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Preface

Greetings from a bygone era! We are writing this preface in May 2019, in the year
that fully autonomous and self-driving vehicles are not yet available. That being
said, we expect this book to be suitable for review and for classroom discussion
topics, as well as for practicing engineers and business managers who need to
obtain a deep technical understanding, even in 2025, when over 70 billion connected
devices are forecast. In 2019, the Internet of Things (IoT) tsunami has already
affected all aspects of our lives, from smart homes, smart cars, and smart city to
smart health and smart environment. People benefit from automatically controlled
room temperature/light to face recognition-based payment systems to various digital
voice assistants. But we expect that even bigger waves are coming as the result
of the convergence of IoT, artificial intelligence, machine learning, deep learning,
distributed ledger technology, big data, and 5G. What we see in Sci-Fi movies will
materialize to tangible and affordable technologies being tacitly integrated with our
daily routine. This transformation can be truly seen, heard, and touched by everyone.

In this technology revolution, we can never ignore the vast infrastructure
change beneath. The IoT wave is built upon rapidly growing and prevailing
cloud technologies, evolution of edge technologies, miniaturization of devices,
and powerful acceleration of computing capability in edge devices. Furthermore,
machine learning and data science, as a core of artificial intelligence, empower
the device, edge, and cloud layers to become smarter. In light of the above, this
book presents a timely and comprehensive look at cutting-edge IoT technologies. It
guides the reader through the fundamentals, principles, architectures, applications,
challenges, and promises of the Internet of Things. This book is organized into two
parts. The first part addresses the details of IoT and its underlying technologies
from embedded systems to cloud computing and big data analytics. The second
part discusses the interaction of IoT and healthcare which heralds a paradigm
shift in this important area by providing many advantages, including availability
and accessibility, ability to personalize and tailor content, and cost-effective health
delivery.

vii



viii Preface

Part I: Chapter 1 introduces the Internet of Things with several definitions and
discusses the benefits and challenges of establishing the IoT. It reviews IoT reference
models, state-of-the-art IoT platforms, and the applications of IoT in vertical
markets. In addition, this chapter helps you make sense of the business-related
aspects of IoT technology. Chapter 2 addresses “IoT/devices” and its fundamental
building blocks including microcontrollers, interfaces, sensors, and actuators. In
Chap. 3, the details of networking technologies and protocols are covered. Chapter 4
looks into IoT cloud covering the fundamentals of cloud computing, data ingestion,
data processing, data storage, and data visualization. Chapter 5 addresses topics
relating to machine learning techniques such as regression, classification, clustering,
deep learning, and convolutional neural network. Chapter 6 is a definitive guide to
the Hadoop ecosystem. Chapter 7 is an introductory text on cyber-physical systems
in the IoT era. Distributed ledger technologies (DLT) and blockchain for IoT are
presented in Chap. 8. Emerging hardware technology for processing IoT data at the
edge or in the cloud including alternative computing, approximate computing, and
in-memory computing is discussed in Chap. 9. Finally, end-to-end IoT security is
covered in Chap. 10.

Part II: The second part of this book consists of three chapters. Chapter 11
addresses all important aspects of IoT technologies for smart healthcare: wearable
sensors, body area sensors, advanced pervasive healthcare systems, and big data
analytics. Chapter 12 covers biomedical engineering fundamentals to enable the
building of wearable healthcare devices or to understand biomedical data easily.
Finally, Chap. 13 provides a snapshot of the state-of-the-art research in data-driven
e-Health studies that leverage artificial intelligence technologies for making sense
of personal health data, as well as for delivering situational, actionable insights in
care flows.
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Chapter 1
IoT Fundamentals: Definitions,
Architectures, Challenges, and Promises

Farshad Firouzi, Bahar Farahani, Markus Weinberger, Gabriel DePace,
and Fereidoon Shams Aliee

All compromise is based on give and take, but there can be no
give and take on fundamentals. Any compromise on mere
fundamentals is a surrender. For it is all give and no take.

Mahatma Gandhi
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1.1 What Is IoT

By now, everyone has heard of the Internet of Things (IoT). Internet of Things
has been defined as the next logical stage of the Internet and its extension into the
physical world. It is the broad connection of devices that can interact with each other
and share data to a larger network, where the shared data can be leveraged to extract
value. All devices must have unique identifiers and use embedded technologies to
sense and gather data about themselves and their environment and transfer that data
to other devices or other hosts. Then these data must be correlated and analyzed
to inform more intelligent decisions. The technical challenges are appealing in
themselves, but from an industrial and business perspective, IoT presents a grand
opportunity to leverage previously unknown information and insight to transform
and create industrial processes and business models. This reality is a much greater
opportunity than a simple connection. Several companies have defined the Internet
of Things in their own terms, and it is instructive to examine these terms to see the
similarities and differences.

• IBM defines the Internet of Things as “the concept of connecting any device
(physical object) to the Internet and to other connected devices” [1]. IBM also
writes that IoT refers to “the growing range of Internet-connected devices that
capture or generate an enormous amount of information every day” [1].

• SAP defines the Internet of Things as “the vast network of devices connected
to the Internet, including smartphones, and tablets and almost anything with a
sensor on it – cars, machines in production plants, jet engines, oil drills, wearable
devices, and more. These things collect and exchange data” [2].

• Gartner says “IoT is the network of physical objects that contain embedded
technology to communicate and sense or interact with their internal states or
the external environment” [3].
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• The Bosch corporation defines the Internet of Things as file sharing, e-commerce,
social media, and the glue that connects things and devices. The devices can
range from sensors and security cameras to vehicles and production machines.
The connection of devices results in data that opens up new insights, business
models, and revenue streams. The insights can lead to new services complement-
ing conventional product business [4].

• Oxford Dictionary summarizes IoT as “a proposed development of the Internet
in which everyday objects have network connectivity, allowing them to send and
receive data.”

• Finally, IDC defines the Internet of Things as “a network of networks of uniquely
identifiable endpoints that communicate without human interaction using IP
connectivity (local or globally)” [5].

As you noticed, due to rapid emergence and convergence of technologies, the
definition of IoT is evolving, and thus there are several definitions of IoT from
different points of view. However, all of them have the following fundamental
characteristics:

• Things or Devices – Things in IoT (also known as intelligent objects, smart
objects, IoT devices, or IoT endpoints) are connected objects that can sense,
actuate, and interact with other objects, systems, or people. In order to be a device
on the Internet of Things, the device must have a processing unit, power source,
sensor/actuator, network connection, and a tag/address so that it can be uniquely
identified.

• Connectivity – Connectivity empowers the Internet of Things by enabling IoT
things to be connected to the Internet or other networks. This implies that there
must be a connectivity module in each IoT device as well as an appropriate
communication protocol that the network and the device can both understand.

• Data – There is no IoT without (“big”) data collected from IoT things and indeed
“data is the new oil.” Data is the first step toward action and intelligence. Sent
information from IoT devices most often include environmental data, diagnostic,
location data, or report on their status. The data also flows back to the device, for
example, a command to tell it to sleep, or decrease power consumption.

• Intelligence – Intelligence is the key to unlock IoT potentials because of its
ability to extract insights from IoT data. For example, the combination of
artificial intelligence (AI), machine learning, data analytics, and IoT data can
avoid unplanned downtime (i.e., predictive maintenance), increase operational
efficiency, enable new and improved products and services, and enhance risk
management [6].

• Action – Actions are the consequence of intelligence. It refers to the automated
actions to be taken by the device or on the device, but also includes action from
the stakeholders in the IoT ecosystem.

• Ecosystem – IoT has to be seen and analyzed through an ecosystem perspective.
IoT things themselves, the protocols they use, the platforms on which they run,
the communities interested in the data, as well as the goals and aims of interested
parties all form the ecosystem.
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• Heterogeneity – The Internet of Things is expected to be made up of heteroge-
neous devices, working on different platforms on different networks. Therefore,
all the components should be interoperable, i.e., they must be able to connect,
exchange, and present data in a coordinated manner based on a common
reference model.

• Dynamic Changes – The state of devices, the contexts in which they operate,
the number of connected devices, and the data they transmit and receive are all
expected to change dynamically.

• Enormous Scale – The number of connected devices will be at least an order
of magnitude more than current connections. This means there will be a
commensurate increase in the amount of data generated by the devices, which
in turn must be transferred and analyzed to be leveraged.

• Security and Privacy – Security and privacy are an intrinsic part of IoT. These
issues are critical as personal data will be available online (e.g., in a healthcare
system, IoT devices could be charting and sharing heart rate, blood glucose
levels, sleep patterns, and personal well-being). This demands data sovereignty,
secure networks, secure endpoints, and a scalable data security plan to keep all
of this information safe.

The Internet of Things exists in an ecosystem, all the components and the
environment that supports IoT and its aims. In an IoT ecosystem, there are four
major components: things, data, people, and process. Let us examine each in turn
(see Fig. 1.1) [7]. Of course, all four components, things, data, people, and process,
must work in concert in order to achieve the promises of a more connected world.

ThingsData

Leveraging data into more
useful information for 
decision making

Physical devices and 
objects connected to the 
Internet and each other for 
intelligent decision making

People Process

Connecting people in more 
relevant, valuable way

Delivering the right 
information to the right 
person (or machine) at the 
right time

Internet of
Things

Fig. 1.1 IoT: The networked connection of people, things, data, and process
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• Things – Things refers to the physical devices that operate as part of the Internet
of Things. Each device must have the ability to connect to other devices or the
network in general. This could be with a specialized communication protocol
such as Zigbee or Bluetooth or the more general Internet Protocols (IP). The
device needs the energy and processing power to handle that communication.
Also, to be an IoT device, there must be some data to communicate. Most
frequently, this is sensor data that is collected by the device itself. Some examples
include image data from a security camera, temperature data from a thermometer,
humidity or pressure data from a sensor on an industrial manufacturing machine,
and so on. The thing or device may also be commanded to perform some action,
perhaps sending specific data or moving an actuator or some other control
motor. The device must be able to acknowledge these commands, perform
these actions, and confirm with the remote controller that the desired action is
performed. Routers, switches, and gateways are considered as part of the network
but may also be classified as things. Devices must be equipped to survive the
environmental conditions in which they are installed and have the necessary
power, sensors, and communications to fulfill these roles.

• Data – The data component has been partially defined already, as those sensor
data being sent from things as well as any commands being issued to the things.
With the huge number of things producing data so often, it is easy to understand
that the size of the data itself will be enormous. The raw data must be cleaned,
that is, checked for errors and formatted, and then either stored for analysis or
analyzed immediately. This task can be done at the edge of the network, close
to the devices, or the data can be communicated to a more central collection
point (e.g., cloud) where it is analyzed. The cost, relevance of the time of data to
required actions, and communication barriers are some factors that determine the
configuration of data processing. That being said, big data, collected from several
IoT things, is most often stored and processed in the cloud.

• People – People are affected by the Internet of Things in at least two ways: as the
agent of change who must work to make IoT function and as the beneficiary of its
outcomes. Typically, people work in their own domain as a specialist at their job.
With IoT, however, there is a much broader sense of interconnection between
functions, and so people are increasingly finding themselves interacting with
people in other business sectors. Sometimes this is a counterpart more or less with
a similar function, or at a similar level, what we call horizontally located in the
business, but other times it is a more vertical relationship, someone that operates
at a lower or higher level. People must be interfacing in order to make sense of the
data being collected and to determine the proper interpretation of the outcomes
of the analysis of that data. Ultimately, it is people who create and maintain the
Internet of Things, and their actions which can derive the most advantage from
what IoT has to offer. The other side is the impact that the consumer sees from
the IoT, meaning more informed decisions and targeted services from companies.
People must also be aware of their personal data, who is collecting it and what is
happening to it. Who owns this data? This is a question that has a complex and
evolving answer.
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• Process – The final component of the IoT ecosystem is process and that is
where the benefits of intelligent automation, informed decision-making and
control, and efficient procedures are realized. All of the methods, techniques, and
processes currently used in vertical industries (e.g., manufacturing, logistics) can
be made more efficient with the right information at the right time. Analyzing
the data gathered from sensors and delivering this information to the appropriate
stakeholders is the main idea of the process of IoT.

1.1.1 Internet of Things Terms and Acronyms

In this section, we review some fundamentals terms and explain how they relate to
the Internet of Things.

• Machine to machine communication (M2M): M2M is network communication
between devices using any channel. Originally, it was used in an industrial
context, but has come to mean that communication used to transmit data to
personal appliances. Internet of Things is also communications between devices,
but is used to also refer to vertical software stacks that automate and manage
communications between multiple devices, and therefore refers to communica-
tion on a larger scale. Table 1.1 highlights the key differences between IoT and
M2M.

• Cyber-physical systems (CPS): The National Institute of Standards and Tech-
nology (NIST) has the following definition for CPS: “Cyber-Physical Systems
comprise interacting digital, analog, physical and human components engi-
neered for function through integrated physics and logic. These systems will
provide the foundation of our critical infrastructure, form the basis of emerging
and future smart services, and improve our quality of life in many areas.” Many
manufacturing processes rely on cyber-physical systems as part of manufac-
turing. A cyber-physical system can also be found beyond manufacturing, for
example, in the Smart Grid or in Smart Cities [8].

Table 1.1 The key differences between IoT and M2M

IoT M2M

Devices communicate using IP networks,
varying communications protocols possible

Point to point communications – embedded in
hardware at the customer site

Data delivery is relayed through a middle
layer in the cloud

Many devices use these protocols, over
cellular networks or wired networks

Active Internet connection required Not necessarily an Internet connection
Integration options are more varied, but
management is necessary

Limited integration options; devices must
have communications standards
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• Internet of Everything: Cisco invented this term to mean the “people, process,
data and things to make networked connections more relevant and valuable,
turning information into actions’ that improve everything.” This terminology was
abandoned sometime in 2017.

• Social Internet of Things (SIoT): SIoT refers to an IoT in which things are able to
create a network of social relationships with one another independent of human
intervention. Objects are able to begin constructing social relationships based
on the object’s profile, interests (i.e., applications deployed, services used), and
activities (i.e., movements). These social relationships can also be organized
around events causing their creation. For example, a co-work relationship can
be created between objects that work together to generate a common IoT appli-
cation, such as objects that cooperate with each other to provide telemedicine
or emergency response. A parental relationship may exist between objects that
have the same manufacturer, are of the same model, or were constructed within
the same period because they are part of the same batch. Social relationships are
created between objects that are in contact occasionally or continuously because
the object owners are in contact, and a co-ownership relationship may be created
between heterogeneous objects that are owned by the same user. Adoption of the
SIoT model offers many advantages [9]:

– The social network created by the SIoT objects can be shaped as needed to
ensure network navigability, the effective discovery of objects or services, and
scalability similar to human social networks.

– Trustworthiness can be created to balance the level of interaction among
objects that are friends.

– Models created to study social networks can be utilized to address IoT issues
related to large networks of interconnected objects.

1.1.2 Impact of IoT

The estimated future impact of the Internet of Things is staggering. At the time of
writing, it has been estimated that there are about 14 billion devices connected to the
Internet. According to a Gartner forecast, it will go up to 25 billion by 2021. Cisco
predicts that by 2020, that number will increase to 50 billion things. The government
of the United Kingdom speculates twice that number, upward of 100 billion things.
With this increased amount of connectivity, the way we interact with everyday
objects will fundamentally shift. More of our choices can be driven by data instead
of guesswork or habit. In our businesses, data-driven decision-making will prove
more efficient and profitable. In our industries, processes and systems will be better
managed and monitored, making us safer. Our quality of life will increase as these
optimizations save us time, money, and energy. New services can be innovated from
the data-rich environment, further improving our well-being.
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1.1.3 Benefits of IoT

An organization that embraces the Internet of Things can expect greater safety,
comfort, and efficiency. Hazardous environments and workspaces can be more
carefully measured and the dangers more readily managed. The increased infor-
mation about working conditions allows for decisions to improve comfort and
consequently productivity, for example, a more localized thermostat can show
the differences in the temperatures in specific offices. Adjustments for only those
occupied spaces in temperature or lighting can lead to controlled energy costs and
greater efficiency. Monotonous tasks can be automated, reducing downtime and
yielding faster, more accurate, and greater results. Leveraging benefits like these
can make the workplace more rewarding, and that improves employee satisfaction
and retention and ultimately improved profits and reduces the necessary investment
incurred by employee turnaround.

Organizations can also benefit from more information with which to make busi-
ness decisions. Using large trends in empirical data means that fewer assumptions
need to be made. It becomes possible to be more responsive to emerging trends.
From a manufacturing standpoint, there is increased visibility into system behaviors.
This can lead to shortened testing cycles and a more optimized production process.
Revenue can also be increased or new streams can be realized by improving current
procedures or making new ones from the increase in available information. IoT is
a unique strategic advantage that early adopters will have over competitors who
choose not to pursue digitalization. A few more benefits of IoT can be listed as
below:

• Efficiency: More information about work/operation processes and rich data sets
obtained from connected sensors leads to process streamlining. IoT enables great
data sharing, and then manipulating the data as needed helps systems to work
more efficiently and make smarter, more informed decisions in real time.

• Transparency: IoT digitizes every process and enables physical objects to remain
connected, providing greater transparency. For example, IoT sensors can identify
the status of the products in a production line or the location of assets in a field
and track inventory and parcels.

• Automation and control: IoT enables the connection and digital control of
physical objects, requiring extensive automation and control within the network.
Without requiring human involvement, machines communicate with one another,
resulting in more time-efficient output. Automation also ensures uniform comple-
tion of tasks and the quality of services provided. Human intervention may only
be required in the case of an emergency.

• Accuracy: Monotonous tasks are automated, reducing downtime and errors.
• Monitoring: IoT provides the advantage of monitoring capabilities. Tracking

supply quantities for business or monitoring the air quality of a home is easily
accomplished and provides extensive information otherwise not easily obtained.
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For example, knowing that the printer is almost out of paper or that you are
running low on coffee can enable a user to consolidate shopping and avoid
extra trips to purchase supplies. In addition, monitoring product expiration dates
provide increased safety.

• Information: Access to additional information enables improved decision-
making in a diverse array of areas, from everyday decisions like choosing
what to purchase at the market to determine if a business has enough inventory.
In each situation more knowledge gives the user greater power.

• Time: The integration of IoT has the potential to save large amounts of time,
which is valuable to everyone.

• Safety and comfort: It can be difficult to imagine managing and monitoring
hazardous environments requiring the consideration of multiple factors including
human safety and optimizing the environment for productivity and comfort.
Mundane tasks can be automated resulting in energy savings. For example,
smart assembly lines can operate without human intervention and report errors
immediately, resulting in greater productivity and less downtime. Automating
monotonous tasks would also enable employees to engage in more rewarding
work, resulting in increased employee satisfaction/retention and wider profit
margins.

• Security: Security sensors (e.g., camera) as well as location-based sensors (such
as GPS) have a significant ability to enhance security.

• Cost/money: The greatest advantage of IoT is the amount of money saved. Fewer
errors, higher employee retention, improved processes, and energy-efficient
behavior all reduce costs. IoT will be more widely utilized as long as the cost
of monitoring equipment is less than the potential cost savings. IoT integration is
proving highly useful in daily life as appliances communicate with one another,
conserving energy and reducing costs.

• Industry-specific view: IoT can revolutionize several industries, for instance:

– Targeted marketing: Greater information leads to individualized experiences,
improving the interactions of customers with the company and bringing the
company message to those more likely to become customers.

– Supply chain enhancements: Asset tracking and management, security, opti-
mized logistics, and transport all reduce costs of lost inventory, waiting times,
and inventory mismatches.

– Health: Individuals can get more information about their own bodies (heart
rate, hours of sleep, etc.) to help in maintenance or identifying health
problems.

– Smart building: Workplace temperature, lighting, and air quality feedback
can ensure a pleasant working environment, increasing satisfaction and
productivity. In terms of security, connected cameras can detect the presence
of unauthorized individuals.
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1.1.4 IoT Challenges

Certainly, any changes bring not only benefits but also challenges that must be
overcome. For any organization it is essential to determine which departments
are responsible for which changes that must be made. Who will purchase and
configure the needed IoT hardware (devices, gateways, etc.)? Who will install
and run the needed software and troubleshoot the hardware and software? Who
is responsible for networking? Which department will perform the analytics and
deliver the reports and findings? There are also issues of what to do with legacy
devices and other specialized solutions that will need to be found and addressed.
Any potential solution must also be able to scale, to handle current needs but also
those of the immediate future as the organization continues to adapt and grow.
Through it all, ownership is necessary to maintain an adequate level of production
quality, especially as several teams are usually called upon to work together. These
are major issues that demand sound leadership in order to meet the challenges of
implementing IoT for any organization.

Other challenges are more technical in nature. First of all, scalability and
heterogeneity are intrinsic parts of IoT, which should be addressed via appropriate
technologies. In this context, the necessary technology standards must be developed
or updated including the network protocols and data aggregation standards. As men-
tioned before, a new connection paradigm will be needed and possibly described
by these new protocols. At every stage from gathering data, to transmitting it, to
storing and analyzing it, interoperability must be considered. Cloud Services are
nonstandardized and non-unified, meaning that changing providers could incur the
undue expense. There is currently no consensus on machine to machine protocols,
and existing equipment uses a variety of operating systems and firmware technology.
The surest way to mitigate these differences is to move computing tasks to the edge
of the cloud and take advantage of fog computing models and IoT hubs. This will
leave the cloud servers and services to handle the analytical and processing tasks for
which they are best suited. Business must be prepared to handle these challenges
with adequate planning and a solid business model. The revenue and profits will
provide the motivation to invest in IoT and expand into vertical markets, horizontal
markets, and consumer markets. If done properly, a market bubble will be avoided
as well as regulatory and legal battles.

The final, and perhaps the most important, hurdle will be solving the issues
associated with security. There have already been successful hacks, or unauthorized
access to several devices on the Internet of Things. Since IoT will become a
larger part of our daily lives, it should be obvious that the security of our
sensitive information is becoming vital. Losing control of the radio in a car, or the
transmissions of a baby monitor, or the home security cameras in a dwelling make
for a frightening and compromising future. Controlling access to these and many
other devices is a growing concern and is already being addressed.
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In summary, the main challenges of IoT can be listed as below:

• Scale: Connecting to billions of active connected IoT devices is a big challenge,
and the current communication models and technologies should be adjusted
to address scalability challenges. In this context, emerging IoT technologies
such as decentralized IoT network (e.g., edge/fog computing), peer-to-peer
communications, and blockchain can be helpful.

• Heterogeneity: IoT in its nature consists of a plethora of devices with different
interfaces and communication protocols, and thus there is a necessity to form a
common way to abstract the underlying heterogeneity.

• Privacy: All the collected data must be kept secure and anonymous when
necessary.

• Data ownership: Who is the owner of machine-generated data (MGD)? The
entity that owns the IoT device or the manufacturer of the device (e.g., in
connected cars)?

• Cybersecurity: Defeating attackers who seek to control, steal, or mislead is vital.
• Legal liability: Who is responsible when something goes wrong with an algo-

rithm or an automated decision?
• Sensors: Technically, sensors must be inexpensive, accurate, and energy efficient.
• Networks: Transferring data and commands must be secure, reliable (correct

and timely), and robust, despite operating in a noisy, busy, dangerous, or harsh
environment.

• Big data: Connected devices continuously and simultaneously generate large
volume and different varieties/forms of data, and thus IoT should be able to
address time, resources, and processing capabilities.

• Analysis: The data must be properly interpreted and analyzed with fidelity to its
meaning, especially if automated actions are taken based on data outcomes.

• Interoperability: There is a fierce competition to lead this burgeoning field, and
all players must work together to be functional and to protect investments and
must do so with fairness and integrity.

1.1.5 IoT and Big Data

Data coming from the Internet of Things is unlike data from the past in at least two
important dimensions. First, the large amounts of data being generated demand a
new data management approach. Traditional methods need to be adapted or entirely
new approaches need to be discovered to handle diverse data constantly streaming
from many sources. The second dimension is the nonuniformity of the data. Often
the raw data is unstructured, or may come in several different formats, or may
even change depending on the context. The new data management techniques must
cope with these challenges. Up until now the discussion has been about big data
without formally defining it. Big data is a large set of structured, unstructured, and
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Fig. 1.2 The definition of big data

semi-structured data and the results of analyzing that data to gain insights. Doug
Laney defined big data as the three V’s (see Fig. 1.2):

• Volume – Storing large amounts of data.
• Velocity – The rate at which data is generated is high, so it must be stored or

processed quickly.
• Variety – There are many possible formats of the data, from structured numeric

to text, e-mails, video, audio, and so on.

Turning big data into tangible business insights is one of the major benefits of
IoT. Most well-known approaches for dealing with IoT data include:

• Analyzing data: Before data becomes useful in making decisions, it must be
analyzed. Traditional manual analytics, though powerful and informative, simply
will not be practical in the face of the staggering amount of data that IoT
will generate. Therefore, some automated analytics must be employed. These
analytics need to provide descriptive reports of the environment, visualizations,
dashboards, trigger alerts from data sources, and automated actions to be taken
based on the data. They will also be used to detect patterns in the data, predict
outcomes, and detect anomalies. There are open-source frameworks currently
available for performing automated analytics. The two main approaches are to
process the data in batches or to analyze the data as it is generated in real
time. Which technique to use depends on the context of the problem as well
as the resources available. The analytics can be run in a distributed fashion,
also called in the cloud or at the edge, in servers nearer the sensors. First,
the data is preprocessed, that is, duplicates are filtered out, and the data is
possibly reordered, aggregated, and most likely normalized. These and other
similar preprocessing tasks can be performed on the IoT device itself or on a
gateway device before it is sent upstream. The most common automated analytics
performed now are machine learning algorithms.
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• Machine learning (ML): Traditional mathematical statistical models analyze data
by fitting the data to a model. Then the model is used to make predictions. This
is a difficult process to follow especially when the data is dynamic or has many
variables or the important points of the data are unknown. Machine learning is
an algorithmic approach where the important parameters are extracted from the
data in a process called learning. The data itself provides the structure of the
mathematical model. Machine learning techniques can be applied to historical
data or data taken in real time. The main way to think of it is that machine
learning finds patterns or relationships or key variables in data. The model that is
learned can be updated over time as more data is collected. One of the important
applications of machine learning in the context of IoT is about finding patterns
in the data, so that anomalies can be found quickly. Traditionally, anomalies
were detected when certain values crossed thresholds. Machine learning allows
for more complex patterns in the data to be identified as anomalous, therefore
increasing speed and accuracy in detecting problems. The machine-learning-
driven intelligence in IoT can be used for predictive analytics (what will happen),
prescriptive analytics (what should we do next), and adaptive or continuous
analytics (how can we adapt to the latest changes).

• Edge analytics: When analytics is applied at the edge of the network close to the
IoT devices that generate the input data, it is referred to as edge analytics. Since
network traffic is reduced, this is an attractive approach to reduce bandwidth and
the latency from data gathering to a useful result. One drawback is that more
processing power is needed in the devices and close to them, and cost or the
particulars of the environment or device may make this prohibitive. On the other
hand, sending large amounts of data across a network into the cloud may also be
too expensive. Often a hybrid of edge and upstream analytics in the cloud is used
to mitigate these costs.

• Real-time analytics: Any time that data is collected and immediately analyzed is
known as real-time analytics. This is the best choice when a delay in the results of
the analysis would reduce the value of the data. Time series data, rolling metrics,
running averages, and any other occasion where the window of time analysis
needs to be controlled are also good candidates for real-time analytics. Some
real-time analytics frameworks available include Apache Storm, Apache Spark,
and Flink frameworks.

• Distributed analytics: When the data sets are particularly large, too large to be
handled by a single node (server), then distributed analytics can be used. As
the name implies, the analysis tasks can be broken up and spread out to several
compute nodes, possibly across multiple databases. If the data allows, it could
be bucketed by time period and thereby effectively split up in order to make it
more manageable. This is also an example of batch processing. Hadoop provides
an ecosystem of frameworks for performing analytics. Apache Hadoop is used
for batch processing and uses the MapReduce engine to process distributed
data. Hadoop is a good open-source framework and one of the first to become
available. It is used successfully for historical data analytics.
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Data storage, besides the data processing, is another challenging issue in the era
of big data. As more and more devices are connected to the Internet of Things,
the amount of data they generate will drastically increase. They will be sending
messages with their status, sensor outputs, metadata, and other messages. Despite
the large amounts of data, it still must be stored. Two common methods are listed
here, NoSQL databases and time series databases. Traditional techniques (SQL
databases) are usually not feasible because of the amount of data being stored, with
its varied and often unstructured nature. NoSQL databases offer high throughput and
low latency of storage and retrieval. Since there is no schema, dynamic new data
types are allowed. Couch Base, Apache Cassandra, Apache Couched, MongoDB,
and Apache HBase (Hadoop) are examples of frameworks that use NoSQL. There
is also a NoSQL in the cloud solution offered by IBM’s Cloudant (a distributed
database) and AWS’ DynamoDB. A time series database can also be a NoSQL
database or even a relational database. The indexing and queries are all based on
timestamps in the data. Some frameworks using time series databases are InfluxDB,
Prometheus, and Graphite.

