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3.1 Introduction

Due to the growing of malicious code in the information technology and cyber
security, the knowledge and understanding of new unknown malicious code or
program protection is an important trend in the suspicious software detection system
using machine learning (ML) methods. There are normally two ways to carry out the
suspicious software analysis, static and dynamic analysis for detecting and finding
the new malware.

The process of analyzing the software or program without executing the program
is referred to static analysis that can classify and detect the known and unknown
malicious code [1]. It is the first approach for analyzing and detecting the malicious
software that has been stated in [2]. The static malware analysis examines the
assembly code of binary file to identify the retrieve flow of code and sequential
instructions without actually executing the executable sample [7]. Reverse engineer-
ing is a common approach to extract static information from a binary. Disassembly
and hexadecimal dumping of binary file are the two main techniques to pre-process
and get static features from the sample [4]. A disassembler tool can be used to
decompile Windows executable files, such as IDA Pro and OllyDbg, that display
assembly instructions, provide information about the malware, and extract patterns
to identify the attacker’ desire.

In [5] static or code analysis is faster and simple than the other analysis.
However, it cannot be effective for obfuscated and complex malware and might
leave the significant malicious behaviors. Additionally, the obfuscation techniques,
polymorphism, metamorphism, compression, encryption, and run-time packing,
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introduced by malware authors, lead static analysis complicated, time-consuming,
and nearly unfeasible. Thus, malware analysts and researchers developed and
performed dynamic method which is more effective than static to the obfuscation
techniques.

The dynamic or run-time analysis method performs the running or executing the
malware in a safe and controlled environment. It inspects the malware dynamic
behavior to decide which function or system calls are intercepted sequentially,
which is also called hooking method, by a malware to determine the nature of
suspicious file behavior in a virtual machine environment [7].

Another way to analyze the malicious file is using sandbox. NIST defines the
sandbox in [8]: it is a security model where applications/programs are run within
a safe environment or a sandbox. Sandboxes record the changes of file system,
registry keys, and network traffic and then generate standardized report format.
There are common sandboxes that can leverage a quick analysis for malicious files.
Sandboxes such as GFI Sandbox, Anubis, Joe Sandbox, ThreatExpert, and Cuckoo
Sandbox can analyze malware for free. Cuckoo Sandbox has been used to discover
the malware behavior patterns in our approach.

Figure 3.1 shows different types of static and dynamic features used for malware
detection and classification in recent researches.

According to [4] dynamic features can be derived from host trace and network
trace-based features. The activities of internal memory, files and file system,
registry, hardware performance counters, and status of running processes of host are
considered as host trace features. The proposed system used the API n-gram (where
n = 1,2,3), from host trace of dynamic analysis. API is the most common used
attributes or features in malware analysis. The proposed system used the Cuckoo
Sandbox for analyzing the samples. The APISTATS from JSON report of sandbox
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are extracted as feature APIs for classification system. The number of extracted
API from APISTATS is 306 for malware and benign. The malware samples contain
six different categories such as Adware, Backdoor, Downloader, Trojan, Virus, and
Worm.

The proposed system applies the n-gram technique as the extracted attributes or
features depend on each other. However, bigram will only be applied because the
system concerns the processing/run time of the classifier. And the experiment shows
that these grams are enough to distinguish malware from benign. The proposed
system applies two machine learning (ML) techniques and two feature selection
(FS) approaches to differentiate the malware from benign. The sklearn ML library
[6] has been used to apply these ML techniques and FS approaches. The next section
will describe the related works that perform the classification, detection, and feature
selection through dynamic analysis.

The content of the paper is structured into five sections. The recent related
research work is described in the next section, and the proposed feature extraction,
selection, and classification system are provided in Sect. 3.3. Section 3.4 supports
the experiment and results discussion, respectively. Last section highlights the
conclusion and the research plans for future.

3.2 Related Work

This section presents the current research works that have done through dynamic or
run-time analysis. Researchers are now working by proposing the hybrid nature on
both analysis and features such as hybrid analysis and hybrid features combination
and feature fusion methodologies. And most of the attributes that use to detect
and identify the malicious programs are API which is based on the number of
occurrences of API (frequency), the order of API (sequence), and system calls.

