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Abstract. Multi-party business processes are characterized by the lack
of a central coordination, as each participant controls only a portion
of the process. Nonetheless, organizations often need to know how the
whole process is performed, especially when artifacts belonging to an
organization are manipulated by the other participants. This requires
a monitoring system able to collect and share in a trusted way data
about the status of the activities performed by the different parties. To
achieve this goal, in this paper we combine artifact-driven monitoring
with blockchain. The former, introduced in previous work, can deter-
mine how the process is executed, while the latter enables a trusted data
exchange among the participants of the business process to reduce the
possibility for a fraudulent organization to alter monitoring data. The
feasibility and the impacts on costs of the proposed platform is vali-
dated via a prototype based on the Ethereum blockchain implementing
a real-world use case.

Keywords: Blockchain · Distributed ledger · Ethereum ·
Artifact-driven monitoring · Trusted process monitoring ·
Cyber-physical systems

1 Introduction

Business process monitoring holds a fundamental role in the Business Process
Management life-cycle. In fact, monitoring does not only allow checking the com-
pliance of the running process with respect to the expected behaviour, but also
collecting data that are useful to improve the process model for future enact-
ments. Especially in case of multi-party business processes, process monitoring
becomes very difficult. This is due to the fact that each party has visibility on a
portion of the whole process. Therefore, is up to the party involved in the pos-
sibly failing activities to notify issues to the other parties. This is particularly
crucial when the failing activities operate on resources that belong to another
party. For instance, in the logistic domain, the sender of a product wants to be
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informed about the way its package is manipulated by the shippers involved in
the delivery until it arrives at destination. To cope with this issue, current solu-
tions usually rely on a centralized architecture, assuming that a specific entity
is in charge of supervising the entire process execution by collecting all the rel-
evant information on the status of the tasks and on the resources given by the
parties [4].

In this scenario, artifact-driven process monitoring is an approach that has
been proposed to monitor business processes [9]. It does not require any central
authority as the monitoring is performed from the standpoint of the resources,
i.e., the artifacts, managed by the parties during the execution of the process.
Instead of relying on explicit notifications sent by human operators, artifact-
driven process monitoring relies on the conditions of the physical objects (i.e.,
artifacts) participating in a process to determine when business activities are
executed. Together with the Internet of Things (IoT) paradigm, which turns
physical objects into smart entities aware of their conditions and of the process
they participate in, artifact-driven process monitoring allows to autonomously
monitor the process, regardless of the organization or the person in charge of
executing it. In addition, artifact-driven process monitoring relies on a declara-
tive representation of the process to monitor. This makes the monitoring more
flexible, and able to handle deviations and violations that may occur at run-
time without interruptions or human intervention. Moreover, flexibility is also
improved because a central authority – which could became a bottleneck – is no
longer required.

To this aim, artifact-driven process monitoring solves the issue of knowing
the conditions of the physical objects, and the execution of the process. However,
it requires the organizations to trust each other. In fact, a malicious organization
may intentionally alter monitoring information collected by the smart objects,
and then it may claim that the process was executed differently than what
it actually was. While a previous work investigated the possible connections
between artifact-driven monitoring and blockchain [11], this paper investigates
the trade-off between the assurance of having persistent monitoring data and the
minimization of the data written on the blockchain, which has been validated
through a prototype based on Ethereum [17]. Real-world processes – and the
related monitoring data – are also used to evaluate issues related to the cost of
public blockchains in terms of cryptocurrency.

The remainder of this paper is structured as follows: Sect. 2 outlines the
requirements that a trusted monitoring platform should fulfill. Section 3 presents
and compares the architecture of the two possible blockchain-based solutions.
Section 4 validates the proposed architectures against a real-world use case.
Section 5 surveys related work. Finally, Sect. 6 draws the conclusions of this work
and outlines future research plans.

2 Trusted Process Monitoring

Like in every multi-party business process, no organization has full control on
the whole process. Instead, each organization is responsible only for the activities
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Fig. 1. BPMN diagram of the dangerous goods shipment process.

assigned to it. Consequently, being able to monitor the whole process becomes
critical for organizations to be sure that the process is executed as expected and,
if not, to identify who is responsible for such an inconsistency.

