Suppose WLOG that this is i. In the worst
case, i and j were in the same tribe and benefitting other members of their tribe,
and so the tribe loses 2(ui(s) + uj(s)). On the other hand, the worst-case gain
occurs when i and j are in different tribes, and so the switch only benefits i’s
tribe one lot of we(s∗). So by the Nash condition, we can derive

uτ
i (s) ≥ uτ

i (s∗
i ; s

∗
j ; s−i,j) ≥ uτ

i (s) − 2(ui(s) + uj(s)) + we(s∗).

Rearranging the inequality, we have 2(ui(s) + uj(s)) ≥ we(s∗). So we(s∗) is less
than two times the sum of the utilities of its witnesses in s. So suppose instead
e = {i, j} is an edge where s∗

i (e) = Bi and s∗
j (e) = 0, so only i is a witness to e.

By the same reasoning as above, we have

uτ
i (s) ≥ uτ

i (s∗
i ; s−i) ≥ uτ

i (s) − 2ui(s) + we(s∗).

So again, we(s∗) is less than two times the sum of the utilities of its witnesses
in s.

Since each player is marked as a witness to exactly one edge, we can sum the
above inequalities, treating one side as a sum over all edges and the other as a
sum over all players. We thus conclude

U(s∗) = 2
∑

e

we(s∗) ≤ 4
∑

i∈V

ui(s) = 4U(s). ��

Proof (lower bound). The following example in fact provides a matching lower
bound for any function class that contains a coordinate convex function f satis-
fying f(x, 0) = 0 and is closed under scalar multiplication.

1 1 1 1 1 1

εf f ( 1
2 + ε)f εff
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The social optimum, with welfare 4f(1, 1), is attained when the four players in
the middle invest their budgets in the respective adjacent edge with payoff f .
However, we can show that the configuration in which all budget is invested in
the first, third and fifth edge, for a total payoff of (2ε + 1 + 2ε + 2ε)f(1, 1), is
stable against unilateral, bilateral and whole-tribe deviations: No set of players
who are in the same tribe will want to deviate, as this would involve diverting
budget from an edge that has investments on both ends (thus losing utility) to
one that has no investment on the other end (thus not gaining any). Also, the
two (distinct-tribe) players at the second and fourth edge in the graph will not
want to deviate together, because this will not benefit the blue tribe player closer
to the center: supposing they divert b units and the red player diverts a units to
their shared edge, we have

f(a, b)+2(1/2+ε)f(1, 1−b) < 2(1/2+ε)(f(1, b)+f(1, 1−b)) < 2(1/2+ε)f(1, 1)

by non-decreasingness and coordinate convexity. ��

4.3 Atomic Linear Routing Games

Atomic linear routing games were first defined in [Ros73a], and their prices of
anarchy were first studied in [STZ07] in the context of asymmetric scheduling
games; an exposition of this is given in [Rou16]. In these games, each player i is
associated with a pair of vertices (si, ti) of a directed graph, called its source and
sink respectively. We think of the game as modelling multiple players traversing
a road network, incurring some delays along the way depending on the total con-
gestion on each road segment traversed. In the linear case, these delay functions
are assumed to be linear, so each edge e is associated with a positive factor αe

such that when k players are on the edge, each of them incurs a delay of αek
(and hence the sum of their delays is αek

2). Formally, the strategies available to
player i are the set of paths from si to ti in the graph, and the cost incurred by
the player is ci(s) =

∑
e∈si

αe#{j : e ∈ sj}.
By [CK05,AAE13], the pure Price of Anarchy for atomic linear routing games

is exactly 5
2 . In [CKK+10], a weaker upper bound of 3 is shown to hold if players

are at least partially altruistic (optimising some convex combination of their
own utility and social welfare), and this bound is tight when players are fully
altruistic. We will demonstrate that this bound does not hold when players show
tribal altruism towards two or more tribes. The example that gives rise to our
lower bound relies on tribal behaviour that is quite intuitive: at certain interior
nodes (case 1 below), a tribally altruistic player prefers to continue paying a
greater cost (while also causing a great cost to an “outgroup” member) over
switching to a configuration that would benefit both the player and the commons,
but result in a greater cost being paid by the player’s tribe. The matching upper
bound uses smoothness.

Theorem 9. The Price of Tribalism for atomic linear routing games R with
2-tribe partition functions τ ∈ T (2), as well as arbitrary partition functions
in T (∗), is

PoT(T (2),R) = PoT(T (∗),R) = 4.
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Proof (lower bound). Our construction is inspired by the construction in
[CKK+10]. As in that paper, our example will be formulated not as a routing
game, but as a specific load-balancing game in which each player (represented as
an edge) can choose between one of exactly two “servers” or congestible elements
with linear cost functions (represented as the endpoints of the edge). This rep-
resentation can be converted back into a routing game by the following scheme:

f(x)

g(x)
i 
→ si ti

f(x)

g(x)

For every k, we will now construct a game Gk and describe a tribal Nash sk.
The game is played on a binary tree with k + 1 layers of nodes (and hence k
layers of edges). Unlike the construction of [CKK+10] (Theorem 2), we do not
require to introduce additional edges below the tree, since the costs in the layers
of our construction decay fast enough that the total weight of the final layer is
dominated by the rest of the tree.

We set the delay function of the nodes at depths (distances from the root)
i = 0, 1, . . . , k − 1 to be fi(x) = (1/2)i

x. The cost of the nodes in the final layer
shall instead be twice that of the preceding layer: fk(x) = (1/2)k−1 · 2 · x. Each
of the two players (edges) under a node shall belong to different tribes, say the
left edge to tribe 1 and the right edge to tribe 2.

The overall construction will then look like this:

...
...

...

. . .

1x

1
2x

1
4x

1
8x

(
1
2

)k−1
x

(
1
2

)k−1 · 2 · x

We claim that the strategy profile sk in which every player-edge chooses to
occupy the “upper” (closer to the root) vertex is Nash.

Indeed, by analysing the environment of each edge depending on the layer it
is situated in, we can verify the Nash condition for all players.

1. Intermediate layers, up to exchange of tribes:

cx

1
2cx

In this case, at Nash, the top red player incurs a cost
of 1c · 2 + 1

2c2 = 3c (for himself on the two-player
node above, and his tribesman on the two-player node
below). If he were to switch down, his cost would be
0 + 1

2c3 · 2, which is also 3c.
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2. Final layer, up to exchange of tribes:

cx

2c · x

In this case, at Nash, the red player incurs a cost of
2c, as nobody is using the bottom node and he is
sharing the top node with a player from the other
tribe. If he were to switch down, he would be using
the node alone, but his cost would still be 2c.

Summing by layer, the total cost of this assignment then is

CGk
(sk) =

k−1∑

i=0

4 · 2i ·
(

1
2

)i

= 4k.

Here, the cost factor due to congestion on each vertex is red, and the number of
vertices in each layer is blue. The cost factor on each vertex is black. On the other
hand, the social optimum is at least as good as the strategy (sk)∗ where every
player uses the node further “down” (away from the root). In this assignment,
every vertex except for the root is occupied by exactly one player, so the cost of
the optimum is bounded above by the total cost

CGk
(opt) ≤ CGk

((sk)∗) =
k−1∑

i=0

1 · 2i ·
(

1
2

)i

−1
︸︷︷︸
root

+1 · 2k

(
1
2

)k−1

· 2
︸ ︷︷ ︸
bottom-most row

= k − 1 + 4.

Hence we can conclude that as k → ∞, the ratio between the cost of the Nash
equilibrium and the social optimum goes to 4 from below: that is, for any ε,
there is a k such that

CGk
(sk)

CGk
(opt)

≥ 4k

k + 3
≥ 4 − ε

as claimed. ��

In order to establish the upper bound (which holds for any number of tribes),
we will first need to introduce an appropriate instance of the common notion of
smoothness, originally due to Roughgarden [Rou09]. Broadly speaking, a smooth
game is one in which in expectation, a unilateral deviation towards a different
strategy profile moves the deviating player’s welfare towards some multiple of
its welfare in the target profile. This property can be used to deduce a generic
bound on the Price of Anarchy.

Definition 4. Let Gτ be the tribal extension of a finite cost-minimisation game
G. G is (λ, μ, τ)-smooth if for any strategy profiles s, s′ ∈ Σ,

∑

i∈N

(cτ
i (s′

i; s) − (cτ
i (s) − ci(s))) ≤ λC(s′) + μC(s).
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Other work in the literature on altruism and social context uses general-
isations of smoothness. Of particular note is the notion of (μ, λ, α)-altruistic
smoothness in [CdKKS14] and Rahn and Schäfer’s SC-smoothness [RS13]. Our
definition agrees with Roughgarden’s when τ assigns each player to his own tribe,
and with (μ, λ,1)-altruistic smoothness when τ assigns all players to the same
tribe; it also turns out that SC-smoothness is a straightforward generalisation.

Theorem 10. ([RS13]). Let G be a class of games and T = {TG}G∈G be a class
of partition functions for each game. If for every G ∈ G and τ ∈ TG, Gτ is
(λ, μ, τ)-smooth, then PoT(T ,G) ≤ λ/(1 − μ).

Proof. See [HSW19] or [RS13]. ��
The following bound, which is in the spirit of several similar ones in the

literature (e.g. [CdKKS14] Lemma 4.4), will be a key ingredient in the proof to
follow.

Lemma 1. For integers x, y ≥ 0, x(y − x) + xy + x + y ≤ 8
3y2 + 1

3x2.

Proof. See [HSW19]. ��
Lemma 2. Let Gτ be a τ -tribal extension of an atomic linear routing game.
Then Gτ is (8/3, 1/3, τ)-smooth.

Proof. Let s and s∗ be two strategy profiles in any τ -extension of any atomic lin-
ear congestion game. We will use ne(s) = #{i | e ∈ si} to denote the number of
players using edge e in strategy s, and nt

e(s) = #{i | e ∈ si, τ(i) = t} be the num-
ber of players on edge e that belong to tribe t. Then cτ

i (s) =
∑

e αen
τ(i)
e (s)ne(s).

For each player i, we can compute the change in cost of i’s tribe as she switches
from s to s∗,

cτ
i (s∗

i ; s−i) − cτ
i (s) =

∑

e∈s∗
i \si

αe((nτ(i)
e (s) + 1)(ne(s) + 1) − nτ(i)

e (s)ne(s))

+
∑

e∈si\s∗
i

αe((nτ(i)
e (s) − 1)(ne(s) − 1) − nτ(i)

e (s)ne(s))

≤
∑

e∈si∗
αe(nτ(i)

e (s) + ne(s) + 1) +
∑

e∈si

αe(1 − nτ(i)
e (s) − ne(s)).

Here, the last inequality is because we can add the (always positive) contribution
of edges e ∈ si ∩ s∗

i . Then, substituting into the left hand side of Definition 4
and using that ci(s) =

∑
e∈si

αene(s), we find that
∑

i∈N

(cτ
i (s∗

i ; s−i) − cτ
i (s) + ci(s))

≤
∑

tribes t

∑

i∈N :τ(i)=t

⎛

⎝
∑

e∈s∗
i

αe(nt
e(s) + ne(s) + 1) +

∑

e∈si

αe(1 − nt
e(s))

⎞

⎠

=
∑

tribes t

∑

edges e

αe

(
nt

e(s
∗)(nt

e(s) + ne(s) + 1) + nt
e(s)(1 − nt

e(s))
)
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by changing the order of summation and combining the nt
e(s

∗) (resp. nt
e(s))

identical summands on each edge; this is

=
∑

tribes t

∑

edges e

αe

(
nt

e(s)(n
t
e(s

∗) − nt
e(s)) + nt

e(s
∗)ne(s) + nt

e(s
∗) + nt

e(s)
)

≤
∑

edges e

αe (ne(s)(ne(s∗) − ne(s)) + ne(s∗)ne(s) + ne(s∗) + ne(s))

by summing over tribes and using nt
e(s) ≤ ne(s) (as the tribes are a partition of

all players using edge). By Lemma 1, we conclude that this is

≤
∑

edges e

αe

(
8
3
ne(s∗)2 +

1
3
ne(s)2)

)

=
8
3
C(s∗) +

1
3
C(s). ��

Proof (upper bound of Theorem 9). Follows from Lemma 2 and Theorem,10. ��
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[BCFG13] Bilò, V., Celi, A., Flammini, M., Gallotti, V.: Social context congestion
games. Theor. Comput. Sci. 514, 21–35 (2013)

[CdKKS14] Chen, P.-A., de Keijzer, B., Kempe, D., Schäfer, G.: Altruism and its
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F., Flammini, A.: Political polarization on twitter. In: Proceedings of the
Fifth International Conference on Weblogs and Social Media, Barcelona,
Catalonia, Spain, 17–21 July 2011 (2011)

[Eco17] The Economist. Whither nationalism? - Vladimir’s choice, pp. 53–58,
December 2017

[FA08] Fiorina, M.P., Abrams, S.J.: Political polarization in the American public.
Ann. Rev. Polit. Sci. 11(1), 563–588 (2008)

[FPT04] Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure
Nash equilibria. In: Proceedings of the 36th Annual ACM Symposium on
Theory of Computing, Chicago, IL, USA, 13–16 June 2004, pp. 604–612
(2004)

[HSW19] Han, S., Soloviev, M., Wang, Y.: The impact of tribalism on social welfare
(2019). arXiv:1907.06862 [cs.GT]

[KLS01] Kearns, M.J., Littman, M.L., Singh, S.P.: Graphical models for game the-
ory. In: UAI 2001: Proceedings of the 17th Conference in Uncertainty
in Artificial Intelligence, University of Washington, Seattle, Washington,
USA, 2–5 August 2001, pp. 253–260 (2001)

[Ros73a] Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilib-
ria. Int. J. Game Theory 2, 65–67 (1973)

[Ros73b] Rosenthal, R.W.: The network equilibrium problem in integers. Networks
3(1), 53–59 (1973)

[Rou09] Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, 31 May–2 June 2009, pp. 513–522 (2009)

[Rou16] Roughgarden, T.: Twenty Lectures on Algorithmic Game Theory. Cam-
bridge University Press, Cambridge (2016)
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Abstract. We study the performance of a best reply algorithm for
online resource allocation problems with a diseconomy of scale. In an
online resource allocation problem, we are given a set of resources and a
set of requests that arrive in an online manner. Each request consists of a
set of feasible allocations and an allocation is a set of resources. The total
cost of an allocation vector is given by the sum of the resources’ costs,
where each resource’s cost depends on the total load on the resource
under the allocation vector. We analyze the natural online procedure
where each request is allocated greedily to a feasible set of resources
that minimizes the individual cost of that particular request. In the lit-
erature, this algorithm is also known as a one-round walk in congestion
games starting from the empty state. For unweighted resource alloca-
tion problems with polynomial cost functions with maximum degree d,
upper bounds on the competitive ratio of this greedy algorithm were
known only for the special cases d ∈ {1, 2, 3}. In this paper, we show a
general upper bound on the competitive ratio of d(d/W ( 1.2d−1

d+1
))d+1 for

the unweighted case where W denotes the Lambert-W function on R≥0.
For the weighted case, we show that the competitive ratio of the greedy
algorithm is bounded from above by (d/W ( d

d+1
))d+1.

Keywords: Online algorithms · Resource allocation problems ·
Congestion games

1 Introduction

We consider a greedy best reply algorithm for online resource allocation prob-
lems. The set of feasible allocations for each request is a set of subsets of the
resources. Each resource is endowed with a cost function that is a polynomial
with non-negative coefficients depending on the total load of that resource. In
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the online variant considered in this paper, the requests arrive one after another.
Upon arrival of a request, we immediately and irrevocably choose a feasible allo-
cation for that request without any knowledge about requests arriving in the
future. After the sequence of requests terminates, we evaluate the solution qual-
ity of the best reply algorithm in terms of its competitive ratio defined as the
worst-case over all instances of the ratio of the cost of an online solution and the
cost of an offline optimal solution. Here, the cost of a solution is defined as the
sum of the resources’ cost under the allocation vector. The cost of a resource
is the sum of the personal costs of each request on that resource. Specifically,
we consider the natural greedy best reply algorithm that assigns each request to
the allocation that minimizes the personal cost of the request. More formally, in
an unweighted resource allocation problem all requests have a unit weight, the
cost of each resource depends on the number of requests using it. In a weighted
resource allocation problem, each request i has a weight wi, the personal cost of
each request on the resource depends on the total weight of requests using it.

A prominent application of this model is energy efficient algorithm design.
Here, resources model machines or computing devices that can run at different
speeds. A sequence of jobs is revealed in an online manner and has to be allo-
cated to a set of machines such that all machines process the tasks allocated to
them within a certain time limit. As a consequence, machines have to run at
higher speed when more tasks are are allocated to the machine. As its speed is
increased, the energy consumption of a machine increases superlinearly; a typical
assumption in the literature is that the energy consumption is a polynomial with
non-negative coefficients and maximal degree 3 as a function of the load [2]. The
aim is to find an allocation with minimal energy consumption. Our results imply
bounds on the competitive ratio of the natural online algorithm that assigns each
task to a (set of machines) that greedily minimizes the energy consumption of
that task.

Another application of the resource allocation problems considered in this
paper arises in the context of congestion games. Here, requests correspond to
players and feasible allocations correspond to feasible strategies of that player.
In a network congestion game, e.g., the set of strategies of a player is equal to
the set of paths from some designated start node to a designated destination
node in a given graph. Congestion occurs on links that are chosen by multiple
users and is measured in terms of a load-dependent cost function. Polynomial
cost functions play a particularly important role in the field of traffic modeling;
a typical class of cost functions used in traffic models are polynomials with non-
negative coefficients and maximal degree 4 as proposed by the US Bureau of
Public Roads [31]. The online variant of the resource allocation problem mod-
els the situation where users arrive one after another and choose a path that
minimizes their private cost with respect to the users that are already present.
This scenario is very natural, e.g., in situations where requests to a supplier of
connected automotive navigation systems appear online and requests are routed
such that the travel time for each request is minimized individually. Our results
imply bounds on the competitive ratio of the natural greedy algorithm were each
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player chooses a strategy that minimizes their total cost given the set of players
already present in the network.

1.1 Related Work

Already the approximation of optimal solutions to the offline version of resource
allocation problems with polynomial cost functions is very challenging. Rough-
garden [28] showed that there is a constant β > 0 such that the optimal solution
cannot be approximated in polynomial time by a factor better than (βd)d/2 when
cost functions are polynomials of maximum degree d with non-negative coeffi-
cients. This holds even for the unweighted case. For arbitrary cost functions, the
optimal solution cannot be approximated by a constant factor in polynomial time
[25]. For polynomials of maximal degree d, currently the best known approxi-
mation algorithm is due to Makarychev and Srividenko [24] and uses a convex
programming relaxation. They showed that randomly rounding an optimal frac-
tional solution gives an O(

( 0.792d
ln(d+1) )

d
)

approximate solution. This approach is
highly centralized and relies on the fact that all requests are initially known,
which both might be unrealistic assumptions for large-scale problems.

Online and decentralized algorithms that have been studied in the literature
are local search algorithms and multi-round best-reply dynamics. The analysis
of both algorithms is technically very similar to the now-called smoothness tech-
nique to establish bounds on the price of anarchy of Nash equilibria in congestion
games [1,3,14,29]. The price of anarchy is equal to the worst-case ratio of the
cost of a Nash equilibrium and the cost of an optimal solution. To obtain tight
bounds, one solves an optimization problem of the form

min
λ>0,μ∈[0,1)

{ λ

1 − μ
: c(x + y) ≤ λxc(x) + μyc(y),∀x, y ∈ N, c ∈ C

}
,

where C is the set of cost functions in the game. For the case that C is the set
of polynomial functions with maximum degree d and positive coefficients, Aland
et al. [1] used this approach to show that the price of anarchy is Φd+1

d where
Φd ∈ Θ( d

ln(d) ) is the unique solution to (x + 1)d = xd+1. The price of stability,
defined as the worst case of the ratio of the cost of a best Nash equilibrium
and that of a system optimum, was not as well understood until recently when
Christodoulou et al. [13] showed that the price of stability is at least (Φd/2)d+1

for large d. For unweighted congestion games, Christodoulou and Gairing [12]
showed a tight bound on the price of stability in the order of Θ(d). Unfortunately,
a best-response walk towards a Nash equilibrium can take exponential time [16],
even for unweighted congestion games, so that price of anarchy results do not
give rise to polynomial approximation algorithms. For weighted games, best-
response walks may even cycle [22]. On the other hand, random walks [19] or
walks using approximate best-response steps [4] converge to approximate Nash
equilibria in polynomial time. In contrast to this, one-round walks in congestion
games, or equivalently, the best reply algorithm for online resource allocation
problems touches every request only once. Fanelli et al. [17] have shown a linear



The Online Best Reply Algorithm for Resource Allocation Problems 203

lower bound even for linear cost functions if the requests are restricted to make
one best-response starting from a bad initial configuration. This lower bound
does not hold for one round walks starting in the empty state.

The best reply algorithm with respect to the personal cost of a request, which
we analyze here, has also been studied for the online setting before. For weighted
resource allocation problems with linear cost functions, it turns out that the algo-
rithm admits the same competitive ratio as the best reply algorithm with respect
to the total cost function. There is a tight bound on the competitive ratio of
3 + 2

√
2 ≈ 5.83, where the lower bound is due to Caragiannis et al. [11] and

the upper bound is due to Harks et al. [21]. For d > 1, a first lower bound of
Ω((d/ ln 2)d+1) has been shown by Caragiannis et al. [10]. A first upper bound
dates back to the mid 90s when Awerbuch et al. [5] gave an upper bound on the
competitive ratio of personal cost best replies of Ψd+1

d , where Ψd is defined to
be the unique solution to the equation (d + 1)(x + 1)d = xd+1. However, they
only considered the setting of singleton requests where each allocation contains
a single resource only and all cost functions are equal to the identity. Bilò and
Vinci [8] show that the worst-case competitive ratio is in fact attained for single-
tons and mention that the tight competitive ratio is Ψd+1

d , but their paper does
not contain a proof of the latter result. Prior to that, Harks et al. [21] noted that
the competitive ratio in the order of O(1.77ddd+1). We here slightly improve
the bound to a closed form as we note that Ψd ≤ d/W ( d

d+1 ), where W is the
Lambert-W function. This recovers the bound by Harks et al. in the limit since
1/W ( d

d+1 ) ≈ 1.77 for d large enough.
For unweighted instances it turns out that the personal cost best reply algo-

rithm admits a better competitive ratio than the total cost best reply algorithm,
where requests are allocated greedily such that the total cost of the current solu-
tion is minimized. For d = 1, the tight bound is (φ+1)2

φ ≈ 4.24 where φ = 1+
√
5

2
is the golden ratio. The lower bound is due to Bilò et al. [7] and the upper bound
is due to Christodoulou et al. [15]. For arbitrary d, the lower bound of (d+1)d+1

by Farzad et al. [18] also holds in this setting. There was no general upper bound
known.

Harks et al. [20,21] and Farzad et al. [18] both also studied a setting that is
equivalent to ours. However, they measure cost slightly different as they define
the cost of a resource as the integral of its cost function from 0 to the current load.
This different cost measure leads also to a different notion of the private cost
of a request. However, as remarked by Farzad et al. [18], the models are equiv-
alent when only polynomial costs are considered. Additionally, they introduced
a generalization of the model, where requests are only present during certain
time windows. It is easy to see that all our results also hold in this slightly more
general setting.

Close to our work is the analysis of best reply algorithms with different
personal cost functions. Mirrokni and Vetta [26] were the first to study best-
response dynamics with respect to social cost. Bjelde et al. [9] analyzed the
solution quality of local minima of the total cost function both for weighted
and unweighted resource allocation problems. By a result of Orlin et al. [27],
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this admits a PTAS in the sense that an (1 + ε)-approximate local optimal
solution can be computed in polynomial time via local improvement steps. Best
reply algorithms with respect to the social cost function instead of the personal
cost function have also been well studied for the online setting. For weighted
resource allocation problems and d = 1, there is a tight bound of 5.83. The upper
bound is due to Awerbuch et al. [5] and the lower bound due to Caragiannis
et al. [11]. For larger d, there is a lower bound of Ω((d/ ln 2)d+1) by Caragiannis
et al. [10] and an upper bound of O((d/ ln 2)d+1) by Bilò and Vinci [8]. For
unweighted resource allocation problems there is a tight bound of 5.66 in the
linear case. The upper bound is due to Suri et al. [30] and the lower bound due
to Caragiannis et al. [11]. For larger d, there is a lower bound of (d + 1)d+1 by
Farzad et al. [18]. Up to our knowledge, there is no known upper bound that
separates the unweighted case from the weighted case.

1.2 Our Contribution

We show upper bounds on the competitive ratio of the best reply algorithm in
online resource allocation problems with cost functions that are polynomials of
maximal degree d with non-negative coefficients. For unweighted instances, we
provide the first bound that hold for any fixed value of d. Prior to our results,
non-trivial upper bounds were only known for the cases d = 1 by Christodoulou
et al. [15] and for the cases d ∈ {2, 3} by Bilò [6]. To the best of our knowledge,
despite the wealth of results for weighted problems, prior to this work, no com-
petitive ratio for any d > 3 or the asymptotic behavior as d → ∞ has been known
that holds specifically for the unweighted case. We close this gap and show that
the best reply algorithm is d(Ξdd)d+1 competitive, where Ξd ≤ 1/W ( 1.2d−1

d+1 ).
Here W is the Lambert-W function on R≥0. Thus, we obtain a concrete factor
that holds for any d. We further show that limd→∞ Ξd ≈ 1.523 thus also giving
the asymptotic behavior of the bound.

For weighted resource allocation problems, previous work [5,8] has estab-
lished an upper bound of Ψd+1

d , where Ψd is defined to be the solution to the
equation (d+1)(x+1)d = xd+1. In the full version [23], we also add a short proof
for this result since the proof of Awerbuch et al. [5] does only consider single-
tons with identical resource cost functions and the paper by Bilò and Vinci [8]
mentions the result without a proof. We also show that Ψd ≤ d/W ( d

d+1 ). This
refines an upper bound of O(1.77ddd+1) obtained by Harks et al. [21]. Note that
in the limit, both results coincide as limd→∞ Ψd ≈ 1.77.

Both our main result concerning unweighted games and our proofs for weight-
ed games allow for the first time to separate the competitive ratios of greedy
personal best replies for unweighted and weighted problems, respectively. While
for weighted games the competitive ratio is about (1.77d)d+1, for unweighted
games it is bounded from above by (1.523d)d+1 for d large enough.

Due to space constraints, some proofs and technical lemmas are deferred to
the full version [23].
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2 Preliminaries

We consider online algorithms for unsplittable resource allocation problems. Let
R be a finite set of resources r each endowed with a non-negative cost function
cr : R≥0 → R≥0. There is a sequence of requests R = (w1,S1), . . . , (wn,Sn). At
time step i, the existence of request (wi,Si) is revealed, where wi is its weight,
and Si ⊆ 2R is the set of feasible allocations. If wi = 1 for all i ∈ {1, . . . , n}, we
call the instance unweighted. Upon arrival of request i, an allocation Si ∈ Si has
to be fixed irrevocably by an online algorithm.

We use the notation [n] = {1, . . . , n}. For i ∈ [n], let S≤i = S1×· · ·×Si−1×Si

be the set of all feasible allocation vectors up to request i. For a resource r ∈ R
and an allocation vector S≤i = (S1, . . . , Si−1, Si) ∈ S≤i we denote the load of r
under S≤i by wr(S≤i). In the following, we write S and S instead of S≤n and
S≤n. The total cost of an allocation vector S is defined as

C(S) =
∑

i∈[n]

∑

r∈Si

wicr(wr(S)) =
∑

r∈R

wr(S)cr(wr(S)) .

Given a sequence of requests R, the offline optimal solution value is denoted by
OPT(R) = minS∈S C(S). As a convention, the allocations used in the optimal
solution are denoted by S∗. For a sequence of requests R and i ∈ [n], denote
by R≤i = (w1,S1), . . . , (wi−1,Si−1), (wi,Si) the subsequence of requests up to
request i. An online algorithm ALG is a family of functions fi : R≤i → Si

mapping partial requests up to request i to a feasible allocation for request i.
For a sequence of requests R, the cost of an online algorithm ALG with a family
of functions (fi)i∈N is the given by ALG(R) = C(S) where S = S1 × · · · × Sn

and Si = fi(R≤i).
We measure the performance of an online algorithm by its competitive ratio

which is ρ = supR ALG(R)/OPT(R) where the supremum is taken over all finite
sequences of requests for which OPT(R) > 0. When the sequence of requests R
is clear from context, we write ALG and OPT instead of ALG(R) and OPT(R).

We analyze a very easy and natural online algorithm, which we call best
reply algorithm. Let again denote S<i the allocation vector of the algorithm
before the i-th request is revealed. Then, wicr(wr(S<i)) is the per request cost
at the arrival of request i on resource r. Upon arrival of request i, the best reply
algorithm chooses an allocation Si ∈ Si that minimizes the cost of that request,
i.e. we choose some allocation Si such that,

∑

r∈Si

wicr(wr(S<i) + wi) ≤
∑

r∈S′
i

wicr(wr(S<i) + wi) , (1)

for all other feasible allocations S′
i ∈ Si. This choice is motivated by best response

moves in the corresponding congestion game. Note that the response steps used
by the best reply algorithm are typically tractable and therefore the competitive
ratio ρ is also the approximation factor for the corresponding approximation
algorithm.
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3 Unweighted Resource Allocation Problems

In this section, we consider unweighted resource allocation problems with poly-
nomial cost functions and derive an upper bound on the competitive ratio for
the best reply algorithm. We give a general analysis and show a bound of
d(Ξdd)d+1 ∈ O(((Ξd + ε)d)d+1) for cost functions in Cd. Here, Cd denotes the
set of polynomials with non-negative coefficients and maximum degree d. Ξd is
the unique solution to the equation d

(
2xe1/x + x2 − e2/x − x2e1/x

)
= e

2
x and

limd→∞ Ξd ≈ 1.523. This implies an exponential gap between the weighted and
the unweighted case since for the weighted case the competitive ratio is about
(1.77d)d+1.

Recall that the sequence of requests is given by R = (1,S1), . . . , (1,Sn) for
unweighted resource allocation problems, i.e., wi = 1 for all i ∈ [n]. This implies
that the cost functions cr directly define the per request cost on this resource,
since wicr = cr in this case. The cost functions cr now only depend on the
number of requests that have chosen some resource r.

We use the definition of the algorithm in (1) to derive an optimization prob-
lem for all resources such that the solution to the problem relates to the competi-
tive ratio of the algorithm. This approach is also known as the (λ, μ)-smoothness
framework. In this section, the constraints in the optimization problem only have
to hold for integral x = wr(S∗) and y = wr(S).

To retain generality, let dr ≤ d denote the maximal degree of the cost function
cr. We show that for every resource r, the smoothness condition is fulfilled for
λd = (Ξdd)d+1 and μd = 1 − 1

d . Towards this end, we make a case distinction
between (1) x = 0, (2) x 
= 0, y ≤ 1

W (1.27)dr, (3) x = 1, y > 1
W (1.27)dr and (4)

x ≥ 2, y > 1
W (1.27)dr.

Theorem 1. For any d ∈ N, the best reply algorithm is d(Ξdd)d+1 competitive
for unweighted resource allocation problems with cost functions in Cd. Here, Ξd

is the unique solution to

d
(
2xe1/x + x2 − e2/x − x2e1/x

)
= e

2
x

and Ξd ≤ 1

W( 1.20d
d+1 ) .

Throughout this proof, we reference Lemmas 5–13 which are all included in
the full version [23].

Proof. First, note that the best reply algorithm is 4.24 competitive for d = 1
due to the work of Christodoulou, Mirrokni and Sidiropoulos [15]. We show in
Lemma 6 that Ξ1 ≥ 1

W (1.27/2) ≈ 2.39, i.e. we can assume d ≥ 2.
For the proof, we will assume wlog. that resource r has cost equal to xdr with

dr ≤ d. If this is not the case, we can achieve this setting by splitting up resources.
Additionally, we assume that there are no resources r with wr(S) = 0 and
wr(S∗) > 0. If this is not the case, ignoring any contribution of these resources
to C(S∗) does only increase the competitive ratio.
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The algorithm minimizes the current request’s cost in each step, that is,∑
r∈Si

(wr(S<i) + 1)dr ≤ ∑
r∈S∗

i
(wr(S<i) + 1)dr . The total cost can be written

as the sum of the marginal increases to the total cost functions, i.e. we can write

C(S) =
∑

i∈[n]

∑

r∈Si

(
(wr(S<i) + 1)dr+1 − wr(S<i)dr+1

)

=
∑

i∈[n]

∑

r∈Si

(
dr∑

k=0

wr(S<i)k

(
dr + 1

k

)
+ (wr(S<i) + 1)dr · (dr + 1)

)

−
∑

i∈[n]

∑

r∈Si

(
(wr(S<i) + 1)dr · (dr + 1)

)

=
∑

i∈[n]

∑

r∈Si

(

(dr + 1) (wr(S<i) + 1)dr +
dr∑

k=0

wr(S<i)k (dr + 1)!
k!(dr + 1 − k)!

)

−
∑

i∈[n]

∑

r∈Si

dr∑

k=0

(
wr(S<i)k dr!

k!(dr − k)!
· (dr + 1)

)
,

where we used that
∑dr+1

k=0 ak
(
dr+1

k

)
= (a + 1)dr+1 in the first step. We get

C(S) ≤
∑

i∈[n]

∑

r∈S∗
i

(dr + 1) (wr(S<i) + 1)dr

−
∑

i∈[n]

∑

r∈Si

dr−1∑

k=0

wr(S<i)k

(
dr + 1

k

)
(dr − k) ,

by using the definition of the algorithm. In the following, we use wr(S<i) ≤ wr(S)
and that wr(S<i)k can be written as j − 1 in the second sum, if i is the j-th
request that has been allocated to r in S. We obtain

C(S) ≤
∑

r∈R

(dr+1)wr(S∗)(wr(S)+1)dr −
∑

r∈R

wr(S)∑

j=1

dr−1∑

k=0

(j − 1)k

(
dr+1

k

)
(dr−k)

Now we bound the inner sum of the triple sum with the integral, which yields

∑

r∈R

wr(S)∑

j=1

dr−1∑

k=0

(j − 1)k
(
dr + 1

k

)
(dr − k)

≥
∑

r∈R

dr−1∑

k=0

(
dr + 1

k

)
(dr − k)

∫ wr(S)

1

(j − 1)kdj

=
∑

r∈R

dr−1∑

k=0

(
dr + 1

k

)
(dr − k)

1

k + 1
(wr(S) − 1)k+1

=
∑

r∈R

dr∑

k=1

(
dr + 1

k

)
dr − k + 1

dr − k + 2
(wr(S) − 1)k .
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At this point, we split the sum and apply a variant of the binomial theorem used
above as well as

∑d+1
k=0(a − 1)k

(
d+2

k

)
= ad+2 − (a − 1)d+2. We get

∑

r∈R

dr∑

k=1

(
dr + 1

k

)
dr − k + 1
dr − k + 2

(wr(S) − 1)k

=
∑

r∈R

dr+1∑

k=0

(
(wr(S) − 1)k

(
dr + 1

k

)
dr − k + 1
dr − k + 2

)
− dr + 1

dr + 2

=
∑

r∈R

dr+1∑

k=0

(
(wr(S) − 1)k

(
dr + 1

k

)(
1 − 1

d − k + 2

))
− dr + 1

dr + 2

=
∑

r∈R

wr(S)d+1 −
dr+1∑

k=0

(
(wr(S) − 1)k

(
dr + 2

k

)
1

dr + 2

)
− dr + 1

dr + 2

=
∑

r∈R

wr(S)d+1 − (wr(S)dr+2 − (wr(S) − 1)dr+2)
dr + 2

− dr + 1
dr + 2

.

In Proposition 1, we will show that choosing λd = (Ξdd)d+1 and μd = 1 − 1
d

fulfills the condition

(dr+1)(y+1)drx − ydr+1 +
ydr+2 − (y−1)dr+2

dr + 2
+

dr+1
dr+2

≤ λdx
dr+1 + μdy

dr+1

(2)

for all x ∈ N≥0, y ∈ N≥1 and dr ≤ d. Note that we will only show the inequality
for y ≥ 1. However, omitting resources with wr(S) = 0 can only increase the
approximation bound. Applying this to all r ∈ R yields

C(S) ≤ λdC(S∗) + μdC(S),

that is, a competitive ratio of λd

1−μd
. Thus, we seek to minimize λd

1−μd
subject

to the inequality (2). We will show in Proposition 1 that there are λd and μd

such that λd

1−μd
is upper bounded by d(Ξdd)d+1. In Lemma 6, we show that

1

W( 1.27d−1
d+1 ) ≤ Ξd ≤ 1

W( 1.20d−1
d+1 ) . Note that a numerical analysis shows that

limd→∞
d+1

√
dΞd ≈ 1.523, i.e. the value for Ξd seems to be quite close to our

lower bound for large d, since limd→∞ 1
W ( 1.27d−1

d+1 )
≈ 1.520. �

It remains to show that there are choices for λd and μd that give the claimed
competitive ratio. The proof of the following proposition relies on several techni-
cal lemmas which are, due to space constraints, deferred to the full version [23].

Proposition 1. For any 1 ≤ dr ≤ d, there are λd, μd with

λd

1 − μd
≤ d(Ξdd)d+1,
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and (dr + 1)(y + 1)drx − ydr+1 + ydr+2−(y−1)dr+2

dr+2 + dr+1
dr+2 ≤ λdx

dr+1 + μdy
dr+1

for all x ∈ N≥0, y ∈ N≥1 and dr ≤ d, where Ξd is the solution to the equation
d(2xe

1
x + x2 − e

2
x − x2e

1
x ) = e

2
x .

Proof. Let 1 ≤ dr ≤ d. In this proof, we will distinguish 4 cases. First, we
show that the inequality holds for x = 0. Then, we show the result for x 
= 0,
y ≤ dr

W (1.27) . Third, we consider the case x = 1, y > dr

W (1.27) and finally we finish
the proof with the case x ≥ 2, y > dr

W (1.27) . For all 4 cases, we choose μd = 1− 1
d

and λd = (Ξdd)d+1.

Case 1: x = 0.
In this case, (dr+1)(y+1)drx = 0. In Lemma 7, we show ydr+2−(y−1)dr+2+dr+1

dr+2 ≤
ydr+1 ∀y ∈ N≥1, i.e. we get

(dr + 1)(y + 1)drx − ydr+1 +
ydr+2 − (y − 1)dr+2

dr + 2
+

dr + 1
dr + 2

≤ 0

for x = 0, all dr ∈ N≥1 and all y ∈ N≥1. This finishes the proof of Case 1.
For Cases 2–4, we can assume x ≥ 1. In order to show that the constraint is

fulfilled for all x, y ∈ N≥1 for the choice μd = 1 − 1
d , λd = (Ξdd)d+1, note that

the constraint is equivalent to

max
x,y∈N≥1

⎧
⎨

⎩
(dr + 1)(y + 1)drx − ydr+1 + ydr+2−(y−1)dr+2+dr+1

dr+2 − (1 − 1
d )ydr+1

xdr+1

⎫
⎬

⎭

≤ (Ξdd)d+1 .

Case 2: x 
= 0, y ≤ dr

W (1.27) .

First, we will reconsider the inequality ydr+2−(y−1)dr+2+dr+1
dr+2 ≤ ydr+1, which has

been proven in Case 1. We get

max
x,y∈N≥1,

y≤ dr
W (1.27)

⎧
⎨

⎩
(dr + 1)(y + 1)drx − ydr+1 + ydr+2−(y−1)dr+2+dr+1

dr+2 − (1 − 1
d )ydr+1

xdr+1

⎫
⎬

⎭

≤ max
x,y∈N≥1,

y≤ dr
W (1.27)

{
(dr + 1)(y + 1)drx

xdr+1

}
≤ max

x,y∈N≥1,

y≤ dr
W (1.27)

{
(dr + 1)(y + 1)dr

}

≤
(

dr

W (1.27)
+ 1

)dr+1

≤
(

d

W (1.27)
+ 1

)d+1

≤ (Ξdd)d+1,

where the last inequality is shown in Lemma 8.

Case 3: x = 1, y > dr

W (1.27) .
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We start the proof of this case by plugging in x = 1. This yields

M := max
y

{
(dr + 1)(y + 1)dr − (2 − 1

d
)ydr+1 +

ydr+2 − (y − 1)dr+2 + dr + 1
dr + 2

}

≤ max
y

{

ydr

(

(dr + 1)
(

1 +
1
y

)dr

−
(

2 − 1
dr

)
y + y2

1 − (1 − 1
y )dr+2

dr + 2

)}

+
dr + 1
dr + 2

.

We use that (1 + 1
y )y ≤ e ≤ (1 + 1

y )y+1 and get

M ≤ max
y

{

ydr

(

(dr + 1)edr/y −
(

2 − 1
d

)
y + y2 1 − e− dr+2

y−1

dr + 2

)}

+
dr + 1
dr + 2

.

In the following, we define c = y
dr

, replace y with cdr, and maximize over c
instead of y. We then obtain

M < max
c

{
(cdr)dr

(
(dr + 1)e

1
c −

(
2 − 1

d

)
cdr + c2dr

(
1 − e− 1

c

))}
+

dr + 1
dr + 2

.

Here we use 1−e− 1
c

dr
> 1−e

− dr+2
cdr−1

dr+2 ⇔ 2 > (dr + 2)e− 1
c − dre

− dr+2
cdr−1 . This is shown

in Lemma 9.
In the following, we will not explicitly calculate the maximizing c, but will

derive an upper bound Ξdr
on the maximum possible c, dependent on dr. In

order to do so, note that we show in Lemma 10 that the term (dr +1)(e)
1
c − (2−

1
d )cdr+c2dr(1−e− 1

c ) is monotonically decreasing in c. Additionally, note that the
whole expression is negative, if the term (dr +1)e1/c − (2− 1

d )cdr +c2dr(1−e− 1
c )

is negative. Thus, we conclude that the maximum is not attained for all c such
that

dr < − e
1
c

e
1
c − (2 − 1

d )c + c2 − c2e− 1
c

=
e

2
c

(2 − 1
d )ce

1
c + c2 − e

2
c − c2e

1
c

.

We conclude that Ξdr
is defined such that

dr =
e

2
Ξdr

(2 − 1
d )Ξdr

e
1

Ξdr + Ξ2
dr

− e
2

Ξdr − Ξ2
dr

e
1

Ξdr

is an upper bound on the maximizing c. Lemma 5 shows that Ξdr
is unique.

We conclude that cdr ≤ Ξdr
dr, then we argue in Lemma 12 that Ξdr

dr is
monotonically increasing in dr and thus, can be upper bounded by Ξdd. We use



The Online Best Reply Algorithm for Resource Allocation Problems 211

that the second part of the product is decreasing in c to get

(Ξdd)d max
c

{(
(dr + 1)e

1
c − (2 − 1

d
)cdr + c2dr

(
1 − e− 1

c

))}
+

d + 1
d + 2

≤ (Ξdd)d

(

(dr + 1)eW (1.27) − 2dr − 1
W (1.27)

+
dr

(
1 − e−W (1.27)

)

W (1.27)2

)

+
d + 1
d + 2

≤ (Ξdd)d (0.0042d + 3.46) +
d + 1
d + 2

≤ (Ξdd)d+1 ,

where the last inequality can be checked separately for d = 2 and d ≥ 3 with
the help of the lower bound on Ξd shown in Lemma 6.

Case 4: x ≥ 2, y > dr

W (1.27) .

We use the inequality ydr+2−(y−1)dr+2+dr+1
dr+2 ≤ ydr+1 from Case 1 again and get

M := max
x≥2,

y> dr
W (1.27)

⎧
⎨

⎩
(dr + 1)(y + 1)drx − ydr+1 + ydr+2−(y−1)dr+2

dr+2 − (1 − 1
d )ydr+1

xdr+1

⎫
⎬

⎭

≤ max
x≥2,y> dr

W (1.27)

{
(dr + 1)(y + 1)drx − (1 − 1

d )ydr+1

xdr+1

}

.

Again, we write y = c · dr and optimize over all c > 1
W (1.27) instead. We write

M = max
x≥2,c> 1

W (1.27)

{
(dr + 1)(cdr + 1)drx − (1 − 1

d )(cdr)dr+1

xdr+1

}

≤ max
x≥2,c> 1

W (1.27)

{
( c

x
dr

)dr

(

(dr + 1)
(

1 +
1

cdr

)dr

−
(

1 − 1
d

)
cdr

x

)}

≤ max
x≥2,c> 1

W (1.27)

{( c

x
dr

)dr
(
(dr + 1)e

1
c − (dr − 1)

c

x

)}
. (3)

We will proceed by deriving an upper bound on c
x for the maximizing c and x.

In order to do so, set z = c
x and consider the second part of the product.

(dr + 1)e
1
c − (dr − 1)

c

x
= (dr + 1)e

1
xz − (dr − 1)z ≤ (dr + 1)e

1
2z − (dr − 1)z

This term is monotonically decreasing in z, thus we get an upper bound on z,
maximizing term (3) by setting

(dr + 1)e
1
2z − (dr − 1)z = 0 ⇔ 1

2z
e

1
2z =

dr − 1
2(dr + 1)

⇔ z =
1

2W
(

dr−1
2(dr+1)

) ,
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i.e. we assume without loss of generality in term (3) that z:= c
x ≤ 1

2W( dr−1
2(dr+1) )

.

This leads to

M ≤ max
z≤ 1

2W( dr−1
2(dr+1) )

{
(zdr)

dr

(
(dr + 1)eW (1.27) − (dr − 1)z

)}
.

Lemma 13 shows that not only the maximum of (3) but also the maximum of
the upper bound is attained at z = 1

2W( dr−1
2(dr+1) )

. We conclude that we can upper

bound the term by
⎛

⎝ dr

2W
(

dr−1
2(dr+1)

)

⎞

⎠

dr
⎛

⎝(dr + 1)eW (1.27) − (dr − 1)
1

2W
(

dr−1
2(dr+1)

)

⎞

⎠ .

It remains to show that this is in fact upper bounded by (Ξdd)d+1. This can be
easily checked for d = 2, 3, 4, 5 by using Ξd ≥ 1

W( 1.27d−1
d+2 ) from Lemma 6. For

d ≥ 6, the right side of the expression is bounded by
⎛

⎝dr

⎛

⎝eW (1.27) − 1

2W
(

dr−1
2(dr+1)

)

⎞

⎠ + eW (1.27) +
1

2W
(

dr−1
2(dr+1)

)

⎞

⎠

≤
(

dr

(

eW (1.27) − 1
2W

(
1
2

) +
1
6

(

eW (1.27) +
1

2W
(
1
6

)

)))

≤ 1.41dr .

This gives us
⎛

⎝ dr

2W
(

dr−1
2(dr+1)

)

⎞

⎠

dr

(1.41dr) ≤ (Ξdr
dr)

dr+1 ≤ (Ξdd)d+1
.

Here, we used that Ξd ≥ 1
W (1.27) ≈ 1.52 (Lemma 6) and that Ξdr

dr is increasing
in dr, see Lemma 12. �

4 Weighted Resource Allocation Problems

In this section, we revisit some upper bound on the competitive ratio of the best
reply algorithm for weighted resource allocation problems with polynomial cost
functions in Cd. Awerbuch et al. [5] have shown an upper bound of (Ψd)

d+1, where
Ψd is the solution to the equation (d + 1)(x + 1)d = xd+1 for singleton instances
where the cost of each resource is the identity. Bilò and Vinci [8] showed that
the worst case for the competitive ratio is obtained for singletons but their proof
crucially relies on non-identical cost functions. Bilò and Vinci also claimed that
the Ψd is the correct competitive ratio for arbitrary games, but their paper does
not contain a proof of this result. For completeness, a proof of Theorem 2 is
contained in the full version.
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Theorem 2 (Bilò and Vinci [8]). For polynomial costs in Cd, the competitive
ratio of the best reply algorithm is at most Ψd+1

d where Ψd is the unique solution
to the equation (d + 1)(x + 1)d = xd+1.

The following theorem provides a closed expression that approximates Ψd

with small error.

Theorem 3. The equation (d + 1)(x + 1)d = xd+1 has a unique solution Ψd

in R≥0 for all d ∈ R≥0. Moreover, Ψd ∈ [d/W ( d
d+1 ) − 1, d/W ( d

d+1 )], where
W : R≥0 → R≥0 is the Lambert-W function on R≥0.

Proof. We first show that the equation (d + 1)(x + 1)d = xd+1 has a unique
solution. Since this solution is not x = 0 we may assume x 
= 0, take logarithms
and obtain the equivalent equation log(d + 1) + d log(x + 1) = (d + 1) log x.
Rearranging terms yields

log(x + 1) − log(x) =
log x − log(d + 1)

d
. (4)

The left hand side of this equation is decreasing in x and takes values in (0,∞).
The right hand side is increasing in x and for x ∈ [d + 1,∞), it takes values in
(0,∞). Thus, the equation has a unique solution which we denote by Ψd.

To get an approximate closed form expression for Ψd, we use (4) and the
mean value theorem to obtain 1

ξ = log Ψd−log(d+1)
d for some ξ ∈ (Ψd, Ψd + 1). We

obtain

Ψd ∈
{

x ∈ [d + 1,∞) :
1

x + 1
≤ log x − log(d + 1)

d
≤ 1

x

}

.

As log x is strictly increasing in x and both 1
x+1 and 1

x are decreasing, we obtain
Ψd ∈ [a, b] where a is the unique solution to the equation d

x+1 = log x− log(d+1)
and b is the unique solution to the equation d

x = log x − log(d + 1). The latter
equation gives

d

b
= log

b

d + 1
⇔ ed/b d

b
=

d

d + 1
.

Using that W is bijective on R≥0 and that W (xex) = x for all x ∈ R≥0, this
implies d

b = W ( d
d+1 ) and, hence, b = d/W ( d

d+1 ). To get a bound on a, note that
a ≥ a′ where a′ solves d

a′+1 = log(a′ + 1) − log(d + 1). Substituting b = a′ + 1,
we obtain a′ = d/W ( d

d+1 ) − 1 as before. �
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Abstract. We study a security game over a network played between a
defender and k attackers. Every attacker chooses, probabilistically, a node
of the network to damage. The defender chooses, probabilistically as well,
a connected induced subgraph of the network of λ nodes to scan and clean.
Each attacker wishes to maximize the probability of escaping her clean-
ing by the defender. On the other hand, the goal of the defender is to
maximize the expected number of attackers that she catches. This game
is a generalization of the model from the seminal paper of Mavronico-
las et al. [11]. We are interested in Nash equilibria of this game, as well
as in characterizing defense-optimal networks which allow for the best
equilibrium defense ratio; this is the ratio of k over the expected num-
ber of attackers that the defender catches in equilibrium. We provide
characterizations of the Nash equilibria of this game and defense-optimal
networks. This allows us to show that the equilibria of the game coincide
independently fromthe coordination or not of the attackers. In addition,we
give an algorithm for computing Nash equilibria. Our algorithm requires
exponential time in the worst case, but it is polynomial-time for λ con-
stantly close to 1 or n. For the special case of tree-networks, we further
refine our characterization which allows us to derive a polynomial-time
algorithm for deciding whether a tree is defense-optimal and if this is the
case it computes a defense-optimal Nash equilibrium. On the other hand,
we prove that it is NP-hard to find a best-defense strategy if the tree is not
defense-optimal. We complement this negative result with a polynomial-
time constant-approximation algorithm that computes solutions that are
close to optimal ones for general graphs. Finally, we provide asymptotically
(almost) tight bounds for the Price of Defense for any λ; this is the worst
equilibrium defense ratio over all graphs.
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1 Introduction

With technology becoming a ubiquitous and integral part of our lives, we
find ourselves using several different types of “computer” networks. An impor-
tant issue when dealing with such networks, which are often prone to security
breaches [6], is to prevent and monitor unauthorized access and misuse of the
network or its accessible resources. Therefore, the study of network security has
attracted a lot of attention over the years [18]. Unfortunately, such breaches are
often inevitable, since some parts of a large system are expected to have weak-
nesses that expose them to security attacks; history has indeed shown several
successful and highly-publicized such incidents [17]. Therefore, the challenge for
someone trying to keep those systems and networks of computers secure is to
counteract these attacks as efficiently as possible, once they occur.

To that end, inventing and studying appropriate theoretical models that cap-
ture the essence of the problem is an important line of research, ongoing for a few
years now [13,14]. Here, extending some known models for very simple cases of
attacks and defenses [11,12], we introduce and analyze a more general model for a
scenario of network attacks and defenses modeling it as a defense game.

The Network Security Game. We follow the terminology established by
the seminal paper of Mavronicolas et al. [12]. We consider a network whose
nodes are vulnerable to infection by threats called attackers; think of those as
viruses, worms, Trojan horses or eavesdroppers [7] infecting the components of a
computer network. Available to the network is a security software (or firewall),
called the defender. The defender is only able to “clean” a limited part of the
network from threats that occur; the reason for the limited cleaning capacity
of the defender may be, for example, the cost of purchasing a global security
software. The defender seeks to protect the network as much as possible, and
on the other hand, every attacker seeks to increase the likelihood of not being
caught. Both the attackers and the defender make individual decisions for their
positioning in the network with the aim to maximize their own objectives.