The dynamic analysis means the malicious behavior is monitored by tracing or
inspecting the API calls from Windows and network connections by running the
suspicious files in a safe environment. The extracted API function calls are used to
detect malicious behavior through behavior or dynamic or run-time analysis method.
The API calls from different categories such as process, registry, file, and network
contain the function names, return values, and parameters of an executable. The
dynamic analysis extracts distinct features to find the malicious software using
the API sequence and frequency [5, 11]. The frequency on API might indicate
how API calls play an important role for a malicious file, while API sequence
shows the knowledge about how important consecutive behaviors of the malware
are. Moreover, the researchers also utilized additional behaviors as features beside
API calls which are dynamic link library (DLL), file opened/closed, and mutex that
provide useful data about the suspicious files [31].

Most of the dynamic techniques focused on API calls [9–12] to represent
malware behaviors. The authors used TEMU for dynamic analysis module which
is based on QEMU. They collected the API calls and other essential information of
running malware and then established the multilayer dependency chain [9].
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The authors in [14] performed classification through run-time analysis using
Cuckoo. The total number of samples, 42,068, was used for classification, 67% was
used for training set, and 33% was used for the testing set. The authors extracted and
used 151 API calls as main features; the first 200 API calls were used for sequence.
They combined the features of 24 API FBs, modified sequence of first 40 different
API, and 4 counters captured by modifying the Cuckoo Sandbox. In their approach,
they employed a combination of features that achieved an average weighted AUC
value of 0.98, TPR of 0.896, and FPR of 0.049 by applying RF classifier.

In [9], the authors proposed the variants of malware classification technique
based on behavior profile. The authors used the TEMU to monitor the malware
behaviors. They captured the API calls and other information and then established
multilayer dependency chain by converting the function flow into multilayer
behavior chain. To assess the validity and accuracy of the method, they downloaded
200 samples of 12 types from Anubis website. To identify the malware variants
similarity, similarity comparison algorithm had been used in their work.

In [15], the authors experimented a 552 PE dataset with their corresponding
API calls. These samples were executed in a Windows 7 virtual environment using
Cuckoo Sandbox. Tf-idf (term frequency-inverse document frequency) had been
used to extract relevant 4-gram API call features. The authors used four machine
learning methods for training and testing the data. They got the accuracy between
92% and 96.4%. In [16], 2 malware datasets had been created such as 10 families
and 10 different types. Then the authors extracted the features by using the memory
access patterns recording technique from the sample. Then the authors performed
n-grams size of 96. N-grams apply on the features of dynamic and static.

In [17], the authors extracted separately different features through run-time
analysis, likewise API call, the usage of system library, and the operations. Four
different classifiers and correlation-based feature selection method from WEKA
tool had been applied in their work. Bigram API and API frequency approaches
give the best performance by using the RF for four datasets. In [13], the authors
conducted the detection and classification system using the calls of API sequences
for four different families including normal group.

Masud et al. used information gain after the n-grams extracting to select the best
500 features. They experimented on two different datasets: first dataset contains
1435 executable files (597 cleanware and 838 malware), and the second dataset
contains 2452 executables (1370 clean and 1082 malware). The information gain
(IG) attribute selection method was used in [18–20] and their accuracies with 98%,
94.6%, and 97.7%, respectively. The accuracy of the hybrid model was 97.4 for both
datasets n = 6, 4, respectively [21]. The chi-square feature selection was applied in
[22, 23], and Tf-idf was applied in [24] to get the most relevant features.

The proposed system has also used the Chi2 χ2 and PCA methods to support
the high performance for classification by reducing the features size. The proposed
approach provides the over 99% of accuracy on 300 features using χ2 feature
selection approach and 10 features with PCA approach on unigram. This section
presents the existing works related to malware classification using machine learning
algorithms and supports previous researches about feature extraction methods based
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on dynamic malware analysis and classification. These research efforts use different
malware modeling techniques using static or dynamic features obtained from
malware samples.