To better understand the importance of a reliable and trusted process mon-
itoring solution, a case study concerning the shipment of dangerous goods is
presented. An industrial plant P, to dispose of chemical waste, relies on the con-
ferment company C. In turn, C relies on the waste treatment company T to
neutralize the waste. The disposal process, which is represented in Fig. 1 using
Business Process Model and Notation (BPMN), is organized as follows. Firstly,
P stores the chemical waste inside a tank and waits for C to reach its plant. If
the tank has a leakage, to avoid the chemical to be spread and pollute the envi-
ronment, C has to immediately empty it and use another tank. Once C arrives,
the tank is attached to its truck, then C leaves the plant and delivers the tank
to T. Finally, T detaches the tank.

Concerning the trust, imagine that the tank is not properly disposed. Instead,
it is abandoned in the woods and, after some time, it is found by the forest
rangers. Without knowing how the process was actually performed, it would be
impossible for them to know who is responsible for this crime. Firstly, P may
have completely skipped the conferment part, and abandoned the tank on its
own will. Alternatively, C may have cheated P by having made no deal with
T. Thus, it may have abandoned the tank instead of delivering it to T. Finally,
T may have correctly received the tank. However, to cut costs, it may have
abandoned it instead of neutralizing its contents.
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Starting from this case study, we interviewed several organizations operating
in the domain of logistics - with special emphasis on hazardous goods - and
we identified the following requirements that a monitoring platform, in general,
should meet:

– R1: Monitoring information should be collected limiting as much as possible
the intervention of human operators as human operators are prone to make
mistakes and misleading information could be introduced.

– R2: The monitoring platform should not expect the process to be executed as
initially agreed. Otherwise, deviations in the process would not be captured.

– R3: The monitoring platform should not stop when a discrepancy between the
expected behavior and the observed one is detected. Otherwise, subsequent
deviations would not be captured.

– R4: Monitoring information should be made available to all the organizations
participating in the process, either directly or indirectly (i.e, as an observer).
If monitoring information is not shared, the process could be monitored only
partially. Alternatively, a central entity – trusted by all the participants –
should be responsible for monitoring the process. All the participants should
be aware on how the whole process, and not only their portions, will be carried
out.

– R5: Monitoring information should be consistent and sent timely to all the
participants. If different organizations have different monitoring information,
then it would be difficult to know who has the right information.

– R6: If needed, organizations that did not take part in the process (e.g., a
public prosecutor) should be allowed to access monitoring information even
after the process completed.

– R7: Nobody should be able to alter monitoring information. Otherwise, if
an organization incorrectly performed part of the process, it may alter moni-
toring information either to blame somebody else or to prove that they were
compliant.

– R8: Nobody should be able to send monitoring information on behalf of
somebody else. Otherwise, an organization may impersonate another one and
send fraudulent information in order to blame somebody else.

The artifact-driven monitoring approach [9] can address some of these
requirements. In fact, artifact-driven monitoring detects when activities are exe-
cuted based on the conditions of the physical objects (i.e., artifacts) in the
process. For example, the conclusion of activity Attach tank to truck can be
detected when the artifact Tank is full and attached to the truck. Therefore, if
these objects are made smart with the IoT paradigm, they can autonomously
provide this information, thus addressing R1. Also, by relying on the artifact-
centric language Extended- GSM (E-GSM) to represent the monitored process,
artifact-driven monitoring can transparently deal with variations in the control
flow, thus addressing R2 and R3. For example, by modeling the process pre-
sented in Sect. 2 in E-GSM, control flow dependencies are considered descriptive
rather than prescriptive. This way, artifact driven monitoring can detect – even
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though such an occurrence violates the control flow dependencies – if the tank
was leaking and P did not emptied it. For further details on E-GSM and the
advantages it provides for monitoring, we invite the reader to consult [2]. Finally,
an artifact-driven monitoring platform can run entirely on top of physical objects
exchanging monitoring information with each other, thus addressing R4.

