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Abstract. We are entering a new age of AI applications where machine
learning is the core technology but machine learning models are generally
non-intuitive, opaque and usually complicated for people to understand.
The current AI applications inability to explain is decisions and actions
to end users have limited its effectiveness. The explainable AI will enable
the users to understand, accordingly trust and effectively manage the
decisions made by machine learning models. The heat recycler’s fault
detection in Air Handling Unit (AHU) has been explained with explain-
able artificial intelligence since the fault detection is particularly burden-
some because the reason for its failure is mostly unknown and unique.
The key requirement of such systems is the early diagnosis of such faults
for its economic and functional efficiency. The machine learning mod-
els, Support Vector Machine and Neural Networks have been used for
the diagnosis of the fault and explainable artificial intelligence has been
used to explain the models’ behaviour.

Keywords: Explainable artificial intelligence · Heat recycler unit ·
Support vector machine · Neural networks

1 Introduction

Heating, Ventilation and Air Conditioning (HVAC) systems count for 50% of the
consumed energy in commercial buildings for maintaining indoor comfort [21].
Nonetheless, almost 15% of energy being utilized in buildings get wasted due
to various faults (like control faults, sensor faults) which significantly occurs in
HVAC systems because of lack of proper maintenance [20,28]. In HVAC systems,
an Air Handling Unit (AHU) acts as a key component. The faults in heat recy-
cler in AHU often go unnoticed for longer periods of time till the performance
deteriorates which triggers the complaints related to comfort or equipment fail-
ure. There are various fault detection and diagnosis techniques being identified
to benefit the owners which can reduce energy consumption, improve mainte-
nance and increases effective utilization of energy. Heat recycler’s faults can be
detected by comparing the normal working condition data with the abnormal
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data measured during heat recycler failure. Most of the fault detection methods
have the training dataset as historical data for building machine learning mod-
els, such as support vector machine, neural networks, support vector machine or
decision trees, depending on the training dataset. Abnormal data of heat recycler
failure is identified as a different class from the normal working class by using
various classification algorithms [9,27].

Fig. 1. The explanation framework of XAI [16]

We have entered a new era of artificial intelligence where core technology is
machine learning but machine learning models are non-intuitive, opaque and it is
difficult to understand them. Thus, the effectiveness of machine learning models
is limited by its inability to give explanation for its behaviour. To overcome this,
it is important for machine learning models to provide a human understandable
explanation for explaining the rationale of model. This explanation can then fur-
ther be used by analysts to evaluate if the decision meets the required rational
reasoning and does not have reasoning conflicting with legal norms. But what
does it mean by explanation?; a reason or justification given for some action. The
explanation framework can be well explained by a framework as shown in Fig. 1
where XAI system consists of two modules, explanation model and explanation
interface. The explanation model takes the input and justifies recommendation,
decision or action based on any machine learning model. The explanation inter-
face provides an explanation to justify the decision made by machine learning
model i.e. why does the machine behaved in such particular way that made
it to reach a particular decision. Thus the user can make the decision based
on the explanation provided by the interface. Figure 2 shows an example that
how explainable artificial intelligence helps a user by explaining the decisions of
learning model.
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Fig. 2. An example depicting an instance of XAI [16]

2 Previous Work

Explainable artificial intelligence is getting a lot of attention nowadays. The
machine learning algorithms have been used for cancer detection but these mod-
els do not explain the assessment they made. Humans can not trust these models
since they do not understand the reason of their assessment [17]. Van Lent et al.
[25] used the explanation capability in the training system developed by aca-
demic researchers and commercial game developers for the full spectrum com-
mand. Sneh et al. [24] used the explainable artificial intelligence in intelligent
robotic systems for categorization of different types of errors. The errors have
been divided into five categories using the machine learning techniques but they
fail to provide the explanations. The XAI have been used to provide information
and explanation of occurrence of these errors for three different machine learning
models. Ten Zeldam et al. [31] proposed a technique for detection of incorrect or
incomplete repair card in aviation maintenance that can result in failures. They
proposed a Failure Diagnosis Explainability (FDE) technique for providing the
interpretability and transparency to the learning model for the failure diagnosis.
It is used to check if the accessed diagnosis can explain if a new failure detected
matches the expected output of that particular diagnosis and if it is dissimilar
to it, then it is not likely to be the real diagnosis.