3.3 Malicious Software Family Classification System

Malicious software classification is not a new topic but it is still needing attention
and solution to be solved for cyber threats nowadays. Many researches have been
carried out to analyze and classify the malicious files using the API function calls
sequences to model malicious behavior. Thus, the malware behavioral patterns can
be obtained by understanding the API Call Sequences (API-CS). Therefore, the
proposed system also used the API-CS by proposing the API Feature Extraction
Procedure and applying the n-gram method. Figure 3.2 shows the step-by-step
process of malicious software analysis architecture for the proposed system.

Fig. 3.2 Malicious software
analysis and classification
system
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Malicious samples have been collected from virus share1; the proposed system
experimented nearly 25,000 from 6 different families. However, the proposed
system discards the samples based on the following conditions:

1. If the analysis report does not contain Virus Total (VT) label results
2. If the family does not have at least 1500 samples
3. If the extracted API features from report do not have at least 15 API features

without duplicate ones

Therefore, the experiment provided a total of 20,809 samples from 6 malware
families and cleanware in this research work. And Table 3.1 describes the number
of samples for 14 different families and target label (Class) for each family. Table 3.2
describes the six different families for malware class.

3.3.1 Analyzing Malware Samples and Generating Reports

Cuckoo Sandbox [32] has been used to perform the dynamic analysis in this system.
Windows 7 Operating System (OS) has been used for the virtual environment for
analysis in Virtual Box and Ubuntu as host OS. It is widely used and open source
for the researchers of academic and independent from a small to large business
enterprises. It can analyze different types of malicious files, such as executables
files, office document files, PDF files, emails, etc., and malicious websites. And it
can also trace the API calls and the behavior of file, and dump and analyze network
traffic, even encrypted with an SSL/TLS.

It generates the reports from analysis with multiple formats such as HTML,
JSON, and PDF formats. But the proposed system used JSON format to extract
the malicious behaviors. Figure 3.3 shows the lab setup environment of malware
analysis. The lab setup environment has been described in the following figure.
Ubuntu 18.4 (host) OS and Windows 7 (guest) have been used for analyzing the
malicious samples on sandbox. The normal applications such as Office Documents,
Adobe Reader, Browsers, etc. have been installed on virtual OS.

Table 3.1 Malware/benign dataset for experiment

Name # of samples Target label (Class)

Clean 5420 0
Malicious 15,389 1
Total number of samples 20,809 2 (0/1)

1http://tracker.virusshare.com:6969/

http://tracker.virusshare.com:6969/


3 Proposed Effective Feature Extraction and Selection for Malicious Software. . . 57

Table 3.2 Six different
categories of malware

Categories # of samples

Adware 2200
Backdoor 2076
Virus 1740
Trojan 5000
Worm 2397
Downloader 1976
Total 15,389

Fig. 3.3 Lab setup environment for malware analysis

3.3.2 Labeling Malicious Samples

The report of sandbox provides the VT label for each malicious sample if the
analyzed sample exists on the VT database. Figure 3.4 describes the VT scans results
with their anti-virus vendors, respectively.

The proposed system extracted these results using the regular expression (RE)
theory. RE is a very powerful, useful, efficient, and flexible text processing language.
And then count the occurrence of each results that extracted from RE, and choose
the maximum value of word as label for each sample. Figure 3.5 shows the example
of choosing the label for each malicious sample. These labels indicate the single
malicious file. According to Fig. 3.5, this kind of malware sample will be labelled
as Adware, and it is an Adware category or family.
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Fig. 3.4 VT label from analysis report

Fig. 3.5 Choosing label for each malicious sample

3.3.3 Extracting Malicious Features

After categorizing the malicious family, the process of extracting the malicious
features has been performed in the proposed system. The APISTATS result has
been extracted from the JSON for API features. And the procedure of extracting
APISTATS process is described as followed:
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APISTATS Feature Extraction Procedure
Input: JSON reports
Output: extracted API files fi
1: begin
2: if (JSON ≤ JSONs)
3: try
4: data = []
5: data = json.load(JSON)
6: try
7: api = data[’behavior’] [’apistats’]
8: print (api)
9: except KeyError:
10: print (“APIStats KeyError”)
11: except ValueError:
12: print (“JSONDecodeError”)
13: end if
14: end