However, as artifact-driven monitoring was not designed with trust in mind,
it presents some limitations in this regard. Firstly, monitoring information is
stored in the memory of each smart object. Consequently, anyone who has phys-
ical access to a smart object can potentially alter monitoring information and
make it inconsistent. Secondly, no mechanism to verify either the origin or the
correctness of monitoring information exchanged by smart objects was put in
place. Therefore, any smart object that participates in the process can send
monitoring information on behalf of any other smart object. Also, a compro-
mised smart object may send monitoring information that does not reflect the
actual state of the smart object. Finally, an artifact-driven monitoring platform
relies on a centralized message bus to distribute monitoring information to the
smart objects. Thus, a failure on that component would prevent the monitoring
platform to correctly work.

3 Adopting Blockchain to Improve the Trust in
Monitoring

To implement a fully trusted monitoring platform, thus addressing R5, R6, R7,
and R8, we investigated the possible adoption of a blockchain. A blockchain
[13] is a distributed ledger in which information is stored in a safe, verifiable
and permanent way. Every time a new piece of information has to be made
available to other participants, a new transaction is created. Transactions are
then grouped into a block that references the previously stored block, hence
the name “blockchain”. Once a new block is created, it is validated and then
made available to all the participants in the blockchain. This mechanism allows
a blockchain to provide the following features:

– Distributed consensus: Multiple participants are responsible for validating
information written on a blockchain. Therefore, as long as the validation
mechanism is correctly implemented, it is impossible for a single participant
to introduce incorrect information. Also, when a new participant joins the
blockchain, it can obtain its own copy of the blockchain and participate in
the validation process. This way, R5 and R6 can be addressed.

– Persistence: Each block in the blockchain directly references the previous
one via a hashing mechanism. Therefore, it is impossible for a single partic-
ipant to alter or delete a transaction once it has been written in a block. In
addition, as the validation mechanism requires information on the previous
blocks, every participant that performs this task holds a complete copy of all
the data stored in the blockchain. Thus, even if a participant loses its copy
of the blockchain, multiple copies of the data are still available, and R7 can
be addressed.
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Fig. 2. Architecture of the fully blockchain-based platform.

– Auditability: When a new transaction is created, it contains a timestamp
and a signature identifying the participant who created it. Therefore, it is
impossible for a participant to create a transaction on behalf of another one.
This way, R8 can be addressed.

To provide a fully trusted monitoring solution, in Sects. 3.1 and 3.2 we present
the architecture of two alternative platforms that, respectively, treat the enforce-
ment of persistent monitoring information and the reduction of the information
written on-chain as first-class citizens. In particular, the first platform fully guar-
antees that monitoring information will never disappear in exchange for a vari-
able computational effort to be performed on-chain. Instead, the second platform
makes the amount of information written on the blockchain independent on the
amount of monitoring information produced. However, it does not enforce the
persistence of monitoring information.

3.1 Fully Blockchain-Based Platform

The first platform relies entirely on a blockchain to store and forward monitoring
information. As shown in Fig. 2, we take the architecture of an artifact-driven
monitoring platform as a starting point. In particular, the physical characteristics
of a smart object are collected by On-board Sensors and, thank to the Events
Processor module, they are discretized into a finite set of states representing
its conditions. Then, changes in the state of the smart objects participating in
the process are notified to the Monitoring Engine module, which detects when
activities are executed and identifies possible violations.

However, to let smart objects exchange information on their current state,
we re-engineered the Events Router module, which implements information
exchange mechanisms and policies, by integrating it with a Blockchain Client.
The Blockchain Client is responsible for initiating a new transaction whenever
the current smart object changes state, and for sending a notification to the Mon-
itoring Engine whenever a new block containing a transaction from the other
smart objects is added to the blockchain. Each smart object acts as a specific
participant, and it has a unique address.
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1 contract Blockclient {

2 string processModel; // process model

3 struct State { //event

4 uint id;

5 address sender;

6 string artifact;

7 string status;

8 string timestamp;

9 string data; }

10 mapping(uint => State) public states; //list of events

11 uint stateCounter;

12 struct participant {

13 bytes32 encodedArtifact; }

14 mapping(address => participant) public participants; // participants

15
16 function Blockclient(string _processModel , address [] _addrs , bytes32 []

