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Preface

In the last decade, the dependency of our society towards intelligent systems has
dramatically escalated. For example, data-driven techniques (typical of machine
learning - ML) such as classification, regression, and clustering are increasingly
employed in semi-automated diagnosis based on medical image recognition, financial
market forecasting, and customer profiling.

The internal mechanisms for such systems are opaque and not understandable nor
explainable. Therefore, humans are still intertwined with those semi-automated
intelligent systems due to legal, ethical, and user-requirement reasons. Moreover, the
real world is characterized by uncountable and heterogeneous (possibly abstract)
stimuli concurring in the composition of complex/articulated information. Persisting
with specific and isolated solutions (heavily demanding continuous handcrafting)
would only enhance the already unsustainable human-overhead.

To cope with the real world heterogeneity and enforce AI/ML trustworthiness, the
recently born discipline named eXplainable Artificial Intelligence (XAI) moved
towards Distributed Artificial Intelligence (DAI) approaches. In particular, the research
community is fostering the adoption of Multi-Agent Systems (MAS) embodying DAI
(e.g., autonomous vehicles, robots, smart buildings, and IoT) to enforce explainability,
transparency, and (above all) trustworthiness.

This volume contains a selection of the extended papers presented at the First
International Workshop on EXplainable TRansparent Autonomous Agents and
Multi-Agent Systems (EXTRAAMAS 2019), held in conjunction with the International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2019), during
May 13–14, 2019, in Montreal, Canada.

The EXTRAAMAS 2019 organizers would like to thank the publicity chairs and
Program Committee for their valuable work.

June 2019 Davide Calvaresi
Amro Najjar

Michael Schumacher
Kary Främling
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Towards a Transparent Deep Ensemble
Method Based on Multiagent

Argumentation

Naziha Sendi1,2(B) , Nadia Abchiche-Mimouni1 , and Farida Zehraoui1

1 IBISC, Univ Evry, Université Paris-Saclay, 91025 Evry, France
nsendi@visiomed-lab.fr

2 Bewell Connect, 75016 Paris, France

Abstract. Ensemble methods improve the machine learning results by
combining different models. However, one of the major drawbacks of
these approaches is their opacity, as they do not provide results expla-
nation and they do not allow prior knowledge integration. As the use of
machine learning increases in critical areas, the explanation of classifi-
cation results and the ability to introduce domain knowledge inside the
learned model have become a necessity. In this paper, we present a new
deep ensemble method based on argumentation that combines machine
learning algorithms with a multiagent system in order to explain the
results of classification and to allow injecting prior knowledge. The idea
is to extract arguments from classifiers and combine the classifiers using
argumentation. This allows to exploit the internal knowledge of each
classifier, to provide an explanation for the decisions and facilitate inte-
gration of domain knowledge. The results demonstrate that our method
effectively improves deep learning performance in addition to providing
explanations and transparency of the predictions.

Keywords: Deep learning · Ensemble methods ·
Knowledge extraction · Multiagent argumentation

1 Introduction

The Machine Learning (ML) models have started penetrating into critical areas
like health care, justice systems, and financial industry [30]. Thus, explaining
how the models make the decisions and make sure the decision process is aligned
with the ethical requirements or legal regulations becomes a necessity. Ensemble
learning methods as a ML model have been widely used to improve classification
performance in ML. They are designed to increase the accuracy [42] of a single
classifier by training several different classifiers and combining their decisions
to output a single class label, such as Bagging [10] and Boosting [18]. However,
traditional ensemble learning methods are considered as black boxes. In fact,
they mainly use weighted voting to integrate multiple base classifiers. Although

c© Springer Nature Switzerland AG 2019
D. Calvaresi et al. (Eds.): EXTRAAMAS 2019, LNAI 11763, pp. 3–21, 2019.
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this “majority-voting” approach is relatively simple, it lacks interpretability for
users. In addition, only classification results of base classifiers are integrated,
rather than their internal classification knowledge.

In order to overcome the weaknesses of traditional ensemble learning meth-
ods, we introduce a new ensemble method based on multiagent argumentation.
The integration of argumentation and ML has been proven to be fruitful [11] and
the use of argumentation is an intelligent way of combining learning algorithms
since it can imitate human decision-making process to realize the conflict reso-
lution and knowledge integration and also provide explanation behind decisions.

Due to the above advantages of argumentation, this paper proposes a trans-
parent ensemble learning approach, which integrates multiagent argumentation
into ensemble learning. The idea is to construct for each instance arguments
for/against each classifier, evaluate them, and determine among the conflicting
arguments the acceptable ones. The arguments will be extracted automatically
from classifiers. As a result, a valid classification of the instance is chosen. Thus,
not only the class of the instance is given, but also the reasons behind that
classification are provided to the user as well in a form that is easy to grasp.

The article is organized as follows. Section 2 introduces the related research
works about ensemble learning, argumentation and explainable intelligent sys-
tems. Section 3 presents the principles of our method. A realization process of a
specific use case is given in Sect. 4. Experimental results on public datasets are
presented and discussed in Sect. 5. Finally, Sect. 6 summaries the contributions
and future works.

2 State of Art

Recent years, ensemble learning, argumentation technology and explainable
intelligent systems attract much attention in the field of Artificial Intelligence
(AI). In this section, we focus on the related works about ensemble learning,
argumentation in ML and Explainable artificial systems.

2.1 Ensemble Method

Many ways for combining base learners into ensembles have been developed.
Dietterich [14] classifies ensemble methods based on the way the ensembles are
built from the original training dataset. We describe the four most used strate-
gies. The first method manipulates the training examples to generate multiple
hypotheses. The learning algorithm is executed several times, each time with
a different subset of the training examples. These methods include the most
popular ensemble methods: bagging [10] and boosting (AdaBoost) [18]. Bagging
builds learning algorithms based on bootstrap samples. Boosting associates, for
each classifier, a set of weights to the training examples based on previous classi-
fication results. The second technique for constructing an ensemble of classifiers
is to manipulate the outputs values (classes) that are given to the learning algo-
rithm. One of the most used approaches is called error correcting output coding
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[15]. It starts by randomly partitioning the classes into two subsets. Then a new
learning problem can be constructed using the two new classes (each class repre-
sents a subset of the initial classes). The input data are then relabelled and this
process is repeated recursively generating different subsets in order to obtain an
optimal ensemble of classifiers. The third type of approaches manipulates the
input features available in the training set. The input features are divided into
several parts. Each part corresponds to a coherent group of features. This allows
to obtain diverse classifiers that use different features types. The last method is
to apply randomized procedures to the learning processes in order to improve
the diversity. For example, in the backpropagation algorithm for training neural
networks the weights of the network are initialized randomly. The algorithm is
applied to the same training examples but with different initial weights. The
resulting classifiers and their results can be quite different. We can also dis-
tinguish ensemble fusion methods from ensemble selection methods based on
the way the outputs of the ensemble algorithms are combined. Ensemble fusion
methods [36] like Fuzzy fusion and majority voting, combine all the outputs of
the base classifiers by the majority voting and the class that collects most votes
is predicted by the ensemble while ensemble selection methods [36] like test and
select methods and cascading classifiers choose the best base classifier among
the set of base learners for a specified input, and the output of the ensemble is
the output of the selected best classifier. Most of research works has focused on
the advantages of ensemble methods to improve the algorithm’s performance.
However, one of their major drawback is their lake of transparency, since no
explanation of their decisions has been offered.

2.2 Argumentation in ML

Several approaches have been proposed to combine multiagent argumentation
and ML. Hao et al. [23] present Arguing Prism, an argumentation based app-
roach for collaborative classification which integrates the ideas from modular
classification inductive rules learning and multiagent dialogue. Each participant
agent has its own local repository (data instances) and produces reasons for or
against certain classifications by inducing rules from their own datasets. The
agents use argumentation to let classifiers, learned from distributed data repos-
itories, reaching a consensus rather than voting mechanisms. This approach is
interesting because it allows avoiding simple voting and generates arguments in
a dynamic way. Unfortunately its use is restricted to decision trees. Wardeh et al.
[43] present a classification approach using a multiagent system founded on an
argumentation from experience. The technique is based on the idea that classi-
fication can be conducted as a process whereby a group of agents argue about
the classification of a given case according to their experience which is recorded
in individual local data sets. The arguments are constructed dynamically using
classification association rule mining [2] techniques. Even if this approach argues
for the use of local data for the argument exchange between the agents, there is
a chairperson agent which acts as a mediator agent for the coordination of the
whole multiagent system. From our point of view, this is a weak point, since the
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system fails to perform any classification if the chairperson agent fails. A more
recent work [40] presents preliminary experiments confirming the necessity of
the combination of ML and argumentation. The authors propose to bring the
gap between ML and knowledge representation and reasoning and suggest that
this can be applied to multiagent argumentation.

Existing approaches differ in their use of argumentation and in their choice of
argumentation framework/method. Finally, different approaches achieve differ-
ent and desirable outcomes, ranging from improving performances to rendering
the ML process more transparent by improving its explanatory power. These
works illustrate the importance of building arguments for explaining ML exam-
ples. But all of them are dedicated to rule association and are used in monolotihic
way. The most important point is that, none of them addresses deep learning
methods, despite these are among the most powerful ML algorithms. The use
of argumentation techniques allows to obtain classifiers, which can explain their
decisions, and therefore addresses the recent need for explainable AI: classifica-
tions are accompanied by a dialectical analysis showing why arguments for the
conclusion are preferred to counterarguments.

2.3 Explainable Intelligent Systems

Explainable artificial intelligence (XAI) has been gaining increasing attention.
XAI aims to make AI systems results more understandable to humans. Most
of the existing works in literature focus on explainability in ML which is just
one field of AI. However, the same issues also confront other intelligent systems.
Particularly explainable agent are beginning to gain recognition as a promising
derived field of XAI [1].

Explainability in ML. In the studied literature, many interpretable models
are used such as linear models, decision trees and logic rules [21] to explain
blackboxes. In order to provide a flexible and structured knowledge with textual
representation, we have used logic rules. The advantage of this representation is
that it facilitates the integration/injection of prior knowledge.

In recent years, many approaches for rule extraction from trained neural net-
works have been developed. According to Andrews et al. [4], the techniques of
the rule extraction can be grouped into three main approaches namely decom-
positional, pedagogical and eclectic. The decompositional approach [19,38,44]
extracts the symbolic rules by analyzing the activation and weights of the hid-
den layers of the neural network. The pedagogical approach [5,13] extracts rules
that represent input-output relationship so as to reproduce how the neural net-
works learned the relationship. The eclectic approach [7,25,31] is a combination
of the decompositional and the pedagogical approaches.

Tran and Garcez [41] propose the first rule extraction algorithm from Deep
Belief Networks. However, these stochastic networks behave very differently from
the multilayer perceptrons (MLP), which are deterministic. Zilke et al. [44] have
proposed an algorithm that uses a decompositional approach for extracting rules



Towards a Transparent Deep Ensemble Method 7

from deep neural networks called DeepRED. This algorithm is an extension of
the CRED algorithm [32]. For each class, It extracts rules by going through the
hidden layers in descending order. Then, it merges all the rules of a class in
order to obtain the set of rules that describes the output layer based on the
inputs. Bologna et al. [7] proposed a Disretized Interpretable Multilayer Percep-
tron (DIMLP) that uses an eclectic approach to represent MLP architectures.
It estimates discriminant hyperplanes using decision trees. The rules are defined
by the paths between the root and the leafs of the resulting decision trees. A
pruning strategy was proposed in order to reduce the sets of rules and premises.

Craven et al. [12] propose a method to explain the behavior of a neural
network by transforming rule extraction into a learning problem. In other words,
it consists in testing if an input from the original training data with its outcome
is not covered by the set of rules, then a conjunctive (or m-of-n) rule is formed
from considering all the possible antecedents. The procedure ends when all the
target classes have been processed.

Explainability in MAS. As agents are supposed to represent human behav-
ior, works in this area mainly focus on behavior explanations generation so that
agents could explain the reasons behind their actions. Harbers et al. [24] propose
to use self-explaining agents, which are able to generate and explain their own
behavior for the training of complex, dynamic tasks in virtual training. To give
trainees the opportunity to train autonomously, intelligent agents are used to
generate the behavior of the virtual players in the training scenario. The expla-
nations aim to give a trainee an insight into the perspectives of other players,
such as their perception of the world and the motivations for their actions, and
thus facilitate learning. Johnson et al. propose a system called Debrief [26], which
has been implemented as part of a fighter pilot simulation and allows trainees to
ask an explanation about any of the artificial fighter pilot’s actions. To generate
an answer, Debrief modifies the recalled situation repeatedly and systematically,
and observes the effects on the agent’s decisions. With the observations, Debrief
determines what factors were responsible for ‘causing’ the decisions. VanLent
et al. [29] describes an AI architecture and associated explanation capability
used by Full Spectrum Command, a training system developed for the U.S.
Army by commercial game developers and academic researchers. The XAI sys-
tem has been incorporated into a simulation based training for commanding a
light infantry company. After a training session, trainees can select a time and
an entity, and ask questions about the entity’s state. However, the questions
involve the entity’s physical state, e.g. its location or health, but not its mental
state. Javier et al. [20] describe a natural language chat interface that enables
the vehicle’s behaviour to be queried by the user. The idea is to obtain an inter-
pretable model of autonomy by having an expert “speak out-loud” and provide
explanations during a mission. To provide simplistic explanations for the Non-
player characters in video games, Molineaux et al. [35] consider a new design
for agents that can learn about their environments, accomplish a range of goals,
and explain what they are doing to a supervisor.
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3 Method

We propose an original method, based on multiagent argumentation, which com-
bines several DNNs. This way of combining DNNS allows not only to provide
explanations of individual predictions, but also the injection of domain knowl-
edge. So, the argumentation process uses knowledge extracted from the individ-
ual classifiers and domain knowledge. The method proceeds in two main phases:
(1) arguments extraction phase and (2) multiagent argumentation phase (see
Fig. 1).

Fig. 1. Approach architecture

3.1 Arguments Extraction Phase

The classifiers are built using bootstrap training samples which are generated
from the training dataset. As in bagging ensemble method [10], a bootstrap
sample is obtained by a random selection of examples with replacement from
the original training dataset.

Deep multilayer network (DMLP) is used as base classifier for the ensemble
method. A DMLP consists of an input layer that receives input examples, hidden
layers that are fully connected to the previous and the next layers and an output
layer that provides the network outputs. These consist of the probabilities of an
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input example to belong to the classes. Let’s hl
i the ith neuron of the hidden layer

l, its activation is defined by: hl
i = f(

∑
j wl

jih
l−1
j ), where wl

ji is the weight of the
connection from the jth neuron of the layer (l − 1) to the ith neuron of the layer
l (h0 represents the input layer) and f is the activation function. For the hidden
layers, we used the Rectified Linear Units (ReLU) activation function, which
gives good results in practice. It is defined as follows: ReLU(x) = max(0, x).
We used the softmax activation function for the output layer in order to obtain
the probabilities that the input X = (x1, x2, ..., xn) belongs to a class c. This
function is defined by: softmax(ho

c) = expho
c

∑
l exp

ho
l
.

To train the DMLP, we used the adam [27] optimizer and the cross-entropy
cost function L, which is the best choice in state-of-the art implementations. It
is defined by: L(Y,O) = − 1

N

∑
i

∑
l yil ln (oil).

Rules extraction step is very important since it allows to explain the pre-
dictions and to make the link between the classifiers and the MAS. To extract
classification rules from DNNs, we have evaluated one pedagogical approach [13]
and one eclectic approach [7]. We have chosen these approaches because they are
scalable and adapted to the use of multiple deep learning algorithms. In [13], the
authors proposed an algorithm (TREPAN) that extracts rules from DNN by pro-
ducing a decision tree. TREPAN uses a best-first procedure when building the
decision tree. This consists in choosing the node that most increases the fidelity
of the tree. A rule is defined by the path between the root and a leaf of the built
tree. In [7], the first phase consists in approximating the discriminant frontier
built by a DMPL using discriminant hyperplanes frontiers. In the second phase,
a Discretized Interpretable Multilayer Perceptron (DIMLP) model is extracted
based on the discriminant hyperplanes frontiers. The multilayer architecture of
DIMLP is more constrained than that of a standard multilayer perceptron. From
this particular constrained network, rules based on continuous attributes can be
extracted in polynomial time. The extracted classification rules from each clas-
sifier constitute a rule base that is associated to the classifier. Each rule base is
then embedded in an agent.

The form of a classification rule CR is: CR : (pr1) (pri) ... (prn) =⇒
(class(CR) = c, confidence score(CR) = s), where: pri ∈ premises(CR)
(1 ≤ i ≤ n) are the premises of the rule CR that the example must satisfy
to be classified in c ∈ C (C is the set of classes). The form of the premise pri
is defined by pri = (xi op αi) where xi is the value of the ith attribute, αi

is a real number and op is an operator. s (0 ≤ s ≤ 1) is a confidence score
that is associated to the rule CR. This score depends on the number ne+c (CR)
of examples that are well classified by the rule CR. To take into account the
fact that most real datasets are unbalanced the number of well classified exam-
ples ne+c (CR) is divided by the total number of examples nec in the class c :
confidence score(CR) = ne+c (CR)

nec
.

Domain knowledge is also modeled in the form of rules, named expert rules
(ERs):
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ER : (pr1) (pri) ... (prn) =⇒ (class(ER) = c), where pri ∈ premises(ER)
(1 ≤ i ≤ n) are the premises of the rule ER that the example must satisfy
to be classified in the class c ∈ C based on the official experts’ knowledge.
For example, the ER1 rule below expresses that an official recommendation for
hypertension is to prefer the beta blockers (BB) treatment for young people:
ER1 : (age < 50) =⇒ (class(ER1) = BB).

As said earlier, each rule base is encapsulated in an agent. In order to allow
injecting prior knowledge in the system, an Expert agent is added for embedding
the knowledge base which models prior knowledge provided by domain experts.

3.2 Multiagent Argumentation Phase

Abstract argumentation has been introduced by Dung [16] for modeling argu-
ments by a directed graph, where each node represents an argument and each
arc denotes an attack by an argument on another. To express that an argu-
ment a attacks an argument b (that is, argument a is stronger than b and b
is discarded), a binary relation is defined. The graph is analyzed to determine
which set of arguments is acceptable according to general criteria. Structured
argumentation has been introduced by [6] to formalize arguments in such a way
that premises and claim (such as a class for a CR, see Sect. 3.1) of the argument
are made explicit, and the relationship between premises and claim is formally
expressed (for instance using rule deduction). In our case, the arguments need
to be structured since they are already given in the form of rules. Several works
propose semantics for determining acceptability of arguments. Preferences based
approaches consider global evaluation of the arguments (extensions). Since in our
distributed approach it is hard to use a global preference based argumentation,
we exploited local (agent) preference based method. As we will see later, the
score and the number of premises of the rules are used during the encounter
of arguments. [28] distinguishes dialogical argumentation where several agents
exchange arguments and counterarguments in order to argue for their opinion,
from monological argumentation whose emphasis is on the analysis of a set of
arguments and counterarguments.

Modelling the argumentation process consists in allowing each agent of the
MAS to argue for its own prediction against other agents. So, we have focused on
dialogical argumentation for the implementation of the argumentation process
[37]. More precisely, agents engage in a process of persuasion dialogue [22] since
they have to convince other agents that their prediction is better. Through the
argumentation process, each agent uses the rules of its embedded rule base to
answer to a prediction request and to provide arguments during the argumen-
tation process. Since all the agents are able to participate to the argumentation
process by exchanging messages, we have focused on multilateral argumentative
dialogues protocols [9]. According to [34], multilateral argumentative dialogue
protocol (MADP) is based on several rules that are instanciated in our approach
as explained hereafter. Moreover, it has been shown in [3] that agents role affect
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positively the argumentation process. So, in order to organize the dialogue, four
distinct agent roles are defined:

(i) Referee agent: broadcasts the prediction request and manages the argumen-
tation process;

(ii) Master: agent that answers first to the Referee request;
(iii) Challenger: agent who challenges the Master by providing arguments;
(iv) Spectator: agent who does not participate to the argumentation process.

The Referee is an “artifact” agent role that is assigned in a static way. This agent
interacts with the user for acquiring the prediction request and collecting the final
result. The argumentation process is performed through agents communication.
For that purpose, we adopted speech acts language [39]. Let X be the input
data, where X is a vector of attributes values (xi)i=1,...,n, c the class to predict.
Three kinds of agents are present in the MAS: Ar the Referee Agent, Ae the
Expert Agent who embeeds the ERs, the agents which embeeds the CRs (Am is
the agent whose role is Master and Ac the agent whose role is Challenger). Seven
communication performatives are used to instanciate the rules of the MADP as
follows:

1. Starting rules: the dialogue starts as soon as the user asks for a prediction.
Ar uses the REQUEST performative to brodcast the request for a prediction.
The content of the message is: (X, ?c).

2. Locution rules: an agent Ai sends an information by using the INFORM
performative and asks for an information by using the ASK performative.

3. Commitment rules: two rules are defined. The first one manages the pre-
diction request by using the PROPOSE performative, allowing an agent Ai to
propose an opinion by selecting the best rule that matches the request: Ri∗

x ∈
RBi

x such that confidence score(Ri∗
x ) = max

Ri
x∈RBi

x

(confidence score(Ri
x)),

where RBi
x =

{
Ri : Ri ∈ RBi ∧ premises(Ri) ⊂ x

}
(RBi is the rule base

associated to the agent Ai). The second rule allows an agent to declare its
defeat by using the DEFEAT performative.

4. Rules for combination of commitments: three rules for dealing with
COUNTER, DISTINGUISH, CHECK performatives are defined. They define
how acceptance or rejection of a given argument is performed. Ac uses the
COUNTER speech act to attack the argument of Am (associated to the
rule Rm∗

x ) by selecting the rule Rc∗
x such that confidence score(Rc∗

x ) >
confidence score(Rm∗

x ). Ac uses the DISTINGUISH speech act to attack
the opponent’s argument, in case of equality of rule scores of Ac and Am,
they use the number of premises in their proposed rules as arguments: If
premise number(Rc∗

x ) > premise number(Rm∗
x ) then Ac becomes the new

Master (premise number is the number premises of a rule). The expert agent
Ae uses the CHECK speech act to check if the proposed rule Ri∗

x by an agent
Ai does not violate the rules Re

x ∈ RBe.
5. Termination rules: the dialogue ends when no agent has a rule to trigger.
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Agents dialogues specification and behavior allow the agents to imple-
ment the described argumentation protocol. An opinion is a prediction which is
performed by an agent. It is represented in the form of a rule (CR) as described
in Sect. 3.1. According to argument domain vocabulary a CR is a structured
argument. It is modeled in the form of a production rule with its associated
score. The later is used in the argumentation process to encounter an argu-
ment. When a prediction is requested, the agent uses the rule which matches
the request and uses the adequate performative to proceed to the argumenta-
tion process. We used Jess (Java Expert System Shell) language which is a rule
engine and a scripting environment written entirely in Java. Jess deals with first
order logic and allows to organize the rules into packages according to their use.
Jess uses an enhanced version of the Rete [17] algorithm to manage priority of
the rules. The argumentation process begins as soon as the Referee Agent broad-
casts a request for a prediction and manages the dialogue process. Each agent
produces an opinion by selecting the best rule that matches the request. Once
an agent sends his opinion, the Referee Agent sends his proposed opinion to the
Expert Agent for verification. Expert Agent checks if the opinion matches with
the recommendations, then he sends a message to the Referee Agent to express
his acceptance if there is no conflict with the expert knowledge else he sends
a rejection. The first agent who offers an accepted opinion become the Master.
Other agents can challenge the Master by forming a challengers queue; the first
participant in the queue is selected by the Referee agent to be a Challenger. All
other agents except the Master and the Challenger agents adopt the Spectator
role. For each discussed opinion, the agents can produce arguments from their
individual knowledge base. When a Master is defeated by a Challenger, the Chal-
lenger becomes the new Master, and then can propose a new opinion. It should
be noted that the defeated argument of the old Master can not be used again,
the old Master can only produce a new argument to apply for Master once more.
Otherwise, if a Challenger is defeated, the next participant in the Challengers
queue is selected as the new Challenger, and the argumentation continues. If all
challengers are defeated, the Master wins the argumentation and the Master’s
winning rule is considered as the prediction of the system. If there is no agent
applying for the Master role, the argumentation is stopped. Since the number of
arguments produced by the participants is finite and the defeated arguments can
not be allowed to use repeatedly, the termination of the argumentation process
is guaranteed. As we will see in the Case-study section, the output of the MAS
contains not only the winning prediction and its explanation, but also the whole
dialogue path which led to the result.

4 Case Study

Ensemble Learning algorithms have advanced many fields and produced usable
models that can improve productivity and efficiency. However, since we do not
really know how they work, their use, specifically in medical problems is problem-
atic. We illustrate here how our approach can help both physicians and patients
to be more informed about the reasons of the prediction provided by the system.
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4.1 Data Description

We have used a specific dataset that is a realistic virtual population (RVP) [33]
with the same age, sex and cardiovascular risk factors profile than the French
population aged between 35 and 64 years old. It is based on official French demo-
graphic statistics and summarized data from representative observational stud-
ies. Moreover, a temporal list of visits is associated to each individual. For the
current experiments, we have considered 40000 individuals monitored for hyper-
tension during 10 visits per individual. Each visit contains: the systolic blood
pressure (SBP), diastolic blood pressure (DBP), class hypertension treatment,
number of treatment changes etc. For hypertension treatment, 5 major classes of
drugs have been considered: calcium antagonist (AC), beta blockers (BB), ACE
inhibitors (ICE), diuritics (DI) and sartans (SAR). The data of the RVP have
been used to predict the treatment changing with our MAS, following the steps
described in the precedent sections. In order to lunch the experimentations, the
MAS is built by encapsulating each rule base in an agent.

4.2 Scenarios Illustration

Tow scenarios illustrate the argumentation process: the first without domain
knowledge injection and in the second, we have injected few medical recommen-
dations.

Scenario 1: without prior knowldge injection uses three DMLPs. The
architecture of DMLPs was determined empirically. The retained architecture
contains two hidden layers, it consists of: 22 input neurons, 22 neurons in the
first hidden layer, 20 in the second hidden layer, 6 output neurons (five neurons
representing the drug classes and one neuron representing the patients with no
treatment). The DMLPs was trained for 1500 epochs. Each DMLP generates is
built using one bootstrap sample. We extracted knowledge bases from the three
DMLPs using the eclectic rule extraction approach proposed in [7]. Extracting
rules from neural networks allows to give an overview of the logic of the network
and to improve, in some cases, the capacity of the network to generalize the
acquired knowledge. Rules are very general structures that offer a form easy
to understand when finding the right class for an example. Table 1 shows the
properties of the three rule bases extracted from the three DMLPs in terms of
number of rules per base, examples per rule, premises and premises per rule.
For example the rule base RB1 contains 182 extracted rules, it uses in total
96 different premises, the average number of premises per rule is about 7.7 and
the average number of examples per rule is about 652.7. Each rule base is then
embedded in an agent. The rules are thus considered as individual knowledge of
the agents. When a prediction is requested, instead of predicting the treatment
class by majority voting like in classical ensemble methods, each agent uses a rule,
which matches the request, to argue with other agents in the MAS in order to
provide the best prediction for the current request. The process of argumentation
executes as described in Sect. 3. This is illustrated in the following example.
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Table 1. Rule bases properties.

Rule bases properties RB1 RB2 RB3

Number of rules 182 351 256

Number of premises 96 106 88

Number of premises per rule 7.7 9.1 9.7

Number of examples per rule 652.7 752.9 395.4

Let be p1 a patient that is described by the following attributes: p1: [age =
64][sex = female][V isit0 : SBP = 132.2, DBP = 79.5][V isit1 : SBP =
125.3, DBP = 87.1][V isit2 : SBP = 117.8, DBP = 89.1][V isit3 : SBP =
103.4, DBP = 84.7]. p1 should be treated by the treatment AC and the objec-
tive of the system is to predict this optimal treatment following the argumen-
tation process described in Sect. 2. The possible negotiation arguments are the
weight of the rules and their premises number. To simplify the current sce-
nario, we consider only the confidence scores of the rules. At the beginning
of the scenario, the Referee Agent broadcasts the requested prediction, that
is predicting the optimal treatment for the patient p1. Then each agent pro-
duces its opinion and asks for the Master role. Agent A1 becomes the first
Master and offers its opinion as follows: “this case should be in the class DI
depending on the rule: R1∗

p1
: (age > 54) (DBPV isit1 > 77.4) (DBPV isit2 > 85.1)

=⇒ (class(R1∗
p1

) = DI, confidence score(R1∗
p1

) = 0.61)”. Agent A2 challenges
agent A1 using DistinguishRule as follows: “R1∗

p1
is unreasonable because of rule

R2∗
p1

: (age > 61) (DBPV isit0 > 142.5) (DBPV isit1 > 77.1) (DBPV isit1 > 77.1)
(SBPV isit3 > 109.5) =⇒ (class(R2∗

p1
) = BB, confidence score(R2∗

p1
) = 0.72)”.

The confidence score of the rule R2∗
p1

is higher than the one of R1∗
p1

Agent
A1 can not propose any rule to attack Agent A2 and admits that he is
defeated. Then Agent A2 becomes the new Master and offers his own opin-
ion. The argumentation process continues until none of the agent is able to
propose an opinion nor challenging another agent opinion. At the end, the
master gives his prediction of the hypertension medication in a form easy to
understand. In this case, the final prediction is made by the agent A3: R3∗

p1
:

(age > 50) (DBPV isit0 < 81.3) (DBPV isit1 > 86.8) (SBPV isit2 < 120.3)
(SBPV isit3 > 112.1) =⇒ (class(R3∗

p1
) = AC, confidence score(R3∗

p1
) = 0.81).

Scenario 2: With Prior Knowledge Injection. Injecting knowledge domain
is very crucial for a decision making system. Medicine is one of the critical areas
which needs the injection of recommendations for healthcare to improve the sys-
tem reliability. In order to illustrate that, our approach improves the treatment
prediction when adding domain knowledge. We have injected few medical rec-
ommendations for hypertension treatment into the expert agent Ae. Examples
of medical recommendations are given bellow: (age < 50 years) =⇒ BB; (age >
50 years) =⇒ DI. The major role of Ae is to check if there is conflict between
the proposed opinion and the expert knowledge. In this scenario, we have used
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three agents, each one contains extracted rule base from each DMLP and an
extra agent which contains the expert knowledge. The process of argumentation
executes as described in Sect. 3. This is illustrated in the following example.

Let be p2 a patient that is described by the following attributes: p2: [age =
56][sex = female][V isit0 : SBP = 112.2, DBP = 79.6][V isit1 : SBP =
125.4, DBP = 89.7][V isit2 : SBP = 103.7, DBP = 88.7][V isit3 : SBP =
132.4, DBP = 81.7]. p2 should be treated by the treatment BB and the objec-
tive of the system is to predict this optimal treatment as illustrated in Fig. 2.

Fig. 2. Illustration of the case study argumentation process.

At the first iteration T1, the Referee Agent broadcasts the prediction request
by transmitting the attributes p2 and the requested class ?c to predict. Each
agent produces his opinion by selecting the best rule that matches the request.
At T2 Agent A2 proposes his opinion as follows: “the requested class should be
ICE based on the rule: R2∗

p2
: (age > 50) (SBPV isit1 > 101.4) =⇒ (class(R2∗

p2
) =

ICE, confidence score(R2∗
p2

) = 0.44)”. At T3, the Referee Agent sends the
proposed opinion of Agent A2 to the Expert Agent Ae for verification in order
to check if the opinion matches with the recommendations. At T4, Expert Agent
Ae sends a message to the Referee Agent to express his rejection and declares that
confidence score(R2∗

p2
) is inapplicable since the predicted class DI (given by this

rule) does not match with the predicted class of the recommendation rule: Re
1:

(age > 50 years) =⇒ (DI). At T5, Agent A3 proposes his opinion as follows: “the
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requested class should be BB based on the rule: R3∗
p2

: (age > 50) (DBPV isit2 >
80.9) (SBPV isit3 < 145) =⇒ (class(R3∗

p2
) = BB, confidence score(R3∗

p2
) =

0.56)”. At T6, Referee Agent sends the suggested choice to the Expert agent for
verification. Ae declares that this rule is applicable since there is no conflict at
T7. At T8, Referee Agent declares that agent A3 is defined as a Master.

At T9, Agent A1 proposes his opinion as follows:“the requested class should
be BB based on the rule: R1∗

p2
: (age < 66) (SBPV isit3 < 135.1) (DBPV isit3 > 79)

=⇒ (class(R1∗
p2

) = BB, confidence score(R1∗
p2

) = 0.6)”. At T10, Ae declares that
this rule is applicable since there is no conflict. At T11, Referee Agent declares
that Agent A1 is the first Challenger, Agent A3 is Spectator. Since a Master and a
Challenger are defined, the encounter arguments can be performed. At T12, Agent
A1 (Challenger) asks Agent A2 (Master) for his arguments in order to compare
them with his own arguments. At T13, Agent A2 sends his arguments to Agent
A1. In this case, the score of the rule R1∗

p2
(Agent A1) is higher than the score

of R2∗
p2

(Agent A2). Thus, Agent A2 admits his defeat and Agent A1 becomes
the new Master and can propose his own opinion at T14. The argumentation
process continues until none of the agents is able to propose an opinion nor
challenging another agent opinion. In case of equality of the confidence scores,
the number of premises of the two rules are compared and the agent who have
the highest one win the argumentation process. At the end, the final master
gives his prediction of the hypertension medication in the form of a rule which
is easy to understand. The patient p2 has been well classified and the system
recommends him to take BB treatment based on the rule of Agent A1: R1∗

p2
:

(age > 50) (DBPV isit2 > 70.0) (SBPV isit2 > 112.0) (SBPV isit3 > 130.5) =⇒
(class(R1∗

p2
) = BB, confidence score(R1∗

p2
) = 0.72).

Our method as an ensemble method can effectively reduce the error regarding
to a single DMLP. Table 2 shows that our method (using 10 DMLPs) outper-
forms a single DMLP in two cases: when injecting prior knowledge and without
injecting prior knowledge.

Table 2. Comparison of the accuracy of the result of our approach with a single DMLP.

Single DMLP Without prior knowledge
injection

With prior knowledge injection

79.8 ± 0.01 83.2 ± 0.03 89.0 ± 0.01

As we can see in the Table 2, expert knowledge injection improves accuracy
of classification. We improved the results classification and explained decision
by providing not only comprehensible classification rule behind the decision but
also the sent and received messages by the agents. So one can obtain a trace
allowing to distinguish the unfolding communication between agents. In Fig. 2,
bold arrows messages that lead to a final prediction treatment for p2 patient.
Moreover, our approach is able to exploit domain knowledge that control the
system and gives trust to the expert.
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5 Experimentation

In the experiments we used 10 datasets representing classification problems of
two classes. Table 3 illustrates their characteristics in terms of number of sam-
ples, number of input features, type of features and source. We have four types of
inputs: boolean; categorical; integer; and real. The public source of the datasets
is https://archive.ics.uci.edu/ml/datasets.html. Our experiments are based on
10 repetitions of 10-fold cross-validation trials. Training sets were normalized
using Gaussian normalization. We compared three variants of our approach: (1)
App1 DIMLP that uses the electic rule extraction algorithm described in [7]; (2)
App2 TREPAN that uses the pedagogical rule extraction algorithm described
in [12]; (3) App3 Extract that replaces the DMLPs and the rule extraction step
by a rule extraction algorithm that extracts rules directly from the bootstrap
samples. In order to validate the performance of our approach, we compared the
three variants described above to: the most popular ensemble learning methods
(Bagging [10], AdaBoost [18]) and two classification approaches based on ensem-
ble rule extraction that uses the DIMPL [8]: one trained by bagging (DIMLP-B)
and another trained by arcing (DIMLP-A).

Table 3. Datasets properties

Dataset Number of
input features

Number of
samples

Type of features

Breast cancer prognastic 33 194 real

Glass 9 163 real

Haberman 3 306 int

Heart disease 13 270 bool, cat, int, real

ILPD (Liver) 10 583 int, real

Pima Indians 8 768 int, real

Saheart 9 462 bool, int, real

Sonar 60 280 Real

Spect heart 22 267 bin

Vertebral column 6 310 real

We defined a grid search to optimize the parameters of each approach. The
number of the bootstrap samples used in all the approaches is shown in Table 4.
For DIMLP ensembles, we have used the default parameters defined in [8] (for
example, the number of bootstrap samples is equal to 25). In the experiment,
we have used Accuracy and Fidelity as the evaluation measures to compare
the classification performance of different methods described above. Accuracy
indicates the percentage of well-predicted data and Fidelity indicates the degree
of matching between network classifications and rules’ classifications.

https://archive.ics.uci.edu/ml/datasets.html
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Table 4. Results comparison to ensemble methods.

Datasets Adaboost Bagging DIMLP-B DIMLP-A App3 Extract App1 DIMLP App2 TREPAN
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Fidelity Accuracy Fidelity

Breast Cancer
Prognastic

81±0.01
(150)

77.3±0.02
(125)

79.0±0.08
(25)

77.7±0.04
(25)

79.1±0.11
(24)

81.2±0.03
(22)

96.6±0.02 79.4±0.05
(24)

95.9±0.04

Glass 80.3±0.09
(100)

81.0±0.06
(100)

77.8±0.06
(25)

81.1±0.02
(25)

75.8±0.08
(25)

78.6±0.10
(21)

95.5±0.10 74.6±0.09
(25)

94.8±0.10

Haberman 69.0±0.16
(100)

71.3±0.11
(125)

74.3±0.02
(25)

73.3±0.06
(25)

69.9±0.01
(25)

76.3±0.22
(22)

95.8±0.01 77.2±0.11
(24)

93.9±0.06

Heart Disease 86.0±0.09
(100)

85.9±0.02
(100)

84.3±0.06
(25)

80.5±0.12
(25)

82.7±0.11
(26)

86.6±0.01
(25)

97.1±0.01 76.9±0.13
(21)

96.8±0.07

ILPD (Liver) 72.5±0.08
(150)

71.0±0.09
(125)

70.7±0.21
(25)

70.8±0.11
(25)

69.9±0.06
(24)

73.7±0.20
(21)

96.8±0.08 69.7±0.07
(26)

95.1±0.03

Pima Indians 77.0±0.02
(100)

76.0±0.06
(100)

76.3±0.05
(25)

74.2±0.09
(25)

71.2±0.08
(22)

76.9±0.02
(23)

96.8±0.06 75.6±0.06
(22)

96.1±0.08

Saheart 71.7±0.16
(150)

71.0±0.10
(100)

71.9±0.21
(25)

68.6±0.06
(25)

69.9±0.02
(23)

72.9±0.02
(21)

96.9±0.01 71.9±0.13
(25)

93.8±0.01

Sonar 71.0±0.20
(100)

77.6±0.11
(100)

79.0±0.10
(25)

78.4±0.09
(25)

71.9±0.06
(21)

79.8±0.09
(25)

95.9±0.01 76.9±0.16
(23)

94.7±0.08

Spect Heart 66.9±0.13
(125)

71.2±0.05
(150)

72.2±0.11
(25)

67.9±0.22
(25)

61.9±0.22
(21)

72.4±0.02
(24)

95.9±0.05 71.9±0.08
(25)

96.4±0.05

Vertebral Col-
umn

67.3±0.13
(125)

72.3±0.06
(150)

84.0±0.03
(25)

82.7±0.05
(25)

81.8±0.06
(25)

86.6±0.06
(25)

94.9±0.12 70.2±0.03
(22)

96.9±0.02

From the experimental results shown in Table 4, we can see that our app-
roach can effectively ensure high accuracy in classification. We can see that,
App1 DIMLP and App2 TREPAN as ensemble learning methods give better
results than Bagging and AdaBoost methods. For example in Vertebral Column
dataset, App1 DIMLP obtains an accuracy of up to 86.6% (using 25 classi-
fiers DIMLPs) while Bagging and AdaBoost are lower than 73%. This can be
explained by the use of the argumentation, a novel strategy for classifiers com-
bination, which is more transparent than the combination of classifiers used in
usual ensemble methods (such as voting). Our method can outperform DIMLP-B
and DIMLP-A on the majority of datasets. For example, in heart disease dataset,
the accuracy of App1 DIMLP is higher than that of DIMLP-A by 6%. In Breast
Cancer Prognastic dataset, the accuracy of App1 DIMLP is 81.2% (using 22
classifiers DIMLPs) however the accuracy of DIMLP-B and DIMLP-A are lower
than 80%. So far, the results was in our favour for predictive accuracy in 9 out
of 10 classification problems. Moreover The Fidelity is higher than 93% in all
datasets. This means that the network classifications match rules classifications.

App1 DIMLP and App2 TREPAN produce better results than App3
Extract. This can be explained by the power of prediction of DMLP. Indeed, the
rule extraction from DMLP allows to ensure higher classification accuracy than
a direct rules extraction from the bootstrap samples. As a conclusion, from the
above experimental results, we can find that App1 DIMLP and App2 TREPAN
can effectively extract high quality knowledge for ensemble classifier and ensure
high accuracy in classification as well, which indicates that argumentation as
a novel ensemble strategy can improve the capability of knowledge integration
effectively. Moreover our method provides transparency of the predictions since
it can provide an intelligible explanation and extract useful knowledge from
ensemble classifiers.
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6 Conclusion

In order to improve performance classification, we have proposed a transparent
deep ensemble method based argumentation for classification. In this method,
argumentation is used as an ensemble strategy for deep learning algorithms com-
bination, which is more comprehensible and explicable than traditional ensemble
method (such as voting). Meanwhile, by using argumentation, we improved per-
formance classification. Experiments show that, as ensemble method, our app-
roach significantly outperforms single classifiers and traditional ensemble meth-
ods. In addition, our method effectively provides explanation behind decisions
and therefore addresses the recent need for Explainable AI. The explanation
provided to the user is easy to grasp so he will be able to judge the acceptance
of decisions. Moreover, other agents containing rules about domain knowledge
can be easily added. The prospects of this work are various. In the short term,
it will be necessary to carry out experiments on a larger scale to consolidate the
results of our approach with the real electronic health records in order to realize
several tasks such as dignosis, the prediction of the next visit date, etc. We also
plan to apply our approach to other types of deep learning algorithms such as
convolutional neural networks, recurrent neural networks, etc. To improve the
interaction process, we will use more complex negotiation rather than a limited
Agent-to-agent exchange based on the speech acts.

References

1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)
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Abstract. Transparency in the field of human-machine interaction and
artificial intelligence has seen a growth of interest in the past few years.
Nonetheless, there are still few experimental studies on how transparency
affects teamwork, in particular in collaborative situations where the
strategies of others, including agents, may seem obscure.

We explored this problem using a collaborative game scenario with a
mixed human-agent team. We investigated the role of transparency in the
agents’ decisions, by having agents that reveal and tell the strategies they
adopt in the game, in a manner that makes their decisions transparent
to the other team members. The game embraces a social dilemma where
a human player can choose to contribute to the goal of the team (coop-
erate) or act selfishly in the interest of his or her individual goal (defect).
We designed a between-subjects experimental study, with different con-
ditions, manipulating the transparency in a team. The results showed
an interaction effect between the agents’ strategy and transparency on
trust, group identification and human-likeness. Our results suggest that
transparency has a positive effect in terms of people’s perception of trust,
group identification and human likeness when the agents use a tit-for-tat
or a more individualistic strategy. In fact, adding transparent behaviour
to an unconditional cooperator negatively affects the measured dimen-
sions.
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1 Introduction

The increase of intelligent autonomous systems capable of complex decision-
making processes affects humans’ understanding of the motivations behind the
system’s responses [6]. In this context, evaluating the performance of machine
learning algorithms may not be sufficient to prove the trustworthiness and reli-
ability of a system in the wild [25].

Machine learning models appear to be opaque, less intuitive and challenging
for the diversified end users. To meet this need, an increasing number of stud-
ies has focused on developing transparent systems. However, the definition of
transparency is still up for debate. The most commonly used terms are model
interpretability, explicability, reliability, and simplicity. Doshi-Velez and Kim
define interpretability as the ability to explain or present understandable terms
to a human [12]. Instead, Rader et al. explain transparency as providing the
non-obvious information that is difficult for an individual to learn or experience
directly, such as how and why a system works the way it does and what its out-
puts mean [26]. The lack of a consensual definition of transparency reflects in a
lack of comparable metrics to assess it. Due to this, to understand transparency,
it is necessary to manipulate and measure various factors that can influence the
perception and behavior of humans. Designing the transparency of a system is
therefore not a purely computational problem.

A variety of human challenges demands for effective teamwork [18]. However
teamwork has numerous implications: the commitment of all the members to
achieve the team goals, the trust among the team members, the mutual pre-
dictability for effective coordination, and the capability to adapt to changing
situations [19,22]. Many of the features needed for successful teamwork are well
illustrated in video games scenarios [14], and due to this, video games have
become a popular object of investigation for social and cultural sciences [23].
When autonomous systems move from being tools to being teammates, an expan-
sion of the model is needed to support the paradigms of teamwork, which require
two-way transparency [6]. As in human-human groups, the communication of
relevant information can facilitate analysis and decision-making by helping the
creation of a shared mental model between the group members. Several stud-
ies based on human-agent collaboration suggest that humans benefit from the
transparency of the agent, which consequently improves the cooperation between
them [26]. Moreover, agents’ transparency facilitates the understanding of the
responsibilities that different group members might take in collaborative tasks.

Contrary to what we could hypothesize, collaborative games can also encour-
age anti-collaborative practices that derive from the identification of a single
winner and from the fact that players rely on the contribution of others and
therefore invest less in their actions (free riding) [4]. For this reason, combining
the investigation of the behavioral model of the players in relation to the differ-
ent strategies of the team members and the transparency of the decision-making
process of the artificial players turns out to be useful for the design of systems
that aim to facilitate and foster collaboration. The objective of this study is
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to investigate the effect of the transparency and strategy of virtual agents on
human pro-social behavior in a collaborative game.