Every attacker targets (and attacks) a node chosen via her own probability
distribution over the nodes of the network. The defender cleans a connected
induced subgraph of the network with size λ, chosen via her own probability
distribution over all connected induced subgraphs of the graph with λ nodes.
The attack of a particular attacker is successful unless the node chosen by the
attacker is incident to an edge (link) being cleaned by the defender, i.e. to an edge
belonging in the induced subgraph chosen by the defender. One could equiva-
lently think of the defender selecting a set of λ connected nodes to defend, and an
attacker is successful if and only if she attacks a node that is not being defended.
Since attacks and defenses over a large computer network are self-interested pro-
cedures that seek to maximize damage and protection, respectively, it is natural
to model this network security scenario as a non-cooperative strategic game on
graphs with two kinds of players: k ≥ 1 attackers, each playing a vertex of the
graph, and a single defender playing a connected induced subgraph of the graph.
The (expected) payoff of an attacker is the probability that she is not caught
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by the defender; the (expected) payoff of the defender is the (expected) number
of attackers she catches. We are interested in the Nash equilibria [15,16] associ-
ated with this graph theoretic game, where no player can unilaterally improve
her (expected) payoff by switching to another probability distribution. We are
also interested in understanding and characterizing the networks that allow for
a good defense ratio: given a strategy profile, i.e. a combination of strategies for
the network entities (attackers and defender), the defense ratio of a network is
the ratio of the total number of attackers over the defender’s expected payoff in
that strategy profile.

1.1 Our Results

In this paper we depart from and significantly extend the line of work of Mavron-
icolas et al. in their seminal paper [12] on defense games in graphs; we term the
type of games we consider CSD games. In our model the defender is more power-
ful than in [12], since her power is parameterized by the size, λ, of the defended
part of the network. We allow λ to take values from 1 to n, while in [12] only
the case where λ = 2 was studied. We study many questions related to CSD
games. We extend the notions of defense ratio and defense-optimal graphs for
CSD games. In fact, the defense ratio of a given graph G and a given strategy
profile S of the attackers and the defender is the ratio of the number of attackers,
k, over the defender’s expected payoff (the number of attackers she catches on
expectation). We thoroughly investigate the notion of the defense ratio for Nash
equilibria strategy profiles.

Firstly, we precisely characterize the Nash equilibria and defense-optimal
graphs in CSD games. This allows us to show that, in equilibrium, the game
version of k uncoordinated attackers and a single defender is equivalent to the
version in which a single leader coordinates the k attackers, meaning that both
versions of the game have the same defense ratio. We present an LP-based algo-
rithm to compute an exact equilibrium of any given CSD game, whose running
time is polynomial in

(
n
λ

)
. Then, we focus on tree-graphs. There, we further

refine our equilirbium characterization which allows us to derive a polynomial-
time algorithm for deciding whether a tree is defense-optimal and, if this is the
case, it computes a defense-optimal Nash equilibrium. A tree is defense-optimal if
and only if it can be partitioned into n

λ disjoint sub-trees. On the other hand, we
prove that it is NP-hard to find a best-defense strategy if the tree is not defense-
optimal. We remark that a very crucial parameter for defense-optimality of a
graph G is the “best” probability with which any vertex of G is defended in a
NE; we call that probability MaxMin probability and denote it by p∗(G). Then,
for any graph G, the defense ratio in equilibrium is shown to be exactly 1

p∗(G) .
Although it is hard to exactly compute p∗(G) even for trees, we complement
this negative result with a polynomial-time constant-approximation algorithm
that computes solutions that are close to the optimal ones for any λ, for any
given general graph. In particular, we approximate the (best) defense ratio of
any graph within a factor of 2 + λ−3

n . Finally, we provide asymptotically tight
bounds for the Price of Defense for any λ ∈ ω(1)∩o(n), and almost tight bounds
for any other value of λ.
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For detailed proofs and auxiliary figures of the results presented, we refer the
reader to the full version of the paper [1].

1.2 Related Work

Our graph-theoretic game is a direct generalization of the defense game con-
sidered by Mavronicolas et al. [11,12]. In the latter, the authors examined the
case where the size of the defended part of the network is λ = 2, i.e. where
the defender “cleans” an edge. This lead to a nice connection between equilib-
ria and (fractional) matchings in the graph [13]. But when λ is greater than 2,
one has to investigate (as we shall see here) how to sparsely cover the graph by
as small a number as possible of connected induced subgraphs of size λ. This
direction can be seen as an extension of fractional matchings to covers of the
graph by equisized connected subgraphs. Sparse covering of graphs by connected
induced subgraphs (clusters), not necessarily equisized, is a notion known to be
useful also for distributed algorithms, since it affects message communication
complexity [5].

In another line of work, Kearns and Ortiz [9] study Interdependent Secu-
rity games in which a large number of players must make individual decisions
regarding security. Each player’s safety may depend on the actions of the entire
population (in a complex way). The graph-theoretic game that we consider could
be seen as a particular instance of such games with some sort of limited interde-
pendence: the actions of the defender and an attacker are interdependent, while
the actions of the attackers are not dependent on each other.

Aspnes et al. [4] consider a graph-theoretic game that models containment
of the spread of viruses on a network; each node individually must choose to
either install anti-virus software at some cost, or risk infection if a virus reaches
it without being stopped by some intermediate node with installed anti-virus
software. Aspnes et al. [4] prove several algorithmic properties for their graph-
theoretic game and establish connections to a certain graph-theoretic problem
called Sum-of-Squares Partition.

A game on a weighted graph with two players, the tree player and the edge
player, was studied by Alon et al. [2]. At each play, the tree player chooses a
spanning tree and the edge player chooses an edge of the graph, and the payoffs of
the players depend on whether the chosen edge belongs in the spanning tree. Alon
et al. investigate the theoretical aspects of the above game and its connections
to the k-server problem and network design.

Finally, there is a long line of work on security games [3] where many scenarios
are modelled using graph theoretic problems [8,10,19,20].

2 Preliminaries

The Game. A Connected-Subgraph Defense (CSD) game is defined by a graph
G = (V,E), a defender, k ≥ 1 attackers, and a positive integer λ. Throughout the
paper, λ is considered to be a given parameter of the game. A pure strategy for
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the defender is any induced connected subgraph H of G with λ vertices, which
we term λ-subgraph. For any λ-subgraph H of G we denote V (H) its set of
vertices. Since V (H) uniquely defines an induced subgraph of G, we will use the
term λ-subgraph to denote either V (H) or H. The action set of the defender is
D := {V (H)|H is a λ-subgraph of G} and we will denote its cardinality by θ, i.e.
θ := |D|. For ease of presentation, we will also refer to D as [θ] := {1, 2, . . . , θ}.
A pure strategy for each of the attackers is any vertex of G. So, the action set
of every attacker is V , the vertex set of G; we denote n := |V | and we similarly
refer to V also as [n].

To play the game, the defender chooses a defense (mixed) strategy, i.e. a
probability distribution over her action set, and each attacker chooses an attack
(mixed) strategy, i.e. a probability distribution over the vertices of G. We denote
a strategy by s := (s1, . . . , sd) ∈ Δd, i.e. by the probability distribution over d

enumerated pure strategies, where Δd := {x1, . . . , xd ≥ 0|∑d
i=1 xi = 1} is the

(d − 1)-unit simplex. In a defense strategy q ∈ Δθ each pure strategy j ∈ [θ] is
assigned a probability qj .

We say that a pure strategy of the defender, i.e. a specific λ-subgraph H of
G, covers a vertex v ∈ V if v ∈ V (H). A defense strategy covers a vertex v ∈ V
if it assigns strictly positive probability to at least one λ-subgraph H of G which
contains v.

Definition 1 (Vertex Probability). The vertex probability pi of vertex
i ∈ [n], is the probability that i will be covered, formally pi :=

∑
j∈[θ]: i∈j qj.

The support of a strategy s, denoted by supp(s), is the subset of the action set
that is assigned strictly positive probability.

Payoffs and Strategy Profiles. A strategy profile is a tuple of strategies
S = (q, t1, . . . , tk), where q denotes the defender’s strategy and tj denotes the
j-th attacker’s strategy, j ∈ [k]. A strategy profile is pure if the support of every
strategy has size one. The payoff of every attacker is 1 in any pure strategy
profile where she does not choose a defended vertex, and 0 in all the rest. The
payoff of the defender in a pure strategy profile where she defends V (H), is the
number of attackers that choose a vertex in V (H). Under a strategy profile,
the expected payoff of the defender is the expected number of attackers that she
catches, which we call defense value, and the expected payoff of the attacker
is the probability that she will not get caught. A best response strategy for
a participant is a strategy that maximizes her expected payoff, given that the
strategies of the rest of the participants are fixed. A Nash equilibrium is a strategy
profile where all the participants are playing a best response strategy. In other
words, neither the defender nor any of the attackers can increase their expected
payoff by unilaterally changing their strategy.

Definition 2 (Defense Ratio). For a given graph G we define a measure of
the quality of a strategy profile S, called defense ratio of G and denoted DR(G,S),
as the ratio of the total number of attackers k over the defense value.



Connected Subgraph Defense Games 221

In this work we are only interested in the cases where S is an equilibrium. For
a given graph, when in equilibrium, the defender’s expected payoff is unique (due
to Corollary 1(a)) and achieves the equilibrium defense ratio DR(G,S∗), where
S∗ is an equilibrium. The defense strategy in S∗ which achieves this defense ratio
will be termed best-defense strategy.

Definition 3 (MaxMin Probability, p∗). We call MaxMin Probability of a
graph G the maximum, over all defense strategies, minimum vertex probability
in G, that is:

p∗(G) := max
q∈Δθ

min
i∈[n]

pi.

As we will show in Lemma 1, the equilibrium defense ratio of a graph G turns
out to be DR(G,S∗) = 1/p∗(G).

Definition 4 (Price of Defense). The Price of Defense, PoD, for a given
parameter λ of the game, is the worst defense ratio, over all graphs, achievable
in equilibrium, that is:

PoD(λ) = max
G

DR(G,S∗).

Definition 5 (Defense-Optimal Graph). For a given λ, a graph G∗ that
achieves the minimum equilibrium defense ratio over all graphs, i.e. G∗ ∈
arg minG DR(G,S∗), is called defense-optimal graph.

In the following, for ease of presentation, whenever we refer to defense opti-
mality, we implicitly assume that λ has a fixed value.

3 Nash Equilibria

In this section, we provide a characterization of Nash equilibria in CSD games,
as well as important properties of their structure which prove useful for the
development of our algorithms in the remainder of the paper.

Theorem 1 (Equilibrium characterization). For a given graph G, in any
equilibrium with support S ⊆ [θ] of the defender and support Tj ⊆ [n] of each
attacker j ∈ [k], the following conditions are necessary and sufficient:

1. mini∈[n] pi is maximized over all defense strategies, and
2.

⋃
j∈[k] Tj ⊆ V ∗, where V ∗ := {i ∈ [n] | mini∈[n] pi is maximized over all

defense strategies}, and
3. every s ∈ S has the maximum expected total number of attackers on its ver-

tices over all pure strategies.

Lemma 1. For any given graph G, the equilibrium defense ratio is DR(G,S∗) =
1

p∗(G) , where p∗(G) := maxq∈Δθ
mini∈[n] pi and S∗ is an equilibrium.



222 E. C. Akrida et al.

Proof. By Theorem 1, in an equilibrium, every attacker will have in her support
only vertices that are defended with probability exactly p∗(G). Therefore, the
expected number of attackers that the defender catches is p∗(G) ·k. By definition
of the defense ratio, DR(G,S∗) = k

p∗(G)·k = 1
p∗(G) . ��

Corollary 1. The following hold:

(a) For a given graph G, in any equilibrium, the expected payoff of the defender
and each attacker is unique.

(b) For a given graph G, in any equilibrium with support S ⊆ [θ] of the defender,
for every s ∈ S there exists a vertex v ∈ s such that pv = p∗(G).

(c) In any CSD game on a graph G, the problem of finding the equilibrium
defense ratio (or equivalently, p∗(G)) for k ≥ 2 attackers reduces to the same
problem in the game with k = 1 attacker, which is a two-player constant-sum
game.

Proof.(a) By Theorem 1, in an equilibrium the defender chooses a strategy that
induces probability p∗(G) to some vertex of G (Condition 1). Also, each of the
attackers has in her support T only vertices with vertex probability p∗(G).
Therefore, all attackers attack only such vertices and the expected payoff
of the defender is k · p∗(G). Consider also an attacker with strategy t =
(t1, t2, . . . , tn). Her expected payoff is

∑
i∈[n] ti(1 − pi), where pi is the vertex

probability of vertex i. This value is equal to
∑

i∈T ti(1−p∗(G)) = 1−p∗(G).
Since p∗(G) is unique for a graph G, the expected payoffs of the defender and
each attacker is unique.

(b) The proof is by contradiction. Consider an equilibrium where the defender’s
strategy is q ∈ [θ] with support S, and there exists a pure strategy s ∈ S
for which every vertex v ∈ s has pv > p∗(G). By Condition 2 of Theorem 1,
no attacker has in her support a vertex in s. Therefore, the defender can
strictly increase her expected payoff by moving all her probability qs > 0
from s to some other pure strategy s′ that contains a vertex which is in the
support of some attacker.

(c) Observe that for any given graph G, the quantity p∗(G), by definition, only
depends on the graph and not the number of attackers k. That is, p∗(G) is
the same for every k ≥ 1. Lemma 1 states that in any equilibrium S∗, it is
DR(G,S∗) = 1

p∗(G) , therefore the defense ratio in an equilibrium does not
depend on k. This means that when we are given G and we are interested in
the equilibrium defense ratio, we might as well consider the game with the
single defender and a single attacker. By definition of the game (see Sect. 2)
the latter is a two-player constant-sum game. ��

The following corollary implies that coordination (resp. individual selfishness)
of the attackers cannot increase the attackers’ (resp. defender’s) expected payoff
in equilibrium.

Corollary 2. Every equilibrium with uncoordinated attackers (i.e. as described
in Sect. 2) is an equilibrium with coordinated (i.e. centrally controlled) attackers,
and vice versa.
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The following theorem provides an algorithm for computing an equilibrium
for any CSD game, whose running time is polynomial in n when λ = c or
λ = n − c, where c is a constant natural.

Theorem 2. For some given graph G and parameter λ, there is an algorithm
that computes p∗(G) and also finds an equilibrium in time polynomial in

(
n
λ

)
.

Proof. Given a graph G, the number of attackers k ≥ 1, and some λ ∈
{1, 2, . . . , n}, the action set D of the defender is constructed by the vertex sets
of at most

(
n
λ

)
λ-subgraphs, so for D’s cardinality θ it holds that θ ≤ (

n
λ

)
. Con-

sider now the mixed strategy q ∈ Δθ of the defender, where each pure strategy
j ∈ [θ] is assigned probability qj . Consider also the vertex probability pi for
each vertex i ∈ [n]. According to Corollary 1(a) and (c), the unique p∗(G) in
the case of a single attacker can be used to derive an equilibrium for the case
of k ≥ 2 attackers. Therefore, we will find p∗(G) for a single attacker, find an
equilibrium for that case, and then extend this equilibrium to one in the case
of k ≥ 2 attackers. In more detail, after we find the defense strategy q∗ that
maximizes mini∈[n] pi (Condition 1 of Theorem 1), i.e. yields p∗(G) on the set
V ∗ := arg maxq∈Δθ

mini∈[n] pi, an equilibrium is achieved if the single attacker
assigns probability 1/|V ∗| to each vertex of V ∗; that is because all conditions
of Theorem 1 are satisfied. Then, an equilibrium for k ≥ 2 is achieved if every
attacker plays the same strategy as the single attacker; that is because again all
conditions of Theorem 1 are satisfied.

The crucial observation that allows us to design such an algorithm is that we
can compute p∗(G) via a Linear Program which has O

((
n
λ

))
many variables and

O(n) constraints, and therefore its running time is in the worst case polynomial
in

(
n
λ

)
, for λ ∈ {2, 3, . . . , n − 1}. For the trivial cases λ = 1 and λ = n, D =

{{i}|i ∈ V } and D = V respectively, therefore p∗(G) = 1/n and p∗(G) = 1
respectively. So in the rest of the proof we will imply that λ ∈ {2, 3 . . . , n − 1}.
It remains to show how p∗(G) is computed.

Let us denote p∗ := p∗(G) := maxq∈Δθ
mini∈[n] pi. The computation of p∗

can be done as follows: First, consider each of the
(
n
λ

)
subsets of V of size λ,

and find if it is a proper λ-subgraphs of G (i.e. connected); this can be done
by running a Depth (or Breadth) First Search algorithm for each subset of size
λ. If it is not, then continue with the next subset. If it is, we consider it in
the action set [θ], and assign to it a variable qj which stands for its assigned
probability in a general defense strategy. Now, by definition, for some vertex
i ∈ [n], pi =

∑
j∈[θ]
i∈j

qj . Therefore, we will consider only pure strategies j which

are λ-subgraphs to create the pi’s. To compute the minimum pi over all i’s
we introduce the variable p′ and write the following set of n inequalities as a
constraint in our Linear Program:

∑

j∈[θ]
i∈j

qj ≥ p′ , for i ∈ {1, 2, . . . , n}.
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The variable constraints are p′, q1, q2, . . . , qθ ≥ 0 and also
∑θ

j=1 qj = 1, and all
of the aforementioned constraints can be written in canonical form by applying
standard transformations. Finally, the objective function of the Linear Program
is variable p′ and we require its maximization, which is the value p∗. ��

3.1 Connections to Other Types of Games

Although CSD games are defined as a normal form game with k + 1 players,
we can observe that there are equivalent to other well-studied types of games:
polymatrix games and Stackelberg games.

A polymatrix game is defined by a graph where every vertex represents a
player and every edge represents a two-player game played by the endpoints of
the edge. Every player has the same set of pure strategies in every game he
is involved and to play the game he plays the same (mixed) strategy in every
game. The payoff of every player is the sum they get from every two-player game
they participate in. In a CSD game we observe the following. Firstly, the payoff
of every attacker depends only on the strategy the defender plays, thus every
attacker is involved only in one two-player game. In addition, all the attackers
have the same set of pure strategies and they share the same payoff matrix.
Similarly, the payoff the defender gets from catching an attacker depends only on
the strategy the defender and this specific attacker chose. Hence, the payoff of the
defender can be decomposed into a sum of payoffs from k two-player games. So,
a CSD game can be seen as a polymatrix game where the underlying graph is a
star with k leaves that correspond to the attackers and the defender is the center
of the star. Although many-player polymatrix games have exponentially smaller
representation size compared to the equivalent normal-form representation, we
should note that this polymatrix game is of exponential size in the worst case
since the defender can have exponential in n pure strategies to choose from.

A Stackelberg game is an extensive form two-player game. In the first round,
one of the players commits to a (mixed) strategy. In the second round, the other
player chooses a best response against the committed strategy of her opponent.
In a StackeIberg equilirbium the first player is playing a strategy that maximizes
her expected payoff, given that the second player plays a best response (mixed
strategy). The MaxMin probability p∗(G) for a CSD game on a graph G cor-
responds to a Stackelberg equilibrium. By Corollary 1(c), any CSD game with
k ≥ 1 attackers has the same p∗ as that of the case with k = 1. Furthermore,
as in a Stackelberg game, in the CSD game with k = 1 the defender chooses
a mixed strategy that maximizes her expected payoff, given that the attacker
plays a best response (mixed strategy). Therefore, when we are interested in the
defense-ratio in equilibrium of a CSD game for some arbitrary k ≥ 1, finding a
Stackelberg equilibrium of the corresponding CSD game with k = 1 suffices.

4 Defense-Optimal Graphs

We now focus our attention on defense-optimal graphs. We first characterize
defense-optimal graphs with respect to the MaxMin probability p∗ and then use
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this characterization to analyze more specific classes of graphs like cycles and
trees. We begin by an exact computation of the equilibrium defense ratio of any
defense-optimal graph.

Theorem 3. In any defense-optimal graph G, we have that DR(G,S∗) = n
λ .

As an intermediate corollary of Theorem 3 we get the following characteri-
sation of defense-optimal graphs.

Corollary 3. A graph G is defense-optimal if and only if all of its vertices are
defended with probability λ

n .

Someone may wonder whether Corollary 3 can be further exploited to prove
that, in general, best-defense strategies in defense-optimal graphs are uniform,
i.e. every pure strategy s in the support S of the defender is assigned probability
1/|S|. However, as we demonstrate in Fig. 1 this is not the case. On the other
hand, this claim is true for cyclic graphs and trees.

v1 v2 v3 v4

v5

v6

v7

Fig. 1. Here n = 7, λ = 3 and p∗(G) = 3/7 is achievable by assigning probability 3/7 to
pure strategy {v1, v2, v3} and probability 1/7 to each of the pure strategies {v4, v5, v6},
{v4, v5, v7}, {v4, v6, v7}, {v5, v6, v7}, so the graph is defense optimal. However, observe
that v1 cannot participate in more than one pure strategies, so in a uniform defense
strategy with support of size r, the vertex probability pv1 has to be 1/r (by definition
of uniformity), but it also has to be 3/7. Since r ∈ N, this is a contradiction.

Observation 1. All cyclic graphs are defense-optimal.

Proof. Consider an arbitrary cyclic graph G with n vertices. We will show that the
graph can achieve vertex probability pi = λ

n for every i ∈ [n], thus by Corollary 3 it
is defense-optimal. Consider the whole action set D of the defender, i.e. every path
starting from a vertex i going clockwise and ending at vertex i + λ − 1. Observe
that there are only n such paths, therefore θ := |D| = n. By assigning probability
1
n to each pure strategy j ∈ [θ], since each vertex is in exactly λ pure strategies,
each vertex i ∈ [n] has vertex probability pi = λ · 1

θ = λ
n . ��
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4.1 Tree Graphs

In this section we focus on the case where the graph is a tree. We first fur-
ther refine the characterization of defense-optimal graphs for trees. Then, we
utilise this characterisation to derive a polynomial-time algorithm that decides
in polynomial time whether a given tree is defense-optimal, and if that is the
case, it constructs in polynomial time a defense-optimal strategy for it. On the
other hand, in the case where the tree is not defense-optimal, we show that it is
NP-hard to compute a best-defense strategy for it, namely it is NP-hard to com-
pute p∗(G). We first provide Lemma 2 which will be used in our polynomial-time
algorithm for checking defense-optimality on trees. Henceforth, we write that a
graph is covered by a defense strategy if every vertex of the graph is covered by
a λ-subgraph that is in the support of the defense strategy.

Lemma 2. A tree T is defense-optimal if and only if T can be decomposed into
n
λ disjoint λ-subgraphs.

Proof. (⇒)(⇒)(⇒) Let T be defense-optimal. We will show that the support of any
best-defense strategy on T must comprise of pure strategies that are disjoint
λ-subgraphs which altogether cover every v ∈ V . Since those are disjoint and
cover T , it follows that their number is n

λ in total.
If λ = 1 then the above trivially holds. Assume that λ ≥ 2 and consider

a best-defense strategy on T whose support comprises of a collection L of
λ-subgraphs.

Let u ∈ V be a leaf of T and let v ∈ V be its parent. Any λ-subgraph in L
covering u must also cover v, since λ ≥ 2. Also, any λ-subgraph in L covering
v must also cover u, otherwise pv would be greater than pu. Now, consider the
neighbors of v. For those of them that are leaves, the same must hold as holds
for u, namely v and its leaf-children must all be covered by the same exact
λ-subgraph(s).

Consider the case where there is a leaf u ∈ V , such that a single λ-subgraph
contains u, its parent v, and all the other leaf-children of v (and, possibly, other
vertices connected to v). Then we can remove this λ-subgraph from L and the
corresponding tree from T . This leaves the remainder of T being a forest compris-
ing of trees T1, . . . , Tx, each of which has a (best-) defense strategy comprising
of the corresponding subset of (the remainder of) L on Ti. Notice that it must
be the case that every tree Ti, i = 1, 2, . . . , x, has size at least λ (otherwise the
initial collection L would not have covered T ). So, if there is always a leaf u in
some tree of the forest, such that a single λ-subgraph contains u, its parent v,
and all the other leaf-children of v (and, possibly, other vertices connected to
v), we can proceed in the same fashion for each of the Ti’s, always removing a
λ-subgraph from L, and the corresponding vertices from T , until we end up with
an empty tree. This means that L was indeed a collection of disjoint λ-subgraphs
covering T .

However, assume for the sake of contradiction that at some “iteration” the
assumption does not hold, namely assume that there is a tree in the forest with
no leaf u, such that a single λ-subgraph contains u, its parent v, and all the other
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leaf-children of v (and, possibly, other vertices connected to v). This means that
there are (at least) two λ-subgraphs in L, namely L1, L2, that cover u. Due to
our initial observations, u, together with its parent v and all of v’s leaf-children
are contained in both L1 and L2. Since those are different λ-subgraphs, there
is a vertex z in the tree which belongs to L2 but does not belong to L1. Since
pz = pv (due to the fact that L is the support of the defense-optimal strategy
and Corollary 3), it must hold that there is a different λ-subgraph, L3, which
covers z but does not cover v or any of its leaf-children. If L3 also covers a vertex
in L1 \L2

1, then there is a cycle in the tree which is a contradiction. So L3 must
not cover vertices in L1\L2. Since �L3 is different to L2, there must be a vertex z′

in the tree which belongs in L3 but not in L2 (also not in L1). Since pz′ = pz (due
to the fact that L is the support of the defense-optimal strategy and Corollary 3),
it must hold that there is a different λ-subgraph, L4, which covers z′ but does
not cover z or any of the vertices in L2. Similarly to before, if L4 covers a vertex
in L1 \ L2, then there is a cycle in the tree which is a contradiction. So L4 must
not cover vertices in L1 or in L2.

Proceeding in the same way, we result in contradiction since the tree has
finite number of vertices and there will need to be an overlap in coverage of
some Lj with some Li, j > i + 1, which would mean that there is a cycle in the
tree.

Therefore, there cannot be any overlaps between the λ-subgraphs of L, mean-
ing that L comprises of n

λ disjoint λ-subgraphs which altogether cover T .
(⇐⇐⇐) Let L = {L1, . . . , Ln

λ
} be a collection of n

λ disjoint λ-subgraphs that
altogether cover T . Let the defender play each Li, i ∈ {1, . . . , n

λ}, equiprobably,
that is, with probability 1/

(
n
λ

)
= λ

n . Then every vertex v ∈ V is covered with
probability pv = λ

n = p∗(G), meaning that T is defense-optimal. ��
With Lemma 2 in hand we can derive a polynomial-time algorithm that

decides if a tree is defense-optimal, and if it is, to produce a best-defense strategy.

Theorem 4. There exists a polynomial-time algorithm that decides whether a
tree is defense-optimal and produces a best-defense strategy for it, or it outputs
that the tree is not defense-optimal.

Proof. The algorithm works as follows. Initially, there is a pointer associated
with a counter in every leaf of the tree T that moves “upwards” towards an arbi-
trary root of the tree. For every move of the pointer the corresponding counter
increases by one. The pointer moves until one of the following happens: either
the counter is equal to λ, or it reaches a vertex with degree greater of equal
to 3 where it “stalls”. In the case where the counter is equal to λ, we create a
λ-subgraph of T , we delete this λ-subgraph from the tree, we move the pointer
one position upwards, and we reset the counter back to zero. If a pointer stalls
at a vertex of degree d ≥ 3, it waits until all d − 1 pointers reach this vertex.

1 We use Li \ Lj for some λ-subgraphs Li, Lj to denote the set of vertices which are
contained in Li but not in Lj .
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Then, all these pointers are merged to a single one and a new counter is created
whose value is equal to the sum of the counters of all d pointers. If this sum is
more than λ, then the algorithm returns that the graph is not defense-optimal.
If this sum is less than or equal to λ, then we proceed as if there was initially
only this pointer with its counter; if the new counter is equal to λ, then we create
a λ-subgraph of T and reset the counter to 0; else the pointer moves upwards
and the counter increases by one. To see why the algorithm requires polynomial
time, observe that we need at most n pointers and n counters and in addition
every pointer moves at most n times.

We now argue about the correctness of the algorithm described above.
Clearly, if the algorithm does not output that the tree is not defense-optimal, it
means that it partitioned T into λ-subgraphs. So, from Lemma 2 we get that T is
defense-optimal and the uniform probability distribution over the produced par-
tition covers every vertex with probability λ

n . It remains to argue that when the
algorithm outputs that the graph is not defense-optimal, this is indeed the case.
Consider the case where we delete a λ-subgraph of the (remaining) tree. Observe
that the λ-subgraph our algorithm deleted should be uniquely covered by this
λ-subgraph in any best-defense strategy; any other λ-subgraph would overlap
with some other λ-subgraph. Hence, the deletion of such a λ-subgraph was not
a “wrong” move of our algorithm and the remaining tree is defense-optimal if
and only if the tree before the deletion was defense-optimal. This means that
any deletion that occurred by our algorithm did not make the remaining graph
non defense-optimal. So, consider the case where after a merge that occurred at
vertex v we get that the new counter is c > λ. Then, we can deduce that all
the subtrees rooted at v associated with the counters have strictly less than λ
vertices. Hence, in order to cover all the c > λ vertices using λ-subgraphs, at
least two of these λ-subgraphs cover vertex v. Hence, the condition of Lemma 2
is violated. But since every step of our algorithm so far was correct, it means
that v cannot be covered only by one λ-subgraph. Hence, our algorithm correctly
outputs that the tree is not defense-optimal. ��

In Theorem 4 we showed that it is easy to decide whether a tree is defense-
optimal and if this is the case, it is easy to find a best-defense strategy for it.
Now we prove that if a tree is not defense-optimal, then it is NP-hard to find a
best-defense strategy for it.

Theorem 5. Finding a best-defense strategy in CSD games is NP-hard, even if
the graph is a tree.

Proof. We will prove the theorem by reducing from 3-Partition. In an instance
of 3-Partition we are given a multiset with n positive integers a1, a2, . . . , an

where n = 3m for some m ∈ N>0 and we ask whether it can be partitioned into
m triplets S1, S2, . . . , Sm such that the sum of the numbers in each subset is
equal. Let s =

∑n
i=1 ai. Observe then that the problem is equivalent to asking

whether there is a partition of the integers to m triplets such that the numbers
in every triplet sum up to s

m . Without loss of generality we can assume that
ai < s

m for every i ∈ [n]; if this was not the case, the problem could be trivially
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answered. So, given an instance of 3-Partition, we create a tree G = (V,E)
with s+1 vertices and λ = s

m +1. The tree is created as follows. For every integer
ai, we create a path with ai vertices. In addition, we create the vertex v0 and
connect it to one of the two ends of each path. We will ask whether p∗(G) ≥ 1

m .
Firstly, assume that the given instance of 3-Partition is satisfiable. Then,

given Sj we create a ( s
m + 1)-subgraph of G as follows. If ai ∈ Sj , then we add

the corresponding path of G to the subgraph. Finally, we add vertex v0 in our
( s

m +1)-subgraph and the resulting subgraph is connected (by the construction of
G). Since the sum of ai’s equals s

m , the constructed subgraph has s
m +1 vertices.

If we assign probability 1
m to every ( s

m + 1)-subgraph we get that pv ≥ 1
m for

every v ∈ V .
To prove the other direction, assume that p∗(G) ≥ 1

m and observe the follow-
ing. Firstly, since as we argued it is ai < s

m for every i ∈ [n], it holds that every
( s

m + 1)-subgraph of G contains vertex v0. Thus, pv0 = 1 and
∑

v �=v0
pv ≥ s

m ,
since there are s vertices other than v0 and for each one of them holds that
pv ≥ 1

m . In addition, observe that
∑

v∈V pv = λ = s
m + 1. Hence, we get that

pv = p∗(G) = 1
m for every vertex v �= v0. In addition, observe that every pure

defense strategy that covers a leaf of this tree, covers all the vertices of the
branch. Hence, for every branch of the tree, all its vertices are covered by the
same set of pure strategies; if a vertex u that is closer to v0 is covered by one
strategy that does not cover the whole branch, then the leaf u′ of the branch is
covered with probability less than u. So, in order for pv = p∗(G) = 1

m for every
v �= v0, it means that there exist a ( s

m +1)-subgraph that exactly covers a subset
of the paths; this means that if a ( s

m + 1)-subgraph covers a vertex in a path,
then it covers every vertex of the path. Hence, by the construction of the graph,
we get that this ( s

m + 1)-subgraph of G corresponds to a subset of integers in
the 3-Partition instance that sum up to s

m . Since, 3-Partition is NP-hard,
we get that finding a best-defense strategy is NP-hard. ��

4.2 General Graphs

We conjecture that contrary to checking defense-optimality of tree graphs and
constructing a corresponding defense-optimal strategy in polynomial time, it is
NP-hard to even decide whether a given (general) graph is defense-optimal.

Conjecture 1. It is NP-hard to decide whether a graph is defense-optimal.

5 Approximation Algorithm for p∗(G)

We showed in the previous section that, given a graph G, it is NP-hard to find the
best-defense strategy, or equivalently, to compute p∗(G). We also presented in
Theorem 2 an algorithm for computing the exact value p∗(G) of a given graph
G (and therefore its best defense ratio), but this algorithm has running time
polynomial in the size of the input only in the cases λ = c or λ = n − c, where
c is a constant natural. On the positive side, we present now a polynomial-time
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algorithm which, given a graph G of n vertices, returns a defense strategy with
defense ratio which is within factor 2+ λ−3

n of the best defense ratio for G. In par-
ticular, it achieves defense ratio 1/p′ ≤ (

2 + λ−3
n

)
/p∗(G), where p′ = mini∈[n] pi

and every pi, i ∈ [n] is the vertex probability determined by the constructed
defense strategy. We henceforth write that a collection L of λ-subgraphs covers
a graph G = (V,E), if every vertex of V is covered by some λ-subgraph in L.
The algorithm presented in this section returns a collection L of at most 2n−3

λ +1
λ-subgraphs that covers G. Therefore, the uniform defense strategy over L
assigns probability at least 1/

(
2n−3

λ + 1
)

to each λ-subgraph.
For any collection L of λ-subgraphs and for any v ∈ V , let us denote by

coverageL(v) the number of λ-subgraphs in L which v belongs in. Observe that:

∑

v∈V

coverageL(v) = |L| · λ, (1)

where |L| denotes the cardinality of L.
We first prove Lemma 3, to be used in the proof of the main theorem of this

Section. We henceforth denote by V (G) and E(G) the vertex set and edge set,
respectively, of some graph G.

Lemma 3. For any tree T of n vertices, and for any λ ≤ n, we can find a
collection L of distinct λ-subgraphs such that for every v ∈ V , it holds that
1 ≤ coverageL(v) ≤ degree(v), except maybe for (at most) λ − 1 vertices, where
for each of them it holds that coverageL(v) = degree(v) + 1.

Proof. We will prove the statement of the lemma by providing Algorithm 1 that
takes as input T and λ and outputs the requested collection L of λ-subgraphs.

The algorithm starts by picking an arbitrary vertex v to serve as the root
of the tree. Then it performs a Depth-First-Search (DFS) starting from v. We
will distinguish between visiting a vertex and covering a vertex in the following
way. We say that DFS visited a vertex if it considered that vertex as a candidate
to be inserted to some λ-subgraph, and we say that DFS covered a vertex if it
visited and inserted the vertex at some λ-subgraph. By definition, DFS visits
in a greedy manner first an uncovered child, and only if there is no such child,
it visits its parent (lines 14–17, 21–24). The set-variable that keeps track of the
covered vertices is S.

Starting with the root of T , the algorithm simply visits the whole vertex
set according to DFS, putting each visited vertex in the same λ-subgraph Li

(starting with i = 1) (lines 18–24), and when |Li| = λ, a new empty λ-subgraph
Li+1 is picked to get filled in with λ vertices (lines 26–27) taking care of one
extra thing: The first vertex that the algorithm puts in an empty λ-subgraph
Li, i ∈ {1, 2, . . . } is guaranteed to be one that has not been covered by any
other λ-subgraph so far (lines 13–17). This ensures that no two λ-subgraphs will
eventually be identical.
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Algorithm 1. Main Algorithm
Require: A tree graph T = (V, E) of n vertices, and a natural λ ≤ n.

Ensure: A collection L of distinct λ-subgraphs that satisfies the statement of Lemma 3.

1: i, global variable. % The index of the λ-subgraph Li.

2: count, global variable. % Is 0 until the whole tree is covered, then it becomes 1 to

allow for the last λ-subgraph to be completed, if it is not already.

3: S, global variable. % The set of vertices already covered by the algorithm.

4: vertex, global variable. % The vertex considered to be inserted in a λ-subgraph.

5: S ← ∅
6: i ← 1

7: Li ← ∅
8: Pick an arbitrary vertex v of T and consider it the root.

9: vertex ← v

10: count ← 0

11: while count < 2 do

12: while S �= V do

13: while vertex ∈ S do % The while-loop to ensure that the first element of Li is

uncovered.

14: if vertex has a child u /∈ S then

15: vertex ← u

16: else

17: vertex ← parent of vertex

18: while |Li| < λ do % The while-loop that fills in the current λ-subgraph Li.

19: Li ← Li ∪ {vertex}
20: S ← S ∪ {vertex}
21: if vertex has a child u /∈ S then

22: vertex ← u

23: else

24: vertex ← parent of vertex

25: if count < 1 then

26: i ← i + 1

27: Li ← ∅
28: else

29: break

30: S ← ∅
31: i ← i − 1

32: Pick an arbitrary vertex v ∈ Li and consider it the root.

33: vertex ← v

34: count ← count + 1

The algorithm will not only visit all vertices in T , but also cover them. That
is because there is no point where the algorithm checks whether the currently
visited vertex is uncovered and then does not cover it. On the contrary, it covers
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every vertex that it visits, except for some already covered one in case the current
λ-subgraph is empty (lines 13–24). And since DFS by construction visits every
vertex, we know that at some point the whole vertex set will be covered, or
equivalently, coverageL(v) ≥ 1,∀v ∈ V . Therefore, the algorithm will eventually
exit the while-loop in lines 12–29.

Now we prove that, after the algorithm terminates, every vertex v ∈ V is
covered at most degree(v) times, except for at most λ − 1 vertices that are
covered degree(v) + 1 times. Observe that DFS visits every vertex v at most
degree(v) times: (a) v will be visited after its parent u only if v is uncovered
(lines 14–15, 21–22), v will get covered (lines 19–20), and will not get visited
ever again by its parent since it will be covered (lines 16–17, 23–24). (b) v will
be visited at most once by each of its children, say w, only if w does not have an
uncovered child (lines 16–17, 23–24), and v will not get ever visited by its parent
since v will be covered, and also v cannot be visited a second time by any of its
children, since they can never be visited again (they can only be visited through
v since T is a tree). Therefore, any vertex v will be visited exactly once after
its parent is visited, and at most once by each of its children, having a total
of at most degree(v) visits. And since, as argued above, the total number of
times a vertex will be covered is at most the number of times it will get visited,
when DFS terminates (i.e S = V ), it will be coverageL(v) ≤ degree(v), for every
v ∈ V .

However, note that the last nonempty λ-subgraph Li might not consist of λ
vertices since the entire V was covered and DFS could not proceed further. In
this case, the algorithm empties the set S that keeps track of the covered nodes,
takes the current Li and fills it in with exactly another λ − |Li| vertices. This is
done by picking an arbitrary vertex from Li and setting it as the root of T , and
performing one last DFS starting from it until Li has λ vertices in total (lines
30–33). To ensure that the DFS will continue only until it fills in this current Li,
the algorithm counts the number of times that it runs the while-loop of DFS,
namely lines 12–29, via the variable count (line 34), which escapes the while-
loop of DFS in case DFS has filled in Li (lines 28–29) and terminates. Observe
that in the last λ-subgraph Li, a vertex v inserted in the last iteration of DFS
(count = 1) and was not inserted in Li by the first run (count = 0) might have
been covered by the first run of DFS exactly degree(v) times, therefore when the
algorithm terminates it has been covered degree(v) + 1 times. Since by the end
of the first DFS run Li had at least one vertex, the cardinality of such vertices
that are covered more times than their degree are at most λ − 1. ��

We can now prove the following.

Lemma 4. For any graph G of n vertices, and for any λ ≤ n, there exist (at
most) 2n−3

λ + 1 λ-subgaphs of G that cover G.

Proof. Consider a spanning tree T of G. Then Lemma 3 applies to T . Observe
that a collection L as described in the statement of the aforementioned lemma
has the same qualities for G since V (T ) = V (G) and E(T ) ⊆ E(G). That is, L
is a collection of distinct λ-subgraphs of G, such that for every v ∈ V , it holds
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that 1 ≤ coverageL(v) ≤ degree(v), except maybe for (at most) λ − 1 vertices,
for each v of which it is coverageL(v) = degree(v) + 1, where by degree(v) we
denote the degree of vertex v in T .

Fix a particular value for λ and consider a collection L of λ-subgraphs as
constructed in the proof of Lemma 3. Then, by Eq. (1),

|L| =
∑

v∈V coverageL(v)

λ
≤

∑
v∈V degree(v) + (λ − 1)

λ
=

2(n − 1)

λ
+

λ − 1

λ
=

2n − 3

λ
+ 1. ��

We conclude with the simple algorithm that achieves a defense strategy with
defense ratio which is within factor 2 + λ−3

n of the best defense ratio for G.

Algorithm 2. Approximating the best defense ratio

Require: Graph G = (V, E) of n vertices, a natural λ ≤ n.
Ensure: A defense strategy that satisfies the statement of Theorem 6.

1: Find a spanning tree T of G.
2: Construct a collection L of λ-subgraphs of T as described in the proof of Lemma 3.
3: Assign probability qi = 1

|L| to every λ-subgraph in L, i = 1, 2, . . . , |L|.
4: return The above uniform defense strategy over the collection L.

Theorem 6. Given any graph G = (V,E), Algorithm 2 computes in time O(|E|)
a defense strategy such that, for any combination of attack strategies, the result-
ing strategy profile S yields defense ratio DR(G,S) ≤ (

2 + λ−3
n

) · DR(G,S∗).

Proof. As argued in Lemma 4, there is a collection L of λ-subgraphs with |L| ≤
2n
λ + 1 − 3

λ which covers G. Therefore, the uniform defense strategy returned
by Algorithm 2 (which determines the vertex probability pi for each vertex i)
achieves a minimum vertex probability p′ := mini∈[n] pi for which it holds that:

p′ =
1

|L| ≥ 1
2n
λ + 1 − 3

λ

=
λ
n

2 + λ−3
n

≥ 1
2 + λ−3

n

· p∗(G),

where the first equality is due to the fact that any leaf v ∈ V of the spanning
tree T of G through which L was created has coverageL(v) = 1, and therefore
there is such a vertex v in G that is covered by exactly one λ-subgraph; and
the last inequality is due to the fact that p∗(G) ≤ λ/n for any graph G (due to
Corollary 3), where p∗(G) is the MaxMin probability of G.

The above inequality implies that if the defender chooses the prescribed strat-
egy the minimum defense ratio cannot be too bad. That is because in the worst
case for the defender, each and every attacker will choose a vertex v′ on which
the aforementioned strategy of the defender results to vertex probability p′ (so
that the attacker is caught with minimum probability). As a result, the defender
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will have the minimum possible expected payoff which is p′ ·k. Thus, for the con-
structed defend strategy and any combination of attack strategies, the resulting
strategy profile S yields defense ratio:

DR(G,S) ≤ k

p′ · k
≤

(
2 +

λ − 3
n

)
· 1
p∗(G)

=
(

2 +
λ − 3

n

)
· DR(G,S∗),

where the last equality is due to Lemma 1.
With respect to the running time, notice that Step 1 of Algorithm 2 can be

executed in time O(|V | + |E(G)|) = O(|E(G)|). Step 2 can be executed in time
O(|V | + |E(T )|) = O(|V |). Finally, Step 3 can be executed in constant time.
Therefore, the total running time of Algorithm 2 is O(|E(G)|). ��
Corollary 4. For any graph G there is a polynomial (in both n and λ) time
approximation algorithm (Algorithm 2) with approximation factor 1/

(
2 + λ−3

n

)

for the computation of p∗(G).

The merit of finding a probability p′ that approximates (from below) p∗(G)
for a given graph G through an algorithm such as Algorithm 2 is in guaranteeing
to the defender that, no matter what the attackers play, she always “catches”
at least a portion p′ of them in expectation, where the best portion is p∗(G)
in an equilibrium. Algorithm 2 guarantees that the defender catches at least
1/

(
2 + λ−3

n

)
of the attackers in expectation.

6 Bounds on the Price of Defense

In the following theorem we give a lower bound on the PoD for any given n and
2 ≤ λ ≤ n − 1 by constructing a graph G with particular (very small) p∗(G)
(which, by Lemma 1 implies great best defense ratio). Due to lack of space the
construction is omitted and can be found in the full version of the paper [1].

Theorem 7. The PoD(λ) is lower bounded by
⌊
2(n−1)

λ

⌋
and

⌊
2(n−1)

λ+1

⌋
for λ even

and odd respectively, when λ ∈ {2, 3, . . . , n − 1}.

Corollary 5. For any given n and 2 ≤ λ ≤ n − 1, it holds that
⌊
2(n−1)

λ+1

⌋
≤

PoD(λ) ≤ 2(n−1)+λ−1
λ . Furthermore, for the trivial cases λ ∈ {1, n} it is

PoD(1) = n and PoD(n) = 1.

Proof. The lower bound is established by Theorem 7. The upper bound is due
to Theorem 6. For the cases λ = 1 and λ = n, observe that the defender’s
action set is D = {{i}|i ∈ V } and D = {V } respectively, therefore p∗(G) = 1/n
and p∗(G) = 1 respectively, and again from Lemma 1 we get the values in the
statement of the corollary. ��
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Abstract. We present a novel graph-theoretic principal-agent model in
which the agent is present biased (a bias that was well studied in behav-
ioral economics). Our model captures situations in which a principal guides
an agent in a complex multi-step project. We model the different steps and
branches of the project as a directed acyclic graph with a source and a tar-
get, in which each edge has the cost for completing a corresponding task.
If the agent reaches the target it receives some fixed reward R. We assume
that the present-biased agent traverses the graph according to the frame-
work of Kleinberg and Oren (EC’14) and as such will continue traversing
the graph as long as his perceived cost is less than R. We further assume
that each edge is assigned a value and if the agent reaches the target the
principal’s payoff is the sumof values of the edges on the path that the agent
traversed. Our goal in this work is to understand whether the principal can
efficiently compute a subgraph that maximizes his payoff among all sub-
graphs in which the agent reaches the target. For this central question we
provide both impossibility results and algorithms.

1 Introduction

Present bias is one of the biases known to many on a personal level. It is often
highlighted as one of the main reasons making it so difficult to regularly attend
the gym, start a diet or complete a paper well ahead of the deadline. Intuitively,
individuals with present bias perceive the cost of completing a task today as
greater than it really is and as a result postpone it to a later time. This bias
has been studied in psychology and behavioral economics since the 50’s [1,12,
14,16] and was used to explain different behaviors including procrastination,
abandonment of tasks and the benefits of reducing the set of choices [1,5,8,13].

A recent line of work [2–4,6,10,11,17] originating from [9] uses a graph theo-
retic framework to analyze the behavior of present-biased agents. In this frame-
work, an agent traverses a directed acyclic graph from a source node s to a target
node t. We refer to this graph as the task graph. The nodes of the task graph
represent states of intermediate progress towards some goal and the directed
edges between them represent “tasks” the agent must complete to move from
one state to the next. Similarly to quasi-hyperbolic discounting [12], we assume

The work was done while D. Soker was a student at Ben-Gurion University.
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that the present-biased agent has a present bias parameter b > 11 and his cost
for executing a task now is multiplied by b. We define the perceived cost of an
agent currently at v for reaching t as the cost of the min-cost path from v to
t in a graph in which the costs of all the outgoing edges from v are multiplied
by b. At each node the agent will move to the next node according to the path
minimizing his perceived cost. We further assume that there is a reward R on the
target and the agent will continue traversing the graph as long as his perceived
cost is at most R. The model is formally defined in Sect. 2.

In the classic principal-agent problem [7], the principal should motivate the
agent to invest enough effort to succeed at some task. Here we suggest to consider
more general situations in which the agent has to complete a complicated multi-
step project and there are different subsets of tasks he can work on in order to
complete the project. Such situations can be easily modeled using a task graph.
Furthermore, as often is the case, we assume that the agent exhibits present
bias and traverses the task graph as in [9]. The principal gains a positive payoff
only if the agent reaches the target. In this case the payoff of the principal is a
function of the path that the agent traversed.

As a motivating example, consider the following scenario: To complete his
PhD, a graduate student may select between working on three small-scale
projects, each will constitute only a small contribution to the relevant literature,
or working on a single large-scale project that will make significant contribu-
tion. The cost of completing the large project is 10 while the cost of each small
project is 4. This scenario is illustrated in Fig. 1. The student’s goal is to obtain
a PhD and if he is present-biased with b > 4/3 he will follow the lower path.
The advisor’s goal might be different, as the small projects might have negligi-
ble contribution to his CV. Thus, the advisor might take actions to guide the
student towards the larger project.

s

u1 u2

t
10

4

4

4

Fig. 1. A task graph for the PhD student and supervisor’s principal-agent problem.

Model. Let G = (V,E) be a directed acyclic task graph. Each edge e ∈ E
has a cost c(e) for the agent and a value v(e) for the principal. We consider
the following Stackelberg game in which the principal plays first and chooses

1 In quasi-hyperbolic discounting a cost that will be incurred t steps from now is
discounted by β · δt. Where β ∈ [0, 1] is a present bias parameter and δ ∈ [0, 1] is an
exponential discounting parameter. Our model is equivalent to the (β, δ) model for
β = 1/b and δ = 1. Similar to [9] and some of its follow-ups we focus on the case
that δ = 1 to highlight the effects of present bias.
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a subgraph G′ of G. Then, the present-biased agent traverses the graph G′ as
described earlier (see a formal model in Sect. 2). If the agent reaches the target
by traversing a path P then the agent receives a reward of R and the principal’s
payoff is

∑
e∈P v(e). Otherwise the principal’s payoff is 0.

It is important to note that since the agent is present biased it is often the
case that the principal cannot choose a subgraph that is just a simple s-t-path
to maximize his utility. To see this, consider the task graph depicted in Fig. 2.
Assume that the agent’s present bias parameter is b = 4, the reward for reaching
the target is R = 6.5 and the path that maximizes the principal’s utility is
P = s, v, u, w, t. The agent will not traverse P in isolation since its perceived
cost at s is 4 · 1 + 3 = 7. However, if we include the edge (v, t), the agent’s
perceived cost at s will be reduced to 4 · 1 + 2 = 6 and it is not hard to see
that he will traverse P . We refer to the path P̂ = v, t as a shortcut. Intuitively,
a shortcut is a path from a node in v ∈ P to t such that at some node in P ,
prior to v, the agent plans to follow the shortcut and at v the agent decides to
continue traversing P instead. In the example in Fig. 2 the agent at s planned
to take the shortcut P̂ = v, t but when he reached v he decided to take the path
P = v, u, w, t instead.

s v t

u w

1 2

1

1

1

Fig. 2. For b = 4, R = 6.5 the agent will not traverse P = s, v, u, w, t in isolation but
if we include the edge (v, t) the agent will traverse P .

Results. Our goal in this paper is to understand when the principal can effi-
ciently compute a subgraph maximizing his payoff among all subgraphs in which
the agent reaches the target. We focus on the case that the principal has a unique
path P maximizing his payoff. We ask: can the principal motivate the agent to
follow P? We name this problem the P -Motivating Subgraph problem (PMS).

We show that in the general case the P -motivating subgraph problem is NP-
complete. A natural next step is to look for special cases in which the problem
can be solved in polynomial time. One simple case is when all the edges have
the same cost. In this case, it is not hard to see that a present-biased agent will
behave exactly as a non-biased agent (i.e., b = 1). Thus, in this case, all the
principal has to do is to check whether the agent will traverse P in isolation or
not. In contrast, we show that even if there are two possible values for the costs
of the edges the PMS problem is already NP-complete. We refer to this problem
as PMS with two weights and formally show:

Theorem 1. The P -motivating subgraph problem with two weights is NP-
complete for any present bias parameter b > 2.
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Note that the PMS problem with two weights has a natural interpretation. It
is common that tasks can be partitioned according to their difficulty such that
the agent attributes a cost w− to all the easy tasks and a cost w+ to all the
difficult tasks. This is often the case with assignments in courses.

In light of the hardness results we move to consider a parameterized com-
plexity type of result. Our main technical contribution is an algorithm for the
PMS problem that runs in time O(|V |O(k)) where k is the number of edges of
weight w− on the path P . This assumption is valid in situations in which the
principal prefers that the agent will complete more difficult tasks. In such cases
the path maximizing the principal’s payoff may only include a small number of
easy tasks. This is, for instance, the situation in the example of the PhD student
and supervisor we gave earlier. Formally, we show

Theorem 2. For any parameter b > 1 PMS is in XP2 when parameterized by
the number of edges of weight w− in P .

The technical reason for taking k to be the number of edges of weight w− on
the path is that this is an upper bound on the number of nodes in the path P
that are potential sources of a shortcut. We prove the theorem by establishing
connections between shortcuts and disjoint paths which allow us to build on the
work of Shiloach and Perl [15] on computing two disjoint paths between two
pairs of source and target nodes in a directed acyclic graph.

Finally, to complete the picture, we show that the PMS problem for general
costs is NP-complete even if the path has only one potential source of a shortcut.
Together with our result that the PMS problem is hard when the cost of the edges
can take two different values this suggests two independent sources of hardness
of the PMS problem: (1) a numeric one related to the different costs (2) a graph
theoretic one related to computing a set of paths with certain properties.

Related Work. When the principal is indifferent between all paths in the graph
we recover the well studied motivating subgraph problem presented in [9]: Does a
task graph G has a motivating subgraph in which the agent will reach the target t?
[9] provides a characterization of minimal motivating subgraphs, essentially
showing that such subgraphs consist of the path that the agent traverses and
some shortcuts. Later, Tang et al. [17] and Albers and Kraft [2] independently
proved that the motivating subgraph problem is NP-complete. Albers and Kraft
[2] also consider an approximation version of the question, formulated as follows:
Consider a graph G and let R∗ be the minimal reward for which a motivating
subgraph exists. What is the minimal α such that for R = αR∗ a motivating
subgraph can be found in polynomial time. They present a Θ(

√
n) approxima-

tion algorithm and show that it is NP-hard to get a better approximation ratio.
A relaxation of the problem in which it is possible to increase the cost on the
edges was also studied [3].