_encodedArtifacts) payable public {

17 for (uint p = 0; p < _addrs.length; p++) { //add participants

18 participants[_addrs[p]]. encodedArtifact = _encodedArtifacts[p]; }

19 processModel = _processModel ;} // store process model

20
21 function writeState(string _artifact , string _status , string _timestamp ,

string _data) payable public {

22 if (participants[msg.sender ]. encodedArtifact == stringToBytes32(_artifact
) { //check identity of sender and ownership of artifact

23 stateCounter ++; // increment state counter

24 states[stateCounter] = State(stateCounter , msg.sender , _artifact ,
_status , _timestamp , _data); // store state data

25 LogWriteState(stateCounter , msg.sender , _artifact , _status , _timestamp ,
_data); }}} //emit a new event

26
27 function getProcessModel () public view returns(string) {

28 return processModel ;} // retrieve process model

29 }

Fig. 3. Excerpt of smart contract supporting the fully-blockchain based platform.

Since a blockchain does not guarantee that monitoring data are recorded
in the same chronological order as when they are produced, a reorder buffer
has been introduced in the Events Router. In fact, transactions can be stored
in reverse chronological order if the later ones are included into a block before
the earlier ones are validated. Consequently, if the chronological order is not
respected, the Monitoring Engine may incorrectly monitor the process. By
buffering transactions until five subsequent blocks have been written on the
blockchain, and then reordering them based on the timestamp when data were
collected by sensors, it is possible to minimize the occurrence of monitoring errors
caused by transactions violating the chronological order of monitoring data.

Before the process starts, the smart contract shown in Fig. 3 is deployed on
the blockchain1. This smart contract contains the serialized model of the process
to monitor (line 2) and a list of the smart objects participating in it (lines 12–
14), which are instantiated once the contract is deployed (lines 16–19). It also
defines a data structure to store monitoring information (lines 3–11), as well

1 Smart contracts are implemented in Solidity. However, they can be easily ported to
other languages.
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methods to append new information (writeState, lines 21–25) and to retrieve the
serialized process model (getProcessModel, lines 27–28). In particular, monitoring
information is represented as a mapping (line 10), whose items (lines 4–9) contain
an unique identifier, the identity of the smart object communicating the change,
the type of smart object, the state currently assumed by the smart object, a
timestamp indicating when it changed state, and the sensor data used to infer
the state.

Once the smart contract is deployed, the Blockchain Client of all the smart
objects referenced in that contract configures the Monitoring Engine with the
provided process model. In addition, the Blockchain Client subscribes to the
LogWriteState, which is emitted whenever new monitoring information is added
to the blockchain (line 25). When the Events Processor of one of these smart
objects detects a change in its state, the Blockchain Client invokes the writeState
method by passing the monitoring information, thus initiating a new transaction.
The other participants in the blockchain validate the transaction, which is then
written in a new block. Meanwhile, if the Blockchain Client is notified about a
new occurrence of LogWriteState, it extracts the smart object and the new state
assumed by it and forwards this information to the Monitoring Engine.

It is worth noting that every participant that joins the blockchain can val-
idate transactions from the smart objects and collect monitoring information.
This allows third parties, such as external auditors, to monitor the process.
When some information, especially on the structure of the process and on the
state assumed by the smart objects, should not be publicly disclosed, it is still
possible to encrypt it by putting in place a Public Key Infrastructure (PKI) and
traditional key distribution mechanisms. This way, only entitled participants can
read this information, and confidentiality can be guaranteed.

In addition, monitoring information can be easily accessed after the process
finished, even if the smart objects are no longer present. This makes possible
for entitled third parties to determine how the process was performed simply
by replaying monitoring information. For example, still referring to the case
study, the authorities can easily identify the organization responsible for having
improperly disposed the tank, even if its memory was damaged. In fact, authori-
ties can simply query the blockchain to obtain the process and all the changes in
the state of the smart objects, being sure that this information was not altered
once it was written on the blockchain. Then, they can instruct a Monitoring
Engine with the E-GSM model, and replay the state changes to detect which
portion of the process was incorrectly executed.

