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{gianluca.torta,roberto.micalizio}@unito.it,

samuele.sormano@edu.unito.it

Abstract. The paper addresses the problem of explaining failures that
happened during the execution of Temporal Multiagent Plans (TMAPs),
namely MAPs that contain both logic and temporal constraints about
the action conditions and effects. We focus particularly on computing
explanations that help the user figure out how failures in the execu-
tion of one or more actions propagated to later actions. To this end,
we define a model that enriches knowledge about the nominal execu-
tion of the actions with knowledge about (faulty) execution modes. We
present an algorithm for computing diagnoses of TMAPs execution fail-
ures, where each diagnosis identifies the actions that executed in a faulty
mode, and those that failed instead because of the propagation of other
failures. Diagnoses are then integrated with temporal explanations, that
detail what happened during the plan execution by specifying temporal
relations between the relevant events.

Keywords: Temporal Multiagent Plans · Model-based diagnosis ·
SMT

1 Introduction

Multiagent plans (MAPs) are an efficient way for accomplishing complex goals.
The underlying principle is to decompose a given complex goal into subgoals, and
then organize the activities of a team of agents so as that each agent achieves a
subgoal autonomously while coordinating with others. Plan execution, however,
is not always straightforward. The actual execution of actions, in fact, can be
affected by failures. When a failure occurs, detecting and diagnosing it is of
primary importance in order to resume the nominal execution. As pointed out
in [2], in fact, when the behavior of a system is not explained, a human user
makes up her own explanation, that not necessarily reflects the internal stance
of the system.

The diagnosis of the execution of a multiagent plan (MAP) has been
addressed in a number of works (see e.g., [9–11]), proposing different notions
of plan diagnosis and different diagnostic methodologies. These works, however,
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do not model time explicitly, but only implicitly by assuming a sequence of iden-
tical time steps at which atomic actions are performed. In these approaches, thus,
it is not possible to model durative actions [5]; however, in real world scenarios,
action duration (either within a nominal range, or with unexpected delays) can
strongly affect the success of the agent’s plan and of its interactions with others.

Other works have addressed the diagnosis of delayed actions in MAPs [12,13,
16]. Their objective is to provide the user with explanations of failures consisting
only of actions delays; whereas, the logical effects of action failures (i.e., missing
logical values that should hold as a consequence of an action) are not taken
into consideration. This restriction limits the applicability of the methods by
hindering their ability to handle cases of fault propagation from an action to
another one due to a missing effect.

This paper, which significantly expands our previous work [17], contributes
with a comprehensive framework addressing the diagnosis of a MAP execution
by taking into account both missing effects and temporal deviations. We adopt
a consistency-based notion of diagnosis [15]: a MAP diagnosis is a subset of
actions whose non-nominal behavior is consistent with the observations received
so far. We then argue that, in a setting with agents interactions and durative
actions, such diagnoses may not be informative enough for helping a human user
figure out what happened during the plan execution. As a remedy, we enrich
diagnoses with temporal explanations that clarify how primary action failures
may have affected other actions in the MAP, even those assigned to different
agents. Figure 1 outlines the loop of inferences we aim at. This loop is substan-
tially grounded on a consistency-based notion of diagnosis. Intuitively, a MAP
P is properly encoded into a model SP,H which takes into account an initial
hypothesis H of nominal behavior. The model is therefore used for detecting
discrepancies between the expected behavior of the whole P with the available
observations about the actual execution of the plan. In case a discrepancy is
found, a diagnosis task is activated with the aim of detecting a number of alter-
native consistency-based diagnoses. To increase the informative power of such
diagnoses, they are complemented with a set of temporal explanations. Finally,
a human supervisor has the chance to evaluate the alternative explanations and
select the one to be chosen as the new current hypothesis H. Although this pre-
sentation and selection phase is not addressed in this paper (as we underline in
the picture by using dashed lines), we deem that the synthesis of such temporal
explanations is a fundamental step to increase users’ awareness.

Specifically, we propose a methodology to solve a diagnostic problem by infer-
ring the set of all the preferred diagnoses with minimal rank [6], i.e., with the
highest (order-of-magnitude) likelihood. Our approach is based on a single, cen-
tralized diagnostic reasoner that must diagnose the behavior of a multiagent
system. Since we deal with both logic and temporal constraints to model faulty
action modes, the computation of all the preferred diagnoses is made by exploit-
ing a Satisfiability Modulo Theories (SMT) solver, that is able to handle both
kinds of conditions. We model propagation by considering literals that are shared
among the actions (i.e., produced as an effect by an action, and consumed as a
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Fig. 1. The outline of the proposed TMAP diagnosis loop.

precondition by another action, even of a different agent). These shared literals
can be considered as resources that are dynamically generated, and consumed,
during the execution. To explain an action failure as an indirect consequence
of a previous failure, thus, we focus on the events that affect the values of the
literals shared by the two actions.

To the best of our knowledge, our proposal is the first one dealing with
both temporal and logic aspects in the diagnosis of multiagent plans. The most
similar work we are aware of is [4], where, however, the authors consider only
plans with a limited number of discrete time steps amenable to a SAT encoding,
and concentrate on conflicts among agents in the use of resources (e.g., road
intersections).