2 XP is the class of parameterized problems that can be solved in time nf(k), where k
is the parameter, n is the input’s size and f is a computable function.
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Paper Outline. In Sect. 2 we define our model and provide some basic observa-
tions. In Sect. 3 we present our main technical result: an algorithm for efficiently
solving the PMS problem with two weights for a constant number of potential
sources for shortcuts. Lastly, in Sect. 4 we provide a reduction showing that the
PMS problem with two weights is NP-complete and that for arbitrary weights
the PMS problem is NP-complete even if there is a single potential source for a
shortcut.

2 Model and Preliminaries

We begin with a detailed definition of the behavior of present-biased agents in
the framework of [9]: An agent with present bias parameter b > 1 is traversing a
directed acyclic task graph G = (V,E) from a source node s to a target node t.
Each node in the graph represents a progress point. The edges have weights
representing the cost of continuing from one progress point to another. We denote
by c(v, u) the cost associated with the edge (v, u) and by c(P ) =

∑
e∈P c(e) the

cost of a path P in G. The perceived cost of an agent currently at v of a path
that begins with the edge (v, u) and then continues with the min-cost path
connecting u and t is: b · c(v, u) + d(u, t) where d(u, t) is the cost of the min-
cost path connecting u and t (when G is unclear from the context we will use
dG(x, y) to denote the cost of the min-cost path connecting x and y in G). At
each node the present-biased agent will take the first edge on a path minimizing
his perceived cost.

In this paper we focus on a version of the problem where the agent receives
a reward R if he reaches the target. Let

vnext = argminu∈N(v)b · c(v, u) + d(u, t)

where N(v) is the set of v’s neighbors. The agent will continue from node v
to node vnext if the perceived cost of taking the path starting with (v, vnext)
and continuing with the min-cost path between vnext and t is at most R (i.e.,
b · c(v, vnext)+ d(vnext, t) ≤ R). Note that after the agent continues to vnext, the
perceived cost of the agent changes and he might readjust his original plan.

Recall that we focus on the case that the principal has a unique path P
maximizing his payoff and ask whether the principal can efficiently compute a
subgraph in which the agent will follow the path P . When such a subgraph exists
we refer to it as a P -motivating subgraph. Formally, we consider the following
problem:

Definition 1 (P -Motivating Subgraph (PMS)). Given a task graph G, a
reward R, an s-t path P and an agent with present bias parameter b ≥ 1: Does
there exist a P -motivating subgraph?
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As discussed in the introduction, the path that a present-biased agent tra-
verses may depend on paths that he will never follow. We refer to such paths as
shortcuts:

Definition 2 (Shortcut). Consider a path P = u1, . . . , ul in a subgraph H ⊆ G.
For a node ui ∈ P , consider a path P̂ = ui, v2, . . . , vk−1, t such that the part of P̂
from v2 to t is a min-cost path. P̂ is a shortcut if

(1) dH(ui, t) = c(P̂ )
(2) dH(ui, t) < c(ui, ui+1) + dH(ui+1, t)
(3) b · c(ui, ui+1) + dH(ui+1, t) < b · c(ui, v2) + dH(v2, t)

Notice that conditions (1) and (2) imply that there exists a node on the path
P for which the agent will plan to follow the shortcut P̂ . Condition (3) implies
that an agent at ui will continue to ui+1 instead of taking the shortcut P̂ .

The paper [9] provides a characterization of minimal motivating subgraphs.
These are motivating subgraphs that if we remove any edge from the graph
the agent will no longer reach t. In the context of P -motivating subgraphs this
characterization can be paraphrased as follows:

Proposition 1 ([9]). A minimal P -motivating subgraph includes the s− t path
P = u1, . . . , ul and for each 1 < i < l at most a single shortcut P̂i = ui, . . . , t.
The out-degree of each node on P is at most 2 and the out-degree of each node
not on P is exactly 1.

In this paper we mainly discuss task graphs with two weights: for every
e ∈ E, c(e) ∈ {w−, w+} where w+ > w− > 0. We refer to edges of cost w−

as light edges and edges of cost w+ as heavy edges. Observe that when there
are two possible costs only nodes that are the source of a light edge can be the
source of a shortcut. Furthermore, we have that the cost of the first edge in such
a shortcut is w+:

Observation 3. Consider an s-t-path P = u1, . . . , ul. For graphs with two
costs, if P̂ = ui, v2, . . . , vk−1, t is a shortcut from ui to t then c(ui, ui+1) = w−

and c(ui, v2) = w+.

Proof. Since P̂ is a shortcut we have that c(ui, v2) + d(v2, t) < c(ui, ui+1) +
d(ui+1, t) and b · c(ui, ui+1) + d(ui+1, t) < b · c(ui, v2) + d(v2, t). By adding the
two inequalities and rearranging we get that c(ui, v2) > c(ui, ui+1). Since we
only have two costs this implies that c(ui, v2) = w+ and c(ui, ui+1) = w−. ��

As we will see, for graphs with two different costs, the hardness of computing
a P -motivating subgraph is tightly related to the number of sources for poten-
tial shortcuts. In particular, we will show that when the number of sources for
potential shortcuts is constant the problem can be solved in polynomial time.

It is instructive to consider two special cases of the PMS problem with two
weights. The first case we consider is when all the edges of the path have cost w+.
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In this case, by Observation 3 we have that the minimal P -motivating subgraph
cannot include any shortcuts, thus all we need to check is whether the agent will
traverse the path P in isolation or not. For a path of length l this amounts to check-
ing whether b ·w+ +(l−1)w+ ≤ R. In the full version we provide detailed analysis
of another special case: the path P includes exactly one edge of cost w− and the
rest of the edges are of cost w+. The analysis provides a good introduction to the
ingredients and techniques we later use to solve the more general case.

3 An Algorithm for Computing a P -Motivating Subgraph

In this section we present our main technical result: a polynomial time algorithm
for PMS with two weights when the number of light edges on P is constant.
Our starting point is the minimal motivating subgraph characterization from
Proposition 1. We observe that the assertion that in the minimal P -motivating
subgraph all nodes, except the sources of the shortcuts, have an out-degree of 1
implies that any two shortcuts P̂1 and P̂2 merge at the first node they intersect.
We refer to such paths as converging paths:

Definition 3 (Converging Paths). P̂1 = x1, . . . , xk and P̂2 = y1, . . . , yl are
converging paths if there exists 1 ≤ i ≤ k and 1 ≤ j ≤ l such that x1, . . . , xi−1

and y1, . . . , yj−1 are disjoint paths and xi, . . . , xk = yj , . . . , yl.

Recall that by Observation 3 we have that for any shortcut P̂ = ui, v2, . . . ,
vk−1, t such that ui ∈ P , c(ui, ui+1) = w−. Thus, given a path P = u1, . . . , ul

we define the set S(P ) = {ui|ui ∈ P, c(ui, ui+1) = w−} which is the set of
nodes that are potential sources of shortcuts. This leads us to to the following
definition:

Definition 4 (Potential Shortcuts Set). Let P = u1, . . . , ul. A set of paths
P̂ is a set of potential shortcuts if:

– For every node ui ∈ S(P ) there exists a single path P̂ (ui) ∈ P̂ that starts at
ui and ends at t.

– ∀P̂ ∈ P̂, either the cost of the first edge of P̂ is w+ or P ∪P̂ = P ∪ (P̂ − P̂ ).3

– All the paths in P̂ are converging.

Consider a set of potential shortcuts P̂. The driving force behind our algo-
rithm is the next proposition showing that in order to determine whether the
subgraph H = P ∪P̂ is P -motivating all we need to know is the value of dH(ui, t)
for each node ui ∈ P which is a source of a potential shortcut:

Proposition 2. Let P = u1, . . . , ul. There exists a P -motivating subgraph if
and only if there exists a set of potential shortcuts P̂ such that for H = P ∪ P̂
all the following conditions hold:
3 In order to simplify the analysis we require the set of potential shortcuts to include

a path for each node ui ∈ S(P ). As a result, in some cases the path P̂ (ui) is not a
proper shortcut and all its edges are in P ∪ (P̂ − P̂ (ui)).
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– Continuation Conditions: the agent at ui continues to ui+1:
• For ui ∈ S(P ): b · w− + dH(ui+1, t) ≤ R.
• For ui ∈ P \ S(P ): b · w+ + dH(ui+1, t) ≤ R.

– Shortcuts Conditions: For each ui ∈ S(P ) such that the out-degree of ui in
H is 2:

• dH(ui, t) = c(P̂ (ui)).
• b · w− + dH(ui+1, t) < b · w+ + (dH(ui, t) − w+).

Proof. It is clear from the statement that if there exists a set of potential short-
cuts P̂ for which the conditions of the proposition hold, then H is P -motivating.
For the other direction, let H be a minimal P -motivating subgraph. Since this is
a P -motivating subgraph all the continuation conditions must hold. Proposition
1 implies that H consists of P and a set of shortcuts P̂ 4. Roughly speaking, the
shortcuts conditions also hold since they imply that the shortcuts are indeed
necessary and that the agent does not traverse some shortcut instead of travers-
ing the path P . More formally, assume toward a contradiction that the shortcuts
conditions are violated for some node ui:

– If the first condition is violated then dH(ui, t) < c(P̂ (ui)). This is in contra-
diction to the minimality of H as the graph in which we remove the node
following ui on the shortcut P̂ (ui) is also P -motivating.

– If the first condition holds for all nodes but there exists a node ui for which the
second condition is violated, then b·w−+dH(ui+1, t) ≥ b·w++(dH(ui, t)−w+).
In this case the agent at ui will take the shortcut P̂ (ui) instead of continuing
to ui+1.5 ��
Observe that these conditions imply that given the path P = u1, . . . , ul and

the cost c(P̂ (ui)) for every ui ∈ S(P ), we can compute dH(uj , t) for any node
uj ∈ P . Consider a node uj ∈ P \ S(P ) and let ui be the next node on P such
that ui ∈ S(P ), then dH(uj , t) = (i − j − 1) · w+ + c(P̂ (ui)). Thus, we conclude:

Corollary 1. Consider two sets of potential shortcuts P̂, P̂ ′ such that for every
ui ∈ S(P ): c(P̂ (ui)) = c(P̂ ′(ui)). The agent will traverse the same path in
H = P ∪ P̂ and in H ′ = P ∪ P̂ ′.

By the corollary we have that to determine whether a P -motivating subgraph
exists it suffices to check all cost combinations of potential shortcuts sets. Let
k = |S(P )| denote the number of sources for potential shortcuts. While the
number of different sets of potential shortcuts is exponential, the number of cost
combinations is at most |V |2k which is polynomial for a constant k. The reason
for this is that for every path P̂ , c(P̂ ) = l · w− + h · w+, where 0 ≤ l ≤ |V | is
the number of light edges in P̂ and 0 ≤ h ≤ |V | is the number of heavy edges
in P̂ . In total there are at most |V |2k options for cost combinations of k paths.

4 We can easily extend this set to a set of potential shortcuts.
5 We assume that in case that b · w− + dH(ui+1, t) = b · w+ + (dH(ui, t) − w+) the

agent will break ties in favor of taking the shortcut.
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We use this to develop an algorithm for solving the PMS problem in polynomial
time when the number of light edges in P is constant. Formally:

Theorem 4. PMS is in XP when parameterized by the number of light edges in P .

Proof. Consider the following algorithm for deciding if a P -motivating subgraph
exists. The algorithm gets as an input a task graph G and a path P = u1, . . . , ul:

1. Let S(P ) = {ui|ui ∈ P, c(ui, ui+1) = w−} = {s1, . . . , sk} be the set of sources
of potential shortcuts.

2. Construct a subgraph G′ of G by removing from G for each node ui ∈ P \S(P )
all outgoing edges except for (ui, ui+1) and for each node ui ∈ S(P ) all
outgoing edges of weight w− except for the edge (ui, ui+1).

3. In the graph G′ compute a list L such that (c1, . . . , ck) ∈ L if and only if
there exists a set of potential shortcuts P̂1, . . . , P̂k such that ∀i, P̂i = si → t
and c(P̂i) = ci.

4. For each (c1, . . . , ck) ∈ L, check if according to Proposition 2 a set of poten-
tial shortcuts with these costs together with P is a P -motivating subgraph.
Return true if this is the case.

5. Otherwise return false.

The correctness of the algorithm is guaranteed by Proposition 2 and Corollary
1. Since the size of L is at most |V |2k it is easy to see that the running time of
all steps except of step 3 is polynomial. In Proposition 3 (below) we prove that
the running time of step 3 is also polynomial. We note that in case the algorithm
returns true then it is possible to compute in polynomial time a P -motivating
subgraph. In particular, the table we use to compute the list L in step 3 can be
utilized to do so efficiently. ��

3.1 Computing All the Cost Combinations of Converging Paths

The next proposition is the heart of the claim that the algorithm in Theorem 4
runs in polynomial time.

Proposition 3. For a weighted directed acyclic graph G = (V,E) in which all
edge costs are in {w−, w+}, source nodes s1, . . . , sk and a target node t, there
is an algorithm with running time O(|V |O(k)) that computes all the possible cost
combinations for a set of k converging paths: P1, . . . , Pk such that ∀1 ≤ i ≤
k, Pi = si → t.

Our algorithm is based on Shiloach and Perl’s algorithm for finding two disjoint
paths from two different source nodes to two different target nodes ([15]). Given
a graph G = (V,E) they construct a product graph G′ = (V ′, E′) such that the
nodes of the graph G′ are pairs of nodes in V . The edges of G′ are defined in a
way that every path in G′ represents two disjoint paths in G. Building on this
idea, given a task graph G we define a product graph Ĝk such that every path in
Ĝk represents k converging paths in G. We then show how to use Ĝk to compute
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all cost combinations of converging paths. Note that the problem we consider is
more complicated than the one considered in [15] since not only do we consider
convergent paths instead of disjoint paths and extend the number of paths to
k, but we also need to reason about the costs of the paths and not just whether
they exist or not.

Construction of the Product Graph Ĝk. Consider a directed acyclic graph
G = (V,E)6, source nodes s1, . . . , sk and a target node t. ∀v ∈ V let l(v)
be the length (i.e., number of edges) of the longest path connecting v and t.
Note that since the graph G is a DAG it is possible to compute l(v) in poly-
nomial time7. In the product graph Ĝk = (V̂ k, Êk) the nodes of the graph are
k-tuples of nodes of G: V̂ k =

{〈v1, . . . , vk〉 | ∀1 ≤ i ≤ k, vi ∈ V
}
. An edge

(〈x1, . . . , xi, . . . , xk〉, 〈y1, . . . , yi, . . . , yk〉) is in Êk if and only if

1. There exists i such that xi �= yi and l(xi) = max1≤j≤k l(xj).
2. (xi, yi) ∈ E.
3. ∀j , if xj = xi then yj = yi else yj = xj .

We illustrate this construction in Fig. 3.

1,3

5,3 6,3

2,3 3,3

6,4

6,6

4,4

t,4

6,t

t,t

s 1 2 3 4

t

5 6

Fig. 3. On the left we have a task graph G with source nodes 1 and 3. Bold edges
have weight w+ and light edges have a weight of w−. On the right we have a part of

the product graph ̂G2 constructed based on G. Consider the node 〈1, 3〉 in ̂G2 since
l(1) = 4 and l(3) = 2 in all the edges leaving 〈1, 3〉 the second coordinate remains fixed.

Since (1, 5), (1, 2) ∈ E we have that (〈1, 3〉, 〈2, 3〉), (〈1, 3〉, 〈5, 3〉) ∈ ̂E2.

Notice that the number of nodes in the product graph is O(|V |k) which is
polynomial in |V | for a fixed k. Intuitively, every node 〈x1, . . . , xi, . . . , xk〉 ∈ V̂ k

represents a state of k paths where the current node of the i’th path is xi ∈ V .
An edge (〈x1, . . . , xi, . . . , xk〉, 〈y1, . . . , yi, . . . , yk〉) ∈ Êk represents an extension
of a set of converged paths (i.e., paths that are currently at the same node) by
an edge from G, while the rest of the paths remain the same. The next definition
formalizes this intuition:
6 In this construction we ignore the costs of the edges.
7 For example, we can go over the graph in reverse topological order and update for

each node the length of the maximum path connecting it to t.
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Definition 5 (Induced Path). A path P̂ in the product graph Ĝk defines an
induced path I(P̂ )i for every coordinate 1 ≤ i ≤ k:

I( ̂P )i = {(xi, yi) ∈ E | (〈x1, . . . , xi, . . . , xk〉, 〈y1, . . . , yi, . . . , yk〉) ∈ ̂P and xi �= yi}

As an example, consider the graph in Fig. 3 and let P̂ = 〈1, 3〉, 〈2, 3〉, 〈3, 3〉,
〈6, 6〉, 〈t, t〉.

The induced paths are I(P̂ )1 = 1, 2, 3, 6, t and I(P̂ )2 = 3, 6, t.
We prove that every k converging path in G corresponds to a path in Ĝk.

Thus, roughly speaking, the complicated problem of computing k converging
paths boils down to the simpler problem of finding a path with certain properties
in the product graph.

Proposition 4. Consider a directed acyclic graph G, a set S = {s1, . . . , sk} of
source nodes and a target node t. G includes k converging paths: P1, . . . , Pk such
that ∀i, Pi = si → t if and only if there is a path 〈s1, s2, . . . , sk〉 → 〈t, t, . . . , t〉
in Ĝk such that ∀i, I(P̂ )i = Pi.

In the full version we prove each direction of the proposition by a separate
induction. To get a feel of the proof that the induced paths of a path in Ĝk

correspond to converging paths, we sketch the proof for k = 2. Assume towards
contradiction that there exists a path P̂ in Ĝ2 that I(P̂ )1 and I(P̂ )2 are not
converging. This implies that there exists a node v ∈ V in which P1 and P2

intersect and there are two different nodes u, u′ ∈ V such that (v, u) ∈ P1 and
(v, u′) ∈ P2. By construction it is easy to see that the path P̂ cannot include the
node 〈v, v〉 since after visiting this node the two induced paths have to converge.
The only option is that P̂ first visited a node 〈a, v〉 for a ∈ V (not necessarily
immediately) afterwards it visited a node 〈b, u〉 for b ∈ V and later it visited
a node 〈v, c〉 for c ∈ V . We observe that in such case l(a) < l(v) and thus, by
construction, P̂ has to reach from 〈a, v〉 a node 〈b, v〉 such that l(b) = l(v) before
reaching the node 〈b, u〉. By the assumption that P̂ does not include 〈v, v〉 we
have that b �= v. However, since l(b) = l(v) and b �= v, it has to be the case that
v is not reachable from b, in contradiction to the assumption that 〈v, c〉 ∈ P̂ .

An Algorithm for Computing all Possible Cost Combinations. We now
use the product graph to compute a list of all possible cost combinations. To
this end we first observe that the product graph of a DAG is a DAG:

Observation 5. The product graph of a directed acyclic graph (DAG) is a DAG.

Proof. Let G be a directed acyclic graph and assume towards contradiction that
Ĝ contains a cycle of length d > 1:

Ĉ = 〈v1
1 , . . . , v

1
k〉 · · · → · · · 〈vd

1 , . . . , v
d
k〉, 〈v1

1 , . . . , v
1
k〉.

Since the cycle has length greater than 1 there has to be an index j such that
v1
j �= v2

j this implies that I(Ĉ)j = v1
j , v

2
j , . . . , v

1
j . Thus, by Proposition 4 we have

that I(Ĉ)j is a cycle in G in contradiction to the fact that G is a DAG. ��
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Our algorithm goes over the nodes of Ĝ in reverse topological order. For each
node 〈v1, . . . , vk〉 it maintains a list of all the potential cost combinations for k
converging path from 〈v1, . . . , vk〉 to 〈t, . . . , t〉. As previously discussed, there are
at most |V |2k possible cost combinations for the k converging paths and this
essentially implies that the following algorithm runs in polynomial time.

1. Initialization: For each node x define an empty list L(x). Process the nodes
of the graph Ĝ in reverse topological order. For every node x = 〈x1, . . . , xk〉
and every neighbor of x, y = 〈y1, . . . , yk〉 ∈ N(x):
(a) Let X = {j|xj �= yj} and let e = (xi, yi) ∈ E for some i ∈ X.8

(b) For every cost combination (c1, . . . , ck) ∈ L(y):

– ∀ 1 ≤ j ≤ k, c′
j =

{
cj + c(e), j ∈ X

cj , j /∈ X

– If (c′
1, . . . , c

′
k) /∈ L(x), add it to L(x).

2. Return L(〈s1, . . . , sk〉).
To see that the algorithm runs in polynomial time, observe that the lists we

keep for each node are of polynomial size (their length is at most |V |2k). The
running time of the algorithms under the most naive implementation in which
L is simply a linked list is O(|V |k · |V |k · |V |2k · k · |V |2k) = O(k · |V |6k).9

The correctness of the algorithm is obtained by applying Proposition 4 to
prove that (c1, . . . , ck) ∈ L(〈s1, . . . , sk〉) if and only if there exist k converging
paths P1, . . . , Pk such that ∀1 ≤ i ≤ k, Pi = si → t and c(Pi) = ci.

4 Hardness of Computing a P -Motivating Subgraph

Lastly, we discuss the hardness of the P -motivating subgraph problem. PMS
is clearly in NP: given a subgraph we can check in polynomial time whether a
present-biased agent will reach t. In the full version we prove:

Proposition 5. The PMS problem with arbitrary weights is NP-complete for
any b > 1 even when there is only a single node in P that is a potential source
for a shortcut.

The proof is based on a reduction from the subset sum problem: given a set of
integers X = {x1, . . . , xn} and an integer L, does there exist a subset S ⊆ X
such that

∑
x∈S x = L? The rough idea is to construct a task graph and a path

P such that there exists a P -motivating subgraph if and only if there exists a
shortcut of cost exactly x. The costs of the edges that can form the path are
chosen such that for each subset S ⊆ X there exists a path of cost

∑
x∈S x.

8 By construction ∀i, j ∈ X we have that xi = xj and xi = yj .
9 By replacing the list with a binary matrix of size (|V | × |V |)k in which a cell

(h1, l1, . . . , hk, lk) represents whether there are k converging paths such that each
path i has hi edges of weight w+ and li edges of weight w−, we can reduce the
running time to O(k · |V |4k).
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The PMS problem is also hard in the restricted case in which the edge costs
can only have two values:

Theorem 6. The PMS problem with two weights is NP-complete for any b > 2.

The proof of this theorem is composed of two reductions. First, we define the
following problem:

Definition 6 (Equal-Weight Converging Paths (EWCP)). Given a
weighted DAG G, k source nodes {s1, . . . , sk}, a target node t and a real number
x, determine whether there exist k converging paths P1 = s1 → t, . . . , Pk = sk →
t such that ∀1 ≤ i ≤ k, c(Pi) = x.

We reduce from 3-SAT to show that EWCP with two weights is NP-complete.
The reduction borrows from a reduction of [2] showing that the k-disjoint con-
necting paths problem is NP-complete. Formally, in the full version we show:

Proposition 6. The equal-weight converging path problem where all edges have
weights w− or w+ is NP-complete for any w+ > w− > 0.

Then we reduce from EWCP with two weights to PMS. Roughly speaking,
given an instance of EWCP we create a path P = s, v1, . . . , v2k+2, . . . , t such for
1 ≤ i ≤ k, each node v2i−1 is connected to an EWCP source node si. The idea
is to use the k converging paths as shortcuts. Without them, the agent will not
be able to traverse P .

5 Discussion

Present bias is a common and central bias inhibiting individuals from completing
projects and following their plans in general. In this paper we present a new
variant of the principal-agent problem that features present-biased agents. Our
results demonstrate that when the optimal path for the principal is unique it
is NP-hard for the principal to compute his optimal strategy even when there
are only two possible values for the costs of the edges. This is since in such a
case if there exists a P -motivating subgraph the algorithm must return it and
we proved that the PMS problem with two weights is NP-hard.

Moreover, we conclude that the following approximation variant of the prob-
lem does not admit an FPTAS unless P = NP: compute a motivating subgraph in
which the payoff of the principal approximates the maximal payoff in any moti-
vating subgraph. To show the hardness of this problem we reduce from PMS.
Given the input graph for PMS we set v(e) = v > 0 for any e ∈ P and v(e) = 0
for any e /∈ P . Note that in this instance it is hard to distinguish between the
case where the payoff of the principal in the optimal motivating subgraph is
n · v and the case where the best motivating subgraph does not use all edges
of P and thus the payoff is at most (n − 1) · v. Hence, for a sufficiently small
value of ε, an FPTAS algorithm will have to return a P -motivating subgraph if
one exists. We conclude that there is no FPTAS for our principal-agent problem
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unless P = NP . A fascinating open question is to determine the best approxi-
mation ratio that is possible to achieve in polynomial time. Another interesting
direction is to identify other definitions for the principal’s utility under which
computing the motivating subgraph maximizing the payoff of the principal is
tractable.

Our model naturally lends itself to a variety of extensions opening up new
and exciting open questions. For example, consider the variant in which the
reward comes out of the pocket of the principal and the principal has to find a
motivating subgraph maximizing

∑
e∈P v(e)−R. Another direction to explore is

allowing the principal to increase the costs on the edges instead of just removing
edges, in a manner similar to [3].
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Abstract. We study a hedonic game for which the feasible coalitions are pre-
scribed by a graph representing the agents’ social relations. A group of agents
can form a feasible coalition if and only if their corresponding vertices can be
spanned with a star. This requirement guarantees that agents are connected, close
to each other, and one central agent can coordinate the actions of the group. In
our game everyone strives to join the largest feasible coalition. We study the
existence and computational complexity of both Nash stable and core stable par-
titions. Then, we provide tight or asymptotically tight bounds on their quality,
with respect to both the price of anarchy and stability, under two natural social
functions, namely, the number of agents who are not in a singleton coalition, and
the number of coalitions. We also derive refined bounds for games in which the
social graph is restricted to be claw-free. Finally, we investigate the complexity
of computing socially optimal partitions as well as extreme Nash stable ones.

Keywords: Hedonic games · Price of anarchy/stability · Graphs

1 Introduction

Coalition formation, that is the process by which agents gather into groups, is a fervent
research topic at the intersection of Multi-Agent Systems, Computational Social Choice
and Algorithmic Game Theory. One of the most studied models of coalition formation
is that of hedonic games [6,8,13,19], where agents have preferences over all possible
coalitions they can belong to. As agents are usually assumed to be self-interested, an
acceptable outcome for a hedonic game, that is a partition of agents into coalitions,
needs to be resistant to agents’ deviations. Several notions of stability have been inves-
tigated in the literature, such as, individual stability, Nash stability, core stability (see,
for instance, [1]).

In a recent paper, Igarashi and Elkind [20] add a further constraint to the definition
of acceptable outcomes for hedonic games, by introducing the notion of feasible coali-
tion: a coalition is feasible if and only if it complies with some prescribed properties.
For instance, they assume that the set of agents corresponds to the vertex set V (G) of a
social graph G and require a coalition to induce a connected subgraph of G.

In this work, we restrict the feasibility constraint of [20] to coalitions inducing a
subgraph of G admitting a spanning star. This requirement guarantees that agents are
c© Springer Nature Switzerland AG 2019
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connected, close to each other, and one central agent can coordinate the actions of the
group. We apply this framework within a basic model, falling within the class of addi-
tive separable symmetric hedonic games, in which an agent’s utility is defined by the
cardinality of the coalition she belongs to.

1.1 Game Model, Definitions and Notation

Given an unweighted and undirected graph G = (V,E), a coalition is any non-empty
subset of V . A partition of V is a set of pairwise disjoint coalitions whose union equals
V . We denote by F ⊆ 2V the set of feasible coalitions. We shall consider F = {C ∈
2V | G[C]canbespannedwithastar}, where G[C] is the subgraph of G induced by C
and a star is a tree of depth at most 1. A star on one vertex is called trivial.

Given an undirected, unweighted and connected graph G, game (G,F) is defined
as follows. Each vertex of G is associated with an agent in the game. Let Π be the set of
partitions of V . For a partition π ∈ Π and a vertex i ∈ V , denote as π(i) the coalition
in π containing i. The utility of i in π is defined as

ui(π) =
{ |π(i)| if π(i) ∈ F ,

0 otherwise.
(1)

We say that agent i has a profitable deviation in π if either π(i) /∈ F , or there exists
a coalition C ∈ π such that C ∪ {i} ∈ F and |C| ≥ |π(i)|. In the first case agent
i can form the singleton coalition {i} which is feasible because it is spanned by a
trivial star and yields a utility equal to 1 > ui(π) = 0. In the second case, agent i
increases her utility by joining C. More generally, a set of agents S has a joint profitable
deviation in π if there exists a partition π′, obtained from π by letting every agent i ∈ S
leave coalition π(i) and either join another coalition in π or form a new one, such that
ui(π′) > ui(π) for each i ∈ S.

A partition π is Nash stable (resp. Strong Nash stable) if no agent (resp. no set
of agents) has a profitable deviation (resp. a joint profitable deviation) in π. Nash and
strong Nash stable partitions correspond to (pure) Nash and Strong equilibria respec-
tively. We say that a partition is feasible if each of its coalitions belongs to F . It is easy
to see that, by definition, any Nash stable partition is feasible. In a core stable parti-
tion π, there is no coalition C for which all its members are better off by forming C.
The set of core stable partitions (simply called the core) is a subset of the set of Nash
stable ones. Strong Nash stability implies core stability but the converse is not always
true. Nevertheless, because every agent only cares about the size of its coalition if it is
feasible, like in anonymous hedonic games [6], strong Nash stability and core stability
coincide in our game. We will use the word core instead of strong Nash for the rest of
this article.

A social function is a function, defined from Π to R≥0, measuring the social
value of a partition. A social optimum is a partition π∗ ∈ F optimizing a given
social function. We consider the following two social functions: sociality, defined as
soc(π) = |{i ∈ V : |π(i)| > 1}|, and fragmentation, defined as frag(π) = |π|.
Sociality needs to be maximized, while fragmentation needs to be minimized.

We evaluate the efficiency of stable partitions by means of the well established
notions of price of anarchy (PoA), price of stability (PoS) and their strong versions
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(SPoA and SPoS). The PoA (resp. PoS) of game (G,F) with respect to sociality is
defined as soc(π∗)

soc(π) , where π∗ is a social optimum and π is a Nash stable partition of
minimum (resp. maximum) sociality. The PoA (resp. PoS) of game (G,F) with respect
to fragmentation is defined as frag(π)

frag(π∗) , where π∗ is a social optimum and π is a Nash
stable partition of maximum (resp. minimum) fragmentation. By substituting the notion
of Nash stable partition with that of core stable one, we obtain the definition of both the
SPoA and SPoS. Observe that, for a given game (G,F) and independently of the chosen
social function, PoS(G,F) ≤ SPoS(G,F) ≤ SPoA(G,F) ≤ PoA(G,F).

1.2 Some Motivations

Requiring subgraphs spanned by a star can be interpreted as restricting the model of [20]
to communication patterns of small length. In comparison, unbounded multi-hop com-
munication may be costlier, slower, and prone to errors or misunderstandings. There-
fore, distant communication should be avoided. These observations provide both theo-
retical and practical motivations for the constraint considered in this work. Moreover,
our game, complemented with a suitable social function, naturally models several inter-
esting scenarios, some of which are outlined in the following.

Unions. Assume that V (G) models a set of workers of a given company, the edge
set E(G) the ideological acquaintance, and that the power of a union is measured by
its size. Thus, workers want to join the largest unions. However, a union can survive
only if it has a leader who is ideologically close to its partners. For this model, it makes
sense considering the fragmentation social function that aims at minimizing the number
of unions representing the workers and augmenting their negotiation power.

Group Buying. Assume that V (G) models a set of buyers, all interested in the same
product, and E(G) their knowledge/trust relationships. Buyers enjoy flowing into large
buying groups, as the larger the group, the better the purchasing conditions they can
fetch. However, negotiation with the seller is carried out by one group member only,
who then gets also in charge of redistributing what is bought to the others. Thus, this
agent needs to be trusted by everybody. If one considers the case in which the product
has a fixed price and the share each agent pays is equal to the price divided by the
cardinality of her buying group, fragmentation becomes equal to the sum of the costs
of all players, i.e., to the utilitarian social function.

Sport Tournaments. Assume that V (G) models a set of teams and there is an edge
between two teams if they are close enough to meet and practice a given sport (e.g.
football). The participants gather into groups in such a way that a central member can
host all teams of its group and organize a tournament. Teams will prefer larger tourna-
ments to small ones in order to maximize the number of opponents against which they
can play a match. Sociality, here, aims at involving as many teams as possible into the
organization of local tournaments, no matter how big those events are.

1.3 Contribution

We focus on the complexity and efficiency of both Nash stable and core stable parti-
tions. Some proofs are omitted due to space constraints.
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As to complexity results, we provide two constructive evidences showing existence
of core stable partitions, and so also of Nash stable ones. In particular, any sequence of
joint profitable deviations converges to a core stable partition, while Theorem 1 charac-
terizes the core as the set of all possible outputs of a polynomial time greedy algorithm.
These two facts complement each other, as the first does not need any coordination
among the agents, but provides no guarantees of fast convergence, whereas the sec-
ond, while requiring centralized coordination (dictated by the greedy choices of the
proposed algorithm), guarantees efficient computation. We then provide bounds on the
PoA, PoS, SPoA and SPoS under social functions sociality and fragmentation. In par-
ticular, we consider games induced by general (unrestricted) graphs and games induced
by claw-free graphs. These results are summarized in Fig. 1.
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Fig. 1. Bounds on the efficiency of both Nash stable and core stable partitions with respect to
social functions sociality and fragmentation. In the last column k =

√
n + 4 − 2.

It turns out that the presence of claws in the social graph defining the game is a
provable source of inefficiency that has to be taken into account, for instance, whenever
mechanisms for coping with selfish behavior can be designed and applied.

Finally, we also address the problem of computing outcomes with prescribed wel-
fare guarantees. In particular, we consider the computation of social optima and extreme
(i.e., either best or worst) Nash stable partitions under both social functions. We design a
polynomial time algorithm to compute a social optimum for sociality and prove that all
other problems are NP-hard, except for that of computing a worst Nash stable partition
under fragmentation whose complexity remains open.

1.4 Related Work

The language for describing which coalitions are feasible, and how agents value them,
is a critical feature in hedonic games. Like in [9,12], feasible coalitions and their values
can be described with the help of a (directed) graph. Igarashi and Elkind [20] and Peters
[27] have considered hedonic games defined over graphs: agents are the vertices and
feasible coalitions satisfy a given graph property. Regarding the worth of a coalition,
a simple and compact representation is given by additively separable functions [6]:
each agent i assigns a value νij to agent j and agent i’s worth for a coalition C is∑

j∈C νij . See, for example, [23] for a simple hedonic game where νij ∈ {0, 1}. Our
work falls in this framework, as everybody wants to be part of the largest coalition
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Algorithm 1. Greedy Core
Input: Game (G, F) where G = (V, E) is a graph.
Output: A core stable partition π.

1: while V �= ∅ do
2: take i ∈ V maximizing the degree dG(i)
3: π(i) ← NG[i] *NG[i] is the closed neighbourhood of i*
4: G ← G[V \ NG[i]]
5: end while
6: return π

(νij is always 1), and a coalition is feasible if and only if the vertices representing the
agents can be covered with a star.

Regarding existing games defined over graphs, Panagopoulou and Spirakis [25] and
Escoffier et al. [14] studied a game where the vertices of a graph have to select a color
(each color corresponds to a coalition), and a vertex’s payoff is the number of agents
with the same color, provided that it constitutes an independent set.

In many works including the famous stable marriage problem, the coalitions form a
matching of a graph (see for example [19]).

For bounds on the price of anarchy and the price of stability in some classes of
hedonic games, one can see [4,7,15,21,22]. The computation of socially optimal par-
titions in hedonic games, according to different social functions, has been treated in
[5,9–11,16]. Finally, we refer the reader to [2,3,24,26] for an extensive treatment of
the computational complexity of both decision and search problems related to stable
partitions in hedonic games.

2 On Core Stable Partitions

Given a partition π, a strong Nash dynamics of length � starting from π is a sequence of
partitions 〈π = π0, π1, . . . , π�〉 such that, for each j ≥ 1, πj is obtained as a result of a
joint profitable deviation of some set of agents in πj−1.

A game has the lexicographical improvement property (LIP) [18], if every joint
profitable deviation strictly decreases the lexicographical order of a certain function
defined on Π . It is not difficult to see that for any graph G, game (G,F) has the LIP
property if one considers the n-dimensional vector consisting of the values ui(π) for
each i ∈ V , sorted in non-increasing order. Thus, a core stable partition always exists
as the length of every strong Nash dynamics is finite.

We now prove that, if centralized coordination is allowed, a core stable partition can
be computed in polynomial time. This is done by proving that the core is completely
characterized by the set of all possible outputs of Algorithm 1.

Theorem 1. A partition is core stable if and only if it is the output of Algorithm 1
(according to some specific tie breaking rule).

Proof. The algorithm outputs a feasible partition π. First we show that π is core stable.
Assume, by way of contradiction, that π is not core stable. Then, there exists a joint
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profitable deviation in π for a coalition S such that |S| ≥ 1. Let i be the agent getting
the highest utility in π among the ones belonging to S. As i improves, she will end up
in a coalition C ∈ F such that |C| > |π(i)|. If C is created by the algorithm before
π(i), then i should belong to C in π: a contradiction to the greedy choice. Hence,
either C is created by the algorithm after π(i) or it is a new coalition created by the
joint deviation. As i gets the highest utility in S, C only contains vertices belonging to
coalitions created by the algorithm at the step π(i) is created or after. This implies that,
at the step in which π(i) is created, C could have been created too, thus contradicting
the greedy choice.

Now, we show that any core stable partition π can be the output of the above algo-
rithm. List the coalitions in π by non-increasing cardinality and define a tie breaking
rule R that gives priority to the coalitions in π according to the given ordering, and gives
higher priority to a coalition in π with respect to any coalition not in π. Run the algo-
rithm according to rule R to obtain a partition π′. Assume, by way of contradiction, that
π 	= π′. List the coalitions in π′ by non-increasing cardinality, breaking ties according
to R. Let j be the first index at which the two sequences become different and denote
as C and C ′ the j-th coalition in the ordering defined on π and π′, respectively. By the
definition of R, it must be |C ′| > |C| which implies that all vertices in C ′ can perform
a joint profitable deviation in π. This contradicts the assumption that π is a core stable
partition. 
�

3 Efficiency of Core/Nash Stable Partitions

In this section, we focus on the efficiency of Nash or core stable partitions with respect
to both social functions sociality and fragmentation. Before characterizing the price of
anarchy, we prove some preliminary lemmas.

Lemma 1. If G admits a spanning star, then any Nash stable partition for game (G,F)
is formed by a unique coalition V (G).

Lemma 2. If G is connected with n ≥ 3, then any Nash stable partition for game
(G,F) contains either 2 coalitions of size at least 2 or a coalition of size at least 3.

We are now ready to characterize the PoA. As it is equal to 1 for any game with
three players (by Lemma 1), in the remaining of the section we shall assume n ≥ 4.

Theorem 2. For any game with n players, the price of anarchy is n/3 with respect to
sociality and (n − 2)/2 with respect to fragmentation. Both bounds are tight.

Proof. Fix a Nash stable partition π. By Lemma 2, soc(π) ≥ 3. As the sociality of
any partition is upper bounded by n, we obtain an upper bound of n/3 on the price
of anarchy. By Lemma 1, if the fragmentation of the social optimum is 1, then the
price of anarchy is 1, hence assume that its fragmentation is at least 2. By Lemma 2,
frag(π) ≤ n − 2 which yields the desired upper bound on the price of anarchy.

A matching lower bound for both social functions can be obtained by considering
the game induced by the graph G depicted in Fig. 2. The partition π such that π(v1) =
{v1, v2, v3} and π(vi) = {vi} for i > 3 is Nash stable and has soc(π) = 3 and
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frag(π) = n − 2. On the other hand, the partition π∗ such that π∗(v1) = {v1, v2} and
π∗(v3) = {v3, . . . , vn} has a sociality of n and a fragmentation of 2. Comparing the
two partitions yields the desired lower bounds. 
�

v1

v2

v3

v4

vn

Fig. 2. A graph yielding a game with worst-case price of anarchy.

It is also possible to give an upper bound on the price of anarchy with respect to
both social functions which depends on the stability number α(G) of graph G, where
α(G) is the largest size of an independent set.

Theorem 3. The price of anarchy of game (G,F) is at most n
n−α(G)+1 with respect to

sociality and at most α(G)
2 with respect to fragmentation.

Proof. Fix a Nash stable partition π. As the set of centres of the stars spanning the
subgraph induced by each coalition in π forms an independent set in G, it follows
that frag(π) ≤ α(G). Thus, by Lemma 2, it follows that the price of anarchy with
respect to fragmentation is at most α(G)

2 . Moreover, as G has at least one edge, the
number of singleton coalitions in π can be at most frag(π) − 1 ≤ α(G) − 1. So,
soc(π) ≥ n − α(G) + 1. 
�

For the efficiency of core stable outcomes, we have the following results.

Theorem 4. For any game (G,F)with n players SPoS(G,F) ∈
[

n
2+

√
n−2

, n
1+

√
n−1

]
and SPoA(G,F) = n

1+
√

n−1
hold for the sociality function.

Proof. For the upper bound, consider a coalition C in a core stable partition π with
|C| = k > 2 and let c be the center of the spanning star of G[C]. No vertex i belonging
to a singleton coalition can be adjacent to c, otherwise i would have a profitable devia-
tion in π. Any vertex i ∈ C, with i 	= c can be adjacent to at most k−2 vertices belong-
ing to a singleton coalition, otherwise these vertices, together with i and c would have a
joint profitable deviation in π. It follows that for any coalition in π with k > 2 vertices,
there can be at most (k − 1)(k − 2) singleton coalitions in π. Let sk be the number of
coalitions in π with k vertices for k ≥ 1. We deduce

∑n
k=3

(
sk(k2 − 3k + 2)

) ≥ s1
which gives

∑n
k=2

(
sk(k2 − 2k + 2)

) ≥ n by adding
∑n

k=2 ksk on both sides.
As the sociality in a social optimum is upper bounded by n and soc(π) =∑n

k=2(skk), we obtain that the strong price of anarchy is at most n∑n
k=2(skk) ≤

k
2−2k+2

k
, where k = max{k : sk > 0}. Moreover, as soc(π) ≥ k, the strong price

of anarchy is trivially upper bounded by n/k. It follows that the minimum of the two
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derived bounds is maximized for k
2 − 2k + 2 = n ⇔ k = 1 +

√
n − 1, which yields

the desired upper bound on both SPoA(G,F) and SPoS(G,F).
For the lower bound on the strong price of anarchy, consider the game induced by a

tree G rooted at vertex x0 which has � children denoted as x1, . . . , x�. For each i ∈ [�],
xi has �−1 children, so that G has n = �2+1 vertices. By using the characterization of
core stable partitions given in Theorem 1, it follows that the partition π whose unique
non-singleton coalition is {x0, x1, . . . , x�} is a core stable partition for game (G,F).
As soc(π) = �+1 and there is a partition with sociality n, we get that the strong price of
anarchy is lower bounded by n

�+1 . By using n = �2 + 1, it follows that n
�+1 = n

1+
√

n−1

and this provides the desired lower bound.
For the lower bound on the strong price of stability, add a vertex y to the previous

instance which is solely connected to x0, so that G now has n = �2 + 2 vertices. In
this case, the partition π whose unique non-singleton coalition is {x0, x1, . . . , x�, y} is
the unique core stable partition for game (G,F). As soc(π) = � + 2, we get that the
strong price of stability is lower bounded by n

�+2 . By using n = �2 + 2, it follows that
n

�+2 = n
2+

√
n−2

and this provides the desired lower bound. 
�
Theorem 5. For any instance (G,F) of the game with n players and the fragmentation
function, it holds that �n/2�/2 ≤ PoS(G,F) ≤ SPoA(G,F) ≤ n/4 + 11/20.

Proof. Let π be a core stable partition and set k = Δ(G) + 1, where Δ(G) is the
maximum degree of G. It follows that the fragmentation of the social optimum is at
least �n/k�. From Theorem 1, we know that there is a coalition of size k in π. Thus
frag(π) ≤ 1 + n − k, and SPoA(G,F) ≤ k(1+n−k)

n . If n is even then k(1+n−k)
n ≤

n/4 + 1/2, otherwise k(1+n−k)
n ≤ (n+1)2

4n = n
4 + 1

2 + 1
4n ≤ n

4 + 11
20 , where the last

inequality is due to the hypothesis n ≥ 4 (the smallest odd n is 5).
To show the lower bound when n is even, consider the game induced by the graph

depicted in Fig. 3. We have a social optimum π∗ such that π∗(x1) = {x1, . . . , x�n/2	}
and π∗(y1) = V \ π∗(x1) and yielding frag(π∗) = 2. There are only two Nash stable
partitions, namely π1 and π2, both having fragmentation equal to �n/2�. In particular,
π1 is such that π1(x1) = {x1, . . . , x�n/2	, y1} and π1(yi) = {yi} for i > 1, while π2

flips the roles of x and y. When n is odd, take the same instance and add a new vertex
solely connected to x1 to get the lower bound of �n/2�/2. 
�

x1 y1

x2

x�n/2�

y2

y�n/2�

Fig. 3. A graph yielding a game with worst-case price of stability with respect to fragmentation.

We conclude the section with a lower bound on the price of stability for the sociality
social function showing that the quality of the best Nash stable partition cannot be better
than twice that of the worst core stable one.
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Theorem 6. For any game with n players, the price of stability with respect to sociality
is at least n

2
√

n−1
.

Proof. Consider the game yielded by the graph G = (V,E) such that V = X ∪ Y1 ∪
. . . ∪ Y�, with X = {x1, . . . , x�} and, for each i ∈ [�], Yi = {yi,1, . . . , yi,�−1}. The
set of edges E is such that G[X] = K� (i.e. complete graph on � vertices) and, for
each i ∈ [�] each vertex in Yi is connected to xi only. Note that, by setting � =

√
n, we

obtain |V | = n. We shall prove that, in any Nash stable partition, the sociality is at most
2
√

n − 1. Given that there is a partition of sociality n, this will yield the corresponding
lower bound. Fix a Nash stable partition π. We claim that π contains a unique non-
singleton coalition containing X . This easily follows from the fact that X defines a
clique and that, by the topology of G, in any feasible coalition C containing a vertex of
x ∈ X , C induces a subgraph of G admitting a spanning star centred at x. Moreover,
as π is Nash stable, we shall have that the unique non-singleton coalition in π will also
contain all vertices in Yi for a certain i ∈ [�]. No other vertices of G can be added
to the coalition without violating the feasibility constraint and no other non-singleton
coalition can be constructed as the remaining vertices yield an independent set of G.
Hence, the sociality of π is 2

√
n − 1. 
�

3.1 Claw-Free Graphs

In this subsection, we consider the case in which the graph G is claw-free, i.e., it does
not contain an induced K1,3 (i.e. complete bipartite graph with 1 and 3 vertices on the
respective sides). It will turn out that the presence of claws in graph G is a provable
source of inefficiency as the price of anarchy with respect to both social functions (and
so also all the other metrics) for games played on claw-free graphs drops to a value
which never exceeds 2. Claws (and more generally induced stars with a large number
of leaves) are problematic for our social functions when the center c of a claw belongs
to a partition π(c) which does not admit a spanning star of center c. In this case some
leaves of the claw are isolated: they cannot join π(c) or group themselves because they
are disconnected. For the social function sociality, the following two theorems provide
an asymptotically tight characterization.

Theorem 7. For any game with n players, the price of anarchy with respect to sociality
is at most n

n−�n−1
2 	 , that is

2n
n+2 and 2n

n+1 when n is even and odd, respectively.

Proof. Fix a Nash stable partition π and let i be a vertex belonging to a singleton coali-
tion in π. Clearly, i cannot be adjacent to a vertex being a center of a spanning star of
any subgraph induced by a coalition in π. So, i can only be adjacent to leaves of span-
ning stars of any subgraph induced by coalitions in π. Assume that there exists a vertex
j also belonging to a singleton coalition in π and sharing a neighbour k with i. Let c be
the center of a star spanning G[π(k)]. As {i, j, c} is independent, we find that the set
of vertices {i, j, k, c} induces a claw in G: a contradiction. Two vertices forming a sin-
gleton coalition cannot share the same leaf of a star spanning a non-singleton coalition.
Thus, denote by α the number of vertices that are centres of a star spanning the subgraph
induced by a non-singleton coalition in π, we get that the number of vertices forming



On a Simple Hedonic Game with Graph-Restricted Communication 261

singleton coalitions in π, which is integral, is upper bounded by �n−α
2 � ≤ �n−1

2 �. This
implies that soc(π) ≥ n − �n−1

2 �, which yields the desired upper bound because the
optimal sociality soc(π∗) is n. 
�
Theorem 8. For any game with n players, the price of stability with respect to sociality
is at least n

n−�n−1
2 	 .

Proof. Suppose n = 2p and consider the graph G2p = (V2p, E2p) such that V2p =
Xp ∪ Yp, where Xp = {x1, . . . , xp}, Yp = {y1, . . . , yp}, Xp forms a clique, and each
vertex yi is adjacent to vertex xi. One can see that G2p is claw-free, and Xp ⊆ π(xi)
for any Nash stable partition π. Moreover, to have feasibility, a coalition C can contain
at most one vertex from Yp. It follows that the sociality of any Nash stable partition is
at most p + 1. As there exists a partition with sociality 2p, the claimed lower bound
follows. For n = 2p + 1, use the same construction with Yp = {y1, . . . , yp−1}. 
�

For the fragmentation social function, a slightly different situation occurs.

Theorem 9. For any game with n players, the price of anarchy with respect to frag-
mentation is at most 2.

Proof. Fix a Nash stable partition π. If frag(π) ≤ 2, we are done. If frag(π) ≥ 3,
consider three distinct coalitions C1, C2, C3 ∈ π and let c1, c2 and c3 be the centres of
the spanning stars of G[C1], G[C2] and G[C3], respectively. As π is Nash stable, the
set of vertices U = {c1, c2, c3} induces an independent set of G. We claim that these
vertices cannot belong to a same cluster in some social optimum π∗. Assume, by way
of contradiction, that there exists a cluster C∗ ∈ π∗ containing U . As U induces an
independent set of G no vertex in U can be the center of the star spanning G[C∗]. So,
there exists c∗ ∈ C∗ which is adjacent to all vertices in U . But U ∪ {c∗} induces a
claw: a contradiction. Hence, for every two coalitions in π, there must exist a distinct
coalition in π∗ which yields the desired upper bound. 
�
Theorem 10. For any positive integer k, there exists a game whose strong price of
stability with respect to fragmentation is at least 2k

k+1 .

Proof. For an integer k ≥ 1, define the following graph Gk. The set of vertices is
V = X1 ∪ . . . ∪ Xk ∪ Y ∪ Z, with Y = {y1, . . . , yk} and Z = {za

1 , zb
1, . . . , z

a
k , zb

k}
so that |Z| = 2k. As to sets Xi for i ∈ [k], we have that |Xi| = 2i, Gk(Xi) induces
a clique and Xi contains two special vertices, namely xi and xi, which are the only
vertices adjacent to vertices in V \ Xi. In particular, xi is adjacent to both za

i and zb
i ,

while xi is adjacent to yi and, for i < k, to both za
i+1 and zb

i+1. Finally, for each i ∈ [k],
za
i and zb

i are adjacent and, for i > 1, they are both adjacent to yi−1. Again, we show
two fundamental properties:

Property 1. (i) Gk is claw-free, (ii) (Xi ∪ {za
i , zb

i }, {yi} | i ∈ [k]) is a core stable
partition.

Consider the feasible partition π∗ containing the following coalitions: Xk ∪{yk}, Xi ∪
{yi}∪{za

i+1, z
b
i+1} for each i ∈ [k−1] and {za

1 , zb
1}. As frag(π) = k+1, the claimed

lower bound follows. 
�
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Theorem 11. For any game with n players, the price of stability with respect to frag-
mentation is 1.

Proof. Our aim is to show that, given a partition π, it is possible to schedule profitable
deviations so as to obtain a Nash dynamics starting from π and ending up to a Nash
stable partition π� such that frag(π�) ≤ frag(π). Choosing a social optimum as start-
ing partition will yield the claim. Our scheduling algorithm is defined as follows: given
a partition π, if more than one player have a profitable deviation in π, break ties in
favour of a player who does not constitute a center for any spanning star of the sub-
graph induced by the coalition she belongs to. By the LIP property, we are guaranteed
that the Nash dynamics defined by this scheduling algorithm always ends to a Nash
stable partition π� for any starting partition π.

Assume, by way of contradiction, that frag(π�) > frag(π). This implies that
there are two partitions π, π′ ∈ Π and a player i such that π′ is obtained as a result of a
profitable deviation of i in π and frag(π) < frag(π′). The latter condition can happen
only if G[π(i) \ {i}] does not admit a spanning star, which implies that G[π(i)] admits
only one spanning star centred at i. So, there are at least two distinct vertices u and v
other than i belonging to π(i). Let C ∈ π be the coalition joined by i and let j 	= i be the
center of a spanning star for G[C ∪ {i}]. Clearly it must be {i, j} ∈ E. If {u, j} ∈ E,
then C ∪{u} ∈ F . But as uu(π) = ui(π) = |π(i)| < ui(π′) = |C ∪{i}| = |C ∪{u}|,
it follows that u has a profitable deviation in π and, by the definition of the scheduling
algorithm, i should have not been chosen. The same argument holds for v. Thus, we
have detected a set of vertices {i, j, u, v} inducing a claw in G: a contradiction. 
�

4 Computing Partitions with Prescribed Properties

In this section, we address the complexity of computing partitions with some prescribed
properties, such as, for example, being a social optimum or being a Nash stable partition
either maximizing or minimizing a given social function.

