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If it weren’t for electricity, we’d all be watching television by
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12.1 Introduction of Bioelectricity and Biomechanics

In the current scenario, the innovation in technology is increasing as per the
requirements of our lives. This fact is also true for the area of health-care services
and medicine. The recent advancement in health-care system leads to effective
diagnosis and better treatment of diseases with the help of biomedical engineering.
Biomedical engineering includes two major fields, medicine and engineering.
The engineering field has assisted health-care technology by providing tools and
techniques such as biosensors, signal processing, image processing, and artificial
intelligence. These tools and techniques help health-care technology in the research,
diagnosis, and treatment of various diseases [1]. The field of biomedical engineering
also includes many new areas of research such as bioelectricity and biomechanics.

Bioelectricity is also known as electrophysiology [2]. Bioelectricity has the same
principle which the electricity has in the atmosphere and solid-state materials. One
of the major differences in bioelectricity and electricity is that the living systems
derive their electrical energy from the difference of ionic concentration which
is present across cell membranes as compared to man-made electrical systems.
Therefore, the energy sources in living systems are distributed in space along the
membrane, and this energy can be utilized by involving a flow of current across the
membrane. In other words, the systems designed by humans have a localized energy
source, for example, a battery, which conducts the currents through a conductor,
whereas living systems have distributed sources of energy. The bioelectricity is
quantified with the help of potentials and currents which values are functions of
position. The animals and people have huge volumes with conducting solution
through which ionic currents can flow. Hence, the study of bioelectricity is important
for understanding the electrical phenomena in different parts of a living system [3].

On the other hand, the biomechanics is a study of human movement which
is defined as the interdisciplinary that describes, analyzes, and assesses human
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movements [4]. Biomechanics includes the fields of engineering mechanics, biol-
ogy, and physiology. The knowledge of biomechanics helps us to understand the
normal and pathologic gait, mechanics of neuromuscular control, and mechanics of
growth and form. This understanding plays a significant role during the development
of medical diagnostic and treatment procedures. The human athletic performance
has also been enhanced with the help of biomechanics [5].

There are broad varieties of physical movements involved in biomechanics such
as the lifting of a load by a factory worker and the performance of a superior athlete.
These cases have used the same physical and biological principles, but the specific
movement tasks and level of detail change from case to case. Thus, the biomechanics
is all about the highest level of assessment of human movements [4].

12.2 Biosensors

The biomedical field basically depends on the monitoring of physical parameters
and chemical properties for effective outcomes. The analysis of these physical
parameters is performed in centralized laboratories, which require both capital and
skilled labor. However, these methods of analysis of physical parameters seem
to be accurate, but they have certain disadvantages such as time consuming and
inability to monitor concentrations at any instant in real-time situations. Therefore,
the development of biosensors has played an important role in instant monitoring
of biochemical under real-time situations which involve invasive and noninvasive
methods that offer an economic, fast, and easy analytical tool. The applications of
biosensors in the biomedical field have revolutionized the biomedical field with the
concept of self-monitoring. Biosensor can be defined as a device which monitors
the products of an enzymatic reaction in order to obtain the potentiometric response
[6].

A biosensor generally has two main components: a molecular recognition or
bioreceptor component and a transducer component [7, 8]. Figure 12.1 shows a typ-
ical biosensor in which an analyte is used to provide information to bioreceptor. The
bioreceptor component can be an enzyme, antibody, nucleic acid, microorganism,
and whole cell or tissue. The transducer component can be optical, electrochemical,
and mass-based. The types of biosensors based on these two main components
include temperature, light, spectrophotometry, fluorescence, and immunosensors.
The description of these biosensors is given below [9].

12.2.1 Temperature Sensors

Temperature sensors are most widely used in biological systems. The temperature
sensors which are especially used for the biomedical application must exhibit high
sensitivity and fast response. The semiconductor-based temperature sensors fulfill
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Fig. 12.1 Block diagram of a
typical biosensor [9]

Fig. 12.2 Working principle of thermocouple [9]

the criteria of higher sensitivity compared to the others. Their response is also very
fast because they are typically operated in direct contact with the medium, usually
water. Hence, the semiconductor-based temperature sensors, namely, thermocouple,
thermistor, diode, and transistor temperature sensors, are generally used for biomed-
ical application and whose descriptions are as follows [9].

12.2.1.1 Thermocouple

A thermocouple consists of two dissimilar metals joined together as depicted in
Fig. 12.2 [9]. The Thot represents the hot junction temperature where two metals
joined together while the temperature at the open junction is the cold junction
temperature which is represented by Tcold. The temperature difference between Thot
and Tcold causes flow of heat and this heat flow creates a flow of electric current
which is known as the Seebeck effect [9]. The metals used for thermocouple have
some degree of resistance which will generate voltage drop VA and VB across
metals. The difference of these voltages provides the output voltage V [9].



12 Biomedical Engineering Fundamentals 551

12.2.1.2 Thermistor

The conventional resistors may also be used as temperature sensors because the volt-
age drop across a resistance is inversely proportional to the temperature. A special
type of resistance which is very sensitive to temperature is known as thermistor. The
relationship between temperature and resistance for thermistor can be approximated
through the use of the following curve-fitting equation as follows [9]:

1

T
= A + B ln(R) + C[ln(R)]3 (12.1)

where T = degrees Kelvin (K), R = resistance of thermistor (�), and A, B, and C
are curve-fitting constants. The abovementioned expression in (12.1) is called the
Steinhart–Hart equation.

12.2.1.3 Diode Temperature Sensor

In the category of diodes, the Zener diode is specifically used for temperature
sensing. Figure 12.3 represents the current–voltage (I-V) curve of a typical Zener
diode [9]. The Zener diode is a unique type of diode which has a reverse bias
configuration. The reverse bias operation of a Zener diode using negative quadrants
is shown in Fig. 12.4 for understanding the working principle of Zener diode as a
temperature sensor [9]. It can be observed from Fig. 12.4 that the Zener voltage
is constant for a certain range of Zener currents (0.5–5 mA). This Zener voltage
changes with the environmental temperature and it is linearly proportional to the
temperature. On the basis of this phenomenon, we can use a Zener diode to sense
temperature within a certain range of current. It is also clear from Fig. 12.4 that the
high Zener current produces self-heating effect [9]. The typical working temperature
range of Zener diode sensors is −400 ◦C to +1200 ◦C, which are approximately

Fig. 12.3 I-V characteristic
of a Zener diode [9]
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Fig. 12.4 Reverse bias V-I
characteristic of a Zener
diode [9]

Fig. 12.5 V-I characteristics
of bipolar transistor [9]

similar to the range of a thermistor. The sensitivity of Zener diode is also similar
to that of a thermistor. The only benefit of a Zener diode temperature sensor is its
linear operation.

12.2.1.4 Transistor Temperature Sensor

The collector current and base–emitter voltage characteristic of a transistor is very
similar to reverse bias V-I characteristic of Zener diode and it can be seen in
Fig. 12.5. The base–emitter part (P-N) of a bipolar transistor is actually a diode
(P-N), and if we join the base and collector terminals, the bipolar transistor behaves
very similar to a diode. The operating temperature range is same as that of a Zener
diode and it also gives linearity over a range of temperatures [9].
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12.2.2 Light Sensors

Light sensors are very important in many biosensor applications and are commonly
used in conjunction with fluorescent dyes. Light is basically a part of electromag-
netic radiation which is visible to the eyes of humans, and it is known as visible
light. The word light is also used for some other electromagnetic radiations which
are not visible to the eyes of humans such as ultraviolet (UV) or infrared (IR).
The existence of light is basically in tiny energy packets which are known as
photons. The properties of waves and particles are exhibited by photons. In light,
the waves are sinusoidal and its peak-to-peak distance is called wavelength (λ). The
wavelength of light determines its color in visible light range. A light contains a
single wavelength (monochromatic) or multiple wavelengths (polychromatic). The
speed of light in vacuum is always constant and its value is 3 × 108 m/s [9].

The light sensors which are made out of semiconductors are photoresistor,
photodiode, and phototransistor, and the descriptions of these light sensors are as
follows [9].

12.2.2.1 Photoresistor

A photoresistor is a photoconductive cell which conducts only when it is exposed
to light. The semiconductor materials used for making photoresistor are cadmium
sulfide (CdS), lead sulfide (PbS), and cadmium selenide (CdSe). Figure 12.6
shows a conventional photoresistor which conducts with the exposure of light. The
photoresistor is usually S-shaped in order to increase the area of light exposure. In
the photoresistor, the holes and electrons are bound together, and when the light
(i.e., photons) is exposed to these photoresistor materials, this process creates extra
electrons. Therefore, these extra electrons provide extra energy which can make the
material more conductive and lowers its resistance. The mechanism in photoresistor
is somewhat similar to that of a thermistor [9].

Fig. 12.6 Photoresistor [9]
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Fig. 12.7 Photodiode in photovoltaic mode [9]

12.2.2.2 Photodiode

A diode which is sensitive to photons is known as photodiode. A photodiode can
be used without or with the applied voltage in order to sense light. A photodiode
is constructed with a very thin P-type semiconductor which is diffused into the N-
type semiconductor. The P-side of photodiode is exposed to light during operation.
The mechanism of photodiode without applied voltage is shown in Fig. 12.7. This
mode of operation of photodiode is also known as photovoltaic. In Fig. 12.7, the
N-type semiconductor contains free electrons and P-type semiconductor contains
holes. The electrons and holes repel each other. Thus, a small depletion region is
formed between them. This depletion region resulted in a “less conductive” region.
The sufficient supply of photons filled the depletion region with extra holes and
electrons. Therefore, the depletion region will start conducting and a noticeable
electric current will flow between these two semiconductors which can be observed
with an ammeter [9].

12.2.2.3 Phototransistor

A phototransistor is basically a transistor which produces high current as compared
to photodiode when exposed to light. The phototransistor can be constructed in
two different manners which are NPN and PNP phototransistors. In an NPN
phototransistor, the base current is replaced with light which provides significant
energy to jump the electrons and holes from emitter to collector and vice versa.
Figure 12.8 shows an NPN phototransistor which is fabricated by diffusing P-
type semiconductor (base) into the N-type semiconductor (collector), followed by
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Fig. 12.8 An NPN
phototransistor [9]

diffusing the N-type (emitter) into the P-type. A phototransistor has also a built-in
amplifying ability [9].

12.2.3 Spectrophotometry

A spectrophotometer measures the light intensity which is transmitted or absorbed
through a material. This material may be a liquid solution or gas in a container. This
measure can be performed for a specific color (wavelength) or a range of colors
(wavelengths). If the measurement is observed for a specific color, then it is known
as photometry. On the other hand, if the measurement is observed for a range of
colors, then it is known as spectrometry. This measure provides us a light intensity–
wavelength curve which is called a spectrum (or spectra) [9].

The principle of absorption is most commonly used in spectrophotometer
because it has certain applications in biomedical field. Figure 12.9 shows a
schematic of a simple spectrophotometer. In Fig. 12.9, the source of light is a lamp
which generates light of all colors in approximately equal proportions resulting in a
white light source. This white light is transmitted through a monochromator which
consists of a prism and a slit. The slit passes a particular color of light and this
selected beam of light finally passes through a rectangular container that holds a
liquid solution or gas mixture. The liquid solution or gas mixture attenuates the light
intensity and the attenuated light intensity hits on the surface of photodiode which
provides a current corresponding to attenuated light intensity. The absorbance A can
be calculated by comparing this light intensity (l) with that from the light source
(l0) [9]:

A = log

(
l0

l

)
(12.2)
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Fig. 12.9 A simple spectrophotometer [9]

where l = attenuated light intensity and l0 = light intensity from the light source.

