
Peter Csaba Ölveczky
Gwen Salaün (Eds.)

17th International Conference, SEFM 2019
Oslo, Norway, September 18–20, 2019
Proceedings

Software Engineering
and Formal MethodsLN

CS
 1

17
24

Fo
rm

al
 M

et
ho

ds

Lecture Notes in Computer Science 11724

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA

Formal Methods
Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7409

Peter Csaba Ölveczky • Gwen Salaün (Eds.)

Software Engineering
and Formal Methods
17th International Conference, SEFM 2019
Oslo, Norway, September 18–20, 2019
Proceedings

123

Editors
Peter Csaba Ölveczky
University of Oslo
Oslo, Norway

Gwen Salaün
University of Grenoble Alpes
Montbonnot, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-30445-4 ISBN 978-3-030-30446-1 (eBook)
https://doi.org/10.1007/978-3-030-30446-1

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-30446-1

Preface

This volume contains the proceedings of the 17th International Conference on Software
Engineering and Formal Methods (SEFM 2019), which was held during September
18–20, 2019, in Oslo, Norway.

The conference aims to bring together leading researchers and practitioners from
academia, industry, and government to advance the state of the art in formal methods,
to facilitate their uptake in the software industry, and to encourage their integration
within practical software engineering methods and tools.

SEFM 2019 received 89 full paper submissions. Each paper received at least three
reviews. Based on the reviews and extensive discussions, the program committee
decided to accept 27 papers. This volume contains the revised versions of those 27
papers, which cover a wide variety of topics, including testing, formal verification,
program analysis, runtime verification, malware and attack detection, and software
development and evolution. The papers address a wide range of systems, such as
cyber-physical systems, UAVs, autonomous robots, and feature-oriented and operating
systems.

The conference also featured invited talks by Wil van der Aalst (RWTH Aachen
University), David Basin (ETH Zürich), and Koushik Sen (University of California,
Berkeley). Abstracts of two of these invited talks, and a full paper accompanying the
invited talk by van der Aalst, are included in this volume.

Many colleagues and friends contributed to SEFM 2019. We thank Wil van der
Aalst, David Basin, and Koushik Sen for accepting our invitations to give invited talks,
and the authors who submitted their work to SEFM 2019. We are grateful to the
members of the program committee and the external reviewers for providing timely and
insightful reviews, as well as for their involvement in the post-reviewing discussions.
We would also like to thank the members of the organizing committee, in particular its
hard-working co-chair Martin Steffen, for all their work in organizing SEFM 2019, the
SEFM steering committee chair Antonio Cerone for useful assistance, the workshop
chairs (Javier Camara and Martin Steffen) for supervising the organization of the SEFM
2019 workshops, Lina Marsso for her excellent job attracting submissions, and Ajay
Krishna for maintaining the conference web pages.

We appreciated very much the convenience of the EasyChair system for handling
the submission and review processes, and for preparing these proceedings. Finally, we
gratefully acknowledge financial support from The Research Council of Norway.

September 2019 Peter Csaba Ölveczky
Gwen Salaün

Organization

Program Chairs

Peter Csaba Ölveczky University of Oslo, Norway
Gwen Salaün University of Grenoble Alpes, France

Steering Committee

Radu Calinescu University of York, UK
Antonio Cerone (Chair) Nazarbayev University, Kazakhstan
Rocco De Nicola IMT School for Advanced Studies Lucca, Italy
Einar Broch Johnsen University of Oslo, Norway
Peter Csaba Ölveczky University of Oslo, Norway
Gwen Salaün University of Grenoble Alpes, France
Ina Schaefer Technical University of Braunschweig, Germany
Marjan Sirjani Mälardalen University, Sweden

Program Committee

Erika Ábrahám RWTH Aachen University, Germany
Cyrille Artho KTH Royal Institute of Technology, Sweden
Kyungmin Bae Pohang University of Science and Technology,

South Korea
Olivier Barais University of Rennes, France
Luis Barbosa University of Minho, Portugal
Dirk Beyer Ludwig-Maximilian University Munich, Germany
Roberto Bruni University of Pisa, Italy
Ana Cavalcanti University of York, UK
Alessandro Cimatti FBK, Italy
Robert Clarisó Open University of Catalonia, Spain
Rocco De Nicola IMT School for Advanced Studies Lucca, Italy
John Derrick University of Sheffield, UK
José Luiz Fiadeiro Royal Holloway, University of London, UK
Osman Hasan National University of Sciences and Technology,

Pakistan
Klaus Havelund Jet Propulsion Laboratory, USA
Reiko Heckel University of Leicester, UK
Marieke Huisman University of Twente, The Netherlands
Alexander Knapp Augsburg University, Germany
Nikolai Kosmatov CEA LIST, France
Frédéric Mallet University of Nice Sophia Antipolis, France
Tiziana Margaria Lero, Ireland

Hernán Melgratti University of Buenos Aires, Argentina
Madhavan Mukund Chennai Mathematical Institute, India
Peter Csaba Ölveczky University of Oslo, Norway
Marc Pantel IRIT, INPT, University of Toulouse, France
Anna Philippou University of Cyprus, Cyprus
Grigore Rosu University of Illinois, USA
Gwen Salaün University of Grenoble Alpes, France
Augusto Sampaio Federal University of Pernambuco, Brazil
César Sánchez IMDEA Software Institute, Spain
Ina Schaefer Technical University of Braunschweig, Germany
Gerardo Schneider University of Gothenburg, Sweden
Graeme Smith The University of Queensland, Australia
Jun Sun Singapore University of Technology and Design,

Singapore
Maurice H. ter Beek ISTI-CNR, Italy
Antonio Vallecillo University of Málaga, Spain
Dániel Varró Budapest University of Technology and Economics,

Hungary and McGill University, Canada
Heike Wehrheim University of Paderborn, Germany
Franz Wotawa University of Graz, Austria

External Reviewers

Yehia Abd
Michael Abir
Waqar Ahmad
Alif Akbar Pranata
Pedro Antonino
Sebastien Bardin
Flavia Barros
Sarah Beecham
Chiara Bodei
Johann Bourcier
Marco Bozzano
Antonio Bucchiarone
Márton Búr
Nathalie Cauchi
Gabriele Costa
Ferruccio Damiani
Luca Di Stefano
Gidon Ernst
Alessandro Fantechi
Alessio Ferrari
Michael Foster
Leo Freitas

Karlheinz Friedberger
Letterio Galletta
Luca Geatti
Alberto Griggio
Rebecca Haehn
Patrick Healy
Omar Inverso
Shaista Jabeen
Cyrille Jegourel
Seema Jehan
Richard Johansson
Sebastiaan Joosten
Georgia Kapitsaki
Alexander Knüppel
Jürgen König
Ajay Krishna
Dimitrios Kouzapas
Sophie Lathouwers
Jean-Christophe Léchenet
Thomas Lemberger
Yun Lin
Sascha Lity

viii Organization

Piergiuseppe Mallozzi
Carlos Matos
Ilaria Matteucci
Marcel Vinicius Medeiros Oliveira
Vince Molnár
Carlo Montangero
Raul Monti
Alexandre Mota
Vadim Mutilin
Sidney C. Nogueira
Dan O’Keeffe
Wytse Oortwijn
Felix Pauck
Karen Petrie
Marinella Petrocchi
Pablo Picazo-Sanchez
Virgile Prevosto
Adnan Rashid

Virgile Robles
Marco Roveri
Tobias Runge
Stefan Schupp
Alexander Schlie
Oszkár Semeráth
Umair Siddique
Arnab Sharma
Ling Shi
Martin Spiessl
Ketil Stølen
Ivan Stojic
Ibrahim Tariq-Javed
Manuel Toews
Stefano Tonetta
Evangelia Vanezi
Philipp Wendler

Organization ix

Abstracts of Invited Talks

Security Protocols: Model Checking Standards

David Basin

Department of Computer Science, ETH Zurich, Switzerland

The design of security protocols is typically approached as an art, rather than a science,
and often with disastrous consequences. But this need not be so! I have been working
for ca. 20 years on foundations, methods, and tools, both for developing protocols that
are correct by construction [9, 10] and for the post-hoc verification of existing designs
[1–4, 8]. In this talk I will introduce my work in this area and describe my experience
analyzing, improving, and contributing to different industry standards, both existing
and upcoming [5–7].

References

1. Basin, D.: Lazy infinite-state analysis of security protocols. In: Secure Networking—CQRE
[Secure] 1999. LNCS, vol.1740, pp. 30–42. Springer-Verlag, Düsseldorf, November 1999

2. Basin, D., Cremers, C., Dreier, J., Sasse, R.: Symbolically analyzing security protocols using
tamarin. SIGLOG News 4(4), 19–30 (2017). https://doi.org/10.1145/3157831.3157835

3. Basin, D., Cremers, C., Meadows, C.: Model checking security protocols. In: Clarke, E.,
Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 727–762.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_22

4. Basin, D., Mödersheim, S., Viganò, L.: OFMC: a symbolic model checker for security
protocols. Int. J. Inf. Secur. 4(3), 181–208 (2005). Published online December 2004

5. Basin, D., Cremers, C., Meier, S.: Provably repairing the ISO/IEC 9798 standard for entity
authentication. J. Comput. Secur. 21(6), 817–846 (2013)

6. Basin, D., Cremers, C.J.F., Miyazaki, K., Radomirovic, S., Watanabe, D.: Improving the
security of cryptographic protocol standards. IEEE Secur. Privac. 13(3), 24–31 (2015).
https://doi.org/10.1109/MSP.2013.162

7. Basin, D., Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R., Stettler, V.: Formal analysis of
5G authentication. In: Proceedings of the 2018 ACM Conference on Computer and Com-
munications Security (CCS), pp. 1383–1396 (2018)

8. Schmidt, B., Meier, S., Cremers, C., Basin, D.: Automated analysis of Diffie-Hellman
protocols and advanced security properties. In: Proceedings of the 25th IEEE Computer
Security Foundations Symposium (CSF), pp. 78–94 (2012)

9. Sprenger, C., Basin, D.: Refining key establishment. In: Proceedings of the 25th IEEE
Computer Security Foundations Symposium (CSF), pp. 230–246 (2012)

10. Sprenger, C., Basin, D.: Refining security protocols. J. Comput. Secur. 26(1), 71–120
(2018). https://doi.org/10.3233/JCS-16814

https://doi.org/10.1145/3157831.3157835
https://doi.org/10.1007/978-3-319-10575-8_22
https://doi.org/10.1109/MSP.2013.162
https://doi.org/10.3233/JCS-16814

Automated Test Generation: A Journey
from Symbolic Execution to Smart Fuzzing

and Beyond

Koushik Sen

EECS Department, UC Berkeley, CA, USA
ksen@cs.berkeley.edu

Abstract. In the last two decades, automation has had a significant impact on
software testing and analysis. Automated testing techniques, such as symbolic
execution, concolic testing, and feedback-directed fuzzing, have found numer-
ous critical faults, security vulnerabilities, and performance bottlenecks in
mature and well-tested software systems. The key strength of automated tech-
niques is their ability to quickly search state spaces by performing repetitive and
expensive computational tasks at a rate far beyond the human attention span and
computation speed. In this talk, I will give a brief overview of our past and
recent research contributions in automated test generation using symbolic exe-
cution, program analysis, constraint solving, and fuzzing. I will also describe a
new technique, called constraint-directed fuzzing, where given a pre-condition
on a program as a logical formula, we can efficiently generate millions of test
inputs satisfying the pre-condition.

Contents

Invited Paper

Object-Centric Process Mining: Dealing with Divergence
and Convergence in Event Data . 3

Wil M. P. van der Aalst

Cooperative Asynchronous Systems

Relating Session Types and Behavioural Contracts:
The Asynchronous Case. 29

Mario Bravetti and Gianluigi Zavattaro

Asynchronous Cooperative Contracts for Cooperative Scheduling 48
Eduard Kamburjan, Crystal Chang Din, Reiner Hähnle,
and Einar Broch Johnsen

Cyber-Physical Systems

Automatic Failure Explanation in CPS Models . 69
Ezio Bartocci, Niveditha Manjunath, Leonardo Mariani,
Cristinel Mateis, and Dejan Ničković

Evolution of Formal Model-Based Assurance Cases
for Autonomous Robots . 87

Mario Gleirscher, Simon Foster, and Yakoub Nemouchi

Towards Integrating Formal Verification of Autonomous Robots
with Battery Prognostics and Health Management . 105

Xingyu Zhao, Matt Osborne, Jenny Lantair, Valentin Robu,
David Flynn, Xiaowei Huang, Michael Fisher, Fabio Papacchini,
and Angelo Ferrando

Feature-Oriented and Versioned Systems

SAT Encodings of the At-Most-k Constraint: A Case Study
on Configuring University Courses . 127

Paul Maximilian Bittner, Thomas Thüm, and Ina Schaefer

Software Evolution with a Typeful Version Control System 145
Luís Carvalho and João Costa Seco

Compositional Feature-Oriented Systems . 162
Clemens Dubslaff

Model-Based Testing

Multi-objective Search for Effective Testing of Cyber-Physical Systems. 183
Hugo Araujo, Gustavo Carvalho, Mohammad Reza Mousavi,
and Augusto Sampaio

Mutation Testing with Hyperproperties . 203
Andreas Fellner, Mitra Tabaei Befrouei, and Georg Weissenbacher

Test Model Coverage Analysis Under Uncertainty. 222
I. S. W. B. Prasetya and Rick Klomp

Model Inference

Learning Minimal DFA: Taking Inspiration from RPNI
to Improve SAT Approach . 243

Florent Avellaneda and Alexandre Petrenko

Incorporating Data into EFSM Inference . 257
Michael Foster, Achim D. Brucker, Ramsay G. Taylor, Siobhán North,
and John Derrick

Ontologies and Machine Learning

Isabelle/DOF: Design and Implementation . 275
Achim D. Brucker and Burkhart Wolff

Towards Logical Specification of Statistical Machine Learning 293
Yusuke Kawamoto

Operating Systems

Efficient Formal Verification for the Linux Kernel 315
Daniel Bristot de Oliveira, Tommaso Cucinotta,
and Rômulo Silva de Oliveira

Reproducible Execution of POSIX Programs with DiOS 333
Petr Ročkai, Zuzana Baranová, Jan Mrázek, Katarína Kejstová,
and Jiří Barnat

xvi Contents

Program Analysis

Using Relational Verification for Program Slicing . 353
Bernhard Beckert, Thorsten Bormer, Stephan Gocht, Mihai Herda,
Daniel Lentzsch, and Mattias Ulbrich

Local Nontermination Detection for Parallel C++ Programs 373
Vladimír Štill and Jiří Barnat

Relating Models and Implementations

An Implementation Relation for Cyclic Systems with Refusals
and Discrete Time . 393

Raluca Lefticaru, Robert M. Hierons, and Manuel Núñez

Modular Indirect Push-Button Formal Verification of Multi-threaded
Code Generators . 410

Anton Wijs and Maciej Wiłkowski

Runtime Verification

An Operational Guide to Monitorability . 433
Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir,
and Karoliina Lehtinen

Let’s Prove It Later—Verification at Different Points in Time 454
Martin Ring and Christoph Lüth

Security

Using Threat Analysis Techniques to Guide Formal Verification:
A Case Study of Cooperative Awareness Messages 471

Marie Farrell, Matthew Bradbury, Michael Fisher, Louise A. Dennis,
Clare Dixon, Hu Yuan, and Carsten Maple

Towards Detecting Trigger-Based Behavior in Binaries: Uncovering
the Correct Environment . 491

Dorottya Papp, Thorsten Tarrach, and Levente Buttyán

Verification

Formal Verification of Rewriting Rules for Dynamic Fault Trees 513
Yassmeen Elderhalli, Matthias Volk, Osman Hasan,
Joost-Pieter Katoen, and Sofiène Tahar

Contents xvii

Partially Bounded Context-Aware Verification . 532
Luka Le Roux and Ciprian Teodorov

Author Index . 549

xviii Contents

Invited Paper

Object-Centric Process Mining: Dealing
with Divergence and Convergence

in Event Data

Wil M. P. van der Aalst1,2(B)

1 Process and Data Science (PADS), RWTH Aachen University,
Aachen, Germany

wvdaalst@pads.rwth-aachen.de
2 Fraunhofer Institute for Applied Information Technology,

Sankt Augustin, Germany

Abstract. Process mining techniques use event data to answer a vari-
ety of process-related questions. Process discovery, conformance check-
ing, model enhancement, and operational support are used to improve
performance and compliance. Process mining starts from recorded events
that are characterized by a case identifier, an activity name, a timestamp,
and optional attributes like resource or costs. In many applications, there
are multiple candidate identifiers leading to different views on the same
process. Moreover, one event may be related to different cases (conver-
gence) and, for a given case, there may be multiple instances of the
same activity within a case (divergence). To create a traditional process
model, the event data need to be “flattened”. There are typically multiple
choices possible, leading to different views that are disconnected. There-
fore, one quickly loses the overview and event data need to be exacted
multiple times (for the different views). Different approaches have been
proposed to tackle the problem. This paper discusses the gap between
real event data and the event logs required by traditional process min-
ing techniques. The main purpose is to create awareness and to provide
ways to characterize event data. A specific logging format is proposed
where events can be related to objects of different types. Moreover, basic
notations and a baseline discovery approach are presented to facilitate
discussion and understanding.

Keywords: Process mining · Process discovery · Divergence ·
Convergence · Artifact-centric modeling

1 Introduction

Operational processes are often characterized by the 80/20 rule, also known as
the Pareto principle. Often, 80% of the observed process executions (cases) can
be described by less than 20% of the observed process variants. This implies that
the remaining 20% of the observed process executions account for 80% of the
observed process variants. Therefore, it is often relatively easy to create a precise
c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 3–25, 2019.
https://doi.org/10.1007/978-3-030-30446-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_1&domain=pdf
http://orcid.org/0000-0002-0955-6940
https://doi.org/10.1007/978-3-030-30446-1_1

4 W. M. P. van der Aalst

and simple process model describing 80% of the cases. However, to add the
remaining 20% of the cases, discovery techniques create models that are either
complex and overfitting or severely underfitting. Standard processes such as the
Purchase-to-Pay (P2P) and Order-to-Cash (O2C) seem simple at first: Just a
handful of activities executed in a well-defined order. Although the majority of
P2P and O2C process instances can be described by a simple process model, the
number of process variants may be enormous. There may be thousands of ways
to execute the P2P and O2C process due to exceptions, rework, deviations, and
errors. In some organizations, one can observe close to one million different ways
to perform the O2C process in a single year. Unfortunately, often the 20% least
frequent behavior may cause most of the compliance and performance problems.
This is called organizational friction. Process mining aims to identify and remove
such organizational friction.

The author started to develop the first process mining techniques in the late
1990-ties [2]. Input for process mining is an event log. An event log ‘views’ a
process from a particular angle. Each event in the log refers to (1) a particular
process instance (called case), (2) an activity, and (3) a timestamp. There may be
additional event attributes referring to resources, people, costs, etc., but these
are optional. Events logs are related to process models (discovered or hand-
made). Process models can be expressed using different formalisms ranging from
Directly-Follows Graphs (DFGs) and accepting automata to Petri nets, BPMN
diagrams, and UML activity diagrams. Typically, four types of process mining
are identified:

– Process discovery : Learning process models from event data. A discovery tech-
nique takes an event log and produces a process model without using addi-
tional information [2]. An example is the well-known Alpha-algorithm [12],
which takes an event log as input and produces a Petri net explaining the
behavior recorded in the log. Most of the commercial process mining tools
first discover DFGs before conducting further analysis.

– Conformance checking : Detecting and diagnosing both differences and com-
monalities between an event log and a process model [15]. Conformance check-
ing can be used to check if reality, as recorded in the log, conforms to the
model and vice versa [2]. The process model used as input may be descriptive
or normative. Moreover, the process model may have been made by hand or
learned using process discovery.

– Process reengineering : Improving or extending the model based on event data.
Like for conformance checking, both an event log and a process model are used
as input. However, now, the goal is not to diagnose differences. The goal is to
change the process model. For example, it is possible to repair the model to
better reflect reality. It is also possible to enrich an existing process model with
additional perspectives. For example, replay techniques can be used to show
bottlenecks or resource usage. Process reengineering yields updated models.
These models can be used to improve the actual processes.

– Operational support : Directly influencing the process by providing warnings,
predictions, or recommendations [2]. Conformance checking can be done “on-
the-fly” allowing people to act the moment processes deviate. Based on the

Object-Centric Process Mining 5

model and event data related to running process instances, one can predict
the remaining flow time, the likelihood of meeting the legal deadline, the
associated costs, the probability that a case will be rejected, etc. The process
is not improved by changing the model, but by directly providing data-driven
support in the form of warnings, predictions, and/or recommendations.

Process mining aims to provide actionable results, e.g., automated alerts,
interventions, reconfigurations, policy changes, and redesign. The uptake of pro-
cess mining is industry is accelerating in recent years. Currently, there are more
than 30 commercial offerings of process mining software (e.g., Celonis, Disco,
ProcessGold, myInvenio, PAFnow, Minit, QPR, Mehrwerk, Puzzledata, Lana-
Labs, StereoLogic, Everflow, TimelinePI, Signavio, and Logpickr).

In this paper, we challenge the following two commonly used assumptions:

– There is a single case notion.
– Each event refers to precisely one case.

We assume that there are multiple case notions (called object types) and that an
event may refer to any number of objects corresponding to different object types.
This idea is not new (see Sect. 2) and was already elaborated in [2]. However,
existing process mining tools and techniques still assume that there is a single
case notion and precisely one case per event.

When extracting an event log from some information system (e.g., the thou-
sands of tables of SAP), the resulting log may suffer from convergence (one event
is related to multiple cases) and divergence (independent, repeated executions
of a group of activities within a single case). This may lead to the replication of
events and thus misleading results (e.g., duplicated events are counted twice).
It may also lead to loops in process models which are not really loops (but
concurrency at the sub-instance level). These problems are partly unavoidable.
However, it is good to be aware of these phenomena and to demand process
mining tools supporting object-centric process mining.

Fig. 1. A simple example explaining convergence and divergence problems. There are
five activities (left-hand side) and two possible case notions (right-hand side).

6 W. M. P. van der Aalst

To explain convergence and divergence, consider the example shown in Fig. 1.
In a hiring process, we deal with two types of objects: application and vacancy
(see right-hand side). Moreover, assume that there are five different activities:
apply (new application for an open vacancy), interview (interview with an appli-
cant for an open vacancy), open (create a vacancy after which people can apply),
hire (hire an applicant for a specific vacancy), and close (close the vacancy).
These activities are shown on the left-hand side of Fig. 1. The figure also shows
cardinality constraints that need to hold at the end.

There are two possible case notions when applying traditional process min-
ing approaches: application or vacancy . Assume that we have 100 applications
and 5 vacancies. Each application refers to precisely one vacancy. Ten applica-
tions resulted in an interview and four persons were hired. Figure 1 shows the
frequencies of activities and object types.

Suppose that we want to use application as a case notion and want to include
the opening and closing of the corresponding position in the process model. This
means that, when applying traditional process mining approaches, we need 100
open and close events rather than just five. This is called convergence. One
open or close event is related to multiple cases. The problem is that events are
replicated and process mining results are no longer showing to the actual number
of events.

Suppose that we want to use vacancy as a case notion and want to include the
applications and interviews of the corresponding applicants in the process model.
This means that within a single case there many be many apply and interview
events. Of course each interview event is preceded by precisely one apply event.
However, because we cannot distinguish between the different applicants within
a case, we see seemingly random interleavings of the two activities. However,
there is a clear precedence at the level of individual applications (an interview
never precedes an application). This is called divergence. Ordering information
at the sub-instance level is lost, thus leading to loops in the process model that
do not really exist in the real process.

Later we will show a more elaborate example, but Fig. 1 already shows the
problems we encounter when there is just a single one-to-many relationship.
In real-life processes, we often have multiple one-to-many and many-to-many
relationships, thus making process mining challenging. Object-centric process
mining techniques aim to address such convergence and divergence problems.

The remainder is organized as follows. Section 2 briefly discusses related work.
Section 3 introduces the problem using a simple example. Section 4 formalizes
event data in a way that makes the problem explicit: An event may refer to any
number of objects corresponding to different object types. A baseline discovery
approach is presented in Sect. 5. The baseline approach uses only the directly-
follows relation. Section 6 discusses approaches that go beyond the baseline app-
roach and that aim to discover concurrency. Section 7 concludes the paper.

Object-Centric Process Mining 7

2 Related Work on Object-Centric Process Mining

For a basic introduction to process mining, we refer to [2]. Chapter 5 of the
process mining book focuses on the input side of process mining. Specifically,
Sect. 5.5 discusses the need to “flatten” event data to produce traditional process
models.

Traditional process models ranging from workflow nets [1,8] and process trees
[24] to Business Process Modeling Notation (BPMN) models [31] and Event-
driven Process Chains (EPCs) [34] assume a single case notion. This means that
cases are considered in isolation. This is consistent with the standard notion of
event logs where events refer to an activity, a timestamp, and precisely one case
identifier [2].

The problem that many processes cannot be captured using a single case
notion was identified early on. IBM’s FlowMark system already supported the so-
called “bundle” concept to handle cases composed of subcases [22]. This is related
to the multiple instance patterns, i.e., a category of workflow patterns identified
around the turn of the century [9]. One of the first process modeling notations
trying to address the problem were the so-called proclets [6,7]. Proclets are
lightweight interacting workflow processes. By promoting interactions to first-
class citizens, it is possible to model complex workflows in a more natural manner
using proclets.

This was followed by other approaches such as the artifact-centric modeling
notations [14,16,27,30]. See [19] for an up-to-date overview of the challenges that
arise when instances of processes may interact with each other in a one-to-many
or many-to-many fashion.

Most of the work done on interacting processes with converging and diverging
instances has focused on developing novel modeling notations and supporting the
implementation of such processes. Only a few approaches focused on the problem
in a process mining context. This is surprising since one quickly encounters
the problem when applying process mining to ERP systems from SAP, Oracle,
Microsoft, and other vendors of enterprise software.

In [17] techniques are described to extract “non-flat” event data from source
systems and prepare these for traditional process mining. The eXtensible Event
Stream (XES) format [23] is the current standard which requires a case notion to
correlate events. XES is the official IEEE standard for storing events, supported
by many process mining vendors. Next to the standard IEEE XES format [23],
new storage formats such as eXtensible Object-Centric (XOC) [25] have been
proposed to deal with object-centric data (e.g., database tables) having one-to-
many and many-to-many relations. The XOC format does not require a case
notion to avoid flattening multi-dimensional data. An XOC log can precisely
store the evolution of the database along with corresponding events. An obvious
drawback is that XOC logs tend to be very large.

The approaches described in [20,21,28] focus on interacting processes where
each process uses its own case identifiers. In [28] interacting artifacts are discov-
ered from ERP systems. In [20] traditional conformance checking was adapted
to check compliance for interacting artifacts.

8 W. M. P. van der Aalst

One of the main challenges is that artifact models tend to become complex
and difficult to understand. In an attempt to tackle this problem, Van Eck et
al. use a simpler setting with multiple perspectives, each modeled by a simple
transition system [18,35]. These are also called artifact-centric process models
but are simpler than the models used in [14,16,20,21,27,28,30]. The state of a
case is decomposed onto one state per perspective, thus simplifying the overall
model. Relations between sub-states are viewed as correlations rather than hard
causality constraints. Concurrency only exists between the different perspectives
and not within an individual perspective. In a recent extension, each perspective
can be instantiated multiple times, i.e., many-to-many relations between artifact
types can be visualized [35].

The above techniques have the drawback that the overall process is not visu-
alized in a single diagram, but shown as a collection of interconnected diagrams
using different (sub-)case notions. The so-called Object-Centric Behavioral Con-
straint (OCBC) models address this problem and also incorporate the data per-
spective in a single diagram [5,10,13,26]. OCBC models extend data models
with a behavioral perspective. Data models can easily deal with many-to-many
and one-to-many relationships. This is exploited to create process models that
can also model complex interactions between different types of instances. Clas-
sical multiple-instance problems are circumvented by using the data model for
event correlation. Activities are related to the data perspective and have order-
ing constraints inspired by declarative languages like Declare [11]. Instead of
LTL-based constraints, simpler cardinality constraints are used. Several discov-
ery techniques have been developed for OCBC models [26]. It is also possible to
check conformance and project performance information on such models. OCBC
models are appealing because they faithfully describe the relationship between
behavior and data and are able to capture all information in a single integrated
diagram. However, OCBC models tend to be too complex and the corresponding
discovery and conformance checking techniques are not very scalable.

The complexity and scalability problems of OCBC models led to the develop-
ment of the so-called Multiple Viewpoint (MVP) models, earlier named StarStar
models [4]. MVP models are learned from data stored in relational databases.
Based on the relations and timestamps in a traditional database, first, a so-called
E2O graph is built that relates events and objects. Based on the E2O graph,
an E2E multigraph is learned that relates events through objects. Finally, an
A2A multigraph is learned to relate activities. The A2A graph shows relations
between activities and each relation is based on one of the object classes used
as input. This is a very promising approach because it is simple and scalable.
Although this paper does not present a concrete discovery approach, the ideas
are consistent with the MVP models and discovery techniques developed by Berti
and van der Aalst [4].

Although commercial vendors have recognized the problems related to con-
vergence and divergence of event data, there is no real support for concepts
comparable to artifact-centric models, Object-Centric Behavioral Constraint
(OCBC) models, and Multiple Viewpoint (MVP) models. Yet, there are a few ini-

Object-Centric Process Mining 9

tial attempts by some vendors. An example is Celonis, which supports the use of
a secondary case identifier to avoid “Spaghetti-like” models where concurrency
between sub-instances is translated into loops. The directly-follows graphs in
Celonis do not consider interactions between sub-instances, thus producing sim-
pler models. Another example is the multi-level discovery technique supported
by myInvenio. The resulting models can be seen as simplified MVP models where
different activities may correspond to different case notions (but one case notion
per activity). The problem of this approach is that in reality the same event may
refer to multiple case notions and choosing one is often misleading, especially
since it influences the frequencies shown in the diagram.

In spite of the recent progress in process mining, problems related to mul-
tiple interacting process instances have not been solved adequately. One of the
problems is the lack of standardized event data that goes beyond the “flattened”
event data found in XES. Hence, process mining competitions tend to focus on
classical event logs. This paper aims to shift the focus towards object-centric
process mining.

3 The Problem

Event data can be found in any domain, e.g., logistics, manufacturing, finance,
healthcare, customer relationship management, e-learning, and e-government.
The events found in these domains typically refer to activities executed by
resources at particular times and for a particular case (i.e., process instances).
Process mining techniques are able to exploit such data. In this paper, we
focus on process discovery. However, conformance checking, performance anal-
ysis, decision mining, organizational mining, predictions, and recommendations
are also valuable forms of process mining that can benefit from the insights
provided by this paper.

In a traditional event log, each event refers to a case (process instance), activ-
ity, a timestamp, and any number of additional attributes (e.g., cost, resources,
etc.). The timestamp is used to order events. Since each event refers to precisely
one case, each case can be represented by a sequence of activities (i.e., a trace).
An example trace is 〈a, d, d, d, e〉, i.e., activity a followed by three activities d,
followed by activity e. Different cases may have the same trace. Hence, an event
log is a multiset of traces.1 For example L = [〈a, b, c, e〉40, 〈a, c, b, e〉30, 〈a, d, e〉20,
〈a, d, d, e〉5, 〈a, d, d, d, e〉3, 〈a, d, d, d, d, e〉2] is an event log describing the traces of
100 cases. Traditional process mining techniques use such event data.

Figure 2 shows different process mining results obtained using ProM for an
event log extracted from SAP. ProM provides a range of discovery techniques
able to show the underlying process. Discovered process models may also show

1 Multisets are represented using square brackets, e.g., M = [x2, y3, z] has six elements.
Unlike sets the same element can appear multiple times: M(x) = 2, M(y) = 3, and
M(z) = 1. [f(x) | x ∈ X] creates a multiset, i.e., if multiple elements x map onto
the same value f(x), these are counted multiple times.

10 W. M. P. van der Aalst

discovered process model showing bo lenecks

discovered process model showing frequencies

do ed chart showing
all events

directly
follows
graph

causal
net

Fig. 2. Various screenshots of ProM showing discovered process models that can be
used to address performance and compliance problems.

frequencies and bottlenecks. Moreover, it is possible to perform root-cause anal-
ysis for compliance and performance problems and one can drill-down to indi-
vidual cases and events. In Fig. 2, we used a specific case notion allowing us to
apply conventional process mining techniques working on “flattened” event logs.

The assumption that there is just one case notion and that each event refers to
precisely one case is problematic in real-life processes. To illustrate this, consider
the simplified order handling process from an online shop like Amazon, Alibaba,
Bol, Otto, or Walmart. We are interested in the process that starts with a cus-
tomer ordering products and ends with the actual delivery of all items. Figure 3
shows the activities (left-hand side) and object types (right-hand side). The four
main object types are order , item, package, and route. Each order consists of
one or more order lines, called items. A customer can first place an order with
two items followed by an order consisting of three items. Depending on availabil-
ity, items ordered for one customer are wrapped into packages. Note that one
package may contain items from multiple orders. Moreover, items from a single
order may be split over multiple packages. Packages are loaded into a truck that
drives a route to deliver the packages in a particular order. Customers may not
be home resulting in a failed delivery. The undelivered packages are stored and
part of a later route. Hence, a route may involve multiple packages and the same
package can be part of multiple routes.

The right-hand side of Fig. 3 shows the cardinalities of the relations between
the four object types. Each item is part of one order and one package. How-

Object-Centric Process Mining 11

Fig. 3. Overview of the relationship between activities (left) and object types (right).

ever, orders and packages may contain multiple items. There is a many-to-many
relation between packages and routes. Moreover, implicitly there is also a many-
to-many relation between orders and packages.

The right-hand side of Fig. 3 shows the different activities. Most of the names
are self-explanatory. The cardinality constraints between activities and object
types help to understand the semantics of the activities.

12 W. M. P. van der Aalst

– Activity place order is the start of the order. An order is created consisting
of one or more order lines (called items).

– Activity send invoice is executed when all ordered items have been packed.
An invoice refers to the order and the corresponding order lines.

– Activity receive payment (hopefully) occurs after sending the invoice.
– Activity check availability is executed for each ordered item. The check may

fail and, if so, it is repeated later. The check refers to precisely one item (and
the corresponding order).

– Activity pick item is executed if the ordered item is available. A pick action
refers to precisely one item (and the corresponding order).

– Activity pack items involves possibly multiple items of possibly multiple
orders from the same customer. These items are assembled into one pack-
age for a particular customer. The activity refers to one or more items and
precisely one package.

– Activity store package involves one package. After packing the items, the
package is stored.

– Activity load package involves one package and one route. Packages are loaded
into the truck after the route has started.

– Activity start route corresponds to the beginning of a route and involves
multiple packages.

– Activity deliver package corresponds to the successful delivery of a package
on some route.

– Activity failed delivery occurs when it is impossible to deliver a package on
some route because the customer is not at home.

– Activity unload package corresponds to the unloading of a package that could
not be delivered. The package will be stored and later loaded onto a new route.
This is repeated until the package is delivered.

– Activity end route corresponds to the end of a route and involves multiple
packages (delivered or not).

Figure 3 illustrates that there are multiple possible case notions. In principle,
each of the object types order , item, package, and route could serve as a case
notion. However, when picking one of the object types as a case notion, there
may be events that refer to multiple cases and some events do not refer to any
case. Therefore, it is, in general, impossible to reduce the complex reality to a
classical event log.

Table 1 shows a fragment of an example instance of the problem. Each event
is described by an event identifier, an activity name, a timestamp, the objects
involved, and other optional attributes (here customer and costs). Let us focus
on the columns showing which objects are involved. o1, o2, etc. are objects of
type order , i1, i2, etc. are objects of type item, p1, p2, etc. are objects of type
package, and r1, r2, etc. are objects of type route.

Following an object in a column, one can clearly see in which events (and
related activities) the object is involved. For example, order o1 is involved
in events 9911 (activity place order), 9912 (activity check availability), 9914

Object-Centric Process Mining 13

Table 1. A fragment of some event log: Each line corresponds to an event.

Event

identifier

Activity

name

Timestamp Objects involved Attribute values

Order Item Package Route Customer Costs

. .

9911 place order 20-7-2019:08.15 {o1} {i1, i2} ∅ ∅ Apple 3500e

9912 check availability 20-7-2019:09.35 {o1} {i1} ∅ ∅
9913 place order 20-7-2019:09.38 {o2} {i3, i4, i5} ∅ ∅ Google 4129e

9914 check availability 20-7-2019:10.20 {o1} {i2} ∅ ∅
9915 pick item 20-7-2019:11.05 {o1} {i1} ∅ ∅
9916 check availability 20-7-2019:11.19 {o2} {i3} ∅ ∅
9917 pick item 20-7-2019:11.55 {o2} {i3} ∅ ∅
9918 check availability 20-7-2019:13.15 {o2} {i4} ∅ ∅
9919 pick item 20-7-2019:14.25 {o2} {i4} ∅ ∅
9920 check availability 20-7-2019:15.25 {o2} {i5} ∅ ∅
9921 check availability 20-7-2019:16.34 {o1} {i2} ∅ ∅
9922 pick item 20-7-2019:16.38 {o1} {i2} ∅ ∅
9923 pack items 20-7-2019:16.44 ∅ {i1, i2, i3} {p1} ∅
9924 store package 20-7-2019:16.55 ∅ {i1, i2, i3} {p1} ∅
9925 start route 20-7-2019:16.56 ∅ ∅ {p1} {r1}
9926 load package 21-7-2019:08.00 ∅ {i1, i2, i3} {p1} {r1}
9927 send invoice 21-7-2019:08.17 {o1} {i1, i2} ∅ ∅
9928 place order 21-7-2019:08.25 {o3} {i6} ∅ ∅ Microsoft 1894e

9929 failed delivery 21-7-2019:08.33 ∅ ∅ {p1} {r1}
9930 unload package 21-7-2019:08.56 ∅ ∅ {p1} {r1}
9931 end route 21-7-2019:09.15 ∅ ∅ {p1} {r1}
9932 check availability 21-7-2019:10.25 {o3} {i6} ∅ ∅
9933 receive payment 21-7-2019:11.55 {o1} {i1, i2} ∅ ∅
9934 check availability 22-7-2019:08.19 {o2} {i5} ∅ ∅
9935 pick item 22-7-2019:08.44 {o2} {i5} ∅ ∅
9936 send invoice 22-7-2019:08.55 {o2} {i3, i4, i5} ∅ ∅
9937 receive payment 22-7-2019:09.15 {o2} {i3, i4, i5} ∅ ∅
9938 check availability 22-7-2019:10.35 {o3} {i6} ∅ ∅
9939 pick item 22-7-2019:11.23 {o3} {i6} ∅ ∅
9941 pack items 23-7-2019:09.11 ∅ {i4, i5, i6} {p2} ∅
9942 send invoice 22-7-2019:11.45 {o3} {i6} ∅ ∅
9943 store package 23-7-2019:09.19 ∅ {i4, i5, i6} {p2} ∅
9944 start route 23-7-2019:09.28 ∅ ∅ {p1, p2} {r2}
9945 load package 23-7-2019:10.05 ∅ {i1, i2, i3} {p1} {r2}
9946 load package 23-7-2019:10.09 ∅ {i4, i5, i6} {p2} {r2}
9947 deliver package 23-7-2019:11.25 ∅ ∅ {p2} {r2}
9948 deliver package 24-7-2019:09.37 ∅ ∅ {p1} {r2}
9949 end route 24-7-2019:09.48 ∅ ∅ {p1, p2} {r2}
9950 receive payment 24-7-2019:09.55 {o3} {i6} ∅ ∅
. .

(another check availability), 9915 (activity pick item), etc. Route r1 is involved
in events 9925 (activity start route), 9926 (activity load package), 9929 (activity
failed delivery), etc.

14 W. M. P. van der Aalst

To cast Table 1 into a traditional event log (e.g., in XES format), we would
need to have precisely one case identifier per event. This is impossible without
duplicating events (convergence problem) or ordering unrelated events (diver-
gence problem). Moreover, the example shows that a traditional event log is
merely a view on the more complex reality depicted in Table 1.

4 Defining Event Data

As illustrated by the example in the previous section, we cannot assume that
there is a single case notion and that each event refers to precisely one case.
Therefore, we provide a more realistic event log notion where multiple case
notions (called object types) may coexist and where an event may refer to any
number of objects corresponding to different object types. To do this, we start
by defining some universes.

Definition 1 (Universes). We define the following universes to be used
throughout the paper:

– Uei is the universe of event identifiers,
– Uact is the universe of activity names,
– Utime is the universe of timestamps,
– Uot is the universe of object types (also called classes),
– Uoi is the universe of object identifiers (also called entities),
– type ∈ Uoi → Uot assigns precisely one type to each object identifier,
– Uomap = {omap ∈ Uot → P(Uoi) | ∀ot∈Uot

∀oi∈omap(ot)type(oi) = ot} is the
universe of all object mappings indicating which object identifiers are included
per type,2

– Uatt is the universe of attribute names,
– Uval is the universe of attribute values,
– Uvmap = Uatt �→ Uval is the universe of value assignments,3 and
– Uevent = Uei × Uact × Utime × Uomap × Uvmap is the universe of events.

e = (ei , act , time, omap, vmap) ∈ Uevent is an event with identifier ei , corre-
sponding to the execution of activity act at time time, referring to the objects
specified in omap, and having attribute values specified by vmap. Each row in
Table 1 defines such an event.

Definition 2 (Event Projection). Given e = (ei , act , time, omap, vmap) ∈
Uevent , πei(e) = ei, πact(e) = act, πtime(e) = time, πomap(e) = omap, and
πvmap(e) = vmap.

2 P(Uoi) is the powerset of the universe of object identifiers, i.e., objects types are
mapped onto sets of object identifiers.

3
Uatt �→ Uval is the set of all partial functions mapping a subset of attribute names
onto the corresponding values.

Object-Centric Process Mining 15

Let e9911 be the first event depicted in Table 1. πei(e9911) = 9911,
πact(e9911) = place order , πtime(e9911) = 20-7-2019:08.15, πomap(e9911) =
omap9911, and πvmap(e9911) = vmap9911 such that omap9911(order) = {o1},
omap9911(item) = {i1, i2}, omap9911(package) = ∅, omap9911(route) = ∅,
vmap9911(customer) = Apple and vmap9911(costs) = 3500e.

An event log is a collection of partially ordered events. Event identifiers are
unique, i.e., two events cannot have the same event identifier.

Definition 3 (Event Log). (E,	E) is an event log with E ⊆ Uevent and 	E

⊆ E × E such that:

– 	E defines a partial order (reflexive, antisymmetric, and transitive),
– ∀e1,e2∈E πei(e1) = πei(e2) ⇒ e1 = e2, and
– ∀e1,e2∈E e1 	E e2 ⇒ πtime(e1) ≤ πtime(e2).

Table 1 shows an example of an event log. Note that the values in the first
column need to be unique and time is non-decreasing. Although Table 1 is totally
ordered, we can also consider partially ordered events logs. There are two main
reasons to use partially ordered event logs:

– When the timestamps are coarse-grained, we may not know the actual order.
For example, event logs may only show the day and not the precise time. In
such cases, we do not want to order the events taking place on the same day.

– We may exploit information about causality. When two causally unrelated
events occur, we may deliberately not use the order in which they occurred.
This makes it easy to create better process models that also capture concur-
rency without seeing all possible interleavings.

Fig. 4. Classical event log where each event refers to precisely one case identifier.

We advocate using event logs that follow Definition 3 rather than flattened,
totally ordered event logs using a single case notion. Note that conventional event
logs are a special case of Definition 3 as illustrated by the following definition.

16 W. M. P. van der Aalst

Definition 4 (Classical Event Log). An event log (E,	E) is a classical event
log if and only if 	E is a total order and there exists an ot ∈ Uot such that for
any e ∈ E: |πomap(e)(ot)| = 1 and for all ot ′ ∈ Uot \ {ot}: πomap(e)(ot ′) = ∅.

By comparing Figs. 3 and 4 one can clearly see that in most cases it does not
make any sense to try and straightjacket event data into a conventional event
log. This only makes sense for selected views on the event data.

In Table 1, check availability events refer to an item and an order. One could
argue that the reference to the order is redundant, after a place order event
the items are linked to the order and do not need to be repeated. Similarly,
store package events refer to the items in the corresponding package, but one
could argue that after the pack items event, these are known and the relation
does not need to be repeated in later events related to the package. Compare
Fig. 5 to Fig. 3. Both show the relation between the activities (left-hand side)
and object types (right-hand side). However, Fig. 5 aims to remove some of the
redundancy (i.e., not include information that can be derived from other events).
Table 2 shows the event log where fewer objects are associated with events (based
on Fig. 5).

The choice between Tables 1 and 2 depends on the intended process scope.
For example, are check availability and pick item part of the lifecycle of an
order? Are store package, load package, send invoice, and receive payment part
of the lifecycle of an item? Are start route and end route part of the lifecycle
of a package? These are important scoping choices that influence the models
generated using process mining techniques.

In Table 2, load package, deliver package, failed delivery , and unload package
events still refer to both a package and a route. This is due to the fact that the
same package may be part of multiple routes.

5 A Baseline Discovery Approach

The goal of this paper is to show the challenges related to object-centric process
mining, and not to present a specific process mining algorithm. Nevertheless,
we describe a baseline discovery approach using more realistic event data as
specified in Definition 3, i.e., a collection of events pointing to any number of
objects and a partial order (E,	E).

Any event log (E,	E) can be projected onto a selected object type ot . Just
the events that refer to objects of type ot are kept. The partial order is updated
based on the selected object type ot . In the updated partial order, events are
related when they share a particular object. To ensure that the resulting order
is indeed a partial order, we need to take the transitive closure.

Definition 5 (Object Type Projection). Let (E,	E) be an event log and
ot ∈ Uot an object type. (Eot ,	ot

E) is the event log projected onto object type
ot where Eot = {e ∈ E | πomap(e)(ot) �= ∅} and 	ot

E = {(e1, e2) ∈ Eot × Eot |
e1 	E e2 ∧ πomap(e1)(ot) ∩ πomap(e2)(ot) �= ∅}∗.4

4 R∗ is the transitive closure of relation R. Hence, �ot
E is a partial order (reflexive,

antisymmetric, and transitive).

Object-Centric Process Mining 17

Table 2. A modified version of the event log in Table 1. Still, each line corresponds to
an event, but events refer to a minimal amount of object types. Also, the additional
attributes are not shown.

Event
identifier

Activity
name

Timestamp Objects involved

Order Item Package Route

. .

9911 place order 20-7-2019:08.15 {o1} {i1, i2} ∅ ∅
9912 check availability 20-7-2019:09.35 ∅ {i1} ∅ ∅
9913 place order 20-7-2019:09.38 {o2} {i3, i4, i5} ∅ ∅
9914 check availability 20-7-2019:10.20 ∅ {i2} ∅ ∅
9915 pick item 20-7-2019:11.05 ∅ {i1} ∅ ∅
9916 check availability 20-7-2019:11.19 ∅ {i3} ∅ ∅
9917 pick item 20-7-2019:11.55 ∅ {i3} ∅ ∅
9918 check availability 20-7-2019:13.15 ∅ {i4} ∅ ∅
9919 pick item 20-7-2019:14.25 ∅ {i4} ∅ ∅
9920 check availability 20-7-2019:15.25 ∅ {i5} ∅ ∅
9921 check availability 20-7-2019:16.34 ∅ {i2} ∅ ∅
9922 pick item 20-7-2019:16.38 ∅ {i2} ∅ ∅
9923 pack items 20-7-2019:16.44 ∅ {i1, i2, i3} {p1} ∅
9924 store package 20-7-2019:16.55 ∅ ∅ {p1} ∅
9925 start route 20-7-2019:16.56 ∅ ∅ ∅ {r1}
9926 load package 21-7-2019:08.00 ∅ ∅ {p1} {r1}
9927 send invoice 21-7-2019:08.17 {o1} ∅ ∅ ∅
9928 place order 21-7-2019:08.25 {o3} {i6} ∅ ∅
9929 failed delivery 21-7-2019:08.33 ∅ ∅ {p1} {r1}
9930 unload package 21-7-2019:08.56 ∅ ∅ {p1} {r1}
9931 end route 21-7-2019:09.15 ∅ ∅ ∅ {r1}
9932 check availability 21-7-2019:10.25 ∅ {i6} ∅ ∅
9933 receive payment 21-7-2019:11.55 {o1} ∅ ∅ ∅
9934 check availability 22-7-2019:08.19 ∅ {i5} ∅ ∅
9935 pick item 22-7-2019:08.44 ∅ {i5} ∅ ∅
9936 send invoice 22-7-2019:08.55 {o2} ∅ ∅ ∅
9937 receive payment 22-7-2019:09.15 {o2} ∅ ∅ ∅
9938 check availability 22-7-2019:10.35 ∅ {i6} ∅ ∅
9939 pick item 22-7-2019:11.23 ∅ {i6} ∅ ∅
9941 pack items 23-7-2019:09.11 ∅ {i4, i5, i6} {p2} ∅
9942 send invoice 22-7-2019:11.45 {o3} ∅ ∅ ∅
9943 store package 23-7-2019:09.19 ∅ ∅ {p2} ∅
9944 start route 23-7-2019:09.28 ∅ ∅ ∅ {r2}
9945 load package 23-7-2019:10.05 ∅ ∅ {p1} {r2}
9946 load package 23-7-2019:10.09 ∅ ∅ {p2} {r2}
9947 deliver package 23-7-2019:11.25 ∅ ∅ {p2} {r2}
9948 deliver package 24-7-2019:09.37 ∅ ∅ {p1} {r2}
9949 end route 24-7-2019:09.48 ∅ ∅ ∅ {r2}
9950 receive payment 24-7-2019:09.55 {o3} ∅ ∅ ∅
. .

18 W. M. P. van der Aalst

Fig. 5. Relating activities (left-hand side) to object types (right-hand side) while min-
imizing redundancy compared to Fig. 3.

It is easy to verify that 	ot
E is indeed reflexive, antisymmetric, and transitive.

Also note that if there are three events e1 	E e2 	E e3 with πomap(e1)(ot) =
{o1}, πomap(e2)(ot) = {o1, o2}, and πomap(e3)(ot) = {o2}, then e1 	ot

E e3
although πomap(e1)(ot) ∩ πomap(e3)(ot) = ∅.

Object-Centric Process Mining 19

Projections can be generalized to multiple object types. For OT ⊆ Uot :
EOT = {e ∈ E | ∃ot∈OT πomap(e)(ot) �= ∅} and 	OT

E = {(e1, e2) ∈ EOT ×EOT |
e1 	E e2 ∧ ∃ot∈OT πomap(e1)(ot) ∩ πomap(e2)(ot) �= ∅}∗.

We would like to discover Directly-Follows Graphs (DFGs) based on the pro-
jections specified in Definition 5. To do this, we use the well-known covering
relation to capture the direct causal relations between events. The covering rela-
tion is the equivalent of the transitive reduction of a finite directed acyclic graph,
but applied to relations rather than graphs.

Definition 6 (Covering Relation). Let 	 be a partial order (reflexive, anti-
symmetric, and transitive). ≺ = {(x, y) ∈ 	 | x �= y}. � is the covering relation
of 	, i.e., � = {(x, y) ∈ ≺ |� ∃z x ≺ z ≺ y}.

We can construct the covering relation for any partially ordered set of events.
It is known that the covering relation is unique. The graphical representation
of the partial order based on the covering relation is also known as the Hasse
diagram. �E and �

ot
E refer to the covering relations of 	E and 	ot

E respectively.
Using the covering relation �

ot
E for an event log (E,	E) projected onto an

object type ot , we can construct a variant of the Directly-Follows Graph (DFG).
However, there are two differences with a normal DFG: we consider partial orders
and focus on the projection.

Definition 7 (Directly-Follows Graph). Let (E,	E) be an event log and
ot ∈ Uot an object type. (Aot , Rot) with Aot = [πact(e) | e ∈ Eot] and Rot =
[(πact(e1), πact(e2)) | (e1, e2) ∈ �

ot
E] is the Directly-Follows Graph (DFG) for

object type ot.

The resulting DFG (Aot , Rot) has a multiset of activity nodes Aot and a
multiset of arcs Rot . Both are multisets, because we would like to keep track of
frequencies. Given some activity a, Aot(a) is the number of a events that refer to
an object of type ot . Given a pair of activities (a1, a2), Rot(a1, a2) is the number
times an a1 event was causally followed by an a2 event where both events shared
an object of type ot .

Figure 6 shows an example DFG (without multiplicities) for each object type
using the event log illustrated by Table 1. Note that we also indicate the initial
and final activities (shown using the incoming arcs and outgoing arcs). This can
be achieved by adding a dummy start and end activity to each object type. The
dummy start corresponds to the creation of the object. The dummy end activity
corresponds to its completion. These dummy activities are not shown in Fig. 6,
but the corresponding arcs are.

As mentioned before, the scoping of object identifiers greatly influences the
process models that are returned. To illustrate this, consider the reduced event
log shown in Table 2 again. Figure 7 shows the DFGs (again without multiplic-
ities) for each object type using this reduced event log. As before, we indicate
start and end activities.

The different DFGs can be simply merged into a labeled multigraph where the
arcs correspond to specific object types. The arcs are now labeled with object

20 W. M. P. van der Aalst

Fig. 6. DFGs per object type learned from Table 1. Not all arcs are included and also
note that Table 1 is just an excerpt of the larger event log.

types. For example, (a1, ot , a2) is the arc connecting activities a1 and a2 via
objects of type ot . Two arcs may connect the same pair of activities. As before,
we use multisets to represent cardinalities, i.e., R(a1, ot , a2) is the frequency of
the arc connecting activities a1 and a2 via objects of type ot .

Definition 8 (Overall Directly-Follows Multigraph). Let (E,	E) be an
event log. (A,R) with A = [πact(e) | ∃ot∈Uot

e ∈ Eot] and R = [(πact(e1), ot ,
πact(e2)) | ∃ot∈Uot

(e1, e2) ∈ �
ot
E] is the Overall Directly-Follows Multigraph

(ODFM).

In general, the Overall Directly-Follows Multigraph (ODFM) will often be
too complicated to understand easily. Nevertheless, it is valuable to see the
whole event log with multiple case notions in a single diagram. To simplify the
multigraph, it is possible to consider any subset of object types OT ⊆ Uot .

Definition 9 (Selected Directly-Follows Multigraph). Let (E,	E) be an
event log and OT ⊆ Uot a set of object types. (AOT , ROT) with AOT = [πact(e) |
∃ot∈OT e ∈ Eot] and ROT = [(πact(e1), ot , πact(e2)) | ∃ot∈OT (e1, e2) ∈ �

ot
E] is

the Selected Directly-Follows Multigraph (SDFM).

The Selected Directly-Follows Multigraph (SDFM) selects two or more object
types to create a particular view on the event data. As an example, we can take

Object-Centric Process Mining 21

Fig. 7. DFGs per object type learned from Table 2.

OT = {order , item, package} as shown in Fig. 8. The object types included are
order , item, and package, i.e., only route is excluded to provide the view. The
arcs are colored based on the corresponding object types. For clarity, also the
names have been added. Again we do not show multiplicities on nodes and arcs.
Also note that the start and end activities are indicated.

Fig. 8. Directly-Follows Multigraph (DFM) learned from Table 2 for the object types
order , item, and package.

An ODFM is a special case of SDFM, i.e., OT = Uot . Therefore, we will use
the term Directly-Follows Multigraph (DFM) to refer to both.

The DFM shown in Fig. 8 illustrates that it is possible to deal with non-
flattened event data. The diagram shows the relationships between different
activities that are connected through various types of objects. DFMs are not as
easy to interpret as traditional DFGs using a single case notion. However, trying

22 W. M. P. van der Aalst

to flatten the model by straightjacketing the event data into a traditional event
log will often lead to convergence and divergence problems.

Given a DFM, it is easy to select a desired case notion, generate a conven-
tional flat event log, and apply standard process mining techniques.

6 Beyond Directly-Follows Graphs

The Directly-Follows Multigraph (DFM) does not use higher-level process mod-
eling constructs (e.g., XOR/OR/AND-splits/joins). Note that an event log
(E,	E), as defined in this paper, is a partial order. The partial order can take
into account causality. Assume that 	E is the reflexive transitive closure of
{(e1, e2), (e1, e3), (e2, e4), (e3, e4)}. The order of e2 and e3 is not fixed, but both
causally depend on e1. Event e4 causally depends on e2 and e3. Normally, the
Directly Follows Graph (DFG) does not take causality into account. In the exam-
ple, the temporal ordering of e2 and e3 influences the graph constructed even
though they do not depend on each other.

Although the partial order can take into account causality, the resulting
DFM does not explicitly show concurrency. However, traditional process mining
approaches can be used starting from event data projected onto a specific object
type. Recall that the DFG for object type ot , i.e., (Aot , Rot), is based on a pro-
jected event log. We can use the same approach in conjunction with existing pro-
cess discovery techniques. Two examples are the Petri-net-based place discovery
technique presented in [3] and the Declare-based discovery techniques presented
in [29,32,33]. In [3] monotonicity results are used to exploit finding places that
are constraining behavior to the behavior seen. In [29,32,33] LTL-based declara-
tive constraints are learned. Also places can be viewed as constraints. Note that
a Petri net without places allows for any behavior of the transitions (activities)
included. Hence, process discovery can be viewed as learning constraints. This
view is compatible with the orthogonal nature of the different object types in a
DFM. Therefore, it is not difficult to enhance DFMs such as the one shown in
Fig. 8 with more sophisticated constraints (e.g., places or LTL-based constraints).

7 Conclusion

This paper focused on the limitations of process mining techniques that assume
a single case notion and just one case per event. Yet, existing approaches assume
“flattened event data” (e.g., stored using XES or a CSV file with one column for
the case identifier). Real-life processes are often more complex, not allowing for
these simplifying assumptions. Flattened event data only provide one of many
possible views, leading to convergence and divergence problems.

To address the problem, we proposed a more faithful event log notion (E,	E)
where events can refer to any number of objects and these may be of different
object types. Hence, events can depend on each other in different ways. Moreover,
we assume partially ordered events. For example, events may refer to mixtures

Object-Centric Process Mining 23

of orders, items, packages, and delivery routes. The Directly-Follows Multigraph
(DFM) can be used to get a more holistic view on the process.

The paper is also a “call for action”. First of all, it is important to extract
more realistic event logs. Currently, techniques developed in research and the
tools provided by vendors assume “flat” event data (e.g., in XES format), because
it is the information widely available (in public data sets and the data sets used
in competitions). However, the data stored in information systems are not flat.
Availability of more realistic event data will positively influence research and
tools. Second, novel techniques are needed. The DFM is just a starting point
for more sophisticated object-centric process mining techniques. However, it is
vital to keep things simple and avoid the complexity associated with artifact-
centric approaches. Whereas the focus in this paper is on process discovery,
the insights also apply to other forms of process mining such as conformance
checking, bottleneck analysis, and operational support (e.g., prediction).

Acknowledgments. We thank the Alexander von Humboldt (AvH) Stiftung for sup-
porting our research.

References

1. van der Aalst, W.M.P.: The application of Petri Nets to workflow management. J.
Circ. Syst. Comput. 8(1), 21–66 (1998)

2. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49851-4

3. van der Aalst, W.M.P.: Discovering the “Glue” connecting activities - exploiting
monotonicity to learn places faster. In: de Boer, F., Bonsangue, M., Rutten, J.
(eds.) It’s All About Coordination. Lecture Notes in Computer Science, pp. 1–20.
Springer-Verlag, Berlin (2018)

4. Berti, A., van der Aalst, W.M.P.: StarStar models: using events at database level
for process analysis. In: Ceravolo, P., Gomez Lopez, M.T., van Keulen, M. (eds.)
International Symposium on Data-driven Process Discovery and Analysis (SIM-
PDA 2018), volume 2270 of CEUR Workshop Proceedings, pp. 60–64. CEUR-
WS.org (2018)

5. van der Aalst, Artale, A., Montali, M., Tritini, S.: Object-centric behavioral con-
straints: integrating data and declarative process modelling. In: Proceedings of the
30th International Workshop on Description Logics (DL 2017), volume 1879 of
CEUR Workshop Proceedings. CEUR-WS.org (2017)

6. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Workflow model-
ing using proclets. In: Scheuermann, P., Etzion, O. (eds.) CoopIS 2000. LNCS,
vol. 1901, pp. 198–209. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722620 20

7. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: a frame-
work for lightweight interacting workflow processes. Int. J. Coop. Inf. Syst. 10(4),
443–482 (2001)

8. van der Aalst, W.M.P., et al.: Soundness of workflow nets: classification, decidabil-
ity, and analysis. Form. Asp. Comput. 23(3), 333–363 (2011)

9. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/10722620_20
https://doi.org/10.1007/10722620_20

24 W. M. P. van der Aalst

10. van der Aalst, W.M.P., Li, G., Montali, M.: Object-Centric Behavioral Constraints.
CoRR, abs/1703.05740 (2017)

11. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: balanc-
ing between flexibility and support. Comput. Sci.-Res. Dev. 23(2), 99–113 (2009)

12. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: dis-
covering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9),
1128–1142 (2004)

13. Artale, A., Calvanese, D., Montali, M., van der Aalst, W.M.P.: Enriching data mod-
els with behavioral constraints. In: Borgo, S. (ed.) Ontology Makes Sense (Essays
in honor of Nicola Guarino), pp. 257–277. IOS Press (2019)

14. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards formal analysis
of artifact-centric business process models. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75183-0 21

15. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking:
Relating Processes and Models. Springer, Heidelberg (2018). https://doi.org/10.
1007/978-3-319-99414-7

16. Cohn, D., Hull, R.: Business artifacts: a data-centric approach to modeling business
operations and processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)

17. González López de Murillas, E., Reijers, H.A., van der Aalst, W.M.P.: Connecting
databases with process mining: a meta model and toolset. In: Schmidt, R., Guédria,
W., Bider, I., Guerreiro, S. (eds.) BPMDS/EMMSAD -2016. LNBIP, vol. 248, pp.
231–249. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39429-9 15

18. van Eck, M.L., Sidorova, N., van der Aalst, W.M.P.: Guided interaction exploration
in artifact-centric process models. In: IEEE Conference on Business Informatics
(CBI 2017), pp. 109–118. IEEE Computer Society (2017)

19. Fahland, D.: Describing behavior of processes with many-to-many interactions. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 3–24.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 1

20. Fahland, D., de Leoni, M., van Dongen, B.F., van der Aalst, W.M.P.: Behavioral
conformance of artifact-centric process models. In: Abramowicz, W. (ed.) BIS 2011.
LNBIP, vol. 87, pp. 37–49. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21863-7 4

21. Fahland, D., De Leoni, M., van Dongen, B., van der Aalst, W.M.P.: Many-to-
many: some observations on interactions in artifact choreographies. In: Eichhorn,
D., Koschmider, A., Zhang, H. (eds.) Proceedings of the 3rd Central-European
Workshop on Services and Their Composition (ZEUS 2011), CEUR Workshop
Proceedings, pp. 9–15. CEUR-WS.org (2011)

22. IBM. IBM MQSeries Workflow - Getting Started With Buildtime. IBM Deutsch-
land Entwicklung GmbH, Boeblingen, Germany (1999)

23. IEEE Task Force on Process Mining. XES Standard Definition (2013). http://
www.xes-standard.org/

24. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs: a constructive approach. In: Colom, J.M., Desel,
J. (eds.) Applications and Theory of Petri Nets 2013. Lecture Notes in Computer
Science, vol. 7927, pp. 311–329. Springer-Verlag, Berlin (2013)

25. Li, G., de Murillas, E.G.L., de Carvalho, R.M., van der Aalst, W.M.P.: Extracting
object-centric event logs to support process mining on databases. In: Mendling, J.,
Mouratidis, H. (eds.) CAiSE 2018. LNBIP, vol. 317, pp. 182–199. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-92901-9 16

https://doi.org/10.1007/978-3-540-75183-0_21
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-39429-9_15
https://doi.org/10.1007/978-3-030-21571-2_1
https://doi.org/10.1007/978-3-642-21863-7_4
https://doi.org/10.1007/978-3-642-21863-7_4
http://www.xes-standard.org/
http://www.xes-standard.org/
https://doi.org/10.1007/978-3-319-92901-9_16

Object-Centric Process Mining 25

26. Li, G., de Carvalho, R.M., van der Aalst, W.M.P.: Automatic discovery of object-
centric behavioral constraint models. In: Abramowicz, W. (ed.) BIS 2017. LNBIP,
vol. 288, pp. 43–58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
59336-4 4

27. Lohmann, N.: Compliance by design for artifact-centric business processes. In:
Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 99–
115. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23059-2 11

28. Lu, X., Nagelkerke, M., van de Wiel, D., Fahland, D.: Discovering interacting
artifacts from ERP systems. IEEE Trans. Serv. Comput. 8(6), 861–873 (2015)

29. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of under-
standable declarative process models from event logs. In: Ralyté, J., Franch, X.,
Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31095-9 18

30. Nigam, A., Caswell, N.S.: Business artifacts: an approach to operational specifica-
tion. IBM Syst. J. 42(3), 428–445 (2003)

31. OMG. Business Process Model and Notation (BPMN). Object Management
Group, formal/2011-01-03 (2011)

32. Rovani, M., Maggi, F.M., de Leoni, M., van der Aalst, W.M.P.: Declarative process
mining in healthcare. Expert Syst. Appl. 42(23), 9236–9251 (2015)

33. Bose, R.P.J.C., Maggi, F.M., van der Aalst, W.M.P.: Enhancing declare maps based
on event correlations. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS,
vol. 8094, pp. 97–112. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40176-3 9

34. Scheer, A.W.: Business Process Engineering: Reference Models for Indus-
trial Enterprises. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-642-
79142-0

35. van Eck, M.L., Sidorova, N., van der Aalst, W.M.P.: Multi-instance mining: dis-
covering synchronisation in artifact-centric processes. In: Daniel, F., Sheng, Q.Z.,
Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 18–30. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-11641-5 2

https://doi.org/10.1007/978-3-319-59336-4_4
https://doi.org/10.1007/978-3-319-59336-4_4
https://doi.org/10.1007/978-3-642-23059-2_11
https://doi.org/10.1007/978-3-642-31095-9_18
https://doi.org/10.1007/978-3-642-40176-3_9
https://doi.org/10.1007/978-3-642-40176-3_9
https://doi.org/10.1007/978-3-642-79142-0
https://doi.org/10.1007/978-3-642-79142-0
https://doi.org/10.1007/978-3-030-11641-5_2

Cooperative Asynchronous Systems

Relating Session Types and Behavioural
Contracts: The Asynchronous Case

Mario Bravetti(B) and Gianluigi Zavattaro

Department of Computer Science and Engineering & Focus Team, Inria,
University of Bologna, Bologna, Italy

bravetti@cs.unibo.it

Abstract. We discuss the relationship between session types and
behavioural contracts under the assumption that processes communicate
asynchronously. We show the existence of a fully abstract interpretation
of session types into a fragment of contracts, that maps session subtyping
into binary compliance-preserving contract refinement. In this way, the
recent undecidability result for asynchronous session subtyping can be
used to obtain an original undecidability result for asynchronous contract
refinement.

1 Introduction

Session types are used to specify the structure of communication between the
endpoints of a distributed system or the processes of a concurrent program. In
recent years, session types have been integrated into several mainstream pro-
gramming languages (see, e.g., [1,18,21,26–29]) where they specify the pattern
of interactions that each endpoint must follow, i.e., a communication protocol.
In this way, once the expected communication protocol at an endpoint has been
expressed in terms of a session type, the behavioural correctness of a program
at that endpoint can be checked by exploiting syntax-based type checking tech-
niques. The overall correctness of the system is guaranteed when the session
types of the interacting endpoints satisfy some deadlock/termination related
(see, e.g., [13,16]) compatibility notion. For instance, in case of binary com-
munication, i.e., interaction between two endpoints, session duality rules out
communication errors like, e.g., deadlocks: by session duality we mean that each
send (resp. receive) action in the session type of one endpoint, is matched by a
corresponding receive (resp. send) action of the session type at the opposite end-
point. Namely, we have that two endpoints following respectively session types
T and T (T is the dual of T) will communicate correctly.

Duality is a rather restrictive notion of compatibility since it forces endpoints
to follow specular protocols. In many cases, endpoints correctly interact even if
their corresponding session types are not dual. A typical example is when an
endpoint is in receiving state and has the ability to accept more messages than

Research partly supported by the H2020-MSCA-RISE project ID 778233 “Behavioural
Application Program Interfaces (BEHAPI)”.

c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 29–47, 2019.
https://doi.org/10.1007/978-3-030-30446-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-30446-1_2

30 M. Bravetti and G. Zavattaro

those that could be emitted by the opposite endpoint. These cases are dealt with
by considering session subtyping : an endpoint with session type T1 can always be
safely replaced by another endpoint with session type T2, whenever T2 is a sub-
type of T1 (here denoted by T2 ≤ T1). In this way, besides being safe to combine
an endpoint with type T1 with a specular one with type T1, it is also safe to com-
bine any such T2 with T1. The typical notion of subtyping for session types is the
one by Gay and Hole [17] defined by considering synchronous communication:
synchronous session subtyping only allows for a subtype to have fewer internal
choices (sends), and more external choices (receives), than its supertype. Asyn-
chronous session subtyping has been more recently investigated [6,8,15,24,25]:
it is more permissive because it widens the synchronous subtyping relation by
allowing the subtype to anticipate send actions, under the assumption that the
subsequent communication protocol is not influenced by the anticipation. Antici-
pation is admitted because, in the presence of message queues, the effect of antici-
pating a send is simply that of enqueueing earlier, in the communication channel,
the corresponding message. As an example, a session type ⊕{l : &{l′ : end}}
with a send action on l followed by a receive action on l′, is an asynchronous
subtype of &{l′ : ⊕{l : end}} that performs the same actions, but in reverse
order. This admits the safe combination of two endpoints with session types
⊕{l : &{l′ : end}} and ⊕{l′ : &{l : end}}, respectively, because each program
has a type which is an asynchronous subtype of the dual type of the partner.
Intuitively, the combination is safe in that the initially sent messages are first
enqueued in the communication channels, and then consumed.

Behavioural contracts [9–11,14,19] (contracts, for short) represent an alterna-
tive way for describing the communication behaviour of processes. While session
types are defined to be checked against concurrent programs written in some
specific programming language, contracts can be considered a language inde-
pendent approach strongly inspired by automata-based communication mod-
els. Contracts follow the tradition of Communicating Finite State Machines
(CFSMs) [4], which describe the possible send/receive actions in terms of a
labeled-transition system: each transition corresponds with a possible communi-
cation action and alternative transitions represent choices that can involve both
sends and receives (so called mixed-choices, which are usually disregarded in
session types). A system is then modeled as the parallel composition of the con-
tracts of its constituting processes. Also in the context of contracts, safe process
replacement has been investigated by introducing the notion of contract refine-
ment : if a contract C1 is part of a correct system, then correctness is preserved
when C1 is replaced by one of its subcontracts C2 (written C2 � C1 in this
paper). Obviously, different notions of contract refinement can be defined, based
on possible alternative notions of system correctness. For instance, for binary
client/service interaction where correctness is interpreted as the successful com-
pletion of the client protocol, the server pre-order (see e.g. [3]) has been defined
as a refinement of server contracts that preserves client satisfaction. On the other
hand, if we move to multi-party systems, and we consider a notion of correctness,
called compliance, that requires the successful completion of all the partners, an
alternative compliance preserving subcontract relation [10] is obtained.

Relating Session Types and Behavioural Contracts: The Asynchronous Case 31

Given that both session types and behavioural contracts have been developed
for formal reasoning on communication-centered systems, and given that session
subtyping and contract refinement have been respectively defined to characterize
the notion of safe replacement, it is common understanding that there exists a
strong correspondence between these session subtyping and contract refinement.
Such a correspondence has been formally investigated for synchronous commu-
nication by Bernardi and Hennessy [3]: there exists a natural interpretation of
session types into a fragment of contracts where mixed-choice is disallowed, called
session contracts, such that synchronous subtyping is mapped into a notion of
refinement that preserves client satisfaction (but can be applied to both clients
and servers; and not only to servers as the server pre-order mentioned above).

The correspondence between session subtyping and contract refinement under
asynchronous communication is still an open problem. In this paper we solve
such a problem by identifying the fragment of asynchronously communicating
contracts for which refinement corresponds to asynchronous session subtyping:
besides disallowing mixed-choices as for the synchronous case, we consider a
specific form of communication (i.e., FIFO channels for each pair of processes
as in the communication model of CFSMs) and restrict to binary systems (i.e.,
systems composed of two contracts only).

In all, this paper contribution encompasses: (i) a new theory of asynchronous
behavioural contracts that coincide with CFSMs and includes the notions of
contract compliance (correct, i.e. deadlock free, system of CFSMs) and contract
refinement (preservation of compliance under any test); and (ii) a precise discus-
sion about the notion of refinement, showing under which conditions it coincides
with asynchronous session subtyping, which is known to be undecidable [7].

More precisely, concerning (ii), we show asynchronous subtyping over session
types to be encodable into refinement over binary and non mixed-choice asyn-
chronous behavioral contracts (CFSMs). This means that, for contracts of this
kind, refined contracts can anticipate outputs w.r.t. the original contract as it
happens in the context of session subtyping. Moreover we show that it is crucial,
for such a correspondence to hold, that, when establishing refinement between
two binary and non mixed-choice asynchronous behavioral contracts, only tests
that are actually binary (a single interacting contract) and non mixed-choice are
considered: if we also consider tests that are either multiparty (mutliple inter-
acting contracts) or mixed-choice, in general, a binary and non mixed-choice
contract C ′ that anticipates output w.r.t. a binary and non mixed-choice con-
tract C is not a subcontract of it. This observation has deep implications on
decidability properties in the context of general asynchronous behavioral con-
tracts (CFSMs): while compliance, i.e. (non) reachability of deadlocking global
CFSM states over asynchronous behavioral contracts (CFSMs) is known to be
undecidable [4], an obvious argument showing undecidability cannot be found for
the refinement relation: such a relation can be put in direct correspondence with
asynchronous session subtyping only for the restricted binary and non mixed-
choice setting (including also tests). Therefore, since in general an asynchronous
behavioral contract (CFSMs) C ′ that anticipates output w.r.t. a contract C is

32 M. Bravetti and G. Zavattaro

q1

q3

w
wto

ok

dtl

iep

q1

q2 q3

w wto

ok

dtl

ok

dtl

iep

q1

q2 q3

w wto

ok

dtl

ok

dtl

iep

Alternative Client Client Server

Fig. 1. Fragment of a UDP server serving Write/WriteTo requests, with specular client
and alternative client that records replies only after WriteTo requests.

not a subcontract of it, decidability of refinement over general asynchronous
behavioral contracts (CFSMs) remains, quite unexpectedly, an open problem.

Structure of the Paper. In Sect. 2 we define our model of asynchronous
behavioural contracts inspired by CFSMs [4]; we define syntax, semantics, correct
contract composition, and the notion of contract refinement. In Sect. 3 we recall
session types, focusing on the notion of asynchronous session subtyping [7,25].
In Sect. 4 we present a fragment of behavioural contracts and we prove that
there exists a natural encoding of session types into this fragment of contracts
which maps asynchronous session subtyping into contract refinement. Finally, in
Sect. 5 we report some concluding remarks.

2 Behavioural Contracts

In this section we present behavioural contracts (simply contracts for short), in
the form of a process algebra (see, e.g. [2,22,23]) based formalization of Commu-
nicating Finite State Machines (CFSMs) [4]. CFSMs are used to represent FIFO
systems, composed by automata performing send and receive actions having the
effect of introducing/retrieving messages to/from FIFO channel. One channel is
considered for each pair of sender/receiver automata.

As an example, we can consider a client/service interaction (inspired by the
UDP communication protocol) depicted in Fig. 1. Communication protocols are
denoted by means of automata with transitions representing communication
actions: overlined labels denote send actions, while non-overlined labels denote
receive actions. The server is always available to serve both Write (w for short)
and WriteTo (wto) requests. In the first case, the server replies with OK (ok) or
DataTooLarge (dtl), depending on the success of the request or its failure due
to an exceeding size of the message. On the other hand, in case of WriteTo, the
server has a third possible reply, InvalidEndPoint (iep), in case of wrongly spec-
ified destination. We consider two possible clients: a client following a specular
protocol, and an alternative client that (given the connectionless nature of UDP)
does not synchronize the reception of the server replies with the corresponding
requests, but records them asynchronously after WriteTo requests only.

We now present contracts, that can be seen as a syntax for CFSMs. Differ-
ently from the examples of communicating automata reported in Fig. 1, the send

Relating Session Types and Behavioural Contracts: The Asynchronous Case 33

Table 1. Semantic rules for contracts.

(resp. receive) actions will be decorated with a location identifying the expected
receiver (resp. sender) contract. This was not considered in the example because,
in case of two interacting partners, the sender and receiver of the communication
actions can be left implicit.

Definition 1 (Behavioural Contracts). We consider three denumerable
sets: the set N of message names ranged over by a, b, · · · , the location names
Loc, ranged over by l, l′, · · · , and the contract variables Var ranged over by X,
Y , · · · . The syntax of contracts is defined by the following grammar:

C ::= 1 | ∑
i∈I αi.Ci | X | recX.C α ::= al | al

where the set of index I is assumed to be non-empty, and recX. is a binder for
the process variable X denoting recursive definition of processes: in recX.C a
(free) occurrence of X inside C represents a jump going back to the beginning of
C. We assume that in a contract C all process variables are bound and all recur-
sive definitions are guarded, i.e. in recX.C all occurrences of X are included
in the scope of a prefix operator

∑
i∈I αi.Ci. Following CFSMs, we assume con-

tracts to be deterministic, i.e., in
∑

i∈I αi.Ci, we have αi = αj iff i = j. In the
following we will omit trailing “ .1” when writing contracts.

We use α to range over the actions: al is a send action, with message a,
towards the location l; al is the receive of a sent from the location l. The contract∑

i∈I αi.Ci (also denoted with α1.C1+α2.C2+· · ·+αn.Cn when I = {1, 2, . . . , n})
performs any of the actions αi and activates the continuation Ci. In case there
is only one action, we use the simplified notation α.C, where α is such a unique
action, and C is its continuation. The contract 1 denotes a final successful state.

The operational semantics of contracts C is defined in terms of a transition
system labeled over {al, al, | a ∈ N , l ∈ Loc}, ranged over by λ, λ′, . . . , obtained
by the rules in Table 1. We use C{ / } to denote syntactic replacement. The first
rule states that contract

∑
i∈I αi.Ci can perform any of the actions αi and then

activate the corresponding continuation Ci. The second rule is the standard one
for recursion unfolding (replacing any occurrence of X with the operator recX.C
binding it, so to represent the backward jump described above).

The semantics of a contract C yields a finite-state labeled transition system,1

whose states are the contracts reachable from C. It is interesting to observe that
such a transition system can be interpreted as a communicating automaton of
a CFSM, with transitions al (resp. al) denoting send (resp. receive) actions.
1 As for basic CCS [22] finite-stateness is an obvious consequence of the fact that the

process algebra does not include static operators, like parallel or restriction.

34 M. Bravetti and G. Zavattaro

The final contract 1 coincides with states of communicating automata that have
no outgoing transitions. Moreover, we have that each communicating automa-
ton can be expressed as a contract; this is possible by adopting standard tech-
niques [22] to translate finite labeled transition systems into recursively defined
process algebraic terms. Hence we can conclude that our contracts coincide with
the communicating automata as defined for CFSMs.

Example 1. As an example of contracts used to denote communicating
automata, the alternative client and the server in Fig. 1 respectively correspond
to the following contracts:2

Client = recX.(w .X + wto.(ok .X + dtl .X + iep.X))
Server = recX.(w .(ok .X + dtl .X) + wto.(ok .X + dtl .X + iep.X))

Notice that we have not explicitly indicated the locations associated to the send
and receive actions; in fact interaction is binary and the sender and receiver of
each communication is obviously the partner location, and we leave it implicit.

We now move to the formalization of contract systems. A contract system
is the parallel composition of contracts, each one located at a given location,
that communicate by means of FIFO channels. More precisely, we use [C,Q]l
to denote a contract C located at location l with an input queue Q. The queue
contains messages denoted with al′ , where l′ is the location of the sender of
such message a. This queue should be considered as the union of many input
channels, one for each sender; in fact the FIFO order of reception is guaranteed
only among messages coming from the same sender, while two messages coming
from different senders can be consumed in any order, independently from the
order of introduction in the queue Q. This coincides with the communication
model considered in CFSMs.

Definition 2 (FIFO Contract Systems). The syntax of FIFO contract sys-
tems is defined by the following grammar:

P ::= [C,Q]l | P ||P Q ::= ε | al :: Q

We assume that every FIFO contract system P is such that: (i) all locations
are different (i.e. every subterm [C,Q]l occurs in P with a different location
l), (ii) all actions refer to locations present in the system (i.e., for every al or
al occurring in P , there exists a subterm [C,Q]l of P), (iii) receive and send
actions executed by a contract consider a location different from the location of
that contract (i.e. every action al or al does not occur inside a subterm [C,Q]l
of P), and (iv) messages in a queue comes from a location different from the
location of the queue (i.e. every message al does not occur inside the queue Q of
a subterm [C,Q]l of P).

2 The correspondence is as follows: the labeled transition systems of the indicated
contracts and the corresponding automata in Fig. 1 are isomorphic.

Relating Session Types and Behavioural Contracts: The Asynchronous Case 35

Table 2. Asynchronous system semantics (symmetric rules for || omitted).

Terms Q denote message queues: they are sequences of messages
a1

l1
:: a2

l2
:: . . . :: an

ln
:: ε,3 where “ε” denotes the empty message queue. Trail-

ing ε are usually left implicit (hence the above queue is denoted with
a1

l1
:: a2

l2
:: . . . :: an

ln
). We overload :: to denote also queue concatenation, i.e.,

given Q = a1
l1

:: a2
l2

:: . . . :: an
ln

and Q′ = b1l′1
:: b2l′2 :: . . . :: bm

l′m
, then Q :: Q′ =

a1
l1

:: a2
l2

:: . . . :: an
ln

:: b1l′1 :: b2l′2 :: . . . :: bm
l′m

. In the following, we will use the nota-
tion l �∈ Q to state that if al′ is in Q then l �= l′, moreover we will use the
shorthand [C] to stand for [C, ε].

The operational semantics of FIFO contract systems is defined in terms of a
transition system labeled over {al,l′ , al,l′ , τ | l, l′ ∈ Loc, a ∈ N}, also in this case
ranged over by λ, λ′, . . . , obtained by the rules in Table 2 (plus the symmetric
version for the first two rules of parallel composition). The first rule indicates
that a send action al′ executed by a contract located at location l, becomes an
action al,l′ : the two locations l and l′ denote the sender and receiver locations,
respectively. The second rule states that, at the receiver location l′, it is always
possible to execute a complementary action al,l′ (that can synchronize with al,l′)
whose effect is to enqueue, in the local queue, al: notice that only the sender
location l remains associated to message a. The third rule is the synchronization
rule between the two complementary labels al,l′ and al,l′ . The fourth rule is for
message consumption: a contract can remove a message al from its queue, only
if al is not preceded by messages sent from the same location l. This guarantees
that messages from the same location are consumed in FIFO order. The last rule
is the usual local rule used to extend to the entire system actions performed by
a part of it.

In the following, we call computation step a τ -labeled transition P
τ−→ P ′;

a computation, on the other hand, is a (possibly empty) sequence of τ -labeled
transitions P

τ−→∗
P ′, in this case starting from the system P and leading to

P ′. To simplify the notation, we omit the τ labels, i.e., we use P −→ P ′ for
computation steps, and P −→∗ P ′ for computations.

We now move to the definition of correct composition of contracts. We take
inspiration from the notion of compliance among contracts as defined, e.g., by
Bernardi and Hennessy [3]. Informally, we say that a contract system is correct
if all its reachable states (via any computation) are such that: the system has
successfully completed or it is able to perform computation steps (i.e. τ transi-

3 As usual, we consider :: right associative.

36 M. Bravetti and G. Zavattaro

tions) and after each step it moves to a system which is, in turn, correct. In other
terms, a system is correct if all of its maximal sequences of τ labeled transitions
either lead to a successfully completed system or are infinite (do not terminate).
The notion of successful completion for a system is formalized by a predicate
P

√
defined as follows:

(
[C1,Q1]|| . . . ||[Cn,Qn]

)√
iff ∀i ∈ {1, . . . , n}. Ci = recX1 . . . recXmi

.1 ∧ Qi = ε

Notice that the predicate checks whether all input queues are empty and all
contracts coincide with the terminated contract 1 (possibly guarded by some
recursive definition).

We are now ready to define our notion of correct contract composition.

Definition 3 (Correct Contract Composition – Compliance). A system
P is a correct contract composition according to compliance, denoted P ↓, if for
every P ′ such that P −→∗ P ′, then either P ′ is a successfully completed system,
i.e. P ′√, or there exists an additional computation step P ′ −→ P ′′.

Example 2. As an example of correct system we can consider [Client]c||[Server]s
where Client is the contract defined in Example 1 above for the alternative client
in Fig. 1 in which all actions are decorated with s, while Server is the contract
for the server in which all actions are decorated with c. In this system successful
completion cannot be reached, but the system never stucks, i.e., every system
reachable via a computation always has an additional computation step.

Notice that the above Client/Server system is a correct contract composition
even if the considered Client does not behave specularly w.r.t. the server. When
we replace a contract with another one by preserving system correctness, we say
that we refine the initial contract. As an example, consider the correct system
[bl′ .al′]l || [bl.al]l′ composed of two specular contracts. We can replace the con-
tract bl′ .al′ with al′ .bl′ by preserving system correctness (i.e. [al′ .bl′]l || [bl.al]l′
is still correct). The latter differs from the former in that it anticipates the send
action al′ w.r.t. the receive action bl′ . This transformation is usually called output
anticipation (see e.g. [25]). Intuitively, output anticipation is possible because,
under asynchronous communication, its effect is simply that of anticipating the
introduction of a message in the partner queue. In the context of asynchronous
session types, for instance, output anticipation is admitted by the notion of ses-
sion subtyping [15,25] that, as we will discuss in the following sections, is the
counterpart of contract refinement in the context of session types.

We now formally define contract refinement and we observe that, differently
from session types, output anticipation is not admitted as a general contract
refinement mechanism.

Definition 4 (Contract Refinement). A contract C ′ is a refinement of a con-
tract C, denoted C ′ � C, if and only if, for all FIFO contract systems ([C]l||P)
we have that: if ([C]l||P)↓then ([C ′]l||P)↓.
In the following, whenever C ′ � C we will also say that C ′ is a subcontract of
C (or equivalently that C is a supercontract of C ′).

Relating Session Types and Behavioural Contracts: The Asynchronous Case 37

The above definition contains a universal quantification on all possible con-
tract systems P and locations l, hence it cannot be directly used to algorith-
mically check contract refinement. To the best of our knowledge, there exists
no general algorithmic characterization (or proof of undecidability) for such a
relation. Nevertheless, we can use the definition on some examples.

For instance, consider the two contracts C = bl′ .al′ and C ′ = al′ .bl′ discussed
above. We have seen that C ′ is a safe replacement of C in the specific context
[]l||[bl.al]l′ . But we have that C ′ �� C because there exists a discriminating context
[]l||[bl.al + al]l′ . In fact, when combined with C ′, the contract in l′ can take the
alternative branch al, leading to an incorrect system where the contract at l
blocks waiting for a never incoming message bl′ .

The above example shows that output anticipation, admitted in the context
of asynchronous session types, is not a correct refinement mechanism for con-
tracts. The remainder of the paper is dedicated to the definition of a fragment of
contracts in which it is correct to admit output anticipation, but we first recall
session types and asynchronous subtyping.

3 Asynchronous Session Types

In this section we recall session types, in particular we discuss binary session
types for asynchronous communication. In fact, for this specific class of session
types, subtyping admits output anticipation.

We start with the formal syntax of binary session types, adopting a simplified
notation (used, e.g., in [7,8]) without dedicated constructs for sending an out-
put/receiving an input. We instead represent outputs and inputs directly inside
choices. More precisely, we consider output selection ⊕{li : Ti}i∈I , expressing an
internal choice among outputs, and input branching &{li : Ti}i∈I , expressing an
external choice among inputs. Each possible choice is labeled by a label li, taken
from a global set of labels L, followed by a session continuation Ti. Labels in a
branching/selection are assumed to be pairwise distinct.

Definition 5 (Session Types). Given a set of labels L, ranged over by l, the
syntax of binary session types is given by the following grammar:

T & ::= ⊕{li : Ti}i∈I | &{li : Ti}i∈I | μt.T | t | end

In the sequel, we leave implicit the index set i ∈ I in input branchings and
output selections when it is already clear from the denotation of the types. Note
also that we abstract from the type of the message that could be sent over the
channel, since this is orthogonal to our results in this paper. Types μt.T and
t denote standard tail recursion for recursive types. We assume recursion to be
guarded: in μt.T , the recursion variable t occurs within the scope of an output or
an input type. In the following, we will consider closed terms only, i.e., types with
all recursion variables t occurring under the scope of a corresponding definition
μt.T . Type end denotes the type of a closed session, i.e., a session that can no
longer be used.

38 M. Bravetti and G. Zavattaro

For session types, we define the usual notion of duality: given a session type
T , its dual T is defined as: ⊕{li : Ti}i∈I = &{li : T i}i∈I , &{li : Ti}i∈I = ⊕{li :
T i}i∈I , end = end, t = t, and μt.T = μt.T .

We now move to the session subtyping relation, under the assumption that
communication is asynchronous. The subtyping relation was initially defined
by Gay and Hole [17] for synchronous communication; we adopt a similar co-
inductive definition but, to be more consistent with the contract theory that we
will discuss in the next sections, we follow a slightly different approach, being
process-oriented instead of channel-based oriented.4 Moreover, following [25], we
consider a generalized version of unfolding that allows us to unfold recursions
μt.T as many times as needed.

Definition 6 (n-unfolding).

unfold0(T) = T unfold1(⊕{li : Ti}i∈I) = ⊕{li : unfold1(Ti)}i∈I

unfold1(μt.T) = T{μt.T/t} unfold1(&{li : Ti}i∈I) = &{li : unfold1(Ti)}i∈I

unfold1(end) = end unfoldn(T) = unfold1(unfoldn−1(T))

Another auxiliary notation that we will use is that of input context which
is useful to identify sequences of initial input branchings; this is useful because,
as we will discuss in the following, in the definition of asynchronous session
subtyping it is important to identify those output selections that are guarded by
input branchings.

Definition 7 (Input Context). An input context A is a session type with
multiple holes defined by the syntax:

A ::= []n | &{li : Ai}i∈I

The holes []n, with n ∈ N
+, of an input context A are assumed to be consistently

enumerated, i.e. there exists m ≥ 1 such that A includes one and only one []n

for each n ≤ m. Given types T1,. . . , Tm, we use A[Tk]k∈{1,...,m} to denote the
type obtained by filling each hole k in A with the corresponding term Tk.

As an example of how input contexts are used, consider the session type
&
{
l1 : ⊕{l : end}, l2 : ⊕{l : end}}. It can be decomposed as the input context

&
{
l1 : []1, l2 : []2

}
with two holes that can be both filled with ⊕{l : end}.

We are now ready to recall the asynchronous subtyping ≤ introduced by
Mostrous et al. [24] following the simplified formulation in [7].

Definition 8 (Asynchronous Subtyping, ≤). R is an asynchronous subtyp-
ing relation whenever (T, S) ∈ R implies that:

1. if T = end then ∃n ≥ 0 such that unfoldn(S) = end;
2. if T = ⊕{li : Ti}i∈I then ∃n ≥ 0,A such that

4 Differently from our definitions, in the channel-based approach of Gay and Hole [17]
subtyping is covariant on branchings and contra-variant on selections.

Relating Session Types and Behavioural Contracts: The Asynchronous Case 39

– unfoldn(S) = A[⊕{lj : Skj}j∈Jk
]k∈{1,...,m},

– ∀k ∈ {1, . . . , m}. I ⊆ Jk and
– ∀i ∈ I, (Ti,A[Ski]k∈{1,...,m}) ∈ R;

3. if T = &{li : Ti}i∈I then ∃n ≥ 0 such that unfoldn(S) = &{lj : Sj}j∈J , J ⊆ I
and ∀j ∈ J. (Tj , Sj) ∈ R;

4. if T = μt.T ′ then (T ′{T/t}, S) ∈ R.

T is an asynchronous subtype of S, written T ≤ S, if there is an asynchronous
subtyping relation R such that (T, S) ∈ R.

Intuitively, the above co-inductive definition says that it is possibile to play a
simulation game between a subtype T and its supertype S as follows: if T is the
end type, then also S is ended; if T starts with an output selection, then S can
reply by outputting at least all the labels in the selection (output covariance),
and the simulation game continues; if T starts with an input branching, then
S can reply by inputting at most some of the labels in the branching (input
contravariance), and the simulation game continues. The unique non trivial case
is the case of output selection; in fact, in this case the supertype could reply
with output selections that are guarded by input branchings. As an example
of application of this rule, consider the session type T = ⊕{

l : &{l1 : end, l2 :
end}}. We have that T is a subtype of S = &

{
l1 : ⊕{l : end}, l2 : ⊕{l : end}},

previously introduced. In fact, we have that the following relation

{ (T, S) , (&{l1 : end, l2 : end},&{l1 : end, l2 : end}) , (end, end) }

is an asynchronous subtyping relation. Rule 2 . of the definition is applied on the
first pair (T, S). The first item of the rule is used to decompose S (as discussed
above) as the input context &

{
l1 : []1, l2 : []2

}
with two holes both filled with

⊕{l : end}. The second item trivially holds because the output selection at
the beginning of T has only one label l, as also the output selections filling
the holes in the decomposition of S. Finally, the third item holds because of
the pair (&{l1 : end, l2 : end},&{l1 : end, l2 : end}) present in the relation.
The first element of the pair is obtained by consuming the output selection at
the beginning of T , while the second element by consuming the initial output
selection of the terms filling the holes of the considered input context.

The rationale behind asynchronous session subtyping is that under asyn-
chronous communication it is unobservable whether an output is anticipated
before an input or not. In fact, anticipating an output simply introduces in
advance the corresponding message in the communication queue. For this rea-
son, rule 2 . of the asynchronous subtyping definition admits the supertype to
have inputs in front of the outputs used in the simulation game.

As a further example, consider the types T = μt.&{l : ⊕{l : t}} and S =
μt.&{l : &{l : ⊕{l : t}}}. We have T ≤S by considering an infinite subtyping
relation including pairs (T ′, S′), with S′ being &{l : S}, &{l : &{l : S}}, &{l :
&{l : &{l : S}}}, . . . ; that is, the effect of each output anticipation is that a new
input &{l : } is accumulated in the initial part of the r.h.s. It is worth to observe

40 M. Bravetti and G. Zavattaro

that every accumulated input &{l : } is eventually consumed in the simulation
game, but the accumulated inputs grows unboundedly.

There are, on the contrary, cases in which the accumulated input is not
consumed, as in the infinite simulation game between T = μt. ⊕ {l : t} and S =
μt.&{l : ⊕{l : t}}, in which only output selections are present in the subtype,
and an instance of the input branching in the supertype is accumulated in each
step of the simulation game.

Example 3. As a less trivial example, we can express as session types the two
client protocols depicted in Fig. 1:

SpecularClient = μt. ⊕ {w .&{ok .t + dtl .t},wto.&{ok .t + dtl .t + iep.t}}
RefinedClient = μt. ⊕ {w .t,wto.&{ok .t + dtl .t + iep.t}}

We have that RefinedClient ≤ SpecularClient because the subtyping simulation
game can go on forever: when RefinedClient selects the output w a input branch-
ing is accumulated in front of the r.h.s. type (SpecularClient and its derived
types), while if wto is selected there is no new input accumulation as a (con-
travariant) input branching follows such a selected output.

A final observation is concerned with specific limit cases of application of
rule 2 .; as discussed above, such a rule assume the possibility to decompose
the candidate supertype into an initial input context, with holes filled by types
starting with output selections. We notice that there exist session types that
cannot be decomposed in such a way. Consider, for instance, the session type
S = μt.&{l1 : t, l2 : ⊕{l : t}}. This session type cannot be decomposed as
an input context with holes filled by output branchings because, for every n,
unfoldn(S) will contain a sequence of input branchings (labeled with l1) that
terminate in a term starting with the recursive definition μt. . Our opinion is
that the definition of asynchronous subtyping does not manage properly these
limit cases. For instance, the above session type S could be reasonably considered
a supertype of μt. ⊕ {l : &{l1 : t, l2 : t}, that simply anticipates the output
selection with label l. Such a type has runs with more output selections, because
S has a loop of the recursive definition that does not include the output selection;
but this is not problematic because such outputs could be simply stored in the
message queue. Nevertheless, we have that such a session type is not a subtype
of S due to the above observation about the inapplicability of rule 2 .

For this reason, in the following, we will restrict to session types that do not
contain infinite sequences of receive actions. Formally, given a session type S
and a subterm μt.T of S, we assume that all free occurrences of t occur in T
inside an output selection ⊕{ }.

We conclude this section by observing that asynchronous session subtyping
was considered decidable (see [25]), but recently Bravetti, Carbone and Zavattaro
proved that it is undecidable [7].5

5 Lange and Yoshida [20] independently proved that a slight variant of asynchronous
subtyping, called orphan-message-free subtyping was undecidable.

Relating Session Types and Behavioural Contracts: The Asynchronous Case 41

4 Mapping Session Types into Behavioural Contracts

In the previous sections we have defined a notion of refinement for contracts and
we have seen that output anticipation is not admitted as a general refinement
mechanism. Then we have recalled session types where, on the contrary, output
anticipation is admitted by asynchronous session subtyping. In this section we
show that it is possible to define a fragment of contracts for which refinement
turns out to coincide with asynchronous session subtyping. More precisely, the
natural encoding of session types into contracts maps asynchronous session sub-
typing into refinement, in the sense that two types are in subtyping relation if
and only if the corresponding contracts are in refinement relation.

The first restriction that we discuss is about mixed-choice, i.e., the possibility
to perform from the same state both send and receive actions. This is clearly not
possible in session types having either output selections or input branchings. But
removing mixed-choice from contracts is not sufficient to admit output antici-
pation. For instance, the system [bl2 .cl2 , ε]l1 || [(al3 .bl1 .cl1) + cl1 , ε]l2 ||[al2 , ε]l3 is
correct; but if we replace the contract at location l1 with cl2 .bl2 , that simply antic-
ipates an output, we obtain [cl2 .bl2 , ε]l1 ||[(al3 .bl1 .cl1) + cl1 , ε]l2 ||[al2 , ε]l3 which is
no longer correct in that the alternative branch cl1 can be taken by the contract in
l2, thus reaching a system in which the contract at l1 will wait indefinitely for bl2 .

For this reason we need an additional restriction on choices: besides imposing
that all the branchings should be guarded by either send or receive actions, we
impose all such actions to address the same location l. This is obtained by means
of a final restriction about the number of locations: we will consider systems
with only two locations, as our objective is to obtain a refinement which is fully
abstract w.r.t. subtyping as defined in Sect. 3, where we considered binary session
types (i.e. types for sessions between two endpoints). Given that there are only
two locations, each contract can receive only from the location of the partner;
hence all receives in a choice address the same location. In general, we will omit
the locations associated to send and receive actions: in fact, as already discussed
also in Example 1, these can be left implicit because when there are only two
locations all actions in one location consider the other location.

A final restriction follows from having restricted our analysis to session types
in which there are no infinite sequences of input branchings (see the discussion,
at the end of the previous section, about the inapplicability in these cases of rule
2 . of Definition def:subtyping). We consider a similar restriction for contracts,
by imposing that it is not possible to have infinite sequences of receive actions.

We are now ready to formally define the restricted syntax of contracts consid-
ered in this section; it coincides with session contracts as defined in [3] plus the
restriction on contracts that do not contain infinite sequences of receive actions.

Definition 9 (Session contracts). Session contracts are behavioural contracts
obtained by considering the following restricted syntax:

C ::= 1 | ∑
i∈I ai.Ci | ∑

i∈I ai.Ci | X | recX.C

where given a session contract recX.C, we have that all free occurrences of X
occur in C inside a subterm

∑
i∈I ai.Ci. Notice that we omit the locations l

42 M. Bravetti and G. Zavattaro

associated to the send and receive actions (which is present in the contract syntax
as defined in Definition 1). This simplification is justified because we will consider
systems with only two locations, and we implicitly assume all actions of the
contract in one location to be decorated with the other location.

In the remainder of this section we will restrict our investigation to FIFO
contract systems with only two locations and by considering only session con-
tracts. We will omit the location names also in the denotation of such binary
contract systems. Namely, we will use [C,Q]||[C ′,Q′] to denote binary contract
systems, thus omitting the names of the two locations as any pair of distinct
locations l and l′ could be considered.

In the restricted setting of binary session contracts, we can redefine the notion
of refinement as follows.

Definition 10 (Binary Session Contract Refinement). A session contract
C ′ is a binary session contract refinement of a session contract C, denoted with
C ′ �s C, if and only if, for all session contract D, if ([C]||[D])↓ then ([C ′]||[D])↓.

We now define a natural interpretation of session types as session contract;
we will subsequently show that this encoding maps asynchronous subtyping into
session contract refinement.

Definition 11. Let T be a session type. We inductively define a function [[T]]
from session types to session contracts as follows:

– [[T = ⊕{li : Ti}i∈I]] =
∑

i∈I li.[[Ti]]; [[T = &{li : Ti}i∈I]] =
∑

i∈I li.[[Ti]];
– [[μt.T]] = rec t.[[T]]; [[t]] = t; [[end]] = 1.

We now move to our main result, i.e., the proof that given two session types
T and S we have that T ≤ S if and only if [[T]] �s [[S]]. This result has two
main consequences. On the one hand, as a positive consequence, we can use the
characterization of session subtyping in Definition 8 to prove also session contract
refinement. For instance, if we consider the two session subtypes RefinedClient
and SpecularClient of Example 3, we can conclude that

recX.(w .X + wto.(ok .X + dtl .X + iep.X)) �s

recX.(w .(ok .X + dtl .X) + wto.(ok .X + dtl .X + iep.X))

because, these two contracts are the encodings of the two above session types
according to [[]] (notice that these two contracts coincide with the two clients rep-
resented in Fig. 1). On the other hand, as a negative consequence, we have that
session contract refinement �s is in general undecidable, because asynchronous
subtyping ≤ is also undecidable as recalled in Sect. 3.

The first result is about soundness of the mapping of asynchronous session
subtyping into session contract refinement, i.e., given two session types T and S,
if T ≤ S then [[T]] �s [[S]]. In the proof of this result we exploit an intermediary
result that simply formalizes the rationale behind asynchronous session subtyp-
ing that we have commented after Definition 8: given a correct session contract
system, if we anticipate an output w.r.t. a preceding input context, the obtained
system is still correct.

Relating Session Types and Behavioural Contracts: The Asynchronous Case 43

Proposition 1. Consider the two following session contract systems
P1 = [[[A[Sk]k∈{1,...,m}]],Q]||[D,Q′ :: l] and
P2 = [[[A[⊕{l.Sk}]k∈{1,...,m}]],Q]||[D,Q′]. If P2 ↓ then also P1 ↓.

Soundness is formalized by the following Theorem.

Theorem 1. Given two session types T and S, if T ≤ S then [[T]] �s [[S]].

Proof. (Sketch) This theorem is proved by showing that the following relation

S = { (
[[[S]],Q]||[D,Q′] , [[[T]],Q]||[D,Q′]

) | T ≤S }

is such that if (P1, P2) ∈ S and P1 ↓, then also P2 ↓.
To prove this result it is sufficient to consider all possible computation steps

[[[T]],Q]||[D,Q′] −→ P ′
2 and show that there exists P ′

1 such that P ′
1 ↓ and

(P ′
1, P

′
2) ∈ S. For all possible computation steps but one the proof of the above

result is easy because, thanks to the subtyping simulation game, the existence
of P ′

1 is guaranteed by a corresponding computation step P1 −→ P ′
1. The unique

non trivial case is for send actions executed by the contract [[T]]. In this case the
existence of P ′

1 is guaranteed by Proposition 1 applied to [[[S]],Q]: in fact, [[S]]
can have the corresponding output after some initial inputs, and P ′

1 is obtained
by removing the output selections from [[S]] and introducing the selected label
directly in the partner’s queue. This term P ′

1 is such that P1 ↓ thanks to Propo-
sition 1.

Given the above relation S, as a consequence of its properties we have that
if T ≤ S then [[T]] is always a safe replacement for [[S]], in every context, hence
[[T]] �s [[S]]. ��
A second theorem states completeness, i.e., given two session types T and S, if
[[T]] �s [[S]] then T ≤S. Actually, we prove the contrapositive statement.

Theorem 2. Given two session types T and S, if T �≤S then [[T]] ��s [[S]].

Proof. (Sketch) The proof of this theorem is based on the identification of a
context that discriminates, in case T �≤S, the two contracts [[T]] and [[S]]. Such
a context exists under the assumption that T �≤S. The context is obtained by
considering the encoding of the dual of S, i.e., the specular session type S. In fact,
we have that [[[S]]]||[[[S]]] ↓ because the two contracts follow specular protocols,
while [[[T]]]||[[[S]]]↓ does not hold. This last result follows from T �≤S; we consider
a run of the subtyping simulation game between T and S that fails (such a run
exists because T �≤S). If the computation corresponding to this run is executed
by [[[T]]]||[[[S]]], we have that a stuck system is reached, hence [[[T]]]||[[[S]]] ↓ does
not hold. ��
As a direct corollary of the two previous Theorems we have the following full
abstraction result.

Corollary 1. Given two session types T and S, T ≤ S if and only if [[T]] �s [[S]].

44 M. Bravetti and G. Zavattaro

We conclude by discussing the “fragility” of this full-abstraction result; small
variations in the contract language, or in the notion of compliance, break such
a result. For instance, consider a communication model (similar to actor-based
communication) in which each location has only one input FIFO channel, instead
of many (one for each potential sender as for CFSMs). In this model, input
actions can be expressed simply with a instead of al, indicating that a is expected
to be consumed from the unique local input queue. Under this variant output
anticipation is no longer admitted. Consider, e.g., [a.bl2]l1 ||[c.al1 .b]l2 || [cl2]l3 ,
which is a correct system. If we replace the contract at location l1 with bl2 .a,
that simply anticipates an output, we obtain [bl2 .a]l1 || [c.al1 .b]l2 || [cl2]l3 , which
is no longer correct, because in case message b (sent from l1) is enqueued at l2
before message c (sent from l3), the entire system is stuck.

Consider another communication model in which there are many input
queues, but instead of naming them implicitly with the sender location, we con-
sider explicit channel names like in CCS [22] or π-calculus [5,23]. In this case, a
send actions can be written al,π, indicating that the message a should be inserted
in the input queue π at location l. A receive action can be written aπ, indicating
that the message a is expected to be consumed from the input queue π. Also
in this model output anticipation is not admitted. In fact, we can rephrase the
above counter-example as follows: [aπ1 .bl2,π2]l1 || [cπ2 .al1,π1 .bπ2]l2 || [cl2,π2]l3 .

Another interesting observation is concerned with the notion of compliance.
In other papers about asynchronous behavioural contracts [12], compliance is
more restrictive, in that it requires that, under fair exit from loops, the compu-
tation eventually successfully terminates. Consider, for instance, the binary sys-
tem [recX.(a+ b.X)] || [recX.(a+ b.X)]. It satisfies the condition above because,
if we consider only fair computations, the send action a will be eventually exe-
cuted thus guaranteeing successful termination. In this case, output covariance,
admitted by synchronous session subtyping, is not correct. If we consider the
contract recX.(b.X) having less output branches (hence following the output
covariance principle), and we use it as a replacement for the first contract above,
we obtain the system [recX.(b.X)] || [recX.(a + b.X)] that does not satisfy the
above definition of compliance because it cannot reach successful termination.

5 Related Work and Conclusion

In this paper we introduced a behavioural contract theory based on a defini-
tion of compliance (correctness of composition of a set of interacting contracts)
and refinement (preservation of compliance under any test, i.e. set of interacting
contracts): the two basic notions on which behavioural contract theories are usu-
ally based [10,11,14,19]. In particular, the definitions of behavioural contracts
and compliance considered in this paper have been devised so to formally repre-
sent Communicating Finite State Machines (CFSMs) [4], i.e. systems composed
by automata performing send and receive actions (the interacting contracts)
that communicate by means of FIFO channels. Behavioural contracts with asyn-
chronous communication have been previously considered, see e.g. [12]; however,

Relating Session Types and Behavioural Contracts: The Asynchronous Case 45

to the best of our knowledge, this is the first paper defining contracts that
formally represent CFSMs. Concerning [12], where at each location an indepen-
dent FIFO queue of received messages is considered for each channel name “a”
(enqueuing only messages of type “a” coming from any location “l1”, “l2”,. . .),
here, instead, we consider contracts that represent CFSMs, i.e. such that, at each
location, an independent FIFO queue of received messages is considered for each
sender location “l” (enqueuing only messages coming from “l” and having any
type “a” , “b”, . . .). Moreover, while in this paper we make use of a notion of
compliance that corresponds to absence of deadlocking global CFSM states [4]
(globally the system of interacting contracts either reaches successful completion
or loops forever), in [12] a totally different definition of compliance is considered,
which requires global looping behaviours to be eventually terminated under a
fairness assumption.

Concerning previous work on (variants of) CFSMs, our approach has some
commonalities with [20]. In [20] a restricted version of CFSMs is considered
w.r.t. [4], by constraining them to be binary (a system is always composed of two
CFSMs only) and not to use mixed choice (i.e. choices involving both inputs and
outputs). A specific notion of compliance is considered which, besides absence
of deadlocking global CFSM states [4] (i.e. compliance as in this paper) also
requires each sent message to be eventually received. Thanks to a mapping from
the CFSMs of [20] to session types, compliance of a CFSM A with a CFSM
B is shown to correspond to subtyping, as defined in [15], between the mapped
session type T (A) and the dual of the mapped session type T (B), i.e. T (B). With
respect to the subtyping definition used in this paper, [15] adds a requirement
that corresponds to the eventual reception of sent messages considered in the
definition of compliance by [20]: the whole approach of [20] is critically based
on the dual closeness property, i.e. T ′ ≤ T ⇔ T ≤ T ′, enjoyed (only) by such a
variant of subtyping. Notice that, while [20] makes use of a notion of compliance,
it does not consider, as in this paper, a notion of refinement defined in terms of
compliance preserving testing (as usual in behavioural contract theories where
communicating entities have a syntax).

Concerning previous work on session types, our approach has some common-
alities with the above mentioned [15]. The above discussed subtyping variant
considered in [15] is shown to correspond to substitutability, in the context of
concurrent programs written in a variant of the π-calculus, of a piece of code
with session type T with a piece of code with session type T ′, while preserving
error-freedom. A specific error-freedom notion is formalized for such a language,
that corresponds to absence of communication error (similar to our notion of
compliance) plus the guaranteed eventual reception of all emitted messages (an
orphan-message-free property that we do not consider). While the program (con-
text) in which the piece of code is substituted can be seen as corresponding to
a test in contract refinement, the subtyping characterization in [15] is based
on a specific programming language, while in this paper we consider as tests a
generic, language independent, set of CFSMs and we discuss the conditions on
tests under which we can characterize asynchronous session subtyping.

46 M. Bravetti and G. Zavattaro

In this paper we, thus, discussed the notion of refinement over asynchronous
behavioural contracts that formalize CFSMs, showing precisely under which con-
ditions it coincides with asynchronous session subtyping, which is known to be
undecidable. Under different conditions, e.g., not restricting to binary and non
mixed-choice contracts only, alternative notions of refinements are obtained on
which the already known undecidability results are not directly applicable. This
opens a new problem, concerned with the identification of possibly decidable
refinement notions for contracts/CFSMs.

References

1. Ancona, D., et al.: Behavioral types in programming languages. Found. Trends
Program. Lang. 3(2–3), 95–230 (2016)

2. Baeten, J.C.M., Bravetti, M.: A ground-complete axiomatisation of finite-state
processes in a generic process algebra. Math. Struct. Comput. Sci. 18(6), 1057–
1089 (2008)

3. Bernardi, G.T., Hennessy, M.: Modelling session types using contracts. Math.
Struct. Comput. Sci. 26(3), 510–560 (2016)

4. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

5. Bravetti, M.: Reduction semantics in Markovian process algebra. J. Log. Algebr.
Meth. Program. 96, 41–64 (2018)

6. Bravetti, M., Carbone, M., Lange, J., Yoshida, N., Zavattaro, G.: A sound algo-
rithm for asynchronous session subtyping. In: Proceedings of 30th International
Conference on Concurrency Theory, CONCUR 2019, Leibniz International Pro-
ceedings in Informatics. Schloss Dagstuhl (2019, to appear)

7. Bravetti, M., Carbone, M., Zavattaro, G.: Undecidability of asynchronous session
subtyping. Inf. Comput. 256, 300–320 (2017)

8. Bravetti, M., Carbone, M., Zavattaro, G.: On the boundary between decidability
and undecidability of asynchronous session subtyping. Theor. Comput. Sci. 722,
19–51 (2018)

9. Bravetti, M., Lanese, I., Zavattaro, G.: Contract-driven implementation of chore-
ographies. In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp.
1–18. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00945-7 1

10. Bravetti, M., Zavattaro, G.: Contract based multi-party service composition. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 207–222. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75698-9 14

11. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography confor-
mance and contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007.
LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-77351-1 4

12. Bravetti, M., Zavattaro, G.: Contract compliance and choreography conformance
in the presence of message queues. In: Bruni, R., Wolf, K. (eds.) WS-FM 2008.
LNCS, vol. 5387, pp. 37–54. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-01364-5 3

13. Bravetti, M., Zavattaro, G.: On the expressive power of process interruption and
compensation. Math. Struct. Comput. Sci. 19(3), 565–599 (2009)

https://doi.org/10.1007/978-3-642-00945-7_1
https://doi.org/10.1007/978-3-540-75698-9_14
https://doi.org/10.1007/978-3-540-77351-1_4
https://doi.org/10.1007/978-3-540-77351-1_4
https://doi.org/10.1007/978-3-642-01364-5_3
https://doi.org/10.1007/978-3-642-01364-5_3

Relating Session Types and Behavioural Contracts: The Asynchronous Case 47

14. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
In: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2008, pp. 261–272. ACM (2008)

15. Chen, T., Dezani-Ciancaglini, M., Scalas, A., Yoshida, N.: On the preciseness of
subtyping in session types. Log. Methods Comput. Sci. 13(2) (2017)

16. de Boer, F.S., Bravetti, M., Lee, M.D., Zavattaro, G.: A petri net based modeling
of active objects and futures. Fundam. Inform. 159(3), 197–256 (2018)

17. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42(2–
3), 191–225 (2005)

18. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7 24

19. Laneve, C., Padovani, L.: The Must preorder revisited. In: Caires, L., Vasconcelos,
V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 212–225. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74407-8 15

20. Lange, J., Yoshida, N.: On the undecidability of asynchronous session subtyping.
In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 441–
457. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7 26

21. Lindley, S., Morris, J.G.: Embedding session types in Haskell. Haskell 2016, 133–
145 (2016)

22. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River
(1989)

23. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes I/II. Inf. Comput.
100(1), 1–40 (1992)

24. Mostrous, D., Yoshida, N.: Session typing and asynchronous subtyping for the
higher-order π-calculus. Inf. Comput. 241, 227–263 (2015)

25. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially com-
mutative asynchronous sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol.
5502, pp. 316–332. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00590-9 23

26. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation for distributed protocols with interaction refinements in F�.
In: CC 2018. ACM (2018)

27. Orchard, D.A., Yoshida, N.: Effects as sessions, sessions as effects. POPL 2016,
568–581 (2016)

28. Padovani, L.: A simple library implementation of binary sessions. J. Funct. Pro-
gram. 27, e4 (2017)

29. Scalas, A., Yoshida, N.: Lightweight session programming in scala. In: ECOOP
2016, pp. 21:1–21:28 (2016)

https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-540-74407-8_15
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1007/978-3-642-00590-9_23

Asynchronous Cooperative Contracts
for Cooperative Scheduling

Eduard Kamburjan1(B), Crystal Chang Din2, Reiner Hähnle1,
and Einar Broch Johnsen2

1 Department of Computer Science, Technische Universität Darmstadt,
Darmstadt, Germany

{kamburjan,haehnle}@cs.tu-darmstadt.de
2 Department of Informatics, University of Oslo, Oslo, Norway

{crystald,einarj}@ifi.uio.no

Abstract. Formal specification of multi-threaded programs is notori-
ously hard, because thread execution may be preempted at any point. In
contrast, abstract concurrency models such as actors seriously restrict
concurrency to obtain race-free programs. Languages with cooperative
scheduling occupy a middle ground between these extremes by explicit
scheduling points. They have been used to model complex, industrial con-
current systems. This paper introduces cooperative contracts, a contract-
based specification approach for asynchronous method calls in presence of
cooperative scheduling. It permits to specify complex concurrent behav-
ior succinctly and intuitively. We design a compositional program logic
to verify cooperative contracts and discuss how global analyses can be
soundly integrated into the program logic.

1 Introduction

Formal verification of complex software requires decomposition of the verification
task to combat state explosion. The design-by-contract [41] approach associates
with each method a declarative contract capturing its behavior. Contracts allow
the behavior of method calls to be approximated by static properties. Contracts
work very well for sequential programs [4], but writing contracts becomes much
harder for languages such as Java or C that exhibit a low-level form of concur-
rency: contracts become bulky, hard to write, and even harder to understand
[10]. The main culprit is preemption, leading to myriads of interleavings that
cause complex data races which are hard to contain and to characterize.

In contrast, methods in actor-based, distributed programming [7] are exe-
cuted atomically and concurrency only occurs among actors with disjoint heaps.
In this setting behavior can be completely specified at the level of interfaces, typ-
ically in terms of behavioral invariants jointly maintained by an object’s methods
[16,19]. However, this restricted concurrency forces systems to be modeled and
specified at a high level of abstraction, essentially as protocols. It precludes the
modeling of concurrent behavior that is close to real programs, such as waiting
for results computed asynchronously on the same processor and heap.
c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 48–66, 2019.
https://doi.org/10.1007/978-3-030-30446-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-30446-1_3

Asynchronous Cooperative Contracts 49

Active object languages [15] occupy a middle ground between preemption and
full distribution, based on an actor-like model of concurrency [3] and futures to
handle return values from asynchronous calls (e.g., [9,13,16,21,24,40,45]). ABS
[33] is an active-object language which supports cooperative scheduling between
asynchronously called methods. With cooperative scheduling, tasks may explic-
itly and voluntarily suspend their execution, such that a required result may be
provided by another task. This way, method activations on the same processor
and heap cooperate to achieve a common goal. This is realized using a guarded
command construct await f?, where f is a reference to a future. The effect of this
construct is that the current task suspends itself and only resumes once the value
of f is available. Although only one task can execute at any time, several tasks
may depend on the same condition, which may cause internal non-determinism.

The aim of this paper is to generalize method contracts from the sequen-
tial to the active object setting with asynchronous method calls, futures and
cooperative scheduling. This generalization raises the following challenges:

1. Call Time Gap. There is a delay between the asynchronous invocation of
a method and the activation of the associated process. During this delay,
the called object (“callee”) may execute other processes. To enter the callee’s
contract the precondition must hold. But even when that precondition holds
at invocation time, it does not necessarily hold at activation time.

2. Strong Encapsulation. Each object has exclusive access to its fields. Since
the caller object cannot access the fields of the callee, it cannot ensure the
validity of a contract precondition that depends on the callee’s fields.

3. Interleaving. In cooperative scheduling, processes interleave at explicitly
declared scheduling points. At these points, it is necessary to know which
functional properties will hold when a process is scheduled and which prop-
erties must be guaranteed when a process is suspended.

4. Return Time Gap. Active objects use futures to decouple method calls from
local control flow. Since futures can be passed around, an object reading a
future f knows in general neither to which method f corresponds nor the
postcondition that held when the result value was computed.

The main contributions of this paper are (i) a formal specification-by-contract
technique for methods in a concurrency context with asynchronous calls, futures,
and cooperative scheduling; and (ii) a contract-based, compositional verification
system for functional properties of asynchronous methods that addresses the
above challenges. We call our generalized contracts cooperative contracts, because
they cooperate through propagation of conditions according to the specified
concurrency context. Their concrete syntax is an extension of the popular formal
specification language JML [39]. We demonstrate by example that the proposed
contracts allow complex concurrent behavior to be specified in a succinct and
intelligible manner. Proofs can be found in our accompanying report [38].

50 E. Kamburjan et al.

2 Method Contracts for Asynchronous Method Calls

We introduce the main concepts of active object (AO) languages and present
the methodology of our analysis framework in an example-driven way. AO lan-
guages model loosely coupled parallel entities that communicate by means of
asynchronous method calls and futures (i.e., mailboxes). They are closely tied
to the OO programming paradigm and its programming abstractions. We go
through an example implemented in the ABS language [2,33], an AO modeling
language with cooperative scheduling which has been used to model complex,
industrial concurrent systems [5].

Running Example. We consider a distributed computation of moving aver-
ages, a common task in data analysis that renders long-term trends clearer in
smoothened data. Given data points x1, . . . , xn, many forms of moving average
avg(x1, . . . , xn) can be expressed by a function cmp that takes the average of
the first n − 1 data points, the last data point and a parameter α:

avg(x1, . . . , xn) = cmp(avg(x1, . . . , xn−1), xn, α)

For example, an exponential moving average demands that α is between 0 and
1 and is expressed as avg(x1, . . . , xn) = α ∗ xn + (1 − α) ∗ avg(x1, . . . , xn−1).

Figure 1 shows the central class Smoothing. Each Smoothing instance holds a
Computation instance comp in c, where the actual computation happens and cmp
is encapsulated as a method. A Smoothing instance is called with smooth, passes
the data piecewise to c and collects the return values in the list of intermediate
results inter. During this time, it stays responsive: getCounter lets one inquire
how many data points are processed already. Decoupling list processing and
value computation increases usability: one Smoothing instance may be reused
with different Computation instances. There are several useful properties one
would like to specify for smooth: (i) c has been assigned before it is called and is
not changed during its execution, (ii) no two executions of smooth overlap during
suspension and (iii) the returned result is a smoothened version of the input.

We explain some specification elements. Atomic segments of statements
between suspension points are assigned unique names, labeled by the annotation
[atom:"string"] at an await statement. The named scope "string" is the code
segment from the end of the previous atomic segment up to the annotation.
The first atomic segment starts at the beginning of a method body, the final
atomic segment extends to the end of a method body and is labeled with the
method name. There are sync labels at future reads, which are used to identify
the statement. We use a ghost field [31] lock to model whether an invocation of
smooth is running or not. A ghost field is not part of the specified code. It is read
and assigned in specification annotations which are only used by the verification
system.

Asynchronous Cooperative Contracts 51

Fig. 1. ABS code of the controller part of the distributed moving average

2.1 Specifying State in an Asynchronous Setting

During the delay between a method call and the start of its execution, method
parameters stay invariant, but the heap may change. This motivates breaking up
the precondition of asynchronous method contracts into one part for parameters
and a separate part for the heap. The parameter precondition is guaranteed by
the caller who knows the appropriate synchronization pattern. It is part of the
callee’s interface declaration and exposed to clients. (Without parameters, the
parameter precondition is true.) The callee guarantees the heap precondition. It
is declared in the class implementing the interface and not exposed to clients.

Example 1. The parameters of method smooth must fulfill the precondition that
the passed data and parameter are valid. The heap precondition expresses that
a Computation instance is stored in c.

interface ISmoothing { ...
/∗@ requires 1 > a > 0 && len(input) > 0 @
∗/
List<Rat> smooth(List<Rat> input, Rat a); }

class Smoothing { ...
/∗@ requires !lock && c != null @∗/
List<Rat> smooth(...) { ... } }

To handle inheritance we follow [4] and implement behavioral subtyping. If
ISmoothing extended another interface IPositive, the specification of that
interface is refined and must be implied by all ISmoothing instances:

interface IPositive{ ...
/∗@ requires \forall Int i; 0 <= i < len(input) ; input[i] > 0 @∗/
List<Rat> smooth(List<Rat> input, Rat a); }

interface ISmoothing extends IPositive { ... } // inherits parameter precondition

A caller must fulfill the called method’s parameter precondition, but the most
recently completed process inside the callee’s object establishes the heap precon-
dition. To express this a method is specified to run in a concurrency context, in
addition to the memory context of its heap precondition. The concurrency con-
text appears in a contract as two context sets: sets with atomic segment names:

52 E. Kamburjan et al.

– Succeeds: Each atomic segment in the context set succeeds must guarantee
the heap precondition when it terminates and at least one of them must run
before the specified method starts execution.

– Overlaps: Each atomic segment in the context set overlaps must preserve the
heap precondition. Between the termination of the last atomic segment from
succeeds and the start of the execution of the specified atomic segment, only
atomic segments from overlaps are allowed to run.

Context sets are part of the interface specification and exposed in the inter-
face. Classes may extend context sets by adding private methods and atomic
segment names. Observe that context sets represent global information unavail-
able when a method is analyzed in isolation. If context sets are not specified in
the code, they default to the set of all atomic segments, whence the heap precon-
dition degenerates into a class invariant and must be guaranteed by each process
at each suspension point [18]. Method implementation contracts need to know
their expected context, but the global protocol at the object level can be speci-
fied and exposed in a separate coordination language, such as session types [30].
This enforces a separation of concerns in specifications: method contracts are
local and specify a single method and its context; the coordination language
specifies a global view on the whole protocol. Of course, local method contracts
and global protocols expressed with session types [36,37] must be proven consis-
tent. Context sets can also be verified by static analysis once the whole program
is available (see Sect. 2.3).

Example 2. The heap precondition of smooth is established by setup or by the
termination of the previous smooth process. Between two sessions (and between
setup and the start of the first session) only getCount may run. Recall that the
method name labels the final atomic segment of the method body.

Postconditions (ensures) use two JML-constructs: \result refers to the return
value and \last evaluates its argument in the state at the start of the method.
We specify that the method returns a strictly positive list of equal length to the
input, which is bounded by the input list. Furthermore, the object is not locked.
For readability, irrelevant parts of the contracts are omitted.

interface ISmoothing { ...
/∗@ succeeds {setup, smooth};

overlaps {getCounter}; @∗/
List<Rat> smooth(List<Rat> input, Rat a); }
class Smoothing { ...
/∗@ ensures !lock && len(\result) == len(input) &&

\forall Int i; 0 <= i < len(\result);
\result[i] > 0 && min(input) <= \result[i] <= max(input); @∗/

List<Rat> smooth(List<Rat> input, Rat a) { ... } }

The specified concurrency context is used to enrich the existing method con-
tracts: the heap precondition of a method specified with context sets is implicitly
propagated to the postcondition of all atomic segments in succeeds, and to pre-
and postconditions of all atomic segments in overlaps.

Asynchronous Cooperative Contracts 53

Example 3. We continue Example 2. After propagation, the specifications of
setup, smooth and getCounter are as follows. The origin of the propagated formula
is indicated in comments.

/∗@ ensures <as before> && !lock && c != null // succeeds smooth @∗/
List<Rat> smooth(List<Rat> input, Rat a) { ... }
/∗@ ensures !lock && c != null // succeeds smooth @∗/
Unit setup(Computation comp) { ... }
/∗@ ensures \last(!lock && c != null) −> !lock && c != null // overlaps smooth @∗/
Int getCounter() { ... }

In case of inheritance, the context sets of the extended interface are implicitly
included in those of the extending class or interface. A class may extend context
sets with private methods not visible to the outside. It is the obligation of that
class to ensure that private methods do not disrupt correct call sequences from
the outside. From an analysis point of view, private methods are no different
than public ones.

2.2 Specifying Interleavings

An await statement introduces a scheduling point where process execution may
be suspended and possibly interleaved with the execution of other processes.
From a local perspective, the await statement can be seen as a suspension point
where information about the heap memory is lost. This can be addressed by
similar reasoning as for heap preconditions: What is guaranteed at the release
of control, what can be assumed upon reactivation, and who has the obligation
to guarantee the heap property. Hence, each suspension point is annotated by
a suspension contract containing the same elements as a method contract: An
ensures clause for the condition that holds upon suspension, a requires clause for
the condition which holds upon reactivation, a succeeds context set for the atomic
segments which must have run before reactivation and an overlaps context set
for atomic segments whose execution may interleave. (As method names label
the final atomic segments, all such atomic segments contain a return statement.
A name may refer to multiple atomic segments in case of, for example, loops.)

Example 4. We specify the behavior of the suspension point at the await state-
ment with label "awSmt" (below left): At the continuation, the object is still
locked and the Computation instance c must be present. During suspension, only
the method getCounter is allowed to run. By adding the method itself to the
succeeds set, we ensure that the suspension has to establish its own suspension
assumption. The specification after propagation is shown below right. (The prop-
agation from context sets into pre- and postconditions of suspension contracts
is analogous to the procedure for method contracts.)

/∗@ requires lock && c != null;
ensures True;
succeeds {awSmt};
overlaps {getCounter}; @∗/

[atom: "awSmt"] await f?;

/∗@ requires lock && c != null;
ensures lock && c != null;
succeeds {awSmt};
overlaps {getCounter}; @∗/

[atom: "awSmt"] await f?;

54 E. Kamburjan et al.

The postcondition of getCounter is now as follows and encodes a case distinction.

/∗@ ensures \last(!lock && c != null) −> !lock && c != null // overlaps smooth
&& \last(lock && c != null) −> lock && c != null // overlaps awSmt @∗/

Int getCounter() { ... }

2.3 Composition

The specification above is modular in the following sense: To prove that a method
adheres to the pre- and postcondition of its own contract and respects the pre-
and postcondition of called methods, only requires to analyze its own class. To
verify that a system respects all context sets, however, requires global informa-
tion, because the call order is not established by a single process in a single
object. This separation of concerns between functional and non-functional spec-
ification allows to decompose verification into two phases that allow reuse of
contracts. In the first phase, deductive verification [17] is used to locally show
that single methods implement their pre- and postconditions correctly. In the
second phase, a global light-weight, fully automatic dependency analysis is used
to approximate call sequences. In consequence, if a method is changed with only
local effects it is sufficient to re-prove its contract and re-run the dependency
analysis. The proofs of the other method contracts remain unchanged.

The dependency analysis of context sets is detailed in the technical report
[38]; we only give an example for rejected and accepted call sequences here.

Example 5. Consider the three code fragments interacting with a Smoothing
instance s given below. The left fragment fails to verify the context sets spec-
ified above: although called last, method smooth can be executed first due to
reordering, failing its succeeds clause. The middle fragment also fails: The first
smooth needs not terminate before the next smooth activation starts. They may
interleave and violate the overlaps set of the suspension. The right fragment
verifies. We use await o!m(); as a shorthand for Fut<T> f = o!m(); await f?;.

s!setup(c);
s!smooth(l,0.5);
s!smooth(m,0.4);

await s!setup(c);
s!smooth(l,0.5);
s!smooth(m,0.4);

await s!setup(c);
await s!smooth(l,0.5);
s!smooth(m,0.4);

The client accessing a future might not be its creator, so properties of method
parameters and class fields in the postcondition of the method associated to the
future should be hidden. The postcondition in the implementation of a method
may contain properties of fields, parameters and results upon termination. We
abstract that postcondition into a postcondition for the corresponding method
at the interface level, which only reads the result at the client side. In analogy to
the split of precondition, we name the two types of postcondition interface post-
condition and class postcondition, respectively. Only if the call context is known,
the class postcondition may be used in addition to the interface postcondition.

Asynchronous Cooperative Contracts 55

Fig. 2. Syntax of the Async language.

3 An Active Object Language

Syntax. Consider a simple active object language Async, based on ABS [33]; the
syntax is shown in Fig. 2. We explain the language features related to communi-
cation and synchronization, other features are standard. Objects communicate
with each other by asynchronous method calls, written e!m(e), with an associated
future. The value of a future f can be accessed by a statement x = f.get once
it is resolved, i.e. when the process associated with f has terminated. Futures
can be shared between objects. Field access between different objects is indirect
through method calls, amounting to strong encapsulation. Cooperative schedul-
ing is realized in Async as follows: at most one process is active on an object at
any time and all scheduling points are explicit in the code using await statements.
The execution between these points is sequential and cannot be preempted.

Objects in Async are active. We assume that all programs are well-typed,
that their main block only contains statements of the form v = new C(e), and
that each class has a run() method which is automatically activated when an
instance of the class is generated. Compared to ABS, Async features optional
annotations for atomic segments as discussed in Sect. 2. A synchronize annota-
tion sync associates a label with each assignment which has a get right-hand
side. We assume all names to be unique in a program.

Observable Behavior. A distributed system can be specified by the externally
observable behavior of its parts, and the behavior of each component by the pos-
sible communication histories over its observable events [18,29]. Theoretically
this is justified because fully abstract semantics of object-oriented languages are
based on communication histories [32]. We strive for compositional communica-
tion histories of asynchronously communicating systems and use separate events
for method invocation, reaction upon a method call, resolving a future, fetch-
ing the value of a future, suspending a process, reactivating a process, and for
object creation. Note that each of these events is witnessed by exactly one object,
namely the generating object; different objects do not share events.

Definition 1 (Events).

ev::= invEv(X,X′, f, m, e) | invREv(X,X′, f, m, e) | newEv(X,X′, e) | noEv
| suspEv(X, f, m, i) | reacEv(X, f, m, i) | futEv(X, f, m, e) | futREv(X, f, e, i)

56 E. Kamburjan et al.

An invocation event invEv and an invocation reaction event invREv record the
caller X, callee X′, generated future f , invoked method m, and method parameters
e of a method call and its activation, respectively. A termination event futEv
records the callee X, the future f , the executed method m, and the method
result e when the method terminates and resolves its associated future. A future
reaction event futREv records the current object X, the accessed future f , the
value e stored in the future, and the label i of the associated get statement.
A suspension event suspEv records the current object X, the current future f
and method name m associated to the process being suspended, and the name
i of the await statement that caused the suspension. Reactivation events reacEv
are dual to suspension events, where the future f belongs to the process being
reactivated. A new event newEv records the current object X, the created object
X′ and the object initialization parameters e for object creation. The event noEv
is a marker for transitions without communication.

Operational Semantics. The operational semantics of Async is given by a
transition relation →ev between configurations, where ev is the event generated
by the transition step. We first define configurations and their transition system,
before defining terminating runs and traces over this relation. A configuration C
contains processes, futures, objects and messages:

C ::=prc(X, f, m(s), σ) | fut(f, e) | ob(X, f, ρ) | msg(X,X′, f, m, e) | C C

In the runtime syntax, a process prc(X, f, m(s), σ) contains the current object
X, the future f that will contain its execution result, the executed method m,
statements s in that method, and a local state σ. A future fut(f, e) contains the
future’s identity f and the value e stored by the future. An object ob(X, f, ρ)
contains the object identity X, the future f associated with the currently exe-
cuting process, and the heap ρ of the object. Let ⊥ denote that no process is
currently executing at X. A message msg(X,X′, f, m, e) contains the caller object
identity X, the callee object identity X′, the future identity f , the invoked method
m, and the method parameters e.

A selection of the transition rules is given in Fig. 3. Function �e�σ,ρ evaluates
an expression e in the context of a local state σ and an object heap ρ. Rule
async expresses that the caller of an asynchronous call generates a future with a
fresh identifier f ′ for the result and a method invocation message. An invocation
event is generated to record the asynchronous call. Rule start represents the
start of a method execution, in which an invocation reaction event is generated.
The message is removed from the configuration and a new process to handle
the call in created. Function M returns the body of a method, and ̂M returns
the initial local state of a method by evaluating its parameters. Observe that
a process can only start when its associated object is idle. Rule return resolves
future f with the return value from the method activation. A termination event
is generated. Rule get models future access. Provided that the accessed future is
resolved (i.e., the future occurs in the configuration), its value can be fetched and
a future reaction event generated. In this rule x is a local variable and is modified

Asynchronous Cooperative Contracts 57

Fig. 3. Selected operational semantics rules for Async. Further rules are in [38].

to e′. If the future is not resolved, the rule is not applicable and execution in
object X is blocked.

Definition 2 (Big-Step Semantics). Let Prgm be an Async program with ini-
tial configuration C1. A run from C1 to Cn is a finite sequence of transitions

C1 →ev1 C2 →ev2 . . . →evn−1 Cn.

The trace of the run is the finite sequence (ev1,C1), . . . , (evn−1,Cn−1), (noEv,Cn)
of pairs of events and configurations. Program Prgm generates a trace tr if there
is a run to some configuration with tr as the trace, such that the final configu-
ration is terminated, i.e., has no process prc.

4 Formalizing Method Contracts

To reason about logical constraints, we use deductive verification over dynamic
logic (DL) [27]. It can be thought of as the language of Hoare triples, syntac-
tically closed under logical operators and first-order quantifiers; we base our
account on [4]. Assertions about program behavior are expressed in DL by inte-
grating programs and formulas into a single language. The big step semantics of
statements s is captured by the modality [s]post, which is true provided that the
formula post holds in any terminating state of s, expressing partial correctness.
The reserved program variable heap models the heap by mapping field names to
their value [4,44]. The variable heapOld holds the heap the most recent time the
current method was scheduled. DL features symbolic state updates on formulas
of the form {v := t}ϕ, meaning that v has the value of t in ϕ.

We formalize method contracts in terms of constraints imposed on runs and
configurations. Their semantics is given as first-order constraints over traces,
with two additional primitives: the term evtr [i] is the i-th event in trace tr and

58 E. Kamburjan et al.

the formula Ctr [i] |= ϕ expresses that the i-th configuration in tr is a model for
the modality-free DL formula ϕ. To distinguish DL from first-order logic over
traces, we use the term formula and variables ϕ, ψ, χ, . . . for DL and the term
constraint and variables α, β, . . . for first-order logic over traces.

Definition 3 (Method Contract). Let B be the set of names for all atomic
segments and methods in a given program. A contract for a method C.m has the
following components:

Context clauses. 1. A heap precondition ϕm over field symbols for C; 2. a param-
eter precondition ψm over formal parameters of C.m; 3. a class postcondition
χm over formal parameters of C.m, field symbols for C, and the reserved pro-
gram variable \result ; 4. an interface postcondition ζm only over the reserved
program variable \result . All context clauses may also contain constants and
function symbols for fixed theories, such as arithmetic.

Context sets. The sets succeedsm, overlapsm ⊆ B.
Suspension contracts. For each suspension point j in m, a suspension contract

containing 1. a suspension assumption ϕj with the same restrictions as the
heap precondition; 2. a suspension assertion χj with the same restrictions;
3. context sets succeedsj, overlapsj ⊆ B.

Each run method has the contract ϕrun = ψrun = True and succeedsrun = ∅.
Methods without a specification have the default contract ϕm = ψm = χm = ζm =
True and succeedsm = overlapsm = B. As its default contract, the main block can
only create objects. A method’s entry and exit points are implicit suspension
points: the precondition then becomes the suspension assumption of the first
atomic segment, and the postcondition becomes the suspension assertion of the
last atomic segment. A suspension point may end in several atomic segments.

Contracts as Constraints. Let Mm be the method contract for m. The seman-
tics of Mm consists of three constraints over traces (formalized in Definitions 4
and 5 below): (i) assert(Mm, tr) expresses that the postcondition and all sus-
pension assertions hold in tr ; (ii) assume(Mm, tr) that the precondition and
all suspension assumptions hold in tr ; (iii) context(Mm, tr) that context sets
describe the behavior of the object in tr . If the method name is clear from the
context, we write M instead of Mm. In the constraints, all unbound symbols are
implicitly universally quantified, such as f , e, X, etc.

Definition 4 (Semantics of Context Clauses). Let Mm be a method con-
tract, tr a trace, and susp(m) the set of suspension points in m:

assert(Mm, tr) = ∀i ∈ N. evtr [i]
.
= futEv(X, f, m, e) → Ctr [i] |= χm ∧ ζm

∧ ∀j ∈ susp(m). ∀i ∈ N. evtr [i]
.
= suspEv(X, f, m, j) → Ctr [i] |= χj

assume(Mm, tr) = ∀i ∈ N. evtr [i]
.
= invREv(X′,X, f, m, e) → Ctr [i] |= ϕm ∧ ψm

∧ ∀j ∈ susp(m). ∀i ∈ N. evtr [i]
.
= reacEv(X, f, m, j) → Ctr [i] |= ϕj

Asynchronous Cooperative Contracts 59

The third constraint context models context sets and is defined for both
method and suspension contracts. In contrast to context clauses, it constrains the
order of events belonging to different processes. The constraint context(Sn, tr)
formalizes the context sets of a suspension contract Sn for suspension point n:
Before a reactivation event at position i in tr , there is a terminating event at a
position k < i on the same object from the succeeds set, such that all terminating
events on the object at positions k′ with k < k′ < i are from the overlaps set.

Definition 5 (Semantics of Context Sets). Let Sn be a suspension contract,
tr a trace, and termEvent(i) the terminating event of i, where i may be either a
method name or the name of a suspension point. The predicate isClose(evtr [i])
holds if evtr [i] is a suspension or future event. The semantics of context sets of
a suspension contract Sn is defined by the following constraint context(Sn, tr):

∀i, i′ ∈ N.
(
evtr [i]

.
= reacEv(X, f, m, n) ∧ evtr [i′] .

=suspEv(X, f, m, n)
) →

∃k ∈ N. i′ < k < i ∧
(∨

j′∈succeedsn

evtr [k]
.
= termEvent(j′) ∧

∀k′ ∈ N. k < k′ < i ∧ isClose(evtr [k′]) → (∨

j′∈overlapsn

evtr [k′] .
= termEvent(j′)

))

The predicate context(Mm, tr) for method contracts is defined similarly, but
includes an extra conjunction of the context(Sn, tr) constraints for all Sn in Mm.

Context sets describe behavior required from other methods, so method con-
tracts are not independent of each other. Each referenced method or method in
a context set must have a contract which proves the precondition (or suspension
assumption). Recall that method names are names for the last atomic segment,
ϕi is the heap precondition/suspension assumption of atomic segment i and χi

is its postcondition/suspension assertion. The following definition formalizes the
intuition we gave about the interplay of context sets, i.e. that the atomic seg-
ments in the succeeds set establish a precondition/suspension assumption and
the atomic segments in overlaps preserve a precondition/suspension assumption.

Definition 6 (Coherence). Let CNF(ϕ) be the conjunctive normal form of ϕ,
such that all function and relation symbols also adhere to some theory specific
normal form. Let M be a set of method contracts. M is coherent if for each
method and suspension contract Si in M , the following holds:

– The assertion χj of each atomic segment j in succeedsi guarantees assumption
ϕi: Each conjunct of CNF(ϕi) is a conjunct of CNF(χj)

– Each atomic segment j in overlapsi preserves suspension assumption ϕi: sus-
pension assertion χj has the form χ′

j ∧ (

({heap := heapOld}ϕi) → ϕi

)

.

A program is coherent if the set of all its method contracts is coherent.

This notion of coherence is easy to enforce and to check syntactically.

60 E. Kamburjan et al.

Lemma 1 (Sound Propagation). Given a non-coherent set of method con-
tracts M , a coherent set ̂M can be generated from M , such that for every contract
M ∈ M there is a ̂M ∈ ̂M with identical context sets and

∀tr .(assert(̂M, tr) → assert(M, tr)
) ∧ (

assume(̂M, tr) ↔ assume(M, tr)
)

The requirement for ̂M ensures that the new, coherent contracts extend the
old contracts. In the border case where all context sets contain all blocks, all
heap preconditions and suspension assumptions become invariants.

5 Verification

Method contracts appear in comments before their interface and class declara-
tion, following JML [39]. Our specifications use DL formulas directly, extended
with a \last operator referring to the evaluation of a formula in the state where
the current method was last scheduled, i.e. the most recent reactivation/method
start. Restrictions on the occurrence of fields and parameters are as above.

Definition 7. Let str range over strings, ϕ over DL formulas. The clauses used
for specification are defined as follows:

Spec ::= /∗@ Require Ensure Runs @∗/ ψ ::=ϕ | \last(ϕ)
Require ::= requires ψ; Ensure ::= ensures ψ; Runs ::= succeeds str; overlaps str;

We do not consider loop invariants here which are standard. For ghost fields
and ghost assignments, we follow JML [39].

As described above, our program logic for deductive verification is a dynamic
logic based on the work of Din et al. [18]. The verification of context sets is not
part of the program logic: our soundness theorem requires that the context sets
are adhered to, in addition to proving the DL proof obligations. Context sets,
however, can be verified with light-weight causality-based approaches, such as
May-Happen-in-Parallel analysis [6]. Separating the DL proof obligation from
the causual structure allows us to give a relatively simple proof system and
reuse existing techniques to verify the context sets.

The DL calculus rewrites a formula [s;r]post with a leading statement s into
the formula [r]post with suitable first-order constraints. Repeated rule appli-
cation yields symbolic execution of the program in the modality. Updates (see
Sect. 4) accumulate during symbolic execution to capture state changes; e.g.,
[v = e; r]post is rewritten to {v := e}[r]post, expressing that v has the value of
e during the symbolic execution of r. When a program s has been completely
executed, the modality is empty and the accumulated updates are applied to
the postcondition post, resulting in a pure first-order formula that represents
the weakest precondition of s and post. We use a sequent calculus to prove
validity of DL formulas [4,17]. In sequent notation pre → [s]post is written as
Γ,pre =⇒ [s]post,Δ, where Γ and Δ are (possibly empty) sets of side formu-
las. A formal proof is a tree of proof rule applications leading from axioms to a
formula (a theorem). The formal semantics is described in [38].

Asynchronous Cooperative Contracts 61

Fig. 4. Selected DL proof rules.

We formulate DL proof obligations for the correctness of method contracts,
given a method m with body s and contract Mm as in Definition 3, as follows:

ϕm, ψm, wellFormed(trace) =⇒ {heapOld := heap}
{t := trace}{this := o}{f := f}{m := m}[s]χ̃m (PO)

The heap and parameter preconditions ϕm and ψm of Mm are assumed when
execution starts, likewise it is assumed that the trace of the object up to now is
well-formed. The class postcondition χ̃m is modified, because \last is part of the
specification language, but not of the logic: Any heap access in the argument of
\last is replaced by heapOld . Reserved variables t, this, f, and m record the cur-
rent trace, object, future, and method, respectively, during symbolic execution.

The above proof obligation must be proved for each method of a program
using schematic proof rules as shown in Fig. 4. There is one rule for each kind
of Async statement. We omit the standard rules for sequential statements. To
improve readability, we leave out the sequent contexts Γ, Δ and assume that all
formulas are evaluated relative to a current update U representing all symbolic
updates of local variables, the heap, as well as t, this, f, m up to this point. These
updates are extended in the premisses of some rules.

Rule local captures updates of local variables by side-effect free expressions.
Rule field captures updates of class fields by side-effect free expressions. It is
nearly identical to local, except the heap is updated with the store function.
This function follows the usual definition from the theory of arrays to model
heaps in dynamic logics [44]. Rule async for assignments with an asynchronous
method call has two premisses. The first establishes the parameter precondition
ψm of Mm. The second creates a fresh future f relative to the current trace t to

62 E. Kamburjan et al.

hold the result of the call. In the succedent an invocation event recording the
call is generated and symbolic execution continues uninterrupted. We stress that
the called method is syntactically known.

For each method m we define a rule get-m. It creates a fresh constant r repre-
senting the value stored in future f. Per se, nothing about this value is known.
However, the term in the antecedent of the premise expresses that if it is possible
to show that the future stored in f stems from a call on m, then the postcondition
of m can be assumed to show r. The predicate invocOn(ev, f, m) holds if the event
ev is an invocation reaction event with future f on method m.

Rule await handles process suspension. The first premise proves the post-
condition χi of the suspension contract Si in the current trace, extended by
a suspension event. When resuming execution we can only use the suspension
assumption ϕi of Si; the remaining heap must be reset by an “anonymizing
update’ heapA [4,44], which is a fresh function symbol. Also a reaction event
is generated. In both events f is not the future in the await statement, but the
currently computed future that is suspended and reactivated.

Theorem 1 (Soundness of Compositional Reasoning). Let ̂M be the
coherent set generated from the method contracts M of a program Prgm. If

(i) context(Mm, tr) holds for all methods and generated traces, and
(ii) for each Mm ∈ ̂M , the proof obligation (PO) for m holds,

then the following holds for all terminating traces tr of Prgm:

∧

Mm∈̂M

(

assert(Mm, tr) ∧ assume(Mm, tr)
)

6 Related Work and Conclusion

Related Work. Wait conditions were introduced as program statements (not
in method contracts) in the pioneering work of Brinch-Hansen [25,26] and
Hoare [28]. SCOOP [8] explores preconditions as wait/when conditions. Pre-
vious approaches to AO verification [16,18] consider only object invariants that
must be preserved by every atomic segment of every method. As discussed, this is
a special case of our system. Actor services [43] are compositional event patterns
for modular reasoning about asynchronous message passing for actors. They are
formulated for pure actors and do not address futures or cooperative schedul-
ing. Method preconditions are restricted to input values, the heap is specified
by an object invariant. A rely-guarantee proof system [1,34] implemented on
top of Frama-C by Gavran et al. [22] demonstrated modular proofs of partial
correctness for asynchronous C programs restricted to using the Libevent library.

Contracts for channel-based communication are partly supported by session
types [11,30]. These have been adapted to the AO concurrency model [37],
including assertions on heap memory [36], but they require composition to be

Asynchronous Cooperative Contracts 63

explicit in the specification. Stateful session types for active objects [36] contain
a propagation step (cf. Sect. 2.1): Postconditions are propagated to preconditions
of methods that are specified to run subsequently. In contrast, the propagation
in the current paper goes in the opposite direction, where a contract specifies
what a method relies on and one propagates to the method that is obliged to
prove it. Session types, with their global system view, specify an obligation for
a method and propagate to the methods that can rely on it.

Compositional specification of concurrency models outside rely-guarantee
was mainly proposed based on separation logic [12,42]. Closest to our line
of research are shared regions [20] which relate predicates over the heap that
must be stable, i.e. invariant, when accessed. Even though approaches to specify
regions precisely have been developed [14,20], their combination with interaction
modes beyond heap access (such as asynchronous calls and futures) is not well
explored. It is worth noting that AO do not require the concept of regions in the
logic, because strong encapsulation and cooperative scheduling ensure that two
threads never run in parallel on the same heap. The central goal of separation
logic—separation of heaps—is a design feature of the AO concurrency model.

Conclusion. This paper generalizes rely-guarantee reasoning with method con-
tracts from sequential OO programs to active objects with asynchronous method
calls and cooperative scheduling. The main challenges are: the delay between the
invocation and the actual start of a method, strong object encapsulation, and
interleaving of atomic segments via cooperative scheduling. To deal with these
issues, preconditions of contracts are separated into a caller specification (param-
eter precondition) and a callee specification (heap precondition); likewise, into
an interface postcondition and a class postcondition. The heap precondition and
the class postcondition can be stronger than a class invariant, because they do
not need to be respected by all methods of a class. Instead, context sets specify
those methods that establish or preserve the heap precondition. The context sets
are justified separately via a global analysis of possible call sequences. This sep-
aration of concerns enables class-modular verification. Preconditions need not
contain global information, rather, this is automatically propagated within a
class with the help of external global analyses.

Future Work. In this paper, we did not consider all features present in syn-
chronous method contracts, such as termination witnesses [23], and it is unclear
how these can be used in an asynchronous setting due to interleaving. Other
contract extensions, such as exceptional behavior [4], are largely orthogonal to
concurrency and could be easily added. Furthermore, we plan to explore recur-
sion: In this case, specifications working with program-point identifiers, i.e. at
the statement-level, are not precise enough, because they cannot distinguish
between multiple processes of the same method.

Beyond implementation and addition of features from synchronous method
contracts, we plan to connect cooperative contracts with our work on session
types [36] with the aim to integrate local and global specifications by formulating

64 E. Kamburjan et al.

them in the framework of Behavioral Program Logic [35]. We also expect such
a formalization to enable runtime verification.

Acknowledgments. This work is supported by the SIRIUS Centre for Scalable Data
Access and the FormbaR project, part of AG Signalling/DB RailLab in the Innovation
Alliance of Deutsche Bahn AG and TU Darmstadt.