4.1 Computing a Social Optimum

Proposition 1. Computing a social optimum with respect to fragmentation is NP-hard,
even for claw-free graphs.

The following result relies on the efficient computation of a minimum edge-cover.

Proposition 2. For connected graphs on n vertices, computing a social optimum π∗

with respect to sociality is polynomial and soc(π∗) = n.

4.2 Computing an Extreme Stable Partition

Using Theorem 11 and Proposition 1, we deduce that computing a best Nash stable
partition with respect to fragmentation is NP-hard, even for claw-free graphs. We now
show that hardness holds also for the sociality social function.
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Theorem 12. Computing the best Nash stable partition with respect to sociality is NP-
hard when the input graph G has maximum degree equal to 5.

Proof. We propose a reduction from 3-DIMENSIONAL MATCHING (3-DM in short).
An instance of 3-DM consists of a collection C = {s1, . . . , sm} ⊆ X × Y × Z of
m triples, where X = {x1, . . . , xn}, Y = {y1, . . . , yn} and Z = {z1, . . . , zn} are
3 pairwise disjoint sets of size n. A matching is a subset M ⊆ C such that no two
elements in M agree in any coordinate, and the purpose of 3-DM is to answer the
question: does there exist a perfect matching M on C, that is, a matching of size n?
This problem is known to be NP-complete (problem [SP1] p. 221 in [17]), even if each
element t ∈ X ∪ Y ∪ Z appears in at most 3 triples. We start from such an instance
I = (C,X ∪ Y ∪ Z) of 3-DM and we build a game (G,F), where G = (V,E)
is as follows. Vertex set contains L ∪ R where L = {l1, . . . , lm} corresponds to the
different triples of C and R = Rx ∪ Ry ∪ Rz where Rt = {rt

1, . . . , r
t
n} for t = x, y, z,

corresponds to elements of X ∪ Y ∪ Z. Moreover for t = x, y, z, lir
t
j ∈ E if and

only if tj is an element of triplet si. This particular bipartite graph is usually called
representative bipartite graph. We use gadget H(li) for each li ∈ L to characterize
triplets of C. This gadget is illustrated in Fig. 4 (on the left of the drawing).

The construction of G is complete and its maximum degree is 5. We claim that I
admits a perfect matching if and only if there exists a Nash stable partition π of (G,F)
with soc(π) ≥ 5m + n. Actually, we will prove that 5m + n is the best value reachable
by any Nash stable partition π.

Clearly, if C′ ⊆ C is a set of n triples forming a perfect matching, then consider the
following partition π. For si = (xi1 , yi2 , zi3) ∈ C′, set π(di) = {di}, π(ei) = {ei} and
π(li) = {bi, ci, li, r

x
i1

, ry
i2

, rz
i3

}; an illustration of these 3 coalitions is proposed in Fig. 4
(on the right of the drawing). Otherwise, for si /∈ C′, set π(li) = {li, bi, ci, di, ei}. It is
easy to see that π is a Nash stable partition with soc(π) = 6n + 5(m − n) = 5m + n.

bici

di
ei

li

rx1

ry1

rz1

di
ei

li

rx1

ry1

rz1

Fig. 4. On the left: Gadget H(li). On the right: a possible Nash stable partition for agents in
H(li).

Conversely, let π be a Nash stable partition. If {li, r
t
j} ⊆ π(rt

j) for some j ∈ [n]
and t = x, y, z, then:

Property 2. (i) ∀i′ 	= i, li′ /∈ π(rt
j), (ii) {bi, ci} ⊆ π(rt

j) and {di, ei} ∩ π(rt
j) = ∅.
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Let Cov = {li ∈ L : |π(li)| = 6} and p = |Cov|. By Property 2, for every li ∈ Cov, it
must be π(ei) = {ei} and π(di) = {di} (see right picture of Fig. 4 for an illustration);
actually, these collations correspond to a (3-dimensional) matching of size p. Using
Property 2, we know that we also loose in the sociality function, as many trivial stars
as the number of vertices of R \ (∪li∈Covπ(li)). Hence, soc(π) ≤ 5m + 3n − (2p +
3n − 3p) = 5m + p ≤ 5m + n and the last inequality is tight only when |Cov| = n or
equivalently when C′ = {si|li ∈ Cov} is a perfect matching. 
�
Corollary 1. Computing the best Nash stable partition with respect to either sociality
or fragmentation is NP-hard even for planar graphs.

As to the problem of computing a worst Nash stable partition, we give a hard-
ness result with respect to sociality, while the case of the fragmentation social function
remains open.

Theorem 13. Computing the worst Nash stable partition with respect to sociality is
NP-hard when the input graph G has maximum degree equal to 11.

5 Conclusion

Two problems are left open: closing the gap between upper and lower bounds on the
PoS with respect to sociality for games played on general graphs, and determining the
complexity of computing a worst Nash stable partition with respect to fragmentation.
Addressing the problem of computing extreme core stable partition is also worth to be
investigated.

Applying our feasibility constraint (i.e. imposing a spanning star) to hedonic games
having agents’ preferences other than the ones considered in this paper is clearly an
interesting research direction. Other graph patterns are appealing in our opinion: the
largest distance between any pair of agents, or the distance to some agent of the coalition
can be upper bounded by a given number (for the latter the distance to some agent is 1
in this paper).
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Abstract. Impartial selection has recently received much attention
within the multi-agent systems community. The task is, given a directed
graph representing nominations to the members of a community by other
members, to select the member with the highest number of nomina-
tions. This seemingly trivial goal becomes challenging when there is an
additional impartiality constraint, requiring that no single member can
influence her chance of being selected. Recent progress has identified
impartial selection rules with optimal approximation ratios. Moreover, it
was noted that worst-case instances are graphs with few vertices. Moti-
vated by this fact, we propose the study of additive approximation, the
difference between the highest number of nominations and the number
of nominations of the selected member, as an alternative measure of the
quality of impartial selection.

Our positive results include two randomized impartial selection mech-
anisms which have additive approximation guarantees of Θ(

√
n) and

Θ(n2/3 ln1/3 n) for the two most studied models in the literature, where n
denotes the community size. We complement our positive results by pro-
viding negative results for various cases. First, we provide a characteriza-
tion for the interesting class of strong sample mechanisms, which allows
us to obtain lower bounds of n − 2, and of Ω(

√
n) for their deterministic

and randomized variants respectively. Finally, we present a general lower
bound of 2 for all deterministic impartial mechanisms.

Keywords: Impartial selection · Voting · Mechanism design

1 Introduction

We study the problem that arises in a community of individuals that want to
select a community member that will receive an award. This is a standard social
choice problem [7], that is typically encountered in scientific and sports com-
munities but has also found important applications in distributed multi-agent
systems. To give an entertaining example, the award for the player of the year1

1 https://en.wikipedia.org/wiki/PFA Players%27 Player of the Year.
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by the Professional Footballers Association (PFA) is decided by the members of
PFA themselves; each PFA member votes the two players they consider the best
for the award and the player with the maximum number of votes receives the
award. Footballers consider it as one of the most prestigious awards, due to the
fact that it is decided by their opponents. In distributed multi-agent systems,
leader election (e.g., see [2]) can be thought of as a selection problem of similar
flavor. Other notable examples include (see [10]) the selection of a representative
in a group, funding decisions based on peer reviewing or even (see [1]) finding
the most popular user of a social network.

The input of the problem can be represented as a directed graph, which we
usually call nomination profile. Each vertex represents an individual and a direct
edge indicates a vote (or nomination) by a community member to another.

A selection mechanism (or selection rule) takes a nomination profile as input
and returns a single vertex as the winner. Clearly, there is a highly desirable
selection rule: the one which always returns the highest in-degree vertex as the
winner. Unfortunately, such a rule suffers from a drawback that is pervasive in
social choice. Namely, it is susceptible to manipulation.

In particular, the important constraint that makes the selection challenging
is impartiality. As every individual has a personal interest to receive the award,
selection rules should take the individual votes into account but in such a way
that no single individual can increase his/her chance of winning by changing
his/her vote. The problem, known as impartial selection, was introduced inde-
pendently by Holzman and Moulin [11] and Alon et al. [1]. Unfortunately, the
ideal selection rule mentioned above is not impartial. Consider the case with
a few individuals that are tied with the highest number of votes. The agents
involved in the tie might be tempted to lie about their true preferences to break
the tie in their favor.

Impartial selection rules may inevitably select as the winner a vertex that
does not have the maximum in-degree. Moulin and Holzman [11] considered
minimum axiomatic properties that impartial selection rules should satisfy. For
example, a highly desirable property, called negative unanimity, requires that
an individual with no votes at all, should never be selected. Alon et al. [1]
quantified the efficiency loss with the notion of approximation ratio, defined as
the worst-case ratio of the maximum vertex in-degree over the in-degree of the
vertex which is selected by the rule. According to their definition, an impartial
selection rule should have as low approximation ratio as possible. This line of
research was concluded by the work of Fischer and Klimm [10] who proposed
impartial mechanisms with the optimal approximation ratio of 2.

It was pointed out in [1,10], that the most challenging nomination profiles for
both deterministic and randomized mechanisms are those with small in-degrees.
In the case of deterministic mechanisms, the situation is quite extreme as all
deterministic mechanisms can be easily seen to have an unbounded approxi-
mation ratio on inputs with a maximum in-degree of 1 for a single vertex and
0 for all others; see [1] for a concrete example. As a result, the approxima-
tion ratio does not seem to be an appropriate measure to classify deterministic
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selection mechanisms. Finally, Bousquet et al. [6] have shown that if the max-
imum in-degree is large enough, randomized mechanisms that return a near
optimal impartial winner do exist.

We deviate from previous work and instead propose to use additive approxi-
mation as a measure of the quality of impartial selection rules. Additive approx-
imation is defined using the difference between the maximum in-degree and the
in-degree of the winner returned by the selection mechanism. Note that deter-
ministic mechanisms with low additive approximation always return the highest
in-degree vertex as the winner when his/her margin of victory is large. When
this does not happen, we have a guarantee that the winner returned by the
mechanism has a close-to-maximum in-degree.

Our Contribution. We provide positive and negative results for impartial
selection mechanisms with additive approximation guarantees. We distinguish
between two models. In the first model, which was considered by Holzman and
Moulin [11], nomination profiles consist only of graphs with all vertices having
an out-degree of 1. The second model is more general and allows for multiple
nominations and abstentions (hence, vertices have arbitrary out-degrees).

As positive results, we present two randomized impartial mechanisms which
have additive approximation guarantees of Θ(

√
n) and Θ(n2/3 ln1/3 n) for the

single nomination and multiple nomination models, respectively. Notice that
both these additive guarantees are o(n) functions of the number n of vertices.
We remark that an o(n)-additive approximation guarantee can be translated to
an 1 − ε multiplicative guarantee for graphs with sufficiently large maximum
in-degree, similar to the results of [6]. Conversely, the multiplicative guarantees
of [6] can be translated to an O(n8/9)-additive guarantee2. This analysis further
demonstrates that additive guarantees allow for a more smooth classification of
mechanisms that achieve good multiplicative approximation in the limit.

Our mechanisms first select a small sample of vertices, and then select the
winner among the vertices that are nominated by the sample vertices. These
mechanisms are randomized variants of a class of mechanisms which we define
and call strong sample mechanisms. Strong sample mechanisms are deterministic
impartial mechanisms which select the winner among the vertices nominated by
a sample set of vertices. In addition, they have the characteristic that the sample
set does not change with changes in the nominations of the vertices belonging to
it. For the single nomination model, we provide a characterization, and we show
that all these mechanisms should use a fixed sample set that does not depend on
the nomination profile. This yields a n− 2 lower bound on the additive approxi-
mation guarantee of any deterministic strong sample mechanism. For randomized
variants, where the sample set is selected randomly, we present an Ω(

√
n) lower

bound which indicates that our first randomized impartial mechanism is best
possible among all randomized variants of strong sample mechanisms. Finally,

2 The authors in [6] do not provide additive guarantees, hence we based our calcula-
tions on their provided bounds on the multiplicative guarantee 1− ε. It is important
to note however that they claim that they have not optimized their parameters, so
it is possible that this guarantee can be further reduced by a tighter analysis.
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for the most general multiple nomination model, we present a lower bound of 2
for all deterministic mechanisms.

Due to space limitations some proofs are omitted. The reader is referred to
the full version of the paper.

Related Work. Besides the papers by Holzman and Moulin [11] and Alon et al. [1],
which introduced impartial selection as we study it here, de Clippel et al. [9] con-
sidered a different version with a divisible award. Alon et al. [1] used the approx-
imation ratio as a measure of quality for impartial selection mechanisms. After
realizing that no deterministic mechanism achieves a bounded approximation
ratio, they focused on randomized mechanisms and proposed the 2-partition
mechanism, which guarantees an approximation ratio of 4 and complemented
this positive result with a lower bound of 2 for randomized mechanisms.

Later, Fischer and Klimm were able to design a mechanism that achieves
an approximation ratio of 2, by generalizing 2-partition. Their optimal mech-
anism, called permutation, examines the vertices sequentially following their
order in a random permutation and selects as the winner the vertex of highest
degree counting only edges with direction from “left” to “right.” They also pro-
vided lower bounds on the approximation ratio for restricted inputs (e.g., with no
abstentions) and have shown that the worst case examples for the approximation
ratio are tight when the input nomination profiles are small.

Bousquet et al. in [6] noticed this bias towards instances with small in-degrees
and examined the problem for instances of very high maximum in-degree. After
showing that permutation performs significantly better for instances of high in-
degree, they have designed the Slicing mechanism with near optimal asymptotic
behaviour for that restricted family of graphs. More precisely, they have shown
that, if the maximum in-degree is large enough, Slicing can guarantee that
the winner’s in-degree approximate the maximum in-degree by a small error.
As we discussed in the previous section, the Slicing mechanism can achieve an
additive guarantee of O(n8/9).

Holzman and Moulin [11] explore impartial mechanisms through an
axiomatic approach. They investigate the single nomination model and propose
several deterministic mechanisms, including their Majority with Default
rule. Majority with Default defines a vertex as a default winner and exam-
ines if there is any vertex with in-degree more than �n/2�, ignoring the edge
from the default vertex. If such a vertex exists, then this is the winner; other-
wise the default vertex wins. While this mechanism has the unpleasant property
that the default vertex may become the winner with no incoming edges at all,
its additive approximation is at most �n/2�. Further to that, they came up with
a fundamental limitation of the problem: no impartial selection mechanism can
be simultaneously negative and positive unanimous (i.e., never selecting as a
winner a vertex of in-degree 0 and always selecting the vertex of in-degree n−1,
whenever there exists one).

Mackenzie in [14] characterized symmetric (i.e., name-independent) rules in
the single nomination model. Tamura and Ohseto [16] observed that when the
demand for only one winner is relaxed, then impartial, negative unanimous and
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positive unanimous mechanisms do exist. Later on, Tamura [15] characterized
them. On the same agenda, Bjelde et al. in [5] proposed a deterministic version
of the permutation mechanism that achieves the 1/2 bound by allowing at most
two winners. Alon et al. [1] also present results for selecting multiple winners.

Finally, we remark that impartiality has been investigated as a desired prop-
erty in other contexts where strategic behaviour occurs. Recent examples include
peer reviewing [3,12,13], selecting impartially the most influential vertex in a
network [4], linear regression algorithms as a means to tackle strategic noise [8],
and more.

2 Preliminaries

Let N = {1, ..., n} be the set of n ≥ 2 agents. A nomination graph G = (N,E)
is a directed graph with vertices representing the agents. The set of outgoing
edges from each vertex represents the nominations of each agent; it contains no
self-loops (as, agents are not allowed to nominate themselves) and can be empty
(as an agent is, in general, allowed to abstain). We write G = Gn for the set of
all graphs with n vertices and no self-loops. We also use the notation G1 = G1

n to
denote the subset of G with out-degree exactly 1. For convenience in the proofs,
we sometimes denote each graph G by a tuple x, called nomination profile, where
xu denotes the set of outgoing edges of vertex u in G. For u ∈ N , we use the
notation x−u to denote the graph (N,E \ ({u} × N)) and, for the set of vertices
U ⊆ N , we use x−U to denote the graph (N,E \ (U × N)). We use the terms
nomination graphs and nomination profiles interchangeably.

The notation δS(u,x) refers to the in-degree of vertex u in the graph x taking
into account only edges that originate from the subset S ⊆ N . When S = N ,
we use the shorthand δ(u,x) and if the graph is clearly identified by the context
we omit x too, using δ(u). We denote the maximum in-degree vertex of graph x
as Δ(x) = maxu∈N δ(u,x) and, whenever x is clear from the context, we use Δ
instead.

5. f is not defined without g. Hence, it is ambiguous to use f(x) in isolation. A
selection mechanism for a set of graphs G′ ⊆ G, is a function f : G′ → [0, 1]n+1,
mapping each graph of G′ to a probability distribution over all vertices (which
can be potential winners) as well as to the possibility of returning no winner at
all. A selection mechanism is deterministic in the special case where for all x,
(f(x))u ∈ {0, 1} for all vertices u ∈ N .

A selection mechanism is impartial if for all graphs x ∈ G′, it holds (f(x))u =
(f(x′

u,x−u))u for every vertex u. In words, the probability that u wins must be
independent of the set of its outgoing edges. Let E [ δ(f(x)) ] be the expected in-
degree of f onx, i.e.E [ δ(f(x)) ] =

∑
u∈N (f(x))uδ(u,x).We call f α(n)-additive if

max
x∈Gn

{Δ(x) − E [ δ(f(x) ]} ≤ α(n),

for every n ∈ N.
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3 Upper Bounds

In this section we provide randomized selection mechanisms for the two best
studied models in the literature. First, in Sect. 3.1 we propose a mechanism for
the single nomination model of Holzman and Moulin [11], where nomination
profiles consist only of graphs with all vertices having an out-degree of 1. Then,
in Sect. 3.2 we provide a mechanism for the more general model studied by Alon
et al. [1], which allows for multiple nominations and abstentions.

3.1 The Random k-sample Mechanism

Our first mechanism, Random k-sample, forms a sample S of vertices by
repeating k times the selection of a vertex uniformly at random with replace-
ment. Any vertex that is selected at least once belongs to the sample S. Let
W := {u ∈ N \ S : δS(u,x) ≥ 1} be the set of vertices outside S that are
nominated by the vertices of S. If W = ∅, no winner is returned. Otherwise, the
winner is a vertex in arg maxu∈W δN\W (u,x). We note here the crucial fact that
the selection of the sample set S is independent of the nomination profile x.

Impartiality follows since a vertex that does not belong to W (no matter
if it belongs to S or not) cannot become the winner and the nominations of
vertices in W are not taken into account for deciding the winner among them.
We now argue that, for a carefully selected k, this mechanism also achieves a
good additive guarantee.

Theorem 1. For k = Θ(
√

n), the Random k-sample mechanism is impartial
and Θ(

√
n)-additive in the single nomination model.

Proof. Consider a nomination graph and let u∗ be a vertex of maximum in-
degree Δ. In our proof of the approximation guarantee, we will use the following
two technical lemmas.

Lemma 1. If u∗ ∈ W , then the winner has in-degree at least Δ − k.

Proof. This is clearly true if the winner returned by Random k-sample is u∗.
Otherwise, the winner w satisfies

δ(w,x) ≥ δN\W (w,x) ≥ δN\W (u∗,x) = δ(u∗,x) − δW (u∗,x) ≥ Δ − k.

The first inequality is trivial. The second inequality follows by the definition of
the winner w. The third inequality follows since W is created by nominations
of vertices in S, taking into account that each vertex has out-degree exactly 1.
Hence, δW (u∗,x) ≤ |W | ≤ |S| ≤ k. ��
Lemma 2. The probability that u∗ belongs to the nominated set W is

Pr [ u∗ ∈ W ] =

(

1 −
(

1 − Δ

n − 1

)k
)(

1 − 1
n

)k

.
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Proof. Indeed, u∗ belongs to W if it does not belong to the sample S and instead
some of the Δ vertices that nominate u∗ is picked in some of the k vertex
selections. The probability that u∗ is not in the sample is

Pr [ u∗ ∈ S ] =
(

1 − 1
n

)k

, (1)

i.e., the probability that vertex u∗ is not picked in some of the k vertex selections.
Observe that the probability that some of the Δ vertices that nominate u∗ is
picked in a vertex selection step assuming that u∗ is never selected is Δ

n−1 .
Hence, the probability that some of the Δ vertices nominating u∗ is in the
sample assuming that u∗ ∈ S is

Pr [ δS(u∗,x) ≥ 1|u∗ ∈ S ] = 1 −
(

1 − Δ

n − 1

)k

. (2)

The lemma follows by the chain rule

Pr [ u∗ ∈ W ] = Pr [ u∗ = S ∧ δS(u∗,x) ≥ 1 ]
= Pr [ δS(u∗,x) ≥ 1|u∗ ∈ S ] · Pr [ u∗ ∈ S ]

and Eqs. (1) and (2). ��
By Lemmas 1 and 2, we have that the expected degree of the winner returned

by mechanism Random k -sample is

E [ δ(w,x) ] ≥ Pr [ u∗ ∈ W ] · (Δ − k) =

(
1 −

(
1 − Δ

n − 1

)k
) (

1 − 1

n

)k

(Δ − k)

≥
(

1 −
(

1 − Δ

n − 1

)k
) (

1 − k

n

)
(Δ − k) >

(
1 −

(
1 − Δ

n − 1

)k
)

(Δ − 2k)

= Δ − 2k −
(

1 − Δ

n − 1

)k

(Δ − 2k)

The second inequality follows by Bernoulli’s inequality (1 + x)r ≥ 1 + rx for
every real x ≥ −1 and r ≥ 0 and the third one since n > Δ. Now, the quantity
(
1 − Δ

n−1

)k

(Δ − 2k) is maximized for Δ = n−1+2k2

k+1 to a value that is at most
n+1
k+1 − 2. Hence,

E [ δ(w,x) ] ≥ Δ − 2(k − 1) − n + 1
k + 1

.

By setting k ∈ Θ(
√

n), we obtain that E [ δ(w,x) ] ≥ Δ − Θ(
√

n), as desired. ��
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3.2 The Simple k-sample Mechanism

In the most general model, we have the randomized mechanism Simple k-
sample, which is even simpler than Random k-sample. Again, Simple k-
sample forms a sample S of vertices by repeating k times the selection of a
vertex uniformly at random with replacement. The winner (if any) is a vertex
w in arg maxu∈N\S δS(u,x). We remark that, for technical reasons, we allow S
to be a multi-set if the same vertex is selected more than once. Then, edge mul-
tiplicities are counted in δS(u,x). Clearly, Simple k-sample is impartial. The
winner is decided by the vertices in S, which in turn have no chance to become
winners. Our approximation guarantee is slightly weaker now.

Theorem 2. For k =
⌈
41/3n2/3 ln1/3 n

⌉
, mechanism Simple k-sample is

impartial and Θ(n2/3 ln1/3 n)-additive.

Proof. Let u∗ be a vertex of maximum in-degree Δ. If Δ ≤ k, Simple k-sample
is clearly Θ(n2/3 ln1/3 n)-additive. So, in the following, we assume that Δ > k.
Let C be the set of vertices of in-degree at most Δ − k − 1. We first show that
the probability Pr [ δ(w,x) ≤ Δ − k − 1 ] that some vertex of C is returned as
the winner by Simple k-sample is small.

Notice that if some of the vertices of C is the winner, then either vertex u∗

belongs to the sample set S or it does not belongs to S but it gets the same or
fewer nominations compared to some vertex u of C. Hence,

Pr [ δ(w,x) ≤ Δ − k − 1 ]

≤ Pr [ u∗ ∈ S ] +Pr [ u∗ �∈ S ∧ δS(u∗,x) ≤ δS(u,x) for some u ∈ C s.t. u �∈ S ]

≤ Pr [ u∗ ∈ S ] +
∑

u∈C

Pr [ u∗ �∈ S ∧ u �∈ S ∧ δS(u∗,x) ≤ δS(u,x) ]

= Pr [ u∗ ∈ S ] +
∑

u∈C

Pr [ u∗, u �∈ S ] · Pr [ δS(u∗,x) ≤ δS(u,x)|u∗, u �∈ S ] (3)

We will now bound the rightmost probability in (3). The proof of Claim 1 appears
in the full version of the paper.

Claim 1. For every u ∈ C, Pr [ δS(u∗,x) ≤ δS(u,x)|u∗ ∈ S, u ∈ S ] ≤
exp

(
− k3

2n2

)
.
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Using the definition of E [ δ(w,x) ], inequality (3), and Claim 1, we obtain

E [ δ(w,x) ] ≥ (Δ − k) · (1 − Pr [ δ(w,x) ≤ Δ − k − 1 ])

≥ (Δ − k)

⎛

⎝Pr [ u∗ �∈ S ] −
∑

u∈C

Pr [ u∗, u �∈ S ] · Pr [ δS(u∗,x) ≤ δS(u,x)|u∗, u �∈ S ]

⎞

⎠

≥ (Δ − k)
(
1 − 1

n

)k

− (Δ − k)

⎛

⎝
∑

u∈C

(
1 − 2

n

)k

· exp
(

− k3

2n2

)⎞

⎠

≥ (Δ − k)
(
1 − k

n

)
− (Δ − k) · n · exp

(
− k3

2n2

)

≥ Δ − 2k − n2 · exp
(

− k3

2n2

)
. (4)

The last inequality follows since n ≥ Δ. Setting k =
⌈
41/3n2/3 ln1/3 n

⌉
, (4)

yields E [ δ(w,x) ] ≥ Δ − Θ
(
n2/3 ln1/3 n

)
, as desired. ��

4 Lower Bounds

In this section we complement our positive results by providing impossibility
results. First, in Sect. 4.1, we provide lower bounds for a class of mechanisms
which we call strong sample mechanisms, in the single nomination model of
Holzman and Moulin [11]. Then, in Sect. 4.2, we provide a lower bound for the
most general model of Alon et al. [1], which applies to any deterministic mech-
anism.

4.1 Strong Sample Mechanisms

In this section, we give a characterization theorem for a class of impartial mech-
anisms which we call strong sample mechanisms. We then use this characteri-
zation to provide lower bounds on the additive approximation of deterministic
and randomized mechanisms that belong to this class. Our results suggest that
mechanism Random k-sample from Sect. 3.1 is essentially the best possible
randomized mechanism in this class.

For a graph G ∈ G1 and a subset of vertices S, let W := WS(G) be the set of
vertices outside S nominated by S, i.e. W = {w ∈ N \ S : (v, w) ∈ E, v ∈ S}. A
sample mechanism3 (g, f) firstly selects a subset S using some function g : G1 →
P(N) \ ∅, and then applies a (possibly randomized) selection mechanism f by
restricting its range on vertices in W ; notice that if W = ∅, f does not select
any vertex. We say that the mechanism is randomized if g uses randomization in
the selection of S, otherwise it is deterministic (even if f uses randomization).

3 For simplicity we use the notation (g, f) rather the more precise (g, f(g)).
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This definition allows for a large class of impartial mechanisms. For example,
the special case of sample mechanisms with |S| = 1 (in which, the winner has in-
degree at least 1), coincides with all negative unanimous mechanisms defined by
Holzman and Moulin [11]. Indeed, when |S| = 1, the set W in never empty and
the winner has in-degree at least 1. This is not however the case for |S| > 1, where
W could be empty when all vertices in S have outgoing edges destined for vertices
in S and no winner can be declared. Characterizing all sample mechanisms is an
outstanding open problem. We are able to provide a first step, by providing a
characterization for the class of strong sample mechanisms. Informally, in such
mechanisms, vertices cannot affect their chance of being selected in the sample
set S.

Definition 1. (Strong sample mechanisms) We call a sample mechanism (g, f)
with sample function g : G1 → P(N) strong, if g(x′

u,x−u) = g(x) for all u ∈
g(x), x′

u ∈ N \ {u} and x ∈ G1.

The reader may observe the similarity of this definition with impartiality
(function g of a strong sample mechanism satisfies similar properties with func-
tion f of an impartial selection mechanism). The following lemma describes a
straightforward, yet useful, consequence of the above definition.

Lemma 3. Let (g, f) be a strong sample mechanism and let S ⊆ N . For any
nomination profiles x,x′ with x−S = x′

−S, if S \ g(x) = ∅ then S \ g(x′) = ∅.
Proof. For the sake of contradiction, let us assume that S \ g(x′) = ∅, i.e., the
sample vertices in x′ are disjoint from S. Then, by Definition 1, g(x) remains
the same as outgoing edges from vertices in S should not affect the sample set.
But then, S \ g(x) = ∅, which is a contradiction. ��

In the next theorem, we provide a characterization of the sample function
of impartial strong sample mechanisms. The theorem essentially states that the
only possible way to choose the sample set must be independent of the graph.

Theorem 3. Any impartial deterministic strong sample mechanism (g, f)
selects the sample set independently of the nomination profile, i.e., for all
x,x′ ∈ G1, g(x) = g(x′) = S.

Proof. Consider any sample mechanism (g, f) and any nomination profile x ∈
G1. It suffices to show that for any vertex u, and any deviation x′

u, the sample
set must remain the same, i.e., g(x′

u,x−u, ) = g(x). If u ∈ g(x), this immediately
follows by Definition 1. In the following, we prove two claims that this is also
true when u /∈ g(x); Claim 2 treats the case where u is a winner of a profile,
while Claim 3 treats the case where u is a not a winner.

Claim 2. Let (g, f) be an impartial deterministic strong sample mechanism and
let x be a nomination profile. Then the sample set must remain the same for any
other vote of the winner, i.e., g(x) = g(x′

f(x),x−f(x)) for any x′
f(x) ∈ N \ f(x).
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Proof. Let w = f(x) be the winner, for some nomination profile x. We will prove
the claim by induction on δ(w,x).

(Base case: δ(w,x) = 1) Let S = g(x) be the sample set for profile x.
Assume for the sake of contradiction that when w changes its vote to x′

w, the
sample for profile x′ = (x′

w,x−w) changes, i.e., g(x′) = S′ = S. We first note
that impartiality of f implies that w = f(x′). Next, observe that the vertex
voting for w in S must be also in S′; otherwise, w becomes a winner without
getting any vote from the sample set, which contradicts our definition of sample
mechanisms. We will show that this must be the case for all vertices in S.

To do this, we will expand two parallel branches, creating a series of nomina-
tion profiles starting from x and x′ which will eventually lead to contradiction.
Figure 1 depicts the situation for x and x′.

a b

w

s s′

(a) profile x

a b

w

s s′

(b) profile x′

Fig. 1. The starting profiles x and x′ in Claim 2. Red denotes the winner, while green
dashed vertices denote the members of the sample sets S and S′, respectively. (Color
figure online)

We start with the profile x′. Consider a vertex s′ ∈ S′ \S. We create a profile
z′ in which all vertices in S′ \ s′ vote for s′ (i.e., zv = s′, for each v ∈ S′ \ s′),
vertex s′ votes for w (i.e., zv = w), while the rest of the vertices vote as in x′ (i.e.,
zv = xv, for each v ∈ S′). For illustration, see Figs. 2a and b. By the definition of
a strong sample mechanism, we obtain g(z′) = g(x′), since only votes of vertices
in S′ have changed. Notice also that f(z′) = w, as this is the only vertex outside
S′ that receives votes from S′. We now move to profile x and apply the same
sequence of deviations, involving all the vertices in S′. These lead to the profile
z, which differs from z′ only in the outgoing edge of vertex w.

By Lemma 3, there is a vertex v ∈ S′ such that v /∈ g(z). If v = s′, then
we end up in a contradiction. This is because f(z) = w, since s′ is the only
vertex voting for w in z′ and s′ is not in the sample, while f(z′) = w, as stated
by the other branch and since, when w deviates to x′

w, the created profile is
(x′

w, z−w) = z′ contradicting impartiality (see Figs. 2a and b).
We are now left with the case where s′ ∈ g(z) and v = s′. Starting from z and

z′, we will create profiles y and y′ (see Figs. 2c and d) as follows: we construct
y by letting s′ vote towards v (i.e., ys′ = v), v vote towards w (i.e., yv = w) and
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a b

w

s s′

(a) profile z

a b

w

s s′

(b) profile z′

a b

w

s s′ v

(c) profile y

a b

w

s s′ v

(d) profile y′

Fig. 2. Profiles z and z′ in the base case of the proof of Claim 2: Red denotes the
winner, while green dashed vertices denote the members of the sample sets S and S′.
A red solid diamond denotes a vertex that cannot win and a green/light diamond
denotes a vertex that cannot be in the sample. (Color figure online)

yi = zi for all other vertices i = v, s′. By the strong sample property, when s′

votes towards v the sample set is preserved, i.e., v cannot get in the sample. Also,
when v votes, v cannot get in the sample (by a trivial application of Lemma 3);
therefore, v ∈ g(y). Hence, w cannot be the winner as its only incoming vote is
from v, a vertex that does not belong to the sample set g(y).

Starting from z′, we create similarly y′ by letting s′ vote towards v (y′
s′ = v),

v to vote towards w (y′
v = w) and y′

i = zi for all other vertices i = v, s′. In this
case, S′ will be preserved as sample set in profile y′ (i.e. g(y′) = S′). Therefore,
w is the only vertex voted by the sample set and must be the winner, leading to
a contradiction (see Figs. 2c and d).

(Induction step) Assume as induction hypothesis that, for all profiles x ∈
G1, it holds g(x) = g(x′

w,x−w) when δ(w,x) ≤ λ, for some λ ≥ 1. Now, consider
any profile x where f(x) = w and δ(w,x) = λ + 1 and assume for the sake of
contradiction that there is some graph x′ = (x′

w,x−w) where g(x′) = S′ = S.
Without loss of generality, let δS(w,x) ≤ δS′(w,x′).

Starting from x′, we create profile z′, by letting all vertices in S′ vote for
some s′ ∈ S′ and s′ vote for w, i.e., z′

v = s′ for each vertex v ∈ S′ \ {s′} and
z′
s′ = w. The strong sample property implies that g(z′) = S′ and f(z′) = w. We

focus now on profile x, and create the profile z, by performing the same series
of deviations, i.e., by letting all vertices in S′ \ s′ vote for s′ and s′ vote for w.
Note, here, that z differs from z′ only in the outgoing edge of w. Like before,
Lemma 3 establishes that there will be some vertex v ∈ S′ such that v /∈ g(z),
i.e., g(z) = S′. Turning our attention back to z′, we let w deviate towards xw,
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creating profile (xw, z′
−w). Observe that (xw, z′

−w) = z. Since δ(w, z′) < δ(w,x),
by the induction hypothesis we have g(z) = S′, a contradiction. ��

The next claim establishes the remaining case, where no vertex u ∈ g(x), u =
f(x) can change the sample set.

Claim 3. Let (g, f) be an impartial deterministic strong sample mechanism, x
be a nomination profile and u a vertex with u ∈ g(x), u = f(x). Then g(x) =
g(x′

u,x−u) for any other vote x′
u ∈ N \ u.

Proof. For the sake of contradiction, assume that there exists some nomination
profile x′ = (x′

u,x−u) with g(x′) = S′ = S. Starting from x′, we define a profile
z′ in which all vertices in S′ vote for u, and the rest vote as in x′. That is, z′

v = u,
for all v ∈ S′ and z′

v = x′
v otherwise. Clearly f(z′) = u, as all the sample vertices

vote for u. By Claim 2, we know that g(xu, z′
−u) = g(z′) = S′.

Starting from x, we define a profile z in which all vertices in S′ vote for u,
and the rest vote as in x. Since S′ = S = g(x), by Lemma 3, we get g(z) = S′.
Observe that z = (xu, z′

−u), which leads to a contradiction. ��
This completes the proof of Theorem 3. ��
We next use Theorem 3 to obtain lower bounds on the additive approximation

guarantee obtained by deterministic and randomized strong sample mechanisms
respectively.

Corollary 1. There is no impartial deterministic strong sample mechanism with
additive approximation better than n − 2.

Proof. Let S be the sample set which, by Theorem 3, must be selected inde-
pendently of x, and let v ∈ S. Define x so that all vertices in N \ v vote for v
and all other vertices have in-degree either 0 or 1. Then, Δ(x) = n − 1, but the
mechanism selects vertex xv of in-degree exactly 1. ��

We remark that the strong sample mechanism that uses a specific vertex as
singleton sample achieves this additive approximation guarantee.

We next provide a lower bound on the additive approximation guarantee of
randomized strong sample mechanisms, which shows that Random k-sample
(with k = Θ(

√
n); see Sect. 3.1) is an optimal mechanism from this class.

Corollary 2. There is no impartial randomized strong sample mechanism with
additive approximation better than Ω(

√
n).

Proof. By Theorem 3, any impartial deterministic strong sample mechanism
selects its sample S independently of the graph. Hence, any impartial randomized
strong sample mechanism decides its sample with a probability distribution over
all possible sample sets S ⊆ N , independently of the graph. We examine two
cases for this probability distribution.
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If there is a vertex u∗ with Pr [ v ∈ S ] ≥ 1/
√

n, then consider a nomination
profile consisting of vertex u∗ having maximum in-degree Δ = n − 1 (i.e., all
other vertices are pointing to it), with all other vertices having in-degree either
1 or 0. Since u∗ belongs to the sample (and, hence, cannot be the winner)
with probability at least 1/

√
n, the expected degree of the winner is at most

1 + (n − 1)(1 − 1/
√

n) = Δ − Θ(
√

n).
Otherwise, assume that every vertex v has probability at most 1/

√
n of being

selected in the sample set. Consider a nomination profile with a vertex u∗ having
maximum degree Δ =

√
n/2 and all other vertices having in-degree either 0 or 1.

Consider a vertex u pointing to vertex u∗. The probability that u belongs to the
sample is at most 1/

√
n. Hence, by the union bound, the probability that some

of the
√

n/2 vertices pointing to u∗ is selected in the sample set is at most 1/2.
Hence, the probability that u∗ is returned as the winner is not higher than 1/2 and
the expected in-degree of the winner is at most 1 +

√
n/2 · 1/2 = Δ − Θ(

√
n). ��

4.2 General Lower Bound

Our last result is a lower bound for all deterministic impartial mechanisms in
the most general model of Alon et al. [1], where each agent can nominate mul-
tiple other agents or even abstain. We remark that our current proof applies to
mechanisms that always select a winner. Due to space limitations we refer the
reader to the full version of the paper for the proof of Theorem 4.

Theorem 4. There is no impartial deterministic α-additive mechanism for
α ≤ 2.
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Abstract. Liquid democracy is a collective decision making paradigm
which lies between direct and representative democracy. One of its main
features is that voters can delegate their votes in a transitive manner so
that: A delegates to B and B delegates to C leads to A indirectly delegates
to C. These delegations can be effectively empowered by implementing
liquid democracy in a social network, so that voters can delegate their
votes to any of their neighbors in the network. However, it is uncertain
that such a delegation process will lead to a stable state where all voters
are satisfied with the people representing them. We study the stability
(w.r.t. voters preferences) of the delegation process in liquid democracy
and model it as a game in which the players are the voters and the
strategies are their possible delegations. We answer several questions on
the equilibria of this process in any social network or in social networks
that correspond to restricted types of graphs.

Keywords: Computational social choice · Liquid democracy ·
Algorithmic decision theory · Delegative voting · Games and equilibria

1 Introduction

Liquid Democracy (LD) is a voting paradigm which offers a middle-ground
between direct and representative democracy. One of its main features is the con-
cept of transitive delegations, i.e., each voter can delegate her vote to some other
voter, called representative or proxy, which can in turn delegate her vote and the
ones that have been delegated to her to another voter. Consequently, a voter who
decides to vote has a voting weight corresponding to the number of people she
represents, i.e., herself and the voters who directly or indirectly delegated to her.
This voter is called the guru of the people she represents. This approach has been
advocated recently by many political parties as the German Pirate party or the
Sweden’s Demoex party and is implemented in several online tools [2,12]. One
main advantage of this framework is its flexibility, as it enables voters to vote
directly for issues on which they feel both concerned and expert and to delegate
for others. In this way, LD provides a middle-ground between direct democracy,
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https://doi.org/10.1007/978-3-030-30473-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30473-7_19&domain=pdf
https://doi.org/10.1007/978-3-030-30473-7_19


The Convergence of Iterative Delegations in LD in an SN 285

which is strongly democratic but which is likely to yield high abstention rates or
uninformed votes, and representative democracy which is more practical but less
democratic [11,15]. Importantly, LD can be conveniently used in a Social Net-
work (SN), where natural delegates are connected individuals. These choices of
delegates are also desirable as they ensure that delegations rely on a foundation
of trust. For these reasons, several works studying LD in the context of an SN
enforce the constraint that voters may only delegate directly to voters that are
connected to them (i.e., their neighbors in the underlying graph) [3,4,13].

Aim of this Paper. We tackle the problem of the stability of the delegation
process in the LD setting. Indeed, it is likely that the preferences of voters
over possible gurus will be motivated by different criteria and contrary opinions.
Hence, the iterative process where each voter chooses her delegate may end up
in an unstable situation, i.e., a situation in which some voters would change
their delegations. To illustrate this point, consider an election where the voters
could be positioned on a line in a way that represents their right-wing left-wing
political identity. If voters are ideologically close enough, each voter, starting
from the left-side, could agree to delegate to her closest neighbor on her right. By
transitivity, this would lead to all voters having an extreme-right voter for guru.
These situations raise the questions: “Under what conditions do the iterative
delegations of the voters always reach an equilibrium? Does such an equilibrium
even exist? Can we determine equilibria that are more desirable than others?”.

We assume that voters are part of an SN so that they can only delegate
directly to their neighbors. Voters’ preferences over possible gurus are given by
preference orders. In this setting, the delegation process yields a game where
each voter seeks to minimize the rank of her guru in her preference order. We
answer the questions raised above with a special emphasize on SN.

2 Related Work

The stability of the delegation process is one of the several algorithmic issues
raised by LD. These issues have recently raised attention in the AI literature.

Are votes in an LD setting “more correct”? The idea underlying LD is that
its flexibility should allow each voter to make an informed vote either by voting
directly, or by finding a suitable guru. Several works have investigated this claim
leading to both positive and negative results [11,13]. On the one hand, Green-
Armytage [11], proposed a spacial voting setting in which transitive delegations
decrease on average a function measuring how well the votes represent the voters
attached to them. On the other hand, Kahng et al. [13], studied an election on a
binary issue with a ground truth. In their model, no procedure working locally
on the SN to organize delegations can guarantee that LD is, at the same time,
never less accurate and sometimes strictly more accurate than direct voting.

How much delegations should a guru get? This question raises the concern
that a guru could become too powerful. In the setting of Gölz et al. [10], each
voter can vote or specify multiple delegation options. Then an algorithm should
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select delegations to minimize the maximum voting power of a voter. The authors
give a (1+log(n))-approximation algorithm (n is the number of voters) and show
that approximating the problem within a factor 1

2 log2(n) is NP-hard. Lastly,
they gave evidence that allowing multiple possible delegation options (instead
of one) leads to a large decrease of the maximum voting power of a voter.

Are votes in an LD setting rational? Christoff and Grossi [7] studied the
potential loss of a rationality constraint when voters should vote on different
issues that are logically linked and for which they delegate to different represen-
tatives. Following this work, Brill and Talmon [6] considered an LD framework in
which each voter should provide a linear order over possible candidates. To do so
each voter may delegate different binary preference queries to different proxies.
The delegation process may then yield incomplete and even intransitive prefer-
ences. Notably, the authors showed that it is NP-hard to decide if an incomplete
ballot obtained in this way can be completed to obtain complete and transitive
preferences while respecting the constraints induced by the delegations.

Are delegations in an LD setting rational? Bloembergen et al. [3], considered
an LD setting where voters are connected in an SN and can only delegate to their
neighbors in the network. The election is on a binary issue where some voters
should vote for the 0 answer and the others should vote for the 1 answer (voters
of type τ0 or τ1). Each voter i has an accuracy level qi ∈ [0.5, 1] representing the
probability with which she makes the correct choice. Similarly, each pair (i, j)
of voters do not know if they are of the same type which is also modeled by a
probability pij . Hence, a voter i which has j as guru has a probability that j
makes the correct vote (w.r.t. to i) which is a formula including the pij and qj

values. The goal of each voter is to maximize the accuracy of her vote/delegation.
This modeling leads to a class of games, called delegation games. The authors
proved the existence of pure Nash equilibria in several types of delegation games
and gave upper and lower bounds on the price of anarchy of such games.

Our approach is closest to this last work as we consider the same type of del-
egation games. However, our preference model is more general as we assume that
each voter has a preference order over her possible gurus. These preferences may
be dictated by competence levels and types of voters as in [3]. However, we do
not make such hypothesis as the criteria to choose a delegate are numerous: geo-
graphic locality, cultural, political or religious identity, et caetera. Considering
this more general framework strongly modifies the resulting delegation games.

3 Notation and Settings

3.1 Notation and Nash-Stable Delegation Functions

We denote by N = {1, . . . , n} a set of voters that take part in a vote.1 These
voters are connected in an SN which is represented by an undirected graph

1 Note that similarly to [10], we develop a setting where candidates are not mentioned.
Proceeding in this way enables a general approach encapsulating different ways of
specifying how candidates structure the preferences of voters over gurus.
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GSN = (N , E), i.e., the vertices of GSN are the voters and (i, j) ∈ E if voters
i and j are connected in the SN. Let Nb(i) denote the set of neighbors of i
in GSN. Each voter i can declare intention to either vote herself, delegate to
one of her neighbors j ∈ Nb(i), or abstain. A delegation function is a function
d : N → N ∪ {0} such that d(i) = i if voter i wants to vote, d(i) = j ∈ Nb(i) if i
wants to delegate to j, and d(i) = 0 if i wants to abstain.

Given a delegation function d, let Gu(d) denote the set of gurus, i.e., Gu(d) =
{j ∈ N | d(j) = j}. The guru of a voter i ∈ N , denoted by gu(i, d), can be found
by following the successive delegations starting from i. Formally, gu(i, d) = j if
there exists a sequence of voters i1, . . . , i� such that d(ik) = ik+1 for every
k ∈ {1, . . . , � − 1}, i1 = i, i� = j and j ∈ Gu(d) ∪ {0}. However, it may happen
that no such j exists because the successive delegations starting from i end up in
a circuit, i.e., i = i1 delegates to i2, who delegates to i3, and so on up to i� who
delegates to ik with k ∈ {1, . . . , �−1}. In this case, we consider that the � voters
abstain, as none of them takes the responsibility to vote, i.e., we set gu(ik, d) = 0
for all k ∈ {1, . . . , �}. Such a definition of gurus allows to model the transitivity
of delegations: if d(i) = j, d(j) = g, and d(g) = g, then the guru of i will be g.
Hence a voter i can delegate directly to one of its neighbors in Nb(i), but she can
also delegate indirectly to another voter through a chain of delegations. Note
that because voters can only delegate directly to their neighbors, such a chain
of delegations coincides with a path in GSN.

Given a voter i and a delegation function d, we now consider how voter i
may change her delegation to get a guru different from her current guru gu(i, d).
She may decide to vote herself, to abstain, or to delegate to a neighbor j with a
different guru, and in the latter case she would get gu(j, d) as a guru. We denote
by Att(i, d) = ∪j∈Nb(i)gu(j, d) the set of gurus of the neighbors of i in GSN. Then
the gurus that i can get by deviating from d(i) is exactly the set Att(i, d)∪{0, i}.

Example 1. Consider the SN represented in Fig. 1 with the delegation function
d defined by d(1) = d(3) = d(4) = 4, d(2) = d(5) = 5, d(6) = d(9) = 6, d(7) = 8
and d(8) = 9. In this example, Gu(d) = {4, 5, 6}, with gu(1, d) = gu(3, d) =
gu(4, d) = 4, gu(2, d) = gu(5, d) = 5 and gu(6, d) = gu(7, d) = gu(8, d) =
gu(9, d) = 6. If she wants, voter 1 can change her delegation. If she delegates
to voter 3, then this will not change her guru as gu(3, d) = 4. However, if she
delegates to 2, then her new guru will be 5. In any case, she can also decide to
modify her delegation to declare intention to vote or abstain. Note that voter
1 cannot change unilaterally her delegation in order to have 6 as guru. Indeed,
voter 6 does not belong to Att(1, d) = {4, 5}, as there is no delegation path from
a neighbor of 1 to 6.

12 3

45

6

7

9

8

Fig. 1. SN in Ex. 1. Dotted arrows represent the delegations and gurus are in gray.



288 B. Escoffier et al.

We assume that each voter i has a preference order �i over who could be
her guru in N ∪ {0}. For every i ∈ N , and for every j, k ∈ N ∪ {0}, we have
that j �i k if i prefers to have j as guru (or to vote if j = i, or to abstain if
j = 0) rather than to have k as guru (or to vote if k = i, or to abstain if k = 0).
The collection {�i | i ∈ N} in turn defines a preference profile P . Example 2
illustrates these notations on a simple instance with 3 voters.

Example 2 (3-cycle). Consider the following instance in which there are n = 3
voters connected in a complete SN and with the following preference profile P :

1 : 2 �1 1 �1 3 �1 0
2 : 3 �2 2 �2 1 �2 0
3 : 1 �3 3 �3 2 �3 0

Put another way, each voter i prefers to delegate to (i mod 3) + 1 rather than
to vote directly and each voter prefers to vote rather than to abstain.

As a consequence of successive delegations, a voter might end up in a situation
in which she prefers to vote or to abstain or to delegate to another guru that she
can reach than to maintain her current delegation. Such a situation is regarded
as unstable as this voter would modify unilaterally her delegation. This is for
instance the case in the previous example if d(1) = 2, d(2) = 3 and d(3) = 3:
by successive delegations, the guru of 1 is 3, but 1 would prefer to vote instead.
More formally, a delegation function d is Nash-stable for voter i if

gu(i, d) �i g ∀g ∈ (Att(i, d) ∪ {0, i}) \ {gu(i, d)}.

A delegation function d is Nash-stable if it is Nash-stable for every voter in N .
A Nash-stable delegation function is also called an equilibrium in the sequel.

It may seem difficult in practice that voters give a complete linear order over
N ∪ {0}. We now highlight that the computation of equilibria does not require
the whole preference profile. We say that voter i is an abstainer in P if she prefers
to abstain rather than to vote, i.e., if 0 �i i; she is a non-abstainer otherwise.
We will denote by A the set of abstainers. Note that an abstainer (resp. non-
abstainer) never votes (resp. abstains) in an equilibrium. Given a preference
profile P , we define Acc(i) = {j ∈ N|j �i i and j �i 0} the set of acceptable
gurus for i. Note that this set is likely to be small compared to n. A necessary
condition for a delegation function to be Nash-stable is that gu(i, d) ∈ Acc(i),
or gu(i, d) = 0 and i ∈ A, or gu(i, d) = i and i /∈ A. Hence when looking for
equilibria, the preferences of voter i below 0 (if i ∈ A) or i (if i /∈ A) can be
dropped. In the sequel, we may define a preference profile only by giving, for
every voter i, if she is an abstainer or not, and her preferences on Acc(i).

3.2 Existence and Optimization Problems Investigated

Stable situations are obviously desirable. Unfortunately, there are instances for
which there is no equilibrium.
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Observation 1. The instance described in Ex. 2 (3-cycle) admits no equilib-
rium.

Proof. Assume that there exists an equilibrium d. First, as GSN is complete, any
voter can delegate to any other voter. Second, for any pair of voters, there is
always one voter that approves the other as possible guru. Hence, |Gu(d)| ≤ 1,
otherwise one of the gurus would rather delegate to another guru than vote. On
the other hand, there is no voter that is approved as possible guru by all other
voters. Hence, |Gu(d)| ≥ 2, otherwise one of the voters in N\Gu(d) would rather
vote than delegate to one of the gurus (here A = ∅). We get a contradiction. 
�

Hence the first problem, called EX, that we investigate is the one of the
existence of an equilibrium.

EX
INSTANCE: A preference profile P and a social network GSN.
QUESTION: Does there exist an equilibrium?

Note that EX is in NP, as given a delegation function, we can easily find the
guru of each voter and check Nash-stability in polynomial time.

For instances for which we know that some equilibrium exists, we investigate
if we can compute equilibria verifying particular desirable properties. Firstly,
given a voter i ∈ N \ A, we will try to know if there exists a Nash-stable del-
egation function d for which i is a guru, i.e., i ∈ Gu(d). We call this problem
MEMB.

MEMB
INSTANCE: A preference profile P , a social network GSN and a voter i ∈ N \A.
QUESTION: Is there a Nash-stable delegation function d for which i ∈ Gu(d)?

Secondly, we will try to find an equilibrium that optimizes some objec-
tive function such as (a) minimize the dissatisfaction of the voters (problem
MINDIS as defined below, where rk(i, d) is the rank of gu(i, d) in the pref-
erence list of i); (b) minimize the maximum voting power of a guru (problem
MINMAXVP as defined below, where vp(i, d) := |{j ∈N|gu(j, d)= i}|); or (c)
minimize the number of voters who abstain (problem MINABST).

Problems MINDIS, MINMAXVP and MINABST
INSTANCE: A preference profile P and a social network GSN.
SOLUTION: A Nash-stable delegation function d.
MEASURE for MINDIS:

∑
i∈N (rk(i, d) − 1) (to minimize).

MEASURE for MINMAXVP: maxi∈Gu(d) vp(i, d) (to minimize).
MEASURE for MINABST: |{i ∈ N|gu(i, d) = 0}| (to minimize).

The last questions investigated capture the dynamic nature of delegations.
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3.3 Convergence Problems Investigated

In situations where an equilibrium exists, a natural question is whether a
dynamic delegation process necessarily converges towards such an equilibrium.
As classically done in game theory (see for instance [14]), we will consider dynam-
ics where iteratively one voter has the possibility to change her delegation.