12.2.4 Fluorescence

The fluorescence principle is based on the absorption spectrophotometry in which
we change the solute in a solution with fluorescent dyes. The color of emitted
light from the container is shifted to longer wavelength. The term fluorescence was
derived from the mineral fluorite, which is largely calcium fluoride. In fluorescence,
the light irradiation excited the molecules and placed them in unstable excited states.
The excited molecules lose their excessive energy due to their unstable nature, and
this process requires emitting of the photons at the identical wavelength as that of
initial light irradiation [9].

The commonly used example of fluorescence is a fluorescent lamp. In a
fluorescent lamp, the charged tube of mercury vapor is used to produce ultraviolet
(UV) light upon applying electrical voltage. The fluorescent coating is applied to
the inner surface of the tube in order to absorb UV light and emit visible light [9].

12.2.5 Immunosensors

Biosensors which use antibodies or antigens as bioreceptors are called immunosen-
sors. Immunosensors are widely developed for medical and veterinary diagnostics,
food safety, and environmental monitoring because antibodies are very specific
to proteins, viruses, bacteria, cells, etc. In comparison to other biosensors, the
immunosensors are provided good sensitivity and specificity. Immunosensors have
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become very popular recently [9], although the use of antibodies in biological assays
has been a very common analysis in laboratory.

12.3 Basics of Signals and Systems

The signal definition plays a very important role in understanding the behavior of
signal processing algorithm and its interpretation. The signal can be represented as a
function of independent variables and these independent variables can vary from one
to many. In other words, signal can be considered as a physical quantity which varies
with respect to these independent variables and this physical quantity also contains
some kind of information and behaves as a function of one or many independent
variables.

12.3.1 Types of Signals

The major classification of signals is as follows [10].

12.3.1.1 Continuous, Discrete Time, and Digital Signals

The signals which have continuous amplitude and continuous time are known as
continuous signals. These signals are also known as analog signals and such signals
are defined at any point of time. These signals are generally denoted by f (t) where
f is a function which depends on the continuous variable t which is continuous in
nature. Figure 12.10 shows an example of continuous-time signal.

Fig. 12.10 Continuous-time sinusoidal signal
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Fig. 12.11 Discrete-time sinusoidal signal

Fig. 12.12 Digital signal

Discrete-time signals have discrete time and continuous amplitude. In these
signals, discretization of time is performed using sampling theorem on analog
signals. Many signals are discrete signals based on the nature of their measurement.
For example, if we measure the weight of a person every day for 1 month, then
the plot of weight with respect to whole 30 days can be considered as a discrete-
time signal. Such signals are represented by x[n]. The small n indicates time index
or discrete time which is corresponding to the actual time t = nT, where T is the
sampling interval. Here, n is also known as normalized time. Discrete-time signals
can be also represented in the form of sequences. Figure 12.11 shows an example of
discrete-time signal.

The digital signals are those signals which have discrete time and discrete
amplitude. These signals have a finite number of values. For example, binary
digital signal will have only two values either zero or one. The analog to digital
converter (ADC) process can be used to obtain digital signal from the analog signal.
Figure 12.12 shows an example of digital signal.
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Fig. 12.13 Periodic cosine signal

Fig. 12.14 Aperiodic exponential signal

12.3.1.2 Periodic and Aperiodic Signals

The signal which follows repetition after a time interval is known as periodic signal.
For a given signal x(t), it can be mathematically expressed as follows:

x(t) = x (t + T ) (12.3)

Here, T is known as the period of the signal.
Sine and cosine waves are examples of periodic signals and Fig. 12.13 shows an

example of periodic cosine signal.
On the other hand, the aperiodic signal does not satisfy the abovementioned

condition in Eq. (12.3). An example of aperiodic signal is shown in Fig. 12.14.
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Fig. 12.15 Deterministic cosine signal

Fig. 12.16 Random noise signal

12.3.1.3 Deterministic and Random Signals

Deterministic signals are those signals which can be represented by mathematical
expression and such kind of signals are well determined at any point of time. Sine,
cosine, and exponential signals are examples of deterministic signals. Figure 12.15
shows an example of a deterministic signal.

On the other hand, random signals are nondeterministic signals which include
uncertainty in the signal values at some point of time. For representation of such
kind of signals instead of mathematical representation, they require probabilistic
models. Random noise is an example of random signal. Figure 12.16 shows a
random noise generated in Matlab.

12.3.1.4 Even and Odd Signals

Even signals x(t) satisfy the following condition:
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Fig. 12.17 Even signal (Gaussian window)

Fig. 12.18 Odd sinusoidal signal

x(t) = x (−t) (12.4)

On the other hand, odd signals satisfy the following condition:

x(t) = −x (−t) (12.5)

Figures 12.17 and 12.18 represent the even and odd signals, respectively.
It should be noted that any signal x(t) can be represented in terms of even signal

and odd signal.

xeven(t) = x(t) + x (−t)

2
(12.6)
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xodd(t) = x(t) − x (−t)

2
(12.7)

12.3.1.5 Energy and Power Signals

Energy signals have finite energy and the energy of the signal x(t) can be defined as
follows:

E =
∞∫

−∞
x2(t)dt (12.8)

The power signals are those signals which have finite power and the mathematical
expression for power can be given as follows:

P = lim
T →∞

1

2T

T∫
−T

x2(t)dt (12.9)

It should be noted that any signal cannot be power and energy signal together
and it is also possible that a signal may be neither energy nor power signal.

12.3.2 Types of Systems

Systems are required to process the signals for various applications. There are
various types of systems which can be categorized as follows [10]:

12.3.2.1 Linear and Nonlinear Systems

A system which follows homogeneity and additivity principles is known as linear
system. On the other hand, a nonlinear system does not follow these principles.

For two input signals x1(t) and x2(t), the homogeneity and additivity principles
are as follows:

L {a1x1(t) + a2x2(t)} = a1L {x1(t)} + a2L {x2(t)} = a1y1(t) + a2y2(t)

(12.10)

Here, L{a1x1(t) + a2x2(t)} is the overall response of the system and
a1L{x1(t)} + a2L{x2(t)} represents the individual response of systems of signals x1(t)
and x2(t), respectively. The overall response of system is equal to the response of
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individual systems for a linear system where the sum of these individual responses
is not equal to the overall response in a nonlinear system.

Example of a linear system is as follows:

y(t) = 7x(t) (12.11)

Example of a nonlinear system is as follows:

y(t) = x(t) + 7 (12.12)

12.3.2.2 Time-Invariant and Time-Variant Systems

A system can be considered as time-invariant if input–output characteristics of the
system do not vary with time. On the other hand, a time-variant system does not
follow such characteristics.

A system with input signal x(t) and output signal y(t) is time-invariant when

L {x (t − τ)} = y (t − τ) (12.13)

where τ is shifting a parameter.
Example of time-invariant system is

y(t) = cos {x(t)} (12.14)

Example of time-variant system is

y(t) = x(3t) (12.15)

12.3.2.3 Linear Time-Invariant and Linear Time-Variant Systems

If a system satisfies linear and time-invariant properties, then it is known as linear
time-invariant system and a system which satisfies linear and time-variant properties
is called a linear time-variant system.

12.3.2.4 Static and Dynamic Systems

A system which does not require memory is known as static system and a system
which requires memory is called as dynamic system.

Example for memory-less static system is as follows:

y(t) = 3x(t) (12.16)
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Example of a dynamic system is as follows:

y(t) = 3x(t) + x (t − 3) (12.17)

12.3.2.5 Causal and Noncausal Systems

For causal system, the output depends on the present and past values of the input
signal. On the other hand, the noncausal system output also depends on the future
values of the input signal.

Example of causal system is as follows:

y(t) = x(t) + x (t − 2) (12.18)

The following is the example of a noncausal system:

y(t) = x (t + 2) (12.19)

12.3.2.6 Invertible and Non-invertible Systems

A system can be considered as an invertible system if the input signal can be
obtained on the output signal of the system. When input signal cannot be obtained
on the output of the system, then a system is known as non-invertible system.

Example of an invertible system is as follows:

y(t) = 3x(t) (12.20)

Example for a non-invertible system is as follows:

y(t) = 0 (12.21)

12.3.2.7 Stable and Unstable Systems

In stable system, bounded input signal provides bounded output signal, whereas in
unstable system, we will get unbounded output signal for the bounded input signal.

Example of stable system is given as follows:

y(t) = x(t) (12.22)

Example of unstable system is as follows:

y(t) =
∫

x(t)dt (12.23)
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Fig. 12.19 Schematic block diagram of signal acquisition [11]

12.3.3 Signal Acquisition

Signal acquisition is a process in which we study how the physical signals collected
from the sensors get into the computers or digitized for the processing of signal
in computers and machines. The main blocks of signal acquisition process contain
signal conditioning which is mainly possible with a sample and hold circuit and
ADC by which a physical analog signal can be converted into a digital signal.
The block diagram of signal acquisition process along with sensor and computer
interface units is shown in Fig. 12.19. In this Fig. 12.19, sensor senses the physical
signal and then signal conditioning is applied with the help of sample and hold
circuit, and in order to get this signal in digital domain, an ADC is used. Thus,
the converted signal has a number of bits which represent the analog signal at a
particular instant of time and which can be stored in a computer with this interfacing
mechanism [11].

The typical signal acquisition process has some additional processing units
because the sensors have multiple channels. Therefore, a multiplexing unit with
sample and hold circuit which quickly scans all the channels and provides data to
sample and hold circuit in the short interval of time is required. On the other hand,
each ADC has a certain dynamic range of working. The violation of dynamic range
of ADC leads to approximation errors during analog to digital conversion process.
Thus, it is necessary to amplify the signal to increase the resolution of the ADC.
The isolation is also a part of signal acquisition process because the electric and
magnetic fields may affect the signal properties. Therefore, a good signal acquisition
process should be properly isolated in order to get less interference of external
factors. In addition to these abovementioned units, an anti-aliasing filter just after
the multiplexer unit is also required because the outputs from the multiplexer are
very closely placed in time and the sample and hold circuit with ADC will also take
some time to complete the analog to digital conversation process [11].

12.3.4 Time- and Frequency-Domain Representations

The digital signals stored in computer have significant information which enable us
to extract the desired information present in the signal. These signals physically exist
in time domain and we can analyze the behavior for most of the signals by visual
inspection. However, the frequency-domain characterization is equally important for
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the analysis of a signal. Therefore, the Fourier transform is a commonly used tool
for spectral representation of a time-domain signal. The main motivation behind
the uses of different types of transformations in signal processing techniques is due
to the fact that transforms can highlight certain characteristics present in signal in
different domains.