The extracted raw APIs attributes are extremely large, and it is not able to
handle the classification system. So, data cleaning processes have been provided
in this phase of proposed system. The raw data cleansing processes are described as
followed:

1. Remove empty line if the extracted API files have empty line
2. Remove noise data such as comma, colon, single code, double code, curly braces,

and so on.
3. Remove duplicate API by keeping the order of API calls
4. Discard the extracted API files if the number of APIs does not have at least 15

API.

3.3.4 Applying N-gram

After processing the data cleansing steps that are described above, n-gram method
has been applied to ensure the identifying of malicious files. It is a continuous
sequence of nth items from a given sequence. It is very useful for characterizing
the sequences in natural language processing and DNA sequencing areas [3]. It
has been adopted to extract the sequence of features in malware classification for
static and dynamic analysis. But the static is the one mostly used n-gram such as
opcode n-gram, byte-code n-gram, and API call n-grams. The proposed system
applies the n-gram technique, where n = 1,2,3, to identify the malicious families
and benign. The total number of APIs after processing the data cleansing stage is
306 APIs. Therefore, the number of features for unigram (1G) is 306. Then, the
number of features for bigrams (2G) is 10,796 g. And the total number of samples
for classification is 20,809 instances. The explosive number of features will increase
as long as the n number increases in dataset. Moreover, it could lead to an overfitting.
So the proposed system used the unigram and bigrams for the classification. Both
unigram and bigram provide a high accuracy to distinguish malware and benign.
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3.3.5 Representing and Selecting Malicious Features

Attributes representation process has been conducted after applying n-grams on
extracted APIs. The process of attributes representation has been performed based
on the presence and absence of features in global feature database. The proposed
system used the binary feature vector representation that is described in our previous
research work [25] and described as follows:

APIi =
{

1, if API is in MBAPIDS File
0, otherwise

The total global database MBAPIDB (Malware Benign API Database) contains
all API features of malware and benign. If the extracted API contains in MBAPIDB,
it is denoted as 1, and if not, it is denoted as 0. For example, the sample F1 is the
single malware instance feature representation, and the last item 1 is the class label
for malware family.

F1 = {1, 1, 1, 0, 1, 0, 1, 0, 0, 1, . . . , 1}

The next step is the selection of feature for classification. The purposes of
applying the selection approaches are to select the appropriate features to the target
class and to minimize the processing time. Feature or attribute selection methods
are used for reducing the size of a feature dataset. The key role of feature selection
process is to improve the classification performance as well as improving the
detection accuracy by choosing or transforming the feature set. Subsequently, the
processing time for classification process can speed up and improve the evaluation
results since the feature number is reduced.

Among the three FS methods such as filter, wrapper, and embedded methods,
most researchers commonly used the filter-based approach in malicious classifica-
tion and detection research areas. The filtering approach does not depend on any
particular algorithm. It is very fast and computationally less expensive than the
other two methods. It is easy to scale to very high-dimension datasets [30]. So,
the proposed system applies the χ2 method from filtering approach.

The proposed system used the two feature selection methods from sklearn.
The efficiency of classification system can be improved by applying the attribute
selection techniques such as chi-square (χ2) and principal component analysis
(PCA).

Chi-Square (χ2) It is a statistic approach and very effective for feature selection
process. The proposed system chooses χ2 to select the feature because it can handle
the multi-class data with an excellent performance. The proposed system used the
implementation of χ2 from sklearn ML library with python.
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Principal Component Analysis (PCA) It is used to visualize and explore high-
dimensional datasets. It reduces a set of possibly -correlated, high-dimensional
variables to a lower-dimensional set of linearly uncorrelated synthetic variables
called principal components. PCA reduces the dimensions of a dataset by projecting
the data onto a lower-dimensional subspace [27].