1.1.6 IoT and Cloud Computing

The two worlds of IoT and Cloud experienced swift and independent progress.
However, the complementary features of IoT and big data generated many new
opportunities and advantages. Cloud computing is the solution to the increased
demand for storage and processing. The cloud is defined as a group of servers
and computers connected over the Internet in a large, distributed infrastructure. The
concept is to deliver on-demand services over the Internet. The model is typically
based on pay for the usage consumed (metered service), with the ability to scale
up and down as needed (elastic resources). Amazon, Microsoft, and Google are
dominating this Infrastructure as a Service (IaaS). They also provide Platform as
a Service (PaaS) and Software as a Service (SaaS). The advantage to consumers
is a lowered computation cost versus purchasing the hardware and then paying to
operate and support it in-house. In summary, the main drivers for integration of IoT
and Cloud are listed below [10]:

• Device lifecycle management: As the Internet of Things grows in size, the
number of devices that need to be registered, managed, and updated while
maintaining security requirements also grows and must be accommodated. It is
possible for tools to configure and update firmware and software over the air
(FOTA). The cloud platforms enable device lifecycle management, so devices
can be connected, registered, on-boarded, updated remotely, and even remotely
diagnosed should something need to be fixed. This reduces the operation and
support cost of the devices. That means the enterprise Internet of Things is
remotely managed, with minimal time and a reduced cost of ownership. In other
words, a 360-degree view of the IoT devices is possible via the cloud.
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• Communication: Cloud platform can be leveraged with the help of IoT to deliver
scalable domain-independent services by providing appropriate service-oriented
domain mediators.

• Resource pooling: Physical resources of IoT can be integrated into the cloud
resource pool enabling us to allocate and share them on demand like regular
Infrastructure as a Service (IaaS).

• Storage: IoT drives a real tsunami of big characterized by volume, variety, and
velocity. In this context, IoT benefits from large-scale and long-lived storage of
the cloud.

• Computation: Data processing is typically a very resource-hungry task. There-
fore, IoT can benefit from virtually unlimited processing resource of cloud to
aggregate data and execute batch and/or real-time analytics on the collected data.

• Device shadowing or digital twin: Another benefit available through cloud
computing is device shadowing. The concept here is to have a backup of running
applications and devices also running in the cloud. Any time there is a fault
or failure in the original device or application; the twin can be examined to
extract the result or to help in diagnosing the problem. System availability can be
increased by using the digital twin as software redundancy. If the original system
needs to be taken offline for maintenance, the twin can continue the operation
uninterrupted; it can also provide system behavior statistics and behavior profiles
for the original system at decreased risk.

1.1.7 IoT and Digitalization

Gartner defines “digitalization” as leveraging digital technologies to change busi-
ness models and provide new revenue and value-producing opportunities. The
process of updating a business to digital technologies is an evolutionary one and
indeed has been happening for decades. The process is enabled by increased inter-
operability, information transparency across departments and industries, automated
assistance and support, and a trend toward decentralized decision-making. In this
context, IoT is considered as the major pillar for digitalization. The other important
pillars are blockchain, big data, and machine learning.

1.1.8 IoT and Industry 4.0

The phrase “Industry 4.0” is rooted in a high-tech, German government research
and development project in the manufacturing industry. It was initially coined at
the Hannover Fair in 2011. Although there is some difference of opinion around the
definition of historical industrial revolutions, Industry 4.0 is considered as the fourth
industrial revolution. The initial industrial revolution occurred in the late 1800s and
is responsible for mechanizing the power of steam and water. The second industrial
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revolution began in the early 1900s and was characterized by the use of electricity
to drive mass production through assembly lines and a reorganization of labor. The
1970s brought the third industrial revolution which utilized computers to automate
production and processes. It is predicted that the coming fourth industrial revolution
will fully utilize digital manufacturing in smart factories. Industry 4.0 is propelled
by the merging of technologies such as:

• Industrial Internet of Things (IIoT) and extensive sensor use
• Analytics and big data
• Machine learning and artificial intelligence (AI)
• The convergence of IT/OT
• Augmented reality (AR)
• Advanced robotics
• Additive manufacturing

Benefits of Industry 4.0 Industry 4.0 will generate benefits in many areas. Product
development will move more quickly due to analytics, and original equipment
manufacturers (OEMs) will utilize analytics to understand better how consumers
actually use products compared to a product’s anticipated use. Sensor data will
be used to optimize production through constant status updates that are compared
to a digital twin (i.e., a perfectly efficient simulation which creates a virtual and
digital replica of the target physical product/entity or process) to predict the physical
counterpart’s performance characteristics and guide corrective action and predictive
maintenance needs. Additive manufacturing will become highly profitable based on
highly flexible, small production capabilities. Augmented reality will drive learning
and efficiency, and machines will assist humans with dangerous or complicated
tasks as they gain autonomy. Many of these technological advancements are already
occurring on a smaller scale. However, the guiding vision of Industry 4.0 is to
revolutionize manufacturing and its connected industries. The main goal of the
Industry 4.0 vision is to help manufacturing and its connected industries to evolve
away from a logistics or end product focus. This revolution seeks to help these
fields move toward an efficient customer-responsive business model that generates
innovative revenue sources. Industry 4.0 also has the potential to revolutionize cities
and utilities on a larger scale.

Industrial IoT The Industrial Internet of Things (IIoT) uses actuators and sensors
to improve industrial and manufacturing processes. The IIoT is vital in many indus-
tries such as oil and gas, logistics, manufacturing, energy/utilities, transportation,
resource mining, and aviation as well as other industrial fields or use cases common
to these industries. However, there are some companies and professional researchers
who consider Industry 4.0 and IIoT to be equivalent.
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1.2 Architectures and Reference Models of IoT:
A Layard View

1.2.1 IoTWF Reference Model of IoT

There are several standardizations in the IoT ecosystem. The IoT World Forum
(IoTWF) is an exclusive annual industry event hosted by Cisco. As an outcome
of their collaboration, they published a Standardized Architecture in 2014. The
committee was comprised of Cisco, IBM, Rockwell Automation, and others. The
proposed IoT Architecture is a seven-layer reference model, with control originating
from the center (e.g., cloud) to the endpoint devices. Generally, data is gathered at
the endpoint devices and is sent toward the center. The central processing can, in
fact, be decentralized and implemented as a cloud service. The purpose of such
a model is to give a common understanding of how the problem of creating IoT
can be divided. With the different goals of each layer identified, and the interfaces
specified, different companies can contribute pieces that will interoperate. Security
can also be enforced at each layer of the model. These seven layers include (see
Fig. 1.3) [11]:

1. Physical devices and controllers (things) – These are the physical devices,
sensors, actuators, and controllers that form the Internet of Things. Their primary
function is to collect data to transmit upstream, but they should also be capable
of receiving commands, e.g., power down, etc.

2. Connectivity (networking) – This is the layer that serves as the medium to bring
the sensor data from the devices to the upper layers where that data is cleaned
and analyzed. The chief responsibility here is for reliable, secure, and timely
delivery of data. This includes any switching or routing that is necessary as well
as translation between protocols if necessary.

Fig. 1.3 IoT reference model by IoTWF
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3. Edge computing (data element analysis and transformation) – This is also
known as the fog layer because it is the layer where data cleaning, aggregation,
and processing begin. It is the responsibility of this stage to prepare the data
for analysis and storage. One of the methods to mitigate the enormous data
flows is to start the analysis as early as possible. Data is evaluated, possibly
reformatted or reordered, filtered, and checked for warning thresholds. Edge/fog
computing facilitates data processing, data storage, and networking services
between endpoint IoT devices and the center (e.g., cloud or data centers). The
key idea of edge/fog is to process the data and make actions closer to where the
data is created. This can ultimately result in reducing the traffic between IoT
devices and real-time actions (i.e., respond fasters to events).

4. Data accumulation (storage) – This is the layer which prepares data to be stored
in a database, whatever that format is. The key here is that after this layer, the
data is expected to be able to be retrieved based on queries.

5. Data abstraction (aggregation and access) – Another layer that deals with the
data. At this layer, the data is consistent, complete, and validated. In practice,
data is often stored across multiple databases; the task of this layer is to ensure
that the data is able to be queried and a unified, reliable result is returned.

6. Application (reporting, analytics, control) – This is where individual software
applications can query the data to perform specific functions, such as reporting,
monitoring, control of devices, visualizations, and analytics.

7. Collaboration and processes (involves people and business processes) – This
is the layer that makes use of the outputs from the software applications of
the previous layer. Data and conclusions from that data are shared with other
entities or applications. The collaboration of several data sources illuminates new
business practices, makes existing processes more efficient, and opens the doors
to innovation. This is where the benefits of the Internet of Things are largely
realized.

1.2.2 Simplified Reference Model of IoT

A simplified IoT architecture is comprised of the following layers (see Fig. 1.4)
[12, 13]:

• IoT Things Layer – Consists of all IoT sensors and actuators.
• IoT Network Layer – Includes network components such as IoT gateways,

switches, and routers responsible for transmitting data in a timely and dependable
fashion. This layer also includes fog/edge nodes to perform data analysis and
transformation and information processing as quickly and closely to the things
as possible. This is very helpful in real-time applications such as IoT healthcare
to be able to provide low-latency and faster responses to emergencies.
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Fig. 1.4 Simplified IoT
architecture
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• IoT Cloud and Application Layer – Manages and processes IoT devices, as well
as data created by the other two layers. It is also responsible for data ingestion,
data interpretation through software applications, as well as integration with
other platforms to improve business value.

1.3 IoT Frameworks and Platforms

1.3.1 FIWARE

FIWARE is funded by the European Union (EU) to be an open-source middleware
platform. This means that it specifies interfaces for application programmer inter-
faces, allowing anyone to be able to connect devices to a catalog hosted in the
cloud. The idea is to simplify the task of integrating devices into IoT and enable
an economy based on data. Since it is a standard, it relies on participation and
adoption, but the promise of interoperability is real and appealing. To that end there
is an active and well-funded community surrounding the platform and encouraging
participation [14].

1.3.2 SmartThings

SmartThings is a cloud-based platform offered by Samsung that focusses on build-
ing and running an IoT-driven smart home. The application management system
is used to process subscriptions from device type handlers. Over 300 different
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devices are supported in the system, to allow the user control over objects in the
home. From dimmer switches to sensors and alarm systems, SmartThings offers
integration of varied devices with third-party assistants such as those produced by
Amazon or Google. The system can increase security and convenience in any home
by providing a common connection and integration of devices found there.

1.3.3 AWS IoT

With Amazon Web Services (AWS) IoT, Amazon offers a managed, cloud-based
solution. Platforms and software are all offered as a service, with the ability to
scale and use its analytics tool on IoT data. Things can be registered as devices,
and the architecture features a Message Broker, Thing Registry, Thing Shadows
(Digital Twins), and Rules Engine in addition to Security and Identity components.
AWS is aimed at home users as well as industrial users with its mix of device
software, control, and data services. Amazon machine learning provides analytics
and visualization tools as a service. Users can make use of the same technology used
by Amazon data scientists internally, but with a friendlier wizard-style interface to
begin. Getting started building and performing IoT tasks or data science functions
are painless. The services scale as your needs or businesses grow, and stopping is
just easy since no capital investment is required [15].

1.3.4 Microsoft Azure IoT

The Azure Internet of Things (IoT) is a collection of services that is capable of
connecting, controlling, and tracking billions of IoT devices. Available services in
Microsoft IoT include [16]:

• Azure Internet of Things (IoT) Hub
• Azure IoT Edge
• Azure Stream Analytics
• Azure Machine Learning
• Azure Logic Apps

1.3.4.1 Azure Internet of Things (IoT) Hub

The Azure IoT hub is a cloud-hosted service that functions as a centralized,
bidirectional message hub for an IoT application and its connected devices. It can
be used to build dependable and secure communications among millions of IoT
devices and back-end solutions hosted by the cloud. Almost any device can be
virtually connected to the IoT hub, which supports communication coming from
the device to the cloud and vice versa. IoT hub is able to support different message
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patterns used to manage devices including file uploads from devices, device-to-
cloud telemetry, and request-reply methods. IoT hub monitoring is useful for
supporting solution health because it monitors events including device connections,
failures, and connections. The IoT hub provides a secure channel for devices to
communicate and send data [16]:

• Individual device authentication allows each device to connect to the hub
securely and to be controlled securely.

• The IoT hub provides total control over device access and can manage each per-
device connections.

• When a device initially boots up, the IoT Hub Device Provisioning Service
automatically provisions devices to the correct IoT hub.

• Various device capabilities are supported by multiple authentication types:

– SAS Token-Based Authentication
– Individual X.509 Certificate Authentication
– The X.509 CA Authentication IOT hub connects devices using the following

protocols: AMQP, AMQP over WebSocket, HTTPS, MQTT, MQTT over
WebSocket

IoT hub also includes built-in message routing which provides the flexibility to
create a rules-based, automated message fan-out. Additionally, the IoT hub can be
combined with additional Azure services to create comprehensive solutions such
as:

• Azure Logic Applications – Business process automation
• Azure Machine Learning – Adds AI models and machine learning to solutions
• Azure Stream Analytics – Provides real-time data analytics on data streaming

from devices

There are two available Software Development Kit (SDK) categories used with
the IoT hub:

• IoT Hub Device SDKs – Allow one to create IoT applications to be executed on
IoT devices. These applications can send telemetry to the IoT hub and include
the option to receive messages, method, job, or updates from the hub. Compatible
languages include Python, Node.js, Java, C#, and C/C++.

• IoT Hub Services SDKs – Allow a developer to create back-end applications that
manage the hub and schedule jobs, send messages, invoke other functions, or
send updates to IoT modules or devices.

1.3.4.2 Azure IoT Edge

Edge enables an organization to focus on business insights rather than focusing
on data management by transferring cloud analytics and some business logic from
cloud to edge. Azure IoT Edge has three main components (see Fig. 1.5) [16]:
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Fig. 1.5 The architecture of Azure IoT Edge

• IoT Edge Modules – These are the fundamental execution units that run the
business logic of the system at the edge. These modules are implemented as
Docker-compatible containers. There is a possibility to create more complex data
processing pipeline by connecting several containers to each other. IoT Edge
allows you to create custom modules or bundle different Azure services into
modules able to extract insights from IoT data offline at the edge.

• IoT Edge Runtime – It is located in the edge and provides cloud and custom
business logic for IoT Edge. In addition, it performs communication and
management operations including:

– Manages workload installation and updates
– Manages Azure IoT Edge Security Standards
– Ensures IoT Edge Modules are running
– Monitors and reports module health remotely
– Manages communication and handles communication between downstream

endpoint IoT devices and IoT Edge, between modules, and between the cloud
and IoT Edge devices

• IoT Cloud Interface – It sits in the cloud and allows remote management and
monitoring of IoT Edge devices from the cloud.

1.3.4.3 Azure Stream Analytics

As an event-processing engine, Azure Stream Analytics enables you to monitor
large-volume streaming data coming from IoT devices as well as data from social
media feeds, applications, web sites, etc. You can also use Azure Stream Analytics
to visualize relationships and find patterns in streaming data. Once identified, data
patterns can be used to drive downstream actions like sending information to
reporting tools, storing data, or creating data alerts [16].

Azure Stream Analytics utilizes a source of streaming data that is ingested into
the Azure IoT hub, Azure event hub, or from Azure storage. To evaluate the data
streams, you must create an analytics job that identifies the input data stream source
and uses a transformation query to determine how to search for data relationships or
patterns. When analyzing incoming data is done, you are able to identify the desired
output and then determine how to respond to the analyzed information. For example,
you can take follow-up actions including:
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• Trigger Alerts/Customized Workflows – Triggers a specific process or function in
response to an input pattern.

• Visualize Data – Data is sent to a Power BI (a business intelligence framework)
dashboard to allow real-time data visualization.

• Store Data – Utilizes Azure storage system to store the data; therefore, you
can perform batch analytics or train holistic machine learning models based on
historical data.

1.3.4.4 Azure Machine Learning

Azure Machine Learning is a cloud-based service supportive of open-source
technology and useful for large-scale training, deploying, automating, and managing
machine learning models. Azure Machine Learning enables the user to access
thousands of open-source Python packages that include machine learning compo-
nents such as PyTorch, Scikit-learn, and TensorFlow. Microsoft also offers another
framework called Azure Machine Learning Studio, a drag-and-drop, a collaborative
area that allows you to create, test, and deploy machine learning solutions without
writing code. This workspace also provides preconfigured and pre-built algorithms
as well as data management modules that make experimenting with machine
learning modules quick and uncomplicated. Azure Machine Learning Service is
beneficial instead of Azure Machine Learning Studio, when greater control over
the details of the machine learning algorithms is needed or you need the flexibility
to utilize open-source machine learning libraries [16].

1.3.4.5 Azure Logic Apps

Azure Logic Apps is a cloud service used to arrange or automate tasks, workflow, or
business processes when data, applications, systems, or services must be integrated
across large enterprises. One of the main benefits of Azure Logic Apps is that it
makes the designing and implementation of scalable data integration, applications,
and other system solutions including business-to-business (B2B) communication
within the cloud or on premises (or both) easier and more straightforward. Below
you will find examples of workloads that is possible to automate using Azure Logic
Apps [16]:

• Event Processing – Events can be processed and routed across cloud services and
on-premises systems.

• Email Notification – Email notification can be automatically sent via Office 365
when an event occurs in an app, service, or system.

• File Transfer – Uploaded files can be transferred from FTP or SFTP servers to
Azure storage.

• Tweet Monitoring – Tweets can be reviewed by subject or analyzed based on
sentiment and alerts or tasks can be created if the additional inspection is
required.
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1.4 IoT Applications in Vertical Markets

There are many areas where the Internet of Things will have a major impact. What
follows is a sampling and a brief discussion of some of these IoT application areas.

1.4.1 Smart Agriculture

Also known as precision farming, since the power of data is brought to bear on
agricultural decisions, instead of the traditional wisdom and guesswork.

• Smart Greenhouses: An IoT-enabled greenhouse will allow for the finer automa-
tion and control of environmental parameters. As expected, all aspects of the
greenhouse can be monitored and recorded, including temperature, sunlight,
air quality, humidity, and air flow. Adjustments to the environment can be
recommended or automatically carried out depending on the recommendations
of cloud servers.

• Livestock Monitoring: Cattle and other livestock can be monitored with IoT
sensors to determine their location and vital signs to determine their health. Those
animals with warning signs of sickness can be identified, quarantined to protect
the others, and treated to overcome the sickness. This process saves on labor
costs, improves the health of the overall herd, and reduces the risk to the animals
and farmers.

• Agricultural Drones: In addition to placing sensors at key points, farmers can
use airborne drones to monitor much larger and widespread areas. These drones
can be recruited to plant seeds, spray existing crops, take soil samples, assess
the health of crops, or even monitor fields or assets for security purposes simply.
Historical records of crops can be more easily kept with drones assisting. They
could also be used for integrated GIS mapping and visualization. All of these data
points can ease the burdens on farmers, saving time and money and potentially
increasing the agricultural output of the farm.

As an example of IoT in agriculture, we can name Cropx company. This company
installs sensors to understand better water usage in fields growing crops. The data
are used to conserve better and utilize irrigation. The company also advises on the
type and use of pesticides and fertilizers to maximize the yields of crops. They do
this by collecting data on soil, air quality, crop maturity, and even weather and then
using algorithms and machine learning techniques to determine when and where to
intervene.

1.4.2 Logistics and Transportation

Logistics is all about moving items from one place to another. Warehouses are used
to store the items temporarily until they can be loaded onto vehicles and moved
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Fig. 1.6 A few use cases of IoT in logistics

further along toward their destination. The vehicles use the transportation network
to maneuver between endpoints and warehouses. Generally, suppliers are the ones
that dispatch these vehicles to deliver the items to customer locations. To succeed
at logistics, it is important to reliably, safely, and predictably deliver items from
suppliers to customers. All stakeholders also want to know the status and position of
the items in the transportation network and to be able to forecast how long it will take
to receive these items through borders, customs, or other checkpoints. This means
that a quality logistics operation has mastery over the capacity of each stage in the
transport and can optimize vehicle routes between endpoints in an energy-efficient
and proactive manner. IoT can assist with all of these goals, from real-time traffic
and environmental conditions for vehicles, to real-time monitoring of vehicle and
warehouse capacity, to sensors to locate and verify that items are in good condition
and route. The value of items is linked to the length of time they are in transit,
so minimizing risk in damage or delay is another prime concern, and another one
that can be addressed with the data that IoT delivers. The vehicle fleet itself can
also be monitored to ensure that timely maintenance is being done, increasing its
availability and longevity. Fuel and time can be saved by re-routing around bad
weather or accidents, and theft and loss can be prevented and stopped with cargo
validation and monitoring. There may be other business innovation opportunities
when the IoT is fully leveraged in this field. A few more uses cases of IoT in
logistics/transportation are shown in Fig. 1.6.

1.4.3 Smart Grid

The traditional power grid consists of monolithic power generation plants that
deliver electricity across transmission lines to power substations where electricity is
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distributed to customers via distribution lines. The customers had meters to record
the use of the electricity, and these meters needed to be visited to be read. The next
generation of power grid adds intelligence at the customer end by making those
meters able to communicate their readings back to the power company. Further, with
advanced metering, they can be updated in real-time to reflect changing tariffs on
power based on loading and time factors. Demand can be better understood making
power generation timelier and more efficient. Energy spikes, equipment failure, and
power failures can be detected more quickly with smart sensors and the response
can be more rapid with the automatic dispatch of engineers or even an automated
restoration. Power outages and interruptions cost several billion dollars every year,
so finding solutions to reduce and eliminate the occurrences improves quality of life
and makes financial sense. Generators of electricity can better understand where,
how, and how much electricity is used on the grid, enabling them to be more adaptive
and responsive. Especially as the move is toward renewable energy sources and
decentralization of electricity generation, smart technologies are vital to unlocking
wind, solar, and tidal power to its full potential.

On the consumer side, understanding when and how electricity in the home is
used can lead to better choices. Home automation can activate appliances during
off-peak times, and thermostats can control home heating and cooling depending on
the time of day and occupancy to maximize comfort and energy savings. Electric
vehicles can serve as power storage for a smart grid, or a micro-grid for the
neighborhood, being charged during off-peak times, and returning power to the
grid during the times of highest demand. To address the above challenges, research
and development to design IoT-driven power grid as a robust, reliable, and secure
infrastructure is critical to the future of technological advances, since it powers all
the other technologies.

1.4.4 Smart Building

Large buildings are currently outfitted with proprietary solutions to assist in solving
the problems faced by facilities managers. They need information about how the
building is functioning, the heating, ventilation and air conditioning system, the
boilers, the power, the security system, and many other systems and subsystems
that make up a modern building. While some management systems do a good
job, they are often difficult to integrate with other solutions. Since they are often
hardware based, once they become obsolete, it can be costly to update them, making
them inflexible. Legacy buildings are a significant contributor to the increase in
greenhouse gases in the atmosphere, with some estimates as high as 36 percent
of CO2. Forty percent of total energy consumption is from the maintenance of
buildings, with as much as 75 percent of current structures being inefficient. In
2016, the Paris Climate Agreement specifically targeted reducing the high energy
consumption of buildings as an excellent method for addressing climate change.

IoT will bring greater interoperability to these older, disparate systems and,
through the cloud, allow for greater remote management, improving efficiency and
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response time. The sensors in an IoT-enabled building can collect the traditional
information but also many other pieces of information not currently monitored, like
air quality and occupancy. Using this data, building services could be improved to
make occupants more comfortable and safer and also to use less energy. Workers
who have greater peace of mind are able to concentrate better and be more produc-
tive. A smart building can offer this increased comfort with targeting thermostats to
maintain more consistent temperatures. This results in more employee satisfaction,
but also in a reduction in facilities calls to come and adjust the thermostat. Smart
lighting can adjust light levels based on time of day and the presence of people
needing that light, resulting in added savings. As systems change and adapt,
software-based solutions will more easily adapt to them. The output of the sensors
and detectors can be collected and visualized for facilities managers, to improve
maintenance timing and effectiveness. Several companies are working for IoT-
integrated solutions for the smart building, including Intel.

A case study in the possible energy conservation is that of a conference room.
These rooms are important locations for productive meetings and a valuable space
in which to work, but whether they are actually being used or not, traditionally they
receive HVAC services. Intel performed a study using its smart building product and
showed in its report that it was able to save 4 percent on HVAC costs in conference
rooms in its subject building. With LED lighting and occupancy detection, it was
able to reduce lighting wattage used per square foot from 1.09 to 0.39. Through
analyzing other data points, there is room to innovate other cost savings in offices
and shared spaces in buildings.

Power companies incentivize customers to reduce consumption during peak
times by offering lower rates or credits called Automated Demand Response. IoT-
driven smart buildings can take advantage of this by knowing the current building
power usage and the grid rates and adjusting the load accordingly. There may be
some load devices whose use can be delayed until an off-peak time, for example. If
more power is demanded, then solar panels on the building, batteries or fuel cells in
the building, or even a local power generator (diesel perhaps) could be utilized to
make up the shortfall. This process can be automated via IoT solutions to optimize
the cost of power to the building.

1.4.5 Smart Factory

Like IoT and other emerging technologies, there is not a unique and universally
accepted definition for smart factory. However, smart manufacturing or smart
factories can be explained by their main characteristics and core contributing
technologies such as IoT, machine learning, 3D printing, cyber-physical system,
robotics, big data, and blockchain. In the context of IoT, smart factories are
manufacturing plants that incorporate IoT technologies into their processes to
improve and optimize each and every aspect of the factory.
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1.4.5.1 Current Manufacturing Model

The current manufacturing automation is based on a hierarchical architecture
consisting of the following layers:

• Level 1: Sensor and Actuator Layer – This is the base level where the devices,
sensors, and actuators exist on the plant/shop floor to perform different manufac-
turing process. This layer is a part of Operational Technology (OT).

• Level 2: Field Automation Layer – This layer (mostly based on PLC: Pro-
grammable Logic Controller) monitors and controls the devices that are attached
to. This layer is also a part of Operational Technology.

• Level 3: Supervisory and Integration Layer – This layer mainly addresses
supervisory control of the whole production process in the shop floor, shop
floor monitoring, data acquisition, and data storage. It also functions as a multi-
protocol intermediate gateway between the underlying industrial systems and the
upper enterprise systems. This layer is usually implemented by Manufacturing
Executive Systems (MESs), and Supervisory Control and Data Acquisition
systems (SCADA). Level 3 is also a part of Operational Technology.

• Level 4: Enterprise Layer – Finally, decisions at this level concern the business
planning, customer orders, material acquisition, and administration. Note that
this layer is classified as an Information Technology (IT) layer.

Three important points should be noted here. The first point is that the above
layers sometimes melt into each other in a way that some functions can be
implemented at multiple levels. Second, many existing factories have not integrated
the integration of Information Technology (Layer 4) with Operational Technology
(Layer 1–3) yet. The third point is that the above model is rigidly structured to
some extent, meaning that in the first two layers, there is almost a strict master-slave
communication paradigm, with the master taking charge. According to Industry 4.0,
the above model can be evolved toward a more decentralized model, allowing for
more autonomy. In Industry 4.0, the decentralization allows for more flexibility,
self-governance, self-organization, self-maintenance and self-repair. These are all
goals of smart manufacturing, and is not surprising as Industry 4.0 is a much more
recent standard.

1.4.5.2 Potential Use Cases

Here are the most popular IoT applications that are reshaping manufacturing and
factories:

Operating Efficiency IoT-based smart factories are more responsive to changes
in the environment and armed with more detailed and timely data are poised to
proactively address potential problems or events as soon as they occur or even
before they occur. In addition, traditional manufacturing plants depend on the skill
and training of the operators and technicians to produce their output. For decades,
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manufacturing has worked to increase the amount of automation in the process.
Some benefits were realized, but often new technicians were needed to ensure the
automation was working optimally. The Internet of Things should improve this
situation as automation can be better monitored and controlled. A networked control
system can sense, visualize and control every aspect of the manufacturing process
even remotely. The smart factory can deliver a cost-effective, efficient, sustainable,
and safe manufacturing system.

Real-Time Quality Control Manufacturing business success is dependent upon
a rigorous inspection process applied across each production phase. IoT enables
manufacturers to program equipment and utilize big data analytic frameworks
within factories to effectively monitor the manufacturing line, equipment, raw
materials quality, and the quality of completed products at each point in the
manufacturing process. Integrating IoT in this manner provides the following
benefits to the quality control process:

• Enabling real-time action in alignment with the manufacturing process
• Optimizing in-process manufacturing using production engineering insights
• Continuous adaptation and learning based on production output
• Continuous optimization to address process drift or production variance

Predictive Maintenance The ability to predict difficulties or perform predictive
maintenance is an advantage with increased uptime and safety. Predictive mainte-
nance is repairing or replacing equipment or components before predicted failures.
Traditionally, historical mean time between failure data was used to schedule this
maintenance, but with more accurate and timely data from IoT devices, a more
specific time can be found, meaning good parts are not replaced, or unexpected
weaknesses can be located and addressed before catastrophic failure. Of course, the
data must be analyzed to extract these benefits, using machine learning and other
data analytics techniques as mentioned earlier.

Safety Employee safety is another area that can be improved with IoT devices.
Workers can be observed to find lapses in focus or other mistakes, and preventative
action can be taken. With increased knowledge of activities on the floor, should
there be a problem, help can be dispatched more quickly and accurately. When all
activities are analyzed, it is possible to discover new processes or methods to use
during the manufacturing itself. There is the potential to improve efficiency with
these process ideas or with real-time solutions as situations develop in the plant.

Supply Chain Management IoT can help with supply chain management, as
sensors track and help manage the location and condition of inventory, management
can better plan, and schedules can be adjusted to optimize output. In addition
to sensors, IoT devices can be used directly for automation. Integrating robotics
can improve worker safety and factory throughput and reduce costs by increasing
efficiency.

Machine as a Service (MaaS) This approach will allow updated machines to be
deployed from the cloud, with remote configuration, connectivity, and monitoring.
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Services such as these will allow for 100% uptime and zero-touch deployment, two
desirable goals for manufacturers.

