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Abstract. DOF is a novel framework for defining ontologies and enforc-
ing them during document development and document evolution. A
major goal of DOF is the integrated development of formal certifica-
tion documents (e. g., for Common Criteria or CENELEC 50128) that
require consistency across both formal and informal arguments.

To support a consistent development of formal and informal parts of a
document, we provide Isabelle/DOF, an implementation of DOF on top
of Isabelle/HOL. Isabelle/DOF is integrated into Isabelle’s IDE, which
allows for smooth ontology development as well as immediate ontological
feedback during the editing of a document.

In this paper, we give an in-depth presentation of the design concepts
of DOF’s Ontology Definition Language (ODL) and key aspects of the
technology of its implementation. Isabelle/DOF is the first ontology lan-
guage supporting machine-checked links between the formal and informal
parts in an LCF-style interactive theorem proving environment.

Sufficiently annotated, large documents can easily be developed col-
laboratively, while ensuring their consistency, and the impact of changes
(in the formal and the semi-formal content) is tracked automatically.

Keywords: Ontology · Formal document development · Certification ·
DOF · Isabelle/DOF

1 Introduction

With the maturation and growing power of interactive proof systems, the body of
formalized mathematics and engineering is dramatically increasing. The Isabelle
Archive of Formal Proof (AFP) [6], created in 2004, counted in 2015 a total
of 215 articles, whereas the count stood at 413 only three years later. An in-
depth empirical analysis shows that both complexity and size increased accord-
ingly [11]. Together with the AFP, there is also a growing body on articles
concerned with formal software engineering issues such as standardized lan-
guage definitions (e. g., [15,21]), data-structures (e. g., [14,24]), hardware-models
(e. g., [20]), security-related specifications (e. g., [13,26]), or operating systems
(e. g., [22,27]).
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This development raises interest in at least two ways: First, there is a sub-
stantial potential of retrieve and reuse of formal developments, and second,
formal techniques allow a deeper checking of documents containing formal spec-
ifications, proofs and tests. This paves the way for collaborative, continuously
machine-checked developments of certification documents involving both formal
as well of informal content evolution.

We are focusing in this paper on the latter aspect. Certification documents
have to follow a structure which is relatively strictly defined in certification
standards such as [16,17]. In practice, large groups of developers have to produce
a substantial set of documents where the consistency is notoriously difficult
to maintain. In particular, certifications are centered around the traceability of
requirements throughout the entire set of documents. While technical solutions
for the traceability problem exists (most notably: DOORS [7]), they are weak in
the treatment of formal entities (such as formulas and their logical contexts).

Enforcing a document structure is done by annotations with meta-
information; the language in which the latter is defined is widely called a doc-
ument ontology (an equivalent term is vocabulary) in the semantic web com-
munity [3], i. e., a machine-readable form of the structure of a document and
the document discourse. Let us consider a set of text elements available in a
given corpus. These elements may be sentences or paragraphs, figures, tables,
definitions or lemmas, code, and, for example, the results of test-executions. By
annotation, we make links explicit that may exist between an ontology concept
and a document element of the considered corpus. While ontologies as such can
be used for a variety of applications, this paper is concerned with the represen-
tation of a mixture formal and semi-formal content (as it is, e. g., very common
in documents within a software development process). Therefore, we also discuss
the mapping to a concrete target document format (e. g., PDF) that, e. g., might
be used within a traditional certification process.

In this paper, we present the concepts of our Document Ontology Framework
(DOF) designed for building scalable and user-friendly tools on top of inter-
active theorem provers, and an implementation of DOF called Isabelle/DOF.
Isabelle/DOF supports both defining ontologies and documents that conform to
one or more ontologies. An example-driven introduction into Isabelle/DOF also
presenting details of the user-interaction in the IDE can be found elsewhere [12].
In this paper, we are focusing on the fundamental concepts of its ontology defini-
tion language ODL and the more technical issues of its implementation. In par-
ticular, we present novel concepts such as meta-types-as-types, class-invariants,
monitors, inner-syntax antiquotations as well as their interaction.

The rest of the paper is structured as follows: after explicating the underlying
assumptions in a generic document model, we present the design of DOF as a lan-
guage in Sect. 3. It follows a presentation of the implementation of Isabelle/DOF
(Sect. 4) and a discussion on related and future work (Sect. 5).