The paper is organized as follows. In the next section we formalize the notion
of Temporal Multi-Agent Plans (TMAPs). In Sect. 3 we introduce the Plan Exe-
cution Failure (PEF) diagnostic problem and the notion of preferred diagnosis,
and in Sect. 4 we motivate and formally define the (temporal) explanations of
diagnoses. In Sects. 5 and 6 we first describe how the relevant information of a
PEF problem can be encoded in the input language of a SMT solver, and then
we discuss how the PEF problem can be solved with a conflict-based search
algorithm, and how explanations of a diagnosis can be computed. In Sect. 7,
before conclusions, we discuss the experimental results we have obtained with
an implementation of the proposed approach.

2 Temporal Multiagent Plans

We formalize a Temporal Multiagent Plan (TMAP) P as 〈T,A,O,CL,M〉:
– T is the team of cooperating agents ag1, ag2, . . .
– A is the set of action instances ac1, ac2, . . . included in the plan, each of which

is assigned to a specific agent agent(aci);
– O is a set of order constraints, that specifies a total order relation over the

actions of each agent ag ∈ T ; each pair 〈ac, ac′〉 ∈ O, ac, ac′ ∈ A, agent(ac) =
agent(ac′) means that ac is the predecessor of ac′, and ac′ is the successor of
ac;
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– CL is the set of causal links between an action ac that produces a literal R
(i.e., has ¬R as pre-condition and R as effect) and another action ac′ that
consumes the literal R (i.e., has R as pre-condition and ¬R as effect); in
general agent(ac) can be different from agent(ac′); in such a case we say that
R is a shared literal;

– M is the set of all the possible behavioral modes that can be associated with
the action instances in A. In particular, M(ac) denotes the set of all modes
associated with instance ac ∈ A. Each mode m ∈ M(ac) is a tuple of the
form 〈label, pre, eff, range, rank〉:

• label is the mode name;
• pre and eff are sets of grounded literals: pre is the pre-condition for the

execution of ac in mode m; whereas, eff is the set of effects obtained by
performing ac in mode m1;

• range is an interval of time corresponding to the possible durations of
the action when it behaves in mode m;

• rank is a non-negative integer value representing the order-of-magnitude
probability of the mode [6]: lower ranks correspond to higher probabilities.

Set M(ac) must contain at least one distinguished mode N (nominal) with
rank 0. Ranks are sometimes also named levels of surprise, indicating how
much surprising is an event for an involved operator. Therefore, they can be
usually specified by a human expert instead of learned from data that may
be unavailable.

We have omitted concurrency and mutual-exclusion constraints from this defi-
nition in order to avoid excessive complexity and keep our focus on diagnosis.
While the causal links in CL, as we defined it, cannot capture all the forms of
mutual exclusion, we shall see that implicit mutex constraints play an important
role in agents interactions through shared literals. Concurrency and other forms
of mutual exclusion, e.g., the use of a resource that has a single instance, could
be easily accommodated in our framework.

If we assume that all the actions will be executed in the N mode, a TMAP
can be interpreted as a flexible schedule of the plan [14], that guarantees that
all the causal links are respected and all the plan actions are smoothly executed.
However, the TMAP also contains fundamental information associated with the
possible actions failures. In particular, modes different from N are not used for
the planning purpose, but for the diagnostic one; such modes allow actions to
obtain different effects from the nominal, expected ones.

Example 1. As an example TMAP P , let us consider a case with four agents:
T = {ag1, ag2, ag3, ag4} (see Fig. 2). The set of actions is A = {ac11, . . . , ac44},
with order relations O and (nominal) causal links CL as shown in the figure,
respectively, by the solid and dashed arrows.

Now, we assume that the fifteen actions included in MAP P are instances
of just three types of actions: move, load, and put. Intuitively, in the TMAP in

1 For the sake of discussion, we assume that all modes M(ac) of an action ac have the
same preconditions pre.
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ag1:

ag2:

ag3:

ag4:

ac11

load(o, loc1)

ac12

move(loc1,loc2)

ac13

put(o,loc2)

ac21
move(loc3, loc2)

ac22
load(o, loc2)

ac23

move(loc2,loc4)

ac24

put(o, loc4)

ac31
move(loc5,loc4)

ac32
load(o,loc4)

ac33

move(loc4,loc2)

ac34

put(o,loc2)

ac41
move(loc7, loc6)

ac42
move(loc6, loc5)

ac43
move(loc5, loc2)

ac44
load(o, loc2)

Fig. 2. An example TMAP.

Fig. 2, the four agents have to cooperate for moving an object o from location
loc1 to location loc2 and then loc4, and then back to loc2 again. For instance, ag1
moves object o by loading it in loc1, and carrying it to location loc2. Note the
nominal causal link between ac13 and ac22, meaning that in a nominal execution
of the plan ag2 will load block o from loc2 after it has been moved there by ag1.

The table in Fig. 3 shows the modes M(ac) of each action type, with associ-
ated label, pre- and post-conditions, range, and rank.

act pre m post range rank

move(ag,p1,p2) at(ag,p1)

N at(ag,p2) [1,3) 0
F1 at(ag,p2) [3,10) 1
F2 at(ag,p2) [10,25] 2
F3 ∅ [10,25] 3

load(ag,p,o)
at(ag,p),
at(o,p),
holds(ag,∅)

N ¬at(o,p),
holds(ag,o)

[1,2) 0

F1 ¬at(o,p),
holds(ag,o)

[2,10) 1

F2 ∅ [10,25] 2

put(ag,p,o)
at(ag,p),
holds(ag,o)

N at(o,p),
¬holds(ag,o)

[1,2) 0

F1 at(o,p),
¬holds(ag,o)

[2,10) 1

F2 ∅ [10,25] 2

Fig. 3. Example modes.