IT/OT Convergence Since the 1970s, there has been an increase in automation
in the manufacturing sector. This trend continues as operational technology (OT)
and information technology (IT) converge with programmable logic controllers,
computers, networking, and connected devices and sensors. IoT brings manufac-
turing technology and enterprise networks together, eliminating technological silos.
These improvements will lower costs with scaled, automated, and platform-based
machine connectivity that will increase monitoring and optimization. It can be
claimed that the main driving factor in IIoT and IoT in the manufacturing industry
is the convergence of IT/OT. There are two terms that must be understood before
discussing the convergence of IT/OT:

• Information Technology (IT) – Using computers, hardware/software, and other
telecommunications devices to complete business operations. IT is mainly
linked with the back-end functions required to handle operations including
billing, resource planning, asset monitoring, accounts receivable/payable, and
maintaining client information.

• Operational Technology (OT) – The foundation of modern smart factories.
Manages infrastructures powering manufacturing plants and ensures factory lines
keep running. The value of OT is amplified as additional machines or components
are connected.

IT/OT convergence means operational technologies such as meters, sensors,
programmable logic controllers, and SCADA are integrated to work together in near
real time or real time with IT systems. The fields of OT and IT have existed side by
side since the beginning of modern manufacturing. However, they have been siloed,
with minimal interaction, resulting in a lack of understanding about how individual
departments fit into the manufacturing process. Before IT/OT convergence, data
sharing among departments was guided by the calendar, but the birth of the IIoT
has vastly reduced the gap between IT and OT. Therefore, in a post-integration
era, both IT and OT can share data in real time. There are several main benefits to
IT/OT convergence, including agility, performance, productivity, cost, and agility.
Combining IT and OT generates a complete picture of operational improvement
opportunities and challenges facing manufacturers. This increased transparency
helps IT and OT teams to better define their roles in light of a clearer team goal
or purpose.

• Cost: The benefit that most often overlies both IT and OT departments is cost.
In the area of IT, the cost is tied to predicting or illustrating profitability while
the cost is generally linked to reducing production expenses in the area of OT. In
both departments, reducing costs is good for the organization’s profit margin.

• Performance and productivity: The benefits of improved performance and pro-
ductivity are connected. Businesses can enable IT and OT to collaborate through
a common platform to create accurate key performance indicators (KPIs) that
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equip both departments to work toward common goals together while improving
company-wide visibility.

• Agility: When an organization does a better job of controlling costs and analyzing
KPIs, it is better able to act with agility to reduce production time and make space
for innovation, which was a highly difficult task in a siloed IT/OT environment.

1.4.5.3 Major Challenges

There is the perception of several barriers that must be overcome in order to
evolve manufacturing plants to smart factories. A recent survey of manufacturing
executives by Cisco ranked these problems for IoT in manufacturing, starting from
the most serious [17]:

• Lack of supply chain visibility
• Lack of visibility of plant floor KPIs
• Inability to access data within production
• Lack of common metrics across plants
• Plant floor IT apps in silos
• Employee skills gap
• The complexity of manufacturing operations
• Inflexible automation
• Lack of understanding the plant floor
• Lack of reliable plant floor network
• The process not automated (manual)
• Lack of clear manufacturing strategy
• Unable to justify return on investment (ROI)
• Insufficient investment to modernize
• Security threat or fear

1.4.6 Smart City

People have lived in cities for centuries, but only relatively recently, the mass
migration from rural areas to cities has intensified worldwide. In 1950, less than one-
third of the world’s population lived in cities; that fraction is expected to increase to
two-thirds by 2050. In raw numbers, that was fewer than 1 billion people, to upward
of 4 billion people. As these populations increase, it puts tremendous pressure on
the local environment. The amount of energy consumed, the amounts of food and
products that must be brought into the city, and waste that must be removed strain
the transportation system and the city itself. The world’s cities use 60–80% of the
energy used in the world. They also contribute the most to greenhouse gas emissions.
Cities consume 60% of potable water in the world, wasting an estimated 20% in
leakage. It is important to optimize the use of these critical resources and maximize
their conservation [18].
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The main reason cities have not been well designed is because they grew
organically in response to increases in population. When the population increases
rapidly, then urban planning cannot keep pace. The other problem is that city
services are independent of each other, not communicating to solve problems
together. The way cities are organized prevents collaboration, with each service
or department getting their own funding and incentivized to solve their narrow
problems. This leads to redundancy, waste, and shortcomings in meeting the needs
of the city population. What is needed is a more scalable, collaborative, efficient
system of city management and improvement. The Internet of Things can provide a
city with more detailed and timely information and facilitate better solutions to the
inefficiencies of modern cities.

1.4.6.1 Smart City Layers

As proposed by Cisco, an IoT solution for a smart city can be described with four
general layers [17]:

• Street Layer: At the base is the street layer. This is where devices and sensors
are placed in various parts of the city to collect data and take automated or
commanded actions resulting from the analyzed data. The sensors used will
depend on the location and function expected of them.

– Video cameras are currently in widespread use in cities for various reasons.
Some are aimed at highway sections, interchanges, or some city street
intersections, and these are used to determine and report traffic conditions
primarily. Other cameras are mounted at street level and are intended to mon-
itor pedestrian behavior or are used for security purposes. The improvements
in video recognition technology mean that these can be automated to perform
facial recognition and vehicle recognition and make automated reports for
security, traffic, and accidents.

– Device counters or vehicle detectors are used to count the number of vehicles
passing a certain area, or that are parked on streets or in structures. This is
another technology that has been in use for many years to great benefit. Its
use can be expanded to make parking counts more available to private drivers
and their applications to better coordinate parking. They can also be adapted
to count other things such as birds behaving as pests in public areas.

– Magnetic sensors are able to detect the presence of vehicles in specific
locations. This is another sensor that can be applied to the parking problem. It
can also be used to make traffic lights more responsive.

– An air quality sensor can be used to measure the amounts of particulate matter
present in the atmosphere. This data can be used to give warnings to citizens
when air quality is bad or to detect the culprits of high levels of pollution in
order to improve air quality.
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– There are other sensors and controllers available and the choice of which one
to be used depends on the problem to be solved and the resources available.
There are several factors to consider when selecting a sensor. What are its
lifetime maintenance costs? Can it be mounted on existing infrastructure?
What is the cost of operation? Can it store its own data, or must it be
transmitted to the cloud immediately? If such a connection is needed, is it
available? How can this sensor interoperate with other such sensors? Can
it scale? Once these questions are answered, then a tradeoff analysis can
be conducted and the appropriate sensors can be selected. This is another
reason why it is more efficient for the different departments of a city to work
in concert, as they can leverage sensors and infrastructure to solve multiple
problems.

• City Layer: The next layer is the city layer. This is above the street layer
and provides the connectivity for the myriad devices in use at the lower layer.
This means the network routers and switches are at this layer along with the
communications protocols that allow the connected devices to exchange data.
This is also the edge layer and the start of data processing. Some sensor data will
be time sensitive, while others must be cleaned or reordered before transmission
to the higher levels. A resilient and reliable network is therefore a necessity
at this layer. Often, the networking equipment will be placed outdoors or in a
harsh environment and therefore must be designed to work under inhospitable
conditions. A malfunction at this layer may cause automated false alarms due to
missing or mishandled data.

• Data Center Layer: When the data has been collected at the edge and transmitted,
possibly over different transport protocols, it is delivered to the next layer up, the
data center layer. This is where the final analysis is performed, and the results
of these analytics are stored for further use. Therefore, analytics, storage, and
some method of making results available are the primary functions at this layer.
As previously discussed, the cloud plays a major role at this stage, providing the
required storage and processing power.

• Services Layer: The services layer is the final layer in the Internet of Things
smart city model. At this point, the results of the sensor data are provided to
applications that make use of it – for example, a visualization tool to show the
real-time status of traffic in the city. City managers, law enforcement, and private
citizens should all have access to the data. City managers will want to ensure
that the city is running smoothly and could use the data to find opportunities to
conserve energy, for instance, or to check on the status of waste removal in a
given neighborhood. Law enforcement could be verifying that tolls were paid or
the payment made for the use of a public parking space, among other things. A
private citizen could be looking for an open parking space or for the speediest
path to the other side of the city. Once the sensors are in place and the data made
available, then the city is ready to reap the benefits of the Internet of Things.
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1.4.6.2 Applications of IoT in Smart City

Here is a sample of some areas where the Internet of Things is making a positive
impact on smart cities.

• Smart Lights – Public outdoor lighting is beneficial to society as it makes public
spaces safer to live and work. Unfortunately, it is also expensive to operate and
often wasteful. Many systems merely use a timer to activate and deactivate the
lights at certain hours of the day. The Internet of Things can make the system
more efficient. Using sensors to monitor usage and activity at the lights, they
can be directed to activate the lights only when needed. They can adapt the
lighting settings to environmental conditions, such as fog or rain, when visibility
has decreased. Lights can also be used to assist emergency responders or law
enforcement by providing more lights in high-crime areas or when an accident
has occurred. Real-time data about the lights themselves can provide operational
status, making maintenance and replacement tasks proactive. This can increase
the longevity and operational time of the lights while reducing maintenance costs.

• Traffic – Traffic lights can also benefit from the sensing and command possi-
bilities of being connected by the Internet of Things. Real-time traffic data can
be used to smooth traffic loads throughout cities. The goals are to reduce idling
time, to improve flow and runtimes through the city, and to reduce pollution
and fuel use. The data can be collected from cameras and correlated with data
from vehicle counters. The ideal system would integrate traffic data with private
navigation applications, so that a centralized view of the city can help direct
drivers to balance routes. With smart traffic light technology and sensors on
roadways, vehicle accidents can be detected more quickly, and assistance can be
dispatched to the scene more efficiently. The path of the responders (e.g., police,
ambulance) can be expedited, and even emergency rooms can be alerted so they
can be prepared to receive victims. These efficiencies will help to make our roads
safer.

• Smart Parking – Parking in a congested city can be frustrating and wasteful. With
access to data about traffic patterns and open parking spots, applications can help
citizens to locate and travel to available parking more efficiently. Kansas City
in the United States and Paris in Europe have already implemented IoT smart
parking solutions.

• Smart Water – Every city needs to manage its water supply. Water treatment
plants must treat potable water for citizens, and a distribution system must deliver
this water to residents. Currently, up to 20% of water is lost from the network
because of leaks. It is difficult to predict water demand, and without accurate
predictions, treatment plants can run inefficiently. The Internet of Things sensors
can be used to improve water metering, leakage detection, planning for increased
distribution, and understanding water use. Having better, more accurate data
helps when creating water usage models, which improves predictions. More
accurate water meters make water bills more accurate and build trust between
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city water authorities and customers. Water is a precious commodity for us and
it is vital that we manage it in an informed, thoughtful and efficient manner.

• Smart Waste – All cities produce waste and managing that waste is a difficult
challenge. The most used current solution to the waste problem is to use manual
collection based on a schedule set by a waste management company. The
schedule may or may not be effective as it depends on the details of the waste
management contract. The scope of the waste problem includes the collection,
transport, processing, and disposal of the various kinds of waste generated by
a city’s population. Some waste can be recovered by recycling techniques, but
this must be identified and separated and then transported to a recycling facility
for processing. The entire process must be managed and monitored all at the
cost of time, money, and labor. Improvements in the process can benefit all the
stakeholders, the city council, manufacturing plants and other companies, health
and safety authorities, and the people themselves. Using the Internet of Things
to improve the process involves adding sensors in the waste receptacles and in
the waste removal vehicles. These sensors can detect the amounts of garbage
and the types of garbage present. In this way, a logistics platform can match the
collection agents to the receptacles that are at or near capacity. The routes that
collection trucks use can be optimized for efficiency.

1.4.6.3 Examples of Smart City

There are some cities that are already embracing transformative IoT technologies
to improve the well-being of their citizens. For example, in Stockholm, a smart
management system in conjunction with smart applications has addressed traffic
and environmental issues in the city. The city implemented a policy of a shared
waste management vehicle fleet that resulted in better waste collection routes and
improved waste collection.

In Helsinki, the collective inputs of the citizens were leveraged by making over
1 thousand databases publicly available. The data concerned transport, economics,
employment, and overall well-being of the people in the city. This was done via an
open urban data platform, called the Helsinki Region Infoshare Project. The project
won the European Prize for Innovation in Public Administration for empowering the
citizens of the city. One of the chief results was to foster more public involvement
in policy- and decision-making in the city.

1.5 IoT Business Implications and Opportunities

Internet of Things is seen as a strategic topic in many industries. For example, in
2018 the number of job postings related to IoT in Germany doubled compared
to 2017 [19]. Bain & Company projected the global IoT market to reach $318
billion by 2021. Expectations are high regarding future IoT-based turnover [20]
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Fig. 1.7 Three basic IoT business opportunities

and emerging new business models [21]. Despite those huge expectations, many
companies, especially small- and medium-sized enterprises, struggle to identify
promising business models and solid use cases [22]. To be able to design new
business models and draft business cases, the key business opportunities that IoT
provides for a specific company should be analyzed and evaluated. In this context,
we also need to understand the IoT business ecosystem, the stakeholders, as well as
their motives. As shown in Fig. 1.7, three business opportunities and stakeholders
can and should be distinguished when discussing the strategic impact of IoT from a
company’s point of view:

• Complete Product and Solution Provider (Vendor): These stakeholders aim
at creating additional revenue streams from smart products/services which
comprise the hybrid value proposition of IoT solutions [23].

• IoT Customer: The customer of an IoT solution on the other side is ultimately
looking for optimization and cost reductions within its own operations. The
IoT solution makes the operations of IoT customers smarter and optimized. The
fundamentally different perspectives of IoT provider and IoT customer and their
relation can be illustrated better by an example. John Deere is an international
corporation that manufactures agricultural, construction, and forestry machinery.
The so-called field connect system from John Deere allows for monitoring the
moisture levels on various depths of a farmer’s field [24]. The IoT provider (John
Deere) intends to create additional revenues from an innovative offering based
on IoT, which he did not sell before. The farmer (IoT customer) on the other
hand invests money in an IoT solution hoping to reduce the cost for monitoring
moisture manually on site and waste of water.

• Component Supplier: Many companies could leverage the third strategy as well.
A component supplier facilitates the design and deployment of the Internet
of Things. In this case, no complete IoT solutions are involved, but just IoT
components. These might be technical components on a single layer of the IoT
technology stack (e.g., IoT device, gateway, connectivity, and cloud platform) or
components from two or more layers.
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1.5.1 Component Supplier: Component Business

While a complete IoT solution comprises the whole IoT stack, IoT components
relate to one or at maximum three layers of the IoT stack. A company could focus
on selling such IoT components to complete IoT solution providers who intend to
build and release complete IoT solutions. Let us examine each layer of the IoT value
stack and their corresponding stakeholders using a connected electric bike (e-bike)
example [25]:

• Physical Object – The physical object (i.e., e-bike) provides the initial direct
benefit for the user. As with traditional bicycles, the e-bike provides an eco-
friendly, healthy mode of transportation while also enabling motorized cycling.

• Embedded System – In this layer, the physical thing is equipped with a processing
unit (e.g., a microcontroller), a connectivity module (e.g., 3G, 4G, NB-IoT),
sensors, and actuating components to become smart. These pieces operate locally
by gathering data and providing localized benefits. In our example, sensors
are responsible for monitoring battery status or sensing when motorization is
required. An example of an embedded system provider is Bosch which designs
and provides several IoT sensors for years.

• Connectivity – In this layer the smart object and its functions/status (e.g.,
battery status) can be accessed online globally with the help of network
providers/operators. Moreover, new services could be added to the system e.g.,
online location monitoring or theft prevention. In many IoT solutions such as e-
bike, we can use SIM cards and mobile networks to be connected to the Internet.
Indeed, already in the first quarter of 2016 in the United States, 69% of newly
activated SIM cards were related to non-phone devices, like cars, dog collars,
etc. Thus, all major mobile network operators aim at selling SIM cards as IoT
components.

• Platform (Cloud) – Platforms are one of the central foundations of IoT as
they unite connectivity, service providers, applications, and embedded systems
to create specialized IoT solutions for diverse industries. Platform providers
offer data ingestion, data storage, data analytics, data visualization, device/user
management, and integration with other third parties through SDK or APIs. In
our e-bike IoT solution, this layer enables one to track the movement patterns of
e-bike users, study the difficulty levels of specific cycling routes to understand
motorized support demand better, or discover the location of stolen e-bikes in
real time. An example of the platform layer could be Amazon. With Amazon
Web Services (AWS), the company has been successful in the cloud computing
business. Indeed, Amazon is now offering an IoT component (i.e., AWS) that can
be used to build IoT solutions.

• Application (Service) – This final layer combines the options and features
provided by the prior layers to structure digital services. Users can receive
digital services in appropriate formats that are independent of location via mobile
applications or web tool. In our example, this feature enables customers to find
e-bikes in the case of theft or provides pertinent location information to law
enforcement.



40 F. Firouzi et al.

• System Integration – The stakeholders of this layer play a large role in the IoT
ecosystem because not all IoT components are plug-and-play right out of the box.
Therefore, system integrators are needed to enable individual IoT components to
collaborate in the best possible way. System integrators should identify a specific
niche and then make partnerships with other stakeholders.

1.5.2 Complete Solution and Product Provider: Additional
Revenue

IoT solutions are addressing business problems across several vertical markets from
health to smart building, transportation/logistics, energy, and manufacturing. In this
context, many companies, incumbents and startups, seek to create revenues from
smart connected products. This could include enhancing the companies’ already
existing products with embedded systems (e.g., sensors, connectivity, etc.) in order
to enable new features or digital services. But it could also mean developing entirely
new connected offerings.

One of the main challenges for such an endeavor lies in handling the rather
complex IoT value stack. A company from the digital or Internet world or a startup
would need to develop and produce the connected thing, which would mean to enter
the hardware world, with comparatively high upfront investments for development
and production setup. A manufacturing company needs to complement its hardware
expertise with the required skills on the connectivity, analytics, and service layer,
which includes user front ends like apps as well. A second aspect which might be
new for many manufacturing companies is the fact that servers and their software,
as well as apps and other user front ends, need to be operated and maintained
throughout the whole usage phase. This poses two challenges. On the one hand,
the organization has to bear operating cost over the whole lifetime of the offering.
And, on the other hand, the organization needs to have the capability to perform
the abovementioned operations. Especially manufacturing companies might need to
install new units taking care of those tasks [26].

The upside of smart connected products is new revenue sources which wait
to be captured by an appropriate business model [23]. It provides a hybrid value
proposition consisting of physical and digital parts. Both parts can be monetized
either in a product (one-time payment and transfer of ownership) or service manner
(continuous payments and usage rights). This opens up a space of four potential
revenue sources. Especially in B2B scenarios, vendors manage to monetize two or
more of those revenue sources. But even if only the hardware is being monetized,
prices for connected products are, in many cases, much higher compared to similar
non-connected products. For example, connected Philips Hue light bulbs sell for
much higher prices compared to not connected light bulbs [27].

It should be noted that the creation of IoT products currently is not directed
by specific guidelines or a systematic method. The application of a traditional
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legacy product development paradigm to IoT products is generally ineffective and
disadvantageous. Agile methodology and in particular Lean model is typically
considered a good fit for many organizations working in the IoT domain. According
to this model, when developing an IoT product, there are three main stages that are
important to constructing a competitive and sustainable IoT solution (see Fig. 1.8):

• Learn – Develop an innovation plan and construct or revise the business model.
• Build – Implement and build a minimum viable product (MVP).
• Evaluate – Measure and evaluate the product and provide feedback to the first

stage.

1.5.3 IoT Customer: Optimization and Cost Reduction

While IoT consumers might buy an IoT solution in order to increase their comfort,
for the peace of mind or just for fun, in business to business cases, the customer
always calculates a return on investment. For IoT solutions, this usually translates
into expected cost reductions that amortize the investment. Among the most popular
approaches to realize IoT-based cost reductions is condition monitoring [28].
Critical parameters in the production process, like soil moisture in the John Deere
example, are being monitored and optimized in order to reduce waste, or equipment
is being monitored with the aim to reduce downtime. Other approaches include
optimizing the supply chain. IoT, in terms of RFID technology being applied in
a warehouse for example, could lead to a much more detailed picture of the actual
inventories of raw material. This in return could allow for reducing the warehouse
stocks, which leads to cost reductions as well.
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In general, the Internet of Things helps to gather data regarding the status of
the physical world. This could be the condition of machines or other equipment,
inventories in a warehouse/whereabouts of goods. Those data can be analyzed
and leveraged by advanced machine learning algorithms and big data analytics
algorithms to optimize a company’s operations.

1.5.4 Important Aspects of Implementation

The three IoT-based business opportunities pose different challenges for companies.
But in general, they require a significant change in the company’s business model.
While changing a business model is a serious management challenge already, busi-
ness model innovation poses various additional challenges. Bilgeri et al. identified
16 barriers to IoT business model innovation. They are distributed along with the
following innovation phases: idea generation, concept development and evaluation,
technical implementation, and commercialization. Many of these issues are related
to organizational questions. As already discussed, IoT solutions require continuous
efforts, e.g., in back-end operations, maintenance, and development of new features
throughout the whole lifecycle. Most incumbents from the manufacturing industry
do not have units for these tasks in their organization yet. To name another example,
IoT solutions provide the opportunity to sell services in addition to or rather than
products. However, selling services requires different skills as well as controlling
and financial mechanisms compared to selling products.

1.5.5 Data Monetization

Transforming IoT data into a marketable product is a fast-growing trend many
companies are considering as a secondary revenue source; however, the idea of
selling data is not a new one. Gartner has labeled the creation and utilization of data
or information with the term, “infonomics” [29]. With millions of smart devices
connecting to the IoT and collecting data, a new market based on data providers
and data customers has been born (see Fig. 1.7). Profiting from IoT data can be
approached in two ways [30]:

• Direct Data Monetization – Regardless of why you may be willing to offer your
raw data, there are probably consumers interested in using and paying for your
data. While there are many ways to sell data, a primary means is through a data
marketplace. When selling data, direct monetization is generally separated into
two categories [30]:

– Selling Raw Data – Direct access to data (i.e., APIs or data sets) is provided in
trade for cryptocurrency or money. There are two general marketplaces from
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which you can choose and the appropriate choice depends on your strategic
requirements [30].

• Centralized Marketplace – This is a platform owned by one party that
serves as a centralized location to exchange multiple kinds of data among
diverse participants. In this marketplace, both metadata and raw data are
stored.

• Decentralized Marketplace – This is a platform where participants are able
to exchange data directly in peer-to-peer transactions. In this context, the
marketplace only stores the metadata to enable data consumers to find the
provider/owner of the data.

– Selling Data Insights or Analysis – Performing data analytics on raw data
improves the quality of the information being sold. Not all companies have
the capability to analyze data, creating an opportunity for monetization that is
beneficial for both sides of the transaction. Analysis services can be offered in
marketplaces or through other channels.

• Indirect Data Monetization – Data can be used to improve business intelligence
and function, generate new products or services, and create new business models.
Generally, there are two approaches to making good use of your own data [30]:

– Data-Driven Optimization – Utilizing data in this way decreases cost and
increases the effectiveness and efficiency of business processes. This opti-
mization is applicable across many fields. For example, manufacturing test
benches could be optimized by shortening the testing time or field data could
be utilized to improve the design of a product.

– Data-Driven Business Models – Monetizing by employing this strategy means
that process or product data is used to generate new business opportunities
or attract new customer groups through the development of new services or
products or by improving existing products or services. Building a data-driven
business model enables you to uncover innovative, new businesses rather
than adjacent businesses. These models are also important for diversifying
revenue streams. For example, Bosch makes use of manufacturing data to
create customized subscription-based services that monitor the conditions of
hydraulic systems.

The market of IoT data will keep growing as companies learn how powerful it
can be to provide data to others and how much others are willing to pay to obtain
data. The primary challenges around monetizing IoT data include [29]:

• Ensuring Data Quality – In order for customers to trust the data provided, it must
be of high-quality and complete. The data should also be accurate and timely and
have been obtained ethically.

• Determining Information Type – Providers of data will need to adapt and flex
to customer needs as companies may require IoT data in diverse forms or
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may consider data that was not originally fit to their particular business model.
Customers may seek additional information for data points that were not initially
recorded.

• Traditional Product Management and Marketing – IoT data is not like a
traditional physical product. Therefore, companies may need to forego the usual
activities that help sell physical products such as research, design, development,
promotions, packaging, or marketing support.

• Protecting Against Unlicensed Use – It is very important to ensure data
sovereignty for the creator of the data. It is easy to copy data, and thus it
can become difficult to make sure customers are not utilizing data in unintended
manners. Therefore, we need to consider contracts that ensure a licensed user
understands the appropriate and ethical handling of information products, how
to audit usage, etc.

1.5.6 Business Model

It is important to understand the basic business model before attempting to create an
IoT Solution. The term “business model” was born toward the end of the 1990s when
it became a buzzword in popular media. Since that time, it has received significant
attention from scholars and business practitioners and currently exists as a clear
point of interest in many areas of IoT. Typically, the business model is defined
as an analytical model used to determine how a business functions. The available
literature regarding the business model has not yet reached an agreement regarding
which elements are vital to the creation of a business model. However, two widely
known tools currently exist to illustrate business models: St. Galler Magic Triangle
and Osterwalder Business Model Canvas.

The St. Galler Magic Triangle is comprised of four dimensions and is illustrated
using a triangle shape (see Fig. 1.9) [31]:

• Who

– Who are the target customers?
– How can customers be classified into groups?
– What are the basic demographics and shared characteristics of customers?

• What

– What is the opportunity being offered to the customer?
– What value is being added for the customer? (value proposition)
– What combination of services or products make up the opportunity?

• How

– How is the value proposition created, applied, and distributed?
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– How will the activities and processes need to provide the product look?
– What kind of resources will be needed?
– Which IoT business ecosystem stakeholders will be needed and how should

they be organized?

• Revenue

– Does it look as though the opportunity will be financially sustainable?
– What does the cost structure look like?
– What revenue mechanisms will be applicable?
– How can the value proposition be monetized?

Thoughtfully answering the questions in each of the four areas noted above
creates a solid business model and a foundation for further innovation in IoT
ecosystem.

Osterwalder Business Model Canvas, created by Osterwalder in 2010, serves as
an alternative method to the St. Galler Magic Triangle for illustrating a business
model (see Fig. 1.10) [32]. It provides a well-known guide for explaining a business
model in only one page. This model includes the following components [32]:

1. Key Partners: Who are the key partners and suppliers?
2. Key Activities: What key activities (e.g., marketing, designing, producing) our

value propositions, distribution channels, customer relationships, and revenue
streams need? What tasks does the company need to perform to fulfill its business
purpose [32]. Some typical key activities in IoT business model include Research
& Development, Production, Marketing, and Sales & Customer Services.
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3. Key Resources: What key resources (e.g., physical resources, intellectual
resources, human resources, financial resources) do our value propositions,
distribution channels, customer relationships, and revenue streams require [32]?

4. Key Propositions: What value do we deliver to our customers? What bundles
of products/services do we offer? Which problems of the customer are solved
by our products/services? To find the key proposition, one can use the Value
Proposition Canvas [32]. As shown in Fig. 1.11, the Value Proposition Canvas
consists of two building blocks to be able to model and visualize the relationship
between product/service and customer/market [32]:

• Customer Profile: This shows the task/job a customer needs to get done,
potential pains that the customer might face during and after the job, and
benefits that a customer expects from the product/service.



1 IoT Fundamentals: Definitions, Architectures, Challenges, and Promises 47

• Value Proposition: This shows the list of products/services, explains how
they can kill the pains of the customer, and demonstrates how the offered
products/services can create customer gains.

5. Customer Relationship: What type of relationship does each of our customer
segments expect us to establish and maintain a long-term relationship with
them? The most common types of customer relationships include transactional,
personal assistance, self-service, automated services, communities, and co-
creation. Note that these types of relationships can coexist in a company’s
relationship [32].

6. Channels: Through which channels (e.g., website, email) do our customer
segments want to be reached [32]?

7. Customer Segments: From whom are we creating value? Who are our most
important customers [32]?

8. Cost Structure: What are the most important costs inherent in our business
model? Which key resources/activities are the most expensive [32]?

9. Revenue Streams: For what value are our customers really willing to pay? For
what do they currently pay? How are they currently paying? How would they
prefer to pay? How much does each revenue stream contribute to overall revenues
[32]?

1.5.7 Minimum Viable Product (MVP)

The concept of a minimum viable product (MVP) was first introduced in Eric Ries’
popular book, The Lean Start-Up, in 2001. The goal of an MVP is to evaluate if
the product fits in the market with the smallest possible amount of risk. In this
approach, a new product is created with features adequate to satisfy the earliest
users. The final features are not developed until feedback from initial users can be
evaluated. In short, the main idea is to construct a very simple, testable version of
the product. The results of testing can be included in the next stage of development
during the scaling phase or for revising the business model. A “build, evaluate, and
learn” approach enables the solution provider to build the more important and viable
basics into the product as quickly as possible. At the start of the process, there is
usually a large-scale, almost unreachable vision of what the finished product will
be, and shaping the vision at such a high level can consume large amounts of time
and considerable resources. It is important to avoid the pitfall of trying to create
a perfect IoT product. Instead, one should focus on creating a possibly viable IoT
product with the potential to focus team creativity and original ideas throughout
the process, while addressing the question of whether the product should even be
created at all or not. In order to choose the most significant value proposition for
creating the MVP, the company must concentrate on the specific intersection of the
customer’s wants and the value of the product as illustrated in Fig. 1.12. As shown
in this figure, to be able to define the list of important features which should be
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included in the MVP, we can classify the product features based on two dimensions,
namely, implementation effort and business criticality.

• Quadrant I – Features in this area are vital to the MVP because they are critical
to business success and are usually more straightforward to implement.