2 Background: The Document Model

In this section, we introduce the assumed document model underlying DOF
in general; in particular the concepts integrated document, sub-document, text-
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element and semantic macros occurring inside text-elements. Furthermore, we
assume two different levels of parsers (for outer and inner syntax ) where the
inner-syntax is basically a typed λ-calculus and some Higher-order Logic (HOL).

Fig. 1. A theory-graph in
the document model.

We assume a hierarchical document model, i. e.,
an integrated document consist of a hierarchy sub-
documents (files) that can depend acyclically on
each other. Sub-documents can have different doc-
ument types in order to capture documentations
consisting of documentation, models, proofs, code
of various forms and other technical artifacts. We
call the main sub-document type, for historical rea-
sons, theory-files. A theory file consists of a header,
a context definition, and a body consisting of a
sequence of commands (Fig. 1). Even the header
consists of a sequence of commands used for intro-
ductory text elements not depending on any con-
text. The context-definition contains an import and
a keyword section, for example:

theory Example (* Name of the "theory" *)
imports (* Declaration of "theory" dependencies *)

Main (* Imports a library called "Main" *)
keywords (* Registration of keywords defined locally *)

requirement (* A command for describing requirements *)

where Example is the abstract name of the text-file, Main refers to an imported
theory (recall that the import relation must be acyclic) and keywords are used
to separate commands from each other.

We distinguish fundamentally two different syntactic levels:

1. the outer-syntax (i. e., the syntax for commands) is processed by a lexer-
library and parser combinators built on top, and

2. the inner-syntax (i. e., the syntax for λ-terms in HOL) with its own parametric
polymorphism type checking.

On the semantic level, we assume a validation process for an integrated docu-
ment, where the semantics of a command is a transformation θ → θ for some
system state θ. This document model can be instantiated with outer-syntax com-
mands for common text elements, e. g., section〈... 〉 or text〈... 〉. Thus, users
can add informal text to a sub-document using a text command:

text〈This is a description.〉

This will type-set the corresponding text in, for example, a PDF document.
However, this translation is not necessarily one-to-one: text elements can be
enriched by formal, i. e., machine-checked content via semantic macros, called
antiquotations:

text〈According to the reflexivity axiom @{thm refl}, we obtain in Γ
for @{term "fac 5"} the result @{value "fac 5"}.〉
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Fig. 2. The Isabelle/DOF IDE (left) and the corresponding PDF (right).

which is represented in the final document (e. g., a PDF) by:

According to the reflexivity axiom x = x, we obtain in Γ for fac 5 the result 120.

Semantic macros are partial functions of type θ → text; since they can use
the system state, they can perform all sorts of specific checks or evaluations
(type-checks, executions of code-elements, references to text-elements or proven
theorems such as refl, which is the reference to the axiom of reflexivity).

Semantic macros establish formal content inside informal content; they can
be type-checked before being displayed and can be used for calculations before
being typeset. They represent the device for linking the formal with the informal.

Implementability of the Assumed Document Model. Batch-mode check-
ers for DOF can be implemented in all systems of the LCF-style prover family,
i. e., systems with a type-checked term, and abstract thm-type for theorems (pro-
tected by a kernel). This includes, e. g., ProofPower, HOL4, HOL-light, Isabelle,
as well as Coq and its derivatives. DOF is, however, designed for fast interaction
in an IDE. If a user wants to benefit from this experience, only Isabelle and Coq
have the necessary infrastructure of asynchronous proof-processing and support
by an IDE [10,18,28,29]. For our implementation of DOF, called Isabelle/DOF,
we are using the Isabelle platform [25]. Figure 2 shows a screen-shot of an intro-
ductory paper on Isabelle/DOF [12] presenting a number of application scenarios
and user-interface aspects. On the left, we represented the Isabelle/DOF IDE,
while on the right, the generated presentation in PDF is shown.

Isabelle provides, beyond the features required for DOF, a lot of additional
benefits. For example, it also allows the asynchronous evaluation and checking
of the document content [10,28,29] and is dynamically extensible. Its IDE pro-
vides a continuous build, continuous check functionality, syntax highlighting, and
IntelliSense-like auto-completion. It also provides infrastructure for displaying
meta-information (e. g., binding and type annotation) as pop-ups, while hovering
over sub-expressions. A fine-grained dependency analysis allows the processing
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of individual parts of theory files asynchronously, allowing Isabelle to interac-
tively process large (hundreds of theory files) documents. Isabelle can group
sub-documents into sessions, i. e., sub-graphs of the document-structure that
can be “pre-compiled” and loaded instantaneously, i. e., without re-processing.