For instance, in nominal mode (N), a move(ag, p1, p2) requires the agent to
be in place p1, causes the agent to arrive in place p2, and has an execution time
in the interval [1, 3). The rank is 0, meaning that the N mode is preferred (i.e.,
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the most likely). In mode F3, the action has an execution time in the interval
[10, 25], a rank 3, and leaves the agent in p1. Similar modes and time intervals
are associated with the load and put actions. Of course, parameter o in load and
put represents an object that can be manipulated by multiple agents during the
TMAP execution.

It is important to note that, for all action types, the fault modes have the
same pre-conditions of the N mode (but different effects, at least in terms of
duration). When such common pre-conditions are not satisfied, we assume a
special mode FSKIP (failure propagation). This mode denotes that the action
was skipped (i.e., it never started). The set of the effects of FSKIP is therefore
empty, and the action duration is 0. Also the rank is 0 because it represents
a secondary failure, and hence does not contribute to the rank of the overall
diagnosis. An action in FSKIP mode does not have direct effects on the world,
but may have indirect effects on plan execution since some of its missing effects
could be preconditions for subsequent actions.

3 Plan Execution Failure Problem

Timed Observations. We define a timed observation as a pair 〈e, t〉, where e is
the observed event, and t is the time when e occurred. In our TMAP framework,
an observable event can be a single ground literal, possibly with a negative
polarity. For instance, at(ag1, p1) and ¬at(ag1, p1) are two alternative observable
events. Of course, we assume that observations are reliable and consistent (i.e.,
the same literal does not appear with both polarities at the same time). During
the execution of a plan, only a few of these events will be observed (due to partial
observability).

Plan Execution Failure (PEF) Problem. It is important to note that the
agents share the same environment and resources, and cooperate with each other
by exchanging services: the effects brought about by an agent may be the precon-
ditions for the actions of another agent. In principle, therefore, the misbehavior
of an agent could affect its later activities as well as other agents’ activities.

We say that action ac is ready when its predecessor ac′ s.t. 〈ac′, ac〉 ∈ O has
finished. We assume that, after an action is ready, it will execute as soon as all
its pre-conditions are true. In fact, as a consequence of previous failures, the
preconditions could be brought about too late, or might even not be provided
at all. Let P = 〈T,A,O,CL,M〉 be a TMAP.

Definition 1. A mapping H : A → M(A) ∪ {FSKIP } is a hypothesis about the
modes of actions in P that assigns each action ac ∈ A with a mode m ∈ M(ac)
or special mode FSKIP .

Since action modes are associated with time intervals and logic pre-/post-
conditions, a hypothesis H can be used to estimate a set of possible executions
of P , that may differ for the times at which actions start and end; we call these
possible executions temporal execution profiles.
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Definition 2 (Temporal Execution Profile). Given a TMAP P , and a
hypothesis H, a temporal execution profile θ is an ordered sequence of pairs
〈s0, t0〉, . . . , 〈sn, tn〉, such that si (i : 0..n) is a state of the whole system consist-
ing of all the atoms holding at time ti. For each ac ∈ A, the events Ts(ac) (start)
and Te(ac) (end) occur in exactly two states, si and sk, respectively, such that
ti precedes tk. Moreover:

1. each si is a set of atoms that are true at time ti and that represents the state
of the whole system

2. if acj starts at time ti with mode in M(acj), then the preconditions of acj

for mode H(acj) (i.e., the mode assigned by H to acj) hold at time ti, and
any other action that starts at time ti, or is already in progress at that time,
is not in conflict with acj according to the “no moving targets” rule [5], for
which no two actions can simultaneously make use of a value if one of the
two is accessing the value to update it;

3. if acj starts at time ti with mode FSKIP , then: ti = tk + τ (where tk is the
end time of the predecessor ack of acj); the preconditions of acj do not hold
at time ti; for each t ∈ [tk, ti], if the preconditions of acj held at time t, some
other action in conflict with acj started or was already in progress at time t

4. if acj ends at time ti, then the post-conditions of mode H(acj) of action acj

hold at time ti
5. for each action ac ∈ A, the distance between the times when the action starts

and terminates belong to m.range where m is H(ac);
6. s0 is the initial given state;
7. sn is the state where the effects of the last performed actions are added.

Conditions 2 and 4 state that the pre-conditions and effects of an action
ac performed with modality m = H(ac) are true, respectively, when the action
starts and when the action terminates. Note that condition 2 ensures that two
actions that modify the same literal are executed in mutual exclusion; this is
a fundamental constraint for actions that affect the value of a shared literal.
Condition 3 states that an action is associated with special mode FSKIP only if
it has not been allowed to start with true pre-conditions until a timeout τ has
expired. Condition 5 imposes that in θ the duration of each action ac respects
the intervals of possible durations associated with mode m assumed in H.

Of course, given a TMAP P and a hypothesis H, many temporal execution
profiles can be derived: TP (H) denotes the set of all possible temporal execution
profiles that results from P when only the modalities in H are allowed.

More generally, since each action is associated with a number of modes, we
denote with TP the space of possible temporal execution profiles for the plan P
obtained by considering all possible hypotheses.