References

1. Abadi, M., Lamport, L.: Conjoining specifications. ACM Trans. Program. Lang.
Syst. 17(3), 507–534 (1995)

2. ABS Development Team. The ABS Language Specification, January 2018. http://
docs.abs-models.org/

3. Agha, G., Hewitt, C.: Actors: a conceptual foundation for concurrent object-
oriented programming. In: Research Directions in Object-Oriented Programming,
pp. 49–74. MIT Press (1987)

4. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice.
LNCS, vol. 10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
319-49812-6

5. Albert, E., et al.: Formal modeling of resource management for cloud architectures:
an industrial case study using real-time ABS. J. Serv.-Oriented Comput. Appl.
8(4), 323–339 (2014)

6. Albert, E., Flores-Montoya, A., Genaim, S., Martin-Martin, E.: May-happen-in-
parallel analysis for actor-based concurrency. ACM Trans. Comput. Log. 17(2),
11:1–11:39 (2016)

7. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf Series, Pragmatic Bookshelf (2007)

8. Arslan, V., Eugster, P., Nienaltowski, P., Vaucouleur, S.: SCOOP - concurrency
made easy. In: Dependable Systems: Software, Computing, Networks, Research
Results of the DICS Program, pp. 82–102 (2006)

9. Baker, H.G., Hewitt, C.E.: The incremental garbage collection of processes. In:
Proceeding of the Symposium on Artificial Intelligence Programming Languages,
Number 12 in SIGPLAN Notices, p. 11, August 1977

10. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Lessons learned from micro-
kernel verification - specification is the new bottleneck. In: Cassez, F., Huuck, R.,
Klein, G., Schlich, B. (eds.) Proceedings of the 7th Conference on Systems Software
Verification, volume 102 of EPTCS, pp. 18–32 (2012)

11. Bocchi, L., Lange, J., Tuosto, E.: Three algorithms and a methodology for amend-
ing contracts for choreographies. Sci. Ann. Comp. Sci. 22(1), 61–104 (2012)

12. Brookes, S., O’Hearn, P.W.: Concurrent separation logic. ACM SIGLOG News
3(3), 47–65 (2016)

13. Caromel, D., Henrio, L., Serpette, B. Asynchronous and deterministic objects. In:
Proceedings of the 31st ACM Symposium on Principles of Programming Languages
(POPL 2004), pp. 123–134. ACM Press (2004)

14. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: a logic for time and
data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44202-9_9

http://docs.abs-models.org/
http://docs.abs-models.org/
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-662-44202-9_9

Asynchronous Cooperative Contracts 65

15. de Boer, F., et al.: A survey of active object languages. ACM Comput. Surv. 50(5),
76:1–76:39 (2017)

16. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71316-6_22

17. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for the
concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 517–526. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6_35

18. Din, C.C., Owe, O.: Compositional reasoning about active objects with shared
futures. Form. Asp. Comput. 27(3), 551–572 (2015)

19. Din, C.C., Tapia Tarifa, S.L., Hähnle, R., Johnsen, E.B.: History-based specifica-
tion and verification of scalable concurrent and distributed systems. In: Butler, M.,
Conchon, S., Zaïdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 217–233. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25423-4_14

20. Dinsdale-Young, T., da Rocha Pinto, P., Gardner, P.: A perspective on specifying
and verifying concurrent modules. J. Log. Algebr. Methods Program. 98, 1–25
(2018)

21. Flanagan, C., Felleisen, M.: The semantics of future and an application. J. Funct.
Program. 9(1), 1–31 (1999)

22. Gavran, I., Niksic, F., Kanade, A., Majumdar, R., Vafeiadis, V.: Rely/guarantee
reasoning for asynchronous programs. In: Aceto, L., de Frutos Escrig, D. (eds.) 26th
International Conference on Concurrency Theory (CONCUR 2015), volume 42 of
Leibniz International Proceedings in Informatics (LIPIcs), pp. 483–496. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)

23. Grahl, D., Bubel, R., Mostowski, W., Schmitt, P.H., Ulbrich, M., Weiß, B.: Modular
specification and verification. Deductive Software Verification – The KeY Book.
LNCS, vol. 10001, pp. 289–351. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49812-6_9

24. Halstead Jr., R.H.: MULTILISP: a language for concurrent symbolic computation.
ACM Trans. Program. Lang. Syst. 7(4), 501–538 (1985)

25. Hansen, P.B.: Structured multiprogramming. Commun. ACM 15(7), 574–578
(1972)

26. Hansen, P.B.: Operating System Principles. Prentice-Hall Inc., Upper Saddle River
(1973)

27. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. SIGACT News 32(1), 66–69 (2001)
28. Hoare, C.A.R.: Towards a theory of parallel programming. In: Operating System

Techniques, pp. 61–71 (1972)
29. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc., Upper

Saddle River (1985)
30. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:

Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2008, pp. 273–284 (2008)

31. Huisman, M., Ahrendt, W., Grahl, D., Hentschel, M.: Formal specification with
the Java modeling language. Deductive Software Verification – The KeY Book.
LNCS, vol. 10001, pp. 193–241. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49812-6_7

32. Jeffrey, A., Rathke, J.: Java JR: fully abstract trace semantics for a core Java
language. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 423–438. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31987-0_29

https://doi.org/10.1007/978-3-540-71316-6_22
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-25423-4_14
https://doi.org/10.1007/978-3-319-49812-6_9
https://doi.org/10.1007/978-3-319-49812-6_9
https://doi.org/10.1007/978-3-319-49812-6_7
https://doi.org/10.1007/978-3-319-49812-6_7
https://doi.org/10.1007/978-3-540-31987-0_29

66 E. Kamburjan et al.

33. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6_8

34. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

35. Kamburjan, E.: Behavioral program logic. To appear in the proceedings of
TABLEAUX 2019, technical report. https://arxiv.org/abs/1904.13338

36. Kamburjan, E., Chen, T.-C.: Stateful behavioral types for active objects. In: Furia,
C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 214–235. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98938-9_13

37. Kamburjan, E., Din, C.C., Chen, T.-C.: Session-based compositional analysis for
actor-based languages using futures. In: Ogata, K., Lawford, M., Liu, S. (eds.)
ICFEM 2016. LNCS, vol. 10009, pp. 296–312. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47846-3_19

38. Kamburjan, E., Din, C.C., Hähnle, R., Johnsen, E.B.: Asynchronous coopera-
tive contracts for cooperative scheduling. Technical report, TU Darmstadt (2019).
http://formbar.raillab.de/en/techreportcontract/

39. Leavens, G.T., et al.: JML Reference Manual, May 2013. Draft revision 2344
40. Liskov, B.H., Shrira, L.: Promises: linguistic support for efficient asynchronous pro-

cedure calls in distributed systems. In: Wise, D.S. (ed.) Proceedings of the SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI
1988), pp. 260–267. ACM Press, June 1988

41. Meyer, B.: Applying “design by contract”. IEEE Comput. 25(10), 40–51 (1992)
42. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter

data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0_1

43. Summers, A.J., Müller, P.: Actor services. In: Thiemann, P. (ed.) ESOP 2016.
LNCS, vol. 9632, pp. 699–726. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49498-1_27

44. Weiß, B.: Deductive verification of object-oriented software: dynamic frames,
dynamic logic and predicate abstraction. Ph.D. thesis, Karlsruhe Institute of Tech-
nology (2011)

45. Yonezawa, A., Briot, J.-P., Shibayama, E.: Object-oriented concurrent program-
ming in ABCL/1. In: Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA 1986). Sigplan Notices, vol. 21, no. 11, pp.
258–268, November 1986

https://doi.org/10.1007/978-3-642-25271-6_8
https://arxiv.org/abs/1904.13338
https://doi.org/10.1007/978-3-319-98938-9_13
https://doi.org/10.1007/978-3-319-47846-3_19
https://doi.org/10.1007/978-3-319-47846-3_19
http://formbar.raillab.de/en/techreportcontract/
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-662-49498-1_27
https://doi.org/10.1007/978-3-662-49498-1_27

Cyber-Physical Systems

Automatic Failure Explanation in CPS
Models

Ezio Bartocci1, Niveditha Manjunath1,2(B), Leonardo Mariani3,
Cristinel Mateis2, and Dejan Ničković2

1 Vienna University of Technology, Vienna, Austria
2 AIT Austrian Institute of Technology, Vienna, Austria

niveditha.manjunath@ait.ac.al
3 University of Milano-Bicocca, Milan, Italy

Abstract. Debugging Cyber-Physical System (CPS) models can be
extremely complex. Indeed, only detection of a failure is insufficient to
know how to correct a faulty model. Faults can propagate in time and
in space producing observable misbehaviours in locations completely dif-
ferent from the location of the fault. Understanding the reason of an
observed failure is typically a challenging and laborious task left to the
experience and domain knowledge of the designers.

In this paper, we propose CPSDebug, a novel approach that com-
bines testing, specification mining, and failure analysis, to automatically
explain failures in Simulink/Stateflow models. We evaluate CPSDebug
on two case studies, involving two use scenarios and several classes of
faults, demonstrating the potential value of our approach.

1 Introduction

Cyber-Physical Systems (CPS) combine computational and physical entities
that interact with sophisticated and unpredictable environments via sensors
and actuators. To cost-efficiently study their behavior, engineers typically apply
model-based development methodologies, which combine modeling and simu-
lation activities with prototyping. The successful development of CPS is thus
strongly dependent on the quality and correctness of their models.

CPS models can be extremely complex: they may include hundreds of vari-
ables, signals, look-up tables and components, combining continuous and discrete
dynamics. Verification and testing activities are thus of critical importance to
early detect problems in the models [2,5,7,16,17], before they propagate to the
actual CPS. Discovering faults is however only a part of the problem. Due to
their complexity, debugging CPS models by identifying the causes of failures can
be as challenging as identifying problems themselves [15].

CPS functionalities are often modelled using the MathWorksTM Simulink
environment where falsification-based testing can be used to find bugs in
Simulink/Stateflow models [2,22,25]. This approach is based on quantifying (by
monitoring [4]) how much a simulated trace of CPS behavior is close to vio-
late a requirement expressed in a formal specification language, such as Signal
c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 69–86, 2019.
https://doi.org/10.1007/978-3-030-30446-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-30446-1_4

70 E. Bartocci et al.

Temporal Logic (STL) [20]. This measure enables a systematic exploration of
the input space searching for the first input sequence responsible for a violation.
However, this method does not provide any suitable information about which
components should be inspected to resolve the violation. Trace diagnostics [10]
identifies (small) segments of the observable model behavior that are sufficient
to imply the violation of the formula, thus providing a failure explanation at the
input/output model interface level. However, this is a black-box technique that
does not attempt to delve into the model and explain the failure in terms of its
internal signals and components.

In this paper, we advance the knowledge in failure analysis of CPS models
by presenting CPSDebug, a debugging technique that combines testing, specifi-
cation mining, and failure analysis to identify the causes of failures. CPSDebug
first exercises the CPS model under analysis by running the available test cases,
while discriminating passing and failing executions using requirements formal-
ized as a set of STL formulas. While running the test cases, CPSDebug records
information about the internal behavior of the CPS model, In particular, it col-
lects the values of all internal system variables at every timestamp. The values
collected from passing test cases are used to infer properties about the vari-
ables and components involved in the computations. These properties capture
the correct behavior of the system.

CPSDebug checks the mined properties against the traces collected from
failed test cases to discover the internal variables, and its corresponding compo-
nents, that are responsible for the violation of the requirements. Finally, failure
evidence is analyzed using trace diagnostics [10] and clustering [12] to produce
a time-ordered sequence of snapshots that show where the anomalous variables
values originated and how they propagated within the system.

CPSDebug thus overcomes the limitation of state of the art approaches that
do not guide engineers in the analysis, but only indicate the inputs or code
locations that might be responsible for the failure. The sequence of snapshots
returned by CPSDebug provides a step by step illustration of the failure with
explicit indication of the faulty behaviors. We evaluated CPSDebug against three
classes of faults and two actual CPS models. Results suggest that CPSDebug
can effectively and efficiently assist developers in their debugging tasks. The
feedback that we collected from industry engineers further confirmed that the
output produced by CPSDebug can be indeed valuable to ease failure analysis
and debugging of CPS models.

The rest of the paper is organized as follows. We provide background infor-
mation in Sect. 2 and we describe the case study in Sect. 3. In Sect. 4 we present
our approach for failure explanation while in Sect. 5 we provide the empirical
evaluation. We discuss the related work in Sect. 6 and we draw our conclusions
in Sect. 7.

Automatic Failure Explanation in CPS Models 71

2 Background

2.1 Signals and Signal Temporal Logic

We define S = {s1, . . . , sn} to be a set of signal variables. A signal or trace w is
a function T → R

n, where T is the time domain in the form of [0, d] ⊂ R. We can
also see a multi-dimensional signal w as a vector of real-valued uni-dimensional
signals wi : T → R associated with variables si for i = 1, . . . , n. We assume that
every signal wi is piecewise-linear. Given two signals u : T → R

l and v : T → R
m,

we define their parallel composition u‖v : T → R
l+m in the expected way. Given

a signal w : T → R
n defined over the set of variables S and a subset of variables

R ⊆ S, we denote by wR the projection of w to R, where wR = ‖si∈Rwi.
Let Θ be a set of terms of the form f(R) where R ⊆ S are subsets of variables

and f : R|R| → R are interpreted functions. The syntax of STL with both future
and past operators is defined by the grammar:

ϕ:: = � | f(R) > 0 | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 UI ϕ2 | ϕ1 SI ϕ2 ,

where f(R) are terms in Θ and I are real intervals with bounds in Q≥0 ∪
{∞}. As customary, we use the shorthands for eventually,

for always, for once, for his-
torically, ↑ ϕ ≡ ϕ ∧ �S ¬ϕ for rising edge and ↑ ϕ ≡ ¬ϕ ∧ �S ϕ for falling
edge1. We interpret STL with its classical semantics defined in [19].

2.2 Daikon

Daikon is a template-based property inference tool that, starting from a set
of variables and a set of observations, can infer a set of properties that are
likely to hold for the input variables [9]. More formally, given a set of variables
V = V1, . . . , Vn defined over the domains D1, . . . Dn, an observation for these
variables is a tuple v = (v1, . . . , vn), with vi ∈ Di.

Given a set of variables V and multiple observations v1 . . . vm for these same
variables, Daikon is a function D(V, v1 . . . vm) that returns a set of properties
{p1, . . . pk}, such that vi |= pj∀i, j, that is, all the observations satisfy the inferred
properties. For example, considering two variables x and y and considering the
observations (1, 3), (2, 2), (4, 0) for the tuple (x, y), Daikon can infer properties
such as x > 0, x + y = 4, and y ≥ 0.

The inference of the properties is driven by a set of template operators that
Daikon instantiates over the input variables and checks against the input data.
Since template-based inference can generate redundant and implied properties,
Daikon automatically detects them and reports the relevant properties only.
Finally, to guarantee that the inferred properties are relevant, Daikon computes
the probability that the inferred property holds by chance for all the properties.
Only properties that are statistically significant with a probability higher than
0.99 are assumed to be reliable and are reported in the output.
1 We omit the timing modality I when I = [0, ∞).

72 E. Bartocci et al.

In our approach, we use Daikon to automatically generate properties that
capture the behavior of the individual components and individual signals in the
model under analysis. These properties can be used to precisely detect misbe-
haviours and their propagation.

3 Case Study

We now introduce a case study that we use as a running example to illustrate
our approach step by step. We consider the Aircraft Elevator Control System
(AECS) introduced in [11] to illustrate model-based development of a Fault
Detection, Isolation and Recovery (FDIR) application for a redundant actuator
control system.

ri
gh

t o
ut

er

hydraulic
system 2

le
ft

 o
ut

er
ac

tu
at

or

Right Elevator

hydraulic hydraulic
system 1 system 3

PFCU2

LDL RDL

PFCU1

LIO RIO

ac
tu

at
or

ac
tu

at
or

ac
tu

at
or

le
ft

 in
ne

r

ri
gh

t i
nn

er
Left Elevator

Fig. 1. Aircraft elevator control system [11].

Figure 1 shows the architecture of an aircraft elevator control system with
redundancy, with one elevator on the left and one on the right side. Each elevator
is equipped with two hydraulic actuators. Both actuators can position the eleva-
tor, but only one shall be active at any point in time. There are three different
hydraulic systems that drive the four actuators. The left (LIO) and right (RIO)
outer actuators are controlled by a Primary Flight Control Unit (PFCU1) with
a sophisticated input/output control law. If a failure occurs, a less sophisticated
Direct-Link (DL/PFCU2) control law with reduced functionality takes over to
handle the left (LDL) and right (RDL) inner actuators. The system uses state
machines to coordinate the redundancy and assure its continual fail-operational
activity.

This model has one input variable, the input Pilot Command, and two output
variables, the position of left and right actuators, as measured by the sensors.

Automatic Failure Explanation in CPS Models 73

This is a complex model that could be extremely hard to analyze in case of
failure. In fact, the model has 426 signals, from which 361 are internal variables
that are instrumented (279 real-valued, 62 Boolean and 20 enumerated - state
machine - variables) and any of them, or even a combination of them, might be
responsible for an observed failure.

The model comes with a failure injection mechanism, which allows to dynam-
ically insert failures that represent hardware/ageing problems into different com-
ponents of the system during its simulation. This mechanism allows insertion of
(1) low pressure failures for each of the three hydraulic systems, and (2) fail-
ures of sensor position components in each of the four actuators. Due to the
use of redundancy in the design of the control system, a single failure is not
sufficient to alter its intended behavior. In some cases even two failures are not
sufficient to produce faulty behaviors. For instance, the control system is able
to correctly function when both a left and a right sensor position components
simultaneously fail. This challenges the understanding of failures because there
are multiple causes that must be identified to explain a single failure.

To present our approach we consider the analysis of a system failure caused
by the activation of two failures: the sensor measuring Left Outer Actuator
Position failing at time 2 and the sensor measuring Left Inner Actuator Position
failing at time 4. To collect evidence of how the system behaves, we executed the
Simulink model with 150 test cases with different pilot commands and collected
the input-output behavior both with and without the failures.

When the system behaves correctly, the intended position of the aircraft
required by the pilot must be achieved within a predetermined time limit and
with a certain accuracy. This can be captured with several requirements. One
of them says that whenever Pilot Command cmd goes above a threshold m, the
actuator position measured by the sensor must stabilize (become at most n units
away from the command signal) within T + t time units. This requirement is
formalized in STL with the following specification:

(1)

Fig. 2. Expected behavior of AECS. Fig. 3. Failure of the AECS.

74 E. Bartocci et al.

Figures 2 and 3 shows the correct and faulty behavior of the system. The
control system clearly stops following the reference signal after 4 seconds. The
failure observed on the input/output interface of the model does not give any
indication within the model on the reason leading to the property violation. In
the next section, we present how our failure explanation technique can address
this case producing a valuable output for engineers.

4 Failure Explanation

In this section we describe how CPSDebug works with help of the case study
introduced in Sect. 3. Figure 4 illustrates the main steps of the workflow. Briefly,
the workflow starts from a target CPS model and a test suite with some passing
and failing test cases, and produces a failure explanation for each failing test
case. The workflow consists of three sequential phases:

instrumentation
Test inputs Simulation traces

Specification

Verdicts

Property
mining

Pass traces Mined Properties

Fail Trace

Mined Properties

P

F

Clustering +
Mapping

Monitoring

Grouped and ordered by
first time of violation

Model block involved

Model
Simulation

Failure explanation

Monitoring

ψ1

ψj

ψ1

ψj

P

their verdicts, and violation intervals
Internal signals in the fail trace

F, Ik Bp

Te
st
in
g w1

I

wn
I

· · ·

w1

wn

M
in
in
g

ϕ

E
xp
la
in
in
g

· · · · · ·

w1

wn

t1

tk

· · ·

wm

w1

· · ·

wm+1

B1

· · ·

· · ·

B2

· · ·

wm+1
1

wm+1
k

Fig. 4. Overview of the failure explanation procedure.

Automatic Failure Explanation in CPS Models 75

(i) Testing, which simulates the instrumented CPS model with the available
test cases to collect information about its behavior, both for passing and
failing executions,

(ii) Mining, which mines properties from the traces produced by passing test
cases; intuitively these properties capture the expected behavior of the
model,

(iii) Explaining, which uses mined properties to analyze the traces produced by
failures and generate failure explanations, including information about the
root events responsible for the failure and their propagation.

4.1 Testing

CPSDebug starts by instrumenting the CPS model. This is an important pre-
processing step that is done before testing the model and that allows to log the
internal signals in the model. Model instrumentation is inductively defined on
the hierarchical structure of the Simulink/Stateflow model and is performed in a
bottom-up fashion. For every signal variable having the real, Boolean or enumer-
ation type, CPSDebug assigns a unique name to it and makes the simulation
engine to log its values. Similarly, CPSDebug instruments look-up tables and
state machines. Each look-up table is associated with a dedicated variable which
is used to produce a simulation trace that reports the unique cell index that
is exercised by the input at every point in time. CPSDebug also instruments
state-machines by associating two dedicated variables per state-machine, one
reporting the transitions taken and one reporting the locations visited during
the simulation. We denote by V the set of all instrumented model variables.

The first step of the testing phase, namely Model Simulation, runs the avail-
able test cases {wk

I |1 ≤ k ≤ n} against the instrumented version of the simula-
tion model under analysis. The number of available test cases may vary case by
case, for instance in our case study the test suite included n = 150 tests.

The result of the model simulation consists of one simulation trace wk for
each test case wk

I . The trace wk stores the sequence of (simulation time, value)
pairs wk

v for every instrumented variable v ∈ V collected during simulation.
To determine the nature of each trace, we transform the informal model

specification, which is typically provided in form of free text, into an STL formula
ϕ that can be automatically evaluated by a monitor. In fact, CPSDebug checks
every trace wk against the STL formula ϕ, 1 ≤ k ≤ n and labels the trace with
a pass verdict if wk satisfies ϕ, or a fail verdict otherwise. In our case study, the
STL formula 1 in Sect. 3 labeled 149 traces as passing and 1 trace as failing.

4.2 Mining

In the mining phase, CPSDebug selects the traces labeled with a pass verdict
and exploits them for property mining.

Prior to the property inference, CPSDebug performs several intermediate
steps that facilitate the mining task. First, CPSDebug reduces the set of variables
V to its subset V̂ of significant variables by using cross-correlation. Intuitively,

76 E. Bartocci et al.

the presence of two highly correlated variables implies that one variable adds
little information on top of the other one, and thus the analysis may actually
focus on one variable only. The approach initializes V̂ = V and then checks the
cross-correlation coefficient between all the logged variables computed on the
data obtained from the pass traces. The cross-correlation coefficient P (v1, v2)
between two variables v1 and v2 is computed with the Pearson method, i.e.
P (v1, v2) = cov(v1,v2)

σv1σv2
which is defined in terms of the covariance of v1 and v2 and

their standard deviations. Whenever the cross-correlation coefficient between two
variables is higher than 0.99, that is P (v1, v2) > 0.99, CPSDebug removes one
of the two variables (and its associated traces) from further analysis, that is,
V̂ = V̂ \ v1. In our case study, |V | = 361 and |V̂ | = 121, resulting in a reduction
of 240 variables.

In the next step, CPSDebug associates each variable v ∈ V̂ to (1) its domain
D and (2) its parent Simulink-block B. We denote by VD,B ⊆ V̂ the set
{v1, . . . , vn} of variables with the domain D associated with block B. CPSDebug
collects all observations v1 . . . vn from all samples in all traces associated with
variables in VD,B and uses the Daikon function D(VD,B , v1 . . . vn) to infer a set
of properties {p1, . . . , pk} related to the block B and the domain D. Running
property mining per model block and model domain allows to avoid (1) com-
binatorial explosion of learned properties and (2) learning properties between
incompatible domains.

Finally, CPSDebug collects all the learned properties from all the blocks and
the domains, and translates them to an STL specification, where each Daikon
property p is transformed to an STL assertion of type .

In our case study, Daikon returned 96 behavioral properties involving 121
variables, hence CPSDebug generated an STL property ψ with 96 temporal
assertions, i.e., ψ = [ψ1 ψ2 ... ψ96]. Equations 2 and 3 shows two examples of
behavioral properties inferred from our case study by Daikon and translated to
STL. Variables mode, LI pos fail and LO pos fail denote internal signals Mode,
Left Inner Position Failure and Left Outer Position Failure from the aircraft
position control Simulink model. The first property states that the Mode signal
is always in the state 2 (Passive) or 3 (Standby), while the second property states
that the Left Inner Position Failure is encoded the same than the Left Outer
Position Failure.

(2)

(3)

4.3 Explaining

This phase analyzes a trace w collected from a failing execution and produces a
failure explanation. The Monitoring step analyzes the trace against the mined
properties and returns the signals that violate the properties and the time inter-
vals in which the properties are violated. CPSDebug subsequently labels with F

Automatic Failure Explanation in CPS Models 77

(fail) the internal signals involved in the violated properties and with P (pass)
the remaining signals from the trace. To each fail-annotated signal, CPSDebug
also assigns the violation time intervals of the corresponding violated properties
returned by the monitoring tool.

In our case study, the analysis of the left inner and the left outer sensor failure
resulted in the violation of 17 mined properties involving 19 internal signals.

For each internal signal there can be several fail-annotated signal instances,
each one with a different violation time interval. CPSDebug selects the instance
that occurs first in time, ignoring all other instances. This is because, to reach
the root cause of a failure, CPSDebug has to focus on the events that cause
observable misbehaviours first.

Table 1 summarizes the set of property-violating signals, the block they
belong to, and the instant of time the signal has first violated a property for
our case study. We can observe that the 17 signals participating in the violation
of at least one mined property belong to only 5 different Simulink blocks. In
addition, we can see that all the violations naturally cluster around two time
instants – 2 s and 4 s. This suggests that CPSDebug can effectively isolate in
space and time a limited number of events likely responsible for the failure.

Table 1. Internal signals that violate at least one learned invariant and Simulink
blocks to which they belong. The column τ(s) denotes the first time that each signal
participates in an invariant violation.

Index Signal name Block τ(s)

s252 LI pos fail:1→Switch:2 Meas. Left In. Act. Pos. 1.99

s253 Outlier/failure:1→Switch:1 Meas. Left In. Act. Pos. 1.99

s254 Measured Position3:1→Mux:3 Meas. Left In. Act. Pos. 1.99

s255 Measured Position2:1→Mux:2 Meas. Left In. Act. Pos. 1.99

s256 Measured Position1:1→Mux:1 Meas. Left In. Act. Pos. 1.99

s55 BusSelector:2→Mux1:2 Controller 2.03

s328 In2:1→Mux1:2 L pos failures 2.03

s329 In1:1→Mux1:1 L pos failures 2.03

s332 Right Outer Pos. Mon.:2→R pos failures:1 Actuator Positions 2.03

s333 Right Inner Pos. Mon.:2→R pos failures:2 Actuator Positions 2.03

s334 Left Outer Pos. Mon.:2→L pos failures:1 Actuator Positions 2.03

s335 Right Inner Pos. Mon.:3→Goto3:1 Actuator Positions 2.03

s338 Left Outer Pos. Mon.:3→Goto:1 Actuator Positions 2.03

s341 Left Inner Pos. Mon.:2→L pos failures:2 Actuator Positions 2.03

s272 LO pos fail:1→Switch:2 Meas. Left Out. Act. Pos. 3.99

s273 Outlier/failure:1→Switch:1 Meas. Left Out. Act. Pos. 3.99

s275 Measured Position1:1→Mux:1 Meas. Left Out. Act. Pos. 3.99

s276 Measured Position2:1→Mux:2 Meas. Left Out. Act. Pos. 3.99

s277 Measured Position3:1→Mux:3 Meas. Left Out. Act. Pos. 4.00

78 E. Bartocci et al.

The Clustering & Mapping step then (1) clusters the resulting fail-annotated
signal instances by their violation time intervals and (2) maps them to the cor-
responding model blocks, i.e., to the model blocks that have some of the fail-
annotated signal instances as internal signals.

Finally, CPSDebug generates failure explanations that capture how the fault
originated and propagated in space and time. In particular, the failure explana-
tion is a sequence of snapshots of the system, one for each cluster of property vio-
lations. Each snapshot reports (1) the mean time as approximative time when the
violations represented in the cluster occurred, (2) the model blocks {B1, ..., Bp}
that originate the violations reported in the cluster, (3) the properties violated
by the cluster, representing the reason why the cluster of anomalies exist, and
(4) the internal signals that participate to the violations of the properties asso-
ciated with the cluster. Intuitively a snapshot represents a new relevant state
of the system, and the sequence shows how the execution progresses from the
violation of set of properties to the final violation of the specification. The engi-
neer is supposed to exploit the sequence of snapshots to understand the failure,
and the first snapshot to localize the root cause of the problem. Figure 5 shows
the first snapshot of the failure explanation that CPSDebug generated for the
case study. We can see that the explanation of the failure at time 2 involves the
Sensors block, and propagates to Signal conditioning and failures and Controller

Fig. 5. Failure explanation as a sequence of snapshots - part of the first snapshot.

Automatic Failure Explanation in CPS Models 79

blocks. By opening the Sensors block, we can immediately see that something
is wrong with the sensor that measures the left inner position of the actuator.
Going one level below, we can see that the signal s252 produced by LI pos fail is
suspicious – indeed the fault was injected exactly in that block at time 2. It is not
a surprise that the malfunctioning of the sensor measuring the left inner posi-
tion of the actuator affects the Signal conditioning and failures block (the block
that detects if there is a sensor that fails) and the Controller block. However, at
time 2 the failure in one sensor does not affect yet the correctness of the overall
system, hence the STL specification is not yet violated. The second snapshot
(not shown here) generated by CPSDebug reveals that the sensor measuring the
left outer position of the actuator fails at time 4. The redundancy mechanism
is not able to cope with multiple sensor faults, hence anomalies manifest in the
observable behavior. From this sequence of snapshots, the engineer can conclude
that the problem is in the failure of the two sensors - one measuring the left
inner and the other measuring the left outer position of the actuator that stop
functioning at times 2 and 4, respectively.

5 Empirical Evaluation

We empirically evaluated our approach against three classes of faults: multiple
hardware faults in fault-tolerant systems, which is the case of multiple com-
ponents that incrementally fail in a system designed to tolerate multiple mal-
functioning units; incorrect look-up tables, which is the case of look-up tables
containing incorrect values; and erroneous guard conditions, which is the case
of imprecise conditions in the transitions that determine the state-based behav-
ior of the system. Note that these classes of faults are highly heterogenous. In
fact, their analysis requires a technique flexible enough to deal with multiple
failure causes, but also with the internal structure of complex data structures
and finally with state-based models.

We consider two different systems to introduce faults belonging to these three
classes. We use the fault-tolerant aircraft elevator control system [11] presented
in Sect. 3 to study the capability of our approach to identify failures caused
by multiple overlapping faults. In particular, we study cases obtained by (1)
injecting a low pressure fault into two out of three hydraulic components (fault
h1h2), and (2) inserting a fault in the left inner and left outer sensor position
components (fault lilo).

We use the automatic transmission control system [13] to study the other
classes of faults. Automatic transmission control system is composed of 51 vari-
ables, includes 4 look-up tables of size between 4 and 110 and two finite state
machines running in parallel with 3 and 4 states, respectively, as well as 6 tran-
sitions each. We used the 7 STL specifications defined in [13] to reveal failures
in this system. We studied cases obtained by (1) modifying a transition guard in
the StateFlow chart (fault guard), and (2) altering an entry in the look-up table
Engine (fault eng lt).

To study these faults, we considered two use scenarios. For the aicraft elevator
control system, we executed 150 test cases in which we systematically changed

80 E. Bartocci et al.

the amplitude and the frequency of the pilot command steps. These tests were
executed on a non-faulty model. We then executed an additional test on the
model to which we dynamically injected h1h2 and lilo faults. For the automatic
transmission control system, we executed 100 tests in which we systematically
changed the step input of the throttle by varying the amplitude, the offset and
the absolute time of the step. All the tests were executed on a faulty model.
In both cases, we divided the failed tests from the passing tests. CPSDebug
used the data collected from the passing tests to infer models necessary for the
analysis of the failed tests.

We evaluated the output produced by our approach considering four main
aspects: Scope Reduction, Cause Detection, Quality of the Analysis, and Com-
putation Time. Scope Reduction measures how well our approach narrows down
the number of elements to be inspected to a small number of anomalous signals
that require the attention of the engineer, in comparison to the set of variables
involved in the failed execution. Cause detection indicates if the first cluster
of anomalous values reported by our approach includes any property violation
caused by the signal that is directly affected by the fault. Intuitively, it would
be highly desirable that the first cluster of anomalies reported by our technique
includes violations caused by the root cause of the failure. For instance, if a fault
directly affects the values of the signal Right Inner Pos., we expect these val-
ues to cause a violation of a property about this same signal. We qualitatively
discuss the set of violated properties reported for the various faults and explain
why they offer a comprehensive view about the problem that caused the failure.
Finally, we analyze the computation time of CPSDebug and its components and
compare it to the simulation time of the model.

To further confirm the effectiveness of our approach, we contacted 3 engineers
from (1) an automotive OEM with over 300.000 employees (E1), (2) a major
modeling and simulation tool vendor with more than 3.000 employees (E2), and
(3) an SME that develops tools for verification and testing of CPS models (E3).
We asked them to evaluate the outcomes of our tool for a selection of faults (it
was infeasible to ask them to inspect all the results we collected). In particular,
we sent them the faulty program, an explanation of both the program and the
fault, and the output generated by our tool, and we asked them to answer the
following questions:

Q1 How helpful is the output to understand the cause(s) of the failure? (Very
useful/Somewhat useful/Useless/Misleading)

Q2 Would you consider experimenting our tool with your projects? (Yes/May
be/No)

Q3 Considering the sets of violations that have been reported, is there anything
that should be removed from the output? (open question)

Q4 Is there anything more you would like to see in the output produced by our
tool? (open question)

In the following, we report the results that we obtained for each of the ana-
lyzed aspects.

Automatic Failure Explanation in CPS Models 81

5.1 Scope Reduction, Cause Detection and Qualitative Analysis

Table 2 shows the degree of reduction achieved for the analyzed faults. Column
system indicates the faulty application used in the evaluation. Column # vars
indicates the size of the model in terms of the number of its variables. Column
fault indicates the specific fault analyzed. Column # ψ gives the number of
learned invariants. Column # suspicious vars (reduction) indicates the number of
variables involved in the violated properties and the reduction achieved. Column
fault detected indicates whether the explanation included a variable associated
with the output of the block in which the fault was injected.

Table 2. Scope reduction and cause detection.

system # vars fault # ψ # suspicious vars fault detected

Aircraft 426 lilo 96 17(96%) �
h1h2 96 44(90%) �

Transmission 51 guard 41 1(98%)
eng lt 39 4(92%) �

We can see from Table 2 that CPSDebug successfully detected the exact
origin of the fault in 3 out of 4 cases. In the case of the aircraft elevator control
system, CPSDebug clearly identifies the problem with the respective sensors
(fault lilo) and hydraulic components (fault h1h2). Overall, the scope reduction
ranged from 90% to 98% of the model signals, allowing engineers to focus on
a small subset of the suspicious signals. Note that a strong scope reduction is
useful also when CPSDebug is not effective with a fault, since engineers could
quickly conclude that the fault is not in the (few) recommended locations without
wasting their time (such as for the guard fault).

In the case of the automatic transmission control, CPSDebug associates the
misbehavior of the model with the Engine look-up table and points to its right
entry. The scope reduction in this case is 90%. On the other hand, CPSDebug
misses the exact origin of the guard fault and fails to point to the altered tran-
sition. This happens because the faulty guard alters only the timing but not
the qualitative behavior of the state machine. Since Daikon is able to learn only
invariant properties, CPSDebug is not able to discriminate between passing and
failing tests in that case. Nevertheless, CPSDebug does associate the entire state
machine to the anomalous behavior, since the observable signal that violates the
STL specification is generated by the state machine.

5.2 Computation Time

Table 3 summarizes computation time of CPSDebug applied to the two case
studies. We can make two main conclusions from these experimental results: (1)
the overall computation time of CPSDebug-specific activities is comparable to

82 E. Bartocci et al.

the overall simulation time and (2) property mining dominates by far the com-
putation of the explanation. We finally report in the last row the translation
of the Simulink simulation traces recorded in the Common Separated Values
(csv) format to the specific input format that is used by Daikon. In our pro-
totype implementation of CPSDebug, we use an inefficient format translation
that results in excessive time. We believe that investing an additional effort can
result in improving the translation time by several orders of magnitude.

Table 3. CPSDebug computation time.

Aircraft Transmission

tests 150 100
samples per test 1001 751

Time (s)
Simulation 654 35
Instrumentation 1 0.7
Mining 501 52
Monitoring properties 0.7 0.6
Analysis 1.5 1.6
File format translation 2063 150

5.3 Evaluation by Professional Engineers

We analyze in this section the feedback provided by engineers E1–E3 to the
questions Q1–Q4.

Q1 E1 found CPSDebug potentially very useful. E2 and E3 found CPSDebug
somewhat useful.

Q2 All engineers said that they would experiment with CPSDebug.
Q3 None of the engineers found anything that should be removed from the tool

outcome.
Q4 E2 and E3 wished to see better visual highlighting of suspicious signals.

E2 wished to see the actual trace for each suspicious signal. E2 and E3
wished a clearer presentation of cause-effect relations.

Apart from the direct responses to Q1 − 4, we received other useful informa-
tion. All engineers shared appreciation for the visual presentation of outcomes,
and especially the marking of suspicious Simulink blocks in red. E1 highlighted
that real production models typically do not only contain Simulink and State-
Flow blocks, but also SimEvent and SimScape blocks, Bus Objects, Model Ref-
erence, Variant Subsystems, etc., which may limit the applicability of the current
prototype implementation.

Overall, engineers confirmed that CPSDebug can be a useful technology.
At the same time, they offered valuable feedback to improve it, especially the
presentation of the output produced by the tool.

Automatic Failure Explanation in CPS Models 83

6 Related Work

The analysis of software failures has been addressed with two main classes of
related approaches: fault localization and failure explanation techniques.

Fault localization techniques aim at identifying the location of the faults
that caused one or more observed failures (an extensive survey can be found
in [27]). A popular example is spectrum-based fault-localization (SBFL) [1], an
efficient statistical technique that, by measuring the code coverage in the failed
and successful tests, can rank the program components (e.g., the statements)
that are most likely responsible for a fault.

SBFL has been recently employed to localize faults in Simulink/Stateflow
CPS models [5,7,16–18], showing similar accuracy as in the application to soft-
ware systems [18]. The explanatory power of this approach is however limited,
because it generates neither information that can help the engineers understand-
ing if a selected code location is really faulty nor information about how a fault
propagated across components resulting on an actual failure. Furthermore, SBFL
is agnostic to the nature of the oracle requiring to know only whether the system
passes or not a specific test case. This prevents the exploitation of any additional
information concerning why and when the oracle decides that the test is not con-
formed with respect to the desired behavior. In Bartocci et al. [5] the authors try
to overcome this limitation by assuming that the oracle is a monitor generated
from an STL specification. This approach allows the use of the trace diagnostic
method proposed in Ferrère et al. [10] to obtain more information (e.g., the time
interval when the cause of violation first occurs) about the failed tests improv-
ing the fault-localization. Although this additional knowledge can improve the
confidence on the localization, still little is known about the root cause of the
problem and its impact on the runtime behavior of the CPS model.

CPSDebug complements and improves SBFL techniques generating informa-
tion that helps engineers identifying the cause of failures, understanding how
faults resulted in chains of anomalous events that eventually led to the observed
failures, and producing a corpus of information well-suited to support engineers
in their debugging tasks, as confirmed by the subjects who responded to our
questionnaire.

Failure explanation techniques analyze software failures in the attempt of
producing information about failures and their causes. For instance, a few
approaches combined mining and dynamic analysis in the context of component-
based and object-oriented applications to reveal [24] and explain failures [3,6,21].
These approaches are not however straightforwardly applicable to CPS models,
since they exploit the discrete nature of component-based and object-oriented
applications that is radically different from the data-flow oriented nature of CPS
models, which include mixed-analog signals, hybrid (continuous and discrete)
components, and a complex dynamics.

CPSDebug originally addresses failure explanation in the context of CPS
models. The closest work to CPSDebug is probably Hynger [14,23], which
exploits invariant generation to detect specification mismatches, that is, a mis-
match between an actual and an inferred specification, in Simulink models. Spec-

84 E. Bartocci et al.

ification mismatches can indicate the presence of problems in the models. Dif-
ferently from Hynger, CPSDebug does not compare specifications but exploits
inferred properties to identify anomalous behaviors in observed failures. More-
over, CPSDebug exploits correlation and clustering techniques to maintain the
output compact, and to generate a sequence of snapshots that helps comprehen-
sively defining the story of the failure. Our results show that this output can be
the basis for cost-effective debugging.

A related body of research consists of approaches for anomaly detection of
Cyber-Physical Systems [8,26]. However, anomaly detection approaches aim at
detecting misbehaviours, rather than analyzing failures and detecting their root
causes as CPSDebug does.

7 Future Work and Conclusions

We have presented CPSDebug, an automatic approach for explaining failures in
Simulink models. Our approach combines testing, specification mining and fail-
ure analysis to provide a concise explanation consisting of time-ordered sequence
of model snapshots that show the variable exhibiting anomalous behavior and
their propagation in the model. We evaluated the effectiveness CPSDebug on
two models, involving two use scenarios and several classes of faults.

We believe that this paper opens several research directions. In this work, we
only considered mining of invariant specifications. However, we have observed
that invariant properties are not sufficient to explain timing issues, hence we plan
to experiment in future work with mining of real-time temporal specifications.
In particular, we will study the trade-off between the finer characterization of
the model that temporal specification mining can provide and its computational
cost. We also plan to study systematic ways to explain failures in presence of het-
erogeneous components. In this paper, we consider the setting in which we have
multiple passing tests, but we only use a single fail test to explain the failure. We
will study whether the presence of multiple failing tests can be used to improve
the explanations. In this work, we have performed manual fault injection and
our focus was on studying the effectiveness of CPSDebug on providing mean-
ingful failure explanations for different use scenarios and classes of faults. We
plan in the future to develop automatic fault injection and perform systematic
experiments for evaluating how often CPSDebug is able to find the root cause.

Acknowledgments. This report was partially supported by the Productive 4.0
project (ECSEL 737459). The ECSEL Joint Undertaking receives support from the
European Union’s Horizon 2020 research and innovation programme and Austria, Den-
mark, Germany, Finland, Czech Republic, Italy, Spain, Portugal, Poland, Ireland, Bel-
gium, France, Netherlands, United Kingdom, Slovakia, Norway.

Automatic Failure Explanation in CPS Models 85

References

1. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: On the accuracy of spectrum-based
fault localization. In: Testing: Academic and Industrial Conference Practice and
Research Techniques, pp. 89–98. IEEE (2007)

2. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

3. Babenko, A., Mariani, L., Pastore, F.: AVA: automated interpretation of dynami-
cally detected anomalies. In: proceedings of the International Symposium on Soft-
ware Testing and Analysis (ISSTA) (2009)

4. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lec-
tures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5 5

5. Bartocci, E., Ferrère, T., Manjunath, N., Nickovic, D.: Localizing faults in
Simulink/Stateflow models with STL. In: Proceedings of HSCC 2018: The 21st
International Conference on Hybrid Systems: Computation and Control, pp. 197–
206. ACM (2018)

6. Befrouei, M.T., Wang, C., Weissenbacher, G.: Abstraction and mining of traces to
explain concurrency bugs. Form. Methods Syst. Des. 49(1–2), 1–32 (2016)

7. Deshmukh, J.V., Jin, X., Majumdar, R., Prabhu, V.S.: Parameter optimization
in control software using statistical fault localization techniques. In: Proceedings
of ICCPS 2018: the 9th ACM/IEEE International Conference on Cyber-Physical
Systems, pp. 220–231. IEEE Computer Society/ACM (2018)

8. Ding, M., Chen, H., Sharma, A., Yoshihira, K., Jiang, G.: A data analytic engine
towards self-management of cyber-physical systems. In: Proceedings of the Interna-
tional Conference on Distributed Computing Workshop. IEEE Computer Society
(2013)

9. Ernst, M., et al.: The daikon system for dynamic detection of likely invariants. Sci.
Comput. Program. 69(1–3), 35–45 (2007)

10. Ferrère, T., Maler, O., Ničković, D.: Trace diagnostics using temporal implicants.
In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp.
241–258. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-7 20

11. Ghidella, J., Mosterman, P.: Requirements-based testing in aircraft control design.
In: AIAA Modeling and Simulation Technologies Conference and Exhibit, p. 5886
(2005)

12. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Series in Statistics, 2nd edn.
Springer, Heidelberg (2009)

13. Hoxha, B., Abbas, H., Fainekos, G.E.: Benchmarks for temporal logic requirements
for automotive systems. In: International Workshop on Applied veRification for
Continuous and Hybrid Systems, volume 34 of EPiC Series in Computing, pp.
25–30. EasyChair (2015)

14. Johnson, T.T., Bak, S., Drager, S.: Cyber-physical specification mismatch identi-
fication with dynamic analysis. In: Proceedings of ICCPS 2015: The ACM/IEEE
Sixth International Conference on Cyber-Physical Systems, pp. 208–217. ACM
(2015)

https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-319-24953-7_20

86 E. Bartocci et al.

15. Lee, E.A.: Cyber physical systems: design challenges. In: Proceedings of ISORC
2008: The 11th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, pp. 363–369. IEEE Computer Society (2008)

16. Liu, B., Nejati, S., Briand, L.C.: Improving fault localization for Simulink models
using search-based testing and prediction models. In: International Conference on
Software Analysis, Evolution and Reengineering, pp. 359–370. IEEE Computer
Society (2017)

17. Liu, B., Lucia, Nejati, S., Briand, L.C., Bruckmann, T.: Localizing multiple faults
in Simulink models. In: International Conference on Software Analysis, Evolution,
and Reengineering, pp. 146–156. IEEE Computer Society (2016)

18. Liu, B., Lucia, Nejati, S., Briand, L.C., Bruckmann, T.: Simulink fault localization:
an iterative statistical debugging approach. Softw. Test. Verif. Reliab. 26(6), 431–
459 (2016)

19. Maler, O., Nickovic, D.: Monitoring properties of analog and mixed-signal circuits.
STTT 15(3), 247–268 (2013)

20. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

21. Mariani, L., Pastore, F., Pezzè, M.: Dynamic analysis for diagnosing integration
faults. IEEE Trans. Softw. Eng. (TSE) 37(4), 486–508 (2011)

22. Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivancic, F., Gupta, A., Pappas,
G.J.: Monte-Carlo techniques for falsification of temporal properties of non-linear
hybrid systems. In: International Conference on Hybrid Systems: Computation and
Control, pp. 211–220 (2010)

23. Nguyen, L.V., Hoque, K.A., Bak, S., Drager, S., Johnson, T.T.: Cyber-physical
specification mismatches. TCPS 2(4), 23:1–23:26 (2018)

24. Pastore, F., et al.: Verification-aided regression testing. In: International Sympo-
sium on Software Testing and Analysis, ISSTA 2014, San Jose, CA, USA - 21–26
July 2014, pp. 37–48 (2014)

25. Sankaranarayanan S., Fainekos, G.E.: Falsification of temporal properties of hybrid
systems using the cross-entropy method. In: International Conference on Hybrid
Systems: Computation and Control, pp. 125–134. ACM (2012)

26. Sharma, A.B., Chen, H., Ding, M., Yoshihira, K., Jiang, G.: Fault detection and
localization in distributed systems using invariant relationships. In: Proceedings of
DSN 2013: The 2013 43rd Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks, pp. 1–8. IEEE Computer Society (2013)

27. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Trans. Software Eng. 42(8), 707–740 (2016)

https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12

Evolution of Formal Model-Based
Assurance Cases for Autonomous Robots

Mario Gleirscher(B) , Simon Foster , and Yakoub Nemouchi

Department of Computer Science, University of York, York, UK
{mario.gleirscher,simon.foster,yakoub.nemouchi}@york.ac.uk

http://www.cs.york.ac.uk

Abstract. An assurance case should carry sufficient evidence for a com-
pelling argument that a system fulfils its guarantees under specific envi-
ronmental assumptions. Assurance cases are often subject of mainte-
nance, evolution, and reuse. In this paper, we demonstrate how evidence
of an assurance case can be formalised, and how an assurance case can be
refined using this formalisation to increase argument confidence and to
react to changing operational needs. Moreover, we propose two argument
patterns for construction and extension and we implement these patterns
using the generic proof assistant Isabelle. We illustrate our approach for
an autonomous mobile ground robot. Finally, we relate our approach to
international standards (e.g. DO-178C, ISO 26262) recommending the
delivery and maintenance of assurance cases.

Keywords: Assurance case · Formal verification · Refinement ·
Autonomous robot · Integrated formal methods ·
Model-based engineering

1 Introduction

Autonomous robots in complex multi-participant environments can engage in
risky events (e.g. because of faults or partial state knowledge) possibly lead-
ing to accidents. To reduce the opportunities for all participants to engage in
such events or their consequences, one wishes to observe only specific machine
behaviours. Assurance Cases (ACs) [20] are structured arguments, supported
by evidence, intended to demonstrate that such machines fulfil their assurance
guarantees [22], subject to certain assumptions about their environment [18,32].
Among the wide variety of assurance objectives, we will focus on safety in the
rest of this paper, with a careful eye on liveness.

Compelling ACs require models to describe the behaviour of the real-world
artefacts subjected to the assurance claims, and to provide evidence for these,
contingent on validation. In particular, formal methods (FMs) can be applied to

M. Gleirscher—Supported by the German Research Foundation (DFG grant no.
381212925).
c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 87–104, 2019.
https://doi.org/10.1007/978-3-030-30446-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_5&domain=pdf
http://orcid.org/0000-0002-9445-6863
http://orcid.org/0000-0002-9889-9514
https://doi.org/10.1007/978-3-030-30446-1_5

88 M. Gleirscher et al.

the rigorous analysis of a system’s state space, and to the computer-assisted ver-
ification of requirements. However, verification and validation can, in reality, fail
to deliver safe systems, for example, due to an inadequate model that abstracts
from essential detail. Such shortcomings can be difficult to identify in advance,
and consequently, models and assurance cases have to evolve [2,7]. Particularly,
one might want to modify or extend an existing AC, for example, weaken its
assumptions, make its model more precise, or strengthen its guarantees. Several
such steps might be required to arrive at an acceptable confidence level.

In their study of assurance practice, Nair et al. [27] report that evidence
completeness and change impact is managed mostly manually using traceability
matrices. These authors observe a lack of tool support for change management
and that evidence structuring is done mostly textually rather than with model-
based ACs. Importantly, their study raises the question of how evolution and
change impact is identified, assessed, and managed at the level of ACs?

Contributions. We consider formal model-based assurance cases (FMACs) to
construct assurance arguments in a rigorous and step-wise manner. We define
an FMAC as an AC module that conveys formal verification results with respect
to a model and certain environmental assumptions. Our motivation is the assur-
ance of physical systems such as autonomous mobile robots, and so we chose to
support models and requirements in differential dynamic logic (dL) [33].

We underpin our approach by AC patterns for the incremental construction
of increasingly richer models, guarantees, and proofs that these models fulfil
the guarantees. We provide two patterns, one for AC construction and one for
AC extension, particularly, for increasing confidence in an AC by making the
formalisation successively more precise. Both patterns provide guidance to how
successive engineering steps can preserve assurance results from previous steps.
We implement these patterns in Isabelle/SACM [28] and show how they can be
instantiated and how assurance claims can be linked to verification results.

We complement recent approaches to robot verification (e.g. [26]) by a data
refinement [40] for dL that is lifted to the level of AC construction and evolution.
For a mobile ground robot, we illustrate two refinement steps from a maximally
abstract model to one describing safe path planning and emergency braking. We
indicate how one can derive safety guarantees from hazard analysis yet avoiding
too conservative solutions by adding liveness guarantees. We demonstrate our
proofs in Isabelle/HOL [29] by formalising the robot model in an implementation
of dL in Isabelle/UTP [10,11].

Related Work. Bate and Kelly [2] discuss the notion of AC modules, interfaces,
and their composition into an AC architecture via claim matching and assump-
tion/guarantee (A/G)-style reasoning (e.g. weakening of assumptions). Following
their discussion of AC change with a focus on traceability and change impact
analysis, we focus on AC extension for the verified evolution of AC modules.

Prokhorova et al. [34] propose the construction of formal model-based safety
cases based on a classification of safety requirements using Event-B. The authors
discuss argument patterns for all classes of requirements. The patterns integrate

Formal Model-Based Assurance Cases 89

proof and model-checking evidence1 and cover refinement steps. Complementing
their Event-B application, our approach supports hybrid system modelling. We
cover their requirements classification, except for temporal and timing properties
requiring binary modalities. We focus on step safety and liveness, and path
safety. To support argument maintenance and scalability, we separate system
modelling and proof derivation from argumentation, keeping model and proof
details separate from the argument structure. This separation is facilitated in our
Isabelle-based implementation by using dL for system modelling and verification
and the FMAC concept for assurance argumentation.

Oliveira et al. [30] propose hierarchical modular safety cases to reuse common
product-line features in general safety arguments and to decompose and refine
the general argument into feature-specific argument modules. While the authors
cover hazard analysis (viz. model-based failure analysis) and product-line mod-
elling, our notion of AC extension based on data refinement can be useful for
the verified derivation of a product-specific AC from the product-line AC.

For adaptive systems, Calinescu et al. [4] elaborate on the idea of through-life
argument maintenance [7,31], focusing on the maintenance of a parametric AC
whose parameters are subject of optimisation during the operation of a system.
We complement their approach by a notion of data refinement to accommodate
fundamental structural changes frequently desired for argument evolution.

Overview. The remainder of this article is structured as follows: We introduce the
concepts in Sect. 2, explain our contributions in Sect. 3, evaluate our approach
with a robot example in Sect. 4, discuss implications on formal robot verification
and certification practice in Sect. 5, and conclude in Sect. 6.

2 Background and Formal Preliminaries

We introduce assurance cases from a practical viewpoint and provide the pre-
liminaries on system specification and verification.

2.1 Assurance Cases

An AC is a compelling2 argument, supported by evidence, that a system in a
specific context fulfils (or refuses to fulfil) guarantees of interest, for example,
freedom of hazards (safety), sustained correct service (reliability), freedom of
unauthorised access (security), or productivity (performance). Intuitively, an
AC is a hierarchical structure, with claims that are broken down into subclaims
using argumentation strategies, and referencing an appropriate context, such as
system element descriptions and environmental assumptions. An AC is deemed
to be “finished” when all leaf claims are supported by adequate evidence, though
there is always the possibility of evolution.

1 From the Rodin tool and from LTL and timed CTL checkers.
2 Usually structured, balanced, and exhibiting many further argumentation qualities.

90 M. Gleirscher et al.

We consider ACs as formalised in the Structured Assurance Case Metamodel
(SACM), an OMG standard.3 Wei et al. [39] summarise the work around SACM
and demonstrate how established frameworks like the Goal Structuring Notation
(GSN) [19] and Claims Arguments Evidence (CAE)4 can be represented using
SACM. SACM thus connects users of these techniques with rigorous model-based
AC construction. SACM can be characterised by three principal concepts:

1. arguments, that present the claims and inferential links between them;
2. artifacts, evidence to support leaf claims, and the relations between them.

Examples include outputs of hazard analysis, actors, test reports, system
data sheets, formal models, and verification results. An AC whose evidence
is based on results obtained from analysis of system models, such as formal
verification, is called a model-based assurance case [16,39];

3. terminology, to support controlled languages for expressing claims, that are
otherwise specified using free-form natural language. Often, these are used to
refer to model elements in model-based ACs;

In AC modules, certain top-level claims and artefacts can be made public by
an A/G-style AC interface. Several modules can then be composed to produce
the overall AC. Claims can be supported by an argument within the module or
assumed to hold of the context. In the latter case, corresponding external argu-
ments have to be imported from other AC modules. This can be achieved by
A/G reasoning, as is present in the design-by-contract paradigm [25]. Addition-
ally, AC modules adhere to the standardised SACM package concept.

AC modules often need to evolve, for example, because of updates of the
system design or the hazard list. Such evolutions should be conservative, in
that existing claims should remain supported, assumptions should remain satis-
fiable, and terminology should stay consistent. This need motivates our notion
of AC extension, the key contribution of this paper, fostering step-wise devel-
opment and evolution of ACs. For this, we further develop Isabelle/SACM, our
implementation of SACM as an interactive DSL for AC construction in the proof
assistant Isabelle. Isabelle/SACM extends the document model Isabelle/DOF [3]
to accommodate AC concepts and to provide well-formedness checking for ACs.
Isabelle/SACM allows us to describe ACs with claims and evidence obtained
from various formal methods. Details on Isabelle/SACM are explained in [28].

2.2 Isabelle/UTP and Differential Dynamic Logic

The evidence for an FMAC is obtained by formal verification using an imple-
mentation of dL [33] in our verification framework, Isabelle/UTP [10,11]. dL
specialises Dynamic Logic by combining a modelling notation for hybrid sys-
tems, called hybrid programs, with a formal property language for reasoning
about such programs. In a hybrid program, we can use operators like sequential
composition, assignment, branches and iteration, and an operator for specifying
3 See https://www.omg.org/spec/SACM/2.0/.
4 See https://claimsargumentsevidence.org.

https://www.omg.org/spec/SACM/2.0/
https://claimsargumentsevidence.org

Formal Model-Based Assurance Cases 91

systems of ordinary differential equations (ODEs). It can therefore be used to
represent hybrid systems that combine continuous evolution and discrete control.
The property language extends predicate calculus with two modalities: [P]φ,
which specifies that φ holds in every state reachable from P ; and 〈P〉φ, which
specifies that there is at least one state reachable from P satisfying φ.

Isabelle/UTP implements Hoare and He’s Unifying Theories of Programming
(UTP) [17], a framework for development of semantic models for programming
and modelling languages based on heterogeneous paradigms using an alpha-
betised relational calculus. Isabelle/UTP develops this idea by allowing UTP
semantic models to be adapted into verification tools, such as Hoare calculus
deductive reasoning. Then, we can harness the array of automated proof tech-
niques in Isabelle/HOL [29], such as integrated automated theorem provers, to
discharge resulting verification conditions. We apply this approach to develop the
dL hybrid program model, and the associated proof calculus as a set of derived
theorems. Moreover, we have developed a tactic, wp-tac , which calculates [P]φ
and 〈P〉φ conditions using Isabelle’s simplifier and thus automates proof.

3 Formal Model-Based Assurance Cases

In this section, we develop FMACs, that is ACs that contain a formal model
from which evidence for the top-level claims is derived. The informal structure
of an FMAC is provided through Isabelle/SACM. We formalise claims using
the modalities from dL, which allows us to formulate LTL-style guarantees of
the form p ⇒ ◦q , p ⇒ ♦q , and p ⇒ �q . This integration of dynamic and
temporal logic supports the objective underlying many ACs, that is, to inte-
grate evidence from different provenance. We develop a formal notion of FMAC
extension, which employs both A/G reasoning and data refinement [40], which
allows us to elaborate models in a style similar to Event-B refinement [34].

3.1 Assurance Case Construction

In this section, we introduce a generalised model of dL-style hybrid programs,
use these to define the notion of a Cyber-Physical Machine (CPM), and then
define FMACs, which assure properties of a CPM using formal verification.

Hybrid programs are defined with respect to an alphabet, A, of typed state
variable declarations (x : t), whose names are drawn from the set V. A induces
a state space Σ, and hybrid programs are modelled as potentially heterogeneous
alphabetised relations over state spaces, that is, subsets of Σ1 ×Σ2. We give the
following syntax for such relations.

Definition 1 (Generalised Hybrid Programs).

P ::=P � P | P � P | P∗ | ?E | 〈S〉 | V := ∗ | {S | E}
S ::= id | nil | S(V �→ E)

https://github.com/isabelle-utp/utp-main/blob/fcfaa3fc9e7db7d8e26139c5053f7ba68dd5c79a/theories/hyprog/utp_hyprog.thy

92 M. Gleirscher et al.

Here, E gives syntax for expressions over A. Hybrid programs, P, are composed
using sequential composition (P � Q), nondeterministic choice (P � Q), Kleene
star (P

∗
), conditional tests (?b), assignments (〈σ〉), nondeterministic assign-

ments (x := ∗), and ODEs ({σ | b}). Each of these operators is semantically
denoted as a relational predicate (for details see [10,11]). As usual in UTP [17],
relations are partially ordered by refinement (P
 Q), which corresponds to uni-
versally closed reverse implication. Most of the operators follow the dL hybrid
program notation, the exceptions being assignments and ODEs, whose general-
isations help support data refinement.

Generalised assignment, 〈σ〉, uses a substitution, σ: a potentially heteroge-
neous total function between state spaces, Σ1 → Σ2. The basic substitution
id : Σ → Σ maps every variable to its present value. Then, 〈id 〉 is the ineffec-
tual program (skip). Moreover, nil : Σ1 → Σ2 is a heterogeneous substitution
that assigns arbitrary values to every variable, ignoring the initial state.

An existing substitution can be updated with a maplet x �→ e, assuming x and
e have the same type. We then use the notation [x1 �→ e1, · · · , xn �→ en] to denote
id (x1 �→ e1, · · · , xn �→ en), that is, the substitution that assigns n expressions to
n variables, whilst leaving all other variables in the alphabet unchanged. Then,
the usual singleton assignment x := e can be represented as 〈[x �→ e]〉. Similarly,
the notation �x1 �→ e1, · · ·� constructs a heterogeneous substitution where x1
and e1 are from different state spaces. Moreover, substitutions can be applied to
expressions using σ † e, which substitutes all variables in e with those specified
in σ. ODEs, {σ | b}, are modelled similarly but here σ represents the mapping
of variables to their derivatives, and b is a boundary condition, as in dL.

In our model of hybrid programs, we define the modalities 〈P〉φ and [P]φ
from dL using the corresponding UTP definitions for weakest precondition (wp)
and weakest liberal precondition (wlp) [17], respectively:

Definition 2 (Modalities). 〈P〉φ � (∃ v ′ • P � ?φ) [P]φ � ¬〈P〉(¬φ)

Here, v ′ refers to the final value of the state. Thus, 〈P〉φ is the relational preimage
of P under φ, and [P]φ is its dual defined by conjugation. From these definitions
the usual laws of dL can be proved as theorems. We use hybrid programs to
represent CPMs, whose form is inspired by Parnas’ four-variable model [32]:

Definition 3. A CPM is a tuple M = (A, I, Inv, T) where

– A is an alphabet formalising the state space, which is divided into disjoint
regions for controlled (ctrl), monitored (mon), and internal variables (st);

– I ⊆ A is an initialiser that assigns initial values to state variables;
– Inv ⊆ A is an invariant predicate over st and ctrl;
– T ⊆ A × A is the machine’s transition relation.

To reduce dependencies on the environment, we chose to not allow Inv to use
monitored variables. The transition relation specifies the steps the machine can
take, and is formulated using hybrid programs of the form

T = (?g1 � P1 � ?g2 � P2 � · · · � ?gn � Pn)

https://github.com/isabelle-utp/utp-main/blob/fcfaa3fc9e7db7d8e26139c5053f7ba68dd5c79a/utp/utp_dynlog.thy
https://github.com/isabelle-utp/utp-main/blob/fcfaa3fc9e7db7d8e26139c5053f7ba68dd5c79a/assurance/fmac/formal_assurance.thy#L5

Formal Model-Based Assurance Cases 93

which corresponds to a set of non-deterministic guarded commands (gi →
Pi). Then, a CPM behaves like a cyclic executive that reads monitored vari-
ables (mon), executes the transition relation (T), and writes controlled vari-
ables (ctrl), in the style of Parnas [32]. We impose the following validity con-
straints on CPMs:

Definition 4. A CPM is valid if the following conditions hold:

1. I ∩ Inv �= ∅ — there is a valid initial state satisfying the invariant;
2. Inv ⇒ [T] Inv — the invariant is maintained by all transitions;
3. Inv ⇒ 〈T 〉true — if the invariant holds, there is an enabled transition;
4. ∀ r • 〈T 〉r ⇒ (∃(ctrl, st) • r) — only controlled and state variables are

changed by the body; any predicate r, refering to mon only, is invariant.

The conditions together ensure the machine is well-formed, maintains the invari-
ant, and is free of deadlock. We can now use CPMs to define FMACs:

Definition 5. An FMAC is a tuple AC = (M,As,Gr) with

– a valid cyber-physical machine (M) describing the system behaviours;
– a set of environmental assumptions (As), specified as predicates on mon;
– a set of guarantees (Gr), specified as predicates on mon, ctrl, st.

The assumption As constrains the environment with a predicate on the moni-
tored variables. The guarantee predicates are LTL formulas corresponding to a
subset of dL formulae, namely:

– p ⇒ ◦q : if p holds currently, then q holds in the next state;
– p ⇒ �q : if p holds, then q holds in all subsequent states;
– p ⇒ ♦q : if p holds, then q holds in at least one subsequent state.

Below, Gr s denotes a set of (s)afety predicates of the kind p ⇒ ◦q and p ⇒
�q , and Gr l a set of (l)iveness predicates (p ⇒ ♦q). In Sect. 4, we use this
convention to identify corresponding predicates. Next, we define a satisfaction
relation M |= φ (spoken: “the machine M satisfies the formula φ”).

Definition 6 (Satisfaction Relation).

M |= (p ⇒ ◦q) � (As ∧ Inv ∧ p ⇒ [T] q)

M |= (p ⇒ �q) � (∃ I • (I ⇒ [T] I)∧(As∧Inv∧p ⇒ I)∧(As ∧ Inv ∧ I ⇒ q))

M |= (p ⇒ ♦q) � (As ∧ Inv ∧ p ⇒ 〈T ∗〉q)

M satisfies p ⇒ ◦q when wlp of T under q—i.e., the set of states from which
T leads to a state satisfying q or is undefined—is implied by p. Similarly, M
satisfies p ⇒ ♦q when wp of T ∗

under q is implied by p. For universal properties,
our definition requires an invariant. M satisfies p ⇒ �q if there is an expression
I such that (1) I is an invariant of T ; (2) I is implied by As ∧ Inv ∧ p; and
(3) I , conjoined with As and Inv, implies q . From this definition, we obtain a
property similar to the other definitions as a theorem:

https://github.com/isabelle-utp/utp-main/blob/fcfaa3fc9e7db7d8e26139c5053f7ba68dd5c79a/assurance/fmac/formal_assurance.thy#L19
https://github.com/isabelle-utp/utp-main/blob/fcfaa3fc9e7db7d8e26139c5053f7ba68dd5c79a/assurance/fmac/formal_assurance.thy#L108
https://github.com/isabelle-utp/utp-main/blob/fcfaa3fc9e7db7d8e26139c5053f7ba68dd5c79a/assurance/fmac/formal_assurance.thy#L78

94 M. Gleirscher et al.

Theorem 1 (∗-Global). If M |= (p ⇒ �q) then As ∧ Inv ∧ p ⇒
[
T ∗]

q.

Finally, we define a notion of validity for FMACs themselves:

Definition 7 (Validity). FMAC is valid if M is a valid CPM, and all guar-
antees are satisfied, that is, ∀ g ∈ Gr • M |= g.

Fig. 1. FMAC pattern

With a formal def-
inition of FMACs in
Isabelle, we can now
show how this infor-
mation is presented in
an AC module. A GSN
diagram visualising the
SACM pattern for an
FMAC is shown in Fig. 1.
This pattern refers to
the CPM model (Defi-
nition 3), with its state
space, invariant, and tran-
sition relation. The AC
module has a top-level
claim of relative safety
with respect to the model, M. It requires a set of hazards, an assumption,
and a set of guarantees that mitigate the hazards. The main claims, C1–C4, are
made public (indicated by the folder icon), so they can be used as components in
another AC. As indicated by the diamonds, the reasoning for hazard mitigation
and guarantee satisfaction is left to be developed as part of the instantiation of
the pattern.

3.2 Assurance Case Extension

FMAC extension allows us to extend an existing AC by refining the CPM model,
weakening the assumptions, and adding new guarantees. In this way, the guar-
antees of the original FMAC can be carried over from the old to the new AC.
For this, we define a notion of machine refinement.

Definition 8. A machine refinement is a triple (Ma ,Mc , ρ), for retrieve
function ρ : Σc → Σa , such that the following conditions hold:

1. Invc ⇒ (ρ † Inva) — the abstract invariant is strengthened by the concrete
invariant;

2. (?Invc � 〈ρ〉 � Ta)
 (?Invc � Tc � 〈ρ〉)—when the concrete invariant holds ini-
tially, each transition in the abstract machine can be matched by a transition
in the concrete machine (simulation [40]).

We write Ma
s
ρ Mc when (Ma ,Mc , ρ) is a machine refinement.

https://github.com/isabelle-utp/utp-main/blob/fcfaa3fc9e7db7d8e26139c5053f7ba68dd5c79a/assurance/fmac/formal_assurance.thy#L83
https://github.com/isabelle-utp/utp-main/blob/fcfaa3fc9e7db7d8e26139c5053f7ba68dd5c79a/assurance/fmac/formal_assurance.thy#L113
https://github.com/isabelle-utp/utp-main/blob/fcfaa3fc9e7db7d8e26139c5053f7ba68dd5c79a/assurance/fmac/refinement.thy#L146

Formal Model-Based Assurance Cases 95

Typically, ρ shows how the variables of Aa are defined in terms of the variables
of Ac , with the following form:

ρ � �x1 �→ e1(y1, · · · , yn), x2 �→ e2(y1, · · · , yn), · · ·�, for xi ∈ Aa and yi ∈ Ac

Each abstract variable is mapped to an expression ei in terms of the concrete
variables. Definition 8 encodes a backwards functional refinement [40] between
Ma and Mc . We require that (1) Inva is strengthened by Invc , when the retrieve
function ρ is applied; and (2) Ta is simulated by Tc modulo ρ, which is expressed
using a refinement statement of the usual form [40].

From Definition 8, we prove the following theorem about safety invariants:

Theorem 2. If Ma
s
ρ Mc and (Inva ∧ φ) ⇒ [Ta]φ, that is φ is an invariant

of Ma , then it follows that (Invc ∧ ρ † φ) ⇒ [Tc] (ρ † φ), where ρ † φ is the retrieve
function ρ applied as a substitution to φ.

This theorem shows that any invariant of the abstract CPM is also an invari-
ant of the concrete CPM, modulo ρ. Consequently, we now have a method for
adapting safety guarantees from an abstract to a concrete assurance case via
data refinement. We now use this to define the extension operator for FMACs.

Definition 9. Given ACa and ACc according to Definition 5, then we define
ACa ⊕ρ ACc � (Mc ,Asc ,Grc ∪{r ↑ρ | r ∈ Gr sa}) where

(p ⇒ ◦q)↑ρ � ((ρ † p) ⇒ ◦(ρ † q)) (p ⇒ �q)↑ρ � ((ρ † p) ⇒ �(ρ † q))

In an AC extension, every abstract safety guarantee is lifted to a concrete guar-
antee through the retrieve function. By applying ρ as a substitution, we compute
the meaning of each of the safety guarantees in the refined state space. We do
not map ♦q guarantees, as these are not in general preserved by refinement.
Refinements allow one to restrict behaviours to specific trace subsets. Traces
establishing liveness guarantees might get excluded while meeting invariants and
safety guarantees. Here, we leave liveness guarantees to be translated manually
from Gra to Grc . Finally, we demonstrate when an AC extension is valid:

Theorem 3. ACa ⊕ρ ACc is a valid FMAC provided that:

1. Ma and Mc are both valid CPMs;
2. ACa is a valid FMAC;
3. Ma
s

ρ Mc—machine refinement holds;
4. (ρ †Asa) ⇒ Asc—the assumption is weakened modulo ρ;
5. ∀ g ∈ Grc • Mc |= g—all additional guarantees are satisfied.

This theorem shows that the existing safety guarantees can be verified with
respect to the refined model. Essentially, Definition 7 is met because (1) any
invariant can be transferred from abstract to concrete (Theorem 2); and (2)
satisfaction of �q properties requires an explicit invariant (Definition 6).

Figure 2 summarises the formal relationships between the artefacts of the
extension argument. We then claim that ACc extends ACa modulo ρ. The fol-
lowing steps are carried through in Isabelle/UTP for each extension of ACa :

https://github.com/isabelle-utp/utp-main/blob/fcfaa3fc9e7db7d8e26139c5053f7ba68dd5c79a/assurance/fmac/refinement.thy#L130
https://github.com/isabelle-utp/utp-main/blob/fcfaa3fc9e7db7d8e26139c5053f7ba68dd5c79a/assurance/fmac/formal_assurance.thy#L138
https://github.com/isabelle-utp/utp-main/blob/fcfaa3fc9e7db7d8e26139c5053f7ba68dd5c79a/assurance/fmac/formal_assurance.thy#L145

96 M. Gleirscher et al.

Fig. 2. Artefacts and satisfaction relationships of an extension step

1. We define the retrieve function ρ.
2. We prove that the concrete assumptions weaken the abstract assumptions

translated using ρ, that is, Asc ⇐ (ρ † Asa).
3. By establishing the refinement Ma
s

ρ Mc , we ensure that Mc preserves all
safety guarantees in Gra modulo ρ.

4. We establish the satisfaction relationship Grc =| Mc to verify all safety and
liveness guarantees introduced by the extension ACc .5

5. By help of ρ, the steps 2 to 4 establish the extension ACa ⊕ρ ACc representing
the extended assurance case ACc .

Figure 3 summarises the extension argument pattern. The FMAC extension
readjusts or increases confidence over ACa by following three principles:

1. Regarding the existing assumptions and guarantees, and modulo ρ, the claims
C5 and C8 establish consistency of ACc with the previous ACa and thus
help to preserve argument confidence.

2. Based on RET FUN, claim C6 aims at increased precision, that is, any
strict data refinement of the existing alphabet, the guarantees (i.e., existing
hazards), and the transition relation increases argument confidence.

3. The claims C6 and C7 aim at completion, that is, any strict extension of
the set of hazards and, potentially, guarantees, while not strengthening the
assumptions, increases argument confidence.

Fig. 3. GSN version of the FMAC extension pattern

We implemented the FMAC
patterns in Isabelle/SACM,
particularly, their argument
structure and the linking
of claims with artefacts in
Isabelle/UTP (Sect. 2.1). Unlike
GSN, SACM allows us to
structure contextual elements,
e.g. one can express inferen-
tial links between Formal -
Model (Fig. 1) and its com-
ponents As, Gr, and Inv.

5 The steps 3 and 4 imply that the concrete safety guarantees strengthen the abstract
safety guarantees, that is, Grsc ⇒ (ρ † Grsa).

Formal Model-Based Assurance Cases 97

Table 1. Overview of the guarantees for the initial assurance case and its extensions

AC Guar. Informal description

AC0 Grs0 The robot shall not cause harm to anything
Gr l0 The robot shall be able to perform movements

AC1 Grs1 (a) While the robot traverses a location, no other objects
occupy this location. (b) The robot only traverses locations
that are not occupied by other objects

Gr l1 If there are free locations other than the robot’s current
location, the robot immediately leaves its current location
and moves to another free location

AC2 Grs2.1 The route planned to an intermediate location does not
overlap with the detected occupancy of the workspace by
other (fixed and moving) objects

Grs2.2 If overlaps are detected while moving the robot intervenes by
rerouting and/or by braking

Gr l2 The robot eventually reaches its goal (a prespecified
location) given that it is reachable via a finite sequence of
routes/path segments.

This way, SACM exceeds GSN’s expressiveness. Our implementation in
Isabelle/SACM is described in more detail in [13].

4 Application to Mobile Ground Robot

Mobile ground robots are required to achieve a variety of tasks by moving through
a workspace while manipulating and transferring objects. Such robots are used
for transport in warehouses or hospitals, for cleaning in buildings, for manufac-
turing in factories. In this paper, we focus on safety and liveness of the movement
part in such tasks. Hence, our FMAC will argue about safe steps of movement,
route planning with obstacle avoidance, and emergency braking.

We now instantiate the FMAC patterns from Sect. 3 to get three successively
more detailed assurance cases of such a robot, called AC0, AC1, and AC2. Table 1
summarises the guarantees for the corresponding evolution steps.

4.1 AC0: Initial Assurance Case

In M0, we only consider the propositional variable harm which is true if any
harm to any asset has occurred because of the robot’s behaviour.

I0 � [harm �→ false]

Inv0 � Gr0 � ¬harm
T0 � Move � ?true � skip

98 M. Gleirscher et al.

Because we do not have any elements in the model to express bad things, Move
has to cover only and exactly the safe movements the robot can make in order to
fulfil Gr0. If harm is true then it is not because of Move. Hence, it must have been
true before but this contradicts our assumption. Although the latter technically
provides an argument for safety, clearly, this argument is not anywhere near a
compelling or meaningful one. Thus, we have to increase confidence.

4.2 AC1: First Extension

Given LOCATION as the non-empty set of locations, p : LOCATION denotes
the current position of the robot, and aim : LOCATION the current choice of the
next location to move to. The operation Move now gets the atomic assignment
p := aim. Furthermore, in M1, we include a state function occ : LOCATION ⇒
bool which is true for all locations occupied by objects other than the robot,
false otherwise. For a weak notion of liveness with respect to Move, the robot is
required to choose aim such that it keeps moving as long as occ is false for some
location in LOCATION . In M1, the choice of aim is implemented by a type-safe
and constrained non-deterministic assignment. The following listing summarises
the FMAC consisting of the model M1 and the assurance case AC1:

I1 � id
Inv1 � ¬occ(p)

T1 � Move � aim := ∗ � ?aim ∈ freeLocs ∧ aim �= p ∧ ¬occ(aim) � p := aim
As1 � ¬occ(p) ∧ freeLocs �= ∅

Gr1 � ?(p = aim) � ¬occ(aim)

ρ1 � �harm �→ occ(p)�

We assume that while the robot performs a Move to location aim, the environ-
ment will not occupy aim. Regarding the confidence of AC1, this assumption is
realistic if locations are close enough to each other and the maximum speed of
other objects is low enough. With As1, we assume that occ changes (i.e., other
objects can be randomly (re)located in LOCATION) beyond that restriction
only after a Move of the robot is completed.6 Also, Gr1 encodes the assumption
that whenever the robot has reached aim in this state, no other object can have
reached aim in the same state. Hence, a location is deemed occupied if a moving
object is expected to touch this location during the current Move of the robot.
A more detailed model for AC1 is given in ([13], Sects. 4 and 5).

Now, to argue that AC1 is an extension of AC0 as explained in Sect. 3.2, we
first prove that As0 is weakened by As1 modulo ρ and show that the existing
safety guarantees are preserved by establishing the refinement M0
s

ρ M1.
Finally, we show by establishing Definition 7 in Isabelle that AC1 is valid.

Regarding the confidence of AC1, the introduced location model, the condi-
tional Move, and the occupancy-based safety guarantee illustrate how we slightly
but correctly increased the precision of our argument for the claim that the robot

6 In the CPM model, environmental changes are encoded by mon := ∗, see [13].

Formal Model-Based Assurance Cases 99

is safe. The extension from AC0 to AC1 is an instance of the pattern in Fig. 3.
A complete pattern instance for this step is provided in ([13], Fig. 6).

4.3 AC2: Second Extension

For M2, we refine the data model of M1, where each location is reachable
from everywhere, by a relation Connection ⊆ LOCATION × LOCATION . Our
model also contains a notion of distance between locations and allows to mark a
specific location as the goal. Based on Connection, we extend A2 by a variable
trj : LOCATION list to manage routes and oldDist to measure the progress
towards the final goal. The following list summarises the model M2 and the
corresponding extension AC2:

I2 � [trj �→ [], occ �→ occ]
Inv2 � ¬occ(p)

T2 � Plan 	 MicroMove 	 EmgBrake
As2 � minBrakingPrefix(trj) ∈ clearPaths

Grs2.1 � hazardousMove ⇒ ¬occ(p)
Gr l2 � clearPaths �= ∅ ∧ p �= goal ∧ (¬hazardousMicroMove)

⇒ oldDist > dist(p, goal)
ρ2 � �occ(p) �→ minBrakingPrefix(trj) �∈ clearPaths, occ(aim) �→ occ(aim)�

Safety in M2 relies on the assumption As2 that any update of occ by the
environment will not lead to an occupancy of any prefix of the planned route trj
shorter than the minimum braking distance, that is, minBrakingPrefix (trj) �∈
clearPaths. Based on As2, Gr s2.1 guarantees safe emergency braking, that is, not
actively hitting any (moving) objects beyond minimum braking distance. This
corresponds to the notion of passive safety in [26].

For liveness in M2, we use a conjunct p �= goal in the precondition for Gr l2
that specifies the termination of the robot’s goal seeking activity. The postcondi-
tion of Gr l2 states that after each MicroMove, the robot should strictly get closer
to the goal. Gr l2 is required for the desired liveness property of M2. However,
only if clearPath = ∅ cannot occur infinitely often, Gr l2 implies termination.

The proof that AC2 actually extends AC1 works in a way similar to the
extension proof for AC1, now based on ρ2. For M2, we use further parameters
and definitions. These as well as the definitions of the three operations Plan,
MicroMove, and EmgBrake are provided in the model in ([13], Sect. 6).

5 Discussion

Here, we put our FMAC patterns into the context of formal robot verification,
robotic engineering practice, and practically relevant standards. We also relate
our contribution to model validation arguments.

100 M. Gleirscher et al.

Formal Robot Verification. Early work by Rahimi et al. [35] models a robot con-
troller as a set of actions specified by pre/post conditions derived from hazard
analysis. The authors use real-time logic to verify whether action implemen-
tations in software comply with these conditions. Beyond their work, our robot
example demonstrates proof automation, refinement verification, and integration
of proof evidence into a maintainable AC for certification.

Based on a CSP-inspired process algebra with the operational semantics of
message-synchronous port automata, Lyons et al. [24] propose a plant model
composed of environment, machine, and controller. Their controller model cor-
responds to our Kleene-starred CPM transition relation (cf. Theorem 1). The
authors verify an elaborate plant model against performance (i.e., a generali-
sation of safety and liveness) guarantees by proving observational equivalence
with reducing the embedded SAT problem to a filtering problem on Bayesian
networks. Our approach based on Isabelle/UTP facilitates more generic abstrac-
tion and proof assistance based on relations and dL.

Mitsch et al. [26] model robots in dL and verify successively refined notions
of safety and liveness. These include static safety (i.e., no collision with static
obstacles), passive safety (i.e., no active collision), passive friendly safety (i.e.,
safe braking circle does not intersect with other moving objects’ safe braking
circle), and passive orientation safety (i.e., braking cone does not intersect with
other moving objects’ braking cones). While our robot model is less detailed,
we formalise the transition between increasingly precise notions of safety by
data refinement, assumption weakening, and guarantee strengthening. Beyond
[24] and [26], we demonstrate how robot validity and refinement proofs can be
evolved within a standardised AC framework.

Though [26] does not explicitly invoke refinement in their stepwise develop-
ment, refinement in dL was previously investigated by Loos and Platzer [23].
They extend dL with a refinement operator α ≤ β, that specifies that a hybrid
program α is more deterministic than a program β. If a safety guarantee,
θ ⇒ [β]φ, can be proved for β, then the guarantee can automatically be derived
for the refinement α (Theorem 2). Their notion of refinement permits local rea-
soning, such that subcomponents of a program need only demonstrate refinement
under the condition they are reachable. Our refinement notion is global; however
it is possible to derive their localised refinement relation in our setting. Effec-
tively, our work can be seen as an extension of [23] with data refinement, which
we believe can support stepwise development in the style of [26].

For a multi-robotic system, Desai et al. [8] verify safety and liveness properties
of a trajectory coordination protocol based on a verified state-machine abstrac-
tion of almost-synchronously clocked plan execution units and asynchronous
analysis and planning units. They apply SMT and A∗-search for safe plan gen-
eration and model-checking of the coordination protocol. While their assump-
tions for modelling multi-robot coordination differ strongly from the assumptions
applied in our single robot example, we can see the opportunity to enhance their
fixed-model approach with data refinement to integrate multi-robot verification
evidence into an extensible FMAC.

Formal Model-Based Assurance Cases 101

Industrial Standards and Verification Practices. Cooper et al. [6] demonstrate
how formal methods (e.g. Z [38]) can be effectively practiced for security cer-
tification according to the Common Criteria standard [5]. However, back then,
proof automation in AC construction was less researched and developed. Inspired
by such examples, it is reasonable to aim for a transfer of our approach to the
robotics and other safety-critical domains where FMs and ACs are highly rec-
ommended. For example, in the context of RTCA DO-178C, the FM supple-
ment DO-333 [36] recommends the creation of “formal analysis cases” providing
evidence for a variety of claims (e.g. Clauses FM 6.3.1-6.3.4), particularly, the
satisfaction of high- and low-level safety guarantees. The automotive standard
ISO 26262 (e.g. Part 2, Clause 6.4.5.4) recommends a safety case for each system
component with a safety goal and that these safety cases are subject of configu-
ration and change management, thus, maintenance and evolution. Overall, these
standards provide many opportunities for FMACs and Isabelle/SACM.

Adequacy and Completeness of the Formalisation. For controller design and syn-
thesis, control engineers perform model validation experiments to assess how well
a model of the process, they want to control, complies with the real world [37].
Likewise, the formal model associated with an FMAC (extension) has to be
accompanied by an argument (potentially based on experiments using simula-
tion and test [9]) that this model faithfully abstracts from and predicts [21] the
implemented controller (i.e., the potentially distributed embedded system) and
the surrounding plant. Isabelle/SACM allows us to enhance arguments accord-
ingly. However, a further discussion of model validity arguments is out of scope.

Safety guarantees result from accident experience, domain expertise, and
hazard analysis [22]. Regarding continuous hazard analysis, the pattern in Fig. 3
accommodates changes of the hazard list and the corresponding guarantees as
assumed claims (C3,C4) and the corresponding hazard mitigation as an unde-
veloped claim (C9). The step from hazard analysis to the derivation of new
guarantees and model improvements is discussed in more detail in [12].

6 Conclusions

Assurance cases have to evolve to readjust or increase confidence [7]. Hence,
we propose a framework for formal model-based assurance case construction and
extension. Our framework is based on Isabelle/UTP whose semantic foundations
allow one to express the system model for the construction of the assurance case
in various but precisely linked formalisms, for example, relations and dL. This
linking, paramount to the engineering of many critical systems [14], enables the
step-wise refinement of the system model including data refinement and the
simultaneous extension of an existing assurance case, resulting in an evolved
assurance case readjusting or increasing the level of confidence of the argument.
In [15], we discuss how model-based engineering can accommodate the way how
innovation typically drives the evolution of requirements and designs. Extensible
FMACs further develop this idea towards continuous model-based assurance.

102 M. Gleirscher et al.

Beyond the State of the Art. We propose the application of verification princi-
ples as recommended by, for example, DO-178C to mobile robot controllers. Our
approach fosters scalability in two directions: first, via AC modules (i.e., A/G-
style reasoning) devoted to specific assurance aspects, second, via compositional
reasoning in Isabelle/UTP to isolate and reason about parts of large robot mod-
els. Regarding the former, we support arguments at scale by separation of the
detailed proof structure in Isabelle/UTP from the overarching argument and
evidence structure using Isabelle/SACM. This separation keeps the argument
lean while maintaining traceability to all proof and model details.

Next Steps. The use of A/G-style specification for FMACs paired with invari-
ants as constraints on the controlled and internal state variables improves the
preservation of properties of FMAC compositions. To deal with more complex
FMACs, we want to simplify composition and refinement at the level of FMACs
by providing a new operator, ACa
arg

ρ ACc . We also want to improve the
modifiability of an existing FMAC, particularly, support the deletion or substi-
tution of guarantees on updates from hazard analysis. Furthermore, we want to
enhance the handling of liveness guarantees across an extension step via ⊕ρ.

Inspired by [1,34], we want to investigate the benefits of a further integration
of Isabelle/Isar with the argument structure in Isabelle/SACM. Particularly,
Basir [1] discusses how natural deduction program proofs (e.g. using Hoare logic)
can formally underpin an argument and how interactive theorem proving can aid
in checking the soundness of this argument.

Acknowledgements. This work is partly supported by the EPSRC projects
CyPhyAssure7, grant reference EP/S001190/1, and RoboCalc, grant reference
EP/M025756/1.

References

1. Basir, N.: Safety cases for the formal verification of automatically generated code.
Ph.D. thesis, University of Southampton (2010)

2. Bate, I., Kelly, T.: Architectural considerations in the certification of modular
systems. Reliab. Eng. Syst. Saf. 81(3), 303–324 (2003). https://doi.org/10.1016/
S0951-8320(03)00094-2

3. Brucker, A.D., Ait-Sadoune, I., Crisafulli, P., Wolff, B.: Using the isabelle ontology
framework. In: Rabe, F., Farmer, W.M., Passmore, G.O., Youssef, A. (eds.) CICM
2018. LNCS (LNAI), vol. 11006, pp. 23–38. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96812-4_3

4. Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I., Kelly, T.: Engi-
neering trustworthy self-adaptive software with dynamic assurance cases. IEEE
Trans. Softw. Eng. 44(11), 1039–1069 (2018). https://doi.org/10.1109/tse.2017.
2738640

5. Common Criteria Consortium: Common criteria for information technology secu-
rity evaluation - part 1: Introduction and general model, Technical report, CCMB-
2017-04-001 (2017). https://www.commoncriteriaportal.org

7 CyPhyAssure Project: https://www.cs.york.ac.uk/circus/CyPhyAssure/.

https://doi.org/10.1016/S0951-8320(03)00094-2
https://doi.org/10.1016/S0951-8320(03)00094-2
https://doi.org/10.1007/978-3-319-96812-4_3
https://doi.org/10.1007/978-3-319-96812-4_3
https://doi.org/10.1109/tse.2017.2738640
https://doi.org/10.1109/tse.2017.2738640
https://www.commoncriteriaportal.org
https://www.cs.york.ac.uk/circus/CyPhyAssure/

Formal Model-Based Assurance Cases 103

6. Cooper, D., et al.: Tokeneer ID Station: Formal Specification, Technical report,
Praxis High Integrity Systems, August 2008. https://www.adacore.com/tokeneer

7. Denney, E., Pai, G., Habli, I.: Dynamic safety cases for through-life safety assur-
ance. In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engi-
neering. IEEE, May 2015. https://doi.org/10.1109/icse.2015.199

8. Desai, A., Saha, I., Yang, J., Qadeer, S., Seshia, S.A.: DRONA: a framework for safe
distributed mobile robotics. In: Proceedings of the 8th International Conference
on Cyber-Physical Systems - ICCPS 2017. ACM Press (2017). https://doi.org/10.
1145/3055004.3055022

9. Edwards, S., Lavagno, L., Lee, E.A., Sangiovanni-Vincentelli, A.: Design of embed-
ded systems: formal models, validation, and synthesis. Proc. IEEE 85(3), 366–90
(1997). https://doi.org/10.1109/5.558710

10. Foster, S., Baxter, J., Cavalcanti, A., Woodcock, J., Zeyda, F.: Unifying semantic
foundations for automated verification tools in Isabelle/UTP. Submitted to Science
of Computer Programming, March 2019. https://arxiv.org/abs/1905.05500

11. Foster, S., Zeyda, F., Nemouchi, Y., Ribeiro, P., Wolff, B.: Isabelle/UTP: mecha-
nised theory engineering for unifying theories of programming. Arch. Formal Proofs
(2019). https://www.isa-afp.org/entries/UTP.html

12. Gleirscher, M., Carlan, C.: Arguing from hazard analysis in safety cases: a modu-
lar argument pattern. In: 18th International Symposium High Assurance Systems
Engineering (HASE), January 2017. https://doi.org/10.1109/hase.2017.15

13. Gleirscher, M., Foster, S., Nemouchi, Y.: Evolution of formal model based assurance
cases for autonomous robots. University of York (2019). Supplemental material.
https://doi.org/10.5281/zenodo.3344489

14. Gleirscher, M., Foster, S., Woodcock, J.: New opportunities for integrated formal
methods. ACM Comput. Surv. (2019, inpress). ISSN. 0360-0300. https://arxiv.
org/abs/1812.10103

15. Gleirscher, M., Vogelsang, A., Fuhrmann, S.: A model-based approach to innova-
tion management of automotive control systems. In: 8th International Workshop
on Software Product Management (IWSPM). IEEE digital library (2014). https://
doi.org/10.1109/IWSPM.2014.6891062

16. Hawkins, R., Habli, I., Kolovos, D., Paige, R., Kelly, T.: Weaving and assurance
case from design: a model-based approach. In: Proceedings of the 16th International
Symposium on High Assurance Systems Engineering. IEEE (2015)

17. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall, Upper
Saddle River (1998)

18. Jackson, M.A.: Problem Frames: Analysing and Structuring Software Development
Problems. Addison-Wesley, Boston (2001)

19. Kelly, T.: Arguing Safety - A Systematic Approach to Safety Case Management,
Ph.D. thesis, University of York (1998)

20. Kelly, T.P., McDermid, J.A.: Safety case construction and reuse using patterns.
In: Daniel, P. (ed.) Safe Comp 97, pp. 55–69. Springer, London (1997). https://
doi.org/10.1007/978-1-4471-0997-6_5

21. Lee, E.A., Sirjani, M.: What good are models? In: Bae, K., Ölveczky, P.C. (eds.)
FACS 2018. LNCS, vol. 11222, pp. 3–31. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-02146-7_1

22. Leveson, N.G.: Engineering a Safer World: Systems Thinking Applied to Safety.
MIT Press, Cambridge (2012). https://doi.org/10.7551/mitpress/8179.001.0001.
Engineering Systems

23. Loos, S.M., Platzer, A.: Differential refinement logic. In: Proceeding of the 31st
International Symposium on Logic in Computer Science (LICS). ACM, July 2016

https://www.adacore.com/tokeneer
https://doi.org/10.1109/icse.2015.199
https://doi.org/10.1145/3055004.3055022
https://doi.org/10.1145/3055004.3055022
https://doi.org/10.1109/5.558710
https://arxiv.org/abs/1905.05500
https://www.isa-afp.org/entries/UTP.html
https://doi.org/10.1109/hase.2017.15
https://doi.org/10.5281/zenodo.3344489
https://arxiv.org/abs/1812.10103
https://arxiv.org/abs/1812.10103
https://doi.org/10.1109/IWSPM.2014.6891062
https://doi.org/10.1109/IWSPM.2014.6891062
https://doi.org/10.1007/978-1-4471-0997-6_5
https://doi.org/10.1007/978-1-4471-0997-6_5
https://doi.org/10.1007/978-3-030-02146-7_1
https://doi.org/10.1007/978-3-030-02146-7_1
https://doi.org/10.7551/mitpress/8179.001.0001

104 M. Gleirscher et al.

24. Lyons, D.M., Arkin, R.C., Jiang, S., Liu, T.M., Nirmal, P.: Performance verification
for behavior-based robot missions. IEEE Trans. Robot. 31(3), 619–636 (2015).
https://doi.org/10.1109/tro.2015.2418592

25. Meyer, B.: Applying “design by contract”. IEEE Comput. 25(10), 40–51 (1992)
26. Mitsch, S., Ghorbal, K., Vogelbacher, D., Platzer, A.: Formal verification of obsta-

cle avoidance and navigation of ground robots, CoRR (2016). http://arxiv.org/
abs/1605.00604

27. Nair, S., de la Vara, J.L., Sabetzadeh, M., Falessi, D.: Evidence management for
compliance of critical systems with safety standards: a survey on the state of prac-
tice. Inf. Softw. Technol. 60, 1–15 (2015). https://doi.org/10.1016/j.infsof.2014.12.
002

28. Nemouchi, Y., Foster, S., Gleirscher, M., Kelly, T.: Mechanised assurance cases
with integrated formal methods in Isabelle. In: Submitted to iFM 2019 (2019).
https://arxiv.org/abs/1905.06192

29. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

30. de Oliveira, A.L., Braga, R.T., Masiero, P.C., Papadopoulos, Y., Habli, I., Kelly,
T.: Supporting the automated generation of modular product line safety cases.
Adv. Intell. Syst. Comput. 365, 319–330 (2015). https://doi.org/10.1007/978-3-
319-19216-1_30

31. Palin, R., Habli, I.: Assurance of automotive safety – a safety case approach. In:
Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 82–96. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-15651-9_7

32. Parnas, D.L., Madley, J.: Function documents for computer systems. Sci. Comput.
Program. 25, 41–61 (1995)

33. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning
41, 143–189 (2008)

34. Prokhorova, Y., Laibinis, L., Troubitsyna, E.: Facilitating construction of safety
cases from formal models in event-B. Inf. Softw. Technol. 60, 51–76 (2015). https://
doi.org/10.1016/j.infsof.2015.01.001

35. Rahimi, M., Xiadong, X.: A framework for software safety verification of industrial
robot operations. Comput. Ind. Eng. 20(2), 279–287 (1991). https://doi.org/10.
1016/0360-8352(91)90032-2

36. RTCA: DO-333: Formal Methods Supplement to DO-178C and DO-278A (2012)
37. Smith, R.S., Doyle, J.C.: Model validation: a connection between robust control

and identification. IEEE Trans. Autom. Control 37(7), 942–952 (1992). https://
doi.org/10.1109/9.148346

38. Spivey, J.: The Z Notation: A Reference Manual. Prentice Hall, Upper Saddle River
(1992)

39. Wei, R., Kelly, T., Dai, X., Zhao, S., Hawkins, R.: Model based system assurance
using the structured assurance case metamodel. J. Softw. Syst. 154, 211–233 (2019)

40. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice
Hall, Upper Saddle River (1996)

https://doi.org/10.1109/tro.2015.2418592
http://arxiv.org/abs/1605.00604
http://arxiv.org/abs/1605.00604
https://doi.org/10.1016/j.infsof.2014.12.002
https://doi.org/10.1016/j.infsof.2014.12.002
https://arxiv.org/abs/1905.06192
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-19216-1_30
https://doi.org/10.1007/978-3-319-19216-1_30
https://doi.org/10.1007/978-3-642-15651-9_7
https://doi.org/10.1016/j.infsof.2015.01.001
https://doi.org/10.1016/j.infsof.2015.01.001
https://doi.org/10.1016/0360-8352(91)90032-2
https://doi.org/10.1016/0360-8352(91)90032-2
https://doi.org/10.1109/9.148346
https://doi.org/10.1109/9.148346

Towards Integrating Formal Verification
of Autonomous Robots with Battery
Prognostics and Health Management

Xingyu Zhao1(B), Matt Osborne1, Jenny Lantair1, Valentin Robu1,
David Flynn1, Xiaowei Huang2, Michael Fisher2, Fabio Papacchini2,

and Angelo Ferrando2

1 School of Engineering and Physical Sciences, Heriot-Watt University,
Edinburgh EH14 4AS, UK

{xingyu.zhao,mho1,jl153,v.robu,d.flynn}@hw.ac.uk
2 Department of Computer Science, University of Liverpool,

Liverpool L69 3BX, UK
{xiaowei.huang,mfisher,fabio.papacchini,angelo.ferrando}@liverpool.ac.uk

Abstract. The battery is a key component of autonomous robots. Its
performance limits the robot’s safety and reliability. Unlike liquid-fuel, a
battery, as a chemical device, exhibits complicated features, including (i)
capacity fade over successive recharges and (ii) increasing discharge rate
as the state of charge (SOC) goes down for a given power demand. Exist-
ing formal verification studies of autonomous robots, when considering
energy constraints, formalise the energy component in a generic manner
such that the battery features are overlooked. In this paper, we model
an unmanned aerial vehicle (UAV) inspection mission on a wind farm
and via probabilistic model checking in PRISM show (i) how the bat-
tery features may affect the verification results significantly in practical
cases; and (ii) how the battery features, together with dynamic environ-
ments and battery safety strategies, jointly affect the verification results.
Potential solutions to explicitly integrate battery prognostics and health
management (PHM) with formal verification of autonomous robots are
also discussed to motivate future work.

Keywords: Formal verification · Probabilistic model checking ·
PRISM · Autonomous systems · Unmanned aerial vehicle ·
Battery PHM

Supported by the UK EPSRC through the Offshore Robotics for Certification of Assets
(ORCA) [EP/R026173/1], Robotics and Artificial Intelligence for Nuclear (RAIN)
[EP/R026084] and Science of Sensor System Software (S4) [EP/N007565].

c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 105–124, 2019.
https://doi.org/10.1007/978-3-030-30446-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-30446-1_6

106 X. Zhao et al.

1 Introduction

Autonomous robots, such as unmanned aerial vehicles (UAV) (commonly termed
drones1), unmanned underwater vehicles (UUV), self-driving cars and legged-
robots, obtain increasingly widespread applications in many domains [14].
Extreme environments – a term used by UK EPSRC2 to denote environments
that are remote and hazardous for humans – are the most promising domains
in which autonomous robots can be deployed to carry out a task, such as explo-
ration, inspection of oil/gas equipment on the seabed, maintenance of offshore
wind turbines, and monitoring of nuclear plants in high radiation conditions [26].

However, autonomy poses a great challenge to the assurance of safety and
reliability of robots, whose failures may cause both a detriment to human health
and well-being and huge financial losses. Thus, there are increasing demands on
regulation of autonomous robots to build public trust in their use, whilst the
development, verification and certification of autonomous robots is inherently
difficult due to the sheer complexity of the system design and inevitable uncer-
tainties in their operation [6,8,9,34]. For instance, [21] shows the infeasibility
of demonstrating the safety of self-driving cars from road testing alone, and
both [23] and [21] argue the need for alternative verification methods to sup-
plement testing. Formal techniques, e.g. model checking and theorem proving,
offer a substantial opportunity in this direction [12]. Indeed, formal methods
for autonomous robots have received great attention [6,28], both in controller
synthesis, see e.g. [12,30], and in verifying safety and reliability when the control
policy is given, see e.g. [11,18,42].

The battery as the power source of autonomous robots plays a key role in
real-life missions [41]. However to the best of our knowledge, most existing formal
verification studies of autonomous robots, when considering energy constraints,
formalise the energy component in a generic and simplified manner such that
some battery features are overlooked:

– Capacity fading: Over successive recharges, unlike a liquid-fuelled system
whose tank volume normally remains unchanged, the charge storage capacity
of a battery will diminish over time.

– Increasing discharge rate: In one discharge cycle, since the voltage drops
as the battery is being discharged, for a constant power output (a product
of the voltage and the current), the current increases meaning an increased
discharge rate occurs. This is different to a liquid-fuelled system in which a
constant power output typically means a constant rate of fuel consumption.

Thus, usual assumptions, like (i) a fixed battery capacity regardless the number
of recharges and (ii) constant energy consumption for a given action regardless
the stage in a discharge cycle, become potentially problematic.

On the other hand, the battery prognostics and health management (PHM)
community has been developing techniques to accurately forecast the battery
1 We have used the word “drone” interchangeably with the abbreviation UAV as a

less formal naming convention throughout the paper.
2 https://epsrc.ukri.org/files/funding/calls/2017/raihubs.

https://epsrc.ukri.org/files/funding/calls/2017/raihubs

Formal Verification of Autonomous Robots and Battery PHM 107

behaviour in both a life-cycle and a discharge-cycle. We believe such battery
PHM results should be integrated into formal studies (either controller synthesis
or verification) of robots to refine the analysis. To take a step forward in this
direction, in this paper, our main work is as follows:

– We formalise a UAV inspection mission on an offshore wind farm, in which
the mission scenario and choice of model parameters are based on a real
industry survey project. The UAV takes a sequence of actions and follows a
fixed inspection route on a 6× 6 wind farm. It autonomously decides when
to return to the base for recharges based on the health/states of the battery.
Uncertainties come from the dynamic environment which causes different
levels of power demand.

– We explicitly consider the two battery features in our modelling and show (i)
how different battery safety strategies, dynamic environments (i.e. different
levels of power demand) and the battery chemical features jointly affect the
formal verification results; and (ii) the verification results could be either dan-
gerously optimistic or too pessimistic in practical cases, without the modelling
of the battery features.

– We discuss important future work on explicitly integrating battery PHM with
formal verification, given the trend that advanced PHM algorithms are mostly
based on real-time readings from sensors deployed on the battery.

The organisation of the paper is as follows. In the next section, we present
preliminaries on probabilistic model checking and battery PHM. The running
example is described in Sect. 3. We show our probabilistic model and verification
results in Sects. 4 and 5, respectively. Section 6 summarises the related work.
Future work and contributions are concluded in Sect. 7.

2 Background

2.1 Probabilistic Model Checking

Probabilistic model checking (PMC) [25] has been successfully used to analyse
quantitative properties of systems across a variety of application domains, includ-
ing robotics [28]. This involves the construction of a probabilistic model, com-
monly using Discrete Time Markov Chain (DTMC), Continuous Time Markov
Chain (CTMC) or Markov Decision Process (MDP), that formally represent the
behaviour of a system over time. The properties of interest are usually specified
with e.g., Linear Temporal Logic (LTL) or Probabilistic Computational Tree
Logic (PCTL), and then systematic exploration and analysis is performed to
check if a claimed property holds. In this paper, we adopt DTMC and PCTL
whose definitions are as follows.

Definition 1. A DTMC is a tuple (S, s1,P, L), where:

– S is a (finite) set of states; and s1 ∈ S is an initial state;
– P : S × S → [0, 1] is a probabilistic transition matrix such that∑

s′∈S P(s, s′) = 1 for all s ∈ S;

108 X. Zhao et al.

– L : S → 2AP is a labelling function assigning to each state a set of atomic
propositions from a set AP .

Definition 2. AP is a set of atomic propositions and ap ∈ AP, p ∈ [0, 1], t ∈ N

and ��∈ {<,≤, >,≥}. The syntax of PCTL is defined by state formulae Φ and
path formulae Ψ .

Φ ::= true | ap | Φ ∧ Φ | ¬Φ | P��p(Ψ)

Ψ ::= X Φ | Φ U≤t Φ | Φ U Φ

where the temporal operator X is called “next”, U≤t is called “bounded until”
and U is called “until”. Also, F Φ is normally defined as trueU Φ which is called
“eventually”. State formulae Φ is evaluated to be either true or false in each
state. Satisfaction relations for a state s are defined:

s |= true , s |= ap iff ap ∈ L(s)
s |= ¬Φ iff s �|= Φ

s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= P��p(Ψ) iff Pr(s |= Ψ) �� p

Pr(s |= Ψ) �� p is the probability of the set of paths starting in s and satisfying
Ψ . Given a path ψ, if denote its i -th state as ψ[i] and ψ[0] is the initial state.
Then the satisfaction relation for a path formula for a path ψ is defined as:

ψ |= XΦ iff ψ[1] |= Φ

ψ |= Φ1U
≤tΦ2 iff ∃0 ≤ j ≤ t

(ψ[j] |= Φ2 ∧ (∀0 ≤ k < j ψ[k] |= Φ1))

It is worthwhile mentioning that both DTMC and PCTL can be augmented
with rewards/costs [7], which can be used to model, e.g. the energy consumption
of robots in a mission. Indeed, this is the typical way used in existing studies,
and differs from our modelling of battery in this study.

After formalising the system and its requirements in DTMC and PCTL,
respectively, the verification focus shifts to the checking of reachability in a
DTMC. In other words, PCTL expresses the constraints that must be satis-
fied, concerning the probability of, starting from the initial state, reaching some
states labelled as, e.g. unsafe, success, etc. Automated tools have been developed
to solve the reachability problem. We use PRISM [24] which employs a symbolic
model checking algorithm to calculate the probability that a path formulae is
satisfied. More often, it is of interest to know the actual probability that a path
formula is satisfied, rather than just whether or not the probability meets a
required bound. So the PCTL definition can be extended to allow numerical
queries by the form P=?(Ψ) [25].

In general, a PRISM module contains a number of local variables which
constitute the state of the module. The transition behaviour of the states in a
module is described by a set of commands which take the form of:

[Action] Guard → Prob1 : Update1 + ... + Probn : Updaten;

Formal Verification of Autonomous Robots and Battery PHM 109

Fig. 1. (Left) The non-linear dynamics of voltage and current vs SOC for a constant
power demand from [38]. (Right) Cited from [1], the “real data” curve showing a
Lithium-ion battery capacity fade and its PHM predictions (thick green line). (Color
figure online)

As described by the PRISM manual3, the guard is a predicate over all the vari-
ables (including those belonging to other modules. Thus, together with the action
labels, it allows modules to synchronise). Each update describes a transition
which the module can make if the guard is true. A transition is specified by
giving the new values of the variables in the module, possibly as a function of
other variables. Each update is also assigned a probability (in our DTMC case)
which will be assigned to the corresponding transition.

2.2 Battery Modelling and PHM

Electric batteries exhibit non-linear charge and discharge characteristics due to
a number of factors. The voltage varies with the state of charge (SOC) because
of changing chemical properties within the cell, such as increasing electrolyte
resistance, non-linear diffusion dynamics and Warburg inductance [15]. Figure 1-
(Left), derived from the experimental test in [38], shows such non-linear results
of voltage and current vs SOC profile for a constant power demand.

A constant power demand means that an increase in current is drawn as the
voltage falls with SOC. For our study, we are interested in a UAV with a battery
capacity of around 11Ah and nominal voltage of 22 V. The energy supply is
180Wh from a lithium polymer battery. For a 22 V battery the voltage at full
charge is ∼25V and will drop to ∼20V at a safe threshold of 30% SOC.

The easiest way to measure a change in SOC is by integrating the current
discharge over time from a known initial SOC, called Coulomb counting [17]:

SOC(k + 1) = SOC(k) − I(k) × Δt

Qmax
(1)

where Qmax is the maximum SOC, I(k) is the time dependent current, SOC(k)
is the SOC percentage at the discrete time step k, Δt is the time step interval.
Although this simplification does not take into consideration inaccuracies in the
3 https://www.prismmodelchecker.org/manual/.

https://www.prismmodelchecker.org/manual/

110 X. Zhao et al.

battery initial SOC estimation or account for the internal losses, it is proposed
as a first approximation to model the power usage and discharge characteristics
as discrete states using the known battery characteristics.

Batteries also degrade over successive recharges due to decreased lithium-ion
concentrations so that over 1000 discharge cycles a 20% loss in capacity may
occur [36]. Figure 1-(Right) shows a typical lithium-ion battery capacity fade
characteristics the (“real data” curve), cited from [1]. We can observe, after the
first 80 discharge cycles, the battery’s capacity drops from 1.85 (Ah) to 1.55 (Ah).

There is a growing interest in the use of PHM techniques to reduce life-cycle
costs for complex systems and core infrastructure [13]. Battery health manage-
ment is also a critical area in regards to the safe and reliable deployment of UAVs.
Numerous studies into battery PHM techniques have been carried out, e.g. the
use of Neural Nets [10], Unscented Kalman Filters [17,19], Unscented Transform
[4], Hardy Space H∞ Observers [41] and Physics Based models [16]. Although
we are assuming a hypothetical/generic battery PHM method in this paper to
provide parameters in our latter modelling, it is envisaged that advanced PHM
techniques can be integrated in our future verification framework.

3 The Running Example

As UAV technology improves, energy companies are looking to adopt the tech-
nology to reduce maintenance and operating costs. The resident drone idea is
to station a UAV at locations where aerial surveys are conducted repeatedly.
The advantages of such resident drone inspection system are the possibility of
increased availability for data collection (e.g. to feed in techniques reviewed in
[37]), reduced manual labour, improved safety and more cost effective mainte-
nance strategies. We model a typical application of such system in this paper,
based on a survey utilising commercial technologies.

A simplified wind farm drone inspection mission as a 6× 6 grid of turbines
with a UAV located at the centre is considered. Wind turbines are typically

Fig. 2. (Left) A fully autonomous UAV inspection mission in a 6× 6 wind farm. (Right)
The fixed controller of a UAV inspection mission on the wind farm. Intersections and
cell spaces represent wind turbines and transportation channels respectively. (Color
figure online)

Formal Verification of Autonomous Robots and Battery PHM 111

distributed between 5 and 12 turbine blade diameters apart, so a square distri-
bution of turbines is modelled, each 500 m apart, as shown in Fig. 2-(Left).

The drone mission requires the drone take-off and land at the base station,
fly a distance determined by the number of grid spaces to a turbine, carry out
an inspection and return to the base or continue the mission with a single bat-
tery charge. For this mission a drone transit velocity of ∼10 m/s is assumed.
An inspection is expected to take 15 min and the take-off and landing time is
estimated less than 1 min. The battery recharge time is around 1.5 h.

4 The Modelling in PRISM

Our formal model of the running example presented in Sect. 3 is a product (via
parallel composition in PRISM) of four modules – Drone, Grid, Environment and
Battery. Depending upon the model parameters used, a typical instance of our
model has roughly 100, 000 states and 170, 000 transitions. In what follows, we
introduce the modules separately and describe key assumptions, constants, and
variables used in each module. Given the page limits, we only show some typical
PRISM commands in the modules and omit some sophisticated synchronisation
and parallel composition among modules. The complete sources code in the
PRISM language can be found in our repository4.

4.1 The Drone Module

The Drone module is essentially a finite state machine describing the behaviour
of the UAV during the inspection mission, as shown in Fig. 3. The UAV begins
the mission in a fully charged state (S0) at the base. Once the UAV successfully
takes off (S1), it may either directly land due to violation of the battery safety
strategy (see Sect. 4.4), or fly to the target cell (S2) and then carry out an
inspection of the wind turbine (S3). Depending upon the battery safety strategy
and the battery SOC left after the inspection, the UAV will either fly back to the
base for recharging (S4), stay in the same cell if there are more than one wind
turbines to be inspected, or fly to the next target cell (S2) if all wind turbines
of the current cell have been inspected. Once landed at the base (S5), the UAV
will declare success of the mission if all wind turbines on the wind farm have
been inspected, or recharge and continue the above work-flow otherwise.

The dotted lines in Fig. 3 represent events where the battery SOC falls to 0,
leading to an out-of-battery state (S6). Note, the transition from S0 to S6 means
that the fully charged capacity is not sufficient to do the next inspection at the
target cell and thus the UAV declares the mission failed without further actions.

It is worthwhile to mention that, realistically, there should be some prob-
ability of failure for each action, e.g. 10−4 for landing. However, since we are
only interested in the particular failure mode of out-of-battery here, we simplify
our model by setting the failure probability of each action to 0. Thus, the only
source of uncertainty we consider is from the dynamic environment which causes
different levels of power demand for each action. We will discuss this in Sect. 4.3.
4 https://x-y-zhao.github.io/files/VeriBatterySEFM19.prism.

https://x-y-zhao.github.io/files/VeriBatterySEFM19.prism

112 X. Zhao et al.

Fig. 3. A finite state machine of the UAV behaviour modelled by the Drone module.

4.2 The Grid Module

We formalise the wind farm as a 5 × 5 grid as shown in Fig. 2-(Right) in which the
intersections represent wind turbines and the cell spaces (labelled by coordinates
[x, y]) represent transport channels. In this study, we assume a given control
policy (CP) of the UAV as follows:

– CP1: The UAV will follow the snake shaped route, as shown by the red arrows
in Fig. 2-(Right), to carry out the inspection in each cell.

– CP2: Depending upon the coordinates of the cell, there can be 1, 2 or 4
appointed wind turbines to be inspected within a cell. For instance, at cell
[0,0], the wind turbine located at the left-bottom corner is the only appointed
one; both the two bottom corners at cell [2,0] need to be inspected; and for
cell [2,2], all 4 wind turbines around it should be inspected. Indeed, it would
be unwise (i.e. requiring more energy) to fly to cell [0,0] to inspect the green
dotted wind turbine in Fig. 2-(Right), rather than fly with the shortest route
to cell [1,1].

– CP3: Depending upon the battery safety strategy and the remaining SOC,
the UAV may suspend the mission and return to the base for recharging. It
will resume the mission at the cell where the mission was suspended.

A part of the PRISM commands in this module are shown in Fig. 4. Note,
the transitions probabilities are simplified to 1.

4.3 The Environment Module

We explicitly consider the environmental dynamics due to its primary impact on
the battery’s power demand. For simplicity, only one major factor – wind speed
– was considered when developing the Environment module. We formalise two

Formal Verification of Autonomous Robots and Battery PHM 113

Fig. 4. Some PRISM commands of the Grid module.

levels of wind speed, and use a parameter p wsp c to capture the dynamics of
the wind. Environmental assumptions (EA) are listed below:

– EA1: The UAV will only attempt to take off in a low wind speed condition.
– EA2: The change of wind speed (either from low to high or the other way

around) occurs, with a probability of p wsp c, before each action is taken in
the Drone module.

Fig. 5. The PRISM commands of the Environment module.

From EA2, we know that the higher the p wsp c is, the more dynamic the
environment, and it is this assumption that introduces uncertainty in the energy
consumption for a given action. The PRISM commands are shown in Fig. 5.

4.4 The Battery Module

Figure 6 shows two abstracted state machines of the Battery module which run
in parallel to describe the battery behaviour. The battery features of capac-

114 X. Zhao et al.

ity fading (over successive recharges) and increasing discharge rate (in a single
discharge cycle) are captured by battery assumptions (BA) as follows:

– BA1: After each recharge, the battery’s fully charged capacity (i.e. c full in
Fig. 6) cannot be recovered to the new battery’s capacity. Rather, it decreases
with a rate which can be obtained from battery PHM experiments, e.g. as
observed from the results in [1], for the first 100-ish discharge cycles, at each
recharge, the capacity will fade at an average rate of 0.2%.

– BA2: For a given wind speed, the UAV is working at a constant power demand
for all actions. Since we considered 2 levels of wind speed in the Environment
module, there are 2 levels of constant power demand as well.

– BA3: In one discharge cycle, the battery’s voltage is essentially a non-linear
function of its SOC. We use a step-wise function to approximate the non-
linear function – high voltage V2 (SOC > 0.75), medium voltage V1 (0.75 ≥
SOC ≥ 0.25) and low voltage V0 (SOC < 0.25).

In line with the BA2 and BA3, we use the following Eq. (2) to estimate
the battery consumption (Ah) for an action j (denoted as c act in Fig. 6) under
different levels of voltage Vi and a power demand level k:

Cj =
Espec · tj
Vi · Tk

(2)

where Espec is the specified battery energy, Tk is the total running time under a
constant power level k, Vi is the level of voltage, and tj is the estimated execution
time of action j.

For instance, a typical UAV battery with a specified energy of 180 Wh
(Espec = 180) can fly 30 min at the normal level of workload (Tk = 0.5 and
k represents the normal level of power demand). The specified normal working
voltage is 22 V (V1 = 22) (with a maximum level of 25 V, V2 = 25, and minimum
level of 20 V, V0 = 20). The average time for inspecting a wind turbine is 15 min
(if action j represents the inspection, then tj = 0.25). Via Eq. (2) and those esti-
mated parameters above, we obtain the last row in Table 1 (results are rounded
to one decimal place). Similarly for the battery consumption of each action at
the high power demand level (high wind speed environment), the values can be
calculated in the same way but are not shown in this paper.

Table 1. Battery consumption (Ah) of actions under different levels of voltage in low
wind speed environment (i.e. the normal level of power demand).

Low voltage Medium voltage High voltage

Take-off/land 0.3 0.2 0.1

Transport per cell 0.5 0.4 0.3

Inspection per wind turbine 4.5 4.0 3.6

Formal Verification of Autonomous Robots and Battery PHM 115

So far, in our modelling, instead of assuming a fixed battery consumption for
each action, we have 6 possibilities of the battery consumption after an action
(3 voltage levels × 2 power demand levels).

Engineers are aware of the higher risks associated from operating with a
lower SOC battery, thus there are requirements on the battery PHM to provide
warnings when the SOC falls below a certain threshold [35] (and to recommend
that the mission be discontinued), e.g. a typical 30% threshold is adopted by
NASA in [19]. In line with that battery safety strategy (BS), we also define a
parameter safe t as a safety threshold:

– BS1: before each of the actions, take-off, fly-to-target and inspect, the UAV
will check if the SOC will fall below safe t after a sequence of actions to per-
form an intended inspection. If there is sufficient SOC, then take the action,
otherwise return for recharging.

An instance of BS1 is that, before flying to the target cell, the UAV will
predict the remaining SOC (based on the current battery health/state and wind
conditions) after flying to the target and performing one inspection. If there is
no safe battery life remained (i.e. SOC< safe t) after the intended inspection,
the UAV will go back for recharging. Some typical PRISM commands of this
module and associated formulas are shown in Fig. 7.

Fig. 6. Abstracted state machines of the Battery module.

5 Results

The main properties of interest and their corresponding PCTL formulas are:

– The probability of mission success5: P=?[F (s = 7)];
– The expected mission time: R{“mt”}=?[F (s = 7)|(s = 6)];
– The expected number of recharges: R{“rc”}=?[F (s = 7)|(s = 6)].

5 Since we focus on the particular failure mode of out-off-battery in our model, rigor-
ously this should be the probability of seeing no out-off-battery failures in a mission.

116 X. Zhao et al.

Fig. 7. Some PRISM commands of the Battery module and global formulas. Note, the
key variables c full vary (the fully-charged capacity considering capacity fading) and
c ftt , c ins etc. (the battery consumption of each action, which are generically denoted
as c act in Fig. 6) should be obtained dynamically from the PHM system in reality,
whilst we make simplified assumptions in the source codes.

We use the PRISM tool [24] to check the properties given different model
parameters in later subsections. Indeed, we may only be concerned with the
expected mission time (or number of recharges) given the mission is successful.
However, PRISM can only solve the “reachability reward” properties when the
target set of states is reached with probability 1, thus our target state here is
(s = 7)|(s = 6). In our later numerical examples, we only show the expected
mission time when the probability of the mission failing is very small so that its
contribution to the average mission time is negligible. Note, this limitation of
PRISM has been studied in [29].

5.1 Effects of Battery Safety Strategies and Dynamic Environments

For a typical new battery with 11Ah capacity, we highlight the verification results
of four representative cases, as shown in Table 2, by setting the above mentioned
model parameters (cf. BS1 and EA2) as:

– #1, the common case and baseline: safe t = 0.3, p wsp c = 0.1.
– #2, a risky battery strategy: safe t = 0.25, p wsp c = 0.1
– #3, a more dynamic environment: safe t = 0.3, p wsp c = 0.3.

Formal Verification of Autonomous Robots and Battery PHM 117

– #4, a risky battery strategy in a more dynamic environment: safe t = 0.25,
p wsp c = 0.3.

Table 2. Verification results of some typical cases with a new battery capacity of 11Ah.

No. of
states

No. of
transitions

Prob. mission
success

Exp. mission
time

Exp. no.
of recharges

#1 108,688 163,076 1 4700.20 42.65

#2 117,765 177,278 0.91 3885.95 34.59

#3 108,688 163,076 1 7482.86 72.16

#4 117,765 177,278 0.89 5621.66 53.07

The example of #1 represents the common case that serves as a baseline in
Table 2. Case #2 represents the use of a relatively risky strategy by reducing the
battery safety threshold from 0.3 to 0.25. Indeed, in Table 2, we see a decreased
probability of mission success (from 1 to 0.91), whilst the expected mission time
and number of recharges also significantly reduce, which is the benefit of taking
more risk. Comparing case #3 and #1, given a fairly safe battery strategy (i.e.
safe t = 0.3), a more dynamic environment will significantly increase the mission
time and number of recharges. Because the more dynamic the environment is,
the more often the UAV decides to go back for recharges for battery safety
reasons. Note, the probability of mission success remains (i.e. 1), since the battery
strategy is conservative enough to guarantee a safe trip back to base in all
possible circumstances. On the contrary, if we adopt a risky battery strategy
in a more dynamic environment (#4), then not only the expected mission time
increases but also the probability of mission success decreases (cf. #4 and #2),
because there are cases that the UAV does not reserve enough battery to fly
back to base due to a sudden change of environments.

5.2 Comparison of Models, Disregarding the Battery Features

Most existing verification studies of autonomous robots, when considering energy
constraints, formalise the energy component in a generic/simplified manner such
that battery features are overlooked. In this section, we illustrate the difference
between a simplified battery model and our relatively advanced model, consid-
ering the battery chemical features.

Figure 8 shows the probability of mission success, via different models, as
a function of the new battery’s capacity (Ah). The solid curve labelled as
“advanced” represents our proposed model considering the battery features (BA1
and BA3). The other curves represent the basic models without considering bat-
tery features, e.g. the “basic high” curve is the case when there is no capacity
fading and the battery always works at a high level of voltage.

118 X. Zhao et al.

Fig. 8. Probability of mission success, via different model assumptions on batteries, as
a function of the new battery capacity.

In Fig. 8, we can observe that, for a given model, there is a required minimum
new battery capacity to have non-zero probability to succeed. Indeed, the capac-
ity should be at least enough for the inspection of the first wind turbine and a
safe trip back. Since the battery consumption of each action is higher (and high-
est) when assuming that the battery is always working at a medium (and low)
voltage level, such a required minimum capacity increases. Similarly, to guaran-
tee a successful mission, “basic high” requires that the relatively smallest new
battery capacity (around 8.4Ah) due to its obviously optimistic assumptions, i.e.
no capacity fading and always working at a high voltage level.

Note, although the “advanced” model is bounded by “basic high” and
“basic medium”, it is still dangerous to use such simplified bounds to do approx-
imation, due to the observed “dip” on the “advanced” curve in the range of
12 Ah–13 Ah. That dip of probability of mission success happens because, when
the new battery’s capacity increases (but is still not big enough), the UAV may
decide to take more risk to perform more actions in one trip (i.e. one discharge
cycle), after which there might not be enough SOC left for a safe trip back in
some edge cases (e.g. a degraded battery working at a low voltage in a high wind
speed environment). To eliminate this phenomenon, the simplest way is to raise
the battery safety threshold, which is confirmed by our extra experiments.

An example path of a failed mission is presented in Fig. 9, in which the new
battery’s capacity is 12.8Ah (thus within the “dip” range in Fig. 8). After 22
recharges at step #148, the UAV flies to the target cell [0,4] and the wind speed
changes to high (wsp = 2). At step #150, the predicted SOC after the intended
inspection is higher than the safety threshold of 0.3. So instead of returning to
the base, the UAV continues the inspection in high-speed wind. Although after
managing to return to base, the drone fails to land in a high wind speed and
at the lower voltage level. Also, if we naively ignore the capacity fading and/or
assuming the battery never works at a low voltage, then the UAV would land

Formal Verification of Autonomous Robots and Battery PHM 119

safely in this example. That’s why we don’t observe the “dips” on the curves of
the basic models in Fig. 8.

Fig. 9. A fragment of a failed mission path generated by the PRISM simulator, which
is an example of the “dip” in Fig. 8 with the new battery’s capacity as 12.8 Ah. Note,
only key variables of the 4 modules are configured to be viewed here.

Figure 10 shows the expected mission time (upper graph curves) from the
specified battery models and the differences (lower curves) between them. We
observe that, in the practical range of the new battery’s capacity (i.e. <13 Ah,
base on our survey), the basic models could give either too optimistic (500 min
less) or over pessimistic (1500 min more) results. Such a variance of 1 to 3 working
days will mislead wind farm maintenance activities and thus cause significant
economic loss. Not surprisingly, as the new battery capacity tends to infinity
(i.e. the battery is no longer a bottle neck of the given mission), the verification
results of all models tends to the same value (as do the results in Fig. 8).

6 Related Work

How autonomous robots should be verified is a new challenging question [6,9],
and it has received great attention in recent years, e.g. [11,30,33,42]. When
considering energy constraints, the energy consumption is usually formalised in
a linear way that being generic for both liquid-fuel and batteries. For instance,
in the analysis of robot swarms [22,27] the authors assume constant energy
cost at each time step and a fixed capacity when obtaining energy from “food”.
Again, in the modelling of UAV missions [12,18], a fixed battery capacity and
constant battery consumption over time is assumed. In [11], energy consumption
of UUV sensors is modelled as a reward/cost for each state, which exhibits a
linear behaviour over time. Indeed, such generic and simplified assumptions do
not necessarily mean that they are unrealistic, whilst we believe more rigorous
discussions and studies should be carried out prior to their adoption.

The study in [3] highlights the difference between real and ideal batteries,
with a case study on controlling an energy-constrained robot. But it focuses on
another battery feature – “recovery effect” (e.g. a smart phone might shutdown
due to an out-of-battery failure, but then become live again after an idle period).

120 X. Zhao et al.

Fig. 10. The upper graph curves show the expected mission time, for the specified
battery model, as a function of the new battery capacity. The lower graph curves show
the differences of the expected mission times from the specified models.

Beyond the scope of robotics systems, battery behaviour does draw attention
for verification. For instance, in [39], the battery of a satellite is described by
the Kinetic Battery Model which is formalised as a timed automata to precisely
model the discharge behaviour. However they leave out the capacity fading fea-
ture as future work. Similarly in [20], the Kinetic Battery Model is used for
analysing wireless sensor protocols. For smartphones, [5] uses runtime verifica-
tion to check whether the actual battery consumption is within the expected
limits that are derived from battery consumption profiles for smartphone apps.

7 Discussions, Conclusions and Future Work

In this paper, we formalise a UAV inspection mission of an offshore wind farm,
and then do probabilistic model checking in PRISM to show (i) how the battery’s
non-linear features significantly affect the verification results in most practical
cases; and (ii) how battery safety strategies, dynamic environments and battery
features jointly affect the verification results.

Most existing formal verification studies of robots make simplified linear
assumptions on energy consumption, which is indeed preferable in the case that
the capacity is far beyond the total battery cost of the whole mission (i.e. when
there is no recharges and the battery’s working voltage is fairly stable due to
a considerable SOC margin remaining at the end of the mission). In contrast,
our work shows how such a simplification can significantly affect the verification
results in the case that there are multiple recharges in the autonomous mission.
Thus, we believe our work highlights this risk and calls for more rigorous dis-

Formal Verification of Autonomous Robots and Battery PHM 121

cussions prior to any battery assumptions made in future formal verification of
robots, especially when recharges are expected in the mission scenarios.

Moreover, we believe that battery PHM techniques should be explicitly inte-
grated into the formal verification of robots. Although in this paper we use a
hypothetical/generic battery PHM technique to provide the parameters used
in the Battery module, it is clear how PHM can aid the rigorous modelling of
battery for formal verification. For now, both the battery PHM experiments
and formal verification are assumed to be carried out in the lab, i.e. prior to
the mission. To improve the accuracy, an appealing idea is to integrate both at
runtime, since there is a trend of doing online battery PHM based on real-time
readings from the sensors deployed on the battery, e.g. [2,40]. Whilst there will
be a scalability issue if running both online battery PHM and formal verification
algorithms at runtime. A compromised solution, in our example, is to invoke the
formal verification and PHM during the recharging at the base (where substan-
tial computing resources can be used) with newly collected log-data from recent
flights. Thus the verification result will be updated with the up-to-date data.
We plan to implement this solution in our future work.

Apart from highlighting the need of integrating battery PHM techniques, this
work only serves as a first approximation6 of the verification of the residential
drone inspection mission. More rigorous verification/planning of the mission is
needed in future, e.g. by gradually refining the fundamental PRISM model based
on observations from various sources of data [31,32].

In summary, our main contributions are:

– We formalise a UAV inspection mission on a wind farm based on a real
industry survey project, which can be reused and extended as an exemplar
for future research of similar UAV missions.

– We do a sequence of what-if calculations, via probabilistic model checking, to
show (i) the importance of considering non-linear battery features in formal
verification of autonomous robots; and (ii) how such battery features, together
with the dynamic environments and battery safety strategy, jointly affect the
verification results.

– We discuss the need of explicitly integrating battery PHM techniques into
formal verification of robots, and propose a potential solution which forms
important future work.

References

1. Andoni, M., Tang, W., Robu, V., Flynn, D.: Data analysis of battery storage
systems. CIRED - Open Access Proc. J. 2017(1), 96–99 (2017)

2. Barré, A., Suard, F., Gérard, M., Riu, D.: A real-time data-driven method for bat-
tery health prognostics in electric vehicle use. In: Proceedings of the 2nd European
Conference of the Prognostics and Health Management Society, pp. 1–8 (2014)

6 It is a first approximation in the sense of, e.g. the simplification of two levels of wind
speed and the round estimations of battery consumption in Table 1.

122 X. Zhao et al.

3. Boker, U., Henzinger, T.A., Radhakrishna, A.: Battery transition systems. In: Pro-
ceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2014, San Diego, California, USA, pp. 595–606. ACM
(2014)

4. Daigle, M., Goebel, K.: Improving computational efficiency of prediction in model-
based prognostics using the unscented transform. In: Annual Conference of the
Prognostics and Health Management Society (2010)

5. Espada, A.R., del Mar Gallardo, M., Salmerón, A., Merino, P.: Runtime verification
of expected energy consumption in smartphones. In: Fischer, B., Geldenhuys, J.
(eds.) SPIN 2015. LNCS, vol. 9232, pp. 132–149. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23404-5 10

6. Farrell, M., Luckcuck, M., Fisher, M.: Robotics and integrated formal methods:
necessity meets opportunity. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS,
vol. 11023, pp. 161–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-98938-9 10

7. Filieri, A., Tamburrelli, G.: Probabilistic verification at runtime for self-adaptive
systems. In: Cámara, J., de Lemos, R., Ghezzi, C., Lopes, A. (eds.) Assurances for
Self-Adaptive Systems. LNCS, vol. 7740, pp. 30–59. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36249-1 2

8. Fisher, M., et al.: Verifiable self-certifying autonomous systems. In: 2018 IEEE
International Symposium on Software Reliability Engineering Workshops (ISS-
REW), pp. 341–348 (2018)

9. Fisher, M., Dennis, L., Webster, M.: Verifying autonomous systems. Commun.
ACM 56(9), 84–93 (2013)

10. Gao, D., Huang, M., Xie, J.: A novel indirect health indicator extraction based on
charging data for lithium-ion batteries remaining useful life prognostics. SAE Int.
J. Altern. Powertrains 6(2), 183–193 (2017)

11. Gerasimou, S., Calinescu, R., Banks, A.: Efficient runtime quantitative verification
using caching, lookahead, and nearlyoptimal reconfiguration. In: Proceedings of
the 9th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS 2014, pp. 115–124. ACM, New York (2014)

12. Giaquinta, R., Hoffmann, R., Ireland, M., Miller, A., Norman, G.: Strategy synthe-
sis for autonomous agents using PRISM. In: Dutle, A., Muñoz, C., Narkawicz, A.
(eds.) NFM 2018. LNCS, vol. 10811, pp. 220–236. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-77935-5 16

13. Goebel, K., Celaya, J., Sankararaman, S., Roychoudhury, I., Daigle, M., Saxena, A.:
Prognostics: The Science of Making Predictions. 1st edn. CreateSpace Independent
Publishing Platform (2017)

14. Guiochet, J., Machin, M., Waeselynck, H.: Safety-critical advanced robots: a sur-
vey. Robot. Auton. Syst. 94, 43–52 (2017)

15. Hariharan, K.S.: Mathematical Modeling of Lithium Batteries From Electrochemi-
cal Models to State Estimator Algorithms. Green Energy and Technology. Springer,
New York (2018). https://doi.org/10.1007/978-3-319-03527-7

16. He, W., Pecht, M., Flynn, D., Dinmohammadi, F.: A physics-based electrochemical
model for lithium-ion battery state-of-charge estimation solved by an optimised
projection-based method and moving-window filtering. Energies 11(8), 2120 (2018)

17. He, W., Williard, N., Chen, C., Pecht, M.: State of charge estimation for electric
vehicle batteries using unscented Kalman filtering. Microelectron. Reliab. 53(6),
840–847 (2013)

https://doi.org/10.1007/978-3-319-23404-5_10
https://doi.org/10.1007/978-3-319-23404-5_10
https://doi.org/10.1007/978-3-319-98938-9_10
https://doi.org/10.1007/978-3-319-98938-9_10
https://doi.org/10.1007/978-3-642-36249-1_2
https://doi.org/10.1007/978-3-319-77935-5_16
https://doi.org/10.1007/978-3-319-77935-5_16
https://doi.org/10.1007/978-3-319-03527-7

Formal Verification of Autonomous Robots and Battery PHM 123

18. Hoffmann, R., Ireland, M., Miller, A., Norman, G., Veres, S.: Autonomous agent
behaviour modelled in PRISM – a case study. In: Bošnački, D., Wijs, A. (eds.)
SPIN 2016. LNCS, vol. 9641, pp. 104–110. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-32582-8 7

19. Hogge, E.F., et al.: Verification of prognostic algorithms to predict remaining flying
time for electric unmanned vehicles. Int. J. Prognostics Health Manag. 9(1), 1–15
(2018)

20. Ivanov, D., Larsen, K.G., Schupp, S., Srba, J.: Analytical solution for long bat-
tery lifetime prediction in nonadaptive systems. In: McIver, A., Horvath, A. (eds.)
QEST 2018. LNCS, vol. 11024, pp. 173–189. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99154-2 11

21. Kalra, N., Paddock, S.M.: Driving to safety: how many miles of driving would it
take to demonstrate autonomous vehicle reliability? Transp. Res. Part A: Policy
Pract. 94, 182–193 (2016)

22. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via probabilis-
tic model checking. Robot. Auton. Syst. 60(2), 199–213 (2012)

23. Koopman, P., Wagner, M.: Autonomous vehicle safety: an interdisciplinary chal-
lenge. IEEE Intell. Transp. Syst. Mag. 9(1), 90–96 (2017)

24. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

25. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic model checking: advances
and applications. In: Drechsler, R. (ed.) Formal System Verification, pp. 73–121.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-57685-5 3

26. Lane, D., Bisset, D., Buckingham, R., Pegman, G., Prescott, T.: New foresight
review on robotics and autonomous systems. Technical report, No. 2016.1, Lloyd’s
Register Foundation, London, U.K. (2016)

27. Liu, W., Winfield, A.: Modeling and optimization of adaptive foraging in swarm
robotic systems. Int. J. Robot. Res. 29(14), 1743–1760 (2010)

28. Luckcuck, M., Farrell, M., Dennis, L., Dixon, C., Fisher, M.: Formal specifica-
tion and verification of autonomous robotic systems: a survey. arXiv preprint
arXiv:1807.00048 (2018)

29. Märcker, S., Baier, C., Klein, J., Klüppelholz, S.: Computing conditional proba-
bilities: implementation and evaluation. In: Cimatti, A., Sirjani, M. (eds.) SEFM
2017. LNCS, vol. 10469, pp. 349–366. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66197-1 22

30. Norman, G., Parker, D., Zou, X.: Verification and control of partially observable
probabilistic systems. Real-Time Syst. 53(3), 354–402 (2017)

31. Paterson, C.A., Calinescu, R.: Observation-enhanced QoS analysis of component-
based systems. IEEE Trans. Softw. Eng. (2019). https://doi.org/10.1109/TSE.
2018.2864159. (Early Access)

32. Paterson, C., Calinescu, R., Wang, D., Manandhar, S.: Using unstructured data to
improve the continuous planning of critical processes involving humans. In: 14th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (2019)

33. Pathak, S., Pulina, L., Tacchella, A.: Verification and repair of control policies for
safe reinforcement learning. Appl. Intell. 48(4), 886–908 (2018)

34. Robu, V., Flynn, D., Lane, D.: Train robots to self-certify as safe. Nature
553(7688), 281 (2018)

https://doi.org/10.1007/978-3-319-32582-8_7
https://doi.org/10.1007/978-3-319-32582-8_7
https://doi.org/10.1007/978-3-319-99154-2_11
https://doi.org/10.1007/978-3-319-99154-2_11
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-57685-5_3
http://arxiv.org/abs/1807.00048
https://doi.org/10.1007/978-3-319-66197-1_22
https://doi.org/10.1007/978-3-319-66197-1_22
https://doi.org/10.1109/TSE.2018.2864159
https://doi.org/10.1109/TSE.2018.2864159

124 X. Zhao et al.

35. Saxena, A., Roychoudhury, I., Celaya, J., Saha, B., Saha, S., Goebel, K.: Require-
ments flowdown for prognostics and health management. In: Infotech@Aerospace.
American Institute of Aeronautics and Astronautics (2012)

36. Spotnitz, R.: Simulation of capacity fade in lithium-ion batteries. J. Power Sources
113(1), 72–80 (2003)

37. Stetco, A., et al.: Machine learning methods for wind turbine condition monitoring:
a review. Renew. Energy 133, 620–635 (2019)

38. Traub, L.W.: Calculation of constant power lithium battery discharge curves. Bat-
teries 2(2), 17 (2016)

39. Wognsen, E.R., Hansen, R.R., Larsen, K.G.: Battery-aware scheduling of mixed
criticality systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol.
8803, pp. 208–222. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45231-8 15

40. Zhang, C., Allafi, W., Dinh, Q., Ascencio, P., Marco, J.: Online estimation of
battery equivalent circuit model parameters and state of charge using decoupled
least squares technique. Energy 142, 678–688 (2018)

41. Zhang, F., Liu, G., Fang, L., Wang, H.: Estimation of battery state of charge with
H∞ observer: applied to a robot for inspecting power transmission lines. IEEE
Trans. Ind. Electron. 59(2), 1086–1095 (2012)

42. Zhao, X., Robu, V., Flynn, D., Dinmohammadi, F., Fisher, M., Webster, M.: Prob-
abilistic model checking of robots deployed in extreme environments. In: The 33rd
AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, USA (2019, in Press)

https://doi.org/10.1007/978-3-662-45231-8_15
https://doi.org/10.1007/978-3-662-45231-8_15

Feature-Oriented and Versioned
Systems

SAT Encodings of the At-Most-k
Constraint

A Case Study on Configuring University Courses

Paul Maximilian Bittner(B) , Thomas Thüm , and Ina Schaefer

TU Braunschweig, Brunswick, Germany
{p.bittner,t.thuem,i.schaefer}@tu-braunschweig.de

Abstract. At universities, some fields of study offer multiple branches
to graduate in. These branches are defined by mandatory and optional
courses. Configuring a branch manually can be a difficult task, especially
if some courses have already been attended. Hence, a tool providing guid-
ance on choosing courses is desired. Feature models enable modelling such
behaviour, as they are designed to define valid configurations from a set
of features. Unfortunately, the branches contain constraints instructing
to choose at least k out of n courses in essence. Encoding some of these
constraints näıvely in propositional calculus is practically infeasible. We
develop a new encoding by combining existing approaches. Furthermore,
we report on our experience of encoding the constraints of the computer
science master at TU Braunschweig and discuss the impact for research
on configurability.

1 Introduction

Universities offer various fields of study to graduate in. In our rapidly growing
economics and academia, the need for custom variants or even hybrid areas
of study arises. Usually, this would lead to the introduction of a new field of
study. However, if the changes are only slight or partial, allowing the graduation
in different sub-branches within the same field saves bureaucratic effort and
thereby time and money. Such branches are usually bound to two constraints
in selection of courses. First, some courses are mandatory for graduating in the
desired branch. Second, courses from a given list for at least a certain amount
of credit points have to be attended. These compulsory elective courses and the
amount of required credit points often vary for each branch. For example, the TU
Braunschweig offers various branches of study in their masters degree program
for computer science.1 That allows not only studying computer science, but
also putting emphasis on individual branches like visual computing, networked
systems, or robotics.

Usually, informal specifications of the branches tend to be ambiguous and
inconsistent, as noticed at TU Braunschweig. Furthermore, students often

1 https://www.tu-braunschweig.de/informatik-msc/struktur/studienrichtungen.

c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 127–144, 2019.
https://doi.org/10.1007/978-3-030-30446-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_7&domain=pdf
http://orcid.org/0000-0001-9388-0649
http://orcid.org/0000-0001-8069-9584
https://www.tu-braunschweig.de/informatik-msc/struktur/studienrichtungen
https://doi.org/10.1007/978-3-030-30446-1_7

128 P. M. Bittner et al.

enquire whether they still have the opportunity to graduate in a certain branch
after they already completed a number of possibly unrelated courses. A configu-
ration tool for these branches to automate this process and specify the branches
precisely is desired.

Feature models are designed to describe relations between individual features
(e.g., the courses), such that only specific subsets of features can be chosen [1].
Thereby, they separate configuration logic from the configuration process itself.
In contrast to ad-hoc programming and using SMT solvers, we can profit from
reusing existing research and tooling on configuration and decision propagation
when using feature models [4,14,16–18,20]. For example, guidance for feature
selection and explanations for automatic decisions are available [11]. Hence, a
configurator comes for free if we can model the branches as a feature model.

As feature models are translated to a boolean formula for analysis, constraints
are expressed in propositional calculus [3]. Unfortunately, the compulsory elective
constraints become a bottleneck. These essentially break down to the atmostk
constraint describing that at most k out of n variables can be set to true. This
constraint grows exponentially in n when encoded näıvely in propositional cal-
culus. For example, we obtained a formula of about 1 GB text for the branch
of Automotive Informatics. Formulas this huge are intractable for common SAT
solvers and cannot even be generated in Conjunctive Normal Form (CNF) in a
reasonable time even though required by SAT solvers.

Albeit the atmostk constraint can be encoded to first-order logic naturally,
using SMT solvers requires upgrading existing tools and research on boolean
feature models. These not only provide configurators with decision propagation
already, but are also able to inform the user when and why features are (de-)
selected automatically due to model constraints. Thus, course selection would
be fully transparent in the resulting tool. Such configurators do not yet exist for
first-order logic.

Our research question is: Can we express branches of study as boolean feature
models? Therefore we split the problem into multiple steps:

– We developed a new encoding for the atmostk constraint to minimise formula
size by combining existing state-of-the-art encodings [8,12,19]. This is not
only useful for feature models but SAT queries in general.

– To describe branches of study we created a Domain Specific Language (DSL)
and a compiler, translating the DSL artefacts to a feature model including
the constraints.

– We propose a method for generating propositional formulas requiring a sum of
weighted variables to be reached. We show its usability for resolving different
amounts of credit points.

– We compare performance of different encodings by generating constraints for
the branches of study at TU Braunschweig.

In order to test and evaluate our encoding, we implemented each reviewed encod-
ing, our DSL, and our compiler in an open-source project. Our final Branch of
study Tool (BroT) and all data are publicly available online at GitHub.2

2 https://github.com/PaulAtTUBS/BroT.

https://github.com/PaulAtTUBS/BroT

SAT Encodings of the At-Most-k Constraint - A Case Study 129

Encoding atmost1({A, B, C})

Binomial (¬B ∨ ¬C) ∧ (¬A ∨ ¬C) ∧ (¬A ∨ ¬B)

(T0 ∨ ¬A) ∧ (¬T0 ∨ ¬B0) ∧ (¬T0 ∨ ¬B1)
Binary (T1 ∨ ¬B) ∧ (¬T1 ∨ B0) ∧ (¬T1 ∨ ¬B1)

(T2 ∨ ¬C) ∧ (¬T2 ∨ ¬B0) ∧ (¬T2 ∨ B1)

(¬A ∨ R0) ∧ (¬B ∨ R1)
Sequential Counter ¬R0 ∨ R1

(¬B ∨ ¬R0) ∧ (¬C ∨ ¬R1)

A ∨ B ∨ ¬c0
(¬B ∨ c0) ∧ (¬A ∨ c0) ∧ (¬A ∨ ¬B)

Commander C ∨ ¬c1
¬C ∨ c1
¬c0 ∨ ¬c1

Fig. 1. With each encoding atmost1({A, B, C}) is generated. For readability, formulas
are split upon multiple rows and are concatenated with ∧. For the same reason, some
generated variable indices are shortened.

2 Encoding At-Most-k Constraints

In this section, we elaborate on the atmostk constraint and how it can be
expressed in propositional calculus and introduce our novel selective encoding for
it. Albeit, the atmostk constraint is essential for describing compulsory elective
constraints, choosing at most k out of n elements, where k, n ∈ IN, 0 < k < n, is
a common problem. Translated to propositional calculus, the atmostk constraint
requires not more than k variables from a given set V to be true:

∧

X⊆V,
|X|=k+1

∨

x∈X

¬x (1)

As this encoding creates
(|V |
k+1

)
clauses, it is called the binomial encoding [8].

Unfortunately, in this representation, formula size grows too fast to be suit-
able for most use cases. Thus, we further review the encodings binary [9,10],
commander [8,12], and sequential counter [19]. Each of them introduces new
variables summarizing some information about the original variables’ values.
Figure 1 exemplifies these encodings for atmost1({A,B,C}). The binary encod-
ing introduces k Bit-Strings of length �log2(n)� identifying exactly one variable
each. It does not generate a CNF per default as required by SAT solvers. Hence,
we use a variation of the binary encoding presented by Frisch and Giannaros [8],
creating a CNF directly. The sequential counter encoding uses n unary registers
of size k to count the number of true variables sequentially. An overflow is dis-
allowed because then more than k variables would to be true. The commander

130 P. M. Bittner et al.

encoding recursively groups the variables and assigns k commander variables to
each group. These contain information whether no or some of the variables in
their corresponding group are true. We refer interested readers for details on
those encodings to the paper by Frisch and Giannaros [8].

To minimise the resulting formula size, we develop a meta-encoding, called
selective encoding, which chooses the most efficient of the reviewed encodings
considering formula size:

selective(n, k) =

⎧
⎪⎨

⎪⎩

binomial kbinom(n) ≤ k,

binary ksplit(n) < k < kbinom(n),
seq. counter otherwise.

(2)

As selective encoding is motivated by our evaluation results we present its con-
struction as well as the bounds kbinom and ksplit and the reason for the com-
mander encoding not being used in Sect. 4.2.

Our use cases mostly rely on the related atleastk and exactlyk constraints
as illustrated later. We express atleastk by reducing it to atmostk. If at least k
variables have to be true, not more than the remaining number of variables can
be false:

atleastk(S) = atmostn−k({¬s | s ∈ S}) (3)

By combining atleastk and atmostk, we obtain an expression for choosing exactly
k variables:

exactlyk(S) = atleastk(S) ∧ atmostk(S) (4)

We encode exactlyk by using our new encoding for atleastk and atmostk respec-
tively.

3 Modelling Configuration of University Courses as
Feature Models

In this section, we describe our pipeline for branch configuration. First, we for-
mally define the concept of branches of study to give an unequivocal reference as
informal specifications usually tend to be ambiguous. Therefore we refer to the
four terms field, branch, subject, and category. A whole area of study at a univer-
sity like physics, biology and computer science is referred to as a field of study.
Branches of study are subtypes of a field of study and are more fine-grained.
Students can specialise in a branch fitting their individual interests. Working
units granting credit points like lectures, labs and theses are referred to as sub-
jects. Categories group subjects belonging to a common department. Second,
we present our DSL allowing users to create and edit fields of study including
branches. Third, as we are interested in the possibility of expressing branches of
study as boolean feature models, we present our compiler, translating artefacts
of our DSL to a feature model. Thereby, special attention is given to differing
amounts of credit points.

SAT Encodings of the At-Most-k Constraint - A Case Study 131

Compulsory subjects (35 credit points)
Seminar IT-Security (5 credit points)
Master’s Thesis (30 credit points)

Compulsory elective subjects (35 credit points)
Category System Security

Advanced IT-Security (5 credit points)
Machine Learning for IT-Security (5 credit points)
Lab on IT-Security (5 credit points)
Lab on Intelligent System Security (5 credit points)
Project Thesis (15 credit points)

Category Connected and Mobile Systems
Management of Information Security (5 credit points)

Category Distributed Systems
Operating Systems Security (5 credit points)

Fig. 2. Example for specification of IT-Security branch at TU Braunschweig (trans-
lated from German).

3.1 Formalizing Branches of Study

Branches of study are subtypes of a field of study. They are a concept for dealing
with the need for more customised fields of study at universities due to growing
complexity of economy and science. Instead of constructing new fields of study,
branches can be introduced to existing fields if they are similar enough. For
our case study, we look at the branches of study at TU Braunschweig, but
nevertheless, the concept of branches is analogous for other universities and
institutions. Credit points granted at this university are ECTS-points (European
Credit Transfer System points).

Graduating in a branch is optional, but not more than one can be chosen.
To complete a branch its constraints for choosing courses have to be fulfilled.
These consist of a compulsory and one or more compulsory elective constraints,
containing a set of subjects each:

– Compulsory subjects have to be attended.
– Compulsory elective subjects have to be attended, such that a certain amount

of credit points is reached.

As an example, the specification of the IT-Security branch at TU Braunschweig
is given in Fig. 2. Next to its mandatory seminar and master’s thesis, subjects
from a given compulsory elective pool have to be attended, such that at least
35 credit points are reached. The project thesis is listed optional here, but is
actually mandatory because the sum of all other subjects does not reach the
required 35 credit points. Our tool BroT will detect this issue and automatically
select the project thesis when this branch is picked.

132 P. M. Bittner et al.

Field "Computer Science"

Category "Master Thesis" [1, 1] {
"Master Thesis IT-Security" 30 CP

"Master Thesis Computer Graphics" 30 CP

...

}
Category "Subjects" {

Category "IT-Security" {
"Advanced IT-Security" 5 CP

"Lab on IT-Security" 5 CP

...

}
...

}
...

Branch "IT-Security"

Compulsory

"Master Thesis IT-Security"

"Seminar IT-Security"

CompulsoryElective 35 CP

"Advanced IT-Security"

"Machine Learning for IT-Security"

"Lab on IT-Security"

"Lab on Intelligent System Security"

"Project Thesis IT-Security"

"Management of Information Security"

"Operating Systems Security"

Fig. 3. Excerpt of DSL artifact specifying the IT-Security branch described in Fig. 2.
Subjects referenced by a branch have to be specified with their corresponding credit
points.

3.2 A DSL to Describe Fields and Branches of Study

Creating a feature model for a field of study directly is practically infeasible.
The branches constraints would have to be written by hand in propositional
calculus, but due to their extent and complexity, this task is highly error-prone
and time-consuming. Hence, we provide a DSL from which the branches can be
translated to a feature model.

Our DSL allows specifying fields, branches and subjects of study (e.g. courses,
theses) with their corresponding amount of credit points granted on completion.
Branches are described by a set of constraints. A constraint is a subset of sub-
jects and is either compulsory or compulsory elective. Furthermore, subjects can
be grouped. For example, all possible master’s theses are grouped in category
Master Thesis. That allows for specifying cardinalities [a, b] ⊂ Z, 0 ≤ a, describ-
ing how many subjects have to be attended at least and at most. For example,
the Master Thesis in Fig. 3, having cardinality [1, 1], has to be written exactly

SAT Encodings of the At-Most-k Constraint - A Case Study 133

Fig. 4. Example of a feature model describing a simplified version of the field of study
computer science at TU Braunschweig. Dots denote that some features are omitted
for readability. The modules Algorithmics and Robotics contain 7 and 9 courses
respectively. These are collapsed for readability, too.

once. A value of −1 for b denotes an arbitrary amount, otherwise b has to be
greater or equal to a. The default value for cardinalities is [0,−1].

Typically, branches are described by one compulsory and one compulsory
elective constraint, but the official specifications may contain additional side
conditions. For example, in Visual Computing, auxiliary to the compulsory con-
straint, selecting one of three pre-defined courses is mandatory. The other two
courses will then be added to the pool of subjects of the compulsory elective con-
straint. We resolve this issue by introducing a new compulsory elective constraint
and adjusting the required credit points of the original one.

3.3 Compilation of Our DSL to a Feature Model

As feature models come with dedicated and well investigated analysis tools [4,
11,16,18,20], these can be reused as is for configuring branches of study when
encoding the branches as a proper feature model.

Originally introduced to manage configurations of software product lines,
feature models are far more general. They define individual features in a tree
hierarchy. In Fig. 4, a simplified model describing the field of study Computer
Science (without the branches) is given. Features can only be selected if their
parent feature is selected. Optionally, features can be cumulated in alternative
or or groups. For example, the children of Master Thesis in Fig. 4 are in an
alternative group, as only one master’s thesis can be written. Additionally, the
Master Thesis feature is marked mandatory because it has to be selected. An
or group requires at least one of its children to be selected. The Subjects
are grouped by their categories and collapsed in this example. Features can
be marked abstract, indicating that they do not have a concrete implementation
and are used for modelling purposes only. Auxiliary to parent relationships, each
feature can be part of additional arbitrary constraints. These have to be given
in propositional calculus, as shown in Fig. 5.

134 P. M. Bittner et al.

Fig. 5. The feature model generated for branch Big Data Management : Num-
bers behind collapsed features indicate their number of children. The feature
GeneratedVariables is artificial and groups all variables that were generated for
atmostk constraints by the respective encoding.

Subjects and Categories. Each subject and branch is translated to a fea-
ture. For traceability, features are grouped as children of abstract features if
their corresponding subjects are grouped. Specific cardinalities of categories can
directly be translated to the feature model hierarchy. The feature of a category
with cardinality [cmin, cmax] is mandatory if cmin > 0, i.e., at least one subject
has to be selected. Otherwise, it is optional. Furthermore, the group type can
be derived as follows:

– alternative if cmax= 1, i.e., at most one child can be selected,
– or if cmin ≥ 1, i.e., at least one child has to be selected.

Moreover, the branches’ constraints are translated to propositional calculus, such
that they can be added to the feature model. It is important that these con-
straints are only valid if their corresponding branch is chosen (i.e., feature is
selected). We achieve this by means of an implication.

Figure 5 exemplarily shows the feature model of the branch Big Data Man-
agement compiled from its corresponding DSL artefact. If the feature Branch
Big Data Management is selected, the two constraints at the bottom will ensure
that the right subjects have to be chosen for the configuration to be valid. The
first constraint describes the compulsory subjects according to Eq. 5. The second
constraint describing compulsory elective subjects according to Eq. 10 is too long
to be shown here entirely. It was computed with our selective encoding. Thereby,
the sequential counter encoding was used to encode atleast6({1, ..., 8}) and pro-
duced 14 = (8 − 1)(8 − 6) = (n − 1)k variables. 55 variables were generated by
the binary encoding for atleast3({1, ..., 8}).

Compulsory and Compulsory Elective Constraints. In the following, we
show how our compiler translates constraints consisting of a set of subjects SB

for a given branch B.

SAT Encodings of the At-Most-k Constraint - A Case Study 135

In compulsory constraints all subjects are mandatory, meaning that they
have to be attended if their corresponding branch is chosen:

B =⇒
∧

s∈SB

s (5)

Compulsory elective constraints are defined by the amount of credit points p to
achieve at least by selecting a subset of its subjects SB .

B =⇒ atleastk(SB), (6)

Assuming that each subject in SB grants an equal amount c of credit points, we
can determine the number k of required subjects via k = �p / c�. For example, if
all subjects grant 5 credit points and a compulsory elective constraint requires
at least 35 credit points (like in Fig. 2), at least 7 = 35 CP/5 CP subjects have
to be chosen. Occasionally, some subjects grant a different amount of credit
points, wherefore Eq. 6 is insufficient. In these cases a more advanced approach
is necessary, which we discuss in the next section.