The main disadvantage of this platform is the potentially high amount of
information that is written on the blockchain, which limits its applicability in
conjunction with a public blockchain. Since a public blockchain requires a fee to
be paid for each invocation of the smart contract, and the fee is dependent on the
amount of information that is passed, the more information has to be written,
the more expensive the monitoring platform will be. For example, as long as the
state is simply represented by a label, the cost will be quite low. However, if
the participants would like to know how the state was determined, then also the
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Fig. 4. Architecture of the DFS-blockchain hybrid platform.

historical values collected by sensors and the rules adopted to derive the state
should be written on the blockchain, thus significantly increasing the cost of the
platform.

3.2 DFS-Blockchain Hybrid Platform

To address the limitations of the fully blockchain-based platform, the cost asso-
ciated to each transaction must be reduced and, possibly, made independent of
the amount of information that is written. To this aim, we propose a second plat-
form that relies both on a blockchain and on a publicly accessible Distributed
File System (DFS). Like in the fully blockchain-based platform, this one relies
on a blockchain to notify the smart objects on the process to monitor and on
changes in their state. However, monitoring information is not stored inside the
blockchain. Instead, information is stored as a file in the DFS, and only a refer-
ence to the file is stored in the blockchain.

To support this platform, the reference architecture shown in Fig. 4 is pro-
posed. In this case, the Events Router integrates both a Blockchain Client and
a DFS, Client. Like in the previous architecture, the smart contract shown in
Fig. 5 is deployed on the blockchain before the process starts (portions identical
to the one shown in Fig. 5 are omitted). However, this smart contract does not
directly contain the serialized process model (line 2). Instead, the process model
is stored in the DFS as a file, and a hash of that file is computed and stored in the
smart contract. This way, once the smart contract is deployed, the Blockchain
Client retrieves the hash of the process model by invoking the getProcessModel-
Hash method. Then, it obtains the process model by asking the DFS Client to
retrieve the file whose hash matches the one specified in the smart contract and,
once received, it configures the Monitoring Engine.

Similarly, the data structure in this smart contract (lines 3–8) does not store
the states assumed by the smart objects. Instead, it stores the hash computed
from this information. This way, when the Events Processor detects a change
in its state, the Blockchain Client asks the DFS Client to write the new state
in a file, then it invokes the writeHash method by passing the hash of the newly
created file, thus initiating a new transaction. Then, once the Blockchain Client
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1 contract IPFSblockclient {

2 string processModelHash;

3 struct StateHash {

4 uint id;

5 string mHash;

6 }

7 mapping(uint => StateHash) public hashes;

8 uint hashCounter;

9
10 function IPFSblockclient(string _processModelHash , address [] _addrs ,

bytes32 [] _encodedArtifacts) payable public {

11 for (uint p = 0; p < _addrs.length; p++) { ... } //add participants

12 processModelHash = _processModelHash; } // store process model hash

13
14 function writeHash(string _artifact , string _mHash) payable public {

15 if (participants[msg.sender ]. encodedArtifact == stringToBytes32(_artifact
)) { // check identity of sender and ownership of artifact

16 hashCounter ++; // increment state counter

17 hashes[hashCounter] = StateHash(hashCounter , _mHash); //store state
hash

18 LogWriteHash(hashCounter , _mHash); }}} //emit a new event

19
20 function getProcessModelHash () public view returns(string) {

21 return processModelHash ;} // retrieve process model hash

22 }

Fig. 5. Excerpt of smart contract supporting the DFS-blockchain hybrid platform.

is notified on a change in the state of a smart object (event LogWriteHash), it
receives the hash of the new state and then asks the DFS Client to retrieve
the file matching that hash. Since the hash computed for each invocation of
the smart object has a fixed length, the cost of each transaction is independent
from the amount of data that is produced. Therefore, information on the state
of a smart object can be enriched with historical sensor data and discretization
rules without increasing the cost of the transaction. This allows to implement
more sophisticated (off-chain) validation mechanisms, to ensure that monitoring
information was not originated by a faulty or compromised smart object.