Let Obs be a sequence of timed observations over actions in P . Obs can be
used as a filter on TP by pruning off those profiles that are not consistent with
them. More precisely, a temporal execution profile θ ∈ TP is consistent with Obs
iff for each timed observation 〈e, t〉 ∈ Obs, if we let ti be the unique time instant
in θ such that ti ≤ t < ti+1, then si |= e (where 〈si, ti〉 ∈ θ). In other words,
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the timed observation 〈e, t〉 must agree with the state of the world si that holds
at t according to τ .

It is sufficient that this does not hold for one timed observation in Obs to
say that θ is not consistent with Obs. We will denote as TP (Obs) the subset of
the profile space consistent with Obs.

Definition 3 (PEF problem). A Plan Execution Failure (PEF) problem is a
pair 〈P,Obs〉 where P is a TMAP and Obs a set of timed observations.

The goal of solving a PEF is to find hypotheses H that are consistent with
the observations:

TP (H) ∩ TP (Obs) 	= ∅. (1)

The previous equation can be expresses in the form of the classic definition of
consistency-based diagnosis [15]:

P � H � Obs 	� ⊥.

where � represents the intersection of temporal profiles.
It is well known that the number of consistency-based diagnoses can be very

large, especially when the observability is low. Therefore, we are not interested
in any hypothesis H that satisfies Eq. 1, but only in the hypotheses that also
satisfy a preference criterion. More precisely, we look for solutions that minimize
the rank (i.e., maximize the probability) associated with the action modes.

Definition 4. Given a TMAP P = 〈T,A,O,CL,M〉 and a hypothesis H about
actions in P , the rank of H, denoted as rank(H), is

rank(H) =
∑

ac∈A

H(ac).rank.

In fact, since we assign rank 0 to failures that depend on previous failure, and the
rank of failures that are independent can be comulated, the rank of a hypothesis
is simply the sum of the ranks of the modes assumed in the hypothesis itself. Of
course, there exists only one hypothesis H0 with rank 0 in which all actions are
assumed nominal.

Definition 5 (PEF solution). Let P be a TMAP, and let 〈P,Obs〉 be a PEF
problem, a solution to such a problem is an hypothesis δ such that:

1. δ satisfies Eq. (1);
2. rank(δ) is minimal: no other hypothesis H ′ that satisfies Eq. (1) has

rank(H ′) < rank(δ)

As usual in a diagnostic setting, we are not interested in just one solution,
but in all minimal solutions, in fact, unless other preference criteria are given,
all these minimal solutions should be returned as an answer to a PEF problem.
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Example 2. Let us consider the plan of Example 1. Although in the original
plan, action put(o, loc2) of agent ag1 was assumed to make o available for action
load(o, loc2) of ag2, this may not be the case in a real execution scenario. Assume
that the previous action of ag2, i.e., move(loc3, loc2), had an F1 delay and
took 8 time instants. In the meanwhile, the three move actions of ag4 have
taken a total of 6 time instants, so that the object released by ag1 at loc2
at time 4 is actually loaded by ag4. This situation makes actions ac22, ac24,
ac32, and ac34 fail with mode FSKIP , because they don’t have the necessary
preconditions to be executed. However, a diagnosis that (except for N modes)
lists: ac21(F1), ac22(FSKIP ), ac24(FSKIP ), ac32(FSKIP ), ac34(FSKIP ) is not a
satisfactory explanation of what happened. Indeed, the fact that ac21 had a delay
F1 does not necessarily imply all the other events and (propagation) failures:
think, e.g., that the delay caused by F1 was just a duration of 3 time instants
for ac21. In the next section we propose a notion of temporal explanation that
yields more information than just the diagnosis.

4 Explaining Failure Propagations

4.1 Temporal Explanations

A solution δ to a PEF problem provides a user with a labeling of (failure)
modes to the plan actions that is consistent with the available observations.
In particular, a special mode FSKIP in δ is used to denote those actions that
have been affected by previously occurred action failures (i.e., it is a secondary
failure). However, this is not in general sufficient, for the user, to understand
what has actually happened. In fact, a secondary failure might be caused by
the co-occurrence of two or more primary failures (e.g., when two actions delay
independently and their consequences sum up affecting a third action). Such
configurations are not easy to discover, and to increase the comprehension of a
user, a δ diagnosis needs to be further explained to extract implicit, contingent
connections between the primary failure(s) and the secondary ones.

Intuitively, failures can propagate via the shared literals, that is, via the
resources produced by an action and consumed by another one. For example,
an action may fail because one of the required inputs is not available at the
right time, and this may happen because the producer failed in supplying it
(including supplying it with too much delay), or because another action has
erroneously consumed the resource in its place. Explaining δ, thus, means tracing
back the temporal relations among the actions that are related to some resource
of interest, and whose occurrence justifies a secondary failure.

Definition 6 (Temporal Explanation of δ w.r.t. R). Let δ be a PEF solu-
tion to 〈P,Obs〉. A Temporal Explanation (explanation in short) E(δ,R) of δ
w.r.t. a shared literal R is a set of Allen algebra relations among actions in P
defined as follows. Let δR+ (resp. δR−) be the subset of actions in δ that produce
(resp. consume) a shared literal R. Moreover, let δR(FSKIP ) (resp. δR(FSKIP ))
be the subset of δR+ ∪ δR− containing actions with mode equal to (resp. different
from) FSKIP . Then, an explanation E(δ,R) for δ w.r.t. R is a set such that:
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– for each ac ∈ δR(FSKIP ), E(δ,R) specifies two Allen algebra relations ρprec

and ρsucc w.r.t. its predecessor and its successor in δR(FSKIP ) (except for the
first and last action). Relation ρprec is either after or meets after; relation
ρsucc is either before or meets;

– for each ac ∈ δR(FSKIP ), E(δ,R) specifies two Allen Algebra during relations
ρR (when ac becomes ready) and ρF (when ac timeouts and fails with FSKIP ).
Relations ρR and ρF relate ac either with a single action in δR(FSKIP ), or
with (the interval I in between) two actions ac′, ac′′ in set δR(FSKIP ).