3 The DOF Design

DOF consists basically of two parts: 1. the declaration of new keywords and new
commands allowing for the specification of ontological concepts in our Ontol-
ogy Definition Language (ODL), and 2. the definition of text-elements that are
“ontology-aware,” i. e., perform the necessary checks to ensure compliance to
an imported ontology. This represents a partial instantiation of the underly-
ing generic document model. The document language can be extended (recall
the keywords-section) dynamically, i. e., new user-defined can be introduced at
run-time. This is similar to the definition of new functions in an interpreter.

We illustrate the design of DOF by modeling a small ontology that can be
used for writing formal specifications that, e. g., could build the basis for an ontol-
ogy for certification documents used in processes such as Common Criteria [17]
or CENELEC 50128 [16].1 Moreover, in examples of certification documents, we
refer to a controller of a steam boiler that is inspired by the famous steam boiler
formalization challenge [9].

3.1 Ontology Modeling in ODL

Conceptually, ontologies specified in ODL consist of:

– document classes (syntactically marked by the doc_class keyword) that
describe concepts;

– an optional document base class expressing single inheritance extensions;
– attributes specific to document classes, where

• attributes are typed;
• attributes of instances of document elements are mutable;
• attributes can refer to other document classes, thus, document classes

must also be HOL-types (such attributes are called links);
– a special link, the reference to a super-class, establishes an is-a relation

between classes;
– classes may refer to other classes via a regular expression in a where clause

(classes with a where clauses are called monitor classes);
– attributes may have default values in order to facilitate notation.

A major design decision of ODL is to denote attribute values by HOL-terms
and HOL-types. Consequently, ODL can refer to any predefined type defined in
the HOL library, e. g., string or int as well as parameterized types, e. g., _

option, _ list, _ set, or products _ × _. As a consequence of the document

1 The Isabelle/DOF distribution contains an ontology for writing documents for a
certification according to CENELEC 50128.
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Listing 1.1. An example ontology modeling simple certification documents, including
scientific papers such as [12]; also recall Fig. 2.

doc_class title = short_title :: "string option" <= "None"
doc_class author = email :: "string" <= "''''"

datatype classification = SIL0 | SIL1 | SIL2 | SIL3 | SIL4

doc_class abstract =
keywordlist :: "string list" <= []
safety_level :: "classification" <= "SIL3"

doc_class text_section =
authored_by :: "author set" <= "{}"
level :: "int option" <= "None"

type_synonym notion = string

doc_class introduction = text_section +
authored_by :: "author set" <= "UNIV"
uses :: "notion set"

doc_class claim = introduction +
based_on :: "notion list"

doc_class technical = text_section +
formal_results :: "thm list"

doc_class "definition" = technical +
is_formal :: "bool"
property :: "term list" <= "[]"

datatype kind = expert_opinion | argument | proof

doc_class result = technical +
evidence :: kind
property :: "thm list" <= "[]"

doc_class example = technical +
referring_to :: "(notion + definition) set" <= "{}"

doc_class "conclusion" = text_section +
establish :: "(claim × result) set"

model, ODL definitions may be arbitrarily intertwined with standard HOL type
definitions. Finally, document class definitions result in themselves in a HOL-
types in order to allow links to and between ontological concepts.

Listing 1.1 shows an example ontology for mathematical papers (an extended
version of this ontology was used for writing [12], also recall Fig. 2). The com-
mands datatype (modeling fixed enumerations) and type_synonym (defining
type synonyms) are standard mechanisms in HOL systems. Since ODL is an add-
on, we have to quote sometimes constant symbols (e. g., "proof") to avoid con-
fusion with predefined keywords. ODL admits overriding (such as authored_by
in the document class introduction), where it is set to another library con-
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stant, but no overloading. All text_section elements have an optional level
attribute, which will be used in the output generation for the decision if the con-
text is a section header and its level (e. g., chapter, section, subsection). While
within an inheritance hierarchy overloading is prohibited, attributes may be re-
declared freely in independent parts (as is the case for property).