As in the case of the fully blockchain-based one, this platform guarantees the
immutability of monitoring information. In fact, altering monitoring informa-
tion would require one or more files stored in the DFS to be changed. However,
a minimal modification in a file would completely change its hash, preventing
it to be retrieved by the other participants. As files are not stored in a central
location, and each file can be replicated an arbitrary number of times, decentral-
ization is also guaranteed. However, this solution does not enforce persistence of
monitoring information by design. In fact, unlike a blockchain, a DFS does not
force participants to have a copy of all the stored information. Therefore, unless
data retention policies are enforced by the organizations, nobody prevents the
participants from deleting information stored inside the DFS once the process
ends. Thus, if nobody keeps a copy of this information, it is lost.
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Table 1. Comparison of the two proposed platforms.

Platform Enforces
distributed
consensus

Enforces
persistence

Enforces
auditability

Permissioned
blockchain

Public
blockchain

Fully
BC-based

Yes Yes Yes Yes Not
recommended

DFS-BC
hybrid

Yes Not auto-
matically

Yes Yes Yes

3.3 Comparision

Table 1 summarizes the most significant aspects of the two proposed platforms.
In particular, both platforms enforce distributed consensus and auditability,
and they both can be easily implemented using a permissioned (i.e., private)
blockchain, which does not require a fee to be paid for each transaction. Only
the fully blockchain-based platform automatically enforces persistence of mon-
itoring information, as it stores this information on the blockchain. However,
this increases the operational cost of the solution when it operates on a public
blockchain, making such a combination not recommended.

4 Validation

To demonstrate the applicability of our solution on a real-world use case, we
built a prototype of the two platforms described in Sect. 32 starting from the
source code of the SMARTifact platform [1]. For the implementation of the
Events Router module, we chose the Ethereum [17] blockchain and the Inter-
Planetary File System (IPFS)[3] DFS due to both the availability of several
tools, libraries, and testing infrastructures (e.g., testnets). In addition, a node
implementing an Ethereum client can participate both in a private instance of
the Ethereum blockchain and in the public one (i.e., the mainnet). As in the case
of the original SMARTifact platform, also this one was entirely run on a Single
Board Computer (SBC), in this case a Raspberry Pi3. To reduce the workload
on the SBC, we configured the Blockchain Client as an Ethereum lightweight
node. Lightweight nodes do not execute smart contracts, validate transactions,
or require a complete copy of the whole blockchain to be downloaded. Therefore,
their computational and storage requirements are low enough to be fulfilled by
an SBC.

We then tested the two prototypes against a dataset provided by an Euro-
pean logistics company4, which was also used in [10] to validate artifact-driven

2 Source code at https://bitbucket.org/polimiisgroup/ethereumclient.
3 http://www.raspberrypi.org.
4 The (anonymized) dataset is available at http://purl.org/polimi/martifact/

logisticsds-anon (password: GM-CDC-JM-dataset).

https://bitbucket.org/polimiisgroup/ethereumclient
http://www.raspberrypi.org
http://purl.org/polimi/martifact/logisticsds-anon
http://purl.org/polimi/martifact/logisticsds-anon
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Table 2. Results of the validation for the fully blockchain-based platform.

Process

name

Executions

per

process

Correctness

(%)

Completeness

(%)

Median

transac-

tions per

execution

Contract

deploy-

ment cost

(gas)

Median cost

per

transaction

(gas)

Median

cost per

execution

(gas)

AMS-BRU 100.00 77.78 5.67 3276717 724547 4472261

AMS-CDG 100.00 87.50 8.88 3298198 724611 6846820

AMS-FRA 75.00 100.00 10.75 3277485 724529 8608058

AMS-LHR 12 91.67 58.33 10.58 3766963 724564 7979801

BRU-AMS 10 90.91 90.91 5.80 3298710 724609 4532603

CDG-AMS 10 100.00 60.00 11.00 3298710 724486 8299217

Table 3. Results of the validation for the DFS-blockchain hybrid platform.