3.4 Resolving Differing Credit Points

If all subjects grant equally high credit points, all variables have equal weight.
Hence, the actual value of credit points must only be considered to obtain the
total number of subjects to choose at least. However, many branches’ compulsory
elective subjects differ in their credit points.

We solve this problem by recursively splitting our set of subjects S in two
sets H (high) and L (low). All subjects granting the most credit points are put
into H, the rest goes to L. Accordingly, all subjects in H grant an equal amount
of credit points. By choosing an exact amount of subjects from H, the remaining
credit points can be obtained. These remaining credit points can then be chosen
from subjects in L. If all subjects in L grant an equal amount of credit points
we can use Eq. 6, otherwise we recursively split L again.

Formally, we define cp(s) ∈ N as the amount of credit points a subject s
grants. If all subjects in a set of subjects S grant the same amount c of credit
points, we define cp(S) = c. To split S, we introduce the former set H as a
function

H(S) = {x ∈ S | ∀s ∈ S : cp(x) ≥ cp(s)}, (7)

which returns all subjects with the highest amount of credit points. For given
subjects S and credit points c, our resulting compulsory elective constraint CEC
is constructed as follows:

CEC(S, c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

true c ≤ 0
false c >

∑
s∈S cp(s)

atleast�c/cp(S)�(S) H(S) = S ∧ 0 < c ≤ ∑
s∈S cp(s)

split(S, c) otherwise

(8)

136 P. M. Bittner et al.

If the amount of credit points is smaller or equal to zero, enough of them are
already reached. If the amount of credit points to achieve c is greater than the
credit points all subjects grant together, we never can choose enough subjects.
If all subjects grant an equal amount of credit points, the previous solution from
Eq. 6 can be used. Finally, we formalise our approach of splitting S into two sets
and choosing a definite amount from the higher credit subjects:

split(S, c) =
|H(S)|∨

k=0

exactlyk(H(S)) ∧ CEC(S\H(S), c − k ∗ cp(H(S))) (9)

The recursive call to CEC is done on the remaining subjects S\H(S) and remain-
ing credits k ∗ cp(H(S)). Hence, the problem is simplified to a smaller instance
of itself with one amount of credit points removed from the set of subjects. By
combining Eqs. 6 and 8, we obtain the final constraint for a given branch B with
compulsory elective subjects SB and credit points cB :

B =⇒ CEC(SB , cB) (10)

As a post-processing step, some of the clauses generated by the split function
can be omitted in the first place if they are not satisfiable considering the feature
model. This commonly occurs if all subjects in H(S) are in the same category
with an upper bound cmax > 0 where one can never choose more subjects than
cmax. Thus, exactlyk(H(S)) can never be true for k > cmax.

Finally, we can generate feature models representing any fields of study,
including branches and subjects with arbitrary credit points. Our upcoming
evaluation focuses on their applicability for configuring the modelled branches.
Furthermore, we derive our selective encoding for the atmostk constraint by
measuring the other encodings performance. We evaluate it by generating the
compulsory elective constraints for all branches according to Eq. 10.

4 Evaluation

We evaluate the four considered encodings binomial, binary, sequential counter,
and commander, in terms of produced literals and generated variables. Addition-
ally, we report our experiences when implementing, testing and applying these
encodings. We introduce our new encoding, called selective encoding, that com-
bines the other encodings to choose the most efficient one considering formula
size. By generating the compulsory elective constraints for each branch with each
encoding, we can evaluate the performance of our new selective encoding.

4.1 Tool Support for Implementation

For the opportunity to reuse dedicated libraries and frameworks, we implemented
our tool BroT in Java. The FeatureIDE library [13] allows expressing formulas

SAT Encodings of the At-Most-k Constraint - A Case Study 137

Fig. 6. Encodings producing the lowest number of variables when encoding atmostk(n).
The binomial encoding is not considered because it does not introduce any new vari-
ables.

of propositional calculus as well as describing feature models. Additionally, the
FeatureIDE plugin [17] for the Eclipse IDE [21] contains graphical editors for
feature models and their configurations. We created our DSL with the plugin
EMFText3, which integrates well into the other tools.

4.2 At-Most-k Encoding Performance Comparison

First, we evaluate the atmostk encodings in terms of generated variables. Here,
the binomial encoding is not considered because it always produces the lowest
amount of variables, namely none. Second, we investigate formula size by count-
ing the number of literals to be independent of clause size. Thereby, we develop
our new selective encoding, as it is motivated by these results.

To detect the most efficient encoding, we encoded atmostk(n) for each 2 ≤
n ≤ 130, 1 ≤ k < n with each encoding. Many instances with n > 26 became too
big for the binomial and commander encoding, resulting in a memory overflow.
In these cases, we assessed them to produce infinitely many variables and literals.

Remarkably, for both criteria, the results split into three connected areas.
Hence, stack plots identifying the encoding producing the lowest amount of vari-
ables and literals for each k and n are shown in Figs. 6 and 7 respectively. Our
plots are available as scatter and stack plots as interactive HTML versions bundled
with our code to allow investigating the exact values.4

3 https://github.com/DevBoost/EMFText.
4 https://github.com/PaulAtTUBS/BroT/tree/master/Evaluation/Encodings.

https://github.com/DevBoost/EMFText
https://github.com/PaulAtTUBS/BroT/tree/master/Evaluation/Encodings

138 P. M. Bittner et al.

Fig. 7. Encodings producing the lowest number of literals when encoding atmostk(n).
These results serve as the basis for our selective encoding.

Number of Generated Variables. As shown in Fig. 6, the binary encoding
performs best in most cases. For each k > 7, it introduces the lowest amount
of variables in the investigated data range of 1 < n ≤ 130. The commander
encoding is best for small k. It groups the variables and assigns new commander
variables to each group. Thereby, it depends heavily on the size of its groups.
We discovered, that an optimal group size can only be chosen for the very rare
case of k(k + 2) < n. We hypothesise this to be the reason for the commander
encoding producing the lowest amount of variables only for small k. As the
commander encoding is recursive, it could be further optimised by not using the
binomial encoding at end of recursion, but a more sophisticated one like binary,
sequential counter, or even our selective encoding, introduced in the next section.
In some rare cases, the sequential counter encoding generates the lowest number
of variables, especially for small k.

Formula Size. In this section, we quantitatively assess encoding performance
in terms of the number of generated literals. Motivated by these results, we
develop our new selective encoding by combining the evaluated methods. If two
encodings produced the same number of literals, we chose the encoding with
fewer total variables.

The commander encoding never generated the smallest formula. We hypoth-
esise the usage of the binomial encoding at the end of recursion to be the rea-
son. As expected, the binomial encoding produces the smallest formula for very
small n < 6, close to the suggested bound of n < 7 by Frisch and Giannaros [8].
Advanced encodings do not decompose to smaller formulas in those cases because
the overhead of introducing new variables is too big. Furthermore, binomial is
the most efficient encoding for k = n − 1, where it decomposes to a simple dis-
junction. Surprisingly, this näıve encoding produces the lowest number of literals
for k = n − 2, n < 40, too. To describe the cases, where the binomial encoding

SAT Encodings of the At-Most-k Constraint - A Case Study 139

performs best, we introduce a function giving the lowest k for which it produces
the smallest formula:

kbinom(n) =

⎧
⎪⎨

⎪⎩

1 n < 6,
n − 2 6 ≤ n < 40,
n − 1 otherwise.

(11)

The remaining input pairs (k, n) are shared between the binary and sequential
counter encoding. The split between their areas consists of almost linear seg-
ments separated by little jumps, which are located at powers of two. When n
exceeds a power of two, the binary encoding needs another bit, i.e. another vari-
able. We hypothesise this to be the reason for the sequential counter encoding
producing less literals than the binary encoding at these jumps. To describe the
split, we consider the number of literals each encoding produces. For given n, the
split is located at k for which both encodings produce the same amount of liter-
als. Thereby, we derive a formula describing exactly the highest k for which the
sequential counter encoding still produces less literals than the binary encoding.

ksplit(n) =

⌊
b +

√
b2 − 4a
2a

⌋
, with

a = 1 + 2�log2(n)�
b = 2(�log2(n)�(n + 1) − 2n + 5)

(12)

Finally, we can define our selective encoding by choosing the encoding producing
the smallest formula in Eq. 2.

4.3 Branches Evaluation

We test our selective encoding by comparing its performance when generating
feature models for each branch of study at TU Braunschweig with the reviewed
encodings. The size of a feature model file in XML turned out to be a good initial
indication of a model being usable by our configurator, i.e., can be loaded and
handled in feasible time spans. We consider formula size and the total number of
variables for all compulsory elective constraints at once. The results are shown
in Fig. 8. We do not consider the commander encoding here because it never
produced the lowest amount of literals, as outlined in Sect. 4.2.

Indeed, our selective encoding always produces the lowest amount of literals
as highlighted in Fig. 9. Thereby, it is able to reduce the amount of literals by
up to 20% compared to the respective best of the reviewed encodings. Although
we developed it to optimise formula size, it also generates the lowest number
of variables in seven out of nine cases as visible in Fig. 10 (without consider-
ing the binomial encoding). For the branch Hardware-/Software-System Design
it even nearly halves the amount of variables. In the remaining two branches
Industrial Data Science and Networked Systems, it is also competitive, as it pro-
duces only 0.5% and 10% more variables respectively. If we compose all branches

140 P. M. Bittner et al.

Binomial Binary Seq. Counter Selective

Branch of Study kB
#
va
r.

#
lit
.

kB

#
va
r.

#
lit
.

kB

#
va
r.

#
lit
.

kB

#
va
r.

#
lit
.

Δ
kB

%
Δ
#
va
r.
%

Δ
#
lit
.%

Automotive Informatics 82,682 32 895,347 1,414 1,159 6,541 1,694 2,107 10,135 1,295 1,007 6,287 8.42 13.11 3.88
Big Data Management 46 9 338 52 64 256 45 58 237 46 58 221 -2.22 0 6.75
H.-/S.-System Design 10,228 36 126,738 728 788 3,834 795 1,135 5,363 538 455 3,074 26.10 42.26 19.82
IT-Security 21 7 61 26 23 77 21 17 50 21 17 50 0 0 0
Industrial Data Science 2,223 22 28,052 170 202 1,018 153 246 1,095 145 203 930 5.23 -0.50 8.64
Medical Informatics 3,115 15 31,609 316 313 1,732 254 351 1,630 264 308 1,513 -3.94 1.60 7.18
Networked Systems 6,220 27 87,375 201 246 1,241 203 343 1,542 184 270 1,227 8.46 -9.76 1.13
Robotics 557 17 6,845 193 212 977 239 339 1,570 193 212 977 0 0 0
Visual Computing 108 14 1,205 98 124 547 84 131 560 88 124 524 -4.76 0 4.20
All Branches (Sum) 105,200 179 1,177,570 3,198 3,131 16,223 3,488 4,727 22,182 2,774 2,654 14,803 13.6 15.2 8.6

Fig. 8. For each branch of study at TU Braunschweig we encoded all its compulsory
elective constraints with each encoding to compare their performance in terms of model
file size, number of total variables, and literals. The minimal number of literals per row
is highlighted. The last three columns show the improvement of our encoding in percent
compared to the best of the single encodings. The binomial encoding is not considered
for Δ#var.%.

as necessary for the complete field of study model, binary performs best from
the reviewed encodings in each category. Selective encoding further reduces file
size, number of variables, and number of literals by 13.6%, 15.2%, and 8.6%,
respectively.

We developed our selective encoding in favour of formula size. Nevertheless,
the solving time is an important metric for efficiency of formula generation [15, p.
413]. We found branch models loaded to our configuration tool BroT to be config-
urable without any lags. However, the loading times for the models exceed several
minutes for most of the branches. This time span is mainly caused by the con-
figuration initialisation. As it is branch specific and only necessary a single time,
it could be pre-computed and stored on disk. Thus, BroT could enable instan-
taneous branch loading and configuration. Unfortunately, we were not able to
load the branches Automotive Informatics, Hardware-/Software-System Design,
and Medical Informatics yet as the configuration generation took too much time.
We suspect our resolving of different credit points (Eq. 8) to impair performance
immensely because the expression it generates is not in CNF.

4.4 Threats to Validity

In this section we reflect on our experiment design for evaluation of selective
encoding in Sect. 4.3. We compare its performance with the reviewed encodings
by generating the constraints for each branch of study at TU Braunschweig.
Although, this is a very special use case, it emerges from a real-world problem for
which a solution was even enquired at TU Braunschweig. At other universities
or institutions this problem may arise analogously. Furthermore, each branch
demands 5 to 45 atmostk formulas with k ∈ [0, 19] ⊂ IN and n ∈ [1, 20] ⊂ IN as
specified at the universities website and in our DSL files delivered with our tool.

SAT Encodings of the At-Most-k Constraint - A Case Study 141

Fig. 9. Number of literals in compulsory elective constraints generated by each encoding
per branch.

Fig. 10. Number of total variables in compulsory elective constraints generated by each
encoding per branch.

142 P. M. Bittner et al.

The resulting formulas for each individual branch on which we count number
of literals and variables include various atmostk constraints. Nevertheless, our
usability results are unimpaired, as these branch specific descriptions are con-
stant for all encodings. Therefore, our compulsory elective formulas (see Eq. 8)
are fixed per branch, too. Particularly, the base feature model describing the
field of study computer science is equal for the whole evaluation. Thus, for each
branch the atmostk queries are the same for each encoding.

5 Related Work

This work is primarily based on two fields, namely feature-oriented software
development and SAT encodings of the atmostk constraint.

First, we describe the branches of study with feature models [1]. A feature
model can be converted directly to a propositional formula [3]. This enables anal-
ysis based on satisfiability queries [4,16,18,20]. We create these models with the
FeatureIDE Framework [17] and use its analysis and configuration tools for test-
ing and evaluating our results. We use the FeatureIDE library [13] to implement
the encodings independently from the main FeatureIDE plugin. We detected a
new application for feature models, as we use them for configuration of courses.
Cardinality-based feature models assign cardinalities to features, allowing them
to occur multiple times [6,7]. Our new selective encoding can be used to express
the bounds of group cardinalities and, thus, cardinality-based feature models
could profit from our encoding. Formulating alternative groups is the special
case of choosing atmost1 and is a common task for feature models. Hence, our
selective encoding could improve the generation of these constraints. Here, our
results exhibit the sequential counter encoding as a reasonable choice for n > 5.

Second, we are interested in encodings of the atmostk constraint. Frisch and
Giannaros present a convenient summary of the state-of-the-art encodings [8].
Additionally, they lift some of the encodings from their atmost1 form to atmostk.
We use their work compared with some of the original introductions [12,19] for
further detail as a reference for implementing and using encodings correctly.
The lifted version by Frisch and Giannaros of the product encoding by Chen [5]
requires a dedicated number sequence. Because the generation of such a sequence
is described only vaguely and informally, we have not considered this encoding.
Our new selective encoding of the atmostk constraint is useful in any application
the other encodings are used in, as it can replace them without any adaptions.

6 Conclusion and Future Work

We presented a new hybrid encoding, called selective encoding, for the atmostk
constraint by combining existing techniques. By construction, our encoding pro-
duces the lowest amount of literals and, nevertheless, introduces a comparatively
low amount of new variables.

We used selective encoding successfully for generating feature models that
can be used for configuring branches of study. We showed that choosing a suitable

SAT Encodings of the At-Most-k Constraint - A Case Study 143

encoding for the atmostk constraint makes a difference of up to 20% in terms
of literals for our branch study. Furthermore, our tool BroT using our DSL as
input can be useful for universities and institutions facing similar problems. Our
approach for resolving different amounts of credit points can be generalised to
domains, where each element is weighted. Hence, it can be useful in any task
where a sum of weights has to be reached by choosing arbitrary elements.

To improve our selective encoding and results on compulsory elective con-
straint generation, further encodings like parallel sequential counter by Sinz [19]
or totalizer by Bailleux and Boufkhad [2] could be investigated, too. Especially
the second one is of interest, as it can handle atmost and atleast constraints
simultaneously, which could optimise our frequent exactly constraints in Eq. 9
when dealing with different amounts of credit points. Additionally, our selective
encoding could be tested on handling alternative groups in feature models as
these require the special case of atmost1. Furthermore, the question why the
encodings count for generated literals and variables split into distinct connected
areas that allowed deriving our encoding, is still open.

Acknowledgements. We thank Moritz Kappel, Chico Sundermann, Timo Günther,
Marc Kassubeck, Jan-Philipp Tauscher, and Moritz Mühlhausen for reviewing our
paper in the earlier stages. Additional thanks go to the SEFM reviewers for giving
very detailed and constructive remarks.

References

1. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines (2013)

2. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality con-
straints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45193-8 8

3. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005). https://doi.org/10.1007/11554844 3

4. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615–708 (2010)

5. Chen, J.: A new SAT encoding of the at-most-one constraint. In: Proceedings of
the Constraint Modelling and Reformulation (2010)

6. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature
models and their specialization. Softw. Process: Improv. Pract. 10, 7–29 (2005)

7. Czarnecki, K., Kim, C.H.P.: Cardinality-based feature modeling and constraints:
a progress report, pp. 16–20 (2005)

8. Frisch, A.M., Giannaros, P.A.: SAT encodings of the at-most-k constraint. some
old, some new, some fast, some slow. In: Proceedings of the Ninth International
Workshop of Constraint Modelling and Reformulation (2010)

9. Frisch, A.M., Peugniez, T.J.: Solving non-boolean satisfiability problems with
stochastic local search. In: IJCAI, vol. 2001, pp. 282–290 (2001)

10. Frisch, A.M., Peugniez, T.J., Doggett, A.J., Nightingale, P.W.: Solving non-
boolean satisfiability problems with stochastic local search: a comparison of encod-
ings. J. Autom. Reason. 35(1–3), 143–179 (2005). https://doi.org/10.1007/s10817-
005-9011-0

https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.1007/11554844_3
https://doi.org/10.1007/s10817-005-9011-0
https://doi.org/10.1007/s10817-005-9011-0

144 P. M. Bittner et al.

11. Günther, T.: Explaining satisfiability queries for software product lines. Master’s
thesis, Braunschweig (2017). https://doi.org/10.24355/dbbs.084-201711171100.
https://publikationsserver.tu-braunschweig.de/receive/dbbs mods 00065308

12. Klieber, W., Kwon, G.: Efficient CNF encoding for selecting 1 from n objects. In:
Proceedings of the International Workshop on Constraints in Formal Verification
(2007)

13. Krieter, S., et al.: FeatureIDE: empowering third-party developers, pp. 42–45
(2017). https://doi.org/10.1145/3109729.3109751

14. Krieter, S., Thüm, T., Schulze, S., Schröter, R., Saake, G.: Propagating configu-
ration decisions with modal implication graphs, pp. 898–909, May 2018. https://
doi.org/10.1145/3180155.3180159

15. Kučera, P., Savický, P., Vorel, V.: A lower bound on CNF encodings of the at-most-
one constraint. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
412–428. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 26

16. Mannion, M.: Using first-order logic for product line model validation, pp. 176–187
(2002)

17. Meinicke, J., Thüm, T., Schröter, R., Benduhn, F., Leich, T., Saake, G.: Mastering
Software Variability with FeatureIDE. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-61443-4

18. Mendonça, M.: Efficient reasoning techniques for large scale feature models. Ph.D.
thesis, University of Waterloo, Canada (2009)

19. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005). https://doi.org/10.1007/11564751 73

20. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: Analysis strategies for
software product lines: a classification and survey, pp. 57–58, Gesellschaft für Infor-
matik (GI), Bonn, Germany, March 2015

21. Wiegand, J., et al.: Eclipse: a platform for integrating development tools. IBM
Syst. J. 43(2), 371–383 (2004)

https://doi.org/10.24355/dbbs.084-201711171100
https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00065308
https://doi.org/10.1145/3109729.3109751
https://doi.org/10.1145/3180155.3180159
https://doi.org/10.1145/3180155.3180159
https://doi.org/10.1007/978-3-319-66263-3_26
https://doi.org/10.1007/978-3-319-61443-4
https://doi.org/10.1007/978-3-319-61443-4
https://doi.org/10.1007/11564751_73

Software Evolution with a Typeful
Version Control System

Lúıs Carvalho(B) and João Costa Seco(B)

Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, NOVA-LINCS,
Lisbon, Portugal

la.carvalho@campus.fct.unl.pt, joao.seco@fct.unl.pt

Abstract. Agile software development comprises small evolution steps
that require discipline and planning to maintain the soundness between
all the components of a system. Software product lines pose similar chal-
lenges when the soundness between different branches of a product is
at stake. Such challenges are usually tackled by engineering methods
that focus on the development process, and not on the subject of atten-
tion, the code. The risk of code inconsistency between versions has been
mostly supported by analysis of the history of releases and by evaluating
feature interferences.

In this paper, we propose a language-based approach to provide a
certifying version control system that enables the explicit specification
of the evolution steps of a software artifact throughout its life-cycle, and
ensures the sane sharing of code between versions. Our model is suitable
to be integrated into a smart development environment to help manage
the whole code base of an application. This enables the static verification
of program evolution steps, based on the correctness of state transforma-
tions between related versions, and for the stable coexistence of multiple
versions at run-time. We instantiate our formal developments in a core
language that extends Featherweight Java and implements the verifica-
tion as a type system.

1 Introduction

Agile development methods advocate for controlled and incremental steps in the
construction and evolution of a system, and that all software life-cycle activ-
ities are also of similar evolutive kind. Common activities include bug fixing,
implementing user-requested features, porting code to new hardware, updating
business requirements, and many other tasks that essentially represent steps in
the life-cycle of a software system. With faster release cycles it is much more
difficult to cope with the discipline necessary to constantly adapt the existing
code to interact with new and updated code. Managing the evolution of software
systems is always a difficult task, in particular to maintain multiple versions of
a software product [18]. Evolution entails complexity in all cases, unless some
energy is spent to explicitly reduce it [13]. Version control systems (e.g. git,

svn, mercurial) are becoming a fundamental piece of software product lines, and
c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 145–161, 2019.
https://doi.org/10.1007/978-3-030-30446-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-30446-1_8

146 L. Carvalho and J. Costa Seco

exist precisely to aid in the fast evolution of a system. However, while very good
at managing changes to information, VCS give no semantic meaning to each
delta (diff), allowing for inconsistent code to be committed. As a result, VCS
are often coupled with continuous delivery pipelines (e.g. Jenkins pipelines) that
make sure each deployment is consistent (by running code linters, unit tests,
regression tests, etc.). This adds another layer of complexity (DevOps), where
the developer now has to reason about how to manage the changes (git branch-
ing workflows) and how the multiple versions of the software interact with each
other (CD pipelines), which can entail additional security risks [3,4].

Contributions. We propose a language-based approach to providing a certify-
ing version control system that tackles the aforementioned problems. We propose
the use of a centralized model to store the whole code base of a project into a
single application representation, very much inspired in application models of
low-code platforms like OutSystems1 or Mendix2, and we believe that a smart
IDE can also perform the same kind of management for text based versioned
code bases. Our model allows the definition of a version graph, the incremental
definition of programming elements, and the tagging of each program element
definition (in our model, the fields, methods, and class constructors) with a
version identifier to mark the snapshot where it was last edited. Versions are
marked with different modes that capture the different flavors of software evolu-
tion, such as unforeseen hot fixes, planned upgrades or code refactoring, among
others. We instantiate our abstract model in an object-oriented core functional
language, VFJ (Versioned Featherweight Java), extending Featherweigth Java [9]
as a model for a full fledged source code version control system.

A VFJ program is a syntactic entity that represents multiple versions of a
program simultaneously. A fragment of a class declaration on a program with
versions init and date defining state variables would be represented by

version init
version date upgrades init
class Song extends Object {
@init string title; @init int year;
@date string title; @date Date date;
...

The header defines the relationship between both versions, and each field is
tagged with the version to which it belongs. The same kind of version annotation
is used for class constructors and methods.

As in any source code version control system, each version in VFJ repre-
sents a branch or a commit in a repository and provides deltas to the parent
version. Single versions correspond to an unparented branch, upgrade versions
correspond to branching from an existing branch (Fig. 1a), and replacement ver-
sions correspond to commits rooted in an existing version of the system, that
force a rebase for all versions branching off of the replaced version (Fig. 1b). In

1 www.outsystems.com.
2 www.mendix.com.

www.outsystems.com
www.mendix.com

Software Evolution with a Typeful Version Control System 147

(a) The definition of cover version (b) The definition of yearbugfix version.

Fig. 1. Branching graphs

this way, it is possible to define a new version of a VFJ program by extending
an existing version, and adding just the necessary code deltas to achieve the ver-
sion’s objective. Our model guarantees compile-time safety of code reuse from
previous snapshots, as well as forward and backward compatibility with other
snapshots, through type-safe state transformation functions (lenses).

Crucially, we introduce a version expression of the form @date(e) that executes
expression e in the context of version date, using all the definitions from that
version and switching to version init whenever necessary. We also introduce the
notion of version lenses, which are mappings between the object’s state in one
version to its state in another. We present a static and dynamic semantics for
our language (VFJ) to serve as reference to what should be the specification of
a compiling/rewriting algorithm that always produces the up-to-date code for
a given version of a product. This mechanism is suited to be implemented in
language-based tools that support the plain evolution of a single product, or as
support for a software product line that maintains different live versions of the
same set of components.

In summary, our main contributions are:

– An abstract representation for versioned programming elements declarations,
– A versioning model that captures the essential steps on evolution of software,

capturing both planned (upgrades) and unforeseen changess (replacements),
– A typing discipline for changes in programs that preserves soundness,
– An operational semantics that ensures the safe coexistence and execution of

multiple versions of programs, and
– A specification for a compilation algorithm that creates a sound snapshot of

a version from a versioned repository.

2 The Journey of a Class

We now present a sequence of steps in the development of an application that
illustrates how the static and dynamic semantics of VFJ support the sound evo-
lution of a program. VFJ is an extension of the core language Featherweight
Java [9] with constructions for the versioning of classes, its fields, construc-
tors, and methods, and the versioned execution of language expressions. In this
example we edit the underlying model of the code, including versioning meta-
information which could, in principle, be automatically introduced by a smart,

148 L. Carvalho and J. Costa Seco

version init
class Song extends Object {
@init string title; @init int year;
@init Song(string title, int year) {super(); this.title = title; this.year = year; }
@init int age() {return 2019 − year; }

}
class Server extends Object {
@init SongList songs;
@init Server(SongList songs) {super(); this.songs = songs; }
@init Song get(string title) {this.songs.get(title); }
@init Server put(string title, int year) {
return new Server(this.songs.put(new Song(title, year)));

}
}
class Client extends Object {
@init Server server;
@init Client(Server server) {super(); this.server = server; }
@init string info(string title) {return title+”<>”+this.server.get(title).age();}

}

Fig. 2. Initial stage of the Server classes

version-aware, IDE. Consider classes Server, Song, and Client of a music metadata
application.

Step 0 - introduction of a simple metadata server. The listing in Fig. 2 defines
class Server to represent a music metadata server, class Song to represent the songs
stored in the server, and class Client to represent a music client that connects
to an object of class Server and displays metadata in some screen. We assume
an existing class SongList. The initial snapshot of the application is depicted by
the code in a version with tag init. In version init, a song is defined by fields title

and year. The class constructor is declared as expected, initializing the fields,
and we define method age to compute the age of a song. All declarations are
annotated with a version label. The init version of class Server is concerned with
the operations over a list of songs, and class Client is defined to access the server
and interact with objects of class Song. Again, note that annotations do not
have to be explicitly written by the developer and may be managed by the IDE,
automatically incorporated into the source code or the abstract representation
of a DSL of a low-code platform.

These classes can then be used in the context of version init, by means of a
version context expression of the form @v(e), which executes expression e in the
context of version v. For instance, expression

@init(new Client(
new Server().put(‘‘Yellow Submarine’’, 1966).put(‘‘Let It Be’’, 1970)).info(‘‘Let It Be’’

));

Software Evolution with a Typeful Version Control System 149

version init
version yearbugfix replaces init
class Song extends Object {
...
@yearbugfix int age() { return (new Date()).year() − this.year; }
...

Fig. 3. Version yearbugfix of the Song class

creates a server, adds songs to its list of songs and yields a server object in
version init that is then used by a client object to retrieve and display a given
song’s information.

A more careful observation of method age in class Song identifies a potential
bug in the code of the version init. It should compute its result using the current
year instead of assuming the literal value of 2019. In our journey, we need to
issue a fix for this error.

Step 1 - fixing a bug. To fix the bug we create a new version of class Song

modifying only method age. In order to have an immediate effect on existing
code, we declare a new version (yearbugfix) declared to replace the init version.
This is depicted in the header of Fig. 3, where we declare the versions and their
relations. We then add a new declaration of method age in version yearbugfix.
Hereafter we assume that there is a class Date with a method to retrieve the
year.

The new method definition is added with @yearbugfix version tag and all other
definitions of the codebase are kept in place. The bug is fixed in version yearbugfix.
The expression that is part of the client code in the context of version init, @init
(new Song(‘‘Let It Be’’, 1970, 0).age()), now executes the code in version yearbugfix

and returns the correct result for all years. The nature of replacement versions
dictates that changes are automatically propagated without the need to change
old client code. We simply introduce the deltas from version init, which in this
case corresponds to re-implementing method age, and the compiler can then
produce, by slicing, the snapshot containing the correct code for version init.

Step 2 - supporting new hardware. In this step we introduce support for a new
kind of client that can also display a song’s cover artwork. To add support for
this we need to change both the Song class, which now has to store a cover art
in its fields, and the Server class, which now has to download the cover art and
store it when uploading a new song. For the sake of the argument we assume an
existing class Image that represents pictures and a class Images that allows the
download of cover arts. Showing and downloading images may be impossible to
old hardware, and some servers and clients can still use code in the init version.

Consider the code in Fig. 4. Note that all the previous code is part of the
snapshots, but elided in the figure, as all the deltas of a git repository are kept in
the internal structure of its holding directory. Version cover declares a constructor
and redefines the representation type of the class (its fields). This is a key feature

150 L. Carvalho and J. Costa Seco

version init
version yearbugfix replaces init
version cover upgrades init
class Song extends Object {
@cover int year; @cover string title; @cover Image cover;
@init Song(string title, int year) {
...
this@cover(title, year, new Image(”placeholder.jpg”));

}
@cover Song(string title, int year, Image cover) {
super();
this.title = title; this.year = year; this.cover = cover;
this@init(title, year);

}
@cover Image cover() {return this.cover; }
...

}
class Server extends Object {
...
@cover Server put(string title, int year) {
return new Server(this.songs.put(new Song(title,year,Images.download(title))));

}
}
class Client extends Object {
...
@cover Image cover(string title) {
return this.server.get(title).getCover().render();

}
}

Fig. 4. Second version of the Server classes

of our language: it defines what we call a base version in relation to class Song.
Since we want to keep existing song’s fields in version cover, we must re-declare
them all (again, this can be aided by the IDE). Version cover adds a new field
that stores the artwork, and changes the constructor accordingly. Version cover

also adds a method to retrieve said picture.
To avoid rewriting existing code, we define a mapping between version cover

and version init, with the declaration this@init(title, year, plays); in the constructor
of Fig. 4. We call this mechanism a lens, in this case from version cover to version
init. Finally, in version cover of class Server we update method put that downloads
the correct cover art for the song. By upgrading the song server we can now
store cover art in a song with the expression:

@cover(new Server().put(‘‘Yellow Submarine’’, 1966).put(‘‘Let It Be’’, 1970));

A client supporting such feature can then display the artwork by

Software Evolution with a Typeful Version Control System 151

version init
version yearbugfix replaces init
version cover upgrades init
version date replaces yearbugfix

class Song extends Object {
...
@date Date date; @date string title;
@init Song(string title, int year) {
...
this@date(title, new Date(0, 0, year));

}
@date Song(string title, Date date) {
super();
this.title = title; this.date = date;
this@init(title, date.year());

}
...
@date Date getDate() { return this.date(); }
...

Fig. 5. Version date in class Song.

@cover(new Client(...).cover(‘‘Let It Be’’))

and if a client that supports displaying artworks connects to a server that has not
yet been upgraded, using the following code, the placeholder image is returned

@cover((new Client(@init(...))).cover(‘‘Let It Be’’))

as defined by the lens between versions init and cover.

Step 3 - refactor to full dates. Consider a scenario, defined in Fig. 5, where we
want to store a full date in all song objects instead of just the year component.
To refactor class Song in such a way, we add field date of type Date, define a new
constructor in version date, and modify the existing constructors to enable the
transformation of objects from version init to version date when necessary. We
add a lens from version date to version init to the constructor of version date. We
add a method in version date of class Server to store a song with updated data.

class Server extends Object {
...
@date Server put(string title, Date date)
{ return new Server(this.songs.put(new Song(title, date))); }

Finally, we also upgrade class Client with a new definition for method displayInfo,

class Client extends Object {
...
@date Date info(string title) { return title+”<>”+this.server.get(title).getDate(); }

A server running in the init version can use the new definition of method put:

@init(new Server()
.put(‘‘Yellow Submarine’’, 1966).put(‘‘Let It Be’’, 1970).put(‘‘Help!’’, 19, 7, 1965));

152 L. Carvalho and J. Costa Seco

P ::= V L @v(e)
V ::= version v | version v upgrades v′ | version v replaces v′

L ::= class C extends D { @v C f ; K M }
K ::= @v C(C f){ super(f); this@v(e); this.f = f ; }
M ::= @v C m(C x){ return e; }
e ::= x | e.f | e.m(e) | new C(e) | @v(e) | this

Fig. 6. Syntax for the VFJ language

A client running in the context of init version can display the correct information:

@init(new Client(...).info(‘‘Let It Be’’); new Client(...).info(‘‘Help!’’));

3 Versioned Featherweight Java

In this section we present the syntax and semantics (static and dynamic) of
Versioned Featherweight Java (VFJ), a functional object language that is the
formal vehicle to transmit our certified version control model.

Syntax. Figure 6 presents the language’s syntax that is an extension of the syn-
tax of the original FJ language [9]. A VFJ program comprises a list of version
declarations (V), a list of class declarations (L), and a main expression (@v(e))
that is executed in the context of some version v and given the previous declara-
tions. Recall that this is an abstract representation for a concrete syntax and that
all the version labels can be inferred by the development environment. Version
declarations define single, upgrade, or replacement versions. Again, this graph is
intended to be built by the development environment according to the commit
history. Classes (L) are defined as extending some other class (class Object is
predefined), and comprise a set of versioned fields (@v C f), constructors (K),
and method definitions (M). Unlike in FJ, we allow multiple constructors, one
per version. Constructors are defined in the context of a given version. They
follow the rigid structure comprised by the call to the super class constructor
(super(f)), the definition of lenses from version v to other versions (this@v(e)),
and the initialization of the object fields (this.f = f). Declarations of methods
(M), also annotated with a version identifier, contain a set of parameters and
a method body (an expression). Finally, the expression language (e) includes
variables (x), object fields (e.f), method invocation (e.m(e)), object creation
(new C(e)), and the this object reference. We extend the syntax of FJ expres-
sions with a version context expression (@v(e)) that executes an expression e in
the context of version v.

Static Semantics. We define a type system that ensures that a program com-
prising code from different versions, given a set of state transformations between
versions and documenting the changes made on each step, is well-typed.

Software Evolution with a Typeful Version Control System 153

� ∅ OK
(VT-Empty)

� V OK v /∈ dom(V)
� V, v OK

(VT-Single)

� V OK v′ /∈ dom(V)
v ∈ dom(V)

� V, v′ upgrades v OK
(VT-Up)

� V OK v ∈ dom(V)
v′ /∈ dom(V) w replaces v /∈ V

� V, v′ replaces v OK
(VT-Rep)

Fig. 7. Rules for a well-formed version table

Γ �v x : Γ (x)
(T-Var)

Γ �v e0 : C0 vfields(v, C0) = C f

Γ �v e0.fi : Ci

(T-Field)

Γ �v e0 : C0 u = mversion(V , v, C0, m)
mtype(u, C0, m) = D → C Γ �v e : C C <: D

V, Γ �v e0.m(e) : C
(T-Invk)

vfields(v, C) = D f Γ �v e : C C <: D

Γ �v new C(e) : C
(T-New)

Γ �v′ e : C

Γ �v @v′(e) : C
(T-Version)

Fig. 8. Typing rules for expressions

The first step to ensure that a versioned program is well typed, is to check
that it operates on a sound version graph. We inductively define this well-formed
relation, represented in a judgement of the form � V OK , by the set of post rules
of Fig. 7. The relation is based on an empty version table, that is trivially well-
formed (VT-Empty). Adding a single version to the graph V produces a well-
formed version graph if there are no repetition of version names (VT-Single).
This condition is premise on the introduction of all other kinds of versions. An
upgrade version can be added if it upgrades an existing version on the graph
(VT-Up). A replacement version can be added if it replaces an existing version
and there is no replacement version for that given version (VT-Rep). This will
become an invariant condition in all the graph.

Given a well-formed version table, we type VFJ expressions in the context
of some version using the standard judgement Γ �v e : C and the rules of Fig. 8.
Notice that in our calculus, the possible results for expressions are objects, and
their types are classes. Rule (T-Var) matches the type of a variable with that
of the environment association (Γ , which stores the usual association between
variables and their values). Rule (T-Field) uses versioned lookup for fields,
using the current version (v), to check the type of the field being selected. Rule
(T-Invk) finds the method’s type signature, using versioned lookup functions
in the context of version v, then checks that arguments match the parameters
types, and finally types the method call expression with the declared return type.
Rule (T-New) checks that arguments to the constructor match the types of the
fields as returned by the versioned lookup function. Finally, rule (T-Version)

154 L. Carvalho and J. Costa Seco

� ∅ OK in C
(T-VC-Empty)

� V OK in C

� V, v OK in C
(T-VC-Single)

� V OK in C path(v, v′, C) = p
V � up(v′, v) OK in C V � keep(v′, v) OK in C

� V, v′ replaces v OK in C
(T-VC-Rep)

� V OK in C V � up(v′, v) OK in C
V � overrides(v′, v) OK in C

� V, v′ upgrades v OK in C
(T-VC-Up)

Fig. 9. Well-formed version table for classes

Mv = methods(V , v, C)
Mv′ = methods({ v′ }, v′, C) Mv ⊆ Mv′

� up(v′, v) OK in C
(Up)

path(v′, v, C) = p

� up(v′, v) OK in C
(Up)

Mv = methods(V , v, C) Mv′ = methods({ v′ }, v, C)
∀m∈Mv∩Mv′ : u = mversion(V , v, C, m) ∧ mtype(u, C, m) = mtype(v′, C, m)

� keep(v′, v) OK in C
(Keep)

Mv = methods(V , v, C) Mv′ = methods({ v′ }, v′, C)
∀G m@u(Df){ ... }∈Mv\Mv′ : if C <: G then path(u, v′, G) = p

� overrides(v′, v) OK in C
(Overrides)

Fig. 10. Well-formed version table for classes

defines that the version context expression @v′(e) types the inner expression in
the context of the explicitly noted version v′.

The typing of expressions is essential to establish if the whole class table is
well-formed. We define the typing of class interfaces, segmented per version, in
the judgement � V OK in C with the rules in Fig. 9. Rules (T-VC-Empty) and
(T-VC-Single) are trivial, and the remaining rules (T-VC-Rep) and (T-VC-Up)
discipline how methods can be overridden from one version to another. In both
cases, the rules ensure any well-typed instance of class C in the context of v
is also well typed in the context of v′. The intuition for these rules is that any
method available at version v must be available at v′ (either by a lens or by
overriding it). Special attention is needed when inheriting methods that return
objects of a subtype of C, as these need to be correctly translated to version v′

(again, either by a lens or by overriding it). In the particular case of (T-VC-Rep),
the type system also ensures any well-typed instance of class C in the context
of v′ is also well typed in the context of v, and as such any method overridden
must have its type preserved.

Software Evolution with a Typeful Version Control System 155

class G extends H{ ... } ∈ L

� F ,@v G f OK in C
(T-Field)

x : C, this : C �v e0 : C class C extends D{ ... } ∈ L

if u = mversion(V , v, D, m) then C → C0 = mtype(u, D, m)

� M,@v C0 m(C x){ return e0; } OK in C
(T-Method)

class C extends D{ ... } ∈ L vfields(v, D) = D g

vfields(v, C) = D g, C f vfields(vl, C) = Ci xi

D g, C f �v ei : Gi Gi <: Ci i = 1..n

@v C (D g, C f){ super(g); this@vl(e); this.f = f ; } OK in C
(T-Constr)

F , K, M OK in C

class C extends D{ F K M } OK
(T-Class)

� V OK � V OK in L

� L OK L, V �v e : C

V , L,@v(e) � P OK
(T-Prog)

Fig. 11. Typing rules for classes and programs

The typing of each class is described in a series of judgements defined by the
rules shown in Fig. 11. A program comprises a version table, a set of classes, and
a main expression running in the context of a given version. A program is well-
typed if (1) the version table is well-formed, (2) the version table is well-formed
for the given classes, and (3) the classes are well-typed (Fig. 11). Intuitively,
a program being well-typed means it should be possible to execute it without
errors, use code from different versions, and compile it to code for a single version
that produces no runtime typing errors. We follow the standard FJ rules, but
use versioned lookup functions for field, constructor, and method definitions.

To implement the versioned lookup functions we need some auxiliary nota-
tion, functions, and relations, in particular fields and methods lookup functions
and the definitions of lenses. We define the relations v′ > v if v′ upgrades v ∈ V ,
and v′ � v if v′ replaces v ∈ V . We also define the transitive closure of these
relations, v′ >∗ v and v′ �∗ v. Given these relations, we may start defining
some lookup functions that allow us to fetch the right type signature and the
right implementation for a given method, a given field, in a given version con-
text. The first one is to define the base version of a given version v, where its
fields and constructor are defined. For a single version, this corresponds to itself.
An upgrade or replacement version is base of itself if it defines a constructor.
Otherwise, the base version corresponds to the base version of the version being
extended.

base(v, C) �
{

v if C@v(Cf){ ... } ∈ C
base(v′, C) if v > v′ or v � v′

In Sect. 2 we have base(date, Song) = date and base(date, Client) = init. The
identification of which is the version that establishes the types of the fields is
crucial to type the method bodies of intermediate versions. The base version

156 L. Carvalho and J. Costa Seco

is used as reference for the versioned fields lookup function vfields(v, C), which
denotes the fields declared in class C, and its superclass D.

vfields(v, C) �

⎧⎨
⎩

ε if C = Object
C f, vfields(v,D) if v′ = base(v, C) and

class C extends D{C f@v′; . . .} ∈ L

In the example of Sect. 2, we have vfields(date, Client) = Server server, which
corresponds to the field declared in version init of class Client. For an object to
change from the context of some version v to the context of another version v′,
there must be a path (made of lenses) from v to v′ in class C. An empty path
(ε) means that the two versions share the same base. A path of the form (v, v′)
means there is a lens, declared in the base version of v, to the base version of
v′. Paths may be composed in the form (path(v, w,C), path(w, v′, C)), meaning
there is a path from version v to some version w, to which there is a path to
version v′. We define function path(v, v′, C) below to build such a path from
version v to version v′ in class C.

path(v, v′, C) �

⎧⎪⎪⎨
⎪⎪⎩

ε if base(v, C) = base(v′, C)
(v, v′) if C@w(x){ this@w′(e′); ... }∈C,

base(v, C), w′ = base(v′, C)
path(v, w,C), path(w, v′, C) if v /∈ path(w, v′, C)

In Sect. 2 we have that path(cover, date, Song) = ((cover, init), (init, date)),
illustrating the composition of version paths. Whenever a path is defined between
two versions v, v′ in some class C, an object can cross from the version context
of v to v′ by having its state (value of object’s fields, e) transformed according to
the mapping(s) defined in the lens(es). To do so, we define a lens by the function
L
C:v→v′

(e) that produces such mapping(s). The particular case of the empty path

(ε) means no transformation is applied, and the lens corresponds to the identity
function (L

C:v→v′
(e) = e). For a path of the form (v, v′), the lens defined from

the base version of v to the base version of v′ (e′) is evaluated in the context
of version v, by replacing the constructor arguments (x) with the object’s field
values (@v(e′{e/x})). For composed paths the lens function is applied recursively
for each intermediate step of the form (v, w).

L
C:v→v′

(e) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e if path(v, v′, C) = ε

@v(e′{e/x}) if path(v, v′, C) = (v, v′)
, w = base(v, C), w′ = base(v′, C)
, C@w(x){ . . . this@w′(e′) } ∈ C

L
C:w→v′

(L
C:v→w

(e)) if path(v, v′, C) = (v, w), p

In the example of Sect. 2, we have the following composition of lenses

L
Song:date→cover

((“Help!”, 19, 7, 1965)) = (“Help”, 1965, new Image(“help.jpg”))

Software Evolution with a Typeful Version Control System 157

e′ = L
C:v→v′(e)

@v(new C(e)) v′−→ new C(e′)
(R-Upgrade)

vfields(v, C) = C f

new C(e).fi
v−→ ei

(R-Field)

u = mversion(V , v, C, m) mbody(u, C, m) = (x.e0)

new C(e).m(f) v−→ @u(e0{@v(f)/x}{@v(new C(e))/this})
(R-Invk)

e0
v−→ e′

0

e0.f
v−→ e′

0.f
(RC-Field)

e0
v−→ e′

0

e0.m(e) v−→ e′
0.m(e)

(RC-Invk)
e

v−→ e′

@v(e) v′−→ @v(e′)
(RC-Version)

Fig. 12. Structural operational semantics rules

We follow the standard functions for method type and body lookup as defined
in [9] (mtype(v, C,m) and mbody(v, C,m)), with the exception that the anno-
tated version in the method definition (v) is also given as argument.

mtype(v, C,m) �
{

B → B if M ∈ M
mtype(v,D,m) otherwise

mbody(v, C,m) �
{

x.e if M ∈ M
mbody(v,D,m) otherwise

with class C extends D{Cf ;

K;M} ∈ L and M = B m@v(Bx){return e; }.

We also define function mversion(V , v, C,m) that yields the version, in a
version graph V , at which a method m is defined in class C in the context of
a given version v. A method definition is first searched recursively across all
versions v′ such that v′ �∗ v, with the latest one being selected. If no such
version defines the method m, then it is searched in version v. If it is neither
defined in v nor in its replacements, then the method m must be inherited from
some version v′ such that (1) v �∗ v′ xor (2) v >∗ v′. In (1) the function is
applied to version v′, but with version v removed from V , to prevent loops.
Finally, in (2), the function is applied to version v′, and proceeds as explained
above.

mversion(V , v, C,m) �

⎧⎪⎪⎨
⎪⎪⎩

w if v′ � v ∈ V ∧ mversion(V , v′, C,m) = w
v if mtype(v,m,C) = D → D
w if v > v′ ∈ V ∧ mversion(V , v′, C,m) = w

w if v � v′ ∈ V ∧ mversion(V \ { v }, v′, C,m) = w

In the example of Sect. 2 we have that mversion(V , init, Server, put) = date,
illustrating the versioned lookup of method definitions. Now that we defined
mversion(V , v, C,m), we can produce the list of methods available in class C at
version v by the function methods(V , v, C). This chooses the methods m from
class C whose annotated version corresponds to the lookup version of m from
version v: methods(V , v, C) � { m@w ∈ M | w = mversion(V , v, C,m) }.

Dynamic Semantics. In this section we present the operational semantics for
our language, in the form of the set of rules in Fig. 12 that define a reduction

158 L. Carvalho and J. Costa Seco

relation e
v−→ e′ where an expression e evaluates to expression e′ in the context

of version v.
The semantic rules express exactly how evaluation happens in the context

of a version and how the corresponding context switch operations work. This is
expressed in rule (R-Upgrade) where the transformation of an object from its
representation in version v to version v′ happens by the application of a lens, if it
exists. Recall the definition of lenses before to check that inner expressions may
themselves be still in the context of version v. Rules (R-Field) and (R-Invk)
depend on the aforementioned versioned lookups for fields and methods. In the
case of method invocation, special attention is needed to maintain the correct
version context of method arguments and also the reference this. The remaining
rules express the congruence of the reduction relation, in the context of a field
selection, a method call, or the version context expression.

Type soundness, in the style of Wright and Felleisen [21], implies that the
whole version graph can co-exist in a single program without introducing runtime
type errors. We define the usual type preservation theorem and sketch its proof3.

Theorem (Subject Reduction). If Γ �v e : C and e
v−→ e′ then Γ �v e′ : C ′

for some C ′ with C ′ <: C.

We prove this theorem by induction on the typing relation and case analysis on
the last rule applied. The main challenge in the proof is to ensure that the version
switching operations use the correct typing of the state being used at each time
(the base version), checking that the version coercions are in the right places,
and enforcing the necessary signature preservation conditions. A particularly
sensible spot is to require all needed lenses to be well-formed and ensure that
switching versions is well-typed. This completes the presentation of the language
semantics, reference to algorithms processing a versioned code base.

4 Future Work

We consider the following regarding future work.

Program Slicing. Given the semantics presented in Sect. 3, we have designed a
(rough-sketched) code slicing algorithm4 that produces the snapshot of code for a
specific version, by applying static state transformations whenever it is necessary
to cross version contexts. This is suited for an automated continuous delivery
setting targeting software for a specific version, producing a static binary with
only the necessary code for that version. We illustrate this in Fig. 13, representing
a slice of class Song for version date. Notice how the code for method age is
inherited from version yearbugfix, and re-written with the state transformation
specified in the lens this@init(...,this.date.year()).

Richer Version Graph. The constructors for the version graph allow the
creation of single, upgrade, or replacement version. We intend on enriching this
3 Proofs at http://ctp.di.fct.unl.pt/∼jcs/papers/versions-extended.pdf.
4 Available at https://bitbucket.org/liveprogrammingteam/vfj/.

http://ctp.di.fct.unl.pt/~jcs/papers/versions-extended.pdf
https://bitbucket.org/liveprogrammingteam/vfj/

Software Evolution with a Typeful Version Control System 159

class Song extends Object {
string title; Date date;
Song(string title, Date date) {this.title = title; this.date = date; }
Date getDate() {return this.date();}
int age() {return (new Date()).year() − this.date().year();}

}

Fig. 13. Code re-written for the date versions based on lenses and version graph

constructors and allow a single version to merge several versions. Coupled with
a mechanism for solving conflicts locally, we believe this will allow the design of
more complex work flows that closely resemble those adopted in the industry [19].

Imperative Paradigm. We plan to instantiate our model in the imperative
paradigm and study the same transformations in a more general setting, and
providing a pragmatic mechanism for a language like Java and a suitable devel-
opment environment.

5 Related Work

The management of multi-version software focuses on the interaction, design, and
maintenance of a corpus of versions of a single software product. We relate to the
following approaches surrounding this topic. Update Programming. Erwig and

Ren [6] introduce an extension to Haskell that supports update programming.
A program is an abstract data type whose building blocks are language terms.
They provide a mechanism to script changes in programs creating new terms
and changing existing ones. Hazelnut [14] is a core calculus that builds on typed
“holes” and a gradual type theory that features a type system for expressions
with holes and a language of edit actions ensuring that every edit state has
static meaning. This allows for progressive program construction, as well as
giving semantic meaning to incomplete code.

Delta Oriented Programming. Schaefer et al. [16] introduce DOP, a pro-
gramming language for designing SPL based on the concept of program deltas.
The implementation of a SPL is divided into a core module, comprising a com-
plete valid product, and a set of delta modules, changes to be applied to the
core module to target other products/variations. The language further ensures
all product variations are well typed.

Multi-Version Systems Analyses. The analysis of multi-version systems is
usually a project management activity that tries to detect change patterns in
the code, and assessing risks of interferences between development threads that
may result in the introduction of vulnerabilities [11], code repetition [12] and
maintenance hurdles [2,5,10,20], and the other difficulties in the management
of multiple versions [7,8,17,22]. We maintain the history of programming ver-
sions, well-formed by construction, instead of defining semantics for partial pro-
grams [15]. Our approach acts preventively by detecting illegal evolution steps

160 L. Carvalho and J. Costa Seco

in the development history [2,5,10,20] and also complements update and delta
oriented programming approaches [1,6,16] by recording a modification history
and allowing (legal) branching in the code base.

6 Conclusions

In this work we have presented an abstract certifying version control model that
enables the explicit specification of sound evolution steps in the development
of a software artifact. We instantiate our abstract model in an object-oriented
core calculus, extending Featherweigth Java [9] with version annotations in dec-
larations of fields, constructors and methods. The model supports safe version
switching so that each evolution step only requires the least amount of new dec-
larations as possible, and that old code is still active and compatible with the
new declarations, via implicit and explicit version switching operations. We rely
on standard subject reduction results that imply that no execution runtime type
errors occur, even in the presence of version switching operations.

Acknowledgements. This work is funded by NOVA LINCS UID/CEC/04516/2013,
COST CA15123, FC&T Project CLAY - PTDC/EEI-CTP/4293/2014.

References

1. Amsden, E., Newton, R., Siek, J.: Editing functional programs without breaking
them. In: IFL 2014 (2014)

2. Bennett, K.H., Rajlich, V.T.: Software maintenance and evolution: a roadmap. In:
Proceedings of the Conference on the Future of Software Engineering (2000)

3. Cimpanu, C.: Over 100,000 GitHub repos have leaked API or cryptographic
keys. https://www.zdnet.com/article/over-100000-github-repos-have-leaked-api-
or-cryptographic-keys/

4. Cimpanu, C.: Security flaws in 100+ Jenkins plugins put enterprise networks
at risk. https://www.zdnet.com/article/security-flaws-in-100-jenkins-plugins-put-
enterprise-networks-at-risk/

5. Eick, S.G., Graves, T.L., Karr, A.F., Marron, J.S., Mockus, A.: Does code decay?
assessing the evidence from change management data. IEEE Trans. Softw. Eng.
27(1), 1–2 (2001)

6. Erwig, M., Ren, D.: A rule-based language for programming software updates. In:
Proceedings of the 2002 ACM SIGPLAN Workshop on Rule-Based Programming
- RULE 2002, Pittsburgh, Pennsylvania (2002)

7. Graves, T., Karr, A., Marron, J., Siy, H.: Predicting fault incidence using software
change history. IEEE Trans. Softw. Eng. 26(7), 653–661 (2000)

8. Hosek, P., Cadar, C.: Safe software updates via multi-version execution. In: 2013
35th International Conference on Software Engineering (ICSE), May 2013

9. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001)

10. Izurieta, C., Bieman, J.M.: How software designs decay: a pilot study of pattern
evolution. In: First International Symposium on Empirical Software Engineering
and Measurement (ESEM 2007) (2007)

https://www.zdnet.com/article/over-100000-github-repos-have-leaked-api-or-cryptographic-keys/
https://www.zdnet.com/article/over-100000-github-repos-have-leaked-api-or-cryptographic-keys/
https://www.zdnet.com/article/security-flaws-in-100-jenkins-plugins-put-enterprise-networks-at-risk/
https://www.zdnet.com/article/security-flaws-in-100-jenkins-plugins-put-enterprise-networks-at-risk/

Software Evolution with a Typeful Version Control System 161

11. Kim, J., Malaiya, Y.K., Ray, I.: Vulnerability discovery in multi-version software
systems. In: 10th IEEE High Assurance Systems Engineering Symposium (HASE
2007) (2007)

12. Kim, M., Notkin, D.: Program element matching for multi-version program analy-
ses. In: Proceedings of the 2006 International Workshop on Mining Software Repos-
itories - MSR 2006 (2006)

13. Lehman, M.M.: Laws of software evolution revisited. In: Montangero, C. (ed.)
EWSPT 1996. LNCS, vol. 1149, pp. 108–124. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0017737

14. Omar, C., Voysey, I., Chugh, R., Hammer, M.A.: Live functional programming
with typed holes. Proc. ACM Program. Lang. 3, 14 (2019)

15. Omar, C., Voysey, I., Hilton, M., Aldrich, J., Hammer, M.A.: Hazelnut: a bidirec-
tionally typed structure editor calculus. ACM SIGPLAN Not. 52(1), 86–99 (2017)

16. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15579-6 6

17. Subramanian, S., Hicks, M., McKinley, K.S.: Dynamic software updates: a VM-
centric approach. SIGPLAN Not. 44(6), 1–12 (2009)

18. Swanson, E.B.: The dimensions of maintenance. In: Proceedings of the 2nd Inter-
national Conference on Software Engineering (1976)

19. Driessen, V.: A successful Git branching model, January 2010. https://nvie.com/
posts/a-successful-git-branching-model/

20. Wash, R., Rader, E., Vaniea, K., Rizor, M.: Out of the loop: how automated
software updates cause unintended security consequences. In: 10th Symposium On
Usable Privacy and Security ({SOUPS} 2014) (2014)

21. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.
115(1), 38–94 (1994)

22. Zimmermann, T., Zeller, A., Weissgerber, P., Diehl, S.: Mining version histories to
guide software changes. IEEE Trans. Softw. Eng. 31(6), 429–445 (2005)

https://doi.org/10.1007/BFb0017737
https://doi.org/10.1007/BFb0017737
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1007/978-3-642-15579-6_6
https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/

Compositional Feature-Oriented Systems

Clemens Dubslaff(B)

Technische Universität Dresden, Dresden, Germany
clemens.dubslaff@tu-dresden.de

Abstract. Feature-oriented systems describe system variants through
features as first-class abstractions of optional or incremental units of
systems functionality. The choice how to treat modularity and compo-
sition in feature-oriented systems strongly influences their design and
behavioral modeling. Popular paradigms for the composition of features
are superimposition and parallel composition. We approach both in a
unified formal way for programs in guarded command language by intro-
ducing compositional feature-oriented systems (CFOSs). We show how
both compositions relate to each other by providing transformations
that preserve the behaviors of system variants. Family models of feature-
oriented systems encapsulate all behaviors of system variants in a single
model, prominently used in family-based analysis approaches. We intro-
duce family-ready CFOSs that admit a family model and show by an
annotative approach that every CFOS can be transformed into a family-
ready one that has the same modularity and behaviors.

1 Introduction

Feature-oriented systems [29,18,2] excel in their concept of behavioral modular-
ity [40,31] that is provided through features, i.e., first-class abstractions of an
optional or incremental unit of functionality [40]. They are first and foremost
used to model software product lines (SPLs) [16] where each software product
corresponds to a combination of features. However, feature-oriented concepts
have shown to be applicable in a wide range of areas, e.g., to model contexts [1]
or heterogeneous (hardware) systems [22,21,5]. A central aspect within feature-
oriented systems is the actual construction of a product from a given feature
combination [30]. Annotative approaches, prominently applied in featured tran-
sition systems (FTSs) [14], incorporate all behaviors of any product in a single
family model by annotating feature guards to behaviors. Behaviors are then
effective in those products where the feature combination fulfills the feature
guard. Family models are successful in the context of feature-oriented system
analysis: a symbolic representation of the model in combination with a single

The author has been supported by the DFG through the Cluster of Excellence EXC
2050/1 (CeTI, project ID 390696704, as part of Germany’s Excellence Strategy),
the Collaborative Research Centers CRC 912 (HAEC) and TRR 248 (see https://
perspicuous-computing.science, project ID 389792660), the Research Training Group
RoSI (GRK 1907), Deutsche Telekom Stiftung, and the 5G Lab Germany.

c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 162–180, 2019.
https://doi.org/10.1007/978-3-030-30446-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_9&domain=pdf
https://perspicuous-computing.science
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-30446-1_9

Compositional Feature-Oriented Systems 163

analysis run may avoid the exponential blowup in the number of features that
arises when analyzing every product one-by-one [15,21]. Opposed to annota-
tive approaches, compositional approaches model the behaviors of features sep-
arately through feature modules [31,21] that are composed towards a product.
The de-facto standard composition operators for feature modules are superim-
position [8,33] and parallel composition [36], both syntactically defined on the
chosen behavioral formalism for feature modules. Superimposition describes how
a base behavior is changed when composing a feature module, a concept also
apparent in delta-oriented modeling [39]. This approach is mainly used in the
software-engineering domain and formalized, e.g., for feature-oriented variants of
Java [3,7] and C++ [4]. But also for low-level programming languages such as
guarded command languages [20], superimposition approaches have been applied
for the analysis of feature-oriented systems [37,13]. On the other hand, parallel
composition focuses on the interaction between composed feature modules via
shared actions. Paramount in formal methods, it is not surprising that parallel-
composition approaches are mainly used when it comes to the verification and
analysis of feature-oriented systems [25,14,22]. Verification tools mostly rely on
an input language based on guarded commands, which lead to fPromela [12]
and ProFeat [9], feature-oriented extensions of the model-checker input lan-
guages of SPIN [27] and Prism [34], respectively.

Although both composition operators are widely used for the design and
analysis of feature-oriented systems and there are common foundations in the
case of guarded command languages, yet there does not exist any framework that
covers both composition operators. We introduce compositional feature-oriented
systems (CFOSs) that follow the usual two-level approach for feature-oriented
systems comprising a feature model and behavioral model, but with the focus on
compositional specification. In particular, we consider feature modules given in a
featured variant of guarded command language as behavioral model, composed
towards products specified in the feature model through parallel composition or
superimposition. Provided the concept of CFOSs, we mainly answer the following
research questions in this paper:

(RQ1) Is there an automated annotative approach for CFOSs that admits a
family model and maintains behaviors, modularity, and locality?

(RQ2) Are there automated translations between CFOSs on superimposition
and parallel composition that maintain behaviors, modularity, and locality?

Here, maintaining modularity is understood as preserving the feature model
and the assignment of feature modules to features, while maintaining local-
ity [31] ensures that variables over which the feature modules are specified
do not change. Answering (RQ1) positively would provide a unified annota-
tive and compositional approach to specify feature-oriented systems. For this,
we introduce family-ready CFOSs where composing all feature modules yields
a family model for the whole feature-oriented system but still allows for the
compositional construction of single products. We show that any CFOS can be
turned into a family-ready CFOS of polynomial size, mainly following a lifting
approach [38]. Family-ready CFOSs facilitate the specification of compositional

164 C. Dubslaff

dynamic feature-oriented systems [24,19,21], i.e., systems where feature combi-
nations can change during runtime. Given a reconfiguration graph that describes
the changes of feature combinations, the behavior of the dynamic (family-ready)
CFOS is then provided by a simple product construction that resolves the fea-
ture guards in the composition of all features in the CFOS. The question (RQ2)
addresses the relationship between superimposition and parallel composition and
a positive answer would provide the foundations to use both formalisms inter-
changeably, e.g., analyzing feature-oriented systems specified with superimposi-
tion with tools that have an input language based on parallel composition or vice
versa, generating programs based on superimposition out from verified CFOSs
based on parallel composition. We show that any parallel-composition CFOS
can be transferred into a superimposition CFOS that has exponential size and
maintains behaviors, modularity, and locality. The converse is only possible not
requiring locality and we present a transformation that turns any superimposi-
tion CFOSs into an exponentially-sized parallel-composition CFOS.

Further Related Work. In [23], a superimposition operator on interacting
parallel processes (an extension of guarded command language) has been con-
sidered. While we consider superimposition on the same level as parallel compo-
sition, they developed a calculus where superimposition is applied on processes
appearing in a fixed parallel composition.

Transformations akin to the one addressed in (RQ1) have been already
addressed in the context of FTSs and their probabilistic counterparts. The lifted
feature composition of [13] is a superimposition variant that incorporates case
distinctions depending on possible feature combinations in the input language
of NuSMV [11]. Their approach requires a modified composition other than
the standard one in NuSMV and, applied to our guarded command language
setting, would yield an exponential blowup while we present a polynomial trans-
lation. Also in [12] and [9], the lifting approach has been applied towards fam-
ily models specified in fPromela and ProFeat, respectively. However, their
semantics might introduce stutter steps and thus is not family-ready. Concerning
dynamic feature-oriented systems, [24] and [19] describe feature switches through
reconfiguration patterns and rules, respectively, while we follow the concept of
reconfiguration graphs also used in [21]. However, [21] inherently requires the
feature-oriented system specified to be family-ready while this is usually not the
case during the development: feature modules do not a priori include information
about all other features of the feature-oriented system to maintain reusability
within similar but different systems.

2 Theoretical Foundations

In this section we introduce our formal framework used throughout the paper.
Although not yet been considered like this in the literature, it mainly relies on
standard concepts [20,21,14]. We denote by ℘(X) the power set of a set X. Given
partial functions fi : Xi ⇀ Yi for i ∈ {1, 2} we define f1�f2 : X1 ∪ X2 ⇀ Y1 ∪ Y2

by (f1�f2)(x) = f2(x) in case f2(x) is defined and (f1�f2)(x) = f1(x) otherwise.

Compositional Feature-Oriented Systems 165

Interfaces. An interface I = 〈Int, Ext〉 with Int ∩ Ext = ∅ characterizes
internal and external elements through finite sets Int and Ext, respectively.
If there is no chance of confusion we sometimes write I for the set Int ∪ Ext.
In case two interfaces 〈X,X ′〉 and 〈Y, Y ′〉 have disjoint internal elements, i.e.,
X ∩ Y = ∅, they are composable. We define a composition operator ⊕ where
〈X,X ′〉 ⊕ 〈Y, Y ′〉 = 〈Z,Z ′\Z〉 with Z = X ∪ Y and Z ′ = X ′ ∪ Y ′.

Arithmetic Expressions and Constraints. Let Var be a finite set of vari-
ables, on which we define evaluations as functions η : Var → Z. The set of eval-
uations over Var is denoted by Eval(Var). Let z range over Z and v range over
Var , then the set of arithmetic expressions A(Var) is defined by the grammar
a :: = z | v | (a + a) | (a · a). Variable evaluations are extended to arithmetic
expressions by η(z) = z, η(a1+a2) = η(a1)+η(a2), and η(α1 ·α2) = η(a1) ·η(a2).
C(Var) denotes the set of constraints over Var , i.e., terms of the form (a ∼ z)
with a ∈ A(Var), ∼ ∈ {>,≥,=,≤, <, �=}, and z ∈ Z. For a given evaluation
η ∈ Eval(Var) and constraint (a ∼ z) ∈ C(Var), we write η |= (a ∼ z) iff
η(a) ∼ z. Note that with integer-valued variables we can mimic Boolean vari-
ables x ∈ Var by identifying x with (x ≥ 1) and ¬x with (x = 0).

Boolean Expressions. For a countable nonempty set X, we define Boolean
expressions B(X) by the grammar ψ ::= tt | x | ¬ψ | ψ ∧ ψ where x ∈ X.
We might denote by ff = ¬tt and use well-known Boolean connectives such as
disjunction ∨, implication →, etc. from which a Boolean expression can be easily
obtained using standard syntactic transformations. The satisfaction relation for
Boolean expressions |= ⊆ ℘(X) × B(X) is defined in the usual way, i.e., for
any Y ⊆ X: Y |= x iff x ∈ Y , Y |= ¬ψ iff Y �|= ψ, and Y |= ψ1 ∧ ψ2 iff Y |=
ψ1 and Y |= ψ2. For an evaluation η ∈ Eval(Var) and ψ ∈ B(C(Var)), we write
η |= ψ iff {c ∈ C(Var) : η |= c} |= ψ.

Transition Systems. A transition system is a tuple T = (S,Act , T, ι) where
S is a finite set of states, Act a finite set of actions, T ⊆ S × Act × S is a
transition relation, and ι ∈ S is an initial state. We usually write s α−→ s′ in
case (s, α, s′) ∈ T . For transition systems Ti = (Si,Act i, Ti, ιi) with i ∈ {1, 2} we
denote by Si the set of reachable states in Ti, i.e., Si ⊆ Si is the smallest set for
which ιi ∈ Si and where for any s ∈ Si, (s, α, s′) ∈ Ti we have s′ ∈ Si. We call
T1 and T2 equivalent up to isomorphism, denoted T1

∼= T2, if there is a bijection
ξ : S1 → S2 such that ξ(ι1) = ι2 and (s, α, s′) ∈ T1 iff (ξ(s), α, ξ(s′)) ∈ T2.

2.1 Feature Models

Feature-oriented systems are usually specified by a feature model and a featured
behavioral model. Given an abstract set of features F , a feature model F expresses
variability in the system over valid combinations of features V[F] ⊆ ℘(F). The
featured behavioral model describes the operational behaviors of features, i.e.,
their actual functionality.

Feature Diagrams. The de-facto standard feature model for static feature-
oriented systems such as software product lines (SPL) is provided through feature

166 C. Dubslaff

Vending Machine (v)

Cancel (c) Beverages (b) Free Drinks (f)

Soda (s) Tea (t)

vbst vbstf

vbstc vbstfc

+f

−f

+f

−f

+c +c

Fig. 1. Feature diagram (left) and reconfiguration graph (right) for a vending machine

diagrams [29]. They are tree-like hierarchical structures over nodes representing
features. Figure 1 (left) depicts a feature diagram of a vending machine SPL [6,14]
over features F = {v, b, s, t, f, c}. Feature v encapsulates the basic functionality of
a vending machine, b has the functionality of providing drinks to the customer,
either soda (feature s), or tea (feature t), or both. While usually drinks have to
be paid, the optional feature f (indicated by the circle on top of the feature)
adds the possibility to provide free drinks. When the second optional feature c is
active, the customer can cancel any vending process, leading to a cash back. In
our setting, it suffices to regard a feature diagram D as a compact representation
of valid feature combinations V[D] ⊆ ℘(F). Within the vending machine SPL,
there are 12 valid feature combinations.

Reconfiguration Graphs. Dynamic feature-oriented systems [24,26] allow
to change feature combinations during system execution. A reconfiguration
graph [19] (also called feature controller [21]) describes feature changes by a
transition system G =

(
Loc×℘(F),Act , R, (0, I)

)
where Loc is a finite set of

locations and (0, I) ∈ Loc×℘(F) is an initial location with an initial feature
combination. The set of valid feature combinations V[G] is the set of feature
combinations reachable in G. In Fig. 1 (right) a reconfiguration graph for a vend-
ing machine SPL is depicted, where we abbreviate a node (, {f1, . . . , fn}) over
the single location 	 by f1 . . . fn. The basic variant serves both soda and tea, and
can be step-wise upgraded with features c and f, providing the functionality for
cancel and free drinks, respectively. While a cancel upgrade cannot be reverted,
it is possible to switch back from free to paid drinks.

2.2 Featured Transition Systems

As behavioral model for feature-oriented systems, [15] introduced the con-
cept of featured transition systems (FTSs). FTSs are transition systems whose
transitions are amended with feature guards, i.e., Boolean expressions over
the set of features. Formally, an FTS is a tuple Fts = (S, F,Act , T, ι) where
S, F , and Act are finite sets of states, features, and actions, respectively,
T ⊆ S × B(F)×Act × S is a featured transition relation, and ι ∈ S is an
initial state. Given a feature combination X ⊆ F , Fts induces a transition
system Fts(X) = (S,Act , TX , ι) where (s, α, s′) ∈ TX iff (s, f, α, s′) ∈ T and

Compositional Feature-Oriented Systems 167

Pv : {m = 0}, ∅

[pay] tt & tt m := m+1
[cancel] c & tt m := 0
[select s] s∧¬f &m>0 m := m−1
[select s] s∧f & tt ∅

[select t] t∧¬f &m>0 m := m−1
[select t] t∧f & tt ∅

Ps : {ns = 100}, ∅

[refill] tt & tt ns := 100
[select s] tt &ns>0 ns := ns−1

Pt : {nt = 20}, ∅

[refill] tt & tt nt := 20
[select t] tt &nt>0 nt := nt−1

Pvst : {m = 0, ns = 100, nt = 20}, ∅

[pay] tt & tt m := m+1
[cancel] c & tt m := 0
[refill] tt∧tt & tt∧tt ns := 100, nt := 20
[select s] s∧¬f∧tt &m>0∧ns>0 m := m−1, ns := ns−1
[select s] s∧f∧tt & tt∧ns>0 ns := ns−1
[select t] t∧¬f∧tt &m>0∧nt>0 m := m−1, nt := nt−1
[select t] t∧f∧tt & tt∧nt>0 nt := nt−1

Fig. 2. Simple programs for the vending machine SPL

X |= f . An FTS usually encodes all behaviors of valid feature combinations
in a feature-oriented system, i.e., it is a family model. Family models facili-
tate the description of operational behaviors w.r.t. dynamic feature models and
can be used for a family-based analysis [21]. The transition-system semantics
of Fts and a reconfiguration graph G =

(
Loc×℘(F),Act ′, R, (0, I)

)
is defined

as Fts��G =
(
S×Loc×℘(F),Act ∪ Act ′, TG , (ι, 	0, I)

)
where TG is the smallest

transition relation that satisfy the rules

(s, f, α, s′) ∈ T (,X) ∈ Loc×℘(F) X |= f α �∈ Act ′

(s, 	,X) α−→ (s′, 	,X)

s ∈ S
(
(,X), α, (′,X ′)

)
∈ R α �∈ Act

(s, 	,X) α−→ (s, 	′,X ′)

(s, f, α, s′) ∈ T
(
(,X), α, (′,X ′)

)
∈ R X |= f α ∈ Act ∩ Act ′

(s, 	,X) α−→ (s′, 	′,X ′)

2.3 Featured Programs

Towards a compositional specification of FTSs, we rely on programs in a fea-
tured variant of Dijkstra’s guarded command language [20], following a similar
approach as within featured program graphs [12]. Let V = 〈IntV,ExtV 〉 be a
variable interface over internal variables IntV and external variables ExtV , and
F and Act finite nonempty sets of features and actions, respectively. We define
Cmd(V, F,Act) to be the set of commands 〈f, g, α, u〉 where f ∈ B(F) is a fea-
ture guard, g ∈ B(C(V)) is a guard, α ∈ Act an action, and u : IntV ⇀ A(V)
is a partial function called update. For better readability, we usually write
“[α] f & g �→�→�→ u” for “〈f, g, α, u〉”.

Then, a program is a tuple Prog = (V, F,Act , C, ν) where C ⊆
Cmd(V, F,Act) is a finite set of commands and ν ∈ Eval(IntV) is an initial
evaluation of internal variables. We assume w.l.o.g. that for every action in
Act there is a command, i.e., for all α ∈ Act there are f , g, and u such that
[α] f & g �→�→�→ u ∈ C, and that for each variable there is at least one command
containing this variable. On the left of Fig. 2 three programs Pv, Ps, and Pt are
depicted, following the vending machine SPL example by implementing features
v, s, and t, respectively. We indicated the initial variable evaluation in the vari-
able interface and denoted updates (v, e) for some variable v and expression e
by v′ := e.

Following the concepts of delta-oriented formalisms [39], we define a delta-
program as a pair (Prog,Δ) where Δ is a modification function

Δ : Cmd
(
〈ExtV, IntV 〉, F, Act

)
→ ℘(Cmd

(
〈V, ∅〉, F, Act

)
).

168 C. Dubslaff

We require that only finitely many commands involved in modifications, i.e.,
when DΔ denotes the set of commands c ∈ Cmd

(
〈ExtV, IntV 〉, F,Act

)
where

Δ(c) �= {c}, we require DΔ and Δ(c) to be finite for each c ∈ DΔ. The
size of Δ is then defined as |Δ| = |DΔ| +

∑
c∈DΔ

∣
∣Δ(c)

∣
∣. We usually spec-

ify modification functions by only providing the finitely many modifications.
Modification functions are naturally extended to sets of commands E ⊆
Cmd

(
〈ExtV, IntV 〉, F,Act

)
by Δ(E) =

⋃
c∈E Δ(c). The size |(Prog,Δ)| of a

delta-program (Prog,Δ) is the number of commands in C and in modifications
of Δ, i.e., |(Prog,Δ)| = |C| + |Δ|.
Compositions. Let Progi = (Vi, Fi,Act i, Ci, νi) for i ∈ {1, 2} be programs with
IntV1∩IntV2 = ∅ and set V = V1⊕V2, F = F1∪F2, Act = Act1∪Act2, and ν =
ν1�ν2. The parallel composition of Prog1 and Prog2 is defined as Prog1‖Prog2 =
(V, F,Act , C, ν) where C is the smallest set of commands satisfying the following
rules:

(int1)
[α] f1 & g1 �→�→�→ u1 ∈ C1 α �∈ Act2

[α] f1 & g1 �→�→�→ u1 ∈ C
(int2)

[α] f2 & g2 �→�→�→ u2 ∈ C2 α �∈ Act1
[α] f2 & g2 �→�→�→ u2 ∈ C

(sync)
[α] f1 & g1 �→�→�→ u1 ∈ C1 [α] f2 & g2 �→�→�→ u2 ∈ C2

[α] f1∧f2 & g1∧g2 �→�→�→ u1�u2 ∈ C

When (Prog2,Δ) is a delta-program with Δ(C1) ⊆ Cmd
(
V, F,Act

)
, the super-

imposition of Prog1 by (Prog2,Δ) is defined as the program Prog1•(Prog2,Δ) =(
V, F,Act , C2 ∪ Δ(C1), ν

)
. Intuitively, superimposition modifies the commands

of Prog1 according to Δ and adds the commands of Prog2 to Prog1. The result of
a superimposition is a program, i.e., a delta-program with empty modifications.
In this sense, superimposition also provides a composition on delta-programs
by disregarding the modification sets of the first component and amending the
empty modification set to the superimposition result.

Example 1. On the right of Fig. 2, the parallel composition Pvst = Pv ‖ Ps ‖ Pt
is listed. Note that parallel composition is purely syntactic and select actions
synchronize through rule (sync). The same result could be obtained through
superimposition, i.e., Pvst = Pv • (Ps′,Δs) • (Pt′,Δt) where Ps′ is as Ps but
without the select s command (i.e., only the refill command) and Pt′ is as Pt
but with an empty set of commands. Further,

Δs =
{
([select s] s∧¬f &m>0 �→�→�→ m′ := m−1 ,

{ [select s] s∧¬f∧tt &m>0∧ns>0 �→�→�→ m′ := m−1, ns′ := ns−1 }),
([select s] s∧f & tt �→�→�→ ∅ , { [select s] s∧f∧tt & tt∧ns>0 �→�→�→ ns′ := ns−1 })}

Δt =
{
([select t] t∧¬f &m>0 �→�→�→ m′ := m−1 ,

{ [select t] t∧¬f∧tt &m>0∧nt>0 �→�→�→ m′ := m−1, nt′ := nt−1 }),
([select t] t∧f & tt �→�→�→ ∅ , { [select t] t∧f∧tt & tt∧nt>0 �→�→�→ nt′ := nt−1 })
([refill] tt & tt �→�→�→ ns′ := 100 , { [refill] tt∧tt & tt∧tt �→�→�→ ns′ := 100, nt′ := 20 })}

Compositional Feature-Oriented Systems 169

Semantics. A program where no external variable appears in any command
intuitively behaves as follows. Starting in the initial variable evaluation, the
evaluations of the internal variables are changed according to the updates of one
of the enabled commands, i.e., commands where its guard and feature guard
are satisfied in the current variable evaluation and feature combination. For-
mally, the FTS semantics of a program Prog =

(
〈IntV,ExtV 〉, F,Act , C, ν

)
with

C ⊆ Cmd
(
〈IntV, ∅〉, F,Act

)
is defined as Fts[Prog] =

(
Eval(IntV), F,Act , T, ν

)

where (η, f, α, η′) ∈ T iff there is some [α] f & g �→�→�→ u ∈ C with η |= g and
η′ = η/u. Here, η/u ∈ Eval(IntV) formalizes the effect of an update u onto an
evaluation η, i.e., (η/u)(v) = η

(
u(v)

)
for all v ∈ IntV where u(v) is defined and

(η/u)(v) = η(v) otherwise.

3 Compositional Feature-Oriented Systems

While an FTS is a monolithic behavioral model for feature-oriented systems,
compositional approaches describe the behavior for each feature encapsulated
in feature modules and how to combine feature modules towards a behavioral
model for a specific feature combination.

Definition 1. A compositional feature-oriented system (CFOS) is a tuple

S =
(

F, F , M, φ, ≺, ◦
)

where F is a finite feature domain, F is a feature model over F , M is a finite set
of feature modules assigned to features through a function φ : F → M, ≺ ⊆ F ×F
is a total order on F , and ◦ is a composition operation on feature modules.

In the following let S denote a CFOS as defined above and assume that for every
feature x ∈ F there is a valid feature combination X ∈ V[F] with x ∈ X. The
size of S, denoted |S| is the sum of the sizes of the feature modules assigned to its
features. For any nonempty feature combination X ⊆ F , we define the product
S(X) recursively via

S
(
{x}

)
= φ(x) for x ∈ F

S(X) = S
(
X\{x}

)
◦ φ(x) for x = max≺(X)

where max≺(X) stands for the maximal feature in X with respect to ≺.
While in Definition 1 we defined CFOS in a generic fashion, in the following

we focus on feature modules whose specification relies on programs and delta-
programs (see Sect. 2.2).

Definition 2. A CFOS S = (F,F ,M, φ,≺, ◦) is called

– ‖-CFOS when ◦ = ‖ and M comprises pairwise composable programs, and
– •-CFOS when ◦ = • and M comprises pairwise composable delta-programs.

170 C. Dubslaff

Example 2. Following the vending machine SPL of Fig. 1, we define a ‖-CFOS
Sv = (Fv,Fv,Mv, φv,≺v, ‖) where Fv = {v, b, s, t, f, c}, Fv is one of the feature
models of Fig. 1, Mv = {Pv,Ps,Pt, ε} as given in Fig. 2 and ε stands for an
empty feature module, and φv(v) = Pv, φv(s) = Ps, φv(t) = Pt, and φv(i) = ε
for i ∈ {b, f, c}, and v ≺v b ≺v s ≺v t ≺v f ≺v c, Then, S

(
{v, b, s, t}

)
= Pvst as

specified in Fig. 2.

We close this section with some technical definitions concerning CFOSs that
are used throughout the paper.

Definition 3. For a fixed feature domain F and total order ≺ ⊆ F × F , we
define the characteristic function χ : ℘(F) → B(F) for any X ⊆ F by

χ(X) = (x1 ∧ x2 ∧ . . . ∧ xm) ∧ (y1 ∧ y2 ∧ . . . ∧ yn)

where x1 ∪ x2 ∪ . . . ∪ xm = X, y1 ∪ y2 ∪ . . . ∪ yn = F \ X, x1 ≺ x2 ≺ . . . ≺ xm,
and y1 ≺ y2 ≺ . . . ≺ yn.

The characteristic function of a feature combination X ⊆ F provides a uniquely
defined Boolean expression that characterizes X, i.e., for all Y ⊆ F we have
Y |= χ(X) iff X = Y .

Definition 4. Let Si = (F,Fi,Mi, φi,≺i, ◦i) be some ◦i-CFOS with ◦i ∈ {‖, •}
for i ∈ {1, 2} and V[F1] = V[F2]. In case for all X ∈ V[F1]

– Fts
[
S1(X)

]
(X) = Fts

[
S2(X)

]
(X) we call S1 and S2 product equivalent

– Fts
[
S1(X)

]
(X) ∼= Fts

[
S2(X)

]
(X) we call S1 and S2 behavioral equivalent

Intuitively, product equivalence also requires the same variable names and evalu-
ations on both products, while behavioral equivalence only focuses on isomorphic
behaviors. Clearly, product equivalence implies behavioral equivalence. In this
paper we focus on these rather strong notions of equivalence as they can be guar-
anteed as such in our transformations we present in the next sections. However,
other notions of equivalences, e.g., following the concept of bisimulation [36],
could be imagined in the context of labeled FTSs.

4 Family-Ready Systems

Family models for feature-oriented systems are appealing as they contain all
behaviors of the system in a single model. Thus, they can help to avoid the
construction of every product one-by-one, facilitate the specification of dynamic
feature-oriented systems, enable a family-based analysis, and profit from concise
symbolic representations exploiting shared behaviors between products. Towards
a family model for some CFOS S, a naive annotative approach would be to amend
each product S(X) for valid feature combinations X with feature guards χ(X)1

1 Recall Definition 3 of χ(X), the characteristic Boolean expression of X.

Compositional Feature-Oriented Systems 171

and join these modified products to a single model. For CFOSs relying on pro-
grams as defined in Sect. 2.3, the family model would then be the program that
comprises exactly those commands [α]χ(X) ∧ f & g �→�→�→ u for which there is a
valid feature combination X and a command [α] f & g �→�→�→ u in the product S(X).
This approach, however, leads to a monolithic model that discards all modularity
and further requires to construct every product one-by-one beforehand.

In this section, we introduce the notion of family-readiness, capturing those
CFOSs where the composition of all feature modules yields a family model for
the feature-oriented system. Not all CFOSs are family-ready as feature mod-
ules only have to include information about their feature interactions with other
required features and not their role within the whole feature-oriented system.
This might be desired during system design, e.g., to ensure reusability of feature
modules within other but similar CFOSs or simply for separating concerns. How-
ever, in later design steps, the benefits imposed by family-readiness prevail, e.g.,
when it comes to product deployment and analyzing all products of the CFOS.
Furthermore, family-ready CFOSs unite the advantages from compositional and
annotative approaches as issued in [30]. Addressing research question (RQ1) of
the introduction, we provide automated translations of ‖-CFOSs and •-CFOSs
into product equivalent family-ready ‖-CFOSs and •-CFOSs, respectively.

For the rest of this section, let us fix a ◦-CFOS S = (F,F ,M, φ,≺, ◦) for ◦ ∈
{‖, •}. Note that for any feature combination X ⊆ F , and in particular X = F ,
S(X) is defined as feature modules are pairwise composable. Furthermore, S(X)
does not contain any command referring to external variables, providing that its
FTS semantics Fts

[
S(X)

]
is defined.

Definition 5. S is family-ready if for all X ∈ V[F]

Fts
[
S(F)

]
(X) ∼= Fts

[
S(X)

]
(X).

Stated in words, a CFOS is family-ready if the composition of any valid fea-
ture combination X admits the same behavior as composing all feature modules
and then performing a projection to feature combination X.

Example 3. Returning to the ‖-CFOS Sv for the vending machine SPL provided
in Example 2, we show that not every CFOS is a priori family-ready. Sv(F) =
Pvst where Pvst is the program illustrated in Fig. 2 on the right. However, for the
feature combination X = {v, b, t}, the transition system Fts

[
Sv(F)

]
(X) contains

behaviors refilling soda, represented by the command with action refill in Pvst,
not present in the transition system Fts

[
Sv(X)

]
(X).

The rest of this section is mainly devoted to the proof of the following theorem:

Theorem 1. From any ◦-CFOS with ◦ ∈ {‖, •} we can construct in polynomial
time a product equivalent and family-ready ◦-CFOS.

As the approach towards a family-ready system crucially depends on the com-
position operator and the corresponding feature module formalism, we sketch the
proof for Theorem 1 separately for ‖-CFOS and •-CFOS. For both we propose

172 C. Dubslaff

Pv : {m = 0}, ∅

[pay] v∧tt & tt m := m+1
[cancel] v∧c & tt m := 0
[select s] v∧s∧¬f &m>0 m := m−1
[select s] v∧s∧f & tt ∅

[select t] v∧t∧¬f &m>0 m := m−1
[select t] v∧t∧f & tt ∅

[pay]¬v∧ff & tt ∅

[cancel]¬v∧ff & tt ∅

[select s]¬v∧s & tt ∅

[select t]¬v∧t & tt ∅

Ps : {ns = 100}, ∅

[refill] s∧tt & tt ns := 100
[select s] s∧tt &ns>0 ns := ns−1
[refill]¬s∧t & tt ∅

[select s]¬s∧v & tt ∅

Pt : {nt = 20}, ∅

[refill] t∧tt & tt nt := 20
[select t] t∧tt &ns>0 nt := nt−1
[refill]¬t∧s & tt ∅

[select t]¬t∧v & tt ∅

C•
s :

[refill] s∧¬t∧tt & tt ns := 100
Δ•

s :
([select s]¬s∧s∧tt &m>0 m := m−1 ,

{ [select s]¬s∧s∧tt &m>0 m := m−1 ,

[select s] s∧s∧¬f∧tt &m>0∧ns>0
m := m−1, ns := ns−1 }),

([select s]¬s∧s∧f & tt ∅ ,

{ [select s]¬s∧s∧f & tt ∅ ,

[select s] s∧s∧f∧tt & tt∧ns>0
ns := ns−1 })

Fig. 3. Family-ready transformed feature modules for the vending machine SPL

local transformations that enrich feature modules with information about fea-
ture combinations in such a way that the modular structure of the system is
maintained and the transformed model is family-ready.

4.1 Parallel Composition

Let S be a ‖-CFOS and define the ‖-CFOS S‖ = (F,F ,M‖, φ‖,≺, ‖) through
feature modules M‖ = {Prog‖ : Prog ∈ M} where φ‖(x) = (φ(x))‖ for all
x ∈ F . For any feature x ∈ F we set φ(x) = (Vx, Fx,Actx, Cx, νx) and specify
(φ(x))‖ = (Vx, Fx,Actx, C

‖
x, νx) by

C‖
x =

{
[α]x∧f & g �→�→�→ u : [α] f & g �→�→�→ u ∈ Cx

}
∪ (1)

⋃

α∈Actx

{
[α]¬x∧

∨
y∈F (α)\{x} y & tt �→�→�→ ∅

}
(2)

Here, F (α) denotes the set of features whose modules contain an action α ∈ Actx,
i.e., y ∈ F (α) iff α ∈ Acty. Intuitively, our transformation towards C

‖
x can

be justified as follows. Adding a feature guard x to every command in feature
module φ(x) ensures that the command is only enabled in case the feature is
active (1). Commands in (2) guarantee that if feature x is not active but another
feature that has a synchronizing action, the feature module φ(x) does not block
the actions of other feature modules.

Example 4. Figure 3 on the left shows feature modules of the family-ready CFOS
S

‖
v that arises from the CFOS Sv for the vending machine SPL defined in Exam-

ple 2. As no other feature module contains a command with action pay , the
command [pay]¬v∧ff & tt �→�→�→ ∅ is introduced for Pv‖ but never enabled2. The
command [refill]¬s∧t & tt �→�→�→ ∅ ensures that the refill action is not blocked in
the family model when feature s is inactive and t is active.

The transformation can be performed in polynomial time in |S| as F (α) is
computable in polynomial time and |S‖| ≤ |Act |·|F |+ |S| where Act is the set of
all actions in feature modules of S.
2 Note that an empty disjunction always evaluates to ff.

Compositional Feature-Oriented Systems 173

4.2 Superimposition

Let S be a •-CFOS and define the •-CFOS S• = (F,F ,M•, φ•,≺, •) through
feature modules M• = {Prog• : Prog ∈ M} where φ•(x) = (φ(x))• for all x ∈ F .
Similar as within parallel composition, for any feature x ∈ F we set φ(x) =
(Vx, Fx,Actx, Cx, νx,Δx) and specify (φ(x))• = (Vx, Fx,Actx, C•

x, νx,Δ•
x). The

naive solution to specify C•
x and Δ•

x is to define for every command c appearing
in Cx or Δx a feature guard σ(c) ∈ B(F) that stands for those valid feature
combinations X where c appears in S(X), i.e., for all X ∈ V[F] we have X |= σ(c)
iff c appears in S(X). In this way, we encode those feature combinations explicitly
in the feature guards where superimposed commands are effective:

C•
x =

{
[α]σ(c)∧f & g �→�→�→ u : c = [α] f & g �→�→�→ u ∈ Cx

}
(3)

Δ•
x =

{ (
[α]σ(c)∧f & g �→�→�→ u , {[α]σ(c)∧f & g �→�→�→ u }∪ (4)

{[α]σ(c)∧f & g �→�→�→ u : c = [α] f & g �→�→�→ u ∈ Δx(c)}
)

: (5)

c = [α] f & g �→�→�→ u
}

The rule (3) generates commands also in products, rule (4) preserves the com-
mands that would be modified by later composed feature modules, and modifi-
cations are included by (5), adapted with fresh feature guards that include σ(·).

Example 5. On the right of Fig. 3, the transformed feature module (Ps′,Δs) of
Example 1 is depicted. Here, σ(·) is always either s or ¬s.

The construction of σ(c) for any command c can be achieved by stepwise
composing feature modules and adjusting the combinations σ(c). For this, not
all products have to be explicitly constructed, avoiding an exponential blowup:
a computed table for all commands appearing in any set of commands and
modifications in the modules suffices, step-by-step adjusting the feature guards
σ(·) until all feature modules have been processed. Note that |S•| ≤ 2 · |S| as at
most one command is added by (4) to each command modified, at most doubling
the overall number of commands in S.

4.3 Dynamics and Family Models

Given a family-ready CFOS S, the product S(F) is a family model of the feature-
oriented system, enabling an operational semantics for dynamic feature-oriented
systems: when G is a reconfiguration graph over F , used as feature model in S,
then Fts

[
S(F)

]
��G defines the transition-system semantics of S. However, this

interpretation requires the construction of the FTS semantics of S, flattening
the modular structure. Another approach also applied by the tool ProFeat [9]
is to interpret feature variables as standard internal variables of a reconfigura-
tion module (describing the reconfiguration graph) and then turn every featured
program into a standard program where feature guards are conjoint with the

174 C. Dubslaff

command guards. In this way, a (non-featured) compositional system arises that
can be used, e.g., for verification purposes using standard methods. Note that this
approach is applicable to both, superimposed and parallel composition CFOSs
that are family-ready.

5 Between Composition Worlds

In this section we address research question (RQ2) posed in the introduction,
i.e., whether the classes of ‖-CFOSs and •-CFOSs are expressively equivalent and
whether there are automated transformations to turn a ‖-CFOS into a product
equivalent •-CFOS and vice versa.

5.1 From Parallel Composition to Superimposition

Theorem 2. For any ‖-CFOS S over features F there is a •-CFOS S′ with
|S′| ∈ O

(
2|F |2 ·|S||F |+1

)
that is product equivalent to S.

Let us sketch the proof of Theorem 2 assuming we have given a ‖-CFOS S =
(F,F ,M, φ,≺, ‖). We define a •-CFOS S′ = (F,F ,M′, φ′,≺, •) such that S and
S′ are product equivalent. Intuitively, the synchronization between commands
in different feature modules of S has to be explicitly encoded into the sets of
modifications in feature modules of S′.

To this end, we consider δ-programs M′ = {Prog′ : Prog ∈ M} where φ′(x) =
(φ(x))′ for all x ∈ F . For any feature x ∈ F we set φ(x) = (Vx, Fx,Actx, Cx, νx),
Vx = 〈IntVx, ExtVx〉, and specify (φ(x))′ = (V ′

x, Fx,Actx, C ′
x, νx,Δ′

x). Let ↓x =
{y ∈ F : y ≺ x} and recall that F (α) = {y ∈ F : α ∈ Acty}. We define
V ′

x = 〈IntVx, ExtV 〉 with ExtV =
⋃

y∈↓x Vy \ IntVx. For the definition of C ′
x,

let B(x, α) ∈ B(F) be recursively defined by B(x, α) = ff if ↓x∩F (α) = ∅ and
B(x, α) = B(y, α) ∨ x for y = max≺(↓x ∩ F (α)).

C ′
x =

{
[α]¬B(x, α)∧f & g �→�→�→ u : [α] f & g �→�→�→ u ∈ Cx

}
(6)

The ratio behind the adapted feature guard in (6) is that modifications in δ-
programs can only modify existing commands during a composition and hence,
there have to be initial commands in “≺-minimal” features. All commands of
“≺-greater” features that would synchronize in case of parallel composition then
only modify already composed commands towards a synchronized command.
Without the added feature guard ¬B(x, α) in (6), commands of single features
could be executable even they would have synchronized with other features.

Following the composition order ≺ on features, we recursively define Δ′
x for

each x ∈ F . In case x = min≺(F), we set Δ′
x = ∅. Assume we have defined Δ′

y

for all y ≺ x and define Γ (X) for any X⊆ ↓ x as the set of commands arising
from superimposing the feature modules (φ(y))′ for all y ∈ X according to ≺.
Formally, we set Γ (∅) = ∅ and Γ (X) = C ′

y ∪Δ′
y

(
Γ (X\{y})

)
for y = max≺(X).

Δ′
x =

⋃

X⊆↓x

{ (
[α] f & g �→�→�→ u , {[α] f∧f & g∧g �→�→�→ u�u : (7)

[α] f & g �→�→�→ u ∈ Cx}
)

: [α] f & g �→�→�→ u ∈ Γ (X), α ∈ Actx

}

Compositional Feature-Oriented Systems 175

Intuitively, (7) makes the parallel composition of commands in φ(x) with com-
mands in previously composed feature modules explicit. S′ is constructible in
exponential time in |S| and we have |S′| ≤ |S||F |+1. In fact, one cannot hope to
construct a product equivalent •-CFOS that avoids an exponential blowup:

Proposition 1. There is a sequence of ‖-CFOS Sn, n ∈ N, with |Sn| = 2·|Sn−1|
for which there is no k ∈ N where Sk has a product equivalent •-CFOS S′

k with
|S′

k| < 2|Sk|−1.

We sketch the proof of the above proposition. For Fn = {x1, . . . , xn}, consider the
‖-CFOS Sn = (Fn,Fn, {M1, . . . ,Mn}, φn,≺n, ‖) with V[Fn] = ℘(Fn), φn(xi) =
Mi and xi ≺n xj for all i < j ∈ {1, . . . , n}. For i ∈ {1, . . . , n} we define
Mi = (Vi, ∅, {α}, Ci, νi) where Vi = 〈{vi, wi}, Vi−1〉 with V0 = ∅,

Ci = {[α] tt & tt �→�→�→ {(vi, 1)} , [α] tt & tt �→�→�→ {(wi, 1)} },

and νi = {(vi, 0), (wi, 0)}. Then |Sn| = 2 · n. Assume there is a k ∈ N such that
there is a •-CFOS S′

k that is product equivalent to Sk with |S′
k| < 2|Sk|−1. Then

in particular Fts
[
Sk(Fk)

]
(Fk) = Fts

[
S′

k(Fk)
]
(Fk) and hence, all 2k combinations

of updates of vi and wi to 1 have to be captured by modifications. As furthermore
there are 2k − 1 nonempty feature combinations, we have at least 2k · (2k − 1)
required modifications in S′

k. Hence, |S′
k| ≥ 22k − 2k ≥ 2|Sk|−1, contradicting the

assumption |S′
k| < 2|Sk|−1.

The above proposition is closely related to the well-known fact that perform-
ing parallel compositions might yield programs that have exponential size in the
number of components.

5.2 From Superimposition to Parallel Composition

While for every ‖-CFOS there is a product equivalent •-CFOS, such a result for
the converse direction cannot be expected.

Proposition 2. There is a •-CFOS for which there is no product equivalent
‖-CFOS.

Proof. Consider the •-CFOS S = (F,F , {Ma,Mb}, φ,≺, •) where F = {a, b},
V[F] = ℘(F), a ≺ b, and for τ ∈ F we have Mτ = (Vτ , F, {α}, Cτ , ντ ,Δτ),
Cτ = {[α] tt & tt �→�→�→ uτ } with uτ = {(vτ , 1)}, ντ = {(vτ , 0)}, φ(τ) = Mτ ,
Va = 〈{va}, ∅〉 and Vb = 〈{vb}, {va}〉, and Δa = ∅ and

Δb =
{

(c = [α] tt & tt �→�→�→ ua , {c = [α] tt & tt �→�→�→ u })
}

with u = {(va, 2), (vb, 2)}. Assume there is a ‖-CFOS S′ over feature modules M′
τ

for τ ∈ F that is product equivalent to S. Then, for any τ ∈ F variable vτ has
to be internal in M′

τ = S′({τ}) as Fts[Mτ]({τ}) = Fts[M′
τ]({τ}). Consequently,

M′
a has to contain at least one α-command updating va to 1 not enabled when b

is active and at least one α-command updating va to 2 when b is active. Similarly,
M′

b has to contain at least one α-command updating vb to 1 and at least one

176 C. Dubslaff

α-command updating vb to 2 when a is active. Following the definition of parallel
composition yields that the α-commands synchronize towards S′(F), leading to
at least one α-command that updates va to 2 and vb to 1. This commands yields
a behavior in S′(F) not apparent in S(F). Hence, Fts[S(F)](F) �= Fts[S′(F)](F)
and thus there is no such a S′ product equivalent to S. ��

However, by explicitly encoding the behaviors of some product of the •-CFOS
in a single feature module with copies of variables and guarding them with the
corresponding feature combination, we obtain a behavioral equivalent ‖-CFOS.

Theorem 3. For any •-CFOS S over features F there is a ‖-CFOS S′ with
|S′| ∈ O

(
|S| · 2|F |) that is behavioral equivalent to S.

We sketch the construction on which the proof of Theorem 3 is based on. Let
S = (F,F ,M, φ,≺, •) be a •-CFOS and define a ‖-CFOS S′ = (F,F ,M′, φ′,≺, ‖)
through feature modules M′ = {Prog′ : Prog ∈ M} where φ′(x) = (φ(x))′

for all x ∈ F . For any valid feature combination X ∈ V[F], let S(X) =
(VX , FX ,ActX , CX , νX) with VX = 〈IntVX , ExtVX〉 and define for all x ∈ F
a feature module (φ(x))′ = (〈IntV ′

x, ∅〉, F,Act ′
x, C ′

x, ν′
x). Let furthermore Vx ⊆

V[F] denote the set of all valid feature combinations containing x ∈ F , i.e.,
Vx =

{
X ∈ V[F] : x ∈ X

}
, V≺

x ⊆ Vx denote the set of all valid feature combi-
nations where x ∈ F is maximal, i.e., V≺

x =
{
X ∈ Vx : x = max≺(X)

}
. Then,

IntV ′
x =

⋃
X∈V≺

x

{
vx : v ∈ IntVX

}
comprises copies of internal variables in fea-

ture modules of S, Act ′
x =

⋃
X∈Vx

ActX , ν′
x =

⋃
X∈V≺

x

{
(vx, z) : (v, z) ∈ νX

}
,

and

C ′
x =

⋃

X∈V≺
x

{
[α]χ(X)∧f & [g]x �→�→�→ [u]x : [α] f & g �→�→�→ u ∈ CX

}
∪ (8)

{
[α]

∨
Y ∈Vx\V≺

x ,α∈ActY
χ(Y) & tt �→�→�→ ∅ : α ∈ Act ′

x

}
(9)

Here, [g]x and [u]x denote the guards and updates, respectively, where each
variable v is syntactically replaced by vx. Via (8) the behavior of S(X) is mim-
icked in the commands of the maximal feature in X, guarded by X (i.e., they
are effective iff X is active). The second part (9) guarantees that features not
maximal in a feature combination X do not block the behaviors encoded in its
maximal feature, again guarded by X through χ(X). For any feature combina-
tion X ∈ V[F] the product S(X) has at most |S| commands, added to at most
one feature module in S′ by (8). The number of valid feature combinations is
bounded by 2|F | and for each of them, which leads to at most |S| · 2|F | com-
mands in S′ as a result of (8). Also the number of actions in any feature module
is bounded by |S|, leading to at most |S| commands for each feature module by
(9). Consequently, |S′| ≤ |S| · (2|F | + |F |).
Remark on Locality and Dynamics. The transformation presented yields
a family-ready CFOS S′, but might violate locality [31], a central principle of
feature-oriented systems that imposes commands and variables to be placed in
those feature modules they belong to. Hence, S′ is not suitable to be interpreted

Compositional Feature-Oriented Systems 177

with a dynamic feature model as S′ and S• (see Sect. 4.2) might not be behavioral
equivalent. Another approach towards a ‖-CFOS that preserves locality could be
to introduce multiple copies of actions splitting the updates across the feature
modules. This could ensure that the feature modules are combined through syn-
chronization with the same action. However, this requires to alter the meaning
of actions and product equivalence to S is only obtained after projecting the
copies of the actions to the original actions.

6 Concluding Remarks

We have presented compositional feature-oriented systems (CFOSs), a unified
formalism for feature-oriented systems that are specified through feature mod-
ules in guarded command language, composed via superimposition or paral-
lel composition. With providing transformations towards family-ready CFOSs,
we connected annotative and compositional approaches for feature-oriented sys-
tems [30]. Our transformations between CFOSs with different kinds of composi-
tion operators connect feature-oriented software engineering (where superimpo-
sition is paramount) and the area of formal analysis of feature-oriented systems
(mainly relying on parallel composition). As the concepts presented are quite
generic in its nature, they could be applicable also to other kinds of feature-
oriented programming paradigms than featured guarded command languages.

Extensions. For the sake of a clean presentation, we did not introduce the
framework of CFOSs in full generality. However, many extensions can be imag-
ined where the concepts take over immediately. Additional feature module granu-
larity can be achieved by adopting delta-oriented concepts [39,19]. Given a set of
components described through programs, each feature module could be described
not by a single module but by composing multiple components. This enables the
reuse of components in multiple feature modules and enables solutions for the
optional feature problem [32]. Numeric features and multifeatures [17], can be
included in a similar way as presented in [21], i.e., evaluating feature variables
to non-negative integers and either treat them as attributes and cardinalities,
respectively. When interpreted as cardinalities, also the product definition for
CFOSs is affected, requiring to compose multiple instances of the feature. Fur-
thermore, feature modules in CFOSs could also be probabilistic programs and
delta-programs where updates in guarded commands are replaced by stochas-
tic distributions over updates. As our transformations are completely specified
on the syntactic level of guarded commands, our results would also take over to
this probabilistic case. While we introduced superimposition by explicitly stating
exact commands to be modified, also pattern-matching rules could be imagined
that modify parts of a command after matching. Also this extension does not
change much in the transformations, however one has to take care including
sufficient feature-guard information into the superimposition patterns.

Further Work. An interesting direction that also motivated our work towards
research question (RQ2) is the verification of programs from feature-oriented

178 C. Dubslaff

programming paradigms such as delta-oriented approaches with feather-
weight Java [28,7]. Using known translations from Java to guarded command
language [35] and then applying our transformation from superimposition CFOSs
to parallel CFOSs paves the way to use standard verification tools that rely on
guarded command languages as input [11,27,34]. We plan to investigate more
clever transformations than the one presented here that could avoid large parts
of the explicit encoding of superimposition into single feature modules. Another
direction for which we would also rely on results presented in this paper is to
include superimposition concepts into our tool ProFeat [10] to enable quanti-
tative analysis of probabilistic superimposition CFOSs.

References

1. Acher, M., Collet, P., Fleurey, F., Lahire, P., Moisan, S., Rigault, J.-P.: Model-
ing context and dynamic adaptations with feature models. In: 4th International
Workshop Models@run.time at Models 2009 (MRT 2009), p. 10 (2009)

2. Apel, S., Kästner, C.: An overview of feature-oriented software development. J.
Object Technol. 8, 49–84 (2009)

3. Apel, S., Kästner, C., Lengauer, C.: Feature featherweight Java: a calculus for
feature-oriented programming and stepwise refinement. In: Proceedings of the 7th
International Conference on Generative Programming and Component Engineer-
ing, GPCE 2008, pp. 101–112. ACM, New York (2008)

4. Apel, S., Leich, T., Rosenmüller, M., Saake, G.: FeatureC++: on the symbiosis of
feature-oriented and aspect-oriented programming. In: Glück, R., Lowry, M. (eds.)
GPCE 2005. LNCS, vol. 3676, pp. 125–140. Springer, Heidelberg (2005). https://
doi.org/10.1007/11561347 10

5. Baier, C., Dubslaff, C.: From verification to synthesis under cost-utility constraints.
ACM SIGLOG News 5(4), 26–46 (2018)

6. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

7. Bettini, L., Damiani, F., Schaefer, I.: Compositional type checking of delta-oriented
software product lines. Acta Informatica 50(2), 77–122 (2013)

8. Chandy, K.M., Misra, J.: A Foundation of Parallel Program Design. Addison-
Wesley, Reading (1988)

9. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: Family-based modeling and
analysis for probabilistic systems – featuring ProFeat. In: Stevens, P., W ↪asowski,
A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 287–304. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49665-7 17

10. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: Profeat: feature-oriented engi-
neering for family-based probabilistic model checking. Formal Aspects Comput.
30(1), 45–75 (2018)

11. Cimatti, A., et al.: NuSMV 2: an opensource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

12. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.-Y.: Model checking
software product lines with SNIP. Int. J. Softw. Tools Technol. Transf. 14(5), 589–
612 (2012)

https://doi.org/10.1007/11561347_10
https://doi.org/10.1007/11561347_10
https://doi.org/10.1007/978-3-662-49665-7_17
https://doi.org/10.1007/3-540-45657-0_29

Compositional Feature-Oriented Systems 179

13. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.-Y.: Formal seman-
tics, modular specification, and symbolic verification of product-line behaviour.
Sci. Comput. Program. 80, 416–439 (2014)

14. Classen, A., Cordy, M., Schobbens, P.-Y., Heymans, P., Legay, A., Raskin, J.-F.:
Featured transition systems: foundations for verifying variability-intensive systems
and their application to LTL model checking. IEEE Trans. Softw. Eng. 39(8),
1069–1089 (2013)

15. Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., Raskin, J.-F.: Model check-
ing lots of systems: efficient verification of temporal properties in software product
lines. In: Proceedings of ICSE 2010, pp. 335–344. ACM (2010)

16. Clements, P., Northrop, L.: Software Product Lines : Practices and Patterns.
Addison-Wesley Professional, Boston (2001)

17. Cordy, M., Schobbens, P.-Y., Heymans, P., Legay, A.: Beyond Boolean product-line
model checking: dealing with feature attributes and multi-features. In: Proceedings
of the 2013 International Conference on Software Engineering, ICSE 2013, pp. 472–
481. IEEE Press, Piscataway (2013)

18. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. ACM Press/Addison-Wesley Publishing Co. (2000)

19. Damiani, F., Schaefer, I.: Dynamic delta-oriented programming. In: Proceedings
of the 15th Software Product Line Conference (SPLC), vol. 2, pp. 34:1–34:8. ACM
(2011)

20. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Upper Saddle River
(1976)

21. Dubslaff, C., Baier, C., Klüppelholz, S.: Probabilistic model checking for feature-
oriented systems. Trans. Aspect-Oriented Softw. Dev. 12, 180–220 (2015)

22. Dubslaff, C., Klüppelholz, S., Baier, C.: Probabilistic model checking for energy
analysis in software product lines. In: 13th International Conference on Modularity
(MODULARITY), pp. 169–180. ACM (2014)

23. Francez, N., Forman, I.R.: Superimposition for interacting processes. In: Baeten,
J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 230–245. Springer,
Heidelberg (1990). https://doi.org/10.1007/BFb0039063

24. Gomaa, H., Hussein, M.: Dynamic software reconfiguration in software product
families. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 435–444.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24667-1 33

25. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol.
5051, pp. 113–131. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-68863-1 8

26. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic software product
lines. Computer 41(4), 93–95 (2008)

27. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual, vol.
1003. Addison-Wesley, Reading (2004)

28. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001)

29. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report, Carnegie-Mellon Uni-
versity Software Engineering Institute, November 1990

30. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines. In:
2008 ACM/IEEE 30th International Conference on Software Engineering, pp. 311–
320 (2008)

https://doi.org/10.1007/BFb0039063
https://doi.org/10.1007/978-3-540-24667-1_33
https://doi.org/10.1007/978-3-540-68863-1_8
https://doi.org/10.1007/978-3-540-68863-1_8

180 C. Dubslaff

31. Kästner, C., Apel, S., Ostermann, K.: The road to feature modularity? In: Pro-
ceedings of the 15th International Software Product Line Conference, SPLC 2011,
vol. 2, pp. 5:1–5:8. ACM, New York (2011)

32. Kästner, C., Apel, S., ur Rahman, S.S., Rosenmüller, M., Batory, D.S., Saake, G.:
On the impact of the optional feature problem: analysis and case studies. In: 2009
Proceedings of 13th International Conference on Software Product Lines, SPLC
2009, San Francisco, California, USA, 24–28 August, pp. 181–190 (2009)

33. Katz, S.: A superimposition control construct for distributed systems. ACM Trans.
Program. Lang. Syst. (TOPLAS) 15(2), 337–356 (1993)

34. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

35. Leino, K.R.M., Saxe, J.B., Stata, R.: Checking java programs via guarded com-
mands. In: Leino, K.R.M., Saxe, J.B., Stata, R. (eds.) Workshop on Object-oriented
Technology, pp. 110–111. Springer, Heidelberg (1999)

36. Milner, R.: Communication and Concurrency. PHI Series in Computer Science.
Prentice Hall, Upper Saddle River (1989)

37. Plath, M., Ryan, M.: Feature integration using a feature construct. Sci. Comput.
Program. 41(1), 53–84 (2001)

38. Post, H., Sinz, C.: Configuration lifting: verification meets software configuration.
In: Proceedings of the 2008 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2008, pp. 347–350. IEEE Computer Society,
Washington, DC (2008)

39. Schaefer, I., Worret, A., Poetzsch-Heffter, A.: A model-based framework for auto-
mated product derivation. In: Proceedings of the 1st International Workshop on
Model-driven Approaches in Software Product Line Engineering (MAPLE 2009),
collocated with the 13th International Software Product Line Conference (SPLC
2009), San Francisco, USA, 24 August 2009 (2009)

40. Zave, P.: Feature-oriented description, formal methods, and DFC. In: Gilmore, S.,
Ryan, M. (eds.) Language Constructs for Describing Features, pp. 11–26. Springer,
London (2001). https://doi.org/10.1007/978-1-4471-0287-8 2

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-1-4471-0287-8_2

Model-Based Testing

Multi-objective Search for Effective
Testing of Cyber-Physical Systems

Hugo Araujo1(B), Gustavo Carvalho1, Mohammad Reza Mousavi2,
and Augusto Sampaio1

1 Universidade Federal de Pernambuco, Recife, Brazil
{hlsa,ghpc,acas}@cin.ufpe.br

2 University of Leicester, Leicester, UK
mm789@leicester.ac.uk

Abstract. We propose a multi-objective strategy for finding effective
inputs for fault detection in Cyber Physical Systems (CPSs). The main
goal is to provide input signals for a system in such a way that they max-
imise the distance between the system’s output and an ideal target, thus
leading the system towards a fault; this is based on Genetic Algorithm
and Simulated Annealing heuristics. Additionally, we take into consid-
eration the discrete locations (of hybrid system models) and a notion
of input diversity to increase coverage. We implement our strategy and
present an empirical analysis to estimate its effectiveness.

Keywords: Cyber-Physical Systems · Search based · Input selection

1 Introduction

Cyber-Physical Systems (CPSs) integrate computational systems into their phys-
ical environments; components for products such as automobiles and airplanes
[32] are examples of modern CPSs. In order to model the continuous and discrete
dynamics often present in CPSs, hybrid models have been extensively used [6].
A typical type of CPS is a system where sensors feed input signals to a digi-
tal controller (discrete component) attached to physical actuators (continuous
component) and also outputs continuous signals.

Such systems are complex since their design is typically multidisciplinary.
It is not uncommon for a system component to deal with aspects of different
subject areas such as computer science, physics and control engineering [21].
The importance of safety and reliability in such complex and heterogeneous
systems warrant the need for further research into their verification.

Model-Based Testing techniques (MBT) can play an important role in the
verification of these systems by providing precise mathematical assurances [38].
Particularly, one can design a test strategy based on a mathematical relation
that decides whether the System Under Test (SUT) behaves as expected, with
respect to a given specification; this is also known as a conformance relation [23].

c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 183–202, 2019.
https://doi.org/10.1007/978-3-030-30446-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-30446-1_10

184 H. Araujo et al.

However, finding effective inputs for detecting faults, i.e., witnesses for non-
conformance, in a continuous system is not a straightforward task. Typically, one
needs a search algorithm optimised for the continuous domain in order to select
values to maximise the goal, e.g., a witness to a conformance relation violation.

In the present work, we adopt the (τ ,ε)-conformance notion [1,2]. Briefly
speaking, under the same input stimuli, that are given for both specification and
implementation models, the difference in the output behaviour of both systems
is analysed and a distance metric is used to verify if the output behaviours of the
specification and the implementation models are close enough to each other. We
propose a multi-objective search for selecting inputs that violate this relation.

Our first search objective is defined as the observed distance between the
output of the model and the ideal output. By maximising the distance between
the outputs (of the system under test model and those of the ideal target), we
can steer the system towards a fault or, more precisely, towards a challenging
situation that maximises the possibility of a non-conforming verdict during con-
formance testing.

As for the second objective, we make use of the control elements found in
hybrid system models to achieve structural coverage. Particularly, we consider
the locations in a Hybrid Automata [20] model as a measure for coverage.

Finally, we propose a diversity notion as our third objective. We adopt a
distance-based diversity metric that computes the Euclidean distance of pre-
viously generated inputs to generate new diverse inputs. We also make use of
change point analysis in our diversity computation, so that we generate inputs
that cover different areas and behave in different shapes.

The contributions of this work can be summarised as follows. We propose a
multi-objective search strategy for input selection that (i) maximises the distance
between the system’s output and its ideal target, (ii) makes use of the control
elements found in hybrid system models to achieve structural coverage, and (iii)
employs a diversity metric to generate additional tests covering different areas
and shapes. Furthermore, another important contribution is (iv) the empirical
evaluation of these objectives in producing effective and efficient tests. We con-
trast our results against related approaches using examples from the literature.
The formulation of the first and third objective in our context is, to the best
of our knowledge, novel. Additionally, their combined usage in multi-objective
search-based heuristics, and the particular way we use them for increased fault
detection, is novel as well.

Section 2 considers related work. Section 3 provides the necessary back-
ground. Section 4 presents our strategy for finding inputs. Section 5 presents a
case study and the results of the experiment we have performed. Finally, Sect. 6
gives a summary of our results and presents the next steps in our research agenda.

2 Related Work

In the literature, we can find several strategies for input selection for both dis-
crete and continuous systems separately. For instance, discrete systems can be
covered using structural notions such as node, edge and path coverage [9]. As for

Multi-objective Search for Effective Testing of Cyber-Physical Systems 185

continuous systems, generating test data can usually be seen as an optimisation
problem, which can be solved using search techniques [39]. However, in the case
of hybrid systems, which involve both discrete and continuous behaviour, only
a few approaches have been proposed, and are discussed in the sequel.

One class of approaches is called property falsification, exemplified by tools
such as Breach [16] and S-Taliro [10]. S-Taliro is a tool that offers an alterna-
tive solution for conformance testing of hybrid systems. Temporal verification
is used to prove or falsify temporal logic properties of the system by search-
ing for system behaviours that falsify the specification, i.e., counterexamples to
Metric Temporal Logic (MTL) properties. Its conformance testing component
uses the (τ, ε)-conformance notion [1,2], which is proposed by the same authors.
As for input selection, it uses randomised testing based on stochastic optimi-
sation techniques, such as Simulated Annealing [24], Genetic Algorithm [30],
Ant Colony Optimisation [17] and Cross Entropy [37]. In our work, even though
we offer fewer search-based techniques (Simulated Annealing and Genetic Algo-
rithm), the modular structure of our solution allows for additional heuristics
to be implemented. The main difference, however, is that our search is multi-
objective; we consider 3 search objectives simultaneously: (i) maximising output
distance from an ideal target, (ii) discrete coverage, and (iii) diversity.

A strategy that uses a notion of test diversity [28,29] for test suite generation
and selection can be seen as complementary work. It uses a search algorithm,
based on Hill-Climbing, that is guided to produce test outputs exhibiting a
diverse set of signal features. Their approach outperforms Simulink Design Ver-
ifier (SLDV) and random test generation. Later, the same authors refined the
strategy into one that considers output diversity (distance and feature based) as
search criteria [27]. Unlike their strategy, we do not focus only on Simulink mod-
els nor only on outputs. We employ diversity in the input space as search criteria
and consider a notion of distance from an ideal target for outputs. Moreover, we
make use of change point analysis to achieve different shapes for the inputs.

As for coverage, a framework for conformance testing of hybrid systems has
been proposed [14] to guide a test generation process. It focuses on state space
coverage and how much of the reachable sets of the system are covered, using a
notion called star discrepancy, which indicates how uniformly distributed are a
set of testing points in the state space. As an extension [3], a coverage-based falsi-
fication strategy is presented. Instead of focusing on state coverage, a new strat-
egy is developed based on input space coverage. The new strategy sub-divides
the search space and takes random samples from these sub-regions, prioritising
the ones with low robustness, where negative robustness indicates a property
violation. We adopt a structural coverage as our main notion. However, the cov-
erage of the input space is further emphasised by our diversity metric, which
helps covering areas of the input space distant from the ones already covered.

3 Preliminaires

Cyber-Physical Systems [7] feature a tight integration of discrete and continuous
dynamics; the semantics of CPSs can be suitably modelled as hybrid systems

186 H. Araujo et al.

[15]. Here, we use hybrid automata [8] to model CPSs since it is a well-established
and solid formalism, with an intuitive semantics, besides having tools supporting
different analyses [10,13,18,35].

We use hybrid automata to capture the desired behaviour at a higher-level
of abstraction, to make the input generation feasible. Our approach imposes no
constraints on the concrete design or implementation of CPSs. Moreover, the
semantics of many formalisms can be expressed in terms of hybrid automata [5];
hence, our approach can be applied to such formalisms as well.

3.1 Analysis of Cyber-Physical Systems

We first consider a running example. Then we introduce a formal definition of
hybrid automata, and finally we present a relation that captures a conformance
notion of an implementation with respect to a specification.

Running Example - DC-DC Boost Converter. A DC-DC boost converter
boosts the input voltage E to a higher output voltage. Figure 1 depicts the basic
schematic of a boost converter. The system works by increasing and decreas-
ing the inductor current. For that, the system has a switch that can be opened
or closed. While the switch is closed, the current flows through the inductor
generating a magnetic field. Once the switch is opened, the magnetic field is
destroyed and the current must flow through the diode, transferring the accu-
mulated energy into the capacitor. Since power must be conserved (P = VI),
the decrease in the current means an increase in the voltage. This cycle is then
repeated. Note that the control element of the boost converter transforms the
otherwise continuous system into a hybrid one. For more details, see [21].

Fig. 1. DC-DC boost converter [21].

Hybrid Automata. Hybrid automata, defined below, can be seen as an exten-
sion of finite and timed automata. Guards, reset maps, invariants and specific
dynamics for each location are added to these models, in order to allow the
specification of continuous dynamics.

In the remainder of this paper, N, R, and R+ denote the set of non-negative
integers, real numbers, and non-negative real-numbers, respectively. Consider a

Multi-objective Search for Effective Testing of Cyber-Physical Systems 187

set of real-valued variables V . A valuation of V is a function of type V → R,
which assigns a real number to each variable v ∈ V . The set of all valuations of
V is denoted by V al(V). Furthermore, the domain of a function f is denoted
by dom(f).

Definition 1 (Hybrid Automata [20]). A hybrid automaton is defined as a
tuple (Loc, V , (l0,v0), →, I , F), where

– Loc is the finite set of locations;
– V = VI �VO is the set of continuous variables, where VI and VO denote the

disjoint sets of input and output variables, respectively;
– l0 denotes the initial location and v0 is an initial valuation of V;
– →⊆ Loc × B(V) × Reset(V) × Loc is the set of jumps, where:

• B(V) ⊆ V al(V) indicates the guards under which the jump may be per-
formed, and

• Reset(V) =
⋃

V ′⊆V Val(V ′) is the set of value assignments to the vari-
ables in V after the jump;

– I : Loc → B(V) determines the allowed valuation of variables in each location
(called the invariant of the location); and

– F : Loc → B
(
V ∪ V̇

)
describes some constraints on variables and their

derivatives and specifies the allowed continuous behaviour in each location.

Locations are discrete states where each one can be viewed as a purely contin-
uous system. Furthermore, the continuous behaviour of the entire hybrid system
is captured by the valuation of a set V of continuous variables. We assume that
V is partitioned into disjoint sets of input variables, denoted by VI , and output
variables, denoted by VO . A jump represents a change in the current operating
location. To perform a jump, the transition guard has to hold. Moreover, a jump
is an immediate action, which does not require time to pass. During a jump
event, the valuation of the continuous variables can be reset. Each location also
contains a set of differential equations to describe how the continuous variables
evolve in that location.

Figure 2 shows the hybrid automaton of our running example. The four dis-
crete states of the system are dependent on the switch (S) and diode (D) modes.
The switch can be open or closed while the diode can be blocking or conducting.
For instance, modes 1 and 3 represent the system state where the switch is open;
in modes 2 and 4, the switch is closed. Analogously, the diode is conducting in
modes 3 and 4 and blocking in modes 1 and 2. The inputs for the system are the
switch S , the current I240 and the voltage V24. The output parameters are the
current I24 and the boosted output voltage V240. Furthermore, Φ is the magnetic
flux produced by the inductor, L is the inductance, q is the electric charge and
C represents the capacitance.

Hybrid Conformance. As previously mentioned, the authors of [1,2] propose
a conformance relation based on the output behaviour of a system specifica-
tion and implementation models. This is formalised in a closeness relation (see
Definition 2). This section is based on the theory presented in [2].

188 H. Araujo et al.

Fig. 2. Hybrid automaton of the DC-DC boost converter [4].

In practice, due to un-modelled physical occurrences such as noise and delays,
the implementation behaviour often deviates in time and value with respect
to the model [1]. The absence of margins of error can lead to undesired non-
conforming verdicts due to intrinsic imprecision in measurement devices and
calibration of the implementation and testing infrastructure. Hence, in the (τ, ε)-
conformance relation, a maximum temporal error of τ and spatial error of ε are
allowed between the output signals (of the implementation and specification).

In the following definition, a trajectory captures the dynamical evolution of
the system, representing its valuation through time. The notion of trajectory
abstracts away from discrete locations. A trajectory y is a mapping y : E →
Val(V), where Val(V) denotes the valuation of a set of variables V , and E
represents a set of the Hybrid Time Domain, which is a subset of R+ × N. A
Hybrid Time is a tuple (t , j) corresponding to the point t in time and the number
j of jumps. The set of all trajectories for a hybrid automata HA is denoted by
Trajs(HA).

Definition 2 ((τ ,ε)-Closeness). Consider a test duration T ∈ R+, a maxi-
mum number of jumps J ∈ N, and τ, ε > 0; then two trajectories y1 and y2 are
said to be (τ ,ε)-close, denoted by y1 ≈(τ,ε) y2, if 1 and 2 below hold.

1.∀ t : R+; i : N | (t , i) ∈ dom(y1) ∧ t ≤ T ∧ i ≤ J •
∃ s : R+; j : N | (s, j) ∈ dom(y2) •
| t − s |≤ τ∧ || y1(t , i) − y2(s, j) ||≤ ε.

2.∀ t : R+; i : N | (t , i) ∈ dom(y2) ∧ t ≤ T ∧ i ≤ J •
∃ s : R+; j : N | (s, j) ∈ dom(y1) •
| t − s |≤ τ∧ || y2(t , i) − y1(s, j) ||≤ ε.

Multi-objective Search for Effective Testing of Cyber-Physical Systems 189

The notation | e | stands for the absolute value of e, whilst || a − b || stands
for the (Euclidean) distance between a and b. A solution for a HA is a function
s : E → Loc × Val(V), which yields a location and a valuation given a Hybrid
Time [2].

Definition 3 (Solution Pair). Let u and y be two trajectories of types E →
Val(VI) and E → Val(VO), respectively; (u, y) is a solution pair to a hybrid
automaton HA if

– dom(u) = dom(y), and
– ∃φ : E → Val(V) | φ ∈Trajs(HA) • dom(φ) = dom(u) ∧ u = φ ↓ VI ∧ y =

φ ↓ VO , where y ↓ V stands for the restriction of trajectory y to the set of
variables V

The notion of solution pair is necessary in order to abstract away from loca-
tions and distinguish between input and output trajectories. Two trajectories are
considered a solution pair for a hybrid automata HA, if there exists a trajectory
for HA that captures the behaviour of both trajectories when it is restricted to
input and output variables. We denote by Sols(HA) the set of all Solution Pairs
for HA. Definition 4 formalises the (τ, ε)-conformance relation.

Definition 4 (Conformance Relation). Consider two hybrid automata HA1

and HA2. Given a test duration T ∈ R+, a maximum number of jumps J ∈ N,
and τ, ε > 0, HA2 conforms to HA1, denoted by HA2 ≈(τ,ε) HA1, if and only if

∀ u : E → Val(VI); y1 : E → Val(VO) | (u, y1) ∈ Sols(HA1) •
∃ y2 : E → Val(VO) | (u, y2) ∈ Sols(HA2) • y1 ≈(τ,ε) y2

In the above definition, T and J are implicitly used in the expression y1 ≈(τ,ε) y2.

4 Finding Inputs via Search-Based Heuristics

In this section, we present our strategy for input selection: a modular and scalable
process for finding inputs that are directed towards detecting non-conformance.

The main motivation behind our strategy is an efficient way to generate
inputs that not only provide structural coverage and maximise diversity metrics
but also maximise the possibility of finding faults. Particularly, we consider a
notion called critical epsilon, which is related to the distance between two tra-
jectories, e.g., ouptut and reference signals. Our search is performed in such a
way to maximise the critical epsilon, thus, also maximising the chances to detect
non-conformance. We emphasise that this particular combination is novel in this
domain and our experiments (see Sect. 5) show that it can lead to effective test
cases.

190 H. Araujo et al.

4.1 Search Based Inputs and Critical Epsilon

Given two (reference and output) signals in the specification and a fixed τ , we
denote by critical epsilon the smallest ε that makes the two signals (τ , ε)-close.
We formally define it as follows.

Definition 5 (Critical Epsilon). Consider two trajectories y1 and y2, a test
duration T ∈ R+, a maximum number of jumps J ∈ N, then, the critical epsilon
for y1, y2 and a given τ > 0 is

ce(τ, y1, y2) = min{ε : R+ | y1 ≈(τ,ε) y2 • ε}

Thus, by fixing the temporal margins, it is possible to build a function that
computes the critical epsilon. We use this function to select the input points
that generate the highest critical epsilon (see Definition 6); such inputs steer the
implementation towards the area in which it is more likely to show deviating
behaviour and thus a non-conforming verdict.

Definition 6 (Highest Critical Epsilon). Consider two hybrid automata
HA1 and HA2, a set of inputs U : E → Val(VI) and outputs yu

1 , yu
2 : E →

Val(VO) | (u, y1) ∈ Sols(HA1) ∧ (u, y2) ∈ Sols(HA2) ∧ u ∈ U , then, the highest
critical epsilon for U , HA1 and HA2 and a given τ > 0 is:

hce(τ,U ,HA1,HA2) = max{u : U • ce(τ, yu
1 , yu

2)}

In summary, our strategy consists of searching for inputs that yield a greater
spatial distance between the reference and the system output.

However, since continuous input spaces are infinite by definition, it is not
feasible to consider every possible input. A search must be performed, which
reduces test-case generation into a global optimisation problem.

For that, we have implemented two approaches: Simulated Annealing and
Genetic Algorithms, which are well established probabilistic algorithms for com-
puting global optima [19,30]. Given a function f , they attempt to heuristically
approximate the global maxima or minima of f . However, their heuristic nature
brings a certain degree of imprecision; this is mitigated by adjusting the param-
eters in such a way to find a compromise between accuracy and performance.

Figure 3a shows the core idea behind the input generation. In summary, given
an input, whose time interval is [0, t], we search for the input value at (t+1) that
better satisfies our search metrics, e.g., the highest critical epsilon. Note that the
initial input value (where t = 0) must be given. This process is repeated until
the end of the simulation.

Since the basic algorithm only searches for input values for one timestep at a
time (t +1, t +2, ...), it is possible that a choice that gives a lower critical epsilon
at (t + 1) (and therefore is not selected), might result in a non-conformance
verdict in the future (e.g., at t + 10). This will not be detected by the algorithm

Multi-objective Search for Effective Testing of Cyber-Physical Systems 191

(a) Input generated by a search heuris-
tic.

(b) Input generated and its change point
analysis.

Fig. 3. Example of inputs.

and then the non-conformance will be missed. Thus, testing the system using
multiple input trajectories should increase the odds of detecting faults, which
led us to proposing notions of coverage and diversity to remedy this.

A drawback of this strategy is that it can yield unrealistic inputs. For
instance, the variation rate of the resulting signal can be impractical. However,
unrealistic inputs do not necessarily mean invalid inputs. The algorithm searches
for inputs that fit the input domain. For instance, consider a turbine with a sen-
sor that measures wind speed in the range of 0 to 100 m/s as input and that our
algorithm finds a fault whenever the wind changes its speed from 0 to 100 m/s
in 0.01 s. Although a fault was detected, such a high variance in wind speed
might have never been recorded before and could be considered unrealistic. We
consider this input unrealistic, but not strictly invalid.

These scenarios are then useful to further constrain the model. One solution
we propose is for the developers to refine the model to disallow such inputs by
defining preconditions (e.g., bounds of derivatives) on inputs.

4.2 Notions of Coverage

Test coverage can be used as an indicator for measuring test quality [22], and a
positive relationship between test coverage and code reliability has been empir-
ically established [26]. However, coverage has a cost associated with it, and
achieving high degrees of coverage is not always feasible or necessary [31]. A
contribution of this work is the integration of coverage criteria into our strategy.
In this section, we show how we have implemented structural coverage criteria
that are able to impose some control on the input selection algorithm, ensuring
that the generated test cases cover particular elements of the hybrid automata.

We have considered three types of structural coverage: discrete state, edge
and prime path coverage [9]. Discrete state guarantees that each discrete state in
the model will be visited by our strategy. Edge coverage is achieved by triggering
all transitions. Finally, path coverage is a stronger notion of coverage that aims

192 H. Araujo et al.

to cover a particular set of transitions in the model and encompasses both node
(i.e., discrete state) and edge coverage. In this work, we emphasize discrete state
coverage, due to the cost effectiveness that we obtained in our experiments.

Discrete State Coverage. We adopt discrete state coverage, since a critical
epsilon-based input does not guarantee that the system runs through each and
every state. Given that a system can have issues in multiple states, visiting all
of them can uncover non-conformance.

In this search strategy, we guide the system towards each and every discrete
state (i.e., location) present in the specification. Once we move to an uncovered
state, we switch the priority to finding the highest critical epsilon. This way we
guarantee at least one test per location. The main idea is to generate inputs
that will guide the system towards each discrete state as quickly as possible and,
then, search for problems that might arise once the system is in those specific
states.

In order to guide the system towards the desired discrete state, we require
information on its boundaries and information on transitions obtained through
the hybrid automaton specification provided by the user.

4.3 A Notion of Diversity

As an additional criterion for our search we consider a diversity metric. More pre-
cisely, we adopt a distance-based diversity metric that computes the Euclidean
distance of previously generated inputs to generate a new diverse input. Diversity
is employed alongside the critical epsilon search.

However, a pure Euclidean distance evaluation on all points could lead to
inputs that have the same shape and simple spatial shift, such as two constant
signals that are distant from each other. To avoid this, our diversity metric takes
in consideration the change points in the input signals. A change point analysis
[34] detects sampling points in a trajectory in which there is an abrupt change.
Thus, to generate more interesting and effective inputs, we only employ the
diversity criteria to the change points of the previously generated ones.

In order to properly employ diversity, one needs inputs generated beforehand,
from which the new inputs can be diversified. Our strategy is as follows. In the
first step, a core group of inputs are generated using the highest critical epsilon
metric with discrete coverage. From this group, we execute the second step, where
more tests are generated using a combination of diversity metric with critical
epsilon. Consider the trajectory in Fig. 3b as an input generated in the first step
(coverage + critical epsilon) and its change points, which are circled around.
As the new input is being produced in the second step, the priority assigned to
diversity and critical epsilon changes proportionally to the distance to a change
point. The closer the new input gets to a change point, the more we increase
the priority of the diversity metric and decrease the priority of critical epsilon,
so that the new input will distance itself from regions covered by old inputs.
Analogously, the further the new input gets from the change points, the more
we decrease the priority of diversity and increase the priority of critical epsilon.

Multi-objective Search for Effective Testing of Cyber-Physical Systems 193

Lastly, employing diversity means that we can generate diverse inputs indef-
initely. Hence, we have decided to let the user set a maximum number of inputs
as stopping criteria; we plan to employ a more systematic approach in the future.

4.4 Mechanisation

Currently, our tool, HyConf, can read Simulink models and perform confor-
mance testing using (τ, ε)-conformance notion based on user-defined parameters
(τ and ε). Given a fixed τ , it can compute the critical epsilon for the user. For
the input generation, the tool requires information about the discrete locations,
which is not automatically inferred from the Simulink models. We plan to handle
this transition automatically, using, for instance, an algorithm [5] for conversion
between Simulink and hybrid automata.

The strategy requires two signals in the specification: a command (or ref-
erence) signal, denoting the ideal target of the system, and an output signal,
denoting the current state of the system. The choice of these signals is domain
specific and requires some knowledge of the specification.

Figure 4 shows the pseudo-code for our strategy. Given the set of locations
in a hybrid automaton and the initial value for the input, the algorithm uses a
search-based heuristic, e.g., Simulated Annealing, to find the next value for the
input signal that results in either a change of locations or the highest critical
epsilon. The output of this algorithm is a discretised input.

The algorithm works as follows. It first creates a core group of inputs gener-
ated based on critical epsilon and discrete coverage (lines 01 to 04). This group
of inputs is typically small (the same number of locations in the HA) but very
effective. Consider the running example depicted in Fig. 1, since there are 4
states, our strategy generates a core group of 4 input trajectories. Notice that,
for the initial state, the algorithm only needs to prioritise critical epsilon. For
the remaining states, the algorithm takes in consideration the possible values of
the variables in order to enter the state and the path it can take. For instance, in
order to cover the state “mode 2” from the initial state (“mode 1”), the switch
must be connected (S = 0) and the algorithm searches for inputs where the
electric charge is greater than zero (q ≥ 0). Once these two criteria have been
met, the algorithm detects it has entered the state “mode 2” and only focus on
critical epsilon (lines 15 to 19 in Fig. 4).

After that, it uses a diversity metric coupled with critical epsilon to find
inputs that are distant from the ones already generated (lines 05 to 08). As men-
tioned in Sect. 4.3, the diversity only considers the change points of past inputs
(line 27). The weight of the critical epsilon metric is proportional to the distance
to the change points while the weight of the diversity metric is inversely propor-
tional (lines 31 and 32). Thus, as the new input point being created approaches
the position of a change point, the search increases the priority of the diversity
metric and lowers the priority of the critical epsilon. It is worth mentioning that
the initial point in every input is always a change point, thus the initial point
for the new inputs being created is always distant from the existent ones.

194 H. Araujo et al.

00 function main(){
01 foreach location in HA{
02 testcase = createInput(location,HA, initialInput);
03 testSuite.add(testcase);
04 }
05 for (i = 0; i <= maxAdditionalInputs; i + +) {
06 testcase = createDiverseInput(testSuite, initialInput);
07 testSuite.add(testcase);
08 }
09 return testSuite;
10 }
11
12
13 function createInput(location,HA, input){
14 for (i = 0; i <= simulationEndTime; i + +) {
15 if (system.currentLocation �= location) {
16 iteration = search(guideToLocation(location,HA), criticalEpsilon(), input);
17 }else{
18 iteration = search(criticalEpsilon(), input);
19 }
20 input.append(iteration);
21 }
22 return input;
23 }
24
25
26 function createDiverseInput(testSuite, initialInput){
27 changePoints = changePointAnalysis(testSuite);
28 for (i = 0; i <= simulationEndTime; i + +) {
29 foreach changePoint in changePoints{
30 d = euclideanDistance(input, changePoint);
31 changePriority(criticalWeight, d);
32 changePriority(diversityWeight, 1 / d);
33 }
34 iteration = search(diversity(), criticalEpsilon(), diversityWeight, criticalWeight);
35 input.append(iteration);
36 }
37 return input;
38 }

Fig. 4. Pseudo-code used in HyConf.

Being a multi-objective search [25] means that the objectives are meant to be
fulfilled concurrently. Whenever the search heuristic uses guideToLocation() or
euclideanDistance() as a metric, it also takes in consideration criticalEpsilon().

5 Empirical Analysis

In this section, we describe the experiments performed using the proposed strat-
egy. Section 5.1 briefly describes the case study used in the experiment; Sect. 5.2
details the experimental plan along with its methodology and threats to validity;
and Sect. 5.3 presents the results of the experiment.

5.1 Case Study

In addition to the running example, we use a case study based on an automo-
tive pneumatic suspension system [33]. The system’s goal is to increase driving

Multi-objective Search for Effective Testing of Cyber-Physical Systems 195

comfort by adjusting the chassis level to compensate for road disturbances. This
is achieved by a pneumatic suspension that connects the valves attached to each
wheel to a compressor and an escape valve.

The system aims to keep the chassis level as close as possible to a defined
set point in each of the four wheels. The decision to increase or decrease the
chassis level is based on the tolerance intervals defined for each wheel. The full
automaton of our version of this system and its behaviour slightly differs from
the original one [33]. The original model contains some unsupported features by
the tools we use, such as synchronised parallel components and non-deterministic
differential equations. We have serialised the model (by computing the overall
behaviour of the constituent hybrid automata), but kept the overall behaviour
intact, except for the removal of non-determinism. We have changed the non-
deterministic assignments to input assignments and, thus, we added inputs that
can take the same values within the original intervals and are now assigned
directly to the corresponding variable derivative. The final model contains 4
locations with several differential equations each.

5.2 Experimental Plan

The main goal of this study is the evaluation of strategies for input generation to
test Cyber-Physical Systems (CPS). Additionally, this experiment aims to verify
whether the strategy we implemented in our tool, HyConf, is more effective and
efficient in terms of performance compared with the alternatives found in the
literature. Another motivation behind this study is the fact that there are few
empirical and controlled experiments to evaluate the efficacy of MBT (Model-
Based Testing) tools in regard to Cyber-Physical Systems. We compare our
strategy against another tool called S-Taliro and also against random input
generation, which can serve as a baseline measurement.

– RQ1: Can HyConf detect more faults than the alternatives?
– RQ2: Can HyConf detect faults faster than the alternatives?

We analyse the effectiveness of our strategies using mutation analysis. The
mutation operators used in this experiment were chosen based on a study on
mutation operators for Simulink models [11] and are shown in Table 1, along
with the number of inserted faults for the Boost Converter (BC) and Suspension
System (SS) models.

In the experiment, a higher priority was given to variable change and constant
change due to the complexity in detecting this type of faults. In total, we inserted
82 and 105 faults in the boost converter and suspension system models.

The mutation score is used to determine the effectiveness of the strategies
(RQ1). In this experiment, the strategy that kills more mutants is deemed more
effective. In order to assert efficiency (RQ2), however, we collected the number
of time steps it takes for the test suites to kill mutants, and then we compute
the median. The strategy with lower median is considered the faster one.

196 H. Araujo et al.

Table 1. Mutation operators and number of faults.

Operator BC SS

Constant change 12 14

Variable change 13 18

Variable negation 6 9

Constant replacement 8 12

Statement change 9 13

Delay change 8 13

Relational operator replacement 10 10

Arithmetic operator replacement 10 10

Total for each model 82 105

Methodology. In order to answer our research questions, we define the metrics
MS, which represents the Mutation Score, and Average Time of Faults Detected,
ATFD, which is an extension of the APFD metric (Average Percentage of Faults
Detected) [36]. The experiment is followed by a statistical analysis and a com-
parison of the yielded results.

The mutation score can be obtained by dividing the number of mutants killed
by the total number of mutants created. In this work, we do not distinguish
equivalent mutants, i.e., those mutants that conform to the specification. It is
generally difficult to check whether the mutant is equivalent in a continuous
domain and, thus, we assume that all mutants are not equivalent.

The ATFD metric tells us which test suite can detect mutants faster and is
formally defined as follows.

Definition 7 (Average Time of Faults Detected). Let T be a test suite
containing n timesteps and let M be a set of m models with a single distinct
mutant each. Let T ′ be an ordering of T. Let TSi be the first time step in T ′

that detects the fault i . The ATFD for T ′ is:

ATFDT ′ = 1 − TS1 + TS2 + ... + TSm
nm

+
1
2n

Similarly to APFD, ATFD can vary from 0 to 1 and a higher ATFD indicates
a faster fault-detection rate. One can see the ATFD as an APFD where each
time step is a distinct test case. However, if a test suite T cannot detect a fault i ,
then we assign to TSi the max number of timesteps in that test suite (n). Here,
timesteps can serve as time measurement, since to obtain the correct simulation
time, one only needs to multiply the number of timesteps by the sampling rate.

In this experiment, each strategy creates inputs for 2 models. Due to the
random nature of the search algorithms used in these tools and also to grant
statistical significance, each strategy was executed 30 times for each model. The
first model is the pneumatic suspension system and the second one is the boost

Multi-objective Search for Effective Testing of Cyber-Physical Systems 197

converter (Fig. 2). Once the inputs were created, we performed mutation testing
analysis in order to determine which strategy was more effective and accept or
reject Hypothesis A (see below). Additionally, the time steps will be recorded
during the execution of each strategy. These measurements were then used to
assert Hypothesis B (see below).

The stopping criteria for our diversity notion in this experiment (variable
maxAdditionalInputs in Fig. 4) is the generation of 20 inputs. For S-Taliro we
have matched the same number of inputs. As for the random strategy, due to
its much faster input generation capabilities, instead of limiting the number
of inputs generated, we let it run for the same amount of time as the slowest
approach. We believe this is a fair approach to all strategies.

Hypotheses. Hypotheses A and B aim to evaluate the research questions that
have been explained previously. For this, null hypotheses are defined, which
states that there is no difference between the strategies being analysed. This
experiment aims to refute such hypotheses. Thus, alternative hypotheses are also
defined, which have a complementary role to the null hypotheses, and can be
accepted in case its counterpart hypotheses are rejected. We define 4 hypotheses:
A0 and A1 (null and alternate, respectively), compares whether the mutation
score (MS) obtained by using our strategy (HyConf) is less than or equal to
the mutation score obtained by using the other strategies (OTH). Analogously,
hypotheses B0 and B1 (null and alternate, respectively) consider ATFD.

HA0 : MSHyConf ≤ MSOTH HA1 : MSHyConf > MSOTH

HB0 : ATFDHyConf ≤ ATFDOTH HB1 ATFDHyConf > ATFDOTH

Threats to Validity. Here we list the threats to validity that apply to this
experiment. As Internal Validity, the mutation operators used in this experi-
ment were chosen based on a study on mutation operators for Simulink models
[11]. The number of inserted faults is decided manually, based on the complex-
ity of each system. Furthermore, there is no limit to the amount of inputs the
random approach can generate and this can be a threat to fairness amongst
strategies. Thus, we have decided to let this strategy run for the same time
as the slowest approach. Concerning External Validity, this experiment only
considers 2, relatively small, examples; we cannot generalise the outcome of this
experiment for a general class of CPSs. Besides, since we introduced the faults
ourselves, the mutants may also not represent real world faults. As Construct
Validity, assessment of equivalent mutants for CPS was not performed. In this
case, we assume that all mutants could have been detected. Moreover, the values
for τ and ε have a direct impact on the results: sufficiently large values would
have detected all mutants and small values would have detected none. The values
we have chosen are based on prior experiments and domain knowledge.

Statistical Analysis. The purpose of this analysis is to verify whether one
should reject or accept the null and alternative hypotheses. Here, we used the

198 H. Araujo et al.

RStudio, where the comparison was made between averages MS and ATFD com-
puted using HyConf, S-Taliro and random input generation. Since our samples
follow a normal distribution, the “t-test” statistical technique with a p-value
< 0.05 and level of confidence of 95% is used to analyse our data.

5.3 Results

To answer the first research question, we ran the experiment 30 times for each
pair (strategy × model) and analysed the mutation score (see Table 2). The
experiment was carried out using a computer with Intel Core i5 processor, 8 GB
of RAM and Windows 10 as operating system and the Matlab 2018b frame-
work. The models shown in the table, BC and SS, are the ones presented earlier,
i.e., Boost Converter (Sect. 3.1) and Suspension System (Sect. 5.1), respectively.
Despite the slight input variations due to the randomness of the employed heuris-
tics, the number of mutants detected by HyConf were the same for each run of the
experiment, and similarly for S-Taliro; this was not the case for random testing.
Each group of random inputs killed a different number of mutants; in this case,
we show the median score. For our tool, we show the results of using different
criteria combinations: highest critical epsilon (HCE), coverage and diversity. As
can be observed, HyConf consistently detected more mutants when it employs
all three combined.

Table 2. Experiment results.

Analogously, to answer the second question, we computed the amount of time
steps necessary to detect each mutant. We used this information to calculate the
ATFD values. The median values for the 30 execution are also shown in Table 2.

We should mention that each model was simulated for a maximum of 10
time units using a sampling rate of 0.01, which gives us 1000 time steps for each
created input. Since we are not interested in prioritisation of the test suites, they
had a randomised order in each execution.

Furthermore, Table 3 shows the statistical test results obtained from compar-
ing the ATFD metric. Due to the lack of variation in the collected mutation score

Multi-objective Search for Effective Testing of Cyber-Physical Systems 199

Table 3. Test results (p-values)

(i.e, the HyConf and S-Taliro were constant), a t-test could not be performed to
evaluate the MS metric; however, the results are clear.

The tests outcome indicate that HyConf performed better than the alter-
natives, and statistically, the results are significant. Thus, based on the data
shown, we can reject the null hypotheses HA0 and HB0, and accept their alter-
natives which tell us that our strategy can obtain a higher mutation score than
the other tools and also a higher ATFD. Another conclusion is that even though
Genetic Algorithm obtained a higher mutation score and ATFD compared to
Simulated Annealing, it has a higher computation cost. This trade-off is left for
the engineer to decide.

6 Conclusions and Future Work

In this work we have proposed a strategy for generating fault-oriented inputs
for Cyber-Physical Systems. The idea behind these inputs is to maximise the
distance between a system’s output and its ideal target, thus, leading to fault.

In order to generate inputs for continuous systems, a search based approach is
often necessary; in our case, we adopt simulated annealing and genetic algorithm.
We look for inputs that lead to a potential conformance violation, particularly
with respect to the (τ, ε)-conformance notion. Also, we make use of a discrete
coverage notion to find inputs that can guide the system towards new locations
and we also employ a diversity metric into our input selection strategy. By doing
this, we aim to increase coverage and find faults that are more difficult to detect.

Moreover, we have conducted a controlled experiment to compare the strat-
egy we propose with related alternatives. This was performed on two distinct
systems: a boost converter and a pneumatic suspension system. Overall, our app-
roach produced evidence of superior fault detection capabilities and efficiency.

As future work, we plan to further improve our input generation strategy. For
instance, we are studying additional types of coverage that we can consider and
which other types of parameters we can use to tune our multi-objective search.
With our diversity metric, we can generate inputs indefinitely. Thus, we let the
user define a maximum number but we plan to use a more systematic approach
in the future. Additionally, some of the steps in this strategy can be mechanised
further and fully integrated into our tool. Finally, we also plan to integrate our
strategy with the NAT2TEST [12] framework, which would allow us to define a
test strategy for CPS based on natural-language specifications.

200 H. Araujo et al.

References

1. Abbas, H., Hoxha, B., Fainekos, G.E., Deshmukh, J.V., Kapinski, J., Ueda, K.:
Conformance testing as falsification for cyber-physical systems. In: Proceedings of
the ACM/IEEE 5th International Conference on Cyber-Physical Systems (ICCPS
2014), p. 211. IEEE (2014)

2. Abbas, H.Y.: Test-based falsification and conformance testing for cyber-physical
systems. Ph.D. thesis, Arizona State University (2015)

3. Adimoolam, A., Dang, T., Donzé, A., Kapinski, J., Jin, X.: Classification and
coverage-based falsification for embedded control systems. In: Majumdar, R.,
Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 483–503. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9 24

4. Aerts, A.: Model-based design and testing of mechatronic systems: an indus-
trial case study. Master’s thesis, Eindhoven University of Technology, Eindhoven,
Netherlands (2016)

5. Agrawal, A., Simon, G., Karsai, G.: Semantic translation of simulink/stateflow
models to hybrid automata using graph transformations. Electron. Notes Theoret.
Comput. Sci. 109, 43–56 (2004)

6. Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cambridge (2015)
7. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci.

138(1), 3–34 (1995)
8. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an

algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57318-6 30

9. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press, Cambridge (2016)

10. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for
temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

11. Binh, N.T., et al.: Mutation operators for simulink models. In: 2012 Fourth Inter-
national Conference on Knowledge and Systems Engineering (KSE), pp. 54–59.
IEEE (2012)

12. Carvalho, G., Barros, F., Carvalho, A., Cavalcanti, A., Mota, A., Sampaio, A.:
NAT2TEST tool: from natural language requirements to test cases based on CSP.
In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276, pp. 283–290.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22969-0 20

13. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

14. Dang, T., Nahhal, T.: Coverage-guided test generation for continuous and hybrid
systems. Formal Methods Syst. Des. 34(2), 183–213 (2009)

15. De Schutter, B., Heemels, W., Lunze, J., Prieur, C., et al.: Survey of modeling,
analysis, and control of hybrid systems. In: Handbook of Hybrid Systems Control-
Theory, Tools, Applications, pp. 31–55 (2009)

https://doi.org/10.1007/978-3-319-63387-9_24
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-319-22969-0_20
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18

Multi-objective Search for Effective Testing of Cyber-Physical Systems 201

16. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

17. Dorigo, M., Birattari, M.: Ant Colony Optimization. Springer, Heidelberg (2010)
18. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-

ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

19. Gelfand, S.B., Mitter, S.K.: Analysis of simulated annealing for optimization. In:
1985 24th IEEE Conference on Decision and Control, vol. 24, pp. 779–786. IEEE
(1985)

20. Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid dynamical systems. IEEE Control
Syst. 29(2), 28–93 (2009)

21. Heemels, W., De Schutter, B.: Modeling and control of hybrid dynamical systems.
TU Eindhoven, Lecture notes course 4K160 (2013)

22. Horgan, J.R., London, S., Lyu, M.R.: Achieving software quality with testing cov-
erage measures. Computer 27(9), 60–69 (1994)

23. Khakpour, N., Mousavi, M.R.: Notions of conformance testing for cyber-physical
systems: overview and roadmap (invited paper). In: Aceto, L., de Frutos Escrig,
D. (eds.) 26th International Conference on Concurrency Theory (CONCUR 2015).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 42, pp. 18–40.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2015)

24. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

25. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic
algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006)

26. Malaiya, Y.K., Li, M.N., Bieman, J.M., Karcich, R., Skibbe, B., et al.: The relation-
ship between test coverage and reliability. In: Proceedings of 1994 IEEE Interna-
tional Symposium on Software Reliability Engineering, pp. 186–195. IEEE (1994)

27. Matinnejad, R., Nejati, S., Briand, L., Bruckmann, T.: Test generation and test
prioritization for simulink models with dynamic behavior. IEEE Trans. Softw. Eng.
(2018)

28. Matinnejad, R., Nejati, S., Briand, L.C., Bruckmann, T.: Effective test suites for
mixed discrete-continuous stateflow controllers. In: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, pp. 84–95. ACM (2015)

29. Matinnejad, R., Nejati, S., Briand, L.C., Bruckmann, T.: Automated test suite
generation for time-continuous simulink models. In: proceedings of the 38th Inter-
national Conference on Software Engineering, pp. 595–606. ACM (2016)

30. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1998)

31. Mockus, A., Nagappan, N., Dinh-Trong, T.T.: Test coverage and post-verification
defects: a multiple case study. In: 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, ESEM 2009, pp. 291–301. IEEE (2009)

32. Mosterman, P.J., Zander, J.: Cyber-physical systems challenges: a needs analy-
sis for collaborating embedded software systems. Softw. Syst. Model. 15(1), 5–16
(2016)

33. Müller, O., Stauner, T.: Modelling and verification using linear hybrid automata-a
case study. Math. Comput. Model. Dyn. Syst. 6(1), 71–89 (2000)

34. Picard, D.: Testing and estimating change-points in time series. Adv. Appl. Probab.
17(4), 841–867 (1985)

https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-22110-1_30

202 H. Araujo et al.

35. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7 15

36. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Test case prioritization: an
empirical study. In: 1999 Proceedings of IEEE International Conference on Soft-
ware Maintenance (ICSM 1999), pp. 179–188. IEEE (1999)

37. Rubinstein, R.Y., Kroese, D.P.: The Cross-entropy Method: A Unified Approach
to Combinatorial Optimization. Monte-Carlo Simulation and Machine Learning.
Springer, Heidelberg (2013)

38. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8 1

39. Windisch, A., Al Moubayed, N.: Signal generation for search-based testing of con-
tinuous systems. In: 2009 International Conference on Software Testing, Verifica-
tion and Validation Workshops, ICSTW 2009, pp. 121–130. IEEE (2009)

https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1

Mutation Testing with Hyperproperties

Andreas Fellner1,2(B), Mitra Tabaei Befrouei2, and Georg Weissenbacher2

1 AIT Austrian Institute of Technology, Vienna, Austria
andreas.fellner@ait.ac.at

2 TU Wien, Vienna, Austria

Abstract. We present a new method for model-based mutation-driven
test case generation. Mutants are generated by making small syntac-
tical modifications to the model or source code of the system under
test. A test case kills a mutant if the behavior of the mutant devi-
ates from the original system when running the test. In this work, we
use hyperproperties—which allow to express relations between multiple
executions—to formalize different notions of killing for both determin-
istic as well as non-deterministic models. The resulting hyperproperties
are universal in the sense that they apply to arbitrary reactive models
and mutants. Moreover, an off-the-shelf model checking tool for hyper-
properties can be used to generate test cases. We evaluate our approach
on a number of models expressed in two different modeling languages by
generating tests using a state-of-the-art mutation testing tool.