3.2 Meta-Types as Types

To express the dependencies between text elements to the formal entities, e. g.,
term (λ-term), typ, or thm, we represent the types of the implementation lan-
guage inside the HOL type system. We do, however, not reflect the data of these
types. They are just declared abstract types, “inhabited” by special constant
symbols carrying strings, for example of the format @{thm <string>}. When
HOL expressions were used to denote values of doc_class instance attributes,
this requires additional checks after conventional type-checking that this string
represents actually a defined entity in the context of the system state θ. For
example, the establish attribute in the previous section is the power of the
ODL: here, we model a relation between claims and results which may be a
formal, machine-check theorem of type thm denoted by, for example: property
="[@{thm ''system_is_safe''}]" in a system context θ where this theo-
rem is established. Similarly, attribute values like property = "@{term 〈A ↔
B〉}" require that the HOL-string A ↔ B is again type-checked and represents
indeed a formula in θ. Another instance of this process, which we call second-
level type-checking, are term-constants generated from the ontology such as
@{definition <string>}. For the latter, the argument string must be checked
that it represents a reference to a text-element having the type
according to the ontology in Listing 1.1.

3.3 Annotating with Ontology Meta-Data: Outer Syntax

DOF introduces its own family of text-commands, which allows hav-
ing side effects of the global context θ and thus to store and man-
age own meta-information. Among others, DOF provides the com-
mands section*[<meta-args>]〈... 〉, subsection*[<meta-args>]〈... 〉, or
text*[<meta-args>]〈... 〉. Here, the argument <meta-args> is a syntax for
declaring instance, class and attributes for this text element, following the scheme

<ref> :: <class_id>, attr_1 = <expr>, ..., attr_n = <expr>

The <class_id> can be omitted, which represents the implicit superclass
text, where attr_i must be declared attributes in the class and where the
HOL <expr> must have the corresponding HOL type. Attributes from a class
definition may be left undefined; definitions of attribute values override default
values or values of super-classes. Overloading of attributes is not permitted in
DOF.

We can now annotate a text as follows. First, we have to place a particular
document into the context of our conceptual example ontology (Listing 1.1):
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theory Steam_Boiler
imports

tiny_cert (* The ontology defined in Listing 1.1. *)
begin

This opens a new document (theory), called Steam_Boiler that imports our
conceptual example ontology “tiny_cert” (stored in a file tiny_cert.thy).2
Now we can continue to annotate our text as follows:

title*[a] 〈The Steam Boiler Controller〉

abstract*[abs, safety_level="SIL4", keywordlist = "[''controller'']"]〈

We present a formalization of a program which serves to control the
level of water in a steam boiler.

〉

section*[intro::introduction]〈Introduction〉

text〈We present ... 〉

section*[T1::technical]〈Physical Environment〉

text〈

The system comprises the following units
• the steam-boiler
• a device to measure the quantity of water in the steam-boiler
• ...

〉

Wheretitle*[a ...] is a predefinedmacro fortext*[a::title,...]〈... 〉

(similarly abstract*). The macro section* assumes a class-id referring to a
class that has a level attribute. We continue our example text:

text*[c1::contrib_claim, based_on="[''pumps'',''steam boiler'']" ]〈

As indicated in @{introduction "intro"}, we the water level of the
boiler is always between the minimum and the maximum allowed level.

〉

The first text element in this example fragment defines the text entity c1 and
also references the formerly defined text element intro (which will be repre-
sented in the PDF output, for example, by a text anchor “Section 1” and a
hyperlink to its beginning). The antiquotation @{introduction ...}, which is
automatically generated from the ontology, is immediately validated (the link to
intro is defined) and type-checked (it is indeed a link to an introduction text-
element). Moreover, the IDE automatically provides editing and development
support such as auto-completion or the possibility to “jump” to its definition by
clicking on the antiquotation. The consistency checking ensures, among others,

2 The usual import-mechanisms of the Isabelle document model applies also to ODL:
ontologies can be extended, several ontologies may be imported, a document can
validate several ontologies.
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that the final document will not contain any “dangling references” or references
to entities of another type.

DOF as such does not require a particular evaluation strategy; however, if
the underlying implementation is based on a declaration-before-use strategy, a
mechanism for forward declarations of references is necessary:

declare_reference* [<meta-args>]

This command declares the existence of a text-element and allows for referencing
it, although the actual text-element will occur later in the document.