3.3.6 Classifying Malware vs Benign Using Machine Learning

ML has powerful ability and capability to do many things for cybersecurity. It can be
used to identify the advanced persistent threats (APTs) and zero-day attacks which
are more complex than the normal malware or threats. And it can be used in many
intrusion detection systems (IDS) because it can detect new and unknown attacks. It
can be applied in many areas of information security such as spam and phishing
email detection, phishing website detection, and virus detection. To classify the
malicious and benign software, the proposed system used the two ML methods,
random forest (RF) and K-nearest neighbor (KNN) from sklearn ML library.

Random Forest It combined the multiple decision trees, so it became an ensemble.
It can handle the binary, categorical, continuous, and missing values, so it is suitable
for high- dimensional data modeling. It can overcome the overfitting problems due
to the nature of bootstrapping and ensemble scheme. Thus, it does no need to prune
the trees. Besides high prediction accuracy, it is efficient, interpretable, and non-
parametric for various types of datasets [28].

K-Nearest Neighbors (NN) It is an instance-based learning and also known as
lazy learner. The lazy is called not because of its apparent simplicity, but because
it doesn’t learn a discriminative function from the training data but memorizes the
training dataset instead. It is a sub-category of non-parametric approach [29].

The performance of ML classifiers has been evaluated using confusion matrix
(CM), accuracy (ACC), precision recall (PR), and receiver operator characteristics
area (ROC).

Confusion Matrix (CM) It is a popular way to describe a classification model. CM
can be formed for binary and multi-class classification models. It has been created
by comparing the predicted class label of a data point with its actual class label.
After comparing the whole dataset repeatedly, the comparison results are formatted
in a matrix form. This resultant matrix is the confusion matrix [26]. And Fig. 3.6
describes the typical structure of a CM.

Accuracy (ACC) It is a common evaluation method of a classifier performance. It
is used to define as the percentage of overall accuracy of correct predictions. It can
be calculated from the formula [26]:
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Fig. 3.6 Confusion matrix
(CM) structure
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Precision (P) It is a positive predictive value that can be achieved from CM. It is
defined as the number of predictions made that is actually correct or relevant out
of all the predictions based on the positive class [26]. It can be calculated from the
following formula:

Precision = TP

TP + FP
(3.2)

Recall (R) It is also known as sensitivity, and it is used to identify the relevant data
points with percentage. It is defined as the number of instances of the positive class
that were correctly predicted [26]. It is also called as hit rate, coverage, or sensitivity.
The value of recall can be computed as follows:

Recall = TP

TP + FN
(3.3)

Receiver Operating Characteristic (ROC) It can be used for both binary and
multiclass classifiers. TP rate and the FP rate of a classifier are used to plot the ROC
curve. TPR is also called recall or sensitivity, and it is the total number of correct
positive results, predicted among all the positive samples in dataset. FPR is also
defined as 1- specificity or false alarms, determining the total number of incorrect
positive predictions among all negative samples in the dataset [26].

3.4 Results and Discussion

The total 25,000 malicious samples have been analyzed in this research work,
but 20,809 benign samples have been used for family classification. The proposed
system contributes the API feature extraction for malicious family classification.
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After processing the raw data cleansing on extracted APIs, the remaining API
features are 306 APIs. As the malicious behavioral patterns sometimes depend on
the sequence of function calls and system calls, the proposed system applies the
n-gram technique to ensure the right family classification. Therefore, the proposed
system noted these APIs as unigram (1G). The total number of bigram (2G) API
features is 10,796 g, and trigram (3G) features are 37,919 g. In this case, the
trigram features are quite large, so the proposed system only considers to perform
the unigram and bigram on our dataset since we concern the processing/run time.
Table 3.3 shows the number of API grams for classification. After utilizing the
n-grams on extracted APIs, the proposed system performs the attribute selection
process before classifying families. The proposed system uses the two attribute
selection methods, chi-square with SelectKBest and PCA, from sklearn. RF and
kNN have been used to classify the malicious families and benign. The proposed
system uses the 25% (5203 executables) for testing and the rest 75% (15,606
executables) for training. The proposed system uses accuracy, precision, recall, and
ROC scores to assess the efficiency and effectiveness of extracted prominent APIs.