In a dynamics, we are given a starting delegation function d0 and a token
function T : N∗ → N which specifies that voter T (t) has the token at step t:
she may change her delegation. This gives a sequence of delegation functions
(dt)t∈N∗ where for any t ∈ N

∗, if j �= T (t) then dt(j) = dt−1(j). A dynamics is
said to converge if there is a t∗ such that for all t ≥ t∗, dt = dt∗ . We assume,
as usual, that each voter has the token infinitely many times. A classical way of
choosing such a function T is to consider a permutation σ over the voters, and
to repeat this permutation over the time to give the token (if t = r mod n then
T (t)=σ(r)). These dynamics are called permutation dynamics. Note that we do
not consider moves where a voter delegates to a voter who abstains, or in a way
that creates a cycle – in this case, the voter would rather abstain herself.

Given d0 and T , a dynamics is an Improved Response Dynamics2 (IRD) if for
all t, T (t) chooses a move that strictly improves her outcome if any, otherwise
does not change her delegation; It is a Best Response Dynamics (BRD) if for all
t, T (t) chooses dt(i) so as to maximize her outcome (a BRD is also an IRD). We
denote by IR-CONV and BR-CONV the following problems:

IR-CONV (resp. BR-CONV)
QUESTION: Does a dynamic delegation process under IRD (resp. BRD) necessarily
converges whatever the preference profile P and token function T .

3.4 Summary of Results

Our results are presented in Table 1. Section 4 tackles the complexity of EX.
When GSN is complete, we show that EX is equivalent to the NP-complete prob-
lem of determining if a digraph admits a kernel. We then strengthen this result
by showing that EX is also NP-complete when the maximum degree of GSN is 5
and is W[1]-hard w.r.t. the treewidth of GSN. Yet, we identify specific SNs that
ensure that an equilibrium exists. More precisely, an equilibrium exists whatever
the voters’ preferences iff GSN is a tree. Hence, in Sect. 5, we investigate tree SNs
and we design a dynamic programming scheme which solves problems MEMB,
MINDIS, MINMAXVP and MINABST in polynomial time. Lastly, Sect. 6
studies delegations dynamics. Unfortunately, when an equilibrium exists, we
show that a BRD may not converge even if GSN is complete or is a path. For
a star SN, we obtain that a BRD will always converge, whereas an IRD may
not. All missing proofs can be found in the long version of the paper [9].

2 Often termed better response dynamics.
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4 Existence of Equilibria: Hardness Results

4.1 Complete Social Networks

We focus in this subsection on the case where GSN is a complete graph. We mainly
show that determining whether an equilibrium exists or not is an NP-complete
problem (Theorem 1), by showing an equivalence with the problem of finding a
kernel in a digraph. This equivalence is also helpful to find subcases where an
equilibrium always exists.

Table 1. Results (AE: Always Exists; NA: Not Always; NP-C: NP-Complete).

Type of GSN or parameter EX
Complete NP-C

Maximum degree = 5 NP-C
Treewidth W[1]-hard

Tree AE

Problem\ GSN Star Tree
MEMB O(n2) O(n3)
MINDIS O(n2) O(n3)

MINMAXVP O(n2) O(n4)
ABST O(n2) O(n3)

GSN Problem IR BR
with an equilibrium -CONV -CONV

Star NA Always
Path NA NA

Complete NA NA

We define the delegation-acceptability digraph GP = (N \ A, AP ) by its arc-
set AP = {(i, j) | j ∈ Acc(i)}. Stated differently, there is one vertex per non-
abstainer and there exists an arc from i to j if i accepts j as a guru. For exam-
ple, in Fig. 2, we give a partial preference profile P involving 5 voters and the
corresponding delegation-acceptability digraph GP . The main result of this sub-
section, stated in Proposition 1, is a characterization of all sets of gurus of equi-
libria, as specific subsets of vertices of the delegation-acceptability digraph. Let
us introduce additional graph-theoretic definitions. Given a digraph G = (V, A),
a subset of vertices K ⊂ V is independent if there is no arc between two vertices
of K. It is absorbing if for every vertex u /∈ K, there exists k ∈ K s.t. (u, k) ∈ A
(we say that k absorbs u). A kernel of G is an independent and absorbing subset
of vertices.

1 : 2 �1 1

2 : 3 �2 2

3 : 4 �3 2 �3 1 �3 0

4 : 4

5 : 2 �5 3 �5 1 �5 5

1

2 45

Fig. 2. A partial preference profile P involving 5 voters (left-hand side of the figure) and
the corresponding delegation-acceptability digraph GP (right-hand side of the figure).

Proposition 1. Assume GSN is complete, then given a preference profile P and
a subset of voters K ⊆ N , the following propositions are equivalent:

(i) there exists an equilibrium d s.t. Gu(d) = K;
(ii) K contains no abstainer and K is a kernel of GP .
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Proof. (i) =⇒ (ii). Let d be an equilibrium for P . It was noted previously that
Nash-stability implies the absence of abstainer in Gu(d). Assume that Gu(d) is
not independent in GP . Then, there exists i, j ∈ Gu(d) such that (i, j) is an arc of
GP , that is, j ∈ Acc(i). It implies that i prefers to delegate to j which is in Nb(i)
rather than remaining a guru and hence d is not Nash-stable. Assume now that
Gu(d) is not absorbing for all non-abstainers. Then there exists i ∈ N \(Gu(d)∪A)
such that for every g ∈ Gu(d), (i, g) is not an arc of GP , that is, g /∈ Acc(i). Voter
i would prefer to vote herself rather than delegate to any guru in Gu(d). Thus d
is not Nash-stable. This proves that Gu(d) is a kernel of GP .

(ii) =⇒ (i)(sketched). Consider a subset K of non-abstainers such that K
is a kernel of GP . We define a delegation function d by: d(i) = i if i ∈ K; and
d(i) = j if i /∈ K where j is the voter that i prefers in K ∪ {0}. Note that as
GSN is complete, each voter in N \ K can delegate directly to any voter in K. It
follows that the set of gurus in d is Gu(d) = K. One can easily check that the
delegation function d obtained this way is Nash-stable. 
�

Note that any digraph is the delegation-acceptability digraph of a preference
profile P . Indeed, given the digraph, it suffices to build a preference profile P so
that every voter prefers to delegate to its out-neighbors, then to vote, then to
delegate to other voters, then to abstain. Thus, in a complete SN, determining
if a preference profile admits an equilibrium is equivalent to the problem of
determining if a digraph admits a kernel, which is an NP-complete problem [8].

Theorem 1. EX is NP-complete even when the SN is a complete graph.

Consequently, even when GSN is complete, optimization problems MINDIS,
MINMAXVP and MINABST are NP-hard as it is NP-hard to decide if their
set of admissible solutions is empty or not. We also directly obtain that problem
MEMB is NP-complete, by a direct reduction from EX. Indeed, solving problem
MEMB for each voter in N \ A yields the answer to problem EX.

As mentioned above, this equivalence is useful to find some interesting sub-
cases. Let us consider for instance the case where there is a symmetry in the
preferences in the sense that i ∈ Acc(j) iff j ∈ Acc(i). In this case of symmetrical
preference profiles, the delegation-acceptability digraph has the arc (i, j) iff it
has the arc (j, i) (it is symmetrical). Then, any inclusion maximal independent
set is a kernel. Hence, for any non-abstainer i there exists an equilibrium in
which i is a guru (take a maximal independent set containing i).

Proposition 2. In a complete SN, there always exists an equilibrium when pref-
erences are symmetrical. Moreover, the answer to MEMB is always yes.

4.2 Sparse Social Networks

As the problem EX is NP-complete when the SN is a complete graph, it remains
NP-complete in any class of graphs that contain cliques, such as interval graphs,
split graphs, dense graphs,. . . Thus, we now focus on classes of graphs that do
not contain large cliques. We first deal with bounded degree graphs, and show
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that EX remains NP-hard in SNs of degree bounded by 5. We then focus on
graphs of bounded treewidth. Interestingly, while we will see in Sect. 5 that EX
is polynomial if GSN is a tree (actually, an equilibrium always exists in trees),
we obtain that EX is W[1]-hard when parameterized by the treewidth of GSN.
These results are summarized in Theorem 2.

Theorem 2. (i) EX is NP-complete even if the maximum degree of GSN is at
most 5. (ii) EX is W[1]-hard when parameterized by the treewidth of GSN.

Another parameter that is worth being considered is the maximal cardi-
nal of a set of acceptable gurus, where the maximum is taken over all voters:
maxa = maxi∈N |Acc(i)|. This number is likely to be small in practice. Would
this assumption help for solving problem EX? Unfortunately, in the proof of
Theorem 2 (i), maxa is bounded above by 4, so the problem remains NP-hard
when both maxa and the maximum degree are bounded.

5 Algorithms on Tree Social Networks

5.1 Equilibria and Trees

In this section, we first answer the question of characterizing SNs in which an
equilibrium always exists. It turns out that such SNs are exactly trees. More
precisely, the existence of an equilibrium is guaranteed whatever the preferences
of the voters iff GSN is a tree.

Theorem 3. If GSN is a tree, then for any preference profile there exists an
equilibrium. Conversely, if GSN is a social network such that for any preference
profile there exists an equilibrium, then GSN is a tree.

Proof. We show the first part of the Theorem (see [9] for the other part). We
proceed by induction. The case of a tree of 1 voter is trivial. Consider the result
true up to k voters and consider a tree of k + 1 voters. Root the tree at some
arbitrary vertex. Consider l a leaf and p the parent of this leaf. First if l ∈ A,
or if l �∈ Acc(p), we build an equilibrium in the following way. There exists
an equilibrium in the tree without l, add l to this equilibrium by giving her
preferred option between abstaining (if l ∈ A), voting (in this case l �∈ Acc(p))
and delegating to p in order to obtain the guru of p as guru.

We now assume l /∈ A and l ∈ Acc(p). In this case, we will assume that p can
always delegate to l as last resort. Hence, we can consider that the acceptability
set of p can be restrained to the voters at least as preferred as l. Secondly,
this assumption means that other voters cannot hope to have p as guru. More
precisely, the only gurus that they can reach through p are the voters at least
as preferred as l, and of course l. To materialize these constraints, we consider
the tree without l and where p takes the place of l in all voters preference list
(including the one of p). There exists an equilibrium in this tree. If p delegates
in the equilibrium (then she prefers her guru to l otherwise p would vote), add l
to this equilibrium by giving her preferred option between voting and delegating
to the guru of p. Otherwise, make p delegate to l and l votes. 
�
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5.2 Solving Optimization Problems in Trees

Let us address the complexity of problems MEMB, MINDIS, MINMAXVP
and MINABST in a tree. It will be shown that when GSN is a tree, a dynamic
programming approach is successful in building and optimizing equilibria.

We introduce some additional tools. Let GSN be a tree T rooted at some
vertex r0, and let us define accordingly, for every vertex i ∈ N , p(i) the parent
of i and Ch(i) the set of its children. Let Ti denote the subtree of T rooted at i.

Let r ∈ N and let d be an equilibrium such that the guru of r is some
gr ∈ N ∪{0}. Note that gr can be in Tr ∪ {0}: then r delegates downwards,
votes or abstains, i.e., d(r) ∈ Tr ∪ {0}; or gr /∈ Tr ∪ {0}: then r delegates to her
parent, i.e., d(r)=p(r). Consider the chain of delegations starting from a voter
j ∈ Tr \ {r}: either it reaches r, and then the guru of j will be gr, or it does not
reach r, hence it is fully determined by the restriction of d to the subtree Tr.
Using this remark we will show that an equilibrium can be built inductively by
combining delegation functions in subtrees.

Let us now define local equilibria to formalize restrictions of equilibria in a
subtree. Let d : Tr −→ N ∪{0} be a delegation function over Tr. We define gurus
associated with d in a similar way as we defined gurus for delegation function
over all voters. Let the guru gu(r, d) of r be: the first voter i such that d(i) = i
reached by the chain of delegations starting from r if r delegates downwards; 0
if d(r) = 0; or some gr /∈ Tr ∪ {0} if d(r) = p(r). Given a voter j ∈ Tr \ {r},
let the guru gu(j, d) of j be: the first voter i such that d(i) = i reached by the
chain of delegations starting from j if the chain does not reach r; 0 if d(j) = 0;
or gu(i, d) = gu(r, d) otherwise.

Given d : Tr −→ N ∪{0} and gr ∈ N ∪{0}, we say that d is a local equilibrium
on Tr with label gr if it satisfies:

(i) either gr /∈ Tr ∪ {0} and d(r) = p(r), or there is a chain of delegations in d
going from r to gr.

(ii) for every i∈Tr\{r}, voter i does not want to change her delegation, given
that the guru of r is gr, i.e., with gu(r, d) := gr it holds that gu(i, d) �i

g,∀g ∈ (∪j∈Nb(i)gu(j, d) ∪ {0, i}) \ {gu(i, d)}.
(iii) the root r does not want to change her delegation to any of her children, or

to vote or to abstain, given that her current guru is gr, i.e., gr �r g,∀g ∈
(∪j∈Nb(i),j �=p(r)gu(j, d) ∪ {0, r}) \ {gr}.

Note that condition (i) means that the label is consistent with the delegations,
i.e., it is indeed possible that gr is the guru of r in an equilibrium that coincides
with d on Tr. Condition (ii) corresponds to Nash-stability for voters in Tr \ {r},
and condition (iii) is a relaxed Nash-stability for r. This definition slightly gener-
alizes the definition of equilibrium: an equilibrium d is exactly a local equilibrium
on T = Tr0 with label gu(r0, d).
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Proposition 3. Let r ∈ N , gr ∈ N ∪ {0} and d : Tr −→ N ∪{0}. Then d is a
local equilibrium on Tr with label gr iff the following assertions are satisfied:

(a) d(r) = r (resp. 0, p(r)) if gr = r (resp. gr = 0, gr /∈ Tr ∪{0}) and d(r) = u∗

if gr ∈ Tu∗ for some u∗ ∈ Ch(r);
(b) gr �r g for every g ∈ {0, r} \ {gr};
(c) For every u ∈ Ch(r), (c1) or (c2) is satisfied:

(c1) gr /∈ Tu and there exists gu ∈ Tu ∪ {0} such that gr �r gu, gu �u gr,
and d is a local equilibrium on Tu with label gu;

(c2) d is a local equilibrium on Tu with label gr.

This proposition enables us to build a dynamic programming approach to solve
problems on equilibria by reasoning on local equilibria starting from the leaves of
the tree to the root. All details are provided in the long version of the paper [9].
This dynamic programming approach yields the following result.

Theorem 4. In tree SNs, problems MEMB, MINABST, and MINDIS are
solvable in O(n3); problem MINMAXVP is solvable in O(n4).

The Subcase of Star Social Networks. Interestingly, in the case of a star SN,
our dynamic programming approach can be used to solve problems MEMB,
MINABST, MINDIS and MINMAXVP in O(n2).

6 Convergence of Delegation Dynamics

In this section, we investigate the convergence of delegation dynamics in several
types of graphs. While complete SNs are investigated in Sect. 6.1, our results on
two subclasses of tree SNs, paths and stars, are presented in Sect. 6.2.

6.1 Delegation Dynamics in Complete Social Networks

As an equilibrium may not exist in the case of a complete SN (cf. Example 2), it
is obvious that IRD or BRD do not always converge. One may wonder whether
the convergence is guaranteed in instances where an equilibrium exists. Note
that this would not contradict the NP-hardness of problem EX in complete SNs
(Theorem 1) since the convergence might need an exponential number of steps.
Unfortunately, the answer is negative. The game is not even weakly acyclic, as
shown in the following Theorem.

Theorem 5. There exists an instance with a complete SN where an equilibrium
exists, but for which there exists a starting delegation function from which no
IRD converges to equilibrium.

Interestingly, the game has a better property if initially all voters declare
intention to vote: then, there always exists a permutation dynamics for which
BRD converges (though this might not hold for other permutation dynamics).
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Theorem 6. In a complete SN, if an equilibrium exists, then we can find a
permutation dynamics which starts when all voters vote, and which always con-
verges under BRD to this equilibrium. However, BRD may not converge even
with a permutation dynamics with a starting delegation function in which every
voter declares intention to vote.

6.2 Delegation Dynamics in Tree Social Networks

We now consider the convergence of delegation dynamics in instances with SNs
that belong to two subclasses of tree SNs, namely path and star SNs. For these
instances, an equilibrium is guaranteed to exist by Theorem 3. Unfortunately,
we show that a BRD may not converge if GSN is a path. Differently, if GSN is a
star, then BRD are guaranteed to converge. However, IRD are not. These results
are presented in the two following theorems.

Theorem 7. There exists a path SN and a BRD that does not converge even
if there are no abstainers and if in the starting delegation function, every voter
declares intention to vote.

Theorem 8. If GSN is a star and there are no abstainers, an IRD will always
converge. If GSN is a star, a BRD will always converge but there exists an IRD
that does not converge.

7 Conclusion and Future Work

We have proposed a game-theoretic model of the delegation process induced
by the liquid democracy paradigm when implemented in a social network. This
model makes it possible to investigate several questions on the Nash-equilibria
that may be reached by the delegation process of liquid democracy. We have
defined and studied several existence and optimization problems defined on these
equilibria. Unfortunately, the existence of a Nash-equilibrium is not guaranteed
and is even NP-hard to decide even when the social network is complete or has
a low maximum degree. In fact, a Nash-equilibrium is only guaranteed to exist
whatever the preferences of the voters if the social network is a tree. Hence,
we have investigated the case of tree social networks and designed efficient opti-
mization procedures for this special case. Lastly, we have investigated delegation
dynamics in several types of social networks highlighting the fact that, in many
cases, convergence is not guaranteed.

For future work, similarly to Bloembergen et al. [3] who studied the price of
anarchy of delegation games with a more specific model of preferences, it would
be interesting to study the price of anarchy of the delegation games developed in
this paper. Another direction would be to study a similar game-theoretic analysis
of delegations in other frameworks related to liquid democracy such as viscous
democracy or flexible representative democracy [1,5].
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Abstract. Suppose you need to determine the correct answer to a com-
plex question that depends on two logically independent premises. You
can ask several agents to each evaluate either just one of those premises
(which they can do with relatively high accuracy) or both premises (in
which case their need to multitask will lower their individual accuracy).
We first determine the optimal rule to aggregate the individual judg-
ments reported by the agents and then analyse their strategic incentives,
depending on whether they are motivated by (i) the group tracking the
truth, by (ii) maximising their own reputation, or by (iii) maximising
the agreement of the group’s findings with their own private judgments.
We also study the problem of deciding how many agents to ask for two
judgments and how many to ask for just a single judgment.

1 Introduction

Suppose a group of agents need to collectively determine the answer to a binary
question that directly depends on the evaluation of several independent criteria.
A correct yes/no answer—both on the different criteria and on the complex
question—exists, but the agents are a priori unaware of it. Still, the agents
can reflect on the possible answers and obtain a judgment which has a certain
probability of being correct. But, most importantly, different agents may assess
different parts of the question under consideration. We assume that, under time
restrictions and cognitive constraints, the more criteria a given agent tries to
assess, the less accurate her judgments are likely to be. This decrease in accuracy
might be due to time pressure [3,10,16], multitasking attempts [1], or speeded
reasoning [18]. How can the agents then, as a group, maximise the probability
of discovering the correct answer to the complex question they are facing?

Example 1. An academic hiring committee needs to decide whether Alice
should get the advertised research job. In order to do so, the committee mem-
bers (professors 1, 2, and 3) have to review two of Alice’s papers—Alice will
be hired if and only if both these papers are marked as “excellent”. Due to an
urgent deadline the committee is given only one day to judge the quality of
Alice’s papers. After the day passes, professor 1 has spent all her time on one of
c© Springer Nature Switzerland AG 2019
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the two papers, while professors 2 and 3 have looked at both, and they express
the following “yes” and “no” opinions, related to whether the relevant paper is
excellent:

Paper 1 Paper 2

Professor 1 Yes −
Professor 2 No Yes
Professor 3 No Yes

Assuming that professor 1 has a higher probability to be correct than profes-
sor 2 about the first paper, but also taking into account that professor 3 agrees
with professor 2, what is the best way to aggregate the given judgments if the
committee wants to be as accurate as possible on Alice’s evaluation? �
Judgment aggregation [11,12,15] is a formal framework for group decision mak-
ing concerned with the aggregation of individual judgments about several logi-
cally interconnected propositions into one collective judgment. Along the lines of
Example 1, the propositions can be separated into the premises (e.g., excellency
of Alice’s papers) and the conclusion (e.g., Alice’s hiring), where the conclusion
is satisfied if and only if all premises are. Given two independent premises ϕ and
ψ and a group of agents, each of which answers specific questions regarding the
premises, in this paper we consider two cases of practical interest:

(i) Free assignment: Each agent chooses with some probability whether to
report an opinion only on the first premise, only on the second premise,
or on both.

(ii) Fixed assignment: Each agent is asked (and required) to report an opinion
only on the first premise, only on the second premise, or on both.

Our main goal is to achieve an aggregate judgment on the conclusion that has—
in expectation—high chances to reflect the truth. Notably, under the assumption
that the agents are sincere about the judgments they obtain after contemplating
their appointed premises, we find that the optimal aggregation rule is always a
weighted majority rule assigning each agent a weight that depends on the size
of her submitted judgment. We may think of this as a scoring rule [17].

But a further problem arises, namely that the agents may behave strategi-
cally, trying to manipulate the collective outcome to satisfy their own prefer-
ences. We examine the three most natural cases for the preferences of an agent
in our context, i.e., preferences that prioritise outcomes that are close to (i) the
truth, (ii) the agent’s reported judgment, or (iii) the agent’s sincere judgment.
In addition, we study how an agent’s incentives to be insincere relate to the
information the agent holds about the judgments reported by her peers.

Finally, knowing in which scenarios the agents are sincere, we ask (from a
mechanism-design point of view): Which fixed assignment is the most efficient
one, meaning that it achieves the highest probability of producing a correct
collective judgment? Our answer here depends heavily on the number of agents
in the group as well as on exactly how accurate the agents are individually.
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Prior work on judgment aggregation aiming at the tracking of the truth,
which can be traced all the way back to the famous Condorcet Jury Theorem [8],
has primarily focused on scenarios with two independent premises and one con-
clusion, like the one investigated in this paper. But such work has solely been
concerned with the case of complete judgments, that is, the special case where
all agents report opinions on all propositions under consideration. Under this
assumption, Bovens and Rabinowicz [4] and de Clippel and Eliaz [6] compare
two famous aggregation rules (for uniform and varying individual accuracies,
respectively): the premise-based rule (according to which the collective judg-
ment on the conclusion follows from the majority’s judgments on the premises)
and the conclusion-based rule (which simply considers the opinion of the major-
ity on the conclusion), concluding that most of the time the premise-based rule is
superior. Strengthening this result, Hartmann and coauthors [13,14] show that
the premise-based rule is optimal across wider classes of aggregation rules too.
Generalising the model further, Bozbay et al. [5] study scenarios with any num-
ber of premises and agents with incentives to manipulate the collective outcome,
and design rules that are optimal truth-trackers, but again assuming complete
reported judgments. Also focusing on strategic agents, Ahn and Oliveros [2] won-
der “should two issues be decided jointly by a single committee or separately by
different committees?” This question differs essentially from the one addressed
in our work, since our model accounts for the lower accuracy of the agents who
judge a greater number of issues.

This paper proceeds as follows. In Sect. 2 we present our basic model. In
Sect. 3 we provide our central result about the optimal aggregation rule for truth-
tracking with incomplete judgments and in Sect. 4 we conduct a game-theoretical
analysis of our model. We then engage with finding the optimal fixed assignment
for sincere agents in Sect. 5, and we conclude in Sect. 6.

2 The Model

Let ϕ and ψ be two logically independent premises and c = (ϕ ∧ ψ) be the
corresponding conclusion, and assume that all three propositions are associated
with a correct answer “yes” or “no”, where a positive answer on the conclusion
is equivalent to a positive answer on both premises. Each agent i in a group N =
{1, . . . , n} with n � 2 holds a sincere judgment J∗

i ⊆ {ϕ,ϕ, ψ, ψ} that contains
at most one formula from each pair of a premise and its negation: ϕ ∈ J∗

i

(ϕ ∈ J∗
i ) means that agent i judges ϕ as true (false). Clearly, agent i cannot

judge the conclusion without having judged both premises, but her judgment on
the conclusion would follow directly from her judgment on the two premises in
case she had one. We denote by J the set of all admissible individual judgments.
We say that two judgments J, J ′ agree on their evaluation of a proposition if they
both contain either the non-negated or the negated version of that proposition.

An aggregation rule F is a function that maps every reported profile J =
(J1, . . . , Jn) ∈ J n of individual judgments to a set of collective judgments F (J).
F is resolute if |F (J)| = 1 for every profile J . A collective outcome J ∈ F (J) is
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a logically consistent set J ⊆ {ϕ,ϕ, ψ, ψ, c, c} that contains exactly one formula
from each pair of a proposition and its negation (namely, it is complete). We write
J� ⊆ {ϕ,ϕ, ψ, ψ, c, c} for the judgment that captures the correct evaluation on
all three propositions.

We define Nϕ
1 (Nϕ

2 ) to be the sets of agents who report a judgment on one
(two) premise(s) and say “yes” (and analogously for “no”) on ϕ. We also define
nϕ
1 = |Nϕ

1 | and nϕ
2 = |Nϕ

2 | to be the relevant cardinalities of these sets.
We denote by p the probability that agent i’s judgment J∗

i is correct on a
premise when i judges both premises and by q the relevant probability when i
only judges a single premise (assuming that the probability of each agent i’s
judgment being correct on a premise ϕ is independent (i) of whether ϕ is true
or false and (ii) of what i’s judgment on premise ψ is). We assume that the
probabilities p and q are the same for all agents, but the agents make their judg-
ments independently of each other. We shall moreover suppose that all agents’
judgments are more accurate than a random guess, but not perfect, and that
agents judging a single premise are strictly more accurate than those judging
both premises, i.e., that 1/2 < p < q < 1. Then, P (J∗) denotes the probability
of the sincere profile J∗ to arise and P (J∗

−i | J∗
i ) the probability that the judg-

ments of all agents besides i form the sincere (partial) profile J∗
−i, given that i

has the sincere judgment J∗
i . Formally, for a fixed assignment:

P (J∗) = P (ϕ true) · P (J∗ | ϕ true) + P (ϕ false) · P (J∗ | ϕ false)

where P (J∗ | ϕ true) = qnϕ
1 pnϕ

2 (1 − q)nϕ
1 (1 − p)nϕ

2 , and similarly for P (J∗ |
ϕ false). The accuracy P (F ) of a resolute aggregation rule F is defined as:

P (F ) =
∑

J ∗∈J n s.t.
F (J ∗) and J� agree on c

P (J∗)

3 Optimal Aggregation

We now define the (irresolute) aggregation rule F opt
irr , such that for all profiles J :

F opt
irr (J) = argmax

J
complete
consistent

∑

i∈N

wi · |J ∩ Ji|

where wi = log q
1−q if |Ji| = 1, wi = log p

1−p if |Ji| = 2, and wi = 0 if |Ji| = 0.
Observe that the base of the logarithm in the definition of wi is irrelevant.

F opt
irr functions as a weighted-majority rule on each premise separately, assign-

ing to the agents weights according to the size of their reported judgments, and
subsequently picks that evaluation of the conclusion that is consistent with the
collective evaluation of the premises [17]. Then, F opt is a resolute version of F opt

irr

that, if the obtained collective judgments are more than one, randomly chooses
one of them for the collective outcome.
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For a resolute aggregation rule F , the probability P (F ) depends on the prob-
abilities P (F correct on ϕ) and P (F correct on ψ), which, for simplicity, we call
Pϕ and Pψ, respectively. For the remainder of this paper we will further assume
that the prior probabilities of the two premises being true or false are equal (and
independent of each other). That is, P (ϕ true) = P (ψ true) = 1/2. Then:

P (F ) =
1

4

[(
PϕPψ

)
+

(
PϕPψ + (1 − Pϕ)(1 − Pψ) + Pϕ(1 − Pψ)

)
+

(
PϕPψ

+ (1 − Pϕ)(1 − Pψ) + (1 − Pϕ)Pψ

)
+

(
PϕPψ + Pϕ(1 − Pψ) + (1 − Pϕ)Pψ

)]

=
1

2
+

PϕPψ

2
(1)

Given a (fixed or free) assignment, let us denote by Jϕ
F (Jϕ

F ) and Jψ
F (Jψ

F ) the
sets of all possible profiles of reported judgments that lead to a “yes” (“no”)
collective answer on ϕ and ψ under the rule F , respectively. Then:

Pϕ =
1
2

∑

J ∗∈Jϕ
F

P (J∗ | ϕ true) +
1
2

∑

J ∗∈Jϕ
F

P (J∗ | ϕ false) (2)

Now, for a fixed assignment and a profile J∗, we have that:

P (J∗ | ϕ true) > P (J∗ | ϕ false) ⇔
qnϕ

1 pnϕ
2 (1 − q)nϕ

1 (1 − p)nϕ
2 > (1 − q)nϕ

1 (1 − p)nϕ
2 qnϕ

1 pnϕ
2 ⇔

nϕ
1 log

q

1 − q
+ nϕ

2 log
p

1 − p
> nϕ

1 log
q

1 − q
+ nϕ

2 log
p

1 − p

(3)

Analogously, we consider a free assignment where agent i makes a sincere judg-
ment on premise ϕ with probability pϕ

i , on premise ψ with probability pψ
i , and

on both premises with probability pϕ,ψ
i . Given a sincere profile J∗:

P (J∗ | ϕ true) =
∑

i∈Nϕ
1 ∪N(1,ϕ)

∑

j∈Nϕ
2 ∪N(2,ϕ)

pϕ
i pϕ,ψ

j qnϕ
1 pnϕ

2 (1 − q)nϕ
1 (1 − p)nϕ

2

Defining P (J∗ | ϕ false) similarly, we have as in as in Eq. 3:

P (J∗ | ϕ true) > P (J∗ | ϕ false) ⇔
nϕ
1 log

q

1 − q
+ nϕ

2 log
p

1 − p
> nϕ

1 log
q

1 − q
+ nϕ

2 log
p

1 − p

(4)

Theorem 1 states the main results of this section. The proof technique we use is
a standard method in research on maximum likelihood estimators [9].

Theorem 1. For any fixed (or free) assignment and sincere judgments, F opt ∈
argmaxF P (F ). For every other aggregation rule F ′ ∈ argmaxF P (F ), F ′ only
differs from F opt on the tie-breaking part.

Proof. For a fixed assignment, it follows from Eqs. 2 and 3 that Pϕ (and Pψ) will
be maximal if and only if F assigns to the agents weights as in F opt. Equation 1
implies that maxF P (F ) � 1

2 + maxF Pϕ maxF Pψ

2 , so P (F ) is maximal if and only
if F opt (or a rule that only differs from F opt on the tie-breaking part) is used.
The proof is analogous for a free assignment. �	
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4 Strategic Behaviour

In this section we study the incentives of the agents to report insincere judgments
when the most accurate rule F opt is used. We examine in detail both fixed and
free assignments. An agent’s incentives to be insincere will of course depend on
the type of her preferences. We analyse three natural and disjoint cases regarding
these preferences, assuming that all agents have the same preference type: First,
the agents may want the group to reach a correct judgment—these preferences
are called truth-oriented. Second, the agents may want to report an opinion
that is close to the collective judgment, no matter what that judgment is—
these preferences are called reputation-oriented. Third, the agents may want the
group’s judgment to agree with their own sincere judgment—these preferences
are called self-oriented.1

To make things formal, we employ tools from Bayesian game theory. We wish
to understand when sincerity by all agents is an equilibrium:

Given that agent i holds the sincere judgment J∗
i , and given that the rest

of the agents are going to be sincere no matter what judgments they have,
is sincerity (i.e., reporting J∗

i ) a best response of agent i?

We examine the interim and the ex-post case. In both cases agent i already
knows her own sincere judgment, but in the former case she is ignorant about
the judgments of the rest of the group (only knowing that they have to be
probabilistically compatible with her own judgment), while in the latter case
she is in addition fully informed about them (this can happen, for example,
after some communication action has taken place).

Call T ∈ {“truth”, “reputation”, “self”} the type of the agents’ preferences.
Let us denote by UT

i

(
(Ji,J

∗
−i),J

∗) the utility that agent i gets by reporting
judgment Ji, when the sincere profile of the group is J∗ and all other agents j 
= i
report their sincere judgments J∗

j . EUT
i

(
(Ji,J

∗
−i), J

∗
i

)
stands for the expected

utility that agent i gets by reporting judgment Ji, when her sincere judgment
is J∗

i and all other agents j report their sincere judgments for any possible such
judgments. More precisely, we have that:

U truth
i

(
(Ji,J

∗
−i),J

∗) = |F opt(Ji,J
∗
−i) ∩ J�|

U reputation
i

(
(Ji,J

∗
−i),J

∗) = |F opt(Ji,J
∗
−i) ∩ Ji|

U self
i

(
(Ji,J

∗
−i),J

∗) = |F opt(Ji,J
∗
−i) ∩ J∗

i |

1 For instance, doctors making judgments about their patients may simply care about
the correctness of their collective judgment, participants of an experiment that are
paid proportionally to their agreement with the group can be assumed to aim at being
seen to agree with their peers, and people who like having their opinions confirmed
might manipulate the group to agree with their own privately held judgment.
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Also, for any T ∈ {“truth”, “reputation”, “self ”}:

EUT
i

(
(Ji,J

∗
−i), J

∗
i

)
=

∑

J ∗
−i

UT
i

(
(Ji,J

∗
−i),J

∗)P (J∗
−i | J∗

i )

We proceed with formally defining strategyproofness in our framework,
namely the situation where all agents being sincere forms an equilibrium. Given
a preference type T ∈ {“truth”, “reputation”, “self”} and a (fixed or free) assign-
ment, we say that sincerity always gives rise to an interim equilibrium if and
only if J∗

i ∈ argmaxJi∈Ai
EUT

i

(
(Ji,J

∗
−i), J

∗
i

)
for all agents i and sincere judg-

ments J∗
i , where Ai ⊆ J is the set of all judgments that agent i is can potentially

report under the given assignment. Similarly, sincerity always gives rise to an
ex-post equilibrium if and only if the above holds, where EUT

i is replaced by UT
i .

Table 1 summarises our results, where “✓” stands for strategyproofness and
“✗” designates the existence of a counterexample.

Table 1. Strategyproofness results.

Two fundamental lemmas are in order (the proofs are easy and thus omitted).
First, we verify the basic intuition that when an agent holds more information
about the reported judgments of the rest of the group, then her incentives to
manipulate increase. Second, we stress that whenever we can find a counterex-
ample of ex-post strategyproofness under fixed assignments, the same counterex-
ample works for free assignments too.2

Lemma 2. For any assignment and type of preferences, ex-post strategyproof-
ness implies interim strategyproofness.

Lemma 3. For any type of preferences, ex-post strategyproofness under free
assignments implies ex-post strategyproofness under fixed assignments.

4.1 Truth-Oriented Preferences

When all agents have truth-oriented preferences and when the rule F opt is used
to aggregate their reported judgments, it directly is in everyone’s best interest

2 The other direction does not hold. Importantly, a counterexample may go through
under free but not fixed assignments because the agents have the option to manip-
ulate by abstaining on some premise they have sincerely thought about.
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to be sincere—given that the rest of the group is sincere as well—irrespective
of whether the assignment materialised is fixed or free and whether the agents
know the judgments of their peers. Intuitively, the agents can trust that the
rule F opt will achieve a collective judgment that is as accurate as possible.

Theorem 4. For any fixed (or free) assignment and truth-oriented preferences:

(i) sincerity always gives rise to an interim equilibrium
(ii) sincerity always gives rise to an ex-post equilibrium

Proof. By Lemma 2, we only need to prove case (ii). For an arbitrary sincere
profile J∗ = (J∗

i ,J∗
−i), we have that U truth

i

(
(Ji,J

∗
−i),J

∗) = |F opt(Ji,J
∗
−i)∩J�|,

where J� captures the true evaluation of the propositions. Now suppose, aiming
for a contradiction, that there is an insincere judgment Ji of agent i such that
|F opt(Ji,J

∗
−i) ∩ J�| > |F opt(J∗

i ,J∗
−i) ∩ J�|. This means that F opt(Ji,J

∗
−i) 
=

F opt(J∗
i ,J∗

−i). Then, for a suitable aggregation rule F ′ 
= F opt, we can write
F opt(Ji,J

∗
−i) = F ′(J∗

i ,J∗
−i) and derive that |F (J∗

i ,J∗
−i)∩J�| > |F opt(J∗

i ,J∗
−i)∩

J�|. But this is impossible, because according to Theorem 1 F opt has to maximise
aggrement with J�. Hence, it holds that |F opt(Ji,J

∗
−i)∩J�| � |F opt(J∗

i ,J∗
−i)∩

J�| for all Ji, which implies that U truth
i

(
(Ji,J

∗
−i),J

∗) � U truth
i

(
(J∗

i ,J∗
−i),J

∗)

for all Ji and concludes the proof. �	

4.2 Reputation-Oriented Preferences

When the agents care about the positive reputation they obtain by agreeing
with the collective judgment of the group, their incentives to behave insincerely
heavily depend on whether they already know the judgments of their peers. Of
course: if an agent knows precisely what the collective judgment of the group will
be, she can simply change her reported judgment to fully match that collective
judgment. On the other hand, we will see that if an agent does not know exactly
what the sincere judgments of her peers are, it is more attractive for her to
remain sincere (as—knowing that her sincere judgment is more accurate than
random—she can reasonably expect the group to agree with her).

Theorem 5. For any fixed assignment and reputation-oriented preferences, sin-
cerity always gives rise to an interim equilibrium.

Proof. Given a fixed assignment, an agent i, and a sincere judgment J∗
i , let us call

Pdis the probability that agent i will disagree with the group on the evaluation
of premise ϕ. Let us assume that agent i’s judgment J∗

i concerns both premises
ϕ and ψ (the proof is analogous when J∗

i concerns only premise ϕ). Now, let
us denote by Pg the probability that the group is collectively correct on their
evaluation of ϕ. Recalling that p > 1/2 is the probability that agent i is correct
on her evaluation of ϕ, it holds that:

Pdis � p(1 − Pg) + (1 − p)Pg = p + Pg(1 − 2p)
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Now, we have that p + Pg(1 − 2p) � 1/2 if and only if Pg � p−1/2
2p−1 = 1/2, which

holds since all members of the group are more accurate than random. So, Pdis �
1/2, which means that it is more probable for the group’s judgment to agree with
J∗

i on premise ϕ than to disagree with it, and the same holds for premise ψ as
well. Therefore, agent i has no better option than to report her sincere judgment
on the premises that are assigned to her. Formally, EU reputation

i

(
(Ji,J

∗
−i), J

∗
i

)

is maximised when Ji = J∗
i . �	

Proposition 6. For reputation-oriented preferences, there exists a fixed (and
thus a free, from Lemma 3) assignment where sincerity does not always give rise
to an ex-post equilibrium.

Proof. Consider a fixed assignment where all agents in the group are asked about
both premises ϕ and ψ, agent i has the sincere judgment J∗

i = {ϕ,ψ}, and all
other agents j have sincere judgments Jj = {ϕ,ψ}. Agent i would increase her
utility by reporting the insincere judgment Ji = {ϕ,ψ}. �	
Theorem 7. For any free assignment and reputation-oriented preferences, sin-
cerity always gives rise to an interim equilibrium.

Proof. Consider an arbitrary free assignment and an agent i with sincere judg-
ment J∗

i . Since the given assignment is uncertain, agent i can potentially report
any judgment set she wants, that is, Ai = J . Suppose that her sincere judg-
ment J∗

i has size |J∗
i | = k ∈ {1, 2}. First, following the same argument as that in

the proof of Theorem 5, we see that agent i cannot increase her expected utility
by reporting a judgment Ji 
= J∗

i with |Ji| = k. We omit the formal details, but
the intuition is clear: the group has higher probability to agree with the sincere
evaluation of agent i on each premise than to disagree with it.

However, we also need to show that agent i cannot increase her expected
utility by reporting a judgment Ji 
= J∗

i with |Ji| 
= k. The case where |Ji| > k is
straightforward: if agent i has no information about one of the premises, the best
she could do is reporting a random judgment on that premise, but this would not
increase her expected utility. Thus, we need to consider the case where |Ji| < k,
and more specifically the only interesting scenario with |J∗

i | = 2 and |Ji| = 1.
Say, without loss of generality, that Ji = {ϕ}. Let us call Pϕ

ag,2 (Pψ
ag,2) the

probability that the group will agree with agent i on her evaluation of ϕ (ψ)
given that agent i reports her sincere judgment on both premises, and let us call
Pϕ

ag,1 the probability that the group will agree with agent i on her evaluation of
ϕ given that she reports her a judgment only on premise ϕ. We have that:

EU reputation
i

(
(J∗

i ,J∗
−i), J

∗
i

)
= Pϕ

ag,2 + Pψ
ag,2 and

EU reputation
i

(
(Ji,J

∗
−i), J

∗
i

)
= Pϕ

ag,1

Analogously to the proof of Theorem 5, it holds that Pϕ
ag,2 � 1/2 and Pψ

ag,2 �
1/2, so Pϕ

ag,2+Pψ
ag,2 � 1. This means that Pϕ

ag,1 � Pϕ
ag,2+Pψ

ag,2 (because Pϕ
ag,1 � 1

is a probability value), so, it is the case that EU reputation
i

(
(Ji,J

∗
−i), J

∗
i

)
�

EU reputation
i

(
(J∗

i ,J∗
−i), J

∗
i

)
. We conclude that agent i cannot increase her

expected utility by reporting Ji instead of J∗
i . �	
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4.3 Self-oriented Preferences

Suppose the agents would like the collective outcome to agree with their own sin-
cere judgment. Now, having a fixed or a free assignment radically changes their
strategic considerations: under fixed assignments the agents can never increase
their utility by lying, while there are free assignments where insincere behaviour
is profitable. The critical difference is that when the agents are free to submit
judgments of variable size, they can increase the weight that the optimal aggre-
gation rule F opt will assign to their judgment on one of the two premises by
avoiding to report a judgment on the other premise, thus having more opportu-
nities to manipulate the outcome in favour of their private judgment.

Theorem 8. For any fixed assignment and self-oriented preferences:

(i) sincerity always gives rise to an interim equilibrium
(ii) sincerity always gives rise to an ex-post equilibrium

Proof. By Lemma 2, we only need to show case (ii). Given a fixed assignment,
an agent can only report an insincere opinion by flipping her sincere judgment
on some of the premises she is asked about. But if she did so, F opt could only
favour a judgment different from her own, not increasing her utility. Thus, every
agent always maximises her utility by being sincere. �	
Proposition 9. For self-oriented preferences, there exists a free assignment
such that sincerity does not always give rise to an interim (and thus also not to
an ex-post, from Lemma 2) equilibrium.

Proof. Consider a group of three agents and a free assignment as follows: Agent 1
reports an opinion on both premises ϕ,ψ with probability 1/2, and only on
premise ϕ or only on premise ψ with probability 1/4 and 1/4, respectively.
Agent 2 reports a judgment on both premises ϕ,ψ with probability 1, and agent 3
reports a judgment only on premise ϕ with probability 1. Suppose that agent 1’s
truthful judgment is J∗

1 = {ϕ,ψ}. Suppose additionally that q > p2

p2+(1−p)2 . In
such a case, if agent 1 decides to report her sincere judgment on both premises,
she will always be unable to affect the collective outcome on ϕ according to the
rule F opt, and she will obtain an outcome that agrees with her sincere judgment
on ψ with probability p(p+ 1−p

2 )+ (1− p)(1− p+ p
2 ) = p2 + p+1 < 1. However,

if agent 1 reports the insincere judgment J1 = {ψ} instead, she will always
obtain a collective outcome on ψ that is identical to her own sincere judgment,
corresponding to a higher expected utility of value 1. Thus, we can conclude that
J∗
1 /∈ argmaxJ1∈A1

EU self
1

(
(J1, J

∗
2 , J∗

3 ), J∗
1

)
. �	

5 Optimal Fixed Assignment

Having a group of n agents, different choices for assigning agents to questions
concerning the premises induce different fixed assignments, which in turn yield
the correct answer on the conclusion with different probability. In this section we
are interested in finding the optimal (viz., the most accurate) such assignment.
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Let us denote by n1 � �n
2 � the number of agents that will be asked to

report a judgment only on premise ϕ. For symmetry reasons, we assume that
the same number of agents will be asked to report a judgment only on premise ψ,
and the remaining n − 2n1 agents will be asked to report a judgment on both
premises. Given n1, Pϕ,n1(F

opt) is the probability of the aggregation rule F opt

producing a correct evaluation of premise ϕ, and since we assume that the same
number of agents that will judge ϕ will also judge ψ, it will be the case that
Pϕ,n1(F

opt) = Pψ,n1(F
opt). As in Sect. 3, the accuracy of F opt regarding the

conclusion is Pn1(F
opt) = 1

2 + Pϕ,n1 (F
opt)Pψ,n1 (F

opt)

2 = 1
2 + Pϕ,n1 (F

opt)2

2 . Thus, we
will maximise Pn1(F

opt) if and only if we maximise Pϕ,n1(F
opt):

argmax
0�n1�� n

2 �
Pn1(F

opt) = argmax
0�n1�� n

2 �
Pϕ,n1(F

opt)

The optimal assignment depends on the specific number of agents n, but also on
the values p and q of the individual accuracy. For small groups of at most four
agents, we calculate exactly what the optimal assignment is for any p and q; for
larger groups, we provide results for several indicative values of p and q.

Proposition 10. For n = 2, argmaxn1
Pϕ,n1(F

opt) = 1. Thus, when there are
just two agents, it is optimal to ask each of them to evaluate one of the two
premises (n1 = 1) rather than asking both to evaluate both premises (n1 = 0).

Proof. For n = 2 we have two options: n1 = 0 or n1 = 1. We consider them
separately. It is the case that Pϕ,0(F opt) = p2+ 1

22p(1−p) = p, while Pϕ,1(F opt) =
q > p. Thus, argmaxn1

Pϕ,n1(F
opt) = 1. �	

Proposition 11. For n = 3, argmaxn1
Pϕ,n1(F

opt) = 1 if and only if q �
p2(3 − 2p).

Proof. For n = 3 we have two options: n1 = 0 or n1 = 1. We consider them
separately. It is the case that Pϕ,0(F opt) = p3 +

(
3
2

)
p2(1 − p) = p2(3 − 2p),

while Pϕ,1(F opt) = q (because the judgment of the agent who reports only on
premise ϕ will always prevail over the judgment of the agent who reports on
both premises). Thus, argmaxn1

Pϕ,n1(F
opt) = 1 if and only if q � p2(3 − 2p). �	

Thus, if agents who evaluate both premises are correct 60% of the time, then
in case there are three agents, you should ask two of them to focus on a single
premise each if and only if their accuracy for doing so is at least 64.8%.

Proposition 12. For n = 4, argmaxn1
Pϕ,n1(F

opt) = 1 if q < p2

(1−p)2+p2 and
argmaxn1

Pϕ,n1(F
opt) = 2 otherwise.
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Proof. We provide a sketch. We have three options: n1 = 0, n1 = 1, or n1 = 2.

Pϕ,0(F opt) = p4 +
(

4
3

)
p3(1 − p) +

1
2

(
4
2

)
p2(1 − p)2 = p2(3 − 2p)

Pϕ,1(F opt) =

⎧
⎪⎪⎨

⎪⎪⎩

q(p2 + 2p(1 − p) + (1−p)2

2 ) + (1 − q)p2

2 if q = p2

(1−p)2+p2

q if q > p2

(1−p)2+p2

q(p2 + 2p(1 − p)) + (1 − q)p2 if q < p2

(1−p)2+p2

Pϕ,2(F opt) = q2 +
1
2
q(1 − q) = q

The claim now follows after some simple algebraic manipulations, by distinguish-
ing cases regarding the relation of q to p2

(1−p)2+p2 . �	
Now, for an arbitrary number of agents n and a number of agents n1 who judge
only premise ϕ (and the same for ψ), we have the following:

Pn1,ϕ(F opt) =
n−2n1∑

k=0

( n1∑

�=0
s.t. �∈W

P (k, �, n, n1, p, q) +
1
2

n1∑

�=0
s.t. �∈T

P (k, �, n, n1, p, q)
)

– k counts how many of the agents that judge both premises are right on ϕ.
– � counts how many of the agents that judge only ϕ are right on ϕ.
– W = {� | � log q

1−q + k log p
1−p > (n1 − �) log q

1−q + (n − 2n1 − k) log p
1−p}.

– T = {� | � log q
1−q + k log p

1−p = (n1 − �) log q
1−q + (n − 2n1 − k) log p

1−p}.
– P (k, �, n, n1, p, q) =

(
n−2n1

k

)(
n1
�

)
pk(1 − p)n−2n1−kq�(1 − q)n1−�.

For large groups with n � 5 it is too complex to calculate the optimal assignment
analytically in all cases. We instead look at some representative values of p and q.
For that purpose, we define a parameter α that intuitively captures the agents’
multitasking ability, as follows: α = p−0.5

q−0.5 . Clearly, 0 < α < 1, and the smaller α
is, the worse multitaskers the agents can be assumed to be.

We consider three types for the agents’ multitasking ability: good, average,
and bad, corresponding to values for α of 0.8, 0.5, and 0.2, respectively. In addi-
tion, we consider four types for the agents’ accuracy on a single question: very
high, high, medium, and low, corresponding to values for q of 0.9, 0.8, 0.7, and
0.6, respectively. Table 2 demonstrates our findings regarding the optimal assign-
ment in terms of the number n1 for these characteristic cases, for groups with
at most 15 members.34 In general, we can observe that the better multitaskers
the agents are, the lower the number n1 that corresponds to the best assignment
is. This verifies an elementary intuition suggesting that if the agents are good
at multitasking, then it is profitable to ask many of them about both premises,
while if the agents are bad at multitasking, it is more beneficial to ask them
about a single premise each.
3 For any assignment, collective accuracy converges to 1 as the size of the group grows

larger. Thus, our analysis is most interesting for groups that are not very large.
4 The calculations were performed using a computer program in R.
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Table 2. Optimal assignment in terms of the number of agents who should be asked
about premise ϕ only, for different group size, individual accuracy, multitasking ability.

n
q
α

Low Medium High Very high
bad avg. good bad avg. good bad avg. good bad avg. good

5 2 2 2 2 2 2 2 2 2 2 2 2
6 3 3 3 3 3 3 3 3 3 3 3 3
7 3 3 2 3 3 2 3 3 3 3 3 3
8 4 4 3 4 3 3 4 4 3 4 4 3
9 4 4 4 4 4 4 4 4 4 4 4 4
10 5 5 5 5 5 5 5 5 5 5 5 5
11 5 5 4 5 5 4 5 5 5 5 5 5
12 6 6 5 6 5 5 6 6 5 6 6 5
13 6 6 6 6 6 6 6 6 6 6 6 6
14 7 7 7 7 7 7 7 7 7 7 7 7
15 7 7 6 7 7 6 7 7 7 7 7 7

6 Conclusion

We have contributed to the literature on the truth-tracking of aggregation rules
by considering scenarios where the agents may not all judge the same number
of issues that need to be decided by the group. Assuming that multitasking is
detrimental to the agents’ accuracy, we have found what the optimal method to
aggregate the judgments of the agents is, and we have analysed the incentives
for strategic behaviour that the agents may exhibit in this new context.

For this first study on the topic a few simplifying assumptions have been
made. First, we have assumed that all agents have the same accuracy and that
there are only two premises. Our analysis can be naturally extended beyond this
case, considering different accuracies and more than two premises: the optimal
aggregation rule would still be a weighted majority rule, agents with truth-
oriented preferences would still always be sincere, while agents who care about
their reputation or their individual opinion would still find reasons to lie—but
careful further work is essential here in order to clarify all relevant details. Sec-
ond, we have assumed that the exact values of the agents’ accuracies are known,
but this is often not true in practice. Thus, to complement our theoretical work,
our results could be combined with existing experimental research that measures
the accuracy of individual agents on specific application domains, ranging from
human-computer interaction [1] to crowdsourcing [7].
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Abstract. Voting can abstractly model any decision-making scenario
and as such it has been extensively studied over the decades. Recently,
the related literature has focused on quantifying the impact of utilizing
only limited information in the voting process on the societal welfare for
the outcome, by bounding the distortion of voting rules. Even though
there has been significant progress towards this goal, all previous works
have so far neglected the fact that in many scenarios (like presidential
elections) voting is actually a distributed procedure. In this paper, we
consider a setting in which the voters are partitioned into disjoint dis-
tricts and vote locally therein to elect local winning alternatives using a
voting rule; the final outcome is then chosen from the set of these alterna-
tives. We prove tight bounds on the distortion of well-known voting rules
for such distributed elections both from a worst-case perspective as well
as from a best-case one. Our results indicate that the partition of vot-
ers into districts leads to considerably higher distortion, a phenomenon
which we also experimentally showcase using real-world data.

Keywords: Distributed voting · District-based elections · Distortion

1 Introduction

In a decision-making scenario, the task is to aggregate the opinions of a group
of different people into a common decision. This process is often distributed,
in the sense that smaller groups first reach an agreement, and then the final
outcome is determined based on the options proposed by each such group. This
can be due to scalability issues (e.g., it is hard to coordinate a decision between
a very large number of participants), due to different roles of the groups (e.g.,
when each group represents a country in the European Union), or simply due to
established institutional procedures (e.g., electoral systems).
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For example, in the US presidential elections, the voters in each of the 50
states cast their votes within their regional district, and each state declares a
winner; the final winner is taken as the one that wins a weighted plurality vote
over the state winners, with the weight of each state being proportional to its
size. Another example is the Eurovision Song Contest, where each participating
country holds a local voting process (consisting of a committee vote and an
Internet vote from the people of the country) and then assigns points to the 10
most popular options, on a 1–12 scale (with 11 and 9 omitted). The winner of
the competition is the participant with the most total points.