Some comments are in order. First of all, note that, due to the mutual exclu-
sion among actions that produce/consume R, the actions in δR(FSKIP ) respect a
total order, specified through the (meets) before/after relations in E(δ,R). Such
an order partitions the timeline in a set ΠR of intervals of action execution and
intervals between two actions.

In addition, an action ac ∈ δR(FSKIP ) that was supposed to pro-
duce/consume R, but failed because of missing pre-conditions, can actually over-
lap with actions in δR(FSKIP ). In fact, the action has never started, and what
we are interested in knowing is the interval between when ac became ready
(i.e., when it became the current action for its agent), and when ac failed with
mode FSKIP . Such events, that determine the interval W during which ac is
“willing” to produce/consume R are placed in partition ΠR by during relations
in E(δ,R). It follows that W is contextualized in E(δ,R) against all the other
intervals regarding the execution of actions that have handled resource R, and
hence provides the user with an explanation of why action ac could not pro-
duce/consume R during W .

A (full) explanation of a diagnosis δ is simply a set E(δ) of several sub-
explanations E(δ,R), one for each shared literal R. Note that, given a diagnosis
δ, it is in general possible to find several alternative explanations, corresponding
to different orders of events compatible with δ. Such alternatives are equally
plausible according to our model, and are therefore computed and returned to
the human user.

4.2 Explaining Broken Causal Links

As a further refinement, the temporal explanation can be compared against the
causal structure of the MAP P induced by the links in CL.

First of all, note that all the links in CL should be satisfied when all the
actions of the plan execute in the nominal mode N , i.e., the following property
must hold.

Property 1. If we denote as δN the hypothesis representing the solution to 〈P, ∅〉,
its explanation E(δN ) must confirm the links in CL, i.e., if (aci, acj) ∈ CL for
aci, acj ∈ δN

R , then E(δN , R) will contain either relation aci before acj or aci

meets acj .

This property can be effectively checked with the algorithm for computing expla-
nations that will be given in Sect. 6.
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Let us denote by �CL the transitive closure of the links in CL. Thus, if two
actions aci and acj are in relation aci �CL acj , it means that there exists a
chain of causal links and order relations that flow from ai to aj . If an action is
skipped due to a missing precondition, it will generally be the case that some
causal links were broken during the actual execution. By comparing the temporal
explanation against the transitive closure on causal links, it is possible to identify
these broken links and, to some extent, their causes. Let ac be in δR(FSKIP ),
and let ac∗ be in δR(FSKIP ) such that ac �CL ac∗ according to the definition
of the TMAP P . Moreover, let all the causal links in ac �CL ac∗ be broken,
i.e., ac∗ is the first action in the chain that is not skipped. As a consequence, all
the actions from ac to ac∗ did not receive their preconditions as required by CL;
however, ac∗ did in fact receive its preconditions, although not from the action
prescribed by CL. The explanation of δ will clearly state which action provided
the pre-condition to ac∗, thus explaining why it succeeded despite the broken
causal chain from ac.

The following examples should help clarify the concepts introduced in this
section.

Example 3. Let us refer to Example 2. The producers of literal R = at(o, loc2)
are as follows: ac13, and ac34; while the consumers of R are: ac22, and ac44.
According to Example 2, the diagnosis δ (except for N modes) lists: ac21(F1),
ac22(FSKIP ), ac24(FSKIP ), ac32(FSKIP ), ac34(FSKIP ). The explanation that
we have informally sketched in Example 2, should now be formalized as a suitable
explanation E(δ,R). Figure 4 shows E(δ,R) graphically on a diagram where time
increases from left to right. Note that, besides the actions related with R and
their Allen algebra relations specified by E(δ,R) (black), the schema also shows
the actions that are affected because they occur along a chain of broken causal
links, specifically those falling within the transitive closure ac22 �CL ac44, to
further increase the information conveyed by the schema to the reader. These
actions are in fact assigned with a non-nominal mode by the diagnosis δ and are
marked with a ↗ symbol because they are related to another literal at(o, loc4).

The set of non-FSKIP actions that have to do with R are just ac13 and ac44,
so that the timeline is partitioned in five regions (dotted vertical bars): before
ac13; during ac13; between ac13 and ac44; during ac44; after ac44. The definition
of explanation requires us to relate ac13 and ac44, and, in the scenario described
by Example 2, the relation is ac13 before ac44, i.e., when ac13 ends, some time
passes before ac44 becomes ready and consumes at(o, loc2). Two causal links
from Fig. 2 are especially in need of an explanation: (ac13, ac22), because ac13
has mode N but ac22 has mode FSKIP (i.e., the action form which the link stems
is ok, but the action where the link goes is not); and (ac34, ac44), because ac34
has mode FSKIP and ac44 has mode N (i.e., the “starting” action of the link
has failed, but the “ending” one is ok). Both of these facts are explained by the
spurious causal link contained in the explanation E(δ,R), namely (ac13, ac44),
which describes an incorrect actual execution.