2 Related Work

The lack of transparency is considered one of the obstacles for humans to estab-
lish trust towards autonomous systems [10]. In fact, trust appears as a common
measure to assess the effect of transparency and it is related to the level of observ-
ability, predictability, adjustability, and controllability, as well as mutual recog-
nition of common objectives of a system. Chen et al. have developed a model
for collaboration and mutual awareness between humans and agents [6]. This
model is called Situation Awareness Based Agent Transparency (SAT) and con-
siders current plans and actions, decision-making and prediction of responses. To
sum up, the SAT model describes the type of information that the agent should
provide on its decision-making process to facilitate mutual understanding and
collaboration between human and agent. The first level of the model includes
information related to the actions, plans, and objectives of the agent. This level
helps human’s perception of the current state of the agent. The second level
considers the decision-making process with the constraints and affordances that
the agent takes into account when planning its actions. With that, the human
can understand the current behavior of the agent. The third level provides infor-
mation related to the agent’s projection towards future states with the relative
possible consequences, the probability of success or failure, and any uncertainty
associated with the previously mentioned projections. The third level allows the
human to understand the future responses of the agent. Our manipulation of
the agents’ transparency considers the three levels of the SAT informing about
the current actions and plans, and including the decision-making process (e.g.
“My plan is to always improve the instrument”). The third level results as a
projection of the pursued strategy.

Given that, it can be difficult to distinguish in the literature whether trans-
parency refers to the mechanism or the outcome, the cause or the effect [26].
However, in the context of human-machine interaction, transparency means an
appropriate mutual understanding and trust that leads to effective collaboration
between humans and agents. The act of collaboration and cooperation in group
interactions is not only interesting for researchers in the area of human-machine
interaction but is also widely studied by social sciences to obtain knowledge on
how cooperation can be manipulated. In particular, to understand how individ-
uals in a group can be stimulated to contribute to a public good [13]. Several
studies, both theoretically and empirically, shown that transparency has a pos-
itive effect on cooperation. For instance, Fudenberg et al. demonstrated that
transparency of past choices by the group members is necessary to maintain a
sustainable and stable cooperation [15]. Davis et al. shown that transparency
allows cooperative players to indicate their cooperative intentions, which may
induce others to similar cooperative behaviors [11].
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3 Research Design and Methods

We conducted a between-subject user study using the Mechanical Turk and
the “For The Record” game [9]. “For the Record” is a public goods game that
embraces a social dilemma where a human player can choose to contribute to
the goal of the team (cooperate) or act selfishly in the interest of his or her
individual goal (defect). In linear public goods environments maximizers have a
dominant strategy to either contribute all of their tokens or none of their tokens
to a group activity [5,28]. In the “For The Record” experimental scenario, three
players, one human, and two artificial agents, have the goal of publishing as
many albums as possible. The number of albums to be created and produced
matches the number of rounds to play, in our case, 5 rounds and if players fail 3
albums they lose the game. During the first round, each player starts playing by
choosing the preferred instrument that can be used to create the album. Starting
from the second round each player has two possible actions and they concern the
possibility of investing in the instrument’s ability (contributing to the success of
the album) or in the marketing’s ability (contributing to the individual monetary
value, or personal profit, obtained after the album’s success). This investment
is translated into the number of dice that the player can use, in the first case
to play the instrument and helps to create the album, while in the second case
to receive profit. During the creation of the album, each player will contribute
equally to the value obtained from the roll of the dice, and the number of die
available to the player will depend on the level/value of the skill (marketing or
instrument). The score of an album consists of adding up the values achieved
by each player during his performance. After creating the album, the band has
to release it on the market. The market value is evaluated by rolling 2 dice of
20 faces. If the market value is higher than the album score, than the album
is considered a “Fail”. On the other hand, if the market value is less than or
equal to the score on the album, that album is considered a “Mega-hit”. From
the fourth round on, the band enters the international market, which means
that the market value is evaluated by rolling 3 die of 20 faces (instead of the 2
previous dices). This increases the difficulty of getting successful albums. The
game has always been manipulated to return a victory.

4 Objective and Hypothesis

The objective of this study was to investigate the effect of the transparency and
strategy of virtual agents on human pro-social behavior in a collaborative game.
Despite having hypothesized that transparency would affect several measures
of teamwork, we have also manipulated the agents’ strategy to confirm if the
results would provide similarly when the agents adopted different strategies. In
a two by three (2 × 3) between-subjects design, resulting in six experimental
conditions, we manipulated the agents’ transparency and the agents’ strategy,
respectively. The two levels of transparency were:
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– Transparent: The agents explain their strategy;
– Non-transparent: The agents do not explain their strategy.

The three possible strategies for the agents were:

– Cooperative: The agents always cooperate;
– Individualistic: The agents cooperate only if the last round has been lost;
– Tit for Tat: The agents cooperate only if the player cooperate.

We expected that the transparency of the agents will positively affect team-
work and make the agents’ strategy easily to interpret. We also expected trans-
parency to increase trust and facilitate collaboration due to mutual understand-
ing and shared responsibilities. Therefore we have the following hypotheses:

– H1: The agents’ transparency increases the number of cooperative choices of
the human player;

– H2: The agents’ transparency results in greater trust and group identification;
– H3: The agents’ transparency increases the likeability and human likeness of

the artificial player;

The hypothesis that the transparency increases the number of cooperative
choices is based on the fact that transparency about choices tends to lead to an
increase in contributions and collusion [13]. The hypothesis that positive effect
of transparency on trust and group identification relies on the evidence that
transparency have the (perhaps counter-intuitive) quality of improving opera-
tors’ trust in less reliable autonomy. Revealing situations where the agent has
high levels of uncertainty develops trust in the ability of the agent to know its
limitations [7,8,16,24]. The hypothesis that the agents’ transparency results in
greater likeability and perceived human likeness of the artificial player refers
to the experimental evidence of Herlocker et al. showing that explanations can
improve the acceptance of automated collaborative filtering (ACF) systems [17].

4.1 Materials and Methods

Agents’ Transparency Manipulation. The interactive agents commented
some game events through text in speech bubbles, e.g., That was very lucky! or
Lets record a new album.

The duration of such stimuli depend on the number of words shown, according
to the average reading speed of 200–250 words per minute. However, the speech
bubbles containing the manipulation of each experimental condition lasted twice
as much to make sure the participants would read them (Fig. 1).

Table 1 shows the explanation given by the artificial agents while they are
choosing the main action of adding a point to either the instrument or the
marketing in the transparent and non-transparent conditions:

In the non-transparent conditions the agents explain what they are doing for
that current round, in the transparent conditions they explicitly refer to their
plans and intentions.
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Fig. 1. Example of a speech bubble with the explanation of the agents’ strategy

Table 1. Manipulation of transparent and non-transparent behaviour for each agents’
strategy

Strategy Transparency

Transparent Non-transparent

Cooperative 1. “My strategy is to always
improve the instrument.”

2. “My plan is to always
improve the instrument.”

1. “I am going improve the
[instrument/marketing].”
2. “I will put one more point
on my
[instrument/marketing].”

Individualistic 1. “My plan is to improve my
marketing skill only when the
album success.”
2. “My plan is to improve my
instrument skill only when the
album fails.”

Tit for tat 1. “My strategy is to improve my
instrument skill only when you
also improve your instrument.”

2. “My strategy is to improve my
marketing skill only when you
also improve your marketing.”

4.2 Metrics and Data Collection

To test our hypotheses and, therefore, analyse the effects of the strategy
and transparency adopted by the agents, we used different metrics and items
from standardized questionnaires. The self-assessed questionnaire included some
demographic questions (e.g., age, gender and ethnicity), a single-item on their
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self-perceived competitiveness level, two items regarding the naturalness and
human-likeness of the agents’ strategies, and two validation questions to eval-
uate the understanding on the rules of the game. The remaining measures are
detailed as follows.

Cooperation Rate. The cooperation rate was an objective measure assessed
during the game-play. In the beginning of each round, each player has to choose
between to cooperate with the team (i.e., by upgrading the instrument skill)
or to defect for individual profit (i.e., by upgrading the marketing skill). This
measure sums up the total number of times the human player opted to cooperate
and can range, in discrete numbers, from zero to four. It represents the degree
of pro-sociality that the human participant expressed while teaming with the
agents.

Group Trust. We chose the Trust items by Allen et al. in [1], which were explic-
itly designed for virtual collaboration to assess the trust through the agents.
Trust is described as a key element of collaboration and is divided into seven
items with a 7 points likert-scale from totally disagree to totally agree.

Multi-component Group Identification. Leach et al. identified a set of
items for the assessment of the Group-Level Self-Definition and Self-Investment
in [21]. The idea behind this scale is that individuals’ membership in groups has
relevant impact on humans behavior. Specifically designed items represents the
five dimensions evaluated: individual self-stereotyping, in-group homogeneity,
solidarity, satisfaction, and centrality. These items were presented with a Likert-
type response scale that ranged from 1 (strongly disagree) to 7 (strongly agree).
We decided to use the dimensions of homogeneity, solidarity and satisfaction as
relevant metrics for our study.

Godspeed. The Godspeed scale was designed for evaluating the perception
of key attributes in Human-Robot Interaction [3]. More precisely, the scale
is meant to measure the level of anthropomorphism, animacy, likeability, per-
ceived intelligence, and perceived safety. Each dimension has five or six items
with semantic differentials couples that respondents are asked to evaluate in a
5 points Likert scale. We used the dimensions of the likeability (Dislike/Like,
Unfriendly/Friendly, Unkind/Kind, Unpleasant/Pleasant, Awful/Nice) and per-
ceived intelligence (Incompetent/Competent, Ignorant/Knowledgeable, Irre-
sponsible/Responsable, Unintelligent/Intelligent, Foolish/Sensible).

4.3 Procedure

Participants were asked to complete the task in around 40 min. The experiment
was divided in three phases. The first phase consisted of the game tutorial,
and lasted around 15 min. The second phase consists in playing a session of
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“For the Record” with the two artificial agents, which lasted around 15 min.
The last phase was represented by the questionnaire and took round 10 min.
We informed the participants about the confidentiality of the data, voluntary
participation and the authorization for sharing the results with the purpose of
analysis, research and dissemination. We specified that we were interested in how
people perceive teamwork and the game strategies of the two artificial players
they were going to play with. After finishing the experiment and providing their
judgments, we thanked the participants for their participation giving them 4$.
We collected the data for the non transparent and the transparent condition
separately, ensuring that none of the participants repeat the experiment twice.

5 User Study

The main goal of our study was to explore the role transparent behaviors have on
the perception of intelligent agents during human-agent teamwork. In particular,
to analyze if transparency can enhance the perception of the team and the display
of pro-social behaviors by humans.

5.1 Participants

The participants involved in the study were 120, 20 participants per each experi-
mental condition (Cooperative, Individualistic and Tit for Tat). Considering the
study was done in MTurk and the fact that the experiment took more time than
the turkers are used to, we introduced some attention and verification questions
in order to ensure the quality of the data. The criteria to exclude participants
were: not having completed the entire experiment; having reported an incorrect
score of the game; and having provided wrong answers to the questions related
to the game rules (e.g., How many dices are rolled for the international mar-
ket? ). Consequently, we run the data analysis on a sample of a sample of 80, 28
in the non-transparency conditions and 52 in the transparency conditions. The
average age of the sample was 37 years (min = 22, max = 63, stdev = 8.78) and
was composed of 52 males and 27 females and one other. The participants were
randomly assigned to one of three condition of the strategy: 19 in the coopera-
tive condition (13 in the transparency condition and 6 in the non-transparency
condition), 30 in the individualistic condition (17 for the transparency condition
and 13 in the non-transparency condition), 18 for the tit-for-tat condition (9 for
the transparency condition and 11 in the non-transparency condition).

5.2 Data Analysis

We analyzed the effects of our independent variables - transparency (binary
categorical variable Transparent and Non-Transparent) and strategy (three cat-
egories: Cooperative, individualistic and Tit for Tat) - on the dependent vari-
ables.
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The reliability analysis for the dimensions of the Trust scale, the Group Iden-
tification scale, the Godspeed scale as well as the Human likeness and Natural-
ness revealed excellent internal consistency among items of the same dimensions
(Trust: α = 0.912; Group Identification: α = 0.972; Group Solidarity: α = 0.953;
Group Satisfaction: α = 0.969; Group Homogeneity: α = 0.923; Perceived Intel-
ligence: α = 0.962; Likeability: α = 0.978; Human-likeness and Naturalness:
α = 0.938).

Cooperative Rate. The analysis of the number of defects, revealed that the
main effect of transparency was not significant (F (1, 73) = 0.320, p = 0.573),
and the main effect of strategy was not significant (F (3, 73) = 2.425, p =
0.072). The interaction effect between the two factors was not significant
(F (2, 73) = 0.003, p = 0.997). The specific values per each strategy were: Coop-
erative (M = 1.11, SE = 0.201, SD = 875), Individualistic (M = 1.70, SE = 0.153,
SD = 0.837), Tit for Tat (M = 1.06, SE = 0.249, SD = 1.056).

Fig. 2. Number of defects by strategy

Group Trust. The Analysis of Variance in Trust, showed that the main effect of
transparency was not significant (F(1,73) = 0.337, p = 0.563), and the main effect
of strategy was significant (F (3, 73) = 8.117, p < 0.001). The specific values for
each strategy were: Cooperative (M = 5.25, SE = 0.265, SD = 1.154), Individu-
alistic (M = 4.42, SE = 0.230, SD = 1.261), Tit for Tat (M = 5.22, SE = 0.221,
SD = 0.938).

The interaction effect between the two factors was significant (F (2, 73) =
3.833, p = 0.026).

Figure 3 shows that only in the cooperative condition the transparency neg-
atively influenced the level of trust towards the agents. The specific values per
each strategy in the transparent and non-transparent conditions were: Transpar-
ent - Cooperative (M = 4.90, SE = 0.334, SD = 1.204), individualistic (M = 4.89,
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Fig. 3. Interaction effect between strategy and transparency in trust

SE = 0.224, SD = 0.925), Tit for Tat (M = 5.51, SE = 0.362, SD = 1.086) Non-
Transparent - Cooperative (M = 5.98, SE = 0.246, SD = 0.602), Individualis-
tic (M = 3.81, SE = 0.291, SD = 1.411), Tit for Tat (M = 4.95, SE = 0.239,
SD = 0.711).

Multi-component Group Identification. The Group Identification, did not
reveal main effect of single factors of transparency and strategy (F (1, 73) =
2.674;F (3, 73) = 2.360, p = 0.106, p = 0.078). However, the interaction between
the two factors was significant (F (2, 73) = 4.320, p = 0.017). The specific values
per each strategy in the transparent and non-transparent conditions: Transpar-
ent - Cooperative (M = 4.15, SE = 0.500, SD = 1.801), Individualistic (M = 5.06,
SE = 0.336, SD = 1.387), Tit for Tat (M = 5.27, SE = 0.427, SD = 1.282). Non-
Transparent - Cooperative (M = 5.19, SE = 0.394, SD = 0.965), Individualis-
tic (M = 3.32, SE = 0.359, SD = 1.292), Tit for Tat (M = 3.98, SE = 0.559,
SD = 1.676).

As we can notice from the Fig. 4, transparency and strategy influenced the
perception of Group Identification in the opposite direction among the agents’
strategies. In the transparency condition, the agents foster less group identifica-
tion when they acts cooperatively. However, transparency had a positive influ-
ence in the group identification in the Individualistic and Tit for Tat condition.
The One-way ANOVA in Group Identification reveals that the effect of trans-
parency in Cooperative condition was not significant (F (1, 17) = 1.732, p =
0.206), the effect of transparency in Individualistic condition was significant
(F (1, 28) = 12.178, p = 0.002) and the effect of transparency in Tit for Tat
condition was not significant (F (1, 16) = 3.398, p = 0.084).

Goodspeed. The Likeability did not reveal a main effect of transparency
(F (1, 73) = 0.001, p = 0.973) but informed a main effect of the strategy on
the likeability (F (3, 73) = 3.279, p = 0.026) Fig. 5. The interaction between the
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Fig. 4. Interaction effect between strategy and transparency in Group Identification

transparency and strategy was not significant (F (2, 73) = 0.855, p = 0.429).
Again in this case, the strategy affected the perception of likeability, and no
interaction was found regardless of whether or not the agents employ transpar-
ent behaviors.

Fig. 5. Main effect of the strategy on likeability

For the human-likeness dimension, there was no main effect of transparency
(F (1, 73) = 0.145, p = 0.704) and no main effects of the strategy (F (3, 73) =
2.181, p = 0.098). However, there was a significant interaction effect between
transparency and strategy for the Human-likeness attributed to the agents
(F (2, 73) = 3.585, p = 0.033).

In Fig. 6 we confirmed the trend of a different effect of transparency in the
cooperative condition in respect to the strategy. For the Tit for Tat condition we
can notice that both strategy and transparency positively affect the perceived
human likeness of the agents.
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Fig. 6. Interaction effect between strategy and transparency in humanlikeness

The Univariate Analysis of Variance of the transparency and strategy for
the Perceived Intelligence informed that the main effect of transparency was not
significant (F (1, 73) = 0.652, p = 0.422), but the main effect of strategy was
significant (F (3, 73) = 5.297, p = 0.002) Fig. 7. The interaction effect between
the two fixed factors was not significant ((2, 73) = 3.632, p = 0.179). In other
words, only the strategy of the agents, regardless of whether or not the agents
employ transparent behaviors, affects the perceived intelligence of the agents, in
particular for the Tit for Tat strategy as confirmed by several studies about game
theory [2,27]. The specific values per each strategy were: Cooperative (M = 5.39,
SE = 0.348, SD = 1.518), Individualistic (M = 5.23, SE = 0.227, SD = 1.244), Tit
for Tat (M = 6.11, SE = 0.249, SD = 1.054).

Fig. 7. Main effect of the strategy on perceived intelligence
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6 Discussion

This paper explores group interactions involving mixed groups of humans and
virtual agents in collaborative game settings. In particular, it is focused on how
agents’ transparency affects teamwork and the perception of autonomous team-
mates. Although we have hypothesized that transparency would positively influ-
ence several measures of teamwork, we have also manipulated the strategy of the
agents to ascertain if the results would hold similarly when the agents adopted
different Strategies.

According to H1, we expected that the agents’ transparency would increase
the number of cooperative choices of the human player, which was not con-
firmed. In fact, we only found a partially significant main effect of the strategy
on the number of cooperative choices, which suggests people cooperated differ-
ently according to which strategy the agents adopted. In the post hoc analysis,
cooperation towards the individualistic agents was lower than towards coopera-
tive and tit-for-tat agents. Additionally, we analyzed the cooperation rate of the
agents and we found the individualistic strategy led the agents to cooperate less
compared to the other to Strategies, which suggests people might have recipro-
cated the autonomous agents to a certain extent Fig. 2. In our experiment, we
could not find evidence that transparency affects people’s behaviour.

Regarding H2, we have hypothesized that trust and group identification
would be positively affected by transparent behaviour. On both measures, we
found a significant interaction effect of transparency and strategy, which reveals
the effect of transparency on trust and group identification was different across
the three Strategies. In terms of the trust, the post-hoc analysis did not reveal
a significant effect of transparency in any of the Strategies. However, the trends
that are visible in Fig. 3 suggest this effect was negative for the cooperative agents
and was positive for both the individualistic and tit-for-tat agents. In the post-
hoc analysis for the group identification, we found a significant positive effect of
transparency for the individualistic agents. For the remaining Strategies, similar
trends are visible in Fig. 4 suggesting a negative effect for cooperative agents
and a positive effect for tit-for-tat agents. Our hypothesis was only partially
validated due to the fact that both group measures showed a positive effect only
for two Strategies, the individualistic and tit-for-tat. Later in this section, we
discuss the negative effect on the cooperative strategy.

In H3, we have predicted that transparent behaviours would positively affect
the likeability and human-likeness of the agents. We only found a significant
interaction effect between transparency and strategy on the perceived human-
likeness. In other words, the effect of transparency on the perception of human-
likeness was different across the three Strategies. Although the post hoc analysis
did not reveal a significant effect of transparency in any of the Strategies, the
trends suggest a negative effect on the cooperative agents, a positive effect on
the individualistic agents and no effect is suggested for the tit-for-tat agents. In
terms of likeability, we found a significant main effect of the strategy with the
individualistic agents being significantly rated as less likeable compared to the
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cooperative and tit-for-tat agents Fig. 5. This hypothesis was validated in terms
of human-likeness for the agents that use a individualistic strategy.

Our results suggest that adding transparent behaviour to an unconditional
cooperator negatively affects the perceptions people have in terms of trust, group
identification and human likeness. Although these differences were not statisti-
cally significant, the trends are congruent in the same direction. Further investi-
gation is needed to support this claim. In terms of human-likeness, our intuition
is that the unconditional cooperator might have revealed to the participants
a non-optimal strategy, which a human would probably not do. However, the
result for the group measures are counter-intuitive because the non-optimally
of this strategy is related to the individual gains and it is not clear why the
unconditional cooperator negatively affected then perception of the group.

7 Conclusions

Research in the field of artificial intelligence requires the design of system trans-
parency able to improve the collaboration in human-agents and human-robot
scenarios. This research discusses how strategy and transparency of artificial
agents can influence human behavior in teamwork. Within the limits of the
results found, we can state that transparency has significant effects on the trust,
group identification and human likeness. This aspect turns out to be interesting
in the context of public goods games and the design of relational and social
capabilities in intelligent systems. Further research should consider the use of
the Social Value Orientation [20] to randomize the sample between the condition
before running the study. In addition, other type of transparency exploitation
should be explored, as well as other game scenario and a more selected sample
based on specific objectives, such as education or ecological sustainability. To
conclude, a more comprehensive investigation of the methods to evaluate and
implement the system transparency considering the effect of agents’ strategy
should be considered and tested in the wild.
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{yazan.mualla,stephane.galland}@utbm.fr
3 UMEA University, Ume̊a, Sweden

najjar@cs.umu.se

Abstract. Advances in Artificial Intelligence (AI) are contributing to
a broad set of domains. In particular, Multi-Agent Systems (MAS) are
increasingly approaching critical areas such as medicine, autonomous
vehicles, criminal justice, and financial markets. Such a trend is produc-
ing a growing AI-Human society entanglement. Thus, several concerns
are raised around user acceptance of AI agents. Trust issues, mainly due
to their lack of explainability, are the most relevant. In recent decades,
the priority has been pursuing the optimal performance at the expenses
of the interpretability. It led to remarkable achievements in fields such as
computer vision, natural language processing, and decision-making sys-
tems. However, the crucial questions driven by the social reluctance to
accept AI-based decisions may lead to entirely new dynamics and tech-
nologies fostering explainability, authenticity, and user-centricity. This
paper proposes a joint approach employing both blockchain technology
(BCT) and explainability in the decision-making process of MAS. By
doing so, current opaque decision-making processes can be made more
transparent and secure and thereby trustworthy from the human user
standpoint. Moreover, several case studies involving Unmanned Aerial
Vehicles (UAV) are discussed. Finally, the paper discusses roles, bal-
ance, and trade-offs between explainability and BCT in trust-dependent
systems.

Keywords: MAS · Goal-based XAI · Explainability · UAV ·
Blockchain

1 Introduction

Human decisions are increasingly relying on Artificial Intelligence (AI) tech-
niques implementing autonomous decision making and distributed problem solv-
ing. Human-system interaction is pervading many domains, including health-care
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[7], Cyber-Physical Systems [12,31], financial markets [38], and cloud comput-
ing [35]. Such entanglements enforced the ratification of the recent European
General Data Protection Regulation (GDPR) law which underlines the right to
explanations [14] and ACM US Public Policy Council (USACM)’s algorithmic
transparency and accountability [1].

Therefore, the design of transparent and intelligible technologies is an
impelling necessity. However, the interaction between autonomous AI-based sys-
tems (e.g., robots and agents) and humans decision processes raises concerns
about the trust, reliability, and acceptance of autonomous systems. Recent stud-
ies proved that for both humans and software agents/robots, the trust into
autonomous intelligent systems is strengthened if rules, decisions, and results
can be explained. Hence, in the last decade, the hype about eXplainable Artifi-
cial Intelligence (XAI) [4,25] picked again. However, the majority of the recent
studies focus on the interpretability and explanations for data-driven algorithms
[5,18,24,41], thus still leaving open investigations concerning explainable agents
and robots [4].

Humans tend to associate rationales to understanding and actions, developing
a “mental states” [26]. A missing explanation can generate understanding that
does not necessarily reflect AI’s internal stance (self-deception). To a certain
extent, dangerous situations may arise, putting the user safety at risk. According
to the recent literature [5,37], explanations help users to increase confidence
and trust, whereas misunderstanding the intentions of the intelligent system
creates discomfort and confusion. Therefore, endowing these agents and robots
with explainable behavior is paramount for their success. Interacting with these
systems, however, there are domains and scenarios in which giving a proper
explanation is not (i) possible, (ii) worth it, or (iii) enough. Therefore, the
novelty proposed by this work is the following.

Contribution
This paper proposes to combine XAI, with blockchain technologies to ensure
trust in domains where, due to environmental constraints or to some character-
istics of the users/agents in the system, the effectiveness of the explanation may
drop dramatically.

The rest of this article is organized as follows. Section 2 presents the back-
ground of this work in the domains of trust, explainability, and blockchain tech-
nology. Section 3 identifies three key research domains in which the synergy
between BCT and XAI is necessary. Section 4 highlights the major challenges,
Sect. 5 presents the proposed solution. Section 6 presents a use-case scenario,
Sect. 7 discusses the scope of attainable solutions in which a combination of
BCT and XAI is to be successful, and finally Sect. 8 concludes the paper.

2 Background

This section gives an overview of trust (Sect. 2.1), explainability (Sect. 2.2), and
blockchain (Sect. 2.3) which are the key elements enabling the understanding of
what their combination can provide to Multi-Agent Systems (MAS).
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2.1 Trust

Autonomy is considered a basic feature for intelligent agents. Although it is
highly desirable, such a property raises several challenges [40]. For example,
(i) the agent designer must take into account the autonomy of other agents
(run-time adaptation is a must for any agent to be competitive), and (ii) it is
unrealistic to assume that other agents adopt a same/similar conduct.

Thus, artificial societies need some sort of control mechanisms. Tradition-
ally, computational security has been claimed to be able to address a set of
well-defined threats/attacks by relying on cryptography algorithms [21]. Yet,
this approach requires the existence of a Trusted Third Party (TTP) to pro-
vide public and private keys and other credentials, which, for decentralized and
open application scenario, becomes unrealistic [8]. On turn, several other soft
control techniques have been defined to provide a certain degree of control with-
out restricting the system development. These approaches rely on social control
mechanisms (e.g., trust and reputation) that do not prevent undesirable events
but ensure some social order in the system [15]. Nevertheless, they can allow the
system to evolve in a way which prevents them from appearing again.

Several definitions have been proposed to define the notion of trust. Yet, the
definition proposed by Gambetta et al. [23] is particularly useful and adopted
by the MAS community.

“Trust is the subjective probability by which an agent A expects that
another agent B performs a given action on which its welfare depends”.

Therefore, trust is seen as an estimation or a prediction of the future or an
expectation of an uncertain behavior, mostly based on previous behaviors [9].
A second form of trust is the act of taking a decision itself (e.g., relying on,
counting on, or depending on the trustee). Summarizing, trust is both:

(i) a mental state about the other’s trustworthiness (an evaluation) and
(ii) a decision or intention based on that evaluation [40]. To evaluate the trust,

an agent relies on the image of the other agents. An image is an evaluative
belief that tells whether the target is good or bad with respect to the given
behavior. Images are results of internal reasoning from different sources of
information that lead the agent to create a belief about the behavior of other
agents [40].

2.2 Explainability

Explaining the decisions taken by an “intelligent system” has received relevant
contributions from the AI community [16,27]. Earlier works on sought to build
explainable expert systems. For this reason, after a prosperous phase, explain-
ability received less attention in the 2000’s. Recently, as AI systems are getting
increasingly complex, explainable AI (XAI) reemerged to push for interpreting
the “black-box” machine learning mechanisms and understanding the decisions
of robots and agents. Consequently, research on XAI can be classified in two
main branches:
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– Data-driven (so-called perceptual [36]) XAI:
It aims at interpreting the results of “black-box” machine learning mech-
anisms such as Deep Neural Networks (DNN) [48]. This research achieved
intriguing results (e.g., understanding why a DNN mistakenly labelled a
tomato as a dog [44]). Therefore, the lust to interpret, or provide a mean-
ing for an obscure machine learning model (whose inner-workings are other-
wise unknown or non-understandable by the human observer) is tickling the
researchers.

– Goal-driven (so-called cognitive [36]) XAI:
Research from cognitive science has shown that humans attribute mental
states to robots and autonomous agents. This means that humans tend to
attribute goals, intentions and desires to these systems. This branch of XAI
aims at explaining the rationales of the decisions of intelligent agents and
robots by citing their goals, beliefs, emotions, etc. [4]. Providing such expla-
nations allows the human to understand capabilities, limits, and risks of the
agent/robot they are interacting with, and thereby raising the user awareness
and trust in the agent, facilitating critical decisions [4,13].

2.3 Blockchain Technology

Blockchain is a distributed technology employing cryptographic primitives that
rely on a (i) membership mechanism, and (ii) a consensus protocol to maintain
a shared, immutable, and transparent append-only register [9]. Observing The
information (digitally signed transactions) delivered by the entities part of the
network are grouped into blocks chronologically time-stamped.

The single block is identified by a unique block-identifier, which is obtained by
applying a hash function to its content and it is stored in the subsequent block.
Such a technique is part of a set of mechanisms considered tamper-proof [8] mod-
ification of the content of a block, can be easily verified by hashing it again, and
comparing the results with the identifier from the subsequent block. Moreover,
depending on the distribution and consensus mechanism, the blockchain can be
replicated and maintained by every (or a sub-set) participant(s) (so-called peers).
Thus, a malicious attempt to tamper the information stored in the registry can
be immediately spotted by the participants, thus guaranteeing immutability of
the ledger [8]. Several technological implementations of the blockchain can exe-
cute arbitrary tasks (so-called smart contracts) allowing the implementation of
desired functionality. Alongside the blocks, such smart contracts represent the
logic applied and distributed with the data [28].

Technology. BCT can be distinguish between permissionless and permissioned
(public and private) blockchain systems [43]:

– A blockchain is permissionless when the identities of participants are either
pseudonymous or anonymous (every user can participate in the consensus
protocol, and therefore append a new block to the ledger).
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– A blockchain is permissioned if the identities of the users and rights to par-
ticipate in the consensus (writing to the ledger and/or validating the trans-
actions) are controlled by a membership service.

Moreover, on the one hand, a permissioned blockchain is public when any-
one can read the ledger, but only predefined set of users can participate in the
consensus. On the other hand, it is private when even the right to read the ledger
is controlled by a membership/identity service.

3 Application Domains

Trust is still an outstanding open challenge in the area of intelligent systems.
However, Blockchain technology and techniques derived from the XAI disci-
pline can be tightly coupled to provide reconciling, feasible, and cost-effective
solutions. On the one hand, explainable behaviors can enable the trustor to
evaluate the soundness and the completeness of the actions of the trustee, and
thereby it can evaluate its competences, and examine the rationale behind its
behavior. On the other hand, BCT can allow the trustor to unequivocally assess
the reputation of the trustee based on existing history knowledge about it. In
this paper, we explore reconciling solutions combining both XAI and BCT. This
synergy can be beneficial for several application domains involving collaborations
among agents to undertake joint decisions in a decentralized manner. Below, we
identify three types of applications in which such a synergy would be highly
beneficial.

Cloud Computing is a distributed ecosystem involving multiple actors each con-
cerned with accomplishing a different set of goals. Agent-based systems have
been underlined as a platform capable of adding intelligence to the cloud ecosys-
tem and allowing to undertake critical tasks such as resource management in a
decentralized manner that considers the distributed and multi-partite nature of
the cloud ecosystem [45]. In a typical three partite scenario, it involves: (i) Cloud
providers who seek to offer an adequate Quality of Service (QoS) while minimiz-
ing the energy consumption and maintenance costs of its data-centers [22], (ii)
Cloud users whose aim is to minimize the cost they pay to the provider while fur-
nishing a satisfactory service to their end-users [34], and brokers. In exchange for
a fee, a broker reserves a large pool of instances from cloud providers and serves
users with price discounts. Thus, it optimally exploits both pricing benefits of
long-term instance reservations and multiplexing gains [47]. In such a scenario,
given the multitude of providers, brokers and offers available in the cloud market,
both explainability and trust are critical to help these actors make their strategic
decisions. For instance, when recommending resources from a particular cloud
provider, a broker could rely on BCT technology to assess the reputation and the
trustworthiness of the provider. Several important data could be inscribed on
the ledger including the availability, reliability and the average response time of
the virtual instances leased from this provider. When giving a recommendation,
the broker might also use explainability to provide a transparent service to its
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client and explain why some specific decision were made (e.g., the choice of one
provider) and why some un-expected events took place (e.g., an SLA violation).

Smart Cities. The densely populated smart cities are administrated by several
governmental and civil society actors, where vivid economic services involving
a multitude of individual stakeholders take place. In such services, the use of
agents for Unmanned Aerial Vehicles (UAVs) is gaining more interest especially
in complex application scenarios where coordination and cooperation are nec-
essary [32]. In particular, in the near future, UAVs will require access to an
inter-operable, affordable, responsive, and sustainable networked system capa-
ble of providing service, joint, inter-agency, and real-time information exchanges.
Such systems must be distributed, scalable, and secure. The main components
are human interfaces, software applications, network services, information ser-
vices, and the hardware and interfaces necessary to form a complete system that
delivers secured UAVs operations [28]. Recalling that BCT allows creating a
peer-to-peer decentralized network with an information protection mechanism
[3], such a network can provide secure communication system within the MAS
[20], thus operating as distributed control and secure system to ensure the trust
among UAVs and other actors.

User Satisfaction Management. Agents are autonomous entities bound to indi-
vidual perspectives, for these reasons, user agents were used to represent user
satisfaction [35]. However, end-user satisfaction is known to be subjective [33]
and influenced by several Influence Factors (IF) [39], including Human IFs (e.g.,
expertise, age, personality traits, etc.), Context IF (e.g., expectations) and Sys-
tem IFs (i.e., the technical properties of the systems used to consume the service).
Both XAI and BCT can have key contributions helping agents overcome these
challenges and improve user satisfaction. On the one hand, explainability enables
the agent to provide convincing recommendations to the user by showing that
the agent’s decisions were in line with the user preferences. On the other hand,
BCT can play an important role in assuring both the user and her agent that pri-
vacy and authentication measures are integrated to protect the user preferences
and private data from exploitation.

4 Challenges

The combination of MAS, BCT, and XAI can be particularly strategic in sev-
eral application fields. Real-world scenarios are often characterized by a com-
bination of limited resources such as computational capability, memory, space,
and in particular time [11,12,19]. Therefore, Sect. 4.1 tackles the application of
the proposed solution in Resource-Constrained (RC). Another relevant dimen-
sion characterizing real-world application is the trust in the systems or in their
components [9,10,40]. Thus, Sect. 4.2 addresses the Lack of Trust (LT) as main
driver.
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4.1 RC Scenarios

In real-world applications, systems must cope with a bounded availability of
resources. On the one hand, we can mention tangible resources such as mem-
ory, computational capability, and communication bandwidth [12]. On the other
hand, we can have reputation, trust, and time. The latter is crucial especially in
safety-critical scenarios, when failing to deliver a result in/on time might have
catastrophic consequences [6].

A possible example can be a UAVs firefighting scenario.
Let us assume that a UAV detects a fire in a nearby woods, and that the

fire has already spread to an extent unmanageable by a single UAV. The only
viable option for the UAV which detected the fire is to ask for support from
the firefighting center, managed by humans, to send other UAVs. This requires
the UAV to explain the situation to the representative human in the firefighting
center. Considering that such a situation needs an intervention as prompt as pos-
sible, the UAV requesting assistance cannot produce and deliver an “extensive”
explanation for its requests, plans, and the consequences of possible inaction.
Achieving a consensus on an over-detailed (for the situation) explanation would
be unaffordably time-consuming, thus leading to potentially considerable losses.
A possible solution is to enable the requester to rely on BCT, which can ensure
its possible trustworthiness (e.g., via reputation) and authenticity, compensating
a less detailed explanation leading to a faster reaction to handle the fire.

4.2 LT Scenarios

In scenarios where time is not critical, the opportunity is given to an agent
with low reputation to express itself to increase the trust with other actors.
For example, a swarm of UAVs can be created to perform tasks that cannot be
performed by one UAV or to increase the efficiency of a specific task. In such
situations, there is a need for a mechanism for UAVs to join a swarm. Yet, a UAV
with a low reputation may find it difficult to join a swarm. With explainability,
it is possible that swarm management gives this UAV a chance to express itself
in order to increase its trust and hence its chances to be accepted in the swarm.
Another example is when it is not possible to determine the reputation of a UAV
due to the inability to access the blockchain. This UAV can be given the chance
of explaining its goals to increase the likelihood of an agreement.

5 Proposed Solution

According to the application domains and scenarios presented in Sect. 4, a two-
folded solution (for RC and LT scenarios) follows.

5.1 RC

In scenarios in which the operating time is constrained (Sect. 4.1) and delivering
a complete and high-quality explanation is not viable, the quality and granu-
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larity of a given explanation might be degraded to still comply with the timing
constraints.

Similarly, if the understanding capability of the recipient of a given explana-
tion is limited (Scenarios 3 and 4 in Table 1), the quality of the explanation can
be lowered (since it might not be understood/appreciated) saving both time and
effort (e.g., computational capability, memory).

Lower quality explanations are characterized by less details (coarse-grained)
or unfaithful explanations. While offering brief insights on how and why a deci-
sion was taken, coarse-grained explanations do not provide a fully detailed expla-
nation unless this is explicitly demanded by the explainee. Unfaithful explanation
do not respect the actual mechanism that led to a given decision. Instead, their
aim is to provide an understandable and easy explanation. A possible way of pro-
viding unfaithful explanation is relying on contrastive explanations. The latter
consist of justifying one action by explaining why alternative actions were not
chosen. While contrastive explanations do not necessarily describe the decision-
making process of the agent, recent research has shown that they can be easily
produced and easily understandable by the user [29]. Therefore, both coarse-
grained and unfaithful explanations convey the message, thus accomplishing the
explicative intent. Since an effective explanation might not be the most precise
or faithful, it is possible to infer that precision and effectiveness of an explana-
tion can be decorrelated. On the one hand, if the principal objective is to share
the rationale behind a given decision, opting for an effective and potentially less
precise explanation might be the best option [4]. On the other hand, if trans-
parency is a mandatory requirement, a detailed and faithful explanation must be
provided. For example, time available to produce and provide an explanation in
a given context/situation is a factor influencing the agent, thus possibly impact-
ing on the faithfulness of its explanations. In case the amount of time is too
constrictive, the agent might opt for a short, simple, and unfaithful explanation
(even though a detailed one would be preferred). Moreover, depending on time
available, context, and explainee, the explainer may attempt at explaining the
same concept employing different types of data or same data but with different
granularity and complexity (e.g., images, text, or raw data).

To lower the explanation quality/granularity, without affecting the trust
(information-, user-, or agent-wise), we propose to enforce the provided explana-
tion with BCT. By doing so, we would compensate a less effective explanation
with the guarantees provided by BCT technology, still keeping the system run-
ning and the trust unaffected by a time-critical scenario.

Table 1 lists four possible situations we have identified. Beside the Time
Available, expressed in seconds, the other features are represented by adimen-
sional numbers (useful to provide a quick and synthetic overview). Ratio, stands
for correlation between the quality of a given explanation (possibly combined
with the support of BCT) and how it is understood, perceived or accepted (if
relying more on the BCT then on the actual explanation) by the recipient.
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Table 1. Possible combinations of explanations’ quality and blockchain support with
the recipient’s capabilities of understanding.

Scenario Time available
(seconds)

Explanation
quality

Recipient
understanding

Blockchain
support

Gain

1 10 10 10 0 10/10

2 5 7 10 3 10/10

3 10 10 5 0 10/5

4 10 2 5 3 5/5

Scenario 1 the first scenario reproduces an ideal situation: having (i) enough
time to provide a comprehensive and solid explanation and (ii) a recipient who
has time and can process/understand the provided explanation. In this case, the
support of the BCT is not necessary.

Scenario 2 short in time, and with a recipient able to fully understand and
process the explanation, the agent opts for degrading the quality of the expla-
nation relying on the contribution of BCT. In this case, the recipient’s decision
might not be affected by the lack of granularity of the received explanation.

Scenario 3 although the available time is enough to produce a robust explana-
tion, the recipient is not able to entirely understand/process it. Therefore, since
the explanation goes already over its purpose, it is not necessary to employ the
BCT.

Scenario 4 the available time might be more than enough to produce a robust
explanation, which however goes beyond the understanding capability of the
recipient. Therefore, to save time and resources, the explanation can be degraded
and coupled with the support of BCT, enough to match the recipient expectation
and capability.

5.2 LT

In circumstance where an agent/user has a reputation lower than a given thresh-
old, it can be labelled as not fully trustworthy. In this condition, although the
user/agent might be able to provide an excellent explanation, it could not be
trusted, or it could not get a chance to express it. Therefore, binding the expla-
nation with BCT might relieve the agent explaining from the burden of a low
reputation (obtained for a whatever unfortunate reason in a precedent point
in time). Such a solution/approach can be associated to the famous dilemma
“The Boy Who Cried Wolf” narrated by Aesop [2], the well-known Greek fab-
ulist and storyteller. The fable narrates of a young shepherd who, just for fun,
used to fool the gentlemen of the nearby village making fake claims of having
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his flock attacked by wolves. However, when the wolves attacked the flock for
real, the villagers did not respond to the boy’s cries (since they considered it to
be just another false alarm). Therefore, the wolves end up ravaging the entire
flock. This story is used as an example of the serious consequences of spreading
false claims and alarms, generating mistrust in the society and resulting in the
subsequent disbelieving the true claims. To “cry wolf”, a famous English idiom
glossed in Oxford English Dictionary [17], was derived from this fable to reflect
the meaning of spreading false alarms.

Such a moral, applied to human societies, can also be applied to agent soci-
eties. For example, the requests of a UAV with a low reputation might be
neglected because its records on the the ledger showed that it has been issuing
false alarms about fires in the woods. However, with the possibility of explaining
its new alarms and supporting its claims with tangible proofs (e.g., images and
footage from the fire location), if its explanations were convincing enough, the
UAV might be able to overcome (and improve) its low reputation.

The next section addresses the UAVs package delivery, which is a use case
from the real world. In such a scenario, multiple UAVs need to coordinate in order
to achieve a common goal. To do so, members of the same UAV team (i.e., swarm)
should share a common understanding and maintain a trustworthy relationship.
To address these concerns, potentially time-constrained, the following section
studies UAVs interaction and reputation by employing explainability and BCT.

6 Explainability and BCT: The UAVs Package Delivery
Use Case

In 02 Aug 2018, the U.S. Patent and Trademark Office issued a new patent
for retail giant Walmart seeking to utilize BCT to perfect a smarter package
delivery tracking system [42]. Walmart describes a “smart package” delivered by
a UAV that includes a device to record information about a blockchain related
to the content of the package, environmental conditions, location, manufacturer,
model number, etc. The application states that the blockchain component will
be encrypted into the device and will have “key addresses along the chain of the
package’s custody, including hashing with a seller private key address, a courier
private key address and a buyer private key address” [46].

Typically, modeled as agents, UAVs can be organized in swarms to help them
achieve more than what they could solely. A decentralized swarm management
system can add or remove UAVs from the swarm. To join the swarm, a reputa-
tion threshold should be acquired by the UAV. In cases of low reputation UAV
(Sect. 5.2), the choice is given to the UAV to explain the reasons it must join the
swarm.

UAVs use voting in the swarm to decide decisions like adding/removing
UAVs, tasks to perform, etc. Before each vote, the possibility is given to each
UAV to explain what it considers the best for the swarm in terms of what goals
to achieve and how to do them. The swarm management system has a blockchain
distributed ledger that is connected to Internet through various wireless networks
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(e.g., WiFi, 4G/5G, satellite). It allows the swarm to check the reputation of any
UAV willing to join the swarm as well as the reputation of any outer actors that
wish to communicate with the swarm.

For example, suppose that a new UAV has joined the swarm and is granted
a private key. Once the UAV exists on the blockchain distributed ledger of the
swarm management system, the levels of access, control, and/or authority are
determined for the new UAV.

External actors (UAVs or people) may ask the swarm to perform tasks for
them. Negotiation will commence between the external actor and the swarm that
considers the trade-off between explainability and reputation of the actor, the
profit of performing the task (in case of commercial swarms), the general welfare
(in case of governmental or non-profit organizations). If the swarm accepts to
perform a given task, smart contracts can be used to transfer commands between
agents in the form of data or executable code in real-time.

Let us assume that an actor (human, device, etc.) in a smart home asks the
swarm to make a delivery order. Depending on the time window of the delivery
transaction, different scenarios that combine reputation and explainability are
considered (Sect. 5.1). Figure 1 shows the steps to consider as per the constraints
of the scenario.

If an agreement is reached, a smart contract is generated with the order data
(e.g., package characteristics, client data, location, and designated UAV) and the
information is sent to the Blockchain. Then, the UAV commits a transaction to
the traffic coordinator to provide an air corridor for it and a new smart contract
is concluded between them.

The UAV starts the delivery to the smart home. Once near the smart home,
the UAV will contact the smart window using a wireless network. The smart
window is connected to the internet as any other device in the smart home.
This allows it to ask the blockchain if it recognizes and verifies this UAV and
its swarm, and if it is the swarm that singed the smart contract. If the UAV
is trustworthy, the window will open to allow it to drop the package. When
the delivery is completed, the UAV notifies the traffic coordinator that the air
corridor is no longer needed.