1 Introduction

Mutations—small syntactic modifications of programs that mimic typical pro-
gramming errors—are used to assess the quality of existing test suites. A test
kills a mutated program (or mutant), obtained by applying a mutation opera-
tor to a program, if its outcome for the mutant deviates from the outcome for
the unmodified program. The percentage of mutants killed by a given test suite
serves as a metric for test quality. The approach is based on two assumptions:
(a) the competent programmer hypothesis [11], which states that implementa-
tions are typically close-to-correct, and (b) the coupling effect [27], which states
that a test suites ability to detect simple errors (and mutations) is indicative of
its ability to detect complex errors.

In the context of model-based testing, mutations are also used to design
tests. Model-based test case generation is the process of deriving tests from a
reference model (which is assumed to be free of faults) in such a way that they
reveal any non-conformance of the reference model and its mutants, i.e., kill the

The research was supported by ECSEL JU under the project H2020 737469
AutoDrive—Advancing failaware, fail-safe, and fail-operational electronic components,
systems, and architectures for fully automated driving to make future mobility safer,
affordable, and end-user acceptable, by the Vienna Science and Technology Fund
(WWTF) through grant VRG11-005, and by the Austrian National Research Network
S11403-N23 (RiSE).

c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 203–221, 2019.
https://doi.org/10.1007/978-3-030-30446-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-30446-1_11

204 A. Fellner et al.

mutants. The tests detect potential errors (modeled by mutation operators) of
implementations, treated as a black box in this setting, that conform to a mutant
instead of the reference model. A test strongly kills a mutant if it triggers an
observable difference in behavior [11], and weakly kills a mutant if the deviation
is merely in a difference in traversed program states [22].

The aim of our work is to automatically construct tests that strongly kill
mutants derived from a reference model. To this end, we present two main con-
tributions:

(1) A formalization of mutation killing in terms of hyperproperties [14], a for-
malism to relate multiple execution traces of a program which has recently
gained popularity due to its ability to express security properties such as
non-interference and observational determinism. Notably, our formalization
also takes into account potential non-determinism, which significantly com-
plicates killing of mutants due to the unpredictability of the test outcome.

(2) An approach that enables the automated construction of tests by means of
model checking the proposed hyperproperties on a model that aggregates the
reference model and a mutant of it. To circumvent limitations of currently
available model checking tools for hyperproperties, we present a transfor-
mation that enables the control of non-determinism via additional program
inputs. We evaluate our approach using a state-of-the-art model checker on
a number of models expressed in two different modeling languages.

Running Example. We illustrate the main concepts of our work in Fig. 1.
Figure 1a shows the SMV [25] model of a beverage machine, which non-
deterministically serves coff (coffee) or tea after input req (request), assum-
ing that there is still enough wtr (water) in the tank. Water can be refilled with
input fill. The symbol ε represents absence of input and output, respectively.

The code in Fig. 1a includes the variable mut (initialized non-deter-
ministically in line 4), which enables the activation of a mutation in line 10.
The mutant refills 1 unit of water only, whereas the original model fills 2 units.

Figure 1b states a hyperproperty over the inputs and outputs of the model
formalizing that the mutant can be killed definitely (i.e., independently of non-
deterministic choices). The execution shown in Fig. 1c is a witness for this claim:
the test requests two drinks after filling the tank. For the mutant, the second
request will necessarily fail, as indicated in Fig. 1d, which shows all possible
output sequences for the given test.

Outline. Section 2 introduces our system model and HyperLTL. Section 3
explains the notions of potential and definite killing of mutants, which
are then formalized in terms of hyperproperties for deterministic and non-
deterministic models in Sect. 4. Section 5 introduces a transformation to con-
trol non-determinism in models, and Sect. 6 describes our experimental results.
Related work is discussed in Sect. 7.

Mutation Testing with Hyperproperties 205

Fig. 1. Beverage machine running example

2 Preliminaries

This section introduces symbolic transition systems as our formalisms for rep-
resenting discrete reactive systems and provides the syntax and semantics of
HyperLTL, a logic for hyperproperties.

2.1 System Model

A symbolic transition system (STS) is a tuple S = 〈I,O,X , α, δ〉, where I,O,X
are finite sets of input, output, and state variables, α is a formula over X ∪ O
(the initial conditions predicate), and δ is a formula over I ∪ O ∪ X ∪ X ′ (the
transition relation predicate), where X ′ = {x′ | x ∈ X} is a set of primed
variables representing the successor states. An input I, output O, state X, and
successor state X ′, respectively, is a mapping of I,O, X , and X ′, respectively, to
values in a fixed domain that includes the elements � and ⊥ (representing true
and false, respectively). Y |V denotes the restriction of the domain of mapping
Y to the variables V. Given a valuation Y and a Boolean variable v ∈ V, Y (v)
denotes the value of v in Y (if defined) and Y [v] and Y [¬v] denote Y with v set
to � and ⊥, respectively.

206 A. Fellner et al.

We assume that the initial conditions- and transition relation predicate are
defined in a logic that includes standard Boolean operators ¬, ∧, ∨, →, and ↔.
We omit further details, as our results do not depend on a specific formalism.
We write X,O |= α and I,O,X,X ′ |= δ to denote that α and δ evaluate to true
under an evaluation of inputs I, outputs O, states X, and successor states X ′.
We assume that every STS has a distinct output Oε, representing absence of
output.

A state X with output O such that X,O |= α are an initial state
and initial output. A state X has a transition with input I to its succes-
sor state X ′ with output O iff I,O,X,X ′ |= δ, denoted by X

I,O−−→ X ′.
A trace of S is a sequence of tuples of concrete inputs, outputs, and states
〈(I0, O0,X0), (I1, O1,X1), (I2, O2,X2), . . .〉 such that X0, O0 |= α and ∀j ≥ 0.

Xj
Ij ,Oj+1−−−−−→ Xj+1. We require that every state has at least one successor, there-

fore all traces of S are infinite. We denote by T (S) the set of all traces of S.
Given a trace p = 〈(I0, O0,X0), (I1, O1,X1), . . .〉, we write p[j] for (Ij , Oj ,Xj),
p[j, l] for 〈(Ij , Oj ,Xj), . . . , (Il, Ol,Xl)〉, p[j,∞] for 〈(Ij , Oj ,Xj), . . .〉 and p|V to
denote 〈(I0|V , O0|V ,X0|V), (I1|V , O1|V ,X1|V), . . .〉. We lift restriction to sets of
traces T by defining T |V as {p|V | t ∈ T}.

S is deterministic iff there is a unique pair of an initial state and initial
output and for each state X and input I, there is at most one state X ′ with
output O, such that X

I,O−−→ X ′. Otherwise, the model is non-deterministic.
In the following, we presume the existence of sets of atomic propositions

AP = {API ∪ APO ∪ APX } (intentionally kept abstract)1 serving as labels that
characterize inputs, outputs, and states (or properties thereof).

For a trace p = 〈(I0, O0,X0), (I1, O1,X1), . . .〉 the corresponding trace over
AP is AP(p) = 〈AP(I0) ∪ AP(O0) ∪ AP(X0),AP(I1) ∪ AP(O1) ∪ AP(X1), . . .〉.
We lift this definition to sets of traces by defining APTr(S) def= {AP(p) | p ∈
T (S)}.

Example 1. Figure 1a shows the formalization of a beverage machine in
SMV [25]. In Fig. 1b, we use atomic propositions to enumerate the possible
values of in and out. This SMV model closely corresponds to an STS: the ini-
tial condition predicate α and transition relation δ are formalized using integer
arithmetic as follows:

α
def
=out=ε ∧ wtr=2

δ
def
=wtr>0 ∧ in=req ∧ out=coff ∧ wtr’=wtr-1∨
wtr>0 ∧ in=req ∧ out=tea ∧ wtr’=wtr-1∨
in=fill ∧ ¬mut ∧ out=ε ∧ wtr’=2∨
in=fill ∧ mut ∧ out=ε ∧ wtr’=1∨
in=ε ∧ out=ε ∧ wtr’=wtr

1 Finite domains can be characterized using binary encodings; infinite domains require
an extension of our formalism in Sect. 2.2 with equality and is omitted for the sake
of simplicity.

Mutation Testing with Hyperproperties 207

The trace p = 〈(ε, ε, 2), (req, ε,2), (req,coff, 1), (ε,tea, 0), . . .〉 is one
possible execution of the system (for brevity, variable names are omitted).
Examples of atomic propositions for the system are [in=coff], [out=ε],
[wtr>0], [wtr=0] and the respective atomic proposition trace of p is AP(p) =
〈{[in=ε], [out=ε], [wtr>0]}, {[in=req], [out=ε], [wtr>0]}, {[in=req], [out=
coff], [wtr>0]}, {[in=req], [out=tea], [wtr=0]} . . .〉.

2.2 HyperLTL

In the following, we provide an overview of the HyperLTL, a logic for hyper-
properties, sufficient for understanding the formalization in Sect. 4. For details,
we refer the reader to [13]. HyperLTL is defined over atomic proposition traces
(see Sect. 2.1) of a fixed STS S = 〈I,O,X , α, δ〉 as defined in Sect. 2.1.

Syntax. Let AP be a set of atomic propositions and let π be a trace variable from
a set V of trace variables. Formulas of HyperLTL are defined by the following
grammar:

ψ ::= ∃π.ψ | ∀π.ψ | ϕ
ϕ ::= aπ | ¬ϕ | ϕ ∨ ϕ | �ϕ | ϕ Uϕ

Connectives ∃ and ∀ are universal and existential trace quantifiers, read as
“along some traces” and “along all traces”. In our setting, atomic propositions
a ∈ AP express facts about states or the presence of inputs and outputs. Each
atomic proposition is sub-scripted with a trace variable to indicate the trace it is
associated with. The Boolean connectives ∧, →, and ↔ are defined in terms of ¬
and ∨ as usual. Furthermore, we use the standard temporal operators eventually
♦ϕ

def= true Uϕ, and always �ϕ
def= ¬♦¬ϕ.

Semantics. Π |=S ψ states that ψ is valid for a given mapping Π : V → APTr(S)
of trace variables to atomic proposition traces. Let Π [π �→ p] be as Π except
that π is mapped to p. We use Π [i,∞] to denote the trace assignment Π ′(π) =
Π(π) [i,∞] for all π. The validity of a formula is defined as follows:

Π |=S aπ iff a ∈ Π(π)[0]
Π |=S ∃π.ψ iff there exists p ∈ APTr(S) : Π [π �→ p] |=S ψ
Π |=S ∀π.ψ iff for all p ∈ APTr(S) : Π [π �→ p] |=S ψ
Π |=S ¬ϕ iff Π �|=S ϕ
Π |=S ψ1 ∨ ψ2 iff Π |=S ψ1 or Π |=S ψ2

Π |=S �ϕ iff Π [1,∞] |=S ϕ
Π |=S ϕ1 Uϕ2 iff there exists i ≥ 0 : Π [i,∞] |=S ϕ2

and for all 0 ≤ j < i we have Π [j,∞] |=S ϕ1

We write |=S ψ if Π |=S ψ holds and Π is empty. We call q ∈ T (S) a
π-witness of a formula ∃π.ψ, if Π [π �→ p] |=S ψ and AP(q) = p.

208 A. Fellner et al.

3 Killing Mutants

In this section, we introduce mutants, tests, and the notions of potential and
definite killing. We discuss how to represent an STS and its corresponding mutant
as a single STS, which can then be model checked to determine killability.

3.1 Mutants

Mutants are variations of a model S obtained by applying small modifications
to the syntactic representation of S. A mutant of an STS S = 〈I,O,X , α, δ〉
(the original model) is an STS Sm = 〈I,O,X , αm, δm〉 with equal sets of
input, output, and state variables as S but a deviating initial predicate and/or
transition relation. We assume that Sm is equally input-enabled as S, that is
T (Sm)|I = T (S)|I , i.e., the mutant and model accept the same sequences of
inputs. In practice, this can easily be achieved by using self-loops with empty
output to ignore unspecified inputs. We use standard mutation operators, such
as disabling transitions, replacing operators, etc. Due to space limitations and
the fact that mutation operators are not the primary focus of this work, we do
not list them here, but refer to the Appendix of [16] and [5]. We combine an
original model represented by S and a mutant Sm into a conditional mutant
Sc(m), in order to perform mutation analysis via model checking the combined
model.

The conditional mutant is defined as Sc(m) def= 〈I,O,X ∪ {mut}, αc(m), δc(m)〉,
where mut is a fresh Boolean variable used to distinguish states of the original
and the mutated STS.

Suppose Sm replaces a sub-formula δ0 of δ by δm
0 , then the transition relation

predicate of the conditional mutant δc(m) is obtained by replacing δ0 in δ by
(mut ∧ δm

0) ∨ (¬mut ∧ δ0). We fix the value of mut in transitions by conjoining δ
with mut ↔ mut′. The initial conditions predicate of the conditional mutant is
defined similarly.

Consequently, for a trace p ∈ T (Sc(m)) it holds that if p|{mut} = {⊥}ω

then p|I∪O∪X ∈ T (S), and if p|{mut} = {�}ω then p|I∪O∪X ∈ T (Sm). Formally,
Sc(m) is non-deterministic, since mut is chosen non-deterministically in the initial
state. However, we only refer to Sc(m) as non-deterministic if either S or Sm is
non-deterministic, as mut is typically fixed in the hypertproperties presented in
Sect. 4.

Example 1 and Fig. 1a show a conditional mutant as an STS and in SMV.

3.2 Killing

Killing a mutant amounts to finding inputs for which the mutant produces
outputs that deviate from the original model. In a reactive, model-based set-
ting, killing has been formalized using conformance relations [29], for example in
[4,15], where an implementation conforms to its specification if all its input/out-
put sequences are part of/allowed by the specification.

Mutation Testing with Hyperproperties 209

In model-based testing, the model takes the role of the specification and
is assumed to be correct by design. The implementation is treated as black
box, and therefore mutants of the specification serve as its proxy. Tests (i.e.,
input/output sequences) that demonstrate non-conformance between the model
and its mutant can be used to check whether the implementation adheres to
the specification or contains the bug reflected in the mutant. The execution of
a test on a system under test fails if the sequence of inputs of the test triggers
a sequence of outputs that deviates from those predicted by the test. Formally,
tests are defined as follows:

Definition 1 (Test). A test t of length n for S comprises inputs t|I and out-
puts t|O of length n, such that there exists a trace p ∈ T (S) with p|I [0, n] = t|I
and p|O[0, n] = t|O.

For non-deterministic models, in which a single sequence of inputs can trigger
different sequences of outputs, we consider two different notions of killing. We
say that a mutant can be potentially killed if there exist inputs for which the
mutant’s outputs deviate from the original model given an appropriate choice
of non-deterministic initial states and transitions. In practice, executing a test
that potentially kills a mutant on a faulty implementation that exhibits non-
determinism (e.g., a multi-threaded program) may fail to demonstrate non-
conformance (unless the non-determinism can be controlled). A mutant can be
definitely killed if there exists a sequence of inputs for which the behaviors of the
mutant and the original model deviate independently of how non-determinism
is resolved.

Note potential and definite killability are orthogonal to the folklore notions
of weak and strong killing, which capture different degrees of observability. For-
mally, we define potential and definite killability as follows:

Definition 2 (Potentially Killable). Sm is potentially killable if

T (Sm)|I∪O � T (S)|I∪O

Test t for S of length n potentially kills Sm if

{q[0, n] | q ∈ T (Sm) ∧ q[0, n]|I = t|I}|I∪O � {p[0, n] | p ∈ T (S)}|I∪O.

Definition 3 (Definitely Killable). Sm is definitely killable if there is a
sequence of inputs 	I ∈ T (S)|I , such that

{q ∈ T (Sm) | q|I = 	I }|O ∩ {p ∈ T (S) | p|I = 	I }|O = ∅

Test t for S of length n definitely kills Sm if

{q[0, n] | q ∈ T (Sm) ∧ q[0, n]|I = t|I}|O∩
{p[0, n] | p ∈ T (S) ∧ p[0, n]|I = t|I}|O = ∅

Definition 4 (Equivalent Mutant). Sm is equivalent iff Sm is not poten-
tially killable.

210 A. Fellner et al.

Note that definite killability is stronger than potential killabilty, though for
deterministic systems, the two notions coincide.

Proposition 1. If Sm is definitely killable then Sm is potentially killable.
If Sm is deterministic then: Sm is potentially killable iff Sm is definitely killable.

The following example shows a definitely killable mutant, a mutant that is
only potentially killable, and an equivalent mutant.

Example 2. The mutant in Fig. 1a, is definitely killable, since we can force the
system into a state in which both possible outputs of the original system (coff,
tea) differ from the only possible output of the mutant (ε).

Consider a mutant that introduces non-determinism by replacing line 7 with
the code if(in=fill):(mut ? {1,2} : 2), indicating that the machine is
filled with either 1 or 2 units of water. This mutant is potentially but not defi-
nitely killable, as only one of the non-deterministic choices leads to a deviation
of the outputs.

Finally, consider a mutant that replaces line 4 with if(in=req&wtr>0):
(mut ? coff : {coff,tea}) and removes the mut branch of line 7, yielding
a machine that always creates coffee. Every implementation of this mutant is
also correct with respect to the original model. Hence, we consider the mutant
equivalent, even though the original model, unlike the mutant, can output tea.

4 Killing with Hyperproperties

In this section, we provide a formalization of potential and definite killability in
terms of HyperLTL, assert the correctness of our formalization with respect to
Sect. 3, and explain how tests can be extracted by model checking the Hyper-
LTL properties. All HyperLTL formulas depend on inputs and outputs of the
model, but are model-agnostic otherwise. The idea of all presented formulas is
to discriminate between traces of the original model (�¬mutπ) and traces of the
mutant (�mutπ). Furthermore, we quantify over pairs (π, π′) of traces with glob-
ally equal inputs (�∧

i∈API iπ ↔ iπ′) and express that such pairs will eventually
have different outputs (♦

∨
o∈APO ¬(oπ ↔ oπ′)).

4.1 Deterministic Case

To express killability (potential and definite) of a deterministic model and
mutant, we need to find a trace of the model (∃π) such that the trace of the
mutant with the same inputs (∃π′) eventually diverges in outputs, formalized by
φ1 as follows:

φ1(I,O) := ∃π∃π′�(¬mutπ ∧ mutπ′
∧

i∈API

iπ ↔ iπ′) ∧ ♦(
∨

o∈APO

¬(oπ ↔ oπ′))

Mutation Testing with Hyperproperties 211

Proposition 2. For a deterministic model S and mutant Sm it holds that

Sc(m) |= φ1(I,O) iff Sm is killable.

If t is a π-witness for Sc(m) |= φ1(I,O), then t[0, n]|I∪O kills Sm (for some
n ∈ N).

4.2 Non-deterministic Case

For potential killability of non-deterministic models and mutants,2 we need to
find a trace of the mutant (∃π) such that all traces of the model with the same
inputs (∀π′) eventually diverge in outputs, expressed in φ2:

φ2(I,O) := ∃π∀π′�(mutπ ∧ ¬mutπ′
∧

i∈API

iπ ↔ iπ′) → ♦(
∨

o∈APO

¬(oπ ↔ oπ′))

Proposition 3. For non-deterministic S and Sm, it holds that

Sc(m) |= φ2(I,O) iff Sm is potentially killable.

If s is a π-witness for Sc(m) |= φ2(I,O), then for any trace t ∈ T (S) with
t|I = s|I , t[0, n]|I∪O potentially kills Sm (for some n ∈ N).

To express definite killability, we need to find a sequence of inputs of the
model (∃π) and compare all non-deterministic outcomes of the model (∀π′) to all
non-deterministic outcomes of the mutant (∀π′′) for these inputs, as formalized
by φ3:

φ3(I,O) := ∃π∀π′∀π′′�(
¬mutπ ∧ mutπ′ ∧ ¬mutπ′′∧

∧

i∈API

iπ ↔ iπ′ ∧ iπ ↔ iπ′′
)

→ ♦
(∨

o∈APO

¬(oπ′ ↔ oπ′′)
)

In Fig. 1b, we present an instance of φ3 for our running example.

Proposition 4. For non-deterministic S and Sm, it holds that

Sc(m) |= φ3(I,O) iff Sm is definitely killable.

If t is a π-witness for Sc(m) |= φ3(I,O), then t[0, n]|I∪O definitely kills Sm (for
some n ∈ N).

To generate tests, we use model checking to verify whether the conditional
mutant satisfies the appropriate HyperLTL formula presented above and obtain
test cases as finite prefixes of witnesses for satisfaction.
2 The Appendix of [16] covers deterministic models with non-deterministic mutants

and vice-versa.

212 A. Fellner et al.

5 Non-deterministic Models in Practice

As stated above, checking the validity of the hyperproperties in Sect. 4 for a
given model and mutant enables test-case generation. To the best of our knowl-
edge, MCHyper [18] is the only currently available HyperLTL model checker.
Unfortunately, MCHyper is unable to model check formulas with alternating
quantifiers.3 Therefore, we are currently limited to checking φ1(I,O) for deter-
ministic models, since witnesses of φ1 may not satisfy φ2 in the presence of
non-determinism.

To remedy this issue, we propose a transformation that makes non-
determinism controllable by means of additional inputs and yields a deterministic
STS. The transformed model over-approximates killability in the sense that the
resulting test cases only kill the original mutant if non-determinism can also be
controlled in the system under test. However, if equivalence can be established
for the transformed model, then the original non-deterministic mutant is also
equivalent.

5.1 Controlling Non-determinism in STS

The essential idea of our transformation is to introduce a fresh input variable that
enables the control of non-deterministic choices in the conditional mutant Sc(m).
The new input is used carefully to ensure that choices are consistent for the model
and the mutant encoded in Sc(m). W.l.o.g., we introduce an input variable nd
with a domain sufficiently large to encode the non-deterministic choices in αc(m)

and δc(m), and write nd(X,O) to denote a value of nd that uniquely corresponds
to state X with output O. Moreover, we add a fresh Boolean variable xτ to X
used to encode a fresh initial state.

Let X+
def= X ∪ {mut} and X+,X ′

+, I, O be valuations of X+, X ′
+, I, and

O, and X and X ′ denote X+|X and X ′
+|X ′ , respectively. Furthermore, ψ(X),

ψ(X+, I), and ψ(O,X ′
+) are formulas uniquely satisfied by X, (X+, I), and

(O,X ′
+) respectively.

Given conditional mutant Sc(m) def= 〈I,O,X+, αc(m), δc(m)〉, we define its con-
trollable counterpart D(Sc(m)) def= 〈I ∪ {nd},O,X+ ∪ {xτ},D(αc(m)),D(δc(m))〉.
We initialize D(δc(m)) def= δc(m) and incrementally add constraints as described
below.

Non-deterministic Initial Conditions. Let X be an arbitrary, fixed state. The
unique fresh initial state is Xτ def= X[xτ], which, together with an empty output,
we enforce by the new initial conditions predicate:

D(αc(m)) def= ψ(Xτ , Oε)

We add the conjunct ¬ψ(Xτ) → ¬xτ ′ to D(δc(m)), in order to force xτ

evaluating to ⊥ in all states other than Xτ . In addition, we add transitions
3 While satisfiability in the presence of quantifier alternation is supported to some

extent [17].

Mutation Testing with Hyperproperties 213

from Xτ to all pairs of initial states/outputs in αc(m). To this end, we first
partition the pairs in αc(m) into pairs shared by and exclusive to the model and
the mutant:

J∩ def= {(O,X+) | X,O |= αc(m)}
Jorig def= {(O,X+) | ¬X+(mut) ∧ (X+, O |= αc(m)) ∧ (X+[mut], O �|= αc(m))}
Jmut def= {(O,X+) | X+(mut) ∧ (X+, O |= αc(m)) ∧ (X+[¬mut], O �|= αc(m))}

For each (O,X+) ∈ J∩ ∪ Jmut ∪ Jorig, we add the following conjunct to
D(δc(m)):

ψ(Xτ) ∧ nd(O,X) → ψ(O,X ′
+)

In addition, for inputs nd(O,X) without corresponding target state in the
model or mutant, we add conjuncts to D(δc(m)) that represent self loops with
empty outputs:

∀(O,X+) ∈ Jorig : ψ(Xτ [mut]) ∧ nd(O,X) → ψ(Oε,X
τ ′[mut])

∀(O,X+) ∈ Jmut : ψ(Xτ [¬mut]) ∧ nd(O,X) → ψ(Oε,X
τ ′[¬mut])

Non-deterministic Transitions. Analogous to initial states, for each state/input
pair, we partition the successors into successors shared or exclusive to model or
mutant:

T ∩
(X+,I)

def
= {(X+, I, O, X ′

+) | X
I,O−−→ X ′}

T orig
(X+,I)

def
= {(X+, I, O, X ′

+) | ¬X+(mut) ∧ (X+
I,O−−→ X ′

+) ∧ ¬(X+[mut]
I,O−−→ X ′

+)}

T mut
(X+,I)

def
= {(X+, I, O, X ′

+) | X+(mut) ∧ (X+
I,O−−→ X ′

+) ∧ ¬(X+[¬mut]
I,O−−→ X ′

+)}

A pair (X+, I) causes non-determinism if

|(T∩
(X+,I) ∪ T orig

(X+,I))|X∪I∪O∪X ′ | > 1 or |(T∩
(X+,I) ∪ Tmut

(X+,I))|X∪I∪O∪X ′ | > 1.

For each pair (X+, I) that causes non-determinism and each
(X+, I, Oj ,X

′
+j) ∈ T∩

(X+,I) ∪ Tmut
(X+,I) ∪ T orig

(X+,I), we add the following conjunct
to D(δc(m)):

ψ(X+, I) ∧ nd(Oj ,Xj) → ψ(Oj ,X
′
+j)

Finally, we add conjuncts representing self loops with empty output for inputs
that have no corresponding transition in the model or mutant:

∀(X+, I, Oj , X
′
+j) ∈ T orig

(X+,I) : ψ(X+[mut], I) ∧ nd(Oj , Xj) → ψ(Oε, X
′
+j [mut])

∀(X+, I, Oj , X
′
+j) ∈ T mut

(X+,I) : ψ(X+[¬mut], I) ∧ nd(Oj , Xj) → ψ(Oε, X
′
+j [¬mut])

214 A. Fellner et al.

The proposed transformation has the following properties:

Proposition 5. Let S be a model with inputs I, outputs O, and mutant Sm

then

1. D(Sc(m)) is deterministic (up to mut).
2. T (Sc(m))|X+∪I∪O ⊆ T (D(Sc(m)))[1,∞]|X+∪I∪O.
3. D(Sc(m)) �|= φ1(I,O) then Sm is equivalent.

The transformed model is deterministic, since we enforce unique initial val-
uations and make non-deterministic transitions controllable through input nd.
Since we only add transitions or augment existing transitions with input nd,
every transition X

I,O−−→ X ′ of Sc(m) is still present in D(Sc(m)) (when input nd
is disregarded). The potential additional traces of Item 2 originate from the Oε-
labeled transitions for non-deterministic choices present exclusively in the model
or mutant. These transitions enable the detection of discrepancies between model
and mutant caused by the introduction or elimination of non-determinism by the
mutation.

For Item 3 (which is a direct consequence of Item 2), assume that the orig-
inal non-deterministic mutant is not equivalent (i.e., potentially killable). Then
D(Sc(m)) |= φ1(I,O), and the corresponding witness yields a test which kills
the mutant assuming non-determinism can be controlled in the system under
test. Killability purported by φ1, however, could be an artifact of the transfor-
mation: determinization potentially deprives the model of its ability to match
the output of the mutant by deliberately choosing a certain non-deterministic
transition. In Example 2, we present an equivalent mutant which is killable after
the transformation, since we will detect the deviating output tea of the model
and ε of the mutant. Therefore, our transformation merely allows us to provide
a lower bound for the number of equivalent non-deterministic mutants.

5.2 Controlling Non-determinism in Modeling Languages

The exhaustive enumeration of states (J) and transitions (T) outlined in Sect. 5.1
is purely theoretical and infeasible in practice. However, an analogous result
can often be achieved by modifying the syntactic constructs of the underlying
modeling language that introduce non-determinism, namely:

– Non-deterministic assignments. Non-deterministic choice over a finite set of
elements {x′

1, . . . x
′
n}, as provided by SMV [25], can readily be converted into

a case-switch construct over nd. More generally, explicit non-deterministic
assignments x := � to state variables x [26] can be controlled by assigning the
value of nd to x.

– Non-deterministic schedulers. Non-determinism introduced by concurrency
can be controlled by introducing input variables that control the scheduler
(as proposed in [23] for bounded context switches).

In case non-determinism arises through variables under-specified in transition
relations, these variable values can be made inputs as suggested by Sect. 5.1.
In general, however, identifying under-specified variables automatically is non-
trivial.

Mutation Testing with Hyperproperties 215

Fig. 2. Tool pipeline of our experiments

Example 3. Consider again the SMV code in Fig. 1a, for which non-determinism
can be made controllable by replacing line if(in=req&wtr>0):{coff,tea}
with lines if(nd=0&in=req&wtr>0):coff,elif(nd=1&in=req&wtr>0)
:tea and adding init(nd):={0,1}.

Similarly, the STS representation of the beverage machine, given in Exam-
ple 1, can be transformed by replacing the first two rules by the following two
rules:

nd=0 ∧ wtr>0 ∧ in=req ∧ out=coff ∧ wtr’=wtr-1∨
nd=1 ∧ wtr>0 ∧ in=req ∧ out=tea ∧ wtr’=wtr-1∨

6 Experiments

In this section, we present an experimental evaluation of the presented meth-
ods. We start by presenting the deployed tool-chain. Thereafter, we present a
validation of our method on one case study with another model-based mutation
testing tool. Finally, we present quantitative results on a broad range of generic
models.

6.1 Toolchain

Figure 2 shows the toolchain that we use to produce test suites for models
encoded in the modeling languages Verilog and SMV. Verilog models are deter-
ministic while SMV models can be non-deterministic.

Variable Annotation. As a first step, we annotate variables as inputs and
outputs. These annotations were added manually for Verilog, and heuristically
for SMV (partitioning variables into outputs and inputs).

Mutation and Transformation. We produce conditional mutants via a muta-
tion engine. For Verilog, we implemented our own mutation engine into the
open source Verilog compiler VL2MV [12]. We use standard mutation oper-
ators, replacing arithmetic operators, Boolean relations, Boolean connectives,
constants, and assignment operators. The list of mutation operators used for Ver-
ilog can be found in the Appendix of [16]. For SMV models, we use the NuSeen
SMV framework [5,6], which includes a mutation engine for SMV models. The
mutation operators used by NuSeen are documented in [5]. We implemented the
transformation presented in Sect. 5 into NuSeen and applied it to conditional
mutants.

216 A. Fellner et al.

Translation. The resulting conditional mutants from both modeling formalisms
are translated into AIGER circuits [9]. AIGER circuits are essentially a compact
representation for finite models. The formalism is widely used by model checkers.
For the translation of Verilog models, VL2MV and the ABC model checker are
used. For the translation of SMV models, NuSMV is used.

Test Suite Creation. We obtain a test suite, by model checking ¬φ1(I,O) on
conditional mutants. Tests are obtained as counter-examples, which are finite
prefixes of π-witnesses to φ1(I,O). In case we can not find a counter-example,
and use a complete model checking method, the mutant is provably equivalent.

Case Study Test Suite Evaluation. We compare the test suite created with our
method for a case study, with the model-based mutation testing tool MoMuT
[2,15]. The case study is a timed version of a model of a car alarm system (CAS),
which was used in the model-based test case generation literature before [3,4,15].

To this end, we created a test suite for a SMV formulation of the model. We
evaluated its strength and correctness on an Action System (the native modeling
formalism of MoMuT) formulation of the model. MoMuT evaluated our test
suite by computing its mutation score—the ratio of killed- to the total number
of- mutants—with respect to Action System mutations, which are described in
[15].

This procedure evaluates our test suite in two ways. Firstly, it shows that
the tests are well formed, since MoMuT does not reject them. Secondly, it shows
that the test suite is able to kill mutants of a different modeling formalism than
the one it was created from, which suggests that the test suite is also able to
detect faults in implementations.

We created a test suite consisting of 61 tests, mapped it to the test format
accepted by MoMuT. MoMuT then measured the mutation score of our trans-
lated test suite on the Action System model, using Action System mutants. The
measured mutation score is 91% on 439 Action System mutants. In compar-
ison, the test suite achieves a mutation score of 61% on 3057 SMV mutants.
Further characteristics of the resulting test suite are presented in the following
paragraphs.

Quantitative Experiments. All experiments presented in this section were run in
parallel on a machine with an Intel(R) Xeon(R) CPU at 2.00 GHz, 60 cores, and
252 GB RAM. We used 16 Verilog models which are presented in [18], as well as
models from opencores.org. Furthermore, we used 76 SMV models that were also
used in [5]. Finally, we used the SMV formalism of CAS. All models are available
in [1]. Verilog and SMV experiments were run using property driven reachability
based model checking with a time limit of 1 h. Property driven reachability based
model checking did not perform well for CAS, for which we therefore switched
to bounded model checking with a depth limit of 100.

Characteristics of Models. Table 1 present characteristics of the models. For
Verilog and SMV, we present average (μ), standard deviation (σ), minimum
(Min), and maximum (Max) measures per model of the set of models. For some

Mutation Testing with Hyperproperties 217

measurements, we additionally present average (Avg.) or maximum (Max) num-
ber over the set of mutants per model. We report the size of the circuits in terms
of the number of inputs (#Input), outputs (#Output), state (#State) variables
as well as And gates (#Gates), which corresponds to the size of the transition
relation of the model. Moreover, the row “Avg. Δ # Gates” shows the average
size difference (in % of # Gates) of the conditional mutant and the original
model, where the average is over all mutants. The last row of the table shows
the number of the mutants that are generated for the models.

We can observe that our method is able to handle models of respectable size,
reaching thousands of gates. Furthermore, Δ# Gates of the conditional mutants
is relatively low. Conditional mutants allow us to compactly encode the original
and mutated model in one model. Hyperproperties enable us to refer to and
juxtapose traces from the original and mutated model, respectively. Classical
temporal logic does not enable the comparison of different traces. Therefore,
mutation analysis by model checking classical temporal logic necessitates strictly
separating traces of the original and the mutated model, resulting in a quadratic
blowup in the size of the input to the classical model-checker, compared to the
size of the input to the hyperproperty model-checker.

Table 1. Characteristics of models

Parameters Verilog SMV CAS

μ σ Min Max μ σ Min Max

Models 16 76 1

Input 186.19 309.59 4 949 8.99 13.42 0 88 58

Output 176.75 298.94 7 912 4.49 4.26 1 28 7

State 15.62 15.56 2 40 - - - - -

Gates 4206.81 8309.32 98 25193 189.12 209.59 7 1015 1409

Avg. Δ # Gates 3.98% 14.71% -10.2% 57.55% 8.14% 8.23% 0.22% 35.36% 0.86%

Mutants 260.38 235.65 43 774 535.32 1042.11 1 6304 3057

Model Checking Results. Table 2 summarizes the quantitative results of our
experiments. The quantitative metrics we use for evaluating our test generation
approach are the mutation score (i.e. percentage of killed mutants) and the per-
centage of equivalent mutants, the number of generated tests, the amount of time
required for generating them and the average length of the test cases. Further-
more, we show the number of times the resource limit was reached. For Verilog
and SMV this was exclusively the 1 h timeout. For CAS this was exclusively the
depth limit 100.

Finally, we show the total test suite creation time, including times when
reaching the resource limit. The reported time assumes sequential test suite
creation time. However, since mutants are model checked independently, the
process can easily be parallelized, which drastically reduces the total time needed
to create a test suite for a model. The times of the Verilog benchmark suite are

218 A. Fellner et al.

dominated by two instances of the secure hashing algorithm (SHA), which are
inherently hard cases for model checking.

We can see that the test suite creation times are in the realm of a few hours,
which collapses to minutes when model checking instances in parallel. How-
ever, the timing measures really say more about the underlying model checking
methods than our proposed technique of mutation testing via hyperporperties.
Furthermore, we want to stress that our method is agnostic to which variant of
model checking (e.g. property driven reachability, or bounded model checking)
is used. As discussed above, for CAS switching from one method to the other
made a big difference.

The mutation scores average is around 60% for all models. It is interesting
to notice that the scores of the Verilog and SMV models are similar on average,
although we use a different mutation scheme for the types of models. Again,
the mutation score says more about the mutation scheme than our proposed
technique. Notice that we can only claim to report the mutation score, because,
besides CAS, we used a complete model checking method (property driven reach-
ability). That is, in case, for example, 60% of the mutants were killed and no
timeouts occurred, then 40% of the mutants are provably equivalent. In contrast,
incomplete methods for mutation analysis can only ever report lower bounds of
the mutation score. Furthermore, as discussed above, the 61.7% of CAS trans-
late to 91% mutation score on a different set of mutants. This indicates that
failure detection capability of the produced test suites is well, which ultimately
can only be measured by deploying the test cases on real systems.

Table 2. Experimental results

Metrics Verilog SMV CAS

μ σ Min Max μ σ Min Max

Mutation score 56.82% 33.1% 4.7% 99% 64.79% 30.65% 0% 100% 61.7 %

Avg. test-case Len 4.26 1.65 2.21 8.05 15.41 58.23 4 461.52 5.92

Max test-case Len 21.62 49.93 3 207 187.38 1278.56 4 10006 9

Avg. runtime 83.08 s 267.53 s 0.01 s 1067.8 s 1.2 s 5.48 s - 46.8 s 7.8 s

Equivalent mutants 33.21% 32.47% 0% 95.3% 35.21% 30.65% 0% 100% 0%

Avg. runtime 44.77 s 119.58 s 0 s 352.2 s 0.7 s 2.02 s - 14.9 s -

Resource limit 9.96% 27.06% 0% 86.17% 3.8% 19.24% 0% 100% 38.34 %

Total runtime 68.58 h 168.62 h 0 h 620.18 h 0.4 h 1.19 h 0 h 6.79 h 1.15 h

7 Related Work

A number of test case generation techniques are based on model checking; a
survey is provided in [19]. Many of these techniques (such as [21,28,30]) differ
in abstraction levels and/or coverage goals from our approach.

Model checking based mutation testing using trap properties is presented in
[20]. Trap properties are conditions that, if satisfied, indicate a killed mutant. In

Mutation Testing with Hyperproperties 219

contrast, our approach directly targets the input/output behavior of the model
and does not require to formulate model specific trap properties.

Mutation based test case generation via module checking is proposed in [10].
The theoretical framework of this work is similar to ours, but builds on module
checking instead of hyperproperties. Moreover, no experimental evaluation is
given in this work.

The authors of [4] present mutation killing using SMT solving. In this
work, the model, as well as killing conditions, are encoded into a SMT formula
and solved using specialized algorithms. Similarly, the MuAlloy [31] framework
enables model-based mutation testing for Alloy models using SAT solving. In
this work, the model, as well as killing conditions, are encoded into a SAT for-
mula and solved using the Alloy framework. In contrast to these approaches, we
encode only the killing conditions into a formula. This allows us to directly use
model checking techniques, in contrast to SAT or SMT solving. Therefore, our
approach is more flexible and more likely to be applicable in other domains. We
demonstrate this by producing test cases for models encoded in two different
modeling languages.

Symbolic methods for weak mutation coverage are proposed in [8] and [7].
The former work describes the use of dynamic symbolic execution for weakly
killing mutants. The latter work describes a sound and incomplete method for
detecting equivalent weak mutants. The considered coverage criterion in both
works is weak mutation, which, unlike the strong mutation coverage criterion
considered in this work, can be encoded as a classic safety property. However,
both methods could be used in conjunction with our method. Dynamic symbolic
execution could be used to first weakly kill mutants and thereafter strongly
kill them via hyperproperty model checking. Equivalent weak mutants can be
detected with the methods of [7] to prune the candidate space of potentially
strongly killable mutants for hyperpropery model checking.

A unified framework for defining multiple coverage criteria, including weak
mutation and hyperproperties such as unique-cause MCDC, is proposed in [24].
While strong mutation is not expressible in this framework, applying hyperprop-
erty model checking to the proposed framework is interesting future work.

8 Conclusion

Our formalization of mutation testing in terms of hyperproperties enables the
automated model-based generation of tests using an off-the-shelf model checker.
In particular, we study killing of mutants in the presence of non-determinism,
where test-case generation is enabled by a transformation that makes non-
determinism in models explicit and controllable. We evaluated our approach
on publicly available SMV and Verilog models, and will extend our evaluation
to more modeling languages and models in future work.

220 A. Fellner et al.

References

1. Mutation testing with hyperproperies benchmark models. https://git-service.
ait.ac.at/sct-dse-public/mutation-testing-with-hyperproperties. Accessed 25 Apr
2019

2. Aichernig, B., Brandl, H., Jöbstl, E., Krenn, W., Schlick, R., Tiran, S.:
MoMuT::UML model-based mutation testing for UML. In: 2015 IEEE 8th Interna-
tional Conference on Software Testing, Verification and Validation (ICST), ICST,
pp. 1–8, April 2015

3. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W., Schlick, R., Tiran, S.: Killing
strategies for model-based mutation testing. Softw. Test. Verif. Reliab. 25(8), 716–
748 (2015)

4. Aichernig, B.K., Jöbstl, E., Tiran, S.: Model-based mutation testing via symbolic
refinement checking (2014)

5. Arcaini, P., Gargantini, A., Riccobene, E.: Using mutation to assess fault detection
capability of model review. Softw. Test. Verif. Reliab. 25(5–7), 629–652 (2015)

6. Arcaini, P., Gargantini, A., Riccobene, E.: NuSeen: a tool framework for the
NuSMV model checker. In: 2017 IEEE International Conference on Software Test-
ing, Verification and Validation, ICST 2017, Tokyo, Japan, 13–17 March 2017, pp.
476–483. IEEE Computer Society (2017)

7. Bardin, S., et al.: Sound and quasi-complete detection of infeasible test require-
ments. In: 8th IEEE International Conference on Software Testing, Verification
and Validation, ICST 2015, Graz, Austria, 13–17 April 2015, pp. 1–10 (2015)

8. Bardin, S., Kosmatov, N., Cheynier, F.: Efficient leveraging of symbolic execution
to advanced coverage criteria. In: Seventh IEEE International Conference on Soft-
ware Testing, Verification and Validation, ICST 2014, Cleveland, Ohio, USA, 31
March 2014–4 April 2014, pp. 173–182 (2014)

9. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond (2011).
fmv.jku.at/hwmcc11/beyond1.pdf

10. Boroday, S., Petrenko, A., Groz, R.: Can a model checker generate tests for non-
deterministic systems? Electron. Notes Theor. Comput. Sci. 190(2), 3–19 (2007)

11. Budd, T.A., Lipton, R.J., DeMillo, R.A., Sayward, F.G.: Mutation analysis. Tech-
nical report, DTIC Document (1979)

12. Cheng, S.-T., York, G., Brayton, R.K.: VL2MV: a compiler from verilog to BLIF-
MV. HSIS Distribution (1993)

13. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

14. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

15. Fellner, A., Krenn, W., Schlick, R., Tarrach, T., Weissenbacher, G.: Model-based,
mutation-driven test case generation via heuristic-guided branching search. In:
Talpin, J.-P., Derler, P., Schneider, K. (eds.) Formal Methods and Models for
System Design (MEMOCODE), pp. 56–66. ACM (2017)

16. Fellner, A., Befrouei, M.T., Weissenbacher, G.: Mutation Testing with Hyperprop-
erties. arXiv e-prints, page arXiv:1907.07368, July 2019

17. Finkbeiner, B., Hahn, C., Hans, T.: MGHyper: checking satisfiability of HyperLTL
formulas beyond the ∃∗∀∗ fragment. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018.
LNCS, vol. 11138, pp. 521–527. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01090-4 31

https://git-service.ait.ac.at/sct-dse-public/mutation-testing-with-hyperproperties
https://git-service.ait.ac.at/sct-dse-public/mutation-testing-with-hyperproperties
http://fmv.jku.at/hwmcc11/beyond1.pdf
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
http://arxiv.org/abs/1907.07368
https://doi.org/10.1007/978-3-030-01090-4_31
https://doi.org/10.1007/978-3-030-01090-4_31

Mutation Testing with Hyperproperties 221

18. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

19. Fraser, G., Wotawa, F., Ammann, P.E.: Testing with model checkers: a survey.
Softw. Test. Verification Reliab. 19(3), 215–261 (2009)

20. Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from require-
ments specifications. In: Gargantini, A., Heitmeyer, C. (eds.) ACM SIGSOFT Soft-
ware Engineering Notes, vol. 24, pp. 146–162. Springer, Heidelberg (1999). https://
doi.org/10.1145/318774.318939

21. Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: A temporal logic based theory of test
coverage and generation. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS,
vol. 2280, pp. 327–341. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-46002-0 23

22. Howden, W.E.: Weak mutation testing and completeness of test sets. IEEE Trans.
Softw. Eng. 8(4), 371–379 (1982)

23. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential
analysis. Formal Methods Syst. Des. 35(1), 73–97 (2009)

24. Marcozzi, M., Delahaye, M., Bardin, S., Kosmatov, N., Prevosto, V.: Generic and
effective specification of structural test objectives. In: 2017 IEEE International
Conference on Software Testing, Verification and Validation, ICST 2017, Tokyo,
Japan, 13–17 March 2017, pp. 436–441 (2017)

25. McMillan, K.L.: The SMV system. Technical report, CMU-CS-92-131, Carnegie
Mellon University (1992)

26. Nelson, G.: A generalization of Dijkstra’s calculus. ACM Trans. Program. Lang.
Syst. (TOPLAS) 11(4), 517–561 (1989)

27. Offutt, A.J.: Investigations of the software testing coupling effect. ACM Trans.
Softw. Eng. Methodol. 1(1), 5–20 (1992)

28. Rayadurgam, S., Heimdahl, M.P.E.: Coverage based test-case generation using
model checkers. In: Engineering of Computer Based Systems (ECBS), pp. 83–91.
IEEE (2001)

29. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.
Softw.-Concepts Tools 17(3), 103–120 (1996)

30. Visser, W., Pǎsǎreanu, C.S., Khurshid, S.: Test input generation with Java
pathfinder. ACM SIGSOFT Softw. Eng. Notes 29(4), 97–107 (2004)

31. Wang, K., Sullivan, A., Khurshid, S.: Mualloy: a mutation testing framework for
alloy. In: International Conference on Software Engineering: Companion (ICSE-
Companion), pp. 29–32. IEEE (2018)

https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1145/318774.318939
https://doi.org/10.1145/318774.318939
https://doi.org/10.1007/3-540-46002-0_23
https://doi.org/10.1007/3-540-46002-0_23

Test Model Coverage Analysis
Under Uncertainty

I. S. W. B. Prasetya(B) and Rick Klomp

Utrecht University, Utrecht, The Netherlands
s.w.b.prasetya@uu.nl

Abstract. In model-based testing (MBT) we may have to deal with a
non-deterministic model, e.g. because abstraction was applied, or because
the software under test itself is non-deterministic. The same test case may
then trigger multiple possible execution paths, depending on some inter-
nal decisions made by the software. Consequently, performing precise test
analyses, e.g. to calculate the test coverage, are not possible. This can be
mitigated if developers can annotate the model with estimated probabil-
ities for taking each transition. A probabilistic model checking algorithm
can subsequently be used to do simple probabilistic coverage analysis.
However, in practice developers often want to know what the achieved
aggregate coverage is, which unfortunately cannot be re-expressed as a
standard model checking problem. This paper presents an extension to
allow efficient calculation of probabilistic aggregate coverage, and more-
over also in combination with k-wise coverage.

Keywords: Probabilistic model based testing ·
Probabilistic test coverage · Testing non-deterministic systems

1 Introduction

Model based testing (MBT) is considered as one of the leading technologies for
systematic testing of software [5,6,17]. It has been used to test different kinds
of software, e.g. communication protocols, web applications, and automotive
control systems. In this approach, a model describing the intended behavior of
the system under test (SUT) is first constructed [27], and then used to guide
the tester, or a testing algorithm, to systematically explore and test the SUT’s
states. Various automated MBT tools are available, e.g. JTorX [4,26], Phact
[11], OSMO [14], APSL [24], and RT-Tester [17].

There are situations where we end up with a non-deterministic model [13,17,
23], for example when the non-determinism within the system under test, e.g.
due to internal concurrency, interactions with an uncontrollable environment
(e.g. as in cyber physical systems), or use of AI, leads to observable effects at
the model level. Non-determinism can also be introduced as byproduct when
we apply abstraction on an otherwise too large model [20]. Models mined from

c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 222–239, 2019.
https://doi.org/10.1007/978-3-030-30446-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_12&domain=pdf
http://orcid.org/0000-0002-3421-4635
https://doi.org/10.1007/978-3-030-30446-1_12

Test Model Coverage Analysis Under Uncertainty 223

executions logs [7,21,28] can also be non-deterministic, because log files only
provide very limited information about a system’s states.

MBT with a non-deterministic model is more challenging. The tester can-
not fully control how the SUT would traverse the model, and cannot thus pre-
cisely determine the current state of the SUT. Obviously, this makes the task
of deciding which trigger to send next to the SUT harder. Additionally, cover-
age, e.g. in terms of which states in the model have been visited by a series of
tests, cannot be determined with 100% certainty either. This paper will focus on
addressing the latter problem—readers interested in test cases generation from
non-deterministic models are referred to e.g. [13,16,25]. Rather than just saying
that a test sequence may cover some given state, we propose to calculate the
probability of covering a given coverage goal, given modelers’ estimation on the
local probability of each non-deterministic choice in a model.

Given a probabilistic model of the SUT, e.g. in the form of a Markov Decision
Process (MDP) [3,22], and a test σ in the form of a sequence of interactions on
the SUT, the most elementary type of coverage goal in MBT is for σ to cover
some given state s of interest in the model. Calculating the probability that this
actually happens is an instance of the probabilistic reachability problem which
can be answered using e.g. a probabilistic model checker [3,10,15]. However,
in practice coverage goals are typically formulated in an ‘aggregate’ form, e.g.
to cover at least 80% of the states, without being selective on which states to
include. Additionally, we may want to know the aggregate coverage over pairs
of states (the transitions in the LTS), or vectors of states, as in k-wise coverage
[1], as different research showed that k-wise greatly increases the fault finding
potential of a test suite [9,18]. Aggregate goals cannot be expressed in LTL or
CTL, which are the typical formalisms in model checking. Furthermore, both
types of goals (aggregate and k-wise) may lead to combinatorial explosion.

This paper contributes: (1) a concept and definition of probabilistic test
coverage; as far as we know this has not been covered in the literature before, and
(2) an algorithm to calculate probabilistic coverage, in particular of aggregate
k-wise coverage goals.

Paper Structure. Section 2 introduces relevant basic concepts. Section 3 intro-
duces the kind of coverage goals we want to be able to express and how their
probabilistic coverage can be calculated. Section 4 presents our algorithm for
efficient coverage calculation. Section 5 shows the results of our benchmarking.
Related work is discussed in Sect. 6. Section 7 concludes.

2 Preliminary: Probabilistic Models and Simple Coverage

As a running example, consider the labelled transition system (LTS) [2] in Fig. 1
as a model of some SUT. The transitions are labelled with actions, e.g. a and b.
A non-τ action represents an interaction between the SUT and its environment.
In our set up such an action is assumed to occur synchronously a la CSP [12] (for
an action a to take place, both the SUT and the environment first need to agree
on doing a; then they will do a together). The action τ represents an internal
action by the SUT, that is not visible to the environment.

224 I. S. W. B. Prasetya and R. Klomp

0EX1: 1

2

3

4

5 6
(0.5)a

(0.5)a

(0.1)b

(0.9)bb (0.9)τ

(0.1)τ

a

c

Fig. 1. An example of a probabilistic model of some SUT called EX1.

To test the SUT, the tester controls the SUT by insisting on which action it
wants to synchronize; e.g. if on the state t the SUT is supposed to be able to
either do a or b, the tester can insist on doing a. If the SUT fails to go along
with this, it is an error. The tester can also test if in this state the SUT can be
coerced to do an action that it is not supposed to synchronize; if so, the SUT is
incorrect. We will assume a black box setup. That is, the tester cannot actually
see the SUT’s state, though tester can try to infer this based on information
visible to him, e.g. the trace of the external actions done so far. For example
after doing a from the state 0 on the SUT EX1 above, the tester cannot tell
whether it then goes to the state 1 or 2. However, if the tester manages to do
abc he would on the hind sight know that the state after a must have been 1.

When a state s has multiple outgoing transitions with the same label, e.g.
a, this implies non-determinism, since the environment cannot control which a
the SUT will take (the environment can only control whether or not it wants to
do a). We assume the modeler is able estimate the probability of taking each of
these a-transitions and annotate this on each of them. E.g. in Fig. 1 we see that
in state 1, two a-transitions are possible, leading to different states, each with
the probability of 0.5. Similarly, in state 3 there are two τ -transitions leading to
states 4 and 5, with the probability of 0.9 and 0.1 respectively. A probabilistic
model such as in Fig. 1 is also called a Markov Decision Process (MDP) [3].

Let M be an MDP model, with finite number of transitions, and a single
initial state. Let s, t be states, and a an action. We write s∈M to mean that
s is a state in M . The notation s

a−→t denotes a transition that goes from the
state s to t and is labelled with a. We write s

a−→t ∈ M to mean that s
a−→t

is a transition in M . PM (s a−→t) denotes the probability that M will take this
particular transition when it synchronizes over a on the state s.

To simplify calculation over non-deterministic actions, we will assume that M
is τ -normalized in the following sense. First, a state cannot have a mix of τ and
non-τ outgoing transitions. E.g. a state s with two transitions {s

τ−→t, s
a−→u}

should first be re-modelled as {s
τ−→t, s

τ−→s′, s′ a−→u} by introducing an inter-
mediate state s′, and the modeler should provide estimation on the probability
of taking each of the two τ transitions. Second, M should have no state whose all
incoming and outgoing transitions are τ transitions. Such a state is considered
not interesting for our analyses. Third, M should not contain a cycle that con-
sists of only τ transitions. In a τ -normalized model, non-determinism can only
be introduced if there is a state s with multiple outgoing transitions labelled by
the same action (which can be τ).

We define an execution of the SUT as a finite path ρ through the model
starting from its initial state. A trace is a finite sequence of external actions.

Test Model Coverage Analysis Under Uncertainty 225

The trace of ρ, tr(ρ), is the sequence external actions induced by ρ. A legal
trace is a trace that can be produced by some execution of the SUT. A test-case
is abstractly modeled by a trace. We will restrict to test-cases that form legal
traces, e.g. ab, aba, and ababc are test cases for Ex1 in Fig. 1. Negative tests can
be expressed as legal traces by adding transitions to an error state. A set of test
cases is also called a test suite.

Since the model can be non-deterministic, the same test case may trigger
multiple possible executions which are indistinguishable from their trace. If σ
is a trace, exec(σ) denotes the set of all executions ρ such that tr(ρ) = σ, and
moreover is τ -maximal: it cannot be extended without breaking the property
tr(ρ) = σ. Assuming τ -maximality avoids having to reason about the probability
that ρ, after being observed as σ, is delayed in completing its final τ transitions.

2.1 Representing a Test Case: Execution Model

The probability that a test case σ covers some goal φ (e.g. a particular state
s) can in principle be calculated by quantifying over exec(σ). However, if M is
highly non-deterministic, the size of exec(σ) can be exponential with respect to
the length of σ. To facilitate more efficient coverage calculation we will represent
σ with the subgraph of M that σ induces, called the execution model of σ,
denoted by E(σ). E(σ) forms a Markov chain; each branch in E(σ) is annotated
with the probability of taking the branch, under the premise that σ has been
observed. Since a test case is always of finite length and M is assumed to have no
τ -cycle, E(σ) is always acyclic. Typically the size of E(σ) (its number of nodes) is
much less than the size of exec(σ). For example, the execution model of the test
case aba on EX1 is shown in Fig. 2. An artificial state denoted with � is added so
that E(σ) has a single exit node, which is convenient for later.

u0(0)

u1(1)

u2(2) u4(0)

u3(3)

u7(2)

u5(4) u6(1)

u8(�)

(0.5)a

(0.5)a

b

(0.1)b

(0.9)b

(0.5)a

(0.5)a

τ a

Fig. 2. The execution model of the test case aba on EX1.

To identify the states in E(σ) we assign IDs to them (u0...u8 in Fig. 2). We
write u.st to denote u’s state label, which is the ID of a state in M that u
represents (so, u.st ∈ M); in Fig. 2 this is denoted by the number between
brackets in every node.

Importantly, notice that the probability of the transitions in E(σ) may be
different than the original probability in M . For example, the transition u3

τ−→u5

in the above execution model has probability 1.0, whereas in the original model
EX1 this corresponds to the transition 3 τ−→4 whose probability is 0.9. This is
because the alternative 3 τ−→5 could not have taken place, as it leads to an

226 I. S. W. B. Prasetya and R. Klomp

execution whose trace does not correspond to the test case aba (which is assumed
to have happened).

More precisely, when an execution in the model E(σ) reaches a node u, the
probability of extending this execution with the transition u

α−→v can be cal-
culated by taking the conditional probability of the corresponding transition
in the model M , given that only the outgoing transitions specified by E(σ)
could happen. So, PE(σ)(u

α−→v) is PM (u.st
α−→v.st) divided by the the sum of

PM (u.st
α−→w.st) of all w such that u

α−→w ∈ E(σ).
Let E = E(σ). Since E is thus acyclic, the probability that SUT traverses a

path/execution ρ in E(σ) when it is given σ can be obtained by multiplying the
probability of all the transitions in the path:

PE(ρ) =
∏

s
α−→t∈ρ

PE(s α−→t) (1)

Simple Coverage Analyses. As an example of a simple analysis, let’s calculate
the probability that a test case σ produces an execution that passes through a
given state s, denoted by P (〈s〉 | σ). This would then just be the sum of the
probability of all full executions in E(σ) that contain s. So:

P (〈s〉 | σ) =
∑

ρ s.t. ρ∈E(σ)∧s∈ρ

PE(σ)(ρ) (2)

For example, on the execution model EX1, P (〈1〉 | aba) = 0.525, P (〈2〉 | aba)
= 0.475, P (〈4〉 | aba) = 0.05, whereas P (〈5〉 | aba) = 0.

3 Coverage Under Uncertainty

Coverage goals posed in practice are however more complex than goals exem-
plified above. Let us first introduce a language for expressing ’goals’; we will
keep it simple, but expressive enough to express what is later called ’aggregate
k-wise’ goals. A goal of the form 〈0, 2, 0〉 is called a word, expressing an intent to
cover the subpath 〈0, 2, 0〉 in the MDP model. We will also allow disjunctions of
words and sequences of words (called sentences) to appear as goals. For example:
(〈0, 2〉 ∨ 〈1, 0〉) ; 〈1〉 formulates a goal to first cover the edge 0→2 or 1→0, and
then (not necessarily immediately) the node 1.

The typical goal people have in practice is to cover at least p% of the states.
This is called an aggregate goal. We write this a bit differently: a goal of the form
1 ≥N expresses an intent to cover at least N different states. Covering at least
p% can be expressed as 1 ≥ �p ∗ K/100
 where K is the number of states in the
model. To calculate probabilistic coverage in k-wise testing [1], the goal k ≥N
expresses an intent to cover at least N different words of length k. Formally:

Test Model Coverage Analysis Under Uncertainty 227

Definition 1. A coverage goal is a formula φ with this syntax:

φ ::= S | A (goal)
S ::= C | C;S (sentence)
A ::= k≥N (aggregate goal), with k≥1
C ::= W | W∨C (clause)
W ::= 〈s0, ..., sk−1〉 (word), with k≥1

A sentence is a sequence C0;C1; Each Ci is called a clause, which in turn
consists of one or more words. A word is denoted by 〈s0, s1, ...〉 and specifies one
or more connected states in an MDP.

Let ρ be an execution. If φ is a goal, we write ρ � φ to mean that ρ covers
φ. Checking this is decidable. For a word W , ρ � W if W is a segment of ρ. For
a clause C = W0 ∨ W2 ∨ ..., ρ � C if ρ � Wk for some k. Roughly, a sentence
C0;C1; ... is covered by ρ if all clauses Ci are covered by ρ, and furthermore they
are covered in the order as specified by the sentence. We will however define it
more loosely to allow consecutive clauses to overlap, as follows:

Definition 2 (Sentence Coverage). Let S be a sentence. (1) An empty ρ
does not cover S. (2) If S is a just a single clause C, then ρ � S iff ρ � C. (3)
If S = C;S′ and a prefix of ρ matches one of the words in C, then ρ � S iff
ρ � S′. If ρ has no such a prefix, then ρ � S iff tail(ρ) � S.

An aggregate goal of the form k≥N is covered by ρ if ρ covers at least
N different words of size k. While sentences are expressible in temporal logic,
aggregate goals are not. This has an important consequence discussed later.

Let φ be a coverage goal and σ a test case. Let’s write P (φ | σ) to denote
the probability that φ is covered by σ, which can be calculated analogous to (2)
as follows:

Definition 3. P (φ | σ) is equal to P (φ | E) where E = E(σ), P (φ | E) =∑
ρ s.t. ρ∈exec(E) ∧ ρ�φ PE(ρ), and where PE(ρ) is calculated as in (1).

For example, consider the test case aba on the SUT EX1. Figure 2 shows the
execution model of aba. P (〈2, 0〉 | aba) is the probability that aba’s execution
passes through the transition 2→0; this probability is 0.5. P ((〈2〉∨〈3〉); 〈1〉 | aba)
is the probability that aba first visits the state 2 or 3, and sometime later 1; this
probability is 0.75. P (1≥4 | aba) is the probability that the execution of aba
visits at least four different states; this is unfortunately only 0.05.

Due to non-determinism, the size of exec(σ) could be exponential with respect
to the length of σ. Simply using the formula in Definition 3 would then be expen-
sive. Below we present a much better algorithm to do the calculation.

4 Efficient Coverage Calculation

Coverage goals in the form of sentences are actually expressible in Computation
Tree Logic (CTL) [3]. E.g. 〈s, t〉; 〈u〉 corresponds to EF(s∧t∧EFu). It follows that

228 I. S. W. B. Prasetya and R. Klomp

the probability of covering a sentence can be calculated through probabilistic
CTL model checking [3,10]. Unfortunately, aggregate goals are not expressible
in CTL. Later we will discuss a modification of probabilistic model checking to
allow the calculation of aggregate goals. We first start with the calculation of
simple sentences whose words are all of length one.

Let S be a simple sentence, σ a test case, and E = E(σ). In standard prob-
abilistic model checking, P (S|σ) would be calculated through a series of mul-
tiplications over a probability matrix [3]. We will instead do it by performing
labelling on the nodes of E, resembling more to non-probabilistic CTL model
checking. This approach is more generalizable to later handle aggregate goals.

Notice that any node u in E induces a unique subgraph, denoted by E@u,
rooted in u. It represents the remaining execution of σ, starting at u. When
we label E with some coverage goal ψ, the labelling will proceed in such a way
that when it terminates every node u in E is extended with labels of the form
u.lab(ψ) containing the value of P (ψ | E@u). The labelling algorithm is shown
in Fig. 3, namely the procedure label(..)—we will explain it below. In any case,
after calling label(E,S), the value of P (S | σ) can thus be obtained simply by
inspecting the lab(S) of E’s root node. This is done by the procedure calcSimple.

1: procedure calcSimple(E, S)
2: label(E, S)
3: return root(E).lab(S)
4: end procedure

5: procedure label(E, S)
6: u0 ← root(E)
7: case S of
8: C → label1(u0, C)
9: C;S′ → label(E, S′) ; label1(u0, S)
10: end procedure

11: procedure checkClause(u, C)
12: � the clause C is assumed to be of

this form, with k ≥ 1 :
13: let 〈s0〉 ∨ ... ∨ 〈sk−1〉 = C
14: isCovered ← u.st ∈ {s0, ..., sk−1}
15: return isCovered
16: end procedure

17: procedure label1(u, S)
18: � recurse to u’s successors :
19: forall v ∈ u.next → label1(v, S)
20: � pre-calculate u’s successors’ to-

tal probability to cover S :
21: q′ ← ∑

v∈u.next u.pr(v) ∗ v.lab(S)
22: � calc. u’s probability to cover S :
23: case S of
24: C → if checkClause(u, C)

then q ← 1
else q ← q′

25: C;S′ → if checkClause(u, C)
then q ← u.lab(S′)
else q ← q′

26: end case
27: � add the calculated probability as

a new label to u :
28: u.lab(S) ← q
29: end procedure

Fig. 3. The labeling algorithm to calculate the probability of simple sentences.

Since S is a sentence, it is a sequence of clauses. The procedure label(E,S)
first recursively labels E with the tail S′ of S (line 9), then we proceed with
the labelling of S itself, which is done by the procedure label1. In label1, the
following notations are used. Let u be a node in E. Recall that u.st denotes the
ID of the state in M that u represents. We write u.next to denote the set of

Test Model Coverage Analysis Under Uncertainty 229

u’s successors in E (and not in M !). For such a successor v, u.pr(v) denotes the
probability annotation that E puts on the arrow u→v. A label is a pair (ψ, p)
where ψ is a coverage goal and p is a probability in [0..1]. The notation u.lab
denotes the labels put so far to the node u. The assignment u.lab(ψ) ← p adds
the label (ψ, p) to u, and the expression u.lab(ψ) returns now the value of p.

The procedure label1(ψ) will perform the labelling node by node recursively
in the bottom-up direction over the structure of E (line 19). Since E is acyclic,
only a single pass of this recursion is needed. For every node u ∈ E, label1(u, S)
has to add a new label (S, q) to the node u where q is the probability that the
goal S is covered by the part of executions of σ that starts in u (in other words,
the value of P (S | E@u)). The goal S will be in one of these two forms:

1. S is just a single clause C (line 24). Because S is a simple sentence, C is a
disjunction of singleton words 〈s0〉 ∨ ... ∨ 〈sk−1〉, where each si is an ID of
a state in M . If u represents one of these states, the probability that E@u
covers C would be 1. Else, it is the sum of the probability to cover C through
u’s successors (line 20). As an example, Fig. 4 (left) shows how the labeling
of a simple sentence 〈1〉 on the execution model in Fig. 2 proceeds.

2. S is a sentence with more than one clause; so it is of the form C;S′ (line 25)
where C is a clause and S′ is the rest of the sentence, we calculate the coverage
probability of E@u by basically following the third case in Definition 2. As
an example, Fig. 4 (right) shows how the labeling of S = 〈0〉;〈1〉 proceeds. At
every node u we first check if u covers the first word, namely 〈0〉. If this is the
case, the probability that E@u covers S would be the same as the probability
that it covers the rest of S, namely 〈1〉. The probability of the later is by
now known, calculated by label in its previous recursive call. The result can
be inspected in u.lab(〈1〉).

If u does not cover S, the probability that E(u) covers S would be the sum
of the probability to cover S through u’s successors (calculated in line 21).

Assuming that checking if a node locally covers a clause (the procedure
checkClause in Fig. 3) takes a time unit, the time complexity of label1 is O(|E|),
where |E| is the size of E in terms of its number of edges. The complexity of label
is thus O(|E| ∗ |S|), where |S| is the size of the goal S in terms of the number
of clauses it has. The size of E is typically just linear to the length of the test
case: O(Nsucs ∗ |σ|), where Nsucs is the average number of successors that each
state in M has. This is a significant improvement compared to the exponential
run time that we would get if we simply use Definition 3.

4.1 Non-simple Sentences

Coverage goals in k-wise testing would require sentences with words of length
k > 1 to be expressed. These are thus non-simple sentences. We will show that
the algorithm in Fig. 3 can be used to handle these sentences as well.

Consider as an example the sentence 〈0, 2, 0〉; 〈4, 1, �〉. The words are of length
three, so the sentence is non-simple. Suppose we can treat these words as if they

230 I. S. W. B. Prasetya and R. Klomp

u0(0)
〈1〉 : 0.75

u1(1)
〈1〉 : 1

u2(2)
〈1〉 : 0.5

u3(3)
〈1〉 : 1

u4(0)
〈1〉 : 0.5

u5(4)
〈1〉 : 1

u6(1)
〈1〉 : 1

u7(2)
〈1〉 : 0

�

0.5

0.5

0.1

0.9

0.5

0.5

u0(0)
〈0〉;〈1〉:0.75

u1(1)
〈0〉;〈1〉:0.45

u2(2)
〈0〉;〈1〉:0.5

u3(3)
〈0〉;〈1〉:0

u4(0)
〈0〉;〈1〉:0.5

u5(4)
〈0〉;〈1〉:0

u6(1)
〈0〉;〈1〉:0

u7(2)
〈0〉;〈1〉:0

�

0.5

0.5

0.1

0.9

0.5

0.5

Fig. 4. The left graph shows the result of label(〈1〉) on the execution model of aba
in Fig. 2. For simplicity, the action labels on the arrows are removed. The probabil-
ity annotation is kept. In turn, label() calls label1, which then performs the labelling
recursively from right to left. The nodes u6 and u7 (yellow) are base cases. The prob-
abilities of 〈1〉 on them are respectively 1 and 0. This information is then added as
the labels of these nodes. Next, label1 proceeds with the labelling of u4 and u5. E.g.
on u4 (orange), because u4.st is not 1, for u4 to cover 〈1〉 we need an execution that
goes through u6, with the probability of 0.5. So the probability of 〈1〉 on u4 is 0.5. The
right graph shows the result of label(〈0〉; 〈1〉) on the same execution model. This will
first call label(〈1〉), thus producing the labels as shown in the left graph, then proceeds
with label1(〈0〉; 〈1〉). Again, label1 performs the labelling recursively from right to left.
The base cases u6 and u7 do not cover 〈0〉; 〈1〉, so the corresponding probability there
is 0. Again, this information is added as labels of the corresponding nodes. Node u4

(orange) has u4.st = 0. So, any execution that starts from there and covers 〈1〉 would
also cover 〈0〉; 〈1〉. The probability that u4 covers 〈1〉 is already calculated in the left
graph, namely 0.5. So this is also the probability that it covers 〈0〉; 〈1〉. (Color figure
online)

are singletons. E.g. in 〈0, 2, 0〉 the sequence 0, 2, 0 is treated as a single symbol,
and hence the word is a singleton. From this perspective, any non-aggregate
goal is thus a simple sentence, and therefore the algorithm in Fig. 3 can be used
to calculate its coverage probability. We do however need to pre-process the
execution model to align it with this idea.

The only part of the algorithm in Fig. 3 where the size of the words matters is
in the procedure checkClause. Given a node u in the given execution model E and
a clause C, checkClause(u,C) checks if the clause C is covered by E’s executions
that start at u. If the words in C are all of length one, C can be immediately
checked by knowing which state in M u represents. This information is available
in the attribute u.st. Clauses with longer words can be checked in a similar way.
For simplicity, assume that the words are all of length k (note: shorter words can
be padded to k with wildcards * that match any symbol). We first restructure
E such that the st attribute of every node u in the new E contains a word
of length k that would be covered if the execution of E arrives at u. We call
this restructuring step k-word expansion. Given a base execution model E, the
produced new execution model will be denoted by Ek. As an example, the figure
below shows the word expansion with k = 3 of the execution model in Fig. 2
(for every node v we only show its v.st label, which is an execution segment of
length 3). Artificial initial and terminal states are added to the new execution
model, labelled with �. When a word of length k cannot be formed, because the

Test Model Coverage Analysis Under Uncertainty 231

corresponding segment has reached the terminal state � in E, we pad the word
with �’s on its the end until its length is k.

�

[0,1,3] [1,3,4] [3,4,1]

[0,1,0]

[1,0,1] [0, 1, �]

[1,0,2] [0, 2, �]

[0,2,0]

[2,0,1] [0, 1, �]

[2,0,2] [0, 2, �]

[4, 1, �]

[1, �, �]

[2, �, �]

�

0.05

0.45

0.5

0.5

0.5

0.5

0.5

4.2 Coverage of Aggregate Goals

We will only discuss the calculation of aggregate goals of the form k ≥ N where
k = 1. If k > 1 we can first apply a k-word expansion (Sect. 4.1) on the given
execution model E, then we calculate 1 ≥ N on the expanded execution model.

Efficiently calculating 1 ≥ N is more challenging. The algorithm below pro-
ceeds along the same idea as how we handled simple sentences, namely by recurs-
ing over E. We first need to extend every node u in E with a new label u.A.
This label is a set containing pairs of the form V �→ p where V is a set of M ’s
states and p is the probability that E@u would cover all the states mentioned in
V . Only V ’s whose probability is non-zero need to be included in this mapping.
After all nodes in E are labelled like this, the probability 1 ≥ N can be calculated
from the A of the root node u0:

P (1≥N | σ) =
∑

V �→p ∈ u0.A

if |V | ≥ N then p else 0 (3)

The labelling is done recursively over E as follows:

1. The base case is the terminal node #. The A label of # is just ∅.
2. For every node u ∈ E, we first recurse to all its successors. Then, we calculate

a preliminary mapping for u in the following multi-set A′:

A′ = { V ∪{u.st} �→ p∗PE(u→v) | v ∈ u.next, V �→p ∈ v.A }

As a multi-set note that A′ may contain duplicates, e.g. two instances of
V �→ p0. Additionally, it may contain different maps that belong to the same
V , e.g. V �→ p1 and V �→ p2. All these instances of V need to be merged
by summing up their p’s, e.g. the above instances is to be merged to V �→
p0 + p0 + p1 + p2 The function merge will do this. The label u.A is then just:
u.A = merge(A′) = {V �→ ∑

V �→p∈A′ p | V ∈ domain(A′)}, where domain(A′)
is the set of all unique V ’s that appear as V �→. in A′.

The recursion terminates because E is acyclic.
The above algorithm can however perform worse than a direct calculation

via Definition 3. The reason is that merge is an expensive operation if we do it
literally at every node. If we do not merge at all, and make the A’s multi-sets
instead of sets, we will end up with u0.A that contains as many elements as the

232 I. S. W. B. Prasetya and R. Klomp

number of paths in E, so we are not better of either. Effort to merge is well
spent if it delivers large reduction in the size of the resulting set, otherwise the
effort is wasted. Unfortunately it is hard to predict the amount of reduction we
would get for each particular merge. We use the following merge policy. We only
merge on nodes at the B − 1-th position of ‘bridges’ where B is the length of
the bridge at hand. A bridge is a sequence of nodes v0, ..., vB−1 such that: (1)
every vi except the last one has only one outgoing edge, leading to vi+1, and (2)
the last node vB−1 should have more than one successor. A bridge forms thus
a deterministic section of E, that leads to a non-deterministic section. Merging
on a bridge is more likely to be cost effective. Furthermore, only one merge is
needed for an entire bridge. Merging on a non-deterministic node (a node with
multiple successors) is risky. This policy takes a conservative approach by not
merging at all on such nodes. The next section will discuss the performance of
our algorithm.

5 Experimental Results

In the following experiment we benchmark the algorithm from Sect. 4 against the
’brute force’ way to calculate coverage using Definition 3. We will use a family
of models Mm in Fig. 5. Despite its simplicity, Mm is highly non-deterministic
and is designed to generate a large number of executions and words.

We generate a family of execution models E(i,m) by applying a test case tci

on the model Mm where m ∈ {0, 2, 8}. The test case is:

tci = aciabiacia

The table in Fig. 6 (left) shows the statistics of all execution models used
in this experiment. Additionally we also construct E(i,m)3 (applying 3-word
expansion). The last column in the table shows the number of nodes in the
corresponding E(i,m)3 (the number of executions stays the same, of course).

0Mm : 1

2

3 4

t0

...
tm−1

5a

(0.3)c

(0.7)c

a

(0.7)c

(0.3)c

b

a

(q)c

(p)c

(p)c

a

c

c

Fig. 5. The model Mm used for the benchmarking. If m = 0 then there is no states ti
and q = 1. If m > 0 then we have states t0...tm−1; p = 0.3/m and q = 0.7.

Test Model Coverage Analysis Under Uncertainty 233

The number of possible executions in the execution models correspond to
their degree of non-determinism. The test case tci has been designed as such that
increasing i exponentially increases the non-determinism of the corresponding
execution model (we can see this in Fig. 6 by comparing #paths with the i index
of the corresponding E(i,m)).

All the models used (M0, M2, and M8) are non-deterministic: M0 is the least
non-deterministic one whereas M8 is very non-deterministic. This is reflected in
the number of possible executions in their corresponding execution models, with
E(i, 8) having far more possible executions than E(i, 0).

The following four coverage goals are used:

goal type word expansion
f1 : 〈2〉; 〈t0〉 simple sentence no
f2 : 〈1, 1, 1〉; 〈4, 4, 4〉 non-simple sentence 3-word

f3 : 1≥8 aggregate no

f4 : 3≥8 aggregate 3-word

We let our algorithm calculate the coverage of each of the above goals on
the execution models E(5, 0)...E(9, 8) and measure the time it takes to finish
the calculation. For the merging policy, n is set to 1 when the goal does not
need word expansion, and else it is set to be equal to the expansion parameter.
The experiment is run on a Macbook Pro with 2,7 GHz Intel i5 and 8 GB
RAM. Figure 6 (right) shows the results. For example, we can see that f1 can be
calculated in just a few milli seconds, even on E(12,m) and E(i, 8). In contrast,
brute force calculation using Definition 3 on e.g. E(11, 2), E(12, 2), E(8, 8), and

|tc| #nodes #paths #nodes3

E(5, 0) 20 26 16 103(4)
E(6, 0) 23 30 32 144(5)
E(7, 0) 26 34 64 223(7)
E(8, 0) 29 38 128 381(10)
E(9, 0) 32 42 256 422(10)
E(10, 0) 35 46 512 501(11)
E(11, 0) 38 50 1024 659(13)
E(12, 0) 41 54 2048 700(13)
E(5, 2) 20 34 336 185(5)
E(6, 2) 23 40 1376 306(8)
E(7, 2) 26 46 5440 435(9)
E(8, 2) 29 52 21888 695(13)
E(9, 2) 32 58 87296 944(16)
E(10, 2) 35 64 349696 1073(17)
E(11, 2) 38 70 1397760 1333(19)
E(12, 2) 41 76 5593088 1582(21)
E(5, 8) 20 58 3600 863(15)
E(6, 8) 23 70 29984 2760(39)
E(7, 8) 26 82 175168 4287(52)
E(8, 8) 29 94 1309824 8261(88)
E(9, 8) 32 106 8225024 23726(224)

f1 f2 f3 f4
E(5,0) 0.001 0.002 0.001 0.002
E(6,0) 0.001 0.002 0.001 0.002
E(7,0) 0.001 0.003 0.001 0.003
E(8,0) 0.001 0.004 0.001 0.005
E(9,0) 0.001 0.005 0.002 0.006
E(10,0) 0.001 0.006 0.003 0.008
E(11,0) 0.001 0.008 0.004 0.012
E(12,0) 0.001 0.008 0.009 0.024
E(5,2) 0.001 0.002 0.002 0.004
E(6,2) 0.001 0.004 0.002 0.01
E(7,2) 0.001 0.005 0.003 0.039
E(8,2) 0.001 0.01 0.005 0.138
E(9,2) 0.001 0.014 0.01 0.44
E(10,2) 0.001 0.012 0.019 1.09
E(11,2) 0.001 0.018 0.041 3.13
E(12,2) 0.001 0.023 0.091 10.68
E(5,8) 0.001 0.011 0.006 0.032
E(6,8) 0.001 0.04 0.034 0.279
E(7,8) 0.001 0.076 0.073 1.38
E(8,8) 0.002 0.154 0.266 12.04
E(9,8) 0.002 0.46 0.539 219

Fig. 6. Left: the execution models used in the benchmark. #nodes and #paths are
the number of nodes and full paths (executions) in the corresponding execution model;
#nodes3 is the number of nodes in the resulting 3-word expansion model. The number
between brackets is #nodes3/#nodes. Right: the run time (seconds) of our coverage
calculation algorithm on different execution models and coverage goals.

234 I. S. W. B. Prasetya and R. Klomp

Fig. 7. The graphs show our algorithm’s speedup with respect to the brute force cal-
culation on four different goals: f1 (top left), f2 (top right), f3 (bottom left), and f4
(bottom right). f1 and f2 are non-aggregate, whereas f3 and f4 are aggregate goals.
Calculating f1 and f3 does not use word expansion, whereas f2 and f4 require 3-word
expansion. Each graph shows the speedup with respect to three families of execu-
tion models: E(i, 0), E(i, 2), and E(i, 8). These models have increasing degree of non-
determinism, with models from E(i, 8) being the most non-deterministic ones compared
to the models from other families (with the same i). The horizontal axes represent the
i parameter, which linearly influences the length of the used test case. The vertical
axes show the speedup in the logarithmic scale. (Color figure online)

E(9, 8) would be very expensive, because it has to quantify over more than a
million paths in each of these models.

Figure 7 shows the speedup of our algorithm with respect to the brute force
calculation—note that the graphs are set in logarithmic scale. We can see that
in almost all cases the speedup grows exponentially with respect to the length of
the test case, although the growth rate is different in different situations. We can
notice that the speed up on E(i, 0) is much lower (though we still have speedup,
except for f4 which we will discuss below). This is because E(i, 0)’s are not too
non-deterministic. They all induce less than 2100 possible executions. The brute
force approach can easily handle such volume. Despite the low speedup, on all
E(i, 0)’s our algorithm can do the task in just few milli seconds (1–24 ms).

The calculation of f1 is very fast (less than 2 ms). This is expected, because
f1 is a simple sentence. The calculation of f2, on the other hand, which is a

Test Model Coverage Analysis Under Uncertainty 235

non-simple sentence, must be executed on the corresponding 3-word expanded
execution model, which can be much larger than the original execution model.
E.g. E(9, 8)3 is over 200 times larger (in the number of nodes) than E(9, 8).
Despite this we see the algorithm performs pretty well on f2.

f3 and f4 are both aggregate goals. The calculation of f3 is not problematical,
however we see that f4 becomes expensive on the models E(12, 2), E(8, 8), and
E(9, 8) (see Fig. 6 right). In fact, on E(9, 8) the calculation of f4 is even worse
than brute force (the dip in the red line in Fig. 7). Recall that f4 = 3 ≥ 8; so,
calculating its coverage requires us to sum over different sets of words of size
3 that the different executions can generate. E(12, 2), E(8, 8), and E(9, 8) are
large (over 70 states) and highly non-deterministic. Inevitably, they generate a
lot of words of size 3, and therefore the number of possible sets of these words
explodes. E.g. on E(8, 8) and E(9, 8) our algorithm ends up with about 1.2M
an 6.7M sets of words to sum over. In contrast, the number of full paths in
these models are about respectively 1.3M and 8.2M. At this ratio, there is not
much to gain with respect to the brute force approach that simply sums over
all full paths, whereas our algorithm also has to deal with the overhead of book
keeping and merging. Hypothetically, if we always merge, the number of final
sets of words can be reduced to respectively about 500K and 2M, so summing
over them would be faster. We should not do this though, because merging is
expensive, but the numbers do suggest that there is room for improvement if
one can figure out how to merge more smartly.

6 Related Work

To the best of our knowledge the concept of probabilistic coverage has not been
well addressed in the literature on non-deterministic MBT, or even in the litera-
ture on probabilistic automata. A paper by Zu, Hall, and May [30] that provides a
comprehensive discussion on various coverage criteria does not mention the con-
cept either. This is a bit surprising since coverage is a concept that is quite central
in software testing. We do find its mentioning in literature on statistical testing,
e.g. [8,29]. In [29] Whittaker and Thomason discussed the use of Markov chains
to encode probabilistic behavioral models. The probabilities are used to model
the usage pattern of the SUT. This allows us to generate test sequences whose
distribution follows the usage pattern (so-called ‘statistical testing’). Techniques
from Markov chain are then used to predict properties of the test sequences if
we are to generate them in this way, e.g. the probability to obtain a certain level
of node or edge coverage, or conversely the expected number of test runs needed
to get that level of coverage. In contrast, in our work probabilities are used to
model SUT’s non-determinism, rather than its usage pattern. We do not concern
ourselves with how the tester generates the test sequences, and focuses purely
on the calculation of coverage under the SUT’s non-determinism. Our coverage
goal expressions are more general than [29] by allowing words of arbitrary length
(rather than just words of length one or two, which would represent state and
respectively edge coverage), clauses, and sentences to be specified as coverage

236 I. S. W. B. Prasetya and R. Klomp

goals. Coverage calculation in both [8,29] basically comes down to the brute
force calculation in Definition 3.

Our algorithm to calculate the coverage of simple sentences has some simi-
larity with the probabilistic model checking algorithm for Probabilistic Compu-
tation Tree Logic (PCTL) [10,15]. Although given a formula f a model checking
algorithm tries to decide whether or not f is valid on the given behavior model,
the underlying probabilistic algorithm also labels for every state in the model
with the probability that any execution that starts from that state would satisfy
f . Since we only need to calculate over execution models, which are acyclic, there
is no need to do a fixed point iteration as in [15]. From this perspective, our algo-
rithm can be seen as an instance of [15]. However we also add k-word expansion.
In addition to simplifying the algorithm when dealing with non-simple sentences,
the expansion also serves as a form of memoisation (we do not have to keep cal-
culating the probability for a state u to lead to a word w). In particular the
calculation of aggregate coverage goals benefits from this memoisation. Though,
the biggest difference between our approach with a model checking algorithm is
that the latter does not deal with aggregate properties (there is no concept of
aggregate formulas in PCTL). Our contribution can also be seen as opening a
way to extend a probabilistic model checking algorithm to calculate such prop-
erties. We believe it is also possible to generalize over the aggregation so that the
same algorithm can be used to aggregate arbitrary state attributes that admit
some aggregation operator (e.g. the cost of staying in various states, which can
be aggregated with the ‘+’ operator).

In this paper we have focused on coverage analyses. There are other analyses
that are useful to mention. In this paper we abstract away from the data that
may have been exchanged during the interactions with the SUT. In practice
many systems do exchange data. In this situation we may also want to do data-
related analyses as well. E.g. the work by Prasetya [19] discussed the use of an
extended LTL to query temporal relations between the data exchanged through
the test sequences in a test suite. This is useful e.g. to find test sequences of a
specific property, or to check if a certain temporal scenario has been covered.
The setup is non-probabilistic though (a query can only tell whether a temporal
property holds or not), so an extension would be needed if we are interested in
probabilistic judgement. Another example of analyses is risk analyses as in the
work by Stoelinga and Timmer [23]. When testing a non-deterministic system,
we need to keep in mind that although executing a test suite may report no
error, there might still be lurking errors that were not triggered due to internal
non-determinism. Stoelinga and Timmer propose to annotate each transition in a
model with the estimated probability that it is incorrectly implemented and the
entailed cost if the incorrect behavior emerges1. This then allows us to calculate

1 We gloss over the complication that the transition might be in a cycle. A test
case may thus exercise it multiple times. Each time, exercising it successfully would
arguably decrease the probability that it still hides some hidden erroneous behavior.
This requires a more elaborate treatment, see [23] for more details.

Test Model Coverage Analysis Under Uncertainty 237

the probability that a successful execution of a test suite still hides errors, and
the expected cost (risk) of these hidden errors.

7 Conclusion

We have presented a concept of probabilistic coverage that is useful to express
the coverage of a test suite in model-based testing when the used model is non-
deterministic, but has been annotated with estimation on the probability of each
non-deterministic choice. Both aggregate and non-aggregate coverage goals can
be expressed, and we have presented an algorithm to efficiently calculate the
probabilistic coverage of such goals. Quite sophisticated coverage goals can be
expressed, e.g. sequence (words) coverage and sequence of sequences (sentences)
coverage. We have shown that in most cases the algorithm is very efficient. A
challenge still lies on calculating aggregate k-wise test goals on test cases that
repeatedly trigger highly non-deterministic parts of the model. Such a situation
is bound to generate combinatoric explosion on the possible combinations of
words that need to be taken into account. Beyond a certain point, the explosion
becomes too much for the merging policy used in our algorithm to handle. Anal-
yses on the data obtained from our benchmarking suggests that in theory there
is indeed room for improvement, though it is not yet clear what the best course
to proceed. This is left for future work.

References

1. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press, Cambridge (2016)

2. Arnold, A.: Finite Transition Systems. International Series in Computer Science
(1994)

3. Baier, C., Katoen, J.P., Larsen, K.G.: Principles of Model Checking. MIT Press,
Cambridge (2008)

4. Belinfante, A.: JTorX: exploring model-based testing. Ph.D. thesis, University of
Twente (2014)

5. Bringmann, E., Krämer, A.: Model-based testing of automotive systems. In: 2008
1st International Conference on Software Testing, Verification, and Validation, pp.
485–493. IEEE (2008)

6. Craggs, I., Sardis, M., Heuillard, T.: AGEDIS case studies: model-based testing in
industry. In: Proceedings of 1st European Conference on Model Driven Software
Engineering, pp. 129–132 (2003)

7. Dallmeier, V., Lindig, C., Wasylkowski, A., Zeller, A.: Mining object behav-
ior with ADABU. In: Proceedings of the International Workshop on Dynamic
Systems Analysis (WODA), pp. 17–24. ACM (2006). https://doi.org/10.1145/
1138912.1138918

8. Denise, A., Gaudel, M.C., Gouraud, S.D.: A generic method for statistical testing.
In: 15th International Symposium on Software Reliability Engineering ISSRE, pp.
25–34. IEEE (2004)

9. Grindal, M., Offutt, J., Andler, S.F.: Combination testing strategies: a survey.
Softw. Test. Verif. Reliab. 15(3), 167–199 (2005)

https://doi.org/10.1145/1138912.1138918
https://doi.org/10.1145/1138912.1138918

238 I. S. W. B. Prasetya and R. Klomp

10. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

11. Heerink, L., Feenstra, J., Tretmans, J.: Formal test automation: the conference
protocol with phact. In: Ural, H., Probert, R.L., v. Bochmann, G. (eds.) Testing
of Communicating Systems. IAICT, vol. 48, pp. 211–220. Springer, Boston, MA
(2000). https://doi.org/10.1007/978-0-387-35516-0 13

12. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Upper Saddle
River (2004)

13. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. Int. J. Softw. Tools
Technol. Transf. 7(4), 297–315 (2005)

14. Kanstrén, T., Puolitaival, O.P.: Using Built-in Domain-Specific Modeling Support
to Guide Model-Based Test Generation. Model-Driven Engineering of Information
Systems: Principles, Techniques, and Practice, pp. 295–319 (2012)

15. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0 6

16. Nachmanson, L., Veanes, M., Schulte, W., Tillmann, N., Grieskamp, W.: Opti-
mal strategies for testing nondeterministic systems. In: ACM SIGSOFT Software
Engineering Notes, vol. 29, pp. 55–64. ACM (2004)

17. Peleska, J.: Industrial-strength model-based testing - state of the art and current
challenges. In: Proceedings 8th Workshop on Model-Based Testing (MBT), pp.
3–28 (2013). https://doi.org/10.4204/EPTCS.111.1

18. Petke, J., Cohen, M.B., Harman, M., Yoo, S.: Practical combinatorial interaction
testing: empirical findings on efficiency and early fault detection. IEEE Trans.
Softw. Eng. 41(9), 901–924 (2015)

19. Prasetya, I.: Temporal algebraic query of test sequences. J. Syst. Softw. 136, 223–
236 (2018)

20. Pretschner, A., Philipps, J.: 10 methodological issues in model-based testing. In:
Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-
Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 281–291. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11498490 13

21. Schur, M., Roth, A., Zeller, A.: Mining behavior models from enterprise web appli-
cations. In: Proceedings of the 9th Joint Meeting on Foundations of Software Engi-
neering, pp. 422–432. ACM (2013). https://doi.org/10.1145/2491411.2491426

22. Stoelinga, M.: An introduction to probabilistic automata. Bull. EATCS 78(2),
176–198 (2002)

23. Stoelinga, M., Timmer, M.: Interpreting a successful testing process: risk and actual
coverage. In: 3rd International Symposium on Theoretical Aspects of Software
Engineering TASE, pp. 251–258. IEEE (2009)

24. Tervoort, T., Prasetya, I.S.W.B.: APSL: a light weight testing tool for protocols
with complex messages. Hardware and Software: Verification and Testing. LNCS,
vol. 10629, pp. 241–244. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70389-3 20

25. Tretmans, G.J.: A formal approach to conformance testing. Ph.D. thesis, Twente
University (1992)

26. Tretmans, J., Brinksma, E.: TorX: automated model-based testing. In: 1st Euro-
pean Conference on Model-Driven Software Engineering (2003)

27. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012)

https://doi.org/10.1007/978-0-387-35516-0_13
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.4204/EPTCS.111.1
https://doi.org/10.1007/11498490_13
https://doi.org/10.1145/2491411.2491426
https://doi.org/10.1007/978-3-319-70389-3_20
https://doi.org/10.1007/978-3-319-70389-3_20

Test Model Coverage Analysis Under Uncertainty 239

28. Vos, T., et al.: Fittest: a new continuous and automated testing process for future
internet applications. In: 2014 Software Evolution Week-IEEE Conference on Soft-
ware Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), pp.
407–410. IEEE (2014)

29. Whittaker, J.A., Thomason, M.G.: A Markov chain model for statistical software
testing. IEEE Trans. Softw. Eng. 20(10), 812–824 (1994)

30. Zhu, H., Hall, P.A., May, J.H.: Software unit test coverage and adequacy. ACM
Comput. Surv. 29(4), 366–427 (1997)

Model Inference

Learning Minimal DFA: Taking
Inspiration from RPNI to Improve

SAT Approach

Florent Avellaneda(B) and Alexandre Petrenko(B)

Computer Research Institute of Montreal, Montreal, Canada
{florent.avellaneda,alexandre.petrenko}@crim.ca

Abstract. Inferring a minimal Deterministic Finite Automaton (DFA)
from a learning sample that includes positive and negative examples is
one of the fundamental problems in computer science. Although the prob-
lem is known to be NP-complete, it can be solved efficiently with a SAT
solver especially when it is used incrementally. We propose an incremen-
tal SAT solving approach for DFA inference in which general heuristics
of a solver for assigning free variables is replaced by that employed by the
RPNI method for DFA inference. This heuristics reflects the knowledge
of the problem that facilitates the choice of free variables. Since the per-
formance of solvers significantly depends on the choices made in assigning
free variables, the RPNI heuristics brings significant improvements, as
our experiments with a modified solver indicate; they also demonstrate
that the proposed approach is more effective than the previous SAT
approaches and the RPNI method.

Keywords: Machine inference · Machine identification ·
Learning automata · DFA · Grammatical inference · SAT solver

1 Introduction

When we have an unknown system, re-engineering its model brings many advan-
tages. A formal representation of the system allows us to understand how it
works. The model can be used to check the properties of the system. Tests could
be generated from the model using existing methods for model-based testing.

In this paper we are interested in the inference of a DFA model from observa-
tions. As is customary, we follow the principle of parsimony. This principle states
that among competing hypotheses, the one with the fewest assumptions should
be selected. Addressing the model inference problem, this principle suggests to
infer the simplest model consistent with observations. Since the model to infer is
an automaton, we generally use the number of states to measure the complexity.

There are two types of approaches for DFA inference, heuristic and exact
approaches. Heuristic approaches merge states in an automaton representation
of observations until a local minimum is reached. Exact approaches try to find a

c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 243–256, 2019.
https://doi.org/10.1007/978-3-030-30446-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-30446-1_13

244 F. Avellaneda and A. Petrenko

minimal automaton consistent with observations. The most known heuristic app-
roach is probably the RPNI (Regular Positive and Negative Inference) method
[12]. It performs a breadth first search by trying to merge a newly encountered
state with states already explored. Effective exact approaches generally formu-
late constraints and solve them using SAT solvers. Heule and Verwer have pro-
posed an efficient SAT modeling [9]. We proposed an incremental SAT solving
approach in the case of FSM inference [3]. The heuristic and exact approaches
are generally quite distinct. In this paper we try to combine them together in
order to achieve a better performance. The idea is as follows. We know that the
efficiency of SAT solvers depends strongly on the order in which the Boolean
variables are considered. To choose a “good” order among the Boolean variables
SAT solvers use all kinds of generic heuristics which do not exploit the specifics
of a particular problem, in our case it is DFA inference. In this paper, we use
the RPNI heuristics to define the variable assignment order. Thus, the result-
ing approach can be viewed as an exact approach, though it uses RPNI to help
finding a minimal automaton consistent with observations more quickly.

The paper is organized as follows. Section 2 contains definitions. Section 3
defines the inference problem and provides an overview of passive inference.
Section 4 contains our contributions, namely, an incremental SAT solving app-
roach for DFA, and modifications of a SAT solver incorporating the RPNI heuris-
tics for determining the assignment order. Section 5 contains benchmarks. Finally
Sect. 6 concludes.

2 Definitions

ADeterministic Finite Automaton (DFA) is a sextuplet A = (Q,Σ, δ, qε, FA, FR),
where Q is a finite set of states, Σ is an alphabet, δ : Q × Σ → Q is a transition
function, qε ∈ Q is the initial state, and FA ⊆ Q and FR ⊆ Q are disjoint
sets of marked states, called the accepting and rejecting states, respectively [6].
We recursively extend the function δ to Q × Σ∗ → Q such that δ(q, ε) = q
and δ(q, a.w) = δ(δ(q, a), w). Also, for simplicity, we will write (q, a, q′) ∈ δ if
δ(q, a) = q′.

A learning sample is a pair of finite disjoint sets of positive examples S+ and
negative examples S−. We say that a DFA A is consistent with S = (S+, S−)
if ∀w ∈ S+ : δ(qε, w) ∈ FA and ∀w ∈ S− : δ(qε, w) ∈ FR. If all DFAs with fewer
states than A are not consistent with S, then we say that A is a minimal DFA
consistent with S. We say that an example w is inconsistent with A if w is a
positive example and δ(qε, w) /∈ FA or w is a negative example and δ(qε, w) /∈ FR.
We use Pref(S) to denote the set of all prefixes of S+ and S−.

A Prefix Tree Acceptor (PTA) for a learning sample S, denoted P(S) is the
tree-like DFA consistent with S such that all prefixes in Pref(S) are the states
of P(S) and only they. We denote by qw the state reached by P(S) with the
word w.

We say that two states q, q′ ∈ Q are incompatible, denoted q � q′, if q ∈
FA ∧ q′ ∈ FR or q ∈ FR ∧ q′ ∈ FA or ∃a ∈ Σ : δ(q, a) � δ(q′, a). Two states are
compatible if they are not incompatible.

Learning Minimal DFA 245

3 Inference Problem

Given a learning sample S = (S+, S−) generated by an unknown DFA, we want
to find a minimal DFA A consistent with S.

The existing approaches merge states in two different ways. The so-called
RPNI approach [12] merges states incrementally. It is a heuristic approach, but
we know that if the learning sample is large enough then it will find a minimal
DFA consistent with S.

Another approach is based on a SAT solver and tries to determine a partition
on the set of states of PTA P(S) = (Q,Σ, δ, qε, FA, FR) into compatible states
such that the number of blocks does not exceed n. Clearly, n should be smaller
than |Q|. If no partition can be found, it means that the bound n is too low. In
this case we increase n and start again.

This approach has the advantage to guarantee that a minimal DFA consistent
with S can be found independently of the size of the learning sample.

3.1 RPNI Method

The algorithm RPNI is a popular method for inferring a DFA from a learning
sample. A detailed explanation of the RPNI algorithm can be found in [6]. The
idea consists in trying to merge states iteratively in a particular order. The
algorithm attempts to merge first the states closest to the root state.

In particular, RPNI starts with the PTA determined from S. Then a breadth-
first search is performed respecting the lexicographical order. Each time when a
new state is found, the algorithm tries to merge it with already explored states
(from the earliest to the most recently considered). The algorithm terminates
when all states are considered and no more merge can be performed.

A remarkable property of this algorithm is that it identifies in the limit the
generator of S. This means that with enough positive and negative examples,
the DFA inferred by this algorithm will be the generator.

3.2 SAT Solving Approach

The inference problem can be cast as a constraint satisfaction problem (CSP)
[4]. For each state q ∈ Q of the PTA we introduce an integer variable xq such
that

∀qi, qj ∈ Q : if qi ∈ FA ∧ qj ∈ FR then xqi
�= xqj

if ∃a ∈ Σ : (qi, a, q′
i), (qj , a, q′

j) ∈ δ then

(xqi
= xqj

) ⇒ (xq′
i
= xq′

j
)

(1)

Let B = {0, ..., n − 1} be a set of integers representing blocks of a partition.
The blocks are ordered following the order of natural numbers. Assuming that the
value of xq is in B for all q ∈ Q, we need to find a solution, i.e., an assignment
of values of all variables such that (1) is satisfied. Each assignment implies a
partition of n blocks and thus a DFA with at most n states consistent with S.

246 F. Avellaneda and A. Petrenko

These CSP formulas can be translated to SAT using unary coding for each
integer variable xq where q ∈ Q: xq is represented by n Boolean variables
vq,0, vq,1, ..., vq,n−1. Moreover, Heule and Verwer [9] propose to use auxiliary
variables and redundant clauses in order to speed up the solving process. The
SAT formulation they propose is as follows.

They define three kinds of variables:

– vq,i, q ∈ Q and i ∈ B. If vq,i is true, it means that state q is in block i.
– ya,i,j , i, j ∈ B and a ∈ Σ. If ya,i,j is true, it means that for any state in block

i, the successor reached by symbol a is in block j.
– zi, i ∈ B. If zi is true, this means that block i becomes an accepting state.

For each state q ∈ Q, we have the clause:

vq,0 ∨ vq,1 ∨ ... ∨ vq,n−1 (2)

These clauses mean that each state should be in at least one block.
For each state q and every i, j ∈ B such that i �= j, we have the clauses:

¬vq,i ∨ ¬vq,j (3)

These clauses mean that each state should be in at most one block.
The clauses 2 and 3 encode the constraint that each state should be in exactly
one block.
For every states q ∈ FA, q′ ∈ FR and each i ∈ B, we have the clauses:

(¬vq,i ∨ zi) ∧ (¬vq′,i ∨ ¬zi) (4)

These clauses mean that an accepting state cannot be in the same block as a
rejecting state.
For each transition (q, a, q′) ∈ δ and for every i, j ∈ B:

ya,i,j ∨ ¬vq,i ∨ ¬vq′,j (5)

This means that if state q is in the block i and its successor q′ on symbol a is in
the block j then blocks i and j are related for symbol a.
For each transition (q, a, q′) ∈ σ and for every i, j ∈ B:

¬ya,i,j ∨ ¬vq,i ∨ vq′,j (6)

This means that if blocks i and j are related for symbol a and a state q is in
block i, then the successor of q with symbol a have to be in block j.
For each symbol a ∈ Σ, for every i, j, h ∈ B such that h < j:

¬ya,i,h ∨ ¬ya,i,j (7)

This means that each block relation can include at most one pair of blocks for
each symbol to enforce determinism. Because of the commutative property of
the operator ∨, we add the constraint h < j to remove the equivalent clauses.

Learning Minimal DFA 247

For each symbol a ∈ Σ and each i ∈ B:

ya,i,0 ∨ ya,i,1 ∨ ... ∨ ya,i,n−1 (8)

This means that each block relation must include at least one pair of blocks for
each symbol.

We represent in Table 1 a summary of the formulas defined by Heule and
Verwer.

Table 1. Summary for encoding (1) with clauses from PTA P(S) = (Q, Σ, δ, qε, FA, FR)
into SAT. n is the maximal number of states in a DFA to infer, B = {0, ..., n − 1}.

Ref Clauses Range

(2) vq,0 ∨ vq,1 ∨ ... ∨ vq,n−1 q ∈ P(S)

(3) ¬vq,i ∨ ¬vq,j q ∈ P(S); 0 ≤ i < j < n

(4) ¬vq,i ∨ ¬vq′,i q ∈ FA, q′ ∈ FR; i ∈ B

(5) ya,i,j ∨ ¬vq,i ∨ ¬vq′,j (q, a, q′) ∈ δ; i, j ∈ B

(6) ¬ya,i,j ∨ ¬vq,i ∨ vq′,j (q, a, q′) ∈ δ; i, j ∈ B

(7) ¬ya,i,h ∨ ¬ya,i,j a ∈ Σ; h, i, j ∈ B; h < j

(8) ya,i,0 ∨ ya,i,1 ∨ ... ∨ ya,i,n−1 a ∈ Σ; i ∈ B

It is possible that different assignments for a given SAT formula represents
the same solution. In this case, we say that we have symmetry. A good prac-
tice is to break this symmetry [1,2,5] by adding constraints such that different
assignments satisfying the formula represent different solutions. A formulation
can result in a significant amount of symmetry if any permutation of the blocks
is allowed. To eliminate this symmetry, Heule and Verwer use the state incom-
patibility graph which has |Q| nodes and two nodes are connected iff the corre-
sponding states of Q are incompatible. Clearly, each state of a clique (maximal or
smaller) must be placed in a distinct block. Hence, they add to the SAT formula
clauses for assigning initially each state from the clique to a separate block.

Experiments indicate that the proposed encoding of the constraints (1) is
rather compact.

4 Incremental SAT Solving with Domain Specific
Heuristics

4.1 Incremental SAT Solving

A disadvantage of the above SAT method is that the bigger a learning sample,
the more complex the SAT formula. Thus, it can be expected that the solution
time will increase significantly with the size of the learning sample. However,

248 F. Avellaneda and A. Petrenko

in practice, this becomes detrimental, because we would like to use the largest
possible learning sample to increase the chances of inferring a good model.

Addressing this problem, we proposed an iterative method for inferring FSMs
[3]. Similar to this method, we propose to generate SAT constraints incrementally
for DFAs as well. The idea is to iteratively infer a DFA from constraints generated
for a subset (initially it is an empty set) of the learning sample. If the inferred
DFA is inconsistent with the full learning sample, then we add more constraints
considering an inconsistent example. This idea is in fact used by active inference
methods, though active inference rely on a black box as an oracle capable of
judging whether or not a word belongs to the model. In our method, the role
of an oracle is assigned to a learning sample S. Even if this oracle is restricted
since it cannot decide the acceptance for all possible examples, nevertheless, as
we demonstrate, it leads to an efficient approach for passive inference from a
learning sample.

Our incremental inference method works as follows. Let S be a learning
sample (generated by a deterministic DFA). We want to find a minimal DFA
consistent with S iteratively. To do that, we search for a DFA A with at most
n states satisfying a growing set of constraints (initially we do not have any
constraints). If no solution is found, it means that the bound n is too low. In
this case we increase n and start again. If a solution is found and A is consistent
with S, then we return this solution. Otherwise, we find the shortest example
w in S inconsistent with A. Then, we formulate a constraint that w has to be
consistent with A.

Note that Heule and Verwer’s method of using a clique in the incompatibility
graph is not applicable in an iterative approach context. Thus, we use an implicit
and not explicit symmetry breaking method. In particular, we forbid block per-
mutations by using a total order on the set of states. Let < be a total order over
the set of states Q =

⋃

w∈Pref(S)

Qw for all positive and negative examples. Based

on a chosen order we add the following clauses excluding permutations. For each
q ∈ Q and each i ∈ B, we have a Boolean formula (which can be translated
trivially into clauses):

(
∧

q′<q

¬vq′,i) ⇒ ¬vq,i+1 (9)

Intuitively, these clauses force to use blocks not already assigned when a state
requires a new block.

The SAT formulation from Heule and Verwer is an efficient compact encoding,
but determining that two states cannot be merged is a complex task. With
our new heuristics, that we will present in Sect. 4.2, the solver will attempt to
merge numerous not always compatible states. To reduce the number of such
attempts we add more auxiliary (thus redundant) clauses that allow the solver
to immediately detect that two states cannot be merged.

In particular, we add new auxiliary variables Eq,q′ for each pair of states
q, q′ ∈ Q.

Learning Minimal DFA 249

First, we add clauses to encode the constraint that an accepting and a reject-
ing state cannot be merged. For every states q, q′ such that q ∈ FA and q′ ∈ FR

we have a Boolean formula:

¬Eq,q′ (10)

Notice that the clauses (4) express the same constraint, but in a less explicit
way. In the same vein, we enforce the determinism of solutions by requiring
that if two states merged together, their successors for any symbol also have to
be merged together. We encode this property by the following formula (which
can be translated trivially into clauses). For all (q, a, p), (q′, a, p′) ∈ δ we have a
Boolean formula:

Eq,q′ ⇒ Ep,p′ (11)

Finally, we encode the propagation of incompatibility to prohibit some merg-
ers by the following formula (which can be translated trivially into clauses). For
every states q, q′ ∈ Q and all i ∈ {0, ..., n − 1}

(¬Eq,q′ ∧ vq,i) ⇒ ¬vq′,i (12)

It should be noted that we do not only propagate incompatibility here. The
aim is to detect a conflict when a wrong merge is done without having to assign
more free variables. Obviously the detection of such an error is not always pos-
sible without having to assign all free variables, but the above formulas increase
the number of cases where this is possible.

Table 2. Summary for additional clauses from the PTA P(S) = (Q, Σ, δ, qε, FA, FR).

Ref Clauses Range

(9) (
∧

q′<q

¬vq′,i) ⇒ ¬vq,i+1 q ∈ Q, i ∈ {0, ..., n − 1}

(10) ¬Eq,q′ q ∈ FA; q′ ∈ FR

(11) ¬Eq,q′ ∨ Ep,p′ (q, a, p), (q′, a, p′) ∈ δ

(12) Eq,q′ ∨ ¬vq,i ∨ ¬vq′,i q, q′ ∈ Q; i ∈ {0, ..., n − 1}

The incremental SAT solving approach is formalized in Algorithm1. The
algorithm refers to Tables 1 and 2 to encode the problem in SAT. Note that in
practice we only add clauses not already added to exploit the ability of the SAT
solver to operate incrementally.

Theorem 1. Algorithm 1 returns a DFA consistent with S if it exists and false
otherwise.

Proof. If the algorithm returns a DFA, it means that the condition in line 7
holds, A is consistent with S. If the algorithm returns false, it means that the

250 F. Avellaneda and A. Petrenko

Algorithm 1. Infer a DFA from a learning sample
Input: A learning sample S and an integer n
Output: A DFA with at most n states consistent with S if it exists

1: Let S′ be an empty set
2: C := vqε,0

3: C := C ∧ ∧

a∈Σ, 0≤i<n

(ya,i,0 ∨ ...ya,i,n−1) (See Formula 8)

4: C := C ∧ ∧

a∈Σ, 0≤i,j,h<n, h<j

(¬ya,i,h ∨ ¬ya,i,j) (See Formula 7)

5: while C is satisfiable do
6: Let A be a DFA of a solution of C
7: if A is consistent with S then
8: return A
9: end if

10: Let w be the shortest example in S inconsistent with A
11: S′ := S′ ∪ {w}
12: Let C be the clauses from the PTA P(S′) using Table 1 and Table 2
13: end while
14: return false

formula C is unsatisfiable, and therefore there is no partition of size n for P(S′);
hence there is no solution for learning sample S.

The termination of the algorithm is guaranteed by the fact that in each
execution of the loop, a new example of S is considered. Thus, when S′ = S, we
know that the condition in line 7 is true.

4.2 Domain Specific Heuristics

The performance of solvers depends strongly on the choices made when assigning
free variables. A free variable is a variable not yet assigned to a value true or
false. Indeed, the resolution time can be significantly longer or shorter depend-
ing on these choices. In order to mitigate this problem, solvers use all kinds of
heuristics [8,10,11]. These heuristics are generally intended to be comprehensive
and try to reduce the resolution time whatever the formulas to solve are.

In this section, we propose to use, instead of the general heuristics, a heuris-
tics specific to the DFA inference to decide which free variable should be assigned
next. As the RPNI algorithm does exactly this and identifies in the limit the
generator, we propose to use its heuristics to make the variable choices. This is
motivated by the observation that RPNI makes state merge choices more and
more relevant as the number of examples increases. Thus, we expect that the
extra time required by a SAT solver to solve a problem when more examples are
added will be compensated by the time saved by our heuristics and by making
better choices of next free variables to assign. We know that eventually this will
be the case, because all the merging choices made by RPNI are correct choices
when the number of examples is large enough.

Learning Minimal DFA 251

4.2.1 RPNI Heuristics on Decision Variables
Most of the SAT solvers allow the user to distinguish two types of variables,
decision and auxiliary variables. The decision variables are the variables for
which we want to know a valid assignment, i.e., the assignment that satisfies the
formula. Auxiliary variables are additional variables that can be used to factorize
the encoding of a SAT formula or just help a solver find a solution faster. We
do not seek generally to find an assignment for these auxiliary variables, since
it can be deduced from a valid assignment of the decision variables. In our SAT
formula, only variables vq,i will be decision variables. The other variables will
be considered by the solver as auxiliary variables. Thus, the SAT solver will
terminate when it finds an assignment for all variables vq,i.

The RPNI heuristics will be used to decide which variable vq,i should be
chosen among the free variables. To do that, each word w.i such that δ(qε, w) = q
is assigned to the variable vq,i. When the solver must decide which free variable
to pick, one of variables vq,i will be chosen according to the lexicographical order
on the words associated with variables. Then it will try to assign this variable
to true.

In fact, this heuristic suggests selecting a state not already assigned to a
block and trying to assign it to a block in the ascending order. The order in
which the states are selected respects the RPNI strategy, i. e., selecting the state
closest in the lexicographical order to the root.

4.2.2 Implementation
Adding the proposed heuristics to a solver, we have slightly modified the solver
MiniSAT [7]. In MiniSAT, the variable order heap of type V arOrderLt asso-
ciates a weight of type Integer to each free variable. The heuristics used by
the solver consists in modifying these weights during the resolution of the for-
mula according to various criteria. Thus, when a free variable assignment must
be done, the solver uses order heap to select the free variable according to its
weight.

Our modification consists in disabling the default solver heuristics and chang-
ing the V arOrderLt structure of each variable to a word. Thus, each Boolean
variable vqw,i is associated with the weight w.i. As a result, when a free variable
has to be assigned the solver returns a variable associated with the shortest word
in the lexicographic order.

5 Experimental Evaluation

We have performed a set of benchmarks to evaluate our approach. All DFAs are
generated randomly with |Σ| = 4 and n states. For each state s and each a ∈ Σ,
we randomly choose a state s′ such that δ(s, a) = s′. If the DFA we obtain is
not minimal, we start again until we obtain a minimal one. Since generating a
random DFA is rather simple, it does not take much time, even if many attempts
are required to find a minimal DFA. To generate examples from this DFA, we
perform random walks of a random length between 0 and 50.

252 F. Avellaneda and A. Petrenko

We compare five algorithms.

– RPNI: We use the implementation provided by Stamina competition [13].
– H&V : It is the SAT approach elaborated by Heule and Verwer. The method

is summarized in Table 1.
– Incremental SAT : It is a SAT approach implemented in an incremental

way recently proposed by us [3]. This approach corresponds to Algorithm 1,
neither using Table 2 for clause generation nor changing the SAT solver.

– Incremental SAT2: It is Incremental SAT in which we add the additional
clauses from Table 2.

– New algo: It is our approach described in Sect. 4.

The SAT solver used for this experimentation is MiniSat [7] and we use a
VirtualBox with 12 GB of RAM and Intel R©CoreTM i7-2600K processor.

5.1 Inference Varying the Number of Examples

In this section, we compare the five algorithms on DFAs with five states. We limit
the number of states to 5 so that each algorithm is able to solve the problem.
DFAs with more states will be considered in the next section. In this experiment,
see Fig. 1, we vary the number of examples and determine time it takes to infer
a DFA.

Fig. 1. Average time over 100 instances to infer a DFA with five states vs the number
of examples.

We notice that the performances of the New algo, Incremental SAT and
Incremental SAT2 algorithms are almost the same as well as that they behave

Learning Minimal DFA 253

best when the learning samples are large enough. The results show that our
approach is faster than H&V and RPNI except in the case where the number
of examples is very small.

Fig. 2. Percentage of generators inferred correctly vs the number of examples.

To find the reason for that we determine the percentage of generators cor-
rectly inferred for SAT and RPNI approaches for learning samples of various
sizes, see Fig. 2. We have grouped all the SAT approaches into a single curve
because the quality of the obtained solutions is almost the same. This is not sur-
prising because all SAT approaches are focused on finding an optimal solution,
i.e., a minimum DFA consistent with observations. The data indicate that longer
solution time is the price to pay for a higher percentage of good models inferred
by the SAT approaches. After all, RPNI is heuristic, while SAT approaches are
deductive. The obtained results indicate that SAT approaches have an impor-
tant advantage over RPNI. In particular, SAT approaches need about thousand
examples to correctly infer almost all generators, while the RPNI approach needs
more than ten thousand. In addition, when the RPNI approach does not cor-
rectly infer the DFA, the result is generally quite far from the generator and
contains hundreds of states.

Thus, the fact that SAT approaches are rather slow when the size of learning
samples is only a few dozen is not really important, because with so few examples
we are hardly able to infer generators correctly.

5.2 Inference from Learning Samples of Growing Generators

In this section, we focus on experimental comparison of the Incremental SAT ,
Incremental SAT2 and New algo approaches. In the previous section, we saw

254 F. Avellaneda and A. Petrenko

that they perform similarly when the number of states in generators is fixed to
five. Here we will push the algorithms to their limits. Thus we set the number of
examples in learning samples at 100,000 and increase the number of generator’s
states. Comparison with RPNI and H&V is not possible here because these
algorithms are unable to proceed with such a large number of examples.

Fig. 3. Average time over 100 instances to infer a DFA vs the number of generator’s
states

Figure 3 indicates that the three algorithms equally perform when the gener-
ators have less than 15 states. However, for generators with more states, our new
method has a clear advantage. As an examples, DFAs of 27 states are inferred
on average in 2.5 s with our new method while it takes more than 4 min with
Incremental SAT , and DFAs of 37 states are inferred on average in 15 s with
our new method while it takes more than 2 min without the RPNI heuristics on
decision variables.

6 Conclusion

In this paper we considered the problem of inferring a minimal DFA from a
learning sample that includes positive and negative examples. Among the exist-
ing approaches, the heuristic approaches, like RPNI, merge states reaching a
local minimum and the exact approaches solve constraints finding a minimal
automaton consistent with observations.

In order to improve the scalability of exact inferring approaches, we made
the following contributions.

Learning Minimal DFA 255

First, we proposed to construct the SAT formula incrementally during the
DFA inference, similar to our method for the FSM inference, thus avoiding to
deal with a whole (large) learning sample.

Second, we found a way of combining the two approaches such that the
result surpasses each of them. In particular, to improve the performance of a
SAT solver we proposed to use the RPNI heuristics determining the order in
which free variables are assigned.

Finally, we also suggested new auxiliary variables and additional clauses to be
used in the traditional SAT encoding which accelerate the process of determining
the state incompatibility.

The experimental evaluation of the proposed approach indicates that when
a learning sample is large enough, it gives better results than the classical SAT
solving approaches and the RPNI algorithm. The experimental results show
that the proposed approach is somewhat slower that the latter, but only when
the learning sample is too small to correctly infer the generator from it. These
experiments seem to confirm that the scalability of the SAT solving approach
for DFA inference improves when the SAT formula is built incrementally and a
solver is enriched with a problem specific heuristics.

Acknowledgments. This work was partially supported by MEI (Ministère de
l’Économie et Innovation) of Gouvernement du Québec and NSERC of Canada.

References

1. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult SAT
instances in the presence of symmetry. In: Proceedings of the 39th Annual Design
Automation Conference, pp. 731–736. ACM (2002)

2. Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient symmetry breaking for Boolean
satisfiability. IEEE Trans. Comput. 55(5), 549–558 (2006)

3. Avellaneda, F., Petrenko, A.: FSM inference from long traces. In: Havelund, K.,
Peleska, J., Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 93–109.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95582-7 6

4. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Trans. Comput. 100(6), 592–597 (1972)

5. Brown, C.A., Finkelstein, L., Purdom, P.W.: Backtrack searching in the presence of
symmetry. In: Mora, T. (ed.) AAECC 1988. LNCS, vol. 357, pp. 99–110. Springer,
Heidelberg (1989). https://doi.org/10.1007/3-540-51083-4 51

6. De la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, Cambridge (2010)

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

8. Freeman, J.W.: Improvements to propositional satisfiability search algorithms.
Ph.D. thesis. Citeseer (1995)

9. Heule, M.J.H., Verwer, S.: Software model synthesis using satisfiability solvers.
Empir. Softw. Eng. 18(4), 825–856 (2013)

https://doi.org/10.1007/978-3-319-95582-7_6
https://doi.org/10.1007/3-540-51083-4_51
https://doi.org/10.1007/978-3-540-24605-3_37

256 F. Avellaneda and A. Petrenko

10. Marques-Silva, J.: The impact of branching heuristics in propositional satisfiability
algorithms. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS, vol. 1695, pp.
62–74. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48159-1 5

11. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient sat solver. In: Proceedings of the 38th Annual Design Automation
Conference, pp. 530–535. ACM (2001)

12. Oncina, J., Garcia, P.: Inferring regular languages in polynomial updated time. In:
Pattern Recognition and Image Analysis: Selected Papers from the IVth Spanish
Symposium, pp. 49–61. World Scientific (1992)

13. Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K., Dupont, P.: STAMINA:
a competition to encourage the development and assessment of software model
inference techniques. Empir. Softw. Eng. 18(4), 791–824 (2013)

https://doi.org/10.1007/3-540-48159-1_5

Incorporating Data into EFSM Inference

Michael Foster1(B) , Achim D. Brucker2 , Ramsay G. Taylor1 ,
Siobhán North1 , and John Derrick1

1 Department of Computer Science, The University of Sheffield,
Regent Court, Sheffield S1 4DP, UK

{jmafoster1,r.g.taylor,s.north,j.derrick}@sheffield.ac.uk
2 Department of Computer Science, University of Exeter, Exeter, UK

a.brucker@exeter.ac.uk

Abstract. Models are an important way of understanding software sys-
tems. If they do not already exist, then we need to infer them from
system behaviour. Most current approaches infer classical FSM models
that do not consider data, thus limiting applicability. EFSMs provide
a way to concisely model systems with an internal state but existing
inference techniques either do not infer models which allow outputs to
be computed from inputs, or rely heavily on comprehensive white-box
traces to reveal the internal program state, which are often unavailable.

In this paper, we present an approach for inferring EFSM models,
including functions that modify the internal state. Our technique uses
black-box traces which only contain information visible to an external
observer of the system. We implemented our approach as a prototype.

Keywords: EFSM inference · Model inference · Reverse engineering

1 Introduction

Accurate system models are applicable to a broad range of software engineering
tasks. They can be used to automate the process of model-based testing [7,15],
to detect cyber attacks [16], and to aid the process of requirements capture [4].
Despite their utility, system models can be neglected during development. It is
therefore desirable to reverse engineer them from existing systems. One way to
do this is to record executions of the system and infer a model from these traces.

There is abundant work on the inference of finite state machine (FSM) mod-
els from traces [2,10,18], much of which falls into the family of state merg-
ing algorithms. These begin by constructing the most specific automaton which
accepts all of the observed traces, and iteratively consolidate the model by merg-
ing states in the FSM which are believed to represent the same program state.
The resulting model, as well as being smaller than the original, is often more
general. It is able to predict how the system might behave when faced with previ-
ously unseen traces. This is a key feature of model inference and differentiates it
from automaton minimisation which seeks to reduce the size of a model without
changing the language it accepts.
c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 257–272, 2019.
https://doi.org/10.1007/978-3-030-30446-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_14&domain=pdf
http://orcid.org/0000-0001-8233-9873
http://orcid.org/0000-0002-6355-1200
http://orcid.org/0000-0002-4036-7590
http://orcid.org/0000-0002-8478-8960
http://orcid.org/0000-0002-6631-8914
https://doi.org/10.1007/978-3-030-30446-1_14

258 M. Foster et al.

Classical FSMs cannot handle data so they struggle to represent systems
that exhibit data-dependent behaviour, for example a vending machine which
dispenses drinks selected by users. Here, the input of the select action determines
the output of dispense. A classical FSM model of the system would require a
separate path for each available drink, so would likely be rather large. Extended
Finite State Machines (EFSMs) provide a richer model, featuring a persistent
data state, which could be used to store the selected drink, but existing EFSM
inference techniques [12,19] do not infer how the data state is used, nor can they
capture the causal effect of input on output.

This paper presents a technique to infer EFSM models from system traces
which explicitly capture this causal relationship. The main contributions are:

1. A technique which uses black-box traces (instead of the more commonly used
white-box traces) to infer EFSM models which capture the causal relationship
between inputs and outputs.

2. A prototype tool which implements this technique.

The rest of this paper is structured as follows. Section 2 introduces a motivat-
ing example and explains how state merging algorithms work. Section 3 presents
our EFSM inference technique. Section 4 discusses how we introduce data reg-
isters to capture the causal relationship between input and output. Section 5
details how we implemented our technique as a prototype inference tool. Section 6
evaluates our technique with reference to the scenario presented in Sect. 2.
Section 7 concludes the paper and discusses possible future works.

2 Background

Reverse engineering models from traces is an inference process which aims to
make statements about the overall behaviour of a system by generalising from
observations. Consider a simple vending machine which produces traces like
those in Fig. 1. Users first select a drink by providing its name as an input.
The coin operation allows users to pay for their drink by inserting coins of a
given value, displaying as output the total value inserted so far. Once sufficient
payment has been inserted, the vend operation is triggered to dispense the drink.

In Fig. 1, we use the notation methodName(i1, i2, . . .)/[o1, o2, . . .] such that
coin(50)/[50] represents the event coin being called with a single input of 50 and
producing a single output of 50. We delimit events with arrows and omit the
outputs from events like select(‘coke’) which do not produce any.

To infer a classical FSM model from the traces in Fig. 1, we must either
remove the data entirely or encode it within the actions by folding input and

select(‘coke’) → coin(50)/[50] → coin(50)/[100] → vend()/[‘coke’]

select(‘pepsi’) → coin(50)/[50] → coin(50)/[100] → vend()/[‘pepsi’]

select(‘coke’) → coin(100)/[100] → vend()/[‘coke’]

Fig. 1. Exemplary traces of the vending machine.

Incorporating Data into EFSM Inference 259

output values into the transition labels. Taking the latter approach, we represent
an event label(i1)/[o1] as the atomic action label i1 o1. The inference process
begins by building an automaton which accepts exactly the observed traces. This
is usually a tree-shaped automaton called a prefix tree acceptor (PTA), where
traces with common prefixes share a common path through the model up to the
point of divergence. Figure 2 shows a PTA representing the traces in Fig. 1.

q0

q1

q2 q3 q4

q5 q6

q7 q8 q9 q10

selec
t coke

coin 50 50 coin 50 100 vend coke

coin 100 100 vend coke

select pepsi coin 50 50 coin 50 100 vend pepsi

Fig. 2. A classical FSM PTA built from the traces in Fig. 1, in which transition input
and output data has been encoded into the transition labels.

We condense the PTA by merging states which we believe represent the
same program state, based on the commonality of their outgoing transitions. In
Fig. 2, for example, q3 and q5 both have an outgoing vend coke transition. The
result of merging these two states has two nondeterministic outgoing vend coke
transitions. This does not make sense as we merged q3 and q5 because we believe
their respective outgoing transitions represent the same behaviour, meaning that
their destination states should represent the same program state. We merge these
states (q4 and q6) so the two vend coke transitions are no longer distinct. In this
way, branches of a PTA are zipped together as we merge successive states.

When the model becomes deterministic again, we search for another pair of
states, that might represent the same program state, to merge. This continues
until no more pairs of states are believed to represent the same program state.
An optimal FSM model which could be inferred from the traces in Fig. 1 is shown
in Fig. 3. This is more concise than the PTA in Fig. 2 but is still relatively large
and cannot predict the behaviour of the system for unseen inputs.

We cannot expect to infer models of unobserved behaviour but it is not unrea-
sonable to want to predict the outcome of applying the same action with different
data. Classical FSM models cannot separate these, so the transitions select coke

q0

q1 q3 q4

q2 q5 q6

q7
selec

t coke

select pepsi

coin 50 50 coin 50 100

coin 100 100

vend coke

coin 50 50 coin 50 100
vend

pepsi

Fig. 3. A classical FSM model of a simple drinks machine, inferred by merging states
of the PTA in Fig. 2.

260 M. Foster et al.

and select pepsi represent different behaviours rather than two instances of select
with different inputs. This means that small changes in behaviour, like adding
additional drinks, have a disproportionate effect on model complexity. EFSMs
are a promising solution to this problem. Numerous definitions exist in the liter-
ature [3,6,11] but all make use of similar features: parametrised guarded inputs,
a persistent data state, and output expressed in terms of input. These features
make EFSM models more expressive but also much harder to infer.

Previous work on EFSM inference [12,19] focusses on establishing concise
transition guards which aggregate observed data values into a single transition.
While this is a valuable contribution, the models inferred by these techniques
fail to capture the fact that input determines subsequent output.

Example 1. For the traces in Fig. 1, existing EFSM inference methods might
produce a model similar to Fig. 4. It is much smaller than the classical FSM in
Fig. 3, as we are now able to separate action from data. Here, we have a guard
on the select transition which requires the first input, i1, to be either ‘coke’ or
‘pepsi’ . This is mirrored by the output, o1, of vend . All observed inputs and
outputs of coin were greater than or equal to 50 so the guard reflects this.

q0 q1 q2
select(i1 ∈ {‘coke’ , ‘pepsi’ })

coin(i1 ≥ 50, o1 ≥ 50)

vend(o1 ∈ {‘coke’ , ‘pepsi’ })

Fig. 4. An EFSM as might be inferred by existing methods. Here, transitions take the
form label(g1, g2, . . .) in which inputs are denoted in and outputs on.

This model summarises the observed values but fails to show how output
is computed from input—it is not computational. We know that the output of
the vend transition is either ‘coke’ or ‘pepsi’ but cannot tell which we will
get, much less that it is determined by the input to select . Inputs and out-
puts are both just treated as variables here so there is no explicit link between
them. ��

The EFSMs inferred by [12] and [19] use the program variables present in
the traces but do not infer how individual transitions update variables. An ideal
EFSM model of the traces in Fig. 1 is shown in Fig. 5, in which transitions are
written label : arity[guards]/outputs[updates]. Here, we use a register, r1, to
record the selected drink, and another, r2, to keep track of the money inserted.
This allows us to compute the outputs of vend and coin. Techniques such as [17]
attempt to infer fully computational models like this but rely on white-box
traces to expose the values of internal variables. Since white-box traces are often
unavailable, we would ideally like to use black-box traces, which only contain
information available to an external observer of the system.

Incorporating Data into EFSM Inference 261

q0 q1 q2
select : 1/[r1 := i1, r2 := 0]

coin : 1/o1 := r2 + i1[r2 := r2 + i1]

vend : 0/o1 := r1

Fig. 5. The ideal EFSM model of the drinks machine.

3 Extending the Inference Process

In this section, we present our technique to infer EFSM models from traces.
While there are many different EFSM representations in the literature, [3,11]
we use the one we defined in previous work [6].

Definition 1. An EFSM is a tuple, (S, s0, T) where S is a finite non-empty
set of states, s0 ∈ S is the initial state, and T is the transition matrix T :
(S × S) → P(L × N × G × F × U) with rows representing origin states and
columns representing destination states. In T , L is a set of transition labels. N
gives the transition arity (the number of input parameters), which may be zero.
G is a set of Boolean guard functions G : (I × R) → B. F is a set of output
functions F : (I × R) → O. U is a set of update functions U : (I × R) → R.

In G, F , and U , I is a tuple [i1, i2, . . . , im] of values representing the inputs
of a transition, which is empty if the arity is zero. Inputs do not persist across
states or transitions. R is a mapping from variables [r1, r2, . . .], representing
each register of the machine, to their values. Registers are globally accessible
and persist throughout the operation of the machine. All registers are initially
undefined until explicitly set by an update expression. O is a tuple [o1, o2, . . . , on]
of values, which may be empty, representing the outputs of a transition.

Syntactic sugar allows transitions from state Sm to state Sn to take the form

Sm
label:arity[g1,...,gn]/f1,...,fn[u1,...,un]−−−−−−−−−−−−−−−−−−−−−−−−→ Sn

The first part of the transition is an atomic label naming the event. This is
followed by a colon and the arity of the transition. Guard expressions g1, . . . , gn
are enclosed in square brackets. Next comes a slash, after which f1, . . . , fn define
the outputs. Finally, update expressions u1, . . . , un, enclosed in square brackets,
define the posterior data state. There should be at most one update function per
register per transition to maintain consistency. For transitions without guards,
outputs, or updates, the corresponding components are omitted.

Our inference process follows the same basic structure as classical FSM infer-
ence algorithms—we build a PTA and then iteratively merge states to form a
smaller model. Our technique differs from classical FSM inference in two ways.
Firstly, because of the more complex EFSM transitions, attempts to resolve
the nondeterminism introduced by merging states might fail, meaning that two
states which initially seemed compatible cannot actually be merged. This is not
the case in classical FSM inference. We tackle this in Subsect. 3.2. Secondly,
the nondeterminism introduced by merging states cannot be resolved by simply
merging destination states. We address this in Subsect. 3.3.

262 M. Foster et al.

3.1 PTA Construction

The first step is to construct a PTA from the observed traces in the same way
as for classical FSM inference. Beginning with the empty EFSM, we iteratively
attempt to walk each observed trace in the machine. When we reach a point
where there is no available transition, we add one. While classical FSMs use an
atomic label, EFSMs deal with data so we add guards to test for the observed
input values, and outputs which produce the observed values. For example, the
event coin(50)/[50] causes the transition coin : 1[i1 = 50]/o1 := 50 to be added
to the machine. The event label is coin. It takes one input, which must be equal
to the observed input value of 50, and produces the literal output 50.

3.2 Merging States

Like in classical FSM inference, we use a predefined metric to order potential
state merges by how strongly we believe that two states represent the same
program state. The inferenceStep function in Algorithm1 merges the first
(highest scoring) pair in the list of potential merges and calls resolveNonde-
terminism (detailed in the Subsect. 3.3) to resolve any resulting nondetermin-
ism. If this succeeds, the merging process begins again with a new list of potential
merges, continuing until no more states can be merged. If resolveNondeter-
minism fails, this indicates that our belief of the two states representing the same
program state was false, as we were unable to merge their respective behaviours.
We then successively attempt to merge lower scoring state pairs until either one
is successful or we run out of possibilities, at which point inference terminates.

Algorithm 1. The top level inference process.
1: function learn(l, scoringMetric)
2: return infer(makePTA(l), scoringMetric)

3: function infer(efsm, scoringMetric)
4: switch inferenceStep(efsm, scoreMerges(efsm, scoringMetric)) do
5: case None
6: return efsm

7: case Some new
8: return infer(new , scoringMetric)

9: function inferenceStep(e,merges)
10: switch merges do
11: case []
12: return None
13: case ((s1, s2)#t)
14: e′ = mergeStates(s1, s2, e)
15: switch resolveNondeterminism(nondetPairs(e′), e, e′) do
16: case Some new
17: return Some new
18: case None
19: return inferenceStep(e, t)

Incorporating Data into EFSM Inference 263

3.3 Resolving Nondeterminism by Merging Transitions

Classical FSM inference merges duplicate behaviours into a single transition
by merging their destination states. Since FSM transitions with the same origin
state are only nondeterministic if their labels are equal, there is no need to explic-
itly merge transitions. This happens “for free” when we merge their destination
states. The two transitions then have the same label, origin, and destination so
they are no longer distinct. With EFSMs, transitions which express the same
behaviour may not be identical. Thus the merging of transitions becomes an
explicit step in the algorithm. There is also the possibility that two nondeter-
ministic transitions cannot be merged, which does not occur in classical FSM
inference. For example, in Fig. 6b, if r1 holds value ‘coke’ , there is no observable
difference between the behaviour of the two vend transitions and they can be
merged. If r1 holds any value other than ‘coke’ , there is an observable difference
in behaviour and the transitions cannot be merged.

Algorithm 2. Resolving nondeterminism.
1: function resolveNondeterminism([], ,new)
2: if deterministic(new) then
3: return Some new
4: else
5: return None
6: function resolveNondeterminism(((from, (d1, d2), (t1, t2))#ss), old ,new)
7: destMerge ← mergeStates(d1, d2,new)
8: switch mergeTransitions(old , destMerge, t1, t2) do
9: case None

10: resolveNondeterminism(ss, old ,new)

11: case Some merged
12: newPairs ← nondetPairs(merged)
13: switch resolveNondeterminism(newPairs, old ,merged) do
14: case Some new ′

15: return Some new ′

16: case None
17: resolveNondeterminism(ss, old ,new)

18: function mergeTransitions(old , destMerge, t1, t2)
19: if directlySubsumes(old , destMerge,origin(t1, old), t2, t1) then
20: return Some replaceTransition(destMerge, t1, t2)
21: else if directlySubsumes(old , destMerge,origin(t2, old), t1, t2) then
22: return Some replaceTransition(destMerge, t2, t1)
23: else
24: return None
25: function directlySubsumes(e1, e2, s1, s2, t2, t1)
26: return (∀p.acceptsTrace(e1, p) ∧ getsUsTo(s1, e1, p) =⇒

acceptsTrace(e2, p) ∧ getsUsTo(s2, e2, p) =⇒
subsumes(t2,anteriorContext(e2, p), t1))

∧ (∃c.subsumes(t2, c, t1))

264 M. Foster et al.

The resolveNondeterminism function takes a list of nondeterministic
transition pairs and merges the destination states of the first pair. It then calls
mergeTransitions to merge the transitions themselves. If this is successful,
resolveNondeterminism recurses until all nondeterminism has been resolved.
If the transition merge fails, nondeterminism might be resolved by merging a dif-
ferent transition pair. Successive attempts are made until either one is successful
or there are no more potential merges. In the latter case, resolveNondeter-
minism fails, indicating that the original state pair should not have been merged.

When merging EFSM transitions, one must account for the behaviour of the
other. This is conceptualised, for guarded transitions, as subsumption in [12]
and extended to transitions with data updates in [6] which introduces contexts
to record constraints on the values of inputs and registers during the execution
of an EFSM, for example that a register holds a particular value. The idea
of subsumption in context formalises the intuition that, in certain contexts, a
transition t2 reproduces the behaviour of t1 and updates the data state in a
manner consistent with t1 meaning that t2 can be used in place of t1 with no
observable difference in behaviour. For state s in an EFSM e, we say that a
context c is obtainable if there exists a trace which is accepted by e, leaving it
in state s, and produces c when executed.

Example 2. Consider the EFSM fragments in Fig. 6. Let us call the transitions
qa → qb and qc → qd in M1 (Fig. 6a) t1 and t2 respectively. Say that the
inference process merges states qa and qc to form the model in Fig. 6b. This
results in nondeterminism between t1 and t2 which we would like to resolve.

qa qb

qc qd

vend : 0/o1 := ‘ coke’

vend : 0/o1 := r1

(a) Fragment of M1 before merging qa
and qc.

qac

qb

qd

vend : 0/o1 := ‘ coke’

vend : 0/o1 := r1

(b) Fragment after merging qa and qc.

qac qbd

vend : 0/o1 := ‘ coke’

vend : 0/o1 := r1

(c) Fragment after merging qb and qb
to form M2.

qac qbd
vend : 0/o1 := r1

(d) Fragment after merging the two
transitions.

Fig. 6. The evolution of an EFSM fragment during the merging process.

We merged states qa and qc because we believe that their respective outgoing
transitions express the same behaviour. This means that their respective desti-
nation states should represent the same program state, so we merge qb with qd

Incorporating Data into EFSM Inference 265

to form M2, shown in Fig. 6c. We then ask if one transition accounts for the
behaviour of the other such that they can be merged. This means that in every
situation where we could have taken t1 in M1, we should now be able to take
t2 in M2 with no observable difference in behaviour, or vice versa. If r1 holds
value ‘coke’ , then t2 accounts for the behaviour of t1. ��

In Example 2, it is unlikely that r1 will always hold the value ‘coke’ in state
qac but we only need t2 to account for the behaviour of t1 in situations where it
could be taken in M1. This means that traces which got us to qa in M1 must,
when run in M2, produce contexts in which t2 subsumes t1, i.e. contexts in which
r1 = ‘coke’ . If this is the case, we say that t2 directly subsumes t1. This is not
presented in [6] and is expressed as the first conjunct of the directlySubsumes
function in Algorithm2. The second conjunct says that there must exist a context
in which t2 subsumes t1, which accounts for models with unreachable states, from
which any transition would otherwise directly subsume any other transition.

The mergeTransitions function can only merge transitions where one
directly subsumes the other. If this is not the case, then neither can be used
in place of the other without risking some observable difference in the behaviour
of the model. In this case, mergeTransitions fails, returning None.

4 Introducing Registers

The technique in Sect. 3 allows us to infer deterministic EFSM models from
traces by merging transitions where one subsumes the other, but we cannot yet
fully capture the causal relationship between input and output. To achieve this,
we must infer the use of internal variables which store information about the
current state for later use. This section explains how we do this.

Example 3. The EFSM in Fig. 7 is the best model of the traces in Fig. 1 that our
technique can infer so far. It is, essentially, an EFSM version of Fig. 3. While this
is a more accurate view of the system—transitions are now expressed as events
with parameters rather than atomic actions—it is no more expressive.

q0

q1 q3 q4

q2 q5 q6

q7
select

: 1[i1 = ‘coke’
]

select : 1[i1 = ‘pepsi’]

coin : 1[i1 = 50]/o1 := 50 coin : 1[i1 = 50]/o1 := 100

coin : 1[i1 = 100]/o1 := 100

vend : 0/o1 := ‘coke’

coin : 1[i1 = 50]/o1 := 50 coin : 1[i1 = 50]/o1 := 100 vend : 0/o1 := ‘pepsi
’

Fig. 7. An EFSM model inferred from the traces in Fig. 1.

The model contains two pairs of identical coin transitions which we could
merge by zipping the path q1 → q3 → q4 → q7 with q2 → q5 → q6 → q7 as
discussed in Sect. 2. We cannot do this, though, as it requires the transitions
vend : 0/o1 := ‘coke’ and vend : 0/o1 := ‘pepsi’ , which have different literal

266 M. Foster et al.

outputs, to be merged. Since there is always an observable difference in their
behaviour, neither vend transition directly subsumes the other so they cannot
be merged. This means we cannot condense Fig. 7 any further.

Looking at the bigger picture, the two vend transitions do actually exhibit
the same behaviour. Both produce, as output, the input of the initial select
transition. If we could abstract away the concrete inputs and outputs, we could
infer a smaller and more general model of the system. ��

To this end, we allow the mergeTransitions function to attempt to intro-
duce internal variables if neither transition directly subsumes the other. The aim
here is not to create a “one size fits all” magic oracle, rather to provide a number
of smaller heuristics, each of which focusses on a particular data usage pattern.
We pass a list of heuristics to mergeTransitions as an additional argument,
each of which either successfully returns an EFSM, or fails. If no direct subsump-
tion occurs between two transitions, the heuristics are applied in the supplied
order until either one of them succeeds or there are no more left to apply. This
approach makes the tool extensible and gives users a degree of control over the
characteristics of the final model as they can choose to provide or withhold par-
ticular heuristics. If neither transition directly subsumes the other and none of
the heuristics are successful, the transition merge fails.

The fact that a heuristic successfully produces an EFSM does not guarantee
the model to be acceptable. For example, the heuristic which always returns the
empty EFSM resolves any nondeterminism (since a model with no transitions
is trivially deterministic) but is clearly unacceptable. We must therefore be sus-
picious of solutions offered by heuristics if we want our inference process, as a
whole, to always return an acceptable model of the original traces.

This leads to the question of how to define whether or not a model is accept-
able. Clearly a minimum requirement for models inferred from traces is that
they reproduce all of the observed behaviour. Since the original set of traces is
finite, we can simply run each one through the model and compare the output to
the original. We run this sanity check after each state-merge to ensure that the
model still reflects the observed behaviour. If this is not the case, the model is
discarded as if the state merge had failed. The remainder of this section details
some heuristics which are relevant to our running drinks machine example.

4.1 The Store and Reuse Heuristic

An obvious candidate for generalisation is the “store and reuse” pattern. This
manifests itself in Example 3 when the input of select is subsequently used as the
output of vend . Recognising this usage pattern allows us to introduce a storage
register to abstract away concrete data values and replace two transitions whose
outputs differ with a single transition that outputs the content of the register.

The first step is to find intratrace matches—instances of data reuse within
traces. We walk each trace in the current EFSM, recording when the output of a
transition matches the input of an earlier transition, to obtain a set of matches
for each trace in the form {((transition, inputIndex), (transition, outputIndex))}.

Incorporating Data into EFSM Inference 267

We then look to see if any of the matches concern the transitions we are trying
to merge. If so, we attempt to generalise these transitions. This consists of
introducing a fresh register to act as storage, adding an update to this register,
and dropping the restriction on the relevant input value. The value of this register
then becomes the output of the second transition. For example, we generalise the
pair ((select : 1[i1 = ‘coke’], 1), (vend : 0/o1 := ‘coke’ , 1)) to ((select : 1/[r1 :=
i1], 1), (vend : 0/o1 := r1, 1)), where r1 does not already occur in the EFSM.

When multiple transition pairs generalise to the same thing, between multi-
ple traces, we call this an intertrace match. Finding intertrace matches indicates
that the same kind of behaviour occurs across multiple traces, potentially with
different data values. This provides evidence in favour of generalising and merg-
ing transitions in the model.

4.2 The Increment and Reset Heuristic

Another usage pattern is “increment and reset”. In our drinks machine exam-
ple, the coin action outputs the sum of the previous coin inputs. This allows
customers to use multiple coins to pay for their drink and to observe the total
value they have inserted so far. Correctly identifying this usage pattern is not
an easy problem to solve, but a naive heuristic is not difficult to implement.

The idea here is that if we want to merge two transitions with identical input
values and different numeric outputs, for example coin : 1[i1 = 50]/o1 := 50 and
coin : 1[i1 = 50]/o1 := 100, then the behaviour must depend on the value of
an internal variable. We implement a heuristic which, when faced with such a
merge, drops the input guard and adds an update to a fresh register, in this case
summing the current register value with the input. For this to work, we must
ensure that the register is initialised before our modified transitions are taken.
To do this, we augment transitions incident to the origin state with an update
function which sets the relevant register to zero. This is the “reset” part of the
heuristic which ensures that the register is defined before it is used. A similar
principle can be applied to other numeric functions such as subtraction.

4.3 The Same Register Use Heuristic

Heuristics operate on a per-merge basis so it is possible that multiple registers
may be introduced to serve the same purpose at different points during the
inference process. It is therefore important to recognise this and consolidate
register usage to allow transitions which implement the same behaviour with
different registers to be merged.

Consider, for example, the transitions coin : 1/o1 := r1 + i1[r1 := r1 + i1]
and coin : 1/o1 := r2 + i1[r2 := r2 + i1]. Both transitions use a single register
and are identical up to the name of this register so it is possible that r1 and r2
are just different names for the same register. We therefore try to “merge” the
two registers by renaming r1 to r2, or vice versa.

268 M. Foster et al.

5 Implementation

The next task is to code up our technique into an executable program. Unfor-
tunately, some parts of our technique, most notably the directlySubsumes
function, cannot be effectively computed. This section details how we tackled
this to produce a prototype inference tool using Isabelle/HOL [14] (henceforth
referred to as just “Isabelle”), a proof assistant and programming environment.

Isabelle allows data type and functions to be specified using a Haskell-style
syntax, so we can use Isabelle to write programs and to prove that these programs
satisfy certain properties. From previous work [6], we already had a formalisa-
tion of EFSMs in Isabelle with various proofs. We used this as a starting point
for our implementation to avoid the duplication of work. A strength of using
Isabelle for implementation is that functions can be expressed at a high level of
abstraction, meaning that our Isabelle code is almost identical to the pseudocode
in Algorithms 1 and 2.

Since Isabelle code is not directly executable, the built-in code generator
[8] can be used to automatically convert Isabelle functions and data type to
runnable code in a number of conventional programming languages. The code is
not particularly well optimised but, assuming correctness of the code generator,
properties which hold for the Isabelle formalisation also hold for the generated
code. Once we had encoded our technique in Isabelle, we used the code generator
to automatically create an executable Scala implementation. This, along with
our formalisation, is available at https://github.com/jmafoster1/efsm-inference.

Of course, the code generator cannot generate code for non-computable func-
tions like directlySubsumes. This leaves us with gaps in our implementation
which must be implemented manually. For these, the code printing statement
provides the ability to replace functions with custom implementations in the tar-
get language. Surprisingly, we were only faced with two problematic functions.

The first of these, nondetPairs, provides details of nondeterministic transi-
tions in an EFSM. For each state, it checks if there is a choice between any pair
of outgoing transitions. This involves checking if the conjunction of their guards
is satisfiable. We leveraged an existing SMT solver, Z3 [13], to do this for us by
converting the guards to an appropriate format at runtime.

Coping with the non-executability of directlySubsumes was more chal-
lenging. This function checks subsumption for all traces which get us to a par-
ticular state. The problem here is that there could be an infinite number of
traces so we cannot use exhaustive search. Direct subsumption can be proven by
induction over traces, on a case by case basis, but this is laborious. We cannot
reasonably ask users to do this each time the inference process needs to know
whether one transition directly subsumes another.

The solution to this lies in the fact that the inference process only encounters
transitions from the original PTA and those introduced by the heuristics. If we
can use Isabelle to prove direct subsumption for the various different families of
transitions the inference process will come across, then the task of checking direct
subsumption at runtime becomes a pattern matching exercise. For example, if
we merge two states with a pair of identical outgoing transitions, we need to
check if a transition directly subsumes itself. Clearly every transition is able to

https://github.com/jmafoster1/efsm-inference

Incorporating Data into EFSM Inference 269

account for its own behaviour, so it does not make sense to check this on a per-
merge basis. We proved the general case in Isabelle so that at runtime we can
simply check to see if the two transitions we are attempting to merge are equal.
If they are, then we have direct subsumption. We applied this approach to the
other patterns that occur when using the heuristics detailed in Sect. 4.

Different Literal Outputs. If two transitions have outputs which always dif-
fer, for example vend : 0/[o1 := ‘coke’] and vend : 0/[o1 := ‘pepsi’], then there
is always an observable difference in behaviour. Along similar lines, transitions
which produce different numbers of outputs are always distinguishable. In both
of these cases neither transition directly subsumes the other.

Drop Guard Add Update. The “store and reuse” heuristic exchanges a
concrete-value guard on an input for an assignment to a fresh storage regis-
ter. For a pair of transitions, in which one has been generalised and the other
has not, for example select : 1/[r1 := i1] and select : 1[i1 := ‘coke’], if we can
ascertain that the relevant register (in this case r1) is undefined in the origin
state, then the general transition directly subsumes the specific one.

Register Output. The “store and reuse” heuristic also replaces a literal out-
put with the content of a register. For a generalised transition to subsume an
ungeneralised one, it suffices to show that the relevant register holds the original
output value in all relevant contexts which can be obtained in the origin state.

Increment and Reset. The pattern introduced by the “increment and reset”
heuristic are more subtle. This heuristic drops a literal guard and introduces an
update which mutates the data state. We end up testing whether a transition of
the form coin : 1/o1 := r2 + i1[r2 := r2 + i1] subsumes a transition of the form
coin : 1[i1 = n]/o1 := m. Neither transition can account for the behaviour of the
other here as only one transition changes the data state. The updates are not
consistent with each other. This means that the increment and reset heuristic
only tends to be successful towards the end of the inference process when it is
able to replace many transitions of the form coin : 1[i1 = n]/o1 := m at once.

Having proved direct subsumption for the various transition families, our
executable directlySubsumes function simply steps through the cases until
one matches. If none of the cases match, we have no choice but to ask the user
but, for the heuristics detailed in this paper, this is not required. If additional
heuristics were used that introduced new kinds of transitions to the model,
further cases might be required to avoid queries to the user but, depending
on the difficulty of the proofs, this would not be particularly arduous.

5.1 Checking Context Properties

In some of the patterns above, we require obtainable contexts to satisfy certain
properties. Even though these are much simpler properties than subsumption,

270 M. Foster et al.

we still cannot exhaustively search all traces, nor can we expect a user to provide
an inductive proof for each instance. Instead, we use SAL1, a model checker with
a similar representation to our own EFSM model. This allows us to automati-
cally verify simple properties like “register r is always undefined in state s” in
milliseconds. We do sacrifice some of the safety of an inductive proof, but doing
so enables us to completely automate the process. Model checkers only work
with finite data type, so we can only check a finite subset of all possible inputs.
The larger this subset, the more confident we can be of the validity of a merge,
but we must balance this with performance. If we are able to check traces over
a suitable subset of inputs, then we can be reasonably confident that transition
merges made as a result of this are safe.

6 Evaluation

When presented with the traces in Fig. 1, our technique infers the machine in
Fig. 5 which we described as “ideal” in Sect. 2. There are many different metrics
which could be used to assess this model including size and complexity, predictive
power, observance of original behaviour, and correct classification of legal and
illegal behaviours. This section provides evaluation and discussion of both the
model and the inference process with reference to these metrics.

A common evaluation metric of classical FSM inference techniques [10,18] is
the classification of legal and illegal behaviour. This is not suited to techniques
that work only with observations of system behaviour which are, by definition,
legal behaviours. It is unreasonable to evaluate such techniques with respect to
illegal behaviour as examples of this are not available to the inference process.

The main aim of an automated inference is to create models that are easy to
understand. This makes smaller models with fewer transitions more desirable.
The model in Fig. 5 is both small and simple as it has only three states and three
transitions. The original PTA has ten of each. Our model is also smaller than
the classical FSM in Fig. 3 which has seven states and nine transitions.