A number of fault detection tools have currently emerged from research. Gen-
erally, stand-alone software product form is taken by these tools where there
should be either offline processing of trend data or an online analysis can be
provided for the building control system. There have been different data driven
methods developed and used for detection of AHU’s faults such as coil fouling,
control valve fault, sensor bias etc. Yan et al. [30] proposed an unsupervised
method for detecting faults in AHU by using cluster analysis. Firstly, PCA is
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used to reduce dimensions of collected historical data and then spacial separated
data groups (clusters representing faults) are identified by using clustering algo-
rithm. The proposed system was tested on a simulated data and was able to
detect single and multiple faults in AHU.

Lee et al. [18] detected the AHU cooling coil subsystem’s fault with the
help of Artificial Neural Network (ANN) backward propagation method based
on dominant residual signature. Wang et al. [26] presented a method based on
PCA for detection and diagnosis of sensor failures where faults in AHU were
isolated by Q-contribution plot and used squared prediction error as indices of
fault detection. Likewise, PCA along with Joint Angle Analysis (JAA) is also
proposed by Du et al. [10] for diagnosis of sensors’ drifting and fixed biases in
Variable Air Volume (VAV) systems. A new method for the detection of drift-
ing biases of sensors in air handling unit is proposed by Du et al. [11] which
employed neural networks along with wavelet analysis. Zhu et al. [32] adduced a
sensor failure detection system based on regression neural network. It employed
the analysis made by three-level wavelet for decomposition of the measured sen-
sor data followed by extraction of each frequency band’s fractal dimensions for
the depiction of sensor’s failure characteristics and then it is trained with neural
networks to diagnose failures. A new semi supervised method for detection and
diagnosis of air handling unit faults is proposed by Yan et al. [29] where a small
amount of faulty training data samples were used to give the performance com-
parable to the classic supervised FDD methods. Madhikermi et al. [19] presented
a heat recovery failure detection method in AHU using logistic regression and
PCA. This method is based on process history and utilizes nominal efficiency of
AHU for detection of faults.

Fig. 3. The schematic diagram of Heat Recycler Unit

3 Theoretical Background

3.1 Heat Recycler Unit

A typical AHU with balanced air ventilation system, as shown in Fig. 3, includes
the HRU, supply fan, extract fan, air filters, controllers, and sensors. The system
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circulates the fresh air from outside to the building by utilizing two fans (sup-
ply side and extract side) and two ducts (fresh air supply and exhaust vents).
Fresh air supply and exhaust vents can be installed in every room, but typi-
cally this system is designed to supply fresh air to bedrooms and living rooms
where occupants spend their most of time. A filter is employed to remove dust
and pollen from outside air before pushing it into the house. The system also
extracts air from rooms where moisture and pollutants are most often generated
(e.g. kitchen and bathroom). One of the major component of the AHU is HRU
which is used to save energy consumption. The principle behind the HRU is to
extract heat from extracted air (before it is removed as waste air) from house
and utilize it to heat fresh air that is entering into the house. HRU is a fun-
damental component of AHU which helps to recycle extracted heat. The main
controllers included in the system are supply air temperature controller which
adjusts the temperature of the supply air entering into house and HRU output
which controls the heat recovery rate. In order to measure efficiency of HRU,
five temperature sensors are installed in AHU which measure the temperature
of circulating air at different part of AHU (detailed in Table 1). In addition to
data from sensors, HRU control state, supply fan speed, and extract fan speed
can be collected from system.

Table 1. Dataset description of Air handling unit sensors

Sensor name Description

HREG T FRS Temperature of fresh incoming air

HREG T SPLY LTO Temperature of supply air after HRU

HREG T SPLY Temperature of supply air

HREG T EXT Temperature of extracted air

HREG T WST Temperature of waste air

Hru Output State of HRU output controller

Sup Fan Speed The current effective supply-side fan speed

Ext Fan Speed The current effective extract-side fan speed

3.2 Support Vector Machine

SVM is a supervised machine learning approach used for both type of problems
classification as well as regression. But most of the time it is used to solve
classification problems. In this technique we plot all features as a data point in
dimensional space by using coordinate values. Then a hyperplane is created that
can discriminate the two classes easily. The problem in linear SVM using linear
algebra for assisting the learning of the hyperplane. The equation for predicting
a new input in linear SVM is calculated by using dot product between the input
(x) and each support vector (xi) given as [1]:
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f(x) = B(0) + sum(ai × (x, xi)) (1)