Table 3.4 describes the comparison of accuracy on unigram API (306 g) dataset
using two FS and ML techniques. The proposed system compares the accuracies by
selecting the five different numbers of features from unigram such as 10, 50, 100,
200, and 300 APIs. The RF classifier provides better accuracy 99% on selected 10
API using PCA and 300 API using χ2 (Chi2). The kNN classifier provides 97% on
χ2 with 300 API and PCA with 10 API. The finding from the experiment is that the
accuracy is increased when PCA chooses the small number of API. It is inversely
proportional to the Chi2 approach. In χ2, the accuracy has been increased as long
as the selected API number is increased. RF classifier produces better accuracy on
PCA with 10 features and χ2 with 300 features than the kNN.

Figure 3.7 provides the confusion matrix results for RF on Chi2 χ2 (300 API)
and PCA (10 API). The correctly classified instances number of PCA on malware
is slightly better than the Chi2’s result.

Figures 3.8 and 3.9 describe the precision-recall (PR) curves and ROC curves of
Chi2 for 300 API on RF and kNN classifiers.

Table 3.5 shows the comparison tables of accuracy on bigram API features. For
bigram API selection, the proposed system used the different number of features

Table 3.3 Total number of
grams after applying n-gram
on extracted API dataset

N-grams # of grams or APIs

Unigram 306
Bigrams 10,796

Table 3.4 Accuracy (%) comparison on selected unigram API

RF kNN
10 50 100 200 300 10 50 100 200 300

Chi2 86.2 97.2 97.9 98.5 98.7 82.9 95.9 96.4 96.4 97
PCA 99 98.7 98.7 98.7 98.7 97.3 97.2 97.2 97.2 97.1
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Fig. 3.7 Confusion matrix of
RF classifier on unigram
dataset. (a) CM for RF on
selected 300 API using Chi2.
(b) CM for RF on selected 10
API using PCA
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such as 100, 200, 300, 400, and 500, unlike unigram. Unigram has been selected
according to 10, 50, 100, 200, and 300.

The total number of bigram API is 10,796, and testing dataset is 5203 from
20,809 instances or samples. The training and testing dataset are split 75% and
25% of the dataset. The experiment shows that PCA increases the accuracy slightly
better than the Chi2 on both classifiers. Figure 3.10 and 3.11 depict the ROC and
PR curves for RF classifier using Chi2 and PCA for 500 g API.
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Precison Recall curve for RF with Chi2

Precison Recall curve for kNN with Chi2
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Fig. 3.8 PR curves for RF and kNN using Chi2 (χ2). (a) PR curve of RF classifier on selected
300 APIs. (b) PR curve of kNN classifier on selected 300 APIs

Figure 3.12 shows the confusion matrix of RF classifier on selected 500 API
bigram dataset using Chi2 (χ2) and PCA. The confusion matrix results from PCA
provide better than the Chi2 (χ2) method, and the incorrectly classified instances
are smaller than the Chi2 (χ2).

Table 3.6 provides the accuracy comparison between our approach and other
related works. Although the related work [22] is slightly better than our approach,
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Fig. 3.9 ROC curves for RF
and kNN using Chi2 (χ2). (a)
ROC curve of RF classifier on
selected 300 APIs. (b) ROC
curve of kNN classifier on
selected 300 APIs

ROC curve for RF with Chi2

ROC curve for kNN with Chi2

ROC curve of class 0 (area = 1.00)
ROC curve of class 1 (area = 1.00)
micro-average ROC curve (area = 1.00)
macro-average ROC curve (area = 1.00)

ROC curve of class 0 (area = 0.99)
ROC curve of class 1 (area = 0.99)
micro-average ROC curve (area = 0.99)
macro-average ROC curve (area = 0.99)