3.4 Editing Documents with Ontology Meta-Data: Inner Syntax

We continue our running example as follows:

As mentioned earlier, instances of document classes are mutable. We use
this feature to modify meta-data of these text-elements and “assign” them to the
property-list afterwards and add results from Isabelle definitions and proofs. The
notation A+=X stands for A := A + X. This mechanism can also be used to define
the required relation between claims and results required in the establish-
relation required in a summary.

3.5 ODL Class Invariants

Ontological classes as described so far are too liberal in many situations. For
example, one would like to express that any instance of a result class finally
has a non-empty property list, if its kind is proof, or that the establish relation
between claim and result is surjective.

In a high-level syntax, this type of constraints could be expressed, e. g., by:
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∀ x ∈ result. x@kind = proof ↔ x@kind �= []
∀ x ∈ conclusion. ∀ y ∈ Domain(x@establish)

→ ∃ y∈ Range(x@establish). (y,z) ∈ x@establish
∀ x ∈ introduction. finite(x@authored_by)

where result, conclusion, and introduction are the set of all possible
instances of these document classes. All specified constraints are already checked
in the IDE of DOF while editing; it is however possible to delay a final error mes-
sage till the closing of a monitor (see next section). The third constraint enforces
that the user sets the authored_by set, otherwise an error will be reported.

3.6 ODL Monitors

We call a document class with an accept-clause a monitor. Syntactically, an
accept-clause contains a regular expression over class identifiers. We can extend
our tiny_cert ontology with the following example:

doc_class article =
style_id :: string <= "''CENELEC50128''"

accepts "(title ~~ {|author|}+ ~~ abstract ~~ {|introduction|}+ ~~

{|technical || example|}+ ~~ {|conclusion|}+)"

Semantically, monitors introduce a behavioral element into ODL:

open_monitor*[this::article] (* begin of scope of monitor "this" *)
...

close_monitor*[this] (* end of scope of monitor "this" *)

Inside the scope of a monitor, all instances of classes mentioned in its accept-
clause (the accept-set) have to appear in the order specified by the regular expres-
sion; instances not covered by an accept-set may freely occur. Monitors may
additionally contain a reject-clause with a list of class-ids (the reject-list). This
allows specifying ranges of admissible instances along the class hierarchy:

– a superclass in the reject-list and a subclass in the accept-expression forbids
instances superior to the subclass, and

– a subclass S in the reject-list and a superclass T in the accept-list allows
instances of superclasses of T to occur freely, instances of T to occur in the
specified order and forbids instances of S.

Monitored document sections can be nested and overlap; thus, it is possible to
combine the effect of different monitors. For example, it would be possible to
refine the example section by its own monitor and enforce a particular structure
in the presentation of examples.

Monitors manage an implicit attribute trace containing the list of “observed”
text element instances belonging to the accept-set. Together with the concept of
ODL class invariants, it is possible to specify properties of a sequence of instances
occurring in the document section. For example, it is possible to express that in
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the sub-list of introduction-elements, the first has an introduction element
with a level strictly smaller than the others. Thus, an introduction is forced to
have a header delimiting the borders of its representation. Class invariants on
monitors allow for specifying structural properties on document sections.

3.7 Document Representation

Up to now, we discussed the support of ontological concepts in the context of an
IDE, i. e., a rather dynamic environment that, e. g., allows for interactive query-
ing and displaying of information. Certification processes often require “static”
documents, e. g., in a format such as PDF/A that are designed for archiving and
long-term preservation of electronic documents, are required.

While many concepts of ODL can easily be mapped to such static formats,
more dynamic features (e. g., references) requires additional considerations such
as ensuring that references point to text elements that have a unique identifier
that is visible in the actual document representation. Currently, the definition
of a static document representation is not part of DOF itself and, thus, depends
on the underlying implementation. We refer the reader to Sect. 4.6 for details.

4 The Isabelle/DOF Implementation

In this section, we describe the basic implementation aspects of Isabelle/DOF,
which is based on the following design-decisions:

– the entire Isabelle/DOF is a “pure add-on,” i. e., we deliberately resign on the
possibility to modify Isabelle itself.

– we made a small exception to this rule: the Isabelle/DOF package modifies in
its installation about 10 lines in the LATEX generator thy_output.ML which
greatly simplifies the architecture.3

– we decided to make the markup-generation by itself to adapt it as well as
possible to the needs of tracking the linking in documents.