This equation involves the calculation of the inner products of a new input
vector (x) with all support vectors in training data. The learning algorithm’s
training data helps in estimation of the coefficients B0 and ai (for each input).
SVM model used in the proposed methodology can be depicted in Fig. 4 where
two classes (Since it is binary classification problem) are shown which depicts
the normal cases and fault detection cases with no heat recovery.

Fig. 4. SVM model used in proposed methodology

3.3 Neural Networks

Neural Networks the general function approximations, which makes them appli-
cable to almost all machine learning problems where a complex mapping is to be
learned from input to the output space. The computer based algorithms modeled
on the behaviour and structure of human brain’s neurons to train and categorize
the complex patters are known as Artificial neural networks (ANNs). In artifi-
cial neural networks, the adjustment of parameters with the help of a process of
minimization of error due to learning from experience leads to pattern recogni-
tion. The neural networks can be calibrated using different types of input data
and the output can be categorized into any number of categories. The activation
function can be used to restrict the value of output by squashing the output
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value and giving it in a particular range depending on the type of activation
function used.

Table 2. The activation functions used in neural networks

Function Formula

Sigmoid ys = 1
1+e−xs

Tanh ys = tanh(xs)

ReLu ys = max(0, xs)

I1

I2

I3

I4

I5

HREG_T_FRS

HREG_T_SPLY_LTO

HREG_T_SPLY

HREG_T_WST

HREG_T_EXT

H1

H2

H3

O1 .outcome

B1 B2

Fig. 5. Neural network model for proposed methodology

Table 2 lists the most common activation functions used in the neural net-
works where the value of sigmoid ranges from 0 to 1, tanh from −1 to 1 and ReLu
from 0 to +infinity. Figure 5 depicts the neural network used in the proposed
model which takes the five features described in the dataset as input which is
mapped to hidden layers and finally to the output classifying it as fault detection
or not.

3.4 Explainable Artificial Intelligence

Although there is an increasing number of works on interpretable and trans-
parent machine learning algorithms, they are mostly intended for the technical
users. Explanations for the end-user have been neglected in many usable and
practical applications. Many researchers have applied the explainable framework
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to the decisions made by model for understanding the actions performed by a
machine. There are many existing surveys for providing an entry point for learn-
ing key aspects for research relating to XAI [6]. Anjomshoae et al. [8] gives the
systematic literature review for literature providing explanations about inter-
agent explainability. The classification of the problems relating to explanation
and black box have been addressed in a survey conducted by Guidotti et al. [15]
which helped the researchers to find the more useful proposals. Machine learn-
ing models can be considered reliable but they lack in explainability. Contextual
Importance and Utility has quite significance in explaining the machine learning
models by giving the rules for machine learning models explanation [13]. Fram-
ling et al. provides the black box explanations for neural networks with the help
of contextual importance utility [12,14].

There are many methods used for providing the explanations for example;
LIME (Local Interpretable Model-Agnostic Explanations) [3], CIU (Contextual
Importance and Utility) [13], ELI5 [2], Skater [5], SHAP (SHapley Additive
exPlanations) [4] etc. Most of them are the extensions of LIME which is an orig-
inal framework and approach being proposed for model interpretation. These
model interpretation techniques provide model prediction explanations with
local interpretation, model prediction values with shape values, building inter-
pretable models with surrogate tree based models and much more. Contextual
Importance (CI) and Contextual Utility (CU) explains the prediction results
without transforming the model into an interpretable one. These are numerical
values represented as visuals and natural language form for presenting explana-
tions for individual instances [13]. The CIU has been used by Anjomshoae et al.
[7] to explain the classification and prediction results made by machine learning
models for Iris dataset and car pricing dataset where the authors have CIU for
justifying the decisions made by the models. The prediction results are explained
by this method without being transformed into interpretable model. It explains
the explanations for the linear as well as non linear models demonstrating the
felexibility of the method.