Note that R would be available for other consumers between the end of ac13
and the start of ac44. However, according to explanation E(δ,R), ac22 becomes
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Fig. 4. An explanation of diagnosis
δ =

{
ac21(F1), ac22(FP ), ac24(FP ),

ac32(FP ), ac34(FP )
}
.

Fig. 5. An explanation of diagnosis δ′ ={
ac21(F1), ac23(F1), ac32(FP ), ac34(FP ),

ac44(FP )
}
.

ready and then fails with mode FSKIP (segment starting with > and ending with
♦) only after ac44 ends. By looking at the figure, it is easy to see that such a
delay is due to the failure with mode F1 of action ac21.

Let us now consider an explanation for a different diagnosis δ′, according
to which actions ac21 and ac23 fail with mode F1 (delay), and actions ac32,
ac34, and ac44 fail with mode FSKIP (Fig. 5). The upper part of the figure
shows the explanation of δ w.r.t. literal at(o, loc2), while the lower part shows
the explanation of δ for literal at(o, loc4). In particular, ac13 produces literal
at(o, loc2), which is consumed by ac22 (in this case, immediately), as prescribed
by the plan. However, we see that although the put action ac24 involving literal
at(o, loc4) succeeds, the associated load action ac32 fails with mode FSKIP ,
which in turn propagates to the failure of actions ac34 and ac44 on at(o, loc2)
that depend on ac32 (causal links in the plan, Fig. 2).

By just looking at the upper part of the figure, then, we are left without
an explanation of the failure of ac32. We have to look at the part of the figure
showing the explanation for literal at(o, loc4), where we realize that action ac32
became ready and then failed with mode FSKIP before action ac24 (from which
ac32 depends) was executed. The cause of the delay is clearly a combination of
the delays caused by the failures of actions ac21 and ac23 with mode F1.

5 Translation to SMT

In order to address a PEF problem by exploiting an SMT solver, we have to
encode the TMAP and the observations Obs in the language accepted by the
solver. We recall that an SMT problem is an extension of the well known propo-
sitional satisfiability (SAT) problem where formulas can contain relations and
functions from various theories including real and integer linear arithmetic. Sim-
ilar to SAT, when a set of formulas is satisfiable, the solver is able to return
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a satisfying assignment to the variables. In this work, we have adopted the Z3
solver [3]. Due to space constraints, we will focus just on the most relevant
aspects of the encoding process. In order to encode action types (e.g., move,
load), we need to encode the predicates that appear in their pre-conditions and
effects, e.g. at and holds. We define them as uninterpreted functions (UF), i.e.,
functions for which the Z3 solver will try to find an interpretation that satis-
fies the set of formulas being checked. Note that most of the predicates are in
fact fluents, i.e., they have time as one of their arguments. For example, at(ag,
p, t) asserts that agent ag is at place p at time t. For diagnostic purposes, a
fundamental predicate is mode(ac,m), that defines the mode m of an action ac.

Action types, with their behaviors determined by modes, pre-conditions and
effects, are expressed as defined functions (DF). Unlike UFs, DFs have a body
that specifies how to compute the function value given the arguments. A DF
receives all the parameters relevant to the action, plus two time points Ts and
Te that represent the action starting and ending times, and returns a Boolean
value. For example, the signature of the move action is:

move(ag : Agent, ac : Action, from : Pos, to : Pos, Ts : Int, Te : Int) : Bool

The body of the DF specifies, for each mode m ∈ M(ac) and for the special mode
FSKIP , the pre-conditions and the effects taken from the TMAP definition.

if (pre-cond) mode(ac,N) ⇒ [N post-cond]
...
mode(ac, Fk) ⇒ [Fk post-cond]

else mode(ac, FSKIP ) ∧ [FSKIP post-cond]

The plan itself is encoded as a sequence of assertions that build the instances
of action types that make up the plan. Finally, the timed observations Obs are
easily encoded by asserting the truth of the associated fluent, e.g. the observation
〈at(ag1, p1), t1〉 will be encoded by asserting at(ag1, p1, t1).

Constraints between time points are expressed as linear arithmetic relations:

Te(ac) > Ts(ac); Te(ac′) < Ts(ac) ≤ Te(ac′) + τ

Note that, in the second formula, ac′ is the predecessor of ac in the plan of the
agent. A fundamental point that needs to be addressed by our translation is
the definition of suitable frame-axioms, i.e., formulas prescribing that a fluent
does not change if none of the actions changing it is taken. For instance, in our
example logistic domain, fluent at(ag, p, t) is only possibly changed at the end
of a move action. Moreover, no other agent can change the value of at(ag, p, t).
So, for each action ac that is not a move:

at(ag, p, Te(ac)) = at(ag, p, Ts(ac)) and at(ag, p, Ts(ac)) = at(ag, p, Te(ac′))

where ac′ is the predecessor of ac. Things are more complicated for fluents such
as at(o, p, t) (where o is an object) that can be changed by multiple agents.
According to our assumptions, we impose that such actions must be executed in
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mutual exclusion. However, in general, for each action ac, we must also assert
that:

at(o, p, Ts(ac)) = at(o, p,max({Te(ac′) : Te(ac′) < Ts(ac)}))

where all actions ac′ that can modify the fluent are considered by the max()
operator on the right hand side. The encoding of time and persistency relations
highlights the benefits of adopting a SMT solver instead of a SAT solver for
checking the consistency of hypotheses. In a SAT-encoding of a plan whose
timespan is [0, N ], it is necessary to create a copy of each variable for each time
instant in [0, N ]. On the contrary, the SMT encoding allows us to focus just on
the values of the fluents at the relevant time points, that for a TMAP are the
start/end times of actions and the times of observations.