– Isabelle/DOF is deeply integrated into the Isabelle’s IDE (PIDE) to give
immediate feedback during editing and other forms of document evolution.

Semantic macros, as required by our document model, are called document
antiquotations in the Isabelle literature [30]. While Isabelle’s code-antiquotations
are an old concept going back to Lisp and having found via SML and OCaml
their ways into modern proof systems, special annotation syntax inside documen-
tation comments have their roots in documentation generators such as Javadoc.
Their use, however, as a mechanism to embed machine-checked formal content
is usually very limited and also lacks IDE support.

3 Earlier versions of Isabelle/DOF used an additional LATEX-to-LATEX translator that
needed to be integrated into the document build process.
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4.1 Writing Isabelle/DOF as User-Defined Plugin in Isabelle/Isar

A plugin in Isabelle starts with defining the local data and registering it in the
framework. As mentioned before, contexts are structures with independent cell-
s/compartments having three primitives init, extend and merge. Technically
this is done by instantiating a functor Generic_Data, and the following fairly
typical code-fragment is drawn from Isabelle/DOF:

structure Data = Generic_Data
( type T = docobj_tab * docclass_tab * ...

val empty = (initial_docobj_tab, initial_docclass_tab, ...)
val extend = I
fun merge((d1,c1,...),(d2,c2,...)) = (merge_docobj_tab (d1,d2,...),

merge_docclass_tab(c1,c2,...))
);

where the table docobj_tab manages document classes and docclass_tab the
environment for class definitions (inducing the inheritance relation). Other tables
capture, e. g., the class invariants, inner-syntax antiquotations.

All the text samples shown here have to be in the context of an SML file or
in an ML〈... 〉 command inside a theory file.

Operations follow the model-view-controller paradigm, where Isabelle/Isar
provides the controller part. A typical model operation has the type:

val opn :: <args_type> -> Context.generic -> Context.generic

representing a transformation on system contexts. For example, the operation
of declaring a local reference in the context is presented as follows:

fun declare_object_local oid ctxt =
let fun decl {tab,maxano} = {tab=Symtab.update_new(oid,NONE) tab,

maxano=maxano}
in (Data.map(apfst decl)(ctxt)

handle Symtab.DUP _ =>
error("multiple declaration of document reference"))

end

where Data.map is the update function resulting from the instantiation of the
functor Generic_Data. This code fragment uses operations from a library struc-
ture Symtab that were used to update the appropriate table for document
objects in the plugin-local state. Possible exceptions to the update operation
were mapped to a system-global error reporting function.

Finally, the view-aspects were handled by an API for parsing-combinators.
The library structure Scan provides the operators:

op || : ('a -> 'b) * ('a -> 'b) -> 'a -> 'b
op -- : ('a -> 'b * 'c) * ('c -> 'd * 'e) -> 'a -> ('b * 'd) * 'e
op >> : ('a -> 'b * 'c) * ('b -> 'd) -> 'a -> 'd * 'c
op option : ('a -> 'b * 'a) -> 'a -> 'b option * 'a
op repeat : ('a -> 'b * 'a) -> 'a -> 'b list * 'a
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for alternative, sequence, and piping, as well as combinators for option and
repeat. Parsing combinators have the advantage that they can be smoothlessly
integrated into standard programs, and they enable the dynamic extension of
the grammar. There is a more high-level structure Parse providing specific com-
binators for the command-language Isar:

val attribute = Parse.position Parse.name
-- Scan.optional(Parse.$$$ "=" |-- Parse.!!! Parse.name)"";

val reference = Parse.position Parse.name
-- Scan.option (Parse.$$$ "::" |-- Parse.!!!

(Parse.position Parse.name));
val attributes =(Parse.$$$ "[" |-- (reference

-- (Scan.optional(Parse.$$$ ","
|--(Parse.enum ","attribute)))[]))--| Parse.$$$ "]"

The “model” declare_reference_opn and “new” attributes parts were com-
bined via the piping operator and registered in the Isar toplevel:

fun declare_reference_opn (((oid,_),_),_) =
(Toplevel.theory (DOF_core.declare_object_global oid))

val _ = Outer_Syntax.command @{command_keyword "declare_reference"}
"declare document reference"
(attributes >> declare_reference_opn);

Altogether, this gives the extension of Isabelle/HOL with Isar syntax and seman-
tics for the new command :

declare_reference [lal::requirement, alpha="main", beta=42]

The construction also generates implicitly some markup information; for exam-
ple, when hovering over the declare_reference command in the IDE, a popup
window with the text: “declare document reference” will appear.