According to Fourier, a continuous periodic signal x(t) can be formed by
combining a number of scaled and phase-shifted sinusoidal components. The
frequencies of these components are in multiple of the fundamental frequency (ω0)
for the signal x(t). Hence, the synthesis equation for a general periodic signal x(t)
can be written as [12]:

x(t) =
∞∑

k=0

gk cos
(
2πkf 0t + �k

)
(12.24)

where gk and �k are sets of constants and f0 = ω0
2π

. Suppose pk = gk cos (�k) and
qk = − gk sin (�k), then Eq. (12.24) with the help of trigonometric expansion can
be written as [12]:

x(t) =
∞∑

k=0

[pk cos (2πfkt) + qk sin (2πfkt)] (12.25)

Equation (12.25) can also be written as [12]:

x(t) =
∞∑

k=−∞
Ak [cos (ωkt) + j. sin (ωkt)] (12.26)

where j = √−1, Ak = pk±jqk

2 , and it is a complex number for k > 0 and k < 0,
respectively. Equation (12.26) with the help of Euler’s relation can be written as
[12]

x(t) =
∞∑

k=−∞
Ake

+jkω0t (12.27)

Here, the magnitude of coefficient, |Ak| = gk =
√(

p2
k + q2

k

)
and phase

� Ak = �k = tan−1(qk/pk). Equation (12.27) is known as Fourier synthesis equation
for a periodic continuous signal x(t).

Conversely, the Fourier analysis equation for a periodic continuous signal x(t)
with time period T0 can be written as [12]:

Ak = 1

T0

∫
x(t)e−jkω0t dt (12.28)
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It should be noted that k has only integer values and Ak is a discrete function in
Eq. (12.28).

Fourier transform is a linear transform which plays a very important role in
digital signal processing applications, and fast Fourier transform (FFT) algorithm
is commonly used in analyzing the spectral content of any deterministic signal due
to less computational complexity.

The discrete Fourier transform (DFT) allows the decomposition of discrete-
time signals into sinusoidal components whose frequencies are multiples of a
fundamental frequency. The amplitudes and phases of the sinusoidal components
can be determined using the DFT and is represented mathematically as [12]

X(k) = 1

N

N−1∑
n=0

x(n)e
−j

(
2πkn

N

)
(12.29)

For a given signal x(n) whose sampling period is T with N number of total
samples (NT is therefore the total duration of the signal segment). The spectrum
X(k) is determined at multiples of fs/N, where fs is the sampling frequency.

On the other hand, the spectrum can also be obtained using Fourier–Bessel
series expansion (FBSE) [13–15]. In FBSE, the Bessel functions are used as basis
sets for signal representation, and these basis functions are aperiodic and decay
over time. These features make FBSE-based representation suitable for analysis of
nonstationary signals, while DFT has certain limitations for these kinds of signals.
FBSE has been successfully applied for nonstationary and biomedical signals [16–
25].

The FBSE of u(n) using zero-order Bessel functions can be expressed as follows
[25]:

u(n) =
L∑

k=1

MkJ0

(
βkn

L

)
, n = 0, 1, . . . , L − 1 (12.30)

where Mk are FBSE coefficients of u(n) which can expressed as follows [25]:

Mk = 2

L2(J1 (βk))
2

L−1∑
n=0

nu(n)J0

(
βkn

L

)
(12.31)

where J0(.) and J1(.) represent zero- and first-order Bessel functions, respectively.
The ascending order positive roots of zero-order Bessel function (J0(β) = 0) are
represented by βk with k = 1, 2, . . . , L. The order k of the FBSE coefficients is
corresponding to continuous-time frequency fk (Hz) and it can be computed by the
expression given as follows [25]:

βk ≈ 2πfkL

fs

(12.32)
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Fig. 12.20 EEG signal of a normal person during eyes-closed condition

Fig. 12.21 Magnitude spectrum of Fourier transform

where βk ≈ βk − 1 + π ≈ kπ and fs is sampling frequency. From Eq. (12.32), the
order k can be expressed as follows [25]:

k ≈ 2fkL

fs

(12.33)

It can be observed from Eq. (12.33) that order k should be varied from 1 to L in
order to cover the entire bandwidth of signal u(n). Hence, the magnitude spectrum
of FBSE is the plot of magnitude of FBSE coefficients (|Mk|) versus frequencies
(fk).

The time- and frequency-domain representations of an eyes-closed normal EEG
signal obtained from Bonn University EEG database are shown in Figs. 12.20,
12.21, and 12.22, respectively. The sampling frequency of this EEG signal is
173.61 Hz [26].
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Fig. 12.22 Magnitude spectrum of FBSE

12.3.5 Finite Impulse Response (FIR) and Infinite Impulse
Response (IIR) Filters

The response of a FIR filter depends on current and past inputs. Thus, the filter
will not produce outputs if it has not received any inputs. The impulse response
of this kind of filter is unequal to zero for a finite range. On the other hand, the
response of an IIR filter is based on current inputs, past inputs, and past outputs.
The dependency of this filter on past outputs generates outputs even after the filter
has stopped receiving inputs. The impulse response of an IIR filter is unequal to
zero for infinite range. The mathematical forms of FIR and IIR filters for the input
signal x(n) and output signal y(n) are as follows [27, 28]:

FIR filter : y(n) =
M∑
i=0

Gix (n − i) (12.34)

IIR filter : y(n) =
M∑
i=0

Gix (n − i) −
p∑

j=1

Hjy (n − i) (12.35)

where G and H are the filter coefficients. The physical structure which will realize
Eqs. (12.34) and (12.35) are shown in Figs. 12.23 and 12.24, respectively. In Figs.
12.23 and 12.24, Z−1 represents the unit delay element.

The main reason for the description of FIR and IIR filters in this chapter is
because the biomedical signals have small amplitude. These signals are contam-
inated by various artifacts and interferences which change the properties of the
signals. One of the commonly present interference in biomedical signals is power
line frequency of 50 or 60 Hz. The FIR and IIR filters are used in order to reduce
the noise due to power line frequency of 50 or 60 Hz [29].
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Fig. 12.23 Physical structure of FIR filter [28]

Fig. 12.24 Physical structure of IIR filter [28]

12.4 Types of Biomedical Signals

The electric activities present in the cell which create a potential difference across
the cell membrane are used for a number of biomedical signal measurements. These
biomedical signals are categorized based on the functioning of different parts of
biological system and the descriptions of these biomedical signals are as follows
[30].
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12.4.1 Electroencephalogram (EEG)

In the biological system, the monitoring and control over the different parts are
processed through the brain. The action potentials are used to generate neural
activity in the brain and this brain activity can be recorded with the help of
electrodes. The signals obtained with these electrodes are known as EEG signals.

The history behind the use of EEG signal is based on an experiment performed
in 1929 in which a German psychiatrist named Hans Berger was performing an
experiment on his daughter’s head to verify the hypothesis that the brain exhibits
electrical activity. He observed that the electrical activity increased when she was
trying to solve some difficult multiplications. Thus, he deduced from this experiment
that the wave patterns observed in the brain recordings reflected the depth of the
brain activity [30].

It has been observed that the approximate range of nerve cells in the brain is in
the order of 1011. The potential of a nerve cell in steady state is typically around
−70 mV, and it is generally negative. On the other hand, the action potential peak
is +30 mV and it approximately falls for 1 ms. Thus, the nerve impulse has a
peak-to-peak amplitude of approximately 100 mV. In the gray matter, each neuron
releases the action potentials during the process of sensing inputs transmitted from
other neurons or external stimuli. The spatially weighted sum of all these action
potentials at the surface of the skull can be measured by EEG signal. The instrument
which is used to record EEG signals is less expensive and accurately measures the
brain’s electrical activity from the skull. These EEG recordings can be possible in
unipolar or bipolar manner. The depolarization signals from the nerve cells may
attenuate while passing through the skull because it has complex impedances. Thus,
the collections of these signals are possible with quality contact of electrodes with
the skull in order to overcome the impedance mismatch created by the hair and
dead skin on the skull. The collected EEG signals from the surface of the skull are
amplified to represent these signals on electric potential versus time graph [30].

The electric activity in a brain is simultaneously present at many different loca-
tions of the head. The most common recording technique of EEG signals utilized 21
electrodes to record these simultaneously occurring electrical activities. The number
of these electrodes varies from 64 to 256 for other measuring techniques. The
frequency range of amplifiers used to record EEG signals should cover the range
from 0.1 to 100 Hz for the analysis of all activities [30].

The EEG signals are broadly used for the diagnosis of various diseases or
disorders such as epilepsy, sleep disorders, neurodegenerative diseases, and brain
death. The EEG signals of a normal person with eyes-open condition and an
epileptic patient during seizure are depicted in Figs. 12.25 and 12.26, respectively
[26]. These signals are also obtained from Bonn University database.

The EEG signals are also used in research of brain functional activity. The
analysis of evoked potentials (EPs) and event-related potentials (ERPs) of the brain
using EEG signal is most common of them. In such applications, the responses
of EEG signals are recorded providing specific stimuli such as auditory and visual
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Fig. 12.25 Normal EEG signal with eyes open

Fig. 12.26 Seizure EEG
signal from patient

inputs. The EPs and ERPs are particularly used to investigate the response of a brain
corresponding to specific stimulation. The level of attention and stress can also be
monitored with the help of EPs during experiment.

The major limitation present in EEG signals is that the EEG signals cannot reveal
the information about the structure which is responsible for originating these signals.
The limitation is due to the fact that the EEG signals are the spatial sum of all action
potentials transmitted from billions of neurons at different depths below the cerebral
cortex. Therefore, the functional magnetic resonance imaging (fMRI) is used where
the functional information from the structures deeply situated in the brain is required
[30].

12.4.2 Electrocardiogram (ECG)

The electrical activity recorded from the heart is known as ECG. The ECG signal
is used for the clinical diagnosis of heart diseases. The cellular electrical excitation
due to cardiac muscle contraction can be recorded by ECG signals. The functioning
of these cells can be indicated by its electrical activation, while the depolarization
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Fig. 12.27 A sample ECG signal with P, Q, R, S, and T wave representation

indicates the shortening of muscle cells. The repolarization and depolarization
generate electric potential differences on the muscle cells, which can be recorded
using electronic recording instrument. Thus, the ECG signal is due to controlled
repetitive electric depolarization and repolarization patterns of the heart muscle
cells.

In early history, the ECG signal recording was possible by the efforts of a Dutch
scientist Willem Einthoven in 1903. He designed a galvanometer to record the
action potentials. The galvanometer was directly coupled to an ink pen. This pen
was moved directly on paper as a voltage leading to a deflection of galvanometer
was given. Nowadays, the electrodes are directly coupled to amplifiers and filters in
order to record ECG signals.

The characterization of ECG signal is usually possible by five waves. These
waves are denoted by letters P, Q, R, S, and T. These P, Q, R, S, and T waves
can be seen in Fig. 12.27. The ECG signal is also characterized sometimes by a
sixth wave with letter U. The P wave in ECG signal is due to depolarization of the
atrium, while the Q, R, S, and T waves are caused by the ventricle. The time duration
for P wave in ECG signal is approximately for 90 ms and the amplitude for this
wave does not usually exceed 2.5 × 10−4 V. During P wave, the atrium contracts
to fill the ventricle due to the depolarization. The QRS complex in ECG signal
is occurring for time duration of 80 ms with amplitude of about 1 mV. The QRS
complex represents the depolarization of the septum and Purkinje fiber conduction.
The septum is a wall which separates the left and right ventricle. In simple language,
the QRS complex shows the depolarization of ventricular wall from bottom to top
and from inside to outside. It should be noted that the quiet time between the P wave
and the QRS complex is generally used as a reference line. The repolarization effects
of ventricular wall from outside to inside which is also opposite to depolarization
represent with a pulse called T wave. During the repolarization process, the atrium
is relaxed and filled back. The repolarization process can be distinguished from
the depolarization process with the fact that the repolarization process takes longer
time as compared to depolarization process. The action potential gradient of the
repolarization process is also straightforward wherein it incorporates a smaller
gradient in the time derivative of the cell membrane potential. The U wave also
shows sometimes a portion of the ventricular repolarization [30].