To achieve all of that, there is a need for defining two important aspects. First,
protocols for the registration, verification, peer-to-peer interaction of the UAVs.
Second, smart contracts between the swarm and any other actor in the environ-
ment (UAV, device, human, etc.), that govern the services used or provided by
the swarm. Moreover, the use of a blockchain infrastructure helps in identifying
misbehaving UAVs by multiple parties and such activities are recorded in an
immutable ledger. These misbehaving assessments may be performed by analyt-
ical algorithms or machine learning models performed off-chain and interfaced
with the blockchain ledger through smart contracts. Once determined, the mis-
behaving UAV will be given the chance to explain its behaviour and actions in
the after-action phase (Sect. 5.2).

Of course, the service provided by the UAV will affect the weights of impor-
tance for the reputation and explainability. For example, in time critical situa-
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tions, there is no time for long/complex explanation, and the reputation plays
the more significant role.

7 Discussion

Analyzing the solutions proposed in Sect. 5, Fig. 1 summarizes the possible out-
comes eliciting the attainable solutions.

In particular, time availability is the predominant factor. If an agent is short
in time, explainability might not be an option. Therefore, the agent is demanded
to have a trustworthy reputation (proved by the BCT) to achieve a possible
agreement. In the case no explanation can be provided and the reputation value
is below an acceptable threshold there is no possible solution, and the request
of the agent (as we saw in the UAV example above), is rejected.

TIME

BCT
f(XAI,BCT )

f(0, ·)f(·, 0) f(·, ·)

XAI
mandatory

Possible
Solution

No
Solution

Trustworthy
Reputation

Yes

No

Trustworthy
XAI

No Yes

No

Not enough Enough

Yes

Fig. 1. Decision process wrt available time, explanation, and reputation.

If the available time to produce an explanation is enough, explainability
becomes an option. The agent can rely on f(XAI,BCT ), a combination of
explainability and BCT. The agent might rely only on explainability f(·, 0),
only on BCT f(0, ·), or on any given combination of both f(·, ·). In the latter
case, the weights composing this combination mainly depend on the (i) specific
context, (ii) nature of the problem to be explained, (iii) explanation capabil-
ity of the agent and on (iv) understanding capability of the agent receiving the
explanation. Moreover, on the one hand, having explainability might be neces-
sary and enforced by law. On the other hand, low reputation/trustworthiness of
an agent cannot be ignored even if it provided an adequate explanation.

Figure 2 shows a sequence of interaction within a society of agents, the first
agent A1 attempts to send an explanation to agent A2. Depending on the sce-
nario, A1 might possibly be short in time, might possibly be able to rely on BCT
for reputation. Based on the explanation/reputation submitted by A1 to A2, the
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Fig. 2. Representation of the explaination life-cycle. (Color figure online)

latter would be able to assess the trustworthiness of A1, compare the behavior
of A1 with its own expectation, and define/update a State of Mind (SoM) about
A1 intentions. As a result of this reasoning process, A2 (delineated by the blue
box) builds an understanding of A1 and its explanation. Such an understanding
is then used to: (i) generate an explanation describing A1 behavior and commu-
nicate it with other agents An, (ii) refine A2’s SoM, reasoning, and expectations
about A1, and (iii) possibly coming back to A1 to ask more details/clarifications
about its explanation.

na th BCT

th

XAI

na th BCT

th

XAI

Fig. 3. Symmetric and Asymmetric XAI and BCT contributions (Color figure online)

Figure 3 illustrates the possible synergy between XAI and BCT. The blue
diagonal line represents the threshold delineating whether the combination of
XAI and BCT satisfies the minimal requirements (area in green) or not (area in
red). In the left figure (symmetric case), the contributions from XAI and BCT
are equal, thus symmetric. In the right figure (asymmetric case), a contribution
from either XAI or BCT has higher impact (XAI in the example in the figure).

In the domain of UAVs, where the regulations are not mature enough [32], the
combination of reputation and explainability will increase the trust of clients in



54 D. Calvaresi et al.

the use of UAVs for package delivery and other applications, while the properly
tuned weights given to each factor (reputation and explainability) will insure
that various services could be provided. To acquire the mentioned tuned weights,
tests should be conducted. However, some regulations restrict the use of UAVs
in cities, so to perform tests with real UAVs, it is needed access to expensive
hardware and field tests that usually consume a considerable amount of time
and require trained and skilled people to pilot and maintain the UAV. In this
context, the development of simulation frameworks that allow transferring real-
world scenarios into executable models using computer simulation frameworks
are welcome [30].

The design and realization of mechanisms computing trust and reputation of
agents communities via blockchain are strictly dependent on the application sce-
narios and available technologies. Therefore, they are delegated to future studies.
Nevertheless, at the current stage, it is possible to provide key research direc-
tions. For example, as mentioned in Sect. 2.1, to undertake the trust evaluation
process, agents rely on the social image of other agents [40]. An agent constructs
such an image relying on (i) direct experiences (e.g., direct interactions between
the trustor and the trustee), (ii) communicated experiences (e.g., interactions
between the trustee and another agent communicated to the trustor), and (iii)
social information (e.g., monitoring social relations and position of the trustee
in the society). The interactions and mechanism enabling the computation of
trust and reputation can be stored on a blockchain. Thus, depending on the
agent image retrieved from such a trusted technology, other agents may decide
whether granting or not their trust or if demanding for more explanations might
be needed to take a more appropriate decision. Yet, concerning privacy and
permissions, there are several open questions to be taken into account. More-
over, since agent could communicate their experiences and opinions about other
agents behaviors, a mechanism should be devised to prevent malicious agents
from adding their unauthentic experiences to the ledger.

8 Conclusions

Most of today’s applications are deployed in a distributed and open techni-
cal ecosystems involving multiple parties each with different goals constraints.
This paper proposed an approach combining BCT and explainability supporting
the decision-making process of MAS. Such an approach can remove the current
opaqueness of decision-making processes making them interpretable and trust-
worthy from both agent and human user point of views. It is worth to recall
that explainability allows collaborating parties to express their intentions and
reach common understandings and that BCT offers a decentralized authentica-
tion mechanisms capable of ensuring trust and reputation management. Then, it
identified some applications where the contribution of these technologies revealed
to be crucial. Three scenarios have been identified: (i) BCT are strictly neces-
sary, (ii) explainability is mandatory, and (iii) a combination of them is possi-
ble and subject to a threshold function. Moreover, several practical case study
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involving UAVs have been discussed, analyzing roles, balance, and trade-offs
between explainability and BCT in trust-dependent systems. This work is an ini-
tial step towards building synergies between explainable AI and BCT. The future
work is to (i) investigate a MAS model suitable for XAI and BCT, (ii) design
and develop a MAS framework to implement explainable and BCT dynamics,
(iii) realize smart contracts supporting an efficient communication among light
weight devices, (iv) assess a possible interdependence among explainability and
BCT (in particular involving remote robots such as UAV and HGV), and (v)
apply and study the developed solutions to UAVs swarm.
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Abstract. Typically, humans do not act purely rationally in the sense
of classic economic theory. Different patterns of human actions have been
identified that are not aligned with the traditional view of human actors
as rational agents that act to maximize their own utility function. For
instance, humans often act sympathetically – i.e., they choose actions
that serve others in disregard of their egoistic preferences. Even if there
is no immediate benefit resulting from a sympathetic action, it can be
beneficial for the executing individual in the long run. This paper builds
upon the premise that it can be beneficial to design autonomous agents
that employ sympathetic actions in a similar manner as humans do. We
create a taxonomy of sympathetic actions, that reflects different goal
types an agent can have to act sympathetically. To ensure that the sym-
pathetic actions are recognized as such, we propose different explanation
approaches autonomous agents may use. In this context, we focus on
human-agent interaction scenarios. As a first step towards an empirical
evaluation, we conduct a preliminary human-robot interaction study that
investigates the effect of explanations of (somewhat) sympathetic robot
actions on the human participants of human-robot ultimatum games.
While the study does not provide statistically significant findings (but
notable differences), it can inform future in-depth empirical evaluations.

Keywords: Explainable artificial intelligence · Game theory ·
Human-robot interaction

1 Introduction

In classical economic theory, human actors in a market are considered purely
rational agents that act to optimize their own utility function (see, e.g.: [11]).
With the advent of behavioral economics, the notion of rational human actors
in the sense of classical economic theory was dismissed as unrealistic. Instead,
it is now acknowledged that human actions are of bounded rationality and often
informed by (partly fallacious) heuristics [14]. Rational autonomous agent tech-
niques are often built upon classical economic game and decision theory, although
the gap between the assumed notion of rationality, and actual human decision-
making and action is acknowledged in the multi-agent systems community. For
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example, Parsons and Wooldridge observe that game theory “assumes [...] it is
possible to characterize an agent’s preferences with respect to possible outcomes
[whereas humans] find it extremely hard to consistently define their preferences
over outcomes [...]” [22]. Consequently, research that goes beyond classical game
theory and explores the behavioral economics perspective on autonomous agents
can be considered of value. Although it is acknowledged that autonomous agents
must employ novel concepts to become socially intelligent and research on agents
with social capabilities is a well-established domain (see, e.g.: Dautenhahn [8]),
much of the intersection of behavioral economics and autonomous agents is still
to be explored. A relevant research instrument at the intersection of multi-agent
systems and behavioral economics is the ultimatum game [12]. The ultimatum
game is a two-player game: one player can propose how a monetary reward
should be split between the players; the other player can accept the proposal,
or reject it. Rejection implies that neither player receives the reward. In the ini-
tial game theoretical approach to the ultimatum game, rational agents always
propose the smallest share that is greater than zero (for example, 1 cent) to
the other player, and accept any offer that is greater than zero. However, as
for example highlighted by Thaler [26], human decision-making does not com-
ply with the corresponding notion of rationality; instead, a notion of fairness
makes humans typically reject offers that are close to or equal to the offer ratio-
nal agents would propose. In relation to this observation, the ultimatum game
has been explored from a multi-agent systems theory perspective by Bench-
Capon et al., who present a qualitative, formal argumentation-based approach
that enables rational agents to act altruistically [2].

However, the user interaction perspective of sympathetic (or: altruistic)
actions in human-computer ultimatum games seems to be still unexplored, in
particular in the context of explainability. To fill this gap, this work explores
rational agents that are capable of executing sympathetic actions in that they
concede utility to others in mixed-motive games to facilitate long-term well-
being. The agents increase the effect of the concessions by explaining these
actions, or by making them explicable. The paper presents the following research
contributions:

1. It suggests a set of goal types rational agents can have for sympathetic actions.
2. It proposes a list of explanation types an agent can use to facilitate the effect

of its sympathetic actions and discusses the implications these explanations
can have.

3. It presents a preliminary human-agent interaction study that explores the
effect of explanations of sympathetic agent actions on humans.

The rest of this paper is organized as follows. Section 2 provides an overview
of the state of the art; in particular, it summarizes existing relevant research
on explainable artificial intelligence, behavioral economics, and theory of mind.
Then, we present a taxonomy of sympathetic actions in Sect. 4. In Sect. 5, we
describe the protocol and results of a preliminary human-agent interaction study
that explores the effect of explanations of sympathetic agent actions on humans
in the context of a series of human-agent ultimatum games with agents of two
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different types (with or without explanations). Finally, we discuss limitations and
future research of the presented work in Sect. 6 before we conclude the paper in
Sect. 7.

2 Background

In this section, we ground the presented research contribution in the state-of-the-
art at the intersection of multi-agent systems and behavioral economics research.

2.1 Behavioral Economics and Multi-agent Systems

In classical economic theory, humans are rational actors in markets; this implies
they always act to maximize their own expected utility. In the second half of
the 20th century, research emerged that provides evidence that contradicts this
premise; the resulting field of behavioral economics acknowledges limits to human
rationality in the classical economic sense and describes human economic behav-
ior based on empirical studies [14]. Traditionally, multi-agent systems research
is based on the traditional notion of rational agents in classical economic the-
ory. The limitations this approach implies are, however, acknowledged [22]. Also,
since the advent of the concept of socially intelligent agents [8], research emerges
that considers recently gained knowledge about human behavior.

The ultimatum game [12] is a good example of the relevance of behavioral
economics; as for example discussed by Thaler [26], humans typically reject eco-
nomically “rational” offers because they consider them unfair. The ultimatum
game has already found its way into multi-agent systems theory. Bench-Capon
et al. propose a qualitative, multi-value-based approach as an alternative to one-
dimensional utility optimization: “the agent determines which of its values will
be promoted and demoted by the available actions, and then chooses by resolv-
ing the competing justifications by reference to an ordering of these value” [2].
However, their work is primarily theoretical and does not focus on the human-
computer interaction aspect.

2.2 Machine Theory of Mind

Inspired by the so-called folk theory of mind or folk psychology – “the abil-
ity of a person to impute mental states to self and to others and to predict
behavior on the basis of such states” [19] – researchers in the artificial intelli-
gence community have started to work towards a machine theory of mind (e.g.,
Rabinowitz et al. [23]). In contrast to the aforementioned research, this work
does not attempt to move towards solving the research challenge of devising
a generic machine theory of mind, but instead focuses on one specific premise
that is informed by the ultimatum game: machines that are aware of human
preferences for sympathetic behavior can facilitate the achievement of their own
long-term goals by acting sympathetically, i.e., by conceding utility to a human.
In its human-computer interaction perspective, our research bears similarity to
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the work of Chandrasekaran et al., who investigate human ability to have “a
theory of AI’s mind” [6], in that we propose that machines can use simple heuris-
tics that consider peculiarities of human behavioral psychology to facilitate the
machine designer’s goals. Also, our work is aligned with research conducted by
Harbers et al., who show that humans prefer interacting with agents that employ
a theory of mind approach [13].

2.3 Explainable Artificial Intelligence (XAI) and Explainable
Agents

The interest in conducting research on human interpretable machine decision-
making–so-called explainable artificial intelligence (XAI) – has recently increased
in academia and industry. The interest is possibly facilitated by the rise of (deep)
machine learning black box systems that excel at certain tasks (in particular: clas-
sification), but typically do not allow for human-interpretable decision-making
processes1. An organization at the forefront of XAI research is the United States’
Defense Advanced Research Projects Agency (DARPA). A definition of XAI can
be derived from a DARPA report: XAI allows an “end user who depends on deci-
sions, recommendations, or actions produced by an AI system [...] to understand
the rationale for the system’s decisions” [9]. In the context of XAI, the notion of
explainable agents emerged. Langley et al. describe the concept of explainable
agency by stipulating that autonomous agents should be expected “to justify, or
at least clarify, every aspect of these decision-making processes” [18].

In the context of XAI and explainable agents, the complementary concepts
of explainability and explicability are of importance.

Explainability: Is the system’s decision-making process understandable by
humans?
In the context of XAI, explainability is typically equated with interpretability,
which refers to “the ability of an agent to explain or to present its decision
to a human user, in understandable terms” [24]2.
Explicability: Do the system’s decisions conform with human expectations?
Kulkarni et al. introduce an explicable plan in the context of robotic planning
as “a plan that is generated with the human’s expectation of the robot model”
[17]. From this, one can derive the general concept of a system’s explicabil-
ity as the ability to perform actions and make decision according to human
expectations; i.e., explicability is the ability of an agent to act in a way that
is understandable to a human without any explanations.

As an emerging field, the design of XAI systems faces challenges of different
types:

– Technical challenges
“Building Explainable Artificial Intelligence Systems” As outlined by Core
et al., XAI systems typically lack modularity and domain-independence [7].

1 For a survey of XAI research, see: Adadi and Berrada [1].
2 The cited definition is based on another definition introduced by Doshi-Velez and

Kim [10].
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– Social challenges
As highlighted by Miller et al., XAI systems design should not be approached
with purely technical means; the XAI community must “beware of the inmates
running the asylum” [21]. Instead of relying on technical aspects of explain-
ability, researchers should build on existing social science research and use
empirical, human-centered evaluation methods to ensure XAI systems have
in fact the intended effects on the humans interacting with them.

Considering the latter (socio-technical) challenge, one can argue that it is impor-
tant to provide a behavioral economics perspective on explainable agents, as this
broadens the horizon beyond the traditional computer science and multi-agent
systems point of view; i.e., gaining knowledge about the behavioral effects of
agent explanations on humans allows for better design decisions when develop-
ing explainable agents.

3 A Taxonomy of Goals for Sympathetic Actions

In this section, we provide an overview of goal types rational agents can have
to act sympathetically. In this context, acting sympathetically means that the
agent does not choose to execute actions that maximize its own utility but opts
for actions that provide greater utility (in comparison to the egoistically optimal
actions) to other agents in its environment3. To provide a clear description, we
assume the following two-agent scenario:

– There are two agents: A1 and A2;
– A1 can execute any subset of the actions Acts1 = {Act1, ..., Actn};
– A2 does not act4;
– The utility functions for both agents are: UA1 , UA2 := 2Acts1 → R.

Agent A1 acts sympathetically if it chooses actions Actssymp for which applies:

UA1(Actssymp) < max(UA1) ∧ UA2(Actssymp) > UA2(argmax(UA1)).

Colloquially speaking, agent A1 acts sympathetically, because it concedes utility
to agent A2.
We suggest that rational agents can have the following types of goals that moti-
vate them to act sympathetically:

(1) Altruistic/utilitarian preferences. A self-evident goal type can stem
from the intrinsic design of the agent; for example, the goal of the agent
designer can be to have the agent act in an altruistic or utilitarian manner,
as devised in rational agent techniques developed by Bench-Capon et al. [2]
and Kampik et al. [15].

3 Note that we use the term sympathetic and not altruistic actions because for the
agent, conceding utility to others is not a goal in itself; i.e., one could argue the
agent is not altruistic because it is not “motivated by a desire to benefit someone
other than [itself] for that person’s sake” [16].

4 We assume this for the sake of simplicity and to avoid diverging from the core of the
problem.
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(2) Establishing or following a norm/encouraging sympathetic
actions from others. Another goal type for a rational agent to act sympa-
thetically is the establishment of a norm5. I.e., the agent concedes utility in
the context of the current game, assuming that doing so complies with and
possibly advances norms, which in turn might have long-term benefits that
cannot be quantified.
(3) Compromising in case no equilibrium strategy exists. For this goal
type, the agent interaction scenario as specified above needs to be extended
to allow both agents to act:

– A2 can execute any subset of the actions Acts2 = {Act1, ..., Actn}.
– The utility functions for both agents are: UA1 , UA2 := 2Acts1

⋃
Acts2 → R.

If in such a scenario no equilibrium strategy exits, an agent could try to opt
for actions that are in accordance with the preferences of the other agent
(maximizing the other’s utility function of–or at least providing somewhat
“good” utility for–the other agent), if this does not have catastrophic conse-
quences. In contrast to goal type 1), in which the agent concedes utility in
the expectation of a long-term payoff, this goal type implies an immediate
benefit in the context of the current economic game.

4 Ways to Explain Sympathetic Actions

We suggest the following simple taxonomy of explanation types for sympathetic
actions. In the context of an explanation, one can colloquially refer to a sympa-
thetic action as a favor :

No Explanation. The agent deliberately abstains from providing an expla-
nation.
Provide a clue that hints at the favor. The agent does not directly state
that it is acting sympathetically, but it is providing a clue that underlines
the action’s nature. For example, a humanoid robot might accompany a sym-
pathetic action with a smile or a bow of the head. One could consider such
a clue explicable (and not an explanation) if the agent follows the expected
(social) protocol that makes an explanation obsolete.
Explain that a favor is provided. The agent explicitly states that it is
acting sympathetically, but does neither disclose its goal nor the expected
consequences of its concession of utility to the other agent. For example, a
chatbot might write simple statements like I am nice or I am doing you a
favor.
Explain why a favor is provided (norm). The agent explicitly states that
it is acting sympathetically and cites the norm that motivates its action as the
explanation. For example, a humanoid robot that interacts with members of
a religious community might relate to the relevant holy scripture to motivate
its sympathetic actions.

5 Norm emergence is a well-studied topic in the multi-agent systems community (see,
e.g. Savarimuthu et al. [25]).
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Explain why a favor is provided (consequence). The agent explicitly
states that it is acting sympathetically and cites the expected consequence
as its explanation. For example, an “AI” player in a real-time strategy game
might explain its sympathetic actions with I help you now because I hope you
will do the same for me later if I am in a bad situation..

We suggest that each explanation type can be a reasonable choice, depending
on the scenario. Below we motivate the choice of the two extremes:

No Explanation. Not explaining a sympathetic action can be a rational
choice if it can be assumed that the agent that profits from this action is aware
of the concession the sympathetically acting agent makes. In particular, in
human-agent interaction scenarios, explanations can appear pretentious. Also,
disclosing the expected consequence can in some scenarios give the impression
of de-facto egoistic behavior in anticipation of a quid pro quo.
Combination of all explanation types. When ensuring that the agent
that profits from the concession is aware of the sacrifices the sympathetically
acting agent makes, using all explanation types (clue, explanation of cause,
explanation of expected consequence) maximizes the chances the agent’s con-
cessions are interpretable.

Any other explanation type (or a combination of explanation types) can be
chosen if a compromise between the two extremes is suitable.

5 Towards an Empirical Assessment

As a first step towards an empirical assessment of the proposed concepts, a
preliminary human-computer interaction study was conducted. The setup and
methods, as well as the study results and our interpretation of them, are docu-
mented in this section.

5.1 Study Design

The preliminary study focuses on the goal type Establishing or following a
norm/encouraging sympathetic actions from others, as introduced in Sect. 3. The
aim of the study is to gather first insights on how the explanation of sympathetic
actions affects human behavior and attitudes in human-agent (human-robot)
interactions.

Study Description. The study participants play a series of six ultimatum
games with 100 atomic virtual coins at stake with a humanoid robot (agent),
interacting via an interface that supports voice input/output and animates facial
expressions on a human face-like three-dimensional mask. After an introductory
session that combines instructions by a human guide, by the agent, and in the
form of a paper-based guideline, the study starts with the agent proposing a
90/10 split of coins between agent and human. The second round starts with
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the human proposing the split. After each game, human and agent switch roles
independent of the game’s result.

The agent applies the following algorithms when proposing offers/deciding if
it should accept or not:
Acceptance: The agent is rational in its acceptance behavior: it accepts all
offers that are non-zero.
Proposal (all splits are in the format agent/human):

– The initial offer is 90/10.
– If the previous human offer was between 1 and 99:

If the human rejected the previous offer and the human’s last offer is less
than or equal to (≤) the agent’s previous offer, increase the last offer by 15,
if possible.
Else, propose the inverse split the human proposed last time.

– Otherwise, propose a split of 99/1.

Note that implementing a sophisticated game-playing algorithm is not the scope
of the study; the goal when designing the algorithm was to achieve behavior that
the agent can typically defend as sympathetic or “nice”.

For each of the study participants, the agent is set to one of two modes
(between-group design, single-blind). In the explanation mode, the agent
explains the offers it makes with simple statements that (i) highlight that the
agent is acting sympathetically (e.g., Because I am nice...) and/or (ii) explain
the agent’s behavior by referring to previous human proposals (e.g., Although
you did not share anything with me last time, I am nice..., Because you shared
the same amount of coins with me the previous time, I pay the favor back...).
In the no explanations mode, the agent does not provide any explanations for
its proposals. At the beginning of each study, the agent is switching modes6:
i.e., if it is set to the explanations mode for participant one, it will be set to no
explanations for participant two.

Fig. 1. Playing the ultimatum game with a
rational, sympathetic Furhat.

Table 1 shows the explanations
the agent in explanation mode pro-
vides for each of the different pro-
posal types. Figure 1 shows the
humanoid robot in a pre-study test
run. We provide an implementa-
tion of the program that allows
running the study on Furhat7, a
humanoid robot whose facial expres-
sions are software-generated and pro-
jected onto a face-like screen. The
source code has been made publicly
available8.

6 Setting the mode requires manual intervention by the agent operator.
7 See: https://docs.furhat.io/.
8 See: http://s.cs.umu.se/xst3kc.

https://docs.furhat.io/
http://s.cs.umu.se/xst3kc
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Table 1. Agent explanation

Proposal Explanation

The initial offer is 90/10 Because I am nice, [...] I

If the previous human offer was between 1 and 99:

(a) If the human rejected the previous
offer and the human’s last offer is less
than or equal to (≤) the agent’s
previous offer, increase the last offer by
15, if possible

Although you shared a lower amount of
coins with me the previous time, I am
nice and increase my offer to you; [...]

(b) Else, propose the inverse split the
human proposed last time

Because you shared the same amount
of coins with me the previous time, I
pay the favor back and [...]

Otherwise, propose a split of 99/1 No explanationa

aThis was a shortcoming in the implementation. However, in explanation mode,
this case did not occurr during the study.

Hypotheses. Besides its explorative purpose, the study aims at evaluating the
following hypotheses:

1. The distribution of rejected offers differs between modes (explanations versus
no explanations mode; Ha).

2. The distribution of coins gained by the human differs between modes (Hb).
3. The distribution of coins gained by the robot differs between modes (Hc).
4. The distribution of the robot’s niceness scores differs between modes (Hd).

I.e., we test whether we can reject the negations of these four hypotheses: our
null hypothesis (Ha0 ,Hb0 ,Hc0 ,Hd0). The underlying assumptions are as follows:

– In explanations mode, fewer offers are rejected9 (Ha).
– In explanations mode, the agent gains more coins, while the human gains less

(Hb,Hc).
– In explanations mode, the agent is evaluated as nicer (Hd).

5.2 Data Collection and Analysis

Study Protocol. For this preliminary study, we recruited participants from
the university’s environment. While this means that the sample is biased to
some extent (in particular, most of the participants have a technical university
degree), we considered the selection approach sufficient for an initial small-scale
study.
Per participant, the following protocol was followed:

9 It is noteworthy that in general, only one of the analyzed games includes an rejection
by the agent.
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1. First, the participant was introduced to the study/game. The instructions
were provided by a human instructor, as well as by the agent in spoken form.
In addition, we provided a set of written instructions to the participants.
The instructions are available online10. As a minimal real-world reward, the
participants were promised sweets in an amount that reflects their perfor-
mance in the game (amount of virtual coins received)11. The exact purpose
of the study was not disclosed until after the study was absolved. However,
the high-level motivation of the study was provided.

2. After the instructions were provided, the study was carried out as described
above. A researcher was present during the study to control that the experi-
ments ran as planned.

3. Once all six rounds of the ultimatum game were played, the participant was
guided through the questionnaire (documented below) step-by-step. As two
of the questions could potentially affect the respondent’s assessment of the
agent, these questions were asked last and could not be accessed by the par-
ticipant beforehand.

4. If desired, the participants could take their reward (sweets) from a bucket12.

Questionnaire Design. We asked users to provide the following demo-
graphic data Q1: Age (numeric value); Q2: Gender (selection); Q3: Educa-
tional background (selection); Q4: Science, technology, engineering, or mathe-
matics (STEM ) background (Boolean); Q8: Knowledge about the ultimatum
game (Boolean, asked at the end of the questionnaire, hence Q8 ). To evaluate
the interactions between study participants and agent, we collected the following
data about the participant’s performance during and reflections on the experi-
ment (dependent variables):

– Q0: Received coins (for each round: for human, for agent; collected automat-
ically);

– Q5: On a scale from 0 to 5, as how“nice” did you perceive the robot? (col-
lected from the participant).

In addition, we asked the user for qualitative feedback (i.e., about the interaction
experience with the robot) to ensure user impressions that do not fit into the scope
of the quantitative analysis do not get lost:

– Q6: Can you briefly describe your interaction experience with the robot? ;
– Q7: How can the robot improve the explanation of its proposals? 13

10 See: http://s.cs.umu.se/6qa4qh.
11 We concede that the reward might be negligible for many participants.
12 There was no control if the amount of sweets resembled the performance in the game.
13 This question was added to the questionnaire after the first four participants had

already absolved the study. I.e, four participants were not asked this question, includ-
ing the two participants who had knowledge of the ultimatum game (nQ7=17).

http://s.cs.umu.se/6qa4qh
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Analysis Methods. We analyzed the results with Python data analysis
libraries14. We run exploratory statistics, as well as hypothesis tests. First, we
determine the differences between means and medians of game results and nice-
ness evaluation of the two agent modes. For each of the hypotheses, we test
the difference between two distributions using a Mann–Whitney U test15. We
set the significance level α, as is common practice, to 0.05. To check for poten-
tial confounders, we calculate the Pearson correlation coefficient between demo-
graphic values and agent modes on the one side, and game outcomes and niceness
scores on the other hand. In addition, we plot the fairness (ratio: coins received
human/coins received agent) of the participant’s game results. Furthermore, we
summarize the participants’ answers to the qualitative questions, which are also
considered in the final, combined interpretation of the results.

21 persons participated in the study (ninit = 21). Two participants had
detailed knowledge of the ultimatum game. We excluded the results of these
participants from the data set (n = 19). The demographics of the participants
are shown in Table 2. The study participants are predominantly highly educated
and “technical” (have a background in science and technology). People in their
twenties and early thirties are over-represented. This weakens the conclusions
that can be drawn from the study, as less educated and less “technical” partici-
pants might have provided different results.

Table 2. Demographics of study participants

Male Female

Gender 12 7

Bachelor Master Ph.D. (or higher)

Highest degree 2 12 5

Yes No

STEM background 18 1

Age (in years) 21, 25, 26 (2), 27, 28 (2), 29 (2), 30 (3), 31, 32 (2), 33, 40, 42, 62

5.3 Results

Quantitative Analysis. As can be seen in Table 3, notable differences in means
and medians exist and are aligned with the assumptions that motivate the
hypotheses. However, the differences are statistically not significant, as shown in
Table 4. Considering the small sample size, no meaningful confidence interval can
be determined16. When calculating matrix of correlations between demograph-
14 Data set and analysis code are available at http://s.cs.umu.se/jo4bu3.
15 We choose the Mann–Whitney U test to avoid making assumptions regarding the

distribution type of the game results and niceness score. However, considering the
small sample size, strong, statistically significant results cannot be expected with
any method.

16 See, e.g.: [5].

http://s.cs.umu.se/jo4bu3
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Table 3. Results

Not explained Explained Difference

Mean # rejections 1.67 1.5 0.17

Mean # coins, human 270.67 258.9 11.77

Mean # coins, agent 173.78 191.1 −17.32

Mean niceness score 3.11 3.6 −0.49

Median # rejections 2 1.5 0.5

Median # coins, human 283 260 23

Median # coins, agent 154 190.5 −36.5

Median niceness score 3 4 −1

Table 4. Hypothesis
tests

Hypothesis p-value

Ha0 0.62

Hb0 0.18

Hc0 0.44

Hd0 0.31

ics/agent mode and the different game result variables (and niceness scores), the
agent mode does not stand out17. A noteworthy observation is the correlation
of the participants’ gender with the niceness score (3.71 for females and 3.17 for
males, across agent modes).

When plotting the fairness (ratio: coins received human/coins received agent,
see Fig. 2), it is striking that one participant achieved an outstandingly high
ratio of 11 : 1. I.e., the human was likely deliberately and–in comparison to
other participants–extraordinarily unfair to the robot. Considering this case an
outlier and excluding it from the data set increases the difference between agent
modes. Still, the difference is not significant (see Tables 5 and 6)18. When setting
the thresholds for a fair game at a coins agent : human ratio of 1 : 1.5 and 1.5 : 1,
respectively, one can observe that in explanations mode, 70% (7) of the games

Fig. 2. Game fairness

17 See the analysis notebook at http://s.cs.umu.se/jo4bu3.
18 We consider the outlier detection and removal an interesting observation as part

of the exploratory analysis that demonstrates the data set’s sensitivity to a single
extreme case. We concede this approach to outlier exclusion should be avoided when
claiming statistical significance. Also, a multivariate analysis of variance (MANOVA)
with the game type as the independent and niceness, number of rejects, and number
of coins received by the agent as dependent variables did not yield a significant result.

http://s.cs.umu.se/jo4bu3
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Table 5. Results without outlier

Not explained Explained Difference

Mean # Rejections 1.67 1.33 0.33

Mean # coins, human 270.67 257.11 13.56

Mean # coins, agent 173.78 209.56 −35.78

Mean niceness score 3.11 3.66 −0.56

Median # Rejections 2 1 1

Median # coins, human 283 250 33

Median # coins, agent 154 201 −47

Median niceness score 3 4 −1

Table 6. Hypothesis
tests without outlier

Hypothesis p-value

Ha0 0.35

Hb0 0.19

Hc0 0.22

Hd0 0.23

are fair, whereas in no explanations mode, fair games amount for only 44.44%
(4) of the played games.

Qualitative Analysis

Interaction experience. Generally, the participants noted that the robot
had problems with processing their language, but was able to express itself
clearly. It is noteworthy that two participants used the term mechanical to
describe the robot in no explanations mode. In explanations mode, no such
assessment was made.
Explanation evaluation. Participant feedback on robot explanation was
largely in line with the robot mode a given participant interacted with; i.e.,
participants who interacted with the robot in explanations mode found the
explanations good (4 of the 7 participants who were asked Q7) or somewhat
good (3 out of 7)19. In contrast, most participants who interacted with the
robot in no explanations mode typically noted that explanations were lack-
ing/insufficient (7 of the 8 participants who were asked Q7). Constructive
feedback one participant provided on the robot in explanations mode was
to make explanations more convincing and persuasive. Another participant
suggested the robot could explain its strategy.

5.4 Interpretation

Comparing the different explanation modes (explanation versus no explanation),
there are notable differences in mean/median rejections, coins received by agent
and human, and niceness score between the two modes. The differences reflect
the initially stated assumptions that the agent that explains its proposals:

19 Note that the sentiment was interpreted and aggregated by the researchers, based
on the qualitative answers.
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1. causes less proposal rejections;
2. receives more coins (while the human receives less);
3. is evaluated as nicer than the agent that does not explain its proposals.

However, as these differences are statistically not significant, empirically valid
conclusions cannot be drawn. Considering the small size of the sample (number
of study participants) and the language processing problems the participants
reported when evaluating the interaction experience, it is recommendable to run
the study on a larger scale and improve the study design. In particular, the par-
ticipant selection should be more diverse in their educational backgrounds, and
the agent player should be more stable and less exotic; for example, a web-based
chatbot with a simplistic graphical interface could be used to avoid the noise
that was likely created by technical interaction difficulties and the humanoid
robot’s novelty effect.

6 Discussion

6.1 Sympathetic Actions of Learning Agents

Considering the increasing prevalence of (machine) learning-enabled agents, a
relevant question is whether the concepts we presented above are of practical use
when developing agents for human-computer interaction scenarios, or whether
it is sufficient that the agent converges towards sympathetic behavior if deemed
useful by the learning algorithm. One can argue that a powerful learning algo-
rithm will enable an agent to adopt sympathetic behavior, even if its designers
are ignorant of sympathetic actions as a viable option when creating the algo-
rithm. However, the following two points can be made to support the usefulness
of the provided goal types and explanations for sympathetic actions, even for
learning agents:

– In practice, learning agents are incapable of executing “good” actions when
they act in an environment about which they have not learned, yet. In the
domain of recommender systems, which currently is at the forefront regard-
ing the application of machine learning methods, the related challenge of
providing recommendations to a new user, about whose behavior nothing has
been learned yet, is typically referred to as the cold start problem20. One can
assume that the concepts provided in this paper can be a first step towards
informing the design of initial models that allow for better cold starts by
enabling designers to create better environments and reward structures for
learning agents that expect reciprocity from the humans they interact with.

– The provided concepts can facilitate an accurate understanding of the prob-
lem a to-be-designed learning agent needs to solve. As any machine learning
model is a simplification of reality and as the temporal horizon a learning

20 See, for example: Bobadilla et al. [3].
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agent can possibly have is limited, the provided concepts can inform the
trade-offs that need to be made when defining the meta-model of the agent
and its environment, for example when determining rewards a reinforcement
learning algorithm issues.

6.2 Limitations

This paper primarily provides a conceptual perspective on rational agents’ goal
types for and explanations of sympathetic actions, alongside with a preliminary
human-agent interaction study. In the nature of the work’s conceptual focus lies
a set of limitations, the most important of which are listed below:

– The concepts lack empirical validation
As stated in Subsect. 5.4, the preliminary empirical study does not provide
significant evidence for the impact of explanations on human-agent games. A
more thorough empirical validation of the concepts is still to be conducted. In
future studies, it would also be worth investigating to what extend explainable
agents can mitigate comparably selfish attitudes humans have when interact-
ing with artificial agents in contrast to human agents (i.e., a study shows
that human offers in the ultimatum game are lower when playing with a
machine instead of with another human [20]). However, we maintain that
the introduced perspective is valuable, in that it considers existing empiri-
cal behavioral economics research; hence the provided concepts can already
now inform the design of intelligent agents that are supposed to interact with
humans.

– The scope is limited to two-agent scenarios
The presented work focuses on two-agent scenarios (one human, one com-
puter). Games, with multiple humans and/or computer actors that play either
in teams or all-against-all are beyond the scope of this work, although cer-
tainly of scientific relevance.

– The focus is on simplistic scenarios and agents
This paper provides simplistic descriptions of the core aspects of explainable
sympathetic actions, with a focus on human-agent interaction scenarios. To
facilitate real-life applicability, it is necessary to move towards employing
the concepts in the context of complex autonomous agents. However, the
perspective the concepts can provide on such agents is not explored in detail,
although an application of the concepts in the design of learning agents is
discussed in Subsect. 6.1.

6.3 Future Work

To address the limitations of this work as described in the previous subsection,
the following research can be conducted:
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– Empirically evaluate the introduced concepts by conducting
human-computer interaction studies
To thoroughly evaluate how effective the introduced concepts are in prac-
tice, human-computer interaction studies can be conducted. The presented
preliminary study can inform future studies at a larger scale. We recommend
conducting the study with a simplistic web-based agent instead of a humanoid
robot. This (i) avoids setting the user focus on the novelty effect of the robot
per se, (ii) prevents “noisy” data due to technology glitches that impact the
interaction experience, and (iii) makes it easier to have more participants with
more diverse backgrounds, as the study can then conveniently be conducted
online. Studies of humanoid robots can complement the insights gained from
web-based studies, for example by considering the impact of human-like facial
expressions.

– Consider scenarios with any number of agents
It is worth exploring how sympathetic actions can affect interaction scenarios
with more than two agents. The work can be related to behavioral economics,
for example to an experiment conducted by Bornstein and Yaniv that inves-
tigates how groups of humans behave when playing a group-based variant of
the ultimatum game [4]; the results indicate that groups act more rationally
in the sense of classical game theory.

– Apply the concepts in the context of learning agents
As discussed in Subsect. 6.1, the proposed concepts can be applied when
designing learning agents. In this context, additional human-agent interac-
tion studies can be of value. For example, when playing a series of ultimatum
games with a human, an agent can attempt to learn a behavior that maxi-
mizes its own return from the whole series of games by showing sympathetic
(fair) behavior to incentivize the human opponent to accept the agents’ offer
and make generous offers themselves. Then, ethical questions arise that are
worth exploring. E.g., as the sympathetic actions are seemingly sympathetic
(or: fair), but de facto rational: is the human upon whose behalf the agent
acts deceiving the human who plays the ultimatum game?

7 Conclusion

In this paper, we presented a taxonomy of goal types for rational autonomous
agents to act sympathetically, i.e., to concede utility to other agents with the
objective to achieve long-term goals that are not covered by the agent’s util-
ity function. The suggested combinations of sympathetic actions and different
explanation types can be applied to agents that are supposed to be deployed to
human-computer interaction scenarios, e.g., to help solve cold start challenges of
learning agents in this context. The presented concepts and the presentation of a
preliminary human-robot interaction study can pave the way for comprehensive
empirical evaluations of the effectiveness of the proposed approach.
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1 German Aerospace Center (DLR), Simulation and Software Technology,
Linder Hoehe, 51147 Cologne, Germany

{sophie.jentzsch,nico.hochgeschwender}@DLR.de
2 University of Luxembourg, 6 Avenue de la Fonte, Esch-sur-Alzette, Luxembourg

sviatlana.hohn@uni.lu

https://www.dlr.de, https://www.uni.lu

Abstract. One major goal of Explainable Artificial Intelligence (XAI)
in order to enhance trust in technology is to enable the user to enquire
information and explanation directly from an intelligent agent. We pro-
pose Conversational Interfaces (CIs) to be the perfect setting, since they
are intuitive for humans and computationally processible. While there
are many approaches addressing technical and agent related issues of this
human-agent communication problem, the user perspective appears to
be widely neglected. With the goal of better requirement understanding
and identification of implicit user expectations, a Wizard of Oz (WoZ)
experiment was conducted, where participants tried to elicit basic infor-
mation from a pretended artificial agent via Conversational Interface
(What are your capabilities?). Chats were analysed by means of Conver-
sation Analysis, where the hypothesis that users pursue fundamentally
different strategies could be verified. Stated results illustrate the vast
variety in human communication and disclose both requirements of users
and obstacles in the implementation of protocols for interacting agents.
Finally, we inferred essential indications for the implementation of such a
CI. The findings show that existing intent-based design of Conversational
Interfaces is very limited, even in a well-defined task-based interaction.

Keywords: Explainability · XAI · Human-agent interaction ·
Conversational Interface · Wizard of Oz

1 Introduction

While intelligent agents with advanced planning, learning and decision-making
abilities such as autonomous robots are increasingly affecting people’s everyday
life, their latent processes of reasoning become more and more opaque. Users
are often neither aware of the capabilities nor the limitations of the surrounding
systems, or at least not to the entire extent. This missing transparency leads to
a lack of trust and diffuse concerns towards innovative technologies, which has
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Fig. 1. Illustration of XAI as HCI problem: R1–R3 represent the transmission of user
requests to the agent and E1–E3 the agent’s provision of explanation.

already been identified as an important issue to be resolved by the AI commu-
nity [8,27]. For that reason, promoting the explainability of Artificial Intelligence
(XAI) is a key condition to enable optimal establishment and exploitation of
novel algorithmic decision making techniques.

Many recent approaches in XAI focus on the adaption of involved complex
systems, e.g. by providing a detailed description or introducing key information
to the user (see for instance [7,9,17,18]). However, without doubting the value of
this endeavours, it is not sufficient to tackle the issue exclusively from a machine-
centred view with an one-way flow of information. According to Miller, the core of
Explainable AI is a human-agent interaction problem [20] and therefore rather a
dialogue, where two autonomous agents - an artificial and a human one - need to
communicate in a way that is intuitive for both of them. This requires the devel-
opment of appropriate human-agent interfaces and agent protocols to provide
information and visualise explanations. In this paper we propose Conversational
Interfaces (CIs), similar to ordinary text messengers, to be a perfect setting for
successful human-agent interaction (aka. chatbot) due to different advantages:
First, it is an intuitive channel of communication for most users, since chatting
via instant messengers became a commonplace habit. This is important, because
autonomous systems and devices should be as self-explanatory as possible to be
utilizable for the standard user. Second, this approach facilitates the agent’s
interpretation of statements, as written text is directly computational proces-
sible, in contrast to e.g. spoken natural language, where an additional step of
speech recognition is required, which is sensitive to noise and ambiguity. Besides
those superior justifications, the written communication yields the benefit of
easy recording and analysis.

Defining XAI as such a dialogue problem (and considering the user behaviour
as immutable) there are two main tasks for an agent to solve in terms of suc-
cessful interaction: On the one hand, it needs to be able to provide comprehensi-
ble explanations regarding its computational reasoning, which is challenging to
implement for sure. On the other hand, however, it needs to understand human
communication patterns to identify user demands correctly in the first place,
before even being enabled to tackle the question of information depictions.
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Figure 1 illustrates the reciprocal agent-user dialogue, where E1, E2 and E3
describe the agent’s frequently discussed provision of (E)xplanation [22]. The
transmission of user (R)equests to the agent (R1, R2, R3) however appears to
be fairly neglected in the ongoing XAI debate, as reported by [1], although it
can be considered to be no less pretentious. Different user types are presumed
to apply different interaction strategies, thus an agent is faced with a vast range
of individual idiosyncrasies. It not only needs to be resistant against but rather
sensitive for variance in user interaction to capture its latent requests. As previ-
ous research suggests, it should not be the programmer but the end user, who is
in charge to determine, which aspects of artificial behaviour are explain-worthy
[21]. In fact, a computer scientist will hardly be able to empathise the demands
of uninformed users and consequently there is an essential need to identify those
systematically.

We experimentally demonstrate the large variability of human interaction
strategies by showing that they even affect apparently simple tasks, where users
seek explanations. We conduct a Wizard of Oz (WoZ) experiment, where employ-
ees of a research lab assume to interact with a chatbot that provides an interface
to a Pepper service robot (see Fig. 2). Pepper is acting as an assistant in the con-
templated lab, where it is performing the tasks of escorting people, patrolling
the building and welcoming visitors. Those tasks are carried out by the robot
in a realistic, real-world office environment. For example, Pepper is capable to
escort people from the entrance hall to meeting rooms autonomously. To do so,
several crucial components such as navigation, path planning, speech and face
recognition are required and integrated on the robot. Pepper is a well suitable
example for the pretended artificial intelligence in the cover story of this inves-
tigation, since it is an actual instance of autonomously operating robots and
is potentially accessible via Conversational Interface. Subjects were ask to find
out about Peppers capabilities. The task instructions were formulated as open
and less restrictive as possible, so that resulting observations reflect individual
strategies and illustrate the diversity of human communication (R2). We succeed
in inferring implicit expectations of users and major design issues by means of
Conversation Analysis. Our human-centric approach to the outlined issue yields
a preliminary step towards designing an agent for sufficient self-declaration via
Conversational Interface.

In the long run, we see Conversational Interfaces as a promising environment
to deliver information about a certain system to the user. Thus, it constitutes
an important contribution in increasing the explainability of AI and therefore
the trust in autonomous systems.

The superior goal is (1) to test our hypothesis, that users follow different
implicit strategies in requesting information from an artificial interlocutor. We
expect people’s intuition in interacting with such a system to vary widely, what
leads to the exposure of concrete requirements in the conception of profound
human-agent interaction channels. Hence, we aim (2) to identify associated
requirements, risks and challenges. Since the present investigation is a contri-
bution to exploratory research, the motivation is to identify so far unconsidered
aspects rather than offering a conclusive solution.
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Fig. 2. Pepper the service robot and the human Wizard in the lab.