Inferred models should, of course, exhibit all of the originally observed
behaviour. This holds for our technique by definition since, at each stage of
inference, the new machine is checked to ensure that it accepts all of the origi-
nally observed traces. The model in Fig. 5 accepts all of the traces in Fig. 1 and
produces all of the originally observed outputs.

An important difference between inference and minimisation is that inference
aims to generalise from the observed behaviour. The model we inferred exhibits
the same top-level behaviour no matter what drink the user selects or what
values of coins the user pays for their drink with. While this inevitably leads to
models which over generalise the observed behaviour, it enables us to predict
how the system might behave when faced with unseen inputs.

An advantage of our model over the one in Fig. 4 is that our model is able to
compute outputs from inputs. For any sequence of inputs to coin, we are able
to predict the exact value of the output rather than simply constraining it.
1 http://sal.csl.sri.com/.

http://sal.csl.sri.com/

Incorporating Data into EFSM Inference 271

7 Conclusions and Future Works

This work presents a technique to infer EFSM models from black-box system
traces. Building on [6], we have now shown how to infer computational EFSM
models from traces by using heuristics which recognise data usage patterns.
We defined direct subsumption and used it to help us merge transitions. We
formalised our technique in Isabelle/HOL and exported it to executable Scala
code using Isabelle’s built-in code generator where possible.

Most modern inference techniques fit into two categories. Active techniques
such as [1,5,9] make use of an oracle, usually the end-user, to guide the inference
by classifying traces as either possible or impossible. Assuming the availability
of such an oracle, active techniques produce good quality models but are quite
labour intensive. By contrast, passive methods such as [2,10,18] sacrifice the
oracle in favour of complete automation. These techniques infer models solely
from traces of the system under inference so, unlike active methods, they often
do not have access to examples of impossible system behaviour in the form of
negative traces which the system, by definition, is unable to produce.

Classical FSM models use atomic transitions which cannot separate actions
from data. They must encode data within the control flow, so struggle with sys-
tems that exhibit data-dependent behaviour. EFSM models feature parametrised
inputs, guarded transitions, and a persistent data state so are much better
suited to modelling data-dependent behaviour. Existing EFSM inference tech-
niques [11,19] focus on inferring transition guards but do not infer models which
capture the causal relationship between input and output. Attempts have been
made to infer computational models [17], but these rely on white-box traces to
expose the inner system state. Such traces are often unavailable so the infer-
ence of computational EFSM models from black-box traces is a key challenge in
EFSM inference. This work presents such a technique.

Future work includes the implementation of further heuristics, such as one to
recognise boundary conditions which separate behaviour. Additionally, the tool
needs to be run on larger case studies to investigate how well it scales.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

2. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Trans. Comput. C–21(6), 592–597 (1972).
https://doi.org/10.1109/TC.1972.5009015

3. Cheng, K.T., Krishnakumar, A.S.: Automatic functional test generation using the
extended finite state machine model. In: 30th ACM/IEEE Design Automation
Conference, pp. 86–91. IEEE (1993). https://doi.org/10.1145/157485.164585

4. Damas, C., Lambeau, B., Dupont, P., Van Lamsweerde, A.: Generating annotated
behavior models from end-user scenarios. IEEE Trans. Softw. Eng. 31(12), 1056–
1073 (2005). https://doi.org/10.1109/TSE.2005.138

5. Dupont, P., Lambeau, B., Damas, C., Van Lamsweerde, A.: The QSM algorithm
and its application to software behavior model induction. Appl. Artif. Intell. 22(1–
2), 77–115 (2008). https://doi.org/10.1080/08839510701853200

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1145/157485.164585
https://doi.org/10.1109/TSE.2005.138
https://doi.org/10.1080/08839510701853200

272 M. Foster et al.

6. Foster, M., Taylor, R.G., Brucker, A.D., Derrick, J.: Formalising extended finite
state machine transition merging. In: Sun, J., Sun, M. (eds.) ICFEM 2018. LNCS,
vol. 11232, pp. 373–387. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-02450-5 22

7. Fraser, G., Walkinshaw, N.: Behaviourally adequate software testing. In: 2012 IEEE
Fifth International Conference on Software Testing, Verification and Validation,
pp. 300–309. IEEE (2012). https://doi.org/10.1109/ICST.2012.110

8. Haftmann, F., Bulwahn, L.: Code generation from Isabelle/HOL theories. Part
of the Isabelle documentation (2013). http://isabelle.in.tum.de/dist/Isabelle2017/
doc/codegen.pdf

9. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

10. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo one DFA
learning competition and a new evidence-driven state merging algorithm. In:
Honavar, V., Slutzki, G. (eds.) ICGI 1998. LNCS, vol. 1433, pp. 1–12. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054059

11. Lorenzoli, D., Mariani, L., Pezzè, M.: Inferring state-based behavior models. In:
Proceedings of the 2006 International Workshop on Dynamic Systems Analysis
- WODA 2006, p. 25. ACM Press, New York (2006). https://doi.org/10.1145/
1138912.1138919

12. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behav-
ioral models. In: Proceedings of the 30th International Conference on Software
Engineering, ICSE 2008, pp. 501–510. ACM, New York (2008). https://doi.org/
10.1145/1368088.1368157

13. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

14. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9. http://link.springer.co
m/10.1007/3-540-45949-9

15. Taylor, R., Hall, M., Bogdanov, K., Derrick, J.: Using behaviour inference to opti-
mise regression test sets. In: Nielsen, B., Weise, C. (eds.) ICTSS 2012. LNCS,
vol. 7641, pp. 184–199. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-34691-0 14

16. Valdes, A., Skinner, K.: Adaptive, model-based monitoring for cyber attack detec-
tion. In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907, pp.
80–93. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-39945-3 6

17. Walkinshaw, N., Hall, M.: Inferring computational state machine models from
program executions. In: 2016 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pp. 122–132. IEEE (2016). https://doi.org/10.
1109/ICSME.2016.74

18. Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K., Dupont, P.: STAMINA:
a competition to encourage the development and assessment of software model
inference techniques. Empir. Softw. Eng. 18(4), 791–824 (2013). https://doi.org/
10.1007/s10664-012-9210-3

19. Walkinshaw, N., Taylor, R., Derrick, J.: Inferring extended finite state machine
models from software executions. Empir. Softw. Eng. 21(3), 811–853 (2016).
https://doi.org/10.1007/s10664-015-9367-7

https://doi.org/10.1007/978-3-030-02450-5_22
https://doi.org/10.1007/978-3-030-02450-5_22
https://doi.org/10.1109/ICST.2012.110
http://isabelle.in.tum.de/dist/Isabelle2017/doc/codegen.pdf
http://isabelle.in.tum.de/dist/Isabelle2017/doc/codegen.pdf
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/BFb0054059
https://doi.org/10.1145/1138912.1138919
https://doi.org/10.1145/1138912.1138919
https://doi.org/10.1145/1368088.1368157
https://doi.org/10.1145/1368088.1368157
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-45949-9
http://springerlink.bibliotecabuap.elogim.com/10.1007/3-540-45949-9
http://springerlink.bibliotecabuap.elogim.com/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-642-34691-0_14
https://doi.org/10.1007/978-3-642-34691-0_14
https://doi.org/10.1007/3-540-39945-3_6
https://doi.org/10.1109/ICSME.2016.74
https://doi.org/10.1109/ICSME.2016.74
https://doi.org/10.1007/s10664-012-9210-3
https://doi.org/10.1007/s10664-012-9210-3
https://doi.org/10.1007/s10664-015-9367-7

Ontologies and Machine Learning

Isabelle/DOF: Design and Implementation

Achim D. Brucker1(B) and Burkhart Wolff2

1 Department of Computer Science, University of Exeter, Exeter, UK
a.brucker@exeter.ac.uk

2 LRI, CNRS, Université Paris-Saclay, Paris, France
wolff@lri.fr

http://www.brucker.ch/, http://www.lri.fr/~wolff

Abstract. DOF is a novel framework for defining ontologies and enforc-
ing them during document development and document evolution. A
major goal of DOF is the integrated development of formal certifica-
tion documents (e. g., for Common Criteria or CENELEC 50128) that
require consistency across both formal and informal arguments.

To support a consistent development of formal and informal parts of a
document, we provide Isabelle/DOF, an implementation of DOF on top
of Isabelle/HOL. Isabelle/DOF is integrated into Isabelle’s IDE, which
allows for smooth ontology development as well as immediate ontological
feedback during the editing of a document.

In this paper, we give an in-depth presentation of the design concepts
of DOF’s Ontology Definition Language (ODL) and key aspects of the
technology of its implementation. Isabelle/DOF is the first ontology lan-
guage supporting machine-checked links between the formal and informal
parts in an LCF-style interactive theorem proving environment.

Sufficiently annotated, large documents can easily be developed col-
laboratively, while ensuring their consistency, and the impact of changes
(in the formal and the semi-formal content) is tracked automatically.

Keywords: Ontology · Formal document development · Certification ·
DOF · Isabelle/DOF

1 Introduction

With the maturation and growing power of interactive proof systems, the body of
formalized mathematics and engineering is dramatically increasing. The Isabelle
Archive of Formal Proof (AFP) [6], created in 2004, counted in 2015 a total
of 215 articles, whereas the count stood at 413 only three years later. An in-
depth empirical analysis shows that both complexity and size increased accord-
ingly [11]. Together with the AFP, there is also a growing body on articles
concerned with formal software engineering issues such as standardized lan-
guage definitions (e. g., [15,21]), data-structures (e. g., [14,24]), hardware-models
(e. g., [20]), security-related specifications (e. g., [13,26]), or operating systems
(e. g., [22,27]).
c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 275–292, 2019.
https://doi.org/10.1007/978-3-030-30446-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_15&domain=pdf
http://orcid.org/0000-0002-6355-1200
https://doi.org/10.1007/978-3-030-30446-1_15

276 A. D. Brucker and B. Wolff

This development raises interest in at least two ways: First, there is a sub-
stantial potential of retrieve and reuse of formal developments, and second,
formal techniques allow a deeper checking of documents containing formal spec-
ifications, proofs and tests. This paves the way for collaborative, continuously
machine-checked developments of certification documents involving both formal
as well of informal content evolution.

We are focusing in this paper on the latter aspect. Certification documents
have to follow a structure which is relatively strictly defined in certification
standards such as [16,17]. In practice, large groups of developers have to produce
a substantial set of documents where the consistency is notoriously difficult
to maintain. In particular, certifications are centered around the traceability of
requirements throughout the entire set of documents. While technical solutions
for the traceability problem exists (most notably: DOORS [7]), they are weak in
the treatment of formal entities (such as formulas and their logical contexts).

Enforcing a document structure is done by annotations with meta-
information; the language in which the latter is defined is widely called a doc-
ument ontology (an equivalent term is vocabulary) in the semantic web com-
munity [3], i. e., a machine-readable form of the structure of a document and
the document discourse. Let us consider a set of text elements available in a
given corpus. These elements may be sentences or paragraphs, figures, tables,
definitions or lemmas, code, and, for example, the results of test-executions. By
annotation, we make links explicit that may exist between an ontology concept
and a document element of the considered corpus. While ontologies as such can
be used for a variety of applications, this paper is concerned with the represen-
tation of a mixture formal and semi-formal content (as it is, e. g., very common
in documents within a software development process). Therefore, we also discuss
the mapping to a concrete target document format (e. g., PDF) that, e. g., might
be used within a traditional certification process.

In this paper, we present the concepts of our Document Ontology Framework
(DOF) designed for building scalable and user-friendly tools on top of inter-
active theorem provers, and an implementation of DOF called Isabelle/DOF.
Isabelle/DOF supports both defining ontologies and documents that conform to
one or more ontologies. An example-driven introduction into Isabelle/DOF also
presenting details of the user-interaction in the IDE can be found elsewhere [12].
In this paper, we are focusing on the fundamental concepts of its ontology defini-
tion language ODL and the more technical issues of its implementation. In par-
ticular, we present novel concepts such as meta-types-as-types, class-invariants,
monitors, inner-syntax antiquotations as well as their interaction.

The rest of the paper is structured as follows: after explicating the underlying
assumptions in a generic document model, we present the design of DOF as a lan-
guage in Sect. 3. It follows a presentation of the implementation of Isabelle/DOF
(Sect. 4) and a discussion on related and future work (Sect. 5).

2 Background: The Document Model

In this section, we introduce the assumed document model underlying DOF
in general; in particular the concepts integrated document, sub-document, text-

Isabelle/DOF: Design and Implementation 277

element and semantic macros occurring inside text-elements. Furthermore, we
assume two different levels of parsers (for outer and inner syntax) where the
inner-syntax is basically a typed λ-calculus and some Higher-order Logic (HOL).

Fig. 1. A theory-graph in
the document model.

We assume a hierarchical document model, i. e.,
an integrated document consist of a hierarchy sub-
documents (files) that can depend acyclically on
each other. Sub-documents can have different doc-
ument types in order to capture documentations
consisting of documentation, models, proofs, code
of various forms and other technical artifacts. We
call the main sub-document type, for historical rea-
sons, theory-files. A theory file consists of a header,
a context definition, and a body consisting of a
sequence of commands (Fig. 1). Even the header
consists of a sequence of commands used for intro-
ductory text elements not depending on any con-
text. The context-definition contains an import and
a keyword section, for example:

theory Example (* Name of the "theory" *)
imports (* Declaration of "theory" dependencies *)

Main (* Imports a library called "Main" *)
keywords (* Registration of keywords defined locally *)

requirement (* A command for describing requirements *)

where Example is the abstract name of the text-file, Main refers to an imported
theory (recall that the import relation must be acyclic) and keywords are used
to separate commands from each other.

We distinguish fundamentally two different syntactic levels:

1. the outer-syntax (i. e., the syntax for commands) is processed by a lexer-
library and parser combinators built on top, and

2. the inner-syntax (i. e., the syntax for λ-terms in HOL) with its own parametric
polymorphism type checking.

On the semantic level, we assume a validation process for an integrated docu-
ment, where the semantics of a command is a transformation θ → θ for some
system state θ. This document model can be instantiated with outer-syntax com-
mands for common text elements, e. g., section〈... 〉 or text〈... 〉. Thus, users
can add informal text to a sub-document using a text command:

text〈This is a description.〉

This will type-set the corresponding text in, for example, a PDF document.
However, this translation is not necessarily one-to-one: text elements can be
enriched by formal, i. e., machine-checked content via semantic macros, called
antiquotations:

text〈According to the reflexivity axiom @{thm refl}, we obtain in Γ
for @{term "fac 5"} the result @{value "fac 5"}.〉

278 A. D. Brucker and B. Wolff

Fig. 2. The Isabelle/DOF IDE (left) and the corresponding PDF (right).

which is represented in the final document (e. g., a PDF) by:

According to the reflexivity axiom x = x, we obtain in Γ for fac 5 the result 120.

Semantic macros are partial functions of type θ → text; since they can use
the system state, they can perform all sorts of specific checks or evaluations
(type-checks, executions of code-elements, references to text-elements or proven
theorems such as refl, which is the reference to the axiom of reflexivity).

Semantic macros establish formal content inside informal content; they can
be type-checked before being displayed and can be used for calculations before
being typeset. They represent the device for linking the formal with the informal.

Implementability of the Assumed Document Model. Batch-mode check-
ers for DOF can be implemented in all systems of the LCF-style prover family,
i. e., systems with a type-checked term, and abstract thm-type for theorems (pro-
tected by a kernel). This includes, e. g., ProofPower, HOL4, HOL-light, Isabelle,
as well as Coq and its derivatives. DOF is, however, designed for fast interaction
in an IDE. If a user wants to benefit from this experience, only Isabelle and Coq
have the necessary infrastructure of asynchronous proof-processing and support
by an IDE [10,18,28,29]. For our implementation of DOF, called Isabelle/DOF,
we are using the Isabelle platform [25]. Figure 2 shows a screen-shot of an intro-
ductory paper on Isabelle/DOF [12] presenting a number of application scenarios
and user-interface aspects. On the left, we represented the Isabelle/DOF IDE,
while on the right, the generated presentation in PDF is shown.

Isabelle provides, beyond the features required for DOF, a lot of additional
benefits. For example, it also allows the asynchronous evaluation and checking
of the document content [10,28,29] and is dynamically extensible. Its IDE pro-
vides a continuous build, continuous check functionality, syntax highlighting, and
IntelliSense-like auto-completion. It also provides infrastructure for displaying
meta-information (e. g., binding and type annotation) as pop-ups, while hovering
over sub-expressions. A fine-grained dependency analysis allows the processing

Isabelle/DOF: Design and Implementation 279

of individual parts of theory files asynchronously, allowing Isabelle to interac-
tively process large (hundreds of theory files) documents. Isabelle can group
sub-documents into sessions, i. e., sub-graphs of the document-structure that
can be “pre-compiled” and loaded instantaneously, i. e., without re-processing.

3 The DOF Design

DOF consists basically of two parts: 1. the declaration of new keywords and new
commands allowing for the specification of ontological concepts in our Ontol-
ogy Definition Language (ODL), and 2. the definition of text-elements that are
“ontology-aware,” i. e., perform the necessary checks to ensure compliance to
an imported ontology. This represents a partial instantiation of the underly-
ing generic document model. The document language can be extended (recall
the keywords-section) dynamically, i. e., new user-defined can be introduced at
run-time. This is similar to the definition of new functions in an interpreter.

We illustrate the design of DOF by modeling a small ontology that can be
used for writing formal specifications that, e. g., could build the basis for an ontol-
ogy for certification documents used in processes such as Common Criteria [17]
or CENELEC 50128 [16].1 Moreover, in examples of certification documents, we
refer to a controller of a steam boiler that is inspired by the famous steam boiler
formalization challenge [9].

3.1 Ontology Modeling in ODL

Conceptually, ontologies specified in ODL consist of:

– document classes (syntactically marked by the doc_class keyword) that
describe concepts;

– an optional document base class expressing single inheritance extensions;
– attributes specific to document classes, where

• attributes are typed;
• attributes of instances of document elements are mutable;
• attributes can refer to other document classes, thus, document classes

must also be HOL-types (such attributes are called links);
– a special link, the reference to a super-class, establishes an is-a relation

between classes;
– classes may refer to other classes via a regular expression in a where clause

(classes with a where clauses are called monitor classes);
– attributes may have default values in order to facilitate notation.

A major design decision of ODL is to denote attribute values by HOL-terms
and HOL-types. Consequently, ODL can refer to any predefined type defined in
the HOL library, e. g., string or int as well as parameterized types, e. g., _

option, _ list, _ set, or products _ × _. As a consequence of the document

1 The Isabelle/DOF distribution contains an ontology for writing documents for a
certification according to CENELEC 50128.

280 A. D. Brucker and B. Wolff

Listing 1.1. An example ontology modeling simple certification documents, including
scientific papers such as [12]; also recall Fig. 2.

doc_class title = short_title :: "string option" <= "None"
doc_class author = email :: "string" <= "''''"

datatype classification = SIL0 | SIL1 | SIL2 | SIL3 | SIL4

doc_class abstract =
keywordlist :: "string list" <= []
safety_level :: "classification" <= "SIL3"

doc_class text_section =
authored_by :: "author set" <= "{}"
level :: "int option" <= "None"

type_synonym notion = string

doc_class introduction = text_section +
authored_by :: "author set" <= "UNIV"
uses :: "notion set"

doc_class claim = introduction +
based_on :: "notion list"

doc_class technical = text_section +
formal_results :: "thm list"

doc_class "definition" = technical +
is_formal :: "bool"
property :: "term list" <= "[]"

datatype kind = expert_opinion | argument | proof

doc_class result = technical +
evidence :: kind
property :: "thm list" <= "[]"

doc_class example = technical +
referring_to :: "(notion + definition) set" <= "{}"

doc_class "conclusion" = text_section +
establish :: "(claim × result) set"

model, ODL definitions may be arbitrarily intertwined with standard HOL type
definitions. Finally, document class definitions result in themselves in a HOL-
types in order to allow links to and between ontological concepts.

Listing 1.1 shows an example ontology for mathematical papers (an extended
version of this ontology was used for writing [12], also recall Fig. 2). The com-
mands datatype (modeling fixed enumerations) and type_synonym (defining
type synonyms) are standard mechanisms in HOL systems. Since ODL is an add-
on, we have to quote sometimes constant symbols (e. g., "proof") to avoid con-
fusion with predefined keywords. ODL admits overriding (such as authored_by
in the document class introduction), where it is set to another library con-

Isabelle/DOF: Design and Implementation 281

stant, but no overloading. All text_section elements have an optional level
attribute, which will be used in the output generation for the decision if the con-
text is a section header and its level (e. g., chapter, section, subsection). While
within an inheritance hierarchy overloading is prohibited, attributes may be re-
declared freely in independent parts (as is the case for property).

3.2 Meta-Types as Types

To express the dependencies between text elements to the formal entities, e. g.,
term (λ-term), typ, or thm, we represent the types of the implementation lan-
guage inside the HOL type system. We do, however, not reflect the data of these
types. They are just declared abstract types, “inhabited” by special constant
symbols carrying strings, for example of the format @{thm <string>}. When
HOL expressions were used to denote values of doc_class instance attributes,
this requires additional checks after conventional type-checking that this string
represents actually a defined entity in the context of the system state θ. For
example, the establish attribute in the previous section is the power of the
ODL: here, we model a relation between claims and results which may be a
formal, machine-check theorem of type thm denoted by, for example: property
="[@{thm ''system_is_safe''}]" in a system context θ where this theo-
rem is established. Similarly, attribute values like property = "@{term 〈A ↔
B〉}" require that the HOL-string A ↔ B is again type-checked and represents
indeed a formula in θ. Another instance of this process, which we call second-
level type-checking, are term-constants generated from the ontology such as
@{definition <string>}. For the latter, the argument string must be checked
that it represents a reference to a text-element having the type
according to the ontology in Listing 1.1.

3.3 Annotating with Ontology Meta-Data: Outer Syntax

DOF introduces its own family of text-commands, which allows hav-
ing side effects of the global context θ and thus to store and man-
age own meta-information. Among others, DOF provides the com-
mands section*[<meta-args>]〈... 〉, subsection*[<meta-args>]〈... 〉, or
text*[<meta-args>]〈... 〉. Here, the argument <meta-args> is a syntax for
declaring instance, class and attributes for this text element, following the scheme

<ref> :: <class_id>, attr_1 = <expr>, ..., attr_n = <expr>

The <class_id> can be omitted, which represents the implicit superclass
text, where attr_i must be declared attributes in the class and where the
HOL <expr> must have the corresponding HOL type. Attributes from a class
definition may be left undefined; definitions of attribute values override default
values or values of super-classes. Overloading of attributes is not permitted in
DOF.

We can now annotate a text as follows. First, we have to place a particular
document into the context of our conceptual example ontology (Listing 1.1):

282 A. D. Brucker and B. Wolff

theory Steam_Boiler
imports

tiny_cert (* The ontology defined in Listing 1.1. *)
begin

This opens a new document (theory), called Steam_Boiler that imports our
conceptual example ontology “tiny_cert” (stored in a file tiny_cert.thy).2
Now we can continue to annotate our text as follows:

title*[a] 〈The Steam Boiler Controller〉

abstract*[abs, safety_level="SIL4", keywordlist = "[''controller'']"]〈

We present a formalization of a program which serves to control the
level of water in a steam boiler.

〉

section*[intro::introduction]〈Introduction〉

text〈We present ... 〉

section*[T1::technical]〈Physical Environment〉

text〈

The system comprises the following units
• the steam-boiler
• a device to measure the quantity of water in the steam-boiler
• ...

〉

Wheretitle*[a ...] is a predefinedmacro fortext*[a::title,...]〈... 〉

(similarly abstract*). The macro section* assumes a class-id referring to a
class that has a level attribute. We continue our example text:

text*[c1::contrib_claim, based_on="[''pumps'',''steam boiler'']"]〈

As indicated in @{introduction "intro"}, we the water level of the
boiler is always between the minimum and the maximum allowed level.

〉

The first text element in this example fragment defines the text entity c1 and
also references the formerly defined text element intro (which will be repre-
sented in the PDF output, for example, by a text anchor “Section 1” and a
hyperlink to its beginning). The antiquotation @{introduction ...}, which is
automatically generated from the ontology, is immediately validated (the link to
intro is defined) and type-checked (it is indeed a link to an introduction text-
element). Moreover, the IDE automatically provides editing and development
support such as auto-completion or the possibility to “jump” to its definition by
clicking on the antiquotation. The consistency checking ensures, among others,

2 The usual import-mechanisms of the Isabelle document model applies also to ODL:
ontologies can be extended, several ontologies may be imported, a document can
validate several ontologies.

Isabelle/DOF: Design and Implementation 283

that the final document will not contain any “dangling references” or references
to entities of another type.

DOF as such does not require a particular evaluation strategy; however, if
the underlying implementation is based on a declaration-before-use strategy, a
mechanism for forward declarations of references is necessary:

declare_reference* [<meta-args>]

This command declares the existence of a text-element and allows for referencing
it, although the actual text-element will occur later in the document.

3.4 Editing Documents with Ontology Meta-Data: Inner Syntax

We continue our running example as follows:

As mentioned earlier, instances of document classes are mutable. We use
this feature to modify meta-data of these text-elements and “assign” them to the
property-list afterwards and add results from Isabelle definitions and proofs. The
notation A+=X stands for A := A + X. This mechanism can also be used to define
the required relation between claims and results required in the establish-
relation required in a summary.

3.5 ODL Class Invariants

Ontological classes as described so far are too liberal in many situations. For
example, one would like to express that any instance of a result class finally
has a non-empty property list, if its kind is proof, or that the establish relation
between claim and result is surjective.

In a high-level syntax, this type of constraints could be expressed, e. g., by:

284 A. D. Brucker and B. Wolff

∀ x ∈ result. x@kind = proof ↔ x@kind �= []
∀ x ∈ conclusion. ∀ y ∈ Domain(x@establish)

→ ∃ y∈ Range(x@establish). (y,z) ∈ x@establish
∀ x ∈ introduction. finite(x@authored_by)

where result, conclusion, and introduction are the set of all possible
instances of these document classes. All specified constraints are already checked
in the IDE of DOF while editing; it is however possible to delay a final error mes-
sage till the closing of a monitor (see next section). The third constraint enforces
that the user sets the authored_by set, otherwise an error will be reported.

3.6 ODL Monitors

We call a document class with an accept-clause a monitor. Syntactically, an
accept-clause contains a regular expression over class identifiers. We can extend
our tiny_cert ontology with the following example:

doc_class article =
style_id :: string <= "''CENELEC50128''"

accepts "(title ~~ {|author|}+ ~~ abstract ~~ {|introduction|}+ ~~

{|technical || example|}+ ~~ {|conclusion|}+)"

Semantically, monitors introduce a behavioral element into ODL:

open_monitor*[this::article] (* begin of scope of monitor "this" *)
...

close_monitor*[this] (* end of scope of monitor "this" *)

Inside the scope of a monitor, all instances of classes mentioned in its accept-
clause (the accept-set) have to appear in the order specified by the regular expres-
sion; instances not covered by an accept-set may freely occur. Monitors may
additionally contain a reject-clause with a list of class-ids (the reject-list). This
allows specifying ranges of admissible instances along the class hierarchy:

– a superclass in the reject-list and a subclass in the accept-expression forbids
instances superior to the subclass, and

– a subclass S in the reject-list and a superclass T in the accept-list allows
instances of superclasses of T to occur freely, instances of T to occur in the
specified order and forbids instances of S.

Monitored document sections can be nested and overlap; thus, it is possible to
combine the effect of different monitors. For example, it would be possible to
refine the example section by its own monitor and enforce a particular structure
in the presentation of examples.

Monitors manage an implicit attribute trace containing the list of “observed”
text element instances belonging to the accept-set. Together with the concept of
ODL class invariants, it is possible to specify properties of a sequence of instances
occurring in the document section. For example, it is possible to express that in

Isabelle/DOF: Design and Implementation 285

the sub-list of introduction-elements, the first has an introduction element
with a level strictly smaller than the others. Thus, an introduction is forced to
have a header delimiting the borders of its representation. Class invariants on
monitors allow for specifying structural properties on document sections.

3.7 Document Representation

Up to now, we discussed the support of ontological concepts in the context of an
IDE, i. e., a rather dynamic environment that, e. g., allows for interactive query-
ing and displaying of information. Certification processes often require “static”
documents, e. g., in a format such as PDF/A that are designed for archiving and
long-term preservation of electronic documents, are required.

While many concepts of ODL can easily be mapped to such static formats,
more dynamic features (e. g., references) requires additional considerations such
as ensuring that references point to text elements that have a unique identifier
that is visible in the actual document representation. Currently, the definition
of a static document representation is not part of DOF itself and, thus, depends
on the underlying implementation. We refer the reader to Sect. 4.6 for details.

4 The Isabelle/DOF Implementation

In this section, we describe the basic implementation aspects of Isabelle/DOF,
which is based on the following design-decisions:

– the entire Isabelle/DOF is a “pure add-on,” i. e., we deliberately resign on the
possibility to modify Isabelle itself.

– we made a small exception to this rule: the Isabelle/DOF package modifies in
its installation about 10 lines in the LATEX generator thy_output.ML which
greatly simplifies the architecture.3

– we decided to make the markup-generation by itself to adapt it as well as
possible to the needs of tracking the linking in documents.

– Isabelle/DOF is deeply integrated into the Isabelle’s IDE (PIDE) to give
immediate feedback during editing and other forms of document evolution.

Semantic macros, as required by our document model, are called document
antiquotations in the Isabelle literature [30]. While Isabelle’s code-antiquotations
are an old concept going back to Lisp and having found via SML and OCaml
their ways into modern proof systems, special annotation syntax inside documen-
tation comments have their roots in documentation generators such as Javadoc.
Their use, however, as a mechanism to embed machine-checked formal content
is usually very limited and also lacks IDE support.

3 Earlier versions of Isabelle/DOF used an additional LATEX-to-LATEX translator that
needed to be integrated into the document build process.

286 A. D. Brucker and B. Wolff

4.1 Writing Isabelle/DOF as User-Defined Plugin in Isabelle/Isar

A plugin in Isabelle starts with defining the local data and registering it in the
framework. As mentioned before, contexts are structures with independent cell-
s/compartments having three primitives init, extend and merge. Technically
this is done by instantiating a functor Generic_Data, and the following fairly
typical code-fragment is drawn from Isabelle/DOF:

structure Data = Generic_Data
(type T = docobj_tab * docclass_tab * ...

val empty = (initial_docobj_tab, initial_docclass_tab, ...)
val extend = I
fun merge((d1,c1,...),(d2,c2,...)) = (merge_docobj_tab (d1,d2,...),

merge_docclass_tab(c1,c2,...))
);

where the table docobj_tab manages document classes and docclass_tab the
environment for class definitions (inducing the inheritance relation). Other tables
capture, e. g., the class invariants, inner-syntax antiquotations.

All the text samples shown here have to be in the context of an SML file or
in an ML〈... 〉 command inside a theory file.

Operations follow the model-view-controller paradigm, where Isabelle/Isar
provides the controller part. A typical model operation has the type:

val opn :: <args_type> -> Context.generic -> Context.generic

representing a transformation on system contexts. For example, the operation
of declaring a local reference in the context is presented as follows:

fun declare_object_local oid ctxt =
let fun decl {tab,maxano} = {tab=Symtab.update_new(oid,NONE) tab,

maxano=maxano}
in (Data.map(apfst decl)(ctxt)

handle Symtab.DUP _ =>
error("multiple declaration of document reference"))

end

where Data.map is the update function resulting from the instantiation of the
functor Generic_Data. This code fragment uses operations from a library struc-
ture Symtab that were used to update the appropriate table for document
objects in the plugin-local state. Possible exceptions to the update operation
were mapped to a system-global error reporting function.

Finally, the view-aspects were handled by an API for parsing-combinators.
The library structure Scan provides the operators:

op || : ('a -> 'b) * ('a -> 'b) -> 'a -> 'b
op -- : ('a -> 'b * 'c) * ('c -> 'd * 'e) -> 'a -> ('b * 'd) * 'e
op >> : ('a -> 'b * 'c) * ('b -> 'd) -> 'a -> 'd * 'c
op option : ('a -> 'b * 'a) -> 'a -> 'b option * 'a
op repeat : ('a -> 'b * 'a) -> 'a -> 'b list * 'a

Isabelle/DOF: Design and Implementation 287

for alternative, sequence, and piping, as well as combinators for option and
repeat. Parsing combinators have the advantage that they can be smoothlessly
integrated into standard programs, and they enable the dynamic extension of
the grammar. There is a more high-level structure Parse providing specific com-
binators for the command-language Isar:

val attribute = Parse.position Parse.name
-- Scan.optional(Parse.$$$ "=" |-- Parse.!!! Parse.name)"";

val reference = Parse.position Parse.name
-- Scan.option (Parse.$$$ "::" |-- Parse.!!!

(Parse.position Parse.name));
val attributes =(Parse.$$$ "[" |-- (reference

-- (Scan.optional(Parse.$$$ ","
|--(Parse.enum ","attribute)))[]))--| Parse.$$$ "]"

The “model” declare_reference_opn and “new” attributes parts were com-
bined via the piping operator and registered in the Isar toplevel:

fun declare_reference_opn (((oid,_),_),_) =
(Toplevel.theory (DOF_core.declare_object_global oid))

val _ = Outer_Syntax.command @{command_keyword "declare_reference"}
"declare document reference"
(attributes >> declare_reference_opn);

Altogether, this gives the extension of Isabelle/HOL with Isar syntax and seman-
tics for the new command :

declare_reference [lal::requirement, alpha="main", beta=42]

The construction also generates implicitly some markup information; for exam-
ple, when hovering over the declare_reference command in the IDE, a popup
window with the text: “declare document reference” will appear.

4.2 Programming Antiquotations

The definition and registration of text antiquotations and ML-antiquotations is
similar in principle: based on a number of combinators, new user-defined antiquo-
tation syntax and semantics can be added to the system that works on the
internal plugin-data freely. For example, in

val _ = Theory.setup(
Thy_Output.antiquotation @{binding docitem}

docitem_antiq_parser
(docitem_antiq_gen default_cid) #>

ML_Antiquotation.inline @{binding docitem_value}
ML_antiq_docitem_value)

288 A. D. Brucker and B. Wolff

the text antiquotation docitem is declared and bounded to a parser for the argu-
ment syntax and the overall semantics. This code defines a generic antiquotation
to be used in text elements such as

text〈as defined in @{docitem 〈d1〉} ... 〉

The subsequent registration docitem_value binds code to a ML-antiquotation
usable in an ML context for user-defined extensions; it permits the access to the
current “value” of document element, i. e.; a term with the entire update history.

It is possible to generate antiquotations dynamically, as a consequence of
a class definition in ODL. The processing of the ODL class also
generates a text antiquotation @{definition 〈d1〉}, which works similar to
@{docitem 〈d1〉} except for an additional type-check that assures that d1 is
a reference to a definition. These type-checks support the subclass hierarchy.

4.3 Implementing Second-Level Type-Checking

On expressions for attribute values, for which we chose to use HOL syntax to
avoid that users need to learn another syntax, we implemented an own pass over
type-checked terms. Stored in the late-binding table ISA_transformer_tab, we
register for each inner-syntax-annotation (ISA’s), a function of type

theory -> term * typ * Position.T -> term option

Executed in a second pass of term parsing, ISA’s may just return None. This is
adequate for ISA’s just performing some checking in the logical context theory;
ISA’s of this kind report errors by exceptions. In contrast, transforming ISA’s
will yield a term; this is adequate, for example, by replacing a string-reference
to some term denoted by it. This late-binding table is also used to generate
standard inner-syntax-antiquotations from a doc_class.

4.4 Programming Class Invariants

For the moment, there is no high-level syntax for the definition of class invariants.
A formulation, in SML, of the first class-invariant in Sect. 3.5 is straight-forward:

fun check_result_inv oid {is_monitor:bool} ctxt =
let val kind = compute_attr_access ctxt "kind" oid @{here} @{here}

val prop = compute_attr_access ctxt "property" oid @{here} @{here}
val tS = HOLogic.dest_list prop

in case kind_term of
@{term "proof"} => if not(null tS) then true

else error("class result invariant violation")
| _ => false

end
val _ = Theory.setup (DOF_core.update_class_invariant

"tiny_cert.result" check_result_inv)

Isabelle/DOF: Design and Implementation 289

The setup-command (last line) registers the check_result_inv function into
the Isabelle/DOF kernel, which activates any creation or modification of an
instance of result. We cannot replace compute_attr_access by the corre-
sponding antiquotation @{docitem_value kind::oid}, since oid is bound to a
variable here and can therefore not be statically expanded.

Isabelle’s code generator can in principle generate class invariant code from
a high-level syntax. Since class-invariant checking can result in an efficiency
problem—they are checked on any edit—and since invariant programming
involves a deeper understanding of ontology modeling and the Isabelle/DOF
implementation, we backed off from using this technique so far.

4.5 Implementing Monitors

Since monitor-clauses have a regular expression syntax, it is natural to imple-
ment them as deterministic automata. These are stored in the docobj_tab for
monitor-objects in the Isabelle/DOF component. We implemented the func-
tions:

val enabled : automaton -> env -> cid list
val next : automaton -> env -> cid -> automaton

where env is basically a map between internal automaton states and class-id’s
(cid’s). An automaton is said to be enabled for a class-id, iff it either occurs in its
accept-set or its reject-set (see Sect. 3.6). During top-down document validation,
whenever a text-element is encountered, it is checked if a monitor is enabled
for this class; in this case, the next-operation is executed. The transformed
automaton recognizing the rest-language is stored in docobj_tab if possible;
otherwise, if next fails, an error is reported. The automata implementation is,
in large parts, generated from a formalization of functional automata [23].

4.6 Document Representation

Isabelle/DOF can generate PDF documents, using a LATEX-backend (for end
users there is no need to edit LATEX-code manually). For PDF documents, a
specific representation, including a specific layout or formatting of certain text
types (e. g., title, abstract, theorems, examples) is required: for each ontological
concept (using the doc_class-command), a representation for the PDF output
needs to be defined. The LATEX-setup of Isabelle/DOF provides the \newisadof
-command and an inheritance-based dispatcher, i. e., if for a concept no LATEX-
representation is defined, the representation of its super-concept is used.

Recall the document class abstract from our example ontology (Listing 1.1).
The following LATEX-code (defined in a file tiny_cert.sty) defines the repre-
sentation for abstracts, re-using the the standard abstract-environment:

290 A. D. Brucker and B. Wolff

\newisadof{tiny_cert.abstract}[reference=,class_id=%
,keywordlist=,safety_level=][1]{%

\begin{isamarkuptext}%
\begin{abstract}\label{\commandkey{reference}}%
#1\\ % this is the main text of the abstract
\ifthenelse{\equal{\commandkey{safety_level}}{}}{}{%
\medskip\noindent{Safety Level:} \commandkey{safety_level}\\%

}
\ifthenelse{\equal{\commandkey{keywordlist}}{}}{}{%
\medskip\noindent{\textbf{Keywords:}} \commandkey{keywordlist}%

}
\end{abstract}%

\end{isamarkuptext}%
}

The \newisadof takes the name of the concept as first argument, followed by a
list of parameters that is the same as the parameters used in defining the concept
with doc_class. Within the definition section of the command, the main argu-
ment (written in the actual document within 〈 ... 〉) is accessed using #1. The
parameters can be accessed using the \commandkey-command. In our example,
we print the abstract within abstract-environment of LATEX. Moreover, we test
if the parameters safety_level and keywordlist are non-empty and, if yes,
print them as part of the abstract.

5 Conclusion and Related Work

5.1 Related Work

Our work shares similarities with existing ontology editors such as Protégé [5],
Fluent Editor [1], NeOn [2], or OWLGrEd [4]. These editors allow for defining
ontologies and also provide certain editing features such as auto-completion. In
contrast, Isabelle/DOF does not only allow for defining ontologies, directly after
defining an ontological concept, they can also be instantiated and their correct
use is checked immediately. The document model of Jupyter Notebooks [8] comes
probably closest to our ideal of a “living document.”

Finally, the LATEX that is generated as intermediate step in our PDF gener-
ation is conceptually very close to SALT [19], with the difference that instead
of writing LATEX manually it is automatically generated and its consistency is
guaranteed by the document checking of Isabelle/DOF.

5.2 Conclusion

We presented the design of DOF, an ontology framework designed for formal doc-
uments developed by interactive proof systems. It foresees a number of specific
features—such as monitors, meta-types as-types or semantic macros generated
from a typed ontology specified in ODL—that support the specifics of such doc-
uments linking formal and informal content. As validation of these concepts,

Isabelle/DOF: Design and Implementation 291

we present Isabelle/DOF, an implementation of DOF based on Isabelle/HOL.
Isabelle/DOF is unique in at least one aspect: it is an integrated environment
that allows both defining ontologies and writing documents that conform to a
set of ontological rules, and both are supported by editing and query features
that one expects from a modern IDE.

While the batch-mode part of DOF can, in principle, be re-implemented in
any LCF-style prover, Isabelle/DOF is designed for fast interaction in an IDE. It
is this feature that allows for a seamless development of ontologies together with
validation tests checking the impact of ontology changes on document instances.
We expect this to be a valuable tool for communities that still have to develop
their domain specific ontologies, be it in mathematical papers, formal theories,
formal certifications or other documents where the consistency of formal and
informal content has to be maintained under document evolution. Today, in some
areas such as medicine and biology, ontologies play a vital role for the retrieval of
scientific information; we believe that leveraging these ontology-based techniques
to the field of formal software engineering can represent a game changer.

Availability. The implementation of the framework is available at https://
git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF/. Isabelle/DOF is licensed
under a 2-clause BSD license (SPDX-License-Identifier: BSD-2-Clause).

Acknowledgments. This work has been partially supported by IRT SystemX, Paris-
Saclay, France, and therefore granted with public funds of the Program “Investissements
d’Avenir”.

References

1. Fluent editor (2018). http://www.cognitum.eu/Semantics/FluentEditor/
2. The neon toolkit (2018). http://neon-toolkit.org
3. Ontologies (2018). https://www.w3.org/standards/semanticweb/ontology
4. Owlgred (2018). http://owlgred.lumii.lv/
5. Protégé (2018). https://protege.stanford.edu
6. Archive of formal proofs (2019). https://afp-isa.org
7. Ibm engineering requirements management doors family (2019). https://www.ibm.

com/us-en/marketplace/requirements-management
8. Jupyter (2019). https://jupyter.org/
9. Abrial, J.-R.: Steam-boiler control specification problem. In: Abrial, J.-R., Börger,

E., Langmaack, H. (eds.) Formal Methods for Industrial Applications. LNCS,
vol. 1165, pp. 500–509. Springer, Heidelberg (1996). https://doi.org/10.1007/
BFb0027252

10. Barras, B., et al.: Pervasive parallelism in highly-trustable interactive theorem
proving systems. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger,
W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 359–363. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39320-4_29

11. Blanchette, J.C., Haslbeck, M., Matichuk, D., Nipkow, T.: Mining the archive of
formal proofs. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.)
CICM 2015. LNCS (LNAI), vol. 9150, pp. 3–17. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-20615-8_1

https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF/
https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF/
http://www.cognitum.eu/Semantics/FluentEditor/
http://neon-toolkit.org
https://www.w3.org/standards/semanticweb/ontology
http://owlgred.lumii.lv/
https://protege.stanford.edu
https://afp-isa.org
https://www.ibm.com/us-en/marketplace/requirements-management
https://www.ibm.com/us-en/marketplace/requirements-management
https://jupyter.org/
https://doi.org/10.1007/BFb0027252
https://doi.org/10.1007/BFb0027252
https://doi.org/10.1007/978-3-642-39320-4_29
https://doi.org/10.1007/978-3-319-20615-8_1
https://doi.org/10.1007/978-3-319-20615-8_1

292 A. D. Brucker and B. Wolff

12. Brucker, A.D., Ait-Sadoune, I., Crisafulli, P., Wolff, B.: Using the isabelle ontology
framework. In: Rabe, F., Farmer, W.M., Passmore, G.O., Youssef, A. (eds.) CICM
2018. LNCS (LNAI), vol. 11006, pp. 23–38. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96812-4_3

13. Brucker, A.D., Brügger, L., Wolff, B.: Formal network models and their applica-
tion to firewall policies. Archive of Formal Proofs (2017). http://www.isa-afp.org/
entries/UPF_Firewall.shtml

14. Brucker, A.D., Herzberg, M.: The Core DOM. Archive of Formal Proofs (2018).
http://www.isa-afp.org/entries/Core_DOM.html

15. Brucker, A.D., Tuong, F., Wolff, B.: Featherweight OCL: a proposal for a machine-
checked formal semantics for OCL 2.5. Archive of Formal Proofs (2014). http://
www.isa-afp.org/entries/Featherweight_OCL.shtml

16. BS EN 50128:2011: Bs en 50128:2011: Railway applications - communication, sig-
nalling and processing systems - software for railway control and protecting sys-
tems. Standard, Britisch Standards Institute (BSI) (2014)

17. Common Criteria: Common criteria for information technology security evaluation
(version 3.1), Part 3: Security assurance components (2006)

18. Faithfull, A., Bengtson, J., Tassi, E., Tankink, C.: Coqoon - an IDE for interactive-
proof development in coq. STTT 20(2), 125–137 (2018). https://doi.org/10.1007/
s10009-017-0457-2

19. Groza, T., Handschuh, S., Möller, K., Decker, S.: SALT - semantically annotated
LATEX for scientific publications. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC
2007. LNCS, vol. 4519, pp. 518–532. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72667-8_37

20. Hou, Z., Sanan, D., Tiu, A., Liu, Y.: A formal model for the SPARCv8 ISA and
a proof of non-interference for the LEON3 processor. Archive of Formal Proofs
(2016). http://isa-afp.org/entries/SPARCv8.html

21. Hupel, L., Zhang, Y.: CakeML. Archive of Formal Proofs (2018). http://isa-afp.
org/entries/CakeML.html

22. Klein, G., et al.: Comprehensive formal verification of an OS microkernel. ACM
Trans. Comput. Syst. 32(1), 2:1–2:70 (2014). https://doi.org/10.1145/2560537

23. Nipkow, T.: Functional automata. Archive of Formal Proofs (2004). http://isa-afp.
org/entries/Functional-Automata.html. Formal proof development

24. Nipkow, T.: Splay tree. Archive of Formal Proofs (2014). http://isa-afp.org/
entries/Splay_Tree.html. Formal proof development

25. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

26. Sprenger, C., Somaini, I.: Developing security protocols by refinement. Archive of
Formal Proofs (2017). http://isa-afp.org/entries/Security_Protocol_Refinement.
html. Formal proof development

27. Verbeek, F., et al.: Formal specification of a generic separation kernel. Archive of
Formal Proofs (2014). http://isa-afp.org/entries/CISC-Kernel.html. Formal proof
development

28. Wenzel, M.: Asynchronous user interaction and tool integration in Isabelle/PIDE.
In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 515–530. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08970-6_33

29. Wenzel, M.: System description: Isabelle/jEdit in 2014. In: Proceedings Eleventh
Workshop on User Interfaces for Theorem Provers, UITP 2014, Vienna, Austria,
17th July 2014, pp. 84–94 (2014). https://doi.org/10.4204/EPTCS.167.10

30. Wenzel, M.: The Isabelle/Isar Reference Manual (2017). Part of the Isabelle dis-
tribution

https://doi.org/10.1007/978-3-319-96812-4_3
https://doi.org/10.1007/978-3-319-96812-4_3
http://www.isa-afp.org/entries/UPF_Firewall.shtml
http://www.isa-afp.org/entries/UPF_Firewall.shtml
http://www.isa-afp.org/entries/Core_DOM.html
http://www.isa-afp.org/entries/Featherweight_OCL.shtml
http://www.isa-afp.org/entries/Featherweight_OCL.shtml
https://doi.org/10.1007/s10009-017-0457-2
https://doi.org/10.1007/s10009-017-0457-2
https://doi.org/10.1007/978-3-540-72667-8_37
https://doi.org/10.1007/978-3-540-72667-8_37
http://isa-afp.org/entries/SPARCv8.html
http://isa-afp.org/entries/CakeML.html
http://isa-afp.org/entries/CakeML.html
https://doi.org/10.1145/2560537
http://isa-afp.org/entries/Functional-Automata.html
http://isa-afp.org/entries/Functional-Automata.html
http://isa-afp.org/entries/Splay_Tree.html
http://isa-afp.org/entries/Splay_Tree.html
https://doi.org/10.1007/3-540-45949-9
http://isa-afp.org/entries/Security_Protocol_Refinement.html
http://isa-afp.org/entries/Security_Protocol_Refinement.html
http://isa-afp.org/entries/CISC-Kernel.html
https://doi.org/10.1007/978-3-319-08970-6_33
https://doi.org/10.4204/EPTCS.167.10

Towards Logical Specification
of Statistical Machine Learning

Yusuke Kawamoto(B)

AIST, Tsukuba, Japan
yusuke.kawamoto.aist@gmail.com

Abstract. We introduce a logical approach to formalizing statistical
properties of machine learning. Specifically, we propose a formal model
for statistical classification based on a Kripke model, and formalize vari-
ous notions of classification performance, robustness, and fairness of clas-
sifiers by using epistemic logic. Then we show some relationships among
properties of classifiers and those between classification performance and
robustness, which suggests robustness-related properties that have not
been formalized in the literature as far as we know. To formalize fair-
ness properties, we define a notion of counterfactual knowledge and show
techniques to formalize conditional indistinguishability by using counter-
factual epistemic operators. As far as we know, this is the first work that
uses logical formulas to express statistical properties of machine learning,
and that provides epistemic (resp. counterfactually epistemic) views on
robustness (resp. fairness) of classifiers.

Keywords: Epistemic logic · Possible world semantics · Divergence ·
Machine learning · Statistical classification · Robustness · Fairness

1 Introduction

With the increasing use of machine learning in real-life applications, the safety
and security of learning-based systems have been of great interest. In particular,
many recent studies [8,36] have found vulnerabilities on the robustness of deep
neural networks (DNNs) to malicious inputs, which can lead to disasters in secu-
rity critical systems, such as self-driving cars. To find out these vulnerabilities in
advance, there have been researches on the formal verification and testing meth-
ods for the robustness of DNNs in recent years [22,25,33,37]. However, relatively
little attention has been paid to the formal specification of machine learning [34].

To describe the formal specification of security properties, logical approaches
have been shown useful to classify desired properties and to develop theories
to compare those properties. For example, security policies in temporal systems

This work was supported by JSPS KAKENHI Grant Number JP17K12667, by the New
Energy and Industrial Technology Development Organization (NEDO), and by Inria
under the project LOGIS.

c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 293–311, 2019.
https://doi.org/10.1007/978-3-030-30446-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_16&domain=pdf
http://orcid.org/0000-0002-2151-9560
https://doi.org/10.1007/978-3-030-30446-1_16

294 Y. Kawamoto

have been formalized as trace properties [1] or hyperproperties [9], which char-
acterize the relationships among various security policies. For another example,
epistemic logic [39] has been widely used as formal policy languages (e.g., for the
authentication [5] and the anonymity [20,35] of security protocols, and for the
privacy of social network [32]). As far as we know, however, no prior work has
employed logical formulas to rigorously describe various statistical properties of
machine learning, although there are some papers that (often informally) list
various desirable properties of machine learning [34].

In this paper, we present a first logical formalization of statistical prop-
erties of machine learning. To describe the statistical properties in a simple
and abstract way, we employ statistical epistemic logic (StatEL) [26], which is
recently proposed to describe statistical knowledge and is applied to formalize
statistical hypothesis testing and statistical privacy of databases.

A key idea in our modeling of statistical machine learning is that we formal-
ize logical properties in the syntax level by using logical formulas, and statisti-
cal distances in the semantics level by using accessibility relations of a Kripke
model [28]. In this model, we formalize statistical classifiers and some of their
desirable properties: classification performance, robustness, and fairness. More
specifically, classification performance and robustness are described as the dif-
ferences between the classifier’s recognition and the correct label (e.g., given by
the human), whereas fairness is formalized as the conditional indistinguishability
between two groups or individuals by using a notion of counterfactual knowledge.

Our contributions. The main contributions of this work are as follows:

– We show a logical approach to formalizing statistical properties of machine
learning in a simple and abstract way. In particular, we model logical prop-
erties in the syntax level, and statistical distances in the semantics level.

– We introduce a formal model for statistical classification. More specifically, we
show how probabilistic behaviours of classifiers and non-deterministic adver-
sarial inputs are formalized in a distributional Kripke model [26].

– We formalize the classification performance, robustness, and fairness of clas-
sifiers by using statistical epistemic logic (StatEL). As far as we know, this is
the first work that uses logical formulas to formalize various statistical prop-
erties of machine learning, and that provides epistemic (resp. counterfactually
epistemic) views on robustness (resp. fairness) of classifiers.

– We show some relationships among properties of classifiers, e.g., different
strengths of robustness. We also present some relationships between classifica-
tion performance and robustness, which suggest robustness-related properties
that have not been formalized in the literature as far as we know.

– To formalize fairness properties, we define a notion of certain counterfactual
knowledge and show techniques to formalize conditional indistinguishability
by using counterfactual epistemic operators in StatEL. This enables us to
express various fairness properties in a similar style of logical formulas.

Cautions and limitations. In this paper, we focus on formalizing properties of
classification problems and do not deal with the properties of learning algorithms

Towards Logical Specification of Statistical Machine Learning 295

(e.g., fairness through awareness [13]), quality of training data (e.g., sample bias),
quality of testing (e.g., coverage criteria), explainability, temporal properties,
system level specification, or process agility in system development. It should be
noted that all properties formalized in this paper have been known in literatures
on machine learning, and the novelty of this work lies in the logical formulation
of those statistical properties.

We also remark that this work does not provide methods for checking, guar-
anteeing, or improving the performance/robustness/fairness of machine learning.
As for the satisfiability of logical formulas, we leave the development of testing
and (statistical) model checking algorithms as future work, since the research
area on the testing and formal/statistical verification of machine learning is rela-
tively new and needs further techniques to improve the scalability. Moreover, in
some applications such as image recognition, some formulas (e.g., representing
whether an input image is panda or not) cannot be implemented mathemati-
cally, and require additional techniques based on experiments. Nevertheless, we
demonstrate that describing various properties using logical formulas is useful
to explore desirable properties and to discuss their relationships in a framework.

Finally, we emphasize that our work is the first attempt to use logical formu-
las to express statistical properties of machine learning, and would be a starting
point to develop theories of specification of machine learning in future research.

Paper organization. The rest of this paper is organized as follows. Section 2
presents background on statistical epistemic logic (StatEL) and notations used in
this paper. Section 3 defines counterfactual epistemic operators and shows tech-
niques to model conditional indistinguishability using StatEL. Section 4 intro-
duces a formal model for describing the behaviours of statistical classifiers and
non-deterministic adversarial inputs. Sections 5, 6, and 7 respectively formalize
the classification performance, robustness, and fairness of classifiers by using
StatEL. Section 8 presents related work and Sect. 9 concludes.

2 Preliminaries

In this section we introduce some notations and recall the syntax and semantics
of the statistical epistemic logic (StatEL) introduced in [26].

2.1 Notations

Let R
≥0 be the set of non-negative real numbers, and [0, 1] be the set of non-

negative real numbers not greater than 1. We denote by DO the set of all prob-
ability distributions over a set O. Given a finite set O and a probability distri-
bution μ ∈ DO, the probability of sampling a value y from μ is denoted by μ[y].
For a subset R ⊆ O we define μ[R] by: μ[R] =

∑
y∈R μ[y]. For a distribution μ

over a finite set O, its support is defined by supp(μ) = {v ∈ O : μ[v] > 0}.
The total variation distance of two distributions μ, μ′ ∈ DO is defined by:

Dtv(μ ‖ μ′) def= supR⊆O |μ(R) − μ′(R)| .

296 Y. Kawamoto

2.2 Syntax of StatEL

We recall the syntax of the statistical epistemic logic (StatEL) [26], which has
two levels of formulas: static and epistemic formulas. Intuitively, a static formula
describes a proposition satisfied at a deterministic state, while an epistemic
formula describes a proposition satisfied at a probability distribution of states.
In this paper, the former is used only to define the latter.

Formally, let Mes be a set of symbols called measurement variables, and Γ be a
set of atomic formulas of the form γ(x1, x2, . . . , xn) for a predicate symbol γ, n ≥ 0,
and x1, x2, . . . , xn ∈ Mes. Let I ⊆ [0, 1] be a finite union of disjoint intervals, and
A be a finite set of indices (e.g., associated with statistical divergences). Then the
formulas are defined by:

Static formulas: ψ ::= γ(x1, x2, . . . , xn) | ¬ψ | ψ ∧ ψ
Epistemic formulas: ϕ ::= PI ψ | ¬ϕ | ϕ ∧ ϕ | ψ ⊃ ϕ | Ka ϕ

where a ∈ A. We denote by F the set of all epistemic formulas. Note that we
have no quantifiers over measurement variables. (See Sect. 2.4 for more details).

The probability quantification PI ψ represents that a static formula ψ is sat-
isfied with a probability belonging to a set I. For instance, P(0.95,1] ψ represents
that ψ holds with a probability greater than 0.95. By ψ ⊃ PI ψ′ we represent
that the conditional probability of ψ′ given ψ is included in a set I. The epistemic
knowledge Ka ϕ expresses that we knows ϕ with a confidence specified by a.

As syntax sugar, we use disjunction ∨, classical implication →, and epistemic
possibility Pa, defined as usual by: ϕ0∨ϕ1 ::= ¬(¬ϕ0∧¬ϕ1), ϕ0 → ϕ1 ::= ¬ϕ0∨ϕ1,
and Pa ϕ ::= ¬Ka ¬ϕ. When I is a singleton {i}, we abbreviate PI as Pi.

2.3 Distributional Kripke Model

Next we recall the notion of a distributional Kripke model [26], where each
possible world is a probability distribution over a set S of states and each world
w is associated with a stochastic assignment σw to measurement variables.

Definition 1 (Distributional Kripke model). Let A be a finite set of indices
(typically associated with statistical tests and their thresholds), S be a finite set
of states, and O be a finite set of data. A distributional Kripke model is a tuple
M = (W, (Ra)a∈A, (Vs)s∈S) consisting of:

– a non-empty set W of probability distributions over a finite set S of states;
– for each a ∈ A, an accessibility relation Ra ⊆ W × W;
– for each s ∈ S, a valuation Vs that maps each k-ary predicate γ to a set

Vs(γ) ⊆ Ok.

We assume that each w ∈ W is associated with a function ρw : Mes×S → O that
maps each measurement variable x to its value ρw(x, s) observed at a state s.
We also assume that each state s in a world w is associated with the assignment
σs : Mes → O defined by σs(x) = ρw(x, s).

Towards Logical Specification of Statistical Machine Learning 297

The set W is called a universe, and its elements are called possible worlds.
All measurement variables range over the same set O in every world.

Since each world w is a distribution of states, we denote by w[s] the probabil-
ity that a state s is sampled from w. Then the probability that a measurement
variable x has a value v is given by σw(x)[v] =

∑
s∈supp(w),σs(x)=v w[s]. This

implies that, when a state s is drawn from w, an input σs(x) is sampled from
the distribution σw(x).

2.4 Stochastic Semantics of StatEL

Now we recall the stochastic semantics [26] for the StatEL formulas over a dis-
tributional Kripke model M = (W, (Ra)a∈A, (Vs)s∈S) with W = DS.

The interpretation of static formulas ψ at a state s is given by:

s |= γ(x1, x2, . . . , xk) iff (σs(x1), σs(x2), . . . , σs(xk)) ∈ Vs(γ)
s |= ¬ψ iff s
|= ψ

s |= ψ ∧ ψ′ iff s |= ψ and s |= ψ′.

The restriction w|ψ of a world w to a static formula ψ is defined by w|ψ[s] =
w[s]∑

s′:s′|=ψ w[s′] if s |= ψ, and w|ψ[s] = 0 otherwise. Note that w|ψ is undefined if
there is no state s that satisfies ψ and has a non-zero probability in w.

Then the interpretation of epistemic formulas in a world w is defined by:

M, w |= PI ψ iff Pr
[
s

$← w : s |= ψ
]

∈ I

M, w |= ¬ϕ iff M, w
|= ϕ

M, w |= ϕ ∧ ϕ′ iff M, w |= ϕ and M, w |= ϕ′

M, w |= ψ ⊃ ϕ iff w|ψ is defined and M, w|ψ |= ϕ

M, w |= Ka ϕ iff for every w′ s.t. (w,w′) ∈ Ra, M, w′ |= ϕ,

where s
$← w represents that a state s is sampled from the distribution w.

Then M, w |= ψ0 ⊃ PI ψ1 represents that the conditional probability of
satisfying a static formula ψ1 given another ψ0 is included in a set I at a world w.

In each world w, measurement variables can be interpreted using σw. This
allows us to assign different values to different occurrences of a variable in a
formula; E.g., in ϕ(x) → Ka ϕ′(x), x occurring in ϕ(x) is interpreted by σw in a
world w, while x in ϕ′(x) is interpreted by σw′ in another w′ s.t. (w,w′) ∈ Ra.

Finally, the interpretation of an epistemic formula ϕ in M is given by:

M |= ϕ iff for every world w in M, M, w |= ϕ.

3 Techniques for Conditional Indistinguishability

In this section we introduce some modal operators to define a notion of “coun-
terfactual knowledge” using StatEL, and show how to employ them to formalize
conditional indistinguishability properties. The techniques presented here are
used to formalize some fairness properties of machine learning in Sect. 7.

298 Y. Kawamoto

3.1 Counterfactual Epistemic Operators

Let us consider an accessibility relation Rε based on a statistical divergence
D(· ‖ ·) : DO × DO → R

≥0 and a threshold ε ∈ R
≥0 defined by:

Rε
def= {(w,w′) ∈ W × W | D(σw(y) ‖ σw′(y)) ≤ ε} ,

where y is the measurement variable observable in each world in W. Intuitively,
(w,w′) ∈ Rε represents that the probability distribution σw(y) of the data y
observed in a world w is indistinguishable from that in another world w′ in
terms of D.

Now we define the complement relation of Rε by Rε
def= (W×W)\Rε, namely,

Rε = {(w,w′) ∈ W × W | D(σw(y) ‖ σw′(y)) > ε} .

Then (w,w′) ∈ Rε represents that the distribution σw(y) observed in w can be
distinguished from that in w′. Then the corresponding epistemic operator Kε,
which we call a counterfactual epistemic operator, is interpreted as:

M, w |= Kεϕ iff for every w′ s.t. (w,w′) ∈ Rε, we have M, w′ |= ϕ (1)
iff for every w′ s.t. M, w′ |= ¬ϕ, we have (w,w′) ∈ Rε. (2)

Intuitively, (1) represents that if we were located in a possible world w′ that
looked distinguished from the real world w, then ϕ would always hold. This
means a counterfactual knowledge1 in the sense that, if we had an observation
different from the real world, then we would know ϕ. This is logically equiva-
lent to (2), representing that all possible worlds w′ that do not satisfy ϕ look
indistinguishable from the real world w in terms of D.

We remark that the dual operator Pε is interpreted as:

M, w |= Pεϕ iff there exists a w′ s.t. (w,w′) /∈ Rε and M, w′ |= ϕ. (3)

This means a counterfactual possibility in the sense that it might be the case
where we had an observation different from the real world and thought ϕ possible.

3.2 Conditional Indistinguishability via Counterfactual Knowledge

As shown in Sect. 7, some fairness notions in machine learning are based on
conditional indistinguishability of the form (2), hence can be expressed using
counterfactual epistemic operators.

Specifically, we use the following proposition, stating that given that two
static formulas ψ and ψ′ are respectively satisfied in worlds w and w′ with
probability 1, then the indistinguishability between w and w′ can be expressed
as w |= ψ ⊃ ¬Pa P1 ψ′. Note that this formula means that there is no possible
world where we have an observation different from the real world w (satisfying
ψ) but we think ψ′ possible; i.e., the formula means that if ψ′ is satisfied then
we have an observation indistinguishable from that in the real world w.
1 Our definition of counterfactual knowledge is limited to the condition of having an

observation different from the actual one. More general notions of counterfactual
knowledge can be found in previous work (e.g., [38]).

Towards Logical Specification of Statistical Machine Learning 299

Proposition 1 (Conditional indistinguishability). Let M = (W, (Ra)a∈A,
(Vs)s∈S) be a distributional Kripke model with the universe W = DS. Let ψ and
ψ′ be static formulas, and a ∈ A.

(i) M |= ψ ⊃ ¬Pa P1 ψ′ iff for any w,w′ ∈ W, M, w |= P1 ψ and M, w′ |= P1 ψ′

imply (w,w′) ∈ Ra.
(ii) If Ra is symmetric, then M |= ψ ⊃ ¬Pa P1 ψ′ iff M |= ψ′ ⊃ ¬Pa P1 ψ.

See Appendix A for the proof.

4 Formal Model for Statistical Classification

In this section we introduce a formal model for statistical classification by using
distributional Kripke models (Definition 1). In particular, we formalize a prob-
abilistic behaviour of a classifier C and a non-deterministic input x from an
adversary in a distributional Kripke model.

4.1 Statistical Classification Problems

Multiclass classification is the problem of classifying a given input into one of
multiple classes. Let L be a finite set of class labels, and D be the finite set of
input data (called feature vectors) that we want to classify. Then a classifier
is a function C : D → L that receives an input datum and predicts which
class (among L) the input belongs to. Here we do not model how classifiers are
constructed from a set of training data, but deal with a situation where some
classifier C has already been obtained and its properties should be evaluated.

Let f : D×L → R be a scoring function that gives a score f(v,) of predicting
the class of an input datum (feature vector) v as a label 	. Then for each input
v ∈ D, we denote by H(v) = 	 to represent that a label 	 maximizes f(v,). For
example, when the input v is an image of an animal and 	 is the animal’s name,
then H(v) = 	 may represent that an oracle (or a “human”) classifies the image
v as 	.

4.2 Modeling the Behaviours of Classifiers

Classifiers are formalized on a distributional Kripke model M = (W, (Ra)a∈A,
(Vs)s∈S) with W = DS and a real world wreal ∈ W. Recall that each world
w ∈ W is a probability distribution over the set S of states and has a stochastic
assignment σw : Mes → DO that is consistent with the deterministic assignments
σs for all s ∈ S (as explained in Sect. 2.3).

We present an overview of our formalization in Fig. 1. We denote by x ∈ Mes
an input to the classifier C, and by y ∈ Mes a label output by C. We assume
that the input variable x (resp. the output variable y) ranges over the set D of
input data (resp. the set L of labels); i.e., the deterministic assignment σs at
each state s ∈ S has the range O = D ∪ L and satisfies σs(x) ∈ D and σs(y) ∈ L.

300 Y. Kawamoto

State s0

input

σs0 (x) �
output

σs0 (y)�Classifier

C

State s1

input

σs1 (x) �
output

σs1 (y)�Classifier

C
··

·

··
·

World w

Fig. 1. A world w is chosen non-deterministically. With probability w[si], the world w
is in a deterministic state si where the classifier C receives the input value σsi(x) and
returns the output value σsi(y).

A key idea in our modeling is that we formalize logical properties in the
syntax level by using logical formulas, and statistical distances in the semantics
level by using accessibility relations Ra. In this way, we can formalize various
statistical properties of classifiers in a simple and abstract way.

To formalize a classifier C, we introduce a static formula ψ(x, y) to represent
that C classifies a given input x as a class y. We also introduce a static formula
h(x, y) to represent that y is the actual class of an input x. As an abbreviation,
we write ψ�(x) (resp. h�(x)) to denote ψ(x,) (resp. h(x,)). Formally, these
static formulas are interpreted at each state s ∈ S as follows:

s |= ψ(x, y) iff C(σs(x)) = σs(y).
s |= h(x, y) iff H(σs(x)) = σs(y).

4.3 Modeling the Non-deterministic Inputs from Adversaries

As explained in Sect. 2.3, when a state s is drawn from a distribution w ∈ W,
an input value σs(x) is sampled from the distribution σw(x), and assigned to
the measurement variable x. Since x denotes the input to the classifier C, the
input distribution σw(x) over D can be regarded as the test dataset. This means
that each world w corresponds to a test dataset σw(x). For instance, σwreal

(x)
in the real world wreal represents the actual test dataset. The set of all possible
test datasets (i.e., possible distributions of inputs to C) is represented by Λ

def=
{σw(x) | w ∈ W}. Note that Λ can be an infinite set.

For example, let us consider testing the classifier C with the actual test
dataset σwreal

(x). When C assigns a label 	 to an input x with probability 0.2,

i.e., Pr
[

v
$← σwreal

(x) : C(v) = 	
]

= 0.2, then this can be expressed by:

M,wreal |= P0.2 ψ�(x).

Towards Logical Specification of Statistical Machine Learning 301

We can also formalize a non-deterministic input x from an adversary in
this model as follows. Although each state s in a possible world w is assigned
the probability w[s], each possible world w itself is not assigned a probability.
Thus, each input distribution σw(x) ∈ Λ itself is also not assigned a probability,
hence our model assumes no probability distribution over Λ. In other words, we
assume that a world w and thus an adversary’s input distribution σw(x) are non-
deterministically chosen. This is useful to model an adversary’s malicious inputs
in the definitions of security properties, because we usually do not have a prior
knowledge of the distribution of malicious inputs from adversaries, and need to
reason about the worst cases caused by the attack. In Sect. 6, this formalization
of non-deterministic inputs is used to express the robustness of classifiers.

Finally, it should be noted that we cannot enumerate all possible adversarial
inputs, hence cannot construct W by collecting their corresponding worlds. Since
W can be an infinite set and is unspecified, we do not aim at checking whether
or not a formula is satisfied in all possible worlds of W. Nevertheless, as shown
in later sections, describing various properties using StatEL is useful to explore
desirable properties and to discuss relationships among them.

5 Formalizing the Classification Performance

In this section we show a formalization of classification performance using StatEL
(See Fig. 2 for basic ideas). In classification problems, the terms positive/negative
represent the result of the classifier’s prediction, and the terms true/false rep-
resent whether the classifier predicts correctly or not. Then the following termi-
nologies are commonly used:

(tp) true positive means both the prediction and actual class are positive;
(tn) true negative means both the prediction and actual class are negative;
(fp) false positive means the prediction is positive but the actual class is
negative;
(fn) false negative means the prediction is negative but the actual class is
positive.

These terminologies can be formalized using StatEL as shown in Table 1. For
example, when an input x shows true positive at a state s, this can be expressed
as s |= ψ�(x) ∧ h�(x). True negative, false positive (Type I error), and false
negative (Type II error) are respectively expressed as s |= ¬ψ�(x) ∧ ¬h�(x),
s |= ψ�(x) ∧ ¬h�(x), and s |= ¬ψ�(x) ∧ h�(x).

Then the precision (positive predictive value) is defined as the conditional
probability that the prediction is correct given that the prediction is positive;
i.e., precision = tp

tp+fp . Since the test dataset distribution in the real world wreal

is expressed as σwreal
(x) (as explained in Sect. 4.3), the precision being within an

interval I is given by:

Pr
[

v
$← σwreal

(x) : H(v) = 	
∣
∣
∣ C(v) = 	

]
∈ I,

302 Y. Kawamoto

Table 1. Logical description of the table of confusion

Actual class

positive negative Prevalence�,I(x)
def= Accuracy�,I(x)

def=
h�(x) ¬h�(x) PI(tp(x) ∨ fn(x)) PI(tp(x) ∨ tn(x))

Positive
prediction tp(x) def= fp(x) def= Precision�,I(x)

def= FDR�,I(x)
def=

ψ�(x) ψ�(x) ∧ h�(x) ψ�(x) ∧ ¬h�(x) ψ�(x) ⊃ PI h�(x) ψ�(x) ⊃ PI ¬h�(x)
Negative
prediction fn(x) def= tn(x) def= FOR�,I(x)

def= NPV�,I(x)
def=

¬ψ�(x) ¬ψ�(x) ∧ h�(x) ¬ψ�(x) ∧ ¬h�(x) ¬ψ�(x) ⊃ PI h�(x) ¬ψ�(x) ⊃ PI ¬h�(x)

Recall�,I(x)
def= FallOut�,I(x)

def=
h�(x) ⊃ PI ψ�(x) ¬h�(x) ⊃ PI ψ�(x)

MissRate�,I(x)
def= Specificity�,I(x)

def=
h�(x) ⊃ PI ¬ψ�(x) ¬h�(x) ⊃ PI ¬ψ�(x)

which can be written as:

Pr
[

s
$← wreal : s |= h�(x)

∣
∣
∣ s |= ψ�(x)

]
∈ I.

By using StatEL, this can be formalized as:

M,wreal |= Precision�,I(x) where Precision�,I(x) def= ψ�(x) ⊃ PI h�(x). (4)

Note that the precision depends on the test data sampled from the distribution
σwreal

(x), hence on the real world wreal in which we are located. Hence the measure-
ment variable x in Precision�,I(x) is interpreted using the stochastic assignment
σwreal

in the world wreal.
Symmetrically, the recall (true positive rate) is defined as the conditional

probability that the prediction is correct given that the actual class is positive;
i.e., recall = tp

tp+fn . Then the recall being within I is formalized as:

Recall�,I(x) def= h�(x) ⊃ PI ψ�(x). (5)

In Table 1 we show the formalization of other notions of classification perfor-
mance using StatEL.

6 Formalizing the Robustness of Classifiers

Many studies have found attacks on the robustness of statistical machine learn-
ing [8]. An input data that violates the robustness of classifiers is called an
adversarial example [36]. It is designed to make a classifier fail to predict the
actual class 	, but is recognized to belong to 	 from human eyes. For example, in
computer vision, Goodfellow et al. [18] create an image by adding undetectable
noise to a panda’s photo so that humans can still recognize the perturbed image
as a panda, but a classifier misclassifies it as a gibbon.

Towards Logical Specification of Statistical Machine Learning 303

Real world wreal

Possible world w′

dataset

σwreal(x)

σw′(x)

Oracle
(human)

H
�input

output

sampling

σs(x)
Classifier

C �

sampling

σs′(x)
Classifier

C �

RD
ε Robustness

Performance

Fig. 2. The classification performance compares the conditional probability of the
human H’s output with that by the classifier C’s. On the other hand, the robust-
ness compares the conditional probability in the real world wreal with that in a possible
world w′ that is close to wreal in terms of RD

ε . Note that an adversary’s choice of the test
dataset σw′(x) is formalized by the non-deterministic choice of the possible world w′.

In this section we formalize robustness notions for classifiers by using epis-
temic operators in StatEL (See Fig. 2 for an overview of the formalization). In
addition, we present some relationships between classification performance and
robustness, which suggest robustness-related properties that have not been for-
malized in the literature as far as we know.

6.1 Total Correctness of Classifiers

We first note that the total correctness of classifiers could be formalize as a
classification performance (e.g., precision, recall, or accuracy) in the presence of
all possible inputs from adversaries. For example, the total correctness could be
formalized as M |= Recall�,I(x), which represents that Recall�,I(x) is satisfies in
all possible worlds of M.

In practice, however, it is not possible or tractable to check whether the
classification performance is achieved for all possible dataset and for all possible
inputs, e.g., when W is an infinite set. Hence we need a weaker form of correctness
notions, which may be verified in a certain way. In the following sections, we deal
with robustness notions that are weaker than total correctness.

6.2 Probabilistic Robustness Against Targeted Attacks

When a robustness attack aims at misclassifying an input as a specific target
label, then it is called a targeted attack. For instance, in the above-mentioned
attack by [18], a gibbon is the target into which a panda’s photo is misclassified.

304 Y. Kawamoto

To formalize the robustness, let RD
ε ⊆ W × W be an accessibility relation

that relates two worlds having closer inputs, i.e.,

RD
ε

def= {(w,w′) ∈ W × W | D(σw(x) ‖ σw′(x)) ≤ ε} ,

where D is some divergence or distance. Intuitively, (w,w′) ∈ RD
ε implies that

the two distributions σw(x) and σw′(x) of inputs to the classifier C are close
data in terms of D (e.g., two slightly different images that look pandas from the
human’ eyes). Then an epistemic formula KD

ε ϕ represents that the classifier C
is confident that ϕ is true as far as it classifies the test data that are perturbed
by a level ε of noise2.

Now we discuss how we formalize robustness using the epistemic operator
KD

ε as follows. A first definition of robustness against targeted attacks might be:

M,wreal |= hpanda(x) ⊃ KD
ε P0 ψgibbon(x),

which represents that a panda’s photo x will not be recognized as a gibbon at all
after the photo is perturbed by noise. However, this does not express probability
or cover the case where the human cannot recognize the perturbed image as a
panda, for example, when the image is perturbed by a transformation such as
rescaling and rotation [2]. Instead, for some δ ∈ [0, 1], we formalize a notion of
probabilistic robustness against targeted attacks by:

TargetRobustpanda,δ(x, gibbon) def= KD
ε

(
hpanda(x) ⊃ P[0,δ] ψgibbon(x)

)
.

Since Lp-norms are often regarded as reasonable approximations of human
perceptual distances [6], they are used as distance constraints on the pertur-
bation in many researches on targeted attacks (e.g. [6,18,36]). To represent the
robustness against these attacks in our model, we should take a metric D defined
by D(σw(x) ‖ σw′(x)) = max

v,v′
‖v − v′‖p where v and v′ range over the datasets

supp(σw(x)) and supp(σw′(x)) respectively.

6.3 Probabilistic Robustness Against Non-targeted Attacks

Next we formalize non-targeted attacks [30,31] in which adversaries try to mis-
classify inputs as some arbitrary incorrect labels (i.e., not as a specific label like a
gibbon). Compared to targeted attacks, this kind of attacks are easier to mount,
but harder to defend.

A notion of probabilistic robustness against non-targeted attacks can be for-
malized for some I = [1 − δ, 1] by:

TotalRobust�,I(x) def= KD
ε

(
h�(x) ⊃ PI ψ�(x)

)
= KD

ε Recall�,I(x). (6)

2 This usage of modality relies on the fact that the value of the measurement variable
x can be different in different possible worlds.

Towards Logical Specification of Statistical Machine Learning 305

Then we derive that TotalRobustpanda,I(x) implies TargetRobustpanda,δ(x, gibbon),
namely, robustness against non-targeted attacks is not weaker than robustness
against targeted attacks.

Next we note that by (6), robustness can be regarded as recall in the pres-
ence of perturbed noise. This implies that for each property ϕ in Table 1, we
could consider KD

ε ϕ as a property related to robustness although these have
not been formalized in the literature of robustness of machine learning as far as
we recognize. For example, KD

ε Precision�,i(x) represents that in the presence of
perturbed noise, the prediction is correct with a probability i given that it is
positive. For another example, KD

ε Accuracy�,i(x) represents that in the presence
of perturbed noise, the prediction is correct (whether it is positive or negative)
with a probability i.

Finally, note that by the reflexivity of RD
ε , M,wreal |= KD

ε Recall�,I(x) implies
M,wreal |= Recall�,I(x), i.e., robustness implies recall without perturbation noise.

7 Formalizing the Fairness of Classifiers

There have been researches on various notions of fairness in machine learning. In
this section, we formalize a few notions of fairness of classifiers by using StatEL.
Here we focus on the fairness that should be maintained in the impact, i.e., the
results of classification, rather than the treatment3.

To formalize fairness notions, we use a distributional Kripke model M =
(W, (Ra)a∈A, (Vs)s∈S) where W includes a possible world wd having a dataset
d from which an input to the classifier C is drawn. Recall that x (resp. y) is a
measurement variable denoting the input (resp. output) of the classifier C. In
each world w, σw(x) is the distribution of C’s input over D, i.e., the test data
distribution, and σw(y) is the distribution of C’s output over L. For each group
G ⊆ D of inputs, we introduce a static formula ηG(x) representing that an input
x belongs to G. We also introduce a formula ξd representing that d is the dataset
that the input to C is drawn from. Formally, these formulas are interpreted as
follows:

– For each state s ∈ S, s |= ηG(x) iff σs(x) ∈ G.
– For each world w ∈ W, w |= ξd iff σw(x) = d.

Now we formalize three popular notions of fairness of classifiers by using
counterfactual epistemic operators (introduced in Sect. 3) as follows.

7.1 Group Fairness (Statistical Parity)

The group fairness formulated as statistical parity [13] is the property that the
output distributions of the classifier are identical for different groups. Formally,

3 For instance, fairness through awareness [13] requires that protected attributes (e.g.,
race, religion, or gender) are not explicitly used in the prediction process. However,
StatEL may not be suited to formalizing such a property in treatment.

306 Y. Kawamoto

for each b = 0, 1 and a group Gb ⊆ D, let μGb
be the distribution of the output

(over L) of the classifier C when the input is sampled from a dataset d and
belongs to Gb. Then the statistical parity is formalized using the total variation
Dtv by Dtv(μG0‖μG1) ≤ ε.

To express this using StatEL, we define an accessibility relation Rtv
ε in M by:

Rtv
ε

def= {(w,w′) ∈ W × W | Dtv(σw(y)‖σw′(y)) ≤ ε} . (7)

Intuitively, (w,w′) ∈ Rtv
ε represents that the two probability distributions σw(y)

and σw′(y) of the outputs by the classifier C respectively in w and in w′ are close
in terms of Dtv. Note that σw(y) and σw′(y) respectively represent μG0 and μG1 .

Then the statistical parity w.r.t. groups G0, G1 means that in terms of Rtv
ε ,

we cannot distinguish a world having a dataset d and satisfying ηG0(x)∧ψ(x, y)
from another world satisfying ξd ∧ ηG1(x) ∧ ψ(x, y). By Proposition 1, this is
expressed as:

M, wd |= GrpFair(x, y)

where GrpFair(x, y) def=
(
ηG0(x) ∧ ψ(x, y)

) ⊃ ¬Ptv
ε P1

(
ξd ∧ ηG1(x) ∧ ψ(x, y)

)
.

7.2 Individual Fairness (as Lipschitz Property)

The individual fairness formulated as a Lipschitz property [13] is the property
that the classifier outputs similar labels given similar inputs. Formally, let μv and
μv′ be the distributions of the outputs (over L) of the classifier C when the inputs
are v ∈ D and v′ ∈ D, respectively. Then the individual fairness is formalized
using some divergence D : DL × DL → R

≥0, some metric r : D × D → R
≥0, and

a threshold ε ∈ R
≥0 by D(μv ‖ μv′) ≤ ε · r(v, v′).

To express this using StatEL, we define an accessibility relation Rr,D
ε in M

for the metric r and the divergence D as follows:

Rr,D
ε

def=
{

(w,w′) ∈ W × W
∣
∣
∣

v ∈ supp(σw(x)), v′ ∈ supp(σw′(x)),
D(σw(y)‖σw′(y)) ≤ ε · r(v, v′)

}

. (8)

Intuitively, (w,w′) ∈ Rr,D
ε represents that, when inputs are closer in terms of

the metric r, the classifier C outputs closer labels in terms of the divergence D.
Then the individual fairness w.r.t. r and D means that in terms of Rr,D

ε ,
we cannot distinguish two worlds where ψ(x, y) is satisfied, i.e., the classifier C
outputs y given an input x. By Proposition 1, this is expressed as:

M, wd |= IndFair(x, y)

where IndFair(x, y) def= ψ(x, y) ⊃ ¬Pr,D
ε P1

(
ξd ∧ ψ(x, y)

)
.

This represents that when we observe the distribution of the classifier’s out-
put y, we can less distinguish two worlds w and w′ when their inputs σw(x) and
σw′(x) are closer.

Towards Logical Specification of Statistical Machine Learning 307

7.3 Equal Opportunity

Equal opportunity [21,40] is the property that the recall (true positive rate) is
the same for all the groups. Formally, given an advantage class 	 ∈ L (e.g., not
defaulting on a loan) and a group G ⊆ D of inputs with a protected attribute
(e.g., race), a classifier C is said to satisfy equal opportunity of 	 w.r.t. G if we
have:

Pr[C(x) = 	 | x ∈ G, H(x) =] = Pr[C(x) = 	 | x ∈ D \G, H(x) =].

If we allow the logic to use the universal quantification over the probability
value i, then the notion of equal opportunity could be formalized as:

EqOpp(x) def= ∀i ∈ [0, 1].
(
ξd ∧ ηG(x) ⊃ Recall�,i(x)

) ↔ (
ξd ∧ ¬ηG(x) ⊃ Recall�,i(x)

)
.

However, instead of allowing for this universal quantification, we can use the
modal operators Ptv

ε (defined by (7)) with ε = 0, and represent equal opportunity
as the fact that we cannot distinguish a world having a dataset d and satisfying
ηG(x) ∧ ψ(x, y) from another world satisfying ξd ∧ ¬ηG(x) ∧ ψ(x, y) as follows:

EqOpp(x) def=
(
ηG(x) ∧ ψ(x, y)

) ⊃ ¬Ptv
0 P1

(
ξd ∧ ¬ηG(x) ∧ ψ(x, y)

)
.

Then equal opportunity can be regarded as a special case of statistical parity.

8 Related Work

In this section, we provide a brief overview of related work on the specification of
statistical machine learning and on epistemic logic for describing specification.

Desirable properties of statistical machine learning. There have been a large
number of papers on attacks and defences for deep neural networks [8,36]. Com-
pared to them, however, not much work has been done to explore the formal
specification of various properties of machine learning. Seshia et al. [34] present
a list of desirable properties of DNNs (deep neural networks) although most of
the properties are presented informally without mathematical formulas. As for
robustness, Dreossi et al. [11] propose a unifying formalization of adversarial
input generation in a rigorous and organized manner, although they formalize
and classify attacks (as optimization problems) rather than define the robustness
notions themselves. Concerning the fairness notions, Gajane [16] surveys the for-
malization of fairness notions for machine learning and present some justification
based on social science literature.

Epistemic logic for describing specification. Epistemic logic [39] has been studied
to represent and reason about knowledge [14,19,20], and has been applied to
describe various properties of systems.

308 Y. Kawamoto

The BAN logic [5], proposed by Burrows, Abadi and Needham, is a notable
example of epistemic logic used to model and verify the authentication in cryp-
tographic protocols. To improve the formalization of protocols’ behaviours, some
epistemic approaches integrate process calculi [7,10,23].

Epistemic logic has also been used to formalize and reason about privacy
properties, including anonymity [17,20,27,35], receipt-freeness of electronic vot-
ing protocols [24], and privacy policy for social network services [32]. Temporal
epistemic logic is used to express information flow security policies [3].

Concerning the formalization of fairness notions, previous work in formal
methods has modeled different kinds of fairness involving timing by using tem-
poral logic rather than epistemic logic. As far as we know, no previous work has
formalized fairness notions of machine learning using counterfactual epistemic
operators.

Formalization of statistical properties. In studies of philosophical logic,
Lewis [29] shows the idea that when a random value has various possible prob-
ability distributions, then those distributions should be represented on distinct
possible worlds. Bana [4] puts Lewis’s idea in a mathematically rigorous setting.
Recently, a modal logic called statistical epistemic logic [26] is proposed and
is used to formalize statistical hypothesis testing and the notion of differential
privacy [12]. Independently of that work, French et al. [15] propose a probability
model for a dynamic epistemic logic in which each world is associated with a
subjective probability distribution over the universe, without dealing with non-
deterministic inputs or statistical divergence.

9 Conclusion

We have shown a logical approach to formalizing statistical classifiers and their
desirable properties in a simple and abstract way. Specifically, we have introduced
a formal model for probabilistic behaviours of classifiers and non-deterministic
adversarial inputs using a distributional Kripke model. Then we have formalized
the classification performance, robustness, and fairness of classifiers by using
StatEL. Moreover, we have also clarified some relationships among properties
of classifiers, and relevance between classification performance and robustness.
To formalize fairness notions, we have introduced a notion of counterfactual
knowledge and shown some techniques to express conditional indistinguishabil-
ity. As far as we know, this is the first work that uses logical formulas to express
statistical properties of machine learning, and that provides epistemic (resp.
counterfactually epistemic) views on robustness (resp. fairness) of classifiers.

In future work, we are planning to include temporal operators in the specifica-
tion language and to formally reason about system-level properties of learning-
based systems. We are also interested in developing a general framework for
the formal specification of machine learning associated with testing methods
and possibly extended with Bayesian networks. Our future work also includes
an extension of StatEL to formalize machine learning other than classification

Towards Logical Specification of Statistical Machine Learning 309

problems. Another possible direction of future work would be to clarify the
relationships between our counterfactual epistemic operators and more general
notions of counterfactual knowledge in previous work such as [38].

A Proof for Proposition 1

Proposition 1 (Conditional indistinguishability). Let M = (W, (Ra)a∈A,
(Vs)s∈S) be a distributional Kripke model with the universe W = DS. Let ψ and
ψ′ be static formulas, and a ∈ A.

(i) M |= ψ ⊃ ¬Pa P1 ψ′ iff for any w,w′ ∈ W, M, w |= P1 ψ and M, w′ |= P1 ψ′

imply (w,w′) ∈ Ra.
(ii) If Ra is symmetric, then M |= ψ ⊃ ¬Pa P1 ψ′ iff M |= ψ′ ⊃ ¬Pa P1 ψ.

Proof. We first prove the claim (i) as follows. We show the direction from left to
right. Assume that M |= ψ ⊃ ¬Pa P1 ψ′. Let w,w′ ∈ W such that M, w |= P1 ψ
and M, w′ |= P1 ψ′. Then w|ψ = w. By M, w |= ψ ⊃ ¬Pa P1 ψ′, we obtain
M, w|ψ |= ¬Pa P1 ψ′, which is logically equivalent to M, w|ψ |= Ka¬P1 ψ′. By
the definition of Ka, for every w′′ ∈ W, M, w′′ |= P1 ψ′ implies (w|ψ, w′′) ∈ Ra.
Then, since w|ψ = w and M, w′ |= P1 ψ′, we obtain (w,w′) ∈ Ra.

Next we show the other direction as follows. Assume the right hand side.
Let w ∈ W such that M, w |= P1 ψ. Then for every w′ ∈ W, M, w′ |= P1 ψ′

implies (w,w′) ∈ Ra. By the definition of Ka, we have M, w |= Ka¬P1 ψ′, which
is equivalent to M, w |= ¬Pa P1 ψ′. By M, w |= P1 ψ, we have w|ψ = w, hence
M, w|ψ |= ¬Pa P1 ψ′. Therefore M, w |= ψ ⊃ ¬Pa P1 ψ′.

Finally, the claim (ii) follows from the claim (i) immediately. ��

References

1. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185
(1985). https://doi.org/10.1016/0020-0190(85)90056-0

2. Athalye, A., Engstrom, L., Ilyas, A., Kwok, K.: Synthesizing robust adversarial
examples. In: Proceedings of the ICML, pp. 284–293 (2018)

3. Balliu, M., Dam, M., Guernic, G.L.: Epistemic temporal logic for information flow
security. In: Proceedings of PLAS, p. 6 (2011). https://doi.org/10.1145/2166956.
2166962

4. Bana, G.: Models of objective chance: an analysis through examples. In: Hofer-
Szabó, G., Wroński, L. (eds.) Making it Formally Explicit. ESPS, vol. 6, pp. 43–60.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55486-0 3

5. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. ACM Trans.
Comput. Syst. 8(1), 18–36 (1990). https://doi.org/10.1145/77648.77649

6. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks.
In: Proceedings Security and Privacy, pp. 39–57 (2017). https://doi.org/10.1109/
SP.2017.49

7. Chadha, R., Delaune, S., Kremer, S.: Epistemic logic for the applied pi calculus. In:
Proceedings of FMOODS/FORTE, pp. 182–197 (2009).https://doi.org/10.1007/
978-3-642-02138-1 12

https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1145/2166956.2166962
https://doi.org/10.1145/2166956.2166962
https://doi.org/10.1007/978-3-319-55486-0_3
https://doi.org/10.1145/77648.77649
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1007/978-3-642-02138-1_12
https://doi.org/10.1007/978-3-642-02138-1_12

310 Y. Kawamoto

8. Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D.:
Adversarial attacks and defences: a survey. CoRR abs/1810.00069 (2018). http://
arxiv.org/abs/1810.00069

9. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: Proceedings of CSF, pp.
51–65. IEEE (2008). https://doi.org/10.1109/CSF.2008.7

10. Dechesne, F., Mousavi, M., Orzan, S.: Operational and epistemic approaches to
protocol analysis: bridging the gap. In: Proceedings of LPAR, pp. 226–241 (2007)

11. Dreossi, T., Ghosh, S., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: A formalization
of robustness for deep neural networks. In: Proceedings of VNN (2019)

12. Dwork, C.: Differential privacy. In: Proceedings of ICALP, pp. 1–12 (2006)
13. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through

awareness. In: Proceedings of ITCS, pp. 214–226. ACM (2012)
14. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. The

MIT Press, Cambridge (1995)
15. French, T., Gozzard, A., Reynolds, M.: Dynamic aleatoric reasoning in games of

bluffing and chance. In: Proceedings of AAMAS, pp. 1964–1966 (2019)
16. Gajane, P.: On formalizing fairness in prediction with machine learning. CoRR

abs/1710.03184 (2017). http://arxiv.org/abs/1710.03184
17. Garcia, F.D., Hasuo, I., Pieters, W., van Rossum, P.: Provable anonymity. In:

Proceedings of FMSE, pp. 63–72 (2005). https://doi.org/10.1145/1103576.1103585
18. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial

examples. In: Proceedings of ICLR (2015)
19. Halpern, J.Y.: Reasoning About Uncertainty. The MIT press, Cambridge (2003)
20. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent

systems. J. Comput. Secur. 13(3), 483–512 (2005)
21. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning.

In: proceedings of NIPS, pp. 3315–3323 (2016)
22. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural

networks. In: Proceedings of CAV, pp. 3–29 (2017). https://doi.org/10.1007/978-
3-319-63387-9 1

23. Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: a modular
approach. J. Comput. Secur. 12(1), 3–36 (2004)

24. Jonker, H.L., Pieters, W.: Receipt-freeness as a special case of anonymity in epis-
temic logic. In: Proceedings of Workshop On Trustworthy Elections (WOTE 2006),
June 2006

25. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Proceedings of CAV,
pp. 97–117 (2017). https://doi.org/10.1007/978-3-319-63387-9 5

26. Kawamoto, Y.: Statistical epsitemic logic. CoRR abs/1412.4451 (2019). https://
arxiv.org/pdf/1907.05995.pdf

27. Kawamoto, Y., Mano, K., Sakurada, H., Hagiya, M.: Partial knowledge of functions
and verification of anonymity. Trans. Japan Soc. Ind. Appl. Math. 17(4), 559–576
(2007). https://doi.org/10.11540/jsiamt.17.4 559

28. Kripke, S.A.: Semantical analysis of modal logic i normal modal propositional
calculi. Math. Logic Q. 9(5–6), 67–96 (1963)

29. Lewis, D.: A subjectivist’s guide to objective chance. In: Studies in Inductive
Logic and Probability, Vol. II, pp. 263–293. University of California Press, Berkeley
(1980)

30. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: Proceedings of ICLR (2018)

http://arxiv.org/abs/1810.00069
http://arxiv.org/abs/1810.00069
https://doi.org/10.1109/CSF.2008.7
http://arxiv.org/abs/1710.03184
https://doi.org/10.1145/1103576.1103585
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://arxiv.org/pdf/1907.05995.pdf
https://arxiv.org/pdf/1907.05995.pdf
https://doi.org/10.11540/jsiamt.17.4_559

Towards Logical Specification of Statistical Machine Learning 311

31. Moosavi-Dezfooli, S., Fawzi, A., Frossard, P.: Deepfool: A simple and accurate
method to fool deep neural networks. In: Proceedings of CVPR, pp. 2574–2582
(2016). https://doi.org/10.1109/CVPR.2016.282

32. Pardo, R., Schneider, G.: A formal privacy policy framework for social networks.
In: Proceedings of SEFM, pp. 378–392 (2014). https://doi.org/10.1007/978-3-319-
10431-7 30

33. Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore: automated whitebox testing of
deep learning systems. In: Proceedings of SOSP, pp. 1–18 (2017). https://doi.org/
10.1145/3132747.3132785

34. Seshia, S.A., et al.: Formal specification for deep neural networks. In: Lahiri, S.K.,
Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 20–34. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01090-4 2

35. Syverson, P.F., Stubblebine, S.G.: Group principals and the formalization of
anonymity. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS,
vol. 1708, pp. 814–833. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48119-2 45

36. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J.,
Fergus, R.: Intriguing properties of neural networks. In: Proceedings of ICLR (2014)

37. Tian, Y., Pei, K., Jana, S., Ray, B.: Deeptest: automated testing of deep-neural-
network-driven autonomous cars. In: Proceedings of ICSE, pp. 303–314 (2018).
https://doi.org/10.1145/3180155.3180220

38. Williamson, T.: Philosophical knowledge and knowledge of counterfactuals. Grazer
Philosophische Studien 74, 89 (2007)

39. von Wright, G.H.: An Essay in Modal Logic. North-Holland Pub. Co., Amsterdam
(1951)

40. Zafar, M.B., Valera, I., Gomez-Rodriguez, M., Gummadi, K.P.: Fairness beyond
disparate treatment and disparate impact: Learning classification without dis-
parate mistreatment. In: Proceedings of WWW, pp. 1171–1180 (2017). https://
doi.org/10.1145/3038912.3052660

https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1007/978-3-319-10431-7_30
https://doi.org/10.1007/978-3-319-10431-7_30
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1007/978-3-030-01090-4_2
https://doi.org/10.1007/3-540-48119-2_45
https://doi.org/10.1007/3-540-48119-2_45
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1145/3038912.3052660
https://doi.org/10.1145/3038912.3052660

Operating Systems

Efficient Formal Verification for the Linux
Kernel

Daniel Bristot de Oliveira1,2,3(B) , Tommaso Cucinotta2 ,
and Rômulo Silva de Oliveira3

1 RHEL Platform/Real-time Team, Red Hat, Inc., Pisa, Italy
daniel@bristot.me

2 RETIS Lab, Scuola Superiore Sant’Anna, Pisa, Italy
tommaso.cucinotta@santannapisa.it

3 Department of Systems Automation, UFSC, Florianópolis, Brazil
romulo.deoliveira@ufsc.br

Abstract. Formal verification of the Linux kernel has been receiving
increasing attention in recent years, with the development of many mod-
els, from memory subsystems to the synchronization primitives of the
real-time kernel. The effort in developing formal verification methods
is justified considering the large code-base, the complexity in synchro-
nization required in a monolithic kernel and the support for multiple
architectures, along with the usage of Linux on critical systems, from
high-frequency trading to self-driven cars. Despite recent developments
in the area, none of the proposed approaches are suitable and flexible
enough to be applied in an efficient way to a running kernel. Aiming to
fill such a gap, this paper proposes a formal verification approach for the
Linux kernel, based on automata models. It presents a method to auto-
generate verification code from an automaton, which can be integrated
into a module and dynamically added into the kernel for efficient on-the-
fly verification of the system, using in-kernel tracing features. Finally, a
set of experiments demonstrate verification of three models, along with
performance analysis of the impact of the verification, in terms of latency
and throughput of the system, showing the efficiency of the approach.

Keywords: Verification · Linux kernel · Automata · Testing

1 Introduction

Real-time variants of the Linux operating system (OS) have been successfully
used in many safety-critical and real-time systems belonging to a wide spectrum
of applications, going from sensor networks [19], robotics [39], factory automa-
tion [17] to the control of military drones [11] and distributed high-frequency
trading systems [10,13], just to mention a few. However, for a wider adoption of
Linux in next-generation cyber-physical systems, like self-driving cars [42], auto-
matic testing and formal verification of the code base is increasingly becoming
a non-negotiable requirement. One of the areas where it is mostly difficult and
c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 315–332, 2019.
https://doi.org/10.1007/978-3-030-30446-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_17&domain=pdf
http://orcid.org/0000-0002-4577-7855
http://orcid.org/0000-0002-0362-0657
http://orcid.org/0000-0002-8853-9021
https://doi.org/10.1007/978-3-030-30446-1_17

316 D. B. de Oliveira et al.

non-trivial to adopt such techniques is the one of the kernel, due to its inherent
complexity. This need has fomented the development of many formal models for
the Linux kernel, like the Memory Model [2] and formal verification of spinlock
primitives [28]. However, Linux lacks a methodology for runtime verification that
can be applied broadly throughout all of the in-kernel subsystems.

Some complex subsystems of Linux have been recently modeled and verified
by using automata. For example, modeling the synchronization of threads in
the PREEMPT RT Linux kernel achieved practical results in terms of problems
spotted within the kernel [33] (and fixes being proposed afterwards). As a conse-
quence, the kernel community provided positive feedback, underlining that the
event and state abstractions used in automata look natural to the modeling of
the kernel behavior, because developers are already accustomed to using and
interpreting event traces in these terms [30,31].

The problem, however, is that the previously proposed approach [33] relies
on tracing events into an in-kernel buffer, then moving the data to user-space
where it is saved to disk, for later post-processing. Although functional, when it
comes to tracing high-frequency events, the act of in-kernel recording, copying to
user-space, saving to disk and post-processing the data related to kernel events
profoundly influences the timing behavior of the system. For instance, tracing
scheduling and synchronization-related events can generate as many as 900000
events per second, and more than 100 MB per second of data, per CPU, making
the approach non-practical, especially for big muti-core platforms.

An alternative could be hard-coding the verification in the Linux kernel code.
This alternative, however, is prone not to become widely adopted in the kernel.
It would require a considerable effort for acceptance of the code on many sub-
systems. Mainly because complex models can easily have thousands of states.
A second alternative would be maintaining the verification code as an external
patchset, requiring the users to recompile the kernel before doing the check-
ing, what would inhibit the full utilization of the method as well. An efficient
verification method for Linux should unify the flexibility of using the dynamic
tracing features of the kernel while being able to perform the verification with
low overheads.

Paper Contributions. This paper proposes an efficient automata-based verifica-
tion method for the Linux kernel, capable of verifying the correct sequences of
in-kernel events as happening at runtime, against a theoretical automata-based
model that has been previously created. The method starts from an automata-
based model, as produced through the well-known Supremica modeling tool,
then it auto-generates C code with the ability of efficient transition look-up time
in O(1) for each hit event. The generated code embedding the automaton is
compiled as a module, loaded on-the-fly into the kernel and dynamically asso-
ciated with kernel tracing events. This enables the run-time verification of the
observed in-kernel events, compared to the sequences allowed by the model, with
any mismatch being readily identified and reported. The verification is carried
out in kernel space way more efficiently than it was possible to do in user-space,
because there is no need to store and export the whole trace of occurred events.

Efficient Formal Verification for the Linux Kernel 317

Indeed, results from performance analysis of a kernel under verification show
that the overhead of the verification of kernel operations is very limited, and
even lower than merely activating tracing for all of the events of interest.

2 Background

This section provides the background for the two main concepts used for the
verification of Linux: the automata-based formal method used for modeling, and
the tracing mechanism within the kernel at the basis of the verification process.

2.1 Automata and Discrete Event System

A Discrete Event System (DES) can be described in various ways, for exam-
ple using a language (that represents the valid sequences of events that can be
observed during the evolution of the system). Informally speaking, an automa-
ton is a formalization used to model a set of well-defined rules that define such
a language.

The evolution of a DES is described with all possible sequence of events
e1, e2, e3, ...en, ei ∈ E, defining the language L that describes the system.

There are many possible ways to describe the language of a system. For
example, it is possible to use regular expressions. For complex systems, more
flexible modeling formats, like automaton, were developed.

Automata are characterized by the typical directed graph or state transition
diagram representation. For example, consider the event set E = {a, b, g} and the
state transition diagram in Fig. 1, where nodes represent system states, labeled
arcs represent transitions between states, the arrow points to the initial state and
the nodes with double circles are marked states, i.e., safe states of the system.

Fig. 1. State transitions diagram (based on Fig. 2.1 from [7]).

Formally, a deterministic automaton, denoted by G, is a tuple

G = {X,E, f, x0,Xm} (1)

where:

– X is the set of states

318 D. B. de Oliveira et al.

– E is the finite set of events
– f : X × E → X is the transition function. It defines the state transition in

the occurrence of a event from E in the state X.
– x0 is the initial state
– Xm ⊆ X is the set of marked states

For instance, the automaton G shown in Fig. 1 can be defined as follows:

– X = {x, y, z}
– E = {a, b, g}
– f : (x, a) = x; (y, a) = x; (z, b) = z; (x, g) = z; (y, b) = y; (z, a) = (z, g) = y.
– x0 = x
– Xm = {x, z}

The automaton starts from the initial state x0 and moves to a new state
f(x0, e) upon the occurrence of an event e. This process continues based on the
transitions for which f is defined.

Informally, following the graph of Fig. 1 it is possible to see that the occur-
rence of event a, followed by event g and a will lead from the initial state to
state y. The language L(G) generated by an automaton G = {X,E, f, x0,Xm}
consists of all possible chains of events generated by the state transition diagram
starting from the initial state.

Given a set of marked states, i.e., possible final or safe states when modeling
a system, an important language generated by an automaton is the marked
language. This consists of the set of words in L(G) that lead to marked states,
and it is also called the language recognized by the automaton.

Automata theory also enables operations among automata. An important
operation is the parallel composition of two or more automata that are combined
to compose a single, augmented-state, automaton. This allows for merging two
or more automata models into one single model, constituting the standard way of
building a model of an entire system from models of its individual components [7].

2.2 Linux Tracing

Linux has an advanced set of tracing methods, which are mainly applied in
the runtime analysis of kernel latencies and performance issues [27]. The most
popular tracing methods are the function tracer that enables the trace of
kernel functions [38], and the tracepoint that enables the tracing of hundreds
of events in the system, like the wakeup of a new thread or the occurrence of
an interrupt. But there are many other methods, like kprobes that enable the
creation of dynamic tracepoints in arbitrary places in the kernel code [22], and
composed arrangements like using the function tracer and tracepoints to
examine the code path from the time a task is woken up to when it is scheduled.

An essential characteristic of the Linux tracing feature is its efficiency. Nowa-
days, almost all Linux based operating systems (OSes) have these tracing meth-
ods enabled and ready to be used in production kernels. Indeed, these methods

Efficient Formal Verification for the Linux Kernel 319

Fig. 2. Ftrace output.

have nearly zero overhead when disabled, thanks to the extensive usage of run-
time code modification techniques, that allow for a greater efficiency than using
conditional jumps when tracing is disabled. For instance, when the function
tracer is disabled, a no-operation assembly instruction is placed right at the
beginning of all traceable functions. When the function tracer is enabled, the
no-operation instruction is overwritten with an instruction that calls a func-
tion that will trace the execution, for instance by appending information into an
in-kernel trace buffer. This is done at runtime, without any need for a reboot. A
tracepoint works similarly, but using a jump label [14]. The mentioned tracing
methods are implemented in such a way that it is possible to specify how an
event will be handled dynamically, at runtime. For example, when enabling a
tracepoint, the function responsible to handle the event is specified through a
proper in-kernel API.

Currently, there are two main interfaces by which these features can be
accessed from user-space: perf and Ftrace. Both tools can hook to the trace
methods, processing the events in many different ways. The most common action
is to record the occurrence of events into a trace-buffer for post-processing or
human interpretation of the events. Figure 2 shows the output of the Ftrace
tracing functions and tracepoints. The recording of events is optimized by the
usage of per-cpu lock-less trace buffers. Furthermore, it is possible to take actions
based on events. For example, it is possible to record a stacktrace.

These tracing methods can also be leveraged for other purposes. Similarly to
perf and Ftrace, other tools can also hook a function to a tracing method, non-
necessarily for the purpose of providing a trace of the system execution to the
user-space. For example, the Live Patching feature of Linux uses the function
tracer to hook and deviate the execution of a problematic function to a revised
version of the function that fixes a problem [36].

3 Related Work

This section overviews major prior works related to the technique introduced
in this paper, focusing on automata-based modeling of various Linux kernel
subsystems, use of formal methods for other OS kernels, and finally the use of
other formal methods to assess the correctness of various Linux kernel functions.

3.1 Automata-Based Linux Modelling

A number of works exist making use of automata-based models to verify correct-
ness of Linux kernel code. The work presented in [29] uses trace and automata to

320 D. B. de Oliveira et al.

verify conditions in the kernel. The paper presents models for SYN-flood, escap-
ing from a chroot jail, validation of locking and of real-time constraints. The
LTTng tracer [41] is used to compare the models to the kernel execution. The
models are very simple and presented as proof of concept. There are only five
states in the largest model, which is related to locking validation. There are only
two states in the real-time constraints model. Despite its simplicity, this paper
corroborates the idea of connecting automata to tracing as a layer of translation
from kernel to formal methods, including aspects of Linux real-time features.

State-aware/Stateful robustness testing [26] is an important area that uses
formal system definition. Robust testing is also used in the OS context as a
fault tolerance technique [37]. A case study of state-based robustness testing is
presented in [15] that includes the OS states of a real-time version of Linux. The
results show that the OS state plays a significant role in testing for corner cases
that are not covered by traditional robustness verification. Another relevant
project for Linux is SABRINE [16], an approach using tracing and automata for
state-aware robustness testing of OSes. SABRINE works as follows: It traces the
interactions among components of the OS in the first step. The software then
extracts state models from the traces automatically. The traces are processed in
this phase in order to find sequences of similar functions, to be grouped, forming
a pattern. Later, similar patterns are grouped into clusters. The last step is
the generation of the behavioral model from the clusters. A behavioral model
consists of event-connected states in the finite-state automata (FSA) format.

The ability to extract models from the operating system depends on the oper-
ating system components specification and their interfaces. The paper targets
not a system component, but the set of mechanisms used to synchronize NMI,
IRQ, and thread operations. The analyzed events are present in most subsys-
tems, such as disabling interruptions and preemption, or locks.

SABRINE was later improved by the TIMEOUT approach [40] which records
the time spent in each state. The FSA is then created using timed automata.
The worst-case execution time observed during the profiling phase is used as the
Timed-FSA’s timing parameter, so timing errors can also be detected.

3.2 Formal Methods and OS Kernels

Verification of an operating system kernel, with its various components, is a
particularly challenging area.

Some works that addressed this issue include the BLAST tool [21], where
control flow automata were used, combining existing state-space reduction tech-
niques based on verification and counter-example-driven refinement with lazy
abstraction. This enables on-demand refinement of specification parts by select-
ing more specific predicates to add to the model while the model checker is run-
ning, without the need to revisit parts of the state space that are not affected by
the refinements. Interestingly, for the Linux and Microsoft Windows NT kernels,
authors applied the technique to verify the security properties of OS drivers. The
technique required instrumentation of the original drivers, inserting a conditional

Efficient Formal Verification for the Linux Kernel 321

jump to an error handler, and a model of the surrounding kernel behavior to
enable the verification that the faulty code could ever be reached.

The SLAM [4] static code analyzer shares major goals with BLAST, enabling
C programs to be analyzed to detect violations of certain conditions. SLAM
is also used within the Static Driver Verifier (SDV) framework [3] to check
Microsoft Windows device drivers against a set of rules. For example, it has
been used to detect improper use of the Windows XP kernel API in some drivers.
SATABS [5] and CBMC [24] are verification tools used within the DDVerify [43]
framework to check synchronization constructs, interrupts and deferred tasks.

MAGIC [8] is a tool for automatic verification of sequential C programs that
uses finite state machine specifications. The tool can analyze a direct acyclic
graph of C functions by extracting a finite state model from the source code and
then reducing the verification to a problem of boolean satisfiability (SAT). The
verification is performed by checking the specification against an increasingly
refined sequence of abstractions until either it is verified or a counter-example is
found. This allows the technique to be used with relatively large models, along
with its modular approach, avoiding the need to enumerate the state-space of
the entire system. MAGIC was used to verify the correctness of a number of
functions involved in system calls handling mutexes, sockets and packet han-
dling in the Linux kernel. The tool was also later extended to handle concurrent
software systems [9], although authors focused on verifying correctness and live-
ness in presence of message-passing based concurrency without variable sharing.
Authors were able to find a bug in the source code of Micro-C/OS, although the
bug had already been fixed in a new release when they notified the developers.

Other remarkable works have also been carried out evaluating the formal
correctness of a whole micro-kernel, such as seL4 [23], regarding the adherence
of the compiled code to its expected behavior stated in formal terms. seL4 also
includes precise worst-case execution time analysis [6]. These findings were pos-
sible thanks to the simplicity of the seL4 micro-kernel, e.g. semi-preemptability.

3.3 Formal Methods and the Linux Kernel Community

The adoption of formal methods is not new to the Linux kernel community,
especially in the kernel development and debugging workflow.

Indeed, the lockdep mechanism [12] built into the Linux kernel is a remark-
able work in this area. By observing the order of execution and the calling
context of lock calls, Lockdep is able to identify errors in the use of locking prim-
itives that could eventually lead to deadlocks. The mechanism includes detecting
errors in the acquisition order of multiple (nested) locks across multiple kernel
code paths, and detecting common errors in handling spinlocks across the IRQ
handler vs process context, such as acquiring a spinlock from the process context
with enabled IRQs as well as from an IRQ handler. By applying the technique
based on locking classes instead of individual locks, the number of different lock
states that the kernel must keep is reduced.

A formal memory model is introduced in [2] to automate the verification of
the consistency of core kernel synchronization operations, across a wide range of

322 D. B. de Oliveira et al.

supported architectures and associated memory consistency models. The Linux
memory model ended up being part of the official Linux release, adding the
Linux Kernel Memory Consistency Model (LKMM) subsystem, an array of tools
that formally describe the Linux memory consistency model, and also producing
“litmus tests” in the form of kernel code that can be executed and tested directly.

The TLA+ formalism [25] has also been successfully applied to discover bugs
in the Linux kernel. Examples of problems discovered or confirmed by using
TLA+ include the correctness of memory management locking during a context
switch and fairness properties of the arm64 ticket spinlock implementation [28].

These recent results created interest in the potential of using formal meth-
ods in Linux development. Therefore, the present paper describes our proposed
technique for validation at runtime of allowed kernel events sequences, as speci-
fied through an automata-based model. As highlighted above, the technique fills
an empty spot in the related literature, focusing on efficient verification that
is achieved by: (1) tracking relevant kernel events at a proper abstraction level,
leveraging the perf and Ftrace subsystems, but (2) without any need to actually
collect a full trace of the relevant events from the kernel to user-space for fur-
ther analysis: events sequences are directly checked inside the kernel leveraging
efficient code automatically generated from the automata-based model, charac-
terized by a O(1) event processing time adding very small overheads, even lower
than those arising merely for tracing the relevant events. This will be shown
through experimental results in Sect. 5.

4 Efficient Formal Verification for the Linux Kernel

An overarching view of the approach being proposed in this paper is displayed
in Fig. 3. It has three major phases. First, the behavior of a part of the Linux
kernel is modeled using automata, using the set of events that are available in
the tracing infrastructure1. The model is represented using the .dot Graphviz
format [20]. The .dot format is open and widely used to represent finite-state
machines and automata. For example, the Supremica modeling tool [1] supports
exporting automata models using this format.

Figure 4 presents the example of an automaton for the verification of in-
kernel scheduling-related events. The model specifies that the event sched waking
cannot take place while preemption is enabled, in order not to cause concurrency
issues with the scheduler code (see [33] for more details).

In the second step, the .dot file is translated into a C data structure, using the
dot2c tool2. The auto-generated code follows a naming convention that allows
it to be linked with a kernel module skeleton that is already able to refer to the
generated data structures, performing the verification of occurring events in the

1 These can be obtained for example by running: sudo cat /sys/kernel/debug/

tracing/available events.
2 The tools, the verification modules, the BUG report, high-resolution figures and

FAQ are available in the companion page [32].

Efficient Formal Verification for the Linux Kernel 323

Fig. 3. Verification approach.

Fig. 4. Wake-up In preemptive (WIP) Model.

kernel, according to the specified model. For example, the automaton in Fig. 4
is transformed into the code in Fig. 5.

The enum states and events provide useful identifiers for states and events.
As the name suggests, the struct automaton contains the automaton structure
definition. Its corresponding C version contains the same elements of the formal
definition. The most critical element of the structure is function, a matrix
indexed in constant time O(1) by curr state and event (as shown in the
get next state() function in Fig. 6). Likewise, for debugging and reporting
reasons, it is also possible to translate the event and state indexes into strings
in constant time, using the state names and event names vectors.

Regarding scalability, although the matrix is not the most efficient solution
with respect to the memory footprint, in practice, the values are reasonable for
nowadays common computing platforms. For instance, the Linux Task Model
Automata presented in [33], with 9017 states and 20103 transitions, resulted
in a binary object of less than 800 KB, a reasonable value even for nowadays
Linux-based embedded systems. The automaton structure is static, so no ele-
ment changes are allowed during the verification. This simplifies greatly the
needed synchronization for accessing it. The only information that changes is
the variable that saves the current state of the automata, so it can easily be
handled with atomic operations, that can be a single variable for a model that
represents the entire system. For instance, the model in Fig. 4 represents the
state of a CPU (because the preemption enabling status is a per-cpu status vari-
able in Linux), so there is a current state variable per-cpu, with the cost of (1
Byte * the number of CPUs of the system). The simplicity of automaton defini-

324 D. B. de Oliveira et al.

Fig. 5. Auto-generated code from the automaton in Fig. 4.

Fig. 6. Helper functions to get the next state.

tion is a crucial factor for this method: all verification functions are O(1), the
definition itself does not change during the verification and the sole information
that changes has a minimal footprint.

In the last step, the auto-generated code from the automata, along with a
set of helper functions that associate each automata event to a kernel event,
are compiled into a kernel module (a .ko file). The model in Fig. 4 uses
only tracepoints. The preempt disable and preempt enable automaton events
are connected to the preemptirq:preempt disable and preemptirq:preempt
enable kernel events, respectively, while the sched waking automaton event
is connected to the sched:sched waking kernel event. The Sleeping While in
Atomic (SWA) model in Fig. 7 also uses tracepoints for preempt disable and
enable, as well as for local irq disable and enable. But the SWA model also uses
function tracers.

One common source of problems in the PREEMPT RT Linux is the execution
of functions that might put the process to sleep, while in a non-preemptive
code section [34]. The event might sleep function represents these functions. At

Efficient Formal Verification for the Linux Kernel 325

initialization time, the SWA module hooks to a set of functions that are known
to eventually putting the thread to sleep.

Note that another noteworthy characteristic of the proposed framework is
that, by using user-space probes [18], it is also possible to perform an integrated
automata-based verification of both user and kernel-space events, without requir-
ing code modifications.

Fig. 7. Sleeping While in Atomic (SWA) model.

The kernel module produced as just described can be loaded at any time dur-
ing the kernel execution. During initialization, the module connects the functions
that handle the automaton events to the kernel tracing events, and the verifica-
tion can start. The verification keeps going on until it is explicitly disabled at
runtime by unloading the module.

The verification output can be observed via the tracing file regularly produced
by Ftrace. As performance is a major concern for runtime verification, debug
messages can be disabled of course. In this case, the verification will produce
output only in case of problems.

An example of output is shown in Fig. 8. In this example, in Line 1 a debug
message is printed, notifying the occurrence of the event preempt enable, mov-
ing the automaton from the state non preemptive to preemptive. In Line 2,
sched waking is not expected in the state preemptive, causing the output of
the stack trace, to report the code path in which the problem was observed.

The problem reported in Fig. 8 is the output of a real bug found in the
kernel while developing this approach. The bug was reported to the Linux kernel
mailing list, including the verification module as the test-case for reproducing
the problem (see footnote 2).

5 Performance Evaluation

Being efficient is a key factor for a broader adoption of a verification method.
Indeed, an efficient method has the potential to increase its usage among Linux
developers and practitioners, mainly during development, when the vast majority
of complex testing takes place. Therefore, this section focuses on the performance
of the proposed technique, by presenting evaluation results on a real platform
verifying models, in terms of the two most important performance metrics for
Linux kernel (and user-space) developers: throughput and latency.

326 D. B. de Oliveira et al.

Fig. 8. Example of output from the proposed verification module, as occurring when
a problem is found.

The measurements were conducted on an HP ProLiant BL460c G7 server,
with two six-cores Intel Xeon L5640 processors and 12 GB of RAM, running
a Fedora 30 Linux distribution. The kernel selected for the experiments is the
Linux PREEMPT RT version 5.0.7-rt5. The real-time kernel is more sensible for
synchronization as the modeled preemption and IRQ-related operations occur
more frequently than in the mainline kernel.

5.1 Throughput Evaluation

Throughput evaluation was made using the Phoronix Test Suite benchmark [35],
and its output is shown in Fig. 9. The same experiments were repeated in three
different configurations. First, the benchmark was run in the system as-is, with-
out any tracing nor verification running. Then, it was run in the system after
enabling verification of the SWA model. Finally, a run was made with the sys-
tem being traced, only limited to the events used in the verified automaton. It
is worth mentioning that tracing in the experiments means only recording the
events. The complete verification in user-space would still require the copy of
data to user-space and the verification itself, which would add further overhead.

On the CPU bound tests (Crypto, CPU Stress and Memory Copying), both
trace and verification have a low impact on the system performance. In con-
trast, the benchmarks that run mostly on kernel code highlights the overheads
of both methods. In all cases, the verification performs better than tracing. The
reason is that, despite the efficiency of tracing, the amount of data that has to
be manipulated costs more than the simple operations required to do the verifi-
cation, essentially the cost of looking up the next state in memory in O(1), and
storing the next state with a single memory write operation.

Efficient Formal Verification for the Linux Kernel 327

Fig. 9. Phoronix Stress-NG Benchmark Results: as-is is the system without tracing
nor verification; SWA is the system while verifying Sleeping While in Atomic automata
in Fig. 11 and with the code in Fig. 5; and the trace is the system while tracing the
same events used in the SWA verification.

5.2 Latency Evaluation

Latency is the main metric used when working with the PREEMPT RT kernel.
The latency of interest is defined as the delay the highest real-time priority
thread suffers from, during a new activation, due to in-kernel synchronization.
Linux practitioners use the cyclictest tool to measure this latency, along with
rteval as background workload, generating intensive kernel activation.

Two models were used in the latency experiment. Similarly to Sect. 5.1, the
SWA model was evaluated against the kernel as-is, and the kernel simply tracing
the same set of events. In addition, the Need Re-Schedule (NRS) model in Fig. 10
was evaluated. It describes the synchronization events that influence the latency,
and it is part of the model previously described in [33]3. The NRS measurements
were made on the same system but configured as a single CPU4.

3 Note that supporting the full model in [33] is not yet possible with the tool being pre-
sented in this paper, due to additional changes needed within the kernel. Therefore,
this is still work in progress.

4 This is a restriction from [33].

328 D. B. de Oliveira et al.

Fig. 10. Need Re-Sched forces Scheduling (NRS model) from [33] (see footnote 2).

Fig. 11. Latency evaluation, using the SWA model (top) and the NRS model (bottom).

Consistently with the results obtained in the throughput experiments, the
proposed verification mechanism is more efficient than the sole tracing of the
same events. This has the effect that the cyclictest latency obtained under
the proposed method, shown in Fig. 11 (SWA/NRS curves), is more similar to
the one of the kernel as-is than what is obtained while just tracing the events.

Efficient Formal Verification for the Linux Kernel 329

6 Conclusions and Future Work

The increasing complexity of the Linux kernel code-base, along with its increas-
ing usage in safety-critical and real-time systems, pushed towards a stronger
need for applying formal verification techniques to various kernel subsystems.
Nonetheless, two factors have been placing a barrier in this regard: (1) The need
of complex setups, even including modifications and re-compilation of the ker-
nel; (2) The excessively poor performance exhibited by the kernel while under
tracing, for collecting data needed in the verification, typically carried out in
user-space.

The solution for both problems seemed to be controversial: the usage of in-
kernel tracing along with user-space post-processing reduces the complexity of
the setup, but incurs the problem of having to collect, transfer to user-space and
process large amounts of data. On the other hand, the inclusion of verification
code “hard-coded” in the kernel requires more complex setups, with the need
for applying custom patches and recompiling the kernel, with said patches being
quite cumbersome to maintain as the kernel evolves over time.

This paper tackles these two problems by using the standard tracing infras-
tructure available in the Linux kernel to dynamically attach verification code to a
non-modified running kernel, by exploiting the mechanism of dynamically load-
able kernel modules. Furthermore, the verification code is semi-automatically
generated from standard automata description files, as can be produced with
open editors. The presented benchmark results show that the proposed tech-
nique overcomes standard tracing and user-space processing of kernel events to
be verified in terms of performance. Moreover, the proposed technique is more
efficient than merely tracking the events of interest just using tracing features
available in the kernel.

Regarding possible future work on the topic, the usage of parametric and
timed-automata would open the possibility of using more complex and complete
verification methods, not only addressing the logical and functional behavior,
but also dealing with the timing behavior. In terms of efficiency of the imple-
mentation, a hot-topic in the Linux kernel tracing community is the in-kernel
processing of data via eBPF, as established already with in-kernel packet pro-
cessing. This might be a worthwhile avenue to explore and compare with the
current method of using a dynamically loadable module, in which part of the
code has been auto-generated.

References

1. Akesson, K., Fabian, M., Flordal, H., Malik, R.: Supremica - an integrated environ-
ment for verification, synthesis and simulation of discrete event systems. In: 2006
8th International Workshop on Discrete Event Systems, pp. 384–385, July 2006.
https://doi.org/10.1109/WODES.2006.382401

2. Alglave, J., Maranget, L., McKenney, P.E., Parri, A., Stern, A.: Frightening small
children and disconcerting grown-ups: concurrency in the Linux Kernel. In: Pro-
ceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2018, pp. 405–418.
ACM, New York (2018). https://doi.org/10.1145/3173162.3177156

https://doi.org/10.1109/WODES.2006.382401
https://doi.org/10.1145/3173162.3177156

330 D. B. de Oliveira et al.

3. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Technical Report MSR-TR-2004-08
- SLAM and Static Driver Verifier: Technology Transfer of Formal Methods inside
Microsoft - Microsoft Research, January 2004. https://www.microsoft.com/en-us/
research/wp-content/uploads/2016/02/tr-2004-08.pdf

4. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2002, pp. 1–3. ACM, New York
(2002). https://doi.org/10.1145/503272.503274

5. Basler, G., Donaldson, A., Kaiser, A., Kroening, D., Tautschnig, M., Wahl, T.:
satabs: a bit-precise verifier for C programs. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 552–555. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28756-5 47

6. Blackham, B., Shi, Y., Chattopadhyay, S., Roychoudhury, A., Heiser, G.: Tim-
ing analysis of a protected operating system kernel. In: Proceedings of the 32nd
IEEE Real-Time Systems Symposium (RTSS11), Vienna, Austria, pp. 339–348,
November 2011

7. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 2nd edn.
Springer, Heidelberg (2010)

8. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of soft-
ware components in C. IEEE Trans. Softw. Eng. 30(6), 388–402 (2004). https://
doi.org/10.1109/TSE.2004.22

9. Chaki, S., Clarke, E., Ouaknine, J., Sharygina, N., Sinha, N.: Concurrent software
verification with states, events, and deadlocks. Formal Aspects Comput. 17(4),
461–483 (2005). https://doi.org/10.1007/s00165-005-0071-z

10. Chishiro, H.: RT-Seed: real-time middleware for semi-fixed-priority scheduling. In:
2016 IEEE 19th International Symposium on Real-Time Distributed Computing
(ISORC) (2016)

11. Condliffe, J.: U.S. military drones are going to start running on Linux, July 2014.
https://gizmodo.com/u-s-military-drones-are-going-to-start-running-on-linu-157
2853572

12. Corbet, J.: The kernel lock validator, May 2006. https://lwn.net/Articles/185666/
13. Corbet, J.: Linux at NASDAQ OMX, October 2010. https://lwn.net/Articles/

411064/
14. Corbet, J.: Jump label, October 2010. https://lwn.net/Articles/412072/
15. Cotroneo, D., Di Leo, D., Natella, R., Pietrantuono, R.: A case study on state-based

robustness testing of an operating system for the avionic domain. In: Flammini, F.,
Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 213–227.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24270-0 16

16. Cotroneo, D., Leo, D.D., Fucci, F., Natella, R.: SABRINE: state-based robustness
testing of operating systems. In: Proceedings of the 28th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2013, Piscataway, NJ, USA,
pp. 125–135. IEEE Press (2013). https://doi.org/10.1109/ASE.2013.6693073

17. Cucinotta, T., et al.: A real-time service-oriented architecture for industrial
automation. IEEE Trans. Ind. Inform. 5(3), 267–277 (2009). https://doi.org/10.
1109/TII.2009.2027013

18. Dronamraju, S.: Linux kernel documentation - uprobe-tracer: Uprobe-based event
tracing, May 2019. https://www.kernel.org/doc/Documentation/trace/uprobetra
cer.txt

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2004-08.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2004-08.pdf
https://doi.org/10.1145/503272.503274
https://doi.org/10.1007/978-3-642-28756-5_47
https://doi.org/10.1007/978-3-642-28756-5_47
https://doi.org/10.1109/TSE.2004.22
https://doi.org/10.1109/TSE.2004.22
https://doi.org/10.1007/s00165-005-0071-z
https://gizmodo.com/u-s-military-drones-are-going-to-start-running-on-linu-1572853572
https://gizmodo.com/u-s-military-drones-are-going-to-start-running-on-linu-1572853572
https://lwn.net/Articles/185666/
https://lwn.net/Articles/411064/
https://lwn.net/Articles/411064/
https://lwn.net/Articles/412072/
https://doi.org/10.1007/978-3-642-24270-0_16
https://doi.org/10.1109/ASE.2013.6693073
https://doi.org/10.1109/TII.2009.2027013
https://doi.org/10.1109/TII.2009.2027013
https://www.kernel.org/doc/Documentation/trace/uprobetracer.txt
https://www.kernel.org/doc/Documentation/trace/uprobetracer.txt

Efficient Formal Verification for the Linux Kernel 331

19. Dubey, A., Karsai, G., Abdelwahed, S.: Compensating for timing jitter in comput-
ing systems with general-purpose operating systems. In: 2009 IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Distributed Com-
puting, pp. 55–62, March 2009. https://doi.org/10.1109/ISORC.2009.28

20. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz—open
source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001.
LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45848-4 57

21. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2002, pp. 58–70. ACM, New York (2002). https://
doi.org/10.1145/503272.503279

22. Hiramatsu, M.: Linux tracing technologies: Kprobe-based event tracing, May 2019.
https://www.kernel.org/doc/html/latest/trace/kprobetrace.html

23. Klein, G., et al.: seL4: formal verification of an OS Kernel. In: Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP 2009, pp.
207–220. ACM, New York (2009). https://doi.org/10.1145/1629575.1629596

24. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 26

25. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
16(3), 872–923 (1994). https://doi.org/10.1145/177492.177726

26. Lei, B., Liu, Z., Morisset, C., Li, X.: State based robustness testing for components.
Electron. Notes Theoret. Comput. Sci. 260, 173–188 (2010). https://doi.org/10.
1016/j.entcs.2009.12.037

27. Linux Kernel Documentation: Linux tracing technologies, May 2019. https://www.
kernel.org/doc/html/latest/trace/index.html

28. Marinas, C.: Formal methods for kernel hackers (2018). https://linuxplumbersconf.
org/event/2/contributions/60/attachments/18/42/FormalMethodsPlumbers2018.
pdf

29. Matni, G., Dagenais, M.: Automata-based approach for kernel trace analysis. In:
2009 Canadian Conference on Electrical and Computer Engineering, pp. 970–973,
May 2009. https://doi.org/10.1109/CCECE.2009.5090273

30. de Oliveira, D.B.: How can we catch problems that can break the preempt rt
preemption model? November 2018. https://linuxplumbersconf.org/event/2/
contributions/190/

31. de Oliveira, D.B.: Mind the gap between real-time linux and real-time theory,
November 2018. https://www.linuxplumbersconf.org/event/2/contributions/75/

32. de Oliveira, D.B.: Companion page: Efficient formal verification for the linux kernel,
May 2019. http://bristot.me/efficient-formal-verification-for-the-linux-kernel/

33. de Oliveira, D.B., Cucinotta, T., de Oliveira, R.S.: Untangling the intricacies of
thread synchronization in the PREEMPT RT Linux Kernel. In: Proceedings of
the IEEE 22nd International Symposium on Real-Time Distributed Computing
(ISORC), Valencia, Spain, May 2019

34. de Oliveira, D.B., de Oliveira, R.S.: Timing analysis of the PREEMPT RT Linux
kernel. Softw.: Pract. Exp. 46(6), 789–819 (2016). https://doi.org/10.1002/spe.
2333

35. Phoronix Test Suite: Open-source, automated benchmarking, May 2019. www.
phoronix-test-suite.com

36. Poimboeuf, J.: Introducing kpatch: dynamic kernel patching, February 2014.
https://www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching

https://doi.org/10.1109/ISORC.2009.28
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/503272.503279
https://www.kernel.org/doc/html/latest/trace/kprobetrace.html
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1145/177492.177726
https://doi.org/10.1016/j.entcs.2009.12.037
https://doi.org/10.1016/j.entcs.2009.12.037
https://www.kernel.org/doc/html/latest/trace/index.html
https://www.kernel.org/doc/html/latest/trace/index.html
https://linuxplumbersconf.org/event/2/contributions/60/attachments/18/42/FormalMethodsPlumbers2018.pdf
https://linuxplumbersconf.org/event/2/contributions/60/attachments/18/42/FormalMethodsPlumbers2018.pdf
https://linuxplumbersconf.org/event/2/contributions/60/attachments/18/42/FormalMethodsPlumbers2018.pdf
https://doi.org/10.1109/CCECE.2009.5090273
https://linuxplumbersconf.org/event/2/contributions/190/
https://linuxplumbersconf.org/event/2/contributions/190/
https://www.linuxplumbersconf.org/event/2/contributions/75/
http://bristot.me/efficient-formal-verification-for-the-linux-kernel/
https://doi.org/10.1002/spe.2333
https://doi.org/10.1002/spe.2333
www.phoronix-test-suite.com
www.phoronix-test-suite.com
https://www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching

332 D. B. de Oliveira et al.

37. Pullum, L.L.: Software Fault Tolerance Techniques and Implementation. Artech
House Inc., Norwood (2001)

38. Rostedt, S.: Secrets of the Ftrace function tracer. Linux Weekly News, January
2010. http://lwn.net/Articles/370423/. Accessed 09 May 2017

39. San Vicente Gutiérrez, C., Usategui San Juan, L., Zamalloa Ugarte, I., Mayoral
Vilches, V.: Real-time Linux communications: an evaluation of the Linux commu-
nication stack for real-time robotic applications, August 2018. https://arxiv.org/
pdf/1808.10821.pdf

40. Shahpasand, R., Sedaghat, Y., Paydar, S.: Improving the stateful robustness test-
ing of embedded real-time operating systems. In: 2016 6th International Conference
on Computer and Knowledge Engineering (ICCKE), pp. 159–164, October 2016.
https://doi.org/10.1109/ICCKE.2016.7802133

41. Spear, A., Levy, M., Desnoyers, M.: Using tracing to solve the multicore sys-
tem debug problem. Computer 45(12), 60–64 (2012). https://doi.org/10.1109/MC.
2012.191

42. The Linux Foundation: Automotive grade Linux, May 2019. https://www.
automotivelinux.org/

43. Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking con-
current Linux device drivers. In: Proceedings of the Twenty-second IEEE/ACM
International Conference on Automated Software Engineering, ASE 2007, pp. 501–
504. ACM, New York (2007).https://doi.org/10.1145/1321631.1321719

http://lwn.net/Articles/370423/
https://arxiv.org/pdf/1808.10821.pdf
https://arxiv.org/pdf/1808.10821.pdf
https://doi.org/10.1109/ICCKE.2016.7802133
https://doi.org/10.1109/MC.2012.191
https://doi.org/10.1109/MC.2012.191
https://www.automotivelinux.org/
https://www.automotivelinux.org/
https://doi.org/10.1145/1321631.1321719

Reproducible Execution of POSIX
Programs with DiOS

Petr Ročkai(B), Zuzana Baranová, Jan Mrázek, Kataŕına Kejstová,
and Jǐŕı Barnat

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xrockai,xbaranov,xmrazek7,xkejstov,barnat}@fi.muni.cz

Abstract. In this paper, we describe DiOS, a lightweight model oper-
ating system which can be used to execute programs that make use of
POSIX APIs. Such executions are fully reproducible: running the same
program with the same inputs twice will result in two exactly identical
instruction traces, even if the program uses threads for parallelism.

DiOS is implemented almost entirely in portable C and C++: although
its primary platform is DiVM, a verification-oriented virtual machine, it
can be configured to also run in KLEE, a symbolic executor. Finally, it
can be compiled into machine code to serve as a user-mode kernel.

Additionally, DiOS is modular and extensible. Its various components
can be combined to match both the capabilities of the underlying plat-
form and to provide services required by a particular program. New com-
ponents can be added to cover additional system calls or APIs.

The experimental evaluation has two parts. DiOS is first evaluated as
a component of a program verification platform based on DiVM. In the
second part, we consider its portability and modularity by combining it
with the symbolic executor KLEE.

1 Introduction

Real-world software has a strong tendency to interact with its execution environ-
ment in complex ways. To make matters worse, typical environments in which
programs execute are often extremely unpredictable and hard to control. This is
an important factor that contributes to high costs of software validation and ver-
ification. Even the most resilient verification methods (those based on testing)
see substantial adverse effect.

In automated testing, one of the major criteria for a good test case is that
it gives reliable and reproducible results, without intermittent failures. This is
especially true in the process of debugging: isolating a fault is much harder when
it cannot be consistently observed. For this reason, significant part of the effort
involved in testing is spent on controlling the influence of the environment on
the execution of test cases.

This work has been partially supported by the Czech Science Foundation grant No. 18-
02177S and by Red Hat, Inc.

c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 333–349, 2019.
https://doi.org/10.1007/978-3-030-30446-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-30446-1_18

334 P. Ročkai et al.

The situation is even worse with more rigorous verification methods – for
instance, soundness of verification tools based on dynamic analysis strongly
depends on the ability to fully control the execution of the system under
test.

In this paper, we set out to design and implement a small and sufficiently self-
contained model operating system that can provide a realistic environment for
executing POSIX-based programs. Since this environment is fully virtualised and
isolated from the host system, program execution is always fully reproducible.
As outlined above, such reproducibility is valuable, sometimes even essential,
in testing and program analysis scenarios. Especially dynamic techniques, like
software model checking or symbolic execution, rely on the ability to replay
interactions of the program and obtain identical outcomes every time.

1.1 Contribution

The paper describes our effort to implement a compact operating system on top
of existing verification frameworks and virtual machines (see Sect. 3). Despite
its minimalist design, the current implementation covers a wide range of POSIX
APIs in satisfactory detail (see also Sect. 4.3). The complete source code is avail-
able online,1 under a permissive open-source licence. Additionally, we have iden-
tified a set of low-level interfaces (see Sect. 2) with two important qualities:

1. the interfaces are lightweight and easy to implement in a VM,
2. they enable an efficient implementation of complex high-level constructs.

Minimal interfaces are a sound design principle and lead to improved mod-
ularity and re-usability of components. In our case, identification of the correct
interfaces drives both portability and compactness of implementation.

Finally, the design that we propose improves robustness of verification
tools. A common implementation strategy treats high-level constructs (e.g. the
pthread API) as primitives built into the execution engine. This ad-hoc app-
roach often leads to implementation bugs which then compromise the soundness
of the entire tool. Our design, on the other hand, emphasises clean separation of
concerns and successfully reduces the amount of code which forms the trusted
execution and/or verification core.

1.2 Design Goals

We would like our system to have the following properties:

1. Modularity: minimise the interdependence of the individual OS components.
It should be as easy as possible to use individual components (for instance
libc) without the others. The kernel should likewise be modular.

1 https://divine.fi.muni.cz/2019/dios/.

https://divine.fi.muni.cz/2019/dios/

Reproducible Execution of POSIX Programs with DiOS 335

2. Portability: reduce the coupling to the underlying platform (verification
engine), making the OS useful as a pre-made component in building veri-
fication and testing tools.

3. Veracity: the system should precisely follow POSIX and other applicable stan-
dardised semantics. It should be possible to port realistic programs to run on
the operating system with minimal effort.

Since the desired properties are hard to quantify, we provide a qualitative
evaluation in Sect. 5. To demonstrate the viability of our approach, we show
that many UNIX programs, e.g. gzip or a number of programs from the GNU
coreutils suite can be compiled for DiOS with no changes and subsequently
analysed using an explicit-state model checker.

1.3 Related Work

Execution reproducibility is a widely studied problem. A number of tools capture
provenance, or history of the execution, by following and recording program’s
interactions with the environment, later using this information to reproduce the
recorded execution. For instance, ReproZip [4] bundles the environment vari-
ables, files and library dependencies it observes so that the executable can be
run on a different system. Other programs exist, that instead capture the prove-
nance in form of logs [7], or sometimes more complex structures – provenance
graphs in case of ES3 [5].

SCARPE [7] was developed for Java programs and captures I/O, user inputs
and interactions with the database and the filesystem into a simple event log.
The user has to state which interactions to observe by annotating the individual
classes that make up the program, since the instrumentation introduces substan-
tial overhead, and recording all interactions may generate a considerable amount
of data (for example, capturing a large portion of the database).

Another common approach to dealing with the complexity of interactions
with the execution environment is mocking [14,15]: essentially, building small
models of the parts of the environment that are relevant in the given test scenario.
A mock object is one step above a stub, which simply accepts and discards all
requests. A major downside of using mock objects in testing is that sufficiently
modelling the environment requires a lot of effort: either the library only provides
simple objects and users have to model the system themselves, or the mock
system is sophisticated, but the user has to learn a complex API.

Most testing frameworks for mainstream programming languages offer a
degree of support for building mock objects, including mock objects which model
interaction with the operating system. For instance the pytest tool [11] for
Python allows the user to comfortably mock a database connection. A more
complex example of mocking would be the filesystem support in Pex [10], a sym-
bolic executor for programs targeting the .NET platform. KLEE is a symbolic
executor based on LLVM and targets C (and to some degree C++) programs
with a different approach to environment interaction. Instead of modelling the
file system or other operating system services, it allows the program to directly

336 P. Ročkai et al.

interact with the host operating system, optionally via a simple adaptation layer
which provides a degree of isolation based on symbolic file models.

This latter approach, where system calls and even library calls are forwarded
to the host operating system is also used in some runtime model checkers, most
notably Inspect [19] and CHESS [16]. However, those approaches only work when
the program interacts with the operating system in a way free from side effects,
and when external changes in the environment do not disturb verification.

One approach to lifting the non-interference requirement is cache-based
model checking [13], where initially, the interactions with the environment are
directly performed and recorded in a cache. If the model checker then needs to
revisit one of the previous states, the cache component takes over and prevents
inconsistencies from arising along different execution paths. This approach is
closely related to our proxy and replay modes (Sect. 4.1), though in the case of
cache-based model checking, both activities are combined into a single run of the
model checker. Since this approach is focused on piece-wise verification of dis-
tributed systems, the environment mainly consists of additional components of
the same program. For this reason, the cache can be realistically augmented with
process checkpointing to also allow backtracking the environment to a certain
extent.

Finally, standard (offline) model checkers rarely support more than a handful
of interfaces. The most widely supported is the POSIX threading API, which is
modelled by tools such as Lazy-CSeq [6] and its variants, by Impara [18] and by
a few other tools.

2 Platform Interface

In this section, we will describe our expectations of the execution or verification
platform and the low-level interface between this platform and our model oper-
ating system. We then break down the interface into a small number of areas,
each covering particular functionality.

2.1 Preliminaries

The underlying platform can have different characteristics. We are mainly inter-
ested in platforms or tools based on dynamic analysis, where the program is at
least partially interpreted or executed, often in isolation from the environment.
If the platform itself isolates the system under test, many standard facilities like
file system access become unavailable. In this case, the role of DiOS is to provide
a substitute for the inaccessible host system.

If, on the other hand, the platform allows the program to access the host
system, this easily leads to inconsistencies, where executions explored first can
interfere with the state of the system observed by executions explored later. For
instance, files or directories might be left around, causing unexpected changes in
the behaviour2 of the system under test. In cases like those, DiOS can serve to
2 If execution A creates a file and leaves it around, execution B might get derailed when

it tries to create the same file, or might detect its presence and behave differently.

Reproducible Execution of POSIX Programs with DiOS 337

insulate such executions from each other. Under DiOS, the program can observe
the effects of its actions along a single execution path – for instance, if the
program creates a file, it will be able to open it later. However, this file never
becomes visible to another execution of the same program, regardless of the
exploration order.

Unfortunately, not all facilities that operating systems provide to programs
can be modelled entirely in terms of standard C. To the contrary, certain areas
of high-level functionality that the operating system is expected to implement
strongly depend on low-level aspects of the underlying platform. Some of those
are support for thread scheduling, process isolation, control flow constructs such
as setjmp and C++ exceptions, among others. We will discuss those in more
detail in the following sections.

2.2 Program Memory

An important consideration when designing an operating system is the semantics
of the memory subsystem of its execution platform. DiOS is no exception: it needs
to provide a high-level memory management API to the application (both the
C malloc interface and the C++ new/delete interface). In principle, a single
flat array of memory is sufficient to implement all the essential functionality.
However, it lacks both in efficiency and in robustness. Ideally, the platform would
provide a memory management API that manages individual memory objects
which in turn support an in-place resize operation. This makes operations more
efficient by avoiding the need to make copies when extra memory is required,
and the operating system logic simpler by avoiding a level of indirection.

If the underlying platform is memory-safe and if it provides a supervisor
mode to protect access to certain registers or to a special memory location,
the remainder of kernel isolation is implemented by DiOS itself, by withholding
addresses of kernel objects from the user program. In this context, memory safety
entails bound checks and an inability to overflow pointers from one memory
object into another.

2.3 Execution Stack

Information about active procedure calls and about the local data of each pro-
cedure are, on most platforms, stored in a special execution stack. While the
presence of such a stack is almost universal, the actual representation of this
stack is very platform-specific. On most platforms that we consider,3 it is part of
standard program memory and can be directly accessed using standard memory
operations. If both reading and modifications of the stack (or stacks) is possible,
most of the operations that DiOS needs to perform can be implemented without
special assistance from the platform itself. Those operations are:

3 The main exception is KLEE, where the execution stack is completely inaccessible
to the program under test and only the virtual machine can access the information
stored in it. See also Sect. 3.2.

338 P. Ročkai et al.

– creation of a new execution stack, which is needed in two scenarios: isolation of
the kernel stack from the user-space stack and creation of new tasks (threads,
co-routines or other similar high-level constructs),

– stack unwinding, where stack frames are traversed and removed from the
stack during exception propagation or due to setjmp/longjmp.

Additionally, DiOS needs a single operation that must be always provided by
the underlying platform: it needs to be able to transfer control to a particular
stack frame, whether within a single execution stack (to implement non-local
control flow) or to a different stack entirely (to implement task switching).

In some sense, this part of the platform support is the most complex and the
hardest to implement. Fortunately, the features that rely on the above opera-
tions, or rather the modules which implement those features, are all optional in
DiOS.

2.4 Auxiliary Interfaces

There are three other points of contact between DiOS and the underlying plat-
form. They are all optional or can be emulated using standard C features, but
if available, DiOS can use them to offer additional facilities mainly aimed at
software verification and testing with fault injection.

Indeterminate values. A few components in DiOS use, or can be configured to
use, values which are not a priori determined. The values are usually subject to
constraints, but within those constraints, each possible value will correspond to
a particular interaction outcome. This facility is used for simulating interactions
that depend on random chance (e.g. thread scheduling, incidence of clock ticks
relative to the instruction stream), or where the user would prefer to not provide
specific input values and instead rely on the verification or testing platform to
explore the possibilities for them (e.g. the content of a particular file).

Nondeterministic choice. A special case of the above, where the selection is
among a small number of discrete options. In those cases, a specific interface can
give better user experience or better tool performance. If the choice operator is
not available but indeterminate values are, they can be used instead. Otherwise,
the sequence of choices can be provided as an input by the user, or they can be
selected randomly. The choice operation is used for scheduling choices and for
fault injection (e.g. simulation of malloc failures).

Host system call execution. Most POSIX operating systems provide an indirect
system call facility, usually as the C function syscall(). If the platform makes
this function accessible from within the system under test, DiOS can use it to
allow real interactions between the user program and the host operating system
to take place and to record and then replay such interactions in a reproducible
manner.

Reproducible Execution of POSIX Programs with DiOS 339

3 Supported Platforms

In the previous section, we have described the target platform in generic, abstract
terms. In this section, we describe 3 specific platforms which can execute DiOS
and how they fit with the above abstract requirements.

3.1 DiVM

DiVM [17] is a verification-oriented virtual machine based on LLVM. A suite of
tools based on DiVM implement a number of software verification techniques,
including explicit-state, symbolic and abstraction-based model checking. DiVM
is the best supported of all the platforms, since it has been specifically designed
to delegate responsibility for features to a model operating system. All features
available in DiOS are fully supported on this platform.

In DiVM, the functionality that is not accessible through standard C (or
LLVM) constructs is provided via a set of hypercalls. These hypercalls form the
core of the platform interface in DiOS and whenever possible, ports to other
platforms are encouraged to emulate the DiVM hypercall interface using the
available platform-native facilities.

3.2 KLEE

KLEE [3] is a symbolic executor based on LLVM, suitable both for automated
test generation and for exhaustive exploration of bounded executions. Unlike
DiVM, KLEE by default allows the program under test to perform external calls
(including calls to the host operating system), with no isolation between different
execution branches. Additionally, such calls must be given concrete arguments,
since they are executed as native machine code (i.e. not symbolically). However,
if the program is linked to DiOS, both these limitations are lifted: DiOS code can
be executed symbolically like the rest of the program, and different execution
branches are isolated from each other.

However, there is also a number of limitations when KLEE is considered as a
platform for DiOS. The two most important are as follows:

1. KLEE does not currently support in-place resizing of memory objects. This is
a design limitation and lifting it requires considerable changes. A workaround
exists, but it is rather inefficient.

2. There is only one execution stack in KLEE, and there is no support for non-
local control flow. This prevents DiOS from offering threads, C++ exceptions
and setjmp when executing in KLEE.

Additionally, there is no supervisor mode and hence no isolation between the
kernel and the user program. However, in most cases, this is not a substantial
problem. Non-deterministic choice is available via indeterminate symbolic values,
and even though KLEE can in principle provide access to host syscalls, we have

340 P. Ročkai et al.

not evaluated this functionality in conjunction with DiOS. Finally, there are a
few minor issues that are, however, easily corrected:4

1. KLEE does not support the va arg LLVM instruction and relies on emulating
platform-specific mechanisms instead, which are absent from DiOS,

2. it handles certain C functions specially, including the malloc family, the
C++ new operator, the errno location and functions related to assertions
and program termination; this interferes with the equivalent functionality
provided by DiOS libc, and finally

3. global constructors present in the program are unconditionally executed
before the entry function; since DiOS invokes constructors itself, this KLEE
behaviour also causes a conflict.

3.3 Native Execution

The third platform that we consider is native execution, i.e. the DiOS kernel
is compiled into machine code, like a standard user-space program, to execute
as a process of the host operating system. This setup is useful in testing or in
stateless model checking, where it can provide superior execution speed at the
expense of reduced runtime safety. The user program still uses DiOS libc and
the program runs in isolation from the host system. The platform-specific code
in DiOS uses a few hooks provided by a shim which calls through into the host
operating system for certain services, like the creation and switching of stacks.
The design is illustrated in Fig. 1.

program under test

DiOS libc + kernel bitcode isolated executable

platform-specific code host shim host libc

Fig. 1. Architecture of the native execution platform.

Like in KLEE, the native port of DiOS does not have access to in-place resiz-
ing of memory objects, but it can be emulated slightly more efficiently using
the mmap host system call. The native port, however, does not suffer from the
single-stack limitations that KLEE does: new stacks can be created using mmap
calls, while stack switching can be implemented using host setjmp and longjmp
functions.5 The host stack unwinding code is directly used (the DiVM platform
code implements the same libunwind API that most POSIX systems also use).
4 A version of KLEE with fixes for those problems is available online, along with other

supplementary material, from https://divine.fi.muni.cz/2019/dios/.
5 The details of how this is done are discussed in the online supplementary material

at https://divine.fi.muni.cz/2019/dios/.

https://divine.fi.muni.cz/2019/dios/
https://divine.fi.muni.cz/2019/dios/

Reproducible Execution of POSIX Programs with DiOS 341

On the other hand, non-deterministic choice is not directly available. It can
be simulated by using the fork host system call to split execution, but this does
not scale to frequent choices, such as those arising from scheduling decisions.
In this case, a random or an externally supplied list of outcomes are the only
options.

4 Design and Architecture

This section outlines the structure of the DiOS kernel and userspace, their compo-
nents and the interfaces between them. We also discuss how the kernel interacts
with the underlying platform and the user-space libraries stacked above it. A
high-level overview of the system is shown in Fig. 2. The kernel and the user-
mode parts of the system under test can be combined using different methods;
even though they can be linked into a single executable image, this is not a
requirement, and the kernel can operate in a separate address space.

Like with traditional operating systems, kernel memory is inaccessible to
the program and libraries executing in user-mode. In DiOS, this protection is
optional, since not all platforms provide supervisor mode or sufficient memory
safety; however, it does not depend on address space separation between the
kernel and the user mode.

fault handler

file system

scheduler

other components

C99 IO

POSIX IO, syscalls

pthread

platform-specific code

non-IO C99 lib

malloc libc++

libc++abi

execution platform

kernel libc C++ support

Fig. 2. The architecture of DiOS.

4.1 Kernel Components

The decomposition of the kernel to a number of components serves multiple
goals: first is resource conservation – some components have non-negligible mem-
ory overhead even when they are not actively used. This may be because they
need to store auxiliary data along with each thread or process, and the under-
lying verification tool then needs to track this data throughout the execution or
throughout the entire state space. The second is improved portability to plat-
forms which do not provide sufficient support for some of the components, for
instance thread scheduling. Finally, it allows DiOS to be reconfigured to serve in
new contexts by adding a new module and combining it with existing code.

342 P. Ročkai et al.

The components of the kernel are organised as a stack, where upper compo-
nents can use services of the components below them. While this might appear to
be a significant limitation, in practice this has not posed substantial challenges,
and the stack-organised design is both efficient and simple. A number of pre-
made components are available, some in multiple alternative implementations:

Task scheduling and process management. There are 4 scheduler implementa-
tions: the simplest is a null scheduler, which only allows a single task and does
not support any form of task switching. This scheduler is used on KLEE. Second
is a synchronous scheduler suitable for executing software models of hardware
devices. The remaining two schedulers both implement asynchronous, thread-
based parallelism. One is designed for verification of safety properties of parallel
programs, while the other includes a fairness provision and is therefore more
suitable for verification of liveness properties.

In addition to the scheduler, there is an optional process management com-
ponent. It is currently only available on the DiVM platform, since it heavily relies
on operations which are not available elsewhere. It implements the fork system
call and requires one of the two asynchronous schedulers.

POSIX System Calls. While a few process-related system calls are implemented
in the components already mentioned, the vast majority is not. By far the largest
coherent group of system calls deals with files, directories, pipes and sockets, with
file descriptors as the unifying concept. A memory-backed filesystem module
implements those system calls by default.

A smaller group of system calls relate to time and clocks and those are imple-
mented in a separate component which simulates a system clock. The specific
simulation mode is configurable and can use either indeterminate values to shift
the clock every time it is observed, or a simpler variant, where ticks of fixed
length are performed based on the outcome of a nondeterministic choice.