1.0

1.0

a

b

0.8

0.8

0.6

0.6

0.6

0.4

0.4

0.2

0.2

0.0
0.0

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

1.0

1.0

0.8

0.8

0.6

0.4

0.4

0.2

0.2

0.0
0.0

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

Table 3.5 Accuracy (%) comparison on selected bigram API

RF kNN
100 200 300 400 500 100 200 300 400 500

Chi2 95.5 97.2 97.9 98 98.4 94.5 95.8 96.1 96.7 97.1
PCA 98.8 99 99 99 99 97.9 98 98.1 98.1 98.1

the number of tested samples is quite small on both clean and malware. The original
extracted API features provide the best accuracy of 99% on malware vs benign
classification system. However, the proposed system applies the n-gram technique
on extracted dataset since the proposed system concerns the malware that used the
garbage code inserting techniques.
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Fig. 3.10 ROC curves for
RF classifier using Chi2 (χ2)
and PCA. (a) ROC curve on
selected 500 g API using χ2.
(b) ROC curve on selected
500 g API using PCA
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3.5 Conclusion

The usage of ML techniques in cyber security is becoming increasingly than ever
before. The proposed system used the two ML methods to classify the malware
vs benign for classification system. The proposed system contributes the malicious
feature extraction for API features with n-gram and classification through dynamic
analysis. The system extracts the API by using the APISTATS keyword from
JSON report format. The proposed system has performed the raw data cleansing
process after extracting the API from JOSN. Malicious JSON reports contain six
different types of malware categories like Adware, Downloader, Trojan, Backdoor,
Worm, and Virus. Two feature selection approaches, Chi2 χ2 and PCA, have been
conducted to reduce the size of features especially for bigram APIs as the size of
n-gram feature is large to handle the classification. The results from the experiment
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Precison Recall curve for RF with Chi2

Precison Recall curve for RF with PCA
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Fig. 3.11 PR curves for RF classifier on selected APIs using Chi2 (χ2) and PCA. (a) PR curve of
RF classifier on selected 500 APIs using χ2. (b) PR curve of RF classifier on selected 500 APIs
using PCA

can be noted that PCA provides better accuracy than the Chi2 χ2 on unigram and
bigram dataset.

In unigram, the accuracies of PCA are remained stable on different number of
selected features. However, it is inversely proportional to the Chi2 approach. In
Chi2 χ2, the accuracy has been increased as long as the selected API number is
increased. In bigram dataset, the accuracies of PCA also remain stable on both RF
and kNN classifiers, while the accuracies of χ2 vary on both RF and kNN classifiers.
The proposed prominent feature extraction procedure provides a high accuracy with
99% and low FP and FN rates. The proposed system evaluates the performance of
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Fig. 3.12 CM for RF
classifier on 500 API. (a) CM
for RF classifier on selected
500 API using Chi2 (χ2). (b)
CM for RF classifier on
selected 500 API using PCA
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the classifier by using Accuracy, Precision-recall, and ROC scores. Moreover, the
system also provides the low FP and FN rates on malware and benign classification.

The system will extend by adding the other malicious behavior features such
as system library, process, and file opened/closed besides API in the future work.
Moreover, the malicious samples from different families such as Zbot, Swizzor,
Startpage, etc. will also be used to classify their families.
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Table 3.6 Accuracy comparison for different FS approaches

Study Features FS Dataset Accuracy

[19] 2011 API string IG 1368 malware
456 benign

97.4% for MFC
94.6% for M vs C

[31] 2012 API from 6
DLLs, input
arguments

ReliefF 826 malicious
385 benign

98.4%

[24] 2015 n-gram
(Static +
Dynamic)

Tf-Idf 4288 samples from 9
families

~96%

[23] 2016 API, TPF χ2 338 malwares
214 benign
12 categories

98%

[22] 2016 Static +
Dynamic

χ2 7630 malware 1818
benign

99.60%

Our
approach

API χ2 (unigram)
PCA (bigram)

15,389 malicious 5420
benign
6 categories

99%
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