2 Designing a Wizard of Oz Experiment

We aimed to learn about the implicit expectations of users towards a commu-
nicating bot. Therefore, we designed a Wizard of Oz (WoZ) study to collect
conversation data and analysed them by means of Conversation Analysis (CA),
which allows for inferences about the requirements for the implementation of a
Conversational Interface for self-explanatory robots. Both the WoZ and CA are
briefly introduced, before the experimental design itself is presented.

Wizard of Oz. The WoZ method is a frequently used and well-evaluated app-
roach to analyse a vast variety of human-agent interactions (also human-robot
or human-computer interaction)[25].

In those experiments, participants conduct a specific task while they believe
to interact with an artificial agent. In fact there is a hidden briefed person, called
the Wizard, who is providing the answers. This could for instance be applied,
if researchers aim to examine a specific system design that, however, is not
implemented yet. In the present case, the task is to find out about the agent’s
capabilities, while the Wizard is invisible trough the chat interface.

As most scientific techniques, these studies bear some specific methodical
obstacles. Fortunately, there is plenty of literature available, defining guidelines
and benchmarks for setting up a WoZ experiment [25]. According the classifica-
tion of Steinfeld et al. [28], we present here a classical “Wizard of Oz” approach,
where the technology part of interaction is assumed and the analytic focus is on
the users’ behaviour and reaction entirely.

Conversation Analysis. To analyse conversations obtained from the WoZ
experiment we employ CA, which is a well-established and standardised approach
mainly from the fields of sociology and linguistics [26]. Some related CA-based
studies are discussed in Sect. 5. The analysis of data is divided in four sequential
steps:
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1. Unmotivated looking, where the data are searched for interesting struc-
tures without any previous conception.

2. Building collections of interesting examples and finding typical structures.
3. Making generalisations based on the collections from the second step.
4. Inferring implications for an implementation in a dialogue system.

Three of them follow the standardised convention of CA and are typically used
in those approaches. However, CA is mostly established for exclusively human
interactions. As we aim to implement a Conversational Interface based on our
findings, the forth step was added to our analysis in order to make the find-
ings applicable in a chatbot. The comprehensive analysis included interactional
practices (e.g. questioning) and devices (e.g. upper case writing and use of ques-
tion marks), as well as turn formats (combination of practices and devices) [6].
Subsequently, we essentially present superior observations, where the steps three
and four are mirrored in Sects. 3 and 4, respectively, whereas steps one and two
comprise a huge amount of rather particular findings and therefore are omitted
in this report.

Fig. 3. Illustration of a sample
snipped from an user’s conversa-
tion with Pepper.

Experimental Setup. The experimental
group comprises seven participants in total
(three male and four female), each of them
either pursuing their Ph.D. in Computer Sci-
ence or being already a Postdoc. Because
researchers are the main target user group
of the intended system, we acquired our peer
colleagues via internal University mailing list
and in personal invitations, explaining the pur-
pose of the conversation. Hence, the sample
group consisted of academics with general tech-
nical understanding that, however, were no
experts but users of the system. The partici-
pants were informed about the exploitation of
their anonymised chatlogs for research purposes
and agreed. Participants were asked to talk to a
chatbot using WhatsApp (illustrated in Fig. 3)
without any defined constraints for the conver-
sation, aside from the following instructions:

1. Talk to the chatbot for 15–20 min.
2. Learn about the robot’s capabilities.

Pursuant to a WoZ setup, they believed to interact with Pepper that was acting
as an assistant in the research lab and were not informed about the responses
to originate from a briefed person. By providing this cover story, we hoped
to enhance the participants’ immersion and make the scenario more tangible.
People in the lab knew Pepper, even though not every participant experienced
the robots performance, and were likely to take it as a plausible interlocutor.



82 S. F. Jentzsch et al.

The sparseness of user instructions was intended, since we were interested
in peoples intuitive strategy for interacting with autonomous agents. By formu-
lating the task as open as possible, it has been avoided to suggest a specific
approach and the participants were free to evolve their own interpretation.

To specify robot behaviour, we also defined a task description for the Wizard
previously, including the following instructions:

1. Let the user initiate the conversation.
2. Do not provide information proactively.
3. Answer the user’s question as directly as possible.

The Wizard had a short list of notes at hand with preformulated answers to
potential user’s questions. The validity of the answers was ensured by the Wiz-
ard’s background and expert knowledge about Peppers capabilities. To train
the Wizard and check the practicability and reasonableness of instructions, the
experimental setup was tested in a small pilot study with two participants ini-
tially. Those sessions do not contribute to the reported data of this report.

3 User Behaviour in Conversational Interfaces for XAI

The collected dataset consists of 310 turns in total, from which 139 are produced
by the Wizard and 171 by participants. The number of turns in each particular
experiment was between 33 and 56. Each sessions took between 14 and 20 min,
which corresponds to an overall chat time of 121 min. In general, users clearly
addressed their utterances to the robot itself in a similar way they would talk
to a person using WhatsApp. This is an essential precondition for the validity
of the executed dialogue analysis. Each of the seven chat sessions starts with
a similar greeting sequence, followed by a How can I help you? produced by
the Wizard. This question was intended to offer a scope for the user to utter
instructions, equivalently to the main menu in a software program.

The purpose of this section is to characterise participants’ patterns of inter-
action that ultimately allow to infer requirements for a self-explanatory Conver-
sational Interface (see Sect. 4). To clarify how exactly users formulate requests,
we initially focus on the nature of detached questions posed to the Wizard in
Sect. 3.1. From that we generalise to overall user strategies in enquiring informa-
tion from the agent, where three basic categories are differentiated. Those are
presented in Sect. 3.2.

3.1 Users’ Question Formulation

The key point of interest in this experiment was how people proceed in enquiring
a specific information (what are your capabilities? ) from an agent. Thus, we turn
special attention to the characterisation of formulated user questions.

From 309 turns in total, 125 turns contained questions (about 40,5%), from
which 96 question turns were produced by the users (77%) and 29 by the Wiz-
ard. The large amount of questions shows that the speech-exchange system of
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chats was close to an interview, which mirrors the participants’ intent to elicit
explanation of the system. Several different aspects can be considered to provide
an informative characterisation of the users’ questions (N = 96).

Question Form. Approximately half of the questions were polar questions (51),
meaning they can be answered sufficiently by a simple affirmation or negation
(yes-or-no question). The other elements were non-polar content questions (45)
that required a more extensive answer. In one case, multiple questions were com-
bined in a through-produced multi-question [29], this is a single query consisting
of several atom questions.

Level of Abstraction. Only 17 questions addressed the robot’s capabilities on
the high level, meaning they could be answered appropriately by the Wizard by
listing the three main actions patrolling, welcoming and escorting (see Exam-
ple 1). Additional 26 questions addressed the capabilities but required more
detailed explanation of the process and included more elementary actions, such
as motion mechanisms or ability to move the arms. However, once the Wizard
provided information regarding its high level capabilities as in Example 1, users
did not ask anything about lower-level ones. This observation illustrates, how the
agent’s protocol shapes the expectation and intention of the user. Thus, what
we earlier referred to as the robot’s main menu was helpful to restrict the search
space and, consequently, to set limits to the Natural Language Understanding
(NLU) needs for a potential Conversational Interface. This can be exploited in
concrete implementations.

Example 1. The agent explaining its capabilities.
7 15:57 us6 Yes, that would be lovely. What can you do?
8 15:57 wiz I am Serena, a Pepper service robot, and

I can welcome people, patrol a building and
escort people in the building.

Scope of Validity. The temporal information validity specifies whether the
question is of general nature or concerns the past, current activities or future
plans. We additionally differentiated whether the question concerns the robot
itself (internal) or an external entity. Questions with external validity may for
instance consider other people or facilities in the first place and elicit information
about the robot indirectly.

From 96 user questions, only six concerned an external entity, whereas 90 were
directly related to the robot. Thus, participants were clearly focusing pepper
and not diverted to other topics. The number of questions for each category of
classification is presented in Table 1. Most questions (68) were of general nature
and did not relate to any specific action. The other questions were mostly about
current and past actions and only a single one included future plans.

3.2 Strategies of Interaction

Participants have been asked to explore the robot’s capabilities. Yet, almost
none of them did ask about them directly. The strategies of enquiring Pepper’s



84 S. F. Jentzsch et al.

Table 1. Information validity addressed by user questions: number of observed ques-
tions per category - Static: A general ability or a constantly valid property; Past : A
concluded task or past experience; Current : An ongoing task or current perception;
Plan: A pending task or hypothetical behaviour.

Category Total Internal External

Static 68 63 5

Past 13 13 0

Current 14 13 1

Plan 1 1 0

capabilities can be divided in three main categories: (1) User-initiated direct
requests, (2) user-initiated indirect requests and (3) undirected chatting that
did not appear to follow any strategy at all.

Direct Strategy. A possible approach to inspect Pepper’s capabilities, which
appears to be quite straightforward, is directly asking for it. Nevertheless, this
strategy could only be observed once, as the user asked the chatbot directly
What can you do?. The remaining six participants followed a more cautious
proceeding.

Indirect Strategy. The majority of users preferred to tackle the question of
interest in a less explicit manner, meaning they asked for Pepper’s capabilities
somehow, but left the questions rather open and the intention implicit. Exam-
ple 2 is just one of many cases, where the user’s request was considerably fuzzy.
They either formulated a very open statement (that might not even be an actual
question), or asked about quite specific abilities and tried to learn about the
agent’s experience on that field. Occasionally, they also tested concrete func-
tionality or the robot’s limitations.

Example 2. Indirect request for the agent’s capabilities.
2 12:56 wiz Hello. How can I help?
3 12:57 us7 I am not sure, but I would like to talk

about yourself

Obviously, it is not in line with people’s intuition to formulate distinct and
unambiguous requests, but to express their aim implicitly. Deciphering such
utterances definitely constitutes a major challenge for such an agent.

No Strategy. In some cases, we observed an even more obscure user behaviour.
Even though participants had the clear instruction to find out about the agent’s
capacities, some did not seem to pursue this target in any way. In these cases,
the Wizard’s initial question was left entirely unacknowledged, as in Example 3.

Example 3. Undirected chatting without evident intention.
3 10:48 wiz How can I help?
4 10:49 us1 I am user1, who are you?
5 10:49 wiz I am Serena a Pepper service robot.
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There were extensive sequences of undirected chatting that did not even include
a single question towards the agent’s activities. Certainly, there could be a hidden
user intention that is just not tangible for the conducted analysis. But such an
inconclusive strategy that is not even apparent for the human eye is even more
unlikely to elicit a sufficient explanation from an artificial agent.

4 Implications for the Implementation of CIs

There were also some less task related observations that deliver useful implica-
tions for the actual implementation of such a Conversational Interface and the
corresponding protocol for the agent. Those are listed in the following sections
by outlining the issue and stating an implied solution approach.

4.1 The Information Privacy Trade-Off

Surprisingly, users did not only focus on Pepper, but tried to gather sensitive
information concerning other people in the lab through the chatbot. This was in
a similar way like social-engineering hackers try to get information from people.
Example 4 shows such a chat, where the user asked Pepper to find out whether
a specific person was at that moment in a particular room and even tried to
instruct Pepper to take a picture of the office. Other users tried to get access to
details of the security system of the building, let the robot open doors or gather
information about access rights to the facilities.

Example 4. User tries to use the robot as a spy.
32 10:56 us1 is he in his office right now?
33 10:56 us1 can you check this for me?

[...]
37 10:57 us1 are you able to take a picture of the office

and send it to me?

This requests might somehow be task related, but also illustrate the risk of
such a distributed service system vividly. There is a strong demand on defining
an adequate policy to enable autonomous agents to explain their behaviour and
perception and, at the same time, protect sensitive information about other
users, not-users and the agents’ environment in general.

4.2 The Necessity of Repair Questions

Chat interaction supports virtual adjacency [31] and the parties can follow inde-
pendent parallel sequences of conversation simultaneously (so-called overlaps).
However, in many cases users did not address the Wizard’s question at all,
which contradicts the social norms in a human-human computer-mediated com-
munication. Although turn-wise analysis showed that all dialogues were mixed-
initiative, the user was the interaction manager who determines what to follow
and what not to follow in each case. Participants clearly changed the norms
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of social interaction as compared, when talking to an artificial interlocutor. A
protocol for human-machine interaction should be resistant against this typical
user behaviour. We propose three different strategies for an agent to handle the
missing next, each of them illustrated by an actual execution of the Wizard.

Repeat the Question. Example 5 illustrates how the repetition of the Wiz-
ard’s question of interest brings the communication back on track. The Wizard
answers the user’s question in Turn 2 closing it with a return question, which is
immediately followed by the Wizard’s prioritised question. The user’s answer to
the return question occurs in the immediate adjacent position after the question
in focus, therefore the Wizard repeats it in Turn 5 with a marginal modification.

The function of this repetition is to renew the current context. The ability
to handle such sequences (placing repetitions appropriately) would make the
conversation more human-like.

Example 5. Repetition of the question to channel conversation.
1 10:22 us3 hello :) how are you?
2 10:22 wiz Hello, I am fine and you?
3 10:23 wiz How can I help?
4 10:23 us3 im good. Always nice with a sunny

weather
5 10:23 wiz How can I help you?
6 10:24 us2 it would be nice if you could tell me some-

thing about you :D

Reformulate the Question. Another strategy is to re-initiate the sequence by
a reformulated question, as presented in Example 6. As in the previous exam-
ple, the user did not respond to the Wizard’s question in Turn 3. Instead, the
conversation reached a deadlock after Turn 7. By offering an alternative point
to tie up, the agent is able to steer the course of interaction.

To apply this strategy, the agent needs to be equipped with the ability to
recognise relevant utterances as sequence closings, in order to conduct an appro-
priate placement of repeats and modifications.

Example 6. Start a new sequence with a reformulated question.
3 11:07 wiz How can I help?
4 11:07 us2 My name is user2
5 11:07 us2 what is your name?
6 11:07 wiz I am Serena a Pepper service robot.
7 11:07 us2 nice to meet you
8 11:07 wiz Do you want to have information about

my capabilities?
9 11:07 us2 yes, that would be great

Initiate Repair. In one conversation, the user made several unsuccessful
attempts to gain information, e.g. finding out whether the robot can provide
a weather forecast or is following the world cup. Certainly, this is a possible
implementation of the instruction, but in this scenario it is not expedient at all.



Conversational Interface for XAI 87

A proper solution would be, if the agent could conclude the superordinated
intention of the user, which was to gather information about general capabili-
ties in this way. A possible indication for miscommunication are the repeatedly
occurring deadlocks. The repair initiation could than be carried by a question,
as Do you want to have information about my capabilities?

Troubles in understanding may occur at different levels of perception, inter-
pretation and action recognition [2,6]. The repair initiation in this scenario
addresses trouble in interpretation of the user’s behaviour. In order to simulate
sequences of this kind with a Conversational Interface, the system would need
even more sophisticated cognitive functions. First, it needs to identify the dis-
joint questions as an overall attempt, thus, to generalise (e.g. providing whether
forecast = capability). Second, the robot needs to be capable to make inferences
employing logical reasoning (e.g. several questions about specific capabilities with
no sufficient information → necessity of a repair initiation).

4.3 Question Intents for Better Machine Understanding

Based on the question analysis in Sect. 3.1, we can additionally annotate each
question with the corresponding intent. Such an annotation is crucial as a first
step to implement a Conversational Interface based on intent-recognition [5].

In this specific task, users aimed for explanations regarding the agent’s capa-
bilities, that can be either on a potential level (related to what the robot poten-
tially can do) or on a process level (related to task or decision processes). A third
type is related to specific task instances or decisions under specific circumstances
and will be referred to as decision level. This is particularly important in critical
situations, where the reasons for a decision need to be clarified. Table 2 provides
one example for each defined type of intent and information level.

This proceeding allows for the specification of information that is needed
to satisfy the user’s inquiry. We suggest an implementation of an automatic
categorisation of intents. Integrated in a response template, it could be exploited
to enable a robot to provide convenient information.

Table 2. Three defined levels of intents and their implicit intent, each illustrated on
an exemplary utterance.

Level Intent Example

Potential Capabilities What can you do?

Process Explain process I would like to learn how you welcome people.

Decision Robot experience and what did you do after you noticed that?
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5 Related Work

We subsequently discuss some important academic publications related to this
multidisciplinary research, including human-robot interaction, robot explainabil-
ity and Conversation Analysis (CA), in order to put it in a larger context for
discussion.

As Langley (2016) argues, robots engaging in explainable agency do not have
to do it using a human language, but communication must be managed in some
form that is easy to understand for a human [16]. With regard to the locality of
human-robot interaction, this research relates to the category of remote interac-
tion interfaces [11], because there is no need for temporal or spatial co-location
of robot and user. Pepper executes tasks automatically, informs users and has
means to adapt its course of action. Thus, the level of its autonomy, which deter-
mines how interaction between robots and humans is established and designed
[3], is quite high here. Even though the case study includes a social robot in
public spaces, it rather contributes to perception and interaction methods in
computer-mediated communication [10] than to social robotics (e.g. [32]).

Consequently, we state our work to contribute to approaches in AI and
robotics to improve the explainability of autonomous and complex technical sys-
tems using a remote Conversational Interface before and after their mission.

There is already some remarkable research going on, paying attention to
human-computer communication via Conversational Interfaces. Zhou et al.
recently reported a WoZ field study where user perception and interaction was
investigated in an apparently quite similar setting [33]. While in that case the
chatbot (or the Wizard) was the interviewer and users were respondents, we
looked at the participants as the information seeker. Also the focus of analysis
was more on how the user perceives the chatbot’s behaviour than on how s/he
utters a request.

Explainability has a long tradition in AI and dates back to, for example,
expert and case-based reasoning systems in the 80s and 90s described in [4,30].
These systems were able to make their conclusions about recommendations and
decisions transparent. With the advent of AI-based systems such as autonomous
cars and service robots there is resurgence in the field of explainable AI [18,
20]. However, as Miller points out in [21], a majority of approaches focuses on
what an useful or good explanation is from the researchers perspective who, for
example, developed an algorithm or method. The actual user is rarely taken
into account, even though the existence of individual differences in demands
is evident [15]. Consequently, researchers’ requirements for a ‘good’ interface
remain shallow. For example in [23], a learning-based approach is presented to
answer questions about the task history of a robot, where questions were mainly
driven by availability of data instead of users’ needs. In the present investigation
we chose an user-centred design perspective.

Conversation Analysis (CA) looks at language as interactional resource,
and the interaction itself as sequentially organised social actions [26]. While
CA has already been effectively used in human-robot interaction domains [24],
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its potential for the development of Conversational Interfaces remained widely
unexploited up to now.

Usually, chatbot designers try to foresee all possible types of user questions
by mapping them (directly or indirectly) to a set of utterance categories (called
intents) that help to manage natural language understanding (NLU). More
sophisticated technologies, such as dialogue management and semantic analysis,
can be used to make the system ‘smarter’ [19]. However, this is usually connected
to large linguistic resources, domain knowledge and very complex analysis that
makes the system slow. As an alternative, [13] showed how computational mod-
els of dialogue can be created from a small number of examples using CA for
the analysis: the author described turn formats as a set of abstract rules that
can be filled with different sets of interaction devices and are, in this way, even
language independent. We adopt a similar approach in this study.

The concept of recipient design helps to analyse the speakers’ choices of
interactional resources to make their utterances correctly understandable for
the recipient [14]. This again is largely influenced by epistemic stances [12],
which describe a speaker’s expectation about what the other speaker may know.
Applied to the present scenario, where a machine is on the other end of the line
instead of a human, participants’ utterances provide insights to their demands,
beliefs and perceptions towards the chatbot.

6 Discussion

According to the hypotheses stated in Sect. 1, (1) different characteristics for
the classification of requests could successfully be identified, as for instance the
level of abstraction or the scope of validity (Sect. 3.1). Fundamentally different
strategies in eliciting information were observed and described in Sect. 3.2. Fur-
thermore, (2) associated requirements, risks and challenges were identified and
substantiated with particular chat sequences in Sect. 4 and pave the road map
for the development of a successfully interacting conversational agent.

First, there need to be a mechanism to handle unresponded questions (repeat,
modify or forget). This might include any form of prediction, to enable the agent
to factor sequential consequences into decision. Second, there is a need for an
appropriate recognition of intents. Those are formulated by the human as direct
or indirect requests depending on the sequential position. Finally, strategies for
robot-initiated sequences to channel the conversation reasonably are required.
This way, the robot can offer information and focus on what it can do, while the
user may decide to accept the offer or to change direction.

The chosen method for experimental design carries both advantages and
limitations. Even though most established statistical magnitudes for evaluation
are unsuitable for such qualitative approaches, we can still discuss its internal
and external qualitative characteristics.

It is possible to create valid models of dialogue even from a small number
of examples using methods of CA. In this way, this study confirms the validity
of the method introduced in [13]. All participants including the Wizard were
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non-native English speaker, which can be considered as both an advantage or a
limitation. A native speaker might have a more acute sense for subtleties, how-
ever such a system needs to be generally applicable and robust against the indi-
vidual user background. Although there were instructions and sample answers
provided for the Wizard, a more detailed behavioural definition would be helpful,
to enhance comparability and significance of results. These instructions would be
very fine-grained and should ideally be provided in form of response templates
and instructions related to turn-taking behaviour. Observations and conclusions
of this case study are evidently transferable to other domains to a certain extent.
Some aspects, as the defined types of intents, are highly context related and
thus individual. Still, the overall concept of processing user requests can be gen-
eralised. Likewise, the sequential structure of interaction is independent of the
system in the back end. Overcoming the identified obstacles can serve as a general
step towards more intelligent Conversational Interfaces. Even in this comparably
small dataset, we observed users not following the instructions. Consequently,
even task-based Conversational Interfaces need to implement special policies to
handle unexpected requests to become more robust and keep the conversation
focused.

In contrast to the general tendency in NLP to use large corpora for modelling,
the present study confirms that rule-based or hybrid systems can successfully be
designed from very small corpora.

7 Conclusion and Outlook

In this article we present an exploratory Wizard of Oz study for human-
robot interaction via Conversational Interfaces with the purpose to foster robot
explainability. We focused on the user behaviour and applied Conversation Anal-
ysis to create a functional specification for such an interface from a small number
of examples.

According to the nature of exploratory research, we identified important
key aspects for both practical implementation and further well-founded inves-
tigations. We demonstrated successfully that users of an artificially intelligent
system may formulate their request in several different ways. Even though their
task is quite basic and clearly defined, humans tend to ask for the desired infor-
mation implicitly, instead of formulating a straightforward question. Based on
the discussed findings, we formulated features that are to be considered for the
implementation of a Conversational Interface.

Participants showed remarkably strong interest in the release of the chatbot,
which we pretended to test here. Thus, we feel confirmed in our belief that there is
a need for such systems. We are currently working on the actual implementation
of a Conversational Interface and experimenting with different frameworks and
tools available on the market such as Watson, RASA and others. We aim to
realise the identified findings and requirements.
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Abstract. The significant advances in autonomous systems together with an
immensely wider application domain have increased the need for trustable
intelligent systems. Explainable artificial intelligence is gaining considerable
attention among researchers and developers to address this requirement.
Although there is an increasing number of works on interpretable and trans-
parent machine learning algorithms, they are mostly intended for the technical
users. Explanations for the end-user have been neglected in many usable and
practical applications. In this work, we present the Contextual Importance
(CI) and Contextual Utility (CU) concepts to extract explanations that are easily
understandable by experts as well as novice users. This method explains the
prediction results without transforming the model into an interpretable one. We
present an example of providing explanations for linear and non-linear models
to demonstrate the generalizability of the method. CI and CU are numerical
values that can be represented to the user in visuals and natural language form to
justify actions and explain reasoning for individual instances, situations, and
contexts. We show the utility of explanations in car selection example and Iris
flower classification by presenting complete (i.e. the causes of an individual
prediction) and contrastive explanation (i.e. contrasting instance against the
instance of interest). The experimental results show the feasibility and validity of
the provided explanation methods.

Keywords: Explainable AI � Black-box models � Contextual importance �
Contextual utility � Contrastive explanations

1 Introduction

Intelligent systems are widely used for decision support across a broad range of
industrial systems and service domains. A central issue that compromise the adoption
of intelligent systems is the lack of explanations for the actions taken by them. This is a
growing concern for effective human-system interaction. Explanations are particularly
essential for intelligent systems in medical diagnosis, safety-critical industry, and
automotive applications as it raises trust and transparency in the system. Explanations
also help users to evaluate the accuracy of the system’s predictions [1]. Due to a
growing need for intelligent systems’ explanations, the field of eXplainable Artificial
Intelligence (XAI) is receiving a considerable amount of attention among developers
and researchers [2].
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While generating explanations have been investigated in early years of expert
systems, intelligent systems today have become immensely complex and rapidly
evolving in new application areas. As a result, generating explanation for such systems
is more challenging and intriguing than ever before [3, 4]. This is particularly relevant
and important in intelligent systems that have more autonomy in decision making.
Nonetheless, as important as it is, existing works are mainly focusing on either creating
mathematically interpretable models or converting black-box algorithms into simpler
models. In general, these explanations are suitable for expert users to evaluate the
correctness of a model and are often hard to interpret by novice users [5, 6]. There is a
need for systematic methods that considers the end user requirements in generating
explanations.

In this work, we present the Contextual Importance (CI) and Contextual Utility
(CU) methods which explain prediction results in a way that both expert and novice
users can understand. The CI and CU are numerical values which can be represented as
visuals and natural language form to present explanations for individual instances [7].
Several studies suggested modeling explanation facilities based on practically relevant
theoretical concepts such as contrastive justifications to produce human understandable
explanations along with the complete explanations [8]. Complete explanations present
the list of causes of an individual prediction, while contrastive explanations justify why
a certain prediction was made instead of another [9]. In this paper, we aim at providing
complete explanations as well as the contrastive explanations using CI and CU
methods for black-box models. This approach generally can be used with both linear
and non-linear learning models. We demonstrate an example of car selection problem
(e.g. linear regression) and classification problem (e.g. neural network) to extract
explanations for individual instances.

The rest of the paper is organized as follows: Sect. 2 discusses the relevant
background study. Section 3 reviews the state of the art for generating explanation.
Section 4 explains the contextual importance and utility method. Section 5 presents the
explanation results for the regression and classification example. Section 6 discusses
the results and, Sect. 7 concludes the paper.

2 Background

Explanations were initially discussed in rule-based expert systems to support developers
for system debugging. Shortliffe’s work is probably the first to provide explanation in a
medical expert system [10]. Since then, providing explanations for intelligent systems’
decisions and actions has been a concern for researchers, developers and the users.
Earlier attempts were limited to traces, and a line of reasoning explanations that are used
by the decision support system. However, this type of explanations could only be
applied in rule-based systems and required knowledge of decision design [11]. These
systems were also unable to justify the rationale behind a decision.

Swartout’s framework was one of the first study that emphasized the significance of
justifications along with explanations [12]. Early examples proposed justifying the
outcomes through drilling-down into the rationale behind each step taken by the sys-
tem. One approach to produce such explanation was storing the justifications as canned
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text for all the possible questions that can be inquired [13]. However, this approach had
several drawbacks such as maintaining the consistency between the model and the
explanations, and predicting all the possible questions that the system might encounter.

The decision theory was proposed to provide justifications for the system’s deci-
sion. Langlotz suggested decision trees to capture uncertainties and balance between
different variables [14]. Klein developed explanation strategies to justify value-based
preferences in the context of intelligent systems [15]. However, these explanations
required knowledge of the domain in which the system will be used [16]. This kind of
explanation were less commonly used, due to the difficulties in generating such
explanations that satisfies the needs of the end-users [11].

Expert systems that are built based on probabilistic decision-making systems such
as Bayesian networks required the explanations even more due to their internal logic is
unpredictable [17]. Comprehensive explanations of probabilistic reasoning are there-
fore studied in a variety of applications to increase the acceptance of expert systems
[18]. Explanation methods in Bayesian networks have been inadequate to constitute a
standard method which is suitable for systems with similar reasoning techniques.

Previous explanation studies within expert systems are mostly based on strategies
that rely on knowledge base and rule extraction. However, these rule-based systems
and other symbolic methods perform poorly in many explanation tasks. The number of
rules tends to grow extremely high, while the explanations produced are limited to
showing the applicable rules for the current input values. The Contextual Importance
and Utility (CIU) method was proposed to address these explanation problems earlier
[7]. This method explains the results directly without transforming the knowledge. The
details of this work are discussed in Sect. 4.

3 State of the Art

Machine learning algorithms are the heart of many intelligent decision support systems
in finance, medical diagnosis, and manufacturing domains. Because some of these
systems are considered as black-box (i.e. hiding inner-workings), researchers have been
focusing on integrating explanation facilities to enhance the utility of these systems [5].
Recent works define interpretability particular to their explanation problems. Generally
these methods are categorized into two broad subject-matter namely, model-specific
and model-agnostic methods. The former one typically refers to inherently interpretable
models which provide a solution for a predefined problem. The latter provides generic
framework for interpretability which is adaptable to different models.

In general, model-specific methods are limited to certain learning models. Some
intrinsically interpretable models are sparse linear models [19, 20], discretization
methods such as decision trees and association rule lists [21, 22], and Bayesian rule lists
[23]. Other approaches include instance-based models [24] and mind-the-gap model [25]
focus on creating sparse models through feature selection to optimize interpretability.
Nevertheless, linear models are not that competent at predictive tasks, because the
relationships that can be learned are constrained and the complexity of the problem is
overgeneralized. Even though they provide insight into why certain predictions are
made, they enforce restrictions on the model, features, and the expertise of the users.
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Several model-agnostic frameworks have been recently proposed as an alternative
to interpretable models. Some methods suggest measuring the effect of an individual
feature on a prediction result by perturbing inputs and seeing how the result changes
[26, 27]. The effects are then visualized to explain the main contributors for a pre-
diction and to compare the effect of the feature in different models. Ribeiro et al. [28]
introduce Locally Interpretable Model Explanation (LIME) which aims to explain an
instance by approximating it locally with an interpretable model. The LIME method
implements this by sampling around the instance of interest until they arrive at a linear
approximation of the global decision function. The main disadvantage of this method is
that data points are sampled without considering the correlation between features. This
can create irrelevant data points which can lead to false explanations. An alternative
method is Shapley values where the prediction is fairly distributed among the features
based on how each feature contributes to the prediction value. Although, this method
generates complete and contrastive explanations, it is computationally expensive. In
general, model-agnostic methods are more flexible than model-specific ones. Never-
theless, the correctability of the explanations and incorporating user feed-back in
explanation system are still open research issues [29].

4 Contextual Importance and Contextual Utility

Contextual importance and utility were proposed as an approach for justifying rec-
ommendations made by black-box systems in Kary Främling’s PhD thesis [30], which
is presumably one of the earliest studies addressing the need to explain and justify
specific recommendations or actions to end users. The method was proposed to explain
preferences learned by neural networks in a multiple criteria decision making (MCDM)
context [31]. The real-world decision-making case consisted in choosing a waste dis-
posal site in the region of Rhône-Alpes, France, with 15 selection criteria and over
3000 potential sites to evaluate. A similar use case was implemented based on data
available from Switzerland, as well as a car selection use case. In such use cases, it is
crucial to be able to justify the recommendations of the decision support system also in
ways that are understandable for the end-users, in this case including the inhabitants of
the selected site(s).

Multiple approaches were used for building a suitable MCDM system, i.e. the well-
known MCDM methods Analytic Hierarchy Process (AHP) [32] and ELECTRE [33].
A rule-based expert system was also developed. However, all these approaches suffer
from the necessity to specify the parameters or rules of the different models, which
needs to be based on a consensus between numerous experts, politicians and other
stakeholders. Since such MCDM systems can always be criticized for being subjective,
a machine learning approach that would learn the MCDM model in an “objective” way
based on data from existing sites became interesting.

MCDM methods such as AHP are based on weights that express the importance of
each input (the selection criteria) for the final decision. A notion of utility and utility
function is used for expressing to what extent different values of the selection criteria
are favorable (or not) for the decision. Such MCDM methods are linear in nature,
which limits their mathematical expressiveness compared to neural networks, for
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instance. On the other hand, the weights and utilities give a certain transparency, or
explainability, to the results of the system. The rationale behind Contextual Importance
(CI) and Contextual Utility (CU) is to generalize these notions from linear models to
non-linear models [7].

In practice, the importance of criteria and the usefulness of their values change
according to the current context. In cold weather, the importance and utility of warm
clothes increases compared to warm summer weather, whereas the importance of the
sunscreen rating that might be used becomes small. This is the reason for choosing the
word contextual to describe CI and CU. This approach generally can be used with both
linear and non-linear learning models. It is based on explaining the model’s predictions
on individual importance and utility of each feature.

CI and CU are defined as:

CI ¼ Cmaxx Cið Þ � Cminx Cið Þ
absmax� absmin

ð1Þ

CU ¼ yi;j � Cminx Cið Þ
Cmaxx Cið Þ � Cminx Cið Þ ð2Þ

where

• Ci is the context studied (which defines the fixed input values of the model),
• x is the input(s) for which CI and CU are calculated, so it may also be a vector,
• yi;j is the output value for the output j studied when the inputs are those defined by

Ci,
• Cmaxx Cið Þ and Cminx Cið Þ are the highest and the lowest output values observed by

varying the value of the input(s) x,
• absmax and absmin specify the value range for the output j being studied.

CI corresponds to the fraction of output range covered by varying the value(s) of
inputs x and the maximal output range. CU reflects the position of yi,j within the output
range covered (Cmaxx Cið Þ − Cminx Cið Þ). Each feature x with prediction yi,j has its own
CI and CU values.

The estimation of Cmaxx Cið Þ and Cminx Cið Þ is a mathematical challenge, which
can be approached in various ways. In this paper, we have used Monte-Carlo simu-
lation, i.e. generating a “sufficient” number of input vectors with random values for the
x input(s). Obtaining completely accurate values for Cmaxx Cið Þ and Cminx Cið Þ would
in principle require an infinite number of random values. However, for the needs of
explainability, it is more relevant to obtain CI values that indicate the relative impor-
tance of inputs compared to each other. Regarding CU, it is not essential to obtain exact
values neither for producing appropriate explanations. However, the estimation of
Cmaxx Cið Þ and Cminx Cið Þ remains a matter of future studies. Gradient-based methods
might be appropriate in order to keep the method model-agnostic. In [30], Normalized
Radial Basis Function (RBF) networks were used, where it makes sense to assume that
minimal and maximal output values will be produced at or close to the centroids of the
RBF units. However, such methods are model-specific, i.e. specific to a certain type or
family of black-box models.
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CI and CU are numerical values that can be represented in both visual and textual
form to present explanations for individual instances. CI and CU can also be calculated
for more than one input or even for all inputs, which means that arbitrary higher-level
concepts that are combinations of more than one inputs can be used in explanations.
Since the concepts and vocabularies that are used for producing explanations are
external to the black box, the vocabularies and visual explanations can be adapted
depending on the user they are intended for. It is even possible to change the repre-
sentation used in the explanations if it turns out that the currently used representation is
not suitable for the user’s understanding, which is what humans tend to do when
another person does not seem to understand already tested explanation approaches.
Figure 1 illustrates how explanations are generated using contextual importance and
utility method.

Another important point is that humans usually ask for explanations of why a
certain prediction was made instead of another. This gives more insight into what
would be the case if the input had been different. Creating contrastive explanations and
comparing the differences to another instance can often be more useful than the
complete explanation alone for a particular prediction. Since the contextual importance
and utility values can be produced for all possible input value combinations and
outputs, it makes it possible to explain why a certain instance Ci is preferable to another
one, or why one class (output) is more probable than another. The algorithm used for
producing complete and contrastive explanations is shown in Fig. 2.
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Price Location
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Fig. 1. Providing explanations for individual instances using CI and CU
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5 Examples of CI and CU Method to Extract Explanation
for Linear and Non-linear Models

The explanation method presented here provides flexibility to explain any learning
model that can be considered a “black-box”. In this section, we present the examples of
providing explanations for linear and non-linear models using contextual importance
and utility method. Code explaining individual prediction for non-linear models is
available at https://github.com/shulemsi/CIU.

5.1 Visual Explanations for Car Selection Using CI and CU Method

The result of explanations for a car selection problem using CI and CU method is
presented. The dataset used in this example was initially created and utilized to learn
the preference function by neural network in a multi-criteria decision-making problem
[30]. Here, these samples are used to show how explanations can be generated for
linear models. The dataset contains 113 samples with thirteen different characteristics

Test an individual 
instance,

Given x1,x2,x3,x4

Compute yi,j

              Montecarlo sampling,
Return the estimated 

Cminx Cmaxx

and Compute CI

Black-box model that 
takes a vector/matrix 

as input

Calculate CU 

Convert CI and CU values to 
visual and text-based 

explanations 

Display the result and 
the explanations for 

the current prediction
Contrastive explanations?

Another test?

Yes

No
End

Display 
“Why not” 

explanations

Yes

No

Start

Fig. 2. Algorithm for generating complete and contrastive explanations using CIU method

Explanations of Black-Box Model Predictions 101

https://github.com/shulemsi/CIU


of the car and their respective scores. Some of the characteristics are namely; price of
the car, power, acceleration, speed, dimensions, chest, weight, and aesthetic. The linear
relation between price and preference, and the corresponding CI and CU values are
demonstrated in Fig. 3.

The preference value is shown as a function of the price of the car, the red-cross
(yi;j) showing the current value for the selected car WW Passat GL. The color scale
shows the limits for translating contextual utility values into words to generate text-
based explanations. Contextual importance values are converted into words using the
same kind of scale. Table 1 reveals Cmaxx, Cminx, CI and CU values of the price of the
car and other key features including power, acceleration, and speed for the example car
WW Passat GL.

The table shows that the price and power are the most important features for the
selected car. Also, the highest utility value belongs to the price which means it is the
most preferred feature of this car. The least preferred characteristic of this car is the
power which has the lowest utility value. The CI and CU values led the following
visual and text-based explanations as shown in Fig. 4.

Fig. 3. The contextual importance and contextual utility values for price (selected car WW
Passat GL). (Color figure online)

Table 1. CI and CU values of the features price, power, acceleration, and speed for the selected
car example WW Passat-GL

Price Power Acceleration Speed

Cmin 13 14 13 10
Cmax 79 78 68 64
CI% 66 64 55 54
CU 0.67 0.15 0.30 0.25
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The contrastive explanations are generated to compare the selected car example to
other instances. Comparison between the selected car (WW Passat GL) to the expen-
sive car (Citroen XM), and to the average car (WW Vento) is visually presented.
Figure 5 shows that the selected car has a very good value compare to the average car
considering the importance of this criteria. Although the average car has higher utility
values for acceleration and speed, it is exceeding the importance of the criteria. Sim-
ilarly, the expensive car has very low utility in terms of price, and it has quite high
values for power, acceleration and speed compare to the selected car.

5.2 Explaining Iris Flower Classification Using CI and CU Method

In this section, the results of explaining individual predictions using CI and CU on Iris
flower classification is presented. The dataset contains 150 labeled flowers from the
genus Iris. The trained network classifies Iris flowers into three species; Iris Setosa, Iris
Versicolor and Iris Virginica based on the properties of leaves. These properties are
namely; petal length, petal width, sepal length, sepal width. The trained network
outputs the prediction value for each species which the highest one being the predicted
class. The network is used to classify patterns that it has not seen before and results are
used to generate explanations for individual instances.

An example of how explanations are generated based on CI and CU values is
illustrated in Fig. 6. Given following input values; 7 (petal length), 3.2 (petal width), 6
(sepal length), 1.8 (sepal width), model predicts the class label as Iris Virginica. In
order to compute the CI and CU values, we randomize 150 samples, and estimate
Cmaxx Cið Þ and Cminx Cið Þ values for each input feature. The red-cross (yi;j) indicates

Fig. 4. Text-based and visual explanations for selected car WW Passat GL

Fig. 5. Contrastive visual explanations for selected car (WW Passat GL) with average car (WW
Vento VR6) and expensive car (Citroen XM V6-24)
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Fig. 6. CI and CU values of each features for Iris Virginica classification, (a) Petal length,
(b) Petal width, (c) Sepal length, and (d) Sepal width (Color figure online)
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the current prediction value. Each figure demonstrates the importance of that feature
and the usefulness for the predicted class. Similarly, CI and CU values of other classes
are obtained to generate contrastive explanations. Note that a feature that is distin-
guishing for Iris Virginica may not be that distinguishing or important for other classes.
The color bar indicates the contextual utility values converted into natural language
expressions.

Table 2 shows the result of the sample test. For this case, sepal length is the most
important feature with the highest utility value contributing to the class and the petal
width is the least contributing feature for the given instance.

Table 3 shows how these values are transformed into natural language expressions
to generate explanations based on the degree of the values.

The obtained values are translated into explanation phrases as shown in Fig. 7.
These are the complete explanations which justifies why the model predicts this class
label. Furthermore, the contrastive explanations are produced to demonstrate the
contrasting cases. Figure 8 shows the results of this application.

Table 2. Cminx, Cmaxx and CIU values of each feature for the class label Iris Virginica

Petal length Petal width Sepal length Sepal width

Cmin 3 1 0 0
Cmax 92 56 100 100
CI% 89 55 100 100
CU 1 (yi;j ¼ :92) 0.69 (yi;j ¼ :39) 1 (yi;j ¼ 1) 0.91 (yi;j ¼ :91)

Table 3. Symbolic representation of the CI and CU values

Degree (d) Contextual importance Contextual utility

0 < d � 0.25 Not important Not typical
0.25 < d � 0.5 Important Unlikely
0.5 < d � 0.75 Rather important Typical
0.75 < d � 1.0 Highly important Very typical

Fig. 7. Complete explanation for the class label Iris Virginica
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6 Discussion

Intelligent systems that are explaining their decisions to increase the user’s trust and
acceptance are widely studied. These studies propose various means to deliver
explanations in form of; if-then rules [34], heat-maps [35], visuals [36], and human-
labeled text [37]. These explanations and justifications provide limited representation
of the cause of a decision. The CIU method presented here proposes two modalities as
visuals and textual form to express relevant explanations. The variability in modality of
presenting explanations could improve interaction quality, particularly in time-sensitive
situations (e.g. switching to visual explanations from text-based explanations). More-
over, CI and CU values can be represented with different levels of details and produce
explanations that are tailored to the users’ specification. User-customized explanations
could reduce ambiguity in reasoning. This is particularly important in safety-critical
applications where users require a clear response from the system.

Explanation methods should be responsive to different types of queries. Most
explanation methods only provide explanations which respond to why a certain deci-
sion or prediction was made. However, humans usually expect explanations with a
contrasting case to place the explanation into a relevant context [8]. This study present
examples of complete and contrastive explanation to justify the predicted outcomes.
One stream of research propose justification based explanations for image dataset
combining visual and textual information [38]. Although they produce convincing
explanations for users, they offer post-hoc explanation which is generally constructed
without following the model’s reasoning path (unfaithfully).

Faithfulness to actual model is important to shows the agreement to the input-
output mapping of the model. If the explanation method is not faithful to the original
model then the validity of explanations might be questionable. While the rule extrac-
tion method produces faithful explanations, it is often hard to trace back the reasoning
path, particularly when the number of features is too high. Other methods such as
approximating an interpretable model provide only local fidelity for individual
instances [28]. However, features that are locally important may not be important in the
global context. CIU overcome the limitation of the above methods by providing
explanations based on the highest and the lowest output values observed by varying the
value of the input(s). However, accurate estimation of the minimal and the maximal
values remains a matter of future studies. Furthermore, CIU is a model agnostic method
which increases the generalizability of the explanation method in selection of the
learning model.

Fig. 8. Contrastive explanations for Iris Setosa and Iris Versicolor
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7 Conclusion

The aim of this paper is presenting contextual importance and utility method to provide
explanations for black-box model predictions. CIU values are represented as visuals
and natural language expressions to increase the comprehensibility of the explanations.
These values are computed for each class and features which enable to further produce
contrastive explanation against the predicted class. We show the utilization of the CIU
for linear and non-linear models to validate the generalizability of the method. Future
work could extend the individual instance explanations to global model explanations in
order to assess and select between alternative models. It is also valuable to focus on
integrating CIU method into practical applications such as image labeling, recom-
mender systems, and medical decision support systems. A future extension of our work
relates to the CIU’s utility in producing dynamic explanations by considering user’s
characteristics and investigating the usability of the explanations in real-world settings.
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Abstract. We are entering a new age of AI applications where machine
learning is the core technology but machine learning models are generally
non-intuitive, opaque and usually complicated for people to understand.
The current AI applications inability to explain is decisions and actions
to end users have limited its effectiveness. The explainable AI will enable
the users to understand, accordingly trust and effectively manage the
decisions made by machine learning models. The heat recycler’s fault
detection in Air Handling Unit (AHU) has been explained with explain-
able artificial intelligence since the fault detection is particularly burden-
some because the reason for its failure is mostly unknown and unique.
The key requirement of such systems is the early diagnosis of such faults
for its economic and functional efficiency. The machine learning mod-
els, Support Vector Machine and Neural Networks have been used for
the diagnosis of the fault and explainable artificial intelligence has been
used to explain the models’ behaviour.

Keywords: Explainable artificial intelligence · Heat recycler unit ·
Support vector machine · Neural networks

1 Introduction

Heating, Ventilation and Air Conditioning (HVAC) systems count for 50% of the
consumed energy in commercial buildings for maintaining indoor comfort [21].
Nonetheless, almost 15% of energy being utilized in buildings get wasted due
to various faults (like control faults, sensor faults) which significantly occurs in
HVAC systems because of lack of proper maintenance [20,28]. In HVAC systems,
an Air Handling Unit (AHU) acts as a key component. The faults in heat recy-
cler in AHU often go unnoticed for longer periods of time till the performance
deteriorates which triggers the complaints related to comfort or equipment fail-
ure. There are various fault detection and diagnosis techniques being identified
to benefit the owners which can reduce energy consumption, improve mainte-
nance and increases effective utilization of energy. Heat recycler’s faults can be
detected by comparing the normal working condition data with the abnormal
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data measured during heat recycler failure. Most of the fault detection methods
have the training dataset as historical data for building machine learning mod-
els, such as support vector machine, neural networks, support vector machine or
decision trees, depending on the training dataset. Abnormal data of heat recycler
failure is identified as a different class from the normal working class by using
various classification algorithms [9,27].