Process

name

Executions

per

process

Correctness

(%)

Completeness

(%)

Median

transactions

per

execution

Contract

deploy-

ment cost

(gas)

Median

cost per

transac-

tion

(gas)

Median

cost per

execution

(gas)

AMS-BRU 9 100.00 77.78 5.67 1155343 116235 787424

AMS-CDG 8 100.00 87.50 8.88 1155343 116235 1176585

AMS-FRA 4 75.00 100.00 10.75 1155343 116235 1538362

AMS-LHR 12 91.67 58.33 10.58 1155343 116235 1326045

BRU-AMS 10 90.91 90.91 5.80 1155343 116235 789697

CDG-AMS 10 100.00 60.00 11.00 1155343 116235 1394119

monitoring. This dataset contains: (i) a model of 6 delivery processes with a
total of 53 execution traces; for each execution, (ii) logs containing the position
and the speed of the involved trucks. Following the artifact-driven approach, we
enriched the process model by associating to each activity a finite set of states
representing the conditions on the truck required for the activity to start or fin-
ish. Then, we defined rules to derive the state of the truck from logs, in order to
autonomously monitor the process. Finally, we configured both platforms with
the model and rules, and we replayed logs simulating the actual execution of the
process. A new transaction was initiated every time a rule detected a change in
the state of the truck. The transaction contained the new state, together with
the most recent changes in the position and speed of the truck, amounting of
800 Byte of data. The prototype was tested with both a private instance of the
Ethereum blockchain, and the Rinkeby public testnet5

Tables 2 and 3 summarize the results of the test using the fully blockchain-
based and the hybrid platform, respectively. With respect to the artifact-driven
monitoring platform described in [10], both platforms were capable of correctly
monitoring the same process instances, as shown in columns correctness and
completeness. Therefore, requirements R1, R2, R3, and R4 were satisfied by
both platforms. Also, thank to smart contracts, both platforms were able to sat-
isfy requirements R5, R6, R7, and R8 as well. Based on the complexity of the
smart contract, i.e., the amount of data that has to be written and the operations

5 http://www.rinkeby.io.

http://www.rinkeby.io
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performed on the data, a value, named gas, is determined for each transaction.
It is worth noting that the DFS-blockchain hybrid platform requires less than a
third of the gas required by the fully blockchain-based platform. In fact, moni-
toring a process execution with the former requires between 787424 and 1538362
gas units, while with the latter it ranges between 4472261 and 8608058 gas units.
In addition, every transaction initiated by the hybrid platform will store on the
blockchain always the same amount of data, corresponding to the hash of the
monitoring information. Therefore, the gas units required per transaction will
always be the same, regardless of the amount of monitoring information that has
to be stored. On the other hand, the amount of information written on the fully
blockchain-based platform equals to the monitoring information collected by the
platform. Therefore, if the amount of information generated per transaction will
increase, the gas units per transaction will increase as well. It is worth noting, as
already discussed in the previous section, that this higher gas requirement for the
fully blockchain-based platform is compensated by the guarantee of persistence.

To use our prototype in conjunction with the public Ethereum blockchain, a
fee directly proportional to the amount of gas consumed by the transaction has
to be paid. However, the gas price, that is, the fee per gas unit, is not fixed and
it can be defined when the transaction is initiated. In general, the higher the gas
price is set, the faster the transaction will be processed. When carrying out the
experiment, we had to set the gas price to 5 GWei (5×10−9 Ether), that is, circa
5.9 × 10−7 e6. As a consequence, the operational cost of the fully blockchain-
based platform would range between 2.64 e and 5.08 e per process execution,
and the one of the hybrid platform would range between 0.46 e and 0.91 e. Such
a difference in terms of cost is even more pronounced if we consider larger and
more complex processes, such as the ones included in the datasets of the 2014-
2015-2017-2018 BPI Challenges7. For each process execution in these datasets,
the number of transactions is on average up to six times the one considered in
our dataset8. Thus, for the fully blockchain-based platform, the maximum cost
would be at around 30 e per process execution, whereas for the DFS-blockchain
hybrid platform it would stay under 5 e per process execution.