4 Methodology

The proposed methodology considers the fact that due to high number of dimen-
sions, detecting the failure cases (due to HRU failure) from the normal ones is
really tedious task. The HRU’s nominal efficiency (µnom) is a function of AHU’s
air temperatures as depicted in Eq. 2 [23]. The real dataset is collected from
AHU containing 26700 instances of data collected for both states; “Normal” and
“No Heat Recovery” state. There are two class labels with one label as “Normal”
with 18882 instances and other as “No Heat Recovery” with 7818 instances. Since
HRU output is set to “max” (i.e. it is a constant parameter) and HRU nominal
efficiency being a function of air temperature associated with AHU (as shown
in Eq. 2), this analysis only contains temperature differences as key point. All
these dimensions have been combined together for measuring the performance
of HRU.
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Fig. 6. Heat recovery failure detection methodology

µnom =
Text − Twst

Text − Tfrs
(2)

The methodology for the detection of heat recycler unit failure has been
depicted in Fig. 6. The methodology starts with having the input data containing
5 features and 1 binary class label (“No Heat Recovery” or “Normal”). The input
data is divided into 70:30 ratio of for training and testing dataset respectively.
The training dataset is used for training 2 models neural networks (nnet) and
support Vector Machine (SVM) individually along with 10 fold cross validation.
After both the models have been trained on the training dataset, they both are
tested for prediction on the testing dataset for the classification. Further, the
justification for the decision made by both the models is given with the help
of Explainable Artificial Intelligence (XAI). Local Interpretable Model-Agnostic
Explanations (LIME) has been used for providing the explanation of both the
models for 6 random instances of test data. The LIME helps in justifying the
decisions made by the models, neural networks and SVM.

5 Result Analysis

The performance of the proposed methodology has been tested on two trained
models, neural networks and support vector machine. The test dataset is given
to both the trained models for obtaining the various performance metrics such
as accuracy, sensitivity, specificity, precision, recall, confusion matrix and ROC.
Table 3 compares the results obtained from both the models where neural net-
works outperforms the SVM. It shows that neural networks have the sensitivity
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and specificity as 0.91 and 1 respectively with accuracy of 0.97 whereas SVM
has accuracy of 0.96 with sensitivity and specificity values as 0.99 and 0.95
respectively.

Table 3. Performance comparison of neural networks and SVM

Method Accuracy F1 score Sensitivity Specificity Precision Recall

Neural networks 0.97 1 0.90 1 1 0.90

SVM 0.96 1 0.99 .95 0.90 0.99

Table 4. Confusion matrix for nnet model

No Heat Recovery Normal

No Heat Recovery 2322 0

Normal 255 5463

Table 5. Confusion matrix for SVM model

No Heat Recovery Normal

No Heat Recovery 2364 255

Normal 21 5370

The confusion matrix obtained for neural networks and SVM is given in
Tables 4 and 5 respectively. Here, the positive class is taken as ‘No Heat Recov-
ery’ where there is failure in HRU and negative class is taken as ‘Normal’. Table 4
shows that there are 2322 instances of True Positives (TP), 0 False Positives
(FP), 255 False Negatives (FN) and 5463 True Negatives (TN) according to
predictions made by neural network model. Similarly, Table 5 shows that there
are 2364 instances of True Positives (TP), 255 False Positives (FP), 21 False
Negatives (FN) and 5370 True Negatives (TN) according to predictions made
by SVM model. ROC (Receiver Operating Characteristics) curve is one of the
most important evaluation metrics for checking any classification model’s perfor-
mance. The ROC curve is used for diagnostic test evaluation where true positive
rate (Sensitivity) is plotted as function of the false positive rate (100-Specificity)
for different cut-off points of a parameter. The ROC curve for neural networks
is depicted in Fig. 7 and for SVM is depicted in Fig. 8.
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Fig. 7. ROC curve for Nnet model
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Fig. 8. ROC curve for SVM model

5.1 Explanations Using LIME

Since most of the machine learning models used for classifications or predic-
tions are black boxes, but it is vital to understand the rationalization behind
the predictions made by these machine learning models as it will of great ben-
efit to the decision makers to make the decision whether to trust the model
or not. Figure 9 depicts an example of the case study considered in this paper
for predicting the failure of the heat recovery unit. The explainer then explains
the predictions made by the model by highlighting the causes or features that
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are critical in making the decisions made by model. However, it is possible that
the model may make mistakes in predictions that are too hard to accept there-
fore, understanding model’s predictions is quite important tool in deciding the
trustworthiness of the model since the human intuition is hard to apprehend
in evaluation metrics. Figure 10 illustrates the pick up step where convincing
predictions are being selected for being explained to the human for decision
making.