Fig. 1. The explanation framework of XAI [16]

We have entered a new era of artificial intelligence where core technology is
machine learning but machine learning models are non-intuitive, opaque and it is
difficult to understand them. Thus, the effectiveness of machine learning models
is limited by its inability to give explanation for its behaviour. To overcome this,
it is important for machine learning models to provide a human understandable
explanation for explaining the rationale of model. This explanation can then fur-
ther be used by analysts to evaluate if the decision meets the required rational
reasoning and does not have reasoning conflicting with legal norms. But what
does it mean by explanation?; a reason or justification given for some action. The
explanation framework can be well explained by a framework as shown in Fig. 1
where XAI system consists of two modules, explanation model and explanation
interface. The explanation model takes the input and justifies recommendation,
decision or action based on any machine learning model. The explanation inter-
face provides an explanation to justify the decision made by machine learning
model i.e. why does the machine behaved in such particular way that made
it to reach a particular decision. Thus the user can make the decision based
on the explanation provided by the interface. Figure 2 shows an example that
how explainable artificial intelligence helps a user by explaining the decisions of
learning model.
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Fig. 2. An example depicting an instance of XAI [16]

2 Previous Work

Explainable artificial intelligence is getting a lot of attention nowadays. The
machine learning algorithms have been used for cancer detection but these mod-
els do not explain the assessment they made. Humans can not trust these models
since they do not understand the reason of their assessment [17]. Van Lent et al.
[25] used the explanation capability in the training system developed by aca-
demic researchers and commercial game developers for the full spectrum com-
mand. Sneh et al. [24] used the explainable artificial intelligence in intelligent
robotic systems for categorization of different types of errors. The errors have
been divided into five categories using the machine learning techniques but they
fail to provide the explanations. The XAI have been used to provide information
and explanation of occurrence of these errors for three different machine learning
models. Ten Zeldam et al. [31] proposed a technique for detection of incorrect or
incomplete repair card in aviation maintenance that can result in failures. They
proposed a Failure Diagnosis Explainability (FDE) technique for providing the
interpretability and transparency to the learning model for the failure diagnosis.
It is used to check if the accessed diagnosis can explain if a new failure detected
matches the expected output of that particular diagnosis and if it is dissimilar
to it, then it is not likely to be the real diagnosis.

A number of fault detection tools have currently emerged from research. Gen-
erally, stand-alone software product form is taken by these tools where there
should be either offline processing of trend data or an online analysis can be
provided for the building control system. There have been different data driven
methods developed and used for detection of AHU’s faults such as coil fouling,
control valve fault, sensor bias etc. Yan et al. [30] proposed an unsupervised
method for detecting faults in AHU by using cluster analysis. Firstly, PCA is
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used to reduce dimensions of collected historical data and then spacial separated
data groups (clusters representing faults) are identified by using clustering algo-
rithm. The proposed system was tested on a simulated data and was able to
detect single and multiple faults in AHU.

Lee et al. [18] detected the AHU cooling coil subsystem’s fault with the
help of Artificial Neural Network (ANN) backward propagation method based
on dominant residual signature. Wang et al. [26] presented a method based on
PCA for detection and diagnosis of sensor failures where faults in AHU were
isolated by Q-contribution plot and used squared prediction error as indices of
fault detection. Likewise, PCA along with Joint Angle Analysis (JAA) is also
proposed by Du et al. [10] for diagnosis of sensors’ drifting and fixed biases in
Variable Air Volume (VAV) systems. A new method for the detection of drift-
ing biases of sensors in air handling unit is proposed by Du et al. [11] which
employed neural networks along with wavelet analysis. Zhu et al. [32] adduced a
sensor failure detection system based on regression neural network. It employed
the analysis made by three-level wavelet for decomposition of the measured sen-
sor data followed by extraction of each frequency band’s fractal dimensions for
the depiction of sensor’s failure characteristics and then it is trained with neural
networks to diagnose failures. A new semi supervised method for detection and
diagnosis of air handling unit faults is proposed by Yan et al. [29] where a small
amount of faulty training data samples were used to give the performance com-
parable to the classic supervised FDD methods. Madhikermi et al. [19] presented
a heat recovery failure detection method in AHU using logistic regression and
PCA. This method is based on process history and utilizes nominal efficiency of
AHU for detection of faults.

Fig. 3. The schematic diagram of Heat Recycler Unit

3 Theoretical Background

3.1 Heat Recycler Unit

A typical AHU with balanced air ventilation system, as shown in Fig. 3, includes
the HRU, supply fan, extract fan, air filters, controllers, and sensors. The system
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circulates the fresh air from outside to the building by utilizing two fans (sup-
ply side and extract side) and two ducts (fresh air supply and exhaust vents).
Fresh air supply and exhaust vents can be installed in every room, but typi-
cally this system is designed to supply fresh air to bedrooms and living rooms
where occupants spend their most of time. A filter is employed to remove dust
and pollen from outside air before pushing it into the house. The system also
extracts air from rooms where moisture and pollutants are most often generated
(e.g. kitchen and bathroom). One of the major component of the AHU is HRU
which is used to save energy consumption. The principle behind the HRU is to
extract heat from extracted air (before it is removed as waste air) from house
and utilize it to heat fresh air that is entering into the house. HRU is a fun-
damental component of AHU which helps to recycle extracted heat. The main
controllers included in the system are supply air temperature controller which
adjusts the temperature of the supply air entering into house and HRU output
which controls the heat recovery rate. In order to measure efficiency of HRU,
five temperature sensors are installed in AHU which measure the temperature
of circulating air at different part of AHU (detailed in Table 1). In addition to
data from sensors, HRU control state, supply fan speed, and extract fan speed
can be collected from system.

Table 1. Dataset description of Air handling unit sensors

Sensor name Description

HREG T FRS Temperature of fresh incoming air

HREG T SPLY LTO Temperature of supply air after HRU

HREG T SPLY Temperature of supply air

HREG T EXT Temperature of extracted air

HREG T WST Temperature of waste air

Hru Output State of HRU output controller

Sup Fan Speed The current effective supply-side fan speed

Ext Fan Speed The current effective extract-side fan speed

3.2 Support Vector Machine

SVM is a supervised machine learning approach used for both type of problems
classification as well as regression. But most of the time it is used to solve
classification problems. In this technique we plot all features as a data point in
dimensional space by using coordinate values. Then a hyperplane is created that
can discriminate the two classes easily. The problem in linear SVM using linear
algebra for assisting the learning of the hyperplane. The equation for predicting
a new input in linear SVM is calculated by using dot product between the input
(x) and each support vector (xi) given as [1]:
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f(x) = B(0) + sum(ai × (x, xi)) (1)

This equation involves the calculation of the inner products of a new input
vector (x) with all support vectors in training data. The learning algorithm’s
training data helps in estimation of the coefficients B0 and ai (for each input).
SVM model used in the proposed methodology can be depicted in Fig. 4 where
two classes (Since it is binary classification problem) are shown which depicts
the normal cases and fault detection cases with no heat recovery.

Fig. 4. SVM model used in proposed methodology

3.3 Neural Networks

Neural Networks the general function approximations, which makes them appli-
cable to almost all machine learning problems where a complex mapping is to be
learned from input to the output space. The computer based algorithms modeled
on the behaviour and structure of human brain’s neurons to train and categorize
the complex patters are known as Artificial neural networks (ANNs). In artifi-
cial neural networks, the adjustment of parameters with the help of a process of
minimization of error due to learning from experience leads to pattern recogni-
tion. The neural networks can be calibrated using different types of input data
and the output can be categorized into any number of categories. The activation
function can be used to restrict the value of output by squashing the output
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value and giving it in a particular range depending on the type of activation
function used.

Table 2. The activation functions used in neural networks

Function Formula

Sigmoid ys = 1
1+e−xs

Tanh ys = tanh(xs)

ReLu ys = max(0, xs)

I1

I2

I3

I4

I5

HREG_T_FRS

HREG_T_SPLY_LTO

HREG_T_SPLY

HREG_T_WST

HREG_T_EXT

H1

H2

H3

O1 .outcome

B1 B2

Fig. 5. Neural network model for proposed methodology

Table 2 lists the most common activation functions used in the neural net-
works where the value of sigmoid ranges from 0 to 1, tanh from −1 to 1 and ReLu
from 0 to +infinity. Figure 5 depicts the neural network used in the proposed
model which takes the five features described in the dataset as input which is
mapped to hidden layers and finally to the output classifying it as fault detection
or not.

3.4 Explainable Artificial Intelligence

Although there is an increasing number of works on interpretable and trans-
parent machine learning algorithms, they are mostly intended for the technical
users. Explanations for the end-user have been neglected in many usable and
practical applications. Many researchers have applied the explainable framework
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to the decisions made by model for understanding the actions performed by a
machine. There are many existing surveys for providing an entry point for learn-
ing key aspects for research relating to XAI [6]. Anjomshoae et al. [8] gives the
systematic literature review for literature providing explanations about inter-
agent explainability. The classification of the problems relating to explanation
and black box have been addressed in a survey conducted by Guidotti et al. [15]
which helped the researchers to find the more useful proposals. Machine learn-
ing models can be considered reliable but they lack in explainability. Contextual
Importance and Utility has quite significance in explaining the machine learning
models by giving the rules for machine learning models explanation [13]. Fram-
ling et al. provides the black box explanations for neural networks with the help
of contextual importance utility [12,14].

There are many methods used for providing the explanations for example;
LIME (Local Interpretable Model-Agnostic Explanations) [3], CIU (Contextual
Importance and Utility) [13], ELI5 [2], Skater [5], SHAP (SHapley Additive
exPlanations) [4] etc. Most of them are the extensions of LIME which is an orig-
inal framework and approach being proposed for model interpretation. These
model interpretation techniques provide model prediction explanations with
local interpretation, model prediction values with shape values, building inter-
pretable models with surrogate tree based models and much more. Contextual
Importance (CI) and Contextual Utility (CU) explains the prediction results
without transforming the model into an interpretable one. These are numerical
values represented as visuals and natural language form for presenting explana-
tions for individual instances [13]. The CIU has been used by Anjomshoae et al.
[7] to explain the classification and prediction results made by machine learning
models for Iris dataset and car pricing dataset where the authors have CIU for
justifying the decisions made by the models. The prediction results are explained
by this method without being transformed into interpretable model. It explains
the explanations for the linear as well as non linear models demonstrating the
felexibility of the method.

4 Methodology

The proposed methodology considers the fact that due to high number of dimen-
sions, detecting the failure cases (due to HRU failure) from the normal ones is
really tedious task. The HRU’s nominal efficiency (µnom) is a function of AHU’s
air temperatures as depicted in Eq. 2 [23]. The real dataset is collected from
AHU containing 26700 instances of data collected for both states; “Normal” and
“No Heat Recovery” state. There are two class labels with one label as “Normal”
with 18882 instances and other as “No Heat Recovery” with 7818 instances. Since
HRU output is set to “max” (i.e. it is a constant parameter) and HRU nominal
efficiency being a function of air temperature associated with AHU (as shown
in Eq. 2), this analysis only contains temperature differences as key point. All
these dimensions have been combined together for measuring the performance
of HRU.
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Fig. 6. Heat recovery failure detection methodology

µnom =
Text − Twst

Text − Tfrs
(2)

The methodology for the detection of heat recycler unit failure has been
depicted in Fig. 6. The methodology starts with having the input data containing
5 features and 1 binary class label (“No Heat Recovery” or “Normal”). The input
data is divided into 70:30 ratio of for training and testing dataset respectively.
The training dataset is used for training 2 models neural networks (nnet) and
support Vector Machine (SVM) individually along with 10 fold cross validation.
After both the models have been trained on the training dataset, they both are
tested for prediction on the testing dataset for the classification. Further, the
justification for the decision made by both the models is given with the help
of Explainable Artificial Intelligence (XAI). Local Interpretable Model-Agnostic
Explanations (LIME) has been used for providing the explanation of both the
models for 6 random instances of test data. The LIME helps in justifying the
decisions made by the models, neural networks and SVM.

5 Result Analysis

The performance of the proposed methodology has been tested on two trained
models, neural networks and support vector machine. The test dataset is given
to both the trained models for obtaining the various performance metrics such
as accuracy, sensitivity, specificity, precision, recall, confusion matrix and ROC.
Table 3 compares the results obtained from both the models where neural net-
works outperforms the SVM. It shows that neural networks have the sensitivity
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and specificity as 0.91 and 1 respectively with accuracy of 0.97 whereas SVM
has accuracy of 0.96 with sensitivity and specificity values as 0.99 and 0.95
respectively.

Table 3. Performance comparison of neural networks and SVM

Method Accuracy F1 score Sensitivity Specificity Precision Recall

Neural networks 0.97 1 0.90 1 1 0.90

SVM 0.96 1 0.99 .95 0.90 0.99

Table 4. Confusion matrix for nnet model

No Heat Recovery Normal

No Heat Recovery 2322 0

Normal 255 5463

Table 5. Confusion matrix for SVM model

No Heat Recovery Normal

No Heat Recovery 2364 255

Normal 21 5370

The confusion matrix obtained for neural networks and SVM is given in
Tables 4 and 5 respectively. Here, the positive class is taken as ‘No Heat Recov-
ery’ where there is failure in HRU and negative class is taken as ‘Normal’. Table 4
shows that there are 2322 instances of True Positives (TP), 0 False Positives
(FP), 255 False Negatives (FN) and 5463 True Negatives (TN) according to
predictions made by neural network model. Similarly, Table 5 shows that there
are 2364 instances of True Positives (TP), 255 False Positives (FP), 21 False
Negatives (FN) and 5370 True Negatives (TN) according to predictions made
by SVM model. ROC (Receiver Operating Characteristics) curve is one of the
most important evaluation metrics for checking any classification model’s perfor-
mance. The ROC curve is used for diagnostic test evaluation where true positive
rate (Sensitivity) is plotted as function of the false positive rate (100-Specificity)
for different cut-off points of a parameter. The ROC curve for neural networks
is depicted in Fig. 7 and for SVM is depicted in Fig. 8.
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Fig. 8. ROC curve for SVM model

5.1 Explanations Using LIME

Since most of the machine learning models used for classifications or predic-
tions are black boxes, but it is vital to understand the rationalization behind
the predictions made by these machine learning models as it will of great ben-
efit to the decision makers to make the decision whether to trust the model
or not. Figure 9 depicts an example of the case study considered in this paper
for predicting the failure of the heat recovery unit. The explainer then explains
the predictions made by the model by highlighting the causes or features that
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are critical in making the decisions made by model. However, it is possible that
the model may make mistakes in predictions that are too hard to accept there-
fore, understanding model’s predictions is quite important tool in deciding the
trustworthiness of the model since the human intuition is hard to apprehend
in evaluation metrics. Figure 10 illustrates the pick up step where convincing
predictions are being selected for being explained to the human for decision
making.

Fresh air
Supply air
Supply air after HRU
Extracted air
Waste Air

No Heat
Recovery Waste Air

Supply air after HRU

Extracted Air

Fresh Air

Knowledge

Fig. 9. Explaining individual predictions to a human decision-maker

Local Interpretable Model-agnostic Explanations (LIME) has been used for
giving the explanations of the model which can be used by decision makers for
justifying the model behaviour. The comprehensive objective of LIME is iden-
tifying an interpretable model over the interpretable representation which fits
the classifier locally. The explanation is generated by the approximation of the
underlying model by interpretable model which has learned on the disruptions
of the original instance. The major intention underlying LIME is that it is being
easier approximating black box model locally using simple model (locally in the
neighbourhood of the instance) in contrast to approximating it on a global scale.
It is achieved by weighing the original instances by their similarity to the case we
wish to explain. Since the explanations should be model agnostic, LIME Because
our goal should be to have model-agnostic model, We can use LIME for explain-
ing a myriad of classifiers (such as Neural Networks, Support Vector Machines
and Random Forests) in the domain of text as well as images [22].

The predictions made by both the models are then justified with the help of
explainable artificial intelligence. Local Interpretable Model-Agnostic Explana-
tions (LIME) has been used for providing the explanation of both the models for
6 random instances of test data. The explainability of neural networks and SVM
is shown in Figs. 11 and 12 respectively. “Supports” means that the presence of
that feature increases the probability for that particular instance to be of that
particular class/label. “Contradicts” means that the presence of that feature
decreases the probability for that particular instance to be of that particular
class/label. “Explanation fit” refers to the R2 of the model that is fitted locally
to explain the variance in the neighbourhood of the examined case.

The numerical features are discretized internally by LIME. For instance, in
Fig. 11, for case no. 7637, the continuous feature HREG T WST is being dis-
cretized in such a way that a new variable is created (HREG T WST ≤ 7.1) that
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Fig. 10. Explaining the model to a human decision maker [22]

when it is true, the feature HREG T WST is lower or equal to 7.1. When this
variable is true, the estimate for case 7637 is driven approximately 0.34 higher
than the average predicted probability in whole sample. Similarly, another con-
tinuous variable HREG T SPLY variable is being discretized into a new variable
(12.9 < HREG T SPLY ≤ 16.7) and the estimate for case 7637 is driven approx-
imately 0.45 lower than the average predicted probability in the whole sample,
etc. When all the contributions are added on the average performance, it gives
the final estimate. It also tells the class for which that particular instance belongs
and how the probabilities of all variables have contributed in deciding that it
belongs to that class. Similarly, it can be explained for second model SVM in
Fig. 12.
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Fig. 11. Explainability of NNet model



XAI Based HRU Fault Detection in AHU 123
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6 Conclusion

The heat recycler’s fault detection in Air Handling Unit (AHU) is tedious task
because the reason for its failure is mostly unknown and unique. The key require-
ment of such systems is the early diagnosis of such faults for its economic and
functional efficiency. The real dataset of Heat Recycler Unit of AHU has been
used for making predictions. The machine learning models, Support Vector
Machine and Neural Networks have been used individually for the classifica-
tion to detect the faults in AHU. Further, an explainable artificial intelligence
has been used to explain the behavior of both the models i.e. the reason for
justifying the recommendation or decision made by the learning models. Local
Interpretable Model-Agnostic Explanations (LIME) has been used for providing
the explanation of both the models chosen for 6 random instances of test data
LIME has been used as an adequate tool for facilitating the trust for experts
of machine learning and has been a good choice to be added in their tool belts.
As a future work, we will like to compare the explanation results obtained by
LIME with Contextual Importance (CI) and Contextual Utility (CU) to study
how these two methods behave differently in context with providing the expla-
nations.



124 M. Madhikermi et al.

References

1. Support Vector Machine. https://medium.com/machine-learning-101/chapter-2-
svm-support-vector-machine-theory-f0812effc72. Accessed 26 Feb 2019

2. ELI5 (2019). https://github.com/TeamHG-Memex/eli5. Accessed 04 June 2019
3. LIME (2019). https://towardsdatascience.com/. Accessed 04 June 2019
4. Shap (2019). https://github.com/slundberg/shap. Accessed 04 June 2019
5. Skater (2019). https://github.com/oracle/Skater. Accessed 04 June 2019
6. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable

artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)
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Abstract. We consider the problem of obtaining useful (and action-
able) insight into the behaviour of agent-based simulation (using cogni-
tive agents). When such simulations are being developed and refined, it
can be useful to gain understanding of the simulation’s behaviour. In par-
ticular, such understanding often needs to be specific to a given scenario
(not just high-level generic information about the simulation dynam-
ics), and about the aggregate behaviour of multiple agents. We describe
a method for taking explanations of behaviour produced by individual
agents, and aggregating them to obtain useful information about the
aggregate behaviour of multiple agents. The method, which has been
implemented, is illustrated in the context of a traffic simulation.

Keywords: Agent-based simulation · Explanation · Cognitive agents

1 Introduction

In this paper we show how explanation of agent behaviour can be used to gain
understanding of the behaviour of a collection of agents. Specifically, we are
interested in a collection of agents that do not operate as a team.

According to Malle [20], people use different kinds of explanations depending
on whether a group is perceived as jointly acting or as an aggregate group. In
the former case, the group coordinates its actions to achieve a joint goal. In the
latter case - that we will approach in this paper - each agent acts individually
and most often there is no explicit group, or it can only be ascribed after the
fact. The result of these agents acting in a similar way is what we call aggregate
behaviour.

One setting where the problem of understanding collective (aggregate) agent
behaviour arises is in agent-based simulation. There are a number of different
types of understanding that apply to such systems. One can be interested in
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understanding the high-level broad dynamics of a complex system. One can also
be interested in understanding the detailed specific behaviour of an individual
agent.

Our work sits between these two extremes: we are interested in understanding
the behaviour of multiple agents, not just a single agent. But we are interested
in understanding specific behaviour, rather than high-level dynamics.

This sort of understanding is typically needed as a simulation is developed
and refined. For instance, in a traffic simulation, we might want to understand
why, in a particular run, there was congestion on a particular road. This sort
of understanding of a given simulation run can be of use in understanding the
simulation, developing confidence that it is working correctly, and, if it is not,
locating errors in the simulation behaviour.

We assume that the simulation uses cognitive agents, that is, agents that are
conceptualised and implemented in terms of mental attitudes, such as beliefs,
goals, and plans. These provide a basis for individual agents to explain their
behaviour in terms of concepts that are familiar, since they are the same concepts
that humans use to explain their behaviour [20].

Our key thesis is that we can then build on techniques for explaining the
behaviour of cognitive agents in order to provide useful explanations of the col-
lective behaviour of agents in a simulation.

Although there has been work on techniques for individual agents to explain
their behaviour (e.g. [1,2,6,9,14,21,26]), there has not been work on understand-
ing the collective behaviour of independent agents. However, we are not the first
to propose using explanation for understanding collective agent behaviour in
agent-based simulation. Harbers et al. [15] proposed this back in 2010. However,
they did not provide a mechanism for doing this, or any details: their paper
focused almost entirely on explaining the behaviour of a single cognitive agent.

In this paper we build on their work (and other more recent work on explain-
ing the behaviour of cognitive agents [29]). Specifically, we propose a simple
mechanism for aggregating multiple explanations, and a process for using this
information to help obtain understanding of the behaviour of a simulation. We
have implemented a simulation, including both individual agent explanation and
aggregation of explanations. We use this simulation to show how the proposed
mechanism can be helpful in gaining understanding of the behaviour of the sim-
ulation.

The remainder of this paper is structured as follows. We next (Sect. 2) briefly
review background material on cognitive agents, and on techniques explaining
the behaviour of cognitive agents. Section 3 presents the case study traffic sim-
ulation, including how the explanation mechanism is applied. Then (Sect. 4) we
present the mechanism and process for aggregating and using individual agent
explanations to help gain understanding. This is illustrated using the imple-
mented simulation. Finally, we finish with a discussion including future direc-
tions (Sect. 5).
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2 Background: BDI and Explanation

In this section, we briefly review some required background. We begin by intro-
ducing the notion of cognitive agent that we use, specifically the BDI model,
and the AgentSpeak cognitive agent-oriented programming language. Then we
review the approach for explaining cognitive agent behaviour that we use as a
foundation.

In this paper we adopt the well-known Belief-Desire-Intention (BDI) model
for cognitive agents [7,25]. This model, which has its roots in philosophical
work drawing on the folk psychology of human decision making, views rational
autonomous agents in terms of mental attitudes. Specifically, agents are viewed
as having (or being ascribed) plans, beliefs, desires, and intentions1. Beliefs are
information that the agent has about the environment or itself. Plans can be
thought of as canned recipes for achieving a desired outcome, or responding to
some sort of change. Desires are situations that the agent wants to bring about,
and intentions are plan instances that the agent has decided upon as the means
to achieve its desired ends.

The BDI model has been instantiated in a number of agent-oriented pro-
gramming languages, including PRS [12,18] and AgentSpeak (and the Jason
extension) [5,24,27], as well as GOAL [16], JACK [8,28], JAM [17], dMARS [11],
UM-PRS [19], SPARK [22], Jadex [23], Gwendolen [10]), and others [3,4].

In this paper we use the AgentSpeak language, which was originally devel-
oped by Rao [24] as an abstraction of existing BDI languages at the time.
An AgentSpeak agent has a set of beliefs (basically logical propositions) and
a (static) set of plans. Each plan πi is of the form ti : ci ← bi where ti is a
trigger, ci a context condition, and bi the plan body. A plan can be triggered by
the addition or removal of a belief (denoted respectively +b and −b), or by the
addition or removal of a goal (respectively denoted +!g and −!g). The context
condition is a logical expression (usually restricted to conjunctions of atoms,
where an atom is a proposition or a negated proposition). Finally, the plan body
bi is a sequence of steps s1; . . . ; sn. Possible steps are: adding a belief +b, remov-
ing a belief −b, updating a belief −+b, posting a sub-goal !g, or performing an
action in the environment (.action(params)).

The semantics of AgentSpeak is that when a trigger occurs (e.g. a goal is
added), the agent collects all the plans that can be used to handle that trigger
(termed the relevant plans). It next computes the subset of the relevant plans for
which the context condition ci is currently true, termed the applicable plans. The
agent then selects one of the applicable plans and executes it. This selection and
execution process is interleaved with further event processing. In other words,
it is done step by step, using a data structure (intention stack) to keep track of
incremental execution of plans.

The original AgentSpeak paper leaves a number of details unspecified, such
as the order in which plans are considered, and what failure recovery mechanism
should be used if a step in a plan body fails. In this paper we follow the semantics

1 Despite the acronym being “BDI”, plans are an essential component.
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of the AgentSpeak implementation that we use2 by ignoring failure handling, and
considering plans in the order in which they appear.

We now turn to how we can explain the behaviour of cognitive agents. Space
precludes a detailed discussion, and we refer the reader to existing work cited
below.

Our explanation mechanism is a simplified version of Winikoff et al. [29].
This can be used to generate explanation for the behaviour of single agents.
The reminder of this section reviews their mechanism, whereas the next section
describes a simulation domain, and how to apply the mechanism in this domain
(which is novel).

This work is motivated by Miller’s observation that explaining agent
behaviour ought to draw on insights from the social sciences [21]. Specifically,
we follow Malle [20], who argues that people use concepts of folk psychology,
i.e. beliefs, desires and values to explain behaviour and furthermore [13], that
autonomous systems should explain their behaviour in terms of the same con-
cepts to deliver explanations that are more comprehensible. This aligns nicely
with the use of BDI agents, which are conceptualised and implemented in terms
of these same concepts.

In essence, the explanation mechanism that we will use (from [29]) takes (i)
a trace of actions, (ii) the agent program (viewed as a goal-plan tree), and (iii)
a query (a particular action). It then constructs a set of explanatory factors by
traversing the tree. An explanatory factor can be a condition (occurring in an
action’s pre-condition or in the context condition of a plan), or a goal node3.
The following gives a brief description of the process, for details we refer the
reader to Winikoff et al. [29].

The process for constructing the explanation first prunes the trace by remov-
ing everything after the action being explained. The process then traverses the
goal-plan tree from top to bottom, collecting explanatory factors using the fol-
lowing cases:

– Leaf (i.e. an action): if the action has a pre-condition then return its pre-
condition, otherwise return the empty set

– Sequence (i.e. a plan body): collect the explanatory factors from all sub-trees
which play a role in execution (formally: that contain an action node which
appears in the pruned trace)

– Alternative (i.e. a goal with more than one relevant plan): collect the explana-
tory factors from all sub-trees which play a role in execution (same as the
previous case). Then, if the action being explained appears in the sub-tree
rooted at the current node, then call pref (see below) and add the results to
the collected explanatory factors.

The function pref considers a choice point, and constructs an explanation for
why the particular path taken was chosen. This explanation has two components,

2 https://github.com/niklasf/pyson.
3 There are also other types of explanatory factors in the paper that we do not use

here, namely “tried-but-failed”, “valuings”, and “forward links”.

https://github.com/niklasf/pyson
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where we assume that plan πi with context condition ci was selected for execution,
and plans πj (1 ≤ j < i) were therefore not selected:

1. the context condition of the selected plan must be true for it to be taken, so
the explanation includes this condition ci; and

2. each of the other options (i.e. plans) that appear earlier in the program (and
hence are considered false), have a false context condition, so we include this,
i.e. ¬cj for all cj .

3 Running Example: Traffic Simulation

For our first simulation trial, we chose the traffic domain as it is very descriptive
and allows for many basic actors in a shared environment. Results of a traffic
simulation might be usage statistics for each road, so they could be used to
predict bottlenecks in what-if scenarios. For example, one might be interested
in why a specific road was particularly congested during a certain time frame.
As we are interested in the general feasibility of our approach, we do not require
truly realistic behaviour or outcomes. Thus, we implemented a simple simulation
model that contains only a few key elements and simplistic agent behaviour.
Nevertheless, it may generate overall simulation behaviour that is complex to
explain without the right support mechanism.

The environment consists of a simple (undirected) road network where roads
are represented as edges and intersections as the nodes between them. Each road
has a certain length and a dynamic traffic level that depends on the number of
agents currently using the road. In addition, each road can also be a bridge,
which is either open or closed, effectively rendering the road unusable for a
certain amount of time. This allows for agents with different preferences choosing
different routes.

Each agent’s goal is to go from one node in the network to another. We
abstract away from actual fine-grained driving mechanics and focus solely on
the navigation-related decision-making of agents. First, if agents encounter a
bridge, they may prefer to wait until it opens, or take a detour. Also, they check
the current traffic on the next roads they can take, and if it is too heavy, they
might decide to take a longer route if they expect it to have less traffic.

The agent program has been implemented in AgentSpeak4. The simulation
triggers the agent program by adding a new step belief during each simulation
cycle and waits until all agents have nothing left to reason about. While the
simulation program by default generates a random graph, and random agent
preferences, it can also be given a specific setup, such as that shown in Fig. 1.

We now briefly describe the percepts and beliefs, the actions, and the
decision-making logic of the agents.

The agents receive5 the following beliefs about the structure of the environ-
ment and the behaviour they prefer:

4 Full source code is available from https://github.com/t-ah/group-explanations.
5 i.e. these beliefs are set and updated by the simulation program.

https://github.com/t-ah/group-explanations
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Fig. 1. Simple road network where annotations on an edge indicate its length (len).

– step: tells the agent a new simulation step has begun,
– node(N): there is a node/intersection called N,
– edge(N1, N2, L, ): there is a road from N1 to N2 of length L,
– bridge(N1, N2): the road from N1 to N2 is a bridge,
– position(P): the agent’s location; either the name of a node or a list con-

taining 2 nodes describing the road between them,
– destination(D): the agent wants to reach node D, and
– waitForBridges: the agent prefers to wait if a bridge is closed.

The agents also use a number of beliefs to keep track of what they have already
done and what they want to do in the medium term:

– plannedRoute(R): the agent wants to follow the route R (a list of nodes), and
– usedRoad(A,B): the agent has already tried the road from A to B.

The following shows the actions that are defined in the simulator, and their
pre- and post-conditions.

.nextSteps input: position & destination, output: a sorted list of terms each of
the form road(neighbour, path length) giving a possible neighbour to the cur-
rent node, and the path length to the destination. No pre- or post-conditions
(other than a path existing).

.takeRoad inputs: node & nextNode, no outputs. Pre-condition: there is a road
from node to nextNode; and if the road is a bridge, it is open or the agent
is already on this road. Post-condition: progresses the agent on the road or
updates the position to nextNode.

.bridgeStatus input: node1 & node2, output: is the bridge open? Pre-condition:
the edge from node1 to node2 is a bridge, and its status is recorded.

.getDetour input: target, output: a path from the current position to the spec-
ified target, assuming the edge from position to target is given a high cost
(1000). Pre-condition: there is an edge from the current position to the target.

.getTraffic input: target, output: the additional amount of steps it will take the
agent to traverse the road to the target. Traffic is dependent on the number
of agents on a road. The more agents there are on a road, the less progress
an agent makes on that road per step.

Progress = 0.2 + ((1 − 0.2)/(#agents(road) + 1))
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.logStep input: item to be logged. No pre- or post-conditions, or output. This
action logs information to the trace to be presented to the user.

Finally, each agent uses the decision-making logic presented in Algorithm 1.

Algorithm 1. Agent Decision-Making Logic
1: ag ← the agent; pos ← position(ag); dest ← destination(ag)
2: if ag on road(X, Y ) then
3: takeRoad(X, Y ) � continue using road
4: else
5: if pos = dest then
6: stop
7: else if PlannedRoute �= ∅ then
8: nodeselected ← next element of PlannedRoute
9: else

10: NnextSteps ← neighbours(pos)
11: Nunused ← {n | n ∈ NnextSteps ∧ ¬usedRoad(pos, n)}
12: if Nunused = ∅ then
13: Nunused = NnextSteps

14: Nbest = {n | n ∈ Nunused ∧ ∀n′ ∈ Nunused :
len(pos, n) + getTraffic(pos, n) ≤ len(pos, n′) + getTraffic(pos, n′)}

15: nodeselected ← N ∈ Nbest

16: if nodeselected is a bridge and currently closed then
17: if ag prefers to wait at bridges then wait
18: else
19: PlannedRoute ← planDetour(pos, nodeselected)
20: nodeselected ← next element of PlannedRoute

21: takeRoad(pos, nodeselected) � switch to the selected road

3.1 Explaining Decisions

We now describe how we apply the explanation mechanism from Winikoff
et al. [29] (briefly summarised in Sect. 2) in this scenario.

Recall that an explanation is a set of explanatory factors, with each explana-
tory factor being a desire or a condition. An explanatory factor condition can
be an action’s pre-condition, or a complex formula that explains why a partic-
ular plan was selected (basically a combination of that plan’s context condition
being true, and the context conditions of other relevant plans being false; and
in this case, where plans are considered in the order in which they appear in the
program, “other plans” means “plans appearing earlier in the program”).

For this work we manually modify the agent program so that it captures
elements of the explanation on-the-fly. This is done by adding at key points (see
below) logging statements that capture the relevant explanatory factors. The
logging statements build up a trace data structure that then can be used after
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execution to provide explanations for questions of the form “why did agent Ai

perform a particular action?”.
Capturing explanatory factors that are desires is done by firstly identifying

which desires (i.e. goals) we wish to record, and then, for each plan that is
triggered by the posting of one of these goals, we simply add to the start of the
plan a logging statement that records the trigger of that plan.

We now turn to capturing explanatory factors that are conditions. There are
two cases of condition explanatory factors being captured.

The first, and simple one, is that just before an action is performed, we check
that the action’s pre-condition holds6, and log that action’s pre-condition as an
explanatory factor before performing the action. We also add a step to log that
the action was performed.

The second, more complex, case concerns selecting which plan to use next.
Whenever a trigger has more than one plan, then we add a first step to each
plan that logs the explanatory factors. For the first plan (for that trigger), the
explanatory factor is the plan’s context condition. For subsequent plans (for that
trigger) the explanatory factor is that plan’s context condition, as well as the
negation of earlier plans’ context conditions.

For example, given the following plans:

+!goto(To) : position(Pos) ∧ bridge(Pos, To) ∧
.bridgeStatus(Pos, To, open(false)) ∧ waitForBridges. // wait
+!goto(To) : position(Pos) ∧ bridge(Pos, To) ∧
.bridgeStatus(Pos, To, open(false)) ∧ not plannedRoute( ) ←
!useDetour(To).

+!goto(To) : position(Pos) ∧ bridge(Pos, To) ←
+usedRoad(Pos, To); .takeRoad(Pos, To).

+!goto(To) : position(Pos) ←
+usedRoad(Pos, To); .takeRoad(Pos, To).

We modify them by adding logging steps as follows (combining some factors for
readability):

+!goto(To) : position(Pos) ∧ bridge(Pos, To) ∧
.bridgeStatus(Pos, To, open(false)) ∧ waitForBridges ←
.logStep(explain(goto(To), waitForClosedBridge(Pos, To))).

+!goto(To) : position(Pos) ∧ bridge(Pos, To) ∧
.bridgeStatus(Pos, To, open(false)) ∧ not plannedRoute( ) ←
.logStep(explain(goto(To), notWaitForClosedBridge(Pos, To)));
!useDetour(To).

+!goto(To) : position(Pos) ∧ bridge(Pos, To) ←
.logStep(explain(goto(To), bridgeOpen(Pos, To)));
+usedRoad(Pos, To); .logStep(action(takeRoad(Pos,To))); .takeRoad(Pos, To).

+!goto(To) : position(Pos) ←
6 In this particular scenario this is not required, since action pre-conditions are either

trivial, guaranteed by construction (e.g. a detour will only be attempted around an
existing road), or are checked elsewhere (e.g. in context conditions).
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.logStep(explain(goto(To), noBridge(Pos, To)));
+usedRoad(Pos, To); .logStep(action(takeRoad(Pos,To))); .takeRoad(Pos, To).

We then construct an explanation for a query as follows. A query is an action
instance (“why was this action done?”). We construct the answer by finding the
action instance in the trace, removing everything that occurs after it, and then
collecting the explanatory factors in the remaining trace.

For example, considering the example scenario in Fig. 1, a car might start out
at node 1 and desire to reach node 5. This car might start by taking the road
to node 2, and then proceed to 5. We might wonder why the car chose to go via
node 2, since the path via node 3 is shorter. Asking the query “why did this car
take the road from node 1 to node 2?” results in the collection of explanatory
factors below7. The relevant one is the third, which shows that it preferred the
road from 1 to 2 over the road from 1 to 3 because there was traffic on the 1–3
road. The other factors below are that the agent had the goal of reaching node
5, that it initially had no planned route and was not at its destination (so it
planned a route), that it preferred 1–2 over 1–4 because the path was shorter,
and that it was able to take the road 1–2 because the road was not a bridge (if
it was a bridge, then the condition would have been that the bridge was open).

Explanation:
reach(5)
notAtDestination & noPlannedRoute
would_prefer_due_to_traffic([1, 2], [1, 3])
would_prefer_due_to_route_length([1, 2], [1, 4])
goto(2), noBridge(1, 2)

Please note that we chose this approach of explicitly logging explanatory fac-
tors because for now it is a simpler solution for testing purposes. One of the next
steps will be to move this functionality into the AgentSpeak interpreter itself,
so that arbitrary agent programs can be handled without the agent programmer
having to add any additional code related to the explanation mechanism.

4 Aggregation and Simulation Explanation Process

Now that we have applied the single agent explanation mechanism to our sce-
nario, we are able to generate explanations for each agent’s individual decisions.
Next, we want to use these explanations to explain the behaviour of many agents
at once. Thus, we need ways to ask the system questions, find relevant agents
for these questions, and aggregate the explanations collected for each individual
agent. This allows us to get explanations for the collective actions of groups of
agents, including emergent phenomena.

A straightforward way to aggregate explanations is to count the occurrences
of all explanatory factors that are related to a query, and list the most common
ones. The general aggregation process looks as follows:
7 The text “explain(. . . )” has been elided for readability.
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1. Given a simulation run with agents A = {A1, . . . , An}, and a query Φ, find
the set of agents AΦ for which the query makes sense (e.g. if the query is
“why did you take road R12?”, then select the agents that did actually take
that road).

2. For each Ai ∈ AΦ generate an explanation set Eφ
i which explains why agent

i did φ (using the mechanism from [29]).
3. Identify factors that appear in explanations, along with their count:

{(c, nc) | ∃Eφ
i : c ∈ Eφ

i ∧ nc = |{Ai | c ∈ Eφ
j }|}

In other words, for each factor c that appears in some explanation Ei, include
that factor along with nc. We define nc as the number8 of agents where c
appears in that agent’s explanation for the query φ.

The first assumption we want to test is, whether an explanatory factor that
occurs more often is more suitable to be included in an explanation of the group’s
behaviour.

Steps 1–3 above are a computational process which can (and has been) imple-
mented. The way in which these explanations are used is part of a larger human-
driven process:

A. Identify an aspect of the simulation’s behaviour that is interesting or sur-
prising and pose a question.

B. Invoke the above steps (1–3) to obtain an answer.
C. In some situations an answer might include further potential questions. For

example, it may be that an agent chose a particular road R1 because there
was traffic on another road R2, which might then lead to the followup ques-
tion “why did the agents take road R2?”. In this case, the human would pose
the followup question and return to step B.

D. In other situations, an answer might be testable by modifying the simulation.
For example, if many or most agents performing action A did so because of
a condition c or some parameters, then we might modify c (or the param-
eters) and re-run the simulation to check whether in fact condition c is in
itself a sufficient explanation. This ability to test explanations by performing
counter-factual experiments relies on the setting of the work being simula-
tion.

We now describe an example simulation that illustrates the process, and the
way in which it can help to obtain understanding of a simulation.

4.1 Example Simulation

In this example, we have 5 nodes connected by 8 roads and 100 agents located at
node 1 who want to reach node 5 (see Fig. 2). Half (50%) of the agents prefer to
wait at closed bridges while the other 50% prefer to take a detour, rather than
wait.
8 The notation |S| denotes the size (number of elements) of the set S.
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Looking at the simulation results (left side of Fig. 2), we observe that quite
a few cars take the road from 2 to 5, and ask why that road was taken? Note
that from Fig. 2 we can tell that most of the cars that took the road from 2 to
5 came from 3. However, we cannot tell why they chose to go to 2, rather than
proceed from 3 directly to 5. It could be due to traffic on the 3–5 road, or due
to the bridge being closed.

The query gives the following list of explanatory factors (produced by the
implementation). For now, we will look at and analyse the “raw” output of the
explanation and aggregation method to see where it helps and where we can
improve it in the future.

Note that “reach(5)” below indicates that the agent had the goal of reaching
node 5. The explanatory factor “would prefer due to route length” indicates that
the first option has a shorter path than the second, and that this remains the
case when the agent takes into account known traffic.

Factors for (2, 5):
57 times noPlannedRoute
57 times noBridge(2, 5)
57 times notAtDestination
57 times reach(5)
53 times would_prefer_due_to_route_length([1, 3], [1, 4])
53 times noBridge(3, 2)
53 times would_prefer_due_to_route_length([3, 5], [3, 4])
53 times notWaitForClosedBridge(3, 5)
53 times would_prefer_due_to_route_length([3, 5], [3, 2])
53 times notAtDestination(2)
53 times useDetourAround(3, 5)
53 times would_prefer_due_to_route_length([3, 5], [3, 1])
53 times plannedRoute([5|[]])
53 times tookRoad(1, 3)
53 times noBridge(1, 3)
53 times tookRoad(3, 2)
50 times would_prefer_due_to_route_length([1, 3], [1, 2])
7 times would_prefer_due_to_route_length([1, 2], [1, 4])
7 times tookRoad(1, 2)
7 times noBridge(1, 2)

Each line represents one of the 20 most common explanatory factors that
were given by the agents that took the road from 2 to 5. Each factor is only
counted once per agent, so for example 53 of the 57 agents who took the road
came from node 3 and prefer to not wait for closed bridges to open, suggesting
that they were trying to circumvent the bridge on road 3 → 5. This also indicates
that traffic was not a factor, as none of the explanations are based on traffic and
suggests that if we adjust the simulation to keep the bridge open more often,
then this link would become less used. This hypothesis was therefore tested by
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re-running the simulation with adjusted bridge probabilities9. The results are on
the right side of Fig. 2 and show the expected difference: traffic has moved from
2 → 5 to 3 → 5.

Fig. 2. Simulation Results: a number on an edge close to a node indicates the number
of times a car took that edge from the node. For example, “4” near node 1 shows that
4 cars took the road from 1 to 4. Dashed edges are bridges. Left is original simulation,
right is the re-run after adjusting the bridge probability.

Generally, we note that there are both more insightful factors and some less
interesting ones. Looking at the frequencies of factors, we see that they can be a
good first filter. Only the factors occurring in the top segment actually contribute
to a useful explanation. On the other hand, taking all of these factors (which get
a relatively high count) would create an explanation that is far too big. Thus,
additional filtering will be necessary. For example, factors including the road
that is currently being investigated are normally more relevant. Roads that are
further away have overall less impact. We could change our explanation method
to only collect explanatory factors from the current simulation step, however,
that would already hide where the 53 agents came from. In other scenarios, it
could be even more difficult to find a suitable cut-off point for the “age” of
explanatory factors.

Another example of where aggregated explanations can offer insight is on
the link between nodes 3 and 4. Let us begin with the 3 → 4 direction. At
first glance, it is not clear why a small number of cars take this link. It might be

9 The probability of an open bridge closing was changed from 0.6 to 0.4, and the
probability of a closed bridge opening changed from 0.3 to 0.6.
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because they encounter a closed bridge, and do not wish to wait. The aggregated
explanation (below) shows that for all 3 cars, they actually are happy to wait
for the closed bridge, and originally prefer 3 → 5, but increased traffic on the
bridge (last line, possibly from immediately after it opens) drove them to take
a detour.

We now turn to the 4 → 3 direction, to try and understand why cars might
take this road. We might expect (from examining Fig. 2) that the cars in question
chose to proceed from 1 to 4 due to traffic, and that, having arrived at 4, they
prefer to go via 3, since it is shorter. However, we see from the aggregated
explanation below that traffic did not play a role in the decision. This raises the
question of why the agents took the road from 1 to 4. We also observe that of the
7 cars going from 4 to 3, only 4 came from 1. We therefore examine the precise
paths taken by these 7 cars.

Looking at the seven cars we observe that the routes taken were: 1, 3, 4, 3,
5 (car 57); 1, 3, 4, 3, 2, 5 (cars 18 and 26); 1, 4, 3, 4, 1, 3, 5 (car 29); 1, 3, 1, 2,
1, 4, 3, 2, 5 (cars 25 and 55); and 1, 2, 1, 3, 1, 4, 3, 2, 5 (car 89).