Such an high price makes reasonable to adopt the public Ethereum blockchain
only in conjunction with the DFS-blockchain hybrid platform, and only when
processes manipulating very dangerous (e.g., nuclear waste) or highly valu-
able goods have to be monitored. In the other cases, a private instance of the
Ethereum blockchain, internally used by the participants and which does not
require any fee to be paid, is probably more advisable. However, we expect
the upcoming introduction of the proof-of-authority consensus algorithm in the
public Ethereum blockchain to sensibly decrease the operational cost. In fact,
proof-of-authority will significantly decrease the computational effort required
to generate a new block, causing the high value of gas price to no longer be jus-
tified. In such a scenario, gas price would drop and, consequently, a monitoring

6 The conversion rate was checked on March 15, 2019.
7 https://www.win.tue.nl/bpi/doku.php?id=2018:challenge.
8 We assumed a transaction to be initiated every time an event is produced.

https://www.win.tue.nl/bpi/doku.php?id=2018:challenge
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platform relying on the public Ethereum blockchain would become affordable
also for general purpose business processes.

5 Related Work

Traditionally, business-to-business communications have been performed with
the Electronic Data Interchange (EDI) standard [6]. However, EDI has been
conceived with commercial transactions in mind. In addition, it requires partic-
ipants to join a dedicated commercial network, which requires participants to
pay a subscription in order to be admitted. Finally, EDI does not implement any
mechanism to archive transactions, nor to certify the identity of the sender. To
improve trust in information systems, the adoption of blockchain has been inves-
tigated as a valuable solution [14,16]. More specifically, [8] presents an exhaustive
analysis of the implications of introducing a blockchain in inter-organizational
processes and, among the others, the need for developing a diverse set of process
monitoring frameworks on a blockchain. Also, [7] outlines the potential advan-
tages of the synergy between blockchain and business artifacts.

To this aim, [12] exploits the Bitcoin blockchain to monitor and verify pro-
cess choreographies. Starting from a BPMN collaboration diagram, a set of smart
contracts is derived. Similarly, [5] proposes an approach to derive smart contracts
from multi-party processes modeled as Petri nets, which is validated with respect
to cost. [15] proposes supply chain traceability system relying on blockchain and
on the IoT. Finally, [18] proposes a framework for coordinating and monitor-
ing transportation processes based on several private blockchain installations,
globally managed by a public blockchain. However, none of these works allow
deviations in the execution order of activities. Consequently, the execution of
activities that do not follow control flow dependencies is not detected. In addi-
tion, neither [12] nor [5] take into consideration the conditions of the physical
objects (i.e., the artifacts) participating in the process. Such conditions are useful
to determine if an event has occurred for real or it has been incorrectly reported.

6 Conclusions and Future Work

This paper presented how to provide a trusted monitoring platform for multi-
party business processes. Starting from the benefits of the artifact-driven moni-
toring approach, the impact of blockchain adoption to provide a trusted environ-
ment has been analyzed. In particular two configurations of the proposed plat-
form have been implemented and their pros and cons have been evaluated with
a set of experiments. The results show that a DFS-blockchain hybrid platform is
significantly less expensive than a fully blockchain-based one. Nevertheless, the
second is preferable when monitoring information must be persistently stored.

A limitation of this approach consists in relying on off-chain software mod-
ules, like the Events Processor and the Monitoring Engine, to monitor the pro-
cess. Consequently, the E-GSM model and the rules to determine the state of
the smart objects cannot be formally validated by the blockchain. To improve
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this situation, future work will investigate the adoption of oracles to ensure the
correct execution of these modules. Also, although the adoption of blockchain
has the merit of increasing the trust in monitoring, the proposed solutions do not
provide any type of control for possible malicious modification of the data before
they are sent to the blockchain. For this reason, tamper-proof systems must be
considered in the up-link, i.e., between the sensors and the chain. At the same
time, the adoption of a blockchain brings the current disadvantages of this tech-
nology in terms of performances. In fact, writing, approving, and distributing a
new block to all the participants takes seconds for a permissioned blockchain,
or even several minutes for a public one. Nevertheless, research efforts to speed
up operations on a blockchain are currently being taken by both academics and
the industry, so we expect this issue to be eventually solved or scaled back.
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