The foundation of utilitarian economics, which originated near the end of the
18th century, revolves around the idea that the outcome of a decision making
process should be one that maximizes the well-being of the society, which is
typically captured by the notion of the social welfare. A fundamental question
that has been studied extensively in the related literature is whether the rules
that are being used for decision making actually achieve this goal, or to what
extend they fail to do so. This motivates the following question: What is the
effect of distributed decision making on the social welfare?

The importance of this investigation is highlighted by the example of the
2016 US presidential election [24]. While 48.2% of the US population (that par-
ticipated in the election) viewed Hillary Clinton as the best candidate, Donald
Trump won the election with only 46.1% of the popular vote. This was due to
the district-based electoral system, and the outcome would have been different
if there was a single pool of voters instead. A similar phenomenon occurred in
the 2000 presidential election as well, when Al Gore won the popular vote, but
George W. Bush was elected president.

1.1 Our Setting and Contribution

For concreteness, we use the terminology of voting as a proxy for any distributed
decision-making scenario. A set of voters are called to vote on a set of alternatives
through a district-based election. In other words, the set of voters is partitioned
into districts and each district holds a local election, following some voting rule.
The winners of the local elections are then aggregated into the single winner of
the general election. Note that this setting models many scenarios of interest,
such as those highlighted in the above discussion.

We are interested in the effect of the distributed nature of elections on the
social welfare of the voters (the sum of their valuations for the chosen outcome).
Typically, this effect is quantified by the notion of distortion [22], which is defined
as the worst-case ratio between the maximum social welfare for any outcome and
the social welfare for the outcome chosen through voting. Concretely, we are
interested in bounding the distortion of voting rules for district-based elections.

We consider three cases when it comes to the district partition: (a) symmetric
districts, in which every district has the same number of voters and contributes
the same weight to the final outcome, (b) unweighted districts, in which the
weight is still the same, but the sizes of the districts may vary, and (c) unrestricted
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districts, where the sizes and the weights of the districts are unconstrained. For
each case, we show upper and lower bounds on the distortion of voting rules.

First, in Sect. 3, we consider general voting rules (which might have access
to the numerical valuations of the voters) and provide distortion guarantees for
any voting rule as a function of the worst-case distortion of the voting rule
when applied to a single district. As a corollary, we obtain distortion bounds for
Range Voting, the rule that outputs a welfare-maximizing alternative, and prove
that it is optimal among all voting rules for the problem. Then, in Sect. 4, we
consider ordinal rules and provide a general lower bound on the distortion of any
such rule. For the widely-used Plurality voting rule, we provide tight distortion
bounds, proving that it is asymptotically the best ordinal voting rule in terms
of distortion. In Sect. 5, we provide experiments based on real data to evaluate
the distortion on “average case” and “average worst case” district partitions.
Finally, in Sect. 6, we explore whether districting (i.e., manually partitioning the
voters into districts in the best-way possible) can allow to recover the winner of
Plurality or Range Voting in the election without districts. We conclude with
possible avenues for future work in Sect. 7. Due to space constraints, most proofs
are omitted; see the full version of the paper [12].

1.2 Related Work

The distortion framework was first proposed by Procaccia and Rosenschein [22]
and subsequently it was adopted by a series of papers; for instance, see [1,2,4,5,
7,8,13]. The original idea of the distortion measure was to quantify the loss in
performance due to the lack of information, meaning how well an ordinal voting
rule (i.e., one that has access only to the preference orderings induced by the
numerical values of the voters) can approximate the cardinal objective. In our
paper, the distortion will be attributed to two factors: always the fact that the
election is being done in districts, and possibly also the fact that the voting rules
employed are ordinal. Our setting follows closely that of Boutilier et al. [7] and
Caragiannis et al. [8], with the novelty of introducing district-based elections
and measuring their distortion. The worst-case distortion bounds of voting rules
in the absence of districts can be found in the aforementioned papers.

The ill effects of district-based elections have been highlighted in a series
of related articles, mainly revolving around the issue of gerrymandering [23],
i.e., the systematic manipulation of the geographical boundaries of an electoral
constituency in favor of a particular political party. The effects of gerrymandering
have been studied in the related literature before [6,9,19], but never in relation
to the induced distortion of the elections. While our district partitions are not
necessarily geographically-based, our worst-case bounds capture the potential
effects of gerrymandering on the deterioration of the social welfare. Other works
on district-based elections and distributed decision-making include [3,10].

Related to our results in Sect. 6 is the paper by Lewenberg et al. [20], which
explores the effects of districting with respect to the winner of Plurality, when
ballot boxes are placed on the real plane, and voters are partitioned into dis-
tricts based on their nearest ballot box. The extra constraints imposed by the
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geological nature of the districts in their setting leads to an NP-hardness result
for the districting problem, whereas for our unconstrained districts, making the
Plurality winner the winner of the general election is always possible in polyno-
mial time. In contrast, the problem becomes NP-hard when we are interested in
the winner of Range Voting instead of Plurality.

2 Preliminaries

A general election E is defined as a tuple (M,N ,D,w,v, f), where

– M is a set of m alternatives;
– N is a set of n voters;
– D is a set of k ≥ 2 districts, with district d ∈ D containing nd voters such

that
∑

d∈D nd = n (i.e., the districts define a partition of the set of voters);
– w = (wd)d∈D is a weight-vector consisting of a weight wd ∈ R>0 for each

district d ∈ D;
– v = (v1, . . . ,vn) is a valuation profile for the n voters, where vi = (vij)j∈M

contains the valuation of voter i for all alternatives, and Vn is the set of all
such valuation profiles;

– f = (fd)d∈D is a set of voting rules (one for each district), where fd : Vnd →
M is a map of valuation profiles with nd voters to alternatives.

For each voter i ∈ N , we denote by d(i) the district she belongs to. For each
district d ∈ D, a local or district election between its members takes place, and
the winner of this election is the alternative jd = fd((vi)i:d(i)=d) that gets elected
according to fd. The outcome of the general election E is an alternative

j(E) ∈ arg max
j∈M

∑

d∈D
wd · 1 {jd = j} ,

where 1 {X} is equal to 1 if the event X is true, and 0 otherwise. In simple
words, the winner j(E) of the general election is the alternative with the highest
weighted approval score, breaking ties arbitrarily. For example, when all weights
are 1, j(E) is the alternative that wins the most local elections.

Following the standard convention, we adopt the unit-sum representation of
valuations, according to which

∑
j∈M vij = 1 for every voter i ∈ N . For a given

valuation profile v, the social welfare of alternative j ∈ M is defined as the total
value the agents have for her:

SW(j|v) =
∑

i∈N
vij .

Throughout the paper, we assume that the same voting rule is applied in
every local election (possibly for a different number of voters though, depending
on how the districts are defined); we denote this voting rule by f and also let
f(v) be the alternative that is chosen by f when the voters have the valuation
profile v.
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The distortion of a voting rule f in a local election with η voters is defined as
the worst-case ratio, over all possible valuation profiles of the voters participating
in that election, between the maximum social welfare of any alternative and the
social welfare of the alternative chosen by the voting rule:

dist(f) = sup
v∈Vη

maxj∈M SW(j|v)
SW(f(v)|v)

.

The distortion of a voting rule f in a general election is defined as the worst-case
ratio, over all possible general elections E that use f as the voting rule within
the districts, between the maximum social welfare of any alternative and the
social welfare of the alternative chosen by the general election:

gdist(f) = sup
E:f∈E

maxj∈M SW(j|v)
SW(j(E)|v)

.

Again, in simple words, the distortion of a voting rule f is the worst-case over
all the possible valuations that voters can have and over all possible ways of
partitioning these voters into districts. When k = 1, we recover the standard
definition of the distortion.

Next, we define some standard properties of voting rules.

Definition 1 (Properties of voting rules). A voting rule f is

– ordinal, if the outcome only depends on the preference orderings induced by the
valuations and not the actual numerical values themselves. Formally, given
a valuation profile v, let Πv be the ordinal preference profile formed by the
values of the agents for the alternatives (assuming some fixed tie-breaking
rule). A voting rule is ordinal if for any two valuation profiles v and v′ such
that Πv = Πv′ , it holds that f(v) = f(v′).

– unanimous, if whenever all agents agree on an alternative, that alternative
gets elected. Formally, whenever there exists an alternative a ∈ M for whom
via ≥ vij for all voters i ∈ N and all alternatives j ∈ M, then f(v) = a.

– (strictly) Pareto efficient, if whenever all agents agree that an alternative a
is better than b, then b cannot be elected. Formally, if via > vib for all i ∈ N ,
then f(v) �= b.1

Remark. It is not hard to see that we can assume that the best voting rule in
terms of distortion is Pareto efficient, without loss of generality. Indeed, for any
voting rule f that is not Pareto efficient, we can construct the following Pareto
efficient rule f ′: for every input on which f outputs a Pareto efficient alternative,
f ′ outputs the same alternative; for every input on which f outputs an alternative
that is not Pareto efficient, f ′ outputs a maximal Pareto improvement, that
is, a Pareto efficient alternative which all voters (weakly) prefer more than the

1 Pareto efficiency usually requires that there is no other alternative who all voters
weakly prefer and who one voter strictly prefers. We use the strict definition in our
proofs, as it is also without loss of generality with respect to distortion.
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alternative chosen by f . Clearly, f ′ is Pareto efficient and achieves a social welfare
at least as high as f . Note also that Pareto efficiency implies unanimity. In our
proofs, we will use both of these properties without loss of generality. Finally,
most of the voting rules that are being employed in practice are ordinal, with
the notable exception of Range Voting, which is the voting rule that outputs the
alternative that maximizes the social welfare.

We consider the following three basic cases for the general elections, depend-
ing on the size and the weight of the districts:

– Symmetric Elections: all districts consist of n/k voters and have the same
weight, i.e., nd = n/k and wd = 1 for each d ∈ D.

– Unweighted Elections: all districts have the same weight, but not necessarily
the same number of voters, i.e., wd = 1 for each d ∈ D.

– Unrestricted Elections: there are no restrictions on the sizes and weights of
the districts.

Of course, the class of symmetric elections is a subclass of that of unweighted
elections which in turn is a subclass of the class of unrestricted elections.

3 The Effect of Districts for General Voting Rules

Our aim in this section is to showcase the immediate effect of using districts
to distributively aggregate votes. To this end, we present tight bounds on the
distortion of all voting rules in a general election. We will first state a general
theorem relating the distortion gdist(f) of any general election that uses a
voting rule f for the local elections, with the distortion dist(f) of the voting
rule.

Theorem 1. Let f be a voting rule with dist(f) = γ. Then, the distortion
gdist(f) of f in the general election is at most

(i) γ + γmk
2 for symmetric elections;

(ii) γ + γm
2

(
n+maxd∈D nd

mind∈D nd
− 1

)
for unweighted elections;

(iii) γ + γm
(

n
mind∈D nd

− 1
)

for unrestricted elections.

We now turn to concrete voting rules and consider perhaps the most natural
such rule: Range Voting (RV).

Definition 2 (Range Voting (RV)). Given a valuation profile v =
(v1, ...,vη) with η voters, Range Voting elects the alternative that maximizes
the social welfare of the voters.

Note that the rule is both unanimous and Pareto efficient. Immediately from the
definition of the rule and Theorem 1, we have the following corollary.

Corollary 1. The distortion gdist(RV) of RV in the general election is at most
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(i) 1 + mk
2 for symmetric elections;

(ii) 1 + m
2

(
n+maxd∈D nd

mind∈D nd
− 1

)
for unweighted elections;

(iii) 1 + m
(

n
mind∈D nd

− 1
)

for unrestricted elections.

We continue by presenting matching lower bounds on the distortion of any
voting rule in a general election. The high-level idea in the proof of the following
theorem is that the election winner is chosen arbitrarily among the alternatives
with equal weight, which might lead to the cardinal information within the
districts to be lost.

Theorem 2. The distortion of all voting rules in a general election is at least

(i) 1 + mk
2 for symmetric elections;

(ii) 1 + m
2

(
n+maxd∈D nd

mind∈D nd
− 1

)
for unweighted elections;

(iii) 1 + m
(

n
mind∈D nd

− 1
)

for unrestricted elections.

4 Ordinal Voting Rules and Plurality

Although Range Voting is quite natural, its documented drawback is that it
requires a very detailed informational structure from the voters, making the
elicitation process rather complicated. For this reason, most voting rules that
have been applied in practice are ordinal (see Definition 1), as such rules present
the voters with the much less demanding task of reporting a preference ordering
over the alternatives, rather than actual numerical values.

Thus, a very meaningful question, from a practical point of view, is “What
is the distortion of ordinal voting rules?” The most widely used such rule is
Plurality Voting. Besides its simplicity, the importance of this voting rule also
comes from the fact that it is used extensively in practice. For instance, it is
used in presidential elections in a number of countries like the USA and the UK.

Definition 3 (Plurality Voting (PV)). Given a valuation profile v and its
induced ordinal preference profile Πv, PV elects the alternative with the most
first position appearances in Πv, breaking ties arbitrarily.

It is known that the distortion dist(PV) of Plurality Voting is O(m2) [8]. There-
fore, if we plug-in this number to our general bound in Theorem 1, we obtain
corresponding upper bounds for PV. However, in the following we obtain much
better bounds, taking advantage of the structure of the mechanism; these bounds
are actually tight.

Theorem 3. The distortion gdist(PV) of PV is exactly

(i) 1 + 3m2k
4 for symmetric elections;

(ii) 1 + m2

4

(
3n+maxd∈D nd

mind∈D nd
− 1

)
for unweighted elections;
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(iii) 1 + m2
(

n
mind∈D nd

− 1
2

)
, for unrestricted elections.

Proof. We prove only the upper bounds for the first two parts here; the upper
bound for the third part as well as the matching lower bounds can be found in
the full version.

Consider a general unweighted election E with a set M of m alternatives, a
set N of n voters, a set D of k districts such that each district d consists of nd

voters and has weight wd = 1. Let v be the valuation profile consisting of the
valuations of all voters for all alternatives, which induces the ordinal preference
profile Πv. To simplify our discussion, let Nd(j) be the set of voters in district
d that rank alternative j in the first position, and also set |Nd(j)| = nd(j).

Let a = j(E) be the winner of the election and denote by A ⊆ D the set of
districts in which a wins according to PV. Then, we have that

SW(a|v) =
∑

i∈N
via ≥

∑

i:d(i)∈A

via. (1)

Since a has the plurality of votes in each district d ∈ A, we have that nd(a) ≥
nd(j) for every j ∈ M, and by the fact that

∑
j∈M nd(j) = nd, we obtain that

nd(a) ≥ nd

m . Similarly, for each agent i ∈ Nd(a) we have that via ≥ vij for every
j ∈ M, and by the unit-sum assumption, we obtain that via ≥ 1

m . We also have
that

∑
d∈A nd ≥ |A| · mind∈D nd. Hence,

∑

i:d(i)∈A

via ≥
∑

d∈A

∑

i∈Nd(a)

via ≥ 1
m

·
∑

d∈A

nd(a)

≥ 1
m2

∑

d∈A

nd ≥ 1
m2

· |A| · min
d∈D

nd. (2)

Let b the optimal alternative, and denote by B ⊂ D the set of districts in
which b is the winner. We split the social welfare of b into three parts:

SW(b|v) =
∑

i:d(i)∈A

vib +
∑

i:d(i)∈B

vib +
∑

i:d(i) �∈A∪B

vib. (3)

We will now bound each term individually. First consider a district d ∈ A. Then,
the welfare of the agents in d for b can be written as

∑

i:d(i)=d

vib =
∑

i∈Nd(a)

vib +
∑

i∈Nd(b)

vib +
∑

i�∈Nd(a)∪Nd(b)

vib.

Since a is the favourite alternative of every agent i ∈ Nd(a), vib ≤ via. By
definition, the value of every agent i ∈ Nd(b) for b is at most 1. The value
of every agent i �∈ Nd(a) ∪ Nd(b) for b can be at most 1/2 since otherwise b
would definitely be the favourite alternative of such an agent. Combining these
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observations, we get
∑

i:d(i)=d

vib ≤
∑

i∈Nd(a)

via + nd(b) +
1
2

∑

j �=a,b

nd(j)

≤
∑

i:d(i)=d

via +
1
2
nd(b) +

1
2

∑

j �=a

nd(j)

≤
∑

i:d(i)=d

via +
1
2
nd(a) +

1
2

(

nd − nd(a)
)

=
∑

i:d(i)=d

via +
1
2
nd,

where the second inequality follows by considering the value of all agent in d
for alternative a, while the third inequality follows by the fact that a wins b by
plurality. By summing over all districts in A, we can bound the first term of (3)
as follows:

∑

i:d(i)∈A

vib ≤
∑

i:d(i)∈A

via +
1
2

∑

d∈A

nd. (4)

For the second term of (3), by definition we have that the value of each agent in
the districts of B for alternative b can be at most 1, and therefore

∑

i:d(i)∈B

vib ≤
∑

d∈B

nd.

For the third term of (3), observe that the total value of the agents in a district
d �∈ A ∪ B for b must be at most 3

4nd; otherwise b would necessarily be ranked
first in strictly more than half of the agents’ preferences and therefore win in the
district. Hence,

∑

i:d(i) �∈A∪B

vib ≤ 3
4

∑

d�∈A∪B

nd.

By substituting the bounds for the three terms of (3), as well as by taking into
account the facts that |B| ≤ |A| and |A| ≥ 1, we can finally upper-bound the
social welfare of b as follows:

SW(b|v) ≤
∑

i:d(i)∈A

via +
1
2

∑

d∈A

nd +
∑

d∈B

nd +
3
4

∑

d�∈A∪B

nd

=
∑

i:d(i)∈A

via +
1
4

(

3n +
∑

d∈B

nd −
∑

d∈A

nd

)

≤
∑

i:d(i)∈A

via +
1
4

(

3n + |B| · max
d∈D

nd − |A| · min
d∈D

nd

)

≤
∑

i:d(i)∈A

via +
1
4

· |A| ·
(

3n + max
d∈D

nd − min
d∈D

nd

)

(5)
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By (1), (2) and (5), we can upper-bound the distortion of PV as follows:

gdist(PV) =
SW(b|v)
SW(a|v)

≤
∑

i:d(i)∈A via + 1
4 · |A| · (3n + maxd∈D nd − mind∈D nd)

∑
i:d(i)∈A via

≤ 1 +
m2

4

(
3n + maxd∈D nd

mind∈D nd
− 1

)

.

This completed the proof of part (ii). For part (i), we get the desired bound of
1 + 3m2k

4 by simply setting mind∈D nd = maxd∈D nd = n/k. 
�
Our next theorem shows that PV is asymptotically the best possible voting

rule among all deterministic ordinal voting rules.

Theorem 4. The distortion gdist(f) of any ordinal Pareto efficient voting rule
f is

(i) Ω(m2k), for symmetric elections;
(ii) Ω

(
m2 n+maxd∈D nd

mind∈D nd

)
, for unweighted elections;

(iii) Ω
(

m2n
mind∈D nd

)
, for unrestricted elections.

5 Experiments

Thus far, we have studied the worst-case effect of the partition of voters into
districts on the distortion of voting rules. In this section, we further showcase this
phenomenon experimentally by using real-world utility profiles that are drawn
from the Jester dataset [16], which consists of ratings of 100 different jokes in the
interval [−10, 10] by approximately 70,000 users; this dataset has been used in
a plethora of previous papers, including the seminal work of Boutilier et al. [7].
Following their methodology, we build instances with a set of alternatives that
consists of the eight most-rated jokes. For various values of k, we execute 1000
independent simulations as follows: we select a random set of 100 users among
the ones that evaluated all eight alternatives, rescale their ratings so that they
are non-negative and satisfy the unit-sum assumption, and then divide them
into k districts.

For the partition into districts, we consider both random partitions as well
as bad partitions in terms of distortion. For the construction of the latter, for
each instance consisting of a specific value of k and a set of voters, we create
100 random partitions of the voters into k districts, simulate the general elec-
tion (based on the voting rules we consider) and then keep the partition with
maximum distortion.

We compare the average distortion of four rules: Range Voting, Plurality,
Borda, and Harmonic. Borda and Harmonic are two well-known positional scor-
ing rules defined by the scoring vectors (m−1,m−2, ..., 0) and (1, 1/2, ..., 1/m),
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Fig. 1. Average distortion from 1000 simulations as a function of the number of districts
k with random partitions of voters into districts.

Table 1. Average distortion from 1000 simulations with bad partitions of voters into
districts.

Unweighted Weighted

k 1 2 3 4 5 1 2 3 4 5

Range Voting 1 4.82 4.51 4.50 4.60 1 4.46 4.96 5.14 5.14

Plurality 1.05 5.03 4.66 4.71 4.81 1.05 4.77 5.29 5.47 5.49

Borda 1.01 4.83 4.47 4.50 4.61 1.01 4.51 4.98 5.16 5.18

Harmonic 1.02 4.97 4.60 4.62 4.72 1.02 4.64 5.16 5.35 5.36

respectively. According to these rules, each voter assigns points to the alterna-
tives based on the positions she ranks them, and the alternative with the most
points is the winner; Plurality can also be defined similarly by the scoring vector
(1, 0, ..., 0).

Figure 1 depicts the results of our simulations for unweighted and weighted
districts when the partition into districts is random and k ∈ {1, 5, 10, 15, 20, 25};
for weighted districts, the weights are drawn uniformly at random from a given
interval. As one can observe, the behaviour of the four voting rules is very similar
in both cases, and it is evident that as the number of districts increases, the
distortion increases as well. For instance, the distortion of Plurality increased by
3.71% for k = 5 compared to k = 1 (i.e., when there are no districts) and by
6.44% for k = 25; these values are similar for the other rules as well, although
a bit lower. Table 1 contains the results of our simulations for unweighted and
weighted districts when the partition into districts is bad (in terms of distortion)
and k ∈ {1, 2, 3, 4, 5}. As in the case of random districts, we can again observe
that the distortion increases as k increases, but now the difference between the
cases with districts (k ≥ 2) and without districts (k = 1) is more clear; the
distortion is almost five times higher.
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6 Best-Case Partitions via Districting

In this section we turn out attention to a somewhat different setting. We assume
that the k districts are not a priori defined, and instead we are free to decide
the partition of the voters into the districts so as to minimize their effect on the
distortion of the underlying voting rule; we refer to the process of partitioning
the voters into k districts as k-districting. We consider symmetric districts, and
start our analysis with the question of whether it is possible to define the districts
so that the optimal alternative (i.e., the one that maximizes the social welfare
of the voters) wins the general election when RV is used as the voting rule.
Unfortunately, as we show with our next theorem, this is not always possible.

Theorem 5. For every k ≥ 2, there exists an instance such that no symmetric
k-districting allows the optimal alternative to win the general election when RV
is the voting rule.

Proof. Consider a general election with n + 1 alternatives M = {a1, ..., an, b}
and let k be such that n/k is an integer for simplicity; then, each district must
consist of exactly n/k voters. Let ε ∈

(
0, 1

2(n+1)

)
and let v be the valuation

profile according to which voter i has value n
n+k + ε for alternative ai and value

k
n+k − ε for alternative b; her value for the remaining alternatives is zero.

Since SW(ai|v) = n
n+k + ε for every i ∈ [n] and SW(b|v) = nk

n+k − nε,
alternative b is clearly the optimal alternative. However, observe that all possible
sets of n/k voters that can be included together in a district cannot make b the
winner of the district when the voting rule is RV. Indeed, the welfare of such a
set of voters for b is only n

n+k − nε
k , while their welfare for the alternatives they

rank first is n
n+k . Therefore, there is no symmetric k-districting that can make

b the winner of the general election with RV. 
�
In fact, the instance used in the above proof indicates that even the best-case

distortion of RV may be at least k. We continue the bad news by showing that
the problem of deciding whether it is possible to define the districts such that
the optimal alternative wins the general election with RV is NP-hard for k = 2.

Theorem 6. Deciding whether there is a symmetric 2-districting such that the
optimal alternative is the winner of the general election with RV is NP-hard.

In contrast to the above result for the optimal alternative and RV, we next
show that we can always find a symmetric k-districting so that the PV winner
without districts can be made the winner of the general election when PV is used
as the voting rule within the districts. Since the voting rule is PV, we assume
that the only knowledge which we can leverage in order to define the districts is
about the favourite alternatives of the voters (i.e., for each voter, we know the
alternative she approves).

Theorem 7. For any k ≥ 2, there always exists a symmetric k-districting that
allows the winner of PV without districts to win the general election with k
districts, and this districting can be computed in polynomial time.
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We conclude this section by showing that the above result for PV is essentially
tight. This follows by the existence of instances where any partition of the voters
into any number of districts yields distortion for the general election with PV
that is asymptotically equal to the distortion of PV without districts.

Theorem 8. There exist instances where any symmetric districting yields dis-
tortion gdist(PV) = Ω(m2).

7 Conclusion and Possible Extensions

In this paper, we have initiated the study of the distortion of distributed voting.
We showcased the effect of districting on the social welfare both theoretically
from a worst- and a best-case perspective, as well as experimentally using real-
world data. Even though we have painted an almost complete picture, our work
reveals many interesting avenues for future research.

In terms of our results, possibly the most obvious open question is whether
we can strengthen the weak intractability result of Theorem 6 using a reduction
from a strongly NP-hard problem, and also extend it to k ≥ 2. Moving away
from the unconstrained normalized setting that we considered here, it would be
very interesting to analyze the effect of districts in the case of metric prefer-
ences [1], a setting that has received considerable attention in the recent related
literature on the distortion of voting rules without districts [2,11,14,15,17,21].
Other important extensions include settings in which the partitioning of voters
into districts is further constrained by natural factors such as geological loca-
tions [20] or connectivity in social networks [18].
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Abstract. We study the three-dimensional stable matching problem
with cyclic preferences. This model involves three types of agents, with
an equal number of agents of each type. The types form a cyclic order
such that each agent has a complete preference list over the agents of
the next type. We consider the open problem of the existence of three-
dimensional matchings in which no triple of agents prefer each other to
their partners. Such matchings are said to be weakly stable. We show
that contrary to published conjectures, weakly stable three-dimensional
matchings need not exist. Furthermore, we show that it is NP-complete
to determine whether a weakly stable three-dimensional matching exists.
We achieve this by reducing from the variant of the problem where pref-
erence lists are allowed to be incomplete. Our results can be generalized
to the k-dimensional stable matching problem with cyclic preferences for
k ≥ 3.

Keywords: Stable matching · Three-dimensional matching ·
NP-completeness

1 Introduction

The study of stable matchings was started by Gale and Shapley [9], who investi-
gated a market with two types of agents. The two-dimensional stable matching
problem involves an equal number of men and women, each of whom has a com-
plete preference list over the agents of the opposite sex. The goal is to find
a matching between the men and the women such that no man and woman
prefer each other to their partners. Matchings satisfying this property are said
to be stable. Gale and Shapley showed that a solution for the two-dimensional
stable matching problem always exists and can be computed in polynomial time.
Their result also applies to the variant where preference lists may be incomplete
due to unacceptable partners, and the number of men may be different from the
number of women.

The problem of generalizing stable matchings to markets with three types
of agents was posed by Knuth [13]. In pursuit of an existence theorem and
an elegant theory analogous to those of the Gale-Shapley model, the three-
dimensional stable matching problem has been studied with respect to a number
c© Springer Nature Switzerland AG 2019
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of preference structures. When each agent has preferences over pairs of agents
from the other two types, stable matchings need not exist [1,16]. Furthermore,
it is NP-complete to determine whether a stable matching exists [16,18], even
if the preferences are consistent with product orders [11]. When two types of
agents care primarily about each other and secondarily about the remaining
type, a stable matching always exists and can be obtained by computing two-
dimensional stable matchings using the Gale-Shapley algorithm in a hierarchical
manner [5]. When the types form a cyclic order such that each type of agent
cares primarily about the next type and secondarily about the other type, stable
matchings need not exist [3].

A prominent problem mentioned in several of the aforementioned papers
[3,11,16] is the three-dimensional stable matching problem for the case where
the types form a cyclic order such that each type of agent cares only about
the next type and not the other type. Following the terminology of the sur-
vey of Manlove [15], we call this the three-dimensional stable matching problem
with cyclic preferences (3-dsm-cyc), and refer to the three types of agents as
men, women, and dogs. A number of stability notions [11] can be considered in
3-dsm-cyc. In this paper, we focus on weak stability, which is the most per-
missive one and has received the most attention in the literature. It is known
that determining whether a 3-dsm-cyc instance has a strongly stable matching
is NP-complete [2]. For the variant where ties are allowed, determining the exis-
tence of a super-stable matching is also NP-complete [12]. However, it remained
an open problem for weakly stable matchings in 3-dsm-cyc.

In 3-dsm-cyc, there are an equal number of men, women, and dogs. Each
man has a complete preference list over the women, each woman has a complete
preference list over the dogs, and each dog has a complete preference list over the
men. A family is a triple consisting of a man, a woman, and a dog. A matching
is a set of agent-disjoint families. A family is strongly blocking if every agent in
the family prefers each other to their partners in the matching. A matching is
weakly stable if it admits no strongly blocking family. This problem is related
to applications such as kidney exchange [2] and three-sided network services [4].

The formulation of 3-dsm-cyc first appeared in the paper of Ng and
Hirschberg [16], where it is attributed to Knuth. Using a greedy approach, Boros
et al. [3] showed that every 3-dsm-cyc instance with at most 3 agents per type
has a weakly stable matching. Their result also applies to the k-dimensional
generalization of the problem, which we call k-dsm-cyc. For k ≥ 3, they showed
that every k-dsm-cyc instance with at most k agents per type has a weakly sta-
ble matching. Using a case analysis, Eriksson et al. [6] showed that every 3-dsm-
cyc instance with at most 4 agents per type has a weakly stable matching, and
they conjectured that every 3-dsm-cyc instance has a weakly stable matching.
In fact, they posed the stronger conjecture that for a certain “strongest link”
generalization of 3-dsm-cyc, every instance with at least two agents per type
has at least two weakly stable matchings. Eriksson et al. also investigated and
ruled out the use of certain arguments based on “effectivity functions” and “bal-
anced games” for proving the 3-dsm-cyc conjecture. Using an efficient greedy
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procedure, Hofbauer [10] showed that for k ≥ 3, every k-dsm-cyc instance with
at most k+1 agents per type has a weakly stable matching. Using a satisfiability
problem formulation and an extensive computer-assisted search, Pashkovich and
Poirrier [17] showed that every 3-dsm-cyc instance with exactly 5 agents per
type has at least two weakly stable matchings. Escamocher and O’Sullivan [7]
showed that the number of weakly stable matchings is exponential in the size of
the 3-dsm-cyc instance if agents of the same type are restricted to have the same
preferences. They also conjectured that for unrestricted 3-dsm-cyc instances,
there are exponentially many weakly stable matchings.

Hardness results are known for some related problems. For the variant of
3-dsm-cyc where preference lists are allowed to be incomplete, which we refer
to as 3-dsmi-cyc, Biró and McDermid [2] showed that determining whether
a weakly stable matching exists is NP-complete. Farczadi et al. [8] showed
that determining whether a given perfect two-dimensional matching can be
extended to a three-dimensional weakly stable matching in 3-dsm-cyc is also
NP-complete. However, the existence of weakly stable matchings in 3-dsm-cyc
remained unresolved. Manlove [15] described it as an “intriguing open problem”,
and Woeginger [19] classified it as “hard and outstanding”.

Our Techniques and Contributions. In this paper, we show that there exists
a 3-dsm-cyc instance that has no weakly stable matching. This disproves the
conjectures of Eriksson et al. [6] and Escamocher and O’Sullivan [7]. Further-
more, we show that determining whether a 3-dsm-cyc instance has a weakly
stable matching is NP-complete. We achieve this by reducing from the problem
of determining whether a 3-dsmi-cyc instance has a weakly stable matching.
Our results generalize to k-dsm-cyc for k ≥ 3.

Our main technique involves converting each agent in 3-dsmi-cyc to a gadget
consisting of one non-dummy agent and many dummy agents. The dummy agents
in our gadget give rise to chains of admirers. (See Remark 2 in Sect. 4.3.) By
applying the weak stability condition to the chains of admirers, we are able to
obtain some control over the partner of the non-dummy agent.

Organization of This Paper. In Sect. 2, we present the formal definitions
of k-dsm-cyc and k-dsmi-cyc. In Sect. 3, we show that the NP-completeness
result of Biró and McDermid [2] can be extended to k-dsmi-cyc. In Sect. 4,
we show that k-dsm-cyc is NP-complete by a reduction from k-dsmi-cyc. In
Sect. 5, we conclude by mentioning some potential future work.

2 Preliminaries

In this paper, we use 〈z ∈ Z | P(z)〉 to denote the list of all tuples z ∈ Z satisfying
predicate P(z), where the tuples are sorted in increasing lexicographical order.
Given two lists Y and Z, we denote their concatenation as Y ·Z. For any k ≥ 1,
we use ⊕k to denote addition modulo k.
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2.1 The Models

Let k ≥ 2. The k-dimensional stable matching problem with incomplete lists
and cyclic preferences (k-dsmi-cyc) involves a finite set A = I × {0, . . . , k − 1}
of agents, where each agent α = (i, t) ∈ A is associated with an identifier i and
a type t. (When k = 3, we can think of the sets I × {0}, I × {1}, and I × {2}
as the sets of men, women, and dogs, respectively.) Each agent α = (i, t) ∈ A
has a strict preference list Pα over a subset of agents of type t′ = t ⊕k 1. In
other words, every agent in I × {t ⊕k 1} appears in Pα at most once, and every
element in Pα belongs to I × {t ⊕k 1}. For every α, α′, α′′ ∈ A, we say that α
prefers α′ to α′′ if α′ appears in Pα and either agent α′′ appears in Pα after α′

or agent α′′ does not appear in Pα. We denote this k-dsmi-cyc instance as
X = (A, {Pα}α∈A).

Given a k-dsmi-cyc instance X = (A, {Pα}α∈A), a family is a tuple

(α0, . . . , αk−1) ∈ Ak

such that αt ∈ I × {t} and αt⊕k1 appears in Pαt
for every t ∈ {0, . . . , k − 1}.

A matching μ is a set of agent-disjoint families. In other words, for every t, t′ ∈
{0, . . . , k − 1} and (α0, . . . , αk−1), (α′

0, . . . , α
′
k−1) ∈ μ, if αt = α′

t, then αt′ = α′
t′ .

Given a matching μ and an agent α ∈ A, if α = αt for some (α0, . . . , αk−1) ∈ μ
and t ∈ {0, . . . , k − 1}, we say that α is matched to αt⊕k1, and we write μ(α) =
αt⊕k1. Otherwise, we say that α is unmatched, and we write μ(α) = α.

Given a matching μ, we say that a family (α0, . . . , αk−1) is strongly blocking
if αt prefers αt⊕k1 to μ(αt) for every t ∈ {0, . . . , k − 1}. A matching μ is weakly
stable if it does not admit any strongly blocking family.

The k-dimensional stable matching problem with cyclic preferences (k-dsm-
cyc) is defined as the special case of k-dsmi-cyc in which every agent in I ×
{t ⊕k 1} appears exactly once in Pα for every agent α = (i, t) ∈ A.

Notice that when incomplete lists are allowed, the case of an unequal number
of agents of each type can be handled within our k-dsmi-cyc model by padding
with dummy agents whose preference lists are empty. Hence, the results of Biró
and McDermid [2] apply to our 3-dsmi-cyc model. When preference lists are
complete, we follow the literature and focus on the case where each type has an
equal number of agents. Our result shows that even when restricted to the case
of an equal number of agents of each type, a given k-dsm-cyc instance need
not admit a weakly stable matching, and determining the existence of a weakly
stable matching is NP-complete.

2.2 Polynomial-Time Verification

Given a matching μ of a k-dsmi-cyc instance with n agents per type, it is
straightforward to determine whether μ is weakly stable in O(nk) time by check-
ing that none of the O(nk) families is strongly blocking. The following theorem
shows that when k is large, there is a more efficient method to determine whether
a given matching is weakly stable. A proof is provided in [14].
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Theorem 1. There exists a poly(n, k)-time algorithm to determine whether
a given matching μ is weakly stable for a k-dsmi-cyc instance, where n is the
number of agents per type.

3 NP-Completeness of k-DSMI-CYC

In this section, we show that for every k ≥ 3, it is NP-complete to determine
whether a given k-dsmi-cyc instance has a weakly stable matching. We achieve
this by reducing from the problem of determining whether a 3-dsmi-cyc instance
has a weakly stable matching.

3.1 The Reduction

Let k ≥ 4. Consider an input 3-dsmi-cyc instance X = (A, {Pα}α∈A) where A =
I×{0, 1, 2}. Our reduction constructs a k-dsmi-cyc instance X̂ = (Â, {P̂α̂}α̂∈Â)
as follows.

– Let Î = I × I and Â = I × I × {0, . . . , k − 1}. For every agent (i, t) ∈ A, we
call α̂ = (i, i, t) ∈ Â the non-dummy agent corresponding to (i, t). We call the
agents

{(i, j, t) ∈ Â | t /∈ {0, 1, 2} or i �= j}
dummy agents.

– For every agent α̂ = (i, j, t) ∈ Â, we construct the preference list P̂α̂ as follows.
• If 0 ≤ t ≤ 1 and i = j, we list in P̂α̂ the agents

{(i′, j′, t′) ∈ I × I × {t + 1} | i′ = j′ and (i′, t′) is in P(i,t)}

in the order in which the corresponding agent (i′, t′) appears in P(i,t).
• If t = 2 and i = j, we list in P̂α̂ the agents

{(i′, j′, t′) ∈ I × I × {3} | i′ = i and (j′, 0) is in P(i,2)}

in the order in which the corresponding agent (j′, 0) appears in P(i,2).
• If 0 ≤ t ≤ 2 and i �= j, we define P̂α̂ as the empty list.
• If 3 ≤ t ≤ k − 2 and (j, 0) is in P(i,2), we define P̂α̂ as 〈(i, j, t + 1)〉.
• If t = k − 1 and (j, 0) is in P(i,2), we define P̂α̂ as 〈(j, j, 0)〉.
• If 3 ≤ t ≤ k − 1 and (j, 0) is not in P(i,2), we define P̂α̂ as the empty list.

Figure 1 shows an example of the reduction when k = 5 and I = {0, 1}.
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Fig. 1. Example of a reduction from 3-dsmi-cyc to 5-dsmi-cyc. An arrow indicates
that the target agent appears in the preference list of the source agent.

3.2 Correctness of the Reduction

Proofs of the three claims stated below are provided in [14]. We emphasize
that the important special case of Theorem 2 where k = 3 is due to Biró and
McDermid [2, Lemma 1].

Lemma 1. Let k ≥ 4. Consider the reduction given in Sect. 3.1. The output
k-dsmi-cyc instance X̂ has a weakly stable matching if and only if the input
3-dsmi-cyc instance X has a weakly stable matching.

Theorem 2. Let k ≥ 3. Then there exists a k-dsmi-cyc instance that has no
weakly stable matching.

Theorem 3. Let k ≥ 3. Then it is NP-complete to determine whether a k-dsmi-
cyc instance has a weakly stable matching.

4 NP-Completeness of k-DSM-CYC

In this section, we show that for every k ≥ 3, it is NP-complete to determine
whether a k-dsm-cyc instance has a weakly stable matching. We achieve this
by reducing from the problem of determining whether a k-dsmi-cyc instance
has a weakly stable matching. Since the dimensions of both the input instance
and the output instance of the reduction are equal to k, throughout this section,
we write ⊕ instead of ⊕k for better readability.
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4.1 The Reduction

Let k ≥ 3. Consider an input k-dsmi-cyc instance X = (A, {Pα}α∈A) where
A = I × {0, . . . k − 1}. We may assume that I = {0, . . . , |I| − 1}, so agents
in A can be compared lexicographically. Our reduction constructs a k-dsm-cyc
instance X̂ = (Â, {P̂α̂}α̂∈Â) as follows.

– Let J = {0, . . . , (k − 1)2}. Let Î = J ×A and Â = J ×A×{0, . . . , k − 1}. For
every agent α ∈ A, we call J ×{α}×{0, . . . , k − 1} the gadget corresponding
to α.

– For every agent α̂ = (j, α, t) ∈ Â such that j = 0 and α ∈ I × {t}, we call α̂
the non-dummy agent corresponding to α. Let P̂ ′

α be the list obtained by
replacing every α′ in Pα by (0, α′, t ⊕ 1). We define the preference list P̂α̂ as
P̂ ′

α · 〈(j′, α′, t′) ∈ J × A × {t ⊕ 1} | α′ = α〉 followed by the remaining agents
in J × A × {t ⊕ 1} in an arbitrary order.

– For every agent α̂ = (j, α, t) ∈ Â such that j = (k−1)2, we call α̂ a boundary
dummy agent, and we define the preference list P̂α̂ as

〈(j′, α′, t′) ∈ J × A × {t ⊕ 1} | α′ = α and j′ < (k − 1)2〉
·〈(j′, α′, t′) ∈ J × A × {t ⊕ 1} | j′ = (k − 1)2〉

followed by the remaining agents in J × A × {t ⊕ 1} in an arbitrary order.
– For every agent α̂ = (j, α, t) ∈ Â such that (j, α, t) /∈ {0} × (I × {t}) × {t}

and j < (k − 1)2, we call α̂ a non-boundary dummy agent, and we define the
preference list P̂α̂ as 〈(j′, α′, t′) ∈ J × A × {t ⊕ 1} | α′ = α〉 followed by the
remaining agents in J × A × {t ⊕ 1} in an arbitrary order.

As shown in Fig. 2(a), the gadget corresponding to α ∈ I ×{t} can be visualized
as a grid of agents with k rows and (k − 1)2 + 1 columns. The non-boundary
dummy agents in the same row have essentially the same preferences, which
begin with the agents in the next row from left to right. The preferences of
the boundary dummy agents are similar to those of the non-boundary dummy
agents, except that they incorporate the other boundary dummy agents in a spe-
cial manner. Meanwhile, the preferences of the non-dummy agent (0, α, t) reflect
the preferences of agent α by starting with P̂ ′

α.

Remark 1. The reason our gadget has (k − 1)2 + 1 columns will become clearer
when we present Lemmas 4 and 5 below. At a high level, Lemma 4 is invoked
k − 1 times within the proof of Lemma 5, and each such invocation leads to an
increase in the number of columns of k − 1.

4.2 Correctness of the Reduction

Lemmas 2 and 3 below show that the reduction in Sect. 4.1 is a correct reduction
from k-dsmi-cyc to k-dsm-cyc. The associated proofs are presented in Sects. 4.4
and 4.5.
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Fig. 2. Example of a gadget corresponding to α ∈ I × {t} when k = 3. An arrow
indicates that the source agent is matched to the target agent.

Lemma 2. Let k ≥ 3. Consider the reduction given in Sect. 4.1. If the input
k-dsmi-cyc instance X has no weakly stable matching, then the output k-dsm-
cyc instance X̂ has no weakly stable matching.

Lemma 3. Let k ≥ 3. Consider the reduction in Sect. 4.1. If the input k-dsmi-
cyc instance X has a weakly stable matching, then the output k-dsm-cyc
instance X̂ has a weakly stable matching.

Proofs of the next two theorems are provided in [14].

Theorem 4. Let k ≥ 3. Then there exists a k-dsm-cyc instance that has no
weakly stable matching.

Theorem 5. Let k ≥ 3. Then it is NP-complete to determine whether a k-dsm-
cyc instance has a weakly stable matching.
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4.3 Properties of the Gadget

In this subsection, we study the properties of the gadget in the scenario that
the non-dummy agent is not matched to a non-dummy agent corresponding to
an acceptable partner. In Lemma 4, we show that in this scenario, many agents
in the gadget are matched to agents in the same gadget. In Lemma 5, we apply
Lemma 4 inductively to show that in the same scenario, every agent in the same
family as the non-dummy agent belongs to the same gadget.

Remark 2. In the proof of Lemma 4 below, we can think of α̂0, . . . , α̂k−1 as a
chain of admirers in the gadget corresponding to α, where α̂s prefers α̂s+1 to
μ̂(α̂s). By applying the weak stability condition to this chain of admirers, we
show that α̂k−1 is matched to a partner no worse than α̂0.

Lemma 4. Let μ̂ be a weakly stable matching in X̂. Let t∗ ∈ {0, . . . , k − 1} and
α∗ ∈ I ×{t∗} such that μ̂(0, α∗, t∗) is not in P̂ ′

α∗ . Let t ∈ {0, . . . , k−1} and j ∈ J
such that j ≤ (k−1)·(k−2). Then μ̂(j, α∗, t) ∈ {0, . . . , j+k−1}×{α∗}×{t⊕1}.
Proof. Let Âs = 〈(j′, α′, t′) ∈ J × {α∗} × {t ⊕ s ⊕ 1} | j′ ≤ j + k − s − 1〉 for
every s ∈ {0, . . . , k − 1}. For the sake of contradiction, suppose μ̂(j, α∗, t) is not
in Â0.

For every s ∈ {0, . . . , k−2}, since the length of Âs is greater than the length of
Âs+1, there exists α̂s in Âs such that μ̂(α̂s) is not in Âs+1. Let α̂k−1 = (j, α∗, t).
Then α̂k−1 is in Âk−1 and μ̂(α̂k−1) is not in Â0. Since μ̂ is a weakly stable
matching of X̂, the family (α̂k−t−1, . . . , α̂(k−t−1)⊕(k−1)) is not strongly blocking.
So there exists s∗ ∈ {0, . . . , k−1} such that α̂s∗ does not prefer α̂s∗⊕1 to μ(α̂s∗).
Since α̂s∗ is in Âs∗ , there exists j∗ ≤ j + k − s∗ − 1 such that α̂s∗ = (j∗, α∗, t ⊕
s∗ ⊕ 1). We consider two cases.

Case 1: j∗ = 0 and t ⊕ s∗ ⊕ 1 = t∗. Then α̂s∗ = (0, α∗, t∗) is a non-dummy
agent and P̂ ′

α∗ · Âs∗⊕1 is a prefix of the preference list P̂α̂s∗ . Since μ(α̂s∗) is
not in P̂ ′

α∗ · Âs∗⊕1 and α̂s∗⊕1 is in Âs∗⊕1, agent α̂s∗ prefers α̂s∗⊕1 to μ(α̂s∗), a
contradiction.

Case 2: j∗ �= 0 or t ⊕ s∗ ⊕ 1 �= t∗. We consider two subcases.
Case 2.1: j∗ = (k − 1)2. Since (k − 1)2 = j∗ ≤ j + k − s∗ − 1 ≤ (k − 1)2 − s∗,

we have s∗ = 0. Hence α̂0 = ((k − 1)2, α∗, t ⊕ 1) is a boundary dummy agent
and Â1 is a prefix of the preference list P̂α̂0 . Since μ(α̂0) is not in Â1 and α̂1 is
in Â1, agent α̂0 prefers α̂1 to μ(α̂0), a contradiction.

Case 2.2: j∗ < (k−1)2. Then α̂s∗ is a non-boundary dummy agent and Âs∗⊕1

is a prefix of the preference list P̂α̂s∗ . Since μ(α̂s∗) is not in Âs∗⊕1 and α̂s∗⊕1 is
in Âs∗⊕1, agent α̂s∗ prefers α̂s∗⊕1 to μ(α̂s∗), a contradiction. 	

Lemma 5. Let μ̂ be a weakly stable matching in X̂. Let j0, . . . , jk−1 ∈ J and
α0, . . . , αk−1 ∈ A such that ((j0, α0, 0), . . . , (jk−1, αk−1, k − 1)) ∈ μ̂. Let t∗ ∈
{0, . . . , k−1} such that jt∗ = 0 and αt∗ ∈ I×{t∗}. Suppose that (jt∗⊕1, αt∗⊕1, t

∗⊕
1) is not in P̂ ′

αt∗ . Then, for every s ∈ {0, . . . , k − 1}, we have αt∗⊕s = αt∗ and
jt∗⊕s ≤ (k − 1) · s.
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Proof. We prove the claim by induction on s. When s = 0, we have αt∗⊕s =
αt∗⊕0 = αt∗ and jt∗⊕s = jt∗ = 0 ≤ (k − 1) · s.

Suppose αt∗⊕(s−1) = αt∗ and jt∗⊕(s−1) ≤ (k − 1) · (s − 1), where s ∈
{1, . . . , k − 1}. Since (jt∗⊕1, αt∗⊕1, t

∗ ⊕ 1) is not in P̂ ′
αt∗ , agent μ̂(0, αt∗ , t∗)

is not in P̂ ′
αt∗ . Let t = t∗ ⊕ (s − 1). Then αt = αt∗⊕(s−1) = αt∗ and

jt = jt∗⊕(s−1) ≤ (k − 1) · (s − 1) ≤ (k − 1) · (k − 2). So Lemma 4 implies that
μ̂(jt, αt∗ , t) ∈ {0, . . . , jt + k − 1} × {αt∗} × {t ⊕ 1}. Hence jt⊕1 ≤ jt + k − 1
and αt⊕1 = αt∗ , since μ̂(jt, αt∗ , t) = μ̂(jt, αt, t) = (jt⊕1, αt⊕1, t ⊕ 1). Thus
αt∗⊕s = αt⊕1 = αt∗ and jt∗⊕s = jt⊕1 ≤ jt + k − 1 = jt∗⊕(s−1) + k − 1 ≤
(k − 1) · (s − 1) + k − 1 = (k − 1) · s. 	


4.4 Proof of Lemma 2

The goal of this subsection is to prove Lemma 2. It suffices to show that every
weakly stable matching μ̂ in X̂ induces a weakly stable matching μ in X.

Recall that each agent in A has a corresponding non-dummy agent in Â, and
that a family in X is a tuple of k agents in A such that each agent appears in
the preference list of another. Hence we include in μ a family of agents in X
whenever the corresponding family of non-dummy agents are matched in μ̂.
More formally, we define the matching μ in X induced by μ̂ in X̂ as the set
of families (α0, . . . , αk−1) in X satisfying ((0, α0, 0), . . . , (0, αk−1, k − 1)) ∈ μ̂.
Notice that every μ induced by a matching μ̂ in X̂ is a valid matching in X
since agent-disjoint families in X̂ induce agent-disjoint families in X.

Lemma 6 below shows that if μ̂ is weakly stable and matches a non-dummy
agent to a non-dummy agent corresponding to an acceptable partner, then μ
matches the corresponding agents. Our proof relies on Lemma 5 and the weak
stability of μ̂. Notice that if μ̂ is not weakly stable, it may be the case that μ̂
matches a family consisting of k − 1 non-dummy agents and one dummy agent.
In such a case, the corresponding k − 1 agents are unmatched in the induced
matching μ.

Lemma 6. Let μ be the matching in X induced by a weakly stable matching μ̂
in X̂. Let t ∈ {0, . . . , k − 1} and α ∈ I × {t} such that μ̂(0, α, t) is in P̂ ′

α. Then
μ̂(0, α, t) = (0, μ(α), t ⊕ 1).

Proof. For the sake of contradiction, suppose μ̂(0, α, t) �= (0, μ(α), t ⊕ 1). Since
μ̂(0, α, t) is in P̂ ′

α, we have ((j0, α0, 0), . . . , (jk−1, αk−1, k − 1)) ∈ μ̂ for some
j0, . . . , jk−1 ∈ J and α0, . . . , αk−1 ∈ A such that (jt, αt, t) = (0, α, t) and
(jt⊕1, αt⊕1, t ⊕ 1) is in P̂ ′

α. Let

T = {t′ ∈ {0, . . . , k − 1} | αt′ ∈ I × {t′} and (jt′⊕1, αt′⊕1, t
′ ⊕ 1) is in P̂ ′

αt′ }.

Then t ∈ T . We consider two cases.
Case 1: T = {0, . . . , k − 1}. Then for every t′ ∈ T = {0, . . . , k − 1}, we have

αt′ ∈ I ×{t′} and (jt′⊕1, αt′⊕1, t
′ ⊕1) is in P̂ ′

αt′ . So jt′⊕1 = 0 and αt′⊕1 is in Pαt′
for every t′ ∈ {0, . . . , k−1}. Hence (α0, . . . , αk−1) is a valid family in X. Since μ is
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induced by μ̂ and ((0, α0, 0), . . . , (0, αk−1, k−1)) ∈ μ̂, we have (α0, . . . , αk−1) ∈ μ.
Thus μ(α) = μ(αt) = αt⊕1, which contradicts (0, μ(α), t ⊕ 1) �= μ̂(0, α, t) =
(0, αt⊕1, t ⊕ 1).

Case 2: T �= {0, . . . , k − 1}. Then there exists a smallest s∗ ∈ {1, . . . , k − 1}
such that t ⊕ s∗ /∈ T . Then t ⊕ (s∗ − 1) ∈ T . Let t∗ = t ⊕ s∗. Since t∗ ⊕ (−1) =
t⊕(s∗−1) ∈ T , we have αt∗⊕(−1) ∈ I×{t∗⊕(−1)} and (jt∗ , αt∗ , t∗) is in P̂ ′

αt∗⊕(−1)
.

So jt∗ = 0 and αt∗ is in Pαt∗⊕(−1) . Hence αt∗ ∈ I × {t∗}. Since αt∗ ∈ I × {t∗}
and t∗ = t ⊕ s∗ /∈ T , agent (jt∗⊕1, αt∗⊕1, t

∗ ⊕ 1) is not in P̂ ′
αt∗ . So Lemma 5

implies αt∗⊕(k−1) = αt∗ . Hence αt∗⊕(−1) = αt∗⊕(k−1) = αt∗ ∈ I × {t∗}, which
contradicts αt∗⊕(−1) ∈ I × {t∗ ⊕ (−1)}. 	

Proof of Lemma 2. For the sake of contradiction, suppose X has no weakly stable
matching and X̂ has a weakly stable matching μ̂. Let μ be the matching in X
induced by μ̂.