The ECG signals are used for the diagnosis of various cardiovascular diseases
such as myocardial infarction and coronary artery disease (CAD). The ECG signals
of a normal person and a patient suffering from CAD are shown in Figs. 12.28
and 12.29. These ECG signals of a normal person and a patient are obtained
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Fig. 12.28 Normal ECG signal

Fig. 12.29 CAD ECG signal

from Fantasia open access database and St. Petersburg Institute of Cardiological
Technics 12-lead Arrhythmia Database, respectively [31]. The sampling frequencies
of normal and CAD ECG signals are 250 and 257 samples per second, respectively.

12.4.3 Electromyogram (EMG)

The recording of muscle’s electrical activities is known as EMG signal. Moreover,
the EMG signal is a signal which records the electrical activities produced by
the depolarization of muscle cells during muscle contraction. This recording also
contains the nerve impulses that initiate the depolarization of the muscle.

In 1907, the first time recording of action potentials produced by human muscle
contraction was reported by Hans Piper. The EMG signal has emerged as vital
signal in the biomedical field because a number of neuromuscular disorders can
be diagnosed using EMG signals.

The recording of the electrical activities of muscle tissue is possible with two
methods. In first method, the electrodes are applied on the skin and the signals are
recorded from surface of the skin. The second method actually uses the insertion of
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Fig. 12.30 Normal EMG signal

needles with electrodes into the muscle. The EMG signals are the spatially weighted
sum of the electrical activities collected from the surface of the skin due to a number
of motor units. However, the information present in EMG signal is the combined
information of the entire muscle groups. In general, the EMG signal is used to
identify the muscle groups which are involved in a particular motion or action.

The EMG signals of specific motor unit can be measured with subcutaneous
concentric needle electrodes after implanting it on the muscle. The depolarization of
the muscle cells which are present surrounding the needle electrodes can be recorded
with these electrodes. Moreover, the electrical activity of a single motor unit can be
directly measured with these types of electrodes, and if the needle has more than
one electrode, then the bipolar measurement is also possible. There is a short burst
activity happening during needle electrode insertion for recording of EMG signals.
These burst activities may be repeated several times when an axon of a nerve is
touched. The EMG signals also have muscle potential spikes which may be present
during muscle contraction. These spikes are not true action potentials of muscle cells
because the muscle excitation is usually due to the presence of calcium, potassium,
and chlorine ions. Thus, the electrical potential measured from the surface or inside
the skin is a triphasic potential phenomenon [30].

The presence of amplitude in excitation potential is sometimes due to the distance
between the muscle fibril and the electrode. This amplitude will reduce with the
square of distance to the source. The typical range of muscle potential is between 2
and 6 mV with range of time duration of 5–8 ms. The processing of raw EMG signal
is performed in a different way as compared to other biomedical signals because
these signals often have many noise. The raw EMG signals for a normal person and
myopathy patient are shown in Figs. 12.30 and 12.31. These signals are obtained
from PhysioBank ATM [31]. The sampling frequency of these signals is 4000 Hz.
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Fig. 12.31 Myopathy EMG signal

12.4.4 Electrooculogram (EOG)

A signal that measures the skin around the eyes is known as EOG signal. The
EOG signal is used to determine the gaze and the dynamics of the eye motion.
The electrodes used for recording of EOG signals are implanted on the sides of the
eyes in order to measure horizontal motions of the eyes. The vertical motions of the
eyes are measured with the placement of electrodes above and below the eyes. The
motions of the eyes are measured with potential difference between each pair of
these electrodes for both cases with the help of differential amplifiers. The presence
of this potential difference is due to eyeball movement and it is generated by the
cornea and retina. The range of this potential is often between 0.4 and 1.0 mV. The
sampling frequency of EOG signal is often in the range of 0–100 Hz and it can be
identified by the mechanical limitations of the eye motion.

There are various disorders which can be detected by the EOG signals such as
laziness of the eyes in tracking moving objects. In laziness detection, the subject
tracks the moving object on a monitor with their eyes and the EOG signals are
captured during this event. The diagnosis is based on the lag between the cursor
movement and the captured EOG signals.

In another application, the EOG signals help the severely paralyzed patients.
In the United States, it is observed that the number of patients who are paralyzed
due to spinal injuries is about 150,000. The EOG signals from patients help them
to communicate with their caretakers and computers. This communication process
requires a large board with an array of commands and placed opposite to the patient.

The gaze angle obtained with EOG signals identifies the command the patient
is trying to execute. Similar kinds of systems find importance for navigation of
aircrafts and boats.

The EOG signal is very closely related to a signal known as electroretinogram
(ERG) signal. This signal is the potential difference among the retina and the eyeball
surface. The EOG signal is frequently used to represent ERG signal [30].
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Fig. 12.32 EOG signal recorded with the left eye

Fig. 12.33 EOG signal recorded with the right eye

The EOG signals of the left and right eyes obtained from PhysioBank ATM
are shown in Figs. 12.32 and 12.33, respectively. The sampling frequency of these
signals is 1 Hz [31].

12.4.5 Magnetoencephalogram (MEG)

The magnetic field activities of brain neurons are captured by MEG signals. The
fact behind the involvement of MEG signal to capture brain activities is based
on the electromagnetic theory. The change in electric field causes a magnetic
field proportional to electric field. Thus, the change in electric charges of the
neurons produces a proportional magnetic field which can be used to measure brain
activities. The MEG signal can measure the extracranial magnetic fields created by
intraneuronal ionic current flow inside the appropriately oriented cortical pyramidal
cells.
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The main reason behind the use of MEG signal over EEG signal is that the EEG
signals have significant noise because of the muscles’ electrical activities being very
close to the electrodes, whereas the MEG signal can record from DC to very high
frequency (>600) without skin contact. The MEG signal is also capable of detecting
neuronal electrical activities from deep inside the brain, while the neuronal electrical
activities close to surface of the brain are often captured by EEG signals. Moreover,
the MEG signal has less distorted signals which provide much better spatial and
temporal representation of the brain. A major advantage of MEG signal is that it
can provide an exact location and timing of cortical generators for event-related
responses and spontaneous brain oscillations. The MEG signal provides a spatial
accuracy of a few millimeters along with submillisecond accurate temporal reso-
lution under optimal conditions. These accurate configurations provide the much
effective spatiotemporal tracking of distributed resolution in case of cognitive tasks
or epileptic discharges. The weak magnetic field in MEG signal recording machine
is sensed by large superconducting quantum interference devices (SQUIDs). The
SQUID sensors are able to deliver both natural and evoked physiological responses
in MEG signal due to weak strength of magnetic field which is about picotesla (pT).
The interference present in MEG signal is mainly due to earth’s magnetic field and
this interference can be filtered by the MEG signal recording machine. The analysis
of MEG signals is possible in a similar way as the EEG signals due to resemblance.
Thus, the same processing techniques which are used for EEG signals can be utilized
for MEG signals [30].

The MEG signals of left, right, forward, and backward movements from subject
S01 are shown in Fig. 12.34, respectively. These signals are obtained from BCI
competition IV dataset 3 [32]. The dataset contains ten channels of MEG signals,
namely, LC21, LC22, LC23, LC31, LC32, LC41, LC42, RC41, ZC01, and ZC02.
These signals are recorded with two subjects S01 and S02 with a sampling frequency
of 400 Hz. A total of 400 samples are present in a signal resulting in a 1-s time
duration.

12.4.6 Other Biomedical Signals

Biomedical signals are not limited to the abovementioned category of signals.
There are many other biomedical signals which are used for clinical and research
purpose. The signals which are used for the diagnosis of heart sounds are known
as phonocardiogram (PCG) signals. In PCG signals, the heart sounds are observed
during the inside and outside flow of the blood in the heart compartments. These
signals are often recoded with the help of mechanical stethoscopes which amplify
the heart sounds. However, the mechanical stethoscopes have an uneven frequency
response and this frequency response distorted the heart sound signals. Thus, an
electronic stethoscope can overcome this problem and provide a less distorted heart
sound signal.
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Fig. 12.34 MEG signal of (a) left, (b) right, (c) forward, and (d) backward movements recoded
with LC21 electrode from S01 subject

A typical application of PCG signals is to detect heart murmurs. In murmurs, the
heart sounds are usually due to imperfections in the heart valves or the heart walls.
These murmurs are also present in infants due to flow of blood from one side to the
other side of the heart through a hole. This hole in infants is usually filled in a few
weeks after birth which will stop the heart murmur.

Another signal which records the electrical activity of the stomach is known
as electrogastrogram (EGG) signal. The midcorpus of the stomach generates this
electrical activity with intervals of approximately equal to 20 s in humans. This
signal consists the rhythmic waves of depolarization and repolarization of stomach
muscle cells. These waves are related to the spatial and temporal organization of
gastric contractions. The external (cutaneous) electrodes can record the EGG signal
[33].

12.5 Physiological Phenomena and Biomedical Signals

The biomedical signals can also represent the physiological phenomenon. Hence,
the physiological parameters can be reflected by biomedical signal parameters.
These biomedical signal parameters can be obtained with an adequate knowledge
of their physiological causes for diagnosis purpose. Figure 12.35 shows a block
diagram approach to extract physiological parameters from recorded biomedical
signals. These parameters are extracted using signal processing techniques and
the radically different biomedical signals may have information of the same
physiological parameter (heart rate, respiratory rate, etc.) [34].
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Fig. 12.35 Block diagram
for physiological parameter
extraction process [34]

12.5.1 Vital Phenomena and Their Parameters

There are various physiological phenomena as well as biomedical signals. There-
fore, we focus on some of the vital phenomena which are frequently used in
clinical practice such as heartbeat, blood circulation, blood oxygenation, and body
temperature. A brief description of these phenomena is given as follows [34].

12.5.1.1 Heartbeat

The heart is used for pumping blood into the circulatory system using its rhythmic
contractions which create pulsating waves of blood pressure and blood flow. The
cardiac cycle obtained with this heart rate is very important for diagnosis purpose
[34].

There are three widely used methods to register this cardiac activity. In the first
method, the ECG signal is used to show the rhythmic waves and peaks which are
corresponding to heart muscle excitation with heart rate. An optical biomedical
signal named as optoplethysmogram (OPG) is used in the second method to
represent a smoother waveform reflecting pulsating blood absorption of incident
light. In the third method, the PCG signal represents two consecutive temporary
signal deflections corresponding to heart sounds which are induced by consecutive
closures of heart valves. The cardiac activity recorded with the ECG signal has
nearly instant response at the corresponding sensor location, while the time delayed
response is observed in the recording of OPG and PCG signals due to the pulse wave
propagation velocity and sound velocity, respectively [34].

Although the spontaneous cardiac activity is inherently present in many pace-
maker tissues of the heart, the heart rate level and its change are mostly controlled
by the autonomic nervous system. This control is possible with the sinoatrial
node, which is the main pacemaker in the heart. The activities of sympathetic and
parasympathetic nervous systems directed to the sinoatrial node are characterized by
discharges synchronous with each cardiac cycle. These activities can be modulated
with central oscillators present in the central nervous system and peripheral oscil-
lators which depend on respiratory movements and arterial pressure fluctuations.
The balance between these activities determines the instantaneous heart rate. The
central and peripheral oscillators create noisy fluctuations in the corresponding
instantaneous heart rate. However, these types of fluctuations can also be observed
at different timescales [34].