4.2 Programming Antiquotations

The definition and registration of text antiquotations and ML-antiquotations is
similar in principle: based on a number of combinators, new user-defined antiquo-
tation syntax and semantics can be added to the system that works on the
internal plugin-data freely. For example, in

val _ = Theory.setup(
Thy_Output.antiquotation @{binding docitem}

docitem_antiq_parser
(docitem_antiq_gen default_cid) #>

ML_Antiquotation.inline @{binding docitem_value}
ML_antiq_docitem_value)
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the text antiquotation docitem is declared and bounded to a parser for the argu-
ment syntax and the overall semantics. This code defines a generic antiquotation
to be used in text elements such as

text〈as defined in @{docitem 〈d1〉} ... 〉

The subsequent registration docitem_value binds code to a ML-antiquotation
usable in an ML context for user-defined extensions; it permits the access to the
current “value” of document element, i. e.; a term with the entire update history.

It is possible to generate antiquotations dynamically, as a consequence of
a class definition in ODL. The processing of the ODL class also
generates a text antiquotation @{definition 〈d1〉}, which works similar to
@{docitem 〈d1〉} except for an additional type-check that assures that d1 is
a reference to a definition. These type-checks support the subclass hierarchy.

4.3 Implementing Second-Level Type-Checking

On expressions for attribute values, for which we chose to use HOL syntax to
avoid that users need to learn another syntax, we implemented an own pass over
type-checked terms. Stored in the late-binding table ISA_transformer_tab, we
register for each inner-syntax-annotation (ISA’s), a function of type

theory -> term * typ * Position.T -> term option

Executed in a second pass of term parsing, ISA’s may just return None. This is
adequate for ISA’s just performing some checking in the logical context theory;
ISA’s of this kind report errors by exceptions. In contrast, transforming ISA’s
will yield a term; this is adequate, for example, by replacing a string-reference
to some term denoted by it. This late-binding table is also used to generate
standard inner-syntax-antiquotations from a doc_class.

4.4 Programming Class Invariants

For the moment, there is no high-level syntax for the definition of class invariants.
A formulation, in SML, of the first class-invariant in Sect. 3.5 is straight-forward:

fun check_result_inv oid {is_monitor:bool} ctxt =
let val kind = compute_attr_access ctxt "kind" oid @{here} @{here}

val prop = compute_attr_access ctxt "property" oid @{here} @{here}
val tS = HOLogic.dest_list prop

in case kind_term of
@{term "proof"} => if not(null tS) then true

else error("class result invariant violation")
| _ => false

end
val _ = Theory.setup (DOF_core.update_class_invariant

"tiny_cert.result" check_result_inv)
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The setup-command (last line) registers the check_result_inv function into
the Isabelle/DOF kernel, which activates any creation or modification of an
instance of result. We cannot replace compute_attr_access by the corre-
sponding antiquotation @{docitem_value kind::oid}, since oid is bound to a
variable here and can therefore not be statically expanded.

Isabelle’s code generator can in principle generate class invariant code from
a high-level syntax. Since class-invariant checking can result in an efficiency
problem—they are checked on any edit—and since invariant programming
involves a deeper understanding of ontology modeling and the Isabelle/DOF
implementation, we backed off from using this technique so far.

4.5 Implementing Monitors

Since monitor-clauses have a regular expression syntax, it is natural to imple-
ment them as deterministic automata. These are stored in the docobj_tab for
monitor-objects in the Isabelle/DOF component. We implemented the func-
tions:

val enabled : automaton -> env -> cid list
val next : automaton -> env -> cid -> automaton

where env is basically a map between internal automaton states and class-id’s
(cid’s). An automaton is said to be enabled for a class-id, iff it either occurs in its
accept-set or its reject-set (see Sect. 3.6). During top-down document validation,
whenever a text-element is encountered, it is checked if a monitor is enabled
for this class; in this case, the next-operation is executed. The transformed
automaton recognizing the rest-language is stored in docobj_tab if possible;
otherwise, if next fails, an error is reported. The automata implementation is,
in large parts, generated from a formalization of functional automata [23].