Since μ is not a weakly stable matching of X, there exists a strongly blocking
family (α0, . . . , αk−1). Since μ̂ is a weakly stable matching of X̂, the family

((0, α0, 0), . . . , (0, αk−1, k − 1))

is not strongly blocking. So there exists t ∈ {0, . . . , k−1} such that (0, αt, t) does
not prefer (0, αt⊕1, t ⊕ 1) to μ̂(0, αt, t). Since (α0, . . . , αk−1) is a family in X,
agent αt⊕1 is in Pαt

. So (0, αt⊕1, t⊕1) is in P̂ ′
αt

. Hence μ̂(0, αt, t) appears in P̂ ′
αt

no later than (0, αt⊕1, t ⊕ 1), since P̂ ′
αt

is a prefix of the preference list P̂(0,αt,t).
Since μ̂(0, αt, t) is in P̂ ′

αt
, Lemma 6 implies μ̂(0, αt, t) = (0, μ(αt), t ⊕ 1).

Since (0, μ(αt), t ⊕ 1) appears in P̂ ′
αt

no later than (0, αt⊕1, t ⊕ 1), agent μ(αt)
appears in Pαt

no later than αt⊕1. Hence αt does not prefer αt⊕1 to μ(αt). So
(α0, . . . , αk−1) is not a strongly blocking family of μ, a contradiction. 	


4.5 Proof of Lemma 3

The goal of this subsection is to prove Lemma 3. It suffices to show that every
weakly stable matching μ in X induces a weakly stable matching μ̂ in X̂. We
construct the matching μ̂ induced by μ as follows.

– For every (α0, . . . , αk−1) ∈ μ, we include in μ̂ the family

((0, α0, 0), . . . , (0, αk−1, k − 1)).

– For every agent α ∈ A and j ∈ J such that j < (k − 1)2, we include in μ̂ the
family ((j + δ0(α), α, 0), . . . , (j + δk−1(α), α, k − 1)), where

δt(α) =

{
1 if μ(α) �= α and α ∈ I × {t}
0 otherwise

– For every t ∈ {0, . . . , k − 1}, let Rt be the list

〈(j′, α′, t′) ∈ {(k − 1)2} × A × {t} | δt′(α′) = 0〉.
We include in μ̂ the family (R0[s], . . . , Rk−1[s]) for every 0 ≤ s < |A| − |μ|,
where Rt[s] denotes the (s + 1)th element of Rt.
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Figures 2(b) and (c) show the gadget under the matching μ̂.
It is straightforward to check that the families in μ̂ induced by a matching μ

are agent-disjoint. Hence μ̂ is a valid matching in X̂.

Lemma 7. Let μ̂ be the matching in X̂ induced by a matching μ in X. Let
t ∈ {0, . . . , k−1} and α ∈ A such that α ∈ I×{t}. Let j′ ∈ J and α′ ∈ A such that
non-dummy agent (0, α, t) prefers (j′, α′, t ⊕ 1) to μ̂(0, α, t). Then (j′, α′, t ⊕ 1)
is in P̂ ′

α and α prefers α′ to μ(α).

Proof. Notice that P̂ ′
α · 〈(0, α, t ⊕ 1)〉 is a prefix of the preference list P̂(0,α,t) of

non-dummy agent (0, α, t). We consider two cases.
Case 1: μ(α) �= α. Then μ̂(0, α, t) = (0, μ(α), t ⊕ 1). Since (0, α, t) prefers

(j′, α′, t⊕1) to (0, μ(α), t⊕1), agent (j′, α′, t⊕1) appears in P̂ ′
α before (0, μ(α), t⊕

1). Hence α prefers α′ to μ(α).
Case 2: μ(α) = α. Then μ̂(0, α, t) = (0, α, t ⊕ 1). Since (0, α, t) prefers

(j′, α′, t ⊕ 1) to (0, α, t ⊕ 1), agent (j′, α′, t ⊕ 1) is in P̂ ′
α. Then α′ is in Pα,

and hence α prefers α′ to μ(α). 	

Lemma 8. Let μ̂ be the matching in X̂ induced by a weakly stable matching μ
in X. Let j0, . . . , jk−1 ∈ J and α0, . . . , αk−1 ∈ A such that

((j0, α0, 0), . . . , (jk−1, αk−1, k − 1))

is a strongly blocking family of μ̂. Then jt − δt(αt) ≥ (k − 1)2 for every t ∈
{0, . . . , k − 1}.
Proof. Let t∗ ∈ {0, . . . , k − 1} such that

jt∗ − δt∗(αt∗) = min
t∈{0,...,k−1}

(jt − δt(αt)).

For the sake of contradiction, suppose jt∗ − δt∗(αt∗) < (k −1)2. We consider two
cases.

Case 1: jt∗ = 0 and αt∗ ∈ I × {t∗}. Let T = {t | jt = 0 and αt ∈ I × {t}}.
Then t∗ ∈ T . We consider two subcases.

Case 1.1: T = {0, . . . , k − 1}. Then for every t ∈ {0, . . . , k − 1} = T , since
(0, αt, t) prefers (0, αt⊕1, t⊕1) to μ̂(0, αt, t), Lemma 7 implies that αt prefers αt⊕1

to μ(αt). Hence (α0, . . . , αk−1) is a strongly blocking family of μ, which contra-
dicts the stability of μ.

Case 1.2: {t∗} ⊆ T � {0, . . . , k − 1}. Then there exists s∗ such that s∗ ∈ T
and s∗ ⊕ 1 /∈ T . Since s∗ ∈ T , we have js∗ = 0 and αs∗ ∈ I × {s∗}. Since
(0, αs∗ , s∗) prefers (js∗⊕1, αs∗⊕1, s

∗ ⊕ 1) to μ̂(0, αs∗ , s∗), Lemma 7 implies that
(js∗⊕1, αs∗⊕1, s

∗ ⊕1) is in P̂ ′
αs∗ . Hence js∗⊕1 = 0 and αs∗⊕1 ∈ I ×{s∗ ⊕1}, which

contradicts s∗ ⊕ 1 /∈ T .
Case 2: Either jt∗ �= 0 or αt∗ /∈ I ×{t∗}. Thus (jt∗ , αt∗ , t∗) is a dummy agent.

We consider two subcases.
Case 2.1: jt∗ < (k − 1)2. Since

μ̂(jt∗ , αt∗ , t∗) = (jt∗ + δt∗⊕1(αt∗) − δt∗(αt∗), αt∗ , t∗ ⊕ 1),
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and the non-boundary dummy agent (jt∗ , αt∗ , t∗) prefers (jt∗⊕1, αt∗⊕1, t
∗ ⊕1) to

μ̂(jt∗ , αt∗ , t∗), we have jt∗⊕1 < jt∗ + δt∗⊕1(αt∗) − δt∗(αt∗), which contradicts the
definition of t∗.

Case 2.2: jt∗ = (k − 1)2. Then δt∗(αt∗) = 1 since jt∗ − δt∗(αt∗) < (k − 1)2.
So αt∗ ∈ I × {t∗}, and hence δt∗⊕1(αt∗) = 0. Since

μ̂(jt∗ , αt∗ , t∗) = (jt∗ − 1, αt∗ , t∗ ⊕ 1)

and the boundary dummy agent (jt∗ , αt∗ , t∗) prefers (jt∗⊕1, αt∗⊕1, t
∗ ⊕ 1) to

μ̂(jt∗ , αt∗ , t∗), we have jt∗⊕1 < jt∗ − 1 = jt∗ + δt∗⊕1(αt∗) − δt∗(αt∗), which
contradicts the definition of t∗. 	

Proof of Lemma 3. Suppose X has a weakly stable matching μ. Let μ̂ be the
matching in X̂ induced by μ. It suffices to show that μ̂ does not admit a strongly
blocking family.

For the sake of contradiction, suppose μ̂ admits a strongly blocking family

((j0, α0, 0), . . . , (jk−1, αk−1, k − 1)).

Lemma 8 implies that for every t ∈ {0, . . . , k−1}, we have jt −δt(αt) ≥ (k−1)2.
Since jt ≤ (k − 1)2 and δt(αt) ≥ 0, we deduce that jt = (k − 1)2 and δt(αt) = 0
for every t ∈ {0, . . . , k − 1}. Hence for every t ∈ {0, . . . , k − 1}, there exists st

such that (jt, αt, t) = Rt[st].
Let t∗ ∈ {0, . . . , k − 1} such that

st∗ = min
t∈{0,...,k−1}

st.

Since μ̂(Rt∗ [st∗ ]) = Rt∗⊕1[st∗ ] and the boundary dummy agent Rt∗ [st∗ ] prefers
boundary dummy agent Rt∗⊕1[st∗⊕1] to boundary dummy agent μ̂(Rt∗ [st∗ ]),
we deduce that Rt∗⊕1[st∗⊕1] is lexicographically smaller than Rt∗⊕1[st∗ ]. Hence
st∗⊕1 < st∗ , which contradicts the definition of t∗. 	


5 Concluding Remarks

We have shown that a 3-dsm-cyc instance need not admit a weakly stable
matching, and that it is NP-complete to determine whether a given 3-dsm-
cyc instance admits a weakly stable matching. It seems that for the three-
dimensional stable matching problem, none of the preference structures studied
in the literature admits a non-trivial generalization of the existence theorem
of Gale and Shapley. (The existence result in Danilov’s model [5] follows from
applying the Gale-Shapley algorithm in a straightforward manner.) It would be
interesting to consider solution concepts such as popular matchings instead of
stable matchings in the multi-dimensional matching context.

The 3-dsmi-cyc instance with no weakly stable matching presented by Biró
and McDermid [2, Lemma 1] has 6 agents of each type. The reduction of Sect. 4.1
blows up the number of agents by a factor of k[(k − 1)2 +1]. Thus, for k = 3, we
obtain an explicit construction of a 3-dsm-cyc instance with no weakly stable
matching and 6 · 15 = 90 agents of each type. It would be interesting to identify
smaller 3-dsm-cyc instances with no weakly stable matching.
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Abstract. We study the problem of finding maximum weakly stable
matchings when preference lists are incomplete and contain one-sided
ties of bounded length. We show that if the tie length is at most L, then
it is possible to achieve an approximation ratio of 1 + (1− 1

L
)L. We also

show that the same ratio is an upper bound on the integrality gap, which
matches the known lower bound. In the case where the tie length is at
most 2, our result implies an approximation ratio and integrality gap
of 5

4
, which matches the known UG-hardness result.

Keywords: Stable matching · Approximation algorithm ·
Integrality gap

1 Introduction

The stable matching model of Gale and Shapley [4] involves a two-sided market
in which the agents are typically called men and women. Each agent has ordinal
preferences over the agents on the opposite side. A matching is said to be stable
if no man and woman prefer each other to their partners. Stable matchings
always exist and can be computed efficiently by the proposal algorithm of Gale
and Shapley. Their algorithm is also applicable when the preference lists are
incomplete. In other words, agents are allowed to omit from their preference
lists any unacceptable agent on the opposite side. If ties are allowed in the
preference lists, the notion of stability can be generalized in several ways [9].
This paper focuses on weakly stable matchings, which always exist and can
be obtained by invoking the Gale-Shapley algorithm after breaking all the ties
arbitrarily. When incomplete lists are absent, every weakly stable matching is
a maximum matching and hence has the same size. When ties are absent, the
Rural Hospital Theorem guarantees that all stable matchings have the same
size [5,17]. However, when both ties and incomplete lists are present, weakly
stable matchings can vary in size.

The problem of finding maximum weakly stable matchings with ties and
incomplete lists has been studied in various settings. When ties and incomplete
lists are allowed on both sides, there exist polynomial-time algorithms [11,14,15]
that achieve an approximation ratio of 3

2 (=1.5). Meanwhile, it is known [20] that
getting an approximation ratio of 33

29 − ε (≈1.1379) is NP-hard, and that getting
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an approximation ratio 4
3 −ε (≈1.3333) is UG-hard. These hardness results hold

in the case of two-sided ties even when the maximum tie length is two. The
associated linear programming (LP) formulation has an integrality gap of at
least 3L−2

2L−1 , where L is the maximum tie length [10].
For the case where ties appear only on one side of the market, algorithms

with better approximation ratios have been developed using an LP-based app-
roach [3,10,12] or the idea of rounding half-integral stable matchings [1,8,16].
The current best approximation ratio of 1 + 1

e (≈1.3679) is attained by the
LP-based algorithm that the authors recently presented in [12]. Meanwhile, it is
known [7] that getting an approximation ratio of 21

19 − ε (≈1.1053) is NP-hard,
and that getting an approximation ratio of 5

4 − ε (≈1.25) is UG-hard. These
hardness results hold in the case of one-sided ties even when the maximum tie
length is two. The associated LP formulation has an integrality gap of at least
1+ (1− 1

L )L, where L is the maximum tie length [10]. Furthermore, for the case
of one-sided ties with unbounded tie length, the integrality gap equals 1+ 1

e and
matches the attainable approximation ratio [12].

For the case of two-sided ties where the maximum tie length is two,
Chiang and Pashkovich [2] showed that the algorithm of Huang and Kavitha [8]
attains an approximation ratio of 4

3 (≈1.3333), which matches the UG-hardness
result [20] and the lower bound of the integrality gap [10]. A couple of results [6,7]
are known for the case of one-sided ties with bounded tie length, but they are
subsumed by the approximation ratio of 1+ 1

e for the case of one-sided ties with
unbounded tie length.

Our Techniques and Contributions. In this paper, we focus on the problem
of finding maximum weakly stable matchings with one-sided ties and incomplete
lists when the tie length is bounded. We show that the algorithm of [12] achieves
an approximation ratio of 1+ (1− 1

L )L, where L is the maximum tie length. We
also show that the same ratio is an upper bound on the integrality gap, which
matches the lower bound of Iwama et al. [10]. For the case where L = 2, our
result implies an approximation ratio and integrality gap of 5

4 , which matches
the UG-hardness result of Halldórsson et al. [7].

Our analysis is based on four key properties established in [12]. Using these
key properties, we extend the analysis of the approximation ratio to the case of
bounded tie length. Moreover, we present a new, simpler charging argument. The
main idea is to decompose the LP solution associated with each man-woman pair
into a charge incurred by the man and a charge incurred by the woman based
on an exchange function. We derive an upper bound for the charges incurred
by a man using the strict ordering of his preferences, and an upper bound for
the charges incurred by a woman using the bounded tie length assumption.
By choosing a good exchange function, we show that every matched couple
incurs a total charge of at most 1 + (1 − 1

L )L, providing an upper bound on the
approximation ratio.

In Sect. 2, we review the key properties of the algorithm of [12] after present-
ing the stable matching model and its LP formulation. In Sect. 3, we present our
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simpler charging argument and use it to analyze the approximation ratio for the
case of bounded tie length.

2 Stable Matching with One-Sided Ties

2.1 The Model

The formal definition of the stable matching problem with one-sided ties and
incomplete lists (smoti) below follows the notations of [12].

In smoti, there are a set I of men and a set J of women. We assume that
the sets I and J are disjoint and do not contain the element 0, which we use to
denote being unmatched. Each man i ∈ I has a preference relation ≥i over the
set J ∪ {0} that satisfies antisymmetry, transitivity, and totality. Each woman
j ∈ J has a preference relation ≥j over the set I ∪ {0} that satisfies transitivity
and totality. We denote this smoti instance as (I, J, {≥i}i∈I , {≥j}j∈J).

For every man i ∈ I and woman j ∈ J , man i is said to be acceptable to
woman j if i ≥j 0. Similarly, woman j is said to be acceptable to man i if j ≥i 0.
The preference lists are allowed to be incomplete. In other words, there may
exist i ∈ I and j ∈ J such that 0 >j i or 0 >i j.

Notice that the preference relations {≥j}j∈J of the women are not required to
be antisymmetric, while the preference relations {≥i}i∈I of the men are required
to be antisymmetric. For every man i ∈ I, we write >i to denote the asymmetric
part of ≥i. For every woman j ∈ J , we write >j and =j to denote the asymmetric
part and the symmetric part of ≥j , respectively. A tie in the preference list of
woman j is an equivalence class of size at least 2 with respect to the equivalence
relation =j , and the length of a tie is the size of this equivalence class.1 We
assume that there is at least one tie in the smoti instance, for otherwise every
stable matching has the same size. We use L to denote the maximum length of
the ties in the preference lists of the women, where 2 ≤ L ≤ |I| + 1.

A matching is a subset μ ⊆ I × J such that for every (i, j), (i′, j′) ∈ μ, we
have i = i′ if and only if j = j′. For every man i ∈ I, if (i, j) ∈ μ for some
woman j ∈ J , we say that man i is matched to woman j in matching μ, and we
write μ(i) = j. Otherwise, we say that man i is unmatched in matching μ, and
we write μ(i) = 0. Similarly, for every woman j ∈ J , if (i, j) ∈ μ for some man
i ∈ I, we say that woman j is matched to man i in matching μ, and we write
μ(j) = i. Otherwise, we say that woman j is unmatched in matching μ, and we
write μ(j) = 0.

A matching μ is individually rational if for every (i, j) ∈ μ, we have j ≥i 0
and i ≥j 0. An individually rational matching μ is weakly stable if for every man
i ∈ I and woman j ∈ J , either μ(i) ≥i j or μ(j) ≥j i. Otherwise, (i, j) forms a
strongly blocking pair.

1 Some of the literature on stable matching with indifferences does not allow an agent
to be indifferent between being matched to an agent and being unmatched. Our
formulation of the smoti problem allows for this possibility, since we can have i =j 0
for any man i and woman j.
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The goal of the maximum stable matching problem with one-sided ties and
incomplete lists is to find a maximum-cardinality weakly stable matching for a
given smoti instance.

2.2 The LP Formulation

The following LP formulation is based on that of Rothblum [18], which extends
that of Vande Vate [19].

maximize
∑

(i,j)∈I×J

xi,j

subject to
∑

j∈J

xi,j ≤ 1 ∀i ∈ I (C1)

∑

i∈I

xi,j ≤ 1 ∀j ∈ J (C2)

∑

j′∈J
j′>ij

xi,j′ +
∑

i′∈I
i′≥ji

xi′,j ≥ 1 ∀(i, j) ∈ I × J such that
j >i 0 and i >j 0

(C3)

xi,j = 0 ∀(i, j) ∈ I × J such that
0 >i j or 0 >j i

(C4)

xi,j ≥ 0 ∀(i, j) ∈ I × J (C5)

It is known [12,18] that an integral solution x = {xi,j}(i,j)∈I×J corresponds
to the indicator variables of a weakly stable matching if and only if x satisfies
constraints (C1)–(C5).

Given x which satisfies constraints (C1)–(C5), it is useful to define auxiliary
variables

wi,j =

⎧
⎪⎪⎨

⎪⎪⎩

1 if j = 0∑

j′∈J
j′>ij

xi,j′ if j 	= 0

for every (i, j) ∈ I × (J ∪ {0}), and

zi,j =
∑

i′∈I
i>ji′

xi′,j

for every (i, j) ∈ (I ∪ {0}) × J . The following lemma presents some simple
properties of the auxiliary variables; see [13] for a proof.

Lemma 1. The auxiliary variables satisfy the following conditions.

(1) For every i ∈ I and j ∈ J , we have wi,j + xi,j ≤ 1.
(2) For every i ∈ I and j, j′ ∈ J such that j >i j′, we have wi,j + xi,j ≤ wi,j′ .
(3) For every i, i′ ∈ I ∪ {0} and j ∈ J such that i =j i′, we have zi,j = zi′,j.
(4) For every i ∈ I and j ∈ J such that j ≥i 0 and i ≥j 0, we have zi,j ≤ wi,j.
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2.3 The LP-Based Algorithm

Using the LP formulation of Sect. 2.2, the authors have previously established
in [12] that there exists a polynomial-time algorithm with an approximation
ratio of 1 + 1

e . The algorithm is based on a proposal process in which every
man i maintains a priority pi that gradually increases from 0 to 1. Between two
successive increases of the priority of a man i, he attempts to propose to the set
of women {j ∈ J : j ≥i 0 and pi ≥ wi,j} in decreasing order of his preference,
where wi,j is the auxiliary variable corresponding to a fixed optimal fractional
solution x of the LP. Each woman compares the men based on her preferences and
breaks the ties by favoring men with higher priorities. The algorithm simulates
this process in which the step size of the priority increases is infinitesimally small.
More precisely, the algorithm runs in polynomial time and produces a weakly
stable matching μ and priority values p = {pi}i∈I satisfying the following key
properties [12, Lemmas 3.1 and 3.3].

(P1) Let (i, j) ∈ μ. Then j ≥i 0 and i ≥j 0.
(P2) Let i ∈ I be a man and j ∈ J be a woman such that j ≥i μ(i) and i ≥j 0.

Then μ(j) 	= 0 and μ(j) ≥j i.
(P3) Let i ∈ I be a man. Then wi,μ(i) ≤ pi ≤ 1.
(P4) Let i ∈ I be a man and j ∈ J be a woman such that j ≥i 0 and i ≥j 0.

Suppose pi − η > wi,j . Then μ(j) 	= 0 and μ(j) ≥j i. Furthermore, if
μ(j) =j i, then pμ(j) ≥ pi.

In [12], a rather complicated charging argument is used to obtain an approx-
imation ratio of 1 + 1

e by showing that the optimal fractional value of the LP is
at most 1+ 1

e times the size of any matching μ satisfying (P1)–(P4) with respect
to some p.

3 Analysis of the Approximation Ratio

In this section, we analyze the approximation ratio of the algorithm of [12] for
the case where the maximum tie length is L. Throughout this section, whenever
we mention μ and p, we are referring to their values produced by their algorithm.
We use x to refer to the optimal fractional solution of the LP in their algorithm,
and we use {wi,j}(i,j)∈I×(J∪{0}) and {zi,j}(i,j)∈(I∪{0})∪J to refer to the auxiliary
variables associated with x as defined in Sect. 2.2.

3.1 The Charging Argument

Our charging argument is based on an exchange function h : [0, 1] × [0, 1] → R

that satisfies the following properties.

(H1) For every ξ1, ξ2 ∈ [0, 1], we have 0 = h(0, ξ2) ≤ h(ξ1, ξ2) ≤ 1.
(H2) For every ξ1, ξ2 ∈ [0, 1] such that ξ1 > ξ2, we have h(ξ1, ξ2) = 1.
(H3) The function h(ξ1, ξ2) is non-decreasing in ξ1 and non-increasing in ξ2.
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(H4) For every ξ1, ξ2 ∈ [0, 1], we have

L ·
∫ ξ2

ξ2·(1−1/L)

(
1 − h(ξ1, ξ)

)
dξ ≤ max(ξ2 − ξ1, 0).

Given an exchange function h which satisfies (H1)–(H4), our charging argument
is as follows. For every (i, j) ∈ I × J , we assign to man i a charge of

θi,j =
∫ xi,j

0

h(1 − pi, 1 − wi,j − ξ) dξ

and to woman j a charge of

φi,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if μ(j) = 0 or i >j μ(j)
xi,j if μ(j) 	= 0 and μ(j) >j i

xi,j −
∫ xi,j

0

h(1 − pμ(j), 1 − zμ(j),j − ξ) dξ if μ(j) 	= 0 and μ(j) =j i

The following lemma shows that the charges are non-negative and cover the
value of LP solution.

Lemma 2. Let i ∈ I and j ∈ J . Then θi,j and φi,j satisfy the following condi-
tions.

(1) θi,j ≥ 0 and φi,j ≥ 0.
(2) xi,j ≤ θi,j + φi,j.

Proof. Part (1) is relatively straightforward to establish; see [13] for a proof.
We prove part (2) by considering two cases.

Case 1: pi ≤ wi,j . Then (H3) implies

0 ≤
∫ xi,j

0

(
h(1 − pi, 1 − wi,j − ξ) − h(1 − pi, 1 − pi − ξ)

)
dξ

=
∫ xi,j

0

(
h(1 − pi, 1 − wi,j − ξ) − 1

)
dξ

= θi,j − xi,j

≤ θi,j + φi,j − xi,j ,

where the first equality follows from (H2), the second equality follows from the
definition of θi,j , and the last inequality follows from part (1).

Case 2: pi > wi,j . We may assume that xi,j 	= 0, for otherwise part (1) implies
θi,j + φi,j ≥ 0 = xi,j . Since xi,j 	= 0, constraint (C4) implies j ≥i 0 and i ≥j 0.
So (P4) implies μ(j) 	= 0 and μ(j) ≥j i. We consider two subcases.

Case 2.1: μ(j) >j i. Then the definition of φi,j implies

0 = φi,j − xi,j ≤ θi,j + φi,j − xi,j

where the inequality follows from part (1).
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Case 2.2: μ(j) =j i. Then (P4) implies pi ≤ pμ(j). Also, since μ(j) =j i,
parts (3) and (4) of Lemma 1 imply zμ(j),j = zi,j ≤ wi,j . Since pi ≤ pμ(j) and
wi,j ≥ zμ(j),j , (H3) implies

0 ≤
∫ xi,j

0

(
h(1 − pi, 1 − wi,j − ξ) − h(1 − pμ(j), 1 − zμ(j),j − ξ)

)
dξ

= θi,j + φi,j − xi,j ,

where the equality follows from the definitions of θi,j and φi,j . ��

3.2 Bounding the Charges

To bound the approximation ratio, Lemma 2 implies that it is sufficient to bound
the charges. In Lemma 3, we derive an upper bound for the charges incurred
by a man using the strict ordering in his preferences. In Lemma 4, we derive
an upper bound for the charges incurred by a woman due to indifferences using
the bounded tie length assumption. In Lemma 5, we derive an upper bound
for the total charges incurred by a matched couple by combining the results of
Lemmas 3 and 4.

Lemma 3. Let i ∈ I be a man. Then

∑

j∈J

θi,j ≤
∫ 1

0

h(1 − pi, ξ) dξ.

Proof. Let j1, . . . , j|J| ∈ J such that j1 >i j2 >i · · · >i j|J|. Then parts (1)
and (2) of Lemma 1 imply

wi,jk + xi,jk ≤
{

wi,jk+1 if 1 ≤ k < |J |
1 if k = |J | (1)

Hence the definitions of {θi,jk}1≤k≤|J| imply

θi,jk =
∫ xi,jk

0

h(1 − pi, 1 − wi,jk − ξ) dξ

=
∫ wi,jk

+xi,jk

wi,jk

h(1 − pi, 1 − ξ) dξ

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ wi,jk+1

wi,jk

h(1 − pi, 1 − ξ) dξ if 1 ≤ k < |J |
∫ 1

wi,j|J|

h(1 − pi, 1 − ξ) dξ if k = |J |
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where the inequality follows from (1) and (H1). Thus
∑

j∈J

θi,j =
∑

1≤k≤|J|
θi,jk

≤
∫ 1

wi,j|J|

h(1 − pi, 1 − ξ) dξ +
∑

1≤k<|J|

∫ wi,jk+1

wi,jk

h(1 − pi, 1 − ξ) dξ

=
∫ 1

wi,j1

h(1 − pi, 1 − ξ) dξ

≤
∫ 1

0

h(1 − pi, 1 − ξ) dξ

=
∫ 1

0

h(1 − pi, ξ) dξ,

where the second inequality follows from wi,j1 ≥ 0 and (H1). ��
Lemma 4. Let j ∈ J be a woman such that μ(j) 	= 0. Then

∑

i∈I
μ(j)=ji

φi,j ≤ max(pμ(j) − zμ(j),j , 0).

Proof. Let

H(ξ′) =
∫ 1−zµ(j),j

1−zµ(j),j−ξ′

(
1 − h(1 − pμ(j), ξ)

)
dξ

for every ξ′ ∈ [0, 1]. Then (H1) and (H3) imply that H is concave and non-
decreasing. Also (H4) implies

L · H
(1 − zμ(j),j

L

)
= L ·

∫ 1−zµ(j),j

(1−zµ(j),j)(1−1/L)

(
1 − h(1 − pμ(j), ξ)

)
dξ

≤ max(pμ(j) − zμ(j),j , 0). (2)

Let I ′ = {i ∈ I : μ(j) =j i}. Then |I ′| ≤ L since L is the maximum tie-length.
Let i1, . . . , i|I′| ∈ I such that I ′ = {i1, . . . , i|I′|}. Let

ξk =

{
xik,j if 1 ≤ k ≤ |I ′|
0 if |I ′| < k ≤ L

Then the definition of zμ(j),j implies

1 − zμ(j),j = 1 −
∑

i∈I
μ(j)>ji

xi,j ≥
∑

i∈I

xi,j −
∑

i∈I
μ(j)>ji

xi,j ≥
∑

i∈I
μ(j)=ji

xi,j =
∑

1≤k≤L

ξk,
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where the first inequality follows from constraint (C2), and the second equality
follows from the definitions of {ξk}1≤k≤L. Hence the monotonicity and concavity
of H imply

L · H
(1 − zμ(j),j

L

)
≥ L · H

( 1
L

∑

1≤k≤L

ξk

)
≥

∑

1≤k≤L

H(ξk). (3)

Thus the definitions of {φi,j}i∈I imply

∑

i∈I
μ(j)=ji

φi,j =
∑

i∈I
μ(j)=ji

(
xi,j −

∫ xi,j

0

h(1 − pμ(j), 1 − zμ(j),j − ξ) dξ
)

=
∑

i∈I
μ(j)=ji

∫ 1−zµ(j),j

1−zµ(j),j−xi,j

(
1 − h(1 − pμ(j), ξ)

)
dξ

=
∑

i∈I
μ(j)=ji

H(xi,j)

=
∑

1≤k≤L

H(ξk)

≤ L · H
(1 − zμ(j),j

L

)

≤ max(pμ(j) − zμ(j),j , 0),

where the third equality follows from the definition of H, the fourth equality
follows from the definitions of {ξk}1≤k≤L, the first inequality follows from (3),
and the second inequality follows from (2). ��
Lemma 5. Let i ∈ I and j ∈ J ∪ {0} such that μ(i) = j. Then the following
conditions hold.

(1) If j 	= 0, then

∑

j′∈J

θi,j′ +
∑

i′∈I

φi′,j ≤ 1 +
∫ 1

1−pi

h(1 − pi, ξ) dξ.

(2) If j = 0, then θi,j′ = 0 for every j′ ∈ J .

Proof.

(1) Suppose j 	= 0. Then (P1) implies j ≥i 0 and i ≥j 0. So part (4) of Lemma 1
implies

zi,j ≤ wi,j ≤ pi,

where the second inequality follows from (P3). So the definitions of
{φi′,j}i′∈I imply

∑

i′∈I

φi′,j =
∑

i′∈I
μ(j)=ji′

φi′,j +
∑

i′∈I
μ(j)>ji′

xi′,j ≤ max(pi − zi,j , 0) + zi,j = pi, (4)
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where the first inequality follows from Lemma 4 and the definition of zi,j ,
and the last equality follows from pi ≥ zi,j . Also, by Lemma 3, we have

∑

j′∈J

θi,j′ ≤
∫ 1

0

h(1 − pi, ξ) dξ

=
∫ 1−pi

0

h(1 − pi, ξ) dξ +
∫ 1

1−pi

h(1 − pi, ξ) dξ

=
∫ 1−pi

0

1 dξ +
∫ 1

1−pi

h(1 − pi, ξ) dξ

= 1 − pi +
∫ 1

1−pi

h(1 − pi, ξ) dξ, (5)

where the second equality follows from (H2). Combining (4) and (5) gives
the desired inequality.

(2) Suppose j = 0. Let j′ ∈ J . Since μ(i) = j = 0, (P3) implies

1 ≥ pi ≥ wi,0 = 1,

where the last equality follows from the definition of wi,0. Hence the defini-
tion of θi,j′ implies

θi,j′ =
∫ xi,j′

0

h(1 − pi, 1 − wi,j′ − ξ) dξ =
∫ xi,j′

0

h(0, 1 − wi,j′ − ξ) dξ = 0,

where the second equality follows from pi = 1, and the third equality follows
from (H1). ��

3.3 The Approximation Ratio

To obtain the approximation ratio, it remains to pick a good exchange function h
satisfying (H1)–(H4) such that the right hand side of part (1) of Lemma 5 is
small. Using a similar technique as in [12], we can formulate this as an infinite-
dimensional factor-revealing linear program. More specifically, we can minimize

sup
ξ1∈[0,1]

∫ 1

ξ1

h(ξ1, ξ) dξ

over the set of all functions h which satisfies (H1)–(H4). Notice that the objective
value and the constraints induced by (H1)–(H4) are linear in h. However, the
space of all feasible solutions is infinite-dimensional. One possible approach to the
infinite-dimensional factor-revealing linear program is to obtaining a numerical
solution via a suitable discretization. Using the numerical results as guidance,
we obtain the candidate exchange function

h(ξ1, ξ2) = max
(
{0}∪

{
(1− 1

L )k : k ∈ {0, 1, 2, . . . } and ξ1 > ξ2 ·(1− 1
L )k

})
. (6)
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The following lemma provides a formal analytical proof that it satisfies (H1)–
(H4) and achieves an objective value of (1 − 1

L )L.

Lemma 6. Let h be the function defined by (6). Then the following conditions
hold.

(1) The function h satisfies (H1)–(H4).

(2) For every ξ1 ∈ [0, 1], we have
∫ 1

ξ1

h(ξ1, ξ) dξ ≤
(
1 − 1

L

)L

.

Proof.

(1) It is straightforward to see that (H1)–(H3) hold by inspecting the definition
of h. To show that (H4) holds, let ξ1, ξ2 ∈ [0, 1]. We consider three cases.
Case 1: ξ2 ≤ ξ1. Then

L ·
∫ ξ2

ξ2·(1−1/L)

(
1 − h(ξ1, ξ)

)
dξ = L ·

∫ ξ2

ξ2·(1−1/L)

(1 − 1) dξ = 0

= max(ξ2 − ξ1, 0).

Case 2: ξ2 > ξ1 = 0. Then

L ·
∫ ξ2

ξ2·(1−1/L)

(
1 − h(ξ1, ξ)

)
dξ = L ·

∫ ξ2

ξ2·(1−1/L)

(1 − 0) dξ = ξ2

= max(ξ2 − ξ1, 0).

Case 3: ξ2 > ξ1 > 0. Let k ∈ {0, 1, 2, . . . } such that (1 − 1
L )k+1 < ξ1

ξ2
≤

(1 − 1
L )k. Then

L ·
∫ ξ2

(1−1/L)·ξ2

(
1 − h(ξ1, ξ) dξ

)

= ξ2 − L ·
∫ ξ2

(1−1/L)·ξ2
h(ξ1, ξ) dξ

= ξ2 − L ·
∫ ξ1/(1−1/L)k

(1−1/L)·ξ2
h(ξ1, ξ) dξ − L ·

∫ ξ2

ξ1/(1−1/L)k
h(ξ1, ξ) dξ

= ξ2 − L ·
∫ ξ1/(1−1/L)k

(1−1/L)·ξ2

(
1 − 1

L

)k

dξ − L ·
∫ ξ2

ξ1/(1−1/L)k

(
1 − 1

L

)k+1

dξ

= ξ2 − L · (ξ1 − ξ2 · (1 − 1
L )k+1) − L · (ξ2 · (1 − 1

L )k+1 − ξ1 · (1 − 1
L ))

= ξ2 − ξ1

= max(ξ2 − ξ1, 0).

(2) Let ξ1 ∈ [0, 1]. We may assume that ξ1 > 0, for otherwise
∫ 1

ξ1

h(ξ1, ξ) dξ =
∫ 1

ξ1

0 dξ = 0 ≤
(
1 − 1

L

)L

.
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Let k ∈ {0, 1, 2, . . . } such that (1 − 1
L )k+1 < ξ1 ≤ (1 − 1

L )k. Then

∫ 1

ξ1

h(ξ1, ξ) dξ

=
∫ 1

ξ1/(1−1/L)k
h(ξ1, ξ) dξ +

∑

0≤k′<k

∫ ξ1/(1−1/L)k
′+1

ξ1/(1−1/L)k′
h(ξ1, ξ) dξ

=
∫ 1

ξ1/(1−1/L)k

(
1 − 1

L

)k+1

dξ +
∑

0≤k′<k

∫ ξ1/(1−1/L)k
′+1

ξ1/(1−1/L)k′

(
1 − 1

L

)k′+1

dξ

=
((

1 − 1
L

)k+1

− ξ1 ·
(
1 − 1

L

))
+

∑

0≤k′<k

ξ1
L

= (1 − 1
L )k+1 + ξ1

L (k − L + 1). (7)

We consider three cases.
Case 1: k = L − 1. Then (7) implies

∫ 1

ξ1

h(ξ1, ξ) dξ = (1 − 1
L )k+1 + ξ1

L (k − L + 1) = (1 − 1
L )L.

Case 2: k ≥ L. Then (7) implies
∫ 1

ξ1

h(ξ1, ξ) dξ = (1 − 1
L )k+1 + ξ1

L (k − L + 1)

≤ (1 − 1
L )k+1 + 1

L (k − L + 1)(1 − 1
L )k

= (1 − 1
L )L · k

L · (1 − 1
L )k−L

≤ (1 − 1
L )L · ek/L−1 · e(L−k)/L

= (1 − 1
L )L,

where the first inequality follows from ξ1 ≤ (1− 1
L )k, and the second inequal-

ity follows from ek/L−1 ≥ k
L and e−1/L ≥ 1 − 1

L .
Case 3: k ≤ L − 2. Then (7) implies

∫ 1

ξ1

h(ξ1, ξ) dξ = (1 − 1
L )k+1 + ξ1

L (k − L + 1)

< (1 − 1
L )k+1 − 1

L (L − k − 1)(1 − 1
L )k+1

= (1 − 1
L )L · k+1

L−1 · (1 + 1
L−1 )L−k−2

≤ (1 − 1
L )L · e(k+1)/(L−1)−1 · e(L−k−2)/(L−1)

= (1 − 1
L )L,

where the first inequality follows from ξ1 > (1 − 1
L )k+1, and the second

inequality follows from e(k+1)/(L−1)−1 ≥ k+1
L−1 and e1/(L−1) ≥ 1 + 1

L−1 . ��
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Lemma 7.
∑

(i,j)∈I×J

xi,j ≤
(
1 +

(
1 − 1

L

)L)
· |μ|.

Proof. Consider the charging argument with the exchange function h as defined
by (6). By part (1) of Lemma 6, the function h satisfies (H1)–(H4). Lemma 2
implies

∑

(i,j)∈I×J

xi,j ≤
∑

(i,j)∈I×J

(θi,j + φi,j)

=
∑

(i,j)∈μ

( ∑

j′∈J

θi,j′ +
∑

i′∈I

φi′,j

)
+

∑

i∈I
μ(i)=0

∑

j∈J

θi,j +
∑

j∈J
μ(j)=0

∑

i∈I

φi,j .

(8)

Part (1) of Lemma 5 implies

∑

(i,j)∈μ

( ∑

j′∈J

θi,j′ +
∑

i′∈I

φi′,j

)
≤

∑

(i,j)∈μ

(
1 +

∫ 1

1−pi

h(1 − pi, ξ) dξ
)

≤
∑

(i,j)∈μ

(
1 +

(
1 − 1

L

)L)

= (1 + (1 − 1
L )L) · |μ|, (9)

where the second inequality follows from part (2) of Lemma 6. Part (2) of
Lemma 5 implies ∑

i∈I
μ(i)=0

∑

j∈J

θi,j = 0. (10)

The definitions of {φi,j}(i,j)∈I×J imply

∑

j∈J
μ(j)=0

∑

i∈I

φi,j = 0. (11)

Combining (8)–(11) gives the desired inequality. ��
Using Lemma 7, it is straightforward to establish the following two theorems;

see [13] for proof details.

Theorem 1. There exists a (1 + (1 − 1
L )L)-approximation algorithm for the

maximum stable matching problem with one-sided ties and incomplete lists where
the maximum tie length is L.

Theorem 2. For the maximum stable matching problem with one-sided ties
where the maximum tie length is L, the integrality gap of the LP formulation
in Sect. 2.2 is 1 + (1 − 1

L )L.
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7. Halldórsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approxi-
mation results for the stable marriage problem. ACM Trans. Algorithms 3(3), 30
(2007)

8. Huang, C.C., Kavitha, T.: Improved approximation algorithms for two variants of
the stable marriage problem with ties. Math. Program. 154(1), 353–380 (2015)

9. Irving, R.W.: Stable marriage and indifference. Discrete Appl. Math. 48(3), 261–
272 (1994)

10. Iwama, K., Miyazaki, S., Yanagisawa, H.: A 25/17-approximation algorithm for the
stable marriage problem with one-sided ties. Algorithmica 68(3), 758–775 (2014)
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Abstract. In this paper, we consider the following stochastic matching
problem: We are given a graph G = (V, E) where each edge e ∈ E is
realized independently with some constant probability p and the goal
is to find a constant degree subgraph R of G whose expected realized
matching size is close to that of G. This model of stochastic matching
has attracted significant attention over the past few years for its various
applications in kidney exchange and recommendation systems.

The main open question of the area is whether a (1−ε) approximation
can be achieved. Currently, the best known bounds are close to 0.66
due to algorithms of Assadi and Bernstein [SOSA’19] and Behnezhad
et al. [SODA’19]. We show that indeed this bound can be improved to
(1− ε) if the graph G has small arboricity. This includes a large family of
graphs such as planar or minor-free graphs, bounded treewidth graphs,
or arguably any sparse graph that is of interest.

Finally, we also practically study a number of natural algorithms on
the dataset of a major online freelancing company.

1 Introduction

We consider the following stochastic matching problem. Given a graph G =
(V,E) where each edge e ∈ E is realized with some constant probability p, the
goal is to compute a constant degree subgraph R of G whose expected matching
is close to the expected matching of G. The edges of this subgraph R are also
referred to as the queried edges of G in the literature. The reason is that one can
query (i.e., ask about realization) of only the edges that belong to R and find a
large realized matching of G.

This variant of the stochastic matching problem was first formalized by Blum
et al. (2015) who gave a (0.5 − ε)-approximation for any arbitrarily small con-
stant ε. This model has attracted a significant subsequent work since then due
to its diverse applications Assadi et al. (2016, 2017); Maehara and Yamaguchi
(2018); Behnezhad and Reyhani (2018); Assadi and Bernstein (2019); Behnezhad
et al. (2019). The best approximation factor remained to be close to 0.5 until two
recent breakthrough papers by Assadi and Bernstein (2019) and Behnezhad et al.
c© Springer Nature Switzerland AG 2019
D. Fotakis and E. Markakis (Eds.): SAGT 2019, LNCS 11801, pp. 357–373, 2019.
https://doi.org/10.1007/978-3-030-30473-7_24
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(2019)who achieved close to 0.66 approximations (2/3 and 4
√

2−5 respectively).
The major question left open in the literature is:

What is the highest approximation factor that is achievable by a subgraph R
whose per vertex degree is bounded by a constant? In particular, is it possible to
obtain a (1 − ε)-approximation for any arbitrarily small constant ε?

Our main theoretical result is to show that one can achieve a (1 − ε)-
approximation for graphs of bounded arboricity1. Bounded arboricity graphs
include a large family of graphs of interest. For instance, all minor-free graphs
(such as planar graphs), random graphs within the preferential attachment model
(see Barabási and Albert (1999)), graphs with bounded genus, treewidth, or
pathwidth, and essentially most interesting family of sparse graphs have con-
stant arboricity. Even if the arboricity α of the input graph is not bounded, our
result implies that merely O(α) queries per-vertex suffices to achieve a (1 − ε)-
approximation. This improves over the trivial bound of O(n) per-vertex queries
for the wide range of graphs with α = o(n). We comment that arboricity of a
graph can never exceed its maximum degree, therefore we always have α ≤ n.

On the practical side, we implement a number of natural algorithms to find
the subgraph R and evaluate their quality over the internal dataset of a major
online freelancing company.

1.1 Applications

Kidney Exchange. Transplant of a kidney from a living donor is possible only
when the kidney is compatible with the recipient (patient), which is not always
the case. The simplest way to overcome this problem is to exchange kidneys
between two incompatible donor/patient pairs. That is, the donor of the first pair
donates a kidney to the patient of the second pair and vice versa. The goal is to
identify the maximum number of donor/patient pairs that can exchange kidney.
The medical records of patients and donors can be used to rule out a subset
of incompatibilities, however, before the transplant a more time consuming and
expensive medical test should take place.

The stochastic matching helps finding a large number of compatible
donor/patient pairs while make sure that each patient takes the medical test
a few number of times. This problem in the stochastic setting has been exten-
sively studied in the literature Akbarpour et al. (2014); Anderson et al. (2015a,
2015b); Awasthi and Sandholm (2009); Dickerson et al. (2012, 2013); Dickerson
and Sandholm (2015); Manlove and O’Malley (2014); Ünver (2010).

Recommendation Systems. As online services become more pervasive in
everyday life, we face a higher demand for recommender systems (henceforth,
RSs) that predict the preferences of users over a large number of options. This
has resulted in a plethora of studies on RSs for diverse topics from movies
Carrer-Neto et al. (2012); Winoto and Tang (2010) to music Lee et al. (2010);
1 The arboricity of a graph equals (asymptotically) the average degree in its densest

subgraph. Equivalently, the classic result of Nash-Williams shows that it is equal to
the minimum number of forests required to cover the graph.
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Nanopoulos et al. (2010); Tan et al. (2011) to television Yu et al. (2006); Basu et
al. (1998) to books Núñez-Valdéz et al. (2012); Crespo et al. (2011) to documents
Serrano-Guerrero et al. (2011); Porcel et al. (2009); Porcel and Herrera-Viedma
(2010); Porcel et al. (2012). Despite this large volume of work, very few papers
have addressed this problem in matching markets which have applications in
online dating, online labor markets, etc. The fundamental difference is that in
matching markets, the recommendations have to take into account the prefer-
ences of both parties whereas in the above-mentioned scenarios, the problem is
essentially ranking a set of items for an individual.

For an extreme example, consider a celebrity joining an online dating plat-
form. Naive recommendations that consider only the personal preferences of the
users would be disastrous. The celebrity, on one hand, would be overwhelmed
with the huge number of requests that s/he considers undesirable and the other
users, on the other hand, would get frustrated with their messages left unreplied.

To coupe with this problem, it is natural to evaluate a set of recommendations
based on the number (or even the quality) of the matches that it is likely to lead
into. Let us denote a set of recommendations by a graph R = (V,E) (R for
recommendations) where each vertex in V corresponds to a user and each edge
{u, v} ∈ E implies that users u and v are recommended to one another—we
call this the recommendation graph throughout. It is natural to evaluate a set
of recommendations based on the number (or even the quality) of the matches
that it is likely to lead into. This is exactly equivalent to the variant of stochastic
matching that we study in this paper.

We provide a more detailed discussion on the applications of the stochastic
matching model for recommender systems in Sect. 5.

2 The Model

We start by the formal definition of a model of stochastic matching that was first
introduced for its applications in kidney exchange Blum et al. (2015). We then
show how this model can be used in recommendation systems.

The Stochastic Matching Problem. We are given a (not necessarily bipar-
tite2) graph G = (V,E), along with a parameter p : E → [0, 1] in the input.
For any subset E′ of E, a realization E′

p of E′ is a subset E′
p of E′ where each

edge e ∈ E′ appears (or interchangeably is realized) in E′
p independently with

probability p(e). Note that E′
p is a random variable. Denoting the maximum

cardinality matching of a graph on edge set E′ by M(E′), the expected matching
Mp(E′) of any subset E′ of E is defined to be

Mp(E′) := E[M(E′
p)]

2 Although most matching markets can be modeled by bipartite graphs, some of them,
such as dating websites and kidney exchange graphs are not bipartite. Nonetheless,
this assumption only makes the model more general since bipartite graphs are special
cases of general graphs.
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where the expectation is taken over the randomness of E′
p. The goal in the

stochastic matching problem is to pick a degree bounded subgraph R of G such
that Mp(R)/Mp(G) which is also known as the approximation factor is maxi-
mized.

3 Theoretical Analysis

Given a graph G = (V,E) with the arboricity bounded by α and an 0 < ε < 1,
we propose an algorithm that finds a degree bounded subgraph H of G such that
Mp(H) ≥ (1 − cε)Mp(G) where c is a constant. The algorithm that we analyze
is formally given as Algorithm 1.

Algorithm 1. Algorithm “double marking”.
1: Input: Input graph G = (V, E) along with realization probabilities p : E → [0, 1].
2: Parameter: Δ
3: For each vertex v, mark max{deg(v), Δ} edges incident to it arbitrarily.
4: R ← ∅
5: for any edge e ∈ E do
6: Add e to R if and only if it is marked by both of its endpoints.

7: return R.

The algorithm above was previously introduced by Solomon (2018) for non-
stochastic settings. Particularly, the analysis of Solomon carries over to our set-
ting without any change if p = 1. In what follows, we show that with few changes,
similar arguments can be used to show that the algorithm also works in the
stochastic setting when p < 1.

Throughout, we use the following standard observation on bounded arboricity
graphs extensively.

Observation 1. Given a graph G = (V,E) with an arboricity bounded by α ≥ 1,
let U = V1 ∪ V2 be a subset of vertices such that degree of every vertex in V1 in
the graph G[U ] is at least 2α(c+1) for some constant c, where G[U ] is the graph
induced by the vertices of U . Then, |V1| ≤ |V2|/c.

Suppose that each edge in E is realized independently with the probability
p, and let β = 12α/ε and Δ = 3β/p. For each vertex we mark randomly up to
Δ of its incident edges, and we add an edge to the graph GΔ if it is marked by
its both end points. It is clear that the degree of each vertex is bounded by Δ in
GΔ. Now we show the size of expected matching in GΔ is at least (1− cε)Mp(G)
for some constant c.

We partition the vertices of G into two sets Vl, and Vh where Vl are set of
vertices whose degree in G is at most Δ and Vh is the set of all other vertices.
In the following lemma we show that the difference between the size of expected
matching of GΔ and G is at most |Vh|. The lemma is as follows.
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Lemma 1. Given a graph G = (V,E) and Δ > 0, define GΔ = (V,EΔ) as
above. Let Vh be the set of vertices with a degree greater than Δ. Then, for any
realization Ep, we have |M(EP ∩ EΔ)| ≥ |M(Ep)| − |Vh|.
Proof. We partition the edges of M(Ep) into two sets M1 and M2, where M1

is the set of edges in the matching which are in our sampling, i.e., there are in
EP ∩EΔ, and M2 is the set of all other edges. In our sampling, we sample every
edge whose both ends are in Vl. Therefore, every edge in M2 has at least one
end in Vh, and the size of M2 is at most |Vh|. Also, we know that

|M(EP ∩ EΔ)| ≥ |M1| = |M(Ep)| − |M2| ≥ |M(Ep)| − |Vh|,

which concludes the proof.

For a realization Ep, we define the heavy and light vertices as follows.

Definition 1. Given a graph G = (V,E), a sampled graph GΔ = (V,EΔ) and
a realization Ep, we say a vertex u ∈ V is γ-heavy in the sampled graph GΔ if
at least γ edges from EΔ which are incident to u are realized. Otherwise, we say
that u is γ-light.

In the following lemma, we show that if in a realization we have a large
number of β-heavy vertices, then we can approximately preserve the size of
expected matching.

Lemma 2. Given a graph G = (V,E) with an arboricity bounded by α ≥ 1,
0 < ε < 1, β = 12α/ε and Δ ≥ β, let GΔ = (V,EΔ) defined as above and Vh

be the set of vertices with a degree greater than Δ. Then, for any realization Ep

such that at least (1 − ε/2)|Vh| vertices in Vh are β-heavy, the followings hold.

1. |M(Ep)| ≥ |Vh|/30.
2. |M(Ep ∩ EΔ)| ≥ (1 − 29ε)|M(Ep)|.
Proof. Let E∗

Δ = Ep ∩ EΔ, Vd be the set of β-heavy vertices in Vh, and Vl =
V \ Vh. Then, we have |Vd| ≥ (1 − ε/2)|Vh|. Let U ⊆ Vd be the set of vertices in
Vd which have at least β/2 neighbors in Vl. We show that size of U is at least
(1 − 2ε/5)|Vd|. Let U ′ = Vd \ U be the set of vertices in Vd that have less than
β/2 neighbors in Vl. Since the degree of every vertex in Vd is at least β in the
realization and all vertices in U ′ have less than β/2 neighbors in Vl, every vertex
in U ′ has at least β/2 neighbors in Vd. It follows from Observation 1 that

|U ′| ≤ 2α|Vd|
β/2 − 1

≤ 2α|Vd|
5α/ε

≤ 2ε

5
|Vd|.

Therefore,

|U | = |Vd| − |U ′| ≥ (1 − 2ε/5)|Vd| ≥ (1 − 2ε/5)(1 − ε/2)|Vh|
≥ (1 − 9ε/10)|Vh|. (1)
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Considering the matching M(Ep), we partition its edges into two sets M1 and
M2, where M1 is the set of edges in the matching which are in our sampling, i.e.,
there are in E∗

Δ, and M2 is the set of all other edges. Let V matched
l and V free

l

(resp., Umatched, Ufree) be the set of matched and free vertices in Vl (resp.,
U) using the edges in M1. We show that there is a almost complete matching
between vertices of Ufree and V free

l using the edges in E∗
Δ. Our claim is formally

as follows. The proof is deferred to the appendix.

Claim 1. Let Mfree be a maximum matching between the vertices of Ufree and
V free

l using the edges in E∗
Δ, then |Mfree| ≥ |Ufree| − 2ε|M(Ep)|.

By Claim 1, the size of a maximum matching in M(E∗
Δ) is at least |Umatched|+

|Ufree| − 2ε|M(Ep)|. Therefore,

|M(Ep)| ≥ |M(E∗
Δ)|

≥ |Umatched| + |Ufree| − 2ε|M(Ep)|
= |U | − 2ε|M(Ep)|,

which implies that

(1 + 2ε)|M(Ep)| ≥ |U |. (2)

Also, by (1), we have
|U | ≥ (1 − 9ε/10)|Vh|.

By combining this inequality with (2), we get

|M(Ep)| ≥ |U |
1 + 2ε

≥ (1 − 9ε/10)|Vh|
1 + 2ε

.