Fresh air
Supply air
Supply air after HRU
Extracted air
Waste Air

No Heat
Recovery Waste Air

Supply air after HRU

Extracted Air

Fresh Air

Knowledge

Fig. 9. Explaining individual predictions to a human decision-maker

Local Interpretable Model-agnostic Explanations (LIME) has been used for
giving the explanations of the model which can be used by decision makers for
justifying the model behaviour. The comprehensive objective of LIME is iden-
tifying an interpretable model over the interpretable representation which fits
the classifier locally. The explanation is generated by the approximation of the
underlying model by interpretable model which has learned on the disruptions
of the original instance. The major intention underlying LIME is that it is being
easier approximating black box model locally using simple model (locally in the
neighbourhood of the instance) in contrast to approximating it on a global scale.
It is achieved by weighing the original instances by their similarity to the case we
wish to explain. Since the explanations should be model agnostic, LIME Because
our goal should be to have model-agnostic model, We can use LIME for explain-
ing a myriad of classifiers (such as Neural Networks, Support Vector Machines
and Random Forests) in the domain of text as well as images [22].

The predictions made by both the models are then justified with the help of
explainable artificial intelligence. Local Interpretable Model-Agnostic Explana-
tions (LIME) has been used for providing the explanation of both the models for
6 random instances of test data. The explainability of neural networks and SVM
is shown in Figs. 11 and 12 respectively. “Supports” means that the presence of
that feature increases the probability for that particular instance to be of that
particular class/label. “Contradicts” means that the presence of that feature
decreases the probability for that particular instance to be of that particular
class/label. “Explanation fit” refers to the R2 of the model that is fitted locally
to explain the variance in the neighbourhood of the examined case.

The numerical features are discretized internally by LIME. For instance, in
Fig. 11, for case no. 7637, the continuous feature HREG T WST is being dis-
cretized in such a way that a new variable is created (HREG T WST ≤ 7.1) that
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Fig. 10. Explaining the model to a human decision maker [22]

when it is true, the feature HREG T WST is lower or equal to 7.1. When this
variable is true, the estimate for case 7637 is driven approximately 0.34 higher
than the average predicted probability in whole sample. Similarly, another con-
tinuous variable HREG T SPLY variable is being discretized into a new variable
(12.9 < HREG T SPLY ≤ 16.7) and the estimate for case 7637 is driven approx-
imately 0.45 lower than the average predicted probability in the whole sample,
etc. When all the contributions are added on the average performance, it gives
the final estimate. It also tells the class for which that particular instance belongs
and how the probabilities of all variables have contributed in deciding that it
belongs to that class. Similarly, it can be explained for second model SVM in
Fig. 12.
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Probability: 1
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Fig. 11. Explainability of NNet model
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Fig. 12. Explainability of SVM

6 Conclusion

The heat recycler’s fault detection in Air Handling Unit (AHU) is tedious task
because the reason for its failure is mostly unknown and unique. The key require-
ment of such systems is the early diagnosis of such faults for its economic and
functional efficiency. The real dataset of Heat Recycler Unit of AHU has been
used for making predictions. The machine learning models, Support Vector
Machine and Neural Networks have been used individually for the classifica-
tion to detect the faults in AHU. Further, an explainable artificial intelligence
has been used to explain the behavior of both the models i.e. the reason for
justifying the recommendation or decision made by the learning models. Local
Interpretable Model-Agnostic Explanations (LIME) has been used for providing
the explanation of both the models chosen for 6 random instances of test data
LIME has been used as an adequate tool for facilitating the trust for experts
of machine learning and has been a good choice to be added in their tool belts.
As a future work, we will like to compare the explanation results obtained by
LIME with Contextual Importance (CI) and Contextual Utility (CU) to study
how these two methods behave differently in context with providing the expla-
nations.
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