4.6 Document Representation

Isabelle/DOF can generate PDF documents, using a LATEX-backend (for end
users there is no need to edit LATEX-code manually). For PDF documents, a
specific representation, including a specific layout or formatting of certain text
types (e. g., title, abstract, theorems, examples) is required: for each ontological
concept (using the doc_class-command), a representation for the PDF output
needs to be defined. The LATEX-setup of Isabelle/DOF provides the \newisadof
-command and an inheritance-based dispatcher, i. e., if for a concept no LATEX-
representation is defined, the representation of its super-concept is used.

Recall the document class abstract from our example ontology (Listing 1.1).
The following LATEX-code (defined in a file tiny_cert.sty) defines the repre-
sentation for abstracts, re-using the the standard abstract-environment:
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\newisadof{tiny_cert.abstract}[reference=,class_id=%
,keywordlist=,safety_level=][1]{%

\begin{isamarkuptext}%
\begin{abstract}\label{\commandkey{reference}}%
#1\\ % this is the main text of the abstract
\ifthenelse{\equal{\commandkey{safety_level}}{}}{}{%
\medskip\noindent{Safety Level:} \commandkey{safety_level}\\%

}
\ifthenelse{\equal{\commandkey{keywordlist}}{}}{}{%
\medskip\noindent{\textbf{Keywords:}} \commandkey{keywordlist}%

}
\end{abstract}%

\end{isamarkuptext}%
}

The \newisadof takes the name of the concept as first argument, followed by a
list of parameters that is the same as the parameters used in defining the concept
with doc_class. Within the definition section of the command, the main argu-
ment (written in the actual document within 〈 ... 〉) is accessed using #1. The
parameters can be accessed using the \commandkey-command. In our example,
we print the abstract within abstract-environment of LATEX. Moreover, we test
if the parameters safety_level and keywordlist are non-empty and, if yes,
print them as part of the abstract.

5 Conclusion and Related Work

5.1 Related Work

Our work shares similarities with existing ontology editors such as Protégé [5],
Fluent Editor [1], NeOn [2], or OWLGrEd [4]. These editors allow for defining
ontologies and also provide certain editing features such as auto-completion. In
contrast, Isabelle/DOF does not only allow for defining ontologies, directly after
defining an ontological concept, they can also be instantiated and their correct
use is checked immediately. The document model of Jupyter Notebooks [8] comes
probably closest to our ideal of a “living document.”

Finally, the LATEX that is generated as intermediate step in our PDF gener-
ation is conceptually very close to SALT [19], with the difference that instead
of writing LATEX manually it is automatically generated and its consistency is
guaranteed by the document checking of Isabelle/DOF.

5.2 Conclusion

We presented the design of DOF, an ontology framework designed for formal doc-
uments developed by interactive proof systems. It foresees a number of specific
features—such as monitors, meta-types as-types or semantic macros generated
from a typed ontology specified in ODL—that support the specifics of such doc-
uments linking formal and informal content. As validation of these concepts,
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we present Isabelle/DOF, an implementation of DOF based on Isabelle/HOL.
Isabelle/DOF is unique in at least one aspect: it is an integrated environment
that allows both defining ontologies and writing documents that conform to a
set of ontological rules, and both are supported by editing and query features
that one expects from a modern IDE.

While the batch-mode part of DOF can, in principle, be re-implemented in
any LCF-style prover, Isabelle/DOF is designed for fast interaction in an IDE. It
is this feature that allows for a seamless development of ontologies together with
validation tests checking the impact of ontology changes on document instances.
We expect this to be a valuable tool for communities that still have to develop
their domain specific ontologies, be it in mathematical papers, formal theories,
formal certifications or other documents where the consistency of formal and
informal content has to be maintained under document evolution. Today, in some
areas such as medicine and biology, ontologies play a vital role for the retrieval of
scientific information; we believe that leveraging these ontology-based techniques
to the field of formal software engineering can represent a game changer.

Availability. The implementation of the framework is available at https://
git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF/. Isabelle/DOF is licensed
under a 2-clause BSD license (SPDX-License-Identifier: BSD-2-Clause).

Acknowledgments. This work has been partially supported by IRT SystemX, Paris-
Saclay, France, and therefore granted with public funds of the Program “Investissements
d’Avenir”.
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