The system calls covered by the filesystem and clock modules can be alter-
nately provided by a proxy module, which forwards the calls to the host oper-
ating system, or by a replay module which replays traces captured by the proxy
module.

Auxiliary modules. There is a small number of additional modules which do not
directly expose functionality to the user program. Instead, they fill in support
roles within the system. The two notable examples are the fault handler and the
system call stub component.

The fault handler takes care of responding to error conditions indicated by the
underlying platform. It is optional, since not all platforms can report problems
to the system under test. If present, the component allows the user to configure
which problems should be reported as counterexamples and which should be
ignored. The rest of DiOS also uses this component to report problems detected
by the operating system itself, e.g. the libc uses it to flag assertion failures.

The stub component supplies fallback implementations of all system calls
known to DiOS. This component is always at the bottom of the kernel

Reproducible Execution of POSIX Programs with DiOS 343

configuration stack – if any other component in the active configuration imple-
ments a particular system call, that implementation is used. Otherwise, the
fallback is called and raises a runtime error, indicating that the system call is
not supported.

4.2 Thread Support

One of the innovative features of DiOS is that it implements the POSIX thread-
ing API using a very simple platform interface. Essentially, the asynchronous
schedulers in DiOS provide an illusion of thread-based parallelism to the pro-
gram under test, but only use primitives associated with coroutines – creation
and switching of execution stacks (cf. Sect. 2.3).

However, an additional external component is required: both user and library
code needs to be instrumented with interrupt points, which allow thread preemp-
tion to take place. Where to insert them can be either decided statically (which
is sufficient for small programs) or dynamically, allowing the state space to be
reduced using more sophisticated techniques.6 The implementation of the inter-
rupt point is, however, supplied by DiOS: only the insertion of the function call
is done externally.

The scheduler itself provides a very minimal internal interface – the remain-
der of thread support is implemented in user-space libraries (partly libc and
partly libpthread, as is common on standard POSIX operating systems). Even
though the implementation is not complete (some of the rarely-used functions are
stubbed out), all major areas are well supported: thread creation and cancella-
tion, mutual exclusion, condition variables, barriers, reader-writer locks, interac-
tion with fork, and thread-local storage are all covered. Additionally, both C11
and C++11 thread APIs are implemented in terms of the pthread interface.

4.3 System Calls

The system call interface of DiOS is based on the ideas used in fast system call
implementations on modern processors.7 A major advantage of this approach is
that system calls can be performed using standard procedure calls on platforms
which do not implement supervisor mode.

The list of system calls available in DiOS is fixed:8 in addition to the kernel-
side implementation, which may or may not be available depending on the active

6 In DIVINE [1], a model checker based on DiVM, interrupt points are dynamically
enabled when the executing thread performs a visible action. Thread identification
is supplied by the scheduler in DiOS using a platform-specific (hypercall) interface.

7 For instance, on contemporary x86-64 processors, this interface is available via the
syscall and sysret instructions.

8 The list of system calls is only fixed relative to the host operating system. To allow
the system call proxy component to function properly, the list needs to match what
is available on the host. For instance, creat, uname or fdatasync are system calls
on Linux but standard libc functions on OpenBSD.

344 P. Ročkai et al.

configuration, each system call has an associated user-space C function, which
is declared in one of the public header files and implemented in libc.

The available system calls cover thread management, sufficient to imple-
ment the pthread interface (the system calls themselves are not standardised
by POSIX), the fork system call, kill and other signal-related calls, various pro-
cess and process group management calls (getpid, getsid, setsid, wait, and
so on). Notably, exec is currently not implemented, and it is not clear whether
adding it is feasible on any of the platforms. The thread- and process- related
functionality was described in more detail in Sect. 4.2.

Another large group of system calls cover files and networking, including the
standard suite of POSIX calls for opening and closing files, reading and writ-
ing data, creating soft and hard links. This includes the *at family introduced
in POSIX.1 which allows thread-safe use of relative paths. The standard BSD
socket API is also implemented, allowing threads or processes of the program
under test to use sockets for communication. Finally, there are system calls for
reading (clock gettime, gettimeofday) and setting clocks (clock settime,
settimeofday).

4.4 The C Library

DiOS comes with a complete ISO C99 standard library and the C11 thread
API. The functionality of the C library can be broken down into the following
categories:

– Input and output. The functionality required by ISO C is implemented in
terms of the POSIX file system API. Number conversion (for formatted input
and output) is platform independent and comes from pdclib.

– The string manipulation and character classification routines are completely
system-independent. The implementations were also taken from pdclib.

– Memory allocation: new memory needs to be obtained in a platform-
dependent way. Optionally, memory allocation failures can be simulated using
a non-deterministic choice operator. The library provides the standard assort-
ment of functions: malloc, calloc, realloc and free.

– Support for errno: this variable holds the code of the most recent error
encountered in an API call. On platforms with threads (like DiOS), errno
is thread-local.

– Multibyte strings: conversion of Unicode character sequences to and from
UTF-8 is supported.

– Time-related functions: time and date formatting (asctime) is supported, as
is obtaining and manipulating wall time. Interval timers are currently not
simulated, although the relevant functions are present as simple stubs.

– Non-local jumps. The setjmp and longjmp functions are supported on DiVM
and native execution, but not in KLEE.

In addition to ISO C99, there are a few extensions (not directly related to
the system call interface) mandated by POSIX for the C library:

Reproducible Execution of POSIX Programs with DiOS 345

– Regular expressions. The DiOS libc supports the standard regcomp &
regexec APIs, with implementation based on the TRE library.

– Locale support: A very minimal support for POSIX internationalisation and
localisation APIs is present. The support is sufficient to run programs which
initialise the subsystem.

– Parsing command line options: the getopt and getopt long functions exist to
make it easy for programs to parse standard UNIX-style command switches.
DiOS contains an implementation derived from the OpenBSD code base.

Finally, C99 mandates a long list of functions for floating point math, includ-
ing trigonometry, hyperbolic functions and so on. A complete set of those func-
tions is provided by DiOS via its libm implementation, based on the OpenBSD
version of this library.

4.5 C++ Support Libraries

DiOS includes support for C++ programs, upto and including the C++17 stan-
dard. This support is based on the libc++abi and libc++ open-source libraries
maintained by the LLVM project. The versions bundled with DiOS contain only
very minor modifications relative to upstream, mainly intended to reduce pro-
gram size and memory use in verification scenarios.

Notably, the exception support code in libc++abi is unmodified and works
both in DiVM and when DiOS is executing natively as a process of the host
operating system. This is because libc++abi uses the libunwind library to
implement exceptions. When DiOS runs natively, the host version of libunwind
is used, the same as with setjmp. When executing in DiVM, DiOS supplies its
own implementation of the libunwind API, as described in [20].

4.6 Binary Compatibility

When dealing with verification of real-world software, the exact layout of data
structures becomes important, mainly because we would like to generate native
code from verified bitcode files (when using either KLEE or DiVM). To this
end, the layouts of relevant data structures and values of relevant constants are
automatically extracted from the host operating system9 and then used in the
DiOS libc. As a result, the native code generated from the verified bitcode
can be linked to host libraries and executed as usual. The effectiveness of this
approach is evaluated in Sect. 5.3.

9 This extraction is performed at DiOS build time, using hostabi.pl, which is part
of the DiOS source distribution. The technical details are discussed in the online
supplementary material.

346 P. Ročkai et al.

user program native code user

DiOS headers bitcode host libc

DiOS libraries DiVM bitcode verification

Fig. 3. Building verified executables with DiOS.

5 Evaluation

We have tested DiOS in a number of scenarios, to ensure that it meets the goals
that we describe in Sect. 1.2. The first goal – modularity – is hard to quantify in
isolation, but it was of considerable help in adapting DiOS for different use cases.
We have used DiOS with success in explicit-state model checking of parallel pro-
grams [1], symbolic verification of both parallel and sequential programs [12], for
verification of liveness (LTL) properties of synchronous C code synthesized from
Simulink diagrams, and for runtime verification of safety properties of software
[9]. DiOS has also been used for recording, replaying and fuzzing system call
traces [8].

5.1 Verification with DiVM

In this paper, we report on 3 sets of tests that we performed particularly to eval-
uate DiOS. The first is a set of approximately 2200 test programs10 which cover
various aspects of the entire verification platform. Each of them was executed in
DiOS running on top of DiVM and checked for a number of safety criteria: lack
of memory errors, use of uninitialized variables, assertion violations, deadlocks
and arithmetic errors. In the case of parallel programs (about 400 in total), all
possible schedules were explored. Additionally, approximately 700 of the test
programs depend on one or more input values (possibly subject to constraints),
in which case symbolic methods or abstraction are used to cover all feasible paths
through the program. The tests were performed on two host operating systems:
Linux 4.19 with glibc 2.29 and on OpenBSD 6.5, with no observed differences
in behaviour.

The majority (1300) of the programs are written in C, the remainder in C++,
while a third of them (700) were taken from the SV-COMP [2] benchmark suite.
Roughly half of the programs contain a safety violation, the location of which is
annotated in the source code. The results of the automated analysis are in each
case compared against the annotations. No mismatches were found in the set.

10 All test programs are available online at http://divine.fi.muni.cz/2019/dios/, includ-
ing scripts to reproduce the results reported in this and in the following sections.

http://divine.fi.muni.cz/2019/dios/

Reproducible Execution of POSIX Programs with DiOS 347

5.2 Portability

To evaluate the remaining ports of DiOS, we have taken a small subset (370
programs, or 17%) of the entire test suite and executed the programs on the
other two platforms currently supported by DiOS. The subset was selected to
fall within the constraints imposed by the limitations of our KLEE port – in
particular, lack of support for threads and for C++ exceptions. We have focused
on filesystem and socket support (50 programs) and exercising the standard
C and C++ libraries shipped with DiOS. The test cases have all completed
successfully, and KLEE has identified all the annotated safety violations in these
programs.

5.3 API and ABI Coverage and Compatibility

Finally to evaluate our third goal, we have compiled a number of real-world
programs against DiOS headers and libraries and manually checked that they
behave as expected when executed in DiOS running on DiVM, fully isolated from
the host operating system. The compilation process itself exercises source-level
(API) compatibility with the host operating system.

We have additionally generated native code from the bitcode that resulted
from the compilation using DiOS header files (see Fig. 3) and which we confirmed
to work with DiOS libraries. We then linked the resulting machine code with the
libc of the host operating system (glibc 2.29 in this case). We have checked that
the resulting executable program also behaves as expected, confirming a high
degree of binary compatibility with the host operating system. The programs
we have used in this test were the following (all come from the GNU software
collection):

– coreutils 8.30, a collection of 107 basic UNIX utilities, out of which 100
compiled successfully (we have tested a random selection of those),

– diffutils 3.7, programs for computing differences between text files and
applying the resulting patches – the diffing programs compiled and diff3
was checked to work correctly, while the patch program failed to build due
to lack of exec support on DiOS,

– sed 4.7 builds and works as expected,
– make 4.2 builds and can parse makefiles, but it cannot execute any rules due

to lack of exec support,
– the wget download program failed to build due to lack of gethostbyname

support, the cryptographic library nettle failed due to deficiencies in our
compiler driver and mtools failed due to missing langinfo.h support.

6 Conclusions and Future Work

We have presented DiOS, a POSIX-compatible operating system designed to offer
reproducible execution, with special focus on applications in program verifica-
tion. The larger goal of verifying unmodified, real-world programs requires the

348 P. Ročkai et al.

cooperation of many components, and a model of the operating system is an
important piece of the puzzle. As the case studies show, the proposed approach
is a viable way forward. Just as importantly, the design goals have been ful-
filled: we have shown that DiOS can be successfully ported to rather dissimilar
platforms, and that its various components can be disabled or replaced with
ease.

Implementation-wise, there are two important future directions: further
extending the coverage and compatibility of DiOS with real operating systems,
and improving support for different execution and software verification plat-
forms. In terms of design challenges, the current model of memory management
for multi-process systems is suboptimal, and there are currently no platforms on
which the exec family of system calls could be satisfactorily implemented. We
would like to rectify both shortcomings in the future.

References

1. Baranová, Z., et al.: Model checking of C and C++ with DIVINE 4. In: D’Souza, D.,
Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 201–207. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 14

2. Beyer, D.: Reliable and reproducible competition results with BenchExec and wit-
nesses (Report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9 55

3. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic genera-
tion of high-coverage tests for complex systems programs. In: OSDI, pp. 209–224.
USENIX Association (2008)

4. Chirigati, F., Shasha, D., Freire, J.: Reprozip: using provenance to support com-
putational reproducibility. In: Proceedings of the 5th USENIX Workshop on the
Theory and Practice of Provenance, TaPP 2013, Berkeley, CA, USA, pp. 1:1–1:4.
USENIX Association (2013). http://dl.acm.org/citation.cfm?id=2482949.2482951

5. Frew, J., Metzger, D., Slaughter, P.: Automatic capture and reconstruction of com-
putational provenance. Concurr. Comput. Pract. Exper. 20(5), 485–496 (2008).
https://doi.org/10.1002/cpe.v20:5. ISSN 1532–0626

6. Inverso, O., Nguyen, T.L., Fischer, B., Torre, S.L., Parlato, G.: Lazy-CSeq: a
context-bounded model checking tool for multi-threaded C-programs. In: 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 807–812 (2015). https://doi.org/10.1109/ASE.2015.108

7. Joshi, S., Orso, A.: Scarpe: a technique and tool for selective capture and replay
of program executions. In: 2007 IEEE International Conference on Software Main-
tenance, pp. 234–243 (2007). https://doi.org/10.1109/ICSM.2007.4362636. ISBN
978-1-4244-1256-3

8. Kejstová, K.: Model checking with system call traces. Master’s thesis, Masarykova
univerzita, Fakulta informatiky, Brno (2019). http://is.muni.cz/th/tukvk/

9. Kejstová, K., Ročkai, P., Barnat, J.: From model checking to runtime verification
and back. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 225–240.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 14

https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-49674-9_55
http://dl.acm.org/citation.cfm?id=2482949.2482951
https://doi.org/10.1002/cpe.v20:5
https://doi.org/10.1109/ASE.2015.108
https://doi.org/10.1109/ICSM.2007.4362636
http://is.muni.cz/th/tukvk/
https://doi.org/10.1007/978-3-319-67531-2_14

Reproducible Execution of POSIX Programs with DiOS 349

10. Kong, S., Tillmann, N., de Halleux, J.: Automated testing of environment-
dependent programs-a case study of modeling the file system for Pex. In: 2009
Sixth International Conference on Information Technology: New Generations, pp.
758–762. IEEE (2009). https://doi.org/10.1109/ITNG.2009.80

11. Krekel, H., Oliveira, B., Pfannschmidt, R., Bruynooghe, F., Laugher, B., Bruhin,
F.:. Pytest 4.5 (2004). https://github.com/pytest-dev/pytest

12. Lauko, H., Štill, V., Ročkai, P., Barnat, J.: Extending DIVINE with symbolic ver-
ification using SMT. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.)
TACAS 2019. LNCS, vol. 11429, pp. 204–208. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17502-3 14. ISBN 978-3-030-17502-3

13. Leungwattanakit, W., Artho, C., Hagiya, M., Tanabe, Y., Yamamoto, M., Taka-
hashi, K.: Modular software model checking for distributed systems. IEEE Trans.
Softw. Eng. 40(5), 483–501 (2014). https://doi.org/10.1109/TSE.2013.49

14. Mackinnon, T., Freeman, S., Craig, P.: Extreme Programming Examined. Chapter
Endo-testing: Unit Testing with Mock Objects, pp. 287–301. Addison-Wesley
Longman Publishing Co. Inc., Boston (2001). http://dl.acm.org/citation.cfm?
id=377517.377534. ISBN 0-201-71040-4

15. Mostafa, S., Wang, X.: An empirical study on the usage of mocking frameworks in
software testing. In: 2014 14th International Conference on Quality Software, pp.
127–132 (2014). https://doi.org/10.1109/QSIC.2014.19

16. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding
and reproducing heisenbugs in concurrent programs. In: Symposium on Operating
Systems Design and Implementation, USENIX (2008)

17. Ročkai, P., Štill, V., Černá, I., Barnat, J.: DiVM: model checking with LLVM
and graph memory. J. Syst. Softw. 143, 1–13 (2018). https://doi.org/10.1016/j.
jss.2018.04.026. ISSN 0164–1212

18. Wachter, B., Kroening, D., Ouaknine, J.: Verifying multi-threaded software with
impact. In: Formal Methods in Computer-Aided Design, pp. 210–217. IEEE (2013).
https://doi.org/10.1109/FMCAD.2013.6679412

19. Yang, Y., Chen, X., Gopalakrishnan, G.: Inspect: a runtime model checker for
multithreaded c programs. Technical report (2008)

20. Štill, V., Ročkai, P., Barnat, J.: Using off-the-shelf exception support components
in C++ verification. In: Software Quality, Reliability and Security (QRS), pp. 54–
64 (2017)

https://doi.org/10.1109/ITNG.2009.80
https://github.com/pytest-dev/pytest
https://doi.org/10.1007/978-3-030-17502-3_14
https://doi.org/10.1007/978-3-030-17502-3_14
https://doi.org/10.1109/TSE.2013.49
http://dl.acm.org/citation.cfm?id=377517.377534
http://dl.acm.org/citation.cfm?id=377517.377534
https://doi.org/10.1109/QSIC.2014.19
https://doi.org/10.1016/j.jss.2018.04.026
https://doi.org/10.1016/j.jss.2018.04.026
https://doi.org/10.1109/FMCAD.2013.6679412

Program Analysis

Using Relational Verification for Program
Slicing

Bernhard Beckert1(B), Thorsten Bormer1, Stephan Gocht2, Mihai Herda1(B),
Daniel Lentzsch1, and Mattias Ulbrich1(B)

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
{beckert,herda,ulbrich}@kit.edu

2 KTH Royal Institute of Technology, Stockholm, Sweden

Abstract. Program slicing is the process of removing statements from
a program such that defined aspects of its behavior are retained. For pro-
ducing precise slices, i.e., slices that are minimal in size, the program’s
semantics must be considered. Existing approaches that go beyond a
syntactical analysis and do take the semantics into account are not
fully automatic and require auxiliary specifications from the user. In this
paper, we adapt relational verification to check whether a slice candidate
obtained by removing some instructions from a program is indeed a valid
slice. Based on this, we propose a framework for precise and automatic
program slicing. As part of this framework, we present three strategies
for the generation of slice candidates, and we show how dynamic slicing
approaches – that interweave generating and checking slice candidates –
can be used for this purpose. The framework can easily be extended with
other strategies for generating slice candidates. We discuss the strengths
and weaknesses of slicing approaches that use our framework.

Keywords: Program slicing · Relational verification

1 Introduction

Program slicing, introduced by Weiser [40], is a technique to reduce the size of
a program while preserving a certain part of its behavior. Different kinds of slic-
ing approaches have been developed [31]. A static slice preserves the program’s
behavior for all inputs, while a dynamic slice preserves it only for a particular
single input. A backward slice keeps only those parts of the program that influ-
ence the value of certain variables at a certain location in the program, while
a forward slice keeps those program parts whose behavior is influenced by the
variables’ values. The form of slicing introduced by Weiser is now known as static
backward slicing and is the form of slicing which is pursued in this paper. Slicing
techniques can be used to optimize the results of compilers. Slicing is also a
powerful tool for challenges in software engineering such as code comprehension,
debugging, refactoring, and fault localization [8], as well as in information-flow
security [19].
c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 353–372, 2019.
https://doi.org/10.1007/978-3-030-30446-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-30446-1_19

354 B. Beckert et al.

Fig. 1. (a) Original program, (b) slice w.r.t. variable x at line 11, (c) incorrect slice
candidate

All applications of slicing can benefit from small and precise slices. Most
existing slicing approaches, however, are only syntactical, i.e., they do not take
the semantics of the various program operations into account. On the other hand,
many existing approaches that do take the semantics into account are not fully
automatic and require auxiliary specifications from the user (e.g., precomputed
or user-provided functional loop invariants are used in [4,22]).

Figure 1 shows an example of static backward slicing. The goal is to slice the
program in Fig. 1a w.r.t. a slicing criterion which requires the value of x at the
statement in line 11 to be preserved. A valid slice for this criterion is shown in
Fig. 1b: The assignment in line 6 of the program has been removed. This line
has no effect on the value of x, as it is always set to 42 in the last loop iteration.
In fact, the statement is not completely removed but replaced with an effect
free skip statement to keep the program’s structure similar to that of the input
program. To show that this program is a valid slice, a syntactical analysis is
insufficient, as it would not be able to see that in the last iteration variable x
is overwritten. A semantic analysis is required to determine that the last loop
iteration always executes the else-branch. The slicing procedure needs to reason
about loops and path conditions, and in this paper we use relational verification
for this purpose.

Relational verification approaches that consider the program’s semantics and
automatically reason about loops have become available in the last couple of
years, e.g. [13,24,38]. These approaches can efficiently and automatically show
the equivalence of two programs – provided that the two programs have a similar
structure. Since slices are constructed by removing program statements, they
have a similar structure to the original program and are a good use case for
relational verification. In this paper we make the following contributions:

1. We provide an extensible framework for precise and automatic slicing of pro-
grams written in a low level intermediate representation language, as well as
a semantics therefor. The slicing approaches using this framework need no
(auxiliary) specification other than the slicing criterion.

2. We adapt a relational verifier to check if a slice candidate obtained by remov-
ing instructions from a program is a valid slice.

3. We adapt a dynamic slicing algorithm and use it to generate slice candidates.

Using Relational Verification for Program Slicing 355

The feasibility of our framework has been shown in a tool paper [5] describing an
implementation. Here, we focus on the theoretical background of the framework.

Structure of the Paper. In Sect. 2, we formally describe the programs which we
handle and define what a valid slice is. We introduce relational verification in
Sect. 3 and extend it to prove the validity of a slice candidate. The framework
itself, as well as three slicing approaches based on this framework are described
in Sect. 4. Section 5 consists of a discussion of the framework. We present related
work in Sect. 6 and conclude in Sect. 7.

2 Static Backward Slicing

Static backward slicing as introduced by Weiser [40] reduces a program by remov-
ing instructions in a way that preserves a specified subset of the program’s
behavior. The slicing criterion – the specification of the behavioral aspects that
must be retained – is given in form of a set of program variables and a location
within the program. Instructions may be removed if and only if they have no
effect (a) on the value of the specified program variables at the specified location
whenever it is reached and (b) on how often the location is reached.

High level programming languages are feature rich, increasing the effort
needed for a program analysis. A solution for dealing with language complexity
is to perform the analysis on a simpler, intermediate representation. While the
implementation of our slicing framework [5] works on LLVM IR [1] programs,
to keep the definitions in this paper easy to understand, we here use a language
whose computational model is similar to that of LLVM IR but that has only
four instructions: skip, halt , assign, and jnz . We formalize the notions of slice
candidate, slicing criterion and valid slice using a computation model based on
a register machine with an unbounded number of registers. Thus we do not have
high-level constructs such as if or while statements but instead branching and
looping are done using conditional jump instructions. The advantage of using
such a language is the fact that the control flow is reduced to jumps, and, in
the context of slicing, a program remains executable no matter what statements
are removed. Figure 2 shows the examples from Fig. 1 written in our simple IR
language. The criterion location is now 12, the criterion variable is still x.

Fig. 2. The three examples from Fig. 1 translated into our IR language.

356 B. Beckert et al.

Fig. 3. The semantics of our programming language for a fixed program P

We will now define the semantics of our IR language. Let Var be the set of
program variables, S the set of states, where a state is a function s : Var → N,
and pc ∈ N the program counter. An instruction I is an atomic operation that
can be executed by the machine. Let I be the set of all four instructions provided
by our IR language. When an instruction is executed, the system changes its state
and program counter as determined by the transition function ρ : S × N × I →
S×N. A program P is a finite sequence of instructions: 〈I0, I1, . . . In〉. We denote
a location i of program P as P [i] with P [i] = Ii for any i ∈ {0, 1, . . . n} with
0 ≤ i ≤ len(P) − 1, where len(P) is the length of the program.

The semantics of the four instructions in our IR language is shown in Fig. 3.
The instruction skip increments the program counter and has no other effects.
To obtain a slice candidate, instructions in the original program are replaced
with skip. To model the termination of programs we introduce a special state,
end , such that once the system reaches this state, it will remain in this state
forever. The instruction halt is used to bring the system to the end state. The
assignment instruction, assign, takes a variable v and an integer expression exp
as arguments. After the execution of this instruction, the value of the variable
v in the new state is updated with the result x of the expression exp and the
program counter is incremented. To obtain precise slices, we restrict exp to only
one operator. The conditional jump instruction, jnz , allows the register machine
to support branching and looping. The instruction gets a variable v and an
integer expression target as arguments. If the variable v evaluates to zero in
the state in which jnz is executed, then the program counter is incremented,
otherwise the program counter is set to the value of target . We will now define
program traces:

Definition 1 (Program trace). A trace T of a program P is a possibly infinite
sequence of state and program counter pairs 〈(s0, pc0), (s1, pc1), . . .〉 such that:

1. pc0 = 0
2. For each trace index i but the last, (si, pci) � (si+1, pci+1)

Using Relational Verification for Program Slicing 357

We use T s[i] and T pc [i] to denote respectively the ith state and the ith
program counter of a trace. Also we use len(T) ∈ N ∪ {ω} to denote the length
of trace T ; note that it can be infinite. We define F l

T to be the sequence comprised
of those states T s[i] for which T pc [i] = l, in the same order as they appear in T s.
We define the notions of a slicing criterion, slice candidate and valid slice:

Definition 2 (Slicing Criterion). A slicing criterion C for a program P is a
pair (iC ,VarC) where iC is a location in P and VarC ⊆ Var.

Definition 3 (Slice Candidate). A slice candidate for a program Po is a pro-
gram PL that is constructed by replacing the instructions at some locations in
Po with the skip instruction. That is, given a set L of locations of program Po:

PL[i] =

{
skip, i ∈ L

Po[i], i /∈ L

Definition 4 (Valid Slice). Given a slicing criterion (iC ,VarC), a slice can-
didate Ps for a program Po is a valid slice for Po if, for any two traces Ts of Ps

and To of Po with Ts[0] = To[0], the following holds:

1. len(F iC
To

) = len(F iC
Ts

),
2. F iC

To
[i](v) = F iC

Ts
[i](v) for every v ∈ VarC and every i with 0 ≤ i < len(F iC

To
).

The first requirement ensures that the criterion location is reached in both
the original program and the slice candidate the same number of times. The
second requirement ensures that the criterion variables have the same values
every time the criterion location is reached in the original program and in the
slice candidate.

Weiser [40] deals with the feature-richness of programming languages by
working on flow graphs, and slices are constructed by removing nodes from the
flow-graph. In his approach, however, only nodes with a single successor can be
removed while we can remove conditional jumps. Definition 4 is similar to the
concept of observation windows in [40]; however, we do not require the original
program to terminate. Thus, we extend the definition of Weiser to nonterminat-
ing programs, as opposed to many other slicing approaches (as stated in [34])
that are not termination sensitive. Compared to other extensions of the defini-
tion of Weiser, e.g. the one in [3], Definition 4 allows for slices which are not
quotients of the original program, i.e., it allows the removal of conditional jumps
while preserving the instructions which are in the program locations between
the conditional jump and the jump target. The program

0 assign x 42
1 halt

is thus a valid slice of the program shown in Fig. 2a, according to Definition 4.
Not requiring the slice to be a quotient allows the removal of additional state-
ments. However, the structure of a slice may differ significantly from that of the

358 B. Beckert et al.

original program. When using slicing with the goal of program optimization a
further reduction of the program is a clear advantage. If the goal is program com-
prehension, however, then the slice not being a quotient of the original program
presents both advantages and disadvantages. One the one hand, a significantly
different structure of the slice compared to that of the original program, may
cause the user to have difficulties understanding the behavior of the original pro-
gram. On the other hand, the fact that some conditional jump statements are
not in the slice may indicate to the user that certain program branches are irrel-
evant with respect to the given slicing criterion and help him better understand
the program behavior.

3 Relational Verification of Slice Candidates

Relational verification is an approach for establishing a formal proof that if a
relational precondition holds on two respective pre-states of two programs P and
Q then the respective post-states of P and Q will fulfill a relational postcondition.
For two complex programs that yet are similar to each other, much less effort is
required to prove their equivalence than to prove that they both satisfy a complex
functional specification. The effort for proving equivalence mainly depends on
the difference between the programs and not on their overall size and complexity.
This is particularly beneficial for the verification of slice candidates, because the
candidates are obtained by replacing program instructions with skip and thus
have a structure similar to the original program.

We formally define the property that is checked by a relational verifier. To
that end, we call a predicate π a transition predicate for a program P if for any
two states, s and s′, π(s, s′) holds if and only if program P when started in state
s terminates in state s′. Thus, for two programs, P and Q, a relational verifier
checks the validity of the following proof obligation:

Pre(sP , sQ) ∧ π(sP , s′
P) ∧ ρ(sQ, s′

Q) → Post(s′
P , s′

Q),

where π and ρ are transition predicates for P and Q, respectively, and Pre and
Post are respectively the relational precondition and postcondition.

However, a relational verifier that only checks this property is of limited use
for checking slice candidates. For the case in which the location of the slicing
criterion refers to the post-state (in Fig. 2a that corresponds to location 12 that
contains the halt instruction), relational verification can be used to check whether
a slice candidate is a valid slice. For a slice candidate Q obtained from a program
P , this is done by setting Pre to require equal pre-states sP and sQ and Post to
require the criterion variables to evaluate to the same values in the post-states
s′
P and s′

Q. However, a successful proof shows the validity of the slice candidates
only for inputs for which both P and Q terminate, as the transition predicates
may be false for certain pre-states. In the rest of this section we show how a
relational verifier can be adapted to support slicing on locations other than the
end of the program and how to use relational verification to also show that

Using Relational Verification for Program Slicing 359

Fig. 4. The CFG for the program in Fig. 2a

the program and candidate run in lockstep (i.e. the two executions run through
corresponding states), ensuring thus mutual termination.

Our slicing framework is based on the LLRêve [14,24] relational verifier,
which works on programs written in LLVM IR. It analyzes the control flow graphs
(CFGs) of the programs and reduces the validity of the relational specification
to the satisfiability of a set M of Horn-constraints over uninterpreted predicates.
The satisfiability of the Horn-constraints in M can be checked with state of the
art SMT solvers such as Z3 [32] and Eldarica [35].

If the analyzed programs contain loops, their CFGs contain cycles, which con-
stitute a challenge for verification because the number of iterations is unknown.
LLRêve handles cycles by using so called synchronization points, at which the
program state is abstracted by means of predicates. The paths between synchro-
nization points are cycle free and can be handled easily. Synchronization points
are defined by labeling basic blocks of the CFG with unique numbers. The entry
and the exit of a function are considered special synchronization points B and,
respectively, E. Additionally, the user can also define synchronization points at
any location of the analyzed programs. The user must ensure that there is a syn-
chronization point for each basic block of the CFG of the two programs, and has
to match them appropriately. In general, it is difficult to find matching synchro-
nization points for two programs; however, in the case of program slicing this
can be done automatically by keeping the CFG of the original program. Figure 4
shows the CFG for the program in Fig. 2a and each basic block is labeled with
the number of a synchronization point. In the CFG of the slice in Fig. 2b, the
assign instruction in block 4 is replaced with skip, the synchronization points
remain the same, and matching them is trivial. If a conditional jump is replaced
with skip, we only remove the edge to the block containing the jump target, thus
keeping the same synchronization points for the slice candidate.

Given one synchronization point per basic block, the CFG can be viewed as
a set of linear paths 〈n, π,m〉, where n and m denote the starting and end syn-
chronization points of the path, and π(s, s′) is the transition predicate between
the two synchronization points, with s and s′ being the states before and, respec-
tively, after the transition. Because the linear paths consists of assignments only,
the transition predicates can be easily computed. For two programs with a sim-
ilar structure, it is expected that there exist coupling predicates that describe

360 B. Beckert et al.

B n1 n2 . . . E

B n1 n2 . . . E

Pre Cn1 Cn2 Post

Fig. 5. Illustration of coupled control flow of two fully synchronized programs

the relation between the program states at two corresponding synchronization
points. For two programs P and Q we introduce an uninterpreted coupling pred-
icate Cn(sp, sq) for each synchronization point n, as shown in Fig. 5. The rela-
tional precondition Pre and postcondition Post are the coupling predicates for
the special synchronization points B and E, respectively. The set M consists of
Horn-constraints over these coupling predicates. For two linear paths between
synchronization points n and m in programs P and Q characterized by the two
transition predicates π and ρ, respectively, this constraint is added to M :

Cn(sp, sq) ∧ π(sp, s′
p) ∧ ρ(sq, s′

q) → Cm(s′
p, s

′
q) (1)

To ensure that there is no divergence from lockstep, for every two paths 〈n, π,m〉
and 〈n, ρ, k〉 in programs P and Q, respectively, with m
= k,m
= n, n
= k the
following constraint is added to M :

Cn(sp, sq) ∧ π(sp, s′
p) ∧ ρ(sq, s′

q) → false (2)

Note, that even though the synchronization points m and k do not appear
in Eq. 2, they respectively determine the transition predicates π and ρ.

Theorem 1. Let P and Q be programs specified with the relational precondition
Pre and postcondition Post, for which matching synchronization points have been
found. Let M be the set of constraints generated according to 1 and 2. If M is
satisfiable, then for every pair of pre-states satisfying Pre:

1. The synchronization points are reached in the same order in P and Q,
2. If P terminates, then so does Q and Post holds for the two post-states.

Proof. For distinct synchronization points n,m, k, the fact that constraint 2 has
a model implies that (case 1) π or ρ is false, meaning that the execution of P or
Q cannot reach respectively m or k from n, or (case 2) Cn is false meaning that
n is not reachable in P or Q, or per (chaining of) constraint 1 the pre-states do
not satisfy the precondition. Thus, P and Q reach the synchronization points
(including E, thus implying mutual termination) in the same order. For two
synchronization points n,m, the fact that constraint 1 has a model implies that
(case 1) m cannot be reached from n in P or Q, or (case 2) Cn is false and
n is not reachable or the pre-states do not satisfy the precondition, or (case 3)
starting in n with Cn holding, both programs reach m and Cm holds there. The
constraints generated according to 1 are thus interpolants that show the validity
of the relational specification. ��

Using Relational Verification for Program Slicing 361

To check the validity of a slice candidate for the cases in which the criterion
location is in the middle of the program, we adapt the constraints generated by
the relational specification. The relational precondition Pre still requires equal
pre-states, while the relational postcondition Post is set to true. We ensure a
synchronization point nC exists in the program and slice candidate at the loca-
tion of the criterion instruction. For example Fig. 2a nC is the synchronization
point 5 in Fig. 4. If the criterion location is part of a basic block with more
than one instruction, we split that basic block up such that we obtain a block
containing only the criterion location. For a program P with a slice candidate
Q and a given slicing criterion (iC , VC) with a synchronization point nC we add
the following constraint:

CnC
(sP , sQ) → ∀x ∈ VC sP (x) = sQ(x) (3)

Theorem 2. Let P be a program and Q a slice candidate specified with the
relational precondition Pre requires equal pre-states and postcondition Post is
true. Let M be the set of constraints generated according to 1, 2 and 3. If M is
satisfiable, then for every pair of pre-states that fulfill Pre:

1. The criterion location is reached equally often in P and Q,
2. At the i-th time (for i ≥ 1) the criterion instruction is reached in P and in

Q, the criterion variables are equal in P and Q,
3. If P terminates, then so does Q.

Proof. From Theorem 1 results that P and Q run in lockstep with respect to the
synchronization points. The instruction at the criterion location has its own syn-
chronization point. As a consequence of this, the criterion instruction is executed
in both P and Q the same number of times and the candidate terminates iff the
original program terminates. Due to Constraint 3, the coupling predicate corre-
sponding to the criterion locations ensures that each time the criterion location
is reached, the criterion variables have the same values. ��

Thus, for a program P with a slice candidate Q and a slicing criterion
(iC , VC), if the set M containing the constraints 1, 2 and 3 for every synchro-
nization point is satisfiable, then Q is a valid slice according to Definition 4.
Moreover, if the set M is unsatisfiable, then the SMT solver returns an unsatis-
fiability proof that contains a counterexample with two concrete inputs for which
the slice property is violated – provided the SMT solver does not time out.

4 A Framework for Automatic Slicing

Being able to use relational verification to check whether a slice candidate is
valid, we construct a framework for automatic program slicing. The framework
consists of two components which interact with each other. The first compo-
nent, the candidate generation engine, generates the slice candidates and sends
them to the second component, the relational verifier (in this case LLRêve).

362 B. Beckert et al.

The relational verifier transmits one of three possible answers to the candidate
generation engine: (1) the candidate is a valid slice, (2) the candidate is not valid
along with an input that leads to a violation of the slice property (Definition 4),
or (3) a timeout. The candidate generation engine can use the answer to adapt
its candidate generation strategy.

An advantage of the framework is that the candidate generation engine does
not need to care about the correctness of the slice candidates it generates –
as this is taken care of by the relational verifier. The framework can easily be
extended with candidate generation strategies other than those that we present
in this paper. Thus, it provides a platform for relational verification based slicing
for the software slicing community.

We distinguish between two types of candidate generation strategies. On the
one hand there are strategies that generate candidates by replacing program
instructions by skip according to some heuristics without using any information
from the relational verifier other than the existence of a counterexample. Exam-
ples for such properties are described in Sect. 4.1. On the other hand there are
strategies that also consider the values from the counterexample when gener-
ating the next slice candidates. We present one such strategy, counterexample
guided slicing, in Sect. 4.2.

4.1 Removing Instructions Based on Heuristics

The brute forcing (BF) strategy generates all possible slice candidates. As their
number is exponential w.r.t. the number of instructions in the original program,
it is clear that this strategy does not scale for large programs. Nevertheless,
this strategy has the benefit of generating the smallest possible slice with our
framework. Brute forcing can be used as part of a divide and conquer strategy to
slice parts of programs which are small enough. As an improvement, this strategy
can start by generating the candidates in ascending order with respect to their
size, i.e. the number of instructions that the candidate retains from the original
program. Once a candidate is shown to be a valid slice, no further candidates
need to be checked, as their size cannot be smaller than that of the found slice.

The single statement elimination (SSE) strategy successively replaces a single
instruction of the original program with skip, and checks whether the obtained
program is a valid slice. If this is the case, the strategy attempts to successively
remove every other instruction as well. The strategy requires, in the worst case,
quadratically many calls to the relational verifier, which occurs when in each
iteration the last candidate is shown to be a valid slice. Although this approach
scales better than BF, it finds only slices in which program instructions can
be removed individually. Groups of instructions such as assign x (x + 50)
and assign x (x - 50) where the removal of a single instruction results in
an invalid slice candidate, but removing the entire group would result in a valid
slice cannot be removed. The SSE strategy can be generalized to support the
removal of groups of up to a given number of instructions.

Using Relational Verification for Program Slicing 363

4.2 Counterexample Guided Slicing

The counterexample guided slicing (CGS) strategy uses dynamic slicing to gen-
erate slice candidates. Dynamic slicing was first introduced in [27], and a sur-
vey on dynamic slicing approaches can be found in [28]. For the CGS strategy
we adapted the dynamic slicing algorithm from [2], which is a syntactic app-
roach based on the Program Dependence Graph (PDG) [15]. The PDG is a
directed graph in which nodes represent program instructions, conditions, or
input parameters, and edges represent possible dependencies between the nodes.
An edge from node n1 to node n2 encodes that n1 may depend on n2. There are
roughly two types of dependencies in the PDG. On one hand data dependencies
arise when one node uses program variables which are defined in another node.
Control dependencies, on the other hand, arise when the execution of a node
depends on the other, control, node (e.g. an instruction may be executed only if
the condition of a conditional jump is true). Whether an edge exists between two
nodes in the PDG is determined syntactically by analyzing the CFG. Because
the CFG represents an over-approximation of the possible program executions,
the PDG edges also represent an over-approximation of the real dependencies in
the program. Using the PDG, a backward slice is computed by finding all nodes
that are reachable from a node representing the criterion location. On the most
basic level, the algorithm in [2], which receives the PDG and an execution trace
as inputs, works by computing the subgraph of the PDG which contains only
the nodes corresponding to those instructions which have been executed in the
program trace. The dynamic slice is computed using this subgraph and further
optimizations are possible, as it has to be valid only for a single input.

A PDG node can depend on multiple other nodes, but some of these depen-
dencies are determined by the execution path of the program (e.g. a variable
can be assigned on more than one branch, resulting in multiple dependencies for
instructions that use that variable). Unlike static slicing, for dynamic slicing only
one execution path is relevant – the one corresponding to the input for which the
dynamic slice is computed. Thus, PDG edges representing dependencies that are
relevant only for other inputs can be removed. A similar situation arises with
loops: at different loop iterations, a node inside the loop body may have different
dependencies. When performing dynamic slicing, the number of iterations done
by a loop is known (assuming the program terminates for the input), and the
PDG can be extended with nodes representing the body instructions at different
iterations, which also leads to an increased precision of the dynamic slice. The
extended PDG is called a dynamic dependence graph (DDG) in [2]. Based on
the observation that the nodes inside the loop body can depend on only a finite
number of other nodes, a new node is added to the PDG just for those iterations
in which the corresponding instruction has different dependencies than in all
previous iterations. These optimizations give rise to the reduced dynamic depen-
dence graph (RDDG). Thus, by ignoring dependencies caused by other inputs
than the one for which the dynamic slice is computed, additional instructions
can be removed than in the case of static slicing. To ensure compatibility with
the slicing property from Definition 4, we adapt this algorithm to support cri-

364 B. Beckert et al.

Data: Program P , Slicing criterion (iC , VC)
Result: Program Slice Ps

Ps ← Φ; s ← 0̄; b ← false;
repeat

Pd ← dynamicSlice(P, s, (iC , VC));
Ps ← SDS(Ps, Pd);
(b, s) ← relationalVerification(P, Ps, (iC , VC));

until b ∨ timeout ;
if timeout then

Ps ← P ;
end
return Ps;

Algorithm 1. The CGS Strategy

terion locations other than the end of the program. For this, when computing
the dynamic slice with the RDDG we do not mark the return statement, as is
done in [2], but rather all nodes that correspond to the criterion location. If the
criterion location is inside a loop, then multiple nodes are marked.

The adapted RDDG dynamic slicing algorithm is purely syntactical and thus
scales much better than a semantic approach. Thus we can use it as part of
the candidate generation strategy, as relational verification of slice candidates
remains the bottleneck of our framework.

For the CGS strategy we wish to merge several dynamic slices Pd1 , . . . , Pdn

for the respective input states s1, . . . , sn into a single dynamic slice Pu that is a
valid for all inputs s1, . . . , sn. In general, the union slice of dynamic slices (which
contains all program instructions that are in at least one dynamic slice) is not
a correct dynamic slice for all respective inputs of the given dynamic slices. A
solution to this was presented in [18] in the form of an iterative algorithm called
simultaneous dynamic slicing (SDS), which computes a single dynamic slice valid
for each input in a given set.

We can now present the CGS strategy, shown in Algorithm1. It starts with an
initialization of the slice candidate Ps with a program Φ, in which all instructions
have been replaced with skip, of an arbitrary initial state s, e.g. one in which
all variables are set to 0 and of the variable b which will be set to true when a
valid slice will be found. The strategy uses the initial state s with the criterion
(iC , VC) to compute a dynamic slice Pd. The instructions from Pd are then added
to the slice candidate Ps which is checked for validity by the relational verifier. If
Ps is a valid slice candidate, the variable b is set to true and the strategy returns
Ps. Otherwise, the relational verifier delivers a counterexample, which is used as
the initial state s in the next iteration. Both the dynamic slicer and relational
verifier may timeout, in which case the strategy returns the original program P .

Theorem 3. Let P be a program and Pd be a dynamic slice for all initial states
s ∈ Sd, and sce be the counterexample obtained when checking whether Pd is a
valid slice of P . Then the following holds:

Using Relational Verification for Program Slicing 365

1. sce /∈ Sd.
2. The dynamic slice Pce for the initial state sce contains at least one instruction

which is not in Pd.

Proof. Both properties follow from the correctness of the relational verifier and of
the dynamic slicer and of the SDS algorithm. (1) If sce ∈ Sd then the relational
verifier delivered a spurious counterexample, the dynamic slicer delivered an
invalid dynamic slice, or the SDS algorithm computed a wrong simultaneous
dynamic slice. (2) If Pce contains no additional instruction compared to Pd,
then Pd ∪ Pce = Pd which means that Pd is a dynamic slice for sce. This implies
that the relational verifier delivered a spurious counterexample. ��

Theorem 3 guarantees that the CGS strategy adds at least one instruction
back after each iteration. Thus, the number of calls of the relational verifier is
linear in the number of program instructions. The SDS algorithm is needed for
this theorem to hold. The validity of the slice computed with CGS, however,
is guaranteed by the relational verifier. Thus, if the CGS algorithm computes
the simple union of dynamic slices, the relational verifier my return a counterex-
ample that it already provided in a previous CGS iteration. In this case the
CGS algorithm needs to terminate and return the original program. Given the
fact that computing the union of dynamic slices is much easier than computing
the simultaneous dynamic slice, the user of the framework must make a choice
between performance and completeness. Our implementation of CGS computes
the union of dynamic slices.

The CGS strategy has the least number of calls to the relational verifier com-
pared with the other strategies presented in this paper. Nevertheless, it comes
with some disadvantages. First, the program needs to be executed at each itera-
tion, which – depending on the analyzed program – can cause performance issues
and for some inputs the program may not even terminate. Second, the CGS
strategy is vulnerable to timeouts of the relational verifier. If a timeout occurs,
then the strategy fails entirely and must return the original program as the slice
candidate, while the BF and SSE strategies could continue their search for a
valid slice candidate. Third, the precision of CGS depends on the precision of
the dynamic slicing approach used in the candidate generation. Even though the
used dynamic slicing approach can remove more statements than static syntactic
slicing approaches, the dynamic slices it computes are still over-approximations.

5 Discussion

We start the discussion by reiterating the evaluation results [6] of the prototyp-
ical implementation of the framework consisting of the tool SemSlice [5,7], as
shown in Table 1. For the evaluation, we used a collection of small but intricate
examples (e.g., the example of Fig. 1 or a routine in which the same value is
first added and then subtracted), each focusing on a particular challenge which
cannot be handled by syntactic state of the art slicers. Some examples are taken
from slicing literature [4,9,16,22,39]. The second column indicates the source of

366 B. Beckert et al.

Table 1. Evaluation
Original BF SSE CGS

Example Source #stmts time (s) #stmts #calls time (s) #stmts #calls time (s) #stmts #calls

count occurrence error self 50 13 42 11

count occurrence result self 50 16 44 13

dead code after ssa [39] 4 < 1 2 4 < 1 2 4 < 1 2 1

dead code unused variable self 3 < 1 2 2 < 1 2 3 < 1 2 1

identity not modifying [16] 8 < 1 3 3 < 1 7 5 < 1 6 1

identity plus minus 50 [4] 5 < 1 2 4 < 1 5 4 < 1 5 1

iflow cyclic [39] 18 62 14 2197 < 1 16 6 < 1 17 1

iflow dynfamic override self 15 23 8 1298 < 1 11 8 < 1 12 1

iflow endofloop (Fig. 1) self 19 118 15 4065 < 1 16 7 < 1 18 2

intermediate self 13 4 11 129 < 1 12 5 < 1 12 2

requires path sensitivity [22] 20 647 16 26894 < 1 17 10 < 1 18 3

single pass removal self 13 < 1 3 7 < 1 6 11 < 1 8 1

unchanged over itteration self 20 29 9 932 1 15 14 < 1 20 2

unreachable code nested self 10 < 1 2 1 < 1 9 1 < 1 4 1

whole loop removable self 20 15 8 469 < 1 17 5 < 1 17 2

each example, the third the number of LLVM-IR statements in the program. For
each slice candidate generation-strategy from Sect. 4 (BF, SSE, and CGS), the
table lists the number of statements in the smallest slice found by SemSlice,
the (wall) time needed by the tool, and the number of calls to the relational veri-
fier. The experiments were conducted on a machine with an Intel Core I5-6600K
CPU and 16 GB RAM. The exponential BF approach works satisfactorily fast
on functions with up to 20 statements, and while it requires more time than the
other approaches it computes more precise slices. For examples with less than
10 statements the brute-force approach takes less than one second. The other
two approaches achieved slices of similar precision (to each other) and required
less than one second for most examples. The evaluation shows that the frame-
work can handle programs that require a large number of calls to the relational
verifier, e.g. the program requires paths sensitivity with the BF strategy called
the relational verifier almost 27000 times and took about 10 minutes to find the
slice. The BF strategy serves as a worst-case scenario when using the slicing
framework to automatically slice programs. Other strategies need fewer calls.
For this example the other strategies were still able to remove some instructions
with fewer less calls to the relational verifier and therefore they could scale to
larger programs. Thus, the scalability of our slicing approach can be increased
by using candidate generation strategies that do not call relational verifier often.
Another way to ensure that our approach to slicing scales to large programs is to
apply it to individual program functions (as opposed to applying it to the entire
program). Our current prototypical implementation supports only a subset of
the LLVM IR instruction set, which is the main reason we did not evaluate it
on large, real-life programs.

Our slicing approach works on an intermediate representation language. This
is beneficial for the implementation of the approach, as it does not need to
handle all features of a modern high level programming language. However, one

Using Relational Verification for Program Slicing 367

of the uses for program slicing is to help the user debug and comprehend a
program written in a high level language. It is possible to perform relational
verification of such programs, the early version of LLRêve was in fact working
on a simple while language in [14], LLVM-IR was later chosen [24] to increase
the practicability of LLRêve. We believe the current framework can be adapted
for slicing high level languages by either (1) attempting to translate back the
IR slice to the high level language, or (2) by defining the slicing candidate in
the high level language and then translating both the original program and the
slice candidate into the IR and then using the extended relational verifier. For
the first option we expect that only an over-approximation of the IR slice can
be obtained by translating it back into the high level language, similar to what
was done in [20]. As for the second solution, the CFGs of the original program
and slice candidate in the IR may be so different that our approach would no
longer be able to automatically find matching synchronization points. A solution
to this would be to automatically annotate the original program and its slice
candidate in the high level language, thus marking the synchronization points
and using these marks in the IR translation. A further solution for supporting
a high-level language would be to extend the work in [14] with the ideas of
this paper. Thus, Definition 4 of a valid slice would need to be adapted for
high-level programming languages and the weakest liberal precondition calculus
from [14] would need to be extended such that it supports slicing in the case in
which the criterion location is in the middle of the program. By working on the
high-level programming language we would lose the advantages of working on
an intermediate representation, i.e. relative language independence and existing
support for various code optimizations, but our approach to slicing would become
more suitable for program debugging and comprehension.

The IR language that we used to present our approach is not inter-procedural.
While we could consider all programs as having been inlined beforehand, recur-
sive procedures would not be supported. The relational verifier supports dealing
with function calls using mutual function summaries [24] which abstract two
matching function calls using coupling predicates. In general it is difficult to
find matching function calls, but for checking the validity of slice candidates this
can be done automatically, similar to finding matching synchronization points.
Thus, our approach can be extended to support recursive functions; however the
function calls themselves may not be removed, otherwise the mutual function
summaries cannot be used.

In the semantics that we provided in Sect. 2 we assume that an error (e.g. a
division by zero) causes the system to transition to the end state. An interesting
question in the context of program slicing is whether instructions which may
cause errors can be removed from the program. While some approaches (e.g.
[33,34]) keep the error prone instructions in the slice, others (e.g. [29]) allow
the removal of such statements but at the cost of a weaker soundness property
(i.e., what constitutes a valid slice) which is nonetheless still useful in certain
application scenarios such as software verification. With our slicing approach, we
keep error prone instructions in the slice. However, because we take the semantics

368 B. Beckert et al.

of the program instructions into account, we can remove error prone instructions
which will never cause an error, e.g. a division where the divisor will never be
zero.

The completeness of our approach, i.e. whether a valid slice according to Def-
inition 4 is deemed as such, is limited in practice by two factors. First, the rela-
tional verifier is required to automatically infer the coupling predicates needed
to verify the validity of a slice candidate. The relational verifier works well when
the needed coupling predicates are limited to linear arithmetics [26]. The second
factor limiting completeness is the requirement that the original program and
the slice candidate must run in lockstep. This is needed to ensure the mutual ter-
mination and that the criterion location is executed the same number of times.
Thus, whereas we can remove instructions from inside a loop, we are not able to
remove the loop itself (in our case the conditional jump instruction), even if it
is empty – i.e. it loops over skip instructions.

6 Related Work

Static slicing is an active area of research and many approaches have been devel-
oped. We present those that are most similar to our work.

Assertion based slicing [4] also takes the semantics of the program into
consideration. Program methods must be specified with a contract, which
also represents the slicing criterion, i.e. statements are removed such that the
reduced program still fulfills the contract. Unlike in our approach, loop invari-
ants are required and only groups of instructions that are at consecutive pro-
gram locations can be removed. This approach improves and combines older
approaches [10,11], an implementation also exists [12]. The approach in [30] also
uses a method’s contract as the slicing criterion. However, the program parts
that are deemed irrelevant are not removed, but replaced with an abstraction.
Thus, the slice candidate over-approximates the behavior of the original pro-
gram. If the contract is proved for the slice candidate, then it is also valid for
the original program.

Path sensitive backward slicing [22] is another slicing approach that takes
the program’s semantics into consideration. The main idea is to symbolically
execute the program and check the satisfiability of the path condition of every
execution path. Only the satisfiable paths are used for computing the slice. The
approach handles loops by using abstract interpretation to generate loop invari-
ants, which can lead to an over-approximated description of the loop behavior.
Thus, while the approach offers an increased precision when compared to syntac-
tic approaches, it is not able slice the program in Fig. 1a. An implementation of
this approach is available in the tool Tracer [23]. The idea of discarding depen-
dencies that can only occur on infeasible program paths has also been explored
in other works e.g. [9,36]. For these approaches, a compromise between the pre-
cision and scalability had to be found.

Abstract program slicing [17] is an approach which makes use of the program’s
semantics, however a different slicing criterion is used. Instead of preserving

Using Relational Verification for Program Slicing 369

those instructions that affect the exact values of the criterion variables at the
criterion location, this approach preserves the statements that affect a property
of the criterion variable. The properties pursued in this approach are whether
the variables belong to a given abstract domain, e.g. the positive integers. Using
abstract interpretation, for some operations the abstract domain of the output is
known – provided the abstract domains of the inputs are also known. Thus some
dependencies modeled in the PDG can be removed. This approach can generate
slices which are not valid according to Definition 4.

The Frama-C framework [25] for software analysis provides components that
support abstract interpretation and program slicing (based on program depen-
dence graphs). Abstract interpretation can be used to improve the precision of
the slicing component by identifying some infeasible branches. Abstract inter-
pretation can automatically handle loops, but it does this by over-approximating
their effects.

In [33] a different notion of semantic dependence between program statements
is defined. In that work it is assumed that each node in the CFG of a program
has an assigned function that represents the computation performed by that
node. Thus, a statement s is semantically dependent on a statement s′ if the
interpretation of the function computed by s′ affects the execution behavior
of s. Consider a program that contains the instruction assign x (x + 0)
followed by the criterion location and x as a criterion variable. According to
the definition from [33] the assignment would be in the slice, because if the
interpretation of the symbol + changes (e.g. to multiplication) then so would
the value of x at the criterion location. In our approach, on the other hand, we
consider the semantics of the program instructions to be fix, and can remove the
statement from the slice, as it leaves the value of x unchanged.

Other, syntactic, slicing approaches have been surveyed in [41] and in [37],
and a survey of dynamic slicing techniques can be found in [28].

7 Conclusion and Future Work

We extended a relational verification approach such that it can check whether a
slice candidate is indeed a valid slice. Based on this, we built a framework for pre-
cise and automatic static slicing which consists of a candidate generation engine
and the extended relational verifier. We presented three strategies to compute
slice candidates, of which counterexample guided slicing is more sophisticated.
It uses the counterexample provided by the relational verifier to refine the slice
candidate with a dynamic slicer.

We plan to improve the precision of the slices by performing an additional
analysis on empty loops to check whether they terminate. If this is the case,
they can be safely removed. Furthermore, we plan to improve the performance
of the relational verifier by using PDGs to simplify the programs that need to
be checked for equivalence, using the fact that two programs with isomorphic
PDGs are equivalent, as shown in [21]. We will also investigate how the results
(e.g. coupling invariants) of the relational verifier can be reused when checking
another slice candidate, constructed from the same original program.

370 B. Beckert et al.

References

1. LLVM language reference manual. https://llvm.org/docs/LangRef.html. Accessed
06 Feb 2019

2. Agrawal, H., Horgan, J.R.: Dynamic program slicing. In: Proceedings of the ACM
SIGPLAN 1990 Conference on Programming Language Design and Implementa-
tion, PLDI 1990, pp. 246–256. ACM, New York (1990). https://doi.org/10.1145/
93542.93576

3. Barraclough, R.W., et al.: A trajectory-based strict semantics for program slicing.
Theoret. Comput. Sci. 411(11), 1372–1386 (2010). https://doi.org/10.1016/j.tcs.
2009.10.025

4. Barros, J.B., da Cruz, D., Henriques, P.R., Pinto, J.S.: Assertion-based slicing and
slice graphs. Formal Aspects Comput. 24(2), 217–248 (2012). https://doi.org/10.
1007/s00165-011-0196-1

5. Beckert, B., Bormer, T., Gocht, S., Herda, M., Lentzsch, D., Ulbrich, M.: SemSlice:
exploiting relational verification for automatic program slicing. In: Polikarpova,
N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 312–319. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66845-1 20

6. Beckert, B., Bormer, T., Gocht, S., Herda, M., Lentzsch, D., Ulbrich, M.: Evalua-
tion data of SemSlice (2019). https://doi.org/10.5281/zenodo.3334571

7. Beckert, B., Bormer, T., Gocht, S., Herda, M., Lentzsch, D., Ulbrich, M.: Imple-
mentation of the SemSlice tool (2019). https://doi.org/10.5281/zenodo.3334553

8. Binkley, D., Harman, M.: A survey of empirical results on program slicing. In:
Advances in Computers, vol. 62, pp. 105–178. Elsevier (2004). https://doi.org/10.
1016/S0065-2458(03)62003-6

9. Canfora, G., Cimitile, A., Lucia, A.D.: Conditioned program slicing. Inf.
Softw. Technol. 40(11–12), 595–607 (1998). https://doi.org/10.1016/S0950-
5849(98)00086-X

10. Chung, I.S., Lee, W.K., Yoon, G.S., Kwon, Y.R.: Program slicing based on spec-
ification. In: Proceedings of the 2001 ACM Symposium on Applied Computing,
SAC 2001, pp. 605–609. ACM, New York (2001). https://doi.org/10.1145/372202.
372784

11. Comuzzi, J.J., Hart, J.M.: Program slicing using weakest preconditions. In: Gaudel,
M.-C., Woodcock, J. (eds.) FME 1996. LNCS, vol. 1051, pp. 557–575. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-60973-3 107

12. da Cruz, D., Henriques, P.R., Pinto, J.S.: GamaSlicer: an online laboratory for
program verification and analysis. In: Proceedings of the Tenth Workshop on Lan-
guage Descriptions, Tools and Applications, LDTA 2010, pp. 3:1–3:8. ACM, New
York (2010). https://doi.org/10.1145/1868281.1868284

13. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Relational verification
through horn clause transformation. In: Rival, X. (ed.) SAS 2016. LNCS, vol.
9837, pp. 147–169. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53413-7 8

14. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating
regression verification. In: Proceedings of the 29th ACM/IEEE International Con-
ference on Automated Software Engineering, ASE 2014, pp. 349–360. ACM (2014).
https://doi.org/10.1145/2642937.2642987

15. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987).
https://doi.org/10.1145/24039.24041

https://llvm.org/docs/LangRef.html
https://doi.org/10.1145/93542.93576
https://doi.org/10.1145/93542.93576
https://doi.org/10.1016/j.tcs.2009.10.025
https://doi.org/10.1016/j.tcs.2009.10.025
https://doi.org/10.1007/s00165-011-0196-1
https://doi.org/10.1007/s00165-011-0196-1
https://doi.org/10.1007/978-3-319-66845-1_20
https://doi.org/10.5281/zenodo.3334571
https://doi.org/10.5281/zenodo.3334553
https://doi.org/10.1016/S0065-2458(03)62003-6
https://doi.org/10.1016/S0065-2458(03)62003-6
https://doi.org/10.1016/S0950-5849(98)00086-X
https://doi.org/10.1016/S0950-5849(98)00086-X
https://doi.org/10.1145/372202.372784
https://doi.org/10.1145/372202.372784
https://doi.org/10.1007/3-540-60973-3_107
https://doi.org/10.1145/1868281.1868284
https://doi.org/10.1007/978-3-662-53413-7_8
https://doi.org/10.1007/978-3-662-53413-7_8
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/24039.24041

Using Relational Verification for Program Slicing 371

16. Field, J., Ramalingam, G., Tip, F.: Parametric program slicing. In: Proceedings
of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 1995, pp. 379–392. ACM, New York (1995). https://doi.org/10.
1145/199448.199534

17. Halder, R., Cortesi, A.: Abstract program slicing on dependence condition graphs.
Sci. Comput. Program. 78(9), 1240–1263 (2013). https://doi.org/10.1016/j.scico.
2012.05.007

18. Hall, R.J.: Automatic extraction of executable program subsets by simultaneous
dynamic program slicing. Autom. Softw. Eng. 2(1), 33–53 (1995). https://doi.org/
10.1007/BF00873408

19. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. Int. J. Inf. Secur.
8(6), 399–422 (2009). https://doi.org/10.1007/s10207-009-0086-1

20. Herda, M., Tyszberowicz, S., Beckert, B.: Using dependence graphs to assist veri-
fication and testing of information-flow properties. In: Dubois, C., Wolff, B. (eds.)
TAP 2018. LNCS, vol. 10889, pp. 83–102. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-92994-1 5

21. Horwitz, S., Prins, J., Reps, T.: On the adequacy of program dependence graphs
for representing programs. In: Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 1988, pp. 146–157.
ACM, New York (1988). https://doi.org/10.1145/73560.73573

22. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: Path-sensitive backward slicing.
In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 231–247. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33125-1 17

23. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: TRACER: a symbolic execution
tool for verification. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS,
vol. 7358, pp. 758–766. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31424-7 61

24. Kiefer, M., Klebanov, V., Ulbrich, M.: Relational program reasoning using compiler
IR - combining static verification and dynamic analysis. J. Autom. Reason. 60(3),
337–363 (2017). https://doi.org/10.1007/s10817-017-9433-5

25. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-c:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015).
https://doi.org/10.1007/s00165-014-0326-7

26. Klebanov, V., Rümmer, P., Ulbrich, M.: Automating regression verification of
pointer programs by predicate abstraction. Formal Methods Syst. Des. 52(3), 229–
259 (2018). https://doi.org/10.1007/s10703-017-0293-8

27. Korel, B., Laski, J.W.: Dynamic program slicing. Inf. Process. Lett. 29(3), 155–163
(1988). https://doi.org/10.1016/0020-0190(88)90054-3

28. Korel, B., Rilling, J.: Dynamic program slicing methods. Inf. Softw. Technol.
40(11–12), 647–659 (1998). https://doi.org/10.1016/S0950-5849(98)00089-5

29. Léchenet, J.-C., Kosmatov, N., Le Gall, P.: Cut branches before looking for bugs:
sound verification on relaxed slices. In: Stevens, P., W ↪asowski, A. (eds.) FASE
2016. LNCS, vol. 9633, pp. 179–196. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49665-7 11

30. Liu, T., Tyszberowicz, S., Herda, M., Beckert, B., Grahl, D., Taghdiri, M.: Com-
puting specification-sensitive abstractions for program verification. In: Fränzle, M.,
Kapur, D., Zhan, N. (eds.) SETTA 2016. LNCS, vol. 9984, pp. 101–117. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47677-3 7

https://doi.org/10.1145/199448.199534
https://doi.org/10.1145/199448.199534
https://doi.org/10.1016/j.scico.2012.05.007
https://doi.org/10.1016/j.scico.2012.05.007
https://doi.org/10.1007/BF00873408
https://doi.org/10.1007/BF00873408
https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1007/978-3-319-92994-1_5
https://doi.org/10.1007/978-3-319-92994-1_5
https://doi.org/10.1145/73560.73573
https://doi.org/10.1007/978-3-642-33125-1_17
https://doi.org/10.1007/978-3-642-31424-7_61
https://doi.org/10.1007/978-3-642-31424-7_61
https://doi.org/10.1007/s10817-017-9433-5
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s10703-017-0293-8
https://doi.org/10.1016/0020-0190(88)90054-3
https://doi.org/10.1016/S0950-5849(98)00089-5
https://doi.org/10.1007/978-3-662-49665-7_11
https://doi.org/10.1007/978-3-662-49665-7_11
https://doi.org/10.1007/978-3-319-47677-3_7

372 B. Beckert et al.

31. Lucia, A.D.: Program slicing: methods and applications. In: Proceedings First
IEEE International Workshop on Source Code Analysis and Manipulation, pp.
142–149, November 2001. https://doi.org/10.1109/SCAM.2001.972675

32. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

33. Podgurski, A., Clarke, L.A.: A formal model of program dependences and its impli-
cations for software testing, debugging, and maintenance. IEEE Trans. Softw. Eng.
16(9), 965–979 (1990). https://doi.org/10.1109/32.58784

34. Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.: A new
foundation for control dependence and slicing for modern program structures.
ACM Trans. Program. Lang. Syst. 29(5) (2007). https://doi.org/10.1145/1275497.
1275502

35. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause verifi-
cation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 347–363.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 24

36. Snelting, G., Robschink, T., Krinke, J.: Efficient path conditions in dependence
graphs for software safety analysis. ACM Trans. Softw. Eng. Methodol. 15(4),
410–457 (2006). https://doi.org/10.1145/1178625.1178628

37. Tip, F.: A survey of program slicing techniques. Technical report, Amsterdam, The
Netherlands, The Netherlands (1994). https://www.franktip.org/pubs/jpl1995.pdf

38. Verdoolaege, S., Janssens, G., Bruynooghe, M.: Equivalence checking of static affine
programs using widening to handle recurrences. ACM Trans. Program. Lang. Syst.
34(3), 11:1–11:35 (2012). https://doi.org/10.1145/2362389.2362390

39. Ward, M.: Properties of slicing definitions. In: 2009 Ninth IEEE International
Working Conference on Source Code Analysis and Manipulation, pp. 23–32,
September 2009. https://doi.org/10.1109/SCAM.2009.12

40. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference
on Software Engineering, ICSE 1981, Piscataway, NJ, USA, pp. 439–449. IEEE
Press (1981). http://dl.acm.org/citation.cfm?id=800078.802557

41. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing.
SIGSOFT Softw. Eng. Notes 30(2), 1–36 (2005). https://doi.org/10.1145/1050849.
1050865

https://doi.org/10.1109/SCAM.2001.972675
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/32.58784
https://doi.org/10.1145/1275497.1275502
https://doi.org/10.1145/1275497.1275502
https://doi.org/10.1007/978-3-642-39799-8_24
https://doi.org/10.1145/1178625.1178628
https://www.franktip.org/pubs/jpl1995.pdf
https://doi.org/10.1145/2362389.2362390
https://doi.org/10.1109/SCAM.2009.12
http://dl.acm.org/citation.cfm?id=800078.802557
https://doi.org/10.1145/1050849.1050865
https://doi.org/10.1145/1050849.1050865

Local Nontermination Detection
for Parallel C++ Programs

Vladimı́r Štill(B) and Jǐŕı Barnat

Faculty of Informatics, Masaryk University, Brno, Czech Republic
divine@fi.muni.cz

Abstract. One of the key problems with parallel programs is ensuring
that they do not hang or wait indefinitely – i.e., there are no deadlocks,
livelocks and the program proceeds towards its goals. In this work, we
present a practical approach to detection of nonterminating sections of
programs written in C or C++, and its implementation into the DIVINE
model checker. This complements the existing techniques for finding
safety violations such as assertion failures and memory errors. Our app-
roach makes it possible to detect partial deadlocks and livelocks, i.e.,
those situations in which some of the threads are progressing normally
while the others are waiting indefinitely. The approach is also applica-
ble to programs that do not terminate (such as daemons with infinite
control loops) as it can be configured to check only for termination of
selected sections of the program. The termination criteria can be user-
provided; however, DIVINE comes with the set of built-in termination
criteria suited for the analysis of programs with mutexes and other com-
mon synchronisation primitives.

1 Introduction

Assessing correctness of parallel programs is a hard task even for experienced
programmers. Therefore, the standard program development includes a bunch of
quality assurance activities such as testing. Unfortunately, the nondeterministic
nature of thread scheduling and concurrency makes it quite hard for testing
to achieve good guarantees of quality in the case of parallel programs. Formal
methods, on the other hand, provide a more systematic approach and in some
cases may even prove the absence of erroneous behaviours. However, they are not
used very often in practice due to the extra effort required for their application
or simply because they are not powerful enough to handle the overall complexity
and size of real-world programs. Nevertheless, continuous improvement in formal
methods is desirable to cover the corner cases of their use and to allow them to
become more usable in software development.

Especially beneficial techniques are those that can be directly applied to
programs written in mainstream programming languages. Such techniques sig-
nificantly lower the barrier towards their usage by programmers. However, the

This work has been partially supported by the Czech Science Foundation grant No. 18-
02177S.

c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 373–390, 2019.
https://doi.org/10.1007/978-3-030-30446-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-30446-1_20

374 V. Štill and J. Barnat

// can be used for synchronization

std::atomic< int > x = 0;

void worker() {

while (x != 0) { } // wait

do_work();

}

int main() {

// start thread running worker

std::thread t(worker);

x = 42; // let worker run

// ...

t.join();

}

Fig. 1. A simple C++ code snippet with two threads, it uses C++ standard threading
support and atomic variables. A programmer’s intention was that the worker function
first waits until x becomes non-zero, and then proceeds with do work. However, the
waiting condition (at the first line of the worker function) is incorrectly just the oppo-
site. Therefore, if main executes x = 42 before waiting in worker starts, the wait will
never end (assuming x is never set to 0 again). Note that none of safety checks is able
to detect that the program might hang. For the rest of the paper, we will omit the
std:: namespace to simplify the notation.

development of these techniques is extremely demanding due to numerous spe-
cific features the real-world programming languages exhibit. As a result, many
techniques introduced and implemented stay at the level of prototypes without
being mature enough to be applicable outside the scientific community – e.g.,
they might be missing features such as pointer arithmetic, functionality of the
standard libraries or the concept of exceptions. See the Software-Verification
Competition (SV-COMP) [6], to find some examples of tools aiming at verifica-
tion of real-world programs written in C.

A significant limitation of many existing tools for analysis of parallel pro-
grams in programming languages such as C and C++ is that they are only
concerned with safety checking – they check that a bad state of the program
is unreachable. Most common examples of bad states include assertion failures
and memory errors (such as invalid memory accesses and memory leaks). Unfor-
tunately, this is far from being sufficient in practice. See, for example, the code
given in Fig. 1. That piece of code easily passes any safety checks; however, when
executed in reality, it often hangs and does not terminate.

In this paper, we report about our new technique for checking nontermination
for parallel programs written in C and C++ that may be applied to programs
with arbitrary synchronisation primitives. In particular, we can check that a
specified part of a program finishes whenever its execution has been started,
which in turn enables us to check for problems such as partial deadlocks or local
nontermination. Note that our technique does not require the program under
analysis to terminate at all. Therefore, it is also applicable to programs that do
not terminate but have some parts that are supposed to finish. It does; however,
require that the program has a finite state space because our technique is built
on top of a state space exploration. Note that even for a finite state space, a
program may exhibit infinite behaviour.

The main observation is that a program often has sections which once entered
should also be left: for example critical sections, certain function calls (such as a

Local Nontermination Detection for Parallel C++ Programs 375

pop from a queue, which can wait for an element to become available; or a thread
join, etc.), or parts of code which wait for a resource or an action (waiting for a
mutex, waiting on a barrier, waiting until a variable is set to a given value). If
the analysis of the program focuses on such sections, it is possible to detect when
these sections are started, but do not terminate. This covers partial deadlock and
partial livelock detection in which such sections participate. We also provide a
global nontermination detection mode that decides if the program as a whole
terminates, nevertheless this is not the primary goal of our approach.

Our technique is built on top of explicit-state model checking. We believe
that while explicit-state model checking is prone to state space explosion, it is
well suited for the detection of problems related to infinite runs of parallel pro-
grams which cannot be handled by techniques such as bounded model checking
or stateless model checking. While our approach is closely related to checking for
properties written in temporal logic such as LTL or CTL*, our local nontermina-
tion technique cannot be substituted equivalently with CTL* model checking.
One of the reasons is that these logics are unable to relate to entities which
are dynamically created during the execution of the program, and there is no
bound to their number. For example, there is no way to express in CTL* that
for all mutexes it holds that if they are locked, they are also eventually unlocked
unless all the mutexes are enumerated beforehand. This is an essential concern
for realistic programs where mutexes and other synchronisation primitives can
be created dynamically at runtime, and their number can depend on the compu-
tation of the program itself. Furthermore, to avoid counterexamples which are
unrealistic with practical thread schedulers, we need a form of fairness of process
scheduling different from the fairness constraints used typically with LTL model
checking.

The approach described in this paper is implemented in a modified version of
the DIVINE model checker [3,13]. The implementation, as well as all the exam-
ples, can be found on the paper webpage1.

The rest of the paper is structured as follows: Sect. 2 gives a short overview
of related work and Sect. 3 gives definitions and preliminaries needed for the rest
of the work. In Sect. 4 we define our local nontermination property, in Sect. 5 we
discuss how it can be checked and the implementation in DIVINE, and it Sect. 6
we evaluate it. Finally, Sect. 7 concludes this work.

2 Related Work

For the related work, we consider only results which go beyond safety check-
ing. There are many approaches to find problems such as assertion violations
or memory safety violations, but they are fundamentally limited to properties
concerning finite runs of the program, and we are focusing here on an infinite
behaviour, namely on the absence of termination. Similarly, we do not mention
techniques which specialise on checking sequential programs and have no support

1 https://divine.fi.muni.cz/2019/lnterm/.

https://divine.fi.muni.cz/2019/lnterm/

376 V. Štill and J. Barnat

for parallelism, as well as techniques which are tailored to a specific modelling
language and cannot be applied in general.

Several techniques for checking properties other than safety exist – indeed
usage of various temporal logics, such as Linear Temporal Logic (LTL) [2,
Chapter 5] and Computation Tree Logic (CTL) [2, Chapter 6] in the context
of model checking dates way back to the beginning of research in formal meth-
ods. Unfortunately, these techniques are not often applied to programs written
in real-world programming languages such as C and C++.

As for techniques which detect nontermination, both static and dynamic
techniques exist for the detection of deadlocks caused by circular waiting for
mutexes [1,5,7]. However, these techniques specialise on mutexes and do not
allow general nontermination detection, and it is unlikely that they could be
naturally extended to cover it. There are also techniques that detect deadlocks
of the whole program (i.e., a program state from which the program cannot
move) [8,9], but these techniques cannot find cases in which only some threads
of the program are making progress, while other threads are blocked forever.
Also, these global deadlock detection techniques are inadequate in the presence
of synchronisation mechanisms which causes busy waiting instead of blocking
(for example spin locks) or in the cases when normally blocking operations are
implemented using busy waiting (which can be easier to handle for the verifier in
some cases). A somewhat different approach based on communicating channels
is proposed in [11], but this approach is aiming at the Go programming language
which primarily uses shared channels for communication between threads. Over-
all, neither of these techniques is applicable in general for the detection of non-
termination in programs which use a combination of synchronisation primitives
in shared memory.

3 Preliminaries

In this section, we shortly describe necessary details about representation of
programs, their state space, and resource sections so that we can define local
nontermination.

3.1 State Space of a Program

The state space of a program is a directed multigraph with labelled edges. The
vertices of the state space multigraph are called states (of the program). Each
state represents a snapshot of the program (its memory, program counters and
stacks of all its threads, . . .). States v1, v2 are connected by an edge in the
state space if v2 can be reached from v1 in an atomic step, which is a sequence
of instructions that executes at most one action which can interfere with any
action executed in parallel with it. In DIVINE, the state space generator attempts
to make the longest possible atomic step while ensuring that the generation of
the edge terminates. Edges are labelled, and the labels can be used to indicate
accepting edges and error edges. Error edges are edges on which safety violation

Local Nontermination Detection for Parallel C++ Programs 377

occurs (e.g., an assertion violation or memory error). The notion of accepting
edges was taken initially from transition-based Büchi automata and used for
LTL model checking, but in general, it is a way to mark an edge as interesting
for the verification algorithm, but not erroneous. These labels are set by the
verified program, which can be instrumented to influence edge labelling or by
DIVINE when it detects an error.

The state space of a program can be an infinite graph. However, in DIVINE,
we are primarily concerned with programs which have finite state space. If the
state space is infinite, DIVINE might find an error if it is present there, or it might
compute until its resources are exhausted. Please note that programs with finite
state space can have infinite behaviour as they can loop through the same set of
states indefinitely.

3.2 Resource Sections

A resource section of a program is a block of code with an identifier of a resource
and type of the resource section. Each resource section is delimited in the source
code by section start and section end annotations. Examples of such sections
are a mutex-waiting section that denotes a block of code in which a thread is
waiting for the acquisition of a mutex. Mutex-waiting section is identified by
a mutex and the thread which waits for it. Another example can be a critical
section, which is identified by a mutex (there is no need to use a thread for the
identification, as a mutex can be owned by at most one thread at any point
in time). Resource section can also be bound to a function – in this case, it is
identified by the stack frame of the function and by the program counter of its
beginning. Regardless of the identification, the idea for a resource section is that
once it is entered, it should also be exited.

As a resource section can be entered repeatedly (for example when it is
on a cycle or in a function which is called multiple times) we will define a
resource section instance to be a particular execution of a resource section with
the given identifier. The author of annotations which define resource sections
should ensure that the same resource section is not entered again before it is
left. Please note that this does not limit the usage of function-associated resource
sections to non-recursive functions – each such section is also identified by the
stack frame, and therefore resource sections corresponding to different recursion
depths are different resource sections. Similarly, a program can be in multiple
resource sections which wait for the same mutex at the same time, each of them
corresponding to a different waiting thread.

4 Local Nontermination

With our local nontermination property, we aim at detection of resource section
instances which are entered but are never left – nonterminating resource section
instances. We will first use examples of terminating and nonterminating resource
section instances, and then we will define them precisely.

378 V. Štill and J. Barnat

mutex m;

void thread0() {

unique_lock lock(m); // Error

while (true) {

do_work();

}

} // unlock

void thread1() {

while (true) {

unique_lock lock(m);

do_other_work();

} // unlock

}

Fig. 2. A program with a nonterminat-
ing critical section (in thread0) and a
deadlock (if thread0 enters its criti-
cal section, thread1 will wait infinitely).
Please note that in C++ it is possible to
use scope-based locks: the critical section
belonging to mutex m is entered when
unique_lock lock(m) is executed and left
at the end of the scope in which the
lock variable was defined (at the match-
ing curly brace; also marked with comment
// unlock).

mutex m;

void thread0() {

while (true) {

unique_lock lock(m); // Fixed

do_work();

} // unlock

}

void thread1() {

while (true) {

unique_lock lock(m);

do_other_work();

} // unlock

}

Fig. 3. A fixed version of the program
from Fig. 2 (the start of the critical
section was moved from the position
// Error in the left code to // Fixed

and therefore the critical section can end
now). Intuitively, each critical section in
this program terminates. However, as we
can see in Fig. 4, it is possible to find
an infinite path in the state space of
this program that infinitely waits for one
of the critical sections. To make mat-
ters worse, this path can respect weak
fairness.

0: lock(m) 1: wait(m) 0: unlock(m)

0: do work()0: lock(m)

1: lock(m)

Fig. 4. A fragment of state space of program in Fig. 3 with starving lasso marked
with bold edges. Each edge is marked by the thread it belongs to and the action of
this thread. Furthermore, to ease the orientation, actions belonging to thread0 are
marked with continuous red edges while actions belonging to thread1 are marked with
dashed blue edges. We can see that both threads participate in the repeated part of
the counterexample and thread0 is denied the possibility (starves) to execute after
0: unlock(m) (the thin blue dashed edge). (Color figure online)

Local Nontermination Detection for Parallel C++ Programs 379

A simple example can be seen in Fig. 2. There we have a mutex which is
locked, but never unlocked as the corresponding critical section contains an infi-
nite loop. We have four different resource sections in this example. Two of them
corresponds to the critical sections guarded by the mutex, and two of them
are hidden inside unique lock, where they implement waiting until the mutex
is unlocked. Nonterminating resource section instances are the instances corre-
sponding to the critical section in thread0 and any instances corresponding to
waiting for the mutex in thread1 that is executed after the critical section in
thread0 is entered. We can fix this example by putting the critical section in
thread0 inside the infinite loop, as shown in Fig. 3.

Suppose that we have defined nonterminating section as one in which it
is possible to stay indefinitely (i.e., for the specific case of waiting for m in
thread1, termination could be expressed by LTL formula G(wait-m-t1-start =⇒
Fwait-m-t1-end)). We can witness the existence of such nonterminating section
in a program with a finite state space by a lasso-shaped path. Such the non-
termination witness can also be found for the program in Fig. 3, even though
the code might intuitively seem to terminate. First thread0 executes its lock
action, then thread1 starts waiting. If thread0 always executes unlock and
lock before thread1 is allowed to run, thread1 will never be able to finish
waiting. The counterexample is illustrated in Fig. 4 and is valid also under weak
fairness assumptions.

In general, if a thread waits for some condition which is both infinitely often
true and infinitely often false, there can be a run in which the waiting thread is
only allowed to run at those moments when the condition is false. This type of
run is present in any program that uses busy waiting, which is very common in
practice. For this practical reason, we cannot rely on the definition of nontermi-
nation as expressed with the LTL formula above, and we need a different way
to describe nonterminating sections.

Definition 1 (Nonterminating resource section instance). A resource
section instance is nonterminating if and only if it can reach a point from which
it is not possible to reach its end.

For a particular resource section (e.g., again waiting for m in thread1), check-
ing for absence of nonterminating resource section instances can be expressed
using a CTL* property

AG (wait-m-t1-start =⇒ A[(EFwait-m-t1-end) W wait-m-t1-end])

(where W is the weak until operator).
In general, the CTL* approach cannot be used, as it requires the set of

resource sections to be known before the analysis starts, so that the formula
can be created as a conjunction of formulas for each resource section. This is
hard to do if resource sections can be created at runtime, which is often the case
when dealing with programs in languages such as C and C++ – the number
of objects such as threads, mutexes, or function invocations which are used to
identify resource sections might be hard to determine without exploration of all
the runs of the program.

380 V. Štill and J. Barnat

mutex m1, m2;

{

unique_lock l1(m1);

do_work_1();

{

unique_lock l2(m2);

do_work_2();

} // unlock(m2)

} // unlock(m1)

ARSI

ARSI

lock(m1) lock(m1)

do work 1

lock(m2)

do work 2

unlock(m2)

unlock(m1)

do work 1

lock(m2)

do work 2

unlock(m2)

unlock(m1)

end

lock(m2)

do work 2

unlock(m2)

Fig. 5. A small example of a program with two resource section instances (on the left-
hand side) and its state space, which shows active resource section instances (ARSIs;
on the right-hand side). Please note that, in order to keep the state space simple, this
example program is sequential and deterministic; the nondeterminism is caused only
by the construction which gives rise to ARSIs. The resource section instances belonging
to the critical section of mutex m1 are wrapped in a solid rectangle in the image, while
resource section instances belonging to m2 are wrapped in a dashed rectangle. ARSIs are
denoted by thick frame and yellow background and accepting edges in the state space
are marked by thick arcs. Please recall that active resource section instances cannot be
nested. Crosses at the end of edges denote points where exploration of the state space
was terminated due to reaching the end of an active resource section instance. (Color
figure online)

5 Detection of Nontermination

The detection of nonterminating resource section instances in the context of
explicit-state model checking proceeds as follows. The basic idea behind the
detection of nonterminating resource section instances is that the model checker
focuses on them one at a time. Every time a resource section instance is about
to be entered during the state space exploration, the algorithm introduces a
nondeterministic branching to the state space graph. In one branch the resource
section instance remains inactive, in which case the state space exploration pro-
ceeds as usual to discover other resource sections. However, in the other branch,
the instance becomes active. Under this branch the resource section instance
is checked for being nonterminating. Note that the nondeterministic branching
happens only outside of active resource sections, which means the active resource

Local Nontermination Detection for Parallel C++ Programs 381

section instances (ARSIs) cannot be nested. Once the state space graph in the
active branch reaches a state that is out of the scope of an ARSI, the state
space exploration within this branch is stopped (a state with no successors is
generated outside the ARSI). Active resource section instances cannot be nested,
but for any instance of a resource section nested in an active section instance,
there is also an instance which is nested in an inactive section instance, and
therefore can become active elsewhere in the state space. As a result of this
construction, for every nonterminating resource section in the original program,
there is a corresponding ARSI in the augmented state space graph. To let the
exploration algorithm know that it is exploring a part of the state space that is
within an ARSI, we mark all edges within ARSIs as accepting. An illustration
of a state space graph augmented with nondeterministic choices and accepting
edges is given in Fig. 5. This augmentation of the state space can be performed
by a program instrumentation. Now to discover ARSIs which are nonterminat-
ing according to Definition 1, it is enough to detect terminal strongly connected
components made of accepting edges only.

5.1 Detection Algorithm

Henceforward, we assume the state space graph is finite, and if the program to be
verified terminates then this fact is reflected by a state with no successors in the
underlying state space graph. Note that the program may terminate even within
a resource section instance. An ARSI terminates either by reaching the end of
the section instance, or by the termination of the whole underlying program. In
both cases, this means a state with no successors is generated and reachable from
the ARSI entrance point. Finally, we assume that any waiting is implemented
in nonblocking way; in particular we require that waiting operations give rise
to cycles in the state space of the waiting thread.2 As a result, the detection of
nonterminating ARSIs can be performed as a search for an accepting terminal
strongly connected component in the state space graph.

Definition 2 (Terminal Strongly Connected Component). A strongly
connected component S is terminal3 if for each state v in S all successors of
v are in S (there are no edges out of S).

Definition 3 (Fully Accepting Terminal SCC). A terminal strongly con-
nected component of the state space is fully accepting (fully accepting terminal
SCC, or FATSCC) if and only if it is nontrivial and all its edges are accepting.

Theorem 1. A program contains a nonterminating resource section instance
if and only if its state space graph contains a fully accepting terminal strongly
connected component.

2 This is not a problem in practice as any blocking synchronisation (such as waiting
for a mutex) can be simulated by a busy waiting loop.

3 Also sometimes called bottom strongly connected components, or closed communi-
cating classes, especially in the area of probabilistic system analysis [12].

382 V. Štill and J. Barnat

Proof. Assume the program contains a nonterminating ARSI A. Then there must
exist a set of states in A from which neither program end nor the corresponding
resource section end can be reached. Among these states, there must be a subset
which can be repeated indefinitely and cannot be left – a nontrivial terminal
SCC which is part of an ARSI and therefore it is fully accepting – a FATSCC
in the state space.

For the other direction let us assume that there is an FATSCC in the state
space graph. Since any edge which enters or leaves an ARSI is not accepting
(which follows directly from the construction of the state space graph), all states
that are part of the FATSCC must be states within a single ARSI. Since the
component is terminal and non-trivial, it cannot be left. Furthermore, a program
termination point cannot be part of the FATSCC as it has no successors and
an ARSI end cannot be part the FATSCC as edges going to it are not accept-
ing. Therefore, it is impossible to reach either a program termination point or a
state that would be outside of the resource section instance from the FATSCC,
therefore, the FATSCC witnesses a resource section instance that does not
terminate. ��

To detect the presence of a FATSCC in the state space graph we employ
the standard Tarjan’s algorithm for finding strongly connected components. To
decide if an SCC is terminal, it suffices to check that there are no edges going
from it to any different SCC. Finally, to detect if a terminal component is non-
trivial and fully accepting it is enough to check that the component contains at
least one state with some successors (it is nontrivial) and that all states of the
component have only accepting outgoing edges (it is fully accepting). These are
minor modifications of the algorithm. Furthermore, it is possible to extend the
algorithm to also perform safety checking while checking for nontermination –
when a new edge with an error label is traversed, the exploration can be termi-
nated immediately with a safety counterexample. This way any need for separate
safety checking is eliminated.

Note that it is also possible to define global nontermination using Definition 1.
In this case we only need to treat the whole program as a single active resource
section instance.

5.2 Scheduling and Fairness

To provide further context, we also want to discuss the relation of our nonter-
mination property to LTL model checking with fairness. Fairness constraints [2,
Chapter 3.5] are needed in analysis of temporal properties of parallel systems to
avoid reporting of unrealistic counterexamples, such as those in which an enabled
thread never gets the chance to make an action. Basically, even if we use LTL for-
mula to describe nontermination and allow for LTL model checking under weak
fairness, we still may obtain counterexamples that are totally unrealistic. This is

Local Nontermination Detection for Parallel C++ Programs 383

because a weakly-fair scheduler4 admits runs in which the context switches that
happen among participating threads are very regular, hence unrealistic.

The nontermination as defined in Definition 1 can be seen as a manifestation
of an additional assumption about the thread scheduler. It claims that the sched-
uler is in the essence somehow irregular, i.e., it will not allow for a context switch
always after a fixed number of instructions or at a specific location in the code.
Another way of looking at this is to assume that the scheduler is probabilistic
and assigns some non-zero probability to interruption between any two instruc-
tions. With a probabilistic scheduler, we can equivalently define nonterminating
resource section instance as a section instance which can get to the point when
there is zero probability of reaching its end. Under the probabilistic view we
can also say that programs we denote as correct, i.e., without nonterminating
sections, have zero probability of looping forever.

5.3 Implementation and Usage

We have implemented our nontermination detection approach in a branch of
the DIVINE model checker. Resource sections can be specified by annotations in
the source code of the program to be analysed by the user of the tool. Further-
more, DIVINE provides predefined resource sections for various POSIX thread
(pthread) synchronisation primitives, namely for mutexes (including recursive
and reader-writer mutexes), condition variables, barriers, and joining of threads.
Since C++ threading support in DIVINE uses the libc++ library which uses
POSIX threads, these resource sections are also used for native C++ threading.

User-defined annotations can be given in one of the following categories:
exclusive section, waiting for an event, and waiting for function end. For user-
defined resource sections, DIVINE provides C and C++ interface which can be
found on the web page accompanying this publication.5 To make it possible to
specify which resource section types should be considered for analysis, we use
program instrumentation, which enables resource sections based on commandline
arguments (for more details see the accompanying web page). The instrumenta-
tion also ensures that edges which are part of an ARSI are accepting.

The detection of nonterminating resource sections in DIVINE uses Tarjan’s
algorithm for finding strongly connected components. The algorithm runs on-the-
fly, which means that it generates the state space graph as needed, and therefore,
it can terminate before the entire state space graph is explored. The algorithm
finishes if it finds a fully accepting terminal strongly connected component, if it
discovers a safety error (to avoid the need for a separate safety verification), or
once the entire state space is explored.

4 For our purposes, a weakly-fair scheduler is a scheduler which ensures that on every
accepting cycle in the state space all threads which existed during the execution of
this cycle were also executed at least once on the cycle.

5 https://divine.fi.muni.cz/2019/lnterm.

https://divine.fi.muni.cz/2019/lnterm

384 V. Štill and J. Barnat

5.4 Interaction with Other Features of DIVINE

Since DIVINE is a research tool not all the features implemented within the tool
are expected to run together. In this case there are some features of DIVINE
which interfere with local nontermination detection in a not so obvious way.

Counterexamples. When an error is found DIVINE has support to show a coun-
terexample and walk through it using an interactive simulator [3]. For safety
properties, this counterexample is a sequence of states which ends with an error.
For verification of properties described by LTL or Büchi automata (which are
partially supported by DIVINE), the counterexample is a lasso-shaped trace. For
nontermination, the part of the state space to be reported consists of a fully
accepting terminal strongly connected component and a path that leads to it.
However, it is not practical to output the information about the whole SCC, as
it can be large. For this reason, DIVINE gives only a trace to the first state of
the FATSCC (i.e., the first state from which end of the given resource section
instance is not reachable).

Spurious Wakeups. Condition variables are often used in parallel programs to
block threads until some event occurs (e.g., a shared queue becomes non-empty).
They provide a function which blocks the current thread (wait) and a func-
tion which signals the condition variable and causes waiting threads to pro-
ceed (signal). In most implementations, including C++ standard APIs and
platform-specific APIs on Windows and Linux, wait is allowed to return before
it is signalled: this behaviour is called spurious wakeup and programmers must
take it into account when using condition variables.

To help with the discovery of bugs caused by spurious wakeup, DIVINE simu-
lates spurious wakeup using nondeterministic choice. For nontermination detec-
tion, it is necessary to ensure that any spurious wakeup does not hide nonter-
mination – we want to report resource section instances which can be only left
by spurious wakeup as nonterminating. This can be done by careful implemen-
tation of the wait function in DIVINE – it first nondeterministically decides if a
spurious wakeup will happen, and then, if it is not happening, it enters resource
section which waits for signal and cannot be woken up spuriously. If the spuri-
ous wakeup is simulated, it behaves as if the thread was blocked and allows other
threads to run. Once the waiting thread is used again for generation of successor
states, it is unblocked and wait returns spuriously. The exhaustive enumeration
of possible thread interleavings ensures that other threads can run arbitrarily
long.

Data Nondeterminism and Symbolic Data. To make it possible to verify pro-
grams that depend on input data, DIVINE has support for symbolic values [10].
In an analysis of programs with symbolic values, the computation can be split
when a branch depends on a symbolic value. This splitting can cause problems
for nontermination detection if leaving some resource section instance requires
a particular value of an input variable. Therefore, in the presence of symbolic

Local Nontermination Detection for Parallel C++ Programs 385

100 101 102 103 104
100

101

102

103

104

safety [s]

lo
ca
l
no

nt
er
m
.
[s
]

Wall Time (in seconds)

103 104

103

104

safety [MB]

lo
ca
l
no

nt
er
m
.
[M

B
]

Memory Used (in megabytes)

Fig. 6. Scatter plots which compare local nontermination detection with safety check-
ing as implemented in DIVINE. Please note that both axes use a logarithmic scale. The
dashed and dotted lines in wall time graphs signify 10× and 100× difference respec-
tively. For graphs of memory usage, the dotted lines signify 3× difference and the
dashed 10× difference. Green squares correspond to benchmarks which were error-less
in both modes and blue circles correspond to benchmarks which contained errors in
both cases. Red triangles correspond to benchmarks which contained a nonterminating
section. The crosses on the outer edge of the plot correspond to timeouts and out-of-
memory errors. All the failures for local/global nontermination were due to timeouts,
benchmarks which failed with out-of-memory did so in all cases. (Color figure online)

data, nontermination checking might miss some instances of nontermination. We
defer this problem to future work.

Relaxed Memory Models. DIVINE has support for analysis of parallel programs
under the x86-TSO memory model of Intel and AMD CPUs [14], which allows
the program to exhibit behaviour not present under the interleaving semantics
of threads. One of the main problems in interaction between nontermination and
relaxed memory is that relaxed memory models over-approximate the possible
behaviours of the system to cover all possibilities of contemporary processors of
a given architecture. As nontermination is checking for absence of termination,
it can spuriously hide nontermination if the state space of the program is over-
approximated. Again, we defer this problem to future work.

6 Evaluation

To our best knowledge there is no suitable benchmark set that would cover termi-
nation in parallel programs, therefore, we had to develop a suitable benchmark
on our own. We naturally wanted to analyse performance of our verification
method on real-world data structures. Unfortunately, it is hard to reuse any

386 V. Štill and J. Barnat

101 103 105

101

103

105

safety [# of states]

lo
ca
l
no

nt
er
m
.
[#

of
st
at
es
]

Number of states

Fig. 7. A comparison of state space sizes for local nontermination and safety. The
dashed and dotted lines signify 10× and 100× difference respectively. The meaning of
the marks in the graph is the same as in Fig. 6.

existing real-world test cases of parallel data structures for verification, as these
tests are usually developed as stress tests. Stress tests use large amounts of data
and are supposed to be run for a long time in order to maximise a chance that
a parallelism-related bug is found during the testing period. For the purpose of
application of a formal verification tool such as DIVINE, the mentioned approach
to testing of parallel programs is inappropriate. Since a model checker explores
systematically all interleavings of the program within a single execution, fur-
ther repeated executions, such as the ones within a stress test, are useless and
only add to the complexity of the verification task. For these reasons, the tests
we included in our benchmark are tests we created or adapted and modified
specifically for the purpose of nontermination detection we wanted to evaluate.

To preserve some diversity at least, we opted for the following tests to be
included in our benchmark. First, to cover some real-world scenarios, we cre-
ated some tests for the Thread library from widely used C++ Boost6 (35 test
cases). Second, we used some tests from DIVINE project itself (8 test cases), and
finally we developed a couple of specific tests for small programs demonstrat-
ing behaviour of local nontermination with various synchronisation primitives
(16 test cases). Overall, the benchmark covered usage of lockfree and mutex
guarded parallel data structures (e.g. parallel queues), synchronised variables,
less-used synchronisation primitives such as reader-writer locks, or a single-
producer-single-consumer queue and the parallel hashset from [4].

To evaluate our verification approach we let each test run with a 4 hours time-
out and 16 GB memory limit. We measured runtime and memory requirements
for the three following configurations of our tool:

6 https://www.boost.org/doc/libs/1 69 0/doc/html/thread.html.

https://www.boost.org/doc/libs/1_69_0/doc/html/thread.html

Local Nontermination Detection for Parallel C++ Programs 387

Safety. A baseline configuration, in which the tool merely generates the state
space of the program and checks for the standard safety issues, such as asser-
tion violation, invalid memory access, etc. In this mode no nontermination
can be detected.

Local Nontermination. The configuration in which the nonterminating
resource section detection is used. Under this configuration, the state space of
the original program is expanded with every entrance to the resource section
as described in Sect. 4.

Global Nontermination. The configuration that treats the whole program as
a single resource section and detects if it terminates according to Definition 1.
Since this configuration does not introduce additional nondeterminism, the
state space of the program is roughly the same size as for safety.

The difference between local and global nontermination configurations is in the
shape of the state space; both use the same algorithm (Tarjan’s algorithm for
SCC decomposition). Thanks to this difference, local nontermination can be
applied to programs which should not terminate, to check if each of its resource
sections terminate.

Comparison of safety and local nontermination can be seen in Fig. 6. We
evaluate wall time and memory consumption – in practice heavy duty tools like
DIVINE are likely to be used in long-running overnight tests (preferably only
if anything relevant for the test changed since the last run), therefore longer
runtimes might not be a big problem up to some point, but it is important to
test that the verification tasks fit in some reasonable amount of memory. As
we can see, the time overhead of local nontermination configuration is quite
significant (up to 59×) especially for larger programs which are correct. As for
memory consumption, we can see that total overhead is less then threefold, which
is mostly due to the state space compression employed by DIVINE.

The wall time blow-up is due to extra nondeterminism introduced by active
resource sections – the state space can grow by a factor that is related to the
number of resource section instances encountered in the original state space.
Note that many resource sections are likely to be very short. For programs that
were invalid, i.e., contained some nonterminating resource sections, the verifi-
cation usually exited faster under the local nontermination configuration than
under the safety configuration, which means that once a nonterminating section
is encountered, it is checked relatively quickly. Further insight into the compar-
ison of safety and local nontermination can be seen in Fig. 7, which compares
sizes of state spaces for these two configurations. Here, we can see that the over-
head in the size of the state space is lower than the time overhead (less than
10×). The extra time overhead is likely caused by inefficiencies in DIVINE. For
example, when DIVINE nondeterministically chooses from N values, it will re-
execute instructions between the last remembered state and the point of the
nondeterministic choice N times.

Figure 8 shows a comparison of local nontermination with global nontermi-
nation and safety with global nontermination. Here, we can see that global non-
termination behaves similarly to safety, with some time overhead caused by the

388 V. Štill and J. Barnat

100 101 102 103 104
100

101

102

103

104

global [s]

lo
ca
l
no

nt
er
m
.
[s
]

Wall Time (in seconds)

100 101 102 103 104
100

101

102

103

104

safety [s]
gl
ob

al
no

nt
er
m
.
[s
]

Fig. 8. The first scatter plot compares local nontermination checking with checking
if the whole program terminates (global nontermination). In this comparison, the red
triangles correspond to benchmarks which did not end, but for which all resource
sections terminated. Finally, in the second graph, we compare global nontermination
checking with safety. Here, the red triangles correspond to benchmarks which did not
terminate but were safe. See Fig. 6 for the general description of the plot layouts. (Color
figure online)

somewhat more involved algorithm. This is well in line with our expectations, as
global nontermination does not introduce any extra nondeterminism compared
to safety and Tarjan’s algorithm runs in linear time with respect to the size of
the state space, and so does reachability. This further highlights that the over-
whelming part of the time overhead of local nontermination is in the increase
of the state space size. It is important to note that local nontermination can be
applied to programs which are intended to run infinitely (but have finite state
space) – it can detect if there is a nonterminating resource section in such a
program. As state space sizes and memory consumption are almost the same
for safety and for global nontermination, we omit memory and state space size
comparisons for the later two pairs of configurations.

Errors Found. No errors were found in the C++ Boost tests. On the other hand,
all the errors we artificially implanted in the test cases were found. As for the
errors which were not deliberately introduced in the tests, we have found one
error in a test of a lock-free queue from an older version of DIVINE. The test
was part of DIVINE’s test suite for a long time and was used to test that the
queue works when it is continuously fed with elements while keeping its size
bounded. This means that the test was deliberately nonterminating and the
intention was that all the operations executed by main loops of the test’s two
threads terminate, which was not the case – a variable which was supposed to
keep track of the size of the queue was not maintained properly, and therefore it

Local Nontermination Detection for Parallel C++ Programs 389

could have happened that the reader thread would wait indefinitely, attempting
to read from an empty queue which would never fill up. So far the test case was
run under DIVINE with the safety algorithm only, therefore the error did not
manifest and remained undetected.

7 Conclusion

We have presented a novel approach to detection of parts of real-world programs
written in C and C++ which do not terminate. Our method allows for detection
of partial deadlocks (and livelocks) caused by misuse of synchronisation, but it is
not limited to any particular mode of parallel programming (such as lock-based
synchronisation, or programs with communication channels) and indeed allows
any combination of synchronisation allowed by C++ itself. To achieve this, it
is necessary to provide simple annotations for parts of the code which are to
be checked for termination. Our implementation in the DIVINE model checker
ships with these annotations already prepared for verification of programs which
use C++ blocking synchronisation primitives (mutexes, condition variables), or
similar synchronisation primitives from the POSIX threads library (pthreads).
Due to the universality of these synchronisation primitives, our annotations allow
for checking of most programs which use blocking synchronisation out of the box.
For lock-free programs, users have to annotate functions or blocks of code which
are required to be exited once they were entered.

We have implemented our technique in an open-source model checker DIVINE,
and evaluated it on a set of benchmarks including our tests of the Thread library
from widely used C++ Boost. The evaluation shows that while the time overhead
of local nontermination checking can be quite significant (up to 59× compared
to safety checking on our benchmarks), the memory overhead is quite mod-
est (under 3×). During the evaluation, we have discovered a hidden bug that
remained in the code for a couple of years, even though the code was subject to
intensive safety checking.

Our technique enables checking nontermination in parallel programs, includ-
ing detection of partial deadlocks and livelocks. It also supports detection of
cases when infinitely-running programs contain sections which are supposed to
terminate but do not terminate. We believe that even the overhead shown in
our evaluation is worth paying for the additional guarantees over safety check-
ing. While related to verification of properties written in temporal logics such
as CTL*, our technique cannot be subsumed into CTL* verification, as CTL*
cannot quantify over objects which can be created while the program runs.

For future work, it is crucial to further investigate interactions between non-
termination checking and relaxed memory, and nontermination and symbolic
data representation, as the presence of either of these features can lead to pro-
grams being reported as terminating even if they are not in the current situ-
ation. Nevertheless, even in the presence of relaxed memory or symbolic data,
any reported nonterminating section of the program is indeed a case when the
program cannot proceed past the given point. We would also like to investigate

390 V. Štill and J. Barnat

better algorithms for detection of local nontermination that might avoid adding
nondeterminism to the program under analysis.

References

1. Agarwal, R., et al.: Detection of deadlock potentials in multithreaded programs.
IBM J. Res. Dev. 54(5), 3:1–3:15 (2010)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press, Cambridge (2008)

3. Baranová, Z., et al.: Model Checking of C and C++ with DIVINE 4. In: D’Souza, D.,
Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 201–207. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 14

4. Barnat, J., Ročkai, P., Štill, V., Weiser, J.: Fast, dynamically-sized concurrent hash
table. In: Fischer, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 49–65.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23404-5 5

5. Bensalem, S., Havelund, K.: Scalable dynamic deadlock analysis of multi-threaded
programs. In: 2005 Parallel and Distributed Systems: Testing and Debugging
(2005)

6. Beyer, D.: Automatic verification of C and Java programs: SV-COMP 2019. In:
Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol.
11429, pp. 133–155. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17502-3 9

7. Cai, Y., Chan, W.K.: Magiclock: scalable detection of potential deadlocks in large-
scale multithreaded programs. IEEE Trans. Softw. Eng. 40(3), 266–281 (2014)

8. Chaki, S., Clarke, E., Ouaknine, J., Sharygina, N., Sinha, N.: Concurrent software
verification with states, events, and deadlocks. Formal Aspects Comput. 17(4),
461–483 (2005)

9. Demartini, C., Iosif, R., Sisto, R.: A deadlock detection tool for concurrent Java
programs. Softw.: Pract. Exp. 29(7), 577–603 (1999)

10. Lauko, H., Ročkai, P., Barnat, J.: Symbolic computation via program transfor-
mation. In: Fischer, B., Uustalu, T. (eds.) ICTAC 2018. LNCS, vol. 11187, pp.
313–332. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02508-3 17

11. Ng, N., Yoshida, N.: Static deadlock detection for concurrent go by global session
graph synthesis. In: Proceedings of the 25th International Conference on Compiler
Construction, CC 2016, pp. 174–184. ACM, New York (2016)

12. Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, Cambridge (1997)

13. Ročkai, P., Štill, V., Černá, I., Barnat, J.: DiVM: model checking with LLVM
and graph memory. J. Syst. Softw. 143, 1–13 (2018). https://divine.fi.muni.cz/
2017/divm/

14. Štill, V., Barnat, J.: Model checking of C++ programs under the x86-TSO memory
model. In: Sun, J., Sun, M. (eds.) ICFEM 2018. LNCS, vol. 11232, pp. 124–140.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02450-5 8

https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-319-23404-5_5
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-030-02508-3_17
https://divine.fi.muni.cz/2017/divm/
https://divine.fi.muni.cz/2017/divm/
https://doi.org/10.1007/978-3-030-02450-5_8

Relating Models and Implementations

An Implementation Relation for Cyclic
Systems with Refusals and Discrete Time

Raluca Lefticaru1, Robert M. Hierons1(B), and Manuel Núñez2

1 Department of Computer Science, The University of Sheffield,
Sheffield SD1 4DP, UK

{r.lefticaru,r.hierons}@sheffield.ac.uk
2 Departamento de Sistemas Informáticos y Computación,

Universidad Complutense de Madrid, Madrid, Spain
mn@sip.ucm.es

Abstract. This paper explores a particular type of model, a cyclic
model, in which there are sequences of observable actions separated by
discrete time intervals, introduces a novel implementation relation and
studies some properties of this relation. Implementation relations for-
malise what it means for an unknown model of the system under test
(SUT) to be a correct implementation of a specification. Many imple-
mentation relations are variants of the well known ioco implementation
relation, and this includes several timed versions of ioco. It transpires
that the timed variants of ioco are not suitable for cyclic models. Our
implementation relation encapsulates the discrete nature of time in cyclic
models and takes into account not only the actions that models can per-
form but also the ones that they can refuse at each point of time. We
prove that our implementation relation is a conservative extension of
trace containment and present two alternative characterisations.

1 Introduction

Robotic systems form the basis for advances in a number of areas such as man-
ufacturing, healthcare, and transport but also in home assistance. In fact, their
use is steadily increasing in all sectors: sales increased by 30% in 2017, a new
peak for the fifth year in a row [12], and according to a UK government report1 it
is expected that the value of the global market for robotics and autonomous sys-
tems will be £13 billion by 2025. A number of the areas where robotic systems
are becoming ubiquitous are safety-critical and so there is a need for robotic
systems that are safe, reliable and trusted.
1 https://tinyurl.com/nyf64av.

This work has been supported by EPSRC grant EP/R025134/2 RoboTest: Sys-
tematic Model-Based Testing and Simulation of Mobile Autonomous Robots, the
Spanish MINECO-FEDER (grant numbers DArDOS, TIN2015-65845-C3-1-R and
FAME, RTI2018-093608-B-C31) and the Region of Madrid (grant number FORTE-
CM, S2018/TCS-4314).

c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 393–409, 2019.
https://doi.org/10.1007/978-3-030-30446-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_21&domain=pdf
https://tinyurl.com/nyf64av
https://doi.org/10.1007/978-3-030-30446-1_21

394 R. Lefticaru et al.

In practice, developers of robotic systems produce a state-based model and
then separately develop a simulation model, which is used to validate the original
model and potentially also to test the system developed. Concerning time, these
simulations have discrete time and are cyclic in nature, with each time slot
containing a sequence of actions (see, for example, [19]). Unfortunately, there is
no guarantee that the simulation model is consistent with the original model. In
addition, the actual choice of simulations (test cases) to run is typically ad hoc.

This paper relates to a line of research regarding the development process for
robotic systems. As usual, a state-based model (in a language, RoboChart [16],
similar to those used by roboticists) is produced but the model is given a formal
semantics. The model is also automatically mapped to a simulation model, in
a language called RoboSim [4], that is consistent with the original model. The
simulation models are also given a formal semantics, making it possible to auto-
matically analyse or reason about them. A formal semantics for RoboSim [5] is
given by mapping a RoboSim model to a variant of CSP, called tock-CSP [20,
Chapter 14]. One of the benefits of this approach is that we can analyse the
semantics of a RoboSim model using formal tools and methodologies available
for CSP. In particular, and this is the main goal of this paper, we can formally
define when an SUT conforms to a specification of the system, in this case the
robot, that we would like to build. It will then be possible to systematically
and automatically derive test cases from a tock-CSP model, which provides the
semantics of a RoboSim model, and map it back to define simulation runs (test
cases) for the simulation. As a result, we would obtain systematic test genera-
tion algorithms for automating the validation of specifications of robotic systems
through simulation. This should make the development of robotic systems more
efficient and effective, through removing the need for several manual, error prone
activities.

The above is motivated by the observation that software testing [1,17] is
the main validation technique to increase the reliability of software governing
the behaviour of systems. Initially, testing was considered to be an informal
activity but it is currently well-known that formal methods and testing can be
successfully combined. There are many complementary approaches to testing,
supported by tools [15,22], with a formal basis [2,6,10,11]. Formal approaches to
testing usually rely on state-based models, that is, models that are in the form of
labelled transition systems (LTSs); these models have states and labelled transi-
tions between the states. LTSs have typically been used to define the operational
semantics of a number of specification languages including different variants of
CSP [20]. In testing from an LTS, it is normal to assume that the SUT behaves
like an unknown LTS (this is called the test hypothesis [13]) and so testing
involves comparing two LTSs. More generally, if we want to reason about the
correctness of one model (a design) with respect to another model (specifica-
tion) then we need to define what we mean by correctness and such notions
are described as implementation relations. There are many implementation rela-
tions for LTSs, with different implementation relations typically differing in the
observational power of the observer [7]. An observer might only be allowed to

An Implementation Relation for Cyclic Systems 395

observe the actions in which the system participates. However, we can increase
the capabilities of the observers. For example, we might consider situations in
which they are also able to observe the refusal of a set of actions; it is possible
that the system cannot participate in some set X of actions. In the scope of
testing, this is a well-known and classical approach [18] and typically a refusal
of a set X is observed through the tester only offering the actions in X and a
deadlock occurring.

In this paper we present an implementation relation for timed systems where
time is discrete, we are interested in using refusals while testing and do not
assume that SUTs are input-enabled. Essentially, this is the framework underly-
ing the LTSs generated by the operational semantics of tock-CSP [20] which, in
turn, is the formal language to which RoboSim descriptions are translated [5]. We
consider an LTS corresponding to tock-CSP rather than just RoboSim in order
to aid generality. For example, there is potential to adapt the research reported
in this paper for use with other simulation languages and also languages, such as
Statecharts [8], that have a cyclic nature and a step semantics. The work should
thus be relevant to the testing of many classes of control systems.

The rest of the paper is organised as follows. In Sect. 2 we explain the testing
context and discuss related work. In Sect. 3 we introduce the main definitions
and give a preliminary implementation relation: trace inclusion. In Sect. 4 we
introduce our implementation relation and show that it is strictly stronger than
trace inclusion. In Sect. 5 we present two alternative characterisations of our
implementation relation. Finally, in Sect. 6 we give our conclusions and describe
some lines for future work.

2 Testing Context and Related Work

In testing we distinguish between inputs and outputs since these play different
roles and this has led to additional implementation relations. The best known
implementation relation is ioco [23]. In classical ioco, there is only one type
of refusal, called quiescence, that can be observed if the system is in a state
where it cannot evolve via an internal action and, in addition, the system cannot
produce an output without first receiving an input. If we are testing an SUT,
then quiescence is typically observed through a timeout. Note that there is an
extension of ioco to include refusals [9] that we will discuss later on.

While implementation relations such as ioco are widely used, they usually do
not take into account time. Time is not a normal action: it is not like an input,
since the tester does not control it, and it is not like an output since the SUT
does not control it (the SUT cannot, for example, stop time). As a result, there
are now several timed variants of ioco (all are typically called tioco) [3,14,21].
The versions of tioco differ in a number of ways, including whether quiescence
is a possible observation. However, time is typically continuous and these imple-
mentation relations either do not consider refusals or they only consider one
simple type of refusal (quiescence).

As previously mentioned, we were motivated by an interest in certain types
of simulations (in the context of robotics). These simulations are cyclic, where

396 R. Lefticaru et al.

each cycle is of the form of a finite sequence of observations followed by the
passing of a unit of time. In addition, outputs are urgent: time cannot pass
if an output is possible. An agent (robot) might potentially be in a situation
in which it cannot engage in certain actions and it is desirable to model this,
which can be achieved through using refusals. As a result of the above factors,
we require that time is discrete and refusals can be observed. The observation
of the refusal of a set A is typically represented by the situation in which the
environment chooses to only engage in the actions in A and the composition
of the environment and SUT deadlocks. The observation of a deadlock takes
time and is usually observed through a timeout, similar to what is usually done
to observe quiescence. As a result, the observation of a deadlock (and so also a
refusal) should precede a duration (an action representing a unit of time passing).
In this paper we develop implementation relations for timed LTSs that capture
the scenario described above.

A last point of divergence with respect to ioco and its variants is that they
usually assume that the SUT is input-enabled. Essentially, this means that the
SUT should be able to react to any input provided by the tester. This assumption
makes sense for a range of systems and is based on the observation that the SUT
will not block input. However, there are also systems that are not input-enabled
and where this is deliberate. For example, certain options/fields might be greyed-
out on a webpage or simply not available; consider, for instance, the options
available to an editor and to an author in a journal’s manuscript system. In the
context of autonomous systems, and more related to the topic of this paper, a
system might switch off sensors and, in addition, sensors might fail. It is well-
known that one might convert a model that is not input-enabled into one that
is. However, in the type of systems that we are considering in this paper, such a
completed model would less appropriately model an SUT in which certain inputs
are disabled and could lead to the generation of test cases that either do not
make sense from a testing perspective or contain redundancy.

Concerning related work, it might be possible to use some versions of tioco
with discrete time and in some situations this will be sufficient but we prefer a
native discrete time tioco (in addition, previous work does not consider refusals).
There is a variant of ioco that we initially considered because it includes refusals
and systems need not be input-enabled [9]. We depart from this work in several
lines (in addition to including time). First, our refusals are observed only in
stable states2 and this has some implications. Specifically, an internal choice
between outputs is equivalent to the same external choice while if we consider
inputs then we obtain semantically different processes. Using a process algebraic
notation, we have (τ ; !o1; stop) + (τ ; !o2; stop) ∼ (!o1; stop) + (!o2; stop) while
(τ ; ?i1; stop)+ (τ ; ?i2; stop) � (?i1; stop)+ (?i2; stop), where actions preceded by
? and ! denote, respectively, an input and an output, and τ denotes an internal
action. Second, their notion of input-enabledness is more restrictive than ours:
at a certain port, either all the inputs are enabled or none of them is. In their

2 We will say that a state is stable if it is not possible to take a transition whose label
is an output or an internal action.

An Implementation Relation for Cyclic Systems 397

notation, we have only one port and we allow several inputs to be enabled and
several to not be.

3 Background and Models

In this section we define the models and notation used in this paper.

3.1 Traces and Automata

Observations made in testing will be in the form of sequences and we use ε for
the empty sequence. Given a set A, A∗ denotes the set of finite sequences of
elements from A and Aω denotes the set of infinite sequences of elements from
A.

A system will interact with its environment through inputs and outputs.
Throughout the paper, I and O will represent the (disjoint) input and output
alphabets and we let L = I ∪ O denote the set of actions.

The basic, untimed, type of model we consider is an automaton in which, as
usual in Automata Theory and in contrast to the standard notion of LTS, we
have the concept of a final state.

Definition 1 (Automaton). We say that p = (Q, q0, L, T, F) is an automa-
ton where

– Q is a countable, non-empty set of states;
– q0 ∈ Q is the initial state;
– L is a countable set of actions;
– T ⊆ Q × (L ∪ {τ}) × Q is the transition relation, where τ /∈ L represents an

internal action;
– F ⊆ Q is the set of final states.

At any time, an automaton p is in a particular state q ∈ Q. If (q, a, q′) ∈
T for action a ∈ L ∪ {τ} then p can move to state q′ through action a. We
will sometimes use an alternative notation: a transition (q, a, q′) ∈ T can be
expressed as q

a−→ q′. We will also write q �a−→ if there does not exist q′ such that
(q, a, q′) ∈ T . The transition relation can be extended as follows.

Definition 2. Let p = (Q, q0, L, T, F) be an automaton with states q, q′ ∈ Q,
visible actions a, a1, . . . , an ∈ L, with n > 1, and sequence of visible actions
σ ∈ L∗.

q
ε=⇒ q′ ⇔def q = q′ or ∃q1, . . . , qn−1 ∈ Q : q

τ−−→ q1
τ−−→ . . . qn−1

τ−−→ q′

q
a==⇒ q′ ⇔def ∃q1, q2 ∈ Q : q

ε=⇒ q1
a−−→ q2

ε=⇒ q′

q
a1...an=====⇒ q′ ⇔def ∃q1, . . . , qn−1 ∈ Q : q

a1==⇒ q1
a2==⇒ . . . qn−1

an==⇒ q′

q
σ==⇒ ⇔def ∃q′ ∈ Q : q

σ==⇒ q′

q � σ==⇒ ⇔def � ∃q′ ∈ Q : q
σ==⇒ q′

p
σ==⇒ ⇔def qo

σ==⇒

398 R. Lefticaru et al.

As usual, we will not always distinguish between a model and its initial
state. If p = (Q, q0, L, T, F), then we will identify p with its initial state q0,
and, for example, we will usually write p

σ==⇒ instead of q0
σ==⇒. The automaton

p = (Q, q0, L, T, F) defines the language L(p) of finite sequences that take p to
a final state.

Definition 3. Given automaton p = (Q, q0, L, T, F), the language L(p) ⊆ L∗ is
defined as L(p) = {σ ∈ L∗|∃q ∈ F : q0

σ==⇒ q}.

3.2 Timed Models

We now describe our timed model, which is an LTS in which there is a special
action, �, that denotes the passing of a unit of time. We call this action ‘tock’
in order to be consistent with tock-CSP [20, Chapter 14].

Definition 4 (tockLTS, timed traces). A labelled transition system with
tock (or tockLTS) is a tuple p = (Q, q0, I, O, T) where

– Q is a countable, non-empty set of states;
– q0 ∈ Q is the initial state;
– I and O are countable disjoint sets of inputs and outputs respectively, with

L = I ∪ O being the set of visible actions;
– T ⊆ Q × (L ∪ {τ,�}) × Q is the transition relation, where τ /∈ L represents

the internal action, and � represents a tock action denoting the passage of a
unit of time.

We use TockLTS (I,O) to denote the set of tockLTS with input set I and
output set O.

The definition of the σ==⇒ relation is similar to the one given in Definition 2,
with the only difference that σ ∈ (L ∪ {�})∗ and, therefore, we omit it. The set
of timed traces of p is defined as

Ttraces(p) = {σ ∈ (L ∪ {�})∗ | p
σ=⇒}

As usual, we expect processes to have certain properties. First, processes
should not have forced inputs, that is, for each state of a process there exists at
least an outgoing transition that is not an input. Second, we should have the
urgency of internal actions and outputs (to be consistent with how simulations
operate). Third, processes should not show Zeno behaviour, that is, processes
in which an infinite sequence of actions can occur in finite time should not
be allowed. Finally, processes should have time determinism: processes do not
branch as a result of time passing (a �), though a process can branch through
internal actions that occur after a �.

Definition 5 (No forced inputs, urgency, Zeno behaviour, time deter-
minism). Let p = (Q, q0, I, O, T) be a tockLTS. Then

An Implementation Relation for Cyclic Systems 399

p0start p1

p2 · · ·

!o1

�!o2

�

q0start q1 q2

q3 q4 · · ·

τ !o1

�τ

!o2 �

r0start r1

r2 · · ·

?i1

�?i2

�

�

s0start s1 s2

s3 s4 · · ·

τ ?i1

�τ

?i2 �

�

�

Fig. 1. Models related by (refusal) timed trace inclusion

– p has no forced inputs if for all q ∈ Q there exists a ∈ O ∪ {τ,�} such that
q

a−→.
– p has urgent internal actions and output if for all q ∈ Q and a ∈ O ∪ {τ}, if

q
a−→ then q ��−→.

– p has Zeno behaviour if there exists a state q ∈ Q and an infinite path from
q with finitely many tock actions.

– p has time determinism if for all states q1, q2, q3 ∈ Q we have that q1
�−→

q2 ∧ q1
�−→ q3 implies q2 = q3.

If a tockLTS fulfills the previous properties then it also has a very interesting
property: processes cannot stop time. In other words, it is always possible for
time to progress (though certain actions might first happen). The proof of the
following is a straightforward consequence of the absence of Zeno behaviour and
the assumption of no forced inputs.

Proposition 1. Let p = (Q, q0, I, O, T) be a tockLTS. We have that for all
q ∈ Q there exists an infinite path σ = μ1 � μ2 � μ3 . . . ∈ ((I ∪ O)∗{�})ω such
that q

σ=⇒ and ∀i, μi ∈ (I ∪ O)∗.

3.3 A First Implementation Relation

If the environment can only observe traces of visible actions and time (i.e. it
cannot observe refusals) then we have one natural implementation relation: the
requirement that all observations (traces) that can be made when interacting
with the SUT are also observations that can be made when interacting with the
specification.

400 R. Lefticaru et al.

Definition 6. Let p and q be two tockLTSs. We say that p conforms to q under
timed trace inclusion if and only if Ttraces(p) ⊆ Ttraces(q).

The following property is immediate from the definition.

Proposition 2. The timed trace inclusion relation is reflexive and transitive
but need not be symmetric.

Although this initial implementation relation has some nice properties, in
addition to its simplicity, it also has some drawbacks. First, it does not consider
refusals, so that its discriminatory power can be enhanced. Second, there are
some systems that are related but that, intuitively, should not be.

Example 1. Let us consider the fragments of models given in Fig. 1(top and bot-
tom). These two pairs of models conform to each other under timed trace inclu-
sion because we have Ttraces(p) ⊆ Ttraces(q) and Ttraces(q) ⊆ Ttraces(p),
Ttraces(r) ⊆ Ttraces(s) and Ttraces(s) ⊆ Ttraces(r). However, often we
will want to be able to distinguish between such processes. On the one hand,
we expect both conformances between p and q because outputs cannot be con-
trolled by the environment. In other words, a choice between outputs should
work exactly as the corresponding internal choice. For example, even though ?o1
and ?o2 are available at p0, a user/tester cannot choose which of them will be
performed (testers cannot block output). On the other hand, r and s should
not be equivalent. The issue is that the tester or user can choose between two
inputs in the same way that one can choose among the available options in a
vending machine. If we have the corresponding internal choice and we reach, for
example, state s1 then input ?i2 is not available. The implementation relation
that we present in the next section satisfies all of these properties.

4 An Implementation Relation Including Refusals

So far, the discussion has only allowed inputs, outputs, and the passing of time
to be observed. In this section we explore the notion of refusals in our setting
and how they can be added as observations, with this leading to a stronger
implementation relation.

Recall that we are interested in models that are cyclic/have a step semantics:
a sequence of actions occurs without time (in the model) passing and then there
is a tock action. A refusal of a set X ⊆ L is typically observed through the
tester only being willing to engage in the actions in X and the composition of
the tester and the SUT deadlocking. Since deadlocks are observed (in testing)
through timeouts, the observation of a refusal takes time and so we only allow
a refusal to be observed immediately before a tock action. Since outputs and
internal actions are urgent, this means that a refusal can only be observed in a
stable state. Note that we might have combined a refusal with the � that follows
this; we chose not to because this is not the usual use of refusals and also because
we would like to have the potential to extend the work to allow an observation
to end with a refusal.

An Implementation Relation for Cyclic Systems 401

Definition 7 (Stable state). Let p = (Q, q0, I, O, T) be a tockLTS, with L =
I ∪ O. We say that the state q ∈ Q is stable if for all a ∈ O ∪ {τ} we have that
q �a−→.

Given a set X ⊆ L of actions, we use R(X) to denote the refusal of set X.
Further, we let R(L) = {R(X)|X ⊆ L} denote the set of all possible refusals.

We can extend the transition relation of a tockLTS with refusals as follows.

Definition 8 (Refusal). Let p = (Q, q0, I, O, T) be a tockLTS and X ⊆ I ∪ O.

For all q ∈ Q we write q
R(X)−−−−→ q if the following hold:

1. q is stable and
2. for all x ∈ X we have that q �x−→ .

This constitutes the observation of the refusal R(X), that is, at a given stable
state the model cannot perform the actions belonging to X.

It follows that the observation of a refusal R(X) implies that no element
a ∈ X ∪ O ∪ {τ} can be accepted in state q: q �a−→.

Note also that the second condition from the definition implies that we
include R(X) as a refusal if all the actions in X can be refused, even if there are
other actions from L \ X that can be refused. Therefore, we do not only include
maximal refusals. In fact, doing this would lead to some undesirable effects (this
will be clearer after we give our implementation relation using refusals).

We can then give the set of refusal traces of a tockLTS in which, as we already
said, p

σ==⇒ is defined in terms of p
x−→, in the usual way. Recall, however, that

a refusal can only be observed immediately before a tock action. We therefore
obtain a set of potential refusal traces (those that satisfy this condition) and we
call these timed refusal traces. Also note that a timed refusal trace cannot end in
a refusal since the observation of a refusal takes time (and so must be followed
by a �). As a result, this set is not prefix closed.

Definition 9 (Timed refusal traces). Let L be a set of actions. We define
the set of timed refusal traces over L as RT (L) = (L∗ ∪ (R(L){�}))∗.

Let p = (Q, q0, I, O, T) be a tockLTS, with L = I ∪ O. The set of timed
refusal traces of p is defined as

TRtraces(p) = {σ ∈ (L ∪ {�} ∪ R(L))∗|p σ==⇒} ∩ RT (L)

We then obtain a second implementation relation in the natural way: we do
not require the inclusion of (timed) traces but the inclusion of timed refusal
traces.

Definition 10. Let I and O be countable disjoint sets of inputs and outputs,
respectively. Let p and q be two elements of TockLTS (I,O). We say that p con-
forms to q under timed refusal trace inclusion if and only if TRtraces(p) ⊆
TRtraces(q).

402 R. Lefticaru et al.

First, we present an example showing some relations between models and
why maximal refusals do not provide the expected implementation relation.

Example 2. Consider again the fragments of models p and q given in Fig. 1(top).
We have that we cannot add refusals to traces in states p0, q0, q1 and q3 because
they are not stable. Therefore, we have TRtraces(p) ⊆ TRtraces(q) and
TRtraces(q) ⊆ TRtraces(p).

Consider now r and s given in Fig. 1(bottom). Assuming that I = {?i1, ?i2}
and O = ∅, we have that s has the timed refusal traces R({?i1})� and R({?i2})�
and these are not timed refusal traces of r. Essentially, the τ transitions mean
that s moves to a state in which it can refuse one input (?i2 in s1 and ?i1 in s2)
before performing a �.

We have TRtraces(r) ⊆ TRtraces(s), so that r conforms to s under timed
refusal trace inclusion, but the converse is not the case. This shows that an
external choice between inputs is a good implementation of the internal choice
between the same inputs.

These last two fragments are also useful to show why we cannot restrict our-
selves to compute only maximal refusal sets. If we would do this, we would have
that the timed refusal traces of r would be the same but the ones corresponding
to s would be R({?i2})?i1 · · · , R({?i1})?i2 · · · , R({?i1})�, R({?i2})�, . . . and we
would not have timed trace inclusion.

We can now compare this implementation relation with trace inclusion intro-
duced in Definition 6. The proof of the following result follows from the fact that,
for a process r, Ttraces(r) = TRtraces(r) ∩ L∗.

Proposition 3. Let I and O be countable disjoint sets of inputs and outputs,
respectively. Let p and q be two elements of TockLTS (I,O). If p conforms to
q under timed refusal trace inclusion then p conforms to q under timed trace
inclusion.

However, the converse is not the case as the following result shows.

Proposition 4. Let I and O be countable disjoint sets of inputs and outputs,
respectively. There exist p and q in TockLTS (I,O) such that p conforms to q
under timed trace inclusion but p does not conform to q under timed refusal
trace inclusion.

Proof. In order to prove this it is sufficient to give an example of such tockLTSs.
Consider r and s depicted in Fig. 1(bottom). In Example 1 we showed that
Ttraces(r) = Ttraces(s). Therefore, s conforms to r under timed trace
inclusion. On the contrary, in Example 2 we showed that TRtraces(s) �⊆
TRtraces(r). Therefore, s does not conform to s under refusal timed trace
inclusion.

To summarise, r conforms to s under timed trace inclusion but not under
timed refusal trace inclusion. The result therefore holds.

We therefore obtain the following.

An Implementation Relation for Cyclic Systems 403

q0start q1

q2

q3
?a

�
?b

�
q0start q1

q2

q1 q3
?a

�
?b

R({?a}) �

(a) Original model (b) Refusal automaton

Fig. 2. A refusal can only happen immediately before a duration or tock �

Theorem 1. Timed refusal trace inclusion is strictly stronger than timed trace
inclusion.

This tells us that if we can observe timed refusal traces in testing then we
have a more powerful implementation relation than just timed trace inclusion.
It is also the case that if the environment (e.g. the user) can observe timed
refusal traces (through, for example, the refusal of actions being observed as a
result of options not being available on a screen) then it is insufficient to test for
trace inclusion: the user might consider an SUT p to be faulty with respect to a
specification q even though they have the same sets of timed traces.

5 Alternative Characterisations

In this section we provide two alternative characterisations of timed refusal trace
inclusion. First, we develop an approach in which a tockLTS p is transformed into
an automaton whose language describes the set of timed refusal traces of p. This
gives us the potential to use automata theory and algorithms when reasoning
about timed refusal trace inclusion. We then show how we can model timed
refusal trace inclusion in terms of observers and the observations they can make.
This shows that our definition of timed refusal trace inclusion corresponds to
what can be observed, with respect to the SUT, in our setting and so confirms
that it is the right implementation relation for our context.

5.1 Using an Automaton

Trace inclusion corresponds to a relation between the languages defined by the
automata corresponding to two LTS. The benefit is that it is possible to use
standard results and algorithms from formal language theory. This is particularly
useful if the processes are deterministic finite state automata since there are
efficient algorithms for many standard problems, including language inclusion
(that is, trace inclusion in our setting). We now show how we can generate an
automaton whose traces are exactly the timed refusal traces of a tockLTS q.

In order to explore one approach that might be used to achieve this, consider
the fragment of a model in Fig. 2(a). This can refuse all actions other than ?b

404 R. Lefticaru et al.

when in state q1. It might seem that we can simply add a self-loop transition,
with such a refusal, in state q1. However, we would then have the problem that
such a self-loop need not be followed by a � action. For example, the inclusion
of such a self-loop in state q1 would allow refusal traces such as ?aR({?a})?b.
Such a refusal trace should not be allowed since it has a refusal followed by an
action other than �.

One possible solution is outlined in Fig. 2(b). Rather than adding a self-loop,
we include a transition, to a new state q̃1, that is labelled with the refusal. From
q̃1 there is only one possible action, which is �. We also require that q̃1 is not a
final state of the automaton. As a result, any path that reaches a final state and
includes the transition from q1 to q̃1 must follow this transition by a transition
with label �. Note that we require the notion of a final state and so the model
is an automaton and not a tockLTS.

We now formally define the automaton M(p) that includes these refusals.

Definition 11. Let p = (Q, q0, I, O, T) be a tockLTS. Let us consider the subset
of states that can evolve by performing �, that is, Q� = {q ∈ Q|q �−→}. We
define a set of fresh states Q̃ = {q̃|q ∈ Q�} (i.e. Q ∩ Q̃ = ∅). The new set of
states Q̃ has a state for each state of Q�.

We let M(p) denote the automaton (Q ∪ Q̃, q0, I ∪ O ∪ R(L), T ′, F) where

– T ′ = T ∪ {(q,R(X), q̃)|q ∈ Q� ∧ q
R(X)−−−−→} ∪ {(q̃,�, q′)|q ∈ Q� ∧ q

�−→ q′}.
– F = Q.

The following result shows that the previous construction is correct.

Theorem 2. Let p = (Q, q0, I, O, T) be a tockLTS. We have that TRtraces(p)
= L(M(p)).

Proof. First, observe that both sets are subsets of RT (L), where L = I ∪ O. We
will prove a slightly stronger result than the one stated before. Specifically, we
will prove that for all σ ∈ RT (L), we have that σ takes p to state q if and only
if q is a final state of M(p) and σ takes M(p) to state q.

We use proof by induction on the length of σ. The base case, with σ being
the empty sequence, is immediate.

Inductive hypothesis: the result holds if σ has length less than k (k > 0).
Let us suppose that σ has length k and σ takes one of p and M(p) to state q.
By the definition of RT (L), σ = σ1a for some a ∈ L ∪ {�} (i.e. sequences in
RT (L) cannot end in refusals). There are two cases to consider. First, if σ1

does not end with a refusal then, by the inductive hypothesis, we have that σ1

reaches the same states in p and M(p). In addition, by construction we have
that a takes p and M(p) to the same state and so the result follows. The second
case is where σ1 ends in a refusal and so σ = σ2R(X)� for some X ⊆ L and
σ2 ∈ RT (L). By the inductive hypothesis, σ2 takes p and M(p) to the same
state q1. By construction, R(X)� takes p and M(p) to the same state q and so
the result follows.

An Implementation Relation for Cyclic Systems 405

5.2 Using Observers

Implementation relations should correspond to the ability of the environment, or
a tester, to distinguish between processes, with it typically being the case that we
require that all observations that can be made of the SUT are also observations
that can be made when interacting with the specification (see, for example,
[23]). In this section we define the notion of an observer, in our context, and how
such an observer interacts with a tockLTS. This will provide an alternative, but
equivalent, characterisation of timed refusal trace inclusion.

We follow the classical approach of ioco [23], in which a special action θ
is included in an observer to denote the observation of a refusal. An observer
will be placed in parallel with the SUT, with the two synchronising on common
actions in I ∪ O ∪ {�}; θ synchronises with refusals. Before we include a formal
definition, we informally explain the properties we expect an observer to have in
order to observe the refusal of X in state u.

1. There is a transition from u labelled by θ, with the parallel composition being
defined so that the other transitions are given priority over this (if the SUT
and observer are both able to take an action a �= θ then they take such an
action, in preference to communicating through a θ).

2. For all x ∈ X, there is a transition from u that has label x. This ensures that
if p can engage in an action x ∈ X when in the current state then the parallel
composition of p and the observer can engage in action x and so a refusal will
not be observed (since x is given priority over θ).

3. For all a ∈ O, there is a transition from u labelled with a. Similar to the
previous case, the prioritisation of such actions over θ means that this ensures
that a θ transition cannot occur if p can perform an internal action or an
output. As a result, if the process (with which u is interacting) is not in a
stable state then a refusal cannot happen.

4. There are no transitions from u labelled with an action from L\(X ∪O). This
ensures that the observer can only change state by engaging in an action from
X or through taking a transition with label θ.

The combination of the above ensures that the observer can only take the
transition with label θ if the process p is in a stable state and also no actions
from X are possible - i.e. if and only if p can refuse X. In order to ensure that a
refusal can only be observed in a stable state we will require observers to have
the following property.

Definition 12 (Observer). Let I and O be countable disjoint sets of inputs
and outputs, respectively. An observer u is an automaton with action set L =
I ∪ O ∪ {�, θ} that satisfies the following properties for each state q of u:

1. q �τ−→;
2. if q ��−→ then for all a ∈ O we have that q

a−→;
3. if q

�−→ then for all a ∈ O we have that q �a−→;
4. if (q, θ, q′) is a transition of u then � is the only action available in state q′.

406 R. Lefticaru et al.

We let U(I,O) denote the set of observers with input set I and output set O.

The last rule ensures that a refusal must be followed by a �. The second rule
is the standard condition that a tester is able to observe outputs; the exception
is because the observation of a refusal takes time and so a θ must be followed
by a �.

We can now define a parallel composition operator �| between a process
p ∈ TockLTS (I,O) and an observer u ∈ U(I,O). This is similar to the operators
for LTS [23] but we choose to enrich the observations made with refusal sets.

Definition 13 (Synchronised parallel communication). Let I and O be
countable disjoint sets of inputs and outputs, respectively. Let p = (Q, q0, I,
O, T) ∈ TockLTS (I,O) and u = (Q′, q′

0, I ∪ O ∪ {�, θ}, T ′, Q′) ∈ U(I,O). The
composition of the observer u and the model p, denoted by u �| p, is an automaton
(Q×Q′, (q0, q′

0), I ∪ O ∪ R(I ∪ O) ∪ {�}, T ′′, F) in which F = Q×Q′ and T ′′

is defined as follows:

– If (q1, τ, q2) ∈ T then for all q′ ∈ Q′ we have ((q1, q′), τ, (q2, q′)) ∈ T ′′.
– If (q1, a, q2) ∈ T and (q′

1, a, q′
2) ∈ T ′, with a ∈ I ∪ O ∪ {�}, then we have

((q1, q′
1), a, (q2, q′

2)) ∈ T ′′.
– Let X ⊆ I ∪ O. If (q1,�, q2) ∈ T , (q′

1, θ, q
′
2) ∈ T ′ then ((q1, q′

1), R(X), (q1, q′
2))

∈ T ′′ is the case if the following conditions hold:
• for all a ∈ I ∪ O we have that either there does not exist q3 such that

(q1, a, q3) ∈ T or there does not exist q′
3 such that (q′

1, a, q′
3) ∈ T ′.

• for all a ∈ X we have that there exists q′
3 such that (q′

1, a, q′
3) ∈ T ′.

Note that, since p ∈ TockLTS (I,O) and (q1,�, q2) ∈ T , we know that q1 is
a stable state.

The sets of observations that the observer u can make of p, denoted by
obsθ(u, p), are given by the following:

obsθ(u, p) =def {σ ∈ (I ∪ O ∪ R(L) ∪ {�})∗ | u �| p
σ==⇒}

Note that in the last rule of the composition, since q1 may evolve via �
then we have that it must be a stable state (for all a ∈ O ∪ {τ} we have that
q1 �a−→); this follows from the fact that p is a tockLTS and tockLTSs have urgent
outputs and internal actions (Definition 5). In this rule, also note that we discard
the state reached after the performance of � from q1: the composition makes p
remains in the same state, according to how refusals are added as transitions to
tockLTSs (Definition 8).

The following shows how observations relate to timed refusal traces and is
a result of the definition of u �| p and the definition of timed refusal traces
(Definition 9).

Proposition 5. Let I and O be countable disjoint sets of inputs and outputs,
respectively. Given σ ∈ (I ∪ O ∪ {�} ∪ R(L))∗ and p in TockLTS (I,O), there is
an observer u ∈ U(I,O) such that σ ∈ obsθ(u, p) if and only if σ is a prefix of a
timed refusal trace of p.

An Implementation Relation for Cyclic Systems 407

Note that in the above result σ need not be a timed refusal trace of p since σ
could end in a refusal; to make this a timed refusal trace it would be necessary
to add the � that follow this refusal. The following result is immediate from
Proposition 5.

Theorem 3. Let I and O be countable disjoint sets of inputs and outputs,
respectively. Given p and q in TockLTS (I,O) we have that p conforms to q
under timed refusal trace inclusion if and only if, for all u ∈ U(I,O) we have
that obsθ(u, p) ⊆ obsθ(u, q).

Since the observers capture the observations that can be made, this tells us
that timed refusal trace inclusion is a suitable implementation relation for our
scenario.

6 Conclusions and Future Work

There has been significant interest in testing from formal models since this brings
the potential for automated systematic testing. In order to test from a formal
model one requires an implementation relation that says what it means for the
system under test (SUT) to be a correct implementation of the specification.
This paper considered cyclic models, in which behaviours are of the form of
sequences of observable actions separated by discrete time intervals. The work
was motivated by the use of cyclic simulators in a number of areas, including
robotic systems.

Although many implementation relations are variants of the well known ioco
implementation relation, ioco and its timed versions were not suitable for cyclic
models. As a result, there was a need to define novel implementation relations
that take into account the discrete nature of time in cyclic models and also not
only the actions that models can perform but also the ones that they can refuse
at each point of time. We introduced the notion of a timed refusal trace and
also our main implementation relation: timed refusal trace inclusion. We intro-
duced two alternative characterisations of timed refusal trace inclusion. First,
we showed how one can define an automaton whose language is exactly the
set of timed refusal traces of a model; this allows one to express correctness in
terms of formal language containment for automata. We also showed how one
can define timed refusal trace inclusion in terms of the observations that can
be made by an observer interacting with processes (the specification and SUT);
this demonstrates that timed refusal trace inclusion corresponds to the notion
of observation for our models.

There are several possible lines of future work. It should be possible to extend
classical test generation algorithms to test for timed refusal trace inclusion. There
is also the potential to enrich models to include, for example, probabilities or
continuous variables (i.e. hybrid systems). Finally, we plan to carry out case
studies with robotic systems.

408 R. Lefticaru et al.

References

1. Ammann, P., Offutt, J.: Introduction to Software Testing, 2nd edn. Cambridge
University Press, Cambridge (2017)

2. Binder, R.V., Legeard, B., Kramer, A.: Model-based testing: where does it stand?
Commun. ACM 58(2), 52–56 (2015)

3. Briones, L.B., Brinksma, E.: A test generation framework for quiescent real-time
systems. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
64–78. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31848-4 5

4. Cavalcanti, A., Ribeiro, P., Miyazawa, A., Sampaio, A., Conserva Filho, M., Didier,
A.: RoboSim reference manual. Technical report, University of York (2019)

5. Cavalcanti, A., et al.: Verified simulation for robotics. Sci. Comput. Program. 174,
1–37 (2019)

6. Cavalli, A.R., Higashino, T., Núñez, M.: A survey on formal active and passive
testing with applications to the cloud. Ann. Telecommun. 70(3–4), 85–93 (2015)

7. van Glabbeek, R.: The linear time-branching time spectrum I. The semantics of
concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.)
Handbook of Process Algebra, chapter 1, North Holland (2001)

8. Harel, D.: Statecharts: a visual formulation for complex systems. Sci. Comput.
Program. 8(3), 231–274 (1987)

9. Heerink, L., Tretmans, J.: Refusal testing for classes of transition systems with
inputs and outputs. In: 19th Joint International Conference on Protocol Specifica-
tion, Testing, and Verification and Formal Description Techniques, FORTE/PSTV
1999, pp. 23–38. Chapman & Hall (1997)

10. Hierons, R.M., et al.: Using formal specifications to support testing. ACM Comput.
Surv. 41(2), 9:1–9:76 (2009)

11. Hierons, R.M., Bowen, J.P., Harman, M. (eds.): Formal Methods and Testing.
LNCS, vol. 4949. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8

12. World Robotics 2018: International Federation of Robotics. Statistical Department
(2018)

13. ISO/IEC JTCI/SC21/WG7, ITU-T SG 10/Q.8: Information Retrieval, Transfer
and Management for OSI; Framework: Formal Methods in Conformance Testing.
Committee Draft CD 13245–1, ITU-T proposed recommendation Z.500. ISO - ITU-
T (1996)

14. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Form. Meth-
ods Syst. Des. 34(3), 238–304 (2009)

15. Marinescu, R., Seceleanu, C., Le Guen, H., Pettersson, P.: A research overview of
tool-supported model-based testing of requirements-based designs. In: Advances in
Computers, chapter 3, vol. 98, pp. 89–140. Elsevier (2015)

16. Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., Timmis, J., Woodcock, J.:
RoboChart: modelling and verification of the functional behaviour of robotic appli-
cations. Softw. Syst. Model. (2019, to appear)

17. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing, 3rd edn. Wiley,
Hoboken (2011)

18. Phillips, I.: Refusal testing. Theor. Comput. Sci. 50(3), 241–284 (1987)
19. Rohmer, E., Singh, S.P., Freese, M.: V-REP: aversatile and scalable robot simula-

tion framework. In: 26th IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS 2013, vol. 1, pp. 1321–1326. IEEE Computer Society (2013)

https://doi.org/10.1007/978-3-540-31848-4_5
https://doi.org/10.1007/978-3-540-78917-8
https://doi.org/10.1007/978-3-540-78917-8

An Implementation Relation for Cyclic Systems 409

20. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science.
Springer, London (2010). https://doi.org/10.1007/978-1-84882-258-0

21. Schmaltz, J., Tretmans, J.: On conformance testing for timed systems. In: Cassez,
F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 250–264. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-85778-5 18

22. Shafique, M., Labiche, Y.: A systematic review of state-based test tools. Int. J.
Softw. Tools Technol. Transf. 17(1), 59–76 (2015)

23. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8 1

https://doi.org/10.1007/978-1-84882-258-0
https://doi.org/10.1007/978-3-540-85778-5_18
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1

Modular Indirect Push-Button Formal
Verification of Multi-threaded Code

Generators

Anton Wijs(B) and Maciej Wiłkowski

Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
a.j.wijs@tue.nl, m.wilkowski@student.tue.nl

Abstract. In model-driven development, the automated generation of
a multi-threaded program based on a model specifying the intended sys-
tem behaviour is an important step. Verifying that such a generation
step semantically preserves the specified functionality is hard. In related
work, code generators have been formally verified using theorem provers,
but this is very time-consuming work, should be done by an expert in
formal verification, and is not easily adaptable to changes applied in the
generator. In this paper, we propose, as an alternative, a push-button
approach, combining equivalence checking and code verification with pre-
vious results we obtained on the verification of generic code constructs.
To illustrate the approach, we consider our Slco framework, which con-
tains a multi-threaded Java code generator. Although the technique can
still only be applied to verify individual applications of the generator, its
push-button nature and efficiency in practice makes it very suitable for
non-experts.

1 Introduction

Model-driven software development (MDSD) [23] aims to make the software
development process more transparent and less error-prone. In an MDSD work-
flow, Domain Specific Languages (DSLs) are used to model the system under
development, and model transformations are applied to initially refine the model,
and finally generate source code that either fully or partially implements the
program. The development of concurrent software is particularly complex, and
techniques to support developers are sorely needed. Formal verification can play
a vital role in that regard, to ensure that the artifacts produced in an MDSD
workflow are functionally correct.

The correctness of models and source code has been investigated for many
years, for instance see [8,19,21,25,46]. On the other hand. the transformation of
a model to another model or code has received less attention [2]. To ensure that
the final program is correct, it must be proven that the source code captures the
intended functionality as specified by the models.

Verifying model tranformations, that transform an artifact into another arti-
fact, is fundamentally more complex than verifying the artifacts themselves [2].
c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 410–429, 2019.
https://doi.org/10.1007/978-3-030-30446-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_22&domain=pdf
http://orcid.org/0000-0002-2071-9624
https://doi.org/10.1007/978-3-030-30446-1_22

Modular Indirect Push-Button Formal Verification 411

Fig. 1. Model-to-code verification workflow.

This is particularly true for model-to-code transformations (or code generators),
due to the usual difference in abstraction level between input model and output
source code, and the usual lack of formal semantics of the target programming
language. Still, in recent years, techniques have been developed to directly verify
code generators (and compilers) [7,9,24,26,27]. These techniques use theorem
provers [6,15,30,37]. Their advantage is that they can establish that the gener-
ators are guaranteed to provide correct output, but their drawback is the effort
that is required to construct the proofs, the expertise needed to do so, and their
inflexibility when the requirements of the generator change.

Alternatively, indirect approaches try to prove for a concrete input model
that a generator produces correct output, every time the generator is applied.
This is in practice often good enough, as the programs produced by generators
are deployed, not the generators themselves, and it is much less complex to
verify the output of a transformation rather than the transformation itself [2,7].
However, most existing indirect approaches do not support multi-threaded code,
have limited scalability, or check the preservation of particular properties, as
opposed to full semantics preservation [1,13,33,38–40].

In this paper, we propose an indirect technique to verify semantics preser-
vation for generators of multi-threaded code. Its main features are that (1) it is
push-button, requiring no additional input from the user when the generator is
applied, and (2) it is modular, meaning that it scales linearly as the program size
increases. We demonstrate our technique in the context of the Simple Language
of Communicating Objects (Slco) framework [35], which includes a generator
for multi-threaded Java code, but the technique can be adapted to other DSLs
and programming languages.

An overview of the technique workflow is given in the Activity diagram of
Fig. 1. Initially, a given model is formally verified, by means of the mCRL2 model
checker [11], to determine whether it satisfies a list of desired properties (for more
information on this, see [35]). If it does, it can be subjected to code generation.
Verification of this step is the topic of the current paper, and is done in two
procedures that can be performed independently. In one procedure, for each
state machine in the model, corresponding with one thread in the source code, a
control flow graph (CFG) is extracted from both the model and the code. These

412 A. Wijs and M. Wiłkowski

CFGs are interpreted as Kripke structures, converted to Labelled Transition
Systems, and finally compared by means of bisimulation checking [16,31]. In the
other procedure, implementations of individual state changes in the model are
formally verified by means of the code verifier VerCors [8]. The separation logic
specifications of those implementations, expressing the semantics of the model,
are automatically generated. Together, the two verification results imply that
the individual threads have been correctly implemented. Interaction between the
threads is guaranteed to be correct, since the generator uses a mechanism for this
that we have proven to be correct in the past, by means of the VeriFast code
verifier [21,47]. All in all, we exploit the strengths of model checking, equivalence
checking, and code verification to achieve verified MDSD.

Structure of the Paper. Section 2 presents the preliminary concepts. Slco and
code generation are discussed in Sect. 3. In this section, the formal semantics
of Slco and an updated code generator are presented for the first time. Our
code generator verification technique is explained in Sect. 4. Its implementation
and experimental results are discussed in Sect. 5. Related work is considered in
Sect. 6, and finally, Sect. 7 contains our conclusions.

2 Preliminaries

The semantics of a system can be formally expressed by a Labelled Transition
System (LTS) as presented in Definition 1.

Definition 1 (Labelled Transition System). An LTS G is a tuple (S,A, T ,
ŝ), with

– S a finite set of states;
– A a set of action labels;
– T ⊆ S × A × S a transition relation;
– ŝ ∈ S the initial state.

Action labels in A are denoted by a, b, c, etc. A transition (s, a, s′) ∈ T , or
s

a−→ s′ for short, denotes that LTS G can move from state s to state s′ by
performing the a-action.

To compare LTSs, we use strong bisimulation, which is an equivalence rela-
tion, i.e., it is reflexive, symmetric and transitive.

Definition 2 (Strong bisimulation). A binary relation B between two LTSs
G1 = (S1,A1, T1, ŝ1) and G2 = (S2,A2, T2, ŝ2) is a strong bisimulation iff for all
s ∈ S1 and t ∈ S2, s B t implies:

1. if s
a−→ s′ then t

a−→ t′ and s′ B t′;
2. if t

a−→ t′ then s
a−→ s′ and s′ B t′.

Two states s, t are (strongly) bisimilar, denoted by s ↔ t, iff there is a
bisimulation relation B such that s B t. Two LTSs G1 = (S1,A1, T1, ŝ1), G2 =
(S2,A2, T2, ŝ2) are (strongly) bisimilar, denoted by G1 ↔ G2, iff ŝ1 ↔ ŝ2.

An alternative way to define the semantics of systems is by means of a Kripke
structure, which is labelled on the states as opposed to the transitions.

Modular Indirect Push-Button Formal Verification 413

Definition 3 (Kripke structure). A Kripke structure is a tuple K = (S,P,
T , L, ŝ), with

– S a finite set of states;
– P a finite set of atomic propositions;
– T ⊆ S × S a total transition relation;
– L : S → 2P a state labelling function.
– ŝ ∈ S the initial state.

With s −→ t, we denote that (s, t) ∈ T . We refer to the domain of LTSs as
LTS, and to the domain of Kripke structures as KS.

In [29,36], a translation from Kripke structures to LTSs is defined that pre-
serves bisimilarity.1

Definition 4 (Kripke structure into LTS embedding). The embedding
lts : KS → LTS is defined as lts(K) = (S ′,A, T , ŝ) for arbitrary Kripke struc-
tures K = (S,P, T ,L, ŝ), where

– S ′ = S ∪ {s̄ | s ∈ S}, with for all s ∈ S, we have s̄ �∈ S;
– A = 2P ∪ {⊥};
– T ⊆ S ′ × A × S ′ is the least relation satisfying the following rules for all

s, t ∈ S:

The fresh symbol ⊥ is used to indicate that from the target state of a ⊥-
transition, an outgoing transition will be present with the original (Kripke) label
of the target state of the latter transition.

3 Slco and the Generation of Java Code

Figure 2 presents the meta-model of version 2.0 of Slco. An Slco model consists
of a number of classes, instances of those classes called objects, multiple chan-
nels via which these objects can communicate with each other, and user-defined
actions. Each class specifies the potential behaviour of a system component, and
consists of a finite number of state machines, a set of object-local variables that
can be accessed by each state machine in the class, and ports that are connected
to channels, via which state machines can communicate with state machines in
other objects. Variables can be of type Boolean, Integer or Byte, or Array of any
of those types.

A state machine consists of a number of states, including one initial state,
and transitions between those states, indicating possible state changes. Further-
more, a state machine may have a finite number of state machine-local variables,
1 We omit a definition of bisimilarity for Kripke structures. For the details, see [36].

Also, in contrast to [29,36], the translation as defined here does not treat transitions
between equally labelled states as internal LTS steps, since no such transitions are
present in our Kripke structures (see Sect. 4.2).