• Quadrant II – These features are nice, but they are not vital and are still easy to
implement. Leaving these out of the MVP saves both time and resources.

• Quadrant III – Features in this area are trivial and can be hard to implement.
They should be avoided in an MVP and in the following product iterations.

• Quadrant IV – These features are business critical, but are also arduous to imple-
ment. The elements in this quadrant need a maximum amount of deliberation and
thought.

1.6 Summary

This chapter introduced the Internet of Things (IoT) with several definitions and dis-
cussed the benefits and challenges of establishing the IoT. There are advantages to be
gained in the personal lives of individuals as well as the operations of businesses and
manufacturers. This chapter discussed all the promises and challenges of IoT. The
complete IoT stack from the sensors and devices, to the fog, and to the cloud has also
been explained. There are several commercial frameworks, cloud technologies, and
IoT-enabled devices and ecosystem providers, which we presented their offerings
briefly. Next, some examples of the applications of IoT technology have been listed
with their expected impacts to varied sectors of our society, from agriculture to the
cities in which we live. Finally, the details of the business implications, business
models, and opportunities of IoT have been addressed.
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The Smart “Things” in IoT
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Be as smart as you can, but remember that it is always better to
be wise than to be smart.

Alan Alda
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2.1 Definition and Architecture of Smart Things

The phrase “smart things” is sometimes used interchangeably with similar terms
including smart object, IoT device, IoT endpoint, endpoint device, smart sensor,
intelligent device, intelligent node/thing, or ubiquitous thing. Regardless of the term
used, a smart thing is an object with embedded electronics which can exchange data
over a network without any human interaction [1]. A typical smart thing is made up
of several components, namely, a processing unit, a power source, a communication
device, and transducers (see Fig. 2.1) [2].

• Processing Unit – Used to obtain data and process and analyze sensor informa-
tion, synchronizes actuator control signals, and controls smart object functions
like power systems and communication. The kind of processing unit may vary
based on the application needs; however, the microcontroller is the most common
type of the processing unit used in IoT things because of being small, easy to
program, flexible, power efficient, low cost, and ubiquitous.

• Transducers – Transducers are devices that convert/transfer one energy into
another. Common energy domains include electrical, fluid, thermal, mechanical,
and chemical. Transducers are categorized into two groups, namely, sensors
and actuators. Actuators and sensors enable smart objects to interact with the
physical world.

– Sensors: Sensors recognize the existence of energy as well as changes in or
transfers of energy (i.e., motion, heat, light, or chemical reaction) and then
produce an output that can be understood or read. In general, the output is an
electrical signal (analog or digital) that is readable.

– Actuators: Actuators are tasked with utilizing energy to produce motion.
Essentially, actuators are devices that change energy into motion or mechan-
ical energy; therefore, an actuator is a kind of transducer. Two basic kinds of
motion are rotary motion and linear motion. Linear actuators transform energy
into a straight-line motion useful in positioning applications that require a

Fig. 2.1 Block diagram of
typical smart things (smart
object) in IoT
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Fig. 2.2 An illustrative
example of the
hardware/software layers in
an IoT thing
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push/pull motion. Rotary actuators transform energy into a rotating motion
useful in controlling valves such as a butterfly or ball valve. Actuators can
take many forms and vary in size or power configuration, depending on their
intended use. The most well-known actuators include:

• Thermal Actuators – Often a dual-metallic strip that transforms thermal
energy into motion

• Mechanical Actuators – Convert mechanical energy input (often rotary)
into linear motion (i.e., screw jack)

• Electrical Actuators – The most common actuators in the IoT domain that
convert electrical energy into motion or mechanical energy (i.e., electrical
motors)

• Communication Device – A wired or wireless device that connects a smart object
to the physical world or other smart objects using a network; most often, smart
objects using IoT networks are connected wirelessly due to limited infrastructure,
deployment ease, and cost efficiency. The details of communication technologies
for IoT application will be discussed in the next chapter.

• Power Source – All smart objects contain elements that require power. Generally,
the communication device is the component that consumes the most power.
Smart objects usually contain limited power, have long deployment periods, and
are not easy to access. Because of these factors, especially when a smart object
relies on battery power, it is important to design smart objects with efficient
power use, connectivity, sleep modes, and low-power components.

As shown in Fig. 2.2, from the hardware/software point of view, smart IoT things
consist of six architectural layers.

• Hardware: Hardware comprises the physical implementation of various compo-
nents of the IoT thing, such as the processing units, transducers, power supply
system, and the communication interface for connecting the device to the outside
world. Various technologies are necessary to make the hardware implementation
of an IoT possible. Low-power and often high-performance CMOS devices are
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commonly used for building the processing units. Various memory types may
be necessary for a typical IoT think that rely on both volatile and nonvolatile
memories. Power supply and distribution networks are specifically designed and
optimized for IoT things to better serve user applications. The transducers and
communication devices are modular components that may be included in an IoT
thing. The higher-level software may access these devices through device drivers.

• Device Drivers: Software that interfaces with and controls hardware allows
operating system and other programs to access hardware functions without
requiring an understanding of the underlying hardware details

• Hardware Abstraction Layer (HAL): A software layer on top of the device drivers
that defines the protocols, tools, and routines needed to interact with hardware.
HAL is concerned with creating high-level functions required to enable hardware
to function without extensive knowledge of how the hardware works. This is
important for developers working with many microcontroller hardware pieces
that require port applications to connect platforms. A HAL also enables engineers
with less knowledge of lower-level hardware to create useful application code
without knowledge of all the small details. The principal difference between a
driver and HAL is that HAL is constructed on top of device drivers and is capable
of hiding hardware differences from higher software layers. For example, a USB
mouse driver and a PS2 mouse driver are very different, but with the help of
HAL, you can treat them interchangeably.

• Real-Time Operating System (RTOS): Generally, operating systems multitask
to enable many programs to execute simultaneously. The scheduler determines
which program should run and in what order. The scheduler then quickly
switches between programs so that it looks as all programs are executing simul-
taneously. For example, a desktop OS such as Windows includes a scheduler that
attempts to ensure user responsiveness. In contrast, the scheduler in an RTOS
functions toward creating a more predictable pattern of execution where each task
must complete within a given time budget. Particularly, this feature is important
for IoT systems as they include real-time applications with strict response time
requirements.

• Middleware: IoT devices are often designed and optimized for a class of
target applications using a heterogeneous system on a chip (SoC) with diverse
IP cores for processing, sensing, and communication. Middleware eases the
development process of such systems by supporting interoperability within the
diverse applications and services that compose an IoT device. Along these lines,
numerous operating systems have been developed to support the development of
IoT middleware. Middleware combined with the HAL and device driver layers
provide the necessary functionalities to enable service deployment. Example
constituent services of a diverse application domain for IoT systems are wireless
sensor networks (WSNs), radio frequency identification (RFID), machine-to-
machine communication, and supervisory control and data acquisition (SCADA).
Middleware is responsible for managing the interaction between the application
layer and a variety of devices in the system. Various functional components
are often considered to manage this interaction. Interface protocols oversee
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providing technical interoperability. Device abstraction is used to make the
interaction among the application components possible. Central control and
context detection are used to support context-aware computation for the entities
that interact with the system. Application abstraction is to interface the high-level
applications and end users with the underlying devices of the system.

• Application Programming Interface (API): Defines the tools, protocols, and
routines that are required to create an application. APIs are designed to be generic
and independent from specific implementations so that an API can be utilized
across multiple applications with only slight changes to implementation only (no
change to behavior or general interface). While HALs and APIs are similar, they
serve two different purposes in software development. HAL is located between
low-level drivers and creates a common interface space for software stacks (i.e.,
RTOS) or middleware components (i.e., Ethernet, USB, file systems). A HAL
can also serve as a driver interface or as a wrapper or common interface for
higher-level code and current drivers. An API serves as a tool to assist advanced
developers in quickly creating application code by providing interface code
needed to manage real-time system behavior and allowing access to common
components like file access or serial communication.

• Application: The application layer is responsible for producing services and
defining a set of protocols for communication among different IoT applications,
such as logistics, retail, and healthcare. In addition to various applications,
numerous application protocols may be found in the literature, for example,
extensible message and presence protocol (XMPP), message queue telemetry
transport (MQTT), constrained application protocol (CoAP), and representa-
tional state transfer (REST). MQTT is a machine-to-machine architecture that
enables lightweight connectivity that supports publish and subscribe over TCP.
CoAP employs a request and response protocol to enable communication
in recourse-constrained environments. XMPP is mainly designed for instant
messaging, multiparty chats, and audio calls. Important parameters such as the
bandwidth requirement, data latency, reliability, and memory footprint need to
be considered to choose an application protocol for an IoT system.

2.2 Sensors

Sensors are used to detect incidents or alterations in the physical world (i.e., sound,
temperature, pressure, motion, flow, magnetic qualities, or chemical/biochemical
factors), obtain required data, and then send the data to a monitoring system [2, 3].
Outlined below are the different kinds of sensors useful in various IoT applications.

• Temperature Sensors – The most common sensor in the IoT domain because most
biological/chemical, physical, and electronic/mechanical systems can be altered
by temperature. The four main categories of temperature sensors include:
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– Thermocouple Sensors – They are made of two different metal conductors
(e.g., chrome and alumel) that have dissimilar thermal conduction charac-
teristics. The conductors are welded at one end so to generate temperature-
dependent voltage through a thermoelectric effect.

– Resistance Temperature Detector (RTD) – The level of resistance changes
based on the temperature in pure material, such as platinum, nickel, and
copper. RTD sensors are based on this phenomenon to measure temperature.
Due to their stability, precision, and repeatability, RTD sensors are often used
to monitor laboratory or industrial process temperatures.

– Thermistors – They employ semiconductor elements to measure temperature.
Similar to the RTD sensors, the level of resistance in thermistors changes
based on temperature. These sensors exhibit a more nonlinear resistance
behavior as the temperature varies.

• Flow Sensors – These sensors can measure flow rate and the total volume
of gases or liquids in pipes or systems. Such capability is vital for practical
everyday applications such as brewing machines as well as scientific endeavors
like monitoring the flow of highly pure acids. An example of how important
flow monitoring sensors are can be found in the 2014 Flint, Michigan, United
States, water crisis. The city of Flint switched its water sourcing from the
Great Lakes through Detroit Water to obtaining water through the Flint River.
However, officials failed to identify high levels of lead, a very serious danger
to public health, in the water source. The very acidic water of the Flint River
leeched lead out of the pipes and passed it into the water, resulting in very high
levels of heavy metals in the water. Thousands of children who consumed or
were exposed to the contaminated water experienced severe health problems. In
2016, criminal charges were filed by Michigan’s attorney general against three
individuals regarding the crisis.

• Level Sensors – These sensors measure fluid levels constantly or at certain points.
Level sensors can be used in many ways and are capable of measuring contained
fluids or elements in a natural setting such as oil levels at an oil rig site. For
example, ultrasonic sensors do not require direct contact and are often utilized in
measuring viscous liquids or bulky solid materials. These sensors are also useful
in controlling pumps and measuring open channel flow in water treatment plants.
Capacitance level sensors measure the existence of liquids and solids using radio
frequency signals in the circuit.

• Imaging Sensors – This sensor captures and transforms the changing attenuation
of waves into signals. Imaging sensors are often found in medical imaging
machinery, digital cameras, and night vision paraphernalia.

• Noise Sensors – High noise levels from machinery, aircraft, trains, construction,
or loud music can cause harm to both humans (i.e., cardiovascular or hearing
damage) and animals. Regulatory entities have begun employing noise sensors in
order to better measure noise pollution and disturbances that may cause harm. For
instance, ambient noise sensors constantly measure environmental noise levels
and transmit an electronic signal to an ambient noise system when the noise level



2 The Smart “Things” in IoT 57

changes. The system can take automatic action such as regulating the music level
or notifying authorities.

• Pressure Sensor – A typical pressure sensor comprises a pressure-sensitive ele-
ment to determine the actual pressure applied to the sensor and some components
to convert the sensed pressure into an output signal. Examples of pressure-
sensitive elements that have been examined in the literature are the metal strain
gauges that are glued together, capacitance variable cavity and diaphragm, and
silicon diaphragm with integrated strain.

• Barometer – Quantifies atmospheric pressure.
• Altimeter – Measures altitude of an object above a certain designated level.
• Acoustic Sound Sensors – Measure and convert the level of sound into a digital

or analog signal, for example, hydrophone, microphone, and geophone.
• Radiation Sensors – Measure radiation in the environment through ionization or

scintillating detection.
• Biosensors – Detect biological components including enzymes, antibodies,

organisms, cells, tissues, and nucleic acid.
• Ohmmeter – Quantifies resistance.
• Voltmeter – Calculates the voltage.
• Galvanometer – Determines current.
• Watt-Hour Meter – Measures electrical energy provided to and consumed by a

business or residence.
• Oxygen Sensor – Calculates the percentage of oxygen present in a liquid or gas.
• Carbon Dioxide Detector – Recognizes the presence of CO2.
• Light Sensor (Photodetector) – Perceives light as well as electromagnetic energy.
• Photocells (Photoresistor) – Resistor affected by ambient light intensity changes.
• Infrared Sensor – Recognizes infrared radiation.
• Seismometer – Measures seismic waves.
• Acoustic Wave Sensor – Calculates wave velocity to recognize chemicals present.
• Air Pollution Sensors – These sensors generally monitor five main air pollutants

including nitrous oxide, ozone, sulfur dioxide, particulates, and carbon monox-
ide.

• Infrared Sensors – Monitor an object’s movement by generating and receiving
infrared heat waves.

• Moisture and Humidity Sensors (Hygrometer Sensors) – Measure and record air
humidity using electrical capacitance.

• Speed Sensors – Often used to detect vehicle speeds. Examples include laser
surface velocimeter, speedometers, Doppler radar, and wheel speed sensors.

• Accelerometer – Small device that detects static (i.e., gravity) and dynamic
acceleration (i.e., starting/stopping). These sensors are most often used in tilt
sensing (or stop sensing) because they react to gravity and tell you how
something is oriented in relation to the Earth’s surface. For example, Apple’s
iPhone uses an accelerometer to detect if the phone is being held in landscape or
portrait mode. Accelerometers are also capable of sensing motion. For example,
Nintendo’s Wiimote can sense the imitated forehand or backhand tennis racket
motion or the motion of rolling a bowling ball. This device is also able to sense
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Table 2.1 Types of proximity sensors

Sensor technology Range of use Common use

Inductive sensor 4 mm–40 mm Close-range detection of ferrous metals such as copper,
aluminum, iron, etc.

Capacitive sensor 3 mm–60 mm Close-range detection of nonferrous materials such as
liquid, plastic, or wood

Photoelectric sensor 1 mm–60 mm Long-range military target recognition
Ultrasonic sensor 3 mm–30 mm Long-range military target detection with difficulties

such as many colors or inconsistent service

the state of free fall. This feature is included in many computer hard drives.
If the device senses that the hard drive is falling, the drive automatically turns
off to protect against losing data. When choosing an accelerometer, the key
characteristic for consideration is number of axes measured. It is actually very
simple: There are three possible axes (x, y, z). Of the three, how many can the
accelerometer measure? A device that can measure all three axes is usually the
best option. These are widely available and are usually no more expensive than
accelerometers that measure only one or two axes.

• Gyroscope – Measures angular velocity (i.e., how fast an object spins around an
axis). When measuring the orientation of a moving object, an accelerometer may
not be able to provide orientation-specific information. However, gyroscopes
are not affected by gravity and work as a complementary partner with the
accelerometer. Angular velocity is measured in units of rotation per minute
(RPM) or in degrees per second. The axes of rotation (x, y, and z) are also referred
to as roll, pitch, and yaw. Gyroscopes have proven useful in navigating space,
controlling missiles, providing underwater navigation, and guiding aircraft.
Currently, gyroscopes and accelerometers are being used together in vehicle
navigation and motion-capture applications. In general, gyroscopes are not as
advanced as accelerometers, and less expensive three-axis gyroscopes have
only recently become available on the market, with most commonly available
gyroscopes still measuring only one or two axes. When purchasing a gyroscope,
it is important to understand which axes are measurable. For example, one two-
axis gyroscope could measure pitch and roll, while another two-axis gyroscope
measures pitch and yaw.

• Proximity and Displacement Sensors – Use electromagnetic fields, sounds, or
light to detect the absence or presence of objects. The different types of proximity
sensors are each useful in specific environments or scenarios (see Table 2.1)
[3]:

– Inductive Sensors – Detect ferrous material at close range
– Capacitive Sensors – Detect nonferrous material at close range
– Photoelectric Sensors – Detect long-range targets
– Ultrasonic Sensors – Detect long-range targets with difficult surfaces
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2.3 Actuators

While sensors provide data, actuators are devices responsible for acting or control-
ling systems. Actuators take data or sources of energy (i.e., hydraulic fluid pressure)
and convert it into motion. The most well-known actuators in IoT applications
include relays and electric motors (e.g., DC motors, servo motors, and stepper
motors).

2.3.1 Switches and Relays

Switches control the flow of electrons to open/close the connection in an electric
circuit. While a switch is usually a mechanical device, relays are a kind of switch
that is controlled electronically. Depending on the operational mode, relays can be
categorized as “normally open” or “normally closed.” A normally open switch does
not conduct electricity until energized and normally closed switches will conduct
electricity until energized. Based on the structure of their inputs and outputs, relays
can be categorized as follows (see Fig. 2.3) [4, 5]:

• Single Pole Single Throw Relay (SPST) – SPST stands for single pole single
throw meaning that it has one input which can be connected to a single output.
The relay is actuated by a single coil.

• Single Pole Double Throw (SPDT) – This relay includes one input and two
outputs useful in applications requiring a switch between two circuits. A single
coil can actuate the delay.

• Double Pole Single Throw Relay (DPST) – This relay includes one coil, two
inputs, and two outputs, and it can be considered as two SPST relays. However,
it needs just one coil of them. Each input has one corresponding output.

• Double Pole Double Throw (DPDT) – This relay includes one coil, two inputs,
and two outputs, and it is equivalent to two SPDT switches or relays which is
activated by only one coil.

Fig. 2.3 Types of relay
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Finally, relays can also be categorized in the following manner [4, 5]:

• Electromechanical Relays (Armature Relays) – Electrical switches are made of
coils, contacts, and a moveable armature. These relays are mostly used to control
high-power electrical devices. An energized coil creates an electromagnetic field
which in turn it can open/close the circuit using physical movement of armature
contacts (see Fig. 2.4).

• Reed Relays – Switches comprised of overlapping ferromagnetic blades and coils
wrapped around reed switches. This type of relay utilizes mechanically actuated
physical contacts to open or close a circuit. However, Reed relay contacts are
smaller and have less mass than electromechanical relay contacts (see Fig. 2.5).

• Solid-State Relays – Light, commonly from an encapsulated LED, actuates a
photosensitive MOSFET enabling current to flow through (see Fig. 2.6).

Fig. 2.4 Electromechanical
relay (armature relay)

Contact

Contact

CoilCeramic enclosure

Open Reed Contact Close Reed Contact

Fig. 2.5 Reed relay
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Fig. 2.6 Solid-state relay

2.3.2 Electrical Motors

The common electrical motors in IoT applications include DC motors, servo motors,
and stepper motors.

Direct Current (DC) Motors Many movement-based applications utilize DC
motors because they are cost-efficient, easily drivable, electric motors. Examples
of a DC motor include radio-controlled car wheels or computer cooling fans. Each
DC contains two terminals (a ground wire and a power wire), across which voltage
is applied. The motor’s rotation direction can be adjusted by changing the voltage
polarity across the terminals. The motor’s speed is proportional to the level of
voltage used, and the motor’s torque is proportional to the level of current. A DC
motor’s speed is controlled with pulse width modulation (PWM), a means of quickly
pulsing power on and off. The motor speed is determined by the percentage of time
spent cycling on and off. For example, the motor will rotate at half the speed of
100% (completely on) if the power is cycled at 50%. However, every pulse is so fast
that it looks like the motor is constantly spinning.

Servo Motors These motors are utilized for specific tasks requiring a precisely
defined position such as controlling a robotic arm, moving a camera, or adjusting
a boat’s rudder. Unlike DC motors, servo motors do not rotate freely because the
angle of rotation is typically limited to approximately 180 degrees. These motors
work based on closed-loop mechanisms able to utilize position feedback to maintain
motion and control the position. Servo motors are generally comprised of four
elements including a DC motor, control circuit, gearing set, and position sensor
encoder. The encoder is often a potentiometer able to generate speed and position
feedback. These motors generally contain control, power, and ground wires. Power
is continuously supplied and the servo control circuit is responsible for managing
the power draw needed to drive the motor. As input, servo motors need a control
signal representing the final position. Next, power is applied to the DC motor until
the shaft rotates to the appropriate position determined by the position sensor (see
Fig. 2.7).
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Stepper Motor This is an electric DC motor that divides full rotations into equal
steps. Stepper motors are often found in 3D printers or similar devices that require
very specific positioning. These motors include multiple windings and the voltage is
applied in accurate sequences to rotate the motor shaft. Based on the applied voltage,
the motor rotates step-by-step incrementally. More precisely, stepper motors define
position by using multiple-toothed electromagnets arrayed around a central gear.
An electromagnet is powered and attracts the gear’s teeth, making the motor shaft
rotate. When the teeth are in alignment with the initial electromagnet, it is slightly
offset from the second electromagnet. When the second electromagnet is powered,
the first one turns off and the gear turns to align with the second electromagnet. This
process is repeated to make a complete rotation. Note that each turn is known as a
“step” and a complete rotation consists of an integer number of steps (see Fig. 2.8).
This process enables the motor to be turned to a precise angle. It is worth noting that
stepper motors need a microcontroller or external control circuit to independently
power each electromagnet and turn the motor shaft. The primary advantage of a
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stepper motor as opposed to a servo motor is their ability to control position. While
servo motors need a feedback mechanism and supportive circuitry to adjust the
position, a stepper motor can control position through the fractional, incremental
rotation.

2.4 Processing Unit: Microcontroller

While the terms “microprocessor” and “microcontroller” have often been inter-
changed with one another, both were created for use in real-time IoT applications.
Although they share many similarities, they also have distinct differences. A
microprocessor is an integrated circuit (IC) that includes only a central processing
unit (CPU) inside (i.e., Intel’s Pentium 1 . . . 4, Core 2 Duo, i3, i5, etc.). Micropro-
cessors do not include ROM, RAM, or other peripherals on the chip and target
general-purpose applications in which tasks are unspecified (i.e., photo editing,
document creation, developing games, software, websites, etc.). In these cases, the
input/output relationship hasn’t been defined; therefore, large amounts of resources
such as ROM, RAM, I/O ports, etc. are required. However, microcontroller units
(MCU) include a CPU as well as memory and programmable input and output
peripherals. Modern manufacturers (i.e., TI, Microchip, Freescale, ATMEL, Philips,
Motorola, etc.) can create microcontrollers with a broad range of features across
multiple versions. Microcontrollers are utilized to automatically control devices like
remote controls, implantable medical devices, home appliances, power tools, auto-
mobile engine control systems, children’s toys, and other products with embedded
systems. Because applications are highly specific, small resources such as ROM,
RAM, input/output ports, etc. are needed and can be included on the same IC, which
reduces both cost and size.

2.4.1 Classifications of Microcontrollers

Microcontrollers can be categorized based on bus-width, memory structure, instruc-
tion set architecture, and memory map [6].

2.4.1.1 Classification by Bus-Width (Number of Bits)

Microcontrollers can have 8-bit, 16-bit, or 32-bit data unit and register.

• An 8-bit microcontroller includes an 8-bit internal data unit, and the ALU handles
8-bit arithmetic and logic operations. Intel 8080 is the first widely adopted 8-bit
microprocessor that has 8-bit data words and 16-bit addresses.
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• A 16-bit microcontroller functions with greater performance and precision than
its 8-bit counterpart (i.e., extended 8051XA and PIC2x families).

• A 32-bit microcontroller utilizes a 32-bit instruction set to complete both logic
and mathematical operations. These MCUs can generally be used to control
devices such as office and home appliances, medical devices, systems designed
for engine control, and other embedded systems (i.e., PIC3x and Intel/Atmel 251
family). Please note that 32-bit architecture does not mean that the system has
an exact 32-bit data path. For example, IBM System/360 is considered a 32-bit
architecture; however, it has only an 8-bit native path width, and all 32-bit arith-
metic operations are implemented by executing several 8-bit operations at a time.

2.4.1.2 Classification by Instruction Set (RISC vs CISC)

Instruction set architecture (ISA), also known as computer architecture, is an
abstract model of the underlying design that serves as an interface for hardware and
software. ISA defines several key parameters of the processor including instruction
set, addressing modes, I/O, memory (registers, etc.), as well as data types. Note that
different processors with different designs (microarchitectures) can share the same
ISA. For instance, Intel and AMD both implement x86 ISA while having different
microarchitectures.

An ISA can be implemented with different microarchitectures that can vary in
cost, physical size, and performance. However, software created to run on one ISA
implementation can generally run on other implementations of the same ISA. This
flexibility supports binary compatibility among various generations of computers
and enables the creation of processor families.

ISAs can be categorized in a variety of ways, but a common means of classifi-
cation is based on instruction set complexity. Complex instruction set computers
(CISC) include several specialized instructions that are infrequently needed in
practical programs. Therefore, the instruction set of a CISC is very sophisticated,
and typically, instructions have different complexity levels resulting in different
execution times. On the other hand, a reduced instruction set computer (RISC)
only implements those instructions that are frequently used in applications. In RISC,
operations that are rarely needed are designated as subroutines, and the additional
processing time needed to execute them is offset by less frequent use. In addition,
in RISC, generally instructions can be executed within one clock cycle, but it needs
to execute more instructions compared to CISC. Thanks to the simplicity of RISC,
it usually results in low-power consumption, which is critical in battery-powered
systems.

2.4.1.3 Classification by Memory Structure and Bus Architecture

A modern microcontroller is a structure that includes one or more processing cores,
a simple or complex memory hierarchy, and interface controllers to connect with
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the peripheral devices. The microcontroller architecture is designed after a model
proposed by John von Neumann (1903–1957), which consists of a central processor
to perform arithmetic and logic operations, a control unit, memory and mass
storage, and input and output. This model is sometimes referred to as the Princeton
Architecture. The von Neumann model employs the same physical memory for
both instruction and data. As the instruction fetch and data access cannot happen
simultaneously, two clock cycles may be necessary for executing an instruction.
Figure 2.9 demonstrates a general block diagram of the von Neumann model
machine. Data and instruction are stored in a unified memory and accessed through
the same memory bus. The proportions of data and instruction in the memory
may vary from one application to another. The von Neumann model was later
enhanced for modern processors by separating instruction and data using dedicated
memory units. This new model, which is referred to as Harvard architecture, enables
transmission of data and instruction to take place on separate buses simultaneously.
As a generally accepted practice, the Harvard architecture utilizes two distinct
memories or separate instruction and data cache units connected to a unified
memory in high-performance systems. Figure 2.9 illustrates the block diagram of
an example of Harvard architecture. The main advantages of adding a second bus to
the system include:

• Pipelining – Thanks to the dedicated bus for instruction, a second instruction can
be obtained from memory as the first instruction is being executed, leading to a
greater performance. We will discuss the details of the pipelining concept later
in this section.

• Wider Instructions – In the Harvard architecture, the size of instruction memory
words may be larger from the data word; therefore, more instructions may be
fetched to the processor that may lead to performance improvement for compute
intensive applications.

Instruction 
Memory

Data 
MemoryCPU

Data busData bus

Address bus Address bus

Instruction 
Memory

Data 
Memory

CPU

Data bus

Address bus

Memory

Harvard Architecture Von-Neumann Architecture

Fig. 2.9 von Neumann and Harvard processor architectures
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Table 2.2 Comparison between port-mapped I/O and memory-mapped I/O

Port-mapped I/O Memory-mapped I/O

Two different address for I/O and memory Memory and I/O use the same address bus
To access I/O, we need a special class of
instruction

Same instructions can access both I/O and
memory

Intel x86 is implemented based on port-mapped
I/O

Most widely I/O technique in processors

2.4.1.4 Classification by IO

A microcontroller is a group of resources from the perspective of the computer
programmer. Every resource is identified using at least one “address” in an “address
space.” A memory map is a pictorial representation of the way resources related
to addresses. Usually, memory maps are based on the structure of hardware as
generated by the microcontroller and external devices. Changes cannot be made to
the map while a program is being executed. However, in some situations, writing in
“special configuration registers” will allow the user to disable or move resources to
a new part of the address space. Microprocessor generally connects external devices
using two methods (see Table 2.2) [7]:

• Memory-Mapped Input/Output (MMIO) – In this method, I/O devices and ROM
are mapped into the system memory map together. Accessing hardware requires
only reading or writing to their corresponding address using normal memory
access instructions. One of the primary benefits of this method is that each
instruction with the ability to access memory can be utilized to control input
and output devices. One of the main drawbacks is that the whole address bus
must be completely decoded for each device. For instance, a system with a 32-
bit address bus would need logic gates to process the state of all 32 address
lines and to be able to decode the unique address of any device. This may result
in several overheads such as higher cost and reduced operating frequency (i.e.,
higher delay).

• Port-Mapped I/O (PMIO or Isolated IO) – This method requires the I/O devices
be mapped into distinct address spaces. Most often this is achieved by utilizing a
separate set of signal lines to delineate memory access versus IO access. Address
lines are generally shared between two address spaces (i.e., memory and IO), but
fewer of them are utilized for IO access. For example, a PC using 16 bits of IO
address space may have 32 bits of memory address space. The primary advantage
of this method is that less logic is required to decode an IO address. When it
comes to software development, this method is less advantageous compared to
MMIO because a larger number of instructions are needed to complete the same
task. For example, testing one bit on a memory a single instruction is required.
On the other hand, for IO, we should first read its data to a register before testing
the corresponding bit.
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2.4.2 Three Main Types of Microcontrollers

The three well-known microcontrollers currently on the market include PIC MCUs,
AVR MCUs, and ARM MCUs [6].