Since ε < 1, we have 1−9ε/10
1+2ε ≥ 1/30, therefore,

M(Ep) ≥ |Vh|/30,

which proves the first part of the lemma.
Now we are ready to prove the second part of the lemma. Note that in

our sampling, we take every edge whose both ends are in Vl. Therefore, every
unmatched edge has at least one end in Vh. Note that we sample every edges
between the vertices of Vl. Therefore, every edge in M2 is incident to at least
one vertex in Vh, and since M2 is the set of edges which are not in our sampling,
they are incident to a vertex in Vh which is not matched using the edges in
M1. Therefore, the size of M2 is at most the number of free vertices in Vh. Thus,
|M2| ≤ |Ufree|+|Vh\U |. Let Mfree be a maximum matching between Ufree and
V free

l in E∗
Δ. By Claim 1, |Mfree| ≥ |Ufree|−2ε|M(Ep)|. Therefore, |M(E∗

Δ)| ≥
|M1| + |Mfree| ≥ |M1| + |Ufree| − 2ε|M(Ep)|. Note that |M(Ep)| = |M1| + |M2|.
Thus,

|M(Ep)| − |M(E∗
Δ)| ≤ |M2| − |Ufree| + 2ε|M(Ep)|
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Since |M2| ≤ |Ufree| + |Vh \ U | and |U | ≥ (1 − 9ε/10)|Vh| by (1), we have

|M(Ep)| − |M(E∗
Δ)| ≤ |Vh \ U | + 2ε|M(Ep)|

= |Vh| − |U | + 2ε|M(Ep)|
≤ 9ε

10
|Vh| + 2ε|M(Ep)|.

Also, by the first part of the lemma we have |Vh| ≤ 30|M(Ep)|. Therefore,

|M(Ep)| − |M(E∗
Δ)| ≤ 9ε

10
|Vh| + 2ε|M(Ep)| ≤ 29ε|M(Ep)|.

Thus,
|M(E∗

Δ)| ≥ (1 − 29ε)|M(Ep)|.
which proves the second part of the lemma.

Now, we are ready to show that the size of expected matching in GΔ is at
least (1 − cε) fraction of the size of expected matching in G.

Theorem 1. Given a graph G = (V,E) such that each edge in E is realized with
the probability p, and an 0 < ε < 1, let suppose that arboricity of G is bounded
by α ≥ 1. Let β = 12α/ε and Δ = 3β/p, and define GΔ = (V,EΔ) as above.
Then, Mp(GΔ) ≥ (1 − cε)Mp(G) for some constant c.

Proof. Let Vh be the set of vertices whose degree in G is larger than Δ, and
Vl = V \ Vh be the set of other vertices. Let v ∈ Vh be a vertex in Vh. v has at
least Δ edges and each of its edge is realized with the probability of p. Therefore,
the expected number of neighbors of v after the realization is pΔ = 3β. We claim
that the probability that v has less than β neighbors in a realization is at most
O(ε3). The proof uses the standard form of Chernoff bound, and it can be found
in the appendix.

Claim 2. Let v be a vertex such that its degree in G is at least Δ, then with the
probability of at least 1 − ε3/100, u has β edges in a realization.

Now we show that with a probability sufficiently large in a realization at least
(1 − ε/2) portion of vertices in Vh are β-heavy. To this purpose, for every vertex
v ∈ Vh, we define Yu to be a random variable which is 1 if v has less than β
edges in a realization, and otherwise is 0. By Claim 2, we have

E[Yu] = Pr[Yu = 1] ≤ ε3/100.

Let Y =
∑

u∈Vh
Yu, i.e., Y is a random variable that counts the number of

vertices in Vh which have less than β edges in a realization which is the number
of β-light vertices in Vh. By the linearity of expectation we have

E[Y ] =
∑

u∈Vh

E[Yu] ≤ ε3|Vh|/100.
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If in our realization less than (1 − ε/2)|Vh| vertices in |Vh| are β-heavy, then
the number of β-light vertices is larger than ε|Vh|/2, and we have Y > ε|Vh|/2.
Therefore, by Markov’s inequality the probability that at least (1 − ε/2)|Vh|
vertices in |Vh| be β-heavy is at least

1 − Pr[Y > ε|Vh|/2 ] ≥ 1 − E[Y ]
ε|Vh|/2

≥ 1 − ε3|Vh|/100
ε|Vh|/2

= 1 − ε2/50.

For a realization Ep, we use a random variable W to show if in this realization
at least (1 − ε/2)|Vh| vertices in |Vh| are β-heavy. Formally, W is 1 if in the
realization at least (1 − ε/2)|Vh| vertices in |Vh| are β-heavy and is 0 otherwise.
As we showed above, we have

Pr[W = 1] ≥ 1 − ε2/50. (3)

Consider the realizations such that at least (1 − ε/2)|Vh| in |Vh| are β-heavy.
By Lemma 2, in this case the expected size of the maximum matching in the
sampled graph is at least (1−29ε) fraction of the size of the maximum matching
in the original graph. Particularly, we have

E

[
M(Ep ∩ EΔ)|W = 1

]
≥ (1 − 29ε)E

[
M(Ep)|W = 1

]
,

which means that

E

[
M(Ep ∩ EΔ)|W = 1

]
− E

[
M(Ep)|W = 1

]
≥ −29εE

[
M(Ep)|W = 1

]
. (4)

Also, we have

E[M(Ep)] ≥ E

[
M(Ep)

∣
∣ W = 1

]
Pr[W = 1]. (5)

Combining (4) and (5), we have

E

[
M(Ep ∩ EΔ) − M(Ep)

∣
∣ W = 1

]

= E

[
M(Ep ∩ EΔ)

∣
∣ W = 1

]
− E

[
M(Ep)

∣
∣ W = 1

]

≥ −29εE
[
M(Ep)

∣
∣ W = 1

]
By (4)

≥ −29εE[M(Ep)]
Pr[W = 1]

.

(6)

Also, by the first part of Lemma 2, we have

E[M(Ep)|W = 1] ≥ |Vh|/30.

This together with inequality (5), yields,

E[M(Ep)] ≥ E

[
M(Ep)

∣
∣W = 1

]
Pr[W = 1] ≥ Pr[W = 1]|Vh|/30.
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Therefore,

|Vh| ≤ 30E[M(Ep)]
Pr[W = 1]

. (7)

Also, for the realizations that their number of β-heavy vertices is less than (1 −
ε/2)|Vh|, by Lemma 1, the difference between the expected size of the matching
of the sampled graph and original graph is at most Vh, i.e.,

E

[
M(Ep ∩ EΔ)

∣
∣ W = 0

]
≥ E

[
M(Ep)

∣
∣ W = 0

]
− |Vh|.

This together with inequality (7) yields

E[M(Ep ∩ EΔ)|W = 0] ≥ E[M(Ep)|W = 0] − 30E[M(Ep)]
Pr[W = 1]

.

This further implies that,

E

[
M(Ep ∩ EΔ) − M(Ep)

∣
∣ W = 0

]

= E

[
M(Ep ∩ EΔ)

∣
∣ W = 0

]
− E

[
M(Ep)

∣
∣ W = 0

]

≥ −30E[M(Ep)]
Pr[W = 1]

.

(8)

By (6) and (8) we have

E

[
M(Ep ∩ EΔ) − M(Ep)

]

= E

[
M(Ep ∩ EΔ) − M(Ep)

∣
∣ W = 0

]
Pr[W = 0]

+ E

[
M(Ep ∩ EΔ) − M(Ep)

∣
∣ W = 1

]
Pr[W = 1]

≥ −Pr[W = 0]
30E[M(Ep)]
Pr[W = 1]

− 29εE[M(Ep)]

(9)

In the following claim we show that Pr[W=0]
Pr[W=1] ≤ ε. The proof is deferred to the

appendix.

Claim 3. Pr[W=0]
Pr[W=1] ≤ ε.

By Claim 3 and inequality (9) we have

E[M(Ep ∩ EΔ) − M(Ep)]

≥ −Pr[W = 0]
30E[M(Ep)]
Pr[W = 1]

− 29εE[M(Ep)]

≥ −30εE[M(Ep)] − 29εE[M(Ep)] By Claim 3
≥ −59εE[M(Ep)].
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Therefore, we have

E[M(Ep ∩ EΔ)] ≥ (1 − 59ε)E[M(Ep)].

Note that Mp(GΔ) = E[M(Ep ∩ EΔ)] and Mp(G) = E[M(Ep)]. Hence,

Mp(GΔ) ≥ (1 − 59ε)Mp(G),

which completes the proof for the theorem.

4 Empirical Results

In this section, we analyze Algorithm 1 experimentally on real-world datasets
and compare it to a well-studied algorithm of the literature.

4.1 The Studied Algorithms

We study two variations of Algorithm 1. Recall that in Algorithm 1, each vertex
marks Δ of its incident edges arbitrarily and an edge will be part of the queried
subgraph iff it is marked by both sides. The fact that our theoretical analysis
goes through, even when these edges are arbitrarily chosen is perhaps surprising
and only strengthens our theoretical result. However, in practice, since we are
not just considering the worst case scenario, the actual way we choose these
incident edges of every vertex turns out to be very important. In this regard,
we consider two natural implementations of Algorithm 1. In implementation 1,
which we denote by “Algorithm 1 (I1)”, every vertex marks Δ of its incident
edges uniformly at random and an edge is chosen iff both sides mark it. In
implementation 2, every vertex initially chooses Δ tentative incident edges, then
if a vertex v is connected to k chosen edges with k > Δ (note that these edges
might be chosen by neighbors of v), it discards k − Δ edges arbitrarily. We refer
to this implementation of Algorithm 1 as “Algorithm 1 (I2)” in our experiments.
The main difference between the two implementations, is that the latter tends
to choose many more edges per vertex.

We also consider Algorithm 2 that has received a significant attention in
the literature Blum et al. (2015); Assadi et al. (2016, 2017); Behnezhad and
Reyhani (2018); Maehara and Yamaguchi (2018). The algorithm, roughly, selects
a maximum matching from the input graph, adds it to the set of sampled edges
and removes it from the graph. This process is continued for Δ steps, which
clearly guarantees the degree of every vertex in the sampled subgraph does not
exceed Δ.

An advantage of Algorithm 1 is that it is very simple and can be easily
implemented in a distributed manner. Algorithm 2, on the other hand, requires
Δ iterations of computing a maximum matching. For this, we use the standard
O(m

√
n) time algorithm for maximum matchings in bipartite graphs.



Stochastic Matching on Uniformly Sparse Graphs 367

4.2 Datasets

The graphs on which we run our experiments, are from the internal dataset
of Upwork3, a major online freelancing company. We have two sets of vertices
which model freelancers and clients (the users hiring freelancers). There is an
edge between a freelancer f and a client c iff there is a possibility of a contract
between the two. This is inferred directly by the initial job descriptions. For
instance, we put an edge between freelancers that have marked themselves as
Android developers, to clients that seek to hire an Android developer. Moreover,
on each edge e = (f, c), we introduce a success probability pe that may differ
from one edge to another and denotes the probability that freelancer f signs
a contract with client c given that they interview each other. The algorithm
and parameters with which these probabilities are obtained cannot be revealed,
however, we use them as they are to indicate the realization probabilities of the
edges.

Algorithm 2. Iterative matching.
1: Input: Input graph G = (V, E) along with realization probabilities p : E → [0, 1].
2: Parameter: Δ
3: E′ ← E
4: R ← ∅
5: for Δ rounds do
6: Take a maximum matching M in E′.
7: Add all the edges of M to R.
8: E′ ← E′\M

9: return R.

4.3 Results

Our first set of experiments measure approximation-factor of the proposed algo-
rithms as a function of Δ, i.e., the upper bound on the number of per-vertex
queries. The result is highlighted in Fig. 1. As indicated in the figure, there
is a huge difference between the performance of the two implementations of
Algorithm 1. In fact, perhaps surprisingly, the performance of Algorithm 1 (I2)
almost matches that of the standard Algorithm 2, which is much more compli-
cated to implement and requires computing a global maximum matching for Δ
iterations.

In our second set of experiments (Fig. 2), we fix a target approximation factor
of 0.8, and measure how many per-vertex queries each algorithm requires in
order to achieve this approximation factor, as a function of different realization
probabilities. More precisely, we change the realization probabilities of all edges
and see how the number of required per-vertex queries changes as a function
3 http://upwork.com.

http://upwork.com
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Fig. 1. The obtained approximation-factors of the algorithms, given a fixed upper
bound on the number of per-vertex queries.

of that. The fact that Algorithm 1 (I1) requires to set Δ ∼ 27 even when the
realization probabilities are as high as 0.9, shows the fact that the main issue
with this algorithm is indeed the fact that for many vertices, we do not query
any edges at all. As indicated in Fig. 2, the other implementation of Algorithm 1
resolves this issue and has a performance, again, very close to the standard
algorithm of the literature.

Fig. 2. The number of per-vertex queries required to reach a fixed approximation factor,
as we change the realization probability of the edges.

As mentioned before, the fact that on our datasets, Algorithm 1 (I2) and
Algorithm 2 have a very similar performance is surprising and far from what
we expect in the worst case. A bad input example for Algorithm 1 is illustrated
in the figure below. Here, a part of the graph (A) is composed of a large per-
fect matching, and there is a significantly smaller pool of vertices (B) that are
connected to all the vertices in A.
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Fig. 3. A bad example for Algorithm 1.

Since Algorithm 1 is very local (i.e., each vertex only looks at its direct edges),
most of the sampled vertices will the ones in between sets A and B and very few
edges of the actual large perfect matching in A will be sampled. This makes the
approximation factor of Algorithm 1 arbitrarily bad (roughly 1/|B|). Note that,
interestingly, the bad example of Fig. 3 crucially has to have a large arboricity of
at least Θ(|B|) since the average degree of the graph is Θ(|B|) and the arboricity
is always larger than average degree.

We construct a similar graph to the one illustrated above and run our algo-
rithms on it (Fig. 4).

Fig. 4. Performance algorithms on the graph of Fig. 3 with |A| = 103 and |B| = 102.

Observe that for Algorithm 1 to achieve a good approximation factor of say 0.9
on this bad example, we have to query almost all the edges whereas Algorithm 2
achieves this with as few as 5 queries per vertex. Fortunately, our prior exper-
iments show that these sort of worst case inputs do not happen in real-world
datasets.

5 Discussion: Stochastic Matching and Recommender
Systems

From Stochastic Matching to Recommendations. We start by outlining
some of the most prominent concerns that recommendations in matching markets
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need to address. We then proceed to formally describe our measure of effective-
ness. These concerns are as follows:

1. The recommendations need to be globally acceptable. That is, a recommen-
dation profile needs to optimize the overall number of successful matches that
it is expected to lead into.

2. The recommendations need to take into account the users’ preferences. More
precisely, the edges picked in R should be more likely to lead into successful
matches.

3. Recall that the main purpose of any recommendation system is to recommend
only a small subset out of a large pool of options. Therefore, there should be
a relatively small upper bound on the number of recommendations made to
each user.

Suppose, for our target application of recommendations in matching markets,
we are given the pairwise success probabilities for each of the potential pairs.
To remain as general as possible, we do not pose any restrictions on how these
probability functions are computed and define the objective value as a function
of these probabilities. Consider a graph G = (V,E) with each vertex v ∈ V
corresponding to a user and each edge {u, v} ∈ E denoting a potential pair. Fur-
thermore, let us denote by function p : E → [0, 1] the given success probabilities.
Any set of recommendations can be seen as a subgraph R = (V,ER) of G where
an edge {u, v} is in ER if and only if u and v are recommended to one another.
The score that we assign to each recommendation R = (V,ER) is the size of its
expected matching compared to that of the original graph G. More precisely, we
define

score(R) = Mp(R)/Mp(G). (10)

Therefore, the score is between 0 and 1 and a higher score is more desirable.
The goal is to find a degree bounded subgraph R of G with a high score. Note
that if the degrees in R can be arbitrarily large, then the graph G itself would
achieve a score of 1. This, however, would map to recommending every pair of
users to one another which is not applicable in practice. Therefore for reasons
discussed above we want the graph R to be degree bounded while also achieving
a good score. This is precisely the objective in the stochastic matching problem
and the score corresponds to the guaranteed approximation factor of a stochastic
matching algorithm.

Note that all the algorithms that we considered in this setting are called
non-adaptive which is of practical importance for recommendations. This is in
contrast to adaptive algorithms (see e.g., Blum et al. (2015)) that may take
several rounds of adaptivity, with queries conducted at each round depending on
the results of the previous round. Synchronizing the queries is impractical for
our application since: (1) The delay in interviewing process between even one
pair results in a long waiting time for other users. (2) The users are not obligated
to follow our recommendations.
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Núñez-Valdéz, E.R., Lovelle, J.M.C., Mart́ınez, O.S., Garćıa-Dı́az, V., de Pablos, P.O.,
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Abstract. When allocating a set of goods to a set of agents, a clas-
sic fairness notion called envy-freeness requires that no agent prefer the
allocation of another agent to her own. When the goods are indivisible,
this notion is impossible to guarantee, and prior work has focused on
its relaxations. However, envy-freeness can be achieved if a third party
is willing to subsidize by providing a small amount of money (divisible
good), which can be allocated along with the indivisible goods.

In this paper, we study the amount of subsidy needed to achieve envy-
freeness for agents with additive valuations, both for a given allocation
of indivisible goods and when we can choose the allocation. In the former
case, we provide a strongly polynomial time algorithm to minimize sub-
sidy. In the latter case, we provide optimal constructive results for the
special cases of binary and identical valuations, and make a conjecture
in the general case. Our experiments using real data show that a small
amount of subsidy is sufficient in practice.

Keywords: Fair division · Indivisible goods · Envy-freeness · Subsidy

1 Introduction

How to fairly divide goods among people has been a subject of interest for
millennia. However, formal foundations of fair division were laid less than a
century ago with the work of Steinhaus [29], who proposed the cake-cutting
setting where a divisible good is to be allocated to n agents with heterogeneous
preferences. In the subsequent decades, allocation of divisible goods received
significant attention [4,16,25,32,33]. When goods are divisible, one can provide
strong fairness guarantees such as envy-freeness [17], which requires that no
agent prefer the allocation of another agent to her own.

Most real-world applications of fair division, such as divorce settlement or
inheritance division, often involve indivisible goods. In this case, envy-freeness
is impossible to guarantee. For example, if the only available good is a ring, and
two agents—Alice and Bob—want it, giving it to either agent would cause the
other to envy. Recent research on fair allocation of indivisible goods has focused
on achieving relaxed fairness guarantees [2,11,20,27]. For example, envy-freeness

Full version of this paper is available at www.cs.toronto.edu/∼nisarg/papers/subsidy.
pdf.
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up to one good requires that no agent prefer the allocation of another agent to
her own after removing at most one good from the envied agent’s bundle. This
has lately been a subject of intensive research [7,8,26]. While giving the ring to
Alice would satisfy this fairness guarantee, who can blame Bob for thinking that
the allocation was unfair? After all, he received nothing!

Intuitively, it seems that if we have money at our disposal, it should help
settle the differences and eliminate envy. But can it always help? Suppose that
Alice values the ring at $100 while Bob values it at $150. If we give the ring to
Alice, then Bob would require at least $150 compensation to not envy Alice. But
giving so much money to Bob would make Alice envy Bob. Upon some thought,
it becomes clear that the only way to achieve envy-freeness is to give the ring
to Bob and give Alice at least $100 (but no more than $150). Is this always
possible? When can it be done?

In this paper, we study a setting where we allocate a set of indivisible goods
along with some amount of a divisible good (a.k.a. money). The money can
either be provided by a third party as a subsidy, or it could already be part of
the set of goods available for allocation. Our primary research questions are:

Which allocations of indivisible goods allow elimination of envy using
money? And how much money is required to achieve envy-freeness?

1.1 Our Results

Suppose n agents have additive valuations (i.e., the value of a bundle is the sum
of the values of the individual items) over m indivisible goods. Without loss
of generality, we assume that the value of each agent for each good is in [0, 1].
We refer to an allocation of indivisible goods as envy-freeable if it is possible to
eliminate envy by paying each agent some amount of money.

In Sect. 3, we characterize envy-freeable allocations and show how to effi-
ciently compute the minimum payments to agents that are required to eliminate
envy in a given envy-freeable allocation.

In Sect. 4, we study the size of the minimum subsidy (total payment to agents)
required to achieve envy-freeness. When an (envy-freeable) allocation is given
to us, we show that the minimum subsidy required is Θ(nm) in the worst case,
even in the special cases of binary and identical valuations.

The picture gets more interesting when we are allowed to choose the alloca-
tion of indivisible goods. In this case, the minimum subsidy is at least n − 1 in
the worst case. For the special cases of binary and identical valuations, we show
that this optimal bound can be achieved through efficient algorithms. For gen-
eral valuations, we show that it can be achieved for two agents, and conjecture
this to be true for more than two agents.

Our experiments in Sect. 5 using synthetic and real data show that the min-
imum subsidy required in practice is much less than the worst-case bound.
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1.2 Related Work

The use of money in fair allocation of indivisible goods has been well-explored.
Much of the literature focuses on a setting where the number of goods is at
most the number of agents. This is inspired from the classic rent division prob-
lem, where the goal is to allocate n indivisible goods to n agents and divide a
total cost (rent) among the agents in an envy-free manner [30,31]. In this case,
Demange and Gale [13] show that the set of envy-free allocations have a lattice
structure; we provide a similar result. Maskin [21] shows that envy-free alloca-
tions are guaranteed to exist given a sufficient amount of money; this is easy to
show in our setting, so we focus on minimizing the amount of money required.
Klijn [19] shows that envy-free allocations can be computed in polynomial time.
Several papers focus on concepts other than (or stronger than) envy-freeness. For
example, Quinzii [28] shows that the core coincides with competitive equilibria.
Bikhchandani and Mamer [6] study the existence of competitive equilibria, which
is a stronger requirement than envy-freeness. Ohseto [24] studies the existence
of algorithms that are not only envy-free but also strategyproof. This restricted
setting with one good per agent is substantially different from our general set-
ting with potentially more goods than agents. Svensson [31] shows that in the
restricted setting, envy-free allocations are automatically Pareto optimal. This
is not true in our setting; and only a weaker condition is implied (Theorem 1).

Among the papers that consider more goods than agents, several consider
settings which effectively reduce to one good per agent. For example, Haake
et al. [18] consider a fixed partition of the goods into n bundles, so each bun-
dle can be treated as a single good. In contrast, a large portion of our paper
(Sect. 4.2) is devoted to finding the optimal bundling of goods. Further, they
consider dividing a total cost of C among the agents, whereas we consider pay-
ing a non-negative amount of money to each agent. A natural reduction of our
problem to their setting would set C = 0, compute the payments to agents
(which could be negative), and increase all payments equally until they are non-
negative. However, it is easy to check that under this reduction, our method
requires less subsidy than theirs even for a fixed bundling, and significantly less
if we optimize the bundling. Alkan et al. [1] allow more goods than agents, but
add fictitious agents until the number of goods and agents are equal. As noted by
Meertens et al. [22], their algorithm allocates at most one good to each real agent,
throwing away the remaining goods (i.e. assigning them to fictitious agents).

Meertens et al. [22] study a setting more general than ours. They allow agents
to have general preference relations over their allocated bundle of indivisible
goods and amount of money. In this case, they show that envy-freeness and
Pareto optimality may be incompatible regardless of the amount of money avail-
able. In contrast, in our setting with quasi-linear preferences, allocations that
are both envy-free and Pareto optimal exist given a sufficient amount of money
(see the discussion following Proposition 1). Beviá et al. [5] study a setting where
each agent arrives at the market with a bundle of goods and an amount of money,
and is interested in exchanging the goods and money with other agents. They
assume that each agent brings at least as much money as her total value for the
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goods brought by all the agents, and induce budget-balanced transfers among
the agents, making their results incomparable to ours.

To the best of our knowledge, no prior work studies the asymptotic amount
of subsidy required to achieve envy-freeness, which is the focus of our work.

2 Preliminaries

For k ∈ N, let [k] = {1, . . . , k}. Let N = [n] denote the set of agents, and let M
denote the set of m indivisible goods. Each agent i is endowed with a valuation
function vi : 2M → R≥0 such that vi(∅) = 0. We assume that the valuation is
additive: ∀S ⊆ M, vi(S) =

∑
g∈S vi({g}). To simplify notation, we write vi(g)

instead of vi({g}). We denote the vector of valuations by v = (v1, . . . , vn). We
define an allocation problem to be the tuple A = (N ,M,v).

For a set of goods S ⊆ M and k ∈ N, let Πk(S) denote the set of ordered
partitions of S into k bundles. Given an allocation problem A, an allocation
A = (A1, . . . , An) ∈ Πn(M) is a partition of the goods into n bundles, where Ai

is the bundle allocated to agent i. Under this allocation, the utility to agent i is
vi(Ai), and the utilitarian welfare is

∑n
i=1 vi(Ai). The following fairness notion

is central to our work.

Definition 1 (Envy-Freeness). An allocation A is called envy-free (EF) if
vi(Ai) ≥ vi(Aj) for all agents i, j ∈ N .

Envy-freeness requires that no agent prefer another agent’s allocation over
her own allocation. This cannot be guaranteed when goods are indivisible. Prior
literature focuses on its relaxations, such as envy-freeness up to one good [10,20],
which can be guaranteed.

Definition 2 (Envy-Freeness up to One Good). An allocation A is called
envy-free up to one good (EF1) if, for all agents i, j ∈ N , either vi(Ai) ≥ vi(Aj)
or there exists g ∈ Aj such that vi(Ai) ≥ vi(Aj \ {g}). That is, it should be
possible to remove envy between any two agents by removing a single good from
the envied agent’s bundle.

We want to study whether (exact) envy-freeness can be achieved by addi-
tionally giving each agent some amount of a divisible good, which we refer to
as money. We denote by pi ∈ R the amount of money received by agent i, and
by p = (p1, . . . , pn) the vector of payments. Throughout most of the paper, we
require that pi ≥ 0 for each agent i. This corresponds to the subsidy model,
where a third party subsidizes the allocation problem by donating money. In
Sect. 6, we discuss the implications of our results for other models of introducing
monetary payments. One other obvious model is one in which there is no out-
side subsidy and envy is dealt with by agents paying each other. We show these
models are essentially equivalent in the sense that any payments in one model
can be translated to equivalent payments in the other. In our ring example, Bob
giving Alice $50 is equivalent to Alice receiving a $100 subsidy with respect to
relative utilities, which is all that matters for envy-freeness.
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Given an allocation A and a payment vector p, we refer to the tuple (A,p)
as the allocation with payments. Under (A,p), the utility of agent i is vi(Ai)+pi.
That is, agents have quasi-linear utilities (equivalently, they express their values
for other goods with money as reference). With money, there is a common good
to which agents can scale their utilities. Thus, unlike in settings without money,
interpersonal comparisons of utilities make sense in our framework. Note that
allocation A is equivalent to allocation with payments (A,0), where each agent
receives zero payment. We can now extend the definition of envy-freeness to
allocations with payments.

Definition 3 (Envy-Freeness). An allocation with payments (A,p) is envy-
free (EF) if vi(Ai) + pi ≥ vi(Aj) + pj for all agents i, j ∈ N .

We say that payment vector p is envy-eliminating for allocation A if (A,p)
is envy-free. Let P(A) be the set of envy-eliminating payment vectors for A.

Definition 4 (Envy-Freeable). An allocation A is called envy-freeable if
there exists a payment vector p such that (A,p) is envy-free, that is, if P(A) �= ∅.

Given an allocation problem A, let E(A) denote the set of envy-freeable
allocations. We drop A from the notation when it is clear from context.

Given an allocation A, its envy graph GA is the complete weighted directed
graph in which each agent is a node, and for each i, j ∈ N , edge (i, j) has weight
w(i, j) = vi(Aj) − vi(Ai). This is the amount of envy that agent i has for agent
j, which can be negative if agent i strictly prefers her own allocation to the
allocation of agent j. Note that by definition, w(i, i) = 0 for each i ∈ N . A path
P is a sequence of nodes (i1, . . . , ik), and its weight is w(P ) =

∑k−1
t=1 w(it, it+1).

The path is a cycle if i1 = ik. Given i, j ∈ N , let �(i, j) be the maximum weight
of any path which starts at i and ends at j, and let �(i) = maxj∈N �(i, j) be the
maximum weight of any path starting at i.

3 Envy-Freeable Allocations

In this section, our goal is to characterize envy-freeable allocations of indivis-
ible goods and, given an envy-freeable allocation, to find an envy-eliminating
payment vector.

Looking more closely at GA, we can see that A being envy-free is equivalent
to all edge weights of GA being non-positive. We can extend this connection to
the (potentially) larger set of envy-freeable allocations. Note that a permutation
of [n] is a bijection σ : [n] → [n].

Theorem 1. For an allocation A, the following statements are equivalent.

(a) A is envy-freeable.
(b) A maximizes the utilitarian welfare across all reassignments of its bun-

dles to agents, that is, for every permutation σ of [n],
∑

i∈N vi(Ai) ≥∑
i∈N vi(Aσ(i)).

(c) GA has no positive-weight cycles.
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Proof. We show (a) ⇒ (b), (b) ⇒ (c), and (c) ⇒ (a).

(a) ⇒ (b): Suppose A is envy-freeable. Then, there exists a payment vector p
such that for all agents i, j ∈ N , vi(Ai) + pi ≥ vi(Aj) + pj , that is, vi(Aj) −
vi(Ai) ≤ pi − pj . Consider any permutation σ of [n]. Then,

∑
i∈N vi(Aσ(i)) −

vi(Ai) ≤ ∑
i∈N pi − pσ(i) = 0.

(b) ⇒ (c): Suppose condition (b) holds. Consider a cycle C = (i1, . . . , ik) in GA.
Consider the corresponding permutation σC under which σ(it) = it+1 for each
t ∈ [k − 1], and σ(i) = i for all i /∈ C. Then,

w(C) =
k−1∑

t=1

w(it, it+1) =
k−1∑

t=1

vit(Ait+1) − vit(Ait)

=
k−1∑

t=1

(
vit(Ait+1) − vit(Ait)

)
+

∑

i/∈C

(vi(Ai) − vi(Ai))

=
∑

i∈N
vi(Aσ(i)) − vi(Ai) ≤ 0.

(c) ⇒ (a): Suppose GA has no positive-weight cycles. Then, �(i), which is the
maximum weight of any path starting at i in GA, is well-defined and finite. Let
pi = �(i) for each i ∈ N . Note that pi ≥ �(i, i) ≥ w(i, i) = 0 for each i ∈ N .
Hence, p is a valid payment vector. Also, by definition of longest paths, we have
that for all i, j ∈ N , pi = �(i) ≥ �(j) + w(i, j) = pj + vi(Aj) − vi(Ai). Hence,
(A,p) is envy-free, and thus, A is envy-freeable. ��

Theorem 1 provides a way to efficiently check if a given allocation A is
envy-freeable. This can be done using the maximum weight bipartite matching
algorithm [15] to check condition (b) or the Floyd-Warshall algorithm to check
condition (c). The proof is provided in the full version.

Proposition 1. Given an allocation A, it is possible to check whether A is
envy-freeable in O(mn + n3) time.

Given Proposition 1, finding an envy-freeable allocation is easy: we can start
from an arbitrary allocation A and use the maximum weight bipartite matching
algorithm to find the reassignment of its bundles that maximizes utilitarian
welfare, or we could simply compute the allocation that globally maximizes
utilitarian welfare in O(nm) time by assigning each good to the agent who
values it the most.

But simply knowing an envy-freeable allocation A is not enough. We need to
find a payment vector p such that (A,p) is envy-free. We would further like to
minimize the subsidy required (

∑
i∈N pi). Such a payment vector can easily be

computed in polynomial time through a linear program (provided in full version).
However, the next result shows that we can compute it in strongly polynomial
time (polynomial in the number of inputs, rather than their size). In fact, this
payment vector is precisely the one we constructed in the proof of Theorem1.
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Theorem 2. For an envy-freeable allocation A, let p∗(A) be given by p∗
i (A) =

�(i) for all i ∈ N , where �(i) is the maximum weight of any path starting at i
in GA. Then, p∗(A) ∈ P(A), and for every p ∈ P(A) and i ∈ N , p∗

i (A) ≤ pi.
Further, p∗(A) can be computed in O(nm + n3) time.

Proof. For simplicity, we denote p∗(A) as p∗. When proving that condition (c)
implies condition (a) in Theorem 1, we already showed that p∗ ∈ P(A). Thus,
we simply need to argue that for every p ∈ P(A), we have that p∗

i ≤ pi for all
i ∈ N .

Fix p ∈ P(A) and i ∈ N . Consider the longest path starting at i in GA.
Suppose it is (i1, . . . , ik). Hence, i1 = i and w(i1, . . . , ik) =

∑k−1
t=1 w(it, it+1) =

p∗
i . Because (A,p) is envy-free, we have that for each t ∈ [k − 1],

vit(Ait) + pit ≥ vit(Ait+1) + pit+1

⇒ pit − pit+1 ≥ vit(Ait+1) − vit(Ait) = w(it, it+1).

Summing this over all t ∈ [k − 1], we get

pi1 − pik ≥ w(i1, . . . , ik) = p∗
i ⇒ pi ≥ p∗

i + pik ≥ p∗
i ,

where the final transition holds because i1 = i and payments are non-negative.
Finally, p∗ can be computed as follows. We first run the Floyd-Marshall

(all-pairs shortest path) algorithm on the graph obtained by negating all edge
weights in GA to compute �(i, j) for all i, j ∈ N in O(nm + n3) time. Then, we
compute p∗ in O(n2) time. ��

We refer to p∗(A) as the optimal payment vector for A. When clear from
the context, we drop A from the notation.

We can also show that for an envy-freeable allocation A, P(A) has a lattice
structure and p∗ is its unique minimum element; the proof is provided in the full
version. In this lattice, the greatest lower bound (resp., the least upper bound) of
two payment vectors is given by the coordinate-wise minimum (resp., maximum).

4 Minimizing and Bounding Subsidy

In this section, we investigate the minimum subsidy required to achieve envy-
freeness. We are interested in both the computational complexity of computing
the minimum subsidy required in a given allocation problem, and in the mini-
mum subsidy required in the worst case over allocation problems. We consider
cases where the (envy-freeable) allocation is given to us, and where we can choose
such an allocation to minimize subsidy.

For an envy-freeable allocation A, let sub(A) =
∑

i∈N p∗
i (A) be the mini-

mum subsidy required to make A envy-free. Then, in the former case, we want
to compute supA maxA∈E(A) sub(A) and, in the latter case, we want to compute
supA minA∈E(A) sub(A).1

1 Note that E(A) �= ∅ because the allocation maximizing utilitarian welfare is always
envy-freeable due to Theorem 1.
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Without loss of generality, we assume that vi(g) ∈ [0, 1] for each agent i and
good g. If the valuations lie in [0, T ], the worst-case minimum subsidy and the
bounds we provide would simply be multiplied by T , the largest value for any
single good. We say that valuations are binary if vi(g) ∈ {0, 1} for all agents i
and goods g, and identical if vi(g) = vj(g) for all agents i, j and goods g.

4.1 When the Allocation is Given

In cases where an envy-freeable allocation is already implemented, or if we desire
to implement a specific allocation for reasons other than achieving envy-freeness,
we may be given an allocation and asked to eliminate envy.

Theorem 2 already shows that we can efficiently compute the minimum
amount of subsidy required. To study how much subsidy is needed in the worst
case, we begin with the following simple observation.

Lemma 1. For an envy-freeable allocation A, no path in GA has weight more
than m.

Proof. Since GA has no positive-weight cycles, we only need to consider simple
paths on which no agent appears twice. Consider a simple path (i1, . . . , ik). For
t ∈ [k−1], note that w(it, it+1) = vit(Ait+1)−vit(Ait) ≤ |Ait+1 |. Thus, the weight
of the path is

∑k−1
t=1 w(it, it+1) ≤ ∑k−1

t=1 |Ait+1 | =
∣
∣∪k

t=2Ait

∣
∣ ≤ m, as desired. ��

We can now pinpoint the subsidy required in the worst case. The upper bound
uses Lemma 1 along with the fact that some agent must receive zero payment
under the optimal payment vector.

Theorem 3. When an envy-freeable allocation is given, the minimum subsidy
required is (n − 1)m in the worst case.

Proof. For the lower bound, consider the instance where vi(g) = 1 for all agents
i and goods g. Consider the allocation A which assigns all goods to a single
agent i∗. It is easy to see that this is envy-freeable, and its optimal payment
vector p has pi = m for i �= i∗ and pi∗ = 0. Hence, we need (n − 1)m subsidy.

To prove the upper bound, note that the minimum subsidy required is the
sum of weights of longest paths starting at different agents (Theorem 2). Using
Lemma 1 and the fact that one agent must receive zero payment (otherwise all
payments can be reduced while preserving envy-freeness, which would contradict
the minimality of payments), this is at most (n − 1)m. ��

The lower bound uses an instance with identical binary valuations. Hence,
Theorem 3 also holds for the special cases of binary and identical valuations.

4.2 When the Allocation Can Be Chosen

When we are allowed to choose the allocation, computing the minimum subsidy
required is NP-hard. This is because checking whether zero subsidy is required
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is equivalent to checking whether an envy-free allocation exists, which is NP-
hard even for identical valuations [9]. That said, it is possible to compute the
minimum subsidy required using a simple integer linear program (details are in
the full version).

Recall that when an envy-freeable allocation is given, in the worst case we
need a subsidy of (n − 1)m (Theorem 3). But what if we were able to choose
the allocation? We show that this does not help improve the bound by a factor
larger than m.

Theorem 4. When the allocation can be chosen, the minimum subsidy required
is at least n − 1 in the worst case, even in the special cases of binary valuations
and identical valuations.

Proof. Consider the instance with identical binary valuations where each agent
values a special good at 1 and other goods at 0. Every allocation gives the special
good to one of the agents. To achieve envy-freeness, each other agent must be
paid at least 1. Hence, a subsidy of at least n − 1 is needed. ��

This raises a natural question: Can we always find an envy-freeable allocation
that requires a subsidy of at most n − 1? We answer this question affirmatively
for the special cases of binary and identical valuations as well as any valuations
with two agents. In addition, we make an interesting conjecture in the general
case. First, we take a slight detour.

One promising approach to reducing the subsidy requirement is to start with
an allocation that already has limited envy, for example, an allocation that is
envy-free up to one good [10,20]. For an envy-freeable EF1 allocation A, each
edge in GA has weight at most 1, so each (simple) path has weight at most n−1.
Using this improvement over Lemma 1 in Theorem 3, we get the following.

Lemma 2. For an envy-freeable allocation A that is envy-free up to one good,
no path in GA has weight more than min(n − 1,m). Hence, sub(A) ≤ (n − 1) ·
min(n − 1,m).

With an envy-freeable EF1 allocation, the subsidy requirement becomes inde-
pendent of the number of goods, at the expense of becoming quadratic in the
number of agents. However, it is not even clear that an envy-freeable EF1 allo-
cation always exists. For the special cases of binary and identical valuations, we
show that it does, and in fact, picking a specific EF1 allocation that satisfies
other properties allows achieving the optimal subsidy requirement of n − 1.

Binary Valuations. Recall that with binary valuations, we have vi(g) ∈ {0, 1}
for all i ∈ N and g ∈ M. We say that agent i likes good g if vi(g) = 1. An
allocation A is non-wasteful if each good is allocated to an agent who likes
it. Note that because the valuations are binary, non-wasteful is equivalent to
Pareto efficiency. For binary valuations, it is easy to see that every non-wasteful
allocation is envy-freeable as it satisfies condition (b) of Theorem1.
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Algorithms such as the round-robin method and maximum Nash welfare
(MNW) are known to produce non-wasteful EF1 allocations [11]. The round-
robin method, given an agent ordering, allows agents to pick goods one-by-one
according to the ordering in a cyclic fashion. The MNW algorithm finds the
largest set of agents that can simultaneously receive positive utility and returns
an allocation maximizing the product of their utilities.

Using a non-wasteful EF1 allocation, we can reduce the O(mn) subsidy
requirement to O(n2). This is the best we can do using the round-robin method
with an arbitrary agent ordering (an example is provided in the full version).
However, we show that the non-wasteful EF1 allocation returned by the MNW
algorithm is special as it requires a subsidy of at most n − 1, meeting the lower
bound from Theorem4.

Theorem 5. For binary valuations, an allocation produced by the maximum
Nash welfare algorithm is envy-freeable and requires at most n − 1 subsidy.

Proof. Let A be an allocation returned by the MNW algorithm. It is easy to see
that A is non-wasteful, and hence, envy-freeable. Next, we show that any path
in GA has weight at most 1. This implies a subsidy requirement of at most n−1
using the same argument as in the proof of Theorem 3.

First, without loss of generality, we assume that each good is liked by at least
one agent; if there are goods that are not liked by any agent, we could disregard
them in the steps below and allocate them arbitrarily. We already argued that the
non-wasteful allocation produced by the MNW algorithm is envy-freeable. Since
it assigns each good to an agent who likes it, we have vi(Ai) = |Ai| for all i ∈ N
and vi(Aj) ≤ |Aj | for all i, j ∈ N . It follows that w(i, j) = vi(Aj) − vi(Ai) ≤
|Aj | − |Ai| for all i, j ∈ N .

Suppose for a contradiction that there exists a path P ∗ in GA such that
w(P ∗) > 1. Because weights are integral, this implies w(P ∗) ≥ 2. Now, we make
the following claim; the proof is given in the full version.

Claim. There exists a subpath P of P ∗ with no negative-weight edges and
w(P ) ≥ 2.

Without loss of generality, we further assume that the first edge of P has
a positive weight (otherwise we could consider the subpath of P starting at its
first positive-weight edge). Let P = (i1, . . . , ik). We want to prove two claims:
(a) |Aik | ≥ |Ai1 | + 2, and (b) for each t ∈ [k − 1], there exists a good g ∈ Ait+1

which agent it likes.
For claim (a), recall that for each t ∈ [k − 1], we have w(it, it+1) ≤ |Ait+1 | −

|Ait |. Summing over t ∈ [k−1], we get that |Aik |− |Ai1 | ≥ w(P ) ≥ 2, as desired.
Claim (b) holds for t = 1 because the first edge has weight w(i1, i2) =

vi1(Ai2) − vi1(Ai1) > 0, implying vi1(Ai2) > 0. For t ∈ {2, . . . , k − 1}, using the
argument above, we have |Ait | − |Ai1 | ≥ w(i1, . . . , it) ≥ w(i1, i2) > 0. Hence,
vit(Ait) = |Ait | > 0. This, along with w(it, it+1) = vit(Ait+1) − vit(Ait) ≥ 0,
implies vit(Ait+1) > 0.
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Given the two claims, we derive a contradiction to the fact that A is returned
by the MNW algorithm. Suppose we take a good from Ait+1 that agent it likes—
it exists due to claim (b)—and add it to Ait for each t ∈ [k − 1]. In the resulting
allocation, the utility to agent ik decreases by 1, the utility to agent i1 increases
by 1, and the utility to every other agent remains constant. Since agent ik had
at least 2 more utility than agent i1 due to claim (a), it is easy to see that the
resulting allocation would either give positive utility to strictly more agents (if
i1 had zero utility in the beginning) or strictly increase the product of utilities
to the agents with positive utility. Both of these contradict the fact that A was
returned by the MNW algorithm. Hence, every path in GA has weight at most
1, which implies the desired result. ��

Note that in this proof, along with non-wastefulness, the only property of
the MNW algorithm that we used was the following: given allocations A1 and
A2 such that for some agents i, j ∈ N , vi(A1

i ) ≥ vj(A1
j )+2, vi(A2

i ) = vi(A1
i )−1,

vj(A2
j ) = vj(A1

j ) + 1, and vk(A1
k) = vk(A2

k) for all k ∈ N \ {i, j}, the algorithm
cannot return A1. This property as well as non-wastefulness are implied by the
Pigou-Dalton principle [23]. Hence, the result holds for every algorithm which
satisfies this principle, including the leximin rule.2

This proof leverages several ideas from the literature. Claim (a) shares sim-
ilarities with a property of MNW allocations established by Darmann and Sch
[12], while the trick of passing goods along a path using claim (b) was also used
by Barman et al. [3] to show that an MNW allocation can be computed efficiently
for binary valuations. Thus, for binary valuations, we can efficiently compute an
allocation which needs at most n − 1 subsidy.

While the MNW algorithm achieves the optimal worst-case subsidy bound, it
does not minimize the subsidy required on every instance. It is easy to construct
instances where envy-free allocations exist but the MNW algorithm produces an
allocation which requires as much as n − 2 subsidy (an example is provided in
the full version).

What is the complexity of computing the minimum subsidy required in a
given allocation problem? As argued before, we can reduce the problem of check-
ing the existence of an envy-free allocation to the problem of computing the
minimum subsidy required. It is not difficult to see that the converse holds too.
We can compute the minimum subsidy required by adding a unit subsidy at a
time, and checking the existence of an envy-free allocation. The proof of the next
result is given in the full version.

Proposition 2. For binary valuations, the problems of computing the minimum
subsidy required and checking the existence of an envy-free allocation are Turing-
equivalent.

Unfortunately, to the best of our knowledge, it is an open question whether
existence of an envy-free allocation can be checked efficiently for binary val-
uations. However, the complexity of a closely related problem is known.

2 The leximin rule finds an allocation that maximizes the minimum utility, subject to
that maximizes the second minimum utility, and so on.
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Bouveret and Lang [9] show that checking the existence of a non-wasteful envy-
free allocation with binary valuations is an NP-complete problem. Using the
same argument as before, we have the following.

Corollary 1. For binary valuations, it is NP-hard to compute the minimum
subsidy required to achieve envy-freeness using a non-wasteful allocation.

Identical Valuations. With identical valuations, we denote the common
valuation function of the agents by v. In this case, the utilitarian welfare∑

i∈N v(Ai) = v(M) is constant. This implies that every allocation is Pareto
efficient. Hence, by condition (b) of Theorem 1, every allocation A is envy-
freeable.

Given an allocation A, the optimal payment vector is given by p∗
i (A) =

maxj∈N v(Aj) − v(Ai) for all i ∈ N . To see this, note that each agent i requires
payment at least p∗

i (A) to not envy the agent with the highest utility. Con-
versely, (A, p∗

i (A)) is envy-free as every agent has the same value for all agents’
allocations. Thus, sub(A) = n · maxj∈N v(Aj) − v(M). Therefore, minimizing
subsidy is equivalent to minimizing the maximum value of any bundle, which is
the well-known NP-complete multiprocessor scheduling problem.

Proposition 3. With identical valuations, every allocation is envy-freeable. An
allocation minimizes the subsidy required if and only if it minimizes the maximum
utility to any agent. Computing such an allocation is an NP-hard problem.

What if we simply wanted to achieve the optimal worst-case upper bound of
n−1 instead of minimizing the subsidy on every instance? For binary valuations,
we achieved this by efficiently choosing a specific envy-freeable EF1 allocation—
namely, the one produced by the MNW algorithm. For identical valuations, it
is easy to see that any envy-freeable EF1 allocation A suffices as p∗

i (A) =
maxj∈N v(Aj) − v(Ai) is at most 1 for each i ∈ N and is zero for some agent.
Since we can compute an EF1 allocation efficiently, we have the following.

Proposition 4. With identical valuations, we can efficiently compute an allo-
cation which requires at most n − 1 subsidy.

Returning to General Valuations. Recall that in the worst case, we need
at least n − 1 subsidy (Theorem 4). For the special cases of binary and identical
valuations, we achieved this optimal bound by finding a special envy-freeable
and EF1 allocation, respectively. For general valuations, the problem is that it
is not clear if an envy-freeable EF1 allocation is even guaranteed to exist.

Most of the algorithms known in the literature that achieve EF1 are scale-
free [11,20], that is, multiplying an agent’s valuation by a scalar does not affect
the allocation returned. It is easy to see that such algorithms cannot always
return an envy-freeable allocation.

Of these algorithms, the round-robin method is of special interest. With a
fixed agent ordering, it is scale-free. But what if we chose the right agent ordering
in a non-scale-free way? We show that this indeed works for two agents. The proof
of the next result is provided in the full version.
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Theorem 6. When n = 2, there exists an agent ordering such that the alloca-
tion returned by the round-robin method with that ordering is envy-freeable and
requires at most 1 subsidy.

Note that this achieves the optimal bound of n − 1 for n = 2 agents. Unfor-
tunately, this method does not work for n ≥ 3 agents. In our counterexample
(provided in the full version), while the round-robin method fails to produce
an envy-freeable EF1 allocation with any agent ordering, there still exists an
envy-freeable EF1 allocation. This leads us to the following conjecture.

Conjecture 1. There always exists an envy-freeable allocation that is envy-free
up to one good.

If this conjecture is true, then by Lemma 2, we know that the minimum subsidy
required in the worst case is O(n2) (thus independent of m). We conjecture
further that the lower bound of n − 1 can be achieved.

Conjecture 2. There always exists an envy-freeable allocation which requires at
most n − 1 subsidy.

In fact, it may be possible that a subsidy of at most n−1 can always be achieved
through an envy-freeable EF1 allocation.

5 Experiments

(a) Avg,n=8 (b) Avg,m=10 (c) Dist,n=8,m=8 (d) Dist,n=8,m=40

Fig. 1. The minimum subsidy required in our simulations. Figures (a) and (b) show
the minimum subsidy averaged across instances as functions of m and n, respectively.
Figures (c) and (d) show the distribution of minimum subsidy for fixed n and m.

In this section, we empirically study the minimum subsidy required in the
average case. We compute the minimum subsidy required across all allocations
by solving an integer linear program using CPLEX.

To generate synthetic data, we consider instances with 2 ≤ n ≤ 8 and n ≤
m ≤ 5n. For each (n,m), we sample 1, 000 instances as follows: For each good g
we sample v∗(g) from an exponential distribution with mean 30 and σ∗(g) from
an exponential distribution with mean 5. Then, for each agent i and good g,
we draw vi(g) from a truncated normal distribution, which has mean v∗(g) and
standard deviation σ∗(g), and is truncated below at 0.
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In addition, we obtained 3, 535 real-world fair division instances from a pop-
ular fair division website Spliddit.org. These instances have divisible as well as
indivisible goods, from 2 to 15 agents, and from 2 to 96 goods. While Spliddit
data does not match our model as agents are forced to report valuations that sum
to a constant, we believe that it still provides a valuable empirical perspective.

We begin by noting that none of the 114, 000 synthetic instances or 3, 535
real-world instances required a subsidy of more than n − 1, which is evidence in
support of Conjecture 2.

In our synthetic experiments, we see that fixing the number of agents, the
minimum subsidy required reduces on average as the number of goods increases
(Fig. 1(a)). On the other hand, fixing the number of goods, the minimum subsidy
required (almost linearly) increases on average as the number of agents increases
(Fig. 1(b)). These results are in part due to the fact that the probability of exis-
tence of an envy-free allocation (i.e., of requiring no subsidy) increases with more
goods but decreases with more agents [14]. Next, we dive into the distribution
of the minimum subsidy required, presented in Fig. 1(c) for n = m = 8 and in
Fig. 1(d) for n = 8 and m = 40. Again, with more goods, the distribution quickly
skews towards requiring little to no subsidy.

Finally, on the real-world data obtained from Spliddit, 68% of the instances
required no subsidy (i.e., admitted envy-free allocations), while 93% of the
instances required a subsidy of at most 1. Thus, in practice, the amount of
subsidy needed to eliminate envy is most likely no greater than the maximum
value that any agent places on a single good.

6 Discussion

We have examined the minimum subsidy required both in cases when an allo-
cation is given to us and when it can be chosen. In the former case, we have
shown how to compute the minimum subsidy exactly; in both cases, we have
provided several useful bounds for cases of interest. However, a number of direc-
tions remain open for further research. Perhaps the most immediate question is
to settle our two conjectures from Sect. 4.2. Specifically, it may be possible to
adapt the iterative algorithm of Lipton et al. [20] to select the good to be allo-
cated in each iteration in a non-scale-free way and achieve the optimal bound of
n − 1 subsidy. Settling the complexity of checking the existence of an envy-free
allocation for binary valuations is also an important open question. Finally, it
would be interesting to extend this framework to non-additive valuations.

More broadly, while we modeled the divisible good as external subsidy
throughout the paper, our results also have implications for other models of
introducing monetary payments. For example, when no subsidy is available but
monetary transfers among agents are possible, we would like to find budget-
balanced transfers, p where

∑
i∈N pi = 0. It is easy to show that computing

the optimal payment vector from Theorem 2 and then reducing the payment to
each agent by the average payment finds budget-balanced transfers which mini-
mize the maximum amount that any agent has to pay. Alternatively, one could
consider a model where each agent pays to receive goods (pi ≤ 0 for each i).

http://Spliddit.org
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It is again easy to show that we can efficiently minimize the total payment col-
lected in a manner similar to Theorem 2. It would be interesting to study other
natural objective functions (e.g., minimizing the number of agents that have a
non-zero payment) in such models.
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Abstract. We consider prophet inequalities in a setting where agents correspond
to both elements in a matroid and vertices in a graph, a set of agents is feasible if
they form both an independent set in the matroid and an independent set in the
graph. Our main result is an ex-ante 1

2ðdþ 1Þ-prophet inequality, where d is a graph

parameter upper-bounded by the maximum size of an independent set in the
neighborhood of any vertex.
We establish this result through a framework that sets both dynamic prices for

elements in the matroid (using the method of balanced thresholds), and static but
discriminatory prices for vertices in the graph (motivated by recent developments
in approximate dynamic programming). The threshold for accepting an agent is
then the sum of these two prices.
We show that for graphs induced by a certain family of interval-scheduling

constraints, the value of d is 1. Our framework thus provides the first
constant-factor prophet inequality when there are both matroid-independence
constraints and interval-scheduling constraints. It also unifies and improves
several results from the literature, leading to a 1

2-prophet inequality when agents
have XOS valuation functions over a set of items and use them for a finite
interval duration, and more generally, a 1

dþ 1-prophet inequality when these items
each require a bundle of d resources to procure.
The full version of this paper can be found online at: https://arxiv.org/abs/

1906.04899.
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