414 A. Wijs and M. Wiłkowski

Fig. 2. The metamodel of Slco 2.0.

and with each transition, a (possibly empty) sequence (or block) of statements
is associated. Those statements can access (read and update) both the state
machine-local variables and the variables of the instance (object) of the class in
which the state machine resides. A transition can be fired if the current state
of the state machine is the source state of the transition, and the associated
block is enabled. A block is enabled iff its first statement is enabled. The order
in which the outgoing transitions of a particular state should be considered for
firing can be specified using transition priorities, but we do not consider these
in the current paper. Here, we consider three types of statement:

– Expression: a statement evaluating to either true or false, e.g. x = 0. It is
enabled iff it evaluates to true.

– Assignment: a statement assigning a value to either a state machine-local
or object-local variable, e.g. x := 1. It is always enabled.

– Composite: a sequence of assignments, optionally preceded by an expression,
e.g. [x = 0; x := 1]. It is enabled iff its first substatement is enabled.

In the current paper, we do not consider channels and ports (hence those
concepts are marked with dashed lines in Fig. 2), focussing instead completely
on concurrent behaviour represented by multiple state machines within a class.
Hence, in the following, we do not discuss channels, nor do we consider actions.
For more information on these concepts, see the Slco tool paper [35]. The com-
plete Slco language also has the statements send and receive, for sending and
receiving messages over channels. Nevertheless, in Sect. 4, we explain that includ-
ing channels (and hence send and receive statements), actions and transition
priorities actually requires only a minor extension of our verification approach.
In other words, the fragment of Slco that we focus on in this paper is sufficient
to demonstrate our approach.

Modular Indirect Push-Button Formal Verification 415

Fig. 3. Slco SOS rules for assignment, expression, and composite statements

When a transition is fired, its block of statements is executed. The formal
semantics of this for basic Slco, a version of Slco in which each transition has
up to one statement, is presented by means of SOS rules in Fig. 3. Slco models
can be transformed to basic Slco models by introducing additional states and
transitions, and breaking up multiple-statement transitions into single-statement
transition sequences. For the SOS rules, we denote with s ⇒ (E)s′ that in the
state machine, there is a transition with statement E from state s to state s′.
Furthermore, we reason about the current state of an Slco model by means of
situations. A situation is a tuple 〈σ, s1|| . . . ||sn〉, with σ a total function mapping
the variables in the model to values of the appropriate types, and s1|| . . . ||sn

the combination of the current states s1, . . . , sn of state machines 1 to n. The
conclusions of the SOS rules are transitions in an LTS capturing the semantics
of an Slco model, where the LTS states represent situations of the model.

The predicate ↓σ (E) evaluates to true iff execution of statement E under
σ (i.e., the variables have the values defined by σ) successfully terminates. In
particular, no out-of-bound accesses of array variables occur. The negation of
this is denoted by ↑σ (E) and whenever this is applicable, trying to execute E
results in reaching the error situation � (rule nonterm). Function ξσ(e) is used
to evaluate expression e, and in case e is of type Boolean, ξσ(e) holds iff ↓σ (e)
and e evaluates to true, and σ[ξσ(e)/x] denotes an updated σ, in which ξσ(e)
has been assigned to variable x, the latter not being of type Array (but possibly
an element of an array).

As indicated by SOS rule par, Slco has an interleaving semantics. If, in a
given situation with a state s, a statement E can be fired, then so can it be fired
in a situation consisting of the parallel composition of several states including s.
Furthermore, note that the rules define that the execution of individual state-
ments is atomic, i.e., cannot be interrupted by the execution of other statements.

Generation of Multi-threaded Java Code. The Slco framework includes a gen-
erator for multi-threaded Java code, in which each state machine in a given
Slco model is transformed into a separate thread. Figure 4 presents part of an
example Slco model, named RE, on the left, and part of the translation of state
machine SM1, contained in RE, on the right. Checking for the code-equivalent
of enabled transitions and executing associated statement translations is done
in the method exec as part of the SM1 Java thread. Depending on the current

416 A. Wijs and M. Wiłkowski

Fig. 4. An example Slco model (left) and part of its Java implementation (right)

state (j_currentState), the execution of the statements of a translated outgoing
transition is attempted, and if successful, the associated state change is applied.
Non-determinism is translated by the code generator by using a random num-
ber generator (line 8 in the code) to randomly select the code of an outgoing
transition. Note that for each Slco transition, a dedicated transition method is
implemented that executes a translation of the block associated to the transition.

In Fig. 5, implementations of the transition methods execute_S0_0 and exe-
cute_S1_0 are given, which map one-to-one on the blocks in RE. Each method
returns a Boolean value reflecting whether or not the statement block was suc-
cessfully executed. Note that for shared (object-local) variables, a locking mecha-
nism is required, to ensure that no inconsistent behaviour occurs due to multiple
threads accessing and updating the same variables simultaneously. This locking
mechanism is based on the concept of ordered locking [18]: each variable is asso-
ciated with a separate lock, the locks are sorted, and acquiring locks should be
done in that specified order. In the example, each element of array x has its own
lock, and the locks for x[i] and x[i + 1] both need to be acquired before the update
can be performed. After adding the lock IDs to an array java_lockIDs (lines 3–4
in method execute_S0_0), and sorting the IDs (line 5), the locks are requested
from the Java object java_kp (line 6). After evaluation and/or execution of the
statement, the locks are released (lines 8 and 12).

Finally, instances of the java_Keeper class, such as java_kp in Fig. 5, manage
the locks of the implementation of an Slco object in an array of reentrant locks;
given a number of lock IDs in an array l, a lock method tries to acquire the locks
in the specified order, and an unlock method releases the locks in that order.

Modular Indirect Push-Button Formal Verification 417

Fig. 5. Methods execute_S0_0 and execute_S1_0 for RE

4 Verification of Code Generation

4.1 Verification Overview

Figure 1 presents an Activity diagram of our workflow for the verification of the
code generator. In the current section, we discuss the various steps from the
transform activity onwards, and reason about the fact that together, these steps
provide a correctness proof for individual applications of the code generator. As
input, we expect an Slco model that is functionally correct, i.e., that has the
desired functional properties and the absence of out-of-bound array accesses.

The code generator uses a library of generic constructs that can be reused
each time the generator is applied on a model. In general, the content of such
a library is DSL-specific. For Slco, we have added implementations for the
channel construct, and the ordered locking scheme. Implementations of generic
constructs can be formally verified once, and then safely reused in each appli-
cation of the generator. In the past, we have verified both constructs using the
VeriFast code verifier [21,47]. For the ordered locking scheme, we have verified
that no deadlocks can be introduced by locking, and that the scheme ensures
that atomicity of the statements is preserved. Hence, as long as the generated
code adheres to the scheme it is guaranteed that concurrent executions of state-
ments do not interfere with each other, and that no deadlocks occur when trying
to acquire locks. It is straightforward to check this for our generated code, since
the locks are only accessed via generic lock and unlock methods that are part of
the verified ordered locking scheme implementation, and that have been proven
to implement lock acquisition and release correctly, using VeriFast.

Isolating the locking scheme has multiple advantages for the remaining ver-
ification task. First of all, the locking steps can be ignored, and we can focus
on the behavioural aspects specified by the model. Second of all, it makes the
remaining verification task modular; as the shared variables are the only means
for the state machines in the model to communicate, the interaction of the cor-
responding threads in the program is guaranteed to be correct. Furthermore, as
statement atomicity is preserved, we know that no inconsistent system states
can be reached when the threads execute in parallel. What remains is to prove
that each individual state machine is correctly translated into a thread.

418 A. Wijs and M. Wiłkowski

Fig. 6. Definition of the BIR main concepts

Fig. 7. Translating BIR to CFG

To do the latter, each time the generator is applied on a given Slco model,
two verification steps can be performed independently: checking for equivalence
of the CFGs of each state machine and its corresponding Java thread, to deter-
mine whether they have equivalent control flows, and verifying semantics preser-
vation when the blocks of individual transitions are translated to Java methods,
to determine whether the individual steps in the control flows are equivalent. In
Sect. 4.2, we discuss the former. The latter is addressed in Sect. 4.3.

The two steps nicely complement each other, together addressing the seman-
tics (Fig. 3). The CFG equivalence checking step establishes that in all reachable
program states, each transition method will be considered for execution iff the
corresponding transition is an outgoing transition of the corresponding model
state. The transition method verification step establishes that execution of a
transition method indeed has the intended effect on the current state, i.e., all
transition methods correctly implement the block of their transition. In Sect. 4.4,
we discuss what is required to support the complete Slco language, including
the use of channels, actions, and transition priorities.

4.2 Constructing and Comparing CFGs

To extract accurate CFGs from Slco state machines and Java threads, we have
defined the Behaviour Intermediate Representation (BIR) language. This lan-
guage has enough concepts to capture both types of CFGs: on the one hand,
it can reflect how the Java code implements the statements of an Slco model,

Modular Indirect Push-Button Formal Verification 419

Fig. 8. Transforming the Slco and Java CFGs of RE.

and therefore support if-then, switch, and loop constructs. On the other hand, it
supports modelling concepts such as non-deterministic choice.

Figure 6 lists a definition of the main BIR instructions. An Expr can be
evaluated and a Block is a sequence of instructions. Furthermore:

– A Conditional guards a Block with an Expr condition. If the latter evaluates
to true, the block can be executed. It can be used to represent if-then Java
constructs.

– A Loop expresses that execution of the involved Block should be repeated as
long as the involved Expr condition evaluates to true.

– A Switch branches to multiple instructions, where the branches represent the
different possible outcomes of evaluating the first Expr instruction. It can be
used to represent Java switch constructs.

– A Nondeterm branches to multiple instructions non-deterministically. It can
represent non-deterministic choice in Slco models.

– An Assign expresses that the evaluation of the Expr instruction should be
assigned to the given variable reference.

– A MethodInv represents a method invocation.

BIR descriptions of state machines and threads can be represented by CFGs.
How partial CFGs are derived from the various BIR instructions is shown in
Fig. 7. For the Conditional, Switch, Loop, Assign and Nondeterm instructions,
direct translations are given (MethodInv is processed similar to Assign), with
BIR.Effect being used as a placeholder for nested instructions that need to
be translated recursively. In addition, there are various types of expression, to
reflect their type and whether they are literals or more complex expressions. In
the CFGs, nodes are labelled with BIR instructions, and edges are either labelled
with Fallthrough, representing unconditional flow of execution, choice, repre-
senting an option for a non-deterministic choice, or some value, representing the
result of an evaluation for a branching instruction (IF-node).

While the CFG of a Java program can be directly obtained by transforming
all constructs to BIR instructions, the transformation of Slco models is more
involved: first, each statement block is transformed, after which for each state
machine state, an additional instruction is created, and those state instructions
are connected with each other via the BIR representations of the blocks. On the

420 A. Wijs and M. Wiłkowski

Fig. 9. The LTS produced for the RE example, both for the model and the code.

left in Fig. 8, the CFG of SM1 (Fig. 4) is given, where F is short for Fallthrough,
C is short for choice, and S0_0, S0_1 and S1_0 represent the various transitions.

Once the CFGs of an Slco model and corresponding generated Java code
have been constructed, some transformations have to be applied on them to
bring them semantically together. First of all, nodes representing Slco blocks
must have the same label as their corresponding Java translations (their actual
semantic equivalence is addressed in Sect. 4.3). Besides this, we apply two other
transformations: (1) we introduce a mechanism on the Slco side to keep track of
the current state, as this is also done on the Java side, and (2) we directly intro-
duce nondeterminism on the Java side by means of the Nondeterm instruction.
We have proven manually that both transformations are semantics preserving.
Figure 8 presents the application of those transformations on the RE example.
On the Slco side, the nodes representing state machine states are removed, and
the control flow is replaced by a switch instruction involving a new variable
currentState, to keep track of the current state, inside a Loop instruction with
condition true, i.e., an infinite loop. The instructions representing the various
blocks are turned into IF-nodes, and are connected to the new switch instruc-
tion via the appropriate value of currentState. After each block instruction,
the current state is updated if execution of the block was successful. Otherwise,
the state machine remains in the same state.

On the Java side, every occurrence of the j_choice variable, which involves
obtaining a new random value followed by a switch instruction using j_choice,
is replaced by a new Nondeterm instruction.

When the CFGs have been transformed, what remains is to remove the edge
labelling, such that the CFGs can be interpreted as Kripke structures. Labels
Fallthrough and choice can be safely removed, but the conditional labels need
to be preserved, in order to maintain the guarded control flow. As the nested
instructions inside Conditional, Switch and Loop all have exactly one incoming
edge, coming from an IF-node (Fig. 7), we can move the conditional edge labels
to the target nodes of those edges. For instance, in case of Switch in Fig. 7, we
relabel the branch 1 node to 1: branch 1, and so on.

Finally, we transform the resulting Kripke structures to LTSs (Definition 4),
and check whether the LTSs are strongly bisimilar (Definition 2). In case of

Modular Indirect Push-Button Formal Verification 421

the RE example, the two LTSs are in fact identical. Figure 9 presents one of
those LTSs. For ease of presentation, each state ŝ (black circle) in Fig. 9 in
fact represents a state s together with a companion state s̄, connected via a
⊥-transition from s to s̄ and a transition labelled with the associated grey label
in Fig. 9 back from s̄ to s. All in- and outgoing transitions of a state ŝ in Fig. 9
are connected to s (as opposed to s̄). The top state in the figure is the initial
state. This is indicated by the large incoming arrow head.

4.3 Verification of Transition Methods

To verify the transformation of each Slco block, we use the VerCors tool
set [8]. With it, we can check whether Java code satisfies a specification written
in permission-based separation logic [4]. Its verification engine is Viper [28].

Fig. 10. Methods execute_S0_0 and execute_S1_0 for RE, with VerCors specifica-
tions.

422 A. Wijs and M. Wiłkowski

We have extended our Slco-to-Java code generator with a feature to gen-
erate a list of the transition methods implementing the Slco blocks of a given
Slco model, with VerCors specifications. In Fig. 10, methods execute_S0_0
and execute_S1_0 of the RE example model are listed with their specifications.
The specifications formally express the effect of executing Slco statements, as
defined by the corresponding SOS rules (Fig. 3). Note the absence of locking,
as this can be abstracted away safely, making it easier to construct VerCors
specifications.

To isolate the methods from the complete program, we specify which vari-
ables each method can access (the given ... statements at lines 7–8 and 35–36).
Furthermore, for all arrays, we specify that they have been properly initialised
(invariant x != null, lines 12 and 38), and in case array elements are updated by
the method, appropriate write permission is given (lines 13–14).

To properly express postconditions, ghost variables are used. In case of
an Slco Assignment translation, such as execute_S1_0, the old value of the
updated variable (here i) is stored (in a variable i_old), which allows us to spec-
ify the effect (line 40). Furthermore, we specify that true is returned (line 39).

In case a Composite statement is translated (execute_S0_0), the specifica-
tion is more elaborate, as multiple variables can be updated, and there is option-
ally a guard. Ghost variables are used to store all intermediate results, such that
they can be referred to in the specification. Note that before each array access,
an assumption has been added to specify that no out-of-bound array accesses
can be performed, relying on the Slco model having been verified in this regard.
Depending on the evaluation of the guard, the method either returns true or
false (lines 15–16), and the array is either updated or not (lines 17–20). Finally,
when an array is updated in a Composite statement, an auxiliary function is
defined (for example, see lines 2–5), since array elements may be updated mul-
tiple times in a single Composite, and in general, when expressions are used to
compute array indices, this cannot be detected statically. In case an element is
updated multiple times, only the final update should be specified in the post-
condition, and the auxiliary function allows us to relate each element to their
final update.

The final case, not applicable in the example, is that a method implements
an Slco Expression. The postcondition of such a method addresses that true
is returned iff a guard implementing the Expression evaluates to true.

4.4 Supporting the Complete Slco Language

The approach, as presented in the previous sections, verifies that a model written
in a specific fragment of the Slco language is correctly transformed into multi-
threaded Java code. To support the complete Slco language, the verification
approach needs to be extended in a number of ways. In this section, we discuss
these extensions, which require only minor changes to the approach as it exists
currently. Implementing those extensions is planned for future work.

1. Slco has the concept of channel to model the communication between state
machines of different objects by means of message passing. In earlier work, we

Modular Indirect Push-Button Formal Verification 423

have formally verified that a (lock protected) Java channel correctly imple-
ments the semantics of the Slco channel [10]. This implementation is now
part of our library of generic constructs. To support channels, the verification
approach proposed in the current paper only needs to be extended to match
send and receive statements in the CFGs of Slco state machines and their
corresponding Java threads. As those statements are implemented using the
verified send and receive methods of the generic implementation of Slco
channel, the actual effect of sending and receiving a message via a channel
does not need to be verified anymore.

2. User-defined actions are Slco statements that allow the definition of model-
specific instructions. For instance, these can refer to calling standard Java
library methods. Our verification approach can be extended straightforwardly
to match the actions in the CFGs of the state machines and their correspond-
ing Java threads.

3. Finally, Slco supports transition priorities that allow the user to specify the
order in which transitions should be fired. In Java, this order is implemented
by placing implementations of the associated statements inside if-then-else
constructs. First of all, the BIR language (more specifically, the Nondeterm
instruction) must be extended with priorities. Second of all, a transforma-
tion needs to be defined to transform if-then-else constructs implementing
those priorities in Java to Nondeterm instructions, similar to how implementa-
tions of non-determinism are transformed to such instructions in the current
approach.

5 Implementation and Experiments

The Slco framework has been developed in Python 3, using TextX [14] for
meta-modelling and Jinja22 for model transformations. Hence, the generation
of VerCors specifications has also been implemented in Python. The CFG
extractor, including the transformations from CFG to Kripke structures and
from Kripke structures to LTSs, has been written in Haskell. For bisimulation
checking of LTSs, we use the mCRL2 toolset, which has a tool called ltscompare
that implements efficient bisimulation checking with complexity O(m log n), with
n the number of states and m the number of transitions in an LTS [16,31].

To validate the effectiveness of our approach, we ran a number of experi-
ments on a MacBook Pro with a 3.1 GHz Intel Core i5 processor and 16 GB
RAM, running macOS Mojave. We selected 50 models from the Beem bench-
mark suite [32]. These models stem from well-known examples and case studies,
modelling mutual exclusion algorithms, communication protocols, controllers,
leader election algorithms, planning and scheduling problems, and puzzles. Origi-
nally written in the DVE language, the models have first been translated to Slco
using a model transformation. This is a straightforward task, as all language con-
cepts of DVE can be translated to similar concepts in Slco. In most cases, a
model contains a single object with one or more state machines. Furthermore,
2 http://jinja.pocoo.org.

http://jinja.pocoo.org

424 A. Wijs and M. Wiłkowski

Fig. 11. VerCors verification runtimes

in many cases, thousands of lines of code were produced when translating the
models to Java code. The largest instance overall that we considered, msmie.4,
resulted in 12,157 lines of source code, implementing a program with ten threads.

Due to the modular approach of our verification procedure, allowing us to iso-
late individual state machines, the CFG equivalence checking step never required
more than 0.5 s to process, given a model, all its state machines and their trans-
lations. Regarding the time required for the verification of transition methods,
Fig. 11 presents the runtime results for VerCors for a representative selection
of 13 models. For each model, we have processed multiple instances, between
three and eight, that are all part of the Beem benchmark set. This allows us
to investigate how the runtime scales as the number of transition methods is
increased. For the other models, similar scalability results have been obtained.
As expected, in most cases, the runtime scales linearly, but not to the same degree
for all models. For instance, for the msmie instances, although they have many
methods, the verification time is very short, since the methods are not complex,
most of them containing only unguarded assignments. On the other hand, the
peg solitaire instances have transition methods with guards and relatively com-
plex expressions to refer to array elements, resulting in the runtime increasing
much more rapidly as the number of methods is increased. For a few models,
such as phils, this phenomenon results in the runtime not linearly increasing as
the number of methods is increased. Some instances have more methods than
others, yet fewer of those are guarded, or involve array accesses.

Concluding, the CFG equivalence checking step scales very well, and can be
used to reason about the CFGs of large models and programs. Moreover, for the
verification of transition methods, VerCors is very suitable, but to improve
scalability, we will have to work on reducing the amount of verification work,
for instance by detecting functional duplicates among the transition methods. In
case of the Beem models, many models contain such duplicates. In those cases,
the involved state machines are all very similar, specifying the same computation
to be performed on different data. In future work, we plan to exploit that.

Modular Indirect Push-Button Formal Verification 425

6 Related Work

Equivalence checking has been applied in the past to directly verify semantics
preservation of model transformation rules, for instance see [5,20,34,44]. This
approach requires that a model transformation can be formally defined, and
hence that both the source and target modelling language has a formal seman-
tics. Furthermore, programming languages describe systems at a much lower
abstraction level than modelling languages, making equivalence checking more
directly suitable for model-to-model than for model-to-code transformations. In
the current paper, we use equivalence checking as well, but we also apply CFG
transformations and code verification to bridge the gap between abstraction
levels.

For an overview of applying formal verification on model-to-code transfor-
mations, see [2]. Formal verification of a statechart-to-Java generation algorithm
using the Isabelle/HOL theorem prover [30] is described in [7]. Similar to our
approach, their proof aims to demonstrate bisimulation between model and code,
but their modelling language does not support variables. They prove once that
the generator algorithm is correct, but note that for full verification, it may be
more suitable to verify on a case-by-case basis, like we do, to ensure that the
implementation of the generator algorithm is correct as well.

In [39], a Java code generator framework based on QVT is presented. The
KIV theorem prover [15] is used to prove particular security properties. Staats
and Heimdahl [38], on the other hand, apply model checking on both the model
and the code to verify the preservation of selected LTL properties. In [40], DSL-
generated C code is checked using the Spin model checker [19]. A Promela
model is generated in which the generated C code is embedded, and LTL prop-
erties are formulated for checking. Pnueli et al. [33] propose the CVT tool that
uses refinement checking to detect whether properties, proven to be satisfied by
a given Statemate model, have been preserved in generated C code. In [13], the
preservation of properties is verified by means of transforming Event-B models [3]
to specifications for the Dafny code verification tool [25].

In contrast to all the approaches above, we check for the preservation of the
complete model semantics. In our view, a list of concrete properties can serve
to verify that a model is correct, although the question always remains whether
such a list completely covers the intended functionality. For a code generation
step, on the other hand, it must be guaranteed that the generated code exactly
implements what the model specifies. If this is the case, then any property sat-
isfied by the model will be preserved by the code generator. Additionally, most
of the above approaches do not support the generation of multi-threaded code,
even though constructing such programs is particularly error-prone.

Ab Rahim and Whittle [1] propose an interactive technique in which the user
initially supplies assertions about generated code that are later added automat-
ically to code using a separate model tranformation. A software model checker
is applied to verify that assertions hold in generated code. Our technique, on
the other hand, does not require additional user input, and due to its modular
approach, scales much better than one directly using model checking.

426 A. Wijs and M. Wiłkowski

Techniques for compiler verification are similar to code generator verification
techniques, and can be used to further strengthen the development workflow
to verify that code is correctly compiled into an executable. In [26,27], the Coq
theorem prover [6] is used to both implement and verify a C compiler. A compiler
for the block diagram language Lustre[17] is verified using Coq in [9]. Finally,
Kumar et al. [24] use the HOL4 theorem prover [37] to verify that programs
described in their language, called CakeML, are compiled correctly. These results
are impressive, yet we question how flexible the techniques are when the code
generation or compilation procedure needs to be updated.

Finally, software model checking techniques, such as [12,22], offer another
approach to verify code. Tools such as Java PathFinder [41] could be useful to
verify parts of the generated code. We plan to investigate how such techniques
can be applied effectively in the near future.

7 Conclusions

In this paper, we have presented a push-button formal verification technique to
indirectly verify generators of multi-threaded code, that can be automatically
performed each time the generator is applied. Besides its push-button nature,
its main strength is its modularity, which is enabled by our earlier results [10,47]
on verifying generic constructs that are used to implement the communication
between threads. This allows us to focus the technique proposed in the current
paper to focus on individual threads in isolation. Due to this, it can verify the
generation of thousands of lines of code in a few minutes. Furthermore, it can be
easily adapted to changes, and made applicable to other DSLs and programming
languages, as long as mappings to CFGs via our BIR language and the generation
of separation logic specifications are constructed and updated accordingly.

Concerning future work, we have so far proven manually that transforma-
tions, such as the ones illustrated in Fig. 8, are correct. We will work on formally
proving this using a theorem prover. Furthermore, as the current performance
bottleneck is transition methods verification, we will work on the detection of
functionally equivalent transitions, to reduce the amount of verification work.
Furthermore, we will extend our method with support for the complete Slco
language, and further extensions including timed behaviour [42,43,45]. Finally,
we will also apply the same approach to other DSLs and programming languages,
in particular for the generation of software for graphics processors.

References

1. Ab Rahim, L., Whittle, J.: Verifying semantic conformance of State Machine-to-
Java code generators. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS
2010. LNCS, vol. 6394, pp. 166–180. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-16145-2_12

2. Ab Rahim, L., Whittle, J.: A survey of approaches for verifying model transfor-
mations. Softw. Syst. Model. 14, 1003–1028 (2013)

https://doi.org/10.1007/978-3-642-16145-2_12
https://doi.org/10.1007/978-3-642-16145-2_12

Modular Indirect Push-Button Formal Verification 427

3. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

4. Amighi, A., Haack, C., Huisman, M., Hurlin, C.: Permission-based separation logic
for multithreaded Java programs. Log. Methods Comput. Sci. 11(1–2), 1–66 (2015)

5. Baldan, P., Corradini, A., Ehrig, H., Heckel, R., König, B.: Bisimilarity and
behaviour-preserving reconfigurations of open Petri Nets. In: Mossakowski, T.,
Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 126–142.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73859-6_9

6. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’ Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-662-07964-5

7. Blech, J., Glesner, S., Leitner, J.: Formal verification of Java code generation from
UML models. Fujaba Days 2005, 49–56 (2005)

8. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification
of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.) IFM
2017. LNCS, vol. 10510, pp. 102–110. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66845-1_7

9. Bourke, T., Brun, L., Dagand, P.E., Leroy, X., Pouzet, M., Rieg, L.: A formally
verified compiler for Lustre. In: PLDI, ACM SIGPLAN Notices, vol. 52, pp. 586–
601. ACM (2017)

10. Bošnački, D., et al.: Towards modular verification of threaded concurrent exe-
cutable code generated from DSL models. In: Braga, C., Ölveczky, P.C. (eds.)
FACS 2015. LNCS, vol. 9539, pp. 141–160. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-28934-2_8

11. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1_2

12. Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular verification of software
components in C. In: ICSE, pp. 385–395. IEEE (2003)

13. Dalvandi, M., Butler, M., Rezazadeh, A.: From Event-B models to Dafny code
contracts. In: Dastani, M., Sirjani, M. (eds.) FSEN 2015. LNCS, vol. 9392, pp.
308–315. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24644-4_21

14. Dejanović, I., Vaderna, R., Milosavljević, G., Vuković, Ž.: TextX: a Python tool for
domain-specific languages implementation. Knowl.-Based Syst. 115, 1–4 (2017).
https://doi.org/10.1016/j.knosys.2016.10.023

15. Ernst, D., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV: overview and
verifythis competition. Int. J. Softw. Tools Technol. Transf. 17(6), 677–694 (2015)

16. Groote, J., Jansen, D., Keiren, J., Wijs, A.: An O(m log n) algorithm for comput-
ing stuttering equivalence and branching bisimulation. ACM Trans. Comput. Log.
18(2), 13:1–13:34 (2017)

17. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991)

18. Havender, J.: Avoiding deadlock in multitasking systems. IBM Syst. J. 7(2), 74–84
(1968)

19. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional (2003)

20. Hülsbusch, M., König, B., Rensink, A., Semenyak, M., Soltenborn, C., Wehrheim,
H.: Showing full semantics preservation in model transformation - a comparison of
techniques. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 183–198.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16265-7_14

https://doi.org/10.1007/978-3-540-73859-6_9
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-28934-2_8
https://doi.org/10.1007/978-3-319-28934-2_8
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-319-24644-4_21
https://doi.org/10.1016/j.knosys.2016.10.023
https://doi.org/10.1007/978-3-642-16265-7_14

428 A. Wijs and M. Wiłkowski

21. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5_4

22. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4),
21:1–21:54 (2009)

23. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley Professional (2005)

24. Kumar, R., Myreen, M., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: POPL, ACM SIGPLAN Notices, vol. 49, pp. 179–191. ACM
(2014)

25. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

26. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

27. Leroy, X.: Formal proofs of code generation and verification tools. In: Gian-
nakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 1–4. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10431-7_1

28. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5_2

29. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2_17

30. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-
Order Logic. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

31. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

32. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73370-6_17

33. Pnueli, A., Shtrichman, O., Siegel, M.: The code validation tool CVT: automatic
verification of a compilation process. Int. J. Softw. Tools Technol. Transf. 2(2),
192–201 (1998)

34. de Putter, S., Wijs, A.: A formal verification technique for behavioural model-to-
model transformations. Formal Aspects Comput. 30(1), 3–43 (2018)

35. de Putter, S., Wijs, A., Zhang, D.: The SLCO framework for verified, model-driven
construction of component software. In: Bae, K., Ölveczky, P.C. (eds.) FACS 2018.
LNCS, vol. 11222, pp. 288–296. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-02146-7_15

36. Reniers, M., Schoren, R., Willemse, T.: Results on embeddings between state-based
and event-based systems. Comput. J. 57(1), 73–92 (2014)

37. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7_6

https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-319-10431-7_1
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/978-3-030-02146-7_15
https://doi.org/10.1007/978-3-030-02146-7_15
https://doi.org/10.1007/978-3-540-71067-7_6

Modular Indirect Push-Button Formal Verification 429

38. Staats, M., Heimdahl, M.P.E.: Partial translation verification for untrusted code-
generators. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol.
5256, pp. 226–237. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-88194-0_15

39. Stenzel, K., Moebius, N., Reif, W.: Formal verification of QVT transformations for
code generation. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS,
vol. 6981, pp. 533–547. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-24485-8_39

40. Sulzmann, M., Zechner, A.: Model checking DSL-generated C source code. In: Don-
aldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 241–247. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31759-0_18

41. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. 10(2), 203–232 (2003)

42. Wijs, A.: Achieving discrete relative timing with untimed process algebra. In:
ICECCS, pp. 35–46. IEEE (2007)

43. Wijs, A.: What to do next?: Analysing and optimising system behaviour in time.
Ph.D. thesis, VU University Amsterdam (2007)

44. Wijs, A., Engelen, L.: Efficient property preservation checking of model refine-
ments. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
565–579. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-
7_41

45. Wijs, A., Fokkink, W.: From χt to μCRL: combining performance and functional
analysis. In: ICECCS, pp. 184–193. IEEE (2005)

46. Wijs, A., Neele, T., Bošnački, D.: GPUexplore 2.0: unleashing GPU explicit-state
model checking. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 694–701. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6_42

47. Zhang, D., et al.: Verifying atomicity preservation and deadlock freedom of a
generic shared variable mechanism used in model-to-code transformations. In:
Hammoudi, S., Pires, L.F., Selic, B., Desfray, P. (eds.) MODELSWARD 2016.
CCIS, vol. 692, pp. 249–273. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-66302-9_13

https://doi.org/10.1007/978-3-540-88194-0_15
https://doi.org/10.1007/978-3-540-88194-0_15
https://doi.org/10.1007/978-3-642-24485-8_39
https://doi.org/10.1007/978-3-642-24485-8_39
https://doi.org/10.1007/978-3-642-31759-0_18
https://doi.org/10.1007/978-3-642-36742-7_41
https://doi.org/10.1007/978-3-642-36742-7_41
https://doi.org/10.1007/978-3-319-48989-6_42
https://doi.org/10.1007/978-3-319-48989-6_42
https://doi.org/10.1007/978-3-319-66302-9_13
https://doi.org/10.1007/978-3-319-66302-9_13

Runtime Verification

An Operational Guide to Monitorability

Luca Aceto1,2(B), Antonis Achilleos2(B), Adrian Francalanza3(B),
Anna Ingólfsdóttir2(B), and Karoliina Lehtinen4(B)

1 Gran Sasso Science Institute, L’Aquila, Italy
2 Reykjavik University, Reykjavik, Iceland

{luca,antonios,anna}@ru.is
3 University of Malta, Msida, Malta
adrian.francalanza@um.edu.mt

4 University of Liverpool, Liverpool, UK
k.lehtinen@liverpool.ac.uk

Abstract. Monitorability underpins the technique of Runtime Verifica-
tion because it delineates what properties can be verified at runtime.
Although many monitorability definitions exist, few are defined explic-
itly in terms of the operational guarantees provided by monitors, i.e.,
the computational entities carrying out the verification. We view mon-
itorability as a spectrum, where the fewer guarantees that are required
of monitors, the more properties become monitorable. Accordingly, we
present a monitorability hierarchy based on this trade-off. For regular
specifications, we give syntactic characterisations in Hennessy–Milner
logic with recursion for its levels. Finally, we map existing monitorability
definitions into our hierarchy. Hence our work gives a unified framework
that makes the operational assumptions and guarantees of each defini-
tion explicit. This provides a rigorous foundation that can inform design
choices and correctness claims for runtime verification tools.

1 Introduction

Runtime Verification (RV) [12] is a lightweight verification technique that checks
for a specification by analysing the current execution exhibited by the system
under scrutiny. Despite its merits, the technique is limited in certain respects:
any sufficiently expressive specification language contains properties that can-
not be monitored at runtime [2,3,19,24,30,39,41]. For instance, the satisfaction
of a safety property (“bad things never happen”) cannot, in general, be deter-
mined by observing the (finite) behaviour of a program up to the current exe-
cution point; its violation, however, can. Monitorability [12,41] concerns itself

This research was supported by the Icelandic Research Fund projects “TheoFoMon:
Theoretical Foundations for Monitorability” (№:163406-051) and “Epistemic Logic for
Distributed Runtime Monitoring” (№:184940-051), by the BMBF project “Aramis II”
(№:01IS160253), the EPSRC project “Solving parity games in theory and practice”
(№:EP/P020909/1), and project BehAPI, funded by the EU H2020 RISE programme
under the Marie Sk�lodowska-Curie grant agreement №:778233.

c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 433–453, 2019.
https://doi.org/10.1007/978-3-030-30446-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_23&domain=pdf
https://doi.org/10.1007/978-3-030-30446-1_23

434 L. Aceto et al.

with the delineation between properties that are monitorable and those that are
not. Besides its importance from a foundational perspective, monitorability is
paramount for a slew of RV tools, such as those described in [9,17,23,40,42],
that synthesise monitors from specifications expressed in a variety of logics.
These monitors are executed with the system under scrutiny to produce verdicts
concerning the satisfaction or violation of the specifications from which they
were synthesised.

Monitorability is crucial for a principled approach because it disciplines the
construction of RV tools. It should espouse the separation of concerns between
the specification of a correctness property on the one hand, and the method used
to verify it on the other [30]. It defines, either explicitly or implicitly, a notion
of monitor correctness [27,28,31,38], which then guides the automated synthe-
sis of monitors from specifications. It also delimits the monitorable fragment
of the specification logic on which the synthesis is defined: monitors need not
be synthesised for non-monitorable specifications. In some settings, a syntactic
characterisation of monitorable properties can be identified [1,3,30], and used
as a core calculus for studying optimisations of the synthesis algorithm. More
broadly, monitorability boundaries may guide the design of hybrid verification
strategies, which combine RV with other verification techniques (see the work in
[2] for an example of this approach).

In spite of its importance, there is no generally accepted notion of monitora-
bility to date. The literature contains a number of definitions, such as the ones
proposed in [3,14,25,30,32,41]. These differ in aspects such as the adopted spec-
ification formalism, e.g., LTL, Street automata, recHML etc.,, the operational
model, e.g., testers, automata, process calculi etc.,, and the semantic domain,
e.g., infinite traces, finite and infinite (finfinite) traces or labelled transition sys-
tems. Even after these differences are normalised, many of these definitions are
not in agreement: there are properties that are monitorable according to some
definitions but not monitorable according to others. More alarmingly, as we will
show, frequently cited definitions of monitorability contain serious errors.

This discrepancy between definitions raises the question of which one to
adopt when designing and implementing an RV tool, and what effect this choice
has on the behaviour of the resulting tool. A difficulty in informing this choice
is that few of those definitions make explicit the relationship between the opera-
tional model, i.e., the behaviour of a monitor, and the monitored properties. In
other words, it is not clear what the guarantees provided by the various monitors
mentioned in the literature are, and how they differ from each other.

Example 1. Consider the runtime verification of a system exhibiting (only) three
events over finfinite traces: failure (f), success (s) and recovery (r). One property
we may require is that “failure never occurs and eventually success is reached”,
otherwise expressed in LTL fashion as (G ¬f) ∧ (F s). According to the definition
of monitorability attributed to Pnueli and Zaks [41] (discussed in Sect. 7), this
property is monitorable. However, it is not monitorable according to others,
including Schneider [44], Viswanathan and Kim [45], and Aceto et al. [3], whose
definition of monitorability coincides with some subset of safety properties. �

An Operational Guide to Monitorability 435

Regular

∃PZ

∀PZ

Safe ∪ CoSafe

CoSafe Safe

Safe ∩ CoSafe

Sound

Informative

Persistently Informative

Partially complete

Satisfaction c. Violation c.

Complete

recHML

iHML

pHML

cHML ∪ sHML

cHML sHML

{tt,ff}

Fig. 1. The monitorability hierarchy of regular properties

Contributions. To our mind, this state of the art is unsatisfactory for tool con-
struction. More concretely, an RV tool broadly relies on the following ingredients:

1. the input of the tool in terms of the formalism used to describe the specifi-
cation properties;

2. the executable description of monitors that are the tool’s output and
3. the mapping between the inputs and outputs, i.e., the synthesis function of

monitors from specifications.

Any account on monitorability should, in our view, shed light on those three
aspects, particularly on what it means for the synthesis function and the moni-
tors it produces to be correct. This involves establishing the relationship between
the truth value of a specification, given by a two-valued semantics, and what the
runtime analysis tells us about it, given by the operational behaviour exhibited
by the monitor; ideally, the specification and operational descriptions should also
be described independently of one another, in order to ensure the aforementioned
separation of concerns.1 In addition, any account on monitorability should also
be flexible enough to incorporate a variety of relationships between specification
properties and the expected behaviour of monitors. This is essential for it be of
use to the tool implementors, acting as a principled foundation to guide their
design decisions.

For these reasons, we take the view that monitorability comes on a spectrum.
There is a trade-off between the guarantees provided by monitors and the prop-
erties that can be monitored with those guarantees. We argue that considering
different requirements gives rise to a hierarchy of monitorability—depicted in
Fig. 1 (middle)—which classifies properties according to what types of guaran-
tees RV can give for them. At one extreme, anything can be monitored if the

1 In RV, it is commonplace to see the expected monitor behaviour described via an
intermediary n-valued logic semantics [13,14,32] (e.g., mapping finite traces into the
three verdicts called accepting, rejecting and inconclusive). Although convenient in
certain cases, the approach goes against our tenet for the separation of concerns.

436 L. Aceto et al.

only requirement is for monitors to be sound i.e., they should not contradict the
monitored specification. However, monitors that are just sound give no guaran-
tees of ever giving a verdict. More usefully, informatively monitorable properties
enjoy monitors that reach a verdict for some finite execution; arguably, this is
the minimum requirement for making monitoring potentially worthwhile. More
stringent requirements can demand this capability to be invariant over moni-
tor executions, i.e., a monitor never reaches a state where it cannot provide a
verdict; then we speak of persistently informative monitors. Adding complete-
ness requirements of different strengths, such as the requirement that a monitor
should be able to identify all failures and/or satisfactions, yields stronger defini-
tions of monitorability: partial, satisfaction or violation complete, and complete.

In order not to favour a specific operational model, the hierarchy in Fig. 1
(middle) is cast in terms of abstract behavioural requirements for monitors. We
then provide an instantiation that concretises those requirements into an oper-
ational hierarchy, establishing operational counterparts for each type of moni-
torability over regular properties. To this end, we use the operational framework
developed in [3], that uses finite-state monitors and in which partial and com-
plete monitorability were already defined. We show this framework to be, in a
suitable technical sense, maximally general (Theorem 2) for regular properties.
This shows that our work is equally applicable to other operational models for
monitoring regular properties.

In order for a tool to synthesise monitors from specifications, it is useful to
have syntactic characterisations of the properties that are monitorable with the
required guarantees: synthesis can then directly operate on the syntactic frag-
ment. We offer monitorability characterisations as fragments of recHML [6,37]
(a variant of the modal μ-calculus [34]) interpreted over finfinite traces—see
Fig. 1 (right). The logic is expressive enough to capture all regular properties—
the focus of nearly all existing definitions of monitorability—and subsumes more
user-friendly but less expressive specification logics such as LTL. Partial and
complete monitorability already enjoy monitor synthesis functions and neat syn-
tactic characterisations in recHML [3]; related synthesis functions based on syn-
tactic characterisations for a branching-time setting [29,30] have already been
implemented in a tool [8,9]. Here, we provide the missing syntactic characterisa-
tion for informative monitorability, and for a fragment of persistently informative
monitorability.

Finally, we show that the proposed hierarchy accounts for existing notions
of monitorability. See Fig. 1 (left). Safety, co-safety and their union correspond
to partial monitorability and its two components, satisfaction- and violation-
monitorability; Pnueli and Zaks’s definition of monitorability can be interpreted
in two ways, of which one (∃pz) maps to informative monitorability, and the
other (∀pz) to persistently informative monitorability. We also show that the
definitions of monitorability proposed by Falcone et al. [25], contrary to their
claim, do not coincide with safety and co-safety properties. To summarise, our
principal contributions are:

An Operational Guide to Monitorability 437

1. A unified operational perspective on existing notions of monitorability, clari-
fying what operational guarantees each provides, see Theorems 1, 6 and 7;

2. An extension to the syntactic characterisations of monitorable classes from
[3], mapping all but one of these classes to fragments in recHML, which can
be viewed as a target byte-code for higher-level logics, see Theorems 4 and 5.

2 Preliminaries

Traces. We assume a finite set of actions, a, b, . . . ∈ Act. The metavariables
t, u ∈ Actω range over infinite sequences of actions. Finite traces, denoted as
s, r ∈ Act∗, represent finite prefixes of system runs. Collectively, finite and
infinite traces Act∞ = Actω ∪Act∗ are called finfinite traces. We use f, g ∈
Act∞ to range over finfinite traces and F ⊆ Act∞ to range over sets of finfinite
traces. A (finfinite) trace with action a at its head is denoted as af . Similarly,
a (finfinite) trace with a prefix s and continuation f is denoted as sf . We write
s � f to denote that the finite trace s is a prefix of f , i.e., ∃g such that f = sg.

Properties. A property over finfinite (resp., infinite) traces, denoted by the vari-
able P , is a subset of Act∞ (resp., of Actω). In general, a property refers to a
finfinite property, unless stated otherwise. A finite trace s positively determines
a property P ⊆ Act∞ when sf ∈ P for every continuation f ∈ Act∞; analo-
gously, s negatively determines P when sf /∈ P for every f ∈ Act∞. The same
terms apply similarly when P ⊆ Actω. We call a property regular if it is the
union of a regular property Pfin ⊆ Act∗ and an ω-regular property Pinf ⊆ Actω.

3 A Monitor-Oriented Hierarchy

From a tool-construction perspective, it is important to give concrete, imple-
mentable definitions of monitors; we do so in Sect. 4. To understand the guar-
antees that these monitors will provide, we first discuss the general notion of
monitor and monitoring system. Already in this general setting, we are able to
identify the various requirements that give rise to the hierarchy of monitorabil-
ity, depicted in the middle part of Fig. 1. Section 4 will then provide operational
semantics to this hierarchy, in the setting of regular properties.

We consider a monitor to be an entity that analyses finite traces and (at
the very least) identifies a set of finfinite traces that it accepts and a set of fin-
finite traces that it rejects. We consider two postulates. Firstly, an acceptance
or rejection verdict has to be based on a finite prefix of a trace, Definition 1. 1:
verdicts are thus given for incomplete traces. Secondly, verdicts must be irre-
vocable, Definition 1. 2. These postulates make explicit two features shared by
most monitorability definitions in the literature.

Definition 1. A monitoring system is a triple (M,acc, rej), where M is a
nonempty set of monitors, acc, rej ⊆ M×Act∞, and for every m ∈ M and
f ∈ Act∞:

438 L. Aceto et al.

1.
(
acc(m, f) implies ∃s · (

s � f and acc(m, s)
))

and
(
rej(m, f) implies ∃s ·(

s � f and rej(m, s)
))

;
2.

(
acc(m, s) implies ∀f ·acc(m, sf)

)
and

(
rej(m, s) implies ∀f ·rej(m, sf)

)
. �

Remark 1. Finite automata do not satisfy the requirements of Definition 1 since
their judgement can be revoked. Standard Büchi automata are not good can-
didates either, since they need to read the entire infinite trace to accept or
reject. �

We define a notion of maximal monitoring system for a collection of proper-
ties; for each property P in that set, such a system must contain a monitor that
reaches a verdict for all traces that have some prefix that determines P .

Definition 2. A monitoring system (M,acc, rej) is maximal for a collection of
properties C ⊆ 2Act∞

if for every P ∈ C there is a monitor mP ∈ M such that

(i) acc(mP , f) iff trace f has a prefix that positively determines P ;
(ii) rej(mP , f) iff trace f has a prefix that negatively determines P . �

In Sect. 4, we present an instance of such a maximal monitoring system for
regular properties. This shows that, for regular properties at least, the maximal-
ity of a monitoring system is a reasonable requirement. Unless otherwise stated,
we assume a fixed maximal monitoring system (M,acc, rej) throughout the rest
of the paper. For m ∈ M to monitor for a property P , it needs to satisfy some
requirements. The most important such requirement is soundness.

Definition 3 (Soundness). Monitor m is sound for property P if for all f :

– acc(m, f) implies f ∈ P , and
– rej(m, f) implies f /∈ P . �

Lemma 1. If m is sound for P and acc(m, s) (resp., rej(m, s)), then s posi-
tively (resp., negatively) determines P .

Lemma 2. For every P ⊆ Act∞: (i) mP is sound for P ; and (ii) if m is a
sound monitor for P and acc(m, f) (resp., rej(m, f)), then it is also the case
that acc(mP , f) (resp., rej(mP , f)).

The dual requirement to soundness, i.e., completeness, entails that the moni-
tor detects all violating and satisfying traces. Unfortunately, this is only possible
for trivial properties in the finfinite2 domain—see Proposition 1. Instead, moni-
tors may be required to accept all satisfying traces, or reject all violating traces.

Definition 4 (Completeness). Monitor m is satisfaction-complete for P if
f∈P implies acc(m, f) and violation-complete for P if f /∈P implies rej(m, f).
It is complete for P if it is both satisfaction- and violation-complete for P and
partially-complete if it is either satisfaction- or violation-complete. �
2 In the infinite domain more properties are completely monitorable, see Sect. 8.

An Operational Guide to Monitorability 439

Proposition 1. If m is sound and complete for P then P = Act∞ or P = ∅.
Proof. If ε ∈ P , then acc(m, ε), so from Definition 1, ∀f ∈ Act∞. acc(m, f).
Due to the soundness of m, P = Act∞. Similarly, P = ∅ when ε /∈ P .
�

We define monitorability in terms of the guarantees that the monitors are
expected to give. Soundness is not negotiable. Given the consequences of requir-
ing completeness, as evidenced by Proposition 1, we consider weaker forms of
completeness. The weaker the completeness guarantee, the more properties can
be monitored.

Definition 5 (Complete Monitorability). Property P is completely moni-
torable when there exists a monitor that is sound and complete for P . It is mon-
itorable for satisfactions (resp., violations) when there exists a monitor m that
is sound and satisfaction (resp., and violation) complete for P . It is partially
(-complete) monitorable when it is monitorable for satisfactions or violations.

A class of properties C ⊆ 2Act∞
is satisfaction, violation, partially, or com-

pletely monitorable, when every property P∈C is, respectively, satisfaction, viola-
tion, partially or completely monitorable. We denote the class of all satisfaction,
violation, partially, and completely monitorable properties by maximal monitor-
ing systems as SCmp, VCmp, PCmp, and Cmp, respectively. �

Since even partial monitorability, the weakest form in Definition 5, renders
a substantial number of properties unmonitorable [3], one may consider even
weaker forms of completeness that only flag a subset of satisfying (or violat-
ing) traces. Sound denotes monitorability without completeness requirements.
Arguably, however, the weakest guarantee for a sound monitor of a property P
to be of use is the one that pledges to flag at least one trace. One may then
further strengthen this requirement and demand that this guarantee is invariant
throughout the analysis of a monitor: for every prefix observed the monitor is
still able to flag at least once (possibly after observing more actions).

Definition 6 (Informative Monitorability3). Monitor m is satisfaction-
(resp., violation-) informative if ∃f · acc(m, f) (resp., rej(m, f)). It is
satisfaction- (resp., violation-) persistently informative if ∀s∃f · acc(m, sf)
(resp., rej(m, sf)). We simply say that m is informative (resp., persistently
informative) when we do not distinguish between satisfactions or violations. �

Definition 7 (Informative Monitorability). We say that property P is
informatively (resp., persistently informatively) monitorable if there is an infor-
mative (resp., a persistently informative) monitor that is sound for P . A class
of properties C ⊆ 2Act∞

is informatively (resp., persistently informatively) mon-
itorable, when all its properties are informatively (resp., persistently informa-
tively) monitorable. The class of all informatively (resp., persistently informa-
tively) monitorable properties by maximal monitoring systems is denoted as ICmp

3 These are not related to the informative prefixes from [35] or to persistence from [43].

440 L. Aceto et al.

Fig. 2. recHML syntax and (finfinite) linear-time semantics

(resp., PICmp). A property P is persistently informatively monitorable for sat-
isfaction (resp., for violation) if there is a satisfaction- (resp., violation-) per-
sistently informative monitor that is sound for P . We revisit this definition in
Sect. 4. �

Example 2. The property “f never occurs and eventually s is reached” (Exam-
ple 1) is not partially monitorable but is persistently informatively monitorable.

The property requiring that “r only appears a finite number of times” is
not informatively monitorable. For if it were, the respective sound informative
monitor m should at least accept or reject one trace. If it accepts a trace f ,
by Definition 1, it must accept some prefix s � f . Again, by Definition 1, all
continuations, including srω, must be accepted by m. This makes it unsound,
which is a contradiction. Similarly, if m rejects some f , it must reject some
finite s � f that necessarily contains a finite number of r actions, making it
unsound. �

Theorem 1 (Monitorability Hierarchy). The monitorability classes given
in Definitions 5 and 7 form the inclusion hierarchy depicted in Fig. 1.

Proof. The hardest inclusion to show from Fig. 1 is PCmp = SCmp∪VCmp ⊆
PICmp. Pick a property P ∈ VCmp. Let s ∈ Act∗. If ∃f · sf /∈ P
then by Definition 4 we have rej(mP , sf). Otherwise, ∀f · sf ∈ P , mean-
ing that s positively determines P , and by Definition 2 we have acc(mP , sf).
By Definition 6, we deduce that mP is persistently informative since ∀s∃f ·
acc(mP , sf) or rej(mP , sf). Thus, by Definition 7, it follows that P ∈ PICmp.
The case for P ∈ SCmp is dual.
�

4 An Instantiation for Regular Properties

We provide a concrete maximal monitoring system for regular properties. This
monitoring system gives an operational interpretation to the levels of the moni-
torability hierarchy, and enables us to find syntactic characterisations for them in
recHML [3,37]. Since this logic is a reformulation of the modal μ-calculus [34],

An Operational Guide to Monitorability 441

it is expressive enough to describe all regular properties and to embed specifi-
cation formalisms such as LTL, (ω-)regular expressions, Büchi automata, and
Street automata, used in the state of the art on monitorability.

The Logic. The syntax of recHML is defined by the grammar in Fig. 2, which
assumes a countable set of logical variables X,Y ∈ LVar. Apart from the stan-
dard constructs for truth, falsehood, conjunction and disjunction, the logic is
equipped with existential (〈a〉ϕ) and universal ([a]ϕ) modal operators, and two
recursion operators expressing least and greatest fixpoints (resp., min X.ϕ and
max X.ϕ). The semantics is given by the function �−� defined in Fig. 2. It maps
a (possibly open) formula to a set of (finfinite) traces [3] by induction on the
formula structure, using valuations that map logical variables to sets of traces,
σ : LVar → P(Act∞), where σ(X) is the set of traces assumed to satisfy X. An
existential modality 〈a〉ϕ denotes all traces with a prefix action a and a contin-
uation that satisfies ϕ, whereas a universal modality [a]ϕ denotes all traces that
are either not prefixed by a or are of the form ag for some g that satisfies ϕ. The
sets of traces satisfying the least and greatest fixpoint formulae, min X.ϕ and
max X.ϕ, are the least and the greatest fixpoints, respectively, of the function
induced by the formula ϕ. For closed formulae, we use �ϕ� in lieu of �ϕ, σ� (for
some σ). Formulae are generally assumed to be closed and guarded [36]. In the
discussions we occasionally treat formulae, ϕ, as the properties they denote, �ϕ�.

LTL [20] is the specification logic of choice for many RV approaches. As a
consequence, it is also the logic used by a number of studies in monitorability
(e.g., see [13,14,32]). Our choice of logic, recHML, is not limiting in this regard.

Example 3. The characteristic LTL operators can be encoded in recHML as:

Xϕ
def=

∨
a∈Act 〈a〉ϕ ϕ U ψ

def= min Y.
(
ψ ∨ (ϕ ∧ X Y)

)
F ϕ

def= tt Uϕ

ϕ R ψ
def=max Y.

(
(ψ ∧ϕ)∨ (ψ ∧X Y)

)
G ϕ

def= ff R ϕ

In examples, atomic propositions a and ¬a resp., denote 〈a〉tt and [a]ff. �

recHML allows us to consider monitorable properties that may be misses
by previous approaches. For instance, it is well known that logics such as the
modal μ-calculus (and variants such as recHML) can describe properties that
are not expressible in popular specification languages like LTL [46].

Example 4. Recall the system discussed in Example 1 where Act = {f, s, r}.
Consider the property requiring that “success (s) occurs on every even position”.
Although this is not expressible in LTL [46], it can be expressed in recHML as:

ϕeven = max X.
(∨

a∈{f,s,r}〈a〉〈s〉X)

The weaker property “success (s) occurs on every even position until the exe-
cution ends” still cannot be expressed in LTL, but can be expressed in recHML:

ϕevenW = max X.
(∧

a∈{f,s,r}[a] ([s]X ∧ [f]ff ∧ [r]ff)
)

�

442 L. Aceto et al.

m,n ∈ Mon ::= v | a.m | m+ n | m⊗n | m⊕n | recx.m | x
v, u ∈ Verd ::= end | no | yes

mAct
a.m

a−→ m
mVer

v
a−→ v

mRec
m[recx.m/x] a−→ n

recx.m a−→ n

mSelL m
a−→ m′

m+ n
a−→ m′ mPar m

a−→ m′ n
a−→ n′

m
n
a−→ m′
n′

mTauL m
τ−−→ m′

m
n
τ−−→ m′
n

mVrE
end
end τ−−→ end

mVrC1
yes⊗m

τ−−→ m

mVrC2
no⊗m

τ−−→ no
mVrD1

no⊕m
τ−−→ m

mVrD2
yes⊕m

τ−−→ yes

Fig. 3. Monitor syntax and labelled-transition semantics

For better readability and familiarity, we use LTL for the examples that can
be encoded accordingly. Note that since we operate in the finfinite domain, X
should be read as a strong next operator, in line with Example 3.

The Monitors. We consider the operational monitoring system of [3,30], sum-
marised in Fig. 3 (symmetric rules for binary operators are omitted). The full sys-
tem is given in [3]. Monitors are states of a transition system where m + n denotes
an (external) choice and m � n denotes a composite monitor where � ∈ {⊕,⊗}.
There are three distinct verdict states, yes, no, and end, although only the first
two are relevant to monitorability.

This semantics gives an operational account of how a monitor in state m
incrementally analyses a sequence of actions s = a1 . . . ak to reach a new state
n; the monitor m accepts (resp., rejects) a trace f , acc(m,f) (resp., rej(m,f)),
when it can transition to the verdict state yes (resp., no) while analysing a prefix
s � f (i.e., s denotes an incomplete trace). Since verdicts are irrevocable (rule
mVer in Fig. 3), it is not hard to see that this operational framework satisfies
the conditions for a monitoring system of Definition 1. The monitoring system
of Fig. 3 is also maximal for regular properties, according to Definition 2. This
concrete instance thus demonstrates the realisability of the abstract definitions
in Sect. 3.

Theorem 2. For all ϕ ∈recHML, there is a monitor m ∈Mon that is sound
for ϕ and accepts all finite traces that positively determine ϕ and rejects all finite
traces that negatively determine ϕ.

As a corollary of Theorem 2, from Lemma 1 we deduce that for any arbitrary
monitoring system (M,acc, rej), if m ∈ M is sound for some ϕ ∈ recHML,
then there is a monitor n ∈ Mon from Fig. 3 that accepts (resp., rejects) all

An Operational Guide to Monitorability 443

traces f that m accepts (resp., rejects). In the sequel, we thus assume that the
fixed monitoring system is (Mon,acc, rej) of Fig. 3, as it subsumes all others.

5 A Syntactic Characterisation of Monitorability

We present syntactic characterizations for the various monitorability classes as
fragments of recHML.

Partial Monitorability, Syntactically. In [3], Aceto et al. identify a maximal par-
tially monitorable syntactic fragment of recHML.

Theorem 3. (Partially-Complete Monitorability [3]). Consider the syn-
tactic fragments:

ϕ,ψ ∈ sHML ::= tt | ff | [a]ϕ | ϕ∧ψ | max X.ϕ | X and
ϕ,ψ ∈ cHML ::= tt | ff | 〈a〉ϕ | ϕ∨ψ | min X.ϕ | X.

The fragment sHML is monitorable for violation whereas cHML is moni-
torable for satisfaction. Furthermore, if ϕ ∈ recHML is monitorable for satis-
faction (resp., for violation) by some m∈Mon, it is expressible in cHML(resp.,
sHML), i.e., ∃ψ ∈cHML (resp., ψ ∈ sHML), such that �ϕ�= �ψ�.

As a corollary of Theorem 3 we obtain maximality : any ϕ ∈ recHML that is
monitorable for satisfaction (resp., for violation) can also be expressed as some
ψ ∈ cHML (resp., ψ ∈ sHML) where �ϕ� = �ψ�. For this fragment, the following
automated synthesis function, which is readily implementable, is given in [3].

m(ff) def= no m(ϕ1∧ϕ2)
def= m(ϕ1)⊗ m(ϕ2) m(max X.ϕ) def= rec x.m(ϕ)

m(tt) def= yes m(ϕ1∨ϕ2)
def= m(ϕ1)⊗ m(ϕ2) m(min X.ϕ) def= rec x.m(ϕ)

m([a]ϕ) def= a.m(ϕ) +
∑

b∈Act\{a} b.yes m(X) def= x

m(〈a〉ϕ) def= a.m(ϕ) +
∑

b∈Act\{a} b.no

Informative Monitorability, Syntactically. We proceed to identify syntactic frag-
ments of recHML that correspond to informative monitorability.

Definition 8. The informative fragment is iHML = siHML ∪ ciHML where

siHML = {ϕ1 ∧ ϕ2 ∈ recHML | ϕ1 ∈ sHML and ff appears in ϕ1},

ciHML = {ϕ1 ∨ ϕ2 ∈ recHML | ϕ1 ∈ cHML and tt appears in ϕ1} �

Theorem 4. For ϕ ∈ recHML, ϕ is informatively monitorable if and only if
there is some ψ ∈ iHML, such that �ψ� = �ϕ�.

The maximality results of Theorems 3 and 4 permits tool constructions to
concentrate on the syntactic fragments identified when synthesising monitors.
Theorems 3 and 4 also serve as a lightweight (syntactic) check to determine when
a property is monitorable (according to the monitorability classes in Fig. 1).

444 L. Aceto et al.

Example 5. The property ϕevenW from Example 4 is monitorable for violation;
this can be easily determined since it is expressible in sHML. By contrast, ϕeven

from Example 4 cannot be expressed in either sHML or cHML. In fact, it is
not partially-complete monitorable: it cannot be satisfaction complete because
the trace (rs)ω ∈ �ϕeven� but no prefix can be accepted since they all violate the
property; it cannot be violation complete either, since the trace ε �∈ �ϕeven� but
is can be extended by (rs)ω which makes (persistent) rejection verdicts unsound.
The property G¬f ∧ F s from Example 2 (expressed here in LTL) is a siHML
property, as G¬f can be written in sHML as max X.[f]ff∧[s]X∧[r]X. In contrast,
FG¬r cannot be written in iHMLsince it is not informatively monitorable. �

Remark 2. In siHML and ciHML, ϕ1 describes an informative part of the for-
mula, that is, a formula with at least one path to tt (or ff), which indicates that
the corresponding finite trace determines the property. Monitor synthesis from
these fragments can use this part of the formula to synthesize a monitor that
detects the finite traces that satisfy (violate) ϕ1. The value of the synthesised
monitor then depends on ϕ1. It is therefore important to have techniques to
extract some ϕ1 that will retain as much monitoring information as possible.
This extraction is outside the scope of this paper and left as future work. �

Persistently Informative Monitorability, Syntactically. We also give a syntactic
characterization of the recHML properties that are informatively monitorable
for satisfaction or violation. As the requirements for persistently informative
monitors are subtler than for informative monitors, the fragments we present
are more involved than those for informative monitorability.

Definition 9. We define eHML, the explicit fragment of recHML:

ϕ ∈ eHML ::= tt | ff | min X.ϕ | max X.ϕ | X

| ϕ ∨ ψ | ϕ ∧ ψ |
∨

α∈Act

〈α〉ϕα |
∧

α∈Act

[α]ϕα.
�

Example 6. Formula [f][s]ff is not explicit, but, assuming that Act = {f, s, r}, it
can be rewritten as the explicit formula [f]([s]ff ∧ [f]tt ∧ [r]tt) ∧ [s]tt ∧ [r]tt. �

Roughly, the following definition captures whether tt and ff are reachable
from subformulae (where the binding of a variable is reachable from the variable).

Definition 10. Given a closed sHML (resp., cHML) formula ϕ, we define for
a subformula ψ that it can refute (resp., verify) in 0 unfoldings, when ff (resp.,
tt) appears in ψ, and that it can refute (resp., verify) in k+1 unfoldings, when it
can refute (resp., verify) in k unfoldings, or X appears in ψ and ψ is in the scope
of a subformula max X.ψ′ (resp., min X.ψ′) that can refute (resp., verify) in k
unfoldings. We simply say that ψ can refute (resp., verify) when it can refute
(resp., verify) in k unfoldings, for some k ≥ 0. �

An Operational Guide to Monitorability 445

Example 7. For formula max X.[s]X ∧ [f]ff ∧ [r]ff, subformula [s]X ∧ [f]ff ∧ [r]ff can
refute in 0 unfoldings. In contrast, [s]X cannot refute in 0 unfoldings, but it can
refute in 1, because X appears in it and max X.[s]X ∧ [f]ff ∧ [r]ff can refute in 0
unfoldings. Therefore, all subformulae of max X.[s]X ∧ [f]ff ∧ [r]ff can refute. �

We now define the fragments of recHML corresponding to recHML proper-
ties that are persistently informatively monitorable for satisfaction or violation.

Definition 11. We define the fragment pHML = spHML ∪ cpHML where:

spHML =
{

ϕ1 ∧ ϕ2 ∈ recHML
∣
∣
∣

ϕ1 ∈ sHML ∩ eHML and every
subformula of ϕ1 can refute

}

cpHML =
{

ϕ1 ∨ ϕ2 ∈ recHML
∣
∣
∣

ϕ1 ∈ cHML ∩ eHML and every
subformula of ϕ1 can verify

}

�

Theorem 5. For ϕ ∈ recHML, ϕ is persistently informatively monitorable for
violation (resp., for satisfaction) if and only if there is some ψ ∈ spHML (resp.,
ψ ∈ cpHML), such that �ψ� = �ϕ�.

Remark 3. To the best of our efforts, a syntactic characterisation of persistently
informative monitorability would involve pairs of equivalent formulae with parts
from sHML and cHML that together become, in some sense, explicit. We leave
such a characterization as future work. �

6 Safety and Co-safety

The classic (and perhaps the most intuitive) definition of monitorability consists
of (some variation of) safety properties [3,7,25,32,44,45]. There are, however,
subtleties associated with how exactly safety properties are defined—particularly
over the finfinite domain—and how decidable they need to be to qualify as truly
monitorable. For example, Kim and Viswanathan [45] argued that only recur-
sively enumerable safety properties are monitorable (they restrict themselves
to infinite, rather than finfinite traces). By and large, however, most works on
monitorability restrict themselves to regular properties, as we do in Sect. 4.

We adopt the definition of safety that is intuitive for the context of RV: a
property can be considered monitorable if its failures can be identified by a finite
prefix. This is equivalent to Falcone et al.’s definition of safety properties [25,
Def. 4] and, when restricted to infinite traces, to other work such as [7,16,32].

Definition 12 (Safety). A property P ⊆ Act∞ is a safety property if every
f /∈ P has a prefix that determines P negatively. The class of safety properties
is denoted as Safe in Fig. 1. �

Pnueli and Zaks, and Falcone et al. (among others) argue that it makes sense
to monitor both for violation and satisfaction.Hence, if safety is monitorable for
violations, then the dual class, co-safety (a.k.a. guarantee [25], reachability [15]),
is monitorable for satisfaction. That is, every trace that satisfies a co-safety
property can be positively determined by a finite prefix.

446 L. Aceto et al.

Definition 13 (Co-safety). A property P ⊆ Act∞ is a co-safety property
if every f ∈ P has prefix that determines P positively. The class of co-safety
properties is denoted as CoSafe, also represented in Fig. 1. �

Example 8. “Eventually s is reached”, i.e., F s, is a co-safety property whereas
“f never occurs”, i.e., G ¬f, is a safety property. The property “s occurs infinitely
often”, i.e., G F s, is neither safety nor co-safety. The property only holds over
infinite traces so it cannot be positively determined by a finite trace. Dually,
there is no finite trace that determines that there cannot be an infinite number
of s occurrences in a continuation of the trace. Similarly, ϕeven from Example 4
is neither a safety nor a co-safety property, but ϕevenW is a safety property. �

Safety and Co-safety, Operationally. It should come as no surprise that safety and
co-safety coincide with an equally natural operational definition.Here, we estab-
lish the correspondence with the denotational definition of safety (co-safety),
completing three correspondences amongst the monitorability classes of Fig. 1.

Theorem 6. VCmp = Safe and SCmp = CoSafe.

Proof. We treat the case for safety, as the case for co-safety is similar. If P
is a safety property, then for every f ∈ Act∞ \ P , there is some finite prefix
s of f that negatively determines P . Therefore, mP is sound (Lemma 2) and
violation-complete (Definition 2) for P . The other direction follows from the fact
that whenever P ⊆ Act∞ is monitorable for violation, every f ∈ Act∞ \P has
a finite prefix that negatively determines it.

Aceto et al. [3] already show the correspondence between violation (dually,
satisfaction) monitorability over finfinite traces and properties expressible in
sHML (dually, cHML). As a corollary of Theorem 6, we obtain a syntactic
characterisation for the Safe and CoSafe monitorability classes; see Fig. 1.

Remark 4. Falcone et al. [25, Def. 17, Thm. 3] propose definitions of monitorabil-
ity over finfinite traces that are claimed to coincide with the classes Safe, CoSafe
and their union. However, this claim is incorrect. The properties, “the trace is
finite” and G F s from Example 8 are neither safety nor co-safety properties. On
the other hand, they are monitorable according to the alternative monitorabil-
ity definition given in [25, Def. 17]. If the results claimed in [25, Thm. 3] held
true, this would contradict the fact that those properties are neither safety nor
co-safety properties. See [4] for further details. �

7 Pnueli and Zaks

The work on monitorability due to Pnueli and Zaks [41] is often cited by the RV
community [12]. The often overlooked particularity of their definitions is that
they only define monitorability of a property with respect to a (finite) sequence.

Definition 14. ([41]). Property P is s-monitorable, where s ∈ Act∗, if there
is some r ∈ Act∗ such that P is positively or negatively determined by sr. �

An Operational Guide to Monitorability 447

Example 9. The property
(
f ∧ F r

) ∨ (
F G s

)
is s-monitorable for any finite trace

that begins with f, i.e., fs, since it is determined by the extension fsr. It is not
s-monitorable for finite traces that begin with an action other than f. �

Monitorability over properties—rather than over property–sequence pairs—
can then be defined by either quantifying universally or existentially over finite
traces: a property is monitorable either if it is s-monitorable for all s, or for
some s. We address both definitions, which we call ∀pz- and ∃pz-monitorability
respectively. ∀pz-monitorability is the more standard interpretation: it appears
for example in [13,25] where it is attributed to Pnueli and Zaks. However, the
original intent seems to align more with ∃pz-monitorability: in [41], Pnueli and
Zaks refer to a property as non-monitorable if it is not monitorable for any
sequence. This interpretation coincides with weak monitorability used in [18].

Definition 15. (∀pz-monitorability). A property P is (universally Pnueli–
Zaks) ∀pz-monitorable if it is s-monitorable for all finite traces s. The class of
all ∀pz-monitorable properties is denoted ∀PZ. �
Definition 16. (∃pz-monitorability). A property is (existentially Pnueli–
Zaks) ∃pz-monitorable if it is s-monitorable for some finite trace s, i.e., if it
is ε-monitorable. The class of ∃pz-monitorable properties is written ∃PZ. �

The apparently innocuous choice between existential and universal quantifi-
cation leads to different monitorability classes ∀PZ and ∃PZ.

Example 10. Consider the property “Either s occurs before f, or r happens
infinitely often”, expressed in LTL fashion as

(
(¬f)U s

) ∨ (
G F r

)
. This property

is ∃pz-monitorable because the trace s positively determines the property. How-
ever, it is not ∀pz-monitorable because no extension of the trace f positively or
negatively determines that property. Indeed, all extensions of f violate the first
disjunct and, as we argued in Example 8, there is no finite trace that determines
the second conjunct positively or negatively. Property ϕeven from Example 4 is
∀pz-monitorable: any prefix of the form a0s . . . ans or a0s . . . an (including ε),
where n ≥ 0 and every ai ∈ {s, f, r}, can be extended to a prefix that negatively
determines it (e.g., by extending it with ff). �

From Definitions 15 and 16, it follows immediately that ∀PZ ⊂ ∃PZ.

Proposition 2. All properties in Safe ∪ CoSafe are ∀pz-monitorable.

Proof. Let P ∈ Safe and pick a finite trace s. If there is an f such that sf /∈ P
then, by Definition 12, there exists r � sf that negatively determines P , meaning
that s has an extension that negatively determines P . Alternatively, if there is no
f such that sf /∈ P , s itself positively determines P . Hence P is s-monitorable,
for every s, according to Definition 14. The case for P ∈ CoSafe is dual.
�

Pnueli and Zaks, Operationally. ∃pz-monitorability coincides with informative
monitorability: ∃pz-monitorable properties are those for which some monitor
can reach a verdict on some finite trace. For similar reasons, ∀pz-monitorability
coincides with informative monitorability. See Fig. 1.

448 L. Aceto et al.

Theorem 7. ∃PZ = ICmp and ∀PZ = PICmp.

Proof. Since the proofs of the two claims are analogous, we simply outline the
one for ∀PZ = PICmp. Let P ∈ ∀PZ and pick a finite trace s ∈ Act∗. By
Lemma 2, mP is sound for P . By Definition 6 we need to show that there exists
an f such that acc(mP , sf) or rej(mP , sf). From Definition 15 and 14 we know
that there is a finite r such that sr positively or negatively determines P . By
Definition 2 we know that acc(mP , sr) or rej(mP , sr). Thus P ∈ PICmp, which
is the required result.

Conversely, assume P ∈ PICmp, and pick some s ∈ Act∗. By Definitions 15
and 14, we need to show that there is an extension of s that positively or neg-
atively determines P . From Definitions 6 and 7, there exists some f such that
acc(mP , sf) or rej(mP , sf). By Definition 1, there is a finite extension of s, say
sr, that is a prefix of sf such that acc(mP , sr) or rej(mP , sr). By Definition 2,
we know that sr either positively or negatively determines P .Thus P ∈ ∀PZ.

8 Monitorability in Other Settings

We have shown how classical definitions of monitorability fit into our hierarchy
and provided the corresponding operational interpretations and syntactic char-
acterisations, focusing on regular finfinite properties over a finite alphabet and
monitors with irrevocable verdicts. Here we discuss how different parameters,
both within our setting and beyond, affect what is monitorable.

Monitorability with respect to the Alphabet. The monitorability of a property
can depend on Act. For instance, if Act has at least two elements {a, b, . . .},
property {aω}, which can be represented as maxX.〈a〉X, is s-monitorable for
every sequence s, as s can be extended to sb, which negatively determines the
property. On the other hand, assume that Act = {a}. In this case, {aω} is
neither ∃pz- nor ∀pz-monitorable. Indeed, no string s = ak, k ≥ 0, determines
{aω} positively or negatively as s does not satisfy it but its extension aω does. On
the other hand, when restricted to infinite traces, {aω} is again ∃pz-monitorable.

So far, we only considered finite alphabets; how an infinite alphabet, which
may encode integer data for example, affects monitorability is left as future work.

Monitoring with Revocable Verdicts. Early on, we postulated that verdicts are
irrevocable. Although this is a typical (implicit) assumption in most work on
monitorability, some authors have considered monitors that give revocable judge-
ments when an irrevocable one is not appropriate. This approach is taken by
Bauer et al. when they define a finite-trace semantics for LTL, called RV-
LTL [13]. Falcone et al. [25] also have a definition of monitorability based on
this idea (in addition to those discussed in Remark 4). It uses the four-valued
domain {yes, no, yesc, noc} (c for currently). Finite traces that do not determine
a property yield a (revocable) verdict yesc or noc that indicates whether the
trace observed so far satisfies the property; yes and no are still irrevocable. This

An Operational Guide to Monitorability 449

definition allows all finfinite properties to be monitored since it does not require
verdicts to be irrevocable.

This type of monitoring does not give any guarantees beyond soundness:
there are properties that are monitorable according to this definition for which
no sound monitor ever reaches an irrevocable verdict: F G s for the system from
Example 1 has no sound informative monitor, yet can be monitored according to
Falcone et al. ’s four-valued monitoring. This type of monitorability is complete,
in the sense of providing at least a revocable verdict for all traces.

Monitorability in the Infinite and Finite. Bauer et al. use ∀pz-monitorability
in their study of runtime verification for LTL [14] and attribute it to Pnueli
and Zaks. However, unlike Falcone et al., Pnueli and Zaks [41] and ourselves,
they focus on properties over infinite traces. There are some striking differences
that arise if there is no risk of an execution ending. Aceto et al. show that,
unlike in the finfinite domain, a set of non-trivial properties becomes completely
monitorable: HML [33] (a.k.a. modal logic) is both satisfaction- and violation-
monitorable over infinite traces [3]. Furthermore, some properties, like {aω} over
Act = {a}, that were not ∃pz- or ∀pz-monitorable on the finfinite domain, are
∃pz- or even ∀pz-monitorable on the infinite domain. The full analysis of how
the hierarchy in Fig. 1 changes for the infinite domain is left for future work.

Havelund and Peled recently presented a related classification of infinitary
properties [32]. Their classification consists of safety and co-safety properties,
(there called AFS and AFR), and properties that are not positively or not nega-
tively determined by any sequence (NFS and NFR) and properties where some,
but not all prefixes have an extention that determines the property positively,
and their negations (SFS and SFR). They show that several of their classes con-
tain both ∀pz-monitorable and non-∀pz-monitorable properties. In contrast, in
our classification, ∀pz-monitorability is not orthogonal to other types of moni-
torability; rather, it is part of a spectrum that reflects the trade-offs between the
strengths of the guarantees a monitor can provide and the specifications that
can be monitored with these guarantees.

Barringer et al. [11] consider monitoring of properties over finite traces. In
this domain, all properties are monitorable if, as is the case in [11], the end of a
trace is observable; in this setting the question of monitorability is less relevant.

Monitoring Non-regular Properties. Although we have focussed on the monitora-
bility of regular properties, the monitorability hierarchy of Sect. 3 is not restricted
to this setting. Indeed, although non-regular properties require richer monitors,
for example monitors with a stack or registers, the same concerns of soundness
and degress of completeness remain relevant. Barringer et al. consider a spec-
ification logic that allows for context-free properties [11]. In [26], Ferrier et al.
consider monitors with registers (i.e., infinite state monitors) to verify safety
properties that are not regular. Characterising (e.g., syntactically) the different
classes of monitorability for non-regular properties is left as future work.

450 L. Aceto et al.

Beyond Monitorability. Stream-based monitoring systems such as [21,22] are
more concerned with producing (revocable) aggregate outputs and transforming
traces to satisfy properties, employing more powerful monitors than the ones
considered here (e.g., transducers). Instead of monitorability, enforceability [5,
25] is a criterion that is better suited for these settings.

9 Conclusion

We have proposed a unified, operational view on monitorability. This allows
us to clearly state the implicit operational guarantees of existing definitions
of monitorability. For instance, recall Example 1 from the introduction: since
(G ¬f)∧(F s) is ∃pz- and ∀pz-monitorable but it is neither a safety nor a co-safety
property, we know there is a monitor which can recognise some violations and
satisfactions of this property, but there is no monitor that can recognise all sat-
isfactions or all violations. Although we focussed on regular, finfinite properties,
the definitions of monitorability in Sect. 3, and, more fundamentally, the method-
ology that systematically puts the relationship between monitor behaviour and
specification centre stage, are equally applicable to other settings.

The emphasis our approach places on the explicit guarantees provided by
the different types of monitorability should clarify the role of monitorability
in the design of RV tools which, depending on the setting, may have different
requirements. Indeed, a monitor that checks that the output of a module does not
violate the preconditions of the next module had better be violation-complete;
on the other hand, it is probably sufficient that a monitor be informative when
it is used as a light-weight, best-effort part of a hybrid verification strategy.

References

1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: Monitoring for silent
actions. In: Lokam, S., Ramanujam, R. (eds.) FSTTCS. LIPIcs, vol. 93, pp.
7:1–7:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2017)

2. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: A framework for param-
eterized monitorability. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS,
vol. 10803, pp. 203–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89366-2 11

3. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Adven-
tures in monitorability: from branching to linear time and back again. Proc.
ACM Program. Lang. 3(POPL), 52:1–52:29 (2019). https://dl.acm.org/citation.
cfm?id=3290365

4. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: An oper-
ational guide to monitorability. CoRR abs/1906.00766 (2019). http://arxiv.org/
abs/1906.00766

5. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On runtime enforcement via
suppressions. In: 29th International Conference on Concurrency Theory, CONCUR
2018. LIPIcs, vol. 118, pp. 34:1–34:17. Schloss Dagstuhl (2018). https://doi.org/
10.4230/LIPIcs.CONCUR.2018.34

https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-319-89366-2_11
https://dl.acm.org/citation.cfm?id=3290365
https://dl.acm.org/citation.cfm?id=3290365
http://arxiv.org/abs/1906.00766
http://arxiv.org/abs/1906.00766
https://doi.org/10.4230/LIPIcs.CONCUR.2018.34
https://doi.org/10.4230/LIPIcs.CONCUR.2018.34

An Operational Guide to Monitorability 451

6. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, New York (2007)

7. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185
(1985)

8. Attard, D.P., Cassar, I., Francalanza, A., Aceto, L., Ingolfsdottir, A.: A runtime
monitoring tool for actor-based systems. In: Gay, S., Ravara, A. (eds.) Behavioural
Types: From Theory to Tools, pp. 49–74. River Publishers (2017)

9. Attard, D.P., Francalanza, A.: A monitoring tool for a branching-time logic. In:
Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 473–481. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46982-9 31

10. Baier, C., Tinelli, C. (eds.): Tools and Algorithms for the Construction and Anal-
ysis of Systems - 21st International Conference, TACAS 2015, LNCS, vol. 9035.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0

11. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring:
from Eagle to RuleR. J. Log. Comput. 20(3), 675–706 (2008)

12. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5 1

13. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Log. Comput. 20(3), 651–674 (2010)

14. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011). https://doi.org/10.
1145/2000799.2000800

15. Bérard, B., et al.: Systems and SoftwareVerification:Model-checking Techniques and
Tools. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-04558-9

16. Chang, E., Manna, Z., Pnueli, A.: Characterization of temporal property classes.
In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 474–486. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55719-9 97

17. Chen, F., Rosu, G.: Mop: an efficient and generic runtime verification framework.
In: Gabriel, R.P., Bacon, D.F., Lopes, C.V., Steele Jr., G.L. (eds.) Proceedings of
the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2007, pp. 569–588. ACM (2007).
https://doi.org/10.1145/1297027.1297069

18. Chen, Z., Wu, Y., Wei, O., Sheng, B.: Poster: deciding weak monitorability for run-
time verification. In: 2018 IEEE/ACM 40th International Conference on Software
Engineering: Companion (ICSE-Companion), pp. 163–164, May 2018

19. Cini, C., Francalanza, A.: An LTL proof system for runtime verification. In: Baier
and Tinelli [10], pp. 581–595. https://doi.org/10.1007/978-3-662-46681-0 54

20. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT press (1999)
21. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.:

TeSSLa: temporal stream-based specification language. In: Massoni, T., Mousavi,
M.R. (eds.) SBMF 2018. LNCS, vol. 11254, pp. 144–162. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03044-5 10

22. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In:
12th International Symposium on Temporal Representation and Reasoning (TIME
2005), pp. 166–174. IEEE Computer Society Press, June 2005

23. Decker, N., Leucker, M., Thoma, D.: jUnitRV–adding runtime verification to jUnit.
In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 459–464.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-4 34

https://doi.org/10.1007/978-3-319-46982-9_31
https://doi.org/10.1007/978-3-662-46681-0
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-662-04558-9
https://doi.org/10.1007/3-540-55719-9_97
https://doi.org/10.1145/1297027.1297069
https://doi.org/10.1007/978-3-662-46681-0_54
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-642-38088-4_34

452 L. Aceto et al.

24. Diekert, V., Leucker, M.: Topology, monitorable properties and runtime verifica-
tion. Theor. Comput. Sci. 537, 29–41 (2014). https://doi.org/10.1016/j.tcs.2014.
02.052

25. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at
runtime? Int. J. Softw. Tools Technol. Transf. 14(3), 349–382 (2012)

26. Ferrère, T., Henzinger, T.A., Saraç, N.E.: A theory of register monitors. In: Dawar,
A., Grädel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2018, pp. 394–403. ACM (2018). https://doi.
org/10.1145/3209108.3209194

27. Francalanza, A.: A theory of monitors (extended abstract). In: Jacobs, B., Löding,
C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 145–161. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49630-5 9

28. Francalanza, A.: Consistently-detecting monitors. In: 28th International Confer-
ence on Concurrency Theory (CONCUR). LIPIcs, vol. 85, pp. 8:1–8:19. Schloss
Dagstuhl (2017). https://doi.org/10.4230/LIPIcs.CONCUR.2017.8

29. Francalanza, A., et al.: A foundation for runtime monitoring. In: Lahiri, S., Reger,
G. (eds.) RV 2017. LNCS, vol. 10548, pp. 8–29. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-67531-2 2

30. Francalanza, A., Aceto, L., Ingólfsdóttir, A.: Monitorability for the Hennessy-
Milner logic with recursion. Form. Methods Syst. Des. 51(1), 87–116 (2017).
https://doi.org/10.1007/s10703-017-0273-z

31. Francalanza, A., Seychell, A.: Synthesising correct concurrent runtime monitors.
Form. Methods Syst. Des. (FMSD) 46(3), 226–261 (2015). https://doi.org/10.
1007/s10703-014-0217-9

32. Havelund, K., Peled, D.: Runtime verification: from propositional to first-order
temporal logic. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237,
pp. 90–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 7

33. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32(1), 137–161 (1985). https://doi.org/10.1145/2455.2460

34. Kozen, D.C.: Results on the propositional µ-calculus. Theor. Comput. Sci. 27,
333–354 (1983)

35. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Form. Methods
Syst. Des. 19(3), 291–314 (2001)

36. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. J. ACM 47(2), 312–360 (2000)

37. Larsen, K.G.: Proof systems for satisfiability in Hennessy-Milner logic with recur-
sion. Theor. Comput. Sci. 72(2), 265–288 (1990). https://doi.org/10.1016/0304-
3975(90)90038-J

38. Laurent, J., Goodloe, A., Pike, L.: Assuring the guardians. In: Bartocci, E., Majum-
dar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 87–101. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23820-3 6

39. Manna, Z., Pnueli, A.: Completing the temporal picture. Theor. Comput. Sci.
83(1), 97–130 (1991). https://doi.org/10.1016/0304-3975(91)90041-Y

40. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. Form. Asp. Comput. 29(5), 877–910 (2017). https://doi.org/10.
1007/s00165-017-0420-8

41. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586.
Springer, Heidelberg (2006). https://doi.org/10.1007/11813040 38

https://doi.org/10.1016/j.tcs.2014.02.052
https://doi.org/10.1016/j.tcs.2014.02.052
https://doi.org/10.1145/3209108.3209194
https://doi.org/10.1145/3209108.3209194
https://doi.org/10.1007/978-3-662-49630-5_9
https://doi.org/10.4230/LIPIcs.CONCUR.2017.8
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1007/s10703-014-0217-9
https://doi.org/10.1007/s10703-014-0217-9
https://doi.org/10.1007/978-3-030-03769-7_7
https://doi.org/10.1145/2455.2460
https://doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.1007/978-3-319-23820-3_6
https://doi.org/10.1016/0304-3975(91)90041-Y
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1007/11813040_38

An Operational Guide to Monitorability 453

42. Reger, G., Cruz, H.C., Rydeheard, D.E.: MarQ: monitoring at runtime withQEA.
In: Baier and Tinelli [10], pp. 596–610. https://doi.org/10.1007/978-3-662-46681-
0 55

43. Rosu, G.: On safety properties and their monitoring. Sci. Ann. Comput. Sci. 22(2),
327–365 (2012)

44. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

45. Viswanathan, M., Kim, M.: Foundations for the run-time monitoring of reactive
systems – Fundamentals of the MaC Language. In: Liu, Z., Araki, K. (eds.) ICTAC
2004. LNCS, vol. 3407, pp. 543–556. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-31862-0 38

46. Wolper, P.: Temporal logic can be more expressive. Inf. Control 56(1/2), 72–99
(1983). https://doi.org/10.1016/S0019-9958(83)80051-5

https://doi.org/10.1007/978-3-662-46681-0_55
https://doi.org/10.1007/978-3-662-46681-0_55
https://doi.org/10.1007/978-3-540-31862-0_38
https://doi.org/10.1007/978-3-540-31862-0_38
https://doi.org/10.1016/S0019-9958(83)80051-5

Let’s Prove It Later—Verification
at Different Points in Time

Martin Ring1 and Christoph Lüth1,2(B)

1 Deutsches Forschungszentrum für Künstliche Intelligenz, Bremen, Germany
christoph.lueth@dfki.de

2 FB 3—Mathematics and Computer Science, Universität Bremen,

Bremen, Germany

Abstract. The vast majority of cyber-physical and embedded systems
today is deployed without being fully formally verified during their
design. Postponing verification until after deployment is a possible way
to cope with this, as the verification process can benefit from instantiat-
ing operating parameters which were unknown at design time. But there
exist many interesting alternatives between early verification (at design
time) and late verification (at runtime). Moreover, this decision also has
an impact on the specification style. Using a case study of the safety
properties of an access control system, this paper explores the implica-
tions of different points in time chosen for verification, and points out
the respective benefits and trade-offs. Further, we sketch some general
rules to govern the decision when to verify a system.

1 Introduction

Contemporary embedded and cyber-physical systems have become so common-
place that we, almost unconsciously, rely on their correct functioning—we just
expect our smartphone to work. This is contrary to the fact that these sys-
tems have reached a complexity where the verification of their correct behaviour
becomes prohibitively expensive. Subsequently, a full correctness proof is only
ever done for the most safety-critical systems. For all other devices, errors during
the design process may remain undetected in the final product. This is due to
the way these systems are currently designed.

The current design flow for embedded and cyber-physical systems is (ideal-
ized) as follows: we first specify the system’s intended behaviour, then construct
a model of the system and finally an executable implementation. Some of these
steps may be conflated or missing; e.g. in model-based specification, the specifi-
cation is the model, or one may generate an implementation from the model. In
this design flow, verification refers to all activities which show that the imple-
mentation of the system satisfies its specification [1].

Current verification techniques such as theorem proving, model checking,
static analysis or testing are conducted at design time and finished before deploy-
ment, for two reasons: firstly, we want to make sure the system has no errors

c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 454–468, 2019.
https://doi.org/10.1007/978-3-030-30446-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_24&domain=pdf
https://doi.org/10.1007/978-3-030-30446-1_24

Let’s Prove It Later—Verification at Different Points in Time 455

before putting it into operation, and secondly, it is not entirely clear how to con-
duct verification at runtime. But this approach has the drawback that the time
for verification is limited; errors which are not caught by the time the system is
going into operation will remain undetected and may later on have unintended,
unpleasant, or even catastrophic consequences.

On the other hand, verification does not necessarily need to terminate with
the end of the development. In runtime verification, we check whether a particu-
lar run of the system satisfies desired properties. This has the advantage that we
do not need to stop verification if we deploy the system, and checking whether
a specific run of the system satisfies the desired property is of lower complexity
compared to model-checking [2]. The drawbacks are that it may be costly to
continuously monitor the behaviour of the system at runtime, and once we find
an error, it may be too late to do anything about it. This is particularly true for
hardware, and systems where the split between hardware and software is decided
rather late in the development process.

The idea of self-verification is to investigate the middle ground in between:
verify properties of the system as soon as practically possible, but as late as
necessary. In other words, verification does not terminate with deployment, but
is also not kept until the last moment. The present paper investigates the idea of
self-verification as proposed in [3,4] further. The key contribution is to examine
the implication of self-verification on the development process. We do so by
means of a case study, an access control system, which is simple to understand
yet offers subtle effects and is easy to visualize.

The paper is structured as follows. Section 2 introduces the basic concepts of
self verification, which are elaborated more concretely in Sect. 3 using the case
study, an access control system. Section 4 shows our approach to realizing self-
verifying systems, and Sect. 5 concludes with a general discussion of the wider
applicability.

2 Self-verification

Modern cyber-physical systems are designed to be versatile, such that they are
able to handle numerous operating contexts and operate in many different envi-
ronments. Thus, they have a large number of parameters which become instanti-
ated at runtime. The key advantage of self-verification is that after deployment,
the concrete values of these parameters may become known for verification. Some
may be instantiated early on after deployment, and not change after that at all,
or only very infrequently; others may change, but not that often; and even oth-
ers may be sensor data which are read in small intervals, but where the rate of
change may be limited. All of this information may be utilized at runtime for
more efficient verification.

This observation hinges on the fact that proving a property φ depends, inter
alia, on the number of free variables in φ, and that parameters as mentioned
above usually occur as free (or universally quantified) variables in φ. Then,
proving φ

[
t
x

]
with a ground term t instantiated for x is typically orders of

magnitude easier than proving φ.

456 M. Ring and C. Lüth

1 2

3 4

Fig. 1. Four different points in time chosen for verification, from design time (leftmost)
to runtime (rightmost). Trigger transitions are marked with small boxes; they trigger
verification tasks which show that every possible path through the state space which
does not include other trigger transitions is safe. Green boxes mark successful verifi-
cation, and red boxes mark failed verification tasks. The solid red state is unsafe; it
violates the safety property φ. Grayed-out states are not reachable, because they come
after a failed verification (open red box). Design time verification (on the left) would
identify the system as erroneous and prohibit its execution. Second to left, the system
is verified early after deployment and thus is allowed to execute only a small fraction (6
transitions) of the system, blocking two transitions and leaving 6 transitions unreach-
able. Third to left, most of the system is executable (11 transitions) but two transitions
are blocked and one transition is not reachable. The rightmost example allows all but
one transition. Note that in the last example the system gets deadlocked in state 4
when taking the leftmost path. (Color figure online)

Self-verification provides some challenges. At runtime, we do not have as
many resources in terms of memory and computing power as at design time, and
we need to transport the proof obligations derived from the specification into
the runtime environment. So, self-verification needs a design flow to support it:
a format and logic in which to encode the properties at design time, and light-
weight proof engines which run under the resource constraints of an embedded
system. We will show in Sect. 4 how such a design flow can be implemented.

However, the focus of the present paper is to investigate the effects of self-
verification on the development. That is, we want to explore when to prove prop-
erties and which ones, and we want to investigate how self-verification interacts
with the development process.

Comparing self-verification to runtime and a priori design time verification
on a more abstract level, we consider specific runs of the system 〈σi〉i∈N, consist-
ing of states σi, and a safety property φ. Usual design time verification proves
the general property that for all runs, ∀i. φ(σi), i.e. the safety property holds
for all states. In OCL and related formalisms, this is achieved by an inductive
argument, showing that we start in a safe state, φ(σ0), and that from a safe state
we can only get to a safe state, φ(σi) implies φ(σi+1). Runtime verification, on
the other hand, considers whether a specific run satisfies ∀i. φ(σi) and does not
restrict the transitions of the system; unsafe states can be reached, but this is
always detected. In self-verification, instead of restricting transitions, we classify

Let’s Prove It Later—Verification at Different Points in Time 457

them into trigger transitions and ordinary transitions. The idea is that when the
system goes through a trigger transition σi → σi+1, self-verification shows that
all states σk reachable with ordinary transitions from σi+1 are safe, i.e. φ(σk). If
another trigger transition is reached, the self-verification is run again. Note that
the classification of trigger transitions and ordinary transitions depends on the
particular φ, and is a design decision (see Sect. 3 below). A priori and runtime
verification can be seen as extreme cases of self-verification: in design time veri-
fication only one transition (the one leading to the initial state of the system) is
classified as a trigger transition, while in runtime verification every transition is
a trigger transition. Figure 1 illustrates the effect of different sets of trigger tran-
sitions for one system. Because the effort to state and prove φ increases with the
number of states we want to cover, self-verification allows us to strike a balance:
we may prove φ with little effort for a small number of states, and so have to
reprove it more often, or we may prove φ for more states, but with more effort.

When we specify the desired behaviour of the system with design time verifi-
cation, we need to state the required preconditions very precisely—they need to
be strong enough to be able to actually show that the system globally satisfies
the specified properties, and to preclude unwanted behaviour, but weak enough
to still allow all desired implementation. If we move verification into runtime, we
can relax preconditions at design time, allowing for more readable specifications
and speeding up the development process. Consider Fig. 1 again: to make the
system usable as well as correct, one would have to, e.g. refine the specification
(or the implementation) to exclude the transitions from states 1 and 2 to 3. With
self-verification, we can allow a more liberal specification or implementation and
still remain safe, making the development process easier.

Thus, in essence specification becomes easier and faster to write, and more-
over we are liberated from having to prove everything a priori, and can instead
adapt the proving strategy to the problem at hand.

3 Case Study

In the following, we will demonstrate our methodology in a case study (building
loosely on Abrial [5]). The case study is simple enough to be easily understood,
yet complex enough to show the subtle effects of verification at different points
in time.

3.1 Informal Description

To motivate our case study, think of a building where fine-grained access control
is needed for security or safety reasons, e.g. a nuclear power plant, but which also
needs to be able to be evacuated very fast in the case of an emergency. In that
case, we want to be able to eliminate access control (to allow fast evacuation)
and just open some of the doors in such a way that all users are able to get out,
but no user gains access to a room where they are not allowed to enter.

458 M. Ring and C. Lüth

Fig. 2. Example of a very simple building. The user with card A is authorized for room
a, user B is authorized for room b, both are authorized for rooms c and s. Room s is
the only safe room (it is the outside). The situation shown violates the safety property.

More precisely, we have a building consisting of several rooms. The rooms are
connected by doors, which are unidirectional (think of turnstiles; normal two-
way doors are an obvious generalization). Thus, doors lead from one room to
another one, which is equivalent to each room having a set of entries and exits.

Users are represented in the system by cards which regulate the access to
rooms. (In the following, we use cards and users interchangeably; the formal
specification only has cards.) Each card authorizes access to a set of rooms, by
restricting passage through the doors. The access control system operates in two
modes: in normal mode, a door may only be passed (using a card) if the card
authorizes access to the room the door is leading to. However, we can declare
an emergency for the whole building; in that modus, some doors are opened,
allowing anyone to pass through.

Opening doors in an emergency is subject to two safety properties: firstly, it
should allow any user (card) to eventually arrive in a safe room, and secondly, it
should not allow any user to enter a room they are not authorized to. A subset of
rooms is considered to be safe; in the simplest case, this can just be the outside
modelled as a room. As an example for the necessity of the safety properties,
take the nuclear power plant: even in case of an emergency, one would not want
anybody to exit through the reactor core.

This rather innocuous specification allows some subtle effects. Consider the
simple building in Fig. 2; the depicted situation violates the safety property, as
in case of an emergency, we cannot disable access control and open the doors in
such a fashion that neither user A or user B are allowed to access rooms they
are not authorized to (rooms b and a, respectively), and both are able to get to
a safe room (s).

Hence, we need to prevent a situation like this from happening. This could
be done by

– either restricting the layout of the building in such a way that situations like
this do not happen (this is what is usually done, with layouts were corridors
are the default escape route, and users do not have to traverse long sequences
of rooms);

Let’s Prove It Later—Verification at Different Points in Time 459

Fig. 3. Formal specification of an access control system.

– or by restricting the authorizations of the cards in such a way that a situation
like above does not happen;

– or by checking that before a users enters a room no situation violating the
safety property like above is created.

3.2 Formal Specification

We can now give a formal specification of our access control system. We will use
a subset of SysML [6] and OCL [7], where block definition diagrams (BDDs, the
SysML equivalent to UML class diagrams) model the structure of the system,
and OCL constrains the dynamic behaviour.

In Fig. 3, we can see blocks modelling the building, doors, rooms and cards
respectively. The building has a Boolean attribute emergency. A door leads from
exactly one to another room, but a room may have many (or no) entries and
exits. A door may only connect rooms which are part of the same building:

context Door
inv: from.building = to.building

Furthermore cards are also associated to buildings and may only authorize
access to rooms which belong to the same building:

context Card
inv: authorizations→forall(r | r.building = self.building)

Cards have a set of authorizations (rooms which the holder of the card is
allowed to enter) and exactly one location, which determines the current location

460 M. Ring and C. Lüth

of the card, and which must always be contained in the set of authorizations. On
the other hand, rooms have a set of authorized cards (those cards which have
the room in their set of authorizations), and a set of checkedIn cards (the set of
cards whose location is this room).

context Room
inv: checkedIn→forall(p | authorized→contains(p))

context Card
inv: location→forall(r | authorizations→contains(r))

Rooms have a Boolean attribute isSafe which determines whether the room is
safe during an emergency. A door has a method pass, which determines whether
a given card is allowed to pass. This is the case if either the door is open (see
immediately below), or if the card is in the room this door is opening from, and
the card is authorized for the room the door is opening to. We have encapsulated
this precondition as an OCL function mayPass in order to reuse it later. The
postcondition of the pass method is that the location of the card has changed
to the room the door is opening to. Doors are only allowed to be opened in case
of an emergency.

context Door
def: mayPass(card: Card): Boolean =
isOpen or from.building.emergency
and card.authorizations→contains(to)

inv: isOpen implies from.building.emergency

context Door::pass(card: Card)
pre: mayPass(card) and card.location = from
post: card.location = to

We now want to formalize the safety property: in an emergency, users can
always reach a safe room, yet no user has access to a room they are not authorized
to. To formalize a user being able to reach a room, we formalize the notion of
recursive access, which models the traversal along a sequence of connected rooms:
users have access to the room they are currently in, and recursively to all rooms
which can be reached through doors which may be passed (i.e. rooms which have
an entry from an accessable room that this card has access to). We formulate
this notion as an OCL function hasAccess which for a given room determines
whether a given card has access to this room. Since OCL does not allow non-
terminating functions we pass the set of already traversed rooms to the helper
function hasAccess$ such that we do not traverse cycles:

context Room
def: hasAccess(card: Card): Boolean = hasAccess$(card,Set{})
def: hasAccess$(card: Card, visited: Set(Room)): Boolean =
card.location = self or
visited.excludes(self) and entries→exists(e |

Let’s Prove It Later—Verification at Different Points in Time 461

Fig. 4. Situations which are safe. On the left, user B cannot enter room c until user
A has left. On the right, a similar situation, but user B may have taken the long path
through room e and d quite unnecessarily before not being able to proceed further.

e.mayPass(card) and
e.from.hasAccess$(card, visited→including(self)))

We can now specify the safety properties: firstly, that users can always reach a
safe room, and secondly, that users only have access to rooms they are authorized
for:

context Card:
inv safe1: building.rooms→exists(r |
r.isSafe and r.hasAccess(self))

inv safe2: building.rooms→forall(r |
not r.authorized→contains(self) implies not r.hasAccess(self)))

3.3 When to Verify

In order to preclude an unsafe situation as in Fig. 2, we have to show our system
satisfies the safety property. Of course, in full generality—universally quantified
over all buildings and all authorizations—the safety property does not hold; we
can easily find counterexamples (such as Fig. 2). If we want to show the safety
property at design time, we have to formalize conditions which are sufficient for
the safety property (i.e. preclude unsafe buildings).

With self-verification, we can show the safety property after deployment, at
different points in time:

(a) right after deployment to a specific building, for all possible cards, autho-
rizations and allocations of users to rooms; or

(b) after authorization has changed, for a specific building, but for all possible
allocations of users to rooms; or

(c) when a user requests access to a different room: if the new configuration of
the user in this different room is unsafe, access is not granted.

462 M. Ring and C. Lüth

In case (a), we would either need an explicit and sufficient characterization of
“every user always has a safe exit route”, or we need to search a lot of instances
(all paths for all users from all rooms). For most buildings, we will be able to
find counterexamples of unsafe configurations of users and access rights, but we
may be able to restrict access rights in such a way that we can prove the safety
property. If we can prove the safety property at this point, we are done, but this
may not always be possible.

The other extreme case is (c); this is fairly straightforward to verify, but
might be inconvenient to the user. (Thus, this is an example of making a system
safe by restricting its availability.) Consider the situation in Fig. 4 with the same
authorizations as in Fig. 2. On the left, user B cannot enter room c until user
A has left, because otherwise we would have the situation from Fig. 2 which is
not safe. This might result in situations like on the right of Fig. 4, where user
B might take a long tour through room e to room d only to find they cannot
proceed any further.

A good compromise is case (b): we verify the safety property each time the
authorizations change, for a specific building and specific authorizations. In most
cases, this should be reasonably efficient—the search space is through all possible
allocations of users to rooms—but still precludes unsafe allocations.

Note how self-verification allows us to relax the development process: because
we can prove the safety property at runtime, we do not need to specify all its
preconditions at design time (here, we do not need to characterize the precon-
ditions to make buildings and authorizations safe). This makes the development
process more agile without compromising safety.

4 Realization

4.1 A Design Flow for Self-verification

Our design flow targets hardware-software co-design for embedded and cyber-
physical systems. As demonstrated in Sect. 3, we use a subset of SysML (block
definition diagrams and state machine diagrams1) together with OCL as a spec-
ification formalism. Block definition diagrams and state machine diagrams can
be given a formal semantics (which is not the case for all SysML diagrams), so
our specifications have a mathematically well-defined, formal meaning. This is
indispensable if we want to perform formal correctness proofs. Figure 5 sketches
the design flow.

We have developed a textual representation of block definition diagrams and
state machine diagrams (in the spirit of USE [8]), which we use in our design flow.
Figure 6 shows an excerpt; parts of the corresponding OCL specifications have
been shown in Sect. 3 above. We can also use commercial tools like Astah SysML,
but their OCL support tends to be not as sophisticated. Instead, we make use
of the OCL implementation of the Eclipse Modelling Foundation. Moreover, our

1 The case study only uses block definition diagrams.

Let’s Prove It Later—Verification at Different Points in Time 463

Fig. 5. A design flow for self-verification.

textual representation makes the design flow fairly light-weight, allowing users
to employ any editor and versioning system at their disposal.

The implementation is given as an executable system model. To stay inde-
pendent of a specific programming language, we use the functional hardware
description language CλaSH [9] as our modelling language, since it allows us
to simulate the system as well as synthesize an implementation in VHDL or
VeriLog. Another possibility with more commercial traction would be SystemC,
but that has less clear semantics and it is embedded in C++, technically a lot
more awkward to handle (in CλaSH, adding proof support was merely a question
of adding an additional backend; in SystemC, we do not even have an explicit
representation of the model to start from).

Our tool chain reads the SysML and OCL specification, performs the appro-
priate type checks, reads the CλaSH model, and generates the corresponding
first-order proof obligations in bitvector format (first-order logic with limited
width integers as datatypes). The proof obligations are essentially obtained by
taking a representation of the system model in bitvector logic, and showing they
satisfy the OCL constraints (pre/postconditions and invariants). They can be
either processed at design time by an SMT prover such as Yices or Z3, or trans-
ferred to runtime. Proving at runtime is either performed by an SMT prover
running on the target system, if the latter is powerful enough, or by converting
the proof obligations into conjunctive normal form (e.g. using the Yices prover)
before transferring it to the target system, and using a SAT solver at runtime
(either as a lightweight software SAT solver [10] or even a hardware SAt solver
[11]). We have evaluated this design flow using a ZedBoard (which consists of a

464 M. Ring and C. Lüth

bdd [package] selfie::acs [ACS]

block Building

references

rooms: Room[*] <- building

cards: Card[*] <- building

values

emergency: Boolean

Fig. 6. Textual representation of the SysML block definition diagram (bdd). The
excerpt shows the bdd for Building.

Fig. 7. Design flow adapted to our demonstrator.

Xilinx FPGA controlled by an ARMv7 core), see [4]. Our evaluation has shown
that verification at runtime can cope with systems where a priori verification
fails, precisely because of the reduction in search space by instantiating param-
eters which become known at runtime.

4.2 The Demonstrator

If we implement the case study in our usual design flow, we derive a hardware
implementation, e.g. on an FPGA. In order to explore the implications of proving
at different points in time, and to demonstrate the effects of self-verification in
an easily accessible setting, we implemented the case study as an interactive
demonstrator.

Simulating the hardware turned out to be very slow, so instead we chose to
adapt our flow: the implementation is an interactive SVG, with the dynamic

Let’s Prove It Later—Verification at Different Points in Time 465

behaviour implemented in TypeScript. The core of the system is generated as
implementation stubs, using an adapted form of our design flow (see Fig. 7). We
have chosen TypeScript [12] as the target language (TypeScript is like JavaScript,
but with added type security), because it allows us to dynamically modify the
abstract syntax tree (the DOM) of the SVG. This allows the demonstrator
to be displayed and run on any recent web browser. In addition to the spec-
ified behaviour we manually implemented means to add and remove cards and
change their access rights, and reading building topologies from a non-interactive
SVG. We have implemented access cards (and implicitly their owners) as auto-
mated agents which randomly roam the building. This allows us to observe the
implications of the different points in time of the verification; for example, the
behaviours mentioned for case (c) in Sect. 3 above manifest themselves in agents
hovering in one place unable to proceed because of the violation of the safety
property this would incur.

The generated SMT proof obligations are a general equivalence proof which
can be processed by an SMT prover at design time. As mentioned above, the
prover quickly finds counter examples since our specification can easily be vio-
lated in general. By adding runtime information in the form of assertions, we
refine the instance on the fly. This was realized by establishing a WebSocket
connection between the SVG and the Z3 prover. For this, we use the webso-
cat utility, which wraps a WebSocket server around a command-line program.
This allows us to load the general proof and then incrementally send assertions
restricting the state space.

Technically, the arbitrarily mutable state of our simulation is in principle
not compatible with the monotonous nature of adding assertions: assertions can
only add information but not change or remove. Fortunately, SMT-LIB (the
common language used by most SMT provers) allows us to use scopes (with
the commands push and pop) for this. In order for this to work, we introduce
a fixed order in which information is added, which is based on the order of
execution in the system, ideally corresponding to the frequency of change. First
we add the general building topology, then the access rights, and after that,
the tracked locations of the card holders. Between every assertion, we save the
current size of the assertion stack with the push command. If any information
changes, we remove the assertion with the now outdated information as well as
any assertion which came afterwards. Then we only need to add the updated
assertions. Depending on the point in time chosen, we can check satisfiability
anywhere between.

An interesting feature of our implementation is that we did not implement
any algorithm which opens the doors. Instead, we use the prover to give us a
model of the existentially quantified safety property, which states that there must
be a safe way to exit (i.e. a set of doors to open in case of emergency). Through
self-verification not only did we not have to characterize buildings, access rights
or safe paths through the building, we even did not have to implement a path
finding algorithm at all.

466 M. Ring and C. Lüth

Fig. 8. The demonstrator is implemented as an interactive SVG document, displayed
here in a web browser.

The demonstrator is shown in Fig. 8. It connects the implementation to the
proof engine running the SMT instance. We can manually choose one of the three
different information levels for the proof, which result in different assertions being
added as well as different triggers for the proof.

Users can explore the consequences of the different points in time for the
self-verification. For example, if they choose to verify early on (after a new card
has been added or access rights change) and add a lot of cards, they will notice
a considerable slow-down when adding new cards or changing access rights. If
they choose to verify late (before a user enters a room), and construct situations
like in Fig. 4, they will realize how users congregate in front of a room unable
to get in. (The demonstrator is intended to be used together with additional
interactive explanation, not stand-alone, as situations like this will have to be
constructed consciously.)

The source code of the demonstrator is publicly available on GitHub.2

5 Discussion and Conclusions

This paper has elaborated on earlier proposals of self-verification—systems which
are not verified a priori, during the design phase, but where the proof obliga-
tions incurred during the development are postponed until after deployment,
2 https://github.com/DFKI-CPS/selfie-demo.

https://github.com/DFKI-CPS/selfie-demo

Let’s Prove It Later—Verification at Different Points in Time 467

and are proven at runtime. This makes proofs easier, as we can instantiate a
number of the parameters of the system which are unknown at design time, but
become known at runtime. This reduces the state space, turning the exponential
growth of the state space—the bane of model-checking—into exponential reduc-
tion. Self-verification is supported by a tool chain we have developed, which
allows specification in SysML/OCL, system modelling in CλaSH, and verifica-
tion using SMT provers and SAT checkers.

It should be noted that self-verification is in no way intended to replace design
time verification. If proof obligations can be shown at design time, they should
by all means be discharged; however, self-verification offers a different way to
tackle proof obligations which can not be shown at design time, supplementing
design time verification, and offering the designer to pick the best of all possible
worlds.

5.1 When to Prove

The focus of the present paper has been to investigate the implications and
consequences of the point in time at which the proof of safety properties take
place at runtime. Generally, the earlier we can prove, the more general the proven
safety property, but the larger the search space becomes and subsequently the
longer it will take. How to pick the right points in time depends on the actual
system and is very much a design decision. In future work, we want to further
investigate how the designer can be assisted in this decision; in particular, the
system should suggest which variables offer the most reduction in proof time
when instantiated.

However, we have made a number of observations which can help to assist in
finding the right set of trigger transitions. The set of trigger transitions should
be large enough such that verification tasks can be completed in a timely man-
ner (again, acceptable verification times depend on the concrete use case), but
reduced in a way such that no critical transition is included. Trigger transitions
might be prohibited by self-verification in case the specification is violated (fails
to verify in the concrete instance), so critical transitions should not be included
in the set of trigger transitions: e.g. if we verify the existence of an escape route
in case of an emergency it is clearly too late to handle failure. On the other
hand administrative operations like changing access rights are far better suited
to be included as trigger transitions, since a potential failure is presented to a
trained user of the system. Lastly, one should avoid transient states (e.g. a user
is inside a security gate) which can only be left through trigger transitions since
self-verification may lead to a system dead-locked there, as in Fig. 1.

5.2 Conclusions

The vehicle of our investigations was a case study consisting of an access control
system, which is parameterized in many dimensions (the building under con-
trol, the access rights, the users) that can be instantiated at different points in
time. In order to make our results concrete and tangible, we have developed a

468 M. Ring and C. Lüth

demonstrator—the access control system implemented as an interactive SVG,
which can be viewed and run in any web browser. Users can directly experience
the effect of choosing different verification triggers.

The demonstrator also exhibits the general applicability of self-verification
and the versatility of our tool chain, which could be adapted to support a dif-
ferent implementation platform (SVG and TypeScript instead of CλaSH) with
moderate effort.

This raises the question of the general applicability of the approach. As pre-
sented here, some kinds of safety-critical systems could not be addressed ade-
quately, namely fail-safe systems, where there is no default safe state which we
can always revert to if self-verification does not succeed. On the other hand, an
attractive avenue for further exploration is “just-in-time verification”, where one
tries to prove properties at run time as they are needed.

References

1. IEEE: IEEE std 1012–2016. IEEE standard for software verification and validation.
Technical report. IEEE (2016)

2. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Alge-
braic Program. 78(5), 293–303 (2009)

3. Lüth, C., Ring, M., Drechsler, R.: Towards a methodology for self-verification.
In: 2017 6th International Conference on Reliability, Infocom Technologies and
Optimization (Trends and Future Directions) (ICRITO), 11–15 September 2017
(2017)

4. Ring, M., Bornebusch, F., Lüth, C., Wille, R., Drechsler, R.: Better late than never
– verification of embedded systems after deployment. In: 2019 Design, Automation
Test in Europe Conference Exhibition (DATE), pp. 890–895, March 2019

5. Abrial, J.R.: System study: method and example (1999)
6. OMG: Systems Modeling Language (SysML), Version 1.5, May 2017
7. OMG: Object Constraint Language (OCL), Version 2.4, February 2014
8. Gogolla, M., Richters, M.: Development of UML descriptions with USE. In:

Shafazand, H., Tjoa, A.M. (eds.) EurAsia-ICT 2002. LNCS, vol. 2510, pp. 228–238.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36087-5 27

9. Baaij, C., Kooijman, M., Kuper, J., Boeijink, W., Gerards, M.: ClaSH: structural
descriptions of synchronous hardware using haskell. In: Proceedings of the 13th
EUROMICRO Conference on Digital System Design: Architectures, Methods and
Tools, United States, IEEE Computer Society, pp. 714–721, September 2010

10. Bornebusch, F., Wille, R., Drechsler, R.: Towards lightweight satisfiability solvers
for self-verification. In: 7th International Symposium on Embedded Computing
and System Design (ISED). IEEE (2017)

11. Ustaoglu, B., Huhn, S., Große, D., Drechsler, R.: SAT-lancer: a hardware SAT-
solver for self-verification. In: 28th ACM Great Lakes Symposium on VLSI
(GLVLSI) (2018)

12. Hejlsberg, A.: Typescript (2012)

https://doi.org/10.1007/3-540-36087-5_27

Security

Using Threat Analysis Techniques to
Guide Formal Verification: A Case Study

of Cooperative Awareness Messages

Marie Farrell1(B), Matthew Bradbury2, Michael Fisher1, Louise A. Dennis1,
Clare Dixon1, Hu Yuan2, and Carsten Maple2

1 Department of Computer Science, University of Liverpool, Liverpool, UK
marie.farrell@liverpool.ac.uk

2 Cyber Security Centre, WMG, University of Warwick, Coventry, UK

Abstract. Autonomous robotic systems such as Connected and
Autonomous Vehicle (CAV) systems are both safety-and security-critical,
since a breach in system security may impact safety. Generally, safety
and security concerns for such systems are treated separately during the
development process. In this paper, we consider an algorithm for send-
ing Cooperative Awareness Messages (CAMs) between vehicles in a CAV
system and the use of CAMs in preventing vehicle collisions. We employ
threat analysis techniques that are commonly used in the cyber secu-
rity domain to guide our formal verification. This allows us to focus our
formal methods on those security properties that are particularly impor-
tant and to consider both safety and security in tandem. Our analysis
centres on identifying STRIDE security properties and we illustrate how
these can be formalised, and subsequently verified, using a combination
of formal tools for distinct aspects, namely Promela/SPIN and Dafny.

1 Introduction

Emerging applications of autonomous robotic systems include Connected and
Autonomous Vehicle (CAV) systems where self-driving vehicles communicate
with each other in order to safely travel between different locations. This com-
munication typically occurs over a wireless network that is vulnerable to attacks
and these attacks could potentially impede the safety of the passengers. There-
fore, ensuring that both cyber security and safety issues are properly addressed
during the software development process is crucial for these CAV systems. While
a recent survey on formal verification techniques for autonomous robotic systems
identified a number of challenges for applying formal methods to these systems
[19], cyber security as a distinct challenge for formal methods has often been
overlooked. In particular, identifying which cyber security properties to verify is
often difficult for formal methods practitioners.

This work is supported by grant EP/R026092 (FAIR-SPACE Hub) through UKRI
under the Industry Strategic Challenge Fund (ISCF) for Robotics and AI Hubs in
Extreme and Hazardous Environments.

c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 471–490, 2019.
https://doi.org/10.1007/978-3-030-30446-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_25&domain=pdf
https://doi.org/10.1007/978-3-030-30446-1_25

472 M. Farrell et al.

In this paper, we present a simple case study that employs (informal) threat
analysis techniques from the cyber security domain to guide our verification
effort of the Cooperative Awareness Message (CAM) protocol, used in vehicle-
to-vehicle communications [26]. CAMs are heartbeat messages that are periodi-
cally broadcast by each vehicle to its neighbours to provide basic vehicle status
information including position, velocity, acceleration, heading, etc. [26]. Since
these vehicles communicate over an unsecured network, ensuring that CAMs are
secure is crucial as we move toward driverless cars. This is also relevant in other
areas where autonomous vehicles communicate with each other, such as a group
of vehicles in orbit or rovers mapping an unknown and hazardous environment.

To this end, we contribute a basic methodology for security-minded formal
verification and a case study demonstrating our approach using existing formal
methods and STRIDE threat analysis. The threat analysis will identify threats
that fall into specific aspects of the six categories specified by STRIDE. Since
CAMs are for use in CAV systems, which are inherently cyber-physical, we see
this case study as an experiment on how to combine threat analysis and formal
verification and our approach could be used in the development of other cyber-
physical systems.

This paper is structured as follows. In the remainder of Sect. 1 we outline our
basic methodology for security-guided formal verification. Then, Sect. 2 describes
the relevant background material and related work. In Sect. 3, we present our
threat analysis of the CAM protocol using the STRIDE classification. In Sect. 4,
we present our results of analysing how a spoofing attack can impact the safety
of a simple, three vehicle CAV system by devising an abstract system model in
Promela and using the SPIN model-checker for verification. Section 5 presents a
Dafny implementation of the CAM protocol and illustrates how we can verify
properties related to Denial of Service and Repudiation. Finally, we conclude
and outline future work in Sect. 6.

1.1 Methodology

In order to enhance the software engineering process and encourage collabora-
tion between cyber security and formal methods practitioners we followed the
high-level methodology outlined in Fig. 1. We started by analysing the available
documentation that informally describes the CAM messaging protocol [1]. Then
we independently carried out threat analysis and construction of formal models
of the CAM protocol.

In particular, we constructed two formal models of the protocol. The first
is a high-level system model that is written in Promela and verified using the
SPIN model-checker which we use to investigate a spoofing attack. The second
is an algorithm-level model of the CAM protocol, written in Dafny, which we use
to analyse properties related to denial of service and non-repudiation. Finally,
we defined formal properties, based on the threat analysis that was carried out,
that we then encoded and verified with respect to our formal models of the CAM
protocol.

Using Threat Analysis Techniques to Guide Formal Verification 473

Analyse the Doc-
umentation [1]

Threat Modelling
of CAM protocol

Build formal model(s)
of CAM protocol

Formalisation and
Verification of

Potential Threats

Fig. 1. Our high-level methodology for security-guided formal verification of the CAM
protocol involved independently carrying out threat analysis and formal modelling
based on the available documentation. Then we used the identified threats to guide
our formal verification effort.

In the event that errors or discrepancies were found in either the threat anal-
ysis or formal verification, we returned to the documentation for clarification.
This is indicated by the arrows in Fig. 1 and allowed us to discern whether the
errors were in our modelling of the protocol and/or if the correct level of abstrac-
tion was captured by our formal models. By following this methodology we were
able to foster cooperation and combine expertise from both the cyber security
and formal methods domains. This kind of collaboration can be easily integrated
into the development process and can potentially save time since formal veri-
fication and security analysis can be combined and used in a complementary
fashion.

In practice, the system might be modified as mechanisms are put in place to
prevent attacks that were exposed by threat analysis. When this occurs, devel-
opers should revise and reverify their models in light of this new behaviour.

2 Background and Related Work

In this section, we present the relevant background material under three distinct
headings. First, we describe the threat analysis techniques that we have used,
then we discuss formal verification and introduce the tools and techniques that
we use throughout the remainder of this paper. We also provide concrete details
about Cooperative Awareness Messages (CAMs) as contained in the standard
documentation [1]. Finally, we briefly describe related work in this area.

Threat Analysis: When engineering security-critical systems, developers often
employ threat analysis techniques to help to identify security vulnerabilities
so that targeted mitigations can be put in place. One such technique is the
STRIDE [15] classification. In fact, there are many other techniques for threat
modelling, and our approach works equally well with any of them (e.g. CIA
which stands for Confidentiality, Integrity and Availability [31]), but for ease of

474 M. Farrell et al.

explanation, we adopt STRIDE. This includes: (i) Spoofing - attacker pretends
to be another system entity, (ii) Tampering - attacker manipulates data mali-
ciously, (iii) Repudiation - attacker can deny sending a message that it sent, (iv)
Information Disclosure - attacker can cause the system to reveal information
to those it is not intended for, (v) Denial of Service - attacker can prevent the
system from functioning, and (vi) Escalation of Privilege - attacker can perform
more actions than allowed. Analysing a system in light of STRIDE threats helps
developers to secure the system by identifying vulnerable areas so that miti-
gations can be included. The identified threats will also have their impact and
likelihood assessed in order to calculate the risk of each threat [24], allowing the
prioritisation of developing mitigations for threats with a higher risk.

Formal Verification: In order to assure the correctness of a software system,
formal methods provide an array of mathematically-based tools and techniques
for proving properties about a system. Formal methods are predominantly used
in safety-critical systems where a software failure can potentially cause harm.
In this paper, we employ two distinct formal methods; Promela/SPIN [10] and
Dafny [17] to verify properties about the CAM protocol. In each case, we model
the CAM protocol at a different abstraction level; Promela for system-level mod-
elling and Dafny for algorithm-level verification. Since these systems are typi-
cally very complex, the use of multiple formal methods is necessary [8], and
cyber security threat analysis techniques help us to highlight the most relevant
security properties.

Promela is a general purpose programming language, particularly developed
for protocol verification, while the patterns of temporal behaviour that can be
verified can be complex and varied [9]. SPIN is a model-checker that automat-
ically checks temporal properties over system models encoded in the Promela
programming language [9,10]. Essentially, SPIN explores all possible runs of
Promela input models and assesses these against an automaton capturing tem-
poral behaviour that should never occur. If all runs have been explored without
finding a violation of the temporal properties then the model is valid. If a viola-
tion is found, it is returned as a counter-example1.

Dafny is a programming language that facilitates the use of specification
constructs that allow the user to specify pre-and post-conditions as well as loop
invariants and variants [17]. Dafny is used in the static verification of the func-
tional correctness of programs. Dafny programs are translated into the Boogie
intermediate verification language [3] and then the Z3 automated theorem prover
discharges the associated proof obligations [7]. We chose Dafny for this case
study because of its similarity to other programming languages making it easy
to communicate the verified solution to security engineers that are unfamiliar
with formal methods2.

Cooperative Awareness Messages (CAMs): As outlined briefly in Sect. 1, CAM
are heartbeat messages that are sent between vehicles in a CAV system. The
1 We used version 6.4.6 of SPIN.
2 We used version 2.2.0 of Dafny.

Using Threat Analysis Techniques to Guide Formal Verification 475

CAM standard documentation is contained in [1] and we briefly summarise this
here in order to give the reader an understanding of the nature of the CAM
protocol. In autonomous vehicles, the CA Basic Service is a facilities layer that
is responsible for operating the CAM protocol which is composed of two services:
(1) the sending of CAMs, including their generation and transmission, and, (2)
the receiving of CAMs and the modification of the receiving vehicle’s state in
light of the received messages. The CA Basic Service is in control of how fre-
quently CAMs are sent and it interfaces to a number of other services, such as
the SF-SAP which provides a number of basic security services (including digital
signatures and certificates) for CAM [1, §5.1].

CAMs are sent in plain text as they are intended for all vehicles within range
of the sender. This also means that time expensive encryption and decryption is
not required. However, to ensure the authenticity of the sender (that a message
sent from vehicle v actually came from vehicle v), digital signatures are used
as they allow a receiver to use the contents of the message, the signature and
the public key of the sender to verify its origin. Note that in this paper we are
primarily concerned with the protocol for sending and receiving CAMs and the
threats that can be identified at this level rather than detailed cryptographic
protocols and digital signing.

Once CAMs are received by surrounding vehicles, the receivers can modify
their own state based on the received messages. In particular, if a vehicle receives
a message from one proceeding it which indicates that the leading vehicle is
slowing down, then the vehicle that received this CAM should also slow down
in order to avoid collision.

Related Work: iUML-B and refinement in Event-B have been used to analyse
a known security flaw called double tagging in a network protocol [30]. Other
related work includes the use of the Tamarin prover to formally analyse and
identify one known functional correctness flaw and one unknown authentication
flaw for a revocation protocol [33]. Here, the revocation is of malicious or mis-
behaving vehicles from a vehicular networking system. Our work differs to these
in that we use threat analysis to guide our verification rather than use formal
methods to identify previously known bugs.

Vanspauwen and Jacobs have devised an approach to the static verification
of cryptographic protocol implementations using their symbolic model of cryp-
tography formalised in VeriFast [32]. They attach contracts to the primitives in
an existing cryptography library. Their focus is on the verification of crypto-
graphic protocols whereas we focus on using cyber security techniques to guide
verification rather than verifying cryptographic protocol implementations.

Huang and Kang [11] use a probabilistic extension of the Clock constraint
specification language (Ccsl) to analyse safety and security properties related to
timing constraints for a cooperative automotive system. They specified a num-
ber of safety constraints as well as a number of security constraints including
spoofing, secrecy, tampering and availability. Their work facilitates the verifica-
tion, using the Uppaal model-checker, of safety and security properties related
to timing constraints. It does not, however, integrate results from a security

476 M. Farrell et al.

engineering perspective in order to define these properties and only focuses on
those properties related to timing.

Other related work includes the use of the CSP process algebra for protocol
verification [27–29]. Their focus is on authentication [28] and non-repudiation
protocols [27]. Their approach involves specifying the relevant protocol, agents
and environment in CSP [29]. Notably, they remark that, by modelling the proto-
col in CSP, they could provide a formal and verified specification of the protocol
which allowed them to clarify the, usually, informal protocol description.

Kamali et al. [14] have used formal verification of an autonomous vehicle
platooning system to demonstrate the use of different formal techniques for dis-
tinct system subcomponents. In this case, autonomous decision-making, real-
time properties and spatial aspects. Our approach, presented in this paper uses
different formal methods to verify distinct security-related properties of the CAM
protocol at different levels of abstraction.

3 Threat Analysis of CAM

In this section, we describe our threat analysis of the CAM protocol. Threat
analysis is important for ensuring the security of a system since it is used to
identify all of the potential threats to the system. There are a variety of different
threat modelling methods including STRIDE, SAHARA, HARA, TARA and
others that are suggested in multiple industry standards (i.e. ISO26262, SAE
J3061). In this paper, we use the STRIDE classification outlined earlier [15].

3.1 Specialising STRIDE for CAM

CAMs (formatted using ASN.1 as specified in [1, Annex A]) are a vital aspect of a
safe CAV system, as they are used by each vehicle to inform surrounding vehicles
of their current status. Each vehicle needs to trust that the values contained
within a CAM are timely and accurate. If this is not the case then autonomous
vehicles could make incorrect and even unsafe decisions. Note that we focus here
on CAMs generated by On-Board Units (OBU) in vehicles rather than Road
Side Units (RSU) as the OBU algorithm for CAM generation is more complex
and thus more interesting from a formal methods perspective. In terms of the
CAM protocol, we specialise the STRIDE threats:

Spoofing: attacker sends messages masquerading as another vehicle.
Tampering: attacker tampers with a message sent by another vehicle.
Repudiation: a vehicle can deny sending a message that it has actually sent.
Information Disclosure: vehicles only receive messages intended for them.
Denial of Service: messages are not sent within a reasonable time frame.
Escalation of Privilege: attacker can send more CAMs than permitted.

The threat modelling contained in Table 1 was carried out by examining each
piece of information that could be sent via CAMs and considering which STRIDE

Using Threat Analysis Techniques to Guide Formal Verification 477

Table 1. This table contains our threat analysis of the CAM protocol. Here, ‘Require-
ment’ corresponds to the information that the vehicle must sense about itself in order
to know the value of the corresponding ‘Message Element’ on the left. Furthermore,
the ‘Threats’ correspond to those identified using STRIDE.

Message type Message element Requirement Attack surfaces Threats

Vehicle
information [20]

Vehicle type Originating station
(RSU), vehicle length,
vehicle width

Data system,
planning system,
wireless comms

S, I, D

Position Reference position

Lane position Current lane position Sensing: lidar,
radar, camera,
ultrasonic

S, T, R, I, D

Speed Vehicle velocity

Acceleration Longitudinal, lateral,
vertical

Heading Heading Positioning system:
GPS, A-GPS

Driving model Acceleration control

GPS Preceding vehicle
GPS, following vehicle
GPS

Wireless comms

Traffic
notification [1]

Warning Emergency vehicle,
crash, collision.

Controlling centre
infrastructures,
Wireless comms

D, E

Indication Speed limits, traffic
light

threats an attacker might exploit. The information contained in Table 1 is based
on the C-ITS standard messages elements, a summary of threats [5,6,12,18,22,
25]. We summarise the information contained in Table 1 as follows.

For CAM, there are two distinct kinds of ‘Message Type’. In particular, ‘Vehi-
cle information’ CAMs include the vehicle type and its state information (speed,
position, GPS, etc.). Conversely, ‘Traffic notification’ CAMs provide emergency
warnings and traffic indications. For each kind of CAM, ‘Message Element’ indi-
cates the specific components that are included in the messages. For each mes-
sage element, its corresponding ‘Requirement’ refers to the information that the
vehicle must sense/have access to in order to populate the corresponding mes-
sage element field. In cyber security, an ‘Attack Surface’ is the region of the
system that an adversary can exploit to attack the system. Finally, the possible
‘Threats’ for CAM are modelled based on STRIDE.

For example, in order to include GPS information we require the GPS infor-
mation of both the leader and following vehicles. Here, the attack surface is the
positioning system (GPS/A-GPS) and possible threats are Repudiation [25] or
Spoofing [5].

478 M. Farrell et al.

The threat analysis contained in Table 1 has identified potential points of
attack and we consider them in more detail in the next subsection. Note that,
in the remainder of this paper, we focus on ‘Vehicle information’ CAMs but we
have included ‘Traffic notification’ messages in Table 1 for illustrative purposes.
These Decentralised Environment Notification Messages (DENM) are generated
using a different protocol which we are not focusing on in this work.

3.2 Considering the Threats

We have identified a number of threats in Table 1 and, as part of the threat
analysis process, we examine them in more detail here which allows us to identify
which are the most likely to occur/cause the most damage.

In Table 1, we have identified Tampering as a threat for some of the state
information contained in CAMs. However, in practice, Tampering is prevented
via digital signatures and certificates, the verification of which is beyond the
scope of this paper but details can be found in [16]. In particular, the CA Basic
Service, which is responsible for operating the CAM protocol, interfaces with
the SF-SAP security entity as described in [1, §5.1 & §6.2.2] which provides
access to security services for CAM such as digital signing and certificates. Here,
certificates are used to indicate the holder’s privileges for sending CAMs. In
this way, incoming CAMs are accepted if the sender’s certificate is valid and is
consistent with their privileges.

As CAMs are intended for all who receive them, we do not analyse Infor-
mation Disclosure properties. Escalation of Privilege attacks could enable an
attacker to send more messages than allowed, but in general all vehicles have
the same level of authority so we do not consider this attack here.

Based on our analysis, we conclude that Spoofing, Denial of Service and
Repudiation threats are the most relevant/important threats pertaining to this
case study. To our knowledge, no formal, mathematical definition of the STRIDE
properties exists since they are to be specialised for a given system. However, if
we wish to include these in our formal verification of CAM then we must more
closely consider those properties that we are interested in (Spoofing, Denial of
Service and Repudiation). We explore these in more detail as follows:

Spoofing: an attacker pretends to be another vehicle and sends false information
about that vehicle (e.g. speed) in CAMs. This could potentially cause vehicles
to collide and we analyse this using Promela/SPIN in Sect. 4 by modelling
an attacker of the system.

Denial of Service: a compromised vehicle does not send CAMs within a rea-
sonable amount of time. If a vehicle sends too many CAMs then the network
becomes overloaded. Conversely, if a vehicle does not send CAMs frequently
enough then the most recent CAMs sent may be deemed out of date and
thus ignored. In particular, a replay attack could occur where an attacker or
a compromised vehicle resends CAMs that have already been sent causing
a network overload. If suitable measures are not put in place to ensure that
the time that the message was sent was not too far in the past then vehicles

Using Threat Analysis Techniques to Guide Formal Verification 479

may react to an out of date message. We address this using Dafny in Sect. 5
by verifying an availability property of the algorithm for sending CAMs.

Repudiation: we can reduce the possibility of a vehicle denying that it has sent
a CAM by requiring that CAMs are stored in a sequence and not provid-
ing functionality to remove CAMs from this sequence. Another repudiation
related attack could result in an attacker or compromised vehicle claiming to
have sent a CAM when in fact it has not sent one. In this case, vehicles could
potentially forward CAMs to other vehicles. This is a particular condition
that is prohibited in the documentation [1] and our Dafny implementation
of the algorithm for receiving CAMs in Sect. 5 considers this.

These are the threats that, based on our threat analysis, we consider to be
the most relevant/likely with respect to the CAM protocol and we use these to
guide our formal verification effort3.

4 Model-Checking with Promela/SPIN

In this case study, it is easy to see that safety and security are inextricably
linked. For CAV systems, the most important safety property to consider is that
collisions should be avoided at all costs. Therefore, an attacker of the system who
is attempting to cause harm will likely target security vulnerabilities that have
the potential to violate this safety property. A key aspect of the threat analysis
process is the identification of a suitable attacker. To this end, we recognise
that there may be malicious vehicles on the road that are attempting to cause
vehicles to collide, perhaps a disgruntled taxi driver who is unemployed due
to the adoption of autonomous vehicles. Such a collision could be caused by
spoofing the CAMs sent between vehicles. Our analysis of spoofing and how it
can impact the safety of the CAV system is captured here in a SPIN analysis of
a simplified scenario involving CAMs between vehicles in a platoon/convoy.

4.1 Basic Scenario: Safety

We investigated message passing between multiple vehicles by applying SPIN to
an abstracted Promela model for sending and receiving CAMs. Figure 2 contains
three vehicles travelling in a platoon/convoy: one leader; one middle; and one
tail vehicle. The leader and tail send CAMs to the middle vehicle, and it follows
a simple protocol.

– If no CAMs are received then it continues unchanged.
– If it receives exactly one CAM then sets its own speed to half the speed in

the CAM4.
– If it receives two CAMs then it sets its own speed to be the average of the

two speeds (rounded down).

3 Artefacts available at: https://github.com/mariefarrell/CAMVerification.git.
4 This only occurs at initialisation when the speed of the other vehicle is 0.

https://github.com/mariefarrell/CAMVerification.git

480 M. Farrell et al.

Leader Vehicle Middle Vehicle Tail Vehicle

Attacker Vehicle

Fig. 2. Our three vehicle model where CAMs are sent from the leader and tail vehicles
to the middle vehicle. The attacker executes a Spoofing attack.

We used the following default conditions to analyse this Promela model with
SPIN: (1) the leader chooses a random discrete speed 10, 20, 30, 40, 50, 60 or
70 at each time step, (2) the tail similarly chooses a random discrete speed at
each time step, and (3) we ran the system for 100 time steps with a round-robin
interleaving concurrency between vehicles.

The simple safety property that we verified is that the speed of the middle
vehicle is never much different to the speed of the leader or of the tail, for more
than one step. Here, much different means a difference of more than ‘51’ in
speed. We formalise: it is always the case that, if the speed of the middle vehicle
is much different then it will not be in the next state. We write this in temporal
logic as:

�(big speed difference ⇒ ©¬big speed difference)

where ‘�’ and ‘©’ are LTL’s [23] “always” and “in the next state” operators,
respectively. Although we have only written © here for ease of presentation, in
the actual implementation the property is that the difference has been corrected
after twelve next steps – this is because SPIN treats next as the next instruction
execution, which includes print states used for understandability and debugging
purposes not as the next tick of the internal clock. In SPIN, we negate this
property and so the “never claim” (or safety property [4]) that we implement is

♦(big speed difference ∧ ©big speed difference)

where ‘♦’ is LTL’s [23] “eventually” operator. Here, big speed difference is true
when any of the following inequalities hold

– middle vehicle speed > (leader vehicle speed + 51)
– middle vehicle speed < (leader vehicle speed − 51)
– middle vehicle speed > (tail vehicle speed + 51)
– middle vehicle speed < (tail vehicle speed − 51)

We have successfully verified that this safety property holds of our model
using the SPIN model-checker. Next, we use this model to investigate how a
Spoofing attack could lead to an unsafe scenario for the vehicle platoon.

Using Threat Analysis Techniques to Guide Formal Verification 481

0 proctype attacker(chan l_in , t_in){ /* attacker */
1 printf("attacker : starting\n");
2 bool head = 0;
3 bool tl = 0;
4 A: (clock > 10); /* wait until under way */
5 if
6 : : (head = 0) -> printf("attacker : inserting vspeed of 10\n");
7 l_in!10; l_in!10; head = 1; goto A;
8 . . .
9 : : (head = 0) -> printf("attacker : inserting vspeed of 70\n");

10 l_in!70; l_in!70; head = 1; goto A;
11 : : (tl = 0) -> printf("attacker : inserting tspeed of 10\n");
12 t_in!10; t_in!10; tl = 1; goto A;
13 . . .
14 : : (tl = 0) -> printf("attacker : inserting tspeed of 70\n");
15 t_in!70; t_in!70; tl = 1; goto A;
16 : : (clock ≤ 100) -> goto A;
17 : : (clock > 100) -> goto FIN;
18 fi;
19 FIN : printf("attacker : finishing\n")
20 }

Fig. 3. Promela model of the attacker.

4.2 Investigating Spoofing

Inspired by the threat analysis contained in Table 1, we have modelled a Spoofing
attack in Promela for the above scenario. In order to analyse this kind of threat,
we add a process to our Promela model to describe an attacker of the system.
The behaviour of this attacker (as illustrated in Figs. 2 and 3) is as follows:

– At one point in the execution trace the attacker may insert two speed mes-
sages into the channel between the leader and middle vehicle stating that the
leader’s speed is 10, 20, 30, . . . or 70 (lines 6–10 of Fig. 3).

– At one point in the execution trace the attacker may insert two speed messages
into the channel between the tail and the middle vehicle stating that the
leader’s speed is 10, 20, 30, . . . or 70 (lines 11–15 of Fig. 3).

We note that in each of the above cases, both the speed, whether to insert a
message and the time that the message is inserted are chosen at random. Running
SPIN with this attacker model and the initial model described above, we can see
that our �(big speed difference ⇒ ©¬big speed difference) property has been
violated. It is important to note that this is a deliberately simple example but
scales up to more complex versions of such Spoofing attacks.

4.3 Discussion

In Sect. 3, cyber security threat analysis focused the whole vehicle security area to
scenarios, such as the one illustrated in Fig. 2, that were identified as high risk. In
particular, this threat that was identified following STRIDE and analysed using
Promela/SPIN could potentially lead to an unsafe scenario causing vehicles to
collide. Note that whilst the above example deals with modelling and verification
of aspects of a platoon/convoy, where a group of vehicles drive together with

482 M. Farrell et al.

a leader, this could be generalised to messages between autonomous vehicles
driving without a platoon.

The evidence that we have collected above illustrates how a spoofing attack
on this system can negatively impact its safe operation. We have focused on
speed, but using model-checking, we can explore whether spoofing of other
attributes, as identified in Table 1, can impact safety. These results can help
to strengthen the argument as to why mitigations should be put in place against
specific threats. Our simple attacker model has allowed us to identify that a
spoofing attack is indeed possible for this scenario. In practice, mitigations would
be put in place against this kind of attack. Then, our simple model would be
refined to add these mitigations and would then undergo further verification.

In particular, those implementing the CAM protocol should consider the
possibility that malicious vehicles may join the platoon with the sole aim of
causing collisions. Based on our formal Promela model, runtime monitors could
be synthesised to monitor the CAMs being sent between vehicles so that this
spoofing attack could be recognised and prevent it from causing harm.

Our Promela model that describes an attacker and three vehicles is only one
scenario that could occur, particularly as there may be many more vehicles in a
real world scenario. To our knowledge, there is no systematic way of identifying
all possible models of the system that include a spoofing attack. However, we can
systematically work through the attributes that have been identified in Table 1 as
likely to be vulnerable to spoofing to examine how spoofing attacks can influence
safe system behaviour.

5 Deductive Verification with Dafny

In this section, we construct and verify a CAM send and receive implementation
using Dafny. Our Dafny implementation of CAM contains two basic methods;
sendCAM (Fig. 4) and receiveCAM (Fig. 5). We have formalised the specification
of CAM using the available documentation [1, §6.1.3] and followed its nomencla-
ture. As is to be expected when following the associated documentation, quite
some time was taken when constructing the formal specification from the infor-
mal, English-language description of the CAM protocol contained in [1].

Our verification of sendCAM and receiveCAM in Dafny focuses on the Denial
of Service and Repudiation security threats, this time at the algorithmic level. In
our implementation we have simplified the structure of CAMs from the ASN.1
encoding to focus on the semantic contents of the message as follows:

CAM(id:int, time:int, heading:int, speed:int, position:int)

Here, id refers to the vehicle that is sending the CAM and time is the timestamp
at which the CAM was sent. These attributes are required by the documentation
[1]. As mentioned earlier, CAMs are sent periodically, or when any of the status
information (e.g. speed) contained in the message has changed since the last
message was sent.

Using Threat Analysis Techniques to Guide Formal Verification 483

0 method sendCAM(T_CheckCamGen : int , T_GenCam_DCC : int)
1 returns (msgs : seq <CAM >, now : int)
2 requires 0 < T_CheckCamGen ≤ T_GenCamMin;
3 requires T_GenCamMin ≤ T_GenCam_DCC ≤ T_GenCamMax;
4 ensures T_GenCam_DCC * |msgs| ≤ now ≤ T_GenCamMax * |msgs|;
5 ensures |msgs| ≥ 2 =⇒ ∀ i: int • 1 ≤ i < |msgs| =⇒
6 T_GenCam_DCC ≤ (msgs[i].time - msgs[i-1]. time) ≤ T_GenCamMax;
7 ensures |msgs| = MaxMsgs;
8 {
9 var T_GenCam , T_GenCamNext , j := T_GenCamMax , T_GenCamMax , GetId();

10 var N_GenCam , trigger_two_count := N_GenCamDefault , 0;
11 msgs , now := [], 0;
12 var LastBroadcast , PrevLastBroadcast ,prevsent := now , now , msgs;
13 var heading , speed , pos := GetHeading (), GetSpeed (), GetPosition ();
14 var prevheading , prevspeed , prevpos , statechanged := -1, -1, -1, false;
15

16 while (|msgs| < MaxMsgs)
17 decreases MaxMsgs - |msgs|;
18 invariant 0 ≤ |msgs| ≤ MaxMsgs ∧ 0 < N_GenCam ≤ N_GenCamMax;
19 invariant T_GenCamMin ≤ T_GenCamNext ≤ T_GenCamMax;
20 invariant T_GenCamMin ≤ T_GenCam ≤ T_GenCamMax;
21 invariant 0 ≤ PrevLastBroadcast ≤ now ∧ now = LastBroadcast;
22 invariant now - T_GenCamMax ≤ PrevLastBroadcast ≤ LastBroadcast;
23 invariant |msgs| ≥ 1 =⇒ msgs[|msgs |-1]. time = LastBroadcast;
24 invariant |msgs| ≥ 2 =⇒ msgs[|msgs |-2]. time = PrevLastBroadcast;
25 invariant now > 0 =⇒ T_GenCam_DCC ≤ LastBroadcast - PrevLastBroadcast ≤

T_GenCamMax;
26 invariant now > 0 =⇒ CAM(j,now ,heading ,speed ,pos) in msgs;
27 invariant now > 0 =⇒ |prevsent| + 1 = |msgs|;
28 invariant |msgs| ≥ 2 =⇒ ∀ i: int • 1 ≤ i < |msgs| =⇒
29 T_GenCam_DCC ≤ (msgs[i].time - msgs[i-1]. time) ≤ T_GenCamMax;
30 invariant T_GenCamMin * |msgs| ≤ T_GenCam_DCC * |msgs| ≤ now;
31 invariant now > 0 =⇒ now ≤ T_GenCamMax * |msgs|;
32 {
33 prevsent , PrevLastBroadcast := msgs , LastBroadcast;
34 T_GenCam , statechanged := T_GenCamNext , false;
35 now := now + T_GenCam_DCC;
36

37 while (true)
38 decreases LastBroadcast + T_GenCam - now;
39 invariant now - LastBroadcast ≤ max(T_GenCam_DCC , T_GenCam);
40 {
41 heading , speed , pos := GetHeading (), GetSpeed (), GetPosition ();
42 statechanged := abs(heading - prevheading) ≥ headingthreshold ∨
43 abs(speed - prevspeed) ≥ speedthreshold ∨
44 abs(pos - prevpos) ≥ posthreshold.Floor;
45

46 if (statechanged ∨ now - LastBroadcast ≥ T_GenCam) { break; }
47 else { now := now + T_CheckCamGen; }
48 }
49 msgs := msgs + [CAM(j,now ,heading ,speed ,pos)];
50

51 if (statechanged) {
52 T_GenCamNext , trigger_two_count := now - LastBroadcast , 0;
53 }
54 else if (now - LastBroadcast ≥ T_GenCam){
55 trigger_two_count := trigger_two_count + 1;
56 if (trigger_two_count = N_GenCam) { T_GenCamNext := T_GenCamMax; }
57 }
58 LastBroadcast := now;
59 prevheading , prevspeed , prevpos := heading , speed , pos;
60 }
61 return msgs , now;
62 }

Fig. 4. Dafny implementation of the sendCAM algorithm. We have specified the Denial
of Service property as a postcondition on lines 4–5.

484 M. Farrell et al.

5.1 Sending CAMs

Figure 4 contains the verified Dafny code corresponding to the sendCAM algo-
rithm which is responsible for generation and transmission of CAMs. We describe
the key components of the Dafny algorithm in Fig. 4 as follows:

Lines 0–3: Since CAMs should be sent periodically within time bounds spec-
ified by the CA Basic Service, this method takes two variables as input.
T CheckCamGen describes how often to check if another CAM should be sent
and T GenCam DCC which describes the minimum time interval between two
consecutive CAM generations. It returns a sequence of CAMs that have been
sent, denoted by msgs, and the current time given by the variable, now. The
preconditions, indicated by the requires keyword on lines 2 and 3, provide
constraints on these variables. In particular, T GenCam DCC is required to be
between T GenCamMin (100 ms) and T GenCamMax (1000 ms) [1, §6.1.3].

Lines 4–7: The postconditions on lines 4–7, indicated by the ensures keyword,
specify that the expected number of CAMs have been sent and that these
messages were sent within the required time bounds. This corresponds to
the Denial of Service threat by ensuring that messages are sent on time and
arrive within specified time bounds. In particular, line 4 provides constraints
on the value of the current time. This is necessary because Dafny does not
support real-time systems so we had to manually keep track of time. The
postcondition on line 5 specifies that the interval between any two consecutive
CAMs is between T GenCam DCC and T GenCamMax as described in [1]. For the
purpose of discretising the system, the postcondition on line 7 ensures that
the maximum number (MaxMsgs := 100) of CAMs are sent5.

Lines 8–14: Here, we initialise the relevant local variables. In particular, we set
msgs to the empty sequence and now to 0 (line 11). Some of these variables are
specified in the CAM documentation but others are not and we include them
for implementation purposes. In particular, T GenCam as defined on line 9
represents the current upper limit of the CAM generation interval, by default
this is equal to T GenCam Max [1, §6.1.3]. We also assume the existence of
verified helper functions for GetHeading(), GetSpeed() and GetPosition()
as used on line 13.

Lines 16–17: The method loops until MaxMsgs number of CAMs have been
sent. In order to prove termination of the loop, we specify the loop variant
as indicated by the decreases keyword on line 17.

Lines 18–25: We specify these loop invariants to ensure that the relevant vari-
ables stay within the allowable bounds during loop execution. In particular,
the invariant on line 18 relates to the postcondition on line 7 by specifying
that the number of CAMs sent so far is less than or equal to MaxMsgs.

Lines 26–27: These invariants ensure that once time has begun then at least
one CAM has been sent.

Lines 28–31: These invariants relate to the postcondition on lines 4–6 and thus
relate to the availability property described earlier.

5 We chose 100 as a value but we could easily have chosen some other value.

Using Threat Analysis Techniques to Guide Formal Verification 485

0 method receiveCAM(fromid : int , cams : seq <CAM >, now : int) returns (brake : bool)
1 requires 0 ≤ fromid < |cams|;
2 requires fromid = cams[fromid].id;
3 ensures !(now - cams[fromid].time > T_GenCamMax)
4 ∧ Sign(Magnitude(cams[fromid]. heading)) = Sign(Magnitude(GetHeading

(now)))
5 ∧ GetSpeed(now) - cams[fromid].speed < 0 =⇒ brake;
6 ensures now - cams[fromid].time > T_GenCamMax =⇒ !brake;
7 {
8 var speeddiff := 0;
9

10 if (now - cams[fromid].time > T_GenCamMax){
11 brake := false;
12 }
13 else if(Sign(Magnitude(cams[fromid]. heading)) = Sign(Magnitude(GetHeading

(now))))
14 {
15 speeddiff := GetSpeed(now) - cams[fromid].speed;
16

17 if (speeddiff < 0){
18 brake :=true;
19 }
20 }
21 }

Fig. 5. Dafny implementation of the receiveCAM algorithm.

Lines 32–36: During each loop iteration we update the appropriate variables.
Note that we increment the current time, now, by T GenCam DCC to allow time
to advance until the earliest time that the next CAM can be sent.

Lines 37–50: This inner loop checks if any state information has changed
and updates the statechanged variable accordingly. Note that the variables
headingthreshold, speedthreshold and posthreshold are global and their
values are controlled by the CA Basic Service [1] as described in Sect. 2. If the
autonomous vehicle’s state has changed or it is time to send another CAM
then we break from this inner loop. Otherwise, nothing has changed so we
keep looping to allow time to advance until either the state has changed or
sufficient time has passed since the last CAM was sent. Once we have exited
this inner loop then a CAM is sent.

Lines 51–57: Based on the reason that the CAM was sent, i.e. whether the
state changed or it was simply time to send a CAM, this if-else statement
updates the relevant variables as described in [1, §6.1.3].

Lines 58–62: Finally, we update and return the appropriate variables.

In this way, the Dafny algorithm illustrated in Fig. 4 is verified with respect
to the STRIDE Denial of Service threat (or Availability property). We also
verified other correctness properties that were derived from the documentation
[1]. As mentioned above, it was necessary to discretise some components of the
specification. In fact, discretising the continuous features of autonomous systems
is a common challenge for formal methods [19]. As already discussed, the CA
Basic Service also facilitates the receiving of CAMs and we describe our Dafny
implementation of the receive method in the next subsection.

486 M. Farrell et al.

5.2 Receiving CAMs

Figure 5 contains our Dafny implementation of the receiveCAM algorithm which
takes as input the id of the vehicle sending the CAM (fromid), the sequence of
CAMs that have been sent (cams) and the current time (now).

We have used this to verify a simple Non-Repudiation property as speci-
fied by the preconditions on lines 1–2. We assume that CAMs are uploaded to
a sequence that can then be accessed by the other vehicles nearby. The latest
CAM for each car is stored at a position in the sequence that matches its vehi-
cle id number. We express the non-repudiation property by requiring that the
received CAM did indeed come from a vehicle with a valid id and that the vehicle
claiming to have sent the CAM did actually send one. §6.1.1 of [1] specifies that
any received CAMs should not be forwarded to other vehicles in the intelligent
transport system and our preconditions capture this by requiring that the sender
did actually send a CAM.

Of course, CAMs are used by the receiving vehicles to modify their state
with respect to the information that they receive. For example, if a leader vehicle
decreases their speed then a vehicle that is travelling behind it should also reduce
their speed, provided that they are travelling in the same direction. To this
end, our receiveCAM implementation in Fig. 5 also describes when the vehicle
should brake. We specify this safety property as a postcondition on lines 3–6. In
particular, if the current vehicle and the one that sent the CAM are travelling
in the same direction and the current vehicle has a greater speed than the one
in front, then the brake should be engaged.

Without the security property on line 1–2, the safety property can still be
verified. However, if the security property is violated and an attacker is sending a
false message to the receiving vehicle, potentially that the leader has not slowed
down when they have, then there could be a collision even though the safety
property on lines 3–6 is preserved. This illustrates the importance of considering
security properties alongside safety for these complex and connected systems
where security violations can impact safety. In reality, the braking mechanism
would be more complex than simply toggling a boolean flag as we have done
above, however, the same basic properties apply.

5.3 Discussion

One advantage of Dafny for this case study is that we were able to run tests
in Visual Studio to complement the formal verification results presented above.
Crucially, Dafny is relatively easy to communicate to security practitioners since
it more closely resembles the implementation language than other formal meth-
ods such as Promela/SPIN (Sect. 4). However, since it is not a language that can
be used for the final implementation, some discrepancies may exist between our
implementation and the one used in the fully implemented system. In particu-
lar, a more realistic version of this algorithm would keep track of whether the
receiving vehicle are getting closer to the vehicle in front or not rather than just

Using Threat Analysis Techniques to Guide Formal Verification 487

focusing on the speed part of the CAM and this could be seen as a refinement
of our original model.

Note that the Denial of Service property that we have verified in the sendCAM
method only applies if the attacker is trying to flood the network with CAMs,
and does not address the scenario when they might use other kinds of messages.
However, our approach could be extended to other message types in vehicle-to-
vehicle communications, such as DENM [26].

An open question in software verification is in ensuring that the verified
models faithfully capture what happens in the fully implemented systems. This
“reality gap” is difficult to traverse and will almost always exist when building
abstract models of program behaviour [8,19]. Since all real world implementa-
tions of CAM should comply to the specification outlined in [1], we chose it
as our starting point for modelling this protocol. We could potentially run the
Dafny implementation alongside a real world implementation and check that
they exhibit the same behaviour but this was out of the scope of this work.

6 Conclusions and Future Work

This paper presents a case study showing how cyber security threat analysis
techniques can be used to guide formal methods practitioners in verifying secu-
rity properties, particularly as they may impact safety. Previously, we discussed
the need for the use of integrated formal methods in the robotics domain and
the example that we present here is no different [8].