2.4.2.1 Peripheral Interface Controller (PIC) Microcontrollers

These microcontrollers are a group of specialized microcontroller chips created in
the early 1990s by Microchip Technology in Chandler, Arizona. PIC microcon-
trollers are created using a Harvard architecture and are utilized in a variety of device
families. Basic and midrange families utilize 8-bit data memory, while higher-end
device families utilize 16-bit data memory. In 2007, Microchip began producing
32-bit microcontrollers using the MIPS32 Core. The MIPS32 core is a reduced
instruction set architecture (RISC) developed by MIPS Technologies, Inc. PICs
instruction sets can vary from 35 instructions on the low end to 80+ instructions
for higher-end PICs.

2.4.2.2 AVR Microcontrollers

The AVR microcontroller was initially created in 1996 at Atmel Corporation by
Vegard Wollan and Alf-Egil Bogen. The AVR is an acronym standing for Alf-
Egil Bogen and Vegard Wollan’s RISC processor. These microcontrollers utilize
a modified Harvard RISC architecture with divided instruction and data memory
buses. The AVR performance is generally higher in comparison to a PIC. AVR
microcontrollers can be divided into four categories:

• TinyAVR – Smaller in size with less memory; utilized for simple applications:

– .5–32 KB program memory
– 6–32 pins
– Limited peripherals

• MegaAVR – Highly popular as these provide a larger memory (up to 256 KB) and
more in-built peripherals; utilized for modestly to more complex applications:

– 4–256 KB program memory
– 28–100 pins
– Larger instruction set (e.g., multiply instructions)
– Extensive peripheral set

• XmegaAVR – 8-/16-bit AVR XMEGA is utilized in highly complicated or
commercial applications that require a larger program memory and higher
speed:

– Compatible with tinyAVR and megaAVR devices
– 16–384 KB program memory
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– 44–64 – 100 pin package known as A4, A3, A1
– 32 pin package (XMEGA-E, XMEGA8E5)
– More extensive performance features including DMA, cryptography support,

and event system
– Large peripheral set including ADCs

• 32-Bit AVR – Atmel developed 32-bit microcontrollers in 2006. This microcon-
troller included DSP instructions, a 32-bit data path, and additional audio/video
processing features. While the instruction set resembled that of other RISC cores,
unfortunately, it is not compatible with the initial AVR. AVR32 support has
not been provided by Linux since the 4.12 kernel. Recently, Atmel also started
to produce microcontrollers based on M variants of the ARM architecture. M
variants of ARM will be discussed in the next section.

2.4.2.3 ARM Microcontrollers

ARM (Advanced RISC Machines) is a group of reduced instructions set computing
(RISC) architectures designed by Arm Holdings. ARM Holdings is a fabless
business in a way that licenses are purchased by other companies that utilize the
architecture when designing their own products. The list of notable companies that
utilize ARM core processors includes (but is not limited to) Atmel, Cypress Semi-
conductors, Apple, Analog Devices, Broadcom, Nvidia, Freescale Semiconductors,
NXP, Samsung Electronics, Qualcomm, and Texas Instruments.

In comparison to AVR and PIC systems, ARM microcontrollers utilize Syn-
chronous Dynamic RAM (SDRAM) instead of simple SRAM. SDRAM can be
synchronized with the processor clock cycle to improve efficiency and allow a
greater number of operations to be executed during each clock cycle. ARM pro-
cessors also include a proprietary technology called the Advanced Microcontroller
Bus (AMB). This technology enables hardware developers to more easily design
and incorporate additional components into the ARM core.

ARM microcontrollers are a popular option for consumer electronics (i.e.,
smartphones) because of their storage capability, speed, and cost efficiency when
compared to other higher-end microcontrollers. However, longer set up times mean
that these microcontrollers are a less likely option when trying to develop a
prototype quickly.

2.5 ARM Microcontrollers

2.5.1 Background

The ARM architecture indicates the specifications such as register sets, operation
modes, and instruction sets that should be supported by any implementations of the
ARM core. Several ARM architectures, ranging in size from 32-bits to 64-bits, have
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been crafted over the last several years including ARMv1, ARMv2, ARMv3 . . .

ARMv8, etc. On the other hand, the way a given architecture is implemented and
the corresponding blueprint of the transistors is known as a core. It is noteworthy
that a core does not contain input or output ports as well as memory. Memory is
usually provided by the company providing the processor [8, 9].

A central processing unit (CPU), which is also known as a processor, con-
tains one or many cores. Microprocessors or microcontrollers are more than the
CPU/cores. They incorporate additional hardware components and circuitry (see
Fig. 2.12). For example, interconnects connect the cores to a shared cache as
well as the outside world. ARM has created several 32-bit processors over the
last 20 years which can be grouped into families. The ARM families include
ARM1, ARM2, ARM3, ARM6, ARM7, ARM8, ARM9, ARM10, and ARM11.
Figure 2.10 illustrates several of the most well-known members of these ARM
processor families. ARM was determined to increase their share of the market and,
around 2003, created another series of high-performance processors known as the
Cortex family. This family is made up of three subfamilies of processors: Cortex-A,
Cortex-R, and Cortex-M [9].

The ARM architecture has matured over time and the seventh version (ARMv7)
is now the most widely used version. ARMv7 identifies three possible architecture
profiles (see Fig. 2.11) [9]:

• Microcontroller Profile (M-Profile) – Low-cost processors which are designed
based on ARMv6-M architecture (Cortex-M0 and Cortex-M0+) as well as the
ARMv7-M architecture (Cortex-M3 and Cortex-M4). This architecture relies on
a minimal instruction set (a subset of the larger A-profile set) and generally has no

Capacity

ytilanoitcnuF/ecna
mrofreP

Cortex-A9 Cortex-M0

Cortex-A9

Cortex-A9

Classic ARM Embedded Processors Application Processors

Cortex-M1

Cortex-M3

Cortex-M4

Cortex-R

Cortex-M0

Cortex-M1

Cortex-M3

Cortex-M4

Cortex-R

Fig. 2.10 ARM families



70 F. Firouzi et al.

Fig. 2.11 Applications of ARM Cortex profiles

cache, memory management, or floating-point unit. This profile is utilized with
RAM, FLASH, and peripherals in Cortex-M series. Because Cortex-M chips are
focused on being cost-efficient rather than high performing, they are a top choice
for IoT applications.

• Application Profile (A-Profile) – Highest-performance processers built based
on ARMv7-A and ARMv8-A architecture, capable of operating at more than
5GHz. It exploits a more expansive instruction set, cache(s), floating-point
unity, and memory management. In contrast with the M-Profile, this profile
focused on high performance and is not as cost-efficient. These profiles are
considered microprocessors and are meant to be utilized in conjunction with off-
chip FLASH and RAM. These microprocessors are usually run by an operating
system, mostly Linux. Cortex-A is the best option for GPS devices, tablets,
gaming systems, or smartphones.

• Real-Time Profile (R-Profile) – A trade-off between the A-Profile and the M-
Profile, this profile is utilized by the Cortex-R series. R-Profile is generally used
in network devices, automotive applications, hard-disk controllers, and high-
speed microcontroller applications.

2.5.2 Architecture

In this section, we will briefly review the Cortex-M3 processor, utilized successfully
in many smart IoT objects (see Fig. 2.12). This processor includes a 32-bit data path,
32-bit registers, 32-bit memory, and a 32-bit processor all designed within a Harvard
architecture. This means that data and instruction access can occur simultaneously
because it utilizes a separate data bus and instruction bus [8, 9]. Note that chip
manufacturers (e.g., Texas Instrument, Samsung, etc.) to be able to design and
produce a microcontroller need to license the ARM cores (processors) and then add



2 The Smart “Things” in IoT 71

Interrupt ControllerWake-up Controller

Memory Protection 
UnitFloating Point Unit

DSP Debug System

Data Watchpoint Breakpoint Unit

ITM Trace ETM Trace

AMBA High-performance Bus (AHB)

ARM CORTEX-M Core

MemoryPeripherals

Input/OutputClock & Reset

Simplified block diagram of Cortex Core
Simplified block diagram of a MCU built around 

Cortex Core

CPU

Interrupt Controller
(NVIC)

Decoder

ALU

Interface

Register Bank Instruction Fetch

Debug 
System

Bus

Developed by ARM Usually developed by 
Chip manufacturers
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extra components (e.g., memory, peripherals, etc.) to the chip. Therefore, Cortex-
M3-based microcontrollers from different manufacturers (or even from the same
manufacturer) can have different specifications and features such as memory sizes,
peripherals, etc.

Access Modes in Cortex-M3 It utilizes two access levels/modes (usually
user/normal level and privileged level). In the privileged level, applications can
access all memory (unless restricted by settings) and can utilize all instructions. The
reliability of the system can be increased by the separation of user and privileged
levels because configuration registers cannot be accessed or altered by suspicious
codes.

Pipeline in Cortex-M3 The ARM architecture is built on pipelining concept,
an architecture that allows several instructions to overlap during execution. Each
pipeline consists of several different stages that are responsible for executing a piece
of instruction in parallel. Each stage is connected to the next stage, forming a pipe
structure where instructions enter one end, work through each stage, and then exit
the other end. Pipelining increases the instruction throughput, which is computed by
the frequency with which instructions leave the pipeline. Simple ARM cores execute
instructions in three different stages (see Fig. 2.13):

• Fetch – Fetches the instruction from memory and brings to pipeline
• Decode – Decodes the instruction
• Execute – Executes the instruction (uses arithmetic and logic unit (ALU)) and

writes the result in appropriate registers
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Register Registers are dedicated, specialized memory circuit in processors that can
be read or written to faster than normal memory. The contents (operands) of registers
are directly available as input for the processor. This means that instructions with
operands in the registers can be executed more quickly. A register is used to hold
information like states of CPU execution or computation results. Therefore, those
microcontrollers that are designed for higher speed usually have a larger number
of internal registers. Generally, an ARM processor includes the following 32-bit
registers (see Fig. 2.14):

• General-Purpose Registers – Thirteen 32-bit registers (R0-R12), for general data
operations:

– Registers R0-R7 – Accessible by 16-bit and 32-bit instructions
– Registers R8-R12 – Accessible by all 32-bit instructions that define a general-

purpose register but inaccessible to 16-bit instructions
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• Stack Pointer (SP) – Register R13 stores the address of the last item in a stack.
• Link Register (LR) – Register R14 is responsible for holding and returning

information needed for function calls, exceptions, and subroutines.
• Program Counter (PC) – Register R15 stores the most recent program address.
• One Program Status Register (PSR) – This register combines the following

components:

– Application Program Status Register (APSR) – Stores condition code flags
– Interrupt Program Status Register (IPSR) – Includes the Interrupt Service

Routine (ISR) number of current exception activation
– Execution Program Status Register (EPSR)

2.5.3 GPIOs and Interfaces

2.5.3.1 General-Purpose Input/Output (GPIO)

GPIO stands for general-purpose input/output. GPIOs are standard interface avail-
able on every modern microcontroller. These interfaces are used to connect external
device, sensors, and actuators to microcontrollers. When functioning as an input
port, the GPIO can communicate with the CPU regarding sensor readouts or
“on/off” signals received from switches. When functioning as an output port,
GPIO can trigger external operations in accordance with CPU instructions and
calculations. For example, a GPIO can be used to send control signals of a DC
motor or to control (turn on/off) an LED.

GPIOs are general-purpose elements because individual pins can function
independently as an input or output based on their application-level configuration.
Traditional MCUs included ports that were used solely for input or output. More
modern GPIOs are more adaptable. For example, if a GPIO contains eight pins,
each can be set to meet customized needs: 7 input/1 output, or 4 input/4 output, etc.

In general, GPIOs are clustered into several ports to be able to manage them
simply. In simple words, a port is a group of IO pins that are addressed/configured
as one logical entity/channel and all pins in one port work in a similar way. For
instance, STM32F411RET6 is an ARM microcontroller with 64 pins. Fifty-two
of those pins are available for GPIO. In this specific microcontroller, GPIOs are
clustered into five ports in a way that arranges ports A, B, and C to be 16-bits wide,
port D to be 1-bit wide, and port H to be 3-bits wide.

It is also important to note that an ARM Cortex-M includes three digital input
modes for GPIO:

• Input with Internal Pull-Up
• Input with Internal Pull-Down
• Input Floating
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Fig. 2.15 How a simple switch circuit works

Figure 2.15 illustrates the function of a simple switch circuit. When an internal
pull-up input mode is utilized, the button circuit is active low, meaning that pushing
the button results in a “0” in logic in the input data register. If the input mode is
pull-down, a pressed button results in a “1” in logic in the input data register. To
utilize input floating, an external pull-up/pull-down resistor is needed. For instance,
when an external pull-down resistor is used, the circuit is active high, meaning that
pressing the button results in “1” in the corresponding input data register [10].

Other than GPIOs, MCUs also include circuits that handle various periph-
eral functions, making deployment in diverse settings easier. An MCU generally
includes at least one analog/digital converter (ADC) needed to change incoming
analog signals into digital values as well as at least one digital/analog converter
(DAC) needed to change digital values into outgoing analog signals.

2.5.3.2 Analog Inputs

Because MCUs cannot read non-digital data values, the analog input pin requires
an extra element, known as an analog-to-digital converter (ADC), to read analog
voltage and then transform it into a digital format. The ADC reads the input voltage
and then transforms it into a binary value.

ADCs can be implemented in several ways and their details are beyond the scope
of this chapter. However, it is very important to define “ADC resolution.” The ADC
resolution specifies the number of distinct values generated across the complete
range of analog values. In other words, resolution regulates the accuracy of ADC
and the magnitude of the quantization error. The ADC resolution is specified by the
number of bits it uses to digitize an analog signal. For instance, an 8-bit ADC can
encode an analog input to 1 of 256 different levels (28 = 256). On the other hand, in
a 16-bit ADC, the range of the analog signal is represented by 216 (65536) discrete
values.
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2.5.3.3 Analog Outputs

Analog output is needed for several applications such as controlling motor speed.
MCUs are digital by nature and can generate either high or low voltage; however,
they are not able to produce a varying voltage (analog value). Therefore, it is
necessary to emulate varying voltage (analog value) by generating a series of voltage
at regular intervals but with different pulse widths, known as pulse width modulation
(PWM). PWM is a method for obtaining analog values utilizing digital means. The
voltage produced by PWM is often referred to as pseudo-analog voltage.

To better explain the key idea behind PWM, consider the following example. The
graph below illustrates pulsing a pin both high and low for the same amount of time.
The amount of time that the voltage is high is known as pulse width. The duty cycle
is the ratio between pulse width (high voltage) and the total time (i.e., the amount
of time needed for a pulse to move from low to high and back to high again). In this
example, the duty cycle is 50%, and therefore the effective voltage (average voltage)
is 50% of the total voltage.

Figure 2.16 demonstrates that it is possible to generate a duty cycle at less than
50% by using pulses that are shorter in duration than the length of pauses (i.e.,
shorter high voltage duration compared to low voltage duration). In this case, the
average voltage is less than half of the total voltage.

It is also important to note that PWM output can be transformed to create a
genuine analog voltage. In order to achieve this, all that is required is a low-pass
filter (created using a ceramic capacitor and resistor) which should be connected to
the PWM output.

Effective 
Voltage

Time

Voltage

Effective 
Voltage

Time

Voltage

Duty cycle = 50%
Effective voltage = 0.5 * Total voltage

Duty cycle < 50%
Effective voltage < 0.5 * Total voltage

Fig. 2.16 How pulse width modulation (PWM) works
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Fig. 2.17 Parallel and serial communication

2.5.3.4 Parallel Interfaces vs Serial Interfaces

Circuits rely on communication protocols to be able to exchange data among
themselves. While there are hundreds of communication protocols to support the
exchange of data, they can all be classified into two categories – serial or parallel
(see Fig. 2.17).

Parallel interfaces move many bits simultaneously and generally need data buses
with a size of 8, 16, or more bits. In contrast, serial interfaces stream data one bit
at a time, thereby it can function with only 1 wire, and generally do not use more
than 4 wires. Serial interfaces can also be categorized into two groups, namely,
synchronous and asynchronous [10].

• Synchronous: Synchronous serial interfaces match data line(s) to a clock signal so
that all devices share a mutual clock on the synchronous serial bus. This results
in an uncomplicated, quick, serial transfer; however, it also means at least one
additional wire is needed to connect communicating devices. SPI and I2C are
two common synchronous serial communication interfaces.

• Asynchronous: An asynchronous interface exchange data without the aid of an
external clock signal, which reduces the number of wires and I/O pins needed.
However, guarantee the reliability of data transmitting/receiving needs extra
effort. A universal asynchronous receiver/transmitter (UART) is an example of a
synchronous interface.

2.5.3.5 Universal Asynchronous Receiver/Transmitter (UART)

UART systems support reliable, reasonably speedy, full-duplex (two-way) commu-
nication using three signals: Rx (received serial data), Tx (transmitted serial data),
and a ground. Note that the Tx of one device should be linked to the Rx of the other
device and vice versa. Note that UART does not need a clock signal because it is
asynchronous (see Fig. 2.18) [11].
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Fig. 2.18 Configuration of universal asynchronous receiver/transmitter with one transmitter and
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Fig. 2.19 The structure of UART packets

Although there is not any explicit external clock signal between two devices in
UART, both the transmitter and receiver contain their own internal clock. However,
this clock is not transmitted between devices. Instead, the internal clock of the
transmitter regulates how fast logic levels are created on the Tx side, and the internal
clock of the receiver regulates the sampling frequency on the Rx side. If the receiver
and transmitter are designed to receive or send data on different transmission
frequencies, UART communication will not work. In addition, their internal clock
signals have to be accurate in relationship to the target data-transmission frequency
and adequately stable in the presence of temperature variations over time.

UART data is arranged into packets for transmission. As shown in Fig. 2.19,
every packet includes 1 starting bit, 5–9 bits for data, an optional parity bit, and 1–2
stop bits [11]:

• Start Bit – Initial bit of each packet. This bit shows that the state of the data
line is changing from idle state to active state. Since typically the idle state is
represented by active high, the start bit is active low. Although a start bit is
mandatory in UART to be able to start the data-transmission process, it does
not actually transfer useful data; therefore, it is an overhead bit.

• Stop Bit – Final bit of each packet. This bit is logic high and similar to start bit
can be considered as an overhead bit.
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• Parity Bit – A bit that detects errors in each set of transmitted bits. In “odd parity,”
the total complete number of 1s in the transmit data when added together is equal
to an odd number. On the other hand, in “even parity,” the number of 1s in the
transfer data including the parity bit itself should be an even number.

• Bit Rate – In literature, bit rate is also referred to as total physical layer bit rate,
data signal rate, raw bit rate, or total data transfer rate. Bit rate indicates the total
number of transmitted bits per second (bps).

– Gross Bit Rate – This parameter captures both protocol overhead (e.g., start
and stop bit) and useful data.

– Net Bit Rate – Unlike the gross bit rate, this parameter indicates a digital
communication channel’s capacity and excludes overhead protocol. Net bit
rate is also known as information rate, useful bit rate, net data transfer rate,
payload rate, effective data rate, and wire speed.

• Baud Rate – This parameter also referred to as “symbol rate.” Baud rate shows
the number of symbol or signal changes occurring per second. A symbol can be
a change in phase, voltage, or frequency. Each symbol can represent one or more
bits. Based on this, the baud rate is always lower than or equal to the bit rate. The
baud rate is never higher than a bit rate. For example, if a symbol rate is 4800
baud with each symbol representing two bits, then the total bit rate is 9600 bps.
In the case of UART, each symbol represents only one bit; therefore, the baud
rate and gross bit rate are equal.

UART protocols follow the following steps to exchange data between two
devices:

1. UART module in the transmitter device receives parallel data from the data bus.
2. UART modules create the UART packet including start, parity, stop bits, as well

as the payload (actual intended message).
3. The whole data packet is sent via the bus in series to receiving UART module in

the receiver device.
4. Receiving UART module samples bus at a preset baud rate.
5. Receiving UART module removes start, parity, and stop bits and extracts the

payload.
6. Receiving UART module formats the received serial data (payload) and publishes

it to the data bus of the receiver device.

2.5.3.6 Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI) is often used to transmit data between small
peripherals (e.g., sensors and SD cards) and their corresponding microcontrollers.
While asynchronous serial communication can also be used to address this situa-
tion, it requires complicated hardware for data transmission, and also it includes
significant overhead because of extra start and stop bits that are packaged with each
payload (actual intended message). On the other hand, SPI is a synchronous data
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Fig. 2.20 SPI configuration
with one master and one slave CS
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bus requiring both data line and a clock line to maintain synchronization between
both devices. The clock is a precise periodic signal that indicates when the receiver
samples the data line to obtain the corresponding data bit. Note that the sampling is
done side at the rising or falling edge of the clock.

Figure 2.20 illustrates connections between master and slave via the SPI. In an
SPI, only one of the sides provides the clock signal. The clock is known as SCK
(serial clock) or CLK. The side responsible for managing the clock is referred to as
the “master,” while the corresponding side that receives the clock is known as the
“slave.” In any SPI there is only one master; however there can be more than one
slave. An SPI usually consists of four wires:

• Clock (CLK, SCLK)
• Chip Select (CS)
• Master Out, Slave In (MOSI)
• Master In, Slave Out (MISO)

The master device can select and enable any of the slaves via the corresponding
chip select signal. The chip select signal is typically active low meaning that when
the signal is high, the slave disconnects from the SPI bus. The MOSI data line sends
data from the master to the slave and the MISO data line sends data from the slave to
the master. To start SPI communication, the master activates the clock and enables
the slave via chip select signal. Because the chip select is active low, the master puts
logic 0 on chip select line to be able to select the appropriate slave. As a full-duplex
interface, in SPI, data can be transmitted simultaneously via the MISO and MOSI
data lines. In other words, data is simultaneously sent serially to the MOSI data bus
and received on the MISO bus.

As stated earlier, multiple slaves can be used in conjunction with one master
using one of the following two modes (see Fig. 2.21) [12]:

• Regular Mode – Master needs a dedicated chip select line for each slave device.
When one slave is selected by its chip select line, then the clock and MISO/MOSI
data lines are accessible to the enabled slave. If more than one chip select is
selected, the MISO line will malfunction because the master cannot determine
which slave is sending the data.
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Fig. 2.21 SPI configuration with one master and several slaves

• Daisy-Chain Mode – In regular mode, the number of chip select lines increases
in correlation to the number of slaves, rapidly increasing the IO pins required
from the master. Considering the limited number of SPI pins in each master, this
approach will limit the number of slaves that can be connected to one single
master. Daisy-chain mode can address this issue because slaves are designed in
a way that the chip select signal and clock signal for all salves are the same
while the data are flowing from one slave to the next slave. In this approach, the
master sends the data to the first slave, and the first slave propagates it to the
second slave, the second slave transmits it to the third one, and so on. As data
is sent from one slave to another, the number of clocks needed to send data to a
particular slave is a linear function of the target slave’s position in the chain.

2.5.3.7 I2C (Inter-integrated Circuit)

As previously mentioned, the hardware overhear of UART is high. In addition,
UART is innately designed to facilitate communication between only two devices
and the data transfer rate can be problematic. SPI solves some of these issues;
however, a drawback to SPI is the number of required pins. This is rooted in the fact
that connecting a master to a slave with an SPI demands 4 lines, and each additional
slave also needs another chip select. This issue makes SPI less advantageous in
scenarios where many devices act as slaves to the same master. In addition, SPI is
not a multi-master interface meaning that there must be one and only one master
with one or several slaves.

I2C, which was initially developed by Philips in 1982, is the Best of Both Worlds
as it makes use of the best of what UART and SPI have to offer. I2C is also designed
based on master and slave concept. In I2C, there is a possibility to have multiple
masters and multiple slaves. In other words, each device in I2C can be a transmitter,
a receiver or both. Each I2C device is specified by a unique 7-bit or 10-bit address.
Every I2C data bus includes two bidirectional lines, namely, an SCL (serial clock)
line and an SDA (serial data) line. Each master generates its own clock and data is
changed only when the clock is logic low. Since there may be several masters within
the I2C, we need an arbitration process to determine which master can use the bus
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to communicate with its slaves. To implement the arbitration process, each device
must constantly monitor SDA and SCL for start and stop conditions to figure out
when the bus is idle/available or busy. By this approach, a master can realize when
another master is active and using the bus, so it can immediately stop its transfer.

SDA and SCL lines are logic high in normal state. Then the master node can
start the communication. To do so, the master produces a start condition and then
specifies the slave device address. If bit 0 of the address byte is designated 0, then
the master will write to the slave. If not, the master realizes that it should read from
the slave. When all data have been read, or written, the master sends the stop signal,
indicating that the bus is now free and available for use by other devices.

I2C sends data in the form of messages and these messages are separated into
two frame types (see Fig. 2.22) [10]:

• Address Frame – Master determines which slave the message is sent to.
• Data Frame – One or more (8-bit data messages) are transferred from the master

to the slave and vice versa.

Each message in I2C consists of one start and one stop condition:

• Start – In this condition, SCL is high and SDA has transmission from high to low.
After a successful start, the bus is busy and other masters cannot use the bus.

• Stop – In this condition, SCL is high and SDA has transmission from low to high.
After a successful stop, the bus is free and other masters can start using the bus.

After the start condition, the first part of any new communication series is always
the address frame. The master sends the 7-bit address of the slave (starting from
most important bit (MSB)) following by a R/W bit. The R/W indicates if the
operation is a write (0) or a read (1). Write means that the master writes to slave
and read means that the master reads from slave. The 9th bit of any data or address
frame is always known as the NACK/ACK bit. When the initial 8 bits of the frame
have been sent by the master, the slave device gains SDA control. If the slave does
not pull the SDA low prior to the 9th clock pulse, it means that the slave did not
receive the message or was not able to parse it; therefore, the message exchange
stops and the master must determine the next step (see Fig. 2.23) [10].

When the address frame has been successfully received by the slave, the actual
data transmission can begin. The master continues to send clock pulses at regular
intervals. Depending on if the R/W designates a read or write operation, the slave or
master publishes data on the SDA. It should be noted that there is no limitation and

Start 7 or 10 bit: address 
frame

Read/write 
bit 8 bits: data frame

Message

Ack/Nack
bit 8 bits: data frame Ack/Nack

bit Stop

Fig. 2.22 The structure of I2C packets
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Fig. 2.23 The signaling mechanism in I2C between one master and one slave

upper bound on the number of data frames that can be transmitted between master
and slave. Finally, when all data frames have been dispatched, the master creates a
stop condition.

I2C has its own advantages and drawbacks. The main benefits of I2C are:

• Minimal Wires – I2C needs only two wires.
• Greater Flexibility – Unlike SPI, several masters can be connected to the same

I2C bus concurrently.
• ACK/NACK Bit – This bit can be used to confirm the successful transfer of each

frame.
• Simplicity – Hardware is not as complicated as with UART.
• Universality – It is widely used by vendors to connect peripherals to microcon-

trollers.

The main drawbacks of I2C can be summarized as below:

• Slower Data Transfer – Data transmits at a slower rate than SPI.
• Smaller Data Frames – Data frame size is limited to no more than 8 bits.
• Complicated Hardware – I2C requires more complex hardware than SPI.

2.5.3.8 Universal Synchronous Asynchronous Receiver Transmitter
(USART)

USARTs can function asynchronously in the same manner as a UART (asyn-
chronously) as well as acting synchronously. The main difference between a
USART and a UART is the manner in which serial data is clocked. In UARTs each
counter generates its own data clock internally. Since there is not any incoming clock
signal to the receiver, it must know what the communication baud rate is in advance
of receiving the data stream. On the other hand, a USART can run synchronously. A
sending peripheral creates a clock that the receiver can obtain from the data stream
without advance knowledge of the baud rate. An external clock enables the USART
data rate to be much higher (up to 4 Mbps) than the data rate of a UART.
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2.5.3.9 RS232 and RS422

In microcontrollers, UARTs generally operate at 5 V TTL or 3 V levels. Transistor-
transistor logic (TTL) refers to a logic family created using bipolar junction
transistors. A TTL signal is “low” if it is between 0 V and 0.8 V, and the signal
is “high” if it is between 2 V and 5 V. RS232 fundamentally operates like a UART,
but with the addition of a new line driver to improve signal strength. Thanks to the
new line driver, RS232 is capable of functioning between +/− 15 V. In other words,
RS232 data is bipolar. Typically, “logic 1” is determined by +3 V to +12 V, whereas
“logic 0” is indicated by −3 V to −12 V. This feature enables the signal to transfer
data in a cable with a length of up to 10 meters. Note that like UART, RS232 also
has two data lines, namely, TXD and RXD (see Fig. 2.24).

The RS422 design also utilizes the same general UART but includes a different
line driver IC. The line driver generates a different signal from the original
signal. Therefore, there are four data lines in RS422: TXD+, TXD-, RXD+, and
RXD-. Utilizing a differential signal is beneficial because it gives the system greater
immunity to noise and allows for longer cables.

2.5.4 Clock Tree

A clock distribution network inside MCUs is known as a clock tree and includes
several circuitries and interconnects from the clock source to the destination. There
are two system clock (SYSCLK) sources available in the Cortex-M series, namely,
the external clock and the internal clock (see Fig. 2.25). The external clock is usually
created using one of the following ways [9]:

• High-Speed External (HSE) – Generated by an external resonator device, crystal,
or external clock signal.