Concurrency constraints are the most difficult ones to encode, especially
because we require that an action is actually executed as soon as it is possi-
ble to do so. We can’t describe in detail such constraints due to lack of space.
Suffice it to say that, for each shared literal R in the TMAP P , we need to intro-
duce a predicate wants(ac,±R, T ), that denotes the fact that an action ac wants
to consume (+) or produce (−) literal R at time T . Then, we specify a number
of constraints involving the actions PR = PR+ ∪PR− (that produce/consume R)
to handle the situations that can arise during plan execution: mutual exclusion,
waiting for R to be produced/consumed (possibly competing with other waiting
agents), timing out and executing in mode FSKIP .

6 Solving PEF Problems

Given the encoding of a PEF problem in the input language of Z3, we exploit the
ability of Z3 to produce an unsat core every time it is invoked on an unsatisfiable
instance. An unsat core is a set of assertions in the input to Z3 that cannot hold
simultaneously and therefore require to withdraw at least one of them in order
to get satisfiability. Given the set of unsat cores that is cumulatively produced
during the search for the solutions, we can avoid to explore the parts of the
search space that do not hit (i.e., withdraw at least an assignment from) all of
them. This technique is well known in diagnosis, also on approaches based on
SMT [7].

Let us assume that we have a function EncodeTMAPZ3 that, given a TMAP
P , encodes it in the Z3 input language as explained in the previous section.
Figure 6 shows the CBFS (Conflict-based Best First Search) diagnostic algorithm
for solving a PEF specified by P and Obs. The algorithm is strongly based on
the high-level schema of Conflict-directed A∗ (cd A∗) [18], with some variations
explained below.

At each iteration of the top-level while loop, algorithm cd A∗ would require
to generate a full assignment of modes to actions that resolves the conflicts
found so far. Instead, we generate a constraint σ on the modes of the actions
with function NextBestPlateauResolvingConflicts() (line 5). Such a constraint:
(i) contains specific assignments σF of faults (excluding FSKIP ) to actions in
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CBFSDiagnosis(P = T,A,O,CL,M , Obs)
1. Sys EncodeTMAPZ3(P)
2. Pef Sys ∪ EncodeObsZ3(Obs)
3. UCores ∅; Δ ∅; done? false; best ∞
4. while not done? do
5. σ NextBestPlateauResolvingConflicts(UCores)
6. if rank(σ) > best then
7. done? true
8. else
9. Pefσ Pef ∪ EncodePlateauZ3(σ)

10. (μ, γ) CheckSATZ3(Pefσ)
11. if μ = null then
12. best rank(σ)
13. while μ = null do
14. δ project(μ, {mode(ac, m) ∈ μ : ac ∈ A})
15. Δ Δ ∪ {δ}
16. Pefσ Pefσ ∪ EncodeAssignmentZ3(¬δ)
17. (μ, γ) CheckSATZ3(Pefσ)
18. end while
19. else
20. UCores UCores ∪ γ
21. end if
22. end if
23. end while
24. return Δ

Fig. 6. The CBFS diagnostic algorithm.

order to hit all the unsat cores γ ∈ UCores; (ii) constrains the remaining actions
to have either mode N or FSKIP ; (iii) has minimum rank among assignments
that hit UCores. Therefore, σ looks as follows:

σ = acF1 (ϕ1) ∧ . . . ∧ acFm(ϕm)∧
(acR0

1 (N) ∨ acR0
1 (FSKIP )) ∧ . . . ∧ (acR0

n (N) ∨ acR0
n (FSKIP ))

where actions acF
i ∈ σF are assigned a specific faulty mode ϕi (excluding

FSKIP ), while actions acR0
i (where the superscript R0 denotes the fact that

such actions contribute a rank 0 to the assignment) can take mode N or FSKIP .
This explains the term plateau in the name of the function that computes con-
straints σ: a single constraint may indeed generate several diagnoses of equal
rank (i.e., cost) by assigning combinations of modes N or FSKIP to the acR0

i

actions (see below).
When all the minimum rank solutions Δ to a given TMAP have already been

found, a constraint σ with a higher rank than the best one is generated (line 6),
and the algorithm returns set Δ. Otherwise, the constraint σ is added to the
Z3 encoding Pef of the PEF problem (TMAP and observations), and the result
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Explain(Pef, δ)
1. Pefδ Pef ∪ EncodeAssignmentZ3(δ)
2. (μ, γ) CheckSATZ3(Pefδ)
3. while μ = null do
4. eraw project(μ, {Ts(ac) ∈ μ : ac ∈ A})
5. eAll EncodeAllenAlgebra(eraw)
6. E E ∪ eAll

7. Pefδ Pefδ ∪ ¬eAll

8. (μ, γ) CheckSATZ3(Pefδ)
9. end while

10. return E

Fig. 7. The Explain algorithm.

Pefσ is then checked by Z3 for satisfiability. If Pefσ is unsatisfiable, Z3 returns
an unsat core γ, that is added to the set UCores.