The estimation of energy expenditure in the body is the most efficient measure
which can be calculated with the help of the heart rate level because heart rate
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increases with increase in oxygen consumption at an instant. The heart period which
is a reciprocal of heartbeat is generally referred to as RR interval (the time interval
between two consecutive R peaks in ECG signal). The only criterion for considering
the RR interval is that the sampling frequency should be very high (>500 Hz) to
assess the sinoatrial node activities.

The heart rate variability (HRV) is another standard term which describes heart
period oscillation as well as the oscillation between consecutive instantaneous
values of heart rate. The HRV is very closely related to the mechanism of the
autonomic nervous system which gives immediate response to any physiological
states such as respiration phase, sleep stages, and emotional activities. The HRV is
also good in representing functional integrity of a physiological process (thermal,
hormonal, neural, etc.) Therefore, the assessment of HRV gives early signs of
pathological developments such as cardiovascular diseases [34].

12.5.1.2 Respiration

In the respiration process, the lung plays a major role which delivers oxygen to
the bloodstream and releases carbon dioxide from the blood through a rhythmic
expansion and contraction process. The assessment of respiratory cycle performs an
important role in the diagnosis of various diseases. There are numerous methods to
register the respiration on which the three well-established methods are discussed
here [34].

In the first method, the mechanorespirogram signal is a mechanical biomedical
signal used to record the circumference changes of the abdomen and chest during
breathing. A periodic waveform showing respiratory rate is observed through this
process during normal breathing. On the other hand, this waveform disappears
during holding of breath. The amplitude deflection in this signal increases during
snoring in order to overcome an increased respiratory resistance. The recorded
mechanorespirogram signal from the abdomen and chest may differ in amplitude
and phase due to different strengths of abdominal and chest breathing. The wave-
form recorded from abdominal breathing is delayed with respect to the waveform
recorded with chest during breathing [34].

The lung sounds are also present in PCG signal during normal breathing due
to air turbulences in the lung branching airways. These sounds have much lower
amplitude; due to this reason, it cannot be easily distinguished over time. In addition,
an overlapping signal component is also recognizable during the inspiration phase
of snoring sounds. This signal component is present due to elastic oscillations of the
pharyngeal walls which may lead to a temporal closure of the airways [34].

In the third method, a mechanical biomedical signal is used which records the
airflow through the mouth considering nasal airflow is stopped using a tube with a
woven screen inside which acts as a flow resistance. This method is commonly used
in clinical practice. In this method, the airflow is considered positive and negative
corresponding to inspiration and expiration during normal breathing, respectively.
The flow is zero during holding of breath. The high-frequency oscillations of the
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flow can be obtained during inspiratory phase of snoring. The amplitude of flow is
also increased during the phase of both inspiration and expiration of snoring. These
oscillations and increased amplitude of flow are due to intermittent closures of the
airways and the aforementioned intensified respiratory efforts [34].

In addition to these methods, the thermal biomedical signal is known as
thermorespirogram signal in which variations of the air temperature are observed in
front of the nostrils during breathing. The temperature increases during expiration
and decreases during inspiration phases of breathing. The registration of the respira-
tory activity is also possible with an electric signal known as electroplethysmogram
signal. In this method, the inflated and deflated lung changes the thoracic electrical
impedance which can be observed by electroplethysmogram signal. The optical
biomedical signal known as optoplethysmogram signal can also be used to register
the respiration activities. This signal reflects the peripheral blood volume changes
over the respiratory cycle [34].

During respiration, the breath-holding condition deserves some extended
description. This condition is generally known as a Greek word apnea
(breathlessness) in which a complete or partial cessation of effective respiration
occurs. This breath-holding condition can also be possible during sleep at
night and it is known as sleep apnea. The sleep apnea is usually detected by
polysomnography [34].

12.5.1.3 Blood Circulation

The blood circulation mainly depends on systemic and pulmonary circulation in
which the first one comprises the rhythmic transport of the oxygenated blood to
the body and the deoxygenated blood back to the heart, whereas the second one is
used for the transportation of the deoxygenated blood to the lungs and oxygenated
blood back to the heart. In addition to assessment of cardiac cycle with heart rate, a
simultaneous registration of blood circulation is also required for the highly relevant
diagnosis purpose with the help of circulatory parameters, namely, blood pressure,
blood flow, and arterial radius. The brief description for the registration of these
circulatory parameters is as follows [34].

Blood Pressure

The unobtrusive and long-term monitoring is difficult in blood pressure registration.
The characteristics such as systolic value, diastolic value, and the pressure pulse
waveform are used to assess the blood pressure. There are basically some invasive
and direct methods as well as noninvasive and indirect methods to register the
artifacts of free blood pressure values [34].

In invasive and direct methods, the blood pressure is directly recorded in the
vessel by inserting a catheter with a mounted internal pressure sensor or a fluid-
filled and rigid catheter for transmitting the blood pressure characteristics to the
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external pressure sensor. Although these methods are precise and direct, they are
not popular due to their invasiveness and related complications for routine use.
On the other hand, the noninvasive methods are popular for the determination of
blood pressure characteristics. These methods include the auscultatory method,
oscillometric method, volume clamp method, and tonometric method [34].

In auscultatory method, the Korotkoff sounds are detected by a stethoscope to
determine systolic and diastolic values. In this method, an inflatable cuff encircles an
extremity (upper arm) and the cuff pressure is increased until a complete cessation
of downstream blood circulation is observed. The first release of the cuff pressure
after cessation resulted in the Korotkoff sound which indicates the time instant when
the upper (systolic) part of the blood pressure pulse wave passes under the cuff and
the cuff pressure is equal to systolic value. On the other hand, the transition from
muffling to silence indicates the time instant when the lower (diastolic) part of the
pulse wave passes and at this time instant the cuff pressure is equal to diastolic
value [34].

The second method is the successor of the ancient mercury sphygmomanometer.
It is based on the principle that the pulsatile blood flow generates radial oscillations
of the arterial vessel wall. These radial oscillations are transmitted to the cuff
encircling an extremity and then to a pressure sensor kept inside it. During
the deflation, the intra-arterial blood pressure exceeds the cuff pressure and the
oscillations of the vessel walls are strengthened due to turbulent flow of blood and
progressing arterial decompression. The cuff pressure during the initial increase in
oscillation amplitude is proportional to the systolic value and the diastolic value is
proportional to cuff pressure value at the time of subsequent rapid decrease in the
oscillations. In this method, the maximal amplitude of the oscillations for the vessel
walls and cuff pressure is obtained when the cuff pressure passes the mean arterial
pressure [34].

The volume clamp method is another noninvasive method in which a minia-
turized cuff fixes on a finger. This cuff is equipped with as optical transmission
sensor. This method is based on the principle that the radius (volume) of the
finger artery tends to increase at the time of the blood pressure (volume) pulse
and this increased radius is detected by transmitted light intensity. Afterward, the
cuff pressure (volume) is increased just enough to keep the radius and transmural
pressure constant. The resulting cuff pressure is proportional to blood pressure
waveform because the cuff pressure follows the intra-arterial pressure up to a
constant factor at constant transmural pressure. A pneumatic feedback system is also
used in this method for cuff pressure (volume) control so that a maximum pulsatile
change of the vessel radius is achieved when transmural pressure approaches zero.
The cuff pressure pulsations roughly equal to intra-arterial pressure at the time
of zero transmural pressure. The main advantage of this method is that it does
not require previous calibration with patients to attain absolute blood pressure
values [34].

The last one method is the tonometric method which is a successor of the ancient
sphygmograph. In this method, a rounded probe over a superficial (radial or carotid)
artery which has a backside support of bone is pressed, allowing the artery to be
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flattened in a reproducible way. The flattening removes the tangential forces in the
arterial wall and the rounded probe is barely exposed to the artery pressure. During
flattened artery, the applied force by the rounded probe is opposite and equal to the
pulsatile force. This force exerts in such way that the pressure of blood exerts on the
flattened arterial wall. This rounded probe is connected to a pressure sensor which
reflects waveform of blood pressure. This method requires an initial calibration
with the patient to compensate changes of arterial mechano-elastic function among
patients in order to obtain absolute blood pressure values [34].

Blood Flow

The recording way of blood flow is analogous to blood pressure. The blood flow can
also be recorded in invasive and noninvasive ways. The stroke volume, blood flow
velocity, and pulsatile flow waveform are the parameters of interest in blood flow
registration [34].

The invasive methods for blood flow monitoring have fewer acceptances due to
invasiveness and related complications. Some of the invasive methods are indicator
method, electromagnetic method, and transit-time ultrasonic method [34].

In indicator method, the oxygen is used as an indicator which is introduced into
the stream of blood flow and the resulting arterial as well as venous concentrations
from this indicator are measured based on Fick principle. Alternatively, a thermistor
catheter is used to introduce a bolus of ice-cold saline into the right atrium. This
catheter is also used to detect the resulting drop in temperature of the blood which
is present in the pulmonary artery. The amount of indicator injected divided by the
area under the blood temperature dilution curve represents the cardiac output in this
method. In the second method, the blood vessel with flowing blood is exposed to
electromagnetism. The blood vessel is placed in transverse magnetic field which
induced a potential difference in the blood vessel with flowing blood. This potential
difference is directly proportional to internal diameter of the vessel and the mean
blood flow velocity which can be used to measure the blood flow. In the last transit-
time ultrasonic method, an ultrasound beam (wave) passes through the blood vessel.
There are two ultrasound receivers placed diagonally on either side of the vessel.
The difference of time taken for the ultrasound to pass in one direction as opposed
to the other is used to obtain waveform for the flow velocity of blood [34].

The noninvasive methods for the determination of blood flow parameters are
frequently acceptable. There are many methods for the noninvasive registration of
blood flow from which three of the most popular are echocardiographic method,
impedance cardiography method, and pressure pulse contour method [34].

The echocardiographic method is based on ultrasonic Doppler effect. In this
method, an ultrasound beam in the frequency range of a few MHz is backscattered
from the moving blood cells. The blood velocity is related to frequency shift due
to backscattered sound. In other words, the frequency increases when the blood
moves toward the ultrasound probe. The volumetric blood flow can be computed
from the velocity profile over the cross-sectional area of the vessel combined with
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the cross-sectional dimensions. In impedance cardiography method, an electric
current is introduced and the resulting voltage is measured across the axial direction
of the thorax while most of electric current follows the path of least resistance
and seeks the path of blood-filled aorta. The thoracic impedance is represented
by measured voltage. During the cardiac cycle, the volumetric changes of the
aorta induced thoracic impedance changes allowing for the determination of the
cardiac stroke volume in absolute units. This method is also known as electric
field plethysmography. In another pressure pulse contour method for blood flow
registration, a generalized transfer function is used to derive the aortic pressure
from the radial pressure and then the aortic flow obtained with applying an aortic
impedance model. This model indicates the ratio of aortic pressure and flow. During
a cardiac cycle, the stroke volume is the integral of the flow waveform. This method
requires a previous calibration to achieve absolute blood flow values [34].

Arterial Radius

The mean value of the arterial radius and its pulsatile waveform are interesting
topic in physiological phenomena. There are various invasive and noninvasive
methods for the monitoring of arterial radius like blood pressure and blood flow.
The methods used to calculate arterial radius are somewhat similar which are used
for blood pressure measurement. However, the measurement of arterial radius is
more sensitive than that of blood pressure measurement due to the reason that the
radius changes up to 10%, while blood pressure may change up to 50% [34].