• Low-Speed External (LSE) – Generated by an external crystal which then feeds
into the internal real-time clock (RTC). Note that RTC functions as a 24-hour
clock and/or a Julian calendar that monitors the current time.
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Fig. 2.25 The general
structure of the clock tree of
Cortex-M series
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An internal clock can be created using the following:

• High-Speed Internal (HSI) – A precise, RC-based, high-speed internal clock with
a manufacturer set tolerance level of at least 1%.

• Multi-Speed Internal (MSI) RC – An RC-based clock source generating clock
in various frequencies that can be trimmed using software. Typically, MSI is
capable of providing about 12 different clock frequencies in most Cortex-M
MCUs.

• Phase-Locked Loop (PLL) – PLL receives data from the HSE or MSI clocks and
uses it to create different system clocks.

2.5.5 Interrupts

A simple analogy is best to help explain the basic concept of how things work
with interrupts and without interrupts. When boiling eggs for 10 minutes, one might
simply glance at the clock every few minutes to determine when 10 minutes have
passed. This is also true with embedded systems. When waiting for a specific status
change to happen before taking action, then one could check the state periodically.
Similarly, if the program is pending for a GPIO input level to move from 1 to 0
before advancing to the next step, then you could repeatedly test the GPIO value.
This approach is called “polling.”

Polling is an uncomplicated manner of confirming status; however, it does have a
drawback. If the status check interval is too long, you risk missing the status change
entirely because the state could revert back again before the next checkpoint. A
shorter interval can provide quicker, dependable detection but also requires longer
processing time and higher power consumption because many status checks will
return a negative result.

An alternative to polling is the utilization of interrupts. To revisit our boiling
egg analogy, when cooking the eggs, you could set a timer for 10 minutes and then
carry on with another activity until the timer goes off, telling us to come back to the
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Fig. 2.26 How polling and interrupt work

stove. The timer acts like an interrupt and removing the eggs from the stove would
be the corresponding processing. When using the interrupt method, a state change
creates an interrupt signal telling the processor to pause a current operation and save
the present state before executing the processing connected to the interrupt. Then,
the previous state is restored and operations continue from the point of interruption.
Figure 2.26 compares the polling-based system with the interrupt-based system [13].

Interrupts can initiate from internal MCU devices or external devices. An
interrupt that originates from an external sensor or switch is often referred to as an
“attached interrupt,” because it is created by an external device connected to an IRQ
(interrupt request) pin in the MCU. When the appropriate status change is achieved,
an external device sends an IRQ to the pin. Next, the pin creates a notification
that is sent to the MCU’s interrupt controller. On the other hand, interrupts from
peripherals on the on-chip peripherals such as GPIO ports, internal times, etc. are
known as “peripheral interrupts.” These interrupts send a notification directly to an
interrupt controller without aid from the IRQ pin.

Interrupt controllers are responsible for moving IRQs to the CPU in a harmonious
manner. In the case of multiple interrupts, the controller must transmit them to the
CPU in the correct order, according to their respective priorities. The controller
must also perceive which interrupts are disabled (or masked) to disregard those
interrupts entirely. When the processor receives an IRQ from the controller, it
suspends its current program operations and saves all important information of the
processor, so that it can continue work after processing the interrupt. Next, the
processor loads and executes the associated processing program that matches the
IRQ received. This associated program is called ISR. An ISR (Interrupt Service
Routine, sometimes referred to as Interrupt Service Procedure) is a subroutine that
the processor executes to respond to a unique event/interrupt/exception. Once the
IRQ processing is finished, the CPU restores the saved work information and begins
working from the previous stopping point. The saving and the resuming process are
managed automatically by the processor (see Fig. 2.27) [13].
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Fig. 2.27 How an interrupted is addressed in a processor by Interrupt Service Routine (ISR)

Vector tables and interrupt vectors are important to understanding both software
and hardware interrupts. Interrupt vectors are actual addresses that notify the
interrupt handler where the ISR can be found. For example, an ARM Cortex-M3
includes 255 interrupt vectors. Generally, a processor utilizes a vector table to hold
ISR addresses for each interrupt, and when an interrupt occurs, the processor obtains
the appropriate address from the vector table.

There are several processor architectures that facilitate nesting interrupts, mean-
ing that when a low priority ISR is executed, a higher priority service is able to
preempt and suspend the ISR. The low priority ISR then resumes after the higher
priority ISR has resolved. The regulations governing a nested interrupt system
include [14]:

• Prioritization of all interrupts.
• An interrupt may occur at anytime, anywhere.
• If a higher priority ISR interrupts a lower priority ISR, the higher priority is

completed first.
• If a lower priority ISR interrupts a higher priority ISR, the higher priority finishes

execution prior to the execution of the lower priority.
• ISRs of equal priority level are executed in time order.

The NVIC (Nested Vector Interrupt Controller) found within the Cortex-M
family is an example of an interrupt controller that is highly flexible when it comes
to managing interrupt priorities. Nested Vector Interrupt Controllers allow several
interrupts to be defined and individual interrupts are given a priority, with “0”
recognized as the highest priority level. It is very important to remember that the
Cortex-M family utilizes a reverse numbering system for interrupts with higher
numbers indicating a lower priority value. It is also important to remember that
the priority level is programmable. The Cortex-M series offers several kinds of
interrupts (see Fig. 2.28) [8]:

• Interrupt Requests (IRQs) – Interrupts that are asynchronous and not connected
with the code currently in execution by the processor (i.e., ADC converter
completing conversion).
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Fig. 2.28 Nested Vector Interrupt Controller

• Non-maskable Interrupt (NMI) – Like IRQs, except that they cannot be disabled
(not maskable).

• SysTick Timer Input – SysTick is a timer with 24 bits counting from a preloaded
value to zero. When the counter transitions to zero, it can generate an interrupt.

• Exceptions, Faults, and Software Interrupts – These are synchronous and are
the result of executing a unique instruction (e.g., encountering an undefined
instruction or overflow due to the execution of a specific instruction).

2.5.6 Addressing Modes

Addressing modes are an integral part of instruction set architecture and define how
instructions can identify the operand of each instruction. The addressing mode rules
how an instruction address field is interpreted or modified before the instruction is
executed.

Immediate Addressing Also known as “literal addressing” uses the data in the
address field of instruction as an operand. In other words, the data is in the address
field of instruction.

Direct Addressing Mode Memory location’s address is directly given and spec-
ified in the instruction. This kind of instruction can only be utilized for special
function registers (SFR) or internal RAM (see Fig. 2.29).

Register Indirect Addressing Mode The memory location address is specified
indirectly in a register (see Fig. 2.30).

Register Relative Indirect Addressing Mode Effective memory location is cal-
culated by adding the content of a register and an immediate value (see Fig. 2.31).



88 F. Firouzi et al.

Fig. 2.29 Direct addressing
mode

Fig. 2.30 Register indirect
addressing mode

Fig. 2.31 Register relative indirect addressing mode

Base-Indexed Indirect Addressing Mode Effective address in memory is calcu-
lated by combining information from two registers (sometimes with an immediate
value) as illustrated in Fig. 2.32.

Base-Scaled Register Addressing Mode Memory address is calculated by adding
the content of a register with the content of a second register shifted left.
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Fig. 2.32 Base-indexed indirect addressing mode

2.5.7 Timers

In any microcontroller, the timer is one of the most important features. Timers
have many use cases. For example, they can be utilized to generate accurate time
intervals enabling users to control code and complete tasks that are dependent on
time. Timers are also used to create delays, change servo shaft angles, set baud
rates, sample analog signals, or turn a device on or off after a given period of time.
In general, you can find a timer subsystem managing a broad range of functions in
all microcontrollers, e.g.:

• Producing accurate time intervals
• Measuring the length of external events
• Counting events

Microcontrollers contain exclusive timers or general-purpose timers that handle
the following functions:

• A real-time clock
• Creation of pulse width modulated (PWM) signals
• As watchdog to automatically reset the system if the main program neglects to

periodically service

The most important time in Cortex-M is SysTick timer. SysTick is a 24-bit system
timer that is part of standard hardware for the ARM Cortex-M series. Figure 2.33
illustrates the block diagram of a typical system timer. As depicted in this figure,
system timers include three registers:

• SYST_CVR: This register stores the current SysTick counter value.
• SYST_RVR: This register indicates the starting value of the counter which

should be loaded to SysTick.
• SYST_CSR: This register manages and controls the SysTick features.
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Fig. 2.33 How the system timer works and generates an interrupt

The SysTick timer counts down from a preloaded starting value to zero. SYST-
CVR register holds current SysTick counter value. When the counter reaches zero,
a new starting value will be loaded to the timer. Note that the starting value is stored
in a register called SYST_RVR. SysTick counts down from a continuously lower
starting point as it starts at an incrementally lower point for each subsequent clock
cycle. The counter can be disabled by writing a zero value to the SYST-RVR register.
When the counter reaches zero, the COUNTFLAG status bit is designated at 1.
COUNTFLAG is one bit of SYST_CSR which controls the status of the timer. Note
that this special bit can trigger an interrupt in the system. Reading of the SYST-CSR
returns the value of COUNTFLAG to zero again (see Fig. 2.33) [15].

2.5.8 Low-Power Modes

In many IoT applications, it is very important that the deployed microcontroller
supports sleep mode capabilities to be able to suspend many or all operations to
reduce energy use, enabling it to run for many years with limited energy. ARM
microcontrollers generally use low-leakage technology and advanced design to
reach extremely low current consumption, making them an ideal option for battery-
operated or energy-harvesting IoT applications. Making the most of low-power
capabilities in IoT devices requires understanding the low-power modes currently
available. Typically, the following techniques are used to activate a low-power mode
in the Cortex-M series [8, 16]:

• Wait for Interrupt (WFI) Instruction – The low-power mode is utilized by this
instruction. In this low-power mode, the device will sleep until an interrupt or
exception occurs which wakes the device. Keep in mind that one must first enable
interrupts using a Nested Vectored Interrupted Controller (NVIC).

• Wait for Event (WFE) Instruction – Fundamentally, this instruction works similar
to WFT; however, it is more flexible than the WFT. Because of executing this
instruction, the device enters low-power mode. The main difference between
WFE and WFI is that WFE instruction allows the device to be woken up by
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interrupts disabled in the NVIC as well, if those interrupts are enabled in the
related peripheral control register.

• SLEEPONEXIT – The other way to begin using low-power mode is by enabling
the SLEEPONEXIT bit found in the System Control Register (SCR). When this
bit is designated at 1, it allows the processor to immediately go to low-power
mode once the execution of interrupt/exception is complete, before the program
resumes execution.

The low-power modes enabled on a device are determined by the specific
implementation within the processor family series. The most common low-power
modes in the Cortex-M series include Sleep Mode, Low-Power Run Mode, Stop
Mode, Low-Power Sleep Mode, and Standby Mode.

The main differences between the modes noted above typically can be repre-
sented by three important parameters, namely, wake-up time, power consumption,
and performance. The table below compares low-power modes discussed above in
terms of these three parameters. To make this comparison clear, each parameter
uses a ranking scale of #1 to #5 with “#1” being the best possible ranking and “#5”
being the worst. For example, “performance = 1” indicates the highest performance,
and “performance = 5” indicates the worst performance. In general, as power
consumption reduces, performance decreases, and wake-up time increases (see
Table 2.3) [16].

• Low-Power Run Mode – System clock frequency is decreased; however, the core
does not stop.

• Sleep Mode – Only the core stops and all peripherals keep running.
• Low-Power Sleep Mode – A combination of low-power run mode and sleep

mode; core stops and system clock frequency decreases.
• Stop Mode – In this mode, core and external high-speed clocks stop, while

internal clocks and low-speed external clocks work in a limited capacity. This
strategy allows a reduction in the power consumption on the order of nano-
amps, while SRAM, registers, as well as a few peripherals remain functional.
For example, UART and I2C can receive data, when it is needed.

• Standby Mode – In this low-power mode, the entire chip stands by. There are
limited options for exiting this mode because only a wake-up pin, a reset signal,
or a real-time clock wake-up event will wake the device. Note that unlike the
other lower power modes, standby mode does not maintain the content of SRAM
and registers. In other words, in the case of wake-up, the whole system will be
reinitialized.

Table 2.3 Low-power modes of Cortex-M based on various parameters

Performance Power consumption Wake-up

Low-power run mode 1 5 2
Sleep mode 2 4 1
Low-power sleep mode 3 3 4
Stop mode 4 2 3
Standby mode 5 1 5
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2.5.9 Programming and Debugging Techniques

There are a few main techniques available to program a microcontroller, namely,
JTAG/SWD and Bootloader. Outlined below are the benefits and drawbacks of each
method [17].

2.5.9.1 JTAG/SWD

Joint Test Action Group (JTAG) is an industry standard initially designed for
electrical testing of integrated circuits after manufacturing by means of boundary
scanning mechanisms. Since then, JTAG has evolved into a common interface
utilized to control the entire microcontroller and is currently used to program, test,
and debug almost all embedded devices. A complete JTAG interface needs the five
pins indicated below:

• Test Mode Select (TMS) – This signal is used to determine the next state of the
system.

• Test Clock (TCK) – Clock of the system during test/debug mode.
• Test Data Input (TDI) – The input data that is shifted into the device.
• Test Data Output (TDO) – The output data that is shifted out of the device.
• Test Reset (TRST) – Rest pin to reset the JTAG controller system.

Figure 2.34 illustrates a typical JTAG connector needed to program a microcon-
troller.

Serial Wire Debug (SWD) is an ARM-specific protocol used in ARM chips. This
method includes two pins (SWDIO/SWCLK). SWD is pin-compatible with JTAG

Fig. 2.34 20Pin JTAG adapter board kit
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and requires fewer wires. However, note that the adapter and ARM microcontroller
support both SWD and JTAG.

Utilizing JTAG and/or SWD requires the use of an adapter (i.e., external board
connecting the computer to the microcontroller). This adapter can also be thought
of as a “USB to JTAG adapter.” JTAG/SWD is the most definitive method used
in programming microcontrollers because it enables powerful features including
built-in debugging functions. Although JTAG/SWD can be more complicated and
expensive due to the need for an adapter, this method is dependable and works
consistently because it is implemented at the hardware level.

2.5.9.2 Bootloader

In the context of embedded systems and microcontrollers, a bootloader is a small
piece of code that is located at the start of the microcontroller’s memory to:

• Program the microcontroller with a compiled program (i.e., user code) that is
received from a communication port (i.e., USB, serial port)

• Execute the received program

The bootloader enables programming of the microcontroller without an adapter,
whereas the bootloader is just meant to load a user code, and it is not as powerful
as a JTAG/SWD adapter. The bootloader does not allow step-by-step debugging
(e.g., single step through code, examine memory). In addition, the bootloader must
be written into the microcontroller once via an adapter. Note that usually in many
microcontrollers which can be purchased, the bootloader has already been installed.

2.5.10 Real-Time Operating System (RTOS)

It is very important to answer the following question: “Is an RTOS really necessary
in my IoT applications”? The answer is Yes and No. In most of IoT applications,
RTOS is not mandatory, and most smart objects (IoT things) are implemented on
“bare metal” without any RTOS. Generally, one should consider an RTOS if the
product needs any of the following components:

• TCP/IP or other complex networking stack
• Complex GUI
• File system
• Multitasking

Some real-life IoT applications run multiple, independent tasks on the same
processor. While CPUs can execute only one task at a time, it appears that multiple
tasks are being executed simultaneously because the processor quickly exchanges
control among multiple tasks. This rapid exchange of control is managed by a
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scheduler. Scheduling is a foundational element in RTOSs. In general, there are
two different techniques for scheduling:

• Non-preemptive Scheduling – When a process begins running and the resources
(CPU) are allocated to it, it keeps running and holds all the resources until the
process is completed or the process switches to waiting state.

• Preemptive Scheduling – In this technique, a process can be preempted. In other
words, a task given to a CPU can be removed. Preemptive scheduling can be
implemented in several ways including:

• Round Robin (Cyclic Executive) Scheduling – This scheduling utilizes time
sharing by assigning a time slot or quantum to jobs using a circular pattern
without designating any particular job as a priority.

• Interrupt-Driven Scheduling – In this scheduling technique, tasks can be
prioritized and the most urgent task gets the resources (CPU) first. If a new
task with a greater priority is received, the scheduler ends the current task to
start running the new highest priority task.

2.6 Summary

In this chapter, the “Things” in IoT and its main building blocks (i.e., processing
unit, sensors, actuators, power source, and connectivity) have been presented.
Next, we provided the details of the main technologies of sensors and actuators.
Finally, we described the details of a microcontroller (ARM Cortex-M) covering
all the details of registers, addressing mode, interrupts, GPIOs, parallel/serial
interfaces (e.g., UART, SPI, I2C), timers, clock tree, low-power modes, as well as
programming and debugging techniques.
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3.1 IoT Network Scenarios

Figure 3.1 shows the general network structure of a typical IoT application. There
are two main sets of networks, i.e., the Internet and the Edge Network. They are
different in the objective and the standards. The everyday’s objects that become
connected “things” constitute the Edge Network. They can be found in houses,
buildings, factories, and open environments (e.g., cities or agricultural fields). They
can be vehicles in a smart transport network. In the factory automation scenario, we
also use the term Industrial IoT (IIoT).

The quality of service parameters of the Edge Network is strictly related to the
application requirements and constraints. The “things” usually require low data rate,
but video surveillance cameras are an example of exception. Data collection usually

Fig. 3.1 General network structure of an IoT application
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tolerates high and variable delay, but for closed-loop control applications and alarm
notification, the delay should be kept small and constant. The error rate is usually
not negligible in case of wireless channels, and this aspect should be considered in
the deployment of the application. Network standards for the Edge Network will be
presented in the main body of this chapter.

The Edge Network is connected to the Internet through nodes acting as gateways
between the two worlds. Internet architecture and protocols are not the topics of this
book even if some of them will be found in the next sections since they are also used
in the Edge Network. The Internet moves data to/from user’s computer (e.g., for data
visualization) and data centers for storage as well as processing (e.g., with machine
learning algorithms); the use of data centers is related to the concept of Cloud [1].
Gateways play an important role in the IoT scenario of Fig. 3.1. Their basic function
consists in moving data between Edge Network protocols and Internet protocols.
Since they are more standard computational devices and are usually powered by
stable sources, they can also perform data processing, thus moving “intelligence”
from the cloud closer to the “things.” This technique may reduce response delay
and is related to the concept of Fog Computing or Edge Computing [2].

This chapter focuses on the red part of Fig. 3.1. It has some distinguishing
features:

• strict dependence between application and communication aspects;
• system-of-systems nature;
• strict relationship with the environment.

IoT applications feature a strict dependence between application requirements
as well as constraints and communication aspects. While in the traditional Internet,
communication requirements are quite uniform for the users, in IoT applications
there is a large variability of requirements for data rates, delay, and error rates. For
instance, agricultural sensor and gas meters produce meager data rates, while video-
surveillance cameras generate a large amount of data. Furthermore, sensors can be
very far from the power grid, and, therefore, the corresponding protocols should
consume a small amount of energy to allow long autonomy with batteries or the
use of environmental energy sources. In factory automation, level and variability of
delays are crucial for the correct behavior of closed-loop control algorithms.

Many IoT applications can be regarded as a system-of-systems since even if the
various nodes can independently operate, they interact together to achieve the good
behavior of the global application [3]. For instance, in a building automation appli-
cation, the final objective may be to achieve reasonable control of the temperature,
and it does not matter the set of nodes that provides such functionality, as long as
the global application behavior satisfies design objectives. Thus, these applications
pose new questions to designers, traditionally mainly interested in the specification
of each single network node as done for Internet servers and clients. Most relevant
issues are:

• finding the optimal number of nodes to achieve the common mission;
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• finding the best assignment (according to given metrics) between software
tasks and hosting nodes by taking into account tasks’ requirements and nodes’
capabilities;

• finding the best set (according to given metrics) of network protocols by taking
into account communication requirements and the presence of a legacy network
infrastructure.

The last distinguishing feature is a strict relationship with the environment. In
many IoT applications, the position of “things” is a constraint for the network.
For instance, networked sensors and actuators should be placed where data should
be acquired, or action should be performed, respectively. This fact affects the
communication architecture significantly. For instance, the position of smart meters
requires the use of radio-frequency bands that can propagate through thick walls.
Finally, the number and position of nodes affect the communications among them
and application performance.

3.2 The Simplified ISO/OSI Reference Model and IoT

This section is devoted to introducing the main telecommunication concepts. It starts
by defining some terms that will be used in the following text. Then, the telecommu-
nication layered architecture is described with the various communication functions.
Finally, the main standardization bodies are introduced.

3.2.1 Fundamental Terminology

3.2.1.1 Network Nodes

A network consists of nodes exchanging data over links. Nodes that host applications
are called end nodes, while nodes that connect links to create the network are called
intermediate systems. Nodes are connected to link through interfaces. In IoT appli-
cations, the term Machine-to-Machine (M2M) communications is very common to
emphasize that communications takes place between unmanned “things” and not
people using computers.

3.2.1.2 Links and Topologies

Each link is made of a physical medium, e.g., a radio-frequency band, a copper wire,
or an optical fiber. The physical medium and, optionally, some protocols over it
represent the so-called channel which can be considered an abstract view of the link.
A link can move data in a single direction (unidirectional link), in both directions
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Fig. 3.2 Main network topologies: (a) star, (b) tree, (c) mesh

alternatively (half-duplex link) or simultaneously (full-duplex link). The data flow
exiting the user’s interface is named uplink channel, while the opposite one is named
downlink channel.

Nodes and links can be arranged in different ways known as topologies as
depicted in Fig. 3.2. The simplest topology is the point-to-point network. A slightly
more complex (and useful) topology is the star in which a central node is an
intermediate system that connects peripheral nodes. More stars can be joined into
a tree. Stars and tree are very common topologies in the Edge Network of IoT
applications. Stars are usually employed when several sensors collect data and
transmit them to the Internet. In this case, the maximum distance between the sensor
and the gateway is given by the range of every single link. Trees are used to extend
the range of the network by using multi-hop communications. In stars and trees,
there are no multiple paths between nodes, thus simplifying the routing of data but
also sacrificing redundancy. In mesh networks, the interconnection graph contains
cycles which provide more routing opportunities and thus more reliability.

3.2.1.3 Quality of Service

The quality offered by a channel is named quality of service – QoS – and consists
of three main parameters, i.e., capacity, delay, and bit error rate. Capacity is the
maximum number of bits that can be delivered reliably over the channel. The delay
is the difference between the time of leave of a bit from the transmitter node and the
time of its arrival at the receiver node. The error rate is the percentage of bit values
that are erroneously read by the receiver considering all the transmitted bits. It is
worth noting that QoS depends on the characteristics of the physical medium as well
as of all protocols used over it. A physical medium may have a significant bit error
rate (e.g., a radio link), but a retransmission technique provided by a protocol over it
can reduce such rate. The term bandwidth refers to the frequency interval (reported
in Hertz) used to transmit bits at the physical level. This feature is used to allocate
various communications of the electromagnetic spectrum. People may use this
term with the same meaning as capacity, but this practice is formally wrong since
bandwidth is measured in Hertz while capacity is measured in bit/s. Actually, at the
physical level, the relationship between bandwidth and capacity is given by the mod-
ulation scheme, and, given it, the higher is the bandwidth, the higher is the capacity.
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PAN
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MAN

WAN

Fig. 3.3 View of an IoT network at different physical sizes

If we observe communications from node’s perspective, the physical bitrate is the
number of bits injected into the physical link in the time unit. Instead, the amount
of data transferred in the time unit from the user’s perspective is named throughput
or data rate and is usually lower because of the overhead of protocols. The physical
bitrate is also known as wire speed even if in wireless communications, there is no
wire.

3.2.1.4 Network Size

The traditional classification among personal area network (PAN), local area
network (LAN), metropolitan area network (MAN), and wide area network (WAN)
should be specialized in case of IoT applications (Fig. 3.3). PAN involves nodes
less than one meter apart and can be deployed around a body or a machine. LAN
involves nodes spanning a private premise over a maximum range of 2–3 km; it is
used for ambient intelligence or factory automation. MAN regards nodes spanning
over a public city area and can be used to implement smart city applications.
WAN regards nodes distance of several kilometers in a public area. Usually PAN
and LAN use protocols optimized for short-range communications and exploiting
unlicensed radio frequencies, while MAN and WAN use protocols allowing long-
range communications, most of them exploiting cellular network standards. In the
specific context of IoT, some special names have been derived from the previously
described acronyms. Low rate wireless PAN (LR-WPAN) is a term used in the
specific context of IEEE 802.15.4 3.3.4. Low-power WAN (LP-WAN) is a term
used in the context of LoRaWAN 3.3.9, LTE-M 3.3.17.5, and Sigfox 3.3.10.
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Client Server
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a b

Fig. 3.4 Main communication patterns in IoT applications: (a) client/server, (b) publish/subscribe

3.2.1.5 Communication Patterns

Network nodes communicate each other by following predefined patterns. The most
used pattern is called client/server. As depicted in the message sequence chart of
Fig. 3.4a, the Client starts the interaction by asking something to the Server that
should be in listening state. Then the Server answers and the interaction ends. This
pattern requires that the Client knows the address of the information provider (i.e.,
the Server), and this is not always the case, especially in IoT networks. For instance,
one may be interested in the temperature of the room without knowing the address
of each temperature sensor inside it. Therefore a more complex pattern can be used,
named publish/subscribe. As shown in Fig. 3.4b, the device that needs information,
whose role is named Subscriber, is assumed to know a third-party device, whose
role is named Broker, that receives data from various sources named Publishers and
forwards it to various Subscribers. Subscription and publishing are performed for a
specific topic of interest to avoid broadcasting undesired data.

3.2.2 The ISO/OSI Layers

In general, data transfer between two or more end nodes of the network is a complex
task, and the usual engineering approach consists in decomposing it into smaller
and simpler problems. In telecommunication, decomposition is depicted as a set of
layers, from the user down to the physical medium. As depicted in Fig. 3.5, there
are seven layers in the original ISO/OSI Reference Model [4] and five layers in the
most used version named Simplified ISO/OSI Model since the upper three layers of
the original ISO/OSI model are merged into a single layer in the Simplified ISO/OSI
Model.

As depicted in Fig. 3.6, at each layer there are two communication entities
(denoted by rounded rectangles) that interact each other by exchanging data
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Fig. 3.5 Comparison
between the original ISO/OSI
Reference Model and the
Simplified ISO/OSI
Model [4]
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Fig. 3.6 Upper part: PDU exchange at the different layers of the Simplified ISO/OSI Model: two
end nodes and an intermediate system are represented. Lower part: in the IP context end nodes are
called hosts and intermediate systems are called routers

messages named Protocol Data Unit (PDU). The noun PDU is the ISO/OSI term,
while the following synonyms are often used in standard-specific contexts: packet,
datagram, frame, and segment.

Figure 3.7 details PDU exchange from node’s perspective. User’s data comes
from the upper layer of the transmitting end node and goes down through the layers.
At each layer the corresponding communication entity performs a communication
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Fig. 3.7 Protocols, PDU and headers in the Simplified ISO/OSI Model [4]

function through the implementation of a protocol and adds a header in front of
data to control such protocol in the interaction with the corresponding counterpart
at the receiving end node; header information and data constitute the PDU. Then,
such entity calls services provided by the lower-layer entity to transmit the resulting
PDU. At Layer 2, also a trailer is added at the end of the PDU to delimit it. At the
lowest layer, all these bits are physically transmitted on the medium.

A protocol, and thus the corresponding entities implementing it, can provide
different kinds of services:

• Unacknowledged connectionless service: it just provides the PDU transmission
without any guarantee on reception;

• Acknowledged connectionless service: PDU reception is guaranteed by using
acknowledge and retransmission which increases the reliability of the communi-
cation;

• Connection-oriented service: PDU flow is preceded by the establishment of the
so-called connection, i.e., the logic grouping of the PDUs, so that acknowledges
and state information can be used to maximize reliability and achieve a given
QoS.

PDUs generated by a node can be of three different types:

• Unicast. Their destination is a specific interface of a specific node. This is the
usual case in which a user wants to send data from node A to node B. In this case
the PDU header contains the address of the destination.

• Broadcast. Their destination is all the interfaces of the network. This mechanism
is used when the transmitting node wants to either announce or ask something
to all neighbors without the need to repeat the message for each different
destination. In this case the PDU header contains a special address representing
all interfaces.

• Multicast. Their destination is a subset of the interfaces of the network. This
mechanism is used to reach destinations that satisfy a given property. In this case
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the PDU header contains a special address identifying a group of interfaces. Each
receiver interested in this kind of communication should listen to PDUs reporting
this group address.

The Simplified ISO/OSI Model is shown in Fig. 3.6, and its layers are described
below.

3.2.2.1 Application Layer

It is responsible for defining how application data are exchanged between the end
nodes, the message types that implement the application logic (e.g., the format of the
message used to transfer a temperature), and the semantic of application data (e.g.,
a temperature value with respect to a humidity value). In the Simplified ISO/OSI
Model, this layer includes aspects that are split in different layers in the full ISO/OSI
Model, i.e., Presentation Layer devoted to data representation and encryption and
Session Layer devoted to session establishment, management, and recovery.