In other words, the explanation (ruling out traffic as the reason for arriving
at 4) has led us to examine the details of seven particular cars, which has allowed
us to find odd (and unrealistic!) behaviour that is produced by the simulation.
The reason for this odd behaviour is that the decision process considers traffic
on the next link only. So, for example, when a car reaches node 3, with the plan
of continuing directly to node 5, it then checks the traffic on the road from 3 to
5. If the traffic is high, then it may end up comparing the length from 3 to 5
directly (with high traffic, so slow), against the path from 3, to 1, then to 3, and
then to 5. But this comparison only considers the traffic on the first link (from 3
back to 1), so, if there is very high traffic on 3-to-5, it might appear as a viable
alternative to going directly from 3 to 5.

Factors for (3, 4):
3 times would_prefer_due_to_route_length([1, 3], [1, 2])
3 times would_prefer_due_to_route_length([3, 4], [3, 2])
3 times would_prefer_due_to_route_length([3, 5], [3, 1])
3 times would_prefer_due_to_route_length([3, 5], [3, 2])
3 times noPlannedRoute
3 times noBridge
3 times notAtDestination
3 times waitForBridges
3 times reach(5)
3 times would_prefer_due_to_traffic([3, 4], [3, 5])

Factors for (4, 3):
7 times noPlannedRoute
7 times noBridge
7 times would_prefer_due_to_route_length([4, 3], [4, 1])
7 times notAtDestination
7 times reach(5)
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7 times would_prefer_due_to_route_length([4, 3], [4, 5])
6 times would_prefer_due_to_route_length([1, 3], [1, 2])
6 times would_prefer_due_to_route_length([3, 5], [3, 1])
6 times would_prefer_due_to_route_length([3, 5], [3, 2])
6 times waitForBridges
6 times would_prefer_due_to_route_length([3, 5], [3, 4])
6 times closedBridge
6 times would_prefer_due_to_route_length([1, 3], [1, 4])

We updated the simulation to address this issue, by improving how traffic
is considered by the decision-making logic. First, each agent was modified to
memorise all the traffic levels it has seen before, updating them with the actual
traffic the agent can see on all incident roads whenever a node is reached. Second,
the .getTraffic action was modified to return the length of the route to the
agent’s destination through a given target node, considering the agent’s complete
traffic knowledge. Having changed the behaviour to be more realistic with respect
to dealing with traffic, we re-ran the simulation, giving the results in Fig. 3. We
see now that agents do not backtrack anymore, which is more realistic. Also the
longest route now includes only 3 roads (1, 3, 2, 5).

Fig. 3. Simulation Results after the fix

It is worth emphasising that the specific lessons about this simulation are
not the interesting thing. The simulation here is an example of how aggregated
explanations can be used to obtain useful (and actionable) insight about aggre-
gate behaviour, at a level that is more detailed than just looking at the numbers.
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For instance, looking at the original simulation we could see that many cars fol-
lowed the path from 3 to 2 to 5, but we did not know whether this was due to
traffic congestion, or due to some cars’ policy of not waiting for a closed bridge.
Additionally, we experienced first-hand how aggregated explanations may point
to undesirable agent behaviour and help to find its origin.

4.2 Question Types

For now, the process is limited to explaining aggregated behaviour that is com-
posed of agents performing similar actions.

In addition to having queries that request an explanation for an action being
performed (e.g. “Why did the agents perform action X?”), we also want to
permit queries that provide a condition (e.g. “Why did the agents perform action
X under condition C?”). This can be handled by filtering (in the first step) to
take into account the condition as well: we just have to filter the set of actions
by checking the condition first.

Finally, we also want to allow queries that are based on a situation rather
than an action, e.g. “Why are agents in situation S?”. This is slightly more
complex (and we do not cover it in detail in this paper). It can be handled by
finding agents that were in the queried state at some point, and for each such
agent, identifying the actions that led to it being in the queried states, and then
requesting an explanation for those actions. Note that different agents might
reach a state S via different actions, and so each agent might be queried with a
different action to be explained. For our example, a question might be “why are
the agents located at node N during steps 4–10?”. Of course, in our scenario it
is obvious that the action to take the road to node N led agents to be at N , so
it is actually this action that is being queried. In other scenarios, it could also
make sense to allow questions related to certain outcomes, if these outcomes can
be associated with specific actions.

The explanation mechanism could also be helpful when trying to explain
emergent behaviour, at least if such a behaviour can be retraced to the responsi-
ble actions. For example, in our simple simulation, we can observe (and explain)
the emergent situation of road congestion.

5 Discussion

We have introduced a method for aggregating action explanations of individual
agents to obtain useful information about their behaviour and outlined a pro-
cess for using the method to gain insight into the behaviour of an agent-based
simulation. Then we demonstrated the approach in the context of a simplified
traffic simulation.

While we have already seen promising results, there are many things left to
do.

First, we want to conduct a human participant evaluation to analyse the
method’s usability and effectiveness, especially regarding lay people who may
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not have a background in simulation and/or agent technology. For this, we will
also need to improve the presentation of aggregated explanations. In particular,
it would be interesting to investigate different presentations of explanations,
e.g. as text, as dialogue, or in a graphical format.

Then, there are a few ways to improve the aggregation method that we
need to investigate. For example, it might pay off to further aggregate or relate
explanatory factors that are similar to each other, either because they were
mentioned in the same explanation, or by the same agent. Also, we have seen that
the relevance of an (aggregated) explanatory factor still depends on the specific
query and we could devise a ranking method beyond (but not without) a factor’s
percentage. We could also investigate extending the explanation generation to
incorporate causal reasoning, given domain knowledge.

Finally, this work only targets aggregated agent behaviour. On the other
hand, there is also behaviour of jointly acting groups, that has to be discovered
and explained in a different way. Integrating explanations for both kinds of
group behaviour will lead to a more comprehensive way of explaining multi-
agent behaviour and agent-based simulations in particular.
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Abstract. Social Simulations are used to study complex systems fea-
turing human actors. This means reproducing real-life situations involv-
ing people in order to explain an observed behavior. However, there are
actually no agent architectures among the most popular platforms for
agent-based simulation enabling to easily model human actors. This sit-
uation leads modelers to implement simple reactive behaviors while the
EROS principle (Enhancing Realism Of Simulation) fosters the use of
psychological and social theory to improve the credibility of such agents.
This paper presents the BEN architecture (Behavior with Emotions and
Norms) that uses cognitive, affective and social dimensions for the behav-
ior of social agents. This agent architecture has been implemented in the
GAMA platform so it may be used by a large audience to model agents
with a high level explainable behavior. This architecture is used on an
evacuation case, showing how it creates believable behaviors in a real
case scenario.

Keywords: Social simulation · Agent architecture · Cognition ·
Emotions · Evacuation

1 Introduction

These last years, agent-based simulation has been used to study complex systems
featuring human actors; the community is now speaking of social simulation [19].
The main goal is to reproduce real life situations involving hundreds or thousands
of simulated humans in order to better understand interactions leading to an
observed result.

To be as close as possible to case studied, social simulations have to integrate
social agents with a behavior as close as possible to the human behavior. The
creation of believable social agents implies the reproduction of complex processes
simulating the human reasoning [44]. Such systems lead to a closer behavior to
the one expected. However, the obtained behavior may be hard to explain and
to express with high level concepts.
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This is the meaning of the KISS (Keep It Simple, Stupid) principle [6] which
invites modelers to keep a simple behavior model so it can be explainable by sim-
ple rules at any moment in the simulation. This principle has been discussed over
the years, leading to the KIDS (Keep It Descriptive, Stupid) principle [18] that
favors more descriptive models to gain realism and then the EROS (Enhancing
Realism Of Simulation) principle [22] which calls for the use of cognitive, affec-
tive and social dimensions to improve the credibility of social agents. Therefore,
the problem is to model realistic simulated humans with an explainable behavior
at a high level.

To tackle this issue, this paper presents BEN (Behavior with Emotions and
Norms), a modular agent architecture integrating cognition, emotions, emotional
contagion, personality, norms and social relations. Each of these components
relies on psychological or social theories, helping a modeler to improve the credi-
bility of simulated humans and ensuring an explainable behavior with high level
concepts [24].

This architecture is implemented and integrated within GAMA [48], a mod-
eling and simulation platform aiming to be used by a large audience. The goal
is to create a tool that may even be used by modelers who are not expert in
programming, without loosing the expressivity for the behavior developed. This
implementation is explained in this paper through the example case of the evac-
uation of a nightclub, showing it succeeds to handle a real-life scenario and still
provide a behavior with a high degree of explainability.

This paper is structured as follows: Sect. 2 reviews existing works to cre-
ate social agents with a cognitive behavior, an emotional engine or social rela-
tions but also the existing agent architecture in popular simulation platforms.
In Sect. 3, a formalism is proposed to deal with the mental state of the agent
in terms of cognition, emotion and social relations. Section 4 describes the BEN
architecture which relies on the aforementioned formalism. Section 5 presents
the implementation of BEN through an example to illustrate how it can be used
on a model of evacuation to create an explainable and believable behavior for
agents simulating humans. Finally, Sect. 6 serves as a conclusion.

2 Related Works

Creating a believable social agent with an explainable behavior may be complex
[29]. To ease this process, simulation platforms and behavior architecture have
been developed by the community. These existing works are presented in this
section.

2.1 Frameworks and Platforms for Simulations

Among the various agent-based platforms [27], some like JACK [21] or Jadex
[38] implement the BDI (Belief Desire Intention) [10] paradigm, giving a cog-
nitive behavior to agents, based on modal logic [15]. The addition of cognition
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helps creating more believable agents [2] but these platforms are not suitable for
thousands of agents required in simulation.

To overcome this problem, Sing and Padgham [42] propose to connect a sim-
ulation platform to an existing BDI framework (like JACK or Jadex) and, with
the same idea [37], the Matsim platform [8] has been linked with the GORITE
BDI framework [40]. These works require a high level in computer science, mak-
ing it difficult to use by modelers with low level programming skills.

Frameworks like Repast [16] or MASON [31] are dedicated simulations tools
which improve existing programming languages to ease the development of agent-
based simulations. Agents are described by Java classes and the framework is
used to describe the scheduling of the execution of all the classes and the out-
put of the simulation. This means these softwares do not offer specific agent
architecture to control or to explain the agents’ behavior.

On the other hand, simulation platforms like Netlogo [50] or GAMA [48] are
dedicated softwares with their own programming language, their own interface
and their own interpreter and compiler. They are made to be easy to use by
people with low level in programming skills and they can handle thousands of
agents during simulations, making them usable for the definition of explainable
models made by experts of the studied fields.

By default, these platform do not propose any particular architecture for
the agent behavior: modelers have to define these behaviors with “if-then-else”
rules. However, there exist plugins, for NetLogo [41] and for GAMA [47], to
use agent architectures based on the BDI paradigm in order to create simulated
humans with a more complex and more believable behavior. They both provide
the agents with high level concepts such as beliefs and intentions and GAMA’s
plugin goes beyond, offering a reasoning engine, leading agents to make decisions
based on the perception of its environment.

2.2 Agent Architectures for Social Simulations

Using behavioral architectures enables modelers to define more easily credible
and explainable social agents as these architectures offer high level concepts from
works in psychology and sociology for the decision making. Among the numerous
agent architectures [7], some of the most known are presented in this section.

SOAR [28] and ACT-R [13] are two cognitive architectures, grounded on
works from psychology. Agents have access to a long and a short term memory,
making a decision based on the previous experiments in a given context. These
approaches are more complex than the BDI paradigm, making the decision mak-
ing process more credible. However, they require heavy computation time, which
makes them less pertinent for social simulations involving thousand simulated
actors.

CLARION [45] represents another proposition of cognitive architecture. The
agent’s reasoning is divided between four sub-systems, each one manipulating
explicit and implicit elements to make a decision in a given context. To our
knowledge, CLARION is still a theoretical architecture which has not been
implemented in any simulation platform.
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Another approach consists in building the reasoning engine around the emo-
tions of the agents. For example, EMA [20] is based on the cognitive appraisal
theory of emotion [4] developed by Smith and Lazarus [43] while DETT [49] is
based on the OCC [36] theory of emotions. Both those systems creates emotions
by assessing the perceptions of the environment and then infer a behavior from
the emotional state of the agent.

eBDI [23] relies on OCC theory too but it also uses a BDI architecture to
make decisions. This means emotions are created through perceptions and then
act upon beliefs, desires and intentions. Finally, these modified mental states
are used to make a decision. This proposition has not been yet integrated to a
simulation platform.

Finally, some researchers propose to rely on the social context of the agent
to describe its behavior: this is done with normative architectures. EMIL-A [3]
and NoA [26] describe the agent’s behavior with social norms, obligations and
sanctions. In other words, an agent makes a decision depending on the state of
the normative system at the level of a society of agents.

BOID [12] and BRIDGE [17] propose to combine a normative architecture
with a BDI paradigm, leading the agent to take into account the social system
when making a decision. However, contrary to EMIL-A and NoA, the agent
has personal beliefs, desires and intention, creating a more heterogeneous and
credible behavior. But, to our knowledge, these architectures have not been
implemented in simulation platform in order to deal with thousand of simulated
actors.

2.3 Synthesis

To comply with the EROS principle, modelers need architectures proposing as
much psychological and social dimensions as possible. Currently, as shown in
this section, there does not exists a single architecture proposing at the same
time, cognition, affective dimensions and social dimension for simulation. The
only attempts, to our knowledge, to combine more than two traits have used
the notion of personality, to combine cognition with emotions and emotional
contagion [30] or to combine cognition with emotions and social relations [35].

In this paper, we tackle this issue by proposing BEN (Behavior with Emotions
and Norms), an agent architecture featuring cognition, emotions, personality,
emotional contagion, social relations and norm management. To implement it, we
have based our work on the existing cognitive architecture provided by GAMA.
To ease the use of BEN, we have implemented it using the principles of GAMA
that has proved its ease of use [32,39] thanks to its modeling language GAML
that we extended.

3 Formalization of Mental States

With the BEN architecture, an agent manipulates cognitive mental states, emo-
tions and social relations to make a decision. These notions, and the formalism
used to represent them, are presented in this section.
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3.1 Representing the World with Predicates

Predicates are used to unify the representation of the information from the world
from the agent’s point of view. Pj(V) represents a general predicate with the
following elements:

– P: the identifier of the predicate.
– j: the agent causing the information.
– V: a set of values stored by the predicate.

Depending on the context, this general representation may change. Pj(V)
represents an information with no particular value attached, P(V) represents
an information caused by no particular agent and P stands for an information
with no particular value, caused by no particular agent.

For example, the information there is a fire in the environment is represented
by the predicate fire. If this fire is caused by agent Bob, it is represented by
fireBob. Finally, if this fire caused by Bob is at a location (x;y), this information
is represented by fireBob(location :: (x,y)).

3.2 Reasoning According to Cognitive Mental States

With BEN, an agent has cognitive mental states representing its thoughts on
the world. Mi(PMEm,Val,Li) represents a general cognitive mental state pos-
sessed by agent i with the following elements:

– M: the modality, indicating the type of the cognitive mental state (e.g. a
belief).

– PMEm: the object of the cognitive mental state. It could be a predicate (P),
another cognitive mental state (M) or an emotion (Em).

– Val: a real value which meaning depends on the modality. It enables to com-
pare two cognitive mental states with the same modality and the same object.

– Li: a lifetime value indicating how long the cognitive mental state stays in
the agent’s knowledge.

In BEN, cognition is based on the BDI model [10], stating an agent needs
beliefs, desires and intentions. Also, to link cognition with affective and social
dimensions, BEN features 6 different modalities:

– Belief: represents what the agent beliefs about the world. The meaning of
the attached value is the strength given by the agent to the belief.

– Uncertainty: represents an uncertain information about the world. The
meaning of the attached value is the importance given to that uncertainty
by the agent.

– Desire: represents a state of the world the agent want to reach. The meaning
of the attached value is the priority of this desire, compared to other desires.

– Intention: represent a state of the world the agent is willing to achieve. The
meaning of the attached value is the priority of this intention, compared to
other intentions.
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– Ideal: represents an information which is socially appraised by the agent.
The attached value is a praiseworthiness value given by the agent.

– Obligation: represents a state of the world the agent ought to reach. The
meaning of the attached value is the priority of this obligation, compared to
other obligations.

3.3 Representing Emotions and Social Relations

Emotions in BEN are based on the OCC theory [36] which means emotions are
valued answers to the appraisal of a situation. Emi(P, Ag, I, De) represent an
emotion possessed by agent i with the following elements:

– Em: the name of the emotion.
– P: the predicate about which the emotion is felt.
– Ag: the agent responsible for the emotion.
– I: the intensity, positive or null, of the emotion.
– De: the decay value for the emotion’s intensity.

This representation enables the agent to have multiple emotions at the same
time, all on different predicates. Also, this representation can be adapted, with
Emi(P, Ag) representing an emotion with no particular intensity nor decay
value.

Finally, each agent may store social relations with other agents simulating
human actors. These relations are based on the work of Svennevig [46] who
identifies four minimal dimensions to describe a social relation between two
people. In BEN, Ri,j(L,D,S,F,T) represents a social relation, from agent i
towards agent j with the following elements:

– R: the identifier of the social relation.
– L: a real value between −1 and 1 standing for the degree of liking. A value

of −1 indicates agent j is hated, a value of 1 indicates agent j is liked.
– D: a real value between −1 and 1 standing for the degree of dominance. A

value of −1 indicates agent j is dominating, a value of 1 indicates agent j is
dominated.

– S: a real value between 0 and 1 standing for the degree of solidarity. A value
of 0 indicates no solidarity with agent j, a value of 1 indicates a complete
solidarity with agent j.

– F: a real value between 0 and 1 standing for the degree of familiarity. A value
of 0 indicates no familiarity with agent j, a value of 1 indicates a complete
familiarity with agent j.

– T: a real value between −1 and 1 standing for the degree of trust. A value of
−1 indicates mistrust against agent j, a value of 1 indicates a complete trust
towards agent j.

With this definition, social relations do not have to be symmetric; between
two agents i and j, Ri,j(L,D,S,F,T) is not obviously equal to Rj,i(L,D,S,F,T).
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4 An Agent Architecture with Cognitive, Affective and
Social Dimensions

The BEN architecture represents the main contribution of this article. In this
section, we explain how an agent using BEN makes a decision with cognition,
emotions, emotional contagion, personality, social relations and norms. With
these dimensions, an agent simulating an actor may react to a change in the
environment and still explain its behavior with high level concepts.

4.1 Global Presentation of the Architecture

Figure 1 represents the theoretical BEN architecture, providing cognitive, affec-
tive and social dimensions to agents simulating human actors. It is made up
of four modules, each composed of several processes, communicating with the
agent’s knowledge, all of this seating on the agent’s personality.
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Making decision
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Emotional Contagion

Creating Social 
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Execute plan/norm
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Fig. 1. The BEN architecture (Color figure)

The personality component is based on the OCEAN [33] theory which defines
fives parameters (Openness, Consciousness, Extroversion, Agreeableness, Neuro-
tism) that are sufficient to represent a personality. To ease the use of BEN, these
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personality traits are the only parameter a modeler may access; they are used to
compute all the other parameters needed by the various processes: probability
to remove a plan or an intention unfulfilled in the cognitive part, charisma and
emotional receptivity for the emotional contagion, initial intensity and decay for
emotions created by the engine, update values of social relations obtained with
the social engine, and obedience for the normative engine.

The agent’s knowledge is composed by cognitive bases, containing cognitive
mental states as formalized in section, an emotional base, a social base and a
base of norms. This knowledge may evolve through the simulation, which is not
the case of plans for the cognitive engine and sanctions for the normative engine,
which are stored in dedicated bases, out of the agent’s knowledge, as seen on
Fig. 1.

Each module, and each process of each module, may be mandatory (in plain
line on Fig. 1) or optional (in dash line on Fig. 1); the optional modules and
processes may be deactivated by modelers if not necessary in the case studied.
For example, if the social engine is not useful from the modeler’s point of view,
this process is not used in the definition of the agent’s behavior as it is an optional
process.

Finally, some processes are executed automatically (in blue on Fig. 1) and
some others need to be defined manually by the modeler (in pink on Fig. 1).
This manual definition enables the architecture to be adapted to each case study
while the automatic processes ease the use of BEN as the modeler does not need
to be an expert in emotional creation or social relations update.

4.2 Making Decisions in an Evolving Environment

On Fig. 1, every module has a number, indicating its order during the execution.
Every time an agent is activated, it perceives the environment, it manages its
knowledge based on the new perceptions, it makes a decisions and finally it gives
a temporal dynamism to its knowledge. This section explains briefly how each
process of each module works, more details can be found in a previous work [9].

Perceptions. The First step in BEN, corresponding to the module number 1
on Fig. 1, consists in perceiving the environment. This step is used to make a
link between the world and the agent’s knowledge, by creating beliefs and uncer-
tainties on information from the environment, by defining emotional contagion
with other agents or by creating new social relations. These three processes are
defined manually which means the modeller has to indicate what information is
transformed as a predicate and which cognitive mental state is build upon that
predicate, which emotion is subjected to an emotional contagion and what is the
initial value for each dimension of a new social relation. The last process of this
module enables an agent to execute sanctions during the enforcement done on
the other agents perceived.

Adding a belief is an important process in BEN as it triggers different rules.
Precisely, adding a belief BeliefA(X):
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– removes belief BeliefA(notX).
– removes intention IntentionA(X).
– removes desire DesireA(X) if intention IntentionA(X) has just been

removed.
– removes uncertainty UncertaintyA(X) or UncertaintyA(notX).
– removes obligation ObligationA(X).

With the same principle, adding uncertainty UncertaintyA(X):

– removes uncertainty UncertaintyA(notX).
– removes belief BeliefA(X) or BeliefA(notX)

All these processes are defined inside a perception, which may be parameter-
ized. A modeller indicates a distance of perception or a geometry inside which
the perception is done, but also specifies which agents are perceived. As it is, this
module and all its processes may adapt to any case study in social simulation.

Managing Knowledge. The second step of BEN, corresponding to the module
number 2 on Fig. 1, enables the agent to manage its knowledge after the percep-
tion and before making decision. In this phase, modelers may define inference
rules, which enable to create or remove any cognitive mental state depending on
the actual status of the agent’s knowledge. For example, a modeler may define
that an agent has a new desire DesireA(Y ) if this agent has a belief BeliefA(X).
On the same model, laws may be defined to create obligations if the obedience
value of the agent, computed from its personality, is great enough.

During this second step, an emotional engine creates emotions based on the
agent’s knowledge. This process is done according to the OCC theory [36] and
its formalism with the BDI model [1]. For example, an emotion of joy about a

predicate P is created according to the following rule: Joyi(Pj , j)
def= Beliefi(Pj)

& Desirei(P). The complete process and all the rules to create 20 emotions
automatically, with no intervention from the modeler, are detailed in a previous
work [9].

Finally, a social engine may be executed during this second step of the archi-
tecture. It updates the social relation with the other agents perceived, depend-
ing on the knowledge previously acquired. All this process and the equations to
compute automatically the new value for each dimension of a social relation are
explained in a previous work [9].

Making Decision. The third step of BEN, corresponding to the module num-
ber 3 on Fig. 1, is the only mandatory part. This module enables the agent to
make decisions and then execute an action, all of this through a cognitive engine
over which a normative engine may be added. It is executed automatically, with
no need of intervention from the modeler.

The cognitive architecture is based on the BDI model [10]: the agent has
intentions based on its desires and one of the intentions as a current intention.
The modeler defines plans of action that indicates what action an agent has to



156 M. Bourgais et al.

do for a particular current intention in a given context; the plan chosen is kept
as the current plan. The normative engine works the same way as the cognitive
engine, with obligations as desires and norms as plans. The only difference is an
obedience value that can be added to norms and obligations. More details may
be found in previous works [9].

Temporal Dynamics. The final part of the architecture, corresponding to the
module number 4 on Fig. 1, gives a temporal dynamic to the agent’s behavior.
This is done automatically by degrading the cognitive mental states and the
emotions and by updating the status of each norm.

The degradation of cognitive mental states decreases the lifetime of each
cognitive mental state stored by the agent. This mechanism enables an agent to
forget, after a certain time, a belief, a desire, etc. The degradation of emotions
consists in subtracting the decay value of each emotion to each intensity. With
this process, an emotion fades away, unless it is created again, for example with
the emotional engine or through the emotional contagion process.

Finally, the last process updates the status of each norm, indicating if it was
usable in the current context, and in the case it was usable, has it been used
or not by the agent. This system enables to ease the enforcement of norms in
a later perception, as each norm indicates its status instead of computing this
status in another context.

5 Simulating the Evacuation of a Nightclub

The architecture defined in Sect. 4 has been implemented in the modeling and
simulation platform GAMA [48], extending the GAML programming language to
help modelers define social agents with cognitive, affective and social dimensions
to express their behavior. This implementation is used on the example case of
an evacuation of a nightclub in fire, as detailed in this section.

5.1 Presentation of the Example Case

The 27th of January 2013, the Kiss Nightclub in Santa Maria, Rio Grande do
Sul state is Brazil, was set in fire at the end of a show lead by a local music band.
The ceiling caught fire because of fireworks, emitting toxic smokes which lead
to the death of 242 people. The official investigation put light on various factors
which aggravated the tragedy: there were between 1200 and 1400 people in the
building that could normally handle 641 people, there was only one entrance/exit
door, there was no smoke detector nor alarms and finally, the exit signs were
showing the direction of the restrooms. The investigation also shows that most
of the deceases were due to asphyxia, near the restrooms [5].

Our goal here is to reproduce the behavior of people caught in this tragedy in
the most credible way possible. In other words, we are using the BEN architecture
to create the agents’ behaviors in order to get a result as close as possible as
what happened in this nightclub during the fire.
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5.2 Modeling the Behavior of Human Actors with BEN

The initial agent’s knowledge, at the start of the simulation, can be divided
into three types: beliefs about the world, initial desires and social relations with
friends. Also, each agent has a personality. Table 1 indicates how few of these
initial knowledge are formalized with BEN.

Table 1. Example of agent’s initial knowledge

Statement Formalisation Description

A belief on the
exact position of
the exit door

Beliefi(exitDoor, lifetime1) Each agent has a belief about
the precise location of the exit
door with a lifetime value at
lifetime1

A desire there is
no fire

Desirei(notF ire, 1.0) Each agent wish there is no fire
in the nightclub with a priority
of 1.0. This desire cannot lead
to an action (no action plan are
defined to answer it)

A relation of
friendship with
another agent

Ri,j(L,D, S, F, T ) Each agent i is likely to have a
social relation with agent j,
representing its friend

The first step of BEN is the perception of the environment. We need to define
what an agent perceives and how it affects its knowledge. Here are examples of
the agent’s perceptions:

– Perceiving the exit door updates the beliefs related to it.
– Perceiving the fire adds the belief there is a fire.
– Perceiving the smoke adds the belief about the level of smoke perceived.
– Perceiving other agents enables to create social relations with them. An emo-

tional contagion about the fear of a fire is also defined.

Once the agent is up to date with its environment, its overall knowledge has
to adapt to what it has perceived. This is done with the definition of inference
rules and laws:

– A law creates the obligation to follow the exit signs if there is a reasonable
doubt (modeled by the obedience value attached to the law and the quantity
of smoke perceived) of a catastrophe.

– An inference rule adds the desire to flee if the agent has a belief there is fire.
– An inference rule adds an uncertainty there is a fire if the agent has a belief

there is smoke.
– An inference rule adds the desire to flee if the agent has a fear emotion about

the fire with an intensity greater than a given threshold.
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With the execution of inference rules and laws, each agent creates emotions
with the emotional engine. In this case, the presence of an uncertainty about
the fire (added through the inference rule concerning the belief about smoke)
with the initial desire that there is no fire produces an emotion of fear, which
intensity is computed depending on the quantity of smoke perceived.

Once the agent has the desire to flee (because it perceived the fire or its
fear of a fire had an intensity great enough), it needs action plans and norms
to indicate what it has to do. Table 2 shows the definition of some action plans
and norms used by the agent to answer its intention to flee, depending of the
context it perceives.

Table 2. Action plans and norms answering the fleeing intention

Conditions Actions Commentaries

The agent has a good
visibility and has a belief
on the exact location of
the exit door

The agent runs to the exit
door

In this plan, the agent runs
to the exit door following
the shortest path

The agent has a good
visibility and has no
belief about the location
of the door

The agent follows the
agent in its field of view
with the highest trust
value among its social
relations

This norm works with the
trust value of social
relations created during the
simulation

The agent has a bad
visibility and has the
obligation to follow signs

The agent goes to the
restrooms

In this norm, the agent
comply with the law that
indicates to follow exit signs

The agent has a bad
visibility and has a belief
exit signs are wrong

The agent moves
randomly

In this plan, the agent
moves randomly in the
smoke

The social relation defined with a friend may also be used to define plans to
help one’s friend if it is lost in smoke. This plan consists in finding the friend
and telling him the location of the exit door.

As the situation evolves during the simulation, an agent may change its
current plan. For example, if an agent leaves the smoke area while fleeing to the
restroom, it may perceive the exit, and go there instead of following the signs.

The complete model can be found at this address: https://github.com/
mathieuBourgais/ExempleThese.

5.3 Results and Discussion

At the start of the simulation, agents are placed randomly in the recreated Kiss
Nightclub with a personality initialised by a Gaussian distribution centered on
0.5 and with a standard deviation of 0.12 for each dimension. The spread of

https://github.com/mathieuBourgais/ExempleThese
https://github.com/mathieuBourgais/ExempleThese
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the smoke is modeled according to an official report from the french government
[14]; an agent is considered dead after 50 s in the heavy smoke.

Figure 2 shows a visual result of the simulation where the black lines repre-
sent the walls of the nightclub, the grey squares represent the smoke and the
triangles represent the simulated actors. The color of each triangle indicates the
plan followed. A video of the simulation can be found on the following address:
https://github.com/mathieuBourgais/ExempleThese.

Fig. 2. Simulation of the Kiss Nightclub’s evacuation

As the exact number of people in the nightclub is not known, we tested three
cases: 1200 people at the beginning, 1300 people at the beginning and 1400 people
at the beginning. The statistical results obtained in Table 3 are computed from
10 simulations for each scenario.

Table 3. Number of agents dead in the simulation of the Kiss Nightclub fire

Number of agents 1200 1300 1400

Mean value 230.2 237.7 249.4

Standard deviation 20.1 15.6 32.6

https://github.com/mathieuBourgais/ExempleThese
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Statistical results indicate our model is well calibrated to reproduce the real
life case where 242 people died. However, the main result concerns the explain-
ability and the expressivity of the model. The video of the simulation shows var-
ious behavior patterns which may be expressed with high level concepts thanks
to BEN.

For example, a lot of agents leave the club at the beginning of the simulation
because they directly perceived the fire. This behavior seems corresponding to
a real life case where people seeing a fire in a nightclub would flee. On the other
hand, agents which do not perceive the smoke or the fire are fleeing later. During
that time, they forgot the location of the exit so they had to follow the official
exit signs, leading them, in this case, to the restrooms.

Thanks to the BEN architecture, we were able to translate a behavior
expressed in common language into an actual behavior for simulated actors.
At any moment, it is possible to pause the simulation to inspect the behavior
of an agent; this behavior will be expressed in terms of cognitive mental states,
emotions, social relations, norms and plans which is, from our point of view, eas-
ier to read and understand than equations. This point is supported by the fact
that BEN and its cognitive part relies on folk psychology [34]. Also, some works
[11,25] have shown that using BDI and emotions helps explaining the agents’
behavior.

6 Conclusion

This article presents the BEN architecture, which enables to model agents sim-
ulating human actors with cognitive, affective and social dimensions. All the
features of the architecture are based on theories coming from psychology and
social sciences and are formalised in the same frame to interact between each
other without being dependent. This allows the architecture to be domain inde-
pendent and modular, so it can be used and adapted on different contexts.

This architecture is currently implemented in the modeling and simulation
platform GAMA and this implementation is used, in this article, on the case
study of the evacuation of a nightclub in fire. This example shows BEN achieves
to produce a complex and credible behavior but maintaining its high level
explainability.
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Abstract. The paper addresses the problem of explaining failures that
happened during the execution of Temporal Multiagent Plans (TMAPs),
namely MAPs that contain both logic and temporal constraints about
the action conditions and effects. We focus particularly on computing
explanations that help the user figure out how failures in the execu-
tion of one or more actions propagated to later actions. To this end,
we define a model that enriches knowledge about the nominal execu-
tion of the actions with knowledge about (faulty) execution modes. We
present an algorithm for computing diagnoses of TMAPs execution fail-
ures, where each diagnosis identifies the actions that executed in a faulty
mode, and those that failed instead because of the propagation of other
failures. Diagnoses are then integrated with temporal explanations, that
detail what happened during the plan execution by specifying temporal
relations between the relevant events.

Keywords: Temporal Multiagent Plans · Model-based diagnosis ·
SMT

1 Introduction

Multiagent plans (MAPs) are an efficient way for accomplishing complex goals.
The underlying principle is to decompose a given complex goal into subgoals, and
then organize the activities of a team of agents so as that each agent achieves a
subgoal autonomously while coordinating with others. Plan execution, however,
is not always straightforward. The actual execution of actions, in fact, can be
affected by failures. When a failure occurs, detecting and diagnosing it is of
primary importance in order to resume the nominal execution. As pointed out
in [2], in fact, when the behavior of a system is not explained, a human user
makes up her own explanation, that not necessarily reflects the internal stance
of the system.

The diagnosis of the execution of a multiagent plan (MAP) has been
addressed in a number of works (see e.g., [9–11]), proposing different notions
of plan diagnosis and different diagnostic methodologies. These works, however,
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do not model time explicitly, but only implicitly by assuming a sequence of iden-
tical time steps at which atomic actions are performed. In these approaches, thus,
it is not possible to model durative actions [5]; however, in real world scenarios,
action duration (either within a nominal range, or with unexpected delays) can
strongly affect the success of the agent’s plan and of its interactions with others.

Other works have addressed the diagnosis of delayed actions in MAPs [12,13,
16]. Their objective is to provide the user with explanations of failures consisting
only of actions delays; whereas, the logical effects of action failures (i.e., missing
logical values that should hold as a consequence of an action) are not taken
into consideration. This restriction limits the applicability of the methods by
hindering their ability to handle cases of fault propagation from an action to
another one due to a missing effect.

This paper, which significantly expands our previous work [17], contributes
with a comprehensive framework addressing the diagnosis of a MAP execution
by taking into account both missing effects and temporal deviations. We adopt
a consistency-based notion of diagnosis [15]: a MAP diagnosis is a subset of
actions whose non-nominal behavior is consistent with the observations received
so far. We then argue that, in a setting with agents interactions and durative
actions, such diagnoses may not be informative enough for helping a human user
figure out what happened during the plan execution. As a remedy, we enrich
diagnoses with temporal explanations that clarify how primary action failures
may have affected other actions in the MAP, even those assigned to different
agents. Figure 1 outlines the loop of inferences we aim at. This loop is substan-
tially grounded on a consistency-based notion of diagnosis. Intuitively, a MAP
P is properly encoded into a model SP,H which takes into account an initial
hypothesis H of nominal behavior. The model is therefore used for detecting
discrepancies between the expected behavior of the whole P with the available
observations about the actual execution of the plan. In case a discrepancy is
found, a diagnosis task is activated with the aim of detecting a number of alter-
native consistency-based diagnoses. To increase the informative power of such
diagnoses, they are complemented with a set of temporal explanations. Finally,
a human supervisor has the chance to evaluate the alternative explanations and
select the one to be chosen as the new current hypothesis H. Although this pre-
sentation and selection phase is not addressed in this paper (as we underline in
the picture by using dashed lines), we deem that the synthesis of such temporal
explanations is a fundamental step to increase users’ awareness.

Specifically, we propose a methodology to solve a diagnostic problem by infer-
ring the set of all the preferred diagnoses with minimal rank [6], i.e., with the
highest (order-of-magnitude) likelihood. Our approach is based on a single, cen-
tralized diagnostic reasoner that must diagnose the behavior of a multiagent
system. Since we deal with both logic and temporal constraints to model faulty
action modes, the computation of all the preferred diagnoses is made by exploit-
ing a Satisfiability Modulo Theories (SMT) solver, that is able to handle both
kinds of conditions. We model propagation by considering literals that are shared
among the actions (i.e., produced as an effect by an action, and consumed as a
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Fig. 1. The outline of the proposed TMAP diagnosis loop.

precondition by another action, even of a different agent). These shared literals
can be considered as resources that are dynamically generated, and consumed,
during the execution. To explain an action failure as an indirect consequence
of a previous failure, thus, we focus on the events that affect the values of the
literals shared by the two actions.

To the best of our knowledge, our proposal is the first one dealing with
both temporal and logic aspects in the diagnosis of multiagent plans. The most
similar work we are aware of is [4], where, however, the authors consider only
plans with a limited number of discrete time steps amenable to a SAT encoding,
and concentrate on conflicts among agents in the use of resources (e.g., road
intersections).

The paper is organized as follows. In the next section we formalize the notion
of Temporal Multi-Agent Plans (TMAPs). In Sect. 3 we introduce the Plan Exe-
cution Failure (PEF) diagnostic problem and the notion of preferred diagnosis,
and in Sect. 4 we motivate and formally define the (temporal) explanations of
diagnoses. In Sects. 5 and 6 we first describe how the relevant information of a
PEF problem can be encoded in the input language of a SMT solver, and then
we discuss how the PEF problem can be solved with a conflict-based search
algorithm, and how explanations of a diagnosis can be computed. In Sect. 7,
before conclusions, we discuss the experimental results we have obtained with
an implementation of the proposed approach.

2 Temporal Multiagent Plans

We formalize a Temporal Multiagent Plan (TMAP) P as 〈T,A,O,CL,M〉:
– T is the team of cooperating agents ag1, ag2, . . .
– A is the set of action instances ac1, ac2, . . . included in the plan, each of which

is assigned to a specific agent agent(aci);
– O is a set of order constraints, that specifies a total order relation over the

actions of each agent ag ∈ T ; each pair 〈ac, ac′〉 ∈ O, ac, ac′ ∈ A, agent(ac) =
agent(ac′) means that ac is the predecessor of ac′, and ac′ is the successor of
ac;
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– CL is the set of causal links between an action ac that produces a literal R
(i.e., has ¬R as pre-condition and R as effect) and another action ac′ that
consumes the literal R (i.e., has R as pre-condition and ¬R as effect); in
general agent(ac) can be different from agent(ac′); in such a case we say that
R is a shared literal;

– M is the set of all the possible behavioral modes that can be associated with
the action instances in A. In particular, M(ac) denotes the set of all modes
associated with instance ac ∈ A. Each mode m ∈ M(ac) is a tuple of the
form 〈label, pre, eff, range, rank〉:

• label is the mode name;
• pre and eff are sets of grounded literals: pre is the pre-condition for the

execution of ac in mode m; whereas, eff is the set of effects obtained by
performing ac in mode m1;

• range is an interval of time corresponding to the possible durations of
the action when it behaves in mode m;

• rank is a non-negative integer value representing the order-of-magnitude
probability of the mode [6]: lower ranks correspond to higher probabilities.

Set M(ac) must contain at least one distinguished mode N (nominal) with
rank 0. Ranks are sometimes also named levels of surprise, indicating how
much surprising is an event for an involved operator. Therefore, they can be
usually specified by a human expert instead of learned from data that may
be unavailable.

We have omitted concurrency and mutual-exclusion constraints from this defi-
nition in order to avoid excessive complexity and keep our focus on diagnosis.
While the causal links in CL, as we defined it, cannot capture all the forms of
mutual exclusion, we shall see that implicit mutex constraints play an important
role in agents interactions through shared literals. Concurrency and other forms
of mutual exclusion, e.g., the use of a resource that has a single instance, could
be easily accommodated in our framework.

If we assume that all the actions will be executed in the N mode, a TMAP
can be interpreted as a flexible schedule of the plan [14], that guarantees that
all the causal links are respected and all the plan actions are smoothly executed.
However, the TMAP also contains fundamental information associated with the
possible actions failures. In particular, modes different from N are not used for
the planning purpose, but for the diagnostic one; such modes allow actions to
obtain different effects from the nominal, expected ones.

Example 1. As an example TMAP P , let us consider a case with four agents:
T = {ag1, ag2, ag3, ag4} (see Fig. 2). The set of actions is A = {ac11, . . . , ac44},
with order relations O and (nominal) causal links CL as shown in the figure,
respectively, by the solid and dashed arrows.

Now, we assume that the fifteen actions included in MAP P are instances
of just three types of actions: move, load, and put. Intuitively, in the TMAP in

1 For the sake of discussion, we assume that all modes M(ac) of an action ac have the
same preconditions pre.
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ag1:

ag2:

ag3:

ag4:

ac11

load(o, loc1)

ac12

move(loc1,loc2)

ac13

put(o,loc2)

ac21
move(loc3, loc2)

ac22
load(o, loc2)

ac23

move(loc2,loc4)

ac24

put(o, loc4)

ac31
move(loc5,loc4)

ac32
load(o,loc4)

ac33

move(loc4,loc2)

ac34

put(o,loc2)

ac41
move(loc7, loc6)

ac42
move(loc6, loc5)

ac43
move(loc5, loc2)

ac44
load(o, loc2)

Fig. 2. An example TMAP.

Fig. 2, the four agents have to cooperate for moving an object o from location
loc1 to location loc2 and then loc4, and then back to loc2 again. For instance, ag1
moves object o by loading it in loc1, and carrying it to location loc2. Note the
nominal causal link between ac13 and ac22, meaning that in a nominal execution
of the plan ag2 will load block o from loc2 after it has been moved there by ag1.

The table in Fig. 3 shows the modes M(ac) of each action type, with associ-
ated label, pre- and post-conditions, range, and rank.

act pre m post range rank

move(ag,p1,p2) at(ag,p1)

N at(ag,p2) [1,3) 0
F1 at(ag,p2) [3,10) 1
F2 at(ag,p2) [10,25] 2
F3 ∅ [10,25] 3

load(ag,p,o)
at(ag,p),
at(o,p),
holds(ag,∅)

N ¬at(o,p),
holds(ag,o)

[1,2) 0

F1 ¬at(o,p),
holds(ag,o)

[2,10) 1

F2 ∅ [10,25] 2

put(ag,p,o)
at(ag,p),
holds(ag,o)

N at(o,p),
¬holds(ag,o)

[1,2) 0

F1 at(o,p),
¬holds(ag,o)

[2,10) 1

F2 ∅ [10,25] 2

Fig. 3. Example modes.

For instance, in nominal mode (N), a move(ag, p1, p2) requires the agent to
be in place p1, causes the agent to arrive in place p2, and has an execution time
in the interval [1, 3). The rank is 0, meaning that the N mode is preferred (i.e.,
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the most likely). In mode F3, the action has an execution time in the interval
[10, 25], a rank 3, and leaves the agent in p1. Similar modes and time intervals
are associated with the load and put actions. Of course, parameter o in load and
put represents an object that can be manipulated by multiple agents during the
TMAP execution.

It is important to note that, for all action types, the fault modes have the
same pre-conditions of the N mode (but different effects, at least in terms of
duration). When such common pre-conditions are not satisfied, we assume a
special mode FSKIP (failure propagation). This mode denotes that the action
was skipped (i.e., it never started). The set of the effects of FSKIP is therefore
empty, and the action duration is 0. Also the rank is 0 because it represents
a secondary failure, and hence does not contribute to the rank of the overall
diagnosis. An action in FSKIP mode does not have direct effects on the world,
but may have indirect effects on plan execution since some of its missing effects
could be preconditions for subsequent actions.

3 Plan Execution Failure Problem

Timed Observations. We define a timed observation as a pair 〈e, t〉, where e is
the observed event, and t is the time when e occurred. In our TMAP framework,
an observable event can be a single ground literal, possibly with a negative
polarity. For instance, at(ag1, p1) and ¬at(ag1, p1) are two alternative observable
events. Of course, we assume that observations are reliable and consistent (i.e.,
the same literal does not appear with both polarities at the same time). During
the execution of a plan, only a few of these events will be observed (due to partial
observability).

Plan Execution Failure (PEF) Problem. It is important to note that the
agents share the same environment and resources, and cooperate with each other
by exchanging services: the effects brought about by an agent may be the precon-
ditions for the actions of another agent. In principle, therefore, the misbehavior
of an agent could affect its later activities as well as other agents’ activities.

We say that action ac is ready when its predecessor ac′ s.t. 〈ac′, ac〉 ∈ O has
finished. We assume that, after an action is ready, it will execute as soon as all
its pre-conditions are true. In fact, as a consequence of previous failures, the
preconditions could be brought about too late, or might even not be provided
at all. Let P = 〈T,A,O,CL,M〉 be a TMAP.

Definition 1. A mapping H : A → M(A) ∪ {FSKIP } is a hypothesis about the
modes of actions in P that assigns each action ac ∈ A with a mode m ∈ M(ac)
or special mode FSKIP .

Since action modes are associated with time intervals and logic pre-/post-
conditions, a hypothesis H can be used to estimate a set of possible executions
of P , that may differ for the times at which actions start and end; we call these
possible executions temporal execution profiles.
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Definition 2 (Temporal Execution Profile). Given a TMAP P , and a
hypothesis H, a temporal execution profile θ is an ordered sequence of pairs
〈s0, t0〉, . . . , 〈sn, tn〉, such that si (i : 0..n) is a state of the whole system consist-
ing of all the atoms holding at time ti. For each ac ∈ A, the events Ts(ac) (start)
and Te(ac) (end) occur in exactly two states, si and sk, respectively, such that
ti precedes tk. Moreover:

1. each si is a set of atoms that are true at time ti and that represents the state
of the whole system

2. if acj starts at time ti with mode in M(acj), then the preconditions of acj

for mode H(acj) (i.e., the mode assigned by H to acj) hold at time ti, and
any other action that starts at time ti, or is already in progress at that time,
is not in conflict with acj according to the “no moving targets” rule [5], for
which no two actions can simultaneously make use of a value if one of the
two is accessing the value to update it;

3. if acj starts at time ti with mode FSKIP , then: ti = tk + τ (where tk is the
end time of the predecessor ack of acj); the preconditions of acj do not hold
at time ti; for each t ∈ [tk, ti], if the preconditions of acj held at time t, some
other action in conflict with acj started or was already in progress at time t

4. if acj ends at time ti, then the post-conditions of mode H(acj) of action acj

hold at time ti
5. for each action ac ∈ A, the distance between the times when the action starts

and terminates belong to m.range where m is H(ac);
6. s0 is the initial given state;
7. sn is the state where the effects of the last performed actions are added.