The invasive methods for the measurement of arterial radius are based on
resistance/inductive strain gauges, photoelectric devices, and transit-time ultrasonic
approach [34].

In the first method, the resistance/inductive strain gauges are fixed directly to
the outer artery wall or even inserted into the artery in order to measure radius
by the catheter. The second method is based on photoelectric devices in which a
pulsating artery casts a shadow on a photocell. The transit-time ultrasonic approach
is similarly used like those for blood flow registration. In this method, the two
ultrasound transceivers are placed opposite to each other on the outer sides of the
arterial wall. The time taken between the impulse emission and its reception on the
opposite side is proportional to the arterial radius [34].

The most popular noninvasive methods for the registration of arterial radius are
based on ultrasonic beams, optical plethysmography, and mechanical plethysmog-
raphy [34].

In ultrasonic beam method, the reflections of the ultrasound waves are used
and the time taken between the impulse emission from the ultrasound probe on
the skin and reflected impulse reception from both arterial walls is calculated,
which delivered the arterial radius. The method based on optical plethysmography
is an indirect method to assess the local pulsatile volume of the transilluminated
artery. In this method, the arterial radius increases with each blood pulse and the
transilluminated region encloses with an increased ratio of blood which strongly
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absorbs the incident light as compared to the surrounding tissue. As a consequence,
the intensity of transmitted light decreases for increased arterial radius or at the
time of systole. This method not only assesses the pulsatile changes of the local
blood volume but also assesses the basic level of blood absorption related to blood
oxygenation. The recorded biomedical signal shows similarity with blood pressure
from the carotid artery and mild similarity with blood pressure recorded with the
ascending aorta but no similarity is obtained with the radial artery blood pressure.
Another method is based on mechanical plethysmography which targets local skin
curvature in order to assess a superficial artery such as the carotid artery on the neck.
During arterial cardiac deflections, the curvature of the local skin changes and it can
be assessed by a skin curvature sensor [34].

12.5.1.4 Blood Oxygenation

Blood circulation implies a rhythmic transportation of oxygenated and deoxy-
genated blood from the lung and back to the lung. Hence, the blood oxygenation
level is a vital physiological parameter which is usually extracted with optical
biomedical signals. In this method, the light absorption due to pulsatile arterial
blood is measured at two wavelengths and interrelated by an algorithm. The
blood oxygenation level is usually maintained at a fairly constant level. Thus, the
monitoring of blood oxygenation level is very important in order to diagnose cardiac
and vascular anomalies. This examination is more specific for anesthesiology to
prevent an inadequate oxygen supply. The presence of oxygen in arterial blood is
due to binding of oxygen molecules with hemoglobin and dissolving of oxygen
with blood plasma in gaseous state. However, the quantity of oxygen in the
blood is mainly due to hemoglobin oxygenation as blood plasma carries a very
less amount of oxygen. Therefore, the oxygenated hemoglobin implies as a local
oxygen buffer to maintain the partial pressure of oxygen in the plasma. On the
other hand, the reduced hemoglobin reserves oxygen in the pulmonary capillaries
by depleting partial pressure of oxygen in the plasma, resulting in oxygenated
hemoglobin. Although blood plasma contains a negligible amount of oxygen, it
plays an important role in delivering oxygen to the tissues and the storing of oxygen
in the pulmonary capillaries by hemoglobin. It should be noted that the noninvasive
assessment of blood oxygen level in the elderly is faced with progressing accuracy
problems by optical method [34].

12.5.1.5 Body Temperature

The temperature of the human body is generally governed by the heat production
and loss. During rest condition, the heat production is usually carried out by the
inner organs such as kidneys, liver, heart, intestines, and brain under the scope
of metabolic activity. The rest condition in metabolic activity generally consumes
almost 50–70% of daily energy. During normal condition, the inner organs produce
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more than 50% of thermal energy and about 20% by the skin and muscles,
whereas the contribution of the skin and muscles may reach to 90% during physical
work [34].

On the other hand, the heat loss is represented by heat radiation, heat convection,
and evaporation. The heat radiation and evaporation are proved more powerful
at room temperature and warm environment. The heat loss cannot be efficiently
realized by the proximal skin surface because its shape is too flat for efficient heat
transfer to the environment. Hence, the heat loss mostly occurs from distal body
parts such as fingers and toes which have high surface to volume ratio in order
to conduct heat to the environment. In other words, the body consists of a heat-
producing core which regulates the temperature at 37 ◦C homeostatically. The core
body temperature reflects a circadian variation of about ±0.6 ◦C with a maximum in
the early evening nearly around 6 p.m. and a minimum during 3 a.m. The regulating
mechanisms involve a readjustment of the target temperature value of 37 ◦C during
the whole day. This target value is instructed by the central nervous system of
the brain (hypothalamus region), while the actual value registration of core body
temperature by the thermal receptors is also carried out in hypothalamus region [34].

12.5.2 Parameter Behavior

The vital physiological phenomena of the heartbeat, respiration, blood circulation,
blood oxygenation, and body temperature represent specific changes in their reflex-
ive and tonic behavior. The typical behavior and interrelations of the physiological
parameters are also a major concern in order to coordinate and integrate body
functions. The physiological parameter behavior with their mutual coordination
facilitates vital physiological functions, limited resources of body energy, limited
space and time in organs and cells for life-supporting functions, environmental
changes adaptation, adaptation to physical and mental stress, and regeneration task
of the body with sleep [34].

The behavior and coordination of the physiological parameters can be explained
with a feedback control loop represented in Fig. 12.36. The hypothesis behind the
control loop is that the central nervous controls the physiological phenomenon or
function through a quantitative feedback such as thermal, chemical, and pressure
receptors. The desired performance can be obtained by minimizing the error calcu-
lated with the difference between the target and actual value of the physiological
parameters. In this way, controlled body functions can be achieved with the help
of the central nervous system. In Fig. 12.36, the controller comprises neurogenic,
myogenic, and hormonal controls. The neurogenic control yields a fast response
with the help of the autonomic nervous system while as myogenic control through
muscle excitation. The slow response is obtained with hormonal control with the
release of hormones [34].

The cardiovascular system is an example of this feedback control system in
which when blood pressure drops below the normal value, the arterial stretch-
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Fig. 12.36 Feedback control loop of the physiological parameters [34]

sensitive receptors (baroreceptors) give an imbalance signal of blood pressure to
the brain. The difference of the actual and target values of the blood pressure starts
neurogenic control inhibiting the vagus nerve parasympathetic activity which is
connected to the sinoatrial node (pacemaker) of the heart. Afterward, the heart rate
and contractility of the heart muscles increased. In parallel to this activity, myogenic
control forces are applied to increase the total peripheral resistance through smooth
muscle activation in the peripheral arteries and increase in regulatory action
normalizing the blood pressure level [34].

Mutual interrelations of physiological functions and parameters are basically
depending on control loops. In particular, physiological parameter interrelations are
needed for the efficient use of energy in humans. The main interrelations of the
physiological phenomena during inspiration are cardiorespiratory and cardiovascu-
lar interrelations [34].

In cardiorespiratory interrelations, an increase in the inspired air volume resulted
in decrease in the left ventricular stroke volume as well as increase in heart rate to
level off the cardiac output; due to this efficient blood supply is achieved [34].

In cardiovascular interrelations, a decrease in the systolic blood pressure over-
lapped with an increase in heart rate to level of the blood pressure [34].

The cardiorespiratory and cardiovascular interrelations are driven by a complex
interaction of the circulatory and pulmonary systems with the hemodynamic and
nervous systems [34].

In addition, a phenomenon known as biological rhythms which is a periodic
and cyclic phenomena of living organs and organisms is described in order to
explain the fact that organism needs to give a special performance as well as
operating efficiency should be assured by regeneration. These rhythms are used
to integrate and coordinate body functions. These rhythms can also be used to
anticipate environmental rhythms around the body. This can help to reduce energy
due to tuning and synchronization of rhythms, especially during rest or sleep. The
exogenous and endogenous are the two types of biological rhythms. In exogenous
rhythms, the rhythms are directly controlled by the environment around the body
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Fig. 12.37 Electrical model for the registration of induced optic biomedical signal [35]

such as the presence of light. On the other hand, the internal biological clocks drive
the endogenous rhythms [34].

12.6 Sensing by Optic Biomedical Signals

The optic biomedical signals are induced biomedical signals in which an artificial
light source is coupled to biological tissue. This source resulted in a transmitted
light intensity which is strongly governed by the light absorption and scattering
phenomenon in the biological tissue. The induced optic biomedical signal due to this
phenomenon is proportional to the light absorption strength and is usually registered
for diagnosis purpose such as blood oxygenation and blood volume. Consequently,
the transmitted light intensity also shows multiple physiological parameters which
are very useful for the assessment of the health state [35].

The optic biomedical signals are traditionally used to register blood oxygenation
and heart rate. The recent advancement in medical technology has also the waveform
analysis of optic biomedical signals which facilitate the derivation of respiratory
rate. The state of vascular structures (arteries and veins) can also be indicated by the
waveform of optic biomedical signals [35].

The model for the understanding of formation and sensing aspects of optic
biomedical signals can be seen in Fig. 12.37. In Fig. 12.37, the incident artificial
light source is represented by voltage source S which is applied on the skin
and coupled to body tissue. The coupling losses are represented by electrical
impedance Z2

’. The propagation of the coupled light throughout tissue modulated
by diverse physiological phenomena and the electrical impedance for modulation
is Z1. Consequently, some light portion leaves the body and it is available for the
detection purpose over the skin. This light is coupled with light sink at a certain
distance from the light source in which coupling losses are represented by electrical
impedance Z2. Afterward, the transmitted light intensity is converted into an electric
signal which resulted in registration of optic biomedical signals [35].
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12.6.1 Formation Aspects

The formation aspects basically revealed the propagation light modulation in body
tissues simultaneously with dynamic physiological phenomena. This modulation
extracts the physiological information present in optic biomedical signals. The
formation aspects of the induced optic biomedical signal include an artificial
incident light source which entered the body through the skin, incident light
coupling into body, and light propagation through body tissues to a distant light
sink applied on the skin [35].

The emission of the artificial incident light depends on the accelerated charge
in which energy is released during the transition of electrons from higher to
lower energy levels resulting in light emission. The sources of light used for this
purpose are of two types, namely, broadband and narrowband. The broadband light
sources emit light in a relatively wide band of the electromagnetic spectrum such
as incandescent lamps and noble gas arc lamps whereas a narrowband is covered
by narrowband light sources such as lasers, fluorescent sources, and light-emitting
diode (LED) [35].

In these light sources, the LED is the most popular and widely used light
source in order to induce optic biomedical signals. The LED basically works on
the principle of electroluminescence. A charge migration takes place to obtain the
light photon [35].

After coupling of light source, the transmission of light through biological tissue
is a major aspect. The optical light path is started with the light source and then
it diffuses through tissue. The diffusion is subjected to changes in light intensity
because of the light absorption, diffraction, reflection, scattering, and refraction. A
large portion of light intensity has also dissipated and does not reach the skin where
a light sink is placed due to this fact [35].

The interaction between light and tissue can be determined quantitatively such
as quantitative strength and duration of the interaction and the spatial distribution
of the tissue interaction. The interaction is limited to areas of tissue where coupled
light is easily reached. This interaction depends on light and tissue characteristics in
which light characteristics represent size of incident light, while light transmission
is determined by tissue characteristics [35].