3.2.2.2 Transport Layer

It performs protocol multiplexing, i.e., addressing the different processes running
at the Application Layer. It is worth referring to well-known network architecture,
i.e., TCP/IP, to better understand the role of this layer. In the Transport Layer of the
TCP/IP architecture, there are two alternative protocols, i.e., Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP). TCP is a connection-oriented
protocol; therefore, it provides a reliable and byte-oriented transport service. About
80% of the IP PDUs belonging to a TCP stream do not deliver actual data but are
devoted to connection management and acknowledgment. Furthermore, connection
establishment and retransmission of lost PDUs take time, and they are not suitable
for real-time communications. UDP just provides encapsulation of application
data into IP PDUs without any effective error control. It only addresses the basic
functionality of protocol multiplexing. In IoT applications, UDP is usually the best
choice [5] since:

• devices usually transmit small messages (e.g., a temperature sample) that do not
need to be fragmented and re-assembled as well as acknowledged;

• TCP connection overhead is not acceptable for low power wireless transmissions;
• devices may frequently go into sleep mode due to energy constraints; thus, it is

infeasible to maintain a long-lived TCP connection;
• some applications (e.g., device actuation) may have a low-latency requirement,

which may not tolerate the delay caused by TCP connection establishment.

However, TCP is still used in IoT applications when web services are exploited (see
Sect. 3.4.3) since they are conveyed by HTTP/HTTPS application protocols which
are delivered over TCP connections.
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3.2.2.3 Network Layer

It is responsible for routing PDUs in tree and mesh topology thus increasing network
coverage with respect to star topology.

The most common protocol at the Network Layer is the Internet Protocol (IP).
There are two options for IP protocol, i.e., IP Version 4, the traditional one, and
the new IP Version 6 which is spreading over the Internet. The former is not well-
optimized for low data rate transmissions, while the latter is very flexible, and one
of its flavors, named 6LoWPAN and described in Sect. 3.3.14, has been specifically
designed for wireless IoT transmissions.

IP provides an unacknowledged connectionless service. Each network interface
has an IP address (32 bits in IPv4 and 128 bits in IPv6) consisting of a network prefix
and a remaining part which is interface-specific. Each PDU contains the source and
destination address for the delivery. All the interfaces on the same physical medium
have the same network prefix thus simplifying the routing process. IP networks are
created by connecting end-nodes (named hosts in IP terminology) to intermediate
systems named routers which handle PDU delivery to the destination interface in
a hop-by-hop way. Figure 3.6 reports the Simplified ISO/OSI Model for two hosts
connected through a router. Layer 4 and 5 PDUs go unchanged through the router
as if it were not present (for this reason, Layer 4 and 5 are grouped under the name
host layer). The router handles the three lowest layers (grouped under the name
media layer). In particular, forwarding decision is performed at Layer 3 according
to routing rules.

IoT applications that use IP protocol are widespread since, in this case, the inter-
operation with traditional Internet applications is straightforward.

3.2.2.4 Data Link Layer

It deals with the communication on each shared physical medium by identifying the
nodes’ interfaces and regulating the access to the medium. Since the simultaneous
transmission of two or more messages on the same physical medium corrupts all
of them, an arbitration policy should be adopted to share a common medium as
the wireless channel. There are two main approaches, i.e., Carrier Sense Multiple
Access (CSMA) born with Ethernet 40 years ago and Time Division Multiple
Access (TDMA) taken from telephone networks. In CSMA, a node willing to send
a message checks whether the medium is free and in that case starts transmitting.
Multiple transmitters recover from collisions by resending the message after a
random delay. In TDMA, a master node keeps synchronized all the other nodes
by sending a periodic broadcast message (usually denoted as beacon) thus defining
a periodic time interval named superframe divided into time slots. Each node is only
allowed to transmit in a specific time slot to avoid collisions. CSMA is simple thus
reducing the software size but may lead to non-deterministic delays and waste of
energy to sense the channel. TDMA leads to deterministic periodic transmissions
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but requires the presence of a master which may become a point of failure. CSMA
is preferred where transmission patterns are not regular (e.g., messages triggered by
asynchronous events) and variable delays are not an issue. TDMA is preferred in
closed-loop control systems where messages are scheduled.

3.2.2.5 Physical Layer

It deals with the transmission of bits on the medium. Many IoT applications exploit
radio transmissions by using specific frequency intervals (named frequency bands)
of the electromagnetic spectrum. Transmissions over different frequency bands do
not interfere each other and can go in parallel, but two transmissions cannot be
performed on the same frequency band simultaneously. For this reason, in general,
the allocation of transmissions in the electromagnetic spectrum is regulated by
the government. Frequency bands assigned by the government to specific bodies
(usually telecommunication providers) are named licensed bands. They are used
in cellular networks. Other frequency bands can be freely used without asking
the government for a permit provided that the transmitted radiated power is kept
below a given threshold and the number of sent PDU per time unit is kept under a
given threshold; such bands are named unlicensed bands. Traditionally, local area
networks (and their evolution as personal area network) use unlicensed bands, while
commercial telecommunication networks use licensed bands.

There are unlicensed bands in various positions of the spectrum. Some prop-
erties of electromagnetic signals depend on frequency value. Bands below 1 GHz
are named sub-gigahertz bands. Their propagation properties are similar to old
FM transmissions, i.e., radio signals go around obstacles and can propagate for
tens of kilometers. Vice versa at frequencies above 1 GHz (e.g., around 2.4 and
5 GHz as in Wi-Fi) radio signals behave similarly to light rays and require Line-
of-Sight (LoS) propagation between transmitter and receiver. However physical
bitrate is proportional to frequency. Communication standards use such different
bands according to their application field. For instance, network architectures for
agricultural monitoring and smart meter reading use sub-gigahertz bands for their
excellent propagation capability considering that the required bitrate is low. Vice
versa 2.4/5 GHz bands are used when the required data rate is high, and deployment
place does not create LoS issues.

3.2.3 Standardization Bodies

Standardization bodies are organizations that coordinate the development of new
standards. Standardization bodies can cover specific areas, like the Institute of
Electrical and Electronics Engineers (IEEE) which gather partners interested mainly
into electrical and electronics engineering and computer science, or a wider
selection of topics, like the International Organization for Standardization (ISO).
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Nowadays, there are mainly three types of standards [6]:

• de facto: those standards that are followed by informal convention or dominant
usage.

• de jure: those standards that are part of legally binding contracts, laws or
regulations

• voluntary: those standards which are published and available for people to
consider for use.

3GPP

The 3rd Generation Partnership Project (3GPP) unites seven telecommunications
standard development organizations (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA,
TTC), known as “Organizational Partners” and provides their members with a
stable environment to produce the Reports and Specifications that define 3GPP
technologies [7]. The project covers cellular telecommunications network technolo-
gies, including radio access, the core transport network, and service capabilities
– including work on codecs, security, and quality of service – and thus provides
complete system specifications. The specifications also provide hooks for non-radio
access to the core network and for interworking with Wi-Fi networks.

ITU

International Telecommunication Union (ITU) is a specialized agency of the
United Nations (UN) that is responsible for issues that concern information and
communication technologies [8]. ITU coordinates the shared global use of the radio
spectrum, promotes international cooperation in assigning satellite orbits, works to
improve telecommunication infrastructure in the developing world, and assists in
the development and coordination of worldwide technical standards [9].

IEEE

Institute of Electrical and Electronics Engineers (IEEE) is a professional association
with a special interest in electrical and electronic engineering, telecommunications,
computer engineering, and related disciplines [10]. All working groups address
standardization. The most relevant working group for this chapter is 802 and, in
particular, 802.11 (Wi-Fi) and 802.15 (personal area networks).

ISO

The International Organization for Standardization (ISO) is an independent, non-
governmental organization promoting the development of proprietary, industrial,
and commercial standards [11]. It is the world’s largest developer of voluntary
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international standards and facilitates world trade by providing common standards
between nations [12]. ISO standards help businesses increase productivity while
minimizing errors and waste. By enabling products from different markets to be
directly compared, they facilitate companies in entering new markets and assist in
the development of global trade regularly. The standards also serve to safeguard
consumers and the end users of products and services, ensuring that certified
products conform to the minimum standards set internationally.

ETSI

The European Telecommunications Standards Institute (ETSI) is an independent,
not-for-profit, standardization organization in the telecommunications industry in
Europe, headquartered in Sophia Antipolis, France, with worldwide projection [13].
ETSI deals with telecommunications, broadcasting, and other electronic com-
munications networks and services. ETSI is a European Standards Organization
supporting European regulations and legislation through the creation of harmonized
European standards. Only standards developed by the three ESOs (Cen, Cenelec,
and ETSI) are recognized as European Standards (ENs). ETSI is a member of 3GPP
which develops specifications for advanced mobile communications including 5G
as well as oneM2M which develops specifications for the most efficient deployment
of machine-to-machine communications systems.

IETF

The Internet Engineering Task Force (IETF) is an open organization which develops
and promotes voluntary Internet standards, in particular, the standards that comprise
the Internet protocol suite (TCP/IP) [14]. The IETF is organized into a large number
of working groups and informal discussion groups, each dealing with a specific topic
and operates in a bottom-up task creation mode, largely driven by these working
groups [15]. IETF standards are named Request For Comments (RFC) or Internet
Draft.

3.2.4 IoT Network Standards and the Simplified ISO/OSI
Model

In recent years, many standardization bodies and industrial alliances have proposed
new standards or adapted a previous one for IoT scenarios. A standard is a set of
recommendations regarding communication functions belonging to one or more
layers explained in Sect. 3.2.2. Therefore a possible way to present and compare
them is showing their coverage of the Simplified ISO/OSI Model as done in Fig. 3.8.
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Fig. 3.8 Mapping of IoT network standards on the Simplified ISO/OSI Model

From Fig. 3.8, the potentiality of each standard can clearly be identified. For
instance, both IEEE 802.15.4 and Wi-Fi cover Physical and Data Link Layers.
Therefore they, like all the standards covering the same layers, can be seen as
different alternatives to connect nodes on a wireless medium. ZigBee standard
covers all layers over Data Link Layer [16], and therefore it is not an alternative
to IEEE 802.15.4.

From the same figure, we can see standards that do not cover the Network Layer.
They cannot be used, alone, to create tree and mesh networks since routing is
implemented at the Network Layer. A particular case is given by Bluetooth that
does not support routing in the core set of protocols but rather in a specific Mesh
Profile in Bluetooth 4.0 Low Energy [17]. Theoretically, we can say that routing is
implemented at Application Layer in this case.

A set of protocols belonging to different vertically adjacent layers constitutes a
protocol stack. From the same figure we can see that Bluetooth and Z-Wave stan-
dards provide a full protocol stack, i.e., these specifications cover communication
functions belonging to all layers. In all other cases, more standards can be combined
to create a full protocol stack to be used in actual applications. For instance, IP
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Protocol (either version 4 or version 6) can be used over IEEE 802.15.4, Wi-Fi,
LoRaWAN, and all cellular standards. Some combinations are mandatory (e.g.,
ZigBee or 6LoWPAN over IEEE 802.15.4, ISA100.11a or Thread with UDP), while
others are optional (e.g., IP over LoRaWAN or over cellular networks).

In the rest of the chapter, the standards reported in Fig. 3.8 will be presented in
details, but it is worth referring to Fig. 3.8 to recall their position in the protocol
stack. Standards that cover the Physical Layer fall into two classes depending on
the type of adopted frequency bands, i.e., licensed or unlicensed. Cellular networks
described in Sect. 3.3.17 use licensed frequency bands, while all other standards
adopt unlicensed frequency bands.

3.3 IoT Network Technologies and Standards

3.3.1 Modbus

The Modbus protocol was created in 1979 by Modicon (now Schneider Electric)
to share data between programmable logic controllers (PLCs) [18]. The open and
royalty-free specification of the protocol, along with its simplicity, allowed it to
become the first widely accepted de facto standard for industrial communication.
Modbus enables client/server communication between a master device and many
slave devices connected to the same network, for example, a system that measures
temperature and humidity and communicates the results to a computer. Modbus is
often used to connect a supervisory computer with a remote terminal unit (RTU) in
supervisory control and data acquisition (SCADA) systems. There are many variants
of Modbus protocol:

• Modbus RTU It uses serial communication standards such as RS-232 and RS-
485. Devices can be connected in a linear tree topology also known as daisy
chain in which each node act as both end node and intermediate system relaying
messages for the other nodes. It uses a compact, binary representation of the data
for protocol communication. The RTU format follows the commands/data with
a cyclic redundancy check checksum as an error check mechanism to ensure the
reliability of data. Modbus RTU is the most common implementation available
for Modbus. A Modbus RTU message must be transmitted continuously without
inter-character hesitations. Modbus messages are separated by idle periods.

• Modbus ASCII It is used in serial communication and makes use of ASCII
characters for protocol communication. The ASCII format uses a longitudinal
redundancy check checksum. Modbus ASCII messages are framed by leading
colon (“:”) and trailing newline (CR/LF).

• Modbus Plus (Modbus+, MB+ or MBP) It is proprietary to Schneider Electric,
and unlike the other variants, it supports peer-to-peer communications between
multiple masters. It requires a dedicated coprocessor to handle fast HDLC-like
token rotation. It uses twisted pair at 1 Mb/s and includes transformer isolation
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at each node, which makes it transition/edge-triggered instead of voltage/level-
triggered. Special hardware is required to connect Modbus Plus to a computer,
typically a card made for the ISA, PCI or PCMCIA bus.

• Modbus TCP/IP or Modbus TCP It is a Modbus variant used for communi-
cations over TCP/IP networks, connecting over port 502. It does not require a
checksum calculation, as lower layers already provide checksum protection.

• Modbus over TCP/IP or Modbus over TCP or Modbus RTU/IP. It is a
Modbus variant that differs from Modbus TCP in that a checksum is included
in the payload as with Modbus RTU.

• Modbus over UDP Some have experimented with using Modbus over UDP on
IP networks, which removes the overheads required for TCP.

The last three variants were developed to take advantage of the benefits of the
TCP/IP architecture over Ethernet networks. The IP layer provides addresses and
routing functionality, and Ethernet implements medium access control and physical
transmission.

The core part of all Modbus messages contains a device identifier as destination
address, a function code (basically to denote read or write operations), and a data
field to handle data or command values. Depending on the specific Modbus variant,
such fields are preceeded and followed by delimiters and an error checking field.

3.3.2 Near-Field Communication (NFC)

Near-field communication (NFC) is a set of communication protocols that enable
two electronic devices to establish communication by bringing them within 4 cm
(1.6 in) of each other. This is sometimes referred to as NFC/CTLS (Contactless) or
CTLS NFC [19, 20]. The standardization body is NFC Forum.

NFC devices are used in contactless payment systems, similar to those used in
credit cards and electronic ticket smartcards and allow mobile payment to replace
or supplement these systems. NFC-enabled devices can act as electronic identity
documents and key cards. NFC is also used for social networking, for sharing
contacts and small files. Even if NFC offers a low-speed connection, its setup is
simple, and it can be used to bootstrap more capable wireless connections.

NFC is a particular case of radio-frequency identification (RFID) technology
which employs short-range electromagnetic induction between two loop antennas
as a communication channel. NFC operates within the globally available unlicensed
radio-frequency ISM band of 13.56 MHz on ISO/IEC 18000-3 air interface at rates
ranging from 106 to 424 kb/s. NFC always involves an initiator and a target; the
initiator actively generates an RF field that can power a passive target. This enables
NFC targets to take very simple form factors such as unpowered tags, stickers,
key fobs, or cards. NFC peer-to-peer communication is possible, provided both
devices are powered. Secure communications are available by applying encryption
algorithms as is done for credit cards.
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Fig. 3.9 NFC communication models: (a) reader/writer, (b) card emulation, (c) peer-to-peer

As shown in Fig. 3.9, each full NFC device can work in three modes:

• NFC reader/writer: it enables NFC devices to read information stored on
inexpensive NFC tags embedded in labels or smart posters;

• NFC card emulation: it enables NFC devices such as smartphones to act like
smart cards, allowing users to perform transactions such as payment or ticketing.

• NFC peer-to-peer: it enables two NFC devices to communicate with each other
to exchange information in an ad hoc fashion.

NFC tags are passive data stores which can be read and under some circum-
stances written to, by an NFC device. They typically contain data (as of 2015
between 96 and 8,192 bytes) and are read-only in normal use, but may be re-
writable. Applications include secure personal data storage (e.g., debit or credit card
information, loyalty program data, personal identification numbers, contacts).

3.3.3 Bluetooth

Bluetooth is a wireless technology standard for exchanging data over short distances
using radio waves in the ISM band from 2.400 to 2.485 GHz from both fixed and
mobile devices, and building personal area networks. It was initially conceived as
a wireless alternative to short-range data cables [21–23], but now the Bluetooth
Special Interest Group (SIG), which manages the standard, has more than 30,000
member companies in the areas of telecommunication, computing, networking, and
consumer electronics. The IEEE standardized Bluetooth as IEEE 802.15.1, but no
longer maintains the standard. The Bluetooth SIG oversees the development of the
specification, manages the qualification program, and protects the trademarks. A
manufacturer must meet Bluetooth SIG standards to market it as a Bluetooth device.
A network of patents applies to the technology, which is licensed to individual
qualifying devices.

Bluetooth standard covers Physical Layer and Data Link Layer while the
so-called Profiles contain aspects that cover Transport and Application Layers.
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Table 3.1 Transmission power and range as a function of the Bluetooth class

Max permitted power Typical range

Class (mW) (dBm) (m)

1 100 20 100

1.5 (BT 5 Vol 6 Part A Sect 3) 10 10 20

2 2.5 4 10

3 1 0 1

4 0.5 −3 0.5

Network Layer functionality is not addressed in Bluetooth since topology is kept
mainly point-to-point. One exception is given by Mesh Profile in Bluetooth 4.0
which calls low-level services to move data over point-to-point links as in a
mesh. Regardless of version, Bluetooth classifies transmitters as a function of
emitted power. Transmission power affects range and energy consumption that
determines battery lifetime or enables energy-harvesting operations. Table 3.1
reports transmission power and range as a function of the Bluetooth class.

3.3.3.1 Bluetooth Versions

All versions of the Bluetooth standard support downward compatibility. Therefore
the latest standard covers all older versions. The main milestones in Bluetooth
development are:

• Bluetooth 1.x. This set is also denoted as Bluetooth Basic Rate (BR). It contains
the first versions of the standard supported by IEEE 802.15.1 working group.
Physical bitrate was up to 721 kb/s. Its target was the basic replacement of cables
and audio transmissions.

• Bluetooth 2.x. Physical bitrate was increased to 3 Mb/s, thanks to Enhanced Data
Rate (EDR) technique. Security was enforced.

• Bluetooth 3.0. Alternative MAC/PHY was introduced to use 802.11 as a high-
speed transport network. Unicast Connectionless Data mode was introduced.
Power control was improved.

• Bluetooth 4.0. It introduces the so-called Bluetooth Low Energy or Bluetooth LE
or simply BLE. The features introduced in the previous versions of the standards
are still maintained and referred to by using the single-word term “Bluetooth” or
“Classic Bluetooth” or “Bluetooth Basic Rate/Enhanced Data Rate (BR/EDR).”
Table 3.2 reports a comparison between Classic Bluetooth and Bluetooth Low
Energy. Compared to Classic Bluetooth, Bluetooth Low Energy is intended to
provide considerably reduced power consumption and cost while maintaining a
similar communication range. Maximum physical bitrate is 1 Mb/s. New profiles
and protocols have been introduced to support IoT applications such as beacon
advertising. Mesh topology was introduced.
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Table 3.2 Comparison of Bluetooth versions

Aspect Classic Bluetooth Bluetooth low energy 4.x

Range 100 m 100 m

Data rate 1–3 Mb/s 1 Mb/s

Throughput 0.7–2.1 Mb/s 0.27 Mb/s

Security 56-/128-bit key 128-bit AES with

Counter Mode CBC-MAC

Robustness Frequency hopping, Frequency hopping,

FEC, fast ASK message integrity check

Latency 100 ms 6 ms

Voice capability yes no

Topology star, tree star, tree, mesh

Power consumption 1 W 0.01–0.5 W

Main use cases Headset, automotive, Headset, automotive, PC, audio,

PC, audio healthcare, sport & fitness, retail

Credit to https://cdn.everythingrf.com/live/Bluetooth-A_636234469544772000.jpg

• Bluetooth 5.x. With respect to BLE, it provides options that can double the
speed (2 Mb/s burst) at the expense of range, or up to fourfold the range at
the expense of data rate, and eightfold the data broadcasting capacity of trans-
missions, by increasing the packet lengths. The increase in transmissions could
be important for IoT devices, where many nodes connect throughout the same
environment. Bluetooth 5 adds functionality for connectionless services such as
location-relevant navigation of low-energy Bluetooth connections. Bluetooth 5.1
introduces direction-finding to improve localization accuracy.

To specify interoperability between Classic Bluetooth and BLE, Bluetooth 4.0
introduces two different configurations:

• Single-mode (BLE, Bluetooth Smart) device. A device that implements BLE and
can communicate with single-mode and dual-mode devices, but not with devices
supporting Classic Bluetooth only.

• Dual-mode (BR/EDR/LE, Bluetooth Smart Ready) device. A device that imple-
ments both Classic Bluetooth and BLE and can communicate with any Bluetooth
device.

Figure 3.10 in three different columns shows logos, protocol stacks, and interopera-
tion modes of Classic Bluetooth, Bluetooth Smart Ready, and Bluetooth Smart.

3.3.3.2 Bluetooth Protocols and Profiles

Figure 3.10 shows the protocol stack of the various Bluetooth configurations. They
share the same separation of:

https://cdn.everythingrf.com/live/Bluetooth-A_636234469544772000.jpg
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Fig. 3.10 Bluetooth protocol stack and interoperation between Bluetooth versions and device
types [24]

• Application. It contains the logic, user interface, and data handling of everything
related to the actual use-case that the application implements. The architecture of
an application is highly dependent on each particular implementation.

• Host. It defines and manages services and attributes for each application domain
and implements the security functionality.

• Controller. It implements the Physical and Data Link Layers.

The Controller stack is generally implemented in a low-cost silicon device
containing the Bluetooth radio and a microprocessor. The Host stack is generally
implemented as part of an operating system, or as a package on top of an operating
system. For integrated devices such as Bluetooth headsets, the host stack and
controller stack can be run on the same microprocessor to reduce mass production
costs; this is known as a hostless system. The upper layer of the Host part of Fig. 3.10
is occupied by the various Bluetooth profiles that provide definitions and semantics
needed to build user applications.

In the following text, a list of basic concepts to understand how Bluetooth
works:

• Physical Layer. Bluetooth uses a radio technology called frequency-hopping
spread spectrum. Bluetooth divides transmitted data into packets and transmits
each packet on one of 79 designated Bluetooth channels. Each channel has a
bandwidth of 1 MHz. It usually performs 1,600 hops per second. Two modula-
tions are available, i.e., basic rate (BR) and Enhanced Data Rate (EDR) allowing
an instantaneous physical bitrate of either 1 Mb/s or 2–3 Mb/s, respectively. The
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Fig. 3.11 Topologies in Bluetooth networks: three piconets forming a scatternet. Nodes’ roles are:
Master (M), Slave (S), Master/Slave (M/S), and Slave/Slave (S/S)

modulation rate for Bluetooth Low Energy is fixed at 1 Mb/s to reduce power
consumption.

• Data Link Layer. Bluetooth is a packet-based protocol with a master/slave
architecture. All devices share the master’s clock. Packet exchange is based on
the basic clock, defined by the master, which ticks at 312.5 μs intervals. Two
clock ticks make up a slot of 625 μs, and two slots make up a slot pair of 1250 μs.
In the simple case of single-slot packets, the master transmits in even slots and
receives in odd slots. The slave, conversely, receives in even slots and transmits
in odd slots. Packets may be 1, 3, or 5 slots long, but in all cases, the master’s
transmission begins in even slots and the slave’s in odd slots. BLE has only
one packet format and two types of packets, i.e., advertising and data packets.
Advertising packets broadcast data for applications that do not need the overhead
of a full connection establishment and discover slaves to connect to them. As
shown in Fig. 3.11, Bluetooth basic topology is a tree named piconet that can be
connected to other trees forming a scatternet. A piconet is an ad hoc network
that links a wireless user group of devices using Bluetooth technology. A piconet
starts with one master connecting up to seven slave devices. The devices can
switch roles, by agreement, and the slave can become the master (e.g., a headset
initiating a connection to a phone necessarily begins as master, i.e., initiator
of the connection, but may subsequently operate as the slave). At any given
time, data can be transferred between the master and one other device (except
for the little-used broadcast mode). The master chooses which slave device to
address; typically, it switches rapidly from one device to another in a round-
robin fashion. Since it is the master that chooses which slave to address, whereas
a slave is (in theory) supposed to listen in each receive slot, being a master is a
lighter burden than being a slave. Being a master of seven slaves is possible;
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being a slave of more than one master is possible. A scatternet is a number
of interconnected piconets. Scatternets can be formed when a member of one
piconet (either the master or one of the slaves) elects to participate as a slave in a
second, separate piconet. The device participating in both piconets can relay data
between members of both ad hoc networks. Using this approach, it is possible to
join together numerous piconets into a large scatternet and to expand the physical
size of the network beyond Bluetooth’s limits in both communication range and
number of devices.

• Host Controller Interface (HCI). It provides standardized communication
between the host stack (e.g., a PC or mobile phone OS) and the controller
(the Bluetooth chip). This interface allows the host stack or controller chip
to be swapped with minimal adaptation. There are several HCI Transport
Layer standards, each using a different hardware interface to transfer the same
command, event, and data packets. The most commonly used are USB (in PCs)
and UART (in mobile phones and PDAs).

• Logical link control and adaptation protocol (L2CAP). It is the lowest layer
of the Host part and its functions include:

– Multiplexing data between different higher layer protocols.
– Segmentation and reassembly of packets.
– Providing one-way transmission management of multicast data to a group of

other Bluetooth devices.
– Quality of service (QoS) management for higher layer protocols.

In basic mode, L2CAP provides packets with a payload configurable up to
64 KB, with 672 bytes as the default size and 48 bytes as the minimum
mandatory supported size. In retransmission and flow control modes, L2CAP
can be configured for reliable or asynchronous data per channel by performing
retransmissions and CRC checks.

• Radio-frequency communication (RFCOMM). It is a simple set of transport
protocols, made on top of the L2CAP protocol, providing emulated RS-232
serial ports (up to 60 simultaneous connections to a Bluetooth device at a time).
The protocol is based on the ETSI standard TS 07.10. RFCOMM is sometimes
called serial port emulation. The Bluetooth serial port profile is based on this
protocol. RFCOMM provides a simple reliable data stream to the user, similar
to TCP. It is used directly by many telephony-related profiles as a carrier for
AT commands, as well as being a Transport Layer for OBEX over Bluetooth.
Many Bluetooth applications use RFCOMM because of its widespread support
and publicly available API on most operating systems. Additionally, applications
that used a serial port to communicate can be quickly ported to use RFCOMM.

• Service discovery protocol (SDP). It is used to allow devices to discover what
services each other support and what parameters to use to connect to them. For
example, when connecting a mobile phone to a Bluetooth headset, SDP will
be used to determine which Bluetooth profiles are supported by the headset
(headset profile, hands free profile, advanced audio distribution profile, etc.) and
the protocol multiplexer settings needed to connect to each of them. Each service
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is identified by a Universally Unique Identifier (UUID), with official services
(Bluetooth profiles) assigned a short form UUID (16 bits rather than the full
128).

• Low Energy Attribute Protocol (ATT). It is similar in scope to SDP but
specially adapted and simplified for Bluetooth Low Energy. It allows a client
to read and/or write certain attributes exposed by the server in a non-complex,
low-power friendly manner.

• Low Energy Security Manager Protocol (SMP). It is used by Bluetooth Low
Energy for pairing and transport specific key distribution.

• Serial Port Profile (SPP). It emulates a serial communication interface (like RS-
232 or a UART). It sends bursts of data between two devices as if there were RX
and TX lines connected between them.

• Generic Access Profile (GAP). It dictates how Bluetooth LE devices interact
with each other. GAP can be considered to define the BLE topmost control
layer, given that it specifies how devices perform control procedures such
as device discovery, connection, security establishment, and others to ensure
interoperability and to allow data exchange to take place between devices from
different vendors [24].

• Generic Attribute Profile (GATT). It establishes in detail how to exchange all
profile and user data over a BLE connection. In contrast with GAP, which defines
the low-level interactions with devices, GATT deals only with actual data transfer
procedures and formats [24]. The GATT Profile specifies the structure in which
profile data is exchanged as depicted in Fig. 3.12. This structure defines basic
elements such as services and characteristics, used in a profile. The top level of
the hierarchy is a profile. A profile is composed of one or more services necessary
to fulfill a use-case. A service is composed of characteristics or references to
other services. Each characteristic contains a value and may contain optional
information about the value. The service and characteristic and the components
of the characteristic (i.e., value and descriptors) contain the profile data and are
all stored in Attributes on the server [25].

• Mesh Profile. It is used by Bluetooth Low Energy devices to communicate with
other Bluetooth Low Energy devices in the network. Each device can pass the
information forward to other Bluetooth Low Energy devices creating a “mesh”
effect.

There are many other profiles in today’s Bluetooth. Some of them, related to
healthcare, sporting, and fitness, boosted the spreading of IoT applications based on
wearable devices, e.g., to monitor blood pressure or physical activity.

Proximity sensing applications have been enabled by the long battery life
of low-energy Bluetooth devices. Manufacturers of iBeacon devices implement
the appropriate specifications for their device to make use of proximity sensing
capabilities supported by Apple’s iOS devices [26]. Relevant application profiles
include:

• FMP, the “find me” profile. It allows one device to issue an alert on a second
misplaced device.
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• PXP, the proximity profile. It allows a proximity monitor to detect whether a
proximity reporter is within a close range. Physical proximity can be estimated
using the radio receiver’s RSSI value, although this does not have absolute
calibration of distances. Typically, an alarm may be sounded when the distance
between the devices exceeds a set threshold.