Conditions 2 and 4 state that the pre-conditions and effects of an action
ac performed with modality m = H(ac) are true, respectively, when the action
starts and when the action terminates. Note that condition 2 ensures that two
actions that modify the same literal are executed in mutual exclusion; this is
a fundamental constraint for actions that affect the value of a shared literal.
Condition 3 states that an action is associated with special mode FSKIP only if
it has not been allowed to start with true pre-conditions until a timeout τ has
expired. Condition 5 imposes that in θ the duration of each action ac respects
the intervals of possible durations associated with mode m assumed in H.

Of course, given a TMAP P and a hypothesis H, many temporal execution
profiles can be derived: TP (H) denotes the set of all possible temporal execution
profiles that results from P when only the modalities in H are allowed.

More generally, since each action is associated with a number of modes, we
denote with TP the space of possible temporal execution profiles for the plan P
obtained by considering all possible hypotheses.

Let Obs be a sequence of timed observations over actions in P . Obs can be
used as a filter on TP by pruning off those profiles that are not consistent with
them. More precisely, a temporal execution profile θ ∈ TP is consistent with Obs
iff for each timed observation 〈e, t〉 ∈ Obs, if we let ti be the unique time instant
in θ such that ti ≤ t < ti+1, then si |= e (where 〈si, ti〉 ∈ θ). In other words,
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the timed observation 〈e, t〉 must agree with the state of the world si that holds
at t according to τ .

It is sufficient that this does not hold for one timed observation in Obs to
say that θ is not consistent with Obs. We will denote as TP (Obs) the subset of
the profile space consistent with Obs.

Definition 3 (PEF problem). A Plan Execution Failure (PEF) problem is a
pair 〈P,Obs〉 where P is a TMAP and Obs a set of timed observations.

The goal of solving a PEF is to find hypotheses H that are consistent with
the observations:

TP (H) ∩ TP (Obs) 	= ∅. (1)

The previous equation can be expresses in the form of the classic definition of
consistency-based diagnosis [15]:

P � H � Obs 	� ⊥.

where � represents the intersection of temporal profiles.
It is well known that the number of consistency-based diagnoses can be very

large, especially when the observability is low. Therefore, we are not interested
in any hypothesis H that satisfies Eq. 1, but only in the hypotheses that also
satisfy a preference criterion. More precisely, we look for solutions that minimize
the rank (i.e., maximize the probability) associated with the action modes.

Definition 4. Given a TMAP P = 〈T,A,O,CL,M〉 and a hypothesis H about
actions in P , the rank of H, denoted as rank(H), is

rank(H) =
∑

ac∈A

H(ac).rank.

In fact, since we assign rank 0 to failures that depend on previous failure, and the
rank of failures that are independent can be comulated, the rank of a hypothesis
is simply the sum of the ranks of the modes assumed in the hypothesis itself. Of
course, there exists only one hypothesis H0 with rank 0 in which all actions are
assumed nominal.

Definition 5 (PEF solution). Let P be a TMAP, and let 〈P,Obs〉 be a PEF
problem, a solution to such a problem is an hypothesis δ such that:

1. δ satisfies Eq. (1);
2. rank(δ) is minimal: no other hypothesis H ′ that satisfies Eq. (1) has

rank(H ′) < rank(δ)

As usual in a diagnostic setting, we are not interested in just one solution,
but in all minimal solutions, in fact, unless other preference criteria are given,
all these minimal solutions should be returned as an answer to a PEF problem.
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Example 2. Let us consider the plan of Example 1. Although in the original
plan, action put(o, loc2) of agent ag1 was assumed to make o available for action
load(o, loc2) of ag2, this may not be the case in a real execution scenario. Assume
that the previous action of ag2, i.e., move(loc3, loc2), had an F1 delay and
took 8 time instants. In the meanwhile, the three move actions of ag4 have
taken a total of 6 time instants, so that the object released by ag1 at loc2
at time 4 is actually loaded by ag4. This situation makes actions ac22, ac24,
ac32, and ac34 fail with mode FSKIP , because they don’t have the necessary
preconditions to be executed. However, a diagnosis that (except for N modes)
lists: ac21(F1), ac22(FSKIP ), ac24(FSKIP ), ac32(FSKIP ), ac34(FSKIP ) is not a
satisfactory explanation of what happened. Indeed, the fact that ac21 had a delay
F1 does not necessarily imply all the other events and (propagation) failures:
think, e.g., that the delay caused by F1 was just a duration of 3 time instants
for ac21. In the next section we propose a notion of temporal explanation that
yields more information than just the diagnosis.

4 Explaining Failure Propagations

4.1 Temporal Explanations

A solution δ to a PEF problem provides a user with a labeling of (failure)
modes to the plan actions that is consistent with the available observations.
In particular, a special mode FSKIP in δ is used to denote those actions that
have been affected by previously occurred action failures (i.e., it is a secondary
failure). However, this is not in general sufficient, for the user, to understand
what has actually happened. In fact, a secondary failure might be caused by
the co-occurrence of two or more primary failures (e.g., when two actions delay
independently and their consequences sum up affecting a third action). Such
configurations are not easy to discover, and to increase the comprehension of a
user, a δ diagnosis needs to be further explained to extract implicit, contingent
connections between the primary failure(s) and the secondary ones.

Intuitively, failures can propagate via the shared literals, that is, via the
resources produced by an action and consumed by another one. For example,
an action may fail because one of the required inputs is not available at the
right time, and this may happen because the producer failed in supplying it
(including supplying it with too much delay), or because another action has
erroneously consumed the resource in its place. Explaining δ, thus, means tracing
back the temporal relations among the actions that are related to some resource
of interest, and whose occurrence justifies a secondary failure.

Definition 6 (Temporal Explanation of δ w.r.t. R). Let δ be a PEF solu-
tion to 〈P,Obs〉. A Temporal Explanation (explanation in short) E(δ,R) of δ
w.r.t. a shared literal R is a set of Allen algebra relations among actions in P
defined as follows. Let δR+ (resp. δR−) be the subset of actions in δ that produce
(resp. consume) a shared literal R. Moreover, let δR(FSKIP ) (resp. δR(FSKIP ))
be the subset of δR+ ∪ δR− containing actions with mode equal to (resp. different
from) FSKIP . Then, an explanation E(δ,R) for δ w.r.t. R is a set such that:
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– for each ac ∈ δR(FSKIP ), E(δ,R) specifies two Allen algebra relations ρprec

and ρsucc w.r.t. its predecessor and its successor in δR(FSKIP ) (except for the
first and last action). Relation ρprec is either after or meets after; relation
ρsucc is either before or meets;

– for each ac ∈ δR(FSKIP ), E(δ,R) specifies two Allen Algebra during relations
ρR (when ac becomes ready) and ρF (when ac timeouts and fails with FSKIP ).
Relations ρR and ρF relate ac either with a single action in δR(FSKIP ), or
with (the interval I in between) two actions ac′, ac′′ in set δR(FSKIP ).

Some comments are in order. First of all, note that, due to the mutual exclu-
sion among actions that produce/consume R, the actions in δR(FSKIP ) respect a
total order, specified through the (meets) before/after relations in E(δ,R). Such
an order partitions the timeline in a set ΠR of intervals of action execution and
intervals between two actions.

In addition, an action ac ∈ δR(FSKIP ) that was supposed to pro-
duce/consume R, but failed because of missing pre-conditions, can actually over-
lap with actions in δR(FSKIP ). In fact, the action has never started, and what
we are interested in knowing is the interval between when ac became ready
(i.e., when it became the current action for its agent), and when ac failed with
mode FSKIP . Such events, that determine the interval W during which ac is
“willing” to produce/consume R are placed in partition ΠR by during relations
in E(δ,R). It follows that W is contextualized in E(δ,R) against all the other
intervals regarding the execution of actions that have handled resource R, and
hence provides the user with an explanation of why action ac could not pro-
duce/consume R during W .

A (full) explanation of a diagnosis δ is simply a set E(δ) of several sub-
explanations E(δ,R), one for each shared literal R. Note that, given a diagnosis
δ, it is in general possible to find several alternative explanations, corresponding
to different orders of events compatible with δ. Such alternatives are equally
plausible according to our model, and are therefore computed and returned to
the human user.

4.2 Explaining Broken Causal Links

As a further refinement, the temporal explanation can be compared against the
causal structure of the MAP P induced by the links in CL.

First of all, note that all the links in CL should be satisfied when all the
actions of the plan execute in the nominal mode N , i.e., the following property
must hold.

Property 1. If we denote as δN the hypothesis representing the solution to 〈P, ∅〉,
its explanation E(δN ) must confirm the links in CL, i.e., if (aci, acj) ∈ CL for
aci, acj ∈ δN

R , then E(δN , R) will contain either relation aci before acj or aci

meets acj .

This property can be effectively checked with the algorithm for computing expla-
nations that will be given in Sect. 6.
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Let us denote by �CL the transitive closure of the links in CL. Thus, if two
actions aci and acj are in relation aci �CL acj , it means that there exists a
chain of causal links and order relations that flow from ai to aj . If an action is
skipped due to a missing precondition, it will generally be the case that some
causal links were broken during the actual execution. By comparing the temporal
explanation against the transitive closure on causal links, it is possible to identify
these broken links and, to some extent, their causes. Let ac be in δR(FSKIP ),
and let ac∗ be in δR(FSKIP ) such that ac �CL ac∗ according to the definition
of the TMAP P . Moreover, let all the causal links in ac �CL ac∗ be broken,
i.e., ac∗ is the first action in the chain that is not skipped. As a consequence, all
the actions from ac to ac∗ did not receive their preconditions as required by CL;
however, ac∗ did in fact receive its preconditions, although not from the action
prescribed by CL. The explanation of δ will clearly state which action provided
the pre-condition to ac∗, thus explaining why it succeeded despite the broken
causal chain from ac.

The following examples should help clarify the concepts introduced in this
section.

Example 3. Let us refer to Example 2. The producers of literal R = at(o, loc2)
are as follows: ac13, and ac34; while the consumers of R are: ac22, and ac44.
According to Example 2, the diagnosis δ (except for N modes) lists: ac21(F1),
ac22(FSKIP ), ac24(FSKIP ), ac32(FSKIP ), ac34(FSKIP ). The explanation that
we have informally sketched in Example 2, should now be formalized as a suitable
explanation E(δ,R). Figure 4 shows E(δ,R) graphically on a diagram where time
increases from left to right. Note that, besides the actions related with R and
their Allen algebra relations specified by E(δ,R) (black), the schema also shows
the actions that are affected because they occur along a chain of broken causal
links, specifically those falling within the transitive closure ac22 �CL ac44, to
further increase the information conveyed by the schema to the reader. These
actions are in fact assigned with a non-nominal mode by the diagnosis δ and are
marked with a ↗ symbol because they are related to another literal at(o, loc4).

The set of non-FSKIP actions that have to do with R are just ac13 and ac44,
so that the timeline is partitioned in five regions (dotted vertical bars): before
ac13; during ac13; between ac13 and ac44; during ac44; after ac44. The definition
of explanation requires us to relate ac13 and ac44, and, in the scenario described
by Example 2, the relation is ac13 before ac44, i.e., when ac13 ends, some time
passes before ac44 becomes ready and consumes at(o, loc2). Two causal links
from Fig. 2 are especially in need of an explanation: (ac13, ac22), because ac13
has mode N but ac22 has mode FSKIP (i.e., the action form which the link stems
is ok, but the action where the link goes is not); and (ac34, ac44), because ac34
has mode FSKIP and ac44 has mode N (i.e., the “starting” action of the link
has failed, but the “ending” one is ok). Both of these facts are explained by the
spurious causal link contained in the explanation E(δ,R), namely (ac13, ac44),
which describes an incorrect actual execution.

Note that R would be available for other consumers between the end of ac13
and the start of ac44. However, according to explanation E(δ,R), ac22 becomes
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Fig. 4. An explanation of diagnosis
δ =

{
ac21(F1), ac22(FP ), ac24(FP ),

ac32(FP ), ac34(FP )
}
.

Fig. 5. An explanation of diagnosis δ′ ={
ac21(F1), ac23(F1), ac32(FP ), ac34(FP ),

ac44(FP )
}
.

ready and then fails with mode FSKIP (segment starting with > and ending with
♦) only after ac44 ends. By looking at the figure, it is easy to see that such a
delay is due to the failure with mode F1 of action ac21.

Let us now consider an explanation for a different diagnosis δ′, according
to which actions ac21 and ac23 fail with mode F1 (delay), and actions ac32,
ac34, and ac44 fail with mode FSKIP (Fig. 5). The upper part of the figure
shows the explanation of δ w.r.t. literal at(o, loc2), while the lower part shows
the explanation of δ for literal at(o, loc4). In particular, ac13 produces literal
at(o, loc2), which is consumed by ac22 (in this case, immediately), as prescribed
by the plan. However, we see that although the put action ac24 involving literal
at(o, loc4) succeeds, the associated load action ac32 fails with mode FSKIP ,
which in turn propagates to the failure of actions ac34 and ac44 on at(o, loc2)
that depend on ac32 (causal links in the plan, Fig. 2).

By just looking at the upper part of the figure, then, we are left without
an explanation of the failure of ac32. We have to look at the part of the figure
showing the explanation for literal at(o, loc4), where we realize that action ac32
became ready and then failed with mode FSKIP before action ac24 (from which
ac32 depends) was executed. The cause of the delay is clearly a combination of
the delays caused by the failures of actions ac21 and ac23 with mode F1.

5 Translation to SMT

In order to address a PEF problem by exploiting an SMT solver, we have to
encode the TMAP and the observations Obs in the language accepted by the
solver. We recall that an SMT problem is an extension of the well known propo-
sitional satisfiability (SAT) problem where formulas can contain relations and
functions from various theories including real and integer linear arithmetic. Sim-
ilar to SAT, when a set of formulas is satisfiable, the solver is able to return



TMAPs Execution: Explaining What Happened 179

a satisfying assignment to the variables. In this work, we have adopted the Z3
solver [3]. Due to space constraints, we will focus just on the most relevant
aspects of the encoding process. In order to encode action types (e.g., move,
load), we need to encode the predicates that appear in their pre-conditions and
effects, e.g. at and holds. We define them as uninterpreted functions (UF), i.e.,
functions for which the Z3 solver will try to find an interpretation that satis-
fies the set of formulas being checked. Note that most of the predicates are in
fact fluents, i.e., they have time as one of their arguments. For example, at(ag,
p, t) asserts that agent ag is at place p at time t. For diagnostic purposes, a
fundamental predicate is mode(ac,m), that defines the mode m of an action ac.

Action types, with their behaviors determined by modes, pre-conditions and
effects, are expressed as defined functions (DF). Unlike UFs, DFs have a body
that specifies how to compute the function value given the arguments. A DF
receives all the parameters relevant to the action, plus two time points Ts and
Te that represent the action starting and ending times, and returns a Boolean
value. For example, the signature of the move action is:

move(ag : Agent, ac : Action, from : Pos, to : Pos, Ts : Int, Te : Int) : Bool

The body of the DF specifies, for each mode m ∈ M(ac) and for the special mode
FSKIP , the pre-conditions and the effects taken from the TMAP definition.

if (pre-cond) mode(ac,N) ⇒ [N post-cond]
...
mode(ac, Fk) ⇒ [Fk post-cond]

else mode(ac, FSKIP ) ∧ [FSKIP post-cond]

The plan itself is encoded as a sequence of assertions that build the instances
of action types that make up the plan. Finally, the timed observations Obs are
easily encoded by asserting the truth of the associated fluent, e.g. the observation
〈at(ag1, p1), t1〉 will be encoded by asserting at(ag1, p1, t1).

Constraints between time points are expressed as linear arithmetic relations:

Te(ac) > Ts(ac); Te(ac′) < Ts(ac) ≤ Te(ac′) + τ

Note that, in the second formula, ac′ is the predecessor of ac in the plan of the
agent. A fundamental point that needs to be addressed by our translation is
the definition of suitable frame-axioms, i.e., formulas prescribing that a fluent
does not change if none of the actions changing it is taken. For instance, in our
example logistic domain, fluent at(ag, p, t) is only possibly changed at the end
of a move action. Moreover, no other agent can change the value of at(ag, p, t).
So, for each action ac that is not a move:

at(ag, p, Te(ac)) = at(ag, p, Ts(ac)) and at(ag, p, Ts(ac)) = at(ag, p, Te(ac′))

where ac′ is the predecessor of ac. Things are more complicated for fluents such
as at(o, p, t) (where o is an object) that can be changed by multiple agents.
According to our assumptions, we impose that such actions must be executed in
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mutual exclusion. However, in general, for each action ac, we must also assert
that:

at(o, p, Ts(ac)) = at(o, p,max({Te(ac′) : Te(ac′) < Ts(ac)}))

where all actions ac′ that can modify the fluent are considered by the max()
operator on the right hand side. The encoding of time and persistency relations
highlights the benefits of adopting a SMT solver instead of a SAT solver for
checking the consistency of hypotheses. In a SAT-encoding of a plan whose
timespan is [0, N ], it is necessary to create a copy of each variable for each time
instant in [0, N ]. On the contrary, the SMT encoding allows us to focus just on
the values of the fluents at the relevant time points, that for a TMAP are the
start/end times of actions and the times of observations.

Concurrency constraints are the most difficult ones to encode, especially
because we require that an action is actually executed as soon as it is possi-
ble to do so. We can’t describe in detail such constraints due to lack of space.
Suffice it to say that, for each shared literal R in the TMAP P , we need to intro-
duce a predicate wants(ac,±R, T ), that denotes the fact that an action ac wants
to consume (+) or produce (−) literal R at time T . Then, we specify a number
of constraints involving the actions PR = PR+ ∪PR− (that produce/consume R)
to handle the situations that can arise during plan execution: mutual exclusion,
waiting for R to be produced/consumed (possibly competing with other waiting
agents), timing out and executing in mode FSKIP .

6 Solving PEF Problems

Given the encoding of a PEF problem in the input language of Z3, we exploit the
ability of Z3 to produce an unsat core every time it is invoked on an unsatisfiable
instance. An unsat core is a set of assertions in the input to Z3 that cannot hold
simultaneously and therefore require to withdraw at least one of them in order
to get satisfiability. Given the set of unsat cores that is cumulatively produced
during the search for the solutions, we can avoid to explore the parts of the
search space that do not hit (i.e., withdraw at least an assignment from) all of
them. This technique is well known in diagnosis, also on approaches based on
SMT [7].

Let us assume that we have a function EncodeTMAPZ3 that, given a TMAP
P , encodes it in the Z3 input language as explained in the previous section.
Figure 6 shows the CBFS (Conflict-based Best First Search) diagnostic algorithm
for solving a PEF specified by P and Obs. The algorithm is strongly based on
the high-level schema of Conflict-directed A∗ (cd A∗) [18], with some variations
explained below.

At each iteration of the top-level while loop, algorithm cd A∗ would require
to generate a full assignment of modes to actions that resolves the conflicts
found so far. Instead, we generate a constraint σ on the modes of the actions
with function NextBestPlateauResolvingConflicts() (line 5). Such a constraint:
(i) contains specific assignments σF of faults (excluding FSKIP ) to actions in
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CBFSDiagnosis(P = T,A,O,CL,M , Obs)
1. Sys EncodeTMAPZ3(P)
2. Pef Sys ∪ EncodeObsZ3(Obs)
3. UCores ∅; Δ ∅; done? false; best ∞
4. while not done? do
5. σ NextBestPlateauResolvingConflicts(UCores)
6. if rank(σ) > best then
7. done? true
8. else
9. Pefσ Pef ∪ EncodePlateauZ3(σ)

10. (μ, γ) CheckSATZ3(Pefσ)
11. if μ = null then
12. best rank(σ)
13. while μ = null do
14. δ project(μ, {mode(ac, m) ∈ μ : ac ∈ A})
15. Δ Δ ∪ {δ}
16. Pefσ Pefσ ∪ EncodeAssignmentZ3(¬δ)
17. (μ, γ) CheckSATZ3(Pefσ)
18. end while
19. else
20. UCores UCores ∪ γ
21. end if
22. end if
23. end while
24. return Δ

Fig. 6. The CBFS diagnostic algorithm.

order to hit all the unsat cores γ ∈ UCores; (ii) constrains the remaining actions
to have either mode N or FSKIP ; (iii) has minimum rank among assignments
that hit UCores. Therefore, σ looks as follows:

σ = acF1 (ϕ1) ∧ . . . ∧ acFm(ϕm)∧
(acR0

1 (N) ∨ acR0
1 (FSKIP )) ∧ . . . ∧ (acR0

n (N) ∨ acR0
n (FSKIP ))

where actions acF
i ∈ σF are assigned a specific faulty mode ϕi (excluding

FSKIP ), while actions acR0
i (where the superscript R0 denotes the fact that

such actions contribute a rank 0 to the assignment) can take mode N or FSKIP .
This explains the term plateau in the name of the function that computes con-
straints σ: a single constraint may indeed generate several diagnoses of equal
rank (i.e., cost) by assigning combinations of modes N or FSKIP to the acR0

i

actions (see below).
When all the minimum rank solutions Δ to a given TMAP have already been

found, a constraint σ with a higher rank than the best one is generated (line 6),
and the algorithm returns set Δ. Otherwise, the constraint σ is added to the
Z3 encoding Pef of the PEF problem (TMAP and observations), and the result
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Explain(Pef, δ)
1. Pefδ Pef ∪ EncodeAssignmentZ3(δ)
2. (μ, γ) CheckSATZ3(Pefδ)
3. while μ = null do
4. eraw project(μ, {Ts(ac) ∈ μ : ac ∈ A})
5. eAll EncodeAllenAlgebra(eraw)
6. E E ∪ eAll

7. Pefδ Pefδ ∪ ¬eAll

8. (μ, γ) CheckSATZ3(Pefδ)
9. end while

10. return E

Fig. 7. The Explain algorithm.

Pefσ is then checked by Z3 for satisfiability. If Pefσ is unsatisfiable, Z3 returns
an unsat core γ, that is added to the set UCores.

Otherwise, a satisfying model μ is returned by Z3. The best rank of solutions
is updated with the rank of σF . Then, the algorithm enters an inner while loop
where: the full assignment δ to the action modes prescribed by μ is added to
the set Δ of preferred diagnoses; and then Pefσ is checked again for satisfiability
excluding δ (to avoid finding it again).

The explanations of a diagnosis δ are computed with the Explain algorithm
shown in Fig. 7. Diagnosis δ is added to the encoding Pef of the PEF problem
solved by δ, and the result Pefδ is checked for satisfiability with Z3. Of course,
since δ is a diagnosis, the while loop is entered at least once. The times of
start and end of each action are extracted from model μ, and then they are
abstracted into set eAll of the corresponding Allen algebra relations introduced
in Definition 6. For example, if a put(ag, p, o) ends at time t, and a load(ag’, p,
o) starts at time t+1, then a relation meets is established between put and load.
After adding eAll to the set E of explanations of δ and negating it in Pefδ, Z3 is
called again to look for other explanations of δ.

7 Implementation and Results on Test Cases

We have implemented the SMT-based approach to diagnosis described above as
a Java program exploiting the Z3 solver. The tests have been run on a machine
running Ubuntu 18.04.1 LTS, equipped with an i7 7700HQ CPU at 2.80 GHz,
and 8 GB RAM. We have considered a Logistic domain which reflects the domain
used in the examples. In such a domain, as mentioned above, agents can move,
load, and put objects, giving rise to several kinds of inter-agent interactions. We
have experimented our approach by running a number of software simulated
tests under different configurations, defined by varying the following dimensions:
#ag (2 and 4 agents); #ac (8, 10, 20 actions per agent); and #rnk (injected
failures of ranks 2, 4). In order to study the effect of interactions among agents,
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Table 1. avg time (sec), sols, time/sol, and explanations of experiments.

CBFS

Time #sol Time/sol #expl

ag 2

ac 8 (R2) 0.48 2.0 0.24 2.0

ag 4

ac 10 (R2) 1.32 2.5 0.53 3.0

ac 20 (R2) 6.83 4.0 1.71 6.1

ac 20 (R4) 25.53 15.6 1.64 23.2

we have introduced inter-agent links in the plans used in the configurations as
follows: 2 ag × 8 act with 2 links; 4 ag× 10 act with 3 links; and 4 ag× 20 act
with 7 links.

The observability rate (i.e., ratio between the number of actions with observ-
able effects and the total number of actions) was 30%. We have chosen this level
of observability because it has proved to be high enough for our algorithm to
(almost) always include the diagnosis with the injected failures in the list of
preferred diagnoses, and low enough to challenge our algorithm with a certain
ambiguity in discriminating between the “real” diagnosis and alternative ones.

In Table 1, we show results obtained with 4 different configurations of increas-
ing complexity. The average total time for solving the PEF problems goes from
0.48 s (2 agents × 8 actions, rank 2), up to 25.53 s (4 agents× 20 actions, rank 4).
It should be noted that the total time includes the computation of all the pre-
ferred diagnoses, as well as their temporal explanations. If we look at the average
time taken for computing each preferred diagnosis (including its explanations),
the increase is more limited, going from 0.24 s to 1.71 s. Indeed, as the test cases
become more challenging (more agents, more actions, higher rank of failures),
the average number of preferred diagnoses increases (from 2.0 to 15.6), as well
as the average number of associated explanations (from 2.0 to 23.2). Note that
the time/sol of the 3rd and the 4th configurations is almost the same, despite
the fact that the former has test cases with rank 2 and the latter of rank 4. This
seems to indicate that the time/sol is not affected significantly by the rank of
test cases.

8 Conclusions

The diagnosis of Temporal Multiagent Plans (TMAPs) has been addressed by
a number of approaches in literature that focused either on diagnosing delays
[12,13,16], or on diagnosing violation of logic conditions [9–11]. In this paper, we
have presented a novel approach that deals with both aspects. As a consequence,
the propagation of failures from one action to another (and one agent to another
one) is particularly complex, because it can be due to delays and/or missing
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logic effects. Therefore, in our framework we first single out diagnoses (possi-
bly containing secondary failures) by means of a conflict-based search. We then
explain these secondary failures by inferring the temporal profile of the pro-
duction/consumption of shared resources whose misuse caused the very same
failures. These temporal profiles allow a user to gain a better understanding
about the causes of a secondary failure by relating it to the (primary) failure of
another action that has caused an unexpected effect on some shared resource.

Some recent works in the literature address the explanation of the behavior
of agents whose internals are based on “black-box” components, mostly realized
through Machine Learning and/or Data Mining techniques [1,8]. Contrary to
such works, we can exploit a quite accurate model of our system (i.e., the TMAP
that is being executed); in this sense, our approach is more closely related to
the approaches to explainable planning discussed in [1]. As witnessed by those
papers, as well as by the present one, the availability of an intelligible model
does not imply that conveying a clear and intuitive explanation of an intelligent
task to the human user is trivial.

We are considering several future extensions of the present work. Currently,
action failures in plan execution are considered as independent of one another,
except when the actions interact through shared literals. Following [13], we may
try to extend the present work by considering that action failures can be related
also when they involve some common features of the agent or the environment
(e.g., a motor or a traffic jam for a move). Since plan diagnosis is the pre-
condition for plan repair, another future line of work will explore how to exploit
the (on-line) computation of diagnoses to inform a re-planning process that tries
to achieve (most of) the original goals.
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Abstract. There has been a recent resurgence in the area of explain-
able artificial intelligence as researchers and practitioners seek to provide
more transparency to their algorithms. Much of this research is focused
on explicitly explaining decisions or actions to a human observer, and it
should not be controversial to say that looking at how humans explain to
each other can serve as a useful starting point for explanation in artifi-
cial intelligence. However, it is fair to say that most work in explainable
artificial intelligence uses only the researchers’ intuition of what con-
stitutes a ‘good’ explanation. There exist vast and valuable bodies of
research in philosophy, psychology, and cognitive science of how people
define, generate, select, evaluate, and present explanations, which argues
that people employ certain cognitive biases and social expectations to the
explanation process. This paper argues that the field of explainable artifi-
cial intelligence can build on this existing research, and reviews relevant
papers from philosophy, cognitive psychology/science, and social psy-
chology, which study these topics. It draws out some important findings,
and discusses ways that these can be infused with work on explainable
artificial intelligence.

Keywords: Explanation · Explainability · Interpretability ·
Explainable AI · Transparency

1 Introduction

1.1 Scope

In the work presented here, we explore the application of computational argumen-
tation and argumentation-based dialogue to the domain of clinical consultation,
particularly focusing on patient self-management of chronic health conditions.
Such conditions are characterised by regular and sometimes frequent monitor-
ing of various biometric signs, along with a prescribed regimen of diet, exercise
and medication. A variety of different types of exchanges may occur between
a patient and their health care provider(s). Here, we propose an agent-based
system designed to support consultations that a patient may engage in as a sup-
plement to typical periodic appointments with general practitioners and other
professional health care providers that are required of patients with chronic
c© Springer Nature Switzerland AG 2019
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health conditions. We consider the types of interactions that a patient might
have with an agent-based system that supports the patient’s needs for such con-
sultations, and we have identified three key functionalities that such a system
could provide: (a) information, (b) recommendation, and (c) explanation.

1.2 Wellness Consultations

A patient with chronic and/or multiple medical conditions will rely on periodi-
cal and regular interactions with their General Practitioner (GP), however there
may be some questions or advice that is required that does not need to rely on a
face to face meeting with their GP. These interactions would be complementary
to regular contact with GPs but would offer the opportunities for some advice
or recommendations to be obtained sooner. It is this type of asynchronous inter-
action through a dialogue that we define as a wellness consultation throughout
this paper.

The first key function involves the patient querying the system and request-
ing information about their condition—for example, details about symptoms,
treatment options and drug interactions—the kinds of information that appear
in brochures provided by GPs, other health care professionals (HCPs) or phar-
macists. This is characterised by a two-step interaction in which the patient
initiates a query and the system retrieves the answer from a knowledge store
and presents it to the patient.

The second function involves the patient asking the system to recommend a
course of action, such as engaging in exercise activities tailored to the patient’s
condition, considering an over-the-counter medication such as ibuprofen to alle-
viate pain, or seeking further advice from an HCP. The distinction from the
first function is an expectation that the patient will follow up their interaction
with the system with some type of action; and so the system may later ask the
patient if they have performed that action in order to help track their condition.
While the initial query is initiated by the patient, the system could initiate the
follow-up query to check later, e.g., if the patient has taken the recommended
painkiller and is still experiencing pain or if the patient has taken the recom-
mended exercise.

The third function involves the patient asking for clarification or explanation
about a response given by the system in either of the first two cases. Where the
first two functions are characterised by two-step interactions (one party initiates
and the other responds), the third function involves an iterative process in which
several queries and responses occur until the patient understands the information
and/or recommendation offered by the system.

The first function is not an uncommon feature in today’s IT1-rich society,
with many people around the world being connected on mobile (and desktop)
devices to internet sites that can offer health information. The second function
is less common as a commercial product, but is certainly the focus of many IT
research projects (including the one that led to this paper and those mentioned

1 IT: Information Technology.
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software agent
patient GP

human user
patient self-care consultation

GP training second opinion

Fig. 1. The different roles that a human user and software agent might play in an
agent-based system designed to support self-management of chronic conditions.

in Sect. 5). The third function is even less common, both in commercial and
research forms. The notion of Explainable AI has become a trend relatively
recently (although many of the ideas and motivation behind Explainable AI
are not so new, as pointed out in Sect. 5). The work presented here focuses
on the third functionality—explanation—and proposes the use of computational
argumentation and argumentation-based dialogue (see Sect. 2) as the means to
implement the explanation functionality.

Consider a wellness consultation involving a conversation between a GP and
a patient, where the patient is either being offered advice or is asking for some.
Imagine an interactive agent-based system that could facilitate this conversation.
Hypothetically, this “agent” could take either role: i.e., that of the patient or
the GP, as illustrated by Fig. 1.

When the human user is a patient and the agent acts as a GP, then the
interaction is an example of a consultation situation, as we have described above.
When the human user is a patient and the agent also acts as a patient, then the
interaction is akin to a conversation between peers in which the agent could offer
reminders and encouragement regarding self-care. When the human user is a GP
and the agent acts as a patient, then the interaction can be seen as a form of
training, where the GP user could practice conversing with patients in order to
confirm or practice the diagnostic process. When the human user is a GP and
the agent also acts as a GP, then the interaction is similar to that of seeking a
second opinion, or a case review. Note that these scenarios make assumptions
about differing levels of expertise corresponding to the two possible user roles,
assuming, with respect to medical knowledge, a relatively näıve patient and a
more educated GP.

1.3 Contributions

In this paper, we explore the dialogue types relevant to wellness consultations as
motivated by the CONSULT project2, and propose dialogue templates for a set
of types of interactions between the CONSULT system and the patient, through
the use of a chatbot. In order to do this, we first explore the wider context
of interactions between a human and an agent through dialogue, and use the
framework introduced in [30] to map the possible interactions within Clinical
Decision Support in general, and the CONSULT project in particular. Hence,
in this initial approach we focus on the types of interactions between an agent
2 https://consult.kcl.ac.uk.

https://consult.kcl.ac.uk
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acting as the GP, and the patient as the human in the wellness consultation
dialogue (This interaction is in the bottom left quadrant of the matrix in Fig. 1).

The contributions of this paper are as follows: (1) we show how wellness con-
sultations can be supported by existing types of human-agent argumentation-
based dialogues; (2) we articulate how these argumentation-based dialogues can
provide explanations, in particular by using a novel combination of argumenta-
tion schemes and explanation templates; and (3) we show the applicability of our
approach on a clinical example from the CONSULT project. The paper is struc-
tured as follows: Sect. 2 provides background on argumentation, argumentation
based dialogue and explainable AI. In Sect. 3, we outline our proposed approach.
We then use an example from the CONSULT project in Sect. 4 to illustrate our
approach. Section 5 briefly discusses related work and Sect. 6 summarizes the
work and outlines our plans for future research.

2 Background

2.1 Computational Argumentation

Computational Argumentation [27] is a well-founded method which allows rea-
soning with incomplete and at times conflicting information or knowledge. An
argument is structured so that it has a conclusion or a claim, and the support for
the claim. When argumentation is employed in the context of decision support,
its structure supports a human-like reasoning process where arguments’ con-
clusions, their support, and the relationships between them, can be modelled.
Argumentation has been extensively explored within the multi-agent community,
and there are examples of its application to clinical decision support, which is the
domain this work is focusing on. In Sect. 5 we discuss some of these applications.

An argument, Arg = 〈S, c〉, consists of a set of premises, S, defined in some
language, L, which support the conclusion, c. An Argumentation Framework
(AF) [7] represents a set of Arguments A, and the relationships between the
members of the set. Formally an AF is a pair 〈A,R〉, where A is a set of
arguments and R is binary relation representing attack relationships between
arguments. For example if Arg1 = 〈p1, c1〉 and Arg2 = 〈p2,¬c1〉 then an attack
relation exists between Arg1 and Arg2 since these arguments have conflicting
conclusions (i.e. rebuttal attack). Given a set of conflicting arguments, there are
well-founded methods [7] for computing extensions, consistent sets of arguments
which represent coherent opinions.

2.2 Argumentation-Based Dialogue

In their seminal work, Walton and Krabbe [32] described six primary types of
dialogue: information seeking, inquiry, persuasion, negotiation, deliberation and
eristic. The distinguishing factors amongst these different types of dialogue are
based on a participant’s knowledge, their individual goals and goals that they
share with others. A logic-based formalism for modeling such dialogues as a
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formal game between agents was introduced in [16] and extended in [30]. This
formalism supports the combination of multiple dialogues. [22] examines a subset
of these dialogue types and shows how their properties depend on the behaviour
of the agents engaging in the dialogue. The different types of dialogues include:

– information seeking [32], where one participant asks a question that she does
not know the answer to and believes the other participant can answer;

– inquiry [15], where both participants seek an answer to a question that neither
knows the answer to;

– persuasion [24], where one participant tries to alter the beliefs of another
participant;

– negotiation [26], where participants bargain over the allocation of a scarce
resource;

– deliberation [17], where participants decide together on taking a particular
action;

– eristic [32], where participants quarrel verbally;
– command [9], where one participant tells another what to do;
– chance discovery [13], where a new idea arises out of the discussion between

participants; and
– verification [5], where one participant asks a question that she already knows

the answer to and she believes the other participant also knows the answer,
so her aim is to verify her belief.

In the context of wellness consultation interactions it can be seen that not
all dialogue forms will be relevant. The types of dialogues of most relevance are
those related to deliberation and persuasion. An application of some of these
dialogue types in the context of human robot interaction is outlined in [30].

2.3 Argumentation Schemes

An argumentation scheme or argument scheme (AS) is a semi-formal reasoning
template that matches common reasoning patterns in real life. An Argumentation
Scheme is a model for instantiating arguments within a specific context and is
used to provide a formal basis for instantiating arguments and defining their
internal structure. An AS consists of a set of support premises (S), which support
the conclusion premise, c, necessary for this derivation [20,21,23,33].

Formally: An argument scheme AS = 〈S, c,V〉 consists of the set of premises,
S, which support a conclusion, c, and are instantiated with the set of variables,
V = S.V ∪ c.V .

One of the key features of argumentation schemes is the list of associated crit-
ical questions (CQs). The claim or conclusion that the scheme supports is pre-
sumptive and the claim is withdrawn unless the CQs posed have been answered
successfully. The instantiation of the appropriate argumentation scheme and its
associated CQs is a way of generating a set of arguments that can then be rea-
soned with as an argumentation framework. This mechanism ensures that only
arguments that have not been defeated by the CQs will be generated, further-
more CQs can also point to additional arguments to consider.
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3 Our Approach

Our approach to supporting explanation functionality as part of a wellness con-
sultation between a human and an agent involves three steps: (1) defining an
argumentation scheme specific to the provision of health related treatments
or actions; (2) identifying existing, and possibly defining new, argumentation-
based dialogues that are appropriate for this domain; and (3) showing how these
schemes in conjunction with the argumentation-based dialogues can be used by
the agent to provide explanation to patients (human users). In this section, we
describe each of these elements to our approach. Then following, Sect. 4, we
provide concrete examples of how our approach is (will be) implemented.

Our approach relies on a method to generate recommendations about a suit-
able treatment or action required to attain a clinical goal. For this purpose we
propose the use of a clinically specialized argumentation scheme in order to
instantiate and reason with all the possible relevant options. Reasoning with
set of generated arguments can be achieved using a variety of approaches such
as [7], which will result in an extension containing arguments in support of a
treatment or an action. These will then form the basis of the elements of the
dialogues and will leverage a set of explanation templates to ensure they can be
communicated clearly to the user. The dialogue protocols we propose dictate the
order and options the dialogue can progress in.

3.1 Argumentation Scheme for Proposed Treatment (ASPT)

The domain of relevance to this approach involves recommending a course of
action in the clinical context, we therefore need to employ an argumentation
scheme that is specialized to this domain. We propose to use the Argumentation
Scheme for proposed treatment (ASPT) [11], which is a specialization of argu-
mentation scheme from practical reasoning ASPR [1]. There are undoubtedly
additional argumentation schemes that can be used to support dialogues in the
clinical context, in the future we will explore the use of additional schemes as
part of dialogues related to wellness consultations.

Within our proposed approach the wellness consultation between a patient
and the agent to deliberate about possible actions or treatments is underpinned
by ASPT. ASPT is in Fig. 2. The arguments instantiated by ASPT are in support
of different treatments or actions.

ASPT
p1 - Given the patient Facts F
p2 - In order to realise the goal G
p3 - Treatment T promotes the goal G
therefore : Treatment T should be considered

Fig. 2. Argumentation scheme for a proposed treatment [11].
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ASPT is subject to a set of critical questions (CQs), these can be the source
of additional or counter-arguments to the arguments instantiated by this scheme.
There is no general agreed method for structuring AS and their CQs as such when
outlining ASPT and its CQs we made use of the applicable premises and CQs
from ASPR as a starting point and specialized them to this clinical setting. We
also made a distinction in separating the premises of the scheme and the critical
questions by the nature of the information they require. The premises of the
scheme rely on facts and information unlikely to change such as clinical guidelines
or a specific patient’s demographics, whilst critical questions look more at the
patient’s specific clinical history. The list of critical questions outlined herein
is a subset of the CQs proposed for this Argument Scheme. We are using this
subset of three critical questions to illustrate our approach, as the formalization
of ASPT is not the focus of this paper. The subset of critical questions for the
argument scheme ASPT are in Fig. 3.

Critical Questions for ASPT
[CQ1] Has treatment T been unsuccessfully used on the patient in the past?
[CQ2] Has treatment T caused side effects on the patient?
[CQ3] Given patient facts F, are there any counter-indications to treatment T?

Fig. 3. Critical questions for ASPT [11].

Given a goal that needs to be realised, instantiating ASPT and its criti-
cal questions will result in an Argumentation Framework. Reasoning with this
framework will generate extensions that contain treatment suggestions. Such an
approach is outlined in [11] and [2]. When exploring options to explain any rec-
ommendations made, then all the relevant arguments and their critical questions
will be possible sources of explanations.

The aim of the dialogue as part of a wellness consultation is for the agent to
propose an action or treatment to the patient, and to allow the patient to query
the rationale underlying the recommendation made, if they wish to do so. In the
next section we model the possible situations that will provide a framework for
the possible dialogues required. These rely on the beliefs that the human will
have in respect to the action or treatment proposed by the agent.

3.2 Dialogue

In the context of a wellness consultation, we assume that when a dialogue takes
place it will be regarding a specific action, for example one supported by an
argument instantiated by ASPT. We assume that the goal that underlies the
recommendation is mutually agreed upon by the human and the agent. In other
words the dialogue is not about the goal, but about the actions to take to achieve
the goal. This is a strong assumption because, in general, there will be many
interactions in which it is necessary to discuss the goal—the agent may need
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to elicit the goal from the human or persuade them to adopt a goal. However,
we think it is a reasonable assumption in our current work since we are only
focused on providing recommendations when the human specifically asks for
one—it seems reasonable that a user who has asked for a recommendation for a
course of action will already have committed to taking that course of action—and
we defer considering more general scenarios to future work.

The agent has a known set of beliefs Ag.Σ, and the human may also have a
set of beliefs. Ag.Γ (H) represents the agent’s beliefs about the human’s belief.
So far this uses a notation similar to [30]. b represents a belief about an action,
this can be an action recommended by instantiating ASPT. For example in case
of treating a condition with a specific drug then the action is b = offer(arb, hbp)
(where arb is a treatment for high blood pressure (hbp)). ¬b is a disbelief in that
action, and ?b is a situation where there is no information about b. The possible
dialogues that can occur in the context of a wellness consultation when the agent
is the GP and the human is the patient are in Fig. 4.

b ∈ Ag.Γ (H) ¬b ∈ Ag.Γ (H) ?b ∈ Ag.Γ (H)

b ∈ AgΣ case 1 agreement -
(no dialogue)

case 2 disagreement -
(persuasion)

case 3 agreement +
explanation - (infor-
mation seeking)

¬b ∈ AgΣ case 4 disagreement -
(persuasion → delib-
eration)

case 5 agreement -
(deliberation)

case 6 (deliberation)

?b ∈ AgΣ case 7 (deliberation) case 8 (deliberation) case 9 (deliberation)

Fig. 4. The space of possible dialogues between agent and user. The agent, Ag, assumes
the role of GP and the user, H, is the patient.

The following situations are relevant in the context of an agent acting as the
GP and the human being a patient:

– Agreement : Both parties’ beliefs do not conflict. There is no need for a dia-
logue on the specific action in question. However if the agreement is against
the action (i.e. both agree ¬b), and there is a need to consider an alternative
action then this may lead to a deliberation dialogue (case 5).

– Disagreement : Beliefs are in conflict (such as in case 2 and 4), the type of
dialogue to initiate depends on the user’s expertise. If the user is an expert
(another GP) or a layperson in medicine (a more plausible scenario) then
the dialogue burden of proof and dynamics will vary. In this initial approach
we assume that the patient’s expertise is less trusted compared to the GP,
therefore in this case the agent (as the GP) will initiate a persuasion dialogue.
However there may be different levels of disagreement such as the patient not
just disagreeing with the proposed action, but proposing a different action
instead.
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– Deliberation (referral): If the agent does not believe in the action being dis-
cussed or has no information on it, then this requires an alternative action to
be agreed upon. Hence a deliberation dialogue, which may require a nested
persuasion dialogue [14].

The dialogue flow is made up of three basic building blocks, an overall deliber-
ation dialogue, and depending on the locutions of the human, this can then nest
either a persuasion dialogue or a explanation (or follow up) dialogue dialogue.
The latter two are similar but their suitability to a given situation depends on
whether the locution of the human was one of agreement/acceptance (in which
case this is a explanation (follow-up) dialogue). Should the human locution be
confrontational then this would be more suitably addressed by a persuasion dia-
logue. This flow is illustrated in Fig. 5.

agent: propose(b)

human: b ∈ R.Γ(H)

accept(b)

human: ¬b ∈ R.Γ(H)

propose(¬ b)

human: ?b ∈ R.Γ(H)

why(b)

agent needs to Explainagent needs to Persuade

human: 
accept(b)

human:
¬ accept(b)

human:
 accept(b)

human:
¬ accept(b)

Fig. 5. The possible dialogue options matching the top row of Fig. 4

3.3 Explanation Templates

An important element of our approach is the explanation functionality as part of
the Argumentation-based Dialogue. We propose the use of explanation templates
which will be defined for the argument scheme as well as for its critical questions.
These templates are specific to the reasoning and specialization of the scheme,
and include placeholders for the actual instantiated variables specific to a given
application of the scheme. A sample set of templates are given in Fig. 6.