We carried out STRIDE threat analysis of the CAM protocol for sending
and receiving messages between autonomous vehicles. This resulted in the iden-
tification of spoofing, denial of service and repudiation as attacks that may
occur. We modelled spoofing by specifying the behaviour of an attacker in our
Promela model. Denial of service was considered via an availability property in
the Dafny implementation of the algorithm for sending CAMs. Finally, repu-
diation was addressed as a property to be verified of the Dafny algorithm for
receiving CAMs.

By modelling the system at different levels of abstraction; system-level in
Promela/SPIN and algorithm-level in Dafny, we were able to investigate and
to verify properties related to STRIDE threat analysis. In particular, model-
checking with Promela/SPIN is useful for examining high-level temporal prop-
erties. Conversely, the use of theorem proving with Dafny allowed us to examine
properties of an implementation of the CAM protocol. Our use of distinct tools
allowed us to examine different properties of the CAM protocol at different lev-
els of abstraction. Future analysis of CAM with various tools will likely provide
a better understanding of which STRIDE properties should be checked using
different kinds of formal methods.

An important aspect here is that, although it could be useful, the individual
formal analyses do not need to be combined as in holistic/compositional formal
approaches [2,13,21]. Instead, formal methods are used to focus security analysis
on to specific areas/scenarios highlighted by informal cyber security analysis as

488 M. Farrell et al.

being of “high risk”. However, an interesting avenue of future work might involve
proving that the independent formal models do, in fact, capture the same system.

This work is a first step toward a detailed methodology of how STRIDE prop-
erties should be treated in formal verification. Therefore, our future work aims
to define a more general methodology for combining threat analysis techniques
and formal methods. Of course, our use of Promela/SPIN and Dafny has been
motivated by our familiarity with these tools and it is certainly the case that
other formal methods may have been a better choice for our study. We intend
to investigate this further in future work.

References

1. Intelligent Transport Systems (ITS): Vehicular Communications, Basic Set of
Applications. Part 2: Specification of Cooperative Awareness Basic Service. Stan-
dard Draft ETSI EN 302 637–2, European Telecommunications Standards Insti-
tute, November 2018. V1.4.0 (2018–08)

2. Back, R.-J.: A calculus of refinements for program derivations. Acta Informatica
25(6), 593–624 (1988)

3. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

4. Ben-Ari, M.: Principles of the Spin model checker. Springer, Cham (2008). https://
doi.org/10.1007/978-1-84628-770-1

5. Bittl, S., Gonzalez, A.A., Myrtus, M., Beckmann, H., Sailer, S., Eissfeller, B.:
Emerging attacks on VANET security based on GPS time spoofing. In: IEEE
Conference on Communications and Network Security, pp. 344–352. IEEE (2015)

6. Choi, J., Jin, S.: Security threats in connected car environment and proposal of
in-vehicle infotainment-based access control mechanism. In: Park, J.J., Loia, V.,
Choo, K.-K.R., Yi, G. (eds.) MUE/FutureTech -2018. LNEE, vol. 518, pp. 383–388.
Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1328-8 49

7. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

8. Farrell, M., Luckcuck, M., Fisher, M.: Robotics and integrated formal methods:
necessity meets opportunity. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS,
vol. 11023, pp. 161–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-98938-9 10

9. Fisher, M.: An Introduction to Practical Formal Methods Using Temporal Logic.
Wiley, Hoboken (2011)

10. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Reading (2003)

11. Huang, L., Kang, E.-Y.: Formal verification of safety and security related timing
constraints for a cooperative automotive system. In: Fundamental Approaches to
Software Engineering. LNCS, vol. 11424, pp. 210–227. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-16722-6 12

12. Jagielski, M., Jones, N., Lin, C.-W., Nita-Rotaru, C., Shiraishi, S.: Threat detection
for collaborative adaptive cruise control in connected cars. In: ACM Conference on
Security & Privacy in Wireless and Mobile Networks, pp. 184–189. ACM (2018)

https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-1-84628-770-1
https://doi.org/10.1007/978-1-84628-770-1
https://doi.org/10.1007/978-981-13-1328-8_49
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-98938-9_10
https://doi.org/10.1007/978-3-319-98938-9_10
https://doi.org/10.1007/978-3-030-16722-6_12

Using Threat Analysis Techniques to Guide Formal Verification 489

13. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

14. Kamali, M., Linker, S., Fisher, M.: Modular verification of vehicle platooning with
respect to decisions, space and time. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS
2018. CCIS, vol. 1008, pp. 18–36. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-12988-0 2

15. Kohnfelder, L., Garg, P.: The threats to our products (April 1999). https://
adam.shostack.org/microsoft/The-Threats-To-Our-Products.docx. Accessed 10
Dec 2018

16. Langenstein, B., Vogt, R., Ullmann, M.: The use of formal methods for trusted
digital signature devices. In: Florida Artificial Intelligence Research Society, pp.
336–340. AAAI Press (2000)

17. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

18. Liu, J., Yan, C., Xu, W.: Can you trust autonomous vehicles: contactless attacks
against sensors of self-driving vehicles. In: DEFCON24 (2016). http://bit.ly/
2EQNOLs

19. Luckcuck, M., Farrell, M., Dennis, L., Dixon, C., Fisher, M.: Formal Specification
and Verification of Autonomous Robotic Systems: A Survey. ACM Computing
Surveys, US (2019). accepted

20. Michele Rondinone, A.C.: Deliverable (d) no: 5.1 definition of v2x message sets.
report, Universidad Miguel Hernandez, V1.0 27/08/2018 (August 2018)

21. Morgan, C., Robinson, K., Gardiner, P.: On the Refinement Calculus. Springer,
Cham (1988). https://doi.org/10.1007/978-1-4471-3273-8

22. Petit, J., Stottelaar, B., Feiri, M., Kargl, F.: Remote attacks on automated vehicles
sensors: experiments on camera and lidar. Black Hat Eur. 11, 2015 (2015)

23. Pnueli, A.: The temporal logic of programs. In: 18th Symposium on the Founda-
tions of Computer Science, pp. 46–57. IEEE (1977)

24. Ross, R.S.: Guide for conducting risk assessments. Technical report, National Insti-
tute of Standards and Technology. SP 800–30 Rev. 1 (September 2012)

25. Ruddle, A., et al.: Security requirements for automotive on-board networks based
on dark-side scenarios. EVITA Deliverable D 2, 3 (2009)

26. Santa, J., Pereñ́ıguez, F., Moragón, A., Skarmeta, A.F.: Vehicle-to-infrastructure
messaging proposal based on CAM/DENM specifications. In: Wireless Days (WD),
IFIP, pp. 1–7. IEEE (2013)

27. Schneider, S.: Formal analysis of a non-repudiation protocol. In: Computer Security
Foundations Workshop, pp. 54–65. IEEE (1998)

28. Schneider, S.: Verifying authentication protocols in CSP. IEEE Trans. Softw. Eng.
24(9), 741–758 (1998)

29. Schneider, S., Delicata, R.: Verifying security protocols: an application of CSP.
In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential
Processes. The First 25 Years. LNCS, vol. 3525, pp. 243–263. Springer, Heidelberg
(2005). https://doi.org/10.1007/11423348 14

30. Snook, C., Hoang, T.S., Butler, M.: Analysing security protocols using refine-
ment in iUML-B. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS,
vol. 10227, pp. 84–98. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
57288-8 6

31. Stallings, W., Brown, L., Bauer, M.D., Bhattacharjee, A.K.: Computer Security:
Principles and Practice. Pearson, Upper Saddle River (2012)

https://doi.org/10.1007/978-3-030-12988-0_2
https://doi.org/10.1007/978-3-030-12988-0_2
https://adam.shostack.org/microsoft/The-Threats-To-Our-Products.docx
https://adam.shostack.org/microsoft/The-Threats-To-Our-Products.docx
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
http://bit.ly/2EQNOLs
http://bit.ly/2EQNOLs
https://doi.org/10.1007/978-1-4471-3273-8
https://doi.org/10.1007/11423348_14
https://doi.org/10.1007/978-3-319-57288-8_6
https://doi.org/10.1007/978-3-319-57288-8_6

490 M. Farrell et al.

32. Vanspauwen, G., Jacobs, B.: Verifying protocol implementations by augmenting
existing cryptographic libraries with specifications. In: Calinescu, R., Rumpe, B.
(eds.) SEFM 2015. LNCS, vol. 9276, pp. 53–68. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-22969-0 4

33. Whitefield, J., et al.: Formal analysis of V2X revocation protocols. In: Livraga,
G., Mitchell, C. (eds.) STM 2017. LNCS, vol. 10547, pp. 147–163. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68063-7 10

https://doi.org/10.1007/978-3-319-22969-0_4
https://doi.org/10.1007/978-3-319-22969-0_4
https://doi.org/10.1007/978-3-319-68063-7_10

Towards Detecting Trigger-Based
Behavior in Binaries: Uncovering

the Correct Environment

Dorottya Papp1,2(B) , Thorsten Tarrach2 , and Levente Buttyán1

1 CrySyS Lab, Department of Networked Systems and Services, BME,
Budapest, Hungary

{dpapp,buttyan}@crysys.hu
2 AIT Austrian Institute of Technology GmbH, Vienna, Austria

thorsten.tarrach@ait.ac.at

Abstract. In this paper, we present our first results towards detecting
trigger-based behavior in binary programs. A program exhibits trigger-
based behavior if it contains undocumented, often malicious functionality
that is executed only under specific circumstances. In order to determine
the inputs and environment required to trigger such behavior, we use
directed symbolic execution and present techniques to overcome some of
its practical limitations. Specifically, we propose techniques to overcome
the environment problem and the path selection problem. We imple-
mented our techniques and evaluated their performance on a real mal-
ware sample that launches denial-of-service attacks upon receiving spe-
cific remote commands. Thanks to our techniques, our implementation
was able to determine those specific commands and all other require-
ments needed to trigger the malicious behavior in reasonable time.

Keywords: Directed symbolic execution ·
Trigger-based behavior · Software verification

1 Introduction

Trigger-based behavior is the execution of undocumented, potentially malicious
features in an application upon reception of some inputs that satisfy pre-defined
criteria. Such inputs are referred to as trigger inputs. The pre-defined criteria are

The presented research has been partially supported by the SETIT Project (no. 2018-
1.2.1-NKP-2018-00004), which has been implemented with the support provided from
the National Research, Development and Innovation Fund of Hungary, financed under
the 2018-1.2.1-NKP funding scheme, and by the European Union, co-financed by the
European Social Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research
Collaborations Grounding Innovation in Informatics and Infocommunications). It has
also been supported by the SECREDAS project, which receives funding from ECSEL
Joint Undertaking under Grant Agreement No 783119. This Joint Undertaking received
support from the European Unions Horizon 2020 Research and Innovation Programme.

c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 491–509, 2019.
https://doi.org/10.1007/978-3-030-30446-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_26&domain=pdf
http://orcid.org/0000-0002-9976-614X
http://orcid.org/0000-0003-4409-8487
http://orcid.org/0000-0003-4233-2559
https://doi.org/10.1007/978-3-030-30446-1_26

492 D. Papp et al.

hard-coded into the application in the form of checks and their semantic meaning
can encompass all sorts of external requirements, e.g. specific system time or
location, special text entered or message received. While not all instances of
trigger-based behavior are malicious (take, for example, software easter eggs1),
such behavior is often used by malware. For example, malware can evade in-
depth analysis by scanning its environment and ceasing malicious activities if
it finds hints of an analysis framework2. Trigger-based behavior also includes
backdoors, a behavior prevalent in firmware images [9], in which case, special
access is granted, if a specific string is received as input. These examples show
that in many cases, the application to be analyzed is only available in binary
form. Therefore, in this paper, we consider applications available as binaries.
Due to the often malicious intent behind the implementation of trigger-based
behavior, its detection is important. However, the combination of inputs required
to trigger the hidden behavior is known only to its author, therefore, uncovering
such behavior via testing is challenging.

Previous work in this field [4,10,12] have demonstrated the usefulness of
symbolic execution [3] to uncover trigger-based behavior. Symbolic execution
was originally developed to automate testing by analyzing execution paths and
generating test cases, which lead execution down the analyzed execution path.
In order to uncover trigger-based behavior, we need to analyze the application’s
interaction with its environment and how the environment influences its behav-
ior. If data from the environment is replaced with symbolic variables, symbolic
execution can analyze this interaction and can obtain the hard-coded conditions
together with the trigger input values satisfying those conditions.

However, using symbolic execution has a limitation: the more symbolic vari-
ables are introduced into the analysis, the more execution paths must be ana-
lyzed, leading to the path explosion problem. Previous work addressed this prob-
lem by considering only a subset of potential trigger input types. In [4], for
example, the human analyst is required to select possible trigger input types in
advance. However, as only the malware author knows the exact trigger inputs,
there is a chance that the human analyst fails to select all necessary types of
input. In [10], the authors describe a technique that works on Android Byte-
code but only consider time, location and SMS objects as trigger inputs. In [12],
a lightweight version of symbolic execution is performed over JavaScript code,
which analyzes the effects of potential values in the navigator’s fields.

In this paper, we want to overcome the path explosion problem without
limiting the trigger input types. Our goal is to develop an approach, which can
consider all external data as potential trigger inputs while relying on symbolic
execution to calculate the inputs and environment required to reach a selected
program point. The overview of our main idea is shown in Fig. 1. We assume that
the analyzed binary is deterministic and interacts with the environment through
the operating system and its API (system calls). Therefore, we consider invoked

1 https://electrek.co/2017/12/23/tesla-christmas-easter-egg/.
2 https://www.fireeye.com/blog/threat-research/2011/01/the-dead-giveaways-of-vm-

aware-malware.html.

https://electrek.co/2017/12/23/tesla-christmas-easter-egg/
https://www.fireeye.com/blog/threat-research/2011/01/the-dead-giveaways-of-vm-aware-malware.html
https://www.fireeye.com/blog/threat-research/2011/01/the-dead-giveaways-of-vm-aware-malware.html

Towards Detecting Trigger-Based Behavior 493

Fig. 1. Symbolic execution for uncovering trigger-based behavior

library functions as part of the analyzed binary. In real-life execution, the binary
would invoke multiple system calls and the return values from a subset of those
system calls would be interpreted by the binary as trigger inputs. The binary
would then proceed to match those return values against the pre-defined criteria
hard-coded into its logic and execute the potentially malicious behavior only if
the result of the comparison(s) is a match. In order to analyze this interaction,
the return values of system calls that return data from external sources must be
replaced with fresh symbolic variables. Then, symbolic execution can be used to
analyze this interaction.

Our contributions in this paper are the following:

(1) We present an approach for uncovering trigger-based behavior in binaries,
which is capable of considering all external data sources as trigger input
types. Our approach replaces system calls with symbolic summary functions,
which return fresh symbolic variables instead of external data.

(2) Our approach relies on directed symbolic execution [14] to guide analysis
towards a selected program point. However, directed symbolic execution
expects a semantically correct and complete interprocedural control-flow
graph. The generation of such a control-flow graph is a challenge for binary
programs, mainly due to indirect jumps. Our approach is designed such that
directed symbolic execution can be performed even if the interprocedural
control-flow graph has incorrect/missing edges and/or nodes.

(3) We implement our approach in angr [18]: we model 36 system calls for Linux
and discuss modifications to angr’s workflow in order to make our approach
feasible in practice.

(4) We evaluate our approach on a real malware sample compiled for the ARM
platform, which is known to exhibit trigger-based behavior. The program
logic of the selected sample contains elements known to be challenging for
symbolic execution and its execution relies on multiple sources of environ-
mental input. Our approach is able to reach program points deep in the
binary and obtain the environmental conditions required to trigger their
execution. In addition, our analysis time is in the order of hours, which is a
reasonable performance considering the complexity of the analyzed sample
and the generality of our approach.

The paper is structured as follows. Section 2 provides an overview of sym-
bolic execution: the main idea behind the technique, its limitations and current

494 D. Papp et al.

approaches to overcome those limitations. Section 3 discusses our approach to
uncover environmental conditions without a priori assumptions about trigger
input types. The implementation of the proposed approach is discussed in Sect. 4.
In Sect. 5, we evaluate our approach on a real malware and discuss both its per-
formance and the recovered environmental constraints. Section 6 concludes the
paper and outlines future research directions.

2 Background

In this section, we discuss the concept of symbolic execution. The techniques has
been well-researched over the years and as such, a full survey of the field is out
of scope for this paper. We only summarize its main characteristics and discuss
the challenges it poses for our research. Readers interested in a full overview of
this field are kindly referred to [3] and [17].

Symbolic execution is an analysis technique originally proposed to automat-
ically generate test cases and increase code coverage during software testing.
During symbolic analysis, registers and memory addresses do not store exact
values but instead special symbols called symbolic variables. When first intro-
duced into the analysis, symbolic variables may take on any value, i.e. they are
unconstrained. When analysis reaches a branch in the analyzed software, two
execution paths are spawned for both sides of the branch, i.e. it forks. In each
spawned execution path, constraints are placed on the symbolic variables to rep-
resent the chosen path. The set of constraints collected on an execution path is
the path constraint. An execution path is satisfiable, if there exists an assign-
ment to its symbolic variables such that the path constraint is satisfied. If no
such assignment exists, the execution path is said to be unsatisfiable.

The challenges of performing symbolic execution on arbitrary software in
binary form are manifold. Firstly, tools implementing the technique have to
model the execution state on the platform the analyzed software is supposed to
run on, including instruction set, registers, memory, interrupts, calling conven-
tions, flags, etc. Tools implementing symbolic execution, e.g. DART [11], KLEE
[5], S2E [8], Mayhem [7] and angr [18], come with such a model of the target
platform. Secondly, symbolic execution can only reason about code it analyzes
and has no knowledge about library functions, system calls and their side effects.
This challenge is better known as the environment problem and is typically tack-
led using summary functions, which are pieces of code that summarize the effects
of the missing piece of code. Thirdly, as symbolic execution spawns execution
paths to pursue at each encountered branch; the number of execution paths to
analyze is exponential with respect to the number of conditional branches in the
analyzed software. This challenge is known as the path explosion problem and it
results in symbolic execution not being able to exhaustively explore all execu-
tion paths in all but the simplest of cases. This challenge is partially tackled by
specifying which parts of the software are of interest to the analysis and only exe-
cuting those parts symbolically. In such scenarios, the analysis engine keeps track
of not only the symbolic state, but the concrete execution state as well, earning

Towards Detecting Trigger-Based Behavior 495

the name mixed concrete and symbolic execution. Lastly, since not all execution
paths can be explored during symbolic execution, analysis has to decide which
paths to pursue. This challenge is known as the path selection problem and it is
usually tackled using a heuristic exploration strategy. The depth-first strategy
explores an execution path to its completion before backtracking to the second
deepest branch. The breadth-first strategy, on the other hand, seeks to explore
all execution paths in parallel. There are also randomized approaches, where
the next pursued path is selected randomly or with some probability. In certain
application domains of symbolic execution, path selection algorithms have been
tailored for a specific goal, e.g. maximizing coverage [5,13] or reaching a certain
program point [14,16].

We use angr, which is capable of mixed concrete and symbolic execution and
has a model for the ARM platform. However, angr in itself does not solve the
environment and the path selection problems. A major part of our work was to
address these problems, and in Sect. 3, we describe how we did so.

3 Methodology

Our methodology focuses on how to calculate the correct environmental condi-
tions such that a certain behavior implemented by the analyzed malware can
be triggered. We assume that the human analyst has a specific program point
of interest and wishes to uncover the inputs required to trigger its execution.
Towards this end, we employ two techniques:

(1) Symbolic summary functions capturing the behavior of invoked system calls
in order to introduce a model of environmental data to the analysis, and

(2) Shortest-distance symbolic execution [14], a path selection strategy to guide
analysis towards the selected program point.

We elaborate on these techniques in Sects. 3.1 and 3.2, respectively.

3.1 Symbolic Summary Functions

As mentioned before, the environment is represented by operating system ser-
vices, and the environment manifests itself as the result of invoking system calls.
Therefore, we need symbolic summaries of system calls which model their effects.
Such symbolic summary functions allow us to simulate the environment for the
analyzed application and enable mixed concrete and symbolic execution to ana-
lyze how returned data influences execution.

Our summaries are semantically equivalent to the system calls they replace
with two major exceptions. Firstly, if the system call writes into the environment
(e.g. sends packets or writes in a file), the summary always returns with success.
This allows us to contain the path explosion problem: if we simulated both
success and failure, we would need to simulate the various conditions for failure,
which would further increase the number of execution paths to analyze. However,
we acknowledge the possibility of system call failures being used as triggers.

496 D. Papp et al.

Secondly, if the system call returns data from the environment (e.g. assigned
process ID, system time, messages over the network), the summary function
returns fresh symbolic variables instead. Using the fresh symbolic variables, the
influence of the environment on the application can be analyzed.

Symbolic summaries can be written based on the semantic information avail-
able about the system calls in the operating system’s documentation. These sum-
maries need to be written only once for a particular platform. As an example,
let us consider the Linux system call fork, responsible for duplicating processes.
On success, it returns the PID of the child process in the parent and 0 in the
child. On failure, it returns −1 to the parent, creates no child process and sets
errno appropriately. In order to explore how the invocation of fork influences
the analyzed binary, we need to replace its return value with a fresh symbolic
variable. According to its manpage3, its return value has the type pid t which
is a signed integer. On the ARM platform, a signed integer is 32 bits long, there-
fore, the model of this system call for analyzing ARM binaries must return a
32-bit long symbolic variable. The variable must be constrained as written in the
documentation: it can be a positive number, 0 or −1. Two further constraints
must be added to the model to capture its behavior faithfully. Firstly, if the
return value is greater then 0, than semantically, analysis continues in the child
process. Therefore, the PID and the parent PID of the execution state must be
updated accordingly. Secondly, if the return value is −1, then semantically, the
system call failed and a new symbolic variable is required to represent the error
condition, and its value must be constrained to one of the potential error codes.

3.2 Approach to Symbolic Execution

Symbolic summary functions only introduce the model of environmental data in
the form of fresh symbolic variables. The actual conditions required to trigger a
specific behavior in the analyzed binary are encoded in its instructions. In order
to calculate the correct environmental values, we need to recover and solve these
conditions. To this end, we use mixed concrete and symbolic execution, capable
of both recovering these conditions as path conditions and solving them thanks
to Satisfiability Modulo Theory solvers. Specifically, we employ shortest-distance
symbolic execution (SDSE) [14], designed to prioritize execution paths which are
closer to a selected target according to some metric.

SDSE was originally proposed to solve the line reachability problem: how to
reach a target line in the source code? It requires the interprocedural control-
flow graph in order to guide symbolic execution towards the targeted line. The
approach first translates execution paths to control-flow graph nodes, then com-
putes the shortest distance from said nodes to the node corresponding to the
target line. The computed metric is used as scores to prioritize execution paths.
At branches, SDSE selects the execution path with the lowest score among all
available paths for analysis.

3 http://man7.org/linux/man-pages/man2/fork.2.html.

http://man7.org/linux/man-pages/man2/fork.2.html

Towards Detecting Trigger-Based Behavior 497

Our scenario is similar to the one SDSE was developed for in the sense
that we need a solution for the reachability problem in order to recover con-
straints placed on environmental data. However, there are key differences as
well. Firstly, SDSE was originally proposed and implemented at the source code
level, while we apply it at the binary level. As a result, instead of a target line,
we aim to reach a target binary instruction. Secondly, as stated in [14], SDSE
can only work correctly, if the interprocedural control-flow graph recovered from
the binary does not have mismatching calls and returns. Otherwise, semanti-
cally incorrect or infeasible paths may be computed as shortest paths, resulting
in incorrect scores and priorities. In order to generate a semantically correct
control-flow graph whose structure properly captures function calls and returns
encountered during execution, the generator algorithm has to consider a lot of
context-related information, including call sites, return sites and the call stack.
There exist algorithms capable of handling that information [6,18], however,
their usage in practice poses a challenge. As more context-related information
is taken into consideration, the time and space required to generate and store
the resulting control-flow graph also increases exponentially. Instead of generat-
ing such a control-flow graph, we implemented a heuristic algorithm to discard
edges whose inclusion in the shortest path calculation might result in incorrect
paths. This heuristic allows us to keep the required contextual information at
a minimum by taking into consideration potential changes to the call stack at
edges that result in semantically correct function calls and returns. We discuss
the implementation of this heuristic in Sect. 4.2.

4 Implementation

We implemented our approach in angr (version 7.8.2.21), an open-source binary
analysis tool written in Python, capable of analyzing binary formats of major
operating systems, such as ELF, PE and Mach-0 files. The tool implements many
analyses for binary code, including mixed concrete and symbolic execution, con-
straint solving, control-flow graph generation, program slicing, dependency anal-
ysis, etc. These analyses are performed over the intermediate representation (IR)
of valgrind [15], called VEX, to provide platform independence. VEX translates a
sequence of binary instructions into a block of IR instructions. As a result, most
analyses are not performed on a per instruction basis, but rather on a per IR
block basis. Our implementation uses the following features of angr:

(1) mixed concrete and symbolic execution engine with a constraint solver,
(2) control-flow graph generation, and
(3) model of execution states, including registers, memory, and elements from

POSIX, such as files and sockets.

There were cases, in which we needed to modify the workflow and execution of
angr. We discuss these modifications in the rest of this section.

498 D. Papp et al.

4.1 Symbolic Summaries for System Calls

angr supports system call invocations during mixed concrete and symbolic execu-
tion. However, developers focus more on defining the environment at the library
level and therefore, the tool has more symbolic summaries for standard libc func-
tions than it has for system calls. As a result, many system calls invoked during
our tests were missing and had to be added to the tool manually. The list of 36
system calls we had to create symbolic summaries for is shown in Table 1.

Table 1. System calls on Linux for which symbolic summaries were created

newselect arm set tls brk clone close connect

exit exit group fcntl fcntl64 fork futex

geteuid32 getgid32 getpid getppid gettimeofday getuid32

ioctl kill mmap2 nanosleep open read

recv rt sigaction rt sigprocmask sendto setrlimit setsockopt

socket time ugetrlimit uname wait4 write

4.2 Control Flow Graph

There are two algorithms to generate an interprocedural control-flow graph in
angr. The first algorithm is called CFGFast and it relies on heuristics and assump-
tions to greatly decrease the time required for generation. The second algo-
rithm is called CFGAccurate (CFGEmulated in later versions) and it performs
lightweight symbolic execution to generate the control-flow graph, increasing
accuracy. In our implementation, we used CFGAccurate as accuracy is impor-
tant for using SDSE.

Extending the Control Flow Graph. There are program constructs which
pose a challenge during control-flow graph generation, e.g. indirect jumps. We
encountered scenarios where CFGAccurate detected the indirect jumps but it
was unable to accurately determine the address the analyzed code jumped to.
The limitation is caused by the lightweight nature of its symbolic execution: if
a read or write operation involves an operand which could be assigned multiple
values, that operand is skipped and a fresh, unconstrained symbolic variable
is used instead. However, angr’s symbolic execution has an upper limit on the
number of successor states it generates when analyzing an execution state. If the
instruction pointer of the analyzed execution state has more than 256 solutions
(by default), then the tool assumes that the instruction pointer was overwritten
with unconstrained data, and flags the execution state as one producing uncon-
strained successors.4 As a result, CFGAccurate may fail to analyze certain parts
4 This assumption is included in angr’s documentation together with the fact that it

is not sound in general.

Towards Detecting Trigger-Based Behavior 499

of the binary due to the inaccurate execution state used during construction.
This scenario is illustrated with the following two instructions:

ldr r4, [r3, #4] ; load function address from memory
blx r4 ; call function

The code includes a call to the address contained in r4, whose value is loaded
from memory. The address from where the value is to be loaded is influenced
by r3. If r3 holds an operand with multiple potential values while control-flow
recovery analyzes this code segment, then analysis has to read a multi-valued
operand from the register. However, as discussed before, instead of performing
the read, the recovery algorithm creates a fresh, unconstrained symbolic variable
to represent the result of the read operations. As a result, r4 will also hold an
unconstrained symbolic variable when the recovery algorithm tries to determine
the jump address. Because the unconstrained symbolic variable has more than
256 solutions, the state is flagged as one producing unconstrained successors and
address resolution fails.

Normal mixed concrete and symbolic execution, however, never skips
operands and is much less likely to run into such a scenario. Execution states
have operands with semantically correct values and correct path constraints. If
control-flow graph generation is resumed from such a state, CFGAccurate can
accurately identify the indirect jump addresses, if the value of r4 has less than
256 solutions. Therefore, during control-flow graph generation, we take note of
addresses where unconstrained successors were computed as potential extension
points of the control-flow graph. When normal mixed concrete and symbolic exe-
cution reaches such an address, we use the accurate execution state to extend
the control-flow graph on the fly.

Shortest Path Calculation. The accuracy of CFGAccurate is influenced by
its level of context-sensitivity. This parameter captures how deep the call stack
is taken into consideration when determining the calling context of any given
control-flow graph node. By default, the algorithm analyzes each address only
once per distinct calling context. As a result, different levels of context sensi-
tivity result in different graph structures, which in turn influence the available
paths computed by generic shortest path algorithms. Figure 2 shows the different
contexts in which functions are analyzed at different levels of context sensitivity.
Because of the different contexts, functions may be replicated multiple times in
the control-flow graph. Note, that we demonstrate the effect of context sensitiv-
ity at the source code level only for ease of understanding, but our techniques
work at the binary level.

In order for generic shortest path algorithms to compute semantically correct
paths in the interprocedural control-flow graph, edges connecting mismatched
call sites and return sites must be discarded. CFGAccurate can record the exe-
cution state from which a specific control-flow graph node was created, allowing
access to its call stack. The algorithm also annotates edges with attributes recov-
ered by VEX during lightweight symbolic execution. One of these attributes is

500 D. Papp et al.

0-context
sensitivity

1-context
sensitivity

2-context
sensitivity

a a main→a (library init)→main→a
b b main→b (library init)→main→b

c c
a→c
b→c

main→a→c
main→b→c

printf printf
a→printf
b→printf
c→printf

main→a→printf
main→b→printf
a→c→printf
b→c→printf

Fig. 2. Different contexts of functions during control-flow graph generation

the semantic meaning of the jump at the end of each IR block (e.g. function call,
return, etc.). Inspired by the control-flow graph model of [2], a visibly push-
down automaton which keeps track of the calling context of functions, we rely
on the call stack and the edge annotation to implement a heuristic that discards
semantically incorrect paths violating the following rules:

1. The call stack depth difference between the source node and the destination
can only change by −1, 0 or 1, corresponding to returning, staying in the
function or calling another function, respectively.

2. In case of calls and returns, the edge’s attributes must support the deduction
made from the call stack depth difference. For example, if the call stack depth

Fig. 3. Fake return edges in an interprocedural control-flow graph

Towards Detecting Trigger-Based Behavior 501

difference is 1, then the edge’s attributes must state that the edge represents
a function invocation.

If any of the above rules is violated, the edge is discarded during the shortest
path calculation.

Our approach can rely on generic shortest path algorithms thanks to special,
so called fake return edges. These edges are directed edges from the call site to the
return site and are automatically added by angr whenever a call is encountered.
Their importance is highlighted in Fig. 3, which shows the fake return edges
in the interprocedural control-flow graph of the source code shown in Fig. 2
when context sensitivity level is set to 0. For the sake of clarity, the actual
instructions responsible for setting up the execution state for calling functions
were omitted. By default, CFGAccurate analyzes each IR block once per distinct
calling context. With 0 context sensitivity level, the calling context is only the
currently analyzed function, which leads to each function being present in the
graph exactly once. For each analyzed block, angr adds a call edge to the called
function and a fake return edge to the return site. These special edges mainly
serve the purpose of ensuring connectivity in the graph. Because each block is
analyzed once per distinct calling context, each function has only 1 return edge.
For example, consider the printf function. Even tough it is called from a, b
and c, it is analyzed only once, the first time it is encountered when called from
a. As a result, printf has only 1 return edge, leading to its return site in a.
Without fake return edges, printf’s call site in b would not be connected to its
return site in b.

Our edge discarding heuristic can also lead to loss of connectivity without
fake return edges. For example, our heuristic discards the call edge between c and
printf because the control-flow graph nodes’ call stack depth does not support
a function call. The call site has the context main→a→c, while printf has a
the context main→a→printf. Because the call stack depth difference is 0, the
edge should indicate staying in the function instead of calling another function.
Without the discarded call edge, generic shortest path algorithms must rely on
the fake return edge to calculate shortest paths. However, even if the fake return
edge is used, simulation must execute the function represented by the said edge.
In order to faithfully capture the cost of calling a function, we assign weights
to fake return edges: the smallest number of IR blocks simulated between the
call and return sites throughout analysis, i.e. the shortest path mixed concrete
and symbolic execution uncovered. Thanks to this heuristic, we are able to keep
context sensitivity at level 1.

4.3 Call Stack Management

During our work, we discovered mismatches between how the call stack is man-
aged in CFGAccurate and how it is managed during mixed concrete and symbolic
execution. The discrepancies between the algorithms hinders us in translating
execution states into control-flow graph nodes.

502 D. Papp et al.

In case of mixed concrete and symbolic execution, function calls are detected
by statically looking at the semantic information about the jump at the end
of the analyzed IR block. Function returns, on the other hand, are detected by
looking at the stack pointer. The function returns if either the stack pointer
has a lower value than it had at the call (which is the convention in e.g. Intel
platforms) or execution has reached the return address recorded at the call and
the stack pointer has the same value as it had at the call (which is the convention
in platforms like ARM where the return address is stored in the link register).

CFGAccurate uses the same approach with an additional feature. For each
IR block address encountered during CFG construction, it checks with angr’s
loader whether the address corresponds to a symbol. If it does, it forcefully
simulates a call to that symbol. This approach has the advantage of providing
more meaningful nodes in the control-flow graph. However, it hinders us from
accurately matching execution states to control-flow graph nodes as the calling
contexts are different. As an example, consider the following instructions:

000105a4 <getspoof>:
...
105bc: eb0022aa bl 1906c <rand>
...

0001906c <rand>:
1906c: ea000065 b 19208 <__GI_random>
...

00019208 <__GI_random>:
...

The getspoof function at 0x105bc calls rand, which immediately jumps to
GI random. In case of symbolic execution, the execution state at 0x19208 has

the calling context getspoof→rand, while the control-flow graph node represent-
ing 0x19208 has the context getspoof→rand→ GI random, because 0x19208
corresponds to a symbol. Due to the different calling contexts, the execution
state cannot be translated to the control-flow graph node. Thus, we removed
the forceful simulation of function calls from CFGAccurate.

We have also encountered call stack management issues in scenarios where
mixed concrete and symbolic execution forks in functions with only one of the
paths returning. The issues are caused by angr running its call stack management
code before adding path constraints to the state. We illustrate the problem with
an example. Consider the following snippet from the strcasecmp l function.

179c4: lsl r3, r3, #1 ; increment index for string1
179c8: lsl r0, r0, #1 ; increment index for string2
179cc: ldrsh r3, [lr, r3] ; load next char of string1
179d0: ldrsh r0, [lr, r0] ; load next char of string2
179d4: subs r0, r3, r0 ; compare the chars
179d8: popne {pc} ; (ldrne pc, [sp], #4)
179dc: ldrb r3, [ip], #1

Towards Detecting Trigger-Based Behavior 503

The function iterates over two strings character by character to check whether
they are equal. The comparison between two characters is implemented using
subtraction. If the result of the subtraction is 0, i.e. the characters are the same
and the function continues, otherwise, it returns. If any of the input strings
consists of symbolic variables as characters, the comparison has two outcomes:
equals and not equals. At the end of simulating the block starting at 0x179c4,
angr forks and creates the two successor states, one at 0x179dc and another at
the return site. It then proceeds to check whether any of these states returned.
However, the path condition has not been added to the successors yet, therefore,
the stack pointer of the state at the return site is a symbolic expression encoding
both staying in the function and returning. As a result, the call stack manage-
ment code cannot deduce that the state returned and fails to pop strcasecmp l
from the call stack. To overcome this issue, we concretize the stack pointer after
forks and re-run the call stack management code to get correct call stacks.

4.4 Model of the Execution State

In order to model the side effects of system calls and any additional data they
might return, we extended the original execution state model provided by angr.
The extended model includes additional POSIX elements on a per-path basis,
such as group ID, thread ID and parent process ID.

We also modified how system time is tracked throughout mixed concrete
and symbolic execution. Originally, angr used a monotonically increasing, global
symbolic variable to model system time which is suitable for the default breadth-
first exploration strategy. However, SDSE’s prioritization strategy can backtrack
to an earlier execution state, which semantically means taking us “back in time”.
In order to support such a backward flow of time, we model system time on a
per-path basis with local symbolic variables.

Throughout mixed concrete and symbolic execution, we also monitor the exe-
cution state to detect whether branches are the result of references to uninitial-
ized memory addresses. This scenario can be the result of a bug in the analyzed
binary, but might also signal missing side-effects of system call models. As a
result, we do not pursue such paths any further, but keep them separated from
the rest of execution states for further analysis.

5 Evaluation

We evaluated our approach on a slightly modified sample from the Kaiten5

malware family. Kaiten variants are Trojan horses which open backdoors on
various platforms and perform malicious tasks when remotely instructed to do
so. Our sample implements its own IRC protocol parser and expects remote
commands to be delivered as IRC private messages. Some commands are used
to launch denial-of-service attacks, execute shell commands and download files.
5 https://www.symantec.com/security-center/writeup/2015-102008-3612-99?tabi

d=2.

https://www.symantec.com/security-center/writeup/2015-102008-3612-99?tabid=2
https://www.symantec.com/security-center/writeup/2015-102008-3612-99?tabid=2

504 D. Papp et al.

We chose this sample because its execution relies heavily on its environ-
ment. In order to trigger any malicious behavior, the sample must be able to
communicate over the network. It needs to connect to the IRC server at the
preprogrammed address and log into the also preprogrammed IRC channel. The
sample uses randomly generated strings as nick and user name in the IRC com-
munication; the seed is calculated from the system time, the process ID and the
parent process ID. Once connection to the IRC channel has been established, the
correct IRC private message must be received in order to trigger any behavior
implemented in the sample.

Our chosen sample poses two challenges. Firstly, due to our assumptions and
the sample’s implementation, a vast number of execution paths are available for
analysis. There are three main sources for such a high number of paths:

(1) Environmental data. The sample relies on the system time, process IDs and
communication over the network. As we assume no prior knowledge about
its functionality, our analysis has to analyze all those inputs using symbolic
variables, leading to many branches.

(2) String handling. The sample implements an IRC protocol parser and uses
standard libc functions such as strlen, strtok and strcasecmp to manipu-
late the string messages received over the network. These functions typically
loop over the string character by character. As their inputs are returned
from the kernel, our analysis must consider each of the characters as sym-
bolic variables. Such loops are known to contribute to the path explosion
problem.

(3) Infinite loop. The sample is implemented to run in an infinite loop, contin-
uously listening for messages from the IRC server and trying to reconnect
in cases of communication failure. As a result, exploring all execution paths
cannot be done in a finite amount of time.

Another challenge is in the sample’s logic. In case of receiving a well-formed
IRC message, the sample dispatches the message to the appropriate handler
function via jump tables. These jump tables are represented in the control-flow
graph by nodes with many call edges leading to different handler functions. The
use of jump tables decreases the accuracy of shortest path calculation, as the
shortest path is always to take the correct call edge, even if said edge is infeasible.

5.1 Setting Up Our Experiment

Modifications to the Sample. Before we applied our implementation to the
chosen sample, we made a few modifications to it which we describe here. First,
we downloaded its publicly available source code6. Then, we shortened all strings
in the jump tables of the source code to contain only a single character and the
terminating null. With this modification, we can contain the path explosion of
looping over strings to a certain extent. Note, however, that the modified sample
still includes multiple jump tables organized into layers with each layer requiring
6 https://packetstormsecurity.com/files/25575/kaiten.c.html.

https://packetstormsecurity.com/files/25575/kaiten.c.html

Towards Detecting Trigger-Based Behavior 505

multiple characters with specific values. Therefore, even with this modification,
the sample still requires a string with multiple characters to invoke the necessary
handler functions. We also set the address of the IRC server to 127.0.0.1 in
order to avoid symbolically analyzing a DNS lookup. Finally, we recompiled the
modified source code for the ARM platform and performed our analysis on the
resulting binary. Both the original and the modified source code are available as
supplementary materials [1].

Target Behavior. As the target behavior, we selected one of the functions
launching denial-of-service attacks (tsunami in the source code). The attack is
executed in a child process and sends spoofed packets to the target IP specified
in the command. We inserted a call to the kill libc function before the child
process is created and set the underlying kill system call as our target. Note,
that this system call is used in other functions as well, therefore, we only accept
reaching it, if it is done via the tsunami function.

In order to reach this function, mixed concrete and symbolic execution has
to simulate the communication with the IRC server and “send” a specific string
to the sample. The string must meet the following requirements:

(1) The sample must interpret its first part as an IRC private message, i.e. it
must start with the corresponding code from the jump table of IRC message-
handling functions (4 in our case).

(2) It must contain the preprogrammed name of the IRC channel to which the
sample logged into (# in our modification).

(3) It must be intended for the sample, either by specifically mentioning the
sample’s IRC nick (randomly generated) or by using a wildcard character.

(4) The sample must interpret its last part as a command for launching the DoS
attack implemented in tsunami, i.e. it must contain the corresponding code
from the jump table of command-handling functions (0 in our case).

Unfortunately, while generating the control-flow graph with context sensi-
tivity level 1, angr did not flag the IR blocks implementing the jump tables as
producing unconstrained successors. As a result, jump tables were not treated
as potential extension points, forcing us to specify the missing edges manually.

Parameters of the Machine. We ran the sample on a machine with two Xeon
E5-2680 CPUs of 10 cores each, running at 2.8 GHz. The machine has 378 Gb of
RAM available. Note that angr is not multithreaded and uses only a single core.
We also restricted angr to run with 100 Gb of memory.

5.2 Results

Runtime Performance. Table 2 shows the performance of our prototype
implementation on the modified Kaiten binary sample. The execution path
reaching the targeted program point at the source code level is available as
supplementary material [1]. The execution time of a single run consists of four
components:

506 D. Papp et al.

Table 2. Runtime performance of each stage of approach on modified Kaiten binary
sample

Stage Runtime (hh:mm:ss)

Control-flow graph generation and extension 0:10:42

Simulation of execution paths 19:08:54

Shortest distance calculation 8:05:44

Other management tasks 5:05:11

(1) generation and extension of the control-flow graph,
(2) simulating execution paths,
(3) calculating scores during backtracking, and
(4) other management tasks, e.g. concretizing stack pointers when necessary,

logging events, checking if our target was reached, etc.

The measured execution time of our analysis was 32.5 h. Most of the time was
spent with either simulating execution paths or calculating shortest distances.

The execution time of simulating execution paths can be accredited to the
logic of the sample. During our tests, analysis encountered addresses, whose sim-
ulation took hours for mixed concrete and symbolic execution. These addresses
were part of libc, including rand and multiple string-manipulating functions
whose simulation involved computations with complex symbolic values. rand is
used by the modified sample to generate random 1-character-long strings for
communication with the IRC server. While the generated string for the nick has
to be analyzed in order to reach the target system call, its value does not matter:
the symbolic string representing network input either matches it, or it does not.
Therefore, we replaced rand with angr’s built-in symbolic summary and used
a fresh, unconstrained symbolic variable to represent its result. However, the
results of string manipulations contribute directly to the execution path leading
towards the selected target behavior: they affect how long the symbolic string
representing network input is and what constraints are placed on its characters.
Therefore, we did not influence the execution of string manipulations and settled
for the increased execution time.

Recovered Path Condition. The execution state which first reached the tar-
get system call had 76 constraints, encoding the network conditions and the
remote command required to trigger the target behavior. We checked their cor-
rectness manually by looking at the source code.

Depending on their complexity, some constraints are intuitive to interpret.
For example, <Bool socket retval 23127 32 == 0x3> can be interpreted as
the requirement for successfully creating sockets. socket retval 23127 32 is
the symbolic variable introduced in the socket system call. The two numbers
are appended by angr: the first is a unique identifier, while the second is the
length of the variable in bits. The return value of socket in case of success is a

Towards Detecting Trigger-Based Behavior 507

file descriptor (positive integer) and −1 in case of failure, it is −1. Given that
the right-hand side of the equation is positive, we can deduct that the sample
invoked the system call to create a socket which had to be completed successfully.

The human interpretation of other constraints, however, is quite challenging
due to their complexity. For example, our modified sample sets an upper limit
of 4096 on the number of characters it reads from a socket in one go. Therefore,
our symbolic summary of recv returns a 4096-character-long string made up
of symbolic variables. The sample then invokes multiple string manipulating
functions which loop over the string character by character. The corresponding
binary instructions are conditional in many cases, which means that in real life,
the CPU would execute them only if necessary. During simulation, however, one
of their operands is a symbolic character and therefore, they cannot be skipped.
Instead, when possible, their results are encoded into If-Then-Else structures:
if the flag evaluates to true, then the result is the Then value, else the Else
value. These structures can be nested into each other, leading to constraints
whose evaluation is tedious manually. In such cases, the constraint solver can be
used to calculate the assigned values, giving the inputs required to trigger the
targeted program point.

6 Conclusion

In this paper, we proposed an approach to determine what inputs and envi-
ronmental conditions must be met in order to trigger undocumented, hidden
behaviors in binary programs. Our approach consists of two techniques. Firstly,
we model the environment at the operating system level by providing symbolic
summary functions of system calls. Our summary functions have the same num-
ber and type of arguments as their real-world counterparts, but introduce fresh
symbolic variables in order to model the effects of system calls. Secondly, we
use shortest-distance symbolic execution to find a feasible path to a selected
program point and collect the constraints along said path to acquire insight
into the required input values and environmental settings. This technique relies
on a semantically correct, complete inter-procedural control-flow graph, which
is often unavailable for binary programs due to indirect jumps. Therefore, our
approach is designed to allow for incorrect/missing edges and/or nodes.

We implemented our approach using angr and evaluated it on a sample from
the Kaiten malware family. The sample implements an IRC bot client, which,
among other things, launches denial-of-service attacks when remotely instructed
to do so. The logic of the chosen sample poses additional challenges as many
of its implementation details are known to be hard to analyze symbolically.
Nevertheless, our approach successfully found a feasible path within reasonable
time. The path condition along that path gave additional insight as to what kind
of environment is needed to trigger a specific attack.

The manual interpretation of conditions can be tedious, so we recommend to
automate this process as much as possible, but we leave the details of such auto-
mated evaluation of trigger conditions for future work. Another possible future

508 D. Papp et al.

research direction is to alleviate the task of manually finding program points
whose trigger condition is of interest to the human analyst. Our recommenda-
tion is to identify patterns of suspicious behaviors in an off-line manner, e.g. by
syntactic analysis. Given a set of such patterns, their presence in the analyzed
sample could be determined by automated static analysis and the correspond-
ing program points could be listed as targets for our approach described in this
paper. We also leave as future work the evaluation of our approach on a larger
sample set. We envision a study of other malware families and their variants,
studying the differences in their environmental requirements.

References

1. Supplementary materials. https://www.crysys.hu/∼dpapp/publications/files/Pap
pTB2019sefm.zip

2. Babić, D., Martignoni, L., McCamant, S., Song, D.: Statically-directed dynamic
automated test generation. In: Proceedings of the 2011 International Symposium
on Software Testing and Analysis, ISSTA 2011, pp. 12–22. ACM, New York (2011).
https://doi.org/10.1145/2001420.2001423

3. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. 51(3), 1–39 (2018). https://
doi.org/10.1145/3182657

4. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D., Yin, H.: Automatically
identifying trigger-based behavior in malware. In: Lee, W., Wang, C., Dagon, D.
(eds.) Botnet Detection. Advances in Information Security, pp. 65–88. Springer,
Boston (2008). https://doi.org/10.1007/978-0-387-68768-1 4

5. Cadar, C., Dunbar, D., Engler, D.: Klee: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2008, pp. 209–224. USENIX Association, Berkeley (2008). http://dl.acm.org/
citation.cfm?id=1855741.1855756

6. Caselden, D., Bazhanyuk, A., Payer, M., McCamant, S., Song, D.: HI-CFG: con-
struction by binary analysis and application to attack polymorphism. In: Cramp-
ton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 164–181.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 10

7. Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing mayhem on binary
code. In: Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP
2012, pp. 380–394. IEEE Computer Society, Washington, DC (2012). https://doi.
org/10.1109/SP.2012.31

8. Chipounov, V., Kuznetsov, V., Candea, G.: S2E: a platform for in-vivo multi-
path analysis of software systems. In: Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVI, pp. 265–278. ACM, New York (2011). https://doi.org/10.
1145/1950365.1950396

9. Costin, A., Zaddach, J., Francillon, A., Balzarotti, D.: A large-scale analysis of the
security of embedded firmwares. In: 23rd USENIX Security Symposium (USENIX
Security 2014), pp. 95–110. USENIX Association, San Diego (2014). https://www.
usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin

https://www.crysys.hu/~dpapp/publications/files/PappTB2019sefm.zip
https://www.crysys.hu/~dpapp/publications/files/PappTB2019sefm.zip
https://doi.org/10.1145/2001420.2001423
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1007/978-0-387-68768-1_4
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1007/978-3-642-40203-6_10
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1145/1950365.1950396
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin

Towards Detecting Trigger-Based Behavior 509

10. Fratantonio, Y., Bianchi, A., Robertson, W., Kirda, E., Kruegel, C., Vigna, G.:
Triggerscope: towards detecting logic bombs in android applications. In: 2016 IEEE
Symposium on Security and Privacy (SP), pp. 377–396, May 2016. https://doi.org/
10.1109/SP.2016.30

11. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In:
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2005, pp. 213–223. ACM, New York (2005).
https://doi.org/10.1145/1065010.1065036

12. Kolbitsch, C., Livshits, B., Zorn, B., Seifert, C.: Rozzle: de-cloaking internet mal-
ware. In: 2012 IEEE Symposium on Security and Privacy, pp. 443–457, May 2012.
https://doi.org/10.1109/SP.2012.48

13. Li, Y., Su, Z., Wang, L., Li, X.: Steering symbolic execution to less traveled paths.
In: Proceedings of the 2013 ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & #38; Applications, OOPSLA 2013,
pp. 19–32. ACM, New York (2013). https://doi.org/10.1145/2509136.2509553

14. Ma, K.-K., Yit Phang, K., Foster, J.S., Hicks, M.: Directed symbolic execution.
In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 95–111. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23702-7 11

15. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: Proceedings of the 28th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2007, pp. 89–100, ACM,
New York (2007). https://doi.org/10.1145/1250734.1250746

16. Parvez, R., Ward, P.A.S., Ganesh, V.: Combining static analysis and targeted
symbolic execution for scalable bug-finding in application binaries. In: Proceedings
of the 26th Annual International Conference on Computer Science and Software
Engineering, CASCON 2016, pp. 116–127. IBM Corp., Riverton (2016). http://dl.
acm.org/citation.cfm?id=3049877.3049889

17. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: 2010 IEEE Symposium on Security and Privacy, pp. 317–331, May 2010.
https://doi.org/10.1109/SP.2010.26

18. Shoshitaishvili, Y., et al.: Sok: (state of) the art of war: offensive techniques in
binary analysis. In: 2016 IEEE Symposium on Security and Privacy (SP), pp.
138–157, May 2016. https://doi.org/10.1109/SP.2016.17

https://doi.org/10.1109/SP.2016.30
https://doi.org/10.1109/SP.2016.30
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1109/SP.2012.48
https://doi.org/10.1145/2509136.2509553
https://doi.org/10.1007/978-3-642-23702-7_11
https://doi.org/10.1145/1250734.1250746
http://dl.acm.org/citation.cfm?id=3049877.3049889
http://dl.acm.org/citation.cfm?id=3049877.3049889
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1109/SP.2016.17

Verification

Formal Verification of Rewriting Rules
for Dynamic Fault Trees

Yassmeen Elderhalli1(B), Matthias Volk2, Osman Hasan1,
Joost-Pieter Katoen2, and Sofiène Tahar1

1 Electrical and Computer Engineering, Concordia University, Montréal, Canada
{y elderh,o hasan,tahar}@ece.concordia.ca

2 Software Modeling and Verification, RWTH Aachen University, Aachen, Germany
{matthias.volk,katoen}@cs.rwth-aachen.de

Abstract. Dynamic Fault Trees (DFTs) model the failure behavior of
systems dynamics. Several rewriting rules have been recently developed,
which allow the simplification of DFTs prior to a formal analysis with
tools such as the Storm model checker. To ascertain the soundness of the
analysis, we propose to formally verify these rewriting rules using higher-
order-logic (HOL) theorem proving. We first present the formalization in
HOL of commonly used DFT gates, i.e., AND, OR and PAND, with an
arbitrary number of inputs. Then we describe our formal specification of
the rewriting rules and the verification of their intended behavior using
the HOL4 theorem prover.

Keywords: Dynamic Fault Trees · Rewriting rules ·
Theorem proving · HOL4

1 Introduction

Dynamic Fault Trees (DFTs) graphically model the dynamically changing failure
dependencies between system components [15,16]. The modeling starts by a top
event that represents an undesired event, like the failure of a system or sub-
system. Then, the different relationships between the system basic events that
lead to the failure of the top event are modeled using DFT gates. DFTs are more
suitable to model real-world situations that cannot be captured using static fault
trees (SFTs). For example, DFTs models have been used to provide the safety
analysis for autonomous cars [8].

DFTs are directed acyclic graphs (DAG) with typed nodes (AND, OR, etc.).
Successors of a node v in the DAG are inputs of v. Some commonly used DFT ele-
ments are shown in Fig. 1. Nodes without inputs are basic events (BE, Fig. 1(a))
that represent atomic components, which can fail according to a failure distribu-
tion. Special cases of BEs are constant failed elements (CONST(�), Fig. 1(b)),
which are always failed and constant fail-safe elements (CONST(⊥), Fig. 1(c)),

This work is partially supported by the DFG RTG 2236 UnRAVeL.

c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 513–531, 2019.
https://doi.org/10.1007/978-3-030-30446-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_27&domain=pdf
https://doi.org/10.1007/978-3-030-30446-1_27

514 Y. Elderhalli et al.

(a) BE

�

(b) CONST(�)

⊥

(c) CONST(⊥) (d) AND (e) OR

k/n

(f) VOT (g) PAND

Fig. 1. Some DFT elements

which can never fail. DFT gates are nodes with inputs and are used to model
the state dependencies and redundancies among system components. Some com-
monly used DFT gates include SFT gates (AND, OR and VOT-gates) as well
as the Priority-AND (PAND) DFT gate. The output event of the AND-gate
(Fig. 1(d)) fails when both input events fail. The OR-gate (Fig. 1(e)) requires
that at least one of its input events fails for the output event to fail. The output
of the VOTk-gate (k out of n gate) (Fig. 1(f)) fails when at least k out of the
n inputs fail. The PAND-gate (Fig. 1(g)) acts in a similar way to the AND-gate,
i.e., it requires that both input events fail. However, an additional condition
is needed, where the inputs should fail in sequence, usually from left to right.
There are also other DFT gates that are used to model the dynamic behavior in
systems, like the Functional-DEPendency (FDEP) and spare gates. In this paper,
we only consider DFTs with AND, OR, VOT and PAND-gates.

Traditionally, DFTs are analyzed quantitatively by converting the given DFT
model into a Markov chain (MC) [1,3,17], where the latter can be analyzed
analytically or using simulation. Recently, an algebra has been proposed to pro-
vide the analysis of DFTs analytically without the need to use MC models
[12]. In the algebraic approach, temporal operators are defined to capture the
failure dependency between system components. The DFT gates are modeled
using these temporal operators and their probabilities of failure are expressed
based on these operators. Moreover, the DFT algebra provides several simplifi-
cation properties that allow reducing the structure of a given DFT for a simpler
analysis.

In order to ensure a complete and sound analysis, formal methods have
also been explored for analyzing DFTs. Probabilistic model checkers, such as
Storm [2], have been used for the probabilistic analysis of DFTs via MCs.
For example, Storm supports the analysis of DFTs, among other probabilistic
models, and allows the verification of the probability of failure and the Mean-
Time-To-Failure (MTTF) of the top event of a given DFT. The scalability of
this analysis can be significantly improved by DFT rewriting rules [10] that facil-
itate simplifying a DFT before analysis. Simplification of the DFT is achieved
by transforming the underlying graph of the DFT according to the rewrite rules.
Experimental evaluation in [10] showed that rewriting heavily improves the per-
formance of the DFT analysis. For example, while originally 68% of the 183 DFTs
in [10] could be solved within 2 h, applying the rewriting beforehand allowed to
solve 95% of the DFTs. Moreover, the total analysis time was reduced from
41 h to 18 h when using rewriting. Simplifying DFTs by rewriting enables the

Formal Verification of Rewriting Rules for DFTs 515

analysis of DFTs that could not be analyzed before, and can lead to speed-ups
and memory savings of up to two orders of magnitude [10].

The rewrite rules are generic for n-ary gates and can be implemented in any
tool that supports DFT analysis. Proving the correctness of the rewrite rules
as done in [11] is an involved manual and error-prone process. To the best of
our knowledge, a rigorous, mechanically checkable proof of correctness of these
rewriting rules has not been done. Thus, their usage in a formal analysis raises
soundness concerns especially when dealing with the analysis of safety-critical
systems, like transportation or healthcare. On the other hand, higher-order logic
(HOL) theorem proving has been recently used to formalize DFT gates and oper-
ators [6] based on the algebra presented in [12]. Several simplification theorems
are formally verified using the HOL4 theorem prover [9], which enable formally
verifying a reduced form of a DFT. Moreover, the probabilistic behaviors of DFT
gates are formally verified based on the HOL4 probability and Lebesgue integral
theories [13,14]. However, this formalization does not support n-ary gates, which
are required to model generic failure scenarios. In addition, the VOT-gate has
not been formalized in HOL.

In this paper, we propose to use the recent HOL DFT formalization to verify
the DFT rewriting rules of [10] using the HOL4 theorem prover. This requires
extending the DFT gates definitions in [6] for an arbitrary number of inputs and
defining the VOT-gate. Our main contributions are summarized as follows:

– Higher-order logic formalization of AND, OR, PAND and VOTk (k out of n)
gates for arbitrary number of inputs. This allows a formal reasoning about
generic DFT constructs.

– A mechanized verification in HOL4 of the correctness of the DFT rewrite rules
of [10] that are concerned with DFTs with AND, OR, VOT and PAND-gates.
This proves that all these rules preserve reliability and MTTF.

These contributions provide the assurance of correctness of the rewrite rules and
thus adds the confidence to tools, that exploit these rules in their DFT analysis.

The rest of the paper is structured as follows: Sect. 2 describes the DFT
rewrite rules. We review the HOL4 DFT theory (library) in Sect. 3. In Sect. 4,
we present the HOL formalization of n-ary gates. The formal verification details
of the rewrite rules are presented in Sect. 5. Finally, we conclude the paper in
Sect. 6.

2 DFT Rewrite Rules

In the following, we recap the rewrite rules for DFTs as presented by Junges
et al. [10]. The simplification of DFTs is performed by graph rewriting [4] on
the underlying graph of the DFT. We represent a DFT as a labelled graph by
extending the induced graph with labels encoding the type of the DFT element
and the ordering of the inputs. The graph transformation on the labelled graph
is performed by applying a chain of rewrite rules.

516 Y. Elderhalli et al.

2.1 Rewrite Framework

A rewrite rule is specified by two (sub-)DFTs: the left-hand side capturing the
(sub-)DFT before applying the rewrite rule and the right-hand side depicting
the resulting (sub-)DFT after the graph rewrite. An example of a rewrite rule is
given in Fig. 2. The rule depicts the subsumption of OR-gates by AND-gates.

A

B

C D

A′

B′

C ′ D′

Fig. 2. Subsumption of OR-gates by AND-gates [10, Rewrite rule 8]

T

A E

B

FDC

(a) Original DFT

T

A E

B

FDC

(b) DFT after rewrite step

T

E

FDC

(c) Final DFT

Fig. 3. Example application of rewrite rule (Color figure online)

A rewrite rule can be applied whenever a (sub-)DFT can be matched with
the left-hand side of the rule. Elements represented by a triangle in the rewrite
rule match every gate type. Matched elements might have additional ingoing
and outgoing edges not matched by the rewrite rule. These edges are retained
during the rewriting step. Applying a rewrite rule replaces the matched part with
the right-hand side of the rule. All non-matched parts remain unchanged during
the rewriting step. Note that in general, rewrite rules might lead to inconsistent

Formal Verification of Rewriting Rules for DFTs 517

graphs with dangling edges or DFTs that are no longer well-formed (e.g., cyclic
DFTs). In these cases, the rewrite rule cannot be applied. It is important to note
also that most of the rewrite rules can also be applied from right to left.

A

AND,OR,PAND �

C1

. . .

CmB

Tp(A)

. . .

D1 Dk

A′B′

C ′
1

. . .

C ′
mD′

k

. . .

D′
1

Fig. 4. Left-flattening of gates [10, Rewrite rule 5]

An example application of the given subsumption rule is depicted in Fig. 3.
Figure 3(a) depicts the original DFT used as input. The subsumption rule from
Fig. 2 can be applied and the matched sub-DFT is highlighted in blue. Applying
the rule removes the connection between AND-gate A and OR-gate B and yields
the rewritten DFT in Fig. 3(b). Further simplification by applying additional
rewrite rules results in the final DFT in Fig. 3(c). Using the rewrite rules leads
to a simpler DFT, which is considerably smaller—and easier to understand.

During rewriting multiple rules might be applicable for the current DFT or
different sub-DFTs match the left-hand side of a rewrite rule. The sequence of
rewrite steps is chosen by a rewrite strategy. As the rewrite framework is not
confluent, the strategy heavily influences the size of the resulting DFTs and a
heuristic approach is used. For further details, see [10].

2.2 Rewrite Rules

In the following we consider 22 rules of the 29 rewrite rules given in [10]. Of the
remaining 7 rules, one rule gives the Shannon expansion for VOTk-gates, which
deals with variables as Boolean, whereas generally DFTs, as formalized in HOL,
treat variables as real numbers representing time to failure functions. The other
6 rules apply to FDEPs and SPAREs; both gate types are not considered here.
We recap a selection of the rewrite rules and use the same rule enumeration as
in [10, Sect. 5.3].

General Rewrite Rules. The first rewrite rules 1–7 consider structural identi-
ties such as commutativity of static gates, removal of gates with a single successor
or no predecessor, and left-flattening of gates. As an example, the rewrite rule for
left-flattening is given in Fig. 4. The rule can only be applied if the top element of
the (sub-)DFT is an AND-, OR- or PAND-gate, and the first input is of the same

518 Y. Elderhalli et al.

gate type as the top element (Tp(B) = Tp(A)). Applying the left-flattening rule
adds the inputs of B as first inputs of A. Gate B is not removed as it might still
have connections to other parts of the DFT.

Rules 8–10 capture standard axioms from Boolean algebra on the static gates
such as subsumption of OR-gates by AND-gates (cf. Fig. 2).

DFTs containing constant failed CONST(�) or constant fail-safe CONST(⊥)
events can lead to large simplifications as often complete sub-DFTs can be eval-
uated to constant. Rules 11–14 specifically consider constant elements and we
exemplary present the rewrite rule for AND-/PAND-gates with CONST(⊥) inputs
in Fig. 5. If at least one of the inputs of an AND-/PAND-gate is fail-safe, it is
impossible for the gate to fail and therefore it can be set to fail-safe as well.

Encoding of VOT-gates by OR-/AND-gates is given in rewrite rules 15–16.

Rewrite Rules for PAND-gates. So far, the rewrite rules mostly captured
simplifications of static gates, which are based on the corresponding properties
in Boolean algebra. The remaining rules 18–23 consider PAND-gates where the
order of failures is crucial. As an example, consider the rewrite rule for conflicting
PAND-gates with independent successors in Fig. 6. PAND-gate D1 requires that
input B fails strictly before C or simultaneously with C. If C fails strictly before
B, D1 becomes fail-safe. D2 requires the opposite behavior. If both elements B
and C are independent, they will not fail simultaneously. Thus, either PAND-
gate D1 or D2 will become fail-safe. As the PAND-gates can never both fail, A
is fail-safe and can be replaced by CONST(⊥).

Note that the rewrite rule can only be applied if B and C are independent—
and at most one input is CONST(�). Otherwise, a common cause failure can
let both B and C fail simultaneously, both PAND-gates fail and A fails as well.
The independence assumption in this rewrite rule is a context restriction, which
prevents the application of the rule for certain DFTs.

2.3 Non-structural Rules

There are two additional rules that are not present in the rewrite framework as
they go beyond structural rules and are not captured by graph transformations.

Removing BEs. The BEs that have no connection to other DFT elements (and
are not the top level element) are called dispensable. Dispensable BEs can be
removed from the DFT as they do not influence the analysis results. An example
is given in Fig. 7. In the original DFT in Fig. 7(a), BE C is dispensable and can
be removed yielding the DFT in Fig. 7(b).

Merging BEs. In our analysis we are only interested in the reliability or MTTF
of the top level element. The state of other elements is not important for this
analysis. Thus, we can simplify a DFT by merging multiple BEs into a single BE.
Consider the example DFT in Fig. 7(b). Both BEs A and B have an exponen-
tial failure distribution with failure rates λA and λB , respectively. The failure

Formal Verification of Rewriting Rules for DFTs 519

A

AND,PAND �

. . .

C1 Cm

⊥

B

⊥

A′

. . .

C ′
1 C ′

m

Fig. 5. AND-/PAND-gate with CONST(⊥) successor [10, Rewrite rule 13]

A

D1 D2

B C

⊥

A′

B′ C ′

Fig. 6. Conflicting PAND–gates with independent successors [10, Rewrite rule 19]

T

A

λA

B

λB

C

λC

(a) Original DFT

T

A

λA

B

λB

(b) DFT after removal of BE C

T

A

λA + λB

(c) DFT after merging of BEs

Fig. 7. Example application of non-structural rules

distribution of an OR-gate is the minimum over its inputs and is exponentially
distributed as well. Thus, we can replace multiple BEs A1, . . . , An under an OR-
gate by a single BE A′ with failure rate λA′ =

∑n
i=1 λAi

. In our example, merging
both BEs leads to the final DFT in Fig. 7(c). The resulting OR-gate with a single
input can be simplified further by applying the rewrite framework.

After presenting the details of DFT rewrite rules, in the sequel, we present
our efforts in formally verifying them using HOL theorem proving. For some
of these rules, such as Rule 5, it is required to formally model DFT gates for
arbitrary number of inputs. In the next sections, we first review the DFT theory
developed in HOL4 and then introduce the new HOL definitions of n-ary gates.

520 Y. Elderhalli et al.

3 DFT Theory in HOL4

DFTs have been formalized using the HOL4 theorem prover [6] based on the
algebra presented in [12]. In this algebra, gates are modeled based on the time of
failure of their outputs. Inputs of a DFT represent the time-to-failure functions
of systems components. Therefore, in the DFT formalization, these functions
are defined as lambda abstracted functions that allow them to be treated later
as random variables for conducting the probabilistic analysis of DFTs. Identity
elements and temporal operators are introduced to allow expressing and manip-
ulating the structure function of the top level element of a given DFT. Their
mathematical expressions and HOL formalization are presented in Table 1, where
PosInf is the HOL4 representation of +∞.

The Always identity element is used to model an event that fails from time
0, whereas the Never element models an event that fails at +∞, i.e., it can never
fail. These two elements are necessary in the simplification process of DFTs,
when there are input events that are fail-safe (CONST(⊥)) or have already failed
(CONST(�)). Therefore, these functions that represent the inputs and outputs of
DFT gates return extended-real numbers (HOL4 extreal theory), which are real
numbers and ±∞. Three temporal operators are introduced in [12] to model the
failure dependency among system components. The Before operator (�) models
a situation where one system component fails before the other. This operator
accepts two inputs and its output fails when the first input fails before the
second, otherwise it can never fail. The Simultaneous operator (Δ) requires that
both inputs fail at the same time for its output to fail. If this condition does
not hold, then the output of this operator fails at +∞. Finally, the output of
the Inclusive Before operator (�) fails when the first input fails before or at the
same time of the second input, otherwise it does not fail.

The AND (·) and OR (+) gates are similar to the ones used in SFTs. However,
it is required to define them in a way compatible with the rest of the definitions
of DFT gates. Table 2 [6] lists the formal definitions of these gates, where max
and min are HOL4 functions that return the maximum and minimum values of
their input arguments, respectively. The output of the AND-gate (Fig. 1(d)) is
modeled using the maximum (max) time of failure of the inputs. The OR-gate

Table 1. Definitions of identity elements and temporal operators

Element/Operator Mathematical expression Formalization

Always element d(ALWAY S) = 0 � ALWAYS = (λs. (0:extreal))

Never element d(NEV ER) = +∞ � NEVER = (λs. PosInf)

Before d(A � B) =

{
d(A), d(A) < d(B)

+∞, d(A) ≥ d(B)

� ∀ A B. D BEFORE A B =

(λs. if A s < B s then A s else PosInf)

Simultaneous d(AΔB) =

{
d(A), d(A) = d(B)

+∞, d(A) �= d(B)

� ∀ A B. D SIMULT A B =

(λs. if A s = B s then A s else PosInf)

Inclusive Before d(A � B) =

{
d(A), d(A) ≤ d(B)

+∞, d(A) > d(B)

� ∀ A B. D INCLUSIVE BEFORE A B =

(λs. if A s ≤ B s then A s else PosInf)

Formal Verification of Rewriting Rules for DFTs 521

Table 2. DFT gates

Gate Mathematical expression Formalization

AND d(A · B) = max(d(A), d(B)) � ∀ A B. D AND A B = (λs. max (A s)(B s))

OR d(A + B) = min(d(A), d(B)) � ∀ A B. D OR A B = (λs. min (A s)(B s))

PAND d(QPAND) =

{
d(B), d(A) ≤ d(B)

+∞, d(A) > d(B)

� ∀ A B. PAND A B =
(λs. if A s ≤ B s then B s else PosInf)

(Fig. 1(e)) requires that at least one of its input events fails. Therefore, the time
of failure of its output is modeled using the minimum (min) time of failure of
its inputs. The PAND-gate (Fig. 1(g)) is modeled using the extreal compar-
ison operator (≤) and if statements. The time of failure of its output equals
the time of the second input if the first input fails before or at the same time
of the second input, otherwise, the output can never fail (PosInf). It is worth
mentioning that the DFT gates accept inputs that are time-to-failure functions,
which allows constructing complex DFT models. The structure function of a
given DFT can be expressed using the AND, OR and temporal operators. For
example, the PAND-gate can be expressed as: Y · (X �Y). Several simplification
properties are introduced in [12] that allow simplifying the structure function of
a given DFT in order to facilitate the analysis, such as the commutativity and
idempotence properties of the OR and AND-gates. These simplification proper-
ties are formally verified using HOL4 [7], which ensures their correctness. The
verification of these properties is based mainly on the definitions of the operators
and the properties of extreal numbers. For example, D OR X X = X, is verified
based on the definition of the OR gate and the properties of the extreal min
function. However, since the DFT operators of this algebra are binary operators,
the simplification properties cannot support rewriting DFTs with n-ary gates.
Thus, they cannot support the simplification of generic DFTs, which is the scope
of the current work.

4 HOL Formalization of n-ary DFT Gates

In order to verify the DFT rewriting rules, presented in [10], we need to handle
DFT gates with an arbitrary number of inputs. Therefore, we extend the defi-
nitions of DFT gates of [6]. In these definitions, we utilize lists to represent the
arbitrary number of inputs. In other words, the input of an n-ary gate is a list of
arbitrary size of time-to-failure functions that represent inputs of a DFT gate.

We formally define the n-ary AND-gate as:

Definition 1. � ∀L. n AND L = FOLDR (λ a b. D AND a b) ALWAYS L

where FOLDR is used to apply a binary (2-input) function over a list from right
to left. The function in our case here is the binary D AND that accepts two inputs
and returns their result of the DFT AND operation between them. FOLDR requires
including an element that is used to apply the function to the last element of the

522 Y. Elderhalli et al.

input list. We use ALWAYS in this case as it is the identity element of the AND
and does not affect its behavior. L represents the list of inputs to be ANDed. For
example, n AND [X; Y; Z] equals D AND X (D AND Y (D AND Z ALWAYS)).

In a similar manner, we formally define the n-ary OR as:

Definition 2. � ∀L. n OR L = FOLDR (λ a b. D OR a b) NEVER L

D OR is the function used with FOLDR in this definition. We use NEVER in
this case as it is the identity element for the OR, i.e., NEVER will not affect the
behavior of the OR-gate. It is worth mentioning that FOLDL can be used with
these definitions as well, since the order of applying the OR and AND-gates does
not matter if it starts from the left or from the right.

We formally define the n-ary PAND-gate as:

Definition 3. � ∀L. n PAND L = FOLDL (λ a b. P AND a b) ALWAYS L

This is similar to the previous definitions. However, since the PAND-gate
requires that the input events fail from left to right, we use FOLDL in this case.
We use ALWAYS as it does not affect the behavior of the PAND-gate, i.e., for any
input X that is greater than or equal to 0, PAND ALWAYS X = X.

The VOTk (k out of n) gate can be defined using the n OR and n AND gates.
Firstly, we need to get the combinations that lead to the failure of the VOT-gate.
For example, a (2/3) VOT-gate requires having all possible pairs out of the three
inputs. Therefore, we first need to get all the possible k elements of the input
list. We define k out that accepts a list and a number k, which identifies the
number of elements to be retrieved from the input list.

Definition 4. � ∀k L. k out k L = {s| s ⊆ (set L) ∧ (CARD s = k)}
where set L returns a set with the elements in list L, and CARD is a HOL function
that returns the cardinality (number of elements) of a given set. This definition
basically returns a set of sets, where the inner sets are subsets of set L. This
means that these inner subsets contain elements from the input list L. The added
condition is that the cardinality of each of these sets equals k. As a result, we
get all possible combinations of the input list that have k elements.

We use k out to define the VOT-gate by ANDing the elements of each inner
set, then ORing the result of this ANDing. We need to recall that the n AND and
n OR accept inputs as lists not sets. Therefore, we apply a function that converts
a set into a list (SET TO LIST). We formally define the VOT-gate as:

Definition 5. � ∀k L. k out n gate k L =

n OR (MAP (λa. n AND (SET TO LIST a)) (SET TO LIST (k out k L)))

where SET TO LIST is a HOL4 function that accepts a set and returns a list of
the elements of this set. MAP is used to map a function over a list and returns a
list of the mapped elements. In this definition, we first convert the outer set of
k out to a list using SET TO LIST (k out k L). Then, we apply n AND to each
element of this list using MAP and convert each inner set to a list. Finally, the

Formal Verification of Rewriting Rules for DFTs 523

n OR is applied to the result of the MAP, i.e., the result will be the OR of ANDs
and each AND has only k elements of the input list. We verify several properties
for k out and the VOT-gate, such as the finiteness of the inner and outer sets,
besides other properties that are useful in the verification of the DFT rewriting
rules. The HOL4 script can be accessed from [5].

5 Formal Verification of Rewriting Rules

We list the verification details of some of the rewrite rules described in Sect. 2.
The details of verifying the rest of the rules can be accessed from [5].

General Rewrite Rules. The structural rewrite rules 1–5 and 7 are verified
based on the definitions of n-ary gates and some list and extreal number theories
properties, whereas rule 6 is implemented implicitly in the DFT formalization.

Commutativity of static gates (Rule 1)

Theorem 1. � ∀L1 L2. PERM L1 L2 ⇒ (n AND L1 = n AND L2)

Theorem 2. � ∀L1 L2. PERM L1 L2 ⇒ (n OR L1 = n OR L2)
Theorem 3. � ∀L1 L2 k.

PERM L1 L2 ⇒(k out n gate k L1 = k out n gate k L2)

The commutativity property indicates that the order of the inputs of any
static gate will not affect its behavior, i.e., the time of failure for the output of
the gate remains the same. We use the permutation of two lists (PERM L1 L2) to
add the condition that L1 and L2 have the same inputs but with different orders.
We verify the commutativity of the n AND and n OR gates using induction, FOLDR
definition and some properties of the 2-input AND and OR-gates, defined in
Sect. 3, such as associativity and commutativity. The proof of the commutativity
property for the VOT-gate is mainly based on the following lemma:

Lemma 1. � ∀L1 L2 k. PERM L1 L2 ⇒ (k out k L1 = k out k L2)

which states that the sets returned by k out are the same for two lists that have
the same elements with different orders.

Gate with a single successor (Rule 3)

Theorem 4. � ∀x. rv gt0 [x] ⇒ (n AND [x] = x)

Theorem 5. � ∀x. n OR [x] = x
Theorem 6. � ∀x. rv gt0 [x] ⇒ (k out n gate 1 [x] = x)

Theorem 7. � ∀x. rv gt0 [x] ⇒ (n PAND [x] = x)

For the static gates and the n PAND gate, if the input list consists of only one
element, then the output fails once the single input fails. The function rv gt0
ensures that the inputs of the gates are greater than or equal to 0, which is valid
as we are dealing with time-to-failure functions. We recursively define rv gt0 as:

524 Y. Elderhalli et al.

Definition 6. rv gt0
(rv gt0 [] = T) ∧ (∀h t. rv gt0 (h::t) = (∀s. 0 ≤ h s) ∧ rv gt0 t)

For n AND and n OR, rule 3 is verified based on some properties of the D AND
and D OR gates. For VOT-gate, we use the VOT (1/n) property (Theorem 25)
that replaces the VOT-gate with the n OR gate. Finally, we verify rule 3 for
n PAND using its definition and some list and extreal numbers properties.

Left-flattening of AND-/OR-/PAND-gates (Rule 5)

Theorem 8. � ∀L1 L2.

rv gt0 (L1 ++ L2) ⇒ (n AND (n AND L2::L1) = n AND (L2 ++ L1))
Theorem 9. � ∀L1 L2. n OR (n OR L2::L1) = n OR (L2 ++ L1)
Theorem 10. � ∀L1 L2.

rv gt0 (L1 ++ L2) ⇒(n PAND (n PAND L2::L1) = n PAND (L2 ++ L1))

In order to verify Theorem 8, we first verify the n AND append property that
would split the AND of two appended lists as:

Lemma 2. � ∀L1 L2.

rv gt0 (L1 ++ L2) ⇒ (n AND (L1 ++ L2) = D AND (n AND L1)(n AND L2))

where ++ is a list operator used to append two lists. We verify Theorem 8 by first
rewriting n AND L2::L1 as [n AND L2]++L1, where :: is a list operator used to
add an element to a list, which in the considered case is n AND L2. Then, we use
Lemma 2 to rewrite the left hand side of Theorem 8 to D AND (n AND [n AND
L2])(n AND L1) and use Theorem 4 to verify Theorem 8. In a similar way, we
verify Theorem 9 by verifying a lemma for appending two lists with n OR as:

Lemma 3. � ∀L1 L2. n OR (L1 ++ L2) = D OR (n OR L1)(n OR L2)

For the left-flattening property of the n PAND gate, we first verify a lemma
that rv gt0 L⇒ ∀s. 0 ≤ n PAND L s, which states that the output of the
n PAND gate is greater than or equal to 0 if the inputs follow the same con-
dition. Theorem 10 is then verified based on the previous lemma, induction on
the list argument and some P AND and list properties.

Identical leftmost successors of AND, OR or PAND (Rule 7)

Theorem 11. � ∀x L. n AND (x::x::L) = n AND (x::L)

Theorem 12. � ∀x L. n OR (x::x::L) = n OR (x::L)
Theorem 13. � ∀x L. rv gt0 [x] ⇒ (n PAND (x::x::L) = n PAND (x::L))

Theorems 11 and 12 are verified based on the definitions of n AND and n OR
with the associativity and idempotence of D AND and D OR gates. Theorem 13
requires verifying that the output of a 2-input PAND-gate (P AND defined in
Sect. 3) with an input that already failed (ALWAYS) as the left input fails with
the failure of the second (right) input.

Formal Verification of Rewriting Rules for DFTs 525

Lemma 4. � ∀X. (∀s. 0 ≤ X s) ⇒ (P AND ALWAYS X = X)

Finally, we verify the idempotence property of the P AND gate.

Lemma 5. � ∀X. P AND X X = X

Subsumption of OR-gates by AND-gates (Rule 8)

Theorem 14. � ∀X Y. D AND X (D OR X Y) = X

Subsumption of AND-gates by OR-gates (Rule 9)

Theorem 15. � ∀X Y. D OR X (D AND X Y) = X

Distributing OR-gates over AND-gates (Rule 10)

Theorem 16. � ∀X Y Z. D OR (D AND X Y)(D AND Y Z) = D AND (D OR X Z) Y

We verify the rules 8–10 that are concerned with the standard axioms of
Boolean algebra based on basic properties of D AND and D OR gates, such as the
commutativity and distributivity of the AND over the OR.

OR-gates with fail-safe (NEVER) successors (Rule 11)

Theorem 17. � ∀L1 L2. n OR (L1 ++ [NEVER] ++ L2) = n OR (L1 ++ L2)

OR-gates with already failed (ALWAYS) successors (Rule 12)

Theorem 18. � ∀L1 L2.

rv gt0 (L1 ++ L2) ⇒ (n OR (L1 ++ [ALWAYS] ++ L2) = ALWAYS)

Rewrite rules 11–14 deal with scenarios that include fail-safe (NEVER) or
CONST(⊥), and failed (ALWAYS) or CONST(�).

For Theorem 17, we use Lemma 3 and the definition of n OR with the property
stating that ∀X. D OR X NEVER = X. We verify Theorem 18 based on Lemma 3
and the definition of n OR along with the following lemma:

Lemma 6. � ∀X. (∀s. 0 ≤ X s) ⇒ (D OR X ALWAYS = ALWAYS)

Then, we verify that the output of the n OR is greater than or equal to 0 if
the inputs are all greater than or equal to 0. Theorem 18 is then verified using
the previous lemmas and some properties of the D OR gate.

AND-gate with a fail-safe (NEVER) successor (Rule 13)

Theorem 19. � ∀L1 L2.

rv gt0 (L1 ++ L2) ⇒(n AND (L1 ++ [NEVER] ++ L2) = NEVER)
Theorem 20. � ∀L. rv gt0 L ⇒ (n PAND (L ++ [NEVER]) = NEVER)

Theorem 21. � ∀L. rv gt0 L ⇒ (n PAND (NEVER::L) = NEVER)
Theorem 22. � ∀L1 L2.

rv gt0 (L1 ++ L2) ⇒(n PAND (L1 ++ [NEVER] ++ L2) = NEVER)

526 Y. Elderhalli et al.

We verify Theorem 19 using Lemma 2 and some properties for the D AND,
such as the commutativity property and ANDing with NEVER.

We verify this rule for PAND-gate by verifying two cases. Firstly, we verify
that the output of the PAND cannot fail if the NEVER input is the rightmost input
(Theorem 20). This is mainly verified based on some list properties to manipu-
late rv gt0 along with the left flattening property of the PAND (Theorem 10).
Similarly, we verify the second case when the left most input of the PAND-gate is
fail-safe (Theorem 21). Finally, we verify a generic property, where the fail-safe
input can be at any position (Theorem 22).

AND-gate with a failed (ALWAYS) element as successor (Rule 14)

Theorem 23. � ∀L. rv gt0 L ⇒ (n AND (ALWAYS::L) = n AND L)

Theorem 24. � ∀L. rv gt0 L ⇒ (n PAND (ALWAYS::L) = n PAND L)

Theorem 23 is verified using the definition of the n AND gate with the property
that the output of the gate is greater than or equal to 0 if the inputs satisfy the
same condition. We verify Theorem 24 based on the definition of the n PAND and
the idempotence property of the PAND-gate.

The VOT-gate can behave as an OR-gate, when k = 1 (Rule 15), and as an
AND-gate, when k equals the number of its inputs (Rule 16). The verification
details of these rules are listed below.

Voting (1/n) is an OR-gate (Rule 15)

Theorem 25. � ∀L.
ALL DISTINCT L ∧ rv gt0 L ⇒ (k out n gate 1 L = n OR L)

As mentioned previously, the voting gate is defined as the OR of a list and
each element in the list is the AND of another list of k elements. In order to verify
Theorem 25, we need to use the commutativity property of the n OR gate (Theo-
rem 2), i.e, we need to verify that the list of the n OR in the voting gate definition
(MAP (λa. n AND (SET TO LIST a))(MAP (λa. {a}) L)) and the input list L
possess the permutation property when k = 1. Therefore, we first verify that
the list generated from k out 1 L is the permutation of the list MAP (λa. {a})
L. We need to recall that MAP (λa. {a}) L generates another list that has all
elements from the input list L but as sets. Then, we verify that the list generated
from applying the n AND to the list of k out 1 L is the permutation of applying
n AND to MAP (λa. {a}) L. We also verify the following property:

Lemma 7. � ∀L. rv gt0 L ⇒
PERM (MAP (λa. n AND (SET TO LIST a)) (MAP (λa. {a}) L)) L

Finally, we use these verified properties of permutation and the commutativ-
ity property of n OR to verify Theorem 25.

Formal Verification of Rewriting Rules for DFTs 527

Voting (n/n) is an AND-gate (Rule 16)

Theorem 26. � ∀L.
ALL DISTINCT L ⇒ (k out n gate (LENGTH L) L = n AND L)

Theorem 26 is used when k equals the length of the input list (LENGTH L),
i.e., VOT (n/n), and n is the number of inputs of the gate. In this case, the
VOT-gate acts as an AND-gate. We verify this by first rewriting using the VOT-
gate and k out definitions. Then, we verify that {s| s ⊆ set L ∧ (CARD s
= LENGTH L)} = {set L}. This way the original expression of the VOT-gate
can be reduced to n OR [n AND (SET TO LIST (set L))]. Then, we verify that
PERM L (SET TO LIST (set L)), which means that the original list and the list
generated from the set of the original list are the permutation of each other. This
is a consequence of using set L in the formal definition of the VOT-gate, which
requires the added condition that the elements in the original list are distinct,
i.e., they are not equal or repeated. This condition is added using the HOL pred-
icate ALL DISTINCT L. Finally, we verify Theorem 26 using the commutativity
property of the AND (Theorem 1) and the definition of n OR.

Rewrite Rules for PAND-gates. Rules 18–23 deal with PAND-gates that
require considering the order of the inputs.

Representing AND-gate using OR- and PAND-gates (Rule 18)

Theorem 27. � ∀X Y. D AND X Y = D OR (P AND X Y) (P AND Y X)

Conflicting PAND-gates with independent successors (Rule 19)

Theorem 28. � ∀X Y.

(∀s. ALL DISTINCT [X s; Y s]) ⇒ (D AND (P AND X Y) (P AND Y X) = NEVER)

We verify Theorems 27 and 28 based on the definitions of D AND, D OR and
P AND gates and some properties of the extreal numbers. Note that the added
condition for rule 19 is that the inputs are distinct (ALL DISTINCT), i.e., they
cannot fail simultaneously. This results from the fact that the inputs are indepen-
dent (there is no common cause of failure) and they possess continuous failure
distributions. Therefore, rule 19 cannot be applied unless this context restriction
is ensured using this assumption.

PAND-gate with a PAND-successor (Rule 20)

Theorem 29. � ∀B C1 C2 L. rv gt0 (L ++ [B; C1; C2])⇒
(n PAND ([B; P AND C1 C2] ++ L) =
D AND (P AND C1 C2) (n PAND ([B; C2] ++ L)))

We verify Theorem 29 based on manipulating the input lists and the PAND
appended with a single element lemma, which we verify as:

528 Y. Elderhalli et al.

Lemma 8. � ∀x L. rv gt0 L ⇒ (n PAND (L ++ [x]) = P AND (n PAND L) x)

Based on Lemma 8 and list induction and manipulation, we verify that
the left-hand-side of Theorem 29 equals: P AND(D AND(P AND C1 C2)(n PAND
(B::C2::L))) x, where x is the additional element generated through induc-
tion. Then, we verify a property stating that the time of failure of the PAND-gate
should be greater than or equal to the failure time of any of its inputs, since it
is required that the failure to occur from left to right.

PAND-gate with a first OR-successor (Rule 21)

Theorem 30. � ∀X Y L. rv gt0 [X; Y] ⇒
(n PAND (D OR X Y::L) = D OR (n PAND (X::L)) (n PAND (Y::L))

To verify Theorem 30, we first apply induction to the input argument and
rewrite using the rule of n PAND with a single successor. Then, we use the def-
initions of the P AND, n PAND and some simplification theorems, such as P AND
ALWAYS X = X. Using some list properties, such as applying a function to two
appended list using FOLDL (we need to recall that the definition of n PAND is
based on FOLDL), we reach a point where the whole goal is similar to and can be
verified using the following lemma:

Lemma 9. � ∀X Y Z. P AND (D OR X Y) Z = D OR (P AND X Z)(P AND Y Z)

PAND-gate with ALWAYS as non-first successor (Rule 23)

Theorem 31. � ∀L1. L1 	= [] ∧ (∀x. MEM x L1 ⇒ ∀s. 0 < x s) ⇒
∀ L2. n PAND (L1 ++ [ALWAYS] ++ L2) = NEVER

Theorem 31 shows that if the inputs to the left of the input that already failed
(ALWAYS) do not fail from the beginning, i.e., their time of failure is greater than
0, then the output of the n PAND can never fail. Therefore, we add the condition
that the inputs to the left (list L1) are greater than 0 using ∀x. MEM x L1 ⇒
∀s. 0 < x s. We verify Theorem 31 using induction over list L1. After some
basic list and extreal theory based reasoning, we reach the step for the left-
hand-side:
FOLDL (λa b. P AND a b)

(P AND (FOLDL(λa b. P AND a b) h L1) ALWAYS) L2

where h is the appended element that results from induction. We verify that
P AND (FOLDL(λa b. P AND a b) h L1) ALWAYS = NEVER, which can be done
if the first input of the P AND is greater than 0. We verify the following property:

Lemma 10. � ∀s L. (∀x. MEM x L ⇒ ∀s. 0 < x s) ⇒
∀h. 0 < h s ⇒ 0 < FOLDL (λa b. P AND a b) h L s

Formal Verification of Rewriting Rules for DFTs 529

This lemma basically means that if we have a list of inputs and an additional
element, h, that are greater than 0, then the result of applying P AND using
FOLDL is also greater than 0. Using this lemma, the left hand side is reduced to
FOLDL (λa b. P AND a b) NEVER L2. Finally, we use the following lemma to
verify the Theorem 31.

Lemma 11. � ∀L. FOLDL (λa b. P AND a b) NEVER L = NEVER

This lemma indicates that if we apply P AND to a list of inputs with an
element NEVER at the beginning, then the output equals NEVER

Non-structural Rules. The BEs that are not connected to the given DFT
can be safely removed. This is already implicitly embedded in the current DFT
formalization, as we are verifying the rewrite rules by proving that the time of
failure before and after rewriting remains the same. Therefore, if the BEs are not
connected to the DFT, this means that they are not affecting the time of failure
of the top element and thus they can be removed in the verification process. Since
DFT gates are modeled as time-to-failure functions, merging BEs is also already
embedded in the DFT formalization. For example, the OR-gate is modeled using
the min function. This means that the inputs of the OR-gate are merged and the
output of the OR-gate can be replaced with the min function.

We illustrate the usage of the verified rules on the example of Fig. 3:

Theorem 32. � ∀.c d f

P AND (D AND c (D OR c d))(D AND d f) = P AND c (D AND d f)

In this section, we presented the formal definitions and proofs of the rewriting
rules in [10], which we believe is a novel contribution as details about how to
mathematically conduct these proofs are not available in [10]. In fact, in [10], the
correctness of the rewrite rules is described inexplicitly based on the behavior of
DFT gates rather than their formal mathematical models as presented in this
paper. It is worth noting that our formal definitions and verified lemmas allowed
verifying several DFT rewriting rules that can be used with tools that simplify
DFTs prior to the analysis. In addition, verifying these rules represent the first
step towards formally verifying tools, such as Storm, that support DFT analysis
and use these rewriting rules. The HOL4 script for these rules and their lemmas
is comprised of about 1500 lines and required about 80 h to develop. The script
is available at [5].

6 Conclusions

In this paper, we provided the formal verification of DFT rewriting rules using
the HOL4 theorem prover. These rules enable simplifying DFTs before per-
forming the analysis through tools, such as the Storm model checker. In order
to verify the rules, we formally defined n-ary gates, such as AND, OR, PAND
and VOT-gates and verified several lemmas based on these definitions and the

530 Y. Elderhalli et al.

available DFT theory in HOL4. We mainly verified DFT rules that deal with
the static gates (AND, OR & VOT-gates) and the PAND-gate. The rules include
some known properties, such as the commutativity of the static gates. Moreover,
we verified some more complex rules that deal with PAND with different input
scenarios. The formal verification of the rewriting rules in the DFTs analysis
adds the confidence level of the results of the tools that use them. We plan to
extend this work to verify rewriting rules that include Functional DEPendency
(FDEP) and Spare gates as well. This work can be considered as a first milestone
for formally verifying automated DFT analysis tools such as Storm.

Acknowledgments. The authors would like to thank Sebastian Junges, from RWTH
Aachen University, for the discussions and comments on the rewrite rules.

References

1. Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic fault tree analysis using
input/output interactive Markov chains. In: Proceedings of DSN, pp. 708–717.
IEEE (2007)

2. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

3. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Fault trees and sequence dependencies. In:
Proceedings of RAMS, pp. 286–293 (1990)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

5. Elderhalli, Y.: DFT rewriting rules: HOL4 script, Concordia University, Mon-
treal, QC, Canada (2019). http://hvg.ece.concordia.ca/code/hol/DFT-rewrite/
index.php

6. Elderhalli, Y., Ahmad, W., Hasan, O., Tahar, S.: Probabilistic analysis of dynamic
fault trees using HOL theorem proving. J. Appl. Log. 6, 467–509 (2019)

7. Elderhalli, Y., Hasan, O., Ahmad, W., Tahar, S.: Formal dynamic fault trees
analysis using an integration of theorem proving and model checking. In: Dutle,
A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 139–156.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5 10

8. Ghadhab, M., Junges, S., Katoen, J., Kuntz, M., Volk, M.: Safety analysis for
vehicle guidance systems with dynamic fault trees. Reliab. Eng. Syst. Saf. 186,
37–50 (2019)

9. HOL4 (2019). https://hol-theorem-prover.org/
10. Junges, S., Guck, D., Katoen, J., Rensink, A., Stoelinga, M.: Fault trees on a

diet: automated reduction by graph rewriting. Form. Asp. Comput. 29(4), 651–
703 (2017)

11. Junges, S.: Simplifying dynamic fault trees by graph rewriting. Master thesis,
RWTH Aachen University (2015)

12. Merle, G.: Algebraic modelling of dynamic fault trees, contribution to qualitative
and quantitative analysis. Ph.D. thesis, ENS Cachan, France (2010)

https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/3-540-31188-2
http://hvg.ece.concordia.ca/code/hol/DFT-rewrite/index.php
http://hvg.ece.concordia.ca/code/hol/DFT-rewrite/index.php
https://doi.org/10.1007/978-3-319-77935-5_10
https://hol-theorem-prover.org/

Formal Verification of Rewriting Rules for DFTs 531

13. Mhamdi, T., Hasan, O., Tahar, S.: On the formalization of the lebesgue integration
theory in HOL. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol.
6172, pp. 387–402. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14052-5 27

14. Mhamdi, T., Hasan, O., Tahar, S.: Formalization of entropy measures in HOL. In:
van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS,
vol. 6898, pp. 233–248. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22863-6 18

15. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015)

16. Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J.:
Fault Tree Handbook with Aerospace Applications. NASA Office of Safety and
Mission Assurance (2002)

17. Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model
checking techniques. IEEE Trans. Ind. Inform. 14(1), 370–379 (2018)

https://doi.org/10.1007/978-3-642-14052-5_27
https://doi.org/10.1007/978-3-642-14052-5_27
https://doi.org/10.1007/978-3-642-22863-6_18
https://doi.org/10.1007/978-3-642-22863-6_18

Partially Bounded Context-Aware
Verification

Luka Le Roux(B) and Ciprian Teodorov(B)

Lab-STICC, MOCS, CNRS UMR 6285, ENSTA Bretagne, Brest, France
{luka.leroux,ciprian.teodorov}@ensta-bretagne.fr

Abstract. Model-checking enables the formal verification of software
systems. Powerful and automated, this technique suffers, however, from
the state-space explosion problem because of the exponential growth in
the number of states with respect to the number of interacting compo-
nents. To address this problem, the Context-aware Verification (CaV)
approach decomposes the verification problem using environment-based
guides. This approach improves the scalability but it requires an acyclic
specification of the verification guides, which are difficult to specify with-
out losing completeness.

In this paper, we present a new verification strategy that generalises
CaV while ensuring the decomposability of the state-space. The app-
roach relies on a language for the specification of the arbitrary guides,
which relaxes the acyclicity requirement, and on a partially-bounded ver-
ification procedure.

The effectiveness of our approach is showcased through a case-study
from the aerospace domain, which shows that the scalability is main-
tained while easing the conception of the verification guides.

1 Introduction

Since its introduction in the early 1980s, model-checking [11,23] provides an
automated formal approach for the verification of complex requirements of hard-
ware and software systems. This technique relies on the exhaustive analysis of all
states in the system to check if it correctly implements the specifications, usually
expressed using temporal logics. However, because of the internal complexity of
the studied systems, model-checking is often challenged with an unmanageable
large state-space, a problem known as the state-space explosion problem [8,21].
Numerous techniques [1,7,9,12,28,31] have been proposed to reduce the impact
of this problem effectively pushing the inherent limits of model-checking further
and further.

Amongst these techniques, the Context-aware Verification (CaV) approach
[12,14,16] proposes to separately capture the open system and its environment.
From the specifications, the first step of CaV is to formally capture the open
system and its contexts (environment and property). Each context and the open
system are the inputs to a verification task. From there, if one or several tasks

c© Springer Nature Switzerland AG 2019
P. C. Ölveczky and G. Salaün (Eds.): SEFM 2019, LNCS 11724, pp. 532–548, 2019.
https://doi.org/10.1007/978-3-030-30446-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30446-1_28&domain=pdf
https://doi.org/10.1007/978-3-030-30446-1_28

Partially Bounded Context-Aware Verification 533

do not scale, CaV offers different automated context-driven techniques for fur-
ther problem decomposition [13] and for efficient memory management during
reachability [26].

This approach was applied to realistic case studies from the medical [5], auto-
motive [25], and aerospace [15,24] domains with very promising results. However,
the CaV approach imposes an acyclicity constraint on the verification contexts,
which limits expressiveness and renders the approach difficult to use in practice.
This limitation impacts the verification engineers who need to manually extract
and validate an acyclic model from the environment model. In many cases, the
environment behaviours are inherently cyclic and require a verbose and error-
prone manual unrolling up to an arbitrarily-chosen depth. Furthermore, when
an acyclic model is available, the designer needs to prove its completeness with
respects to the complete environment model, problem which is not addressed in
the CaV literature.

In this paper, we address these problems through a new verification strat-
egy that generalises CaV. Most notably it enables the specification of cyclic
interaction scenarios and uses the closed system as its entry point. The app-
roach is based on an eXtended Guide Description Language (xGDL) and on
a partially-bounded verification strategy. The later automatically unrolls these
cyclic verification guides (previously referred as context1) to an arbitrary depth.
Through this approach the verification engineer is relieved of two tedious tasks:
(a) extracting the acyclic interaction scenarios from a previously defined envi-
ronment model, and (b) proving the completeness of the extracted scenarios
with respect to the full environment model. Moreover, this approach explicitly
exposes the unrolling depth of the verification guides as a sufficient completeness
criteria for the verification. Showing that this bound is sufficient for completeness
may be simpler than proving that the length of all paths is sufficient. The core
of any model-checking strategy, the reachability analysis, up to the reachability
diameter of the system, is necessary for the verification of safety and bounded-
liveness properties. In general, our approach aims at the verification of arbitrary
properties, however, in the context of this paper we focus on the reachability
analysis.

The approach is validated on an aircraft Landing Gear System (LGS), intro-
duced in [6]. Through this case-study we emphasis: (a) the usage of xGDL for
modelling verification guides, used for closing the system for verification, and for
guiding the reachability procedure; (b) a state-space decomposition procedure
based on the syntactic rewriting of the verification guides, and; (c) some reach-
ability results, obtained through the complementarity of our partially-bounded
reachability analysis in conjunction with the CaV state-space decomposition
strategies.

Section 2 introduces the related work focusing on the CaV approach and its
similarities to Bounded Model Checking (BMC). Section 3 describes our main

1 Contexts and guides: CaV uses the open system (no environment) and a context
as an entry point. The generalisation presented in this paper uses the closed system
instead and restrict its environment through a [verification] guide.

534 L. Le Roux and C. Teodorov

contribution, the semantics of the guide description language, the partially-
bounded verification procedure and discusses the completeness conditions.
Section 4 presents LGS system and the associated xGDL model along with the
obtained results. Section 5 concludes this study introducing some future research
directions.

2 Background and Related Work

Model checking is a technique that relies on building a finite model of a system of
interest, and checking that a desired property, typically specified as a temporal
logic formula, holds for that model. Since the introduction of model-checking in
the early 1980s [23], several model-checker tools have been developed to help the
verification of concurrent systems [2,18,31].

However, while model-checking provides an automated rigorous framework
for formal system validation and verification, and has successfully been applied
on industrial systems it suffers from the state-space explosion problem. This is
due to the exponential growth of the number of reacheable states with respect
to the number of interacting components. To enable the verification of ever
larger systems, numerous research efforts are focused on reducing the impact of
the state-space explosion problem. Some of these approaches use efficient data-
structures such as BDD [7] for achieving compact state-space representation.
Other approaches prune the state-space using techniques such as partial-order
reduction [17,22,28] and symmetry reduction [9] that exploit fine-grain transition
interleaving symmetries and global system symmetries respectively.

Complementary to these, are techniques based on the specification of environ-
ments relevant to the studied system [20,24,27,30]. These approaches propose
tools that generate environments, based either on assumptions on the system
and its interactions with the environment [20,27], or on the properties that need
to be verified [30]. Amongst these, the Context-aware Verification (CaV) pro-
vides a structured approach for capturing the verification problem through a
number of independent verification contexts (referred simply as contexts in the
following), which explicitly represent the restricted model behaviours along with
the requirements to be verified. The model is decomposed in two components:
the system-under-study and the environment. While the system specification is
viewed as a black-box that never changes during the verification, the environ-
ment model is decomposed in multiple acyclic interaction scenarios, expressed
with the Context Definition Language (CDL). The verification contexts are cre-
ated by associating to each interaction scenario the relevant properties. The
verification process iteratively composes these contexts with the system to ver-
ify the associated properties. The CaV approach imposes a formal, methodical
decomposition and classification of large requirements sets, a first step in over-
coming the state-space explosion problem. To guarantee the exhaustiveness of
the analysis, the verification should be accompanied by a completeness proof
showing that all behaviours unrolled by the guide are sufficient.

CaV relies on CDL formalism to specify the verification guides separately
from the system. The core concept of the CDL language is the context, which

Partially Bounded Context-Aware Verification 535

associates the requirements to be verified to a verification guide (an acyclic
component communicating asynchronously with the system). The interaction of
the system with the environment is specified through a number of interaction
scenarios. The interleaving of these interaction scenarios generates a transition
system representing all the bounded behaviours of the environment, which can
be fed as input to model-checkers. Moreover, CDL enables the specification of
requirements about the system’s behaviour as properties that are verified by the
OBP Observation Engine. These properties expressed through property-pattern
definitions [14] are based on events (e.g. variable x changed), predicates, and
synchronous observers.

Techniques such as bounded model checking [10] (BMC) exploit the observa-
tion that in many practical settings the property verification can be done with
only a bounded reachability analysis. Hence, in the absence of a full-coverage
proof, these approaches cannot guarantee the absence of errors, but only their
presence. The usage of explicit acyclic behaviors, and the CaV approach can
be considered as the explicit-state equivalent of symbolic BMC. Moreover, as
opposed to BMC, the usage of acyclic behaviors offers more flexibility for spec-
ifying the “bounds” of the analysis, and the context can be seen as a high-level
skeleton which drives the analysis through a complex state-space partition.

The xGDL language, introduced in this study focuses on the specification of
the verification guides. This study generalizes the CaV approach by enabling the
specification of cyclic verification guides, which releases the need of extracting
acyclic models from the environment. Moreover, as opposed to the guide specifi-
cation in the CDL language, the xGDL specifications are semantically decoupled
from the system. During verification, the xGDL specifications are synchronously
composed with the system through a labeling function.

By enabling the definition of acyclic verification guides, this study improves
the applicability of the CaV approach. Prior to the verification step the verifi-
cation guides are unrolled to a predefined bound, similarly to BMC. The main
difference stems however in the scope of the bound. For BMC the bound is
global over the system and its environment, in our approach the bound is par-
tial, applying only to the verification guide.

3 A Language for Context Guided Reachability: xGDL

The approach proposed in this paper supposes a closed transition system as an
entry point. By definition, a closed system includes behaviours from both the
verification target and its environment. This ensures compatibility with a wide
range of verification techniques with the same entry point, independently of the
formalism used for property specification.

In addition, our approach requires a labelling function (a total and determin-
istic relation) over the closed system transitions with the co-domain in A ∪ {τ},
where A is the set of observable actions involving the environment (referred later
as interactions) and where τ denotes the lack thereof.

A xGDL specification defines a language over A or a subset of A. The
synchronous composition of the closed system and a xGDL specification thus

536 L. Le Roux and C. Teodorov

restricts the sequences of possible interactions to those accepted by the specified
language.

Section 3.1 provides the abstract syntax of xGDL, Sect. 3.2 provides its oper-
ational semantics through inference rules, Sect. 3.3 explicitly defines the compi-
lation of a xGDL specification to a verification guide (a deterministic finite
automaton, DFA), Sect. 3.4 details how a verification guide and the closed tran-
sition system to be verified are synchronously composed.

3.1 xGDL Abstract Syntax

A xGDL verification guide defines a language of interactions. Those are drawn
from a finite alphabet A. The syntax of xGDL is given by the following BNF-style
grammar:

⊥ | a | C;C | C�C | C‖C |
C::= C? | C + | C ∗ | C{i, j} |

{i, j} of [C1, ..., Cn]

C ranges over the set E of terms of the xGDL language, a ranges over the
alphabet A of observable interactions, and i, j ∈ N with i ≤ j.

According to the previous grammar, an xGDL specification is one of the fol-
lowing: – ⊥, the empty term; – a, an observable interaction; – C;C, a sequential
composition of two terms; – C�C, a non-deterministic choice between two terms;
– C‖C, a parallel composition, by unrestricted interleaving of two terms; – C?,
an optional term – C+, an unbounded replication of a term, with at least one
occurrence; – C∗, an unbounded replication of a term, with potentially 0 occur-
rences; – C{i, j}, a bounded replication of the a term with at least i occurrences
and at most j; – {i, j} of [C1, ..., Cn], possible permutations of length at least i
to at most j among a set of terms.

3.2 xGDL Operational Semantics

xGDL operational semantics is defined via inference rules. The notation C
a−→ C ′

denotes a tuple (C, a,C ′) ∈ E × {A ∪ τ} × E , where A is the alphabet of
interactions (observable actions initiated by the closed system’s environment),
τ denotes the lack thereof and E is the set of all possible terms. If C

a−→ C ′ with
a 	= τ , then C can be translated into C ′ upon executing the interaction a. If
C

τ−→ C ′, then C and C ′ can be said to be semantically equivalent.

a ∈ A+

a
a−→ ⊥

[atom]
a ∈ A+

a;C
a−→ C

[seq1]
C1

a−→ C′
1 ∧ C1 �= a

C1;C2
a−→ C′

1;C2

[seq2]

C1�C2
τ−→ C1

[alt1]
C1�C2

τ−→ C2

[alt2]
C1

a1−→ C′
1

C1‖C2
a1−→ C′

1‖C2

[par1]

C2
a2−→ C′

2

C1‖C2
a2−→ C1‖C′

2

[par2]
⊥‖C τ−→ C

[par3]
C‖⊥ τ−→ C

[par4]

Partially Bounded Context-Aware Verification 537

Atom, Sequence, Alternative and Parallelism. If the term is a single interaction
a, it is executed and it results in the empty term ⊥ (a a−→ ⊥, rule atom).

If the term is a sequence of the form a;C, the interaction a is executed and
it results in the term C (a;C a−→ C, rule seq1). If the term is a sequence of the
form C1;C2 such that C1 is not a single interaction and such that ∃(a,C ′

1) ∈
{A ∪ τ} × E , C1

a−→ C ′
1, then the interaction a is executed and it results in the

term C ′
1;C2 (C1;C2

a−→ C ′
1;C2, rule seq2).

If the term is a non-deterministic choice of the form C1�C2, it can either
result in C1 (C1�C2

τ−→ C1, rule alt1) or C2 (C1�C2
τ−→ C2, rule alt2). In both

cases, no interaction is executed.
Lastly, if the term is a parallel composition of the form C1‖C2 with

∃(a1, C
′
1) ∈ {A ∪ τ} × E , C1

a1−→ C ′
1 and ∃(a2, C

′
2) ∈ {A ∪ τ} × E , C2

a2−→ C ′
2, it

can either result in C ′
1‖C2 (C1‖C2

a1−→ C ′
1‖C2, rule par1) or C1‖C ′

2 (C1‖C2
a2−→

C1‖C ′
2, rule par2) by executing the corresponding interaction. If C1 = ⊥ or

C2 = ⊥, it results in the leftover term (rules par3 and par4).

C?
τ−→ ⊥�C

[opt]
C∗ τ−→ (C;C∗)?

[star]

C+
τ−→ C;C∗

[plus]
0 < i ≤ j

C{i, j} τ−→ C;C{i − 1, j − 1}
[rep1]

i = 0 ∧ j > 0

C{i, j} τ−→ (C;C{0, j − 1})?
[rep2]

i = j = 0

C{i, j} τ−→ ⊥
[rep3]

Replications. If the term is an optional term of the form C?, it is semantically
equivalent to ⊥�C, meaning it can either result in ⊥ or C (C? τ−→ ⊥�C, rule
opt).

If the term is an unbounded replication of the form C∗, it is semantically
equivalent to (C;C∗)? (recursive definition), meaning it results either in ⊥ or
C;C∗ (C∗ τ−→ (C;C∗)?, rule star).

If the term is an unbounded replication with at least one occurrence
of the form C+, it is semantically equivalent to C;C∗ (C+ τ−→ C;C∗, rule plus).

The bounded replication C{i, j} is defined by the rules rep1, rep2 and
rep3. The first applies as long as i > 0, decrements both i and j and ensures
at least i occurrences of C. The second applies for i = 0 ∧ j > 0, decrements j
and ensures at most j occurrences of C. The last one applies for i = j = 0 and
results in ⊥ (termination).

0 < i ≤ j ≤ n ∧ ∀k, 1 ≤ k ≤ n

{i, j} of [C1, ..., Cn]
τ−→ Ck; {i − 1, j − 1} of [C1, ..., Ck−1, Ck+1, ..., Cn]

[perm1]

0 = i < j ≤ n ∧ ∀k, 1 ≤ k ≤ n

{i, j} of [C1, ..., Cn]
τ−→ (Ck; {0, j − 1} of [C1, ..., Ck−1, Ck+1, ..., Cn])?

[perm2]

0 = i = j

{i, j} of [C1, ..., Cn]
τ−→ ⊥

[perm3] {i, j} of []
τ−→ ⊥

[perm4]

538 L. Le Roux and C. Teodorov

Permutations. The permutation operator, as defined by the above rules, repre-
sents the set of possible sequences made of at most one occurrence of each of
the terms from the provided set [C1, ..., Cn] of size i to j (unless n < i or n < j,
as the size can not exceed n). The notation [C1, ..., Ck−1, Ck+1, ..., Cn] (as found
in rule perm2) stands for the set [C1, ..., Cn] minus the term Ck with i ≤ k ≤ j.
Rules perm3 and perm4 ensure termination in cases where j = 0 and where the
set of terms to choose from is empty, respectively.

Prefix Closed Semantics. Defined this way, xGDL syntax and semantics match
those of regular expressions extended with parallelism and permutations. How-
ever, a xGDL specification defines the language of all possible sequences of
interactions. All prefixes of a term accepted by a xGDL specification (including
⊥) are also members of this language. Thus, unlike regular expressions, xGDL
semantics is prefix closed.

3.3 xGDL Compilation

A xGDL specification defines a language over the set of possible interactions
A. To ease subsequent manipulations (such as the composition with the closed
system as defined Sect. 3.4), a xGDL specification is compiled to a practical
verification guide, a deterministic finite automaton (DFA).

Fig. 1. The xGDL compilation flow.

The compilation flow, presented in Fig. 1, starts with a xGDL specification.
By applying the semantic rules defined Sect. 3.2 the specification is straight-
forwardly converted to a non-deterministic finite automaton (NFA). The result-
ing NFA is then converted to a DFA. For this purpose, transitions carrying no
interactions (τ) are considered as ε-transitions and are thus removed.

Lastly, this DFA is minimised. The result represents the compiled verification
guide. The equivalence between the initial xGDL specification and the compiled
verification guide follows directly from well known results in the automaton
theory.

3.4 xGDL Guide and Closed System Composition

Given a closed transition system S, a set of interactions A, a labelling function
L over A ∪ {τ} and a xGDL verification guide G specified over A, the following
defines the result their composition.

First, some additional notations are introduced:

– G × S denotes the resulting transition system;
– G0, S0 and G0 ×0 S0 denote the initial states set of G, S and G × S;
– (g, s) denotes a composite state;
– s

a−→ s′ denotes the existence of a transition such that L(s → s′) = a.

Partially Bounded Context-Aware Verification 539

Intuitively G and S are seen as transition systems labelled over A ∪ {τ} (LTS).
G × S is the result of their synchronous composition with stuttering steps and
A as the vocabulary of synchronous behaviours.

The guide LTS G can be obtained through interpretation of a xGDL expression
as described by the operational semantics (see Sect. 3.2). However, in the fol-
lowing, the DFA obtained after compilation (see Sect. 3.3) is considered instead.
Both are equivalent for this section purpose, but the later being a minimal rep-
resentation (least possible amount of states) it leads to better exploration results
(smaller state space). It also ensures no τ -transitions in G, which eases our def-
initions.

The system LTS S is obtained by labelling each and every transition tS from
the system under study with L(tS) ∈ A ∪ {τ}. A system transition labelled by
a ∈ A carries the execution of the corresponding interaction. A system transition
labelled by τ denotes an internal step free of interactions.

The composition G × S is also a LTS and, as already stated, is obtained by a
synchronous composition (over A) with stuttering steps (τ). The following rules
define its initial states and transitions:

- Initial states: (g0, s0) ∈ G0 ×0 S0 ⇔ g0 ∈ G0 ∧ s0 ∈ S0;
- Stuttering steps: (g, s) τ−→ (g′, s′) ⇔ g = g′ ∧ s

τ−→ s′;
- Synchronisations: a 	= τ , (g, s) a−→ (g′, s′) ⇔ g

a−→ g′ ∧ s
a−→ s′.

Defined as such, G and S mutually constrain one another through their
composition. The existence, in the resulting system, of a transition labelled by
a 	= τ from a state (g, s) implies the existence of transitions labelled by a from
both g and s.

However, most often in practical cases, all states from S are complete over
A. Meaning, for all a ∈ A and all s a system state, there is a transition from
s and labelled by a (possibly modulo some stutters). This is due to A denoting
possible interactions with the systems that can be expected at any time. In these
cases, S does not constrain G in G × S.

Neutral Guide. Given S, A and L, it is always possible to build a neutral guide
1 such that S = 1 × S (where = denotes a strong bi-simulation).

This can be proven by construction of 1 as the guide with one initial state
{g0} and, for all a ∈ A, g0

a−→ g0. This particular guide follows directly from the
xGDL expression (a0�a1� ... �an−1)∗ with A = {a0, a1, ... , an−1}.

Subset of Interactions. It is important to note that, unless otherwise specified,
the absence of references to an interaction within an xGDL specification pro-
hibits that interaction from happening.

In cases where the xGDL specification is intended to be defined over a subset
A′ ⊂ A of interactions, L (the labelling function) has to be filtered so that it
doesn’t label transitions by ignored interactions (in A\A′).

540 L. Le Roux and C. Teodorov

Let L′ be this filtered labelling function with A′ ∪ {τ} as its co-domain, for
all tS (transitions in S):

- L(tS) ∈ A′ ∪ {τ} ⇒ L′(tS) = L(tS); (inside A′ ∪ {τ})
- L(tS) ∈ A\A′ ⇒ L′(tS) = τ (outside A′ ∪ {τ})
In other words, interaction labels in A\A′ are interpreted as τ for the purpose

of the composition and thus system transitions labelled by those are allowed to
stutter (to move independently from the guide).

3.5 Partially Bounded Verification

Using a cyclic verification guide for closing the system is equivalent to the tra-
ditional model-checking process, in which the system is closed with an arbi-
trary environment. The context-aware verification approach showed that model-
checking problems can be easily decomposed using acyclic verification guides to
significantly improve the scalability of model checking. However, CaV is limited
by the acylicity of the verification guides, which are difficult to extract and prove
complete. Bounded model checking on the other hand, is more general and can
be applied directly to model-checking problems. However in practice it is more
often used as test procedure due to the difficulty of proving the completeness
of the analysis. Based on the xGDL language, in this section, we propose a
partially-bounded verification procedure.

Fig. 2. Partially bounded verification flow

The approach, shown in Fig. 2, is similar to bounded model checking, with
the particularity that only the verification guide is bounded. The compiled xGDL
guide is unrolled to a predefined bound, through this unrolling a directed-acyclic
graph (DAG) is obtained satisfying the CaV acyclity requirement. This DAG
guide is then associated to a specification to obtain a CaV verification context.
The model-checking procedure then analyses this verification context in conjunc-
tion with the system (system in the figure). Since the DAG guide is acyclic, both
the recursive state-space decomposition and the PastFree[ze] algorithms used by
the Context-aware Verification approach, can be applied [26].

It should be noted that, in Fig. 2, the verification guide is unrolled prior to the
verification step. This prior unrolling can be seen as the automatic extraction of
an acyclic verification guide from an arbitrary environment. This extraction step,
required by the CaV approach, was previously implicitly done by the designer
during the manual specification of the acyclic verification guide.

Partially Bounded Context-Aware Verification 541

Partially Bounded Verification and Completeness. This methodology is generally
not complete, in the sense that the unrolling of a system along a bounded interac-
tion scenario potentially implies that some states remain undiscovered (e.g. the
states unravelled by a longer scenario). This imposes virtually the same limita-
tion as the bounded model-checking procedures [10]. Namely, that the analysis
should be accompanied by a completeness proof showing that the bound bguide

chosen for the interaction scenario enables the unrolling of its composition with
the system to a depth at least equal to the Completeness Threshold C. More-
over, given a cyclic environment and an arbitrary system, C is an upper bound
on bguide. Hence, if the Completeness Threshold of the composition is known it
is sufficient, but not necessary, to unroll the cyclic environment model to that
depth to achieve completeness.

For the verification of safety properties the completeness threshold is given by
the reachability diameter rd (the minimum number of steps required for reaching
all reachable states) [19].

This partially bounded verification procedure effectively generalises the CaV
approach to arbitrary systems. Based on this new approach, currently we inves-
tigate the possibility to automatically compute the minimal bguide that guaran-
tees that the composition of the interaction scenario with the system reaches
the Completeness Threshold, which provides the necessary conditions for the
completeness proof.

4 Case-Study: The Landing Gear System

This section showcases xGDL on a realistic case-study from the aerospace
domain. In the process, we show that it is well suited for iterative state-space
decomposition during model-checking.

The landing gear system (LGS) specification [6] includes three gears, each
made of several physical parts. These are specified with (continuous) timed con-
straints, sensors and possible failures. Retraction and extension sequences can
be initiated, interrupted and inverted at any time. This system raises a number
of interesting issues during verification, some of which have already been subject
to studies via model-checking [4,15,24,26,29].

The focus, here, is not to illustrate how the system can be translated into an
executable model. Rather, given that the executable model is already provided,
and that the analysis does not scale, this study shows why a language like xGDL
is needed and how it can be used within a verification activity requiring several
iterations.

Section 4.1 provides an overview of the LGS executable model. Section 4.2
illustrates the definition of the xGDL verification guide and how it can be decom-
posed, eventually bounded, to further push the limits of the verification.

542 L. Le Roux and C. Teodorov

4.1 LGS Executable Model

The LGS model is composed of the system-under-study along with the capa-
bilities of its environment, both implemented using timed automatons in Fiacre
language [3].

System-Under-Study. The LGS manages the extension and retraction of a the
landing gears. The physical part includes three landing boxes to the front, the
left, and the right of the plane. A landing box contains the gear itself as well as a
door and hydraulic cylinders. The digital part is responsible of monitoring those
physical components through sensors. If an anomaly is detected, this information
is forwarded to the cockpit through visual indicators.

A more detailed description of this case study can be found in [6]. The Fiacre
implementation of the physical and software parts matches the one proposed and
studied via the CaV approach [24,26].

Table 1. Possible failures and labels

Analog Switch General Electro-Valve
Opened Closed Opened Closed

f11 f12 f21 f22
Door Electro-Valves Gear Electro-Valves

Extension Retraction Extension Retraction
Opened Closed Opened Closed Opened Closed Opened Closed

f31 f32 f41 f42 f51 f52 f61 f62
Front Left Right Front Left Right

Door Gear
f7 f8 f9 f10 f11 f12

Environment Capabilities and System Closure. The pilot can interact with the
system through a handle. Switching its position induces handle events, which
enable the retraction (or extension) sequence.

In addition, a failure may occur at any time. Table 1 lists the possible fail-
ures and labels them for future references. Couples (fn1 , fn2) are exclusive, for
example a door may not be blocked in two different positions.

The environment is modelled as one single state automaton in Fiacre. Each of
its transitions models a capability, meaning one for the handling of the lever and
one per possible failure. This automaton closes the system with its environment
capabilities and is later referred as the system closure automaton.

Assumptions and Restrictions. The analysis is performed under the following
assumptions: (a) the software modules are assumed failure-free. (b) the sensors,
and the interconnect wires are assumed failure-free. (c) the failures are assumed
permanent, such that if an equipment becomes blocked it remains blocked for-
ever.

Partially Bounded Context-Aware Verification 543

Scaling of the Analysis. The resulting state space is much too large2 for explicit
model-checking to scale as is. To address this issue, one can use the fact that at
most three failures may happen in one execution. If the verification holds for all
the valid subsets of three failures, then it holds for the initial problem as well
[15]. Taking into account exclusive failures, there is a total of 720 valid subsets
and, thus, that many verification tasks.

This can be achieved by various means. Each task can have its own model
of the system with different, restricted closure automatons. Parameters can be
added to the system and so on. However, these approaches raise new issues
regarding the production, soundness, maintainability and further analysis of the
various verification tasks. Next section, addresses these issues using the xGDL
formalism for the specification of verification guides, which facilitates the decom-
position of the state-space while providing the basis for proving its completeness.
Moreover, when coupled with the partially-bounded verification procedure, the
acyclicity requirement is met, enabling the use of the CaV-specific algorithms.

4.2 xGDL Verification Guides

Specifying the Verification Guide. To apply our approach, an interaction
alphabet and a labelling function have to be defined over the executable model
introduced in the previous section.

Interaction Alphabet. For this case study, the finite set of interactions considered
are inferred from the environment capabilities as described Sect. 4.1. As such:

A = {handle, f11 , f12 , ..., f61 , f62 , f7, ..., f12}
Labelling Function. A transition from a system state to another involves zero or
one Fiacre transition from the single state automaton modelling the environment
capabilities. If present, the labelling function returns the corresponding label. If
absent it returns τ , denoting the absence of environment interaction.

xGDL Guide Expressions. With the labelling function and its range being now
defined, it is possible to write the xGDL expressions. The following introduces
some useful examples:

name xGDL
- Handles: Gpilot = handle ∗
- One exclusive failure: 1 ≤ n ≤ 6, Fn = fn1�fn2

- One non-exclusive failure: 7 ≤ n ≤ 12, Fn = fn

- At most three failures: Fall = {0, 3} of [F1, ..., F12]
- Considered scope: Gscope = Gpilot ‖ Fall

2 If the system is restricted to failure-free behaviours, it unfolds 3E+5 states. If
restricted to one specific failure, 128Gb of memory is not enough [24,26] (poten-
tially 1E+9 states). For the considered scope (three different failures), those figures
hint for a state space several orders of magnitude higher than 1E+10.

544 L. Le Roux and C. Teodorov

Gpilot is a sequence of any number of handle interactions. The composition of
this guide with the system, as defined in Sect. 3.4, induces an analysis restricted
to the failure free behaviours (since the failures are not included).

Fn matches one failure injection. For n ≤ 6, it references a couple of exclusive
failures in an alternative so that only one or the other may happen.

Fall is a sequence of zero to three failures. The permutation operator is used
to ensure uniqueness (a given failure cannot happen twice).

Gscope is the parallel composition of Gpilot and Fall. Gscope × S covers all the
possible behaviours minus those outside the specification scope [6] (i.e. at most
three unique failures and excludes impossible combinations). In other words,
Gscope is not strictly neutral to the composition as it is limited to one of each
failure and no more than three different ones. However, it precisely and exhaus-
tively captures the system closure required by the specification.

Splitting the Analysis. With the xGDL expressions introduced above,
Gscope × S defines the entire state space, target of the verification. As mentioned
toward the end of Sect. 4.1, its size is prohibitive for the analysis and needs to
be split into smaller, specialised verification tasks.

For this purpose, xGDL can be used to express those through specialised
guides. Each of the 720 subsets of three different failures {fi, fj , fk} (with
fi 	= fj 	= fk) lead to specific xGDL guides:

handle ∗ ‖ {0, 3} of [fi, fj , fk]

Non Intrusive. Using this approach, the system executable model (S) is an
invariant of all the verification tasks, including the initial one (Gscope × S).
This approach does not require custom environment closures nor the modifica-
tion (parameterization) of the system model.

Thus, one can focus on the languages recognised by the various
xGDL expressions to provide a soundness proof of these new verification
tasks. To prove that the language of the initial guide is equal to the union of the
languages of the guides generated after the splitting process is enough for safety
requirements (reachability). For the LGS case study, this is expressed through
the Theorem 1 and its proof.

Theorem 1. language(Gscope) = ∪719
id=0 language(G3

id)
Where G3

id = handle ∗ ‖ {0, 3} of F 3
id with F 3

0 to F 3
719 the 720 valid subsets

of three failures.

Proof. By successive rewriting of the equality right hand size:

0: ∪719
id=0 language(G3

id)
1: language(G3

0 � ... � G3
719)

2: language((handle ∗ ‖ {0, 3} of F 3
0) � ... � (handle ∗ ‖ {0, 3} of F 3

7 19))
3: language(handle ∗ ‖ ({0, 3} of F 3

0 � ... � {0, 3} of F 3
719))

4: language(handle ∗ ‖ {0, 3} of Fall)
5: language(Gscope)

Partially Bounded Context-Aware Verification 545

Step 0 to 1: the union of xGDL expressions languages is equal to the lan-
guage of an alternative over those expressions. Step 1 to 2: unfolding of all the
G3

i . Step 2 to 3: the parallel operator is distributive over the alternative (i.e.
(A‖B)�(A‖C) = A‖(B�C)) Step 3 to 4: the alternative over the length three
permutations of F 3

id subsets is equal to Fall (both strictly recognise all the valid,
length three permutations). Step 4 to 5: per definition of Gscope. QED.

Further Refinements and Bounding the Verification. Model-checking of
any of the 720 guides with three specific failures still did not scale. xGDL offers
the possibility to further refine the verification guides and to partially bound the
verification tasks in the guide specifications.

Table 2. Unrolling bounds required for completeness

Failure f11 f12 f21 f22 f31 f32 f41 f41 f51 f52 f61 f62 f7, f8, f9 f10, f11, f12
Bound 16 16 18 17 20 20 18 20 20 X 18 X 20 20

Similarly to the guide with up to three failures, a guide including exactly one
failure (handle ∗ ‖ {1, 1} of [F1, ..., F12]) can be split into 18 guides:

G1
i = handle ∗ ‖ fi

Bounding those 18 verification tasks (as shown in Sect. 3.5) arbitrarily to 30
interactions allows the analysis to successfully terminate for 16 of these. To prove
completeness, an option is to perform an analysis of the induced clusters of states,
as discussed in [26]. In this case, a cyclic behaviour is detected after 16 to 20
interactions depending on the considered failure. Table 2 shows, for each failure,
the bound required for completeness inferred from this post-mortem analysis.

For failures f52 and f62 (extension and retraction gear electro-valves blocked
in closed position), further refinement is still needed. Since G1

i has exactly one
interaction on the right hand side of the parallel operator, it is equivalent to the
sequence:

G1
i = handle ∗ ; fi ; handle∗

Additionally, for handle∗, bounding the analysis and inferring the bound
required for completeness shows 7 handles are enough to consider before the
eventual failure. This can be captured as:

G1
i ⇔ handle{0, 7} ; fi ; handle∗

This last form can then be decomposed again in 16 different guides of the
form handle{n, n} ; fi ; handle∗ with 0 ≤ n ≤ 7 and fi ∈ {f52 , f62}. For both
failures, the analysis bounded to 30 interactions scales for 0 ≤ n ≤ 4 but would
still require further refinement for n > 4.

546 L. Le Roux and C. Teodorov

The approach proposed in this study allows the use complemen-
tary analysis techniques on the same executable model and its properties.
From this perspective, typically several directions are possible, such as: 1. fur-
ther abstracting the model for symbolic model-checking; 2. exploit symmetry
reduction or partial-order reduction.

Producing the various verification tasks is done without altering the formal
specification of the initial challenge. Moreover, xGDL enables to dispatch the
verification tasks to different, complementary tools.

5 Conclusion and Perspectives

This paper presented a guide description language along with a partially-
bounded context-aware verification procedure. Through the xGDL specifications
the acyclicity requirement imposed by the CaV methodology is lifted, which
bridges the gap between the environment model and the verification guides.
These cyclic verification guides are unrolled to a predefined depth before their
composition with the system, which enables the use of the CaV state-space
decomposition algorithms. The approach was illustrated on a landing gear system
case study. The system/environment interactions where formally captured using
one xGDL guide. Relying on this guide, the verification problem was decom-
posed in 720 sub-problems. This decomposition is accompanied by a coverage
proof realised by rewriting of the guide structure. Most of the one-failure cases
(16 out of 18) where discharged using the partially-bounded verification proce-
dure, which used in conjunction with the PastFree algorithm of CaV provided
the completeness proof, by bi-simulation on the clusters induced by the guide.
The two failing guides, were further rewritten and decomposed (structurally),
and the new form was partially-bounded (syntactically) using the completeness
threshold of the failure free analysis. Currently, we are investigating an online
verification procedure, which unrolls the guide during the verification while at
the same time enabling the recursive state-space decomposition.

References

1. Barnat, J., Brim, L., Simecek, P.: Cluster-based I/O-efficient LTL model checking.
In: Proceedings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, pp. 635–639. ASE 2009. IEEE Computer Society, Washing-
ton (2009). https://doi.org/10.1109/ASE.2009.32

2. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL — a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0020949

3. Berthomieu, B., et al.: Fiacre: an intermediate language for model verification
in the topcased environment. In: European Congress on Embedded Real-Time
Software (ERTS). SEE, Toulouse, France (Jan 2008). https://hal.inria.fr/inria-
00262442

https://doi.org/10.1109/ASE.2009.32
https://doi.org/10.1007/BFb0020949
https://hal.inria.fr/inria-00262442
https://hal.inria.fr/inria-00262442

Partially Bounded Context-Aware Verification 547

4. Berthomieu, B., Dal Zilio, S., Fronc, �L.: Model-checking real-time properties of
an aircraft landing gear system using fiacre. In: Boniol, F., Wiels, V., Ait Ameur,
Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 110–125. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07512-9 8

5. Boniol, F., Dhaussy, P., Le Roux, L., Roger, J.C.: Model-based analysis. In: Embed-
ded systems, Analysis and Modeling with SysML, UML and AADL, pp. 157–184.
Wiley (May 2013). https://hal.archives-ouvertes.fr/hal-00843139

6. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V.,
Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 1–18. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07512-9 1

7. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic model checking:
1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992). https://doi.org/10.
1016/0890-5401(92)90017-A

8. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986). https://doi.org/10.1145/5397.5399

9. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal
logic model checking. Formal Methods Syst. Des. 9(1), 77–104 (1996). https://doi.
org/10.1007/BF00625969

10. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Formal Methods Syst. Des. 19(1), 7–34 (2001). https://doi.org/10.
1023/A:1011276507260

11. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

12. Dhaussy, P., Boniol, F., Landel, E.: Using context descriptions and property
definition patterns for software formal verification. In: Proceedings of the 2008
IEEE International Conference on Software Testing Verification and Validation
Workshop, pp. 89–96. ICSTW 2008. IEEE Computer Society, Washington (2008).
https://doi.org/10.1109/ICSTW.2008.52

13. Dhaussy, P., Boniol, F., Roger, J.C., Le Roux, L.: Improving model checking with
context modelling. In: Advances in Software Engineering 2012, ID 547157, 13 p
(October 2012). https://doi.org/10.1155/2012/547157

14. Dhaussy, P., Pillain, P.-Y., Creff, S., Raji, A., Le Traon, Y., Baudry, B.: Evaluating
context descriptions and property definition patterns for software formal validation.
In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 438–452.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04425-0 34

15. Dhaussy, P., Teodorov, C.: Context-aware verification of a landing gear system. In:
Boniol, F., Wiels, V., Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol.
433, pp. 52–65. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07512-
9 4

16. Dumas, X., Dhaussy, P., Boniol, F., Bonnafous, E.: Application of partial-order
methods for the verification of closed-loop SDL systems. In: Proceedings of the
2011 ACM Symposium on Applied Computing, pp. 1666–1673. SAC 2011. ACM,
New York (2011). https://doi.org/10.1145/1982185.1982533

17. Godefroid, P.: The Ulg partial-order package for SPIN. In: SPIN Workshop.
Montréal, Quebec (1995)

18. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997). https://doi.org/10.1109/32.588521

https://doi.org/10.1007/978-3-319-07512-9_8
https://hal.archives-ouvertes.fr/hal-00843139
https://doi.org/10.1007/978-3-319-07512-9_1
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1145/5397.5399
https://doi.org/10.1007/BF00625969
https://doi.org/10.1007/BF00625969
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1109/ICSTW.2008.52
https://doi.org/10.1155/2012/547157
https://doi.org/10.1007/978-3-642-04425-0_34
https://doi.org/10.1007/978-3-319-07512-9_4
https://doi.org/10.1007/978-3-319-07512-9_4
https://doi.org/10.1145/1982185.1982533
https://doi.org/10.1109/32.588521

548 L. Le Roux and C. Teodorov

19. Kroening, D., Strichman, O.: Efficient computation of recurrence diameters. In:
Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS,
vol. 2575, pp. 298–309. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36384-X 24

20. Parizek, P., Plasil, F.: Specification and generation of environment for model check-
ing of software components. Electron. Notes Theor. Comput. Sci. 176(2), 143–154
(2007). https://doi.org/10.1016/j.entcs.2006.02.036

21. Park, S., Kwon, G.: Avoidance of state explosion using dependency analysis in
model checking control flow model. In: Gavrilova, M.L., et al. (eds.) ICCSA 2006.
LNCS, vol. 3984, pp. 905–911. Springer, Heidelberg (2006). https://doi.org/10.
1007/11751649 99

22. Peled, D.: Combining partial order reductions with on-the-fly model-checking. For-
mal Methods Syst. Des. 8(1), 39–64 (1996). https://doi.org/10.1007/BF00121262

23. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982.
LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982). https://doi.org/10.1007/
3-540-11494-7 22

24. Teodorov, C., Dhaussy, P., Le Roux, L.: Environment-driven reachability for timed
systems. Int. J. Softw. Tools Technol. Transfer 19(2), 229–245 (2017). https://doi.
org/10.1007/s10009-015-0401-2

25. Teodorov, C., Le Roux, L., Dhaussy, P.: Context-aware verification of a cruise-
control system. In: Ait Ameur, Y., Bellatreche, L., Papadopoulos, G.A. (eds.)
MEDI 2014. LNCS, vol. 8748, pp. 53–64. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-11587-0 7

26. Teodorov, C., Le Roux, L., Drey, Z., Dhaussy, P.: Past-free[ze] reachability analysis:
reaching further with DAG-directed exhaustive state-space analysis. Softw. Test.
Verif. Reliab. 26(7), 516–542 (2016). https://doi.org/10.1002/stvr.1611

27. Tkachuk, O., Dwyer, M.B.: Environment generation for validating event-driven
software using model checking. IET Softw. 4(3), 194–209 (2010). https://doi.org/
10.1049/iet-sen.2009.0017

28. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53863-1 36

29. Wiels, V., Ledinot, E., Belin, E., Dassault, M.: Experiences in using model checking
to verify real time properties of a landing gear control system. In: Embedded Real-
Time Systems (ERTS). Toulouse, France (Jan 2006)

30. Yatake, K., Aoki, T.: Automatic generation of model checking scripts based on
environment modeling. In: Model Checking Software - 17th International SPIN
Workshop, Enschede, The Netherlands, September 27–29, 2010. Proceedings, pp.
58–75 (2010). https://doi.org/10.1007/978-3-642-16164-3 5

31. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48153-2 6

https://doi.org/10.1007/3-540-36384-X_24
https://doi.org/10.1007/3-540-36384-X_24
https://doi.org/10.1016/j.entcs.2006.02.036
https://doi.org/10.1007/11751649_99
https://doi.org/10.1007/11751649_99
https://doi.org/10.1007/BF00121262
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/s10009-015-0401-2
https://doi.org/10.1007/s10009-015-0401-2
https://doi.org/10.1007/978-3-319-11587-0_7
https://doi.org/10.1007/978-3-319-11587-0_7
https://doi.org/10.1002/stvr.1611
https://doi.org/10.1049/iet-sen.2009.0017
https://doi.org/10.1049/iet-sen.2009.0017
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/978-3-642-16164-3_5
https://doi.org/10.1007/3-540-48153-2_6

Author Index

Aceto, Luca 433
Achilleos, Antonis 433
Araujo, Hugo 183
Avellaneda, Florent 243

Baranová, Zuzana 333
Barnat, Jiří 333, 373
Bartocci, Ezio 69
Beckert, Bernhard 353
Befrouei, Mitra Tabaei 203
Bittner, Paul Maximilian 127
Bormer, Thorsten 353
Bradbury, Matthew 471
Bravetti, Mario 29
Brucker, Achim D. 257, 275
Buttyán, Levente 491

Carvalho, Gustavo 183
Carvalho, Luís 145
Costa Seco, João 145
Cucinotta, Tommaso 315

de Oliveira, Daniel Bristot 315
de Oliveira, Rômulo Silva 315
Dennis, Louise A. 471
Derrick, John 257
Din, Crystal Chang 48
Dixon, Clare 471
Dubslaff, Clemens 162

Elderhalli, Yassmeen 513

Farrell, Marie 471
Fellner, Andreas 203
Ferrando, Angelo 105
Fisher, Michael 105, 471
Flynn, David 105
Foster, Michael 257
Foster, Simon 87
Francalanza, Adrian 433

Gleirscher, Mario 87
Gocht, Stephan 353

Hähnle, Reiner 48
Hasan, Osman 513
Herda, Mihai 353
Hierons, Robert M. 393
Huang, Xiaowei 105

Ingólfsdóttir, Anna 433

Johnsen, Einar Broch 48

Kamburjan, Eduard 48
Katoen, Joost-Pieter 513
Kawamoto, Yusuke 293
Kejstová, Katarína 333
Klomp, Rick 222

Lantair, Jenny 105
Le Roux, Luka 532
Lefticaru, Raluca 393
Lehtinen, Karoliina 433
Lentzsch, Daniel 353
Lüth, Christoph 454

Manjunath, Niveditha 69
Maple, Carsten 471
Mariani, Leonardo 69
Mateis, Cristinel 69
Mousavi, Mohammad Reza 183
Mrázek, Jan 333

Nemouchi, Yakoub 87
Ničković, Dejan 69
North, Siobhán 257
Núñez, Manuel 393

Osborne, Matt 105

Papacchini, Fabio 105
Papp, Dorottya 491
Petrenko, Alexandre 243
Prasetya, I. S. W. B. 222

Ring, Martin 454
Robu, Valentin 105
Ročkai, Petr 333

Sampaio, Augusto 183
Schaefer, Ina 127
Štill, Vladimír 373

Tahar, Sofiène 513
Tarrach, Thorsten 491
Taylor, Ramsay G. 257
Teodorov, Ciprian 532
Thüm, Thomas 127

Ulbrich, Mattias 353

van der Aalst, Wil M. P. 3
Volk, Matthias 513

Weissenbacher, Georg 203
Wijs, Anton 410
Wiłkowski, Maciej 410
Wolff, Burkhart 275

Yuan, Hu 471

Zavattaro, Gianluigi 29
Zhao, Xingyu 105

550 Author Index

	Preface
	Organization
	Abstracts of Invited Talks
	Security Protocols: Model Checking Standards
	Automated Test Generation: A Journey from Symbolic Execution to Smart Fuzzing and Beyond
	Contents
	Invited Paper
	Object-Centric Process Mining: Dealing with Divergence and Convergence in Event Data
	1 Introduction
	2 Related Work on Object-Centric Process Mining
	3 The Problem
	4 Defining Event Data
	5 A Baseline Discovery Approach
	6 Beyond Directly-Follows Graphs
	7 Conclusion
	References

	Cooperative Asynchronous Systems
	Relating Session Types and Behavioural Contracts: The Asynchronous Case
	1 Introduction
	2 Behavioural Contracts
	3 Asynchronous Session Types
	4 Mapping Session Types into Behavioural Contracts
	5 Related Work and Conclusion
	References

	Asynchronous Cooperative Contracts for Cooperative Scheduling
	1 Introduction
	2 Method Contracts for Asynchronous Method Calls
	2.1 Specifying State in an Asynchronous Setting
	2.2 Specifying Interleavings
	2.3 Composition

	3 An Active Object Language
	4 Formalizing Method Contracts
	5 Verification
	6 Related Work and Conclusion
	References

	Cyber-Physical Systems
	Automatic Failure Explanation in CPS Models
	1 Introduction
	2 Background
	2.1 Signals and Signal Temporal Logic
	2.2 Daikon

	3 Case Study
	4 Failure Explanation
	4.1 Testing
	4.2 Mining
	4.3 Explaining

	5 Empirical Evaluation
	5.1 Scope Reduction, Cause Detection and Qualitative Analysis
	5.2 Computation Time
	5.3 Evaluation by Professional Engineers

	6 Related Work
	7 Future Work and Conclusions
	References

	Evolution of Formal Model-Based Assurance Cases for Autonomous Robots
	1 Introduction
	2 Background and Formal Preliminaries
	2.1 Assurance Cases
	2.2 Isabelle/UTP and Differential Dynamic Logic

	3 Formal Model-Based Assurance Cases
	3.1 Assurance Case Construction
	3.2 Assurance Case Extension

	4 Application to Mobile Ground Robot
	4.1 [0]: Initial Assurance Case
	4.2 [1]: First Extension
	4.3 [2]: Second Extension

	5 Discussion
	6 Conclusions
	References

	Towards Integrating Formal Verification of Autonomous Robots with Battery Prognostics and Health Management
	1 Introduction
	2 Background
	2.1 Probabilistic Model Checking
	2.2 Battery Modelling and PHM

	3 The Running Example
	4 The Modelling in PRISM
	4.1 The Drone Module
	4.2 The Grid Module
	4.3 The Environment Module
	4.4 The Battery Module

	5 Results
	5.1 Effects of Battery Safety Strategies and Dynamic Environments
	5.2 Comparison of Models, Disregarding the Battery Features

	6 Related Work
	7 Discussions, Conclusions and Future Work
	References

	Feature-Oriented and Versioned Systems
	SAT Encodings of the At-Most-k Constraint
	1 Introduction
	2 Encoding At-Most-k Constraints
	3 Modelling Configuration of University Courses as Feature Models
	3.1 Formalizing Branches of Study
	3.2 A DSL to Describe Fields and Branches of Study
	3.3 Compilation of Our DSL to a Feature Model
	3.4 Resolving Differing Credit Points

	4 Evaluation
	4.1 Tool Support for Implementation
	4.2 At-Most-k Encoding Performance Comparison
	4.3 Branches Evaluation
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	References

	Software Evolution with a Typeful Version Control System
	1 Introduction
	2 The Journey of a Class
	3 Versioned Featherweight Java
	4 Future Work
	5 Related Work
	6 Conclusions
	References

	Compositional Feature-Oriented Systems
	1 Introduction
	2 Theoretical Foundations
	2.1 Feature Models
	2.2 Featured Transition Systems
	2.3 Featured Programs

	3 Compositional Feature-Oriented Systems
	4 Family-Ready Systems
	4.1 Parallel Composition
	4.2 Superimposition
	4.3 Dynamics and Family Models

	5 Between Composition Worlds
	5.1 From Parallel Composition to Superimposition
	5.2 From Superimposition to Parallel Composition

	6 Concluding Remarks
	References

	Model-Based Testing
	Multi-objective Search for Effective Testing of Cyber-Physical Systems
	1 Introduction
	2 Related Work
	3 Preliminaires
	3.1 Analysis of Cyber-Physical Systems

	4 Finding Inputs via Search-Based Heuristics
	4.1 Search Based Inputs and Critical Epsilon
	4.2 Notions of Coverage
	4.3 A Notion of Diversity
	4.4 Mechanisation

	5 Empirical Analysis
	5.1 Case Study
	5.2 Experimental Plan
	5.3 Results

	6 Conclusions and Future Work
	References

	Mutation Testing with Hyperproperties
	1 Introduction
	2 Preliminaries
	2.1 System Model
	2.2 HyperLTL

	3 Killing Mutants
	3.1 Mutants
	3.2 Killing

	4 Killing with Hyperproperties
	4.1 Deterministic Case
	4.2 Non-deterministic Case

	5 Non-deterministic Models in Practice
	5.1 Controlling Non-determinism in STS
	5.2 Controlling Non-determinism in Modeling Languages

	6 Experiments
	6.1 Toolchain

	7 Related Work
	8 Conclusion
	References

	Test Model Coverage Analysis Under Uncertainty
	1 Introduction
	2 Preliminary: Probabilistic Models and Simple Coverage
	2.1 Representing a Test Case: Execution Model

	3 Coverage Under Uncertainty
	4 Efficient Coverage Calculation
	4.1 Non-simple Sentences
	4.2 Coverage of Aggregate Goals

	5 Experimental Results
	6 Related Work
	7 Conclusion
	References

	Model Inference
	Learning Minimal DFA: Taking Inspiration from RPNI to Improve SAT Approach
	1 Introduction
	2 Definitions
	3 Inference Problem
	3.1 RPNI Method
	3.2 SAT Solving Approach

	4 Incremental SAT Solving with Domain Specific Heuristics
	4.1 Incremental SAT Solving
	4.2 Domain Specific Heuristics

	5 Experimental Evaluation
	5.1 Inference Varying the Number of Examples
	5.2 Inference from Learning Samples of Growing Generators

	6 Conclusion
	References

	Incorporating Data into EFSM Inference
	1 Introduction
	2 Background
	3 Extending the Inference Process
	3.1 PTA Construction
	3.2 Merging States
	3.3 Resolving Nondeterminism by Merging Transitions

	4 Introducing Registers
	4.1 The Store and Reuse Heuristic
	4.2 The Increment and Reset Heuristic
	4.3 The Same Register Use Heuristic

	5 Implementation
	5.1 Checking Context Properties

	6 Evaluation
	7 Conclusions and Future Works
	References

	Ontologies and Machine Learning
	Isabelle/DOF: Design and Implementation
	1 Introduction
	2 Background: The Document Model
	3 The DOF Design
	3.1 Ontology Modeling in ODL
	3.2 Meta-Types as Types
	3.3 Annotating with Ontology Meta-Data: Outer Syntax
	3.4 Editing Documents with Ontology Meta-Data: Inner Syntax
	3.5 ODL Class Invariants
	3.6 ODL Monitors
	3.7 Document Representation

	4 The Isabelle/DOF Implementation
	4.1 Writing Isabelle/DOF as User-Defined Plugin in Isabelle/Isar
	4.2 Programming Antiquotations
	4.3 Implementing Second-Level Type-Checking
	4.4 Programming Class Invariants
	4.5 Implementing Monitors
	4.6 Document Representation

	5 Conclusion and Related Work
	5.1 Related Work
	5.2 Conclusion

	References

	Towards Logical Specification of Statistical Machine Learning
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Syntax of StatEL
	2.3 Distributional Kripke Model
	2.4 Stochastic Semantics of StatEL

	3 Techniques for Conditional Indistinguishability
	3.1 Counterfactual Epistemic Operators
	3.2 Conditional Indistinguishability via Counterfactual Knowledge

	4 Formal Model for Statistical Classification
	4.1 Statistical Classification Problems
	4.2 Modeling the Behaviours of Classifiers
	4.3 Modeling the Non-deterministic Inputs from Adversaries

	5 Formalizing the Classification Performance
	6 Formalizing the Robustness of Classifiers
	6.1 Total Correctness of Classifiers
	6.2 Probabilistic Robustness Against Targeted Attacks
	6.3 Probabilistic Robustness Against Non-targeted Attacks

	7 Formalizing the Fairness of Classifiers
	7.1 Group Fairness (Statistical Parity)
	7.2 Individual Fairness (as Lipschitz Property)
	7.3 Equal Opportunity

	8 Related Work
	9 Conclusion
	A Proof for Proposition 1
	References

	Operating Systems
	Efficient Formal Verification for the Linux Kernel
	1 Introduction
	2 Background
	2.1 Automata and Discrete Event System
	2.2 Linux Tracing

	3 Related Work
	3.1 Automata-Based Linux Modelling
	3.2 Formal Methods and OS Kernels
	3.3 Formal Methods and the Linux Kernel Community

	4 Efficient Formal Verification for the Linux Kernel
	5 Performance Evaluation
	5.1 Throughput Evaluation
	5.2 Latency Evaluation

	6 Conclusions and Future Work
	References

	Reproducible Execution of POSIX Programs with DiOS
	1 Introduction
	1.1 Contribution
	1.2 Design Goals
	1.3 Related Work

	2 Platform Interface
	2.1 Preliminaries
	2.2 Program Memory
	2.3 Execution Stack
	2.4 Auxiliary Interfaces

	3 Supported Platforms
	3.1 DiVM
	3.2 KLEE
	3.3 Native Execution

	4 Design and Architecture
	4.1 Kernel Components
	4.2 Thread Support
	4.3 System Calls
	4.4 The C Library
	4.5 C++ Support Libraries
	4.6 Binary Compatibility

	5 Evaluation
	5.1 Verification with DiVM
	5.2 Portability
	5.3 API and ABI Coverage and Compatibility

	6 Conclusions and Future Work
	References

	Program Analysis
	Using Relational Verification for Program Slicing
	1 Introduction
	2 Static Backward Slicing
	3 Relational Verification of Slice Candidates
	4 A Framework for Automatic Slicing
	4.1 Removing Instructions Based on Heuristics
	4.2 Counterexample Guided Slicing

	5 Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

	Local Nontermination Detection for Parallel C++ Programs
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 State Space of a Program
	3.2 Resource Sections

	4 Local Nontermination
	5 Detection of Nontermination
	5.1 Detection Algorithm
	5.2 Scheduling and Fairness
	5.3 Implementation and Usage
	5.4 Interaction with Other Features of DIVINE

	6 Evaluation
	7 Conclusion
	References

	Relating Models and Implementations
	An Implementation Relation for Cyclic Systems with Refusals and Discrete Time
	1 Introduction
	2 Testing Context and Related Work
	3 Background and Models
	3.1 Traces and Automata
	3.2 Timed Models
	3.3 A First Implementation Relation

	4 An Implementation Relation Including Refusals
	5 Alternative Characterisations
	5.1 Using an Automaton
	5.2 Using Observers

	6 Conclusions and Future Work
	References

	Modular Indirect Push-Button Formal Verification of Multi-threaded Code Generators
	1 Introduction
	2 Preliminaries
	3 Slco and the Generation of Java Code
	4 Verification of Code Generation
	4.1 Verification Overview
	4.2 Constructing and Comparing CFGs
	4.3 Verification of Transition Methods
	4.4 Supporting the Complete Slco Language

	5 Implementation and Experiments
	6 Related Work
	7 Conclusions
	References

	Runtime Verification
	An Operational Guide to Monitorability
	1 Introduction
	2 Preliminaries
	3 A Monitor-Oriented Hierarchy
	4 An Instantiation for Regular Properties
	5 A Syntactic Characterisation of Monitorability
	6 Safety and Co-safety
	7 Pnueli and Zaks
	8 Monitorability in Other Settings
	9 Conclusion
	References

	Let's Prove It Later—Verification at Different Points in Time
	1 Introduction
	2 Self-verification
	3 Case Study
	3.1 Informal Description
	3.2 Formal Specification
	3.3 When to Verify

	4 Realization
	4.1 A Design Flow for Self-verification
	4.2 The Demonstrator

	5 Discussion and Conclusions
	5.1 When to Prove
	5.2 Conclusions

	References

	Security
	Using Threat Analysis Techniques to Guide Formal Verification: A Case Study of Cooperative Awareness Messages
	1 Introduction
	1.1 Methodology

	2 Background and Related Work
	3 Threat Analysis of CAM
	3.1 Specialising STRIDE for CAM
	3.2 Considering the Threats

	4 Model-Checking with Promela/SPIN
	4.1 Basic Scenario: Safety
	4.2 Investigating Spoofing
	4.3 Discussion

	5 Deductive Verification with Dafny
	5.1 Sending CAMs
	5.2 Receiving CAMs
	5.3 Discussion

	6 Conclusions and Future Work
	References

	Towards Detecting Trigger-Based Behavior in Binaries: Uncovering the Correct Environment
	1 Introduction
	2 Background
	3 Methodology
	3.1 Symbolic Summary Functions
	3.2 Approach to Symbolic Execution

	4 Implementation
	4.1 Symbolic Summaries for System Calls
	4.2 Control Flow Graph
	4.3 Call Stack Management
	4.4 Model of the Execution State

	5 Evaluation
	5.1 Setting Up Our Experiment
	5.2 Results

	6 Conclusion
	References

	Verification
	Formal Verification of Rewriting Rules for Dynamic Fault Trees
	1 Introduction
	2 DFT Rewrite Rules
	2.1 Rewrite Framework
	2.2 Rewrite Rules
	2.3 Non-structural Rules

	3 DFT Theory in HOL4
	4 HOL Formalization of n-ary DFT Gates
	5 Formal Verification of Rewriting Rules
	6 Conclusions
	References

	Partially Bounded Context-Aware Verification
	1 Introduction
	2 Background and Related Work
	3 A Language for Context Guided Reachability: xGDL
	3.1 xGDL Abstract Syntax
	3.2 xGDL Operational Semantics
	3.3 xGDL Compilation
	3.4 xGDL Guide and Closed System Composition
	3.5 Partially Bounded Verification

	4 Case-Study: The Landing Gear System
	4.1 LGS Executable Model
	4.2 xGDL Verification Guides

	5 Conclusion and Perspectives
	References

	Author Index