The propagation velocity (υ) of light in a biological medium which oscillates
with frequency (f ) and wavelength (λ) along its propagation path can be written as
[35]:

υ = λ × f (12.36)

where the electric and magnetic properties of propagation medium determine the
value of υ and it can be computed as follows [35]:

υ = c√
μrεr

(12.37)
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Here, c is the speed of light in vacuum (c = 3 × 108 meter/second), μr is the
relative magnetic permeability (μr ≈ 1 in biological media), and εr is the relative
electric permittivity (εr �1 in biological media).

The light energy (photon energy) can also exist and it can be given as follows
[35]:

W = h × υ

λ
(12.38)

Here, W is the photon energy and h is Plank’s constant (h = 6.6 × 10−34 Joule
second).

The induced light is subjected to volume and inhomogeneity effects. In volume
effects, the light absorption takes place which attenuates the propagation of light
beam in homogenous medium. On the other hand, the heterogeneous medium
causes scattering, diffraction, reflection, and refraction effects which attenuate and
redirect the light beam in a particular direction in inhomogeneity effects. These
effects are not fully independent to each other [35]. The basic inhomogeneity
effects are shown in Fig. 12.38 [36]. In Fig. 12.38, the reflection of light occurs
at biological tissue interface and the refraction of light occurs when the light
enters in tissue that has different refractive index. The absorption and scattering
of light also take place in between the tissue structure. The physical parameters
such as refractive index, absorption coefficients, and scattering coefficients related to
these inhomogeneity effects vary continuously at biological tissue boundaries. The
different biological tissues have different strengths of absorption coefficients which
determine penetration power and energy absorption into a specific tissue from a
particular light source. The absorption degree is depending on the type of tissue and
wavelength of light in many cases. The mainly light absorption takes place between
the wavelength range of UV (<400 nm) and IR (>2 μm). Hence, the light cannot
deeply penetrate in this spectral range and attenuation due to scattering is less in this
range. The scattering causes broadening of light beams and the light beams decay
as it travels through the tissue due to this scattering phenomenon. This scattering
phenomenon dominates over absorption in the spectral range of 600–1600 nm and
the forward and backward scattering of incident light within tissue are used in
various optic biomedical applications such as Raman vibrational spectroscopy and
surface-enhanced Raman scattering (SERS) [36].

The reflection and transmitted modes of light can also be used for various optic
biomedical applications such as optical plethysmography. The different arrange-
ments of light source and sink are used for reflection and transmitted modes of
operation. Figures 12.39 and 12.40 show the different arrangements of light source
and sink for reflection and transmitted modes of operation applied on a finger,
respectively. In reflection mode, red and near-IR lights are generally used due to
the fact that these lights can penetrate tissue to relatively large depths as compared
to other lights. The arrangement of light source and sink for red and near-IR lights
are shown in Fig. 12.41. In Fig. 12.41, the light source and sink for red and near-IR
lights are arranged in reflection mode which yields different pathways by photons
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Fig. 12.38 Inhomogeneity
effects [36]

Fig. 12.39 Reflection mode
[35]

Light source Light sink

Skin

Light paths

Fig. 12.40 Transmitted
mode [35]

Light sink

Light source

of both wavelengths and these paths vary with hemoglobin oxygen saturation which
is denoted by S [35].

The light is also dynamically modulated by physiological phenomena in tissue
due to the reason that a physiological phenomenon modulates optical properties
of the tissue. There are various light absorbers present in tissue such as pulsatile
arterial blood, nonpulsatile arterial blood, capillary blood, venous blood, bloodless
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Fig. 12.41 Different arrangements of light source and sink for red and near-IR lights in reflection
mode [35]

tissue, etc. The large volume of nonpulsatile arterial blood in the light path
decreases the intensity of transmitted light. However, the transmitted light intensity
passing through biological tissue experiences a relatively fast modulation from
physiological point of view. The cardiac activity, respiratory activity, and blood
oxygenation changes are basically responsible for the achievement of this fast
modulation [35].

12.6.2 Sensing Aspects

The sensing aspects of the induced optic biomedical signal include transmitted light
coupling with the light sink which is applied on the skin at a certain distance from
the incident light source and its conversion into an electrical signal within light sink.
In this way, the optic biomedical signals are registered with the help of transmitted
incident light through tissues [35].

The fast fluctuations in local blood volume residing in the light propagation path
modulate light absorption in tissue and slow fluctuations are present in the density
of dominant chromophores in tissue. Due to this fact, there are three technologies
which can mainly be used for the optic biomedical signals without considering the
designed factor of optical sensors, namely, spectrometry, optical plethysmography,
and optical oximetry [35].

In spectrometry, the light is absorbed by a chromophore in tissue which depends
on the density of chromophore and the wavelength of applied light. Similarly, the
light absorption spectrum gives a signature of the chromophore type as a function
of wavelength. The amount of chromophore at the sensor is used for monitoring the
local environment of the tissue [35].

The optical plethysmography detects the variations in the light absorption in
tissue. The pulsating volume of arterial blood produces these variations in the
illumination region due to transmitted light. The changing of optical path lengths
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Fig. 12.42 Registration of optic biomedical signals from the finger in order to extract physiologi-
cal parameters [35]

changes the total light absorption in the tissue. However, the total optical path
length of the light beam is almost constant in tissue. The registered variations in
the transmitted light intensity gives a signature of blood volume changes from the
illumination region of transmitted light and these variations can be used for the
monitoring of cardiac and respiratory activities [35].

The optical oximetry includes both existing technologies which are spectrometry
and optical plethysmography for the assessment of blood oxygenation. In this
technique, the level of the hemoglobin oxygen saturation in pulsatile arterial blood
is calculated. The spectrometry technique in this method is used for evaluation of
degree of hemoglobin oxygenation with the help of light absorption in the blood. On
the other hand, the optical plethysmography is used for the separation of absorption
by the pulsatile arterial blood from the nonpulsatile absorption with the help of
the pulsatile nature of the transmitted light intensity. The registration of blood
oxygenation during exploiting arterial pulsations is called pulse oximetry [35].

In spectrometry, the coefficient of absorption is the parameter of interest, whereas
the path length is the parameter of interest for optical plethysmography [35].

The registration of optic biomedical signal for the extraction of physiological
parameters, namely, cardiac activity, respiration activity, and blood oxygenation, is
shown in Fig. 12.42. In Fig. 12.42, the optoplethysmogram signal is recorded from
the finger in order to extract the physiological parameters. The amplifier is used to
amplify the recorded signal, whereas the recording and processing block is used for
the de-noising purpose. The recorded signal simultaneously offers the three different
physiological parameters with multiparametric processing [35].
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12.7 Analysis of Biomedical Signals

Biomedical signals are primarily used for the diagnosis and monitoring of specific
pathological/physiological states. In some cases, the researchers have also used
these signals for decoding and eventual modeling of specific biological systems.
The recent advancement in technology allows the acquisition of multiple channels
of biomedical signals. This process leads to additional signal processing challenges
to identify meaningful interactions between these channels. The main aim of signal
processing is generally noise removal, accurate signal modeling, extraction of
components for analysis purpose, and feature extraction for deciding function or
dysfunction of the heart and brain. The signal processing is used in biological
applications due to several reasons. In most of the cases, the monitored biological
signal contains an additive combination of signal and noise. The presence of noise
can be due to instruments (sensors, amplifiers, filters, etc.) and electromagnetic
interference (EMI). Therefore, the different conditions suggest different assump-
tions for noise characteristics, which will eventually lead to an appropriate choice
of signal processing method [37].

12.7.1 Time-Domain Analysis

The time-domain analysis of biomedical signals is usually fast and easy to imple-
ment, because time-domain analysis does not need any transformation of biomedical
signals. In time-domain analysis, several features based on different characteristics
of signal are computed from biomedical signals. These time-domain features have
been generally used in different areas of medical as well as engineering research.
A major drawback of these features is due to the nonstationary nature of the
biomedical signal, which changes the statistical properties over time. Therefore, the
computed values of time-domain features may vary largely when the biomedical
signal is recorded in interference and noisy environments. However, the time-
domain features have been widely used for biomedical signal due to their lower
computational complexity [38]. There are different time-domain characteristics
which vary from one biomedical signal to the other.

In the time-domain analysis of EEG signals, the artifact which usually exceeded
instantaneous amplitude as compared to normal instantaneous amplitude present
in EEG signal is determined by amplitude thresholds. The muscle artifacts can be
minimized with the use of slope or steepness threshold. The first-order derivative
of EEG signal gives us the slope. In addition to first-order derivative, the second-
order derivative is also used to measure the complexity present in EEG signal
[30]. Apart from this measure, there are some other complexity measures such as
fractal dimension and entropy which are also frequently used as features. The fractal
dimension of the EEG signal decreases as the age increases in humans. Hence, it can
be concluded with this fact that the fractal dimension is higher for a brain whose all
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parts are active, but it is lower for an old brain whose parts are considerably less
active. The same behavior is also recorded for the other complexity measures from
EEG signals of older people as compared to younger people. This phenomenon
is also true for a person suffering from diseases like epilepsy and Alzheimer’s.
The complexity measures decrease due to the presence of such kind of diseases.
Moreover, the reduction of 30% fractal dimension is used as diagnosis criteria for
epilepsy from EEG signals [30].

The most common feature in time-domain analysis of ECG signals is the duration
of the heart cycle. The heart cycle duration is basically a time span from one R wave
to the next occurring R wave. The other generally used features for ECG signal are
the duration of QRS complex and the time interval between T and P waves. The QRS
complex is determined by the characteristic shape and relative stable time constant
in the pattern [30].

The time-domain analysis of EMG signals is possible with several features.
The mean absolute value (MAV), root mean square (RMS), zero crossing, v order,
log detector, waveform length (WL), Willison amplitude (WAMP), and slope sign
change (SSC) are commonly used for the time-domain analysis of EMG signals.
The MAV feature provides the information about energy and fatigue present in EMG
signals. On the other hand, the RMS feature represents the non-fatigue as well as
fatigue contraction. The frequency information present in EMG signals is provided
by time-domain features such as zero crossing, WAMP, and SSC. The v- order and
log detector features estimate the muscle contraction force and fatigue [39].

12.7.2 Frequency-Domain Analysis

The frequency-domain analysis of biomedical signals is possible with Fourier
transform which converts the time-domain representation of a signal into frequency
domain. The frequency-domain analysis is mainly used to characterize the fre-
quency contents present in a signal. The major limitation of this technique is that the
Fourier transform works only for stationary signals because the time information is
lapsed in frequency-domain analysis.

In frequency-domain analysis of EEG signals, the main feature is the compu-
tation of power of the particular frequencies from the power spectra of the EEG
signal. The spectral analysis of EEG signal will quickly identify any irregular pattern
of higher harmonics in the frequency spectrum. The spectrum of EEG signal is
generally analyzed only over a consecutive short-time segment. This short-time
segment of EEG signal is known as “epoch.” The length of epochs decides the
frequency resolution of EEG signal in frequency spectrum. However, the selection
of longer time segments will result in lower time resolution which is a trade-off
between time and frequency resolution.

The frequency components of EEG signal such as alpha, beta, delta, and theta
waves are very informative and it can be easily extracted from the power spectra
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of the EEG signal. These frequency components are also used in the diagnostics of
various diseases and disorders.