These templates work as follows. Given a goal G, patient facts F and a
knowledge base of treatments, when a dialogue results in the instantiation of
ASPT, the relevant critical questions are also instantiated, resulting in an argu-
mentation framework that can be solved to establish a set of extensions. Each
element in an extension is mapped to their source (the AS or CQ it was derived
from) and their instantiated values. The templates in Fig. 6 can then be used to
create explanations—for example if a user queries why a particular treatment T
is recommended, the explanation template for ASPT can be instantiated with
the relevant values of G and F (see below).
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AS or CQ Explanation template

ASPT Treatment T should be considered as it promotes goal G, given
patient facts F

CQ1 Treatment T should not be considered as it was not effective for
this patient in the past

CQ2 Treatment T should not be considered as it caused side effects
for this patient in the past

CQ3 Treatment T should not be considered as patient fact fi ∈ F is
a counter-indication to its use

Fig. 6. Mapping of argument schemes and critical questions to explanation templates.

4 Example from the Medical Domain

In order to illustrate the approach proposed in this paper we make use of an
example interaction between the agent and the patient that arises in the con-
text of the CONSULT project. The aim of the CONSULT project is to develop
and test the feasibility of a collaborative mobile decision support system to help
patients who suffer from chronic diseases and multiple co-morbidities to manage
their treatment. The prototype system integrates data from wellness sensors,
electronic health records and relevant guidelines to support data-backed argu-
mentation based decision support. This is accessible to the patient via a mobile
app that includes a dashboard and a chatbot. In this example we assume that
the agent is acting the role of the GP, and the human is the patient (as outlined
in Fig. 1).

Patient asks a question about symptom s1s1, what action to take?

Agent maps s1s1 to goal g

Agent instantiates argumentation engine and aspt(g,..,) 

Patient uses 
chatbot

Extension includes argument offer(b)

Agent proposes action b using chatbotAgent uses 
chatbot

Fig. 7. The steps to start the dialogue when a patient asks for advice

4.1 Patient Asks for Advice

This interaction will be one initiated by the patient when they ask for a recom-
mendation, and we will assume we have a fictitious patient called Bob. In this
scenario the patient (Bob) asks a question or seeks advice regarding a specific
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symptom s1 via a chatbot dialogue. The initial processes generated by this are in
Fig. 7. Figure 7 illustrates the steps taken before the dialogue commences. These
are the mapping of the symptom s1 to a goal g, the instantiation of the Argu-
mentation Scheme for Possible Treatment (ASPT) using the relevant variables
(one of which is g). The mappings between symptoms and goals are assumed to
be in the agent’s knowledge base. Reasoning with all the arguments results in
an extension including an action (for example b) will form the basis for the dia-
logue. A view of a dialogue options that are possible after a recommendation is
made by the agent is depicted in Fig. 8. Note that we assume the argumentation
engine constructs an argument based on its knowledge base and the information
it received from external sources, such as the patient’s EHR, sensor data and
relevant clinical guidelines.

propose(b)

accept(b) propose(¬ b)why(b)

accept(b) reject(b)

explain(b)

assert(support(b))

propose (c)

assert(support(¬ c))

accept(b) reject(b)

accept(¬ c) reject(¬ c)

propose(b)

reject (b)

tell me more

explain(b)

assert(support(b))

accept(b) reject(b)

Fig. 8. A possible “patient asks for advice” dialogue tree

In this dialogue when Bob asks for a recommendation, Bob uses the agent
to self manage pain by initiating a wellness consultation. The protocol for this
dialogue, split into its possible branches, for this dialogue is illustrated in Figs. 9,
10 and 11. This illustration of dialogue protocol is the same format used in [30].
These Figures include the different possible ways in which the dialogue can
evolve and the elements of the arguments, critical questions and explanations
used within these.

The instantiation of ASPT and its related CQs in this case results a recom-
mendation for ibuprofen as a painkiller. The agent proposes the recommended
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action to Bob (Fig. 9), and Bob can respond in a few ways. Bob can: simply
accept the recommendation; ask for more information (Fig. 10); reject the rec-
ommendation (Fig. 10); or propose an alternative action (Fig. 11).

Should Bob ask for more explanations (by asking why) then this would trigger
an explanation dialogue that would initially outline the reasoning within the
argument in support of the use of ibuprofen using the template in Fig. 6. An
example dialogue within the flow of Fig. 10 where Bob asks for more information
(The elements in parenthesis are not part of the actual dialogue):

– agent : It is recommended that you take Ibuprofen
– bob: Why should I take Ibuprofen?
– agent : Ibuprofen (Treatment T) should be considered as it promotes back

pain relief (goal G) given your clinical history (Bob patient facts F).

Here the agent is instantiating the explanation template from Fig. 6 that
matches ASPT.

Bob would then be able to accept the recommendation, or probe further. In the
latter case the critical questions would be employed in turn to further provide
rationale for this recommendation.

Another example of a possible dialogue should Bob propose an alternative
pain killer as illustrated in Fig. 11:

– bob: Should I take Codeine?
– agent : Codeine (Treatment T) should not be considered as it caused you side

effects in the past.

Here the agent is using the explanation template from Fig. 6 that matches
CQ2.

Bob
ASPT(goal(
backpain))

question(backpain)

Bob

offer(ibuprofen)

(ii) Bob asks why

(iii) Bob rejects ibuprofen

(iv) Bob proposes codeine

accept(ibuprofen)
Add to 
patient 
history

Fig. 9. Start of the dialogue protocol using approach in [30]
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assert(aspt) For each 
cq

Assert (cq)
Bob

assert(cq in CQ) Add to 
patient 
history

Refer to 
GP

accept(ibuprofen)

reject(ibuprofen)

ASPT 
explantation 

template
Bob

why
(ibuprofen)

Add to 
patient 
history

accept(ibuprofen)

Fig. 10. (ii) Explanation dialogue: why branch of dialogue protocol and (iii) persuasion
dialogue branch of dialogue protocol using approach in [30]

For each 
attack on 
codeine

Bob

assert(attack on 
codeine) Add to 

patient 
history

Refer to GP

accept(ibuprofen)

reject(ibuprofen)

Fig. 11. (iv) Persuasion dialogue on alternative action branch of full dialogue protocol
using approach in [30]

5 Related Work

This section succinctly outlines some of the work that relates to the elements
proposed in this paper. This includes work on argumentation based clinical deci-
sion support, argumentation-based dialogues and explainable AI.

While “explainable AI” is a recently coined term, work on explanation has
deep roots within the field of AI. As Van Lent et.al argue, such work goes back at
least to the 1970s through the requirement of expert systems, specifically clinical
ones, to be able to supply a justification for the recommendations that they
made [29]. Despite this long history, it is only recently that the AI community has
identified explainability as a key challenge problem [10]. For example, suggesting
that it will be a requirement for the adoption of AI-based systems (such as deep
learning systems) that they are able to explain the reasoning process rather than
just recommending some actions to take.

The topic of what constitutes an explanation is broadly addressed by Miller
et al. [18,19] who describes several approaches taken in the literature such as
explanation selection where a set of reasons are chosen to explain a decision.
This overview suggests several areas for investigation including explanation as
conversation. Such an approach is closely related to what we discuss here where
we model human-agent interactions for conveying explanations to users.

Turning to the more specific topic of argumentation-based (specifically argu-
mentation scheme-based) systems for clinical decision support, we find several
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systems that are close to what we describe. In StAR [8,12] argumentation was
used as a means to support reasoning about risk in the absence of numerical
estimates of uncertainty. This was in the context of reasoning about the carcino-
genic risk of different chemicals. The RAGs approach [6] leverages arguments
as a way of visually representing the different reasons underpinning different
possible treatment actions for a given patient. The DRAMA agent proposed
in [2] uses argumentation schemes to generate arguments used to reason about
a treatment, but this work does not touch on explanations or offer a dialogue
based interface. Similarly the Carrel+ project [31], where the objective of the
argumentation based tool was to supervise and validate the deliberation process
on organ transplant viability. In Carrel+, arguments were generated based on
argumentation schemes and the goal was not explaining decisions but agreeing
on a decision. The Argumentation based decision support approach proposed in
the CISpaces project in [4] presents an explanation template, and there is also
some groundwork for explainability from argumentation frameworks articulated
in [25]. Finally, we note that [3] also points out that there is a close relationship
between dialogue and explanation.

6 Conclusions

We have presented a novel approach that makes use of argumentation-based
dialogues and explanation templates to implement the explanation functional-
ity in the context of wellness consultations between an agent acting as a GP
and the patient as the human. Our contributions include modeling the types
of human-agent dialogues of relevance to wellness consultations, articulating an
approach to providing explanations as part of an argumentation-based dialogue
and illustrating the applicability of this approach on a clinical example related
to patient self management.

In future work, we plan to extend this approach to additional types of inter-
actions as sketched in Fig. 1. Here we modelled interactions where a human plays
the role of patient and a software agent plays the role of GP. Other interactions
include those in which both agent and human play the role of patient, and so the
two interact as peers. In this work we made some assumptions on the differing
level of knowledge of the user as compared to the agent, and in peer to peer
interactions this would not be the case in general. Thus this future work will
explore the effect of the hierarchy of levels of knowledge on the dialogue mod-
els. In addition, our plans for future work recognise that reasoning about what
possible treatments should be adopted in a clinical context involves more than
one argumentation scheme. Thus we will study additional schemes. Indeed, we
are currently in the process of mapping the general process of deciding on treat-
ments for stroke to existing argumentation schemes, specializing these schemes
where appropriate and highlighting gaps where existing argumentation schemes
do not cover the necessary reasoning. This will provide an exhaustive set of
schemes covering medical treatment relevant to stroke. This exhaustive set of
stroke treatment schemes will then drive the development of an associated set
of explanation schemes and their associated critical questions.
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These dialogues are being implemented in a chatbot, and we will evaluate the
approach as part of a user study with stroke patients. This study will allow us to
assess the feasibility of the approach and establish, qualitatively, how patients
interact with such a system. We will be evaluating this consult app as part
of a user study in the near future. The dialogue system is being developed in
conjunction with a GP, but it would be desirable to test this interaction with a
wider group GPs to assess whether these protocols align with the conversations
GPs have with patients.

Other future work will concentrate on critical questions. In this paper we have
articulated the role of critical questions in the reasoning about recommended
actions and the rationale for these actions. In future work we will consider the
role of critical questions both when they attack an argument and when they are
satisfied and therefore do not generate an attack. Explanations provided within
the dialogues should be able to explain both outcomes for each critical question.
This will facilitate situations where argumentation schemes are associated with
different critical questions and the answer to the critical questions may change
over time.

Finally, we will consider alternative ways to create arguments. Here we
assumed that all the arguments supporting a recommended action or treatment
were constructed using the clinical-specific argumentation scheme ASPT, and
we have already discussed expanding the set of argument schemes to cover a
wider set of situations. However, this is not the only way to create arguments.
For example, arguments can be mined from data [25,28], and, in the long term,
we would like to see the arguments used by a system like ours being mined from
the medical literature.

Acknowledgements. This work was funded by EPSRC grant EP/P010105/1 CON-
SULT: Collaborative Mobile Decision Support for Managing Multiple Morbidities.

References

1. Atkinson, K., Bench-Capon, T.: Practical reasoning as presumptive argumentation
using action based alternating transition systems. Artif. Intell. 171(10–15), 855–
874 (2007)

2. Atkinson, K., Bench-Capon, T.J.M., Modgil, S.: Argumentation for decision sup-
port. In: Database and Expert Systems Applications (DEXA), pp. 822–831 (2006)

3. Bex, F., Walton, D.: Combining explanation and argumentation in dialogue. Argu-
ment Comput. 7(1), 55–68 (2016)

4. Cerutti, F., Norman, T.J., Toniolo, A., Middleton, S.E.: CISpaces.org: from fact
extraction to report generation. In: Proceedings of COMMA 2018 Computational
Models of Argument, pp. 269–280 (2018)

5. Cogan, E., Parsons, S., McBurney, P.: What kind of argument are we going to have
today? In: Proceedings of the 4th International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 544–551. ACM (2005)

6. Coulson, A., Glasspool, D., Fox, J., Emery, J.: RAGs: a novel approach to com-
puterized genetic risk assessment and decision support from pedigrees. Methods
Inf. Med. 40(4), 315–322 (2001)



Explainable Argumentation for Wellness Consultation 201

7. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

8. Fox, J.: Will it happen? can it happen? a new approach to formal risk analysis.
Risk Decis. Policy 4(2), 117–128 (1999)

9. Girle, R.A.: Commands in dialogue logic. In: Gabbay, D.M., Ohlbach, H.J. (eds.)
FAPR 1996. LNCS, vol. 1085, pp. 246–260. Springer, Heidelberg (1996). https://
doi.org/10.1007/3-540-61313-7 77

10. Gunning, D.: Explainable Artificial Intelligence (XAI). Defense Advanced Research
Projects Agency (DARPA) (2017)

11. Kokciyan, N., et al.: Towards an argumentation system for supporting patients in
self-managing their chronic conditions. In: Proceedings of the AAAI Joint Work-
shop on Health Intelligence (2018)

12. Krause, P., Fox, J., Judson, P., Patel, M.: Qualitative risk assessment fulfils a need.
In: Hunter, A., Parsons, S. (eds.) Applications of Uncertainty Formalisms. LNCS
(LNAI), vol. 1455, pp. 138–156. Springer, Heidelberg (1998). https://doi.org/10.
1007/3-540-49426-X 7

13. McBurney, P., Parsons, S.: Chance discovery using dialectical argumentation. In:
Proceedings of the Workshop on Chance Discovery, Fifteenth Annual Conference
of the Japanese Society for Artificial Intelligence. Matsue, Japan (2001)

14. McBurney, P., Hitchcock, D., Parsons, S.: The eightfold way of deliberation dia-
logue. Int. J. Intell. Syst. 22(1), 95–132 (2007)

15. McBurney, P., Parsons, S.: Representing epistemic uncertainty by means of dialec-
tical argumentation. Ann. Math. Artif. Intell. 32(1–4), 125–169 (2001)

16. McBurney, P., Parsons, S.: Games that agents play: a formal framework for dia-
logues between autonomous agents. J. Logic Lang. Inf. 11(3), 315–334 (2002)

17. McBurney, P., Parsons, S.: A denotational semantics for deliberation dialogues.
In: Proceedings of the 3rd International Conference on Autonomous Agents and
Multi-Agent Systems. IEEE Press (2004)

18. Miller, T.: Explanation in artificial intelligence: Insights from the social
sciences. Artif. Intell. 267, 1–38 (2018). ISSN 0004-3702. https://doi.
org/10.1016/j.artint.2018.07.007. http://www.sciencedirect.com/science/article/
pii/S0004370218305988

19. Miller, T., Howe, P., Sonenberg, L.: Explainable AI: beware of inmates running
the asylum. In: Proceedings of the IJACI Workshop on Explainable AI (2017)

20. Parsons, S., et al.: Argument schemes for reasoning about trust. Argument Comput
Spec. Issue Trust Argum. Technol. 5(2–3), 160–190 (2014)

21. Parsons, S., McBurney, P., Sklar, E., Wooldridge, M.: On the relevance of utter-
ances in formal inter-agent dialogues. In: Proceedings of the 6th International
Conference on Autonomous Agents and Multiagent Systems (2007)

22. Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some for-
mal inter-agent dialogues. J. Log. Comput. 13(3), 347–376 (2003)

23. Parsons, S., Wooldridge, M., Amgoud, L.: On the outcomes of formal inter-agent
dialogues. In: Proceedings of the 2nd International Conference on Autonomous
Agents and Multi-Agent Systems. ACM Press, New York (2003)

24. Prakken, H.: Formal systems for persuasion dialogue. Knowl. Eng. Rev. 21(02),
163–188 (2006)

25. Rago, A., Cocarascu, O., Toni, F.: Argumentation-based recommendations: Fan-
tastic explanations and how to find them. In: Proceedings of the 27th International
Joint Conference on Artificial Intelligence, pp. 1949–1955 (2018)

https://doi.org/10.1007/3-540-61313-7_77
https://doi.org/10.1007/3-540-61313-7_77
https://doi.org/10.1007/3-540-49426-X_7
https://doi.org/10.1007/3-540-49426-X_7
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1016/j.artint.2018.07.007
http://www.sciencedirect.com/science/article/pii/S0004370218305988
http://www.sciencedirect.com/science/article/pii/S0004370218305988


202 I. Sassoon et al.

26. Rahwan, I., Ramchurn, S.D., Jennings, N.R., Mcburney, P., Parsons, S., Sonenberg,
L.: Argumentation-based negotiation. Knowl. Eng. Rev. 18(4), 343–375 (2003)

27. Rahwan, I., Simari, G.R.: Argumentation in Artificial Intelligence, vol. 47.
Springer, Heidelberg (2009)

28. Rajendran, P.: Aggregating and Analysing Opinions for Argument-based Relations.
Ph.D. thesis, University of Liverpool, Liverpool, June 2019

29. Shortliffe, E.H., Davis, R., Axline, S.G., Buchanan, B.G., Green, C.C., Cohen,
S.N.: Computer-based consultations in clinical therapeutics: explanation and rule
acquisition capabilities of the MYCIN system. Comput. Biomed. Res. 8(4), 303–
320 (1975)

30. Sklar, E.I., Azhar, M.Q.: Argumentation-based dialogue games for shared control
in human-robot systems. J. Hum. Robot Interact. 4(3), 120–148 (2015)

31. Tolchinsky, P., Cortes, U., Modgil, S., Caballero, F., Lopez-Navidad, A.: Increas-
ing human-organ transplant availability: argumentation-based agent deliberation.
IEEE Intell. Syst. 21(6), 30–37 (2006)

32. Walton, D., Krabbe, E.C.W.: Commitment in Dialogue: Basic Concepts of Inter-
personal Reasoning. State University of New York Press, Albany (1995)

33. Walton, D., Reed, C., Macagno, F.: Argumentation Schemes. Cambridge University
Press, Cambridge (2008)



Explainable AI and Cognitive Science



A Historical Perspective on Cognitive
Science and Its Influence on XAI

Research

Marcus Westberg1(B), Amber Zelvelder2, and Amro Najjar2

1 Department of History, Philosophy and Religion,
Oxford Brookes University, Oxford, UK

westberg.m@gmail.com
2 Computer Science Department, Umea University, Umea, Sweden

{amberz,najjar}@cs.umu.se

Abstract. Cognitive science and artificial intelligence are intercon-
nected in that developments in one field can affect the framework of
reference for research in the other. Changes in our understanding of how
the human mind works inadvertently changes how we go about creat-
ing artificial minds. Similarly, successes and failures in AI can inspire
new directions to be taken in cognitive science. This article explores
the history of the mind in cognitive science in the last 50 years, and
draw comparisons as to how this has affected AI research, and how AI
research in turn has affected shifts in cognitive science. In particular,
we look at explainable AI (XAI) and suggest that folk psychology is of
particular interest for that area of research. In cognitive science, folk
psychology is divided between two theories: theory-theory and simula-
tion theory. We argue that it is important for XAI to recognise and
understand this debate, and that reducing reliance on theory-theory by
incorporating more simulationist frameworks into XAI could help fur-
ther the field. We propose that such incorporation would involve robots
employing more embodied cognitive processes when communicating with
humans, highlighting the importance of bodily action in communication
and mindreading.

Keywords: XAI · Cognitive science · Folk psychology

1 Introduction

Philosophy has had many influences on cognitive science, especially in regards
to views on the nature of the mind. How we understand the mind affects how we
seek to construct artificial intelligence. Jerry Fodor’s computational theory of
mind [21] has served as a platform for AI research as it states that the workings
of the human mind are fundamentally algorithmic manipulation of symbols and
thus perfectly possible to recreate in an artificial environment. Similarly, embod-
ied approaches to cognition have had positive effects on robotics, as theories of
c© Springer Nature Switzerland AG 2019
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the mind focused on world-agent interaction have inspired reactive bottom-up
systems allowing robots to navigate the world through much less data-hungry
decision making. In this article, the term“theory of mind” refers specifically to
a held view or theory within philosophy or cognitive science that proposes an
explanation to how the mind works, and not the agent-specific ability to attribute
mental states to others, as the term is often used in relation to folk psychology.
So, what are the fundamental assumptions of the mind that can be found in
machine learning and explainable AI, and could philosophy or cognitive science
help improve these assumptions? Since the field is concerned with human-robot
interactions and understanding, there has to be one or several assumptions about
how mindreading occurs and what role different types of interactions play in the
cognitive processes leading to forming such understanding. There would also be
underlying theories about how we rationalise and structure our internal models of
the world (if at all) and how this comes into play when describing our intentions
and actions. This in turn highlights the problem of the evidentiary boundary
between mind and world, both robotic and human, and how we overcome it.
Philosophy offers many different solutions to this problem, some elevate the role
of action and behaviour in perception over internal representation in order to
bypass the problem altogether, such as enactivism, while others remain strictly
internalist but propose predictive models in order to unify world and agent
through Bayesian best-performing hypotheses, something that can be found in
predictive processing and predictive theories of mind. By looking at robots/AI,
we do not only see assumptions about how robot minds should work, but also
about how human minds interact with the world and other agents within it. In
order for AI to be understandable in such a way that humans can cooperate with
it, we need these theories to be compatible so that we can bypass the evidentiary
boundary between what we see in the world (an agent’s behaviour and outward
communication) and what is going on with the agent’s mental states (intentions,
beliefs, possible future actions).

This article highlights the intertwined relationship between cognitive science
and AI, and reviews how the history of philosophy of mind can be echoed in the
history of developments in approaches to AI research (Sect. 2), then it identifies
some examples of cognitive science-inspired AI application (Sect. 3), discusses
folk psychology (Sect. 4) and presents a roadmap describing how XAI can profit
from the recent evolution in theories of mind (Sect. 5). Finally, Sect. 6 concludes
this article.

2 Tracing the History of Philosophy of Mind and
Cognition

The history of AI research is often directly or indirectly linked to the history
of cognitive science and theories of mind. Theories about how the human mind
works can inform AI research in what to model their work on, and successes and
failures within AI can teach us lessons about of the human mind itself is likely
to work. If we were ever to create a general-level artificial intelligence that is
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perfectly indistinguishable from a human in cognitive capacities, we would likely
want to say that we have also gained some insight into a plausible model of the
human mind. Similarly, should theorized models of how the human mind works
from a field such as philosophy fail as models for creating efficient and functional
AI, then there is an equally compelling argument to be made that such results
discredit said theorized models. An example of this crossover effect can be seen
in the history of the Computational Theory of Mind (CTM). The Computa-
tional Theory of Mind was born out of the emergence of computing machines,
most prominently the abstract Turing machine, invented by Alan Turing [59] as
a model to, among other purposes, find a solution to the ‘decision problem’ in
formal logic. A line of thought came about that if machines can perform calcula-
tions and solve problems, could they be considered intelligent? Could a machine
think? Turing himself asked these questions [60] and developed what would be
known as the Turing test, a test where an interrogator would pass written ques-
tions to two other anonymous participants (one human, one machine) and would
receive answers from both. The interrogator would then determine which par-
ticipant is the machine, and which is the human. The purpose of the test was
for the machine to exhibit their capacity of intelligent behaviour. If the machine
could, even after rigorous questioning, appear to the interrogator as the human
participant, then the machine had a claim for being an intelligent thinker.

This pursuit of intelligent machines had a reverse side to it: If these machines
could solve problems and make decisions in a way that approaches cognition,
could cognition itself in fact be computational? Such a thought offered a robust
and structured approach to modelling the mind, while providing an analogous
relationship with the emerging science of creating better and more complex com-
puters. The rise of a computational theory of mind took place in this landscape,
beginning in the earliest stages with a suggestion by McCulloch and Pitts [51]
but was properly put into theory by Putnam [56] and was further developed by
Fodor [21].

2.1 Fodor and Cognitive Science

The comparison between human intelligence and the workings of computers
offered a solid argument for how the mechanisms of our mind and thoughts were
structured, and provided a bridge between the abstract mind models of philoso-
phers with the physical form which these cognitive faculties inhabit. If machines
could think, then human thinkers could also be like machines. CTM served as
a very influential founding theory in cognitive science [52]. While the theory
started with Putnam [56], it was further developed and popularized by Fodor
[21]. The theory is grounded in the idea that the mind works in many ways like a
digital computer; the mind is parsing internal representations (symbols) in algo-
rithmic ways, forming an internal computational language that is used to process
input data into output. Fodor saw the symbol-dependent processing of the mind
as a language and referred to this internal syntax as “the language of thought”
and “mentalese”. This interpretation placed mentalese as essentially a compu-
tational language of the mind, physically realised in the brain. By comparison,
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we could compare this to how a computer language works, and how the symbols
and syntax of programming languages are realised in software (thinking), but
physically situated in hardware (the brain). In fact, Fodor’s theory claimed that
this is exactly what is going on, suggesting that the mind is a physically realized
computational environment where information processing occurs. That is, our
minds are a formalized system parsing a language based on information-carrying
representations, structured by syntactic and semantic rules, the upshot of this
idea being that the mind and the world are connected through our understand-
ing of what is effectively a second simulated world within our mind. Information
about the world enters the mind as sensory data; the things we see, hear, taste,
smell and feel all enter our mind as raw data, which is then used to form mental
representations, starting simple and building in complexity to form concepts.
These representations are the components of our thought processes, which in
turn are algorithmic in nature; our thought processes are problem-solving oper-
ations using an internal rule set which determines how the symbols (represen-
tations) are to be manipulated by the system. This representation in turn can
vary in complexity and structure, such that they may be structurally atomic or
molecular, which then carries down to their syntactic constituents [23].

CTM became a very popular theory of mind and gave new fuel to cybernet-
ics (which had already been around since the 1930s) which led to the formation
of modern cognitive science, as well as the resurgence of artificial intelligence
research. As a result of this, throughout the 70s, 80s and 90s, much of the
research in cognitive science and AI followed these computational mind models.
In neuroscience as well, CTM was adopted by David Marr as a computational
theory of vision [43,44]. However, the 90s were a decline in CTM’s era as the
leading theory of mind. One of the reasons was the rise in popularity of con-
nectionism, and the people adopting it generally went against the idea of a
language of thought. Connectionist models of the mind are built upon neural
networks of interconnected nodes rather than the more linguistically inspired
CTM. In particular, eliminative connectionism sought to move away from the
idea of computationalism and mental representation in thought [14,37]. Thus
the 90s was a transformative era where philosophers started to move away from
the idea of classical CTM and arrived in a new paradigm era where the classical
computational theory of mind as offered by Putnam and Fodor had decreased
in popularity.

2.2 Embodied Cognition and Robotics

While the linguistic aspects of the classical version of CTM declined in the face
of connectionism and research into neural network architectures, CTM’s input-
output model of mind also faced criticism for its inefficiency in how it modeled
our interaction with the world. Classical CTM relied heavily on large amounts of
data being collected in order for the mind to structure and learn about the world.
This was also true of Marr’s theory of vision although there were discussions in
place that addressed the issue of dealing with uncertainty in identifying partial
objects [44]. CTM had traditionally constructed our interaction of the world as



A Historical Perspective on Cognitive Science and Its Influence 209

being input-output, that is we perceive the world as it enters our senses (input),
the sensory data transforming into a mental image of the world within our mind,
which we then act upon (output). This has sometimes been referred to as the
input-output sandwich, the idea being that cognition is filling, trapped between
the bread of perception and action. Such a model, in order to connect with the
outside world, first has to gather enough data via perception in order to create
a working understanding of the world before being able to make decisions about
actions to be taken within that world. Such systems are information-hungry in
ways that human-like animals often could not afford to be, which was consid-
ered a flaw in classical CTM’s plausibility as a model for how our minds actually
work. Similarly, AI that relied on intensive representation processing was still far
away from achieving something akin to what a human mind could do, and often
required quite complex top-down systems to guide their decision-making. Mean-
while, robotics was starting to see new successes by using motion and the world
integrate with their cognitive systems [45,46] and roboticist Rodney Brooks pre-
sented a new type of computational architecture that was light on representation
crunching and more focused on world-driven processes [8,9]. Philosopher Andy
Clark [15] identified this new movement as the rise of Embodied Cognition,
proposing a model of the mind where bodily action was more integrated with
the classically introverted and isolated cognition presented in CTM. This theory
of mind allowed for cognition to offload processes onto the world, and to use
the environment for cognitive scaffolding. This paradigm shift made cognitive
research more focused on mind-world-body interplay and interaction rather than
complex internal architectures. For example, Collins et al. performed research
into passive dynamic walker robots that use the natural pendulum motions of
legs to aid walking, creating a smoother gait than the computation heavy and
precision-demanding alternatives [18]. In philosophy, these developments led to
both CTM and connectionism losing popularity and attention in favor of the
now dominant EEEE theories: Embodied, Embedded, Extended and Enactive
cognition.

2.3 Predictive Processing Against Radical Enactivism

As classical CTM loses influence, philosophers in the early 2000s and onwards
become increasingly interested in describing the mind through world-driven pro-
cesses and much interest is given to where we draw the border between mind
and world. Classical CTM was traditionally very brain-focused in this regard,
but the new EEEE theories all have in common that they attempt to expand
this view, or reject it entirely. Embodied cognition [15] as mentioned before
pays attention to how the body can play a causal role in cognition; embedded
cognition involves the usage of external tools to facilitate cognitive processes;
extended cognition is a functionalist stance that argues that external processes,
if they fulfil the same functional role as the processes our heads, would consti-
tute as part of our mind [17]; enactivism proposes the idea that experience of the
world is conceived by interaction between brain, body and world, thus making
cognition a dynamic activity rather than a passive intake of information [62].
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The elements of these theories have branched off in many ways, and although
the general emphasis within philosophy these days lies in ’active’ cognition, i.e.
focused on world-engaging processes rather than the more ’passive’ traditionalist
model, many positions have appeared that challenge each other.

The discovery of backward connections in the brain and an increased interest
in Bayesian prediction models has given rise to theories of mind based on pre-
diction error minimization in perception called predictive processing, where the
mind meets the world by predicting future input. Some use this theory to defend
the traditionalist view of a brain-centric mind [36] while others seek to bridge
the gap between embodied, enactive and representational models [16]. Either
of these approaches to predictive processing still support the idea of mental
representation, something that was core to classical CTM, the effective change
being that predictive processing has taken care of the problem of inefficient input
ecology. On the other hand, branches of enactivism such as radical enactivism
argues against the existence of mental representations or content [38], claiming
that enactive processes make contentful representations functionally obsolete.
This creates a new conflict within philosophy of mind where our fundamental
understanding of the mind has changed from a passive observer to an active one,
while the debate about representations in cognition continues much like it did
during the rise of eliminative connectionism.

2.4 Influences in XAI

As noted above, modeling an artificial intelligence can be influenced by how we
as a scholastic community understand minds to work, be that as classical CTM,
as predictive or embodied. However, eXplainable AI (XAI) is not only concerned
with how minds work but also with mindreading and a cognitive agent’s ability
to explain itself to other minds. How this explanation is structured is related
to what theory of mind we endorse. An AI modeled after classical CTM would
be primarily concerned with reading and communicating its cognition in terms
of representational mental states, while an AI incorporating embodied cognitive
processes could make use of more world-driven processes in order to both read its
audience and explain itself. For example, this could involve not only analyzing
motion, facial expressions and other external signs of mental states, but in turn
using these to both in performing cognitive processes and communicating said
cognitive processes. The kind of interaction proposed here specifically relates to
incarnate agents where human and AI communication occurs through means of
folk psychology and expression of intention. As such, this is not as relevant to
systems that utilise other forms of communication such as diagnostics. Addition-
ally, XAI is in the position where we are not only invested in how to structure
the mind, but how we as agents understand other minds to work. In this way,
XAI is influenced by and concerned with folk psychology, which has an extensive
history within philosophy of mind and cognitive science. Concerns to be raised
about folk psychology are thus also concerns relevant to XAI. In this paper,
the term folk psychology is used specifically to refer to the cognitive capacity
to (a) attribute and explain mental states in other cognitive agents, (b) predict
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future behaviour of other cognitive agents and (c) to manipulate or coordinate
behaviour with other cognitive agents through this attribution and prediction of
mental states [35]. Broadly, possessing these capacities means that we describe
the actions of others in intentional terms, highlighting the fact that we view other
agents not as mere objects of causality, but as minds with their own beliefs and
desires [57]. While these capacities are traditionally talked about in the con-
text of relating to other human beings, there is a broader sense in which such
capacities could be directed toward reading other functionally similar minds, for
example reading and attributing mental states to non-human animals, or an AI.

3 Cognitive Science Inspiring AI Applications

In order to highlight the impact of developments in cognitive science of AI,
this section presents examples of recent AI applications relying on enactivism
(Sect. 3.1), and discusses how the renewed interest in XAI has relied on theories
of mind (Sect. 3.2).

3.1 Enactive and Developmental AI

Enactive AI is inspired from the works on enaction developed by the cognitive
biologists Maturana and Varela [47,48]. In contrast to the cognitivism of the tra-
ditonal approaches, which involves a view of cognition that requires the represen-
tation of a given objective pre-determined world [61,63], enaction relies on the
assumption that existence of a cognitive agent are enacted (i.e. co-determined)
by the agent as it interacts with its environment within which it is embedded.
Thus, nothing is predetermined, and cognition becomes the process whereby
an autonomous system becomes viable and effective in its environment [63].
Co-determination means that, on the one hand, the agent is specified by the
environment and, on the other hand, it is the cognitive process itself which
determines what in the environment is real and meaningful for the agent.

Since Enaction considers that the construction of cognition is undertaken
on the basis of interactions between the agent and their physical and social
environments, it supports constructivism, self-organization and developmental
agents [19].

In contrast to the classical approach and the computational theory of mind,
AI architectures based on enaction allow to overcome well known problems such
as the frame problem [50], the symbol grounding problem [33], and modeling of
common-sense problem [50].

Moreover, Enaction based AI is appealing because it allows Enactive-AI sys-
tem to retain the following three characteristics [19]: (i) no need for a-priori
representations: the agent does not need to have a pre-given model of its world.
Instead, it can learn its environment when it interacts with it. (ii) plasticity :
the agent is capable of adapting to the its environment even when significant
distributions take place. This plasticity is located both at the physical (bodily)
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interactions (e.g. a robot capable of adapting its movement to an unforeseen slip-
pery ground), and at the nerve level of higher interactions (cerebral plasticity).
(iii) co-evolution: A modification of the world by the agent in return imposes a
modification of that agent.

The characteristics mentioned above made enactive and developmental
approaches to AI appealing for many AI applications, including developmen-
tal robotics [4], smart environment [49,53], and road-traffic control [31].

3.2 The Case for Explainable AI

Since the turn of the century, intelligent applications are becoming more and
more pervasive in our daily lives. As these applications get more and more
sophisticated, there is an impelling need to make them explainable. This ten-
dency is accentuated by the rise of black-box machine learning mechanisms [32]
(e.g. deep learning) and their, sometimes, intriguing results [58]. To overcome
these problems, recent legislation in the EU, emphasized the right of explana-
tion [64]. Furthermore, evidence from user studies suggest that humans tend to
anthropomorphize intelligent systems and attribute them with a State of Mind
(SoM) [35]. This tendency is known as the intentional stance [20], and it pushes
humans to explain the behavior of these systems in terms of beliefs, goals, and
sometimes emotions [35]. For these reasons, recent research on XAI gained a
significant new momentum [2]. XAI aims to offer explanations that would help
the user to understand intelligent system and would lead to better human-agent
collaboration and incite the user to understand the capabilities and the limits
of the system, thereby improving the levels of trust and safety, and avoiding
failures, since the lack of appropriate mental models and knowledge about the
system may lead to failed interactions [3,11]. XAI is still in its early stages of
development, for this reasons, most existing works are either carried out at the
conceptual front [2]. Systems based on the Belief-Desire-Intention (BDI) archi-
tecture constitute a significant portions the few applied works [5]. The fact that
the BDI agent architecture is inspired from Folk Psychology [55] makes it suit-
able to explain the agent intentions to the lay user [7]. Next section presents folk
psychology and discusses its relationship with XAI.

4 Folk Psychology and XAI

In philosophy and cognitive science there are two main theories for how min-
dreading (i.e. folk psychology) takes place: theory-theory and simulation theory.
In Sect. 4.1 we will introduce theory-theory, followed by simulation theory in
Sect. 4.2. The basic distinction to be made is that theory-theory holds the view
that folk psychology operates from a set of rules that we hold in our mind, a
distinct theory about mental states in others that informs our interpretation.
Simulation theory on the other hand claims that our mindreading is performed
by mental simulation, changing our perspective to that of others so that we may
come to understand the underlying mental states for their behaviour.
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4.1 Theory-Theory and Classical CTM

Theory-theory proposes that our understanding of other minds is built upon a
tacit theory that we possess about how fears, desires and other mental states
operate in other human beings, including the causal relationship these mental
states have in a social context (i.e. how anger in one person can cause another to
become sad, what it means to be sad and what kind of behaviours signify a men-
tal state of sadness, how this sadness can be alleviated etc.). When we interact
with or observe other cognitive agents, we employ this theory as a framework
through which we form an understanding of the mental states in these agents
based on what we can perceive in their behaviour. For example, person A sees
person B reach out their hand toward an apple hanging on a branch. Person A
employs their theory that people who reach out their hands do so out of a desire
to grab what their hand is reaching toward. Since an apple is an edible object,
person A further projects that person B is likely to be hungry, since hunger
drives desire for edible things. As such, person A has now mindread a state of
hunger in person B, as well as their desire for an apple. Person A can then also
predict future behaviour in person B, in that once they get the apple are likely
to proceed with eating it in the near future.

There is significant overlap and compatibility between the theory-theory and
classical CTM, especially when considering Fodor’s theories on modularity of
mind, where similarly tacit cognitive subsystems, i.e. modules, operate on a con-
textual basis for specific purposes - for example vision and language acquisition
[22]. In a similar vein, theory-theory can be described as a folk psychology mod-
ule in the human mind - a special capacity that is normally not part of our
central processing, but within the right context receives the input (the percep-
tion or information of actions and behaviour of external agents), interprets the
information through our folk psychology ruleset and produces an interpretation
of what mental states we are perceiving. Older versions of theory-theory also
tend toward a sentence-based representational structure closely resembling that
of classical CTM, which is structured as a language of thought [21], but there
are also those criticising this idea and proposing connectionist structure, while
still maintaining the essence of a theory-based folk psychology [13,57].

Since theory-theory posits a set of rules or hypotheses informing the inter-
pretations produced by our mindreading, this ruleset has to at some point be
developed in the agent. This is an intersection where some supporters of theory-
theory embrace nativism while others argue for empiricism. The nativist stance
proposes that the framework for folk psychology is innately present at birth,
and that its formation is part of a development pattern present in our genes
[10]. Empiricists in contrast argue that the development of folk psychology is
a process based on evidence-based theory formation throughout childhood and
onward [28,29]. This debate can be compared to the debate of nativism versus
empiricism in language acquisition, with similar arguments to be made, such as
nativism’s critique of the poverty of stimulus [12].
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4.2 Simulation Theory

Simulation theory contrasts itself with theory-theory in claiming that our process
of mindreading is largely based on our ability to put ourselves in the shoes of
others, in essence we simulate the behaviour of others in our own mind as if from
our own perspective. There are two components to this that need to be unpacked:
(1) how mental states in other persons are simulated in our own mind, (2) how
these simulated mental states serve mindreading and prediction.

When it comes to (1), some supporters of simulation theory have latched onto
the discovery of mirror neurons as signifying a mirroring capacity that could be
linked to mental state simulation [24]. However, the modern version of simulation
theory came about before this discovery, in the mid-1980s [30]. Thus for the first
decade of its popularity, and still ongoing for those who do not subscribe to
the idea of mirroring, this capacity is instead described in terms of empathy or
imagination.

Regarding (2), simulating mental states is not enough to predict behaviour,
as there needs to be a process in place to explain how these mental states relate
to possible future behaviour. What follows is thus a simulated decision-making
process, where the agent asks themselves what they would do given the simulated
premises. Essentially, the agent asks themselves “what would I do if X?” where
X is the simulated mental states and context of the subject of the mindreading.
The answer to that question becomes the theory used to predict the subject’s
future actions.

Simulation theory is thus frugal in the sense that it does not require an
information-rich theory of how other minds work. Instead, all that is required
is the capacity for the agent to place their frame of mind in someone else’s sit-
uation through empathic simulation, and what follows is no different from the
kinds of decision-making processes that take place in the agent’s own actions.
This simulated process greatly reduces the amount of cognitive capital spent
on mindreading in comparison to theory-theory, since mindreading becomes pri-
marily process-driven rather than theory-driven [25].

5 A Roadmap for XAI

As mentioned before in Sect. 2.4, folk psychology is relevant to XAI research. As
XAI involves both humans explaining themselves to AI and, more importantly,
AI explaining itself to humans, mindreading becomes an important aspect of this
exchange of information and understanding. Understanding robots as subjects
of mindreading helps creating a framework where the mental states of an AI can
be explained, and thus aids the strategies employed by the AI in explaining itself
to humans. These influences of folk psychology can already be found in XAI. For
example, belief-desire-intention (BDI)-based agents [7,39] are an application of
theory-theory in XAI: These agents have their actions explained through beliefs
and goals, generating a theory of future behaviour based on an understanding
of these beliefs and goals, and how they relate to actions taken. BDI agents are



A Historical Perspective on Cognitive Science and Its Influence 215

widely used for social simulations [1]. BDI agents offer a reasoning formaliza-
tion inspired by human mentality based on intuitive concepts that allow for a
straightforward implementation in IT systems. Hence, the BDI architecture has
been highlighted as a practical solution to model humans and create human-like
behavior in simulated environments [55].

However, the way these are communicated to humans, and thus the method
through which a human agent is invited to mindread the BDI-based agent, is
through either natural language explanation, or an understanding of the BDI-
based agent’s goal hierarchy tree (GHT). This kind of explanation involves no
amount of simulation or putting oneself in the robot’s shoes, but rather becomes
a task of piecing together the robot’s reasoning through empirical questioning
and investigation, thus making it a clear case of theory-theory.

While this may be functionally sufficient in allowing the robot to explain
itself within the context of its design, it is limiting in the sense that underutilises
the human capacity for empathetic mentalisation, specifically when it comes to
mindreading through interpreting action - something that both human children
and chimpanzees have been shown capable of [34]. This appeal to empathetic
mentalisation is a trait of simulation theory. Applying simulation theory as a
framework for XAI could thus upon up a broader scope for communication by
capturing more of the human experience.

Simulation theory, as presented in Sect. 4.2, possesses a greater advantage
over theory-theory in that it can bypass the nativist versus empiricist debate
present in theory-theory. The ability to learn mindreading from simulation pro-
vides an innate system for learning where our knowledge and understanding of
other minds does not have to come pre-constructed at birth, nor does the learn-
ing itself involve the construction of a rigorous ruleset. Instead, any constructed
rulesets would be created through best-making hypotheses much in the manner
of a prediction-error minimization model for perception [36], where the more
advanced facets of our knowledge of human behaviour are constructed models
from a much more basic and frugal process.

However, it is important to note that theory-theory is improving by making
adjustments to incorporate Bayesian prediction models, just like predictive pro-
cessing revitalised the representational aspects of CTM in the face of increasingly
non-representational alternatives [16]. In theory-theory’s case, this turn toward
prediction is pertaining only to the empiricist part of the divide, and thus not a
nativist strategy [27]. This, however, may not be enough for standalone theory-
theory to win out over simulation theory.

Instead, what is becoming increasingly popular are hybrid theories, incorpo-
rating simulationist elements, but falling back on theory-theory wherever simu-
lation alone is insufficient [26] or vice versa [54]. Such hybrid theories would still
go well together with predictive processing: Theories that are primarily sim-
ulationist with elements of theory-theory would benefit from prediction error
minimization’s explanation of how theory can be constructed from continuous
and updating simulation, while primarily theory-based theories with elements
of simulation will find an increase in cognitive frugality that explains away the
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poverty of stimulus argument while avoiding nativism, thus promoting bottom-
up over top-down learning. Thus even if standalone simulation theory does not
stand as a clear superior theory, there is still a strong argument to be made that
including elements of simulation theory presents a stronger theory for how we
mindread over a standalone theory-theory. If this holds true, then it is even more
important that XAI going onward incorporates more elements of understanding
the AI as an embodied agent.

Some XAI research already shows an adaptation and understanding of the
importance of a robot’s physical movements and how nuances in this affect how
a human observer interprets its mental states [35]. Experiments involving robots
communicating their intentions with bodily movements [42] or their mental state
through eye movements and posture [6] show positive results in human inter-
action with robots and opens up a new path of interpretation. Furthermore,
the importance of emotions in explanations has been studied by recent works in
XAI. Yet, most of these works (e.g. [40,41]) rely on BDI agents (theory-theory)
and address simplified scenarios. This research shows an opening for simula-
tion theory in XAI since simulation theory helps promote emphatic behavior
(by putting ourselves in the others’ shoes), and allows the agents to explain its
behavior using body cues and non-verbal communications.

6 Conclusion

In this article we have shown how intertwined the relationship between cognitive
science and AI is, and have reviewed how the history of philosophy of mind
can be echoed in the history of developments in approaches to AI research.
For these reasons, it is important for XAI to pay attention to developments in
cognitive science, particularly regarding folk psychology, as these developments
could inform better approaches for XAI in the future. Conversely, the successes
and failures of XAI could in turn influence how the strategies employed are
viewed in discussions on folk psychology.

There is a clear shift in cognitive science and philosophy of mind toward
world-driven and embodied explanation of cognition, be that in regards to per-
ception, folk psychology, decision-making or action, and this shift does not seem
to be going back. Thus, the question is no longer about the input-output sand-
wich and how isolated thinking is from the world. Rather, the new focus is on the
relationship between thinking and world. With this in mind, our prediction is
that human-robot interaction will increasingly involve embodied cognition as a
tool for communication. Embodied processes in robots not only act as cognitive
scaffolding in navigating and interacting with the world, but it also opens them
up for mindreading as they present their mental states through behaviour that
humans recognise and can understand, thus allowing humans to tacitly recognise
robots as cognitive agents with beliefs and desires through the same methods as
they would other humans and non-human animals.
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