Otherwise, a satisfying model μ is returned by Z3. The best rank of solutions
is updated with the rank of σF . Then, the algorithm enters an inner while loop
where: the full assignment δ to the action modes prescribed by μ is added to
the set Δ of preferred diagnoses; and then Pefσ is checked again for satisfiability
excluding δ (to avoid finding it again).

The explanations of a diagnosis δ are computed with the Explain algorithm
shown in Fig. 7. Diagnosis δ is added to the encoding Pef of the PEF problem
solved by δ, and the result Pefδ is checked for satisfiability with Z3. Of course,
since δ is a diagnosis, the while loop is entered at least once. The times of
start and end of each action are extracted from model μ, and then they are
abstracted into set eAll of the corresponding Allen algebra relations introduced
in Definition 6. For example, if a put(ag, p, o) ends at time t, and a load(ag’, p,
o) starts at time t+1, then a relation meets is established between put and load.
After adding eAll to the set E of explanations of δ and negating it in Pefδ, Z3 is
called again to look for other explanations of δ.

7 Implementation and Results on Test Cases

We have implemented the SMT-based approach to diagnosis described above as
a Java program exploiting the Z3 solver. The tests have been run on a machine
running Ubuntu 18.04.1 LTS, equipped with an i7 7700HQ CPU at 2.80 GHz,
and 8 GB RAM. We have considered a Logistic domain which reflects the domain
used in the examples. In such a domain, as mentioned above, agents can move,
load, and put objects, giving rise to several kinds of inter-agent interactions. We
have experimented our approach by running a number of software simulated
tests under different configurations, defined by varying the following dimensions:
#ag (2 and 4 agents); #ac (8, 10, 20 actions per agent); and #rnk (injected
failures of ranks 2, 4). In order to study the effect of interactions among agents,
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Table 1. avg time (sec), sols, time/sol, and explanations of experiments.

CBFS

Time #sol Time/sol #expl

ag 2

ac 8 (R2) 0.48 2.0 0.24 2.0

ag 4

ac 10 (R2) 1.32 2.5 0.53 3.0

ac 20 (R2) 6.83 4.0 1.71 6.1

ac 20 (R4) 25.53 15.6 1.64 23.2

we have introduced inter-agent links in the plans used in the configurations as
follows: 2 ag × 8 act with 2 links; 4 ag× 10 act with 3 links; and 4 ag× 20 act
with 7 links.

The observability rate (i.e., ratio between the number of actions with observ-
able effects and the total number of actions) was 30%. We have chosen this level
of observability because it has proved to be high enough for our algorithm to
(almost) always include the diagnosis with the injected failures in the list of
preferred diagnoses, and low enough to challenge our algorithm with a certain
ambiguity in discriminating between the “real” diagnosis and alternative ones.

In Table 1, we show results obtained with 4 different configurations of increas-
ing complexity. The average total time for solving the PEF problems goes from
0.48 s (2 agents × 8 actions, rank 2), up to 25.53 s (4 agents× 20 actions, rank 4).
It should be noted that the total time includes the computation of all the pre-
ferred diagnoses, as well as their temporal explanations. If we look at the average
time taken for computing each preferred diagnosis (including its explanations),
the increase is more limited, going from 0.24 s to 1.71 s. Indeed, as the test cases
become more challenging (more agents, more actions, higher rank of failures),
the average number of preferred diagnoses increases (from 2.0 to 15.6), as well
as the average number of associated explanations (from 2.0 to 23.2). Note that
the time/sol of the 3rd and the 4th configurations is almost the same, despite
the fact that the former has test cases with rank 2 and the latter of rank 4. This
seems to indicate that the time/sol is not affected significantly by the rank of
test cases.

8 Conclusions

The diagnosis of Temporal Multiagent Plans (TMAPs) has been addressed by
a number of approaches in literature that focused either on diagnosing delays
[12,13,16], or on diagnosing violation of logic conditions [9–11]. In this paper, we
have presented a novel approach that deals with both aspects. As a consequence,
the propagation of failures from one action to another (and one agent to another
one) is particularly complex, because it can be due to delays and/or missing
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logic effects. Therefore, in our framework we first single out diagnoses (possi-
bly containing secondary failures) by means of a conflict-based search. We then
explain these secondary failures by inferring the temporal profile of the pro-
duction/consumption of shared resources whose misuse caused the very same
failures. These temporal profiles allow a user to gain a better understanding
about the causes of a secondary failure by relating it to the (primary) failure of
another action that has caused an unexpected effect on some shared resource.

Some recent works in the literature address the explanation of the behavior
of agents whose internals are based on “black-box” components, mostly realized
through Machine Learning and/or Data Mining techniques [1,8]. Contrary to
such works, we can exploit a quite accurate model of our system (i.e., the TMAP
that is being executed); in this sense, our approach is more closely related to
the approaches to explainable planning discussed in [1]. As witnessed by those
papers, as well as by the present one, the availability of an intelligible model
does not imply that conveying a clear and intuitive explanation of an intelligent
task to the human user is trivial.

We are considering several future extensions of the present work. Currently,
action failures in plan execution are considered as independent of one another,
except when the actions interact through shared literals. Following [13], we may
try to extend the present work by considering that action failures can be related
also when they involve some common features of the agent or the environment
(e.g., a motor or a traffic jam for a move). Since plan diagnosis is the pre-
condition for plan repair, another future line of work will explore how to exploit
the (on-line) computation of diagnoses to inform a re-planning process that tries
to achieve (most of) the original goals.
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