The analysis of EEG signals is also possible with frequency measure which is
known as spectral edge frequency (SEF). This measure plays a significant role in
the analysis of depth of anesthesia. It is found that a decrease in the value of SEF
corresponds to a deeper level of anesthesia [30].

Similarly, median peak frequency (MPF) is another frequency measure in which
frequency situated at 50% of the energy level is considered. The MPF gives the high-
frequency contribution present in the frequency spectrum. This measure is also used
in the analysis and classification of anesthesia depth [30].

In the frequency-domain analysis of ECG signal, the QRS complex is well
localized in the high-frequency region. On the other hand, the low-frequency
components are mainly due to P and T waves. The ST segment in the ECG signal
mostly contains the low-frequency component. The frequency contents in a normal
ECG signal and the deviating ECG signal have a significant difference because
the normal heart rate is in the range of 60–100 beats per minute, whereas the
fibrillation can exceed the range of 200 beats per minute. The depolarization and
repolarization ramps in ECG signal are also changed under diseased conditions. This
requires a much wider frequency bandwidth to identify different phenomena. The
minor deviation of higher frequency in ECG signal creates a much larger number
of harmonics which describe the frequency-domain features in the ECG signal.
Therefore, a frequency span of 0–100 Hz usually represents normal ECG signal,
whereas arrhythmias may require a high-frequency analysis up to 200 Hz. However,
the high-frequency spectra will also be dominated by noise and it may not contribute
any additional information [30].

A disease named as sinus tachycardia is also often detected in the frequency
domain. A sinus tachycardia is detected when a sinus rhythm higher than 100 beats
per minute appears. This similar condition may also occur during a physiological
response to physical exercise or physical stress but it may lead to congestive heart
failure in diseased cases. The case of sinus arrhythmia is also possible when the
longest PP or RR intervals exceed the shortest interval by 0.16 s. This condition is
frequent in teenage groups who have never suffered a heart disease [30].

The detection of fetal heart diseases using ECG signal during pregnancy is
another area where the frequency-domain analysis plays a vital role. The ECG
signals recorded from the leads placed on the abdomen of the mother are used to
monitor the fetal heart diseases. The P and T waves obtained with the maternal ECG
signal can easily be recognized in most cases. The maternal heart rate is usually
lower than the fetal heart rate which is distinct from the mother’s and the baby’s
ECG signals using filters designed in the frequency-domain.

The frequency-domain analysis of EMG signal leads to the fact that the frequency
spectrum is mostly in the higher frequencies during fatigue, whereas the power
spectrum is shifted toward lower frequencies after fatigue. This frequency shift
indicates the muscle status such as rest and contraction states [30]. There are
many features which are used for the frequency-domain analysis of EMG signals.
The mean frequency (MF) measure is able to denote muscle fatigue during cyclic
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dynamics. The median (MD) frequency measure is a universal index for muscle
force and fatigue. The peak frequency (PF) feature is used for identifying fatigue
state. The mean and total power features are also used for the identification of
fatigue. The first, second, and third spectral moments are alternative statistical
measures for fatigue identification. The frequency ratio is also used as a feature
to distinguish between rest and contraction states of muscles [39].

12.7.3 Time-Frequency Domain-Based Analysis

The time-frequency domain analysis is widely used for the analysis of nonstationary
signals because it provides time and frequency information together for a given sig-
nal. There are several time-frequency domain analysis methods such as short-time
Fourier transform (STFT), wavelet transform (WT), and Wigner-Ville distribution
(WVD) [40].

The time-frequency analysis is used for detecting spike-like epileptic patterns
in EEG signals because these patterns appear for a short time period or random
in most suspected epileptic EEG signals. Due to random occurrence of these
patterns, the frequency-domain analysis does not provide exact time information for
these patterns. The choice of epoch length is an important issue in time-frequency
domain analysis of EEG signal. The epoch lengths of 1–2 s duration are usually
recommended for time-frequency domain analysis of EEG signal. The epochs of
this time duration may provide stability in data features [30].

The time-frequency analysis of ECG signal identifies the typical pattern or wave.
The time-frequency analysis provides the separation of the mother’s and baby’s
ECG signals. It should be noted that the waveform of the fetal ECG signal is
analogous to adult ECG signal [30].

12.7.4 Other Methods

In real situations, most of the signals are nonlinear and nonstationary in nature. The
analysis of such type of signals is a tedious task. The predefined basis function
may fail to provide solutions. This problem can be overcome by an adaptive
or signal-dependent basis which is used for the representation of nonlinear and
nonstationary signals. A method named Hilbert-Huang transform (HHT) is an
adaptive and empirical method. HHT consists of two parts for signal analysis. One
of them is empirical mode decomposition (EMD) and the second one is Hilbert
spectral analysis (HSA). This method provides good results for time-frequency-
energy representations of many signals [41].

Another method for analysis of real signals is higher-order spectra (HOS). A
real signal most specifically a non-Gaussian signal can be decomposed into higher-
order spectral functions in which each higher-order spectral function may contain
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different information about the signal [42]. These methods also provide significant
contribution in biomedical signal analysis.

12.8 Modeling of Biomedical Signals

Biomedical signals can be modeled by mathematical functions. The procedure is
started with finding a model which follows the laws of physics. The equations
are solved for typical functions. The response of these equations is compared with
developed physical model with the same typical functions. If these two responses are
approximately equal, then we can use the developed model for analysis; otherwise,
we have to improve our developed model [43].

12.8.1 Models for ECG Signal Representation

The ECG signals have pseudo-periodicity feature and features related to the
constituent signals (P, QRS, and T). The modeling of ECG signals can be possible
with parametric and nonparametric models. Most of them are parametric models
such as impulse response of a pole-zero model and damped sinusoid model.
The nonparametric models fail to exploit the nature of ECG signals. Hence, the
parametric models overcome these problems.

The autoregressive (AR)/autoregressive moving-average (ARMA) model which
is a parametric model is also used for the modeling of ECG signals. The amplitude-
modulated (AM) sinusoidal signal model which is a special case of AR/ARMA
model is also used due to its burst-like feature [44]. The model based on hidden
Markov is also proposed to model every specific abnormal beat classification [45].
The dynamical model based on three coupled ordinary differential equations was
used for generating synthetic ECG signals [46]. The Hilbert transform-based model
is a recent approach for ECG signal modeling [47].

12.8.2 Models for EEG Signal Representation

The EEG signals have certain deviation or patterns as compared to the normal
EEG signals during neurological disorders. These patterns occur for one or few
seconds in the EEG signals. These patterns can be identified by modeling of EEG
signals to detect various neurological diseases. The parametric modeling of EEG
signal is the most common approach among them. The parametric model which is
mostly used for EEG signal modeling is a rational transfer function with selected
parameters. If the parameters lie in the denominator, then it is known as an all-
pole or AR model, whereas if all the parameters lie in the numerator, then it is
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known as all-zero or moving-average (MA) model. A model with parameters lie
in the numerator and a denominator is known as pole-zero or ARMA model [48].
The parametric modeling of ictal EEG signal using Prony’s method is also possible.
This method is based on the assumption that the original signal is a sum of damped
complex exponential sinusoids, and it has good frequency resolution compared to
AR model. This method suggests that the modeling of ictal EEG signal is based
on the poles of EEG signal [49]. A method based on second-order linear time-
varying AR (TVAR) with appropriate chosen length obtained using FBSE is used
for parametric modeling of EEG signal [17].

12.8.3 Models for EMG Signal Representation

The main purpose for modeling EMG signal is to understand electrophysiological
information for the detection of neuromuscular disorders. The EMG signal mod-
eling can also be possible by AR model [50]. A modified method autoregressive
integrated moving-average (ARIMA) model has been also proposed for EMG
signals in the literature [51].

12.8.4 Models of Other Biomedical Signals

The parametric modeling of PCG signals for the detection of murmurs is possible
with AR modeling. This model used dominant poles for pattern classification and
spectral tracking [52, 53].

The modeling of respiratory sound signals can be possible with mechanical as
well as electrical models. In these models, the vocal and respiratory tract of humans
can be represented by tubes and pipes and their electrical equivalent circuits [54].

12.9 Applications

The biomedical signals have also been used in certain areas of applications based on
signal processing techniques such as detection of heart-related diseases, neurologi-
cal disorders, neuromuscular diseases, postural stability analysis, and other related
disease. The description of these applications is illustrated below.
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12.9.1 Detection of Heart-Related Disorders

The heart-related signals are very useful to detect cardiovascular diseases. These
detections are generally based on heart sounds and ECG signals. The detection
of congestive heart failure (CHF) is carried out using eigenvalue decomposition
from HRV signals extracted with ECG signals [55, 56]. The heart valve disorders
can be classified with the method based on tunable-Q wavelet transform (TQWT)
[57]. The diagnosis of arrhythmia using flexible analytic wavelet transform (FAWT)
from ECG signals has significant importance [58]. The FAWT method is used for
the detection of myocardial infarction (MI), which is a condition that indicates
injury of the heart cell [59]. The automated detection system of CAD is developed
with FAWT method using ECG signals [60]. In another work [61], the detection
of CAD is also possible with HRV signals involving the FAWT. A method for
diabetic patients using RR interval signals obtained from ECG signal is developed
for screening [23].

12.9.2 Detection of Brain-Related Diseases

The brain-related diseases and disorders such as epilepsy, Alzheimer’s, Parkinson’s,
and sleep disorder can be detected by EEG and MEG signals. The detection
technique based on EMD method using EEG signals for epileptic seizure has been
proposed [62]. The phase space representation of intrinsic mode functions has
been also utilized to classify epileptic seizure EEG signals [63]. The second-order
difference plot of intrinsic mode functions has been also used for epileptic seizure
classification [64]. The entropy of intrinsic mode functions has been used for the
automated detection of focal EEG signals [65]. The detection of ictal EEG signals
using fractional linear prediction has been also proposed [66]. The sleep stages have
been also classified using time-frequency image of EEG signals [67]. The iterative
filtering method has been also used to develop an automated system for sleep stage
classification [68].

12.9.3 Detection of Neuromuscular Diseases

The diagnosis of neuromuscular diseases has been also possible using computer-
aided method. The technique based on wavelet neural network applied on EMG
signals has been proposed for neuromuscular disorder detection [69]. A technique
based on discrete wavelet transform for EMG signal classification with comparison
of decision tree algorithms has been proposed [70]. The detection of muscle fatigue
using EMG signals with time-frequency methods has been presented [71]. The
fatigue during dynamic contractions of the muscle has been also detected using
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EMG signals [72]. The automated classification of hand movements using TQWT-
based filter bank with EMG signals has been also proposed [73].

12.9.4 Postural Stability Analysis

The postural control is very useful for everyday movement and the central nervous
system provides sensory information for postural control. This system is used to
maintain a proper postural balance. Any postural imbalance may lead to instability,
falls, and injury. The center of pressure signals are commonly used to examine the
postural control [74]. These signals can be analyzed with various signal processing
methods. The method based on FBSE applied on the center of pressure signals has
been used for postural stability analysis [74]. The method for assessment of standing
postural stability in children has been also proposed [75]. The EMD method with
second-order difference plots has been used for postural time-series analysis [76].

12.9.5 Other Related Applications

The knee joint pathological conditions change the vibroathrographic (VAG) signals.
These VAG signals provide the abnormalities associated with knee joints. The
automated screening of knee joints using double density dual-tree complex WT has
been proposed [77]. The detection of direction of eyes movement has been possible
using EOG signals [78]. This detection provides help to various disabled persons.
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