3.3.4 IEEE 802.15.4

IEEE 802.15.4 specifies the Physical and Data Link Layer for the so-called Low-
Rate Wireless Personal Area Networks (LR-WPANs) [27]. The main objectives of
the standard are ease of installation, reliable data transfer, short-range operation,
extremely low cost, and reasonable battery life while maintaining a flexible and
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Fig. 3.13 Star topology in
IEEE 802.15.4 networks
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Full Function Device

Reduced Function Device

straightforward protocol. Some of the characteristics of an LR-WPAN are as
follows:

• Physical bitrate values of 250, 40, and 20 kb/s in 2450 MHz, 915, and 868 MHz,
respectively.

• Star topology or peer-to-peer communications.
• Hybrid medium access control with mandatory CSMA and optional TDMA.
• Connection-less transmission service with optional acknowledgment.
• Transmission strategies for low power consumption.

Two different device types can participate in an IEEE 802.15.4 network: a Full-
Function Device (FFD) and a Reduced-Function Device (RFD). The FFD can
operate in three modes serving as a personal area network (PAN) coordinator, a
coordinator, or a device. A FFD can talk to RFDs or other FFDs, while a RFD can
talk only to a FFD. a RFD is intended for applications that are extremely simple,
such as a light switch or a passive infrared sensor; they do not have the need to
send large amounts of data and may only associate with a single FFD at a time.
Consequently, the RFD can be implemented using minimal resources and memory
capacity.

In the star topology (Fig. 3.13), the communication is established between
peripheral RFD nodes and a single FFD node acting as central controller, called the
PAN coordinator. The PAN coordinator typically has some associated application
and is either the initiation point or the termination point for network communica-
tions. The PAN coordinator is the primary controller of the PAN; it generates a
unique PAN ID value for the network and keeps track of all peripheral end nodes
that should explicitly associate to it to operate. All devices operating on a 802.15.4
network shall have unique 64-bit addresses. This address may be used for direct
communication within the PAN before network association. During association, the
PAN coordinator assigns short 16-bit addresses to end nodes to reduce the number
of bits transmitted in the PDU. The PAN coordinator might often be mains powered,
while a battery or a natural source will most likely power the end s through the so-
called energy harvesting approach.

For this reason, end nodes are supposed to sleep for a significant part of their
life. Since sleeping nodes cannot hear messages, IEEE 802.15.4 adopts asymmetric
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data transmission, as shown in Fig. 3.14. End nodes willing to send data to the PAN
coordinator can always do it since the coordinator never sleeps. Vice versa, data
messages for a given end node should be stored in the coordinator until the end
node asks whether there are messages for it.

Concerning medium access control, IEEE 802.15.4 defines a flexible solution
that merges CSMA and TDMA approaches and ensures further power saving. If
properly configured, the PAN coordinator sends periodic messages named beacons.
The time between two beacons is named superframe, and its structure is depicted in
Fig. 3.15. It can be divided into three parts. The first part is named Contention Access
Period and implements CSMA policy. The second part is named Contention Free
Period and is divided into a number of time slots in which only a node can transmit.
In the third part no node is allowed to transmit, and therefore they all can sleep to
save power. The presence and length of these parts is decided by the designer for the
best trade-off between CSMA and TDMA operations (see Sect. 3.2.2) and sleeping
time. Such structure is described in the beacon message so that all the end nodes are
synchronized and informed.

IEEE 802.15.4 is a continuously evolving standard [28] and provides Physical
and Data Link Layers for several network architectures such as ZigBee, ISA100.11a,
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WirelessHART, MiWi, 6LoWPAN, Thread, and SNAP. In particular, 6LoWPAN
defines a low data rate version of IPv6 and is itself used by upper layers like Thread.

3.3.5 ZigBee

ZigBee is an IEEE 802.15.4-based specification for a suite of high-level commu-
nication protocols used to create personal area networks with small, low-power
digital radios, such as for home automation, medical device data collection, and
other low-power low-data-rate needs, designed for small-scale projects which need
wireless connection [29]. Hence, ZigBee is a low-power, low data rate, and close
proximity (i.e., personal area) wireless ad hoc network [30, 31]. It is worth noting
that documents describing ZigBee standard do not contain the description of IEEE
802.15.4 whose definition is outside the scope of ZigBee.

The technology defined by the ZigBee specification is intended to be simpler
and less expensive than other wireless personal area networks, such as Bluetooth or
more general wireless networking such as Wi-Fi. Applications include wireless light
switches, home energy monitors, traffic management systems, and other consumer
and industrial equipment that requires short-range low-rate wireless data transfer.

The ZigBee constraint on power consumption limits transmission distances to
10–100 m line-of-sight, depending on power output and environmental charac-
teristics. ZigBee devices can transmit data over long distances by passing data
through a mesh network of intermediate devices. ZigBee is typically used in low
data rate applications that require long battery life and secure networking (128-bit
symmetric encryption keys secure ZigBee networks). ZigBee features a physical
rate of 250 kb/s, best suited for intermittent data transmissions from a sensor or
input device.

ZigBee was conceived in 1998, standardized in 2003, and revised in 2006 as
well as 2008 (ZigBee PRO). The name refers to the waggle dance of honey bees
after their return to the beehive.

3.3.6 ZigBee IP

ZigBee IP is the first open standard for an IPv6-based full wireless mesh networking
solution and provides seamless Internet connections to control low-power, low-
cost devices [32]. It connects dozens of different devices into a single control
network. ZigBee IP was designed to support ZigBee 2030.5 (formerly known as
ZigBee Smart Energy 2). It has been updated to include 920IP, which provides
specific support for ECHONET Lite and the requirements of Japanese Home Energy
Management systems. 920IP was developed in response to Japan’s Ministry of
Internal Affairs and Communications (MIC) designation of 920 MHz for use in
HEMS and Ministry of Economy, Trade and Industry (METI) endorsement of
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ECHONET Lite as a smart home standard. 920IP is the only standard referenced
by the Telecommunications Technology Committee (TTC) which supports multi-
hop mesh networking.

The ZigBee IP specification enriches the IEEE 802.15.4 standard by adding net-
work and security layers and an application framework. ZigBee IP offers a scalable
architecture with end-to-end IPv6 networking, laying the foundation for an Internet
of Things without the need for intermediate gateways. It offers a cost-effective
and energy-efficient wireless mesh network based on standard Internet protocols,
such as 6LoWPAN, IPv6, PANA, RPL, TCP, TLS, and UDP. It also features
proven, end-to-end security using TLS1.2 protocol, Link Layer frame security based
on AES-128-CCM algorithm and support for critical public infrastructures using
standard X.509 v3 certificates, and ECC-256 cipher suite. ZigBee IP enables low-
power devices to participate natively with other IPv6-enabled Ethernet, Wi-Fi, and
HomePlug devices.

From this foundation, product manufacturers can use the ZigBee Smart Energy
version 2 standard to create multi-vendor interoperable solutions. As with any
ZigBee Alliance specification, custom applications, known as manufacturer-specific
profiles, can be developed without multi-vendor interoperability.

Characteristics of ZigBee IP include:

• Global operation in the 2.4 GHz frequency band according to IEEE 802.15.4
Regional operation in the 915 MHz (Americas), 868 MHz (Europe) and 920 MHz
(Japan)

• Incorporates power saving mechanisms for all device classes
• Supports development of discovery mechanisms with a full application confir-

mation
• Supports development of pairing mechanisms with a full application confirma-

tion
• Multiple star topology and inter-personal area network (PAN) communication
• Unicast and multi-cast transmission options
• Security key update mechanism
• Utilizes the industry standard AES-128-CCM security scheme
• Supports Alliance standards or manufacturer-specific innovations

3.3.7 WirelessHART

WirelessHART is a wireless extension of the Highway Addressable Remote Trans-
ducer Protocol (HART) [33] used in factory automation and process control. In April
2010, WirelessHart was approved by the IEC as the wireless international standard
IEC 62591-1. Figure 3.16 shows a complete example of WirelessHART architecture
which includes:

• field devices performing field sensing or actuating functions;
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• router devices, i.e., all devices that have the ability to route packets in the
wireless mesh network;

• adapters that bind wired HART devices into the wireless mesh network;
• handheld devices carried by mobile users such as plant engineers and service

technicians;
• a single gateway (may be redundant) that functions as a bridge to the host

applications;
• access points that connect wireless mesh network to the gateway;
• a single Network Manager (may be redundant) that may reside in the gateway

device or be separate from the gateway;
• a Security Manager that may reside in the gateway device or separate from the

gateway.

In WirelessHART, communications are precisely scheduled based on TDMA and
employ a channel hopping scheme for added system data bandwidth and robustness.
The vast majority of communications are directed along graph routes in the wireless
mesh network. Graphs are a routing structure that creates a connection between
network devices over one or more hops and one or more paths. Scheduling is
performed by a centralized Network Manager which uses overall network routing
information in combination with communication requirements that devices and
applications have provided. The schedule is translated into transmit and receive
slots and transferred from the Network Manager to individual devices; devices are
only provided with information about the slots for which they have to transmit or
receive requirements. The network manager continuously adapts the network graphs
and network schedules to changes in the network topology and communication
demand [33].

Scaling WirelessHART to service large numbers of wireless devices and high
network data rates can be accomplished in a number of ways. One of the ways
to do this is to use multiple access points as shown in Fig. 3.16. This architecture
allows for a WirelessHART centralized network management of the wireless
communications and has the following advantages:

• it coordinates the wireless resources to prevent islands that overlap in the RF
space from interfering;

• it reuses wireless resources in non-overlapping islands to scale the network to
large number of devices and higher system throughput;

• it provides multiple backbone access points for higher throughput to the back-
bone network (each access point has the potential throughput of 100 packets per
second);

• it provides access points to connect to backbones that go to different plant
organizations and separate plants;

• WirelessHART islands may represent different parts of a plant like separate
operations or separate geographic regions.

Figure 3.17 shows the protocol stack of WirelessHART. Physical and Data
Link Layers are based on the IEEE 802.15.4-2006 standard using 2.4 GHz band
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Fig. 3.16 Example of WirelessHART architecture using a single backbone to connect multiple
wireless zones

and beacon-based mode. Upper layers have been designed specifically for Wire-
lessHART. The Network Layer is responsible for several functions, the most
important of which are routing and security within the mesh network. Whereas
the Data Link Layer moves packets between devices, the Network Layer moves
packets end-to-end within the wireless network. The Network Layer also includes
other features such as route tables and time tables. Route tables are used to route
communications along graphs. Time tables are used to allocate communication
bandwidth to specific services such as publishing data and transferring blocks of
data. Network Layer security provides end-to-end data integrity and privacy across
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the wireless network. Transport Layer provides an acknowledged, connectionless
delivery service to the Application Layer. Application Layer is HART which defines
data types and commands in factory automation domain.

3.3.8 Wi-Fi (IEEE 802.11 Family)

IEEE 802.11 is part of the IEEE 802 set of LAN protocols and specifies the set
of Physical and Data Link Layer protocols for implementing wireless local area
network (WLAN) Wi-Fi computer communication in various frequencies, including
but not limited to 2.4, 5, and 60 GHz frequency bands [34, 35].

It is the world’s most widely used wireless computer networking standard, used
in most home and office networks to allow laptops, printers, and smartphones to
talk to each other and access the Internet without connecting wires. It was created
and maintained by the Institute of Electrical and Electronics Engineers (IEEE)
LAN/MAN Standards Committee (IEEE 802). The base version of the standard
was released in 1997 and has had subsequent amendments. The standard and
amendments provide the basis for wireless network products using the “Wi-Fi”
brand. While each amendment is officially revoked when it is incorporated in the
latest version of the standard, the corporate world tends to market to the revisions
because they concisely denote capabilities of their products. As a result, in the
marketplace, each revision tends to become its own standard.

3.3.9 LoRaWAN

LoRaWAN specification allows creating low-power wide area networks (LP-WANs)
with large geographical coverage [36]. It consists of a Physical Layer named LoRa
and a Data Link Layer protocol named LoRaWAN MAC. LoRa is a patented
wireless communication technology developed by Cycleo (Grenoble, France) and
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acquired by Semtech in 2012. It provides very long-range transmission, thanks to
sub-gigahertz frequency bands and chirp spread-spectrum modulation. LoRaWAN
is the Data Link Layer protocol over LoRa. Version 1.0 of the LoRaWAN specifi-
cation was released in June 2015. LoRaWAN is also responsible for managing the
communication frequencies, data rate, and power for all devices [37, 38].

The upper part of Fig. 3.18 shows the LoRaWAN topology with the various
network roles. LoRaWAN architecture is deployed in a star topology in which
gateways relay messages between end devices and the central network server. The
gateways are connected to the network server via a backhaul network (e.g., standard
IP). Each of them acts as a transparent bridge, simply converting RF packets into IP
packets and vice versa. LoRaWAN links consist of the uplink channel from the end
device to the network server and the downlink channel from the network server to the
end device. Each end device can transmit to one or many gateways which should be
kept synchronized. A stable source usually powers each gateway. Differently from
Wi-Fi and IEEE 802.15.4, a gateway is not the coordinator of the network and does
not manage join operations of end devices. The network server is the coordinator,
whereas, association management is performed by the join server. Application
logic is split between end devices and the application server. Network Server, Join
Server, and Application Server may reside in the same physical node. Figure 3.19
shows the various LoRaWAN protocol stacks as a function of the network role. The
“transparency” of the gateway ensures efficient operations since:

• the gateway is kept simple;
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• messages can go through different gateways to allow mobility (no handover is
needed) and reliability (messages can go through multiple paths);

• new gateways can be added when the number of end devices increases.

All communication packets between end devices and gateways also include a
variable data rate (DR) setting. The selection of the DR allows a dynamic trade-off
between communication range and message duration. Also, due to the spread-
spectrum technology, communications with different DRs do not interfere with each
other and create a set of virtual “code” channels increasing the capacity of the
gateway. LoRaWAN network servers manage the DR setting and RF output power
for each end device individually by using an adaptive data rate (ADR) scheme,
which maximizes both battery life of end devices and the overall network capacity.
LoRaWAN physical bitrate ranges from 250 b/s to 50 kb/s. The use of multichannel
multi-modem transceiver in the gateway is recommended to increase the efficiency
of the gateway by working on different frequency bands.

Data rate is changed by acting on the spreading factor (SF) of chirp modulation.
LoRa operates with spread factors from 7 to 12. SF7 is the shortest time on air,
SF12 will be the longest. Each step-up in spreading factor doubles the time on air
to transmit the same amount of data. With the same bandwidth, longer time on
air results in fewer data transmitted per unit of time. LoRaWAN uses a different
configuration of frequencies, spreading factors, and data rates depending on where
the devices are located in the world. Table 3.3 reports such data for some common
bands, i.e., 868 and 433 MHz in Europe, 780 MHz in Canada, and 923 MHz in Asia.
It is worth noting that DR7 uses FSK modulation instead of chirp modulation.

LoRaWAN uses unlicensed sub-GHz bands that are regulated in all countries
they can be used. The rules are based on two restrictions:

• Transmission power: it is the maximum power an emitter can use on the channel
when it is communicating. 25 mW is the typical power the device uses for
communicating.

• The duty cycle – it is defined as the maximum ratio of time on the air per hour.
For instance, 1% means a device can transmit 36 s per hour, not more. Duty Cycle
is usually applicable for each sub-band.
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Table 3.3 LoRa data rates

Data rate type Configuration Physical bitrate (b/s) Max payload size (byte)

DR0 SF12/125 kHz 250 59

DR1 SF11/125 kHz 440 59

DR2 SF10/125 kHz 980 59

DR3 SF9/125 kHz 1,760 123

DR4 SF8/125 kHz 3,125 230

DR5 SF7/125 kHz 5,470 230

DR6 SF7/250 kHz 11,000 230

DR7 FSK: 50 kb/s 50,000 230
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Fig. 3.20 Organization of 868 MHz band in Europe

In Europe, LoRaWAN shares the 868 MHz unlicensed band [40] with Sigfox
(discussed in Sect. 3.3.10). This band is regulated by different norms like ERC-
REC-70-3E [41] and have national norms in relation. Basically, the 868 MHz band
ranges from 865 to 870 MHz and is split in six different sub-bands where different
rules apply. The six channels are defined as in Fig. 3.20. The first channel (865.0–
868.0) is a 25 mW/1% channel, it is a large area to add LoRa channels, but it is
also a zone used by RFIDs. The more interesting channel is the second one, from
868.0 to 868.6; on these 600 kHz, we have the 2000 Sigfox channels and the three
standard LoRaWan channels (868.1, 868.3, and 868.5 MHz). As a consequence the
duty cycle has to be divided by the number of channels in the same band. As the
standard configuration has three channels in the same sub-band, the duty cycle of
each of the channel is 0.33%. But, if you allocate some channels on other bands
(like 869.7–870), you can set a 1% duty cycle more on this one. So your device can
be able to communicate 3 × 0.33% on a band plus 1% on the other band. Basically
you can communicate 2% (up-to 3%) with this mechanism. The 868.7 to 869.2 sub-



132 E. Fraccaroli and D. Quaglia

band is a 25 mW area, but the duty cycle is 0.1%; this zone can be interesting to
communicate when an object is emitting once a day: the risk of collision is really
lower and the number of time you will have to re-emit is, as a consequence, lower, so
in this sub-band, you can expect to preserve your energy. The 869.4 to 869.65 zone
is particularly interesting because you can communicate at 500 mW with a 10%
duty cycle. An end device would not be able to exploit such resource when running
on battery but a gateway can use it: the higher power allows to communicate far
away and be heard over the local noise; the larger duty cycle allows the gateway
to communicate with many devices or send a larger amount of data. The last zone
869.7 to 870 is the last 25 mW/1% zone where you can deploy extra LoRaWAN
channels. It is worth noting that this regulation on 868 MHz band applies in Europe,
but similar regulations exist for all other countries.

LoRaWAN has three different classes of operations to address the different
application needs:

• Class A. It is the default operation mode which must be supported by all
LoRaWAN end devices; class A communication is always initiated by the end
device and is fully asynchronous. Each uplink transmission can be sent at any
time and is followed by two short downlink windows, giving the opportunity for
bi-directional communication, or network control commands if needed. This is a
CSMA-type protocol. The end device can enter low-power sleep mode for as long
as defined by its own application: there is no network requirement for periodic
wake-ups. This makes class A the lowest power operating mode while still
allowing uplink communication at any time. Because downlink communication
must always follow an uplink transmission with a schedule defined by the end
device application, downlink communication must be buffered at the network
server until the next uplink event.

• Class B. Devices are synchronized to the network using periodic beacons and
open downlink “ping slots” at scheduled times. This provides the network the
ability to send downlink communications with a deterministic latency, but at the
expense of some additional power consumption in the end device. The latency is
programmable up to 128 s to suit different applications, and the additional power
consumption is low enough to still be valid for battery powered applications.

• Class C. It further reduces latency on the downlink by keeping the receiver of
the end device open at all times that the device is not transmitting (half duplex).
Based on this, the network server can initiate a downlink transmission at any
time on the assumption that the end device receiver is open, so no latency. The
compromise is the power drain of the receiver (up to 50 mW) and so class C
is suitable for applications where continuous power is available. For battery-
powered devices, temporary mode switching between classes A and C is possible
and is useful for intermittent tasks such as firmware over-the-air updates.

LoRaWAN defines two layers of cryptography, i.e., a unique AES 128-bit Net-
work Session Key (NwkSKey) shared between the end device and network server
and a unique AES 128-bit Application Session Key (AppSKey) shared end-to-end
at the application level (lower part of Fig. 3.18). As depicted in Fig. 3.21, NwkSKey
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Fig. 3.21 Use of LoRaWAN
keys in the protection of the
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is used to provide authentication and integrity of packets, while AppSKey provides
end-to-end encryption of the application payload. The keys can be Activated By
Personalization (ABP) on the production line or during commissioning, or can be
Over-The-Air Activated (OTAA) in the field. OTAA allows devices to be re-keyed
if necessary. These two security levels, together with “transparent gateways,” allow
to implement multi-tenant or public shared networks without the network operator
having visibility of the users payload data.

3.3.10 Sigfox

Sigfox is a French network operator founded in 2009 that created and currently
manages a technology and a worldwide infrastructure for wireless LP-WAN based
on unlicensed frequencies. It aims to connect low-power objects, e.g., electricity
meters and smartwatches, which need to be continuously on and emitting small
amounts of data [42–44]. As of October 2018, the Sigfox IoT network has covered
a total of 4.2 million square kilometers in a total of 50 countries and is expanding.
Sigfox has partnered with a number of embedded systems providers such as Texas
Instruments, Silicon Labs, and ON Semiconductor. Sigfox technology is mainly
focused on the access network from “things” to the base station, and therefore it
covers the Physical and Data Link Layers.

At the Physical Layer, Sigfox employs the differential binary phase-shift keying
and the Gaussian frequency shift keying modulations over the unlicensed bands
of 868 MHz in Europe and 902 MHz in the United States. Signals in these
frequencies pass easily around solid objects and can cover large areas even reaching
underground objects while requiring little energy. The physical bitrate ranges from
100 to 600 b/s, depending on the region. Regional regulations also determine the
permitted transmission power and the maximum number of messages per day.
For instance, in ETSI regions, the maximum transmission power is 14 dBm per
device for a maximum transmission time of 2 s and a total of 140 messages per
day. In FCC regions, the maximum transmission power is 22 dBm, for a maximum
transmission time of 0.346 s, with 140 maximum messages per day. To overcome
these limitations, devices transmit at an initial random frequency and then send two
duplicates of the same data at two other randomly frequencies at different time-slots.

At the Data Link Layer, the network is based on star topology with a large set of
Sigfox-managed base stations which monitor the spectrum looking for messages
to be relayed to the cloud through a third-party telecommunication network. A
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device is not attached to a specific base station unlike Bluetooth, IEEE 802.15.4,
Wi-Fi, or cellular protocols. The broadcast message is received by any base station
in the range (three in average, according to Sigfox). The spatial distribution of
base stations, where the same signal can be received under different conditions,
together with message repetition on different frequencies, contributes to increase
reliability considering that unlicensed bands are very crowded. The uplink messages
are 26 bytes long with a 12 bytes data payload. Therefore they take a maximum of
2 s to be transmitted over the air. The payload allowance in downlink messages is
8 bytes. Sigfox technology was mainly conceived for upload operations and the
fact that listening intervals are very limited increases security. Security is mainly
enforced in the core Sigfox network, among base stations and towards the cloud.
Low bit rate and simple radio modulation enable a 163.3 dB link budget for long-
range communications. Sigfox nodes are designed to transmit less than 1 min per
day. This feature together with the absence of a tight connection with the base station
leads to low transmission and computation overhead to maximize the autonomy of
devices.

3.3.11 Z-Wave

Z-Wave is a wireless communications standard used primarily for home automa-
tion [45]. It features a mesh network using low-energy radio waves to communicate
from appliance to appliance, allowing for wireless control of domestic appliances
and other devices, such as lighting control, security systems, thermostats, windows,
locks, and door openers. Like other protocols and systems aimed at the home and
office automation market, a Z-Wave system can be controlled via the Internet from
a smartphone, tablet, or computer and locally through a smart speaker, wireless key
fob, or wall-mounted panel with a Z-Wave gateway or central control device serving
as both the hub controller and portal to the outside. Z-Wave provides Application
Layer interoperability between home control systems of different manufacturers that
are a part of its alliance. Z-Wave Plus is the latest certification standard that enforces
security and automatic configuration. Z-Wave classic is also fully interoperable but
may require more configuration effort.

Z-Wave is a proprietary standard which operates in sub-GHz radio-frequency
bands, at 868.42 MHz in Europe and 908.42 MHz in the United States. Z-Wave
employs the Frequency Shift Keying (FSK) and the Gaussian Frequency Shift
Keying (GFSK) modulations. While Z-Wave has a range of 100 m in open air,
building materials reduce that range, and therefore it is recommended to have a
Z-Wave device roughly every 10 m, or closer for maximum efficiency. Physical
bitrate ranges from 40 to 100 kb/s. Z-Wave is based on a mesh network topology.
This means each (non-battery) device installed in the network can become a signal
repeater. Each Z-Wave network can support up to 232 devices.
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Table 3.4 Standard operation modes of Wireless M-Bus

Mode Frequency (MHz) Description

S (Stationary) 868 Meters that send data few times a day

T (Frequent transmit) 868 Meters that send data several times a day

C (Compact) 868 Higher data rate version of Mode T

N (Narrowband) 169 Long range, narrow band system

R (Frequent Receive) 868 Collector that reads multiple meters
on different frequency channels

F (Frequent Tx and Rx) 433 Frequent bi-directional communication

3.3.12 Wireless M-Bus

Wireless M-Bus or Wireless Meter-Bus is the European standard (EN 13757-4) that
specifies the communication between utility meters and data loggers, concentrators,
or smart meter gateways [46]. It was developed as the European standard for the
networking and remote reading of utility meters.

The Physical Layer derives from the Konnex industrial standard (KNX-RF) [47]
originally using frequency shift keying (FSK) modulation on 868 MHz unlicensed
frequency band with 25 mW max power. Then, several operation modes have been
added to the standard as reported in Table 3.4. Modes S, T, C, and N are most
commonly used with Mode N gaining popularity in the 169 MHz un-licensed
frequency band. Modes F, P, Q, and R are less common. These modes have
unidirectional and bidirectional sub-modes. Devices are arranged in a simple star
topology. No retransmission and channel arbitration procedures are specified in the
standard. KNX-RF applies a very simple listen-before-talk mechanism for channel
arbitration by measuring the received channel power. The Application Layer is
user-defined and may follow well-known standards for smart metering, e.g., Open
Metering System (OMS) [48], Dutch Smart Meter Requirements (DSMR) [49], and
DLMS/COSEM [50].

3.3.13 Optical Wireless Communications

Optical Wireless Communications (OWCs) are a form of optical communication in
which unguided visible, infrared, or ultraviolet light is used to carry a signal [51].
OWC systems operating in the visible band (390–750 nm) are commonly referred to
as Visible Light Communication (VLC) [52]. VLC systems take advantage of light
emitting diodes (LEDs) which can be pulsed at very high speeds without noticeable
effect on the lighting output and human eye. VLC can be possibly used in a wide
range of applications including wireless local area networks, wireless personal area
networks, and vehicular networks, among others. On the other hand, terrestrial
point-to-point OWC systems, also known as the free space optical systems, operate
at the near-infrared frequencies (750–1600 nm). These systems typically use laser
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transmitters and offer a cost-effective protocol-transparent link with high data rates,
i.e., 10 Gbit/s per wavelength and provide a potential solution for the backhaul
bottleneck. There has been also a growing interest in ultraviolet communication as
a result of recent progress in solid-state optical sources/detectors operating within
the solar-blind ultraviolet spectrum (200–280 nm). In this so-called deep ultraviolet
band, solar radiation is negligible at the ground level, and this makes possible
the design of photon-counting detectors with wide field-of-view receivers that
increase the received energy with little additional background noise. Such designs
are particularly useful for outdoor non-line-of-sight configurations to support low-
power short-range communications such as in wireless sensor and ad hoc networks.

IEEE started the standardization of short-range OWC in IEEE 802.15.7, while
IEEE 802.11bb working group also started to address optical communications for
wireless LAN. The IEEE 802.15.7 standard defines the Physical Layer (PHY)
and Media Access Control (MAC) Layer. The standard can deliver enough data
rates to transmit audio, video, and multimedia services. It takes into account
optical transmission mobility, its compatibility with artificial lighting present in
infrastructures, and the interference which may be generated by ambient lighting.
The MAC layer permits using the link with the other layers as with the TCP/IP
Protocol [53]. The standard defines three PHY layers with different rates:

• The PHY 1 was established for outdoor application and works from 11.67 to
267.6 kbit/s.

• The PHY 2 layer permits reaching data rates from 1.25 to 96 Mbit/s.
• The PHY 3 is used for many emissions sources with a particular modulation

method called color shift keying (CSK). PHY III can deliver rates from 12 to
96 Mbit/s.

The modulation formats recognized for PHY 1 and PHY 2 are on-off keying
(OOK) and variable pulse position modulation (VPPM). The Manchester coding
used for the PHY 1 and PHY 2 layers includes the clock inside the transmitted data
by representing a logic 0 with an OOK symbol “01” and a logic 1 with an OOK
symbol “10”, all with a DC component. The DC component avoids light extinction
in case of an extended run of logic 0’s.

3.3.14 6LoWPAN

6LoWPAN is an acronym of IPv6 over low-power wireless personal area networks.
It is an IETF proposal to bring the benefits of IP and, in particular, IPv6 networking
into low-power, low data rate, low-cost wireless personal area networks [54–
56]. The IETF 6LoWPAN group defined encapsulation and header compression
mechanisms that allow IPv6 packets to be sent and received over IEEE 802.15.4-
based networks. The problem statement was given in RFC 4919 [57], while the base
specification was developed in RFC 4944 [58] (updated by RFC 6282 with header
compression, and by RFC 6775 with neighbor discovery optimizations). Even if
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6LoWPAN was originally though for IEEE 802.15.4, a solution for Bluetooth Low
Energy (BLE) was also defined in RFC 7668 [59].

Figure 3.22 shows an example of 6LoWPAN-based protocol stack compared with
the traditional TCP/IP Protocol stack. Most protocol stacks based on 6LoWPAN
only supports UDP at Transport Layer since 6LoWPAN provides header compres-
sion specifically for UDP even if it does not prohibit the use of TCP if needed. It
is worth noting that documents describing 6LoWPAN standard do not contain the
description of the other protocols involved in the depicted stack. The definition of
such protocols is outside the scope of 6LoWPAN.

The 6LoWPAN concept originated from the idea that the same protocol (i.e., IP
Protocol) should be applied to all actors of an IoT application, from the traditional
hosts and cloud servers even to the smallest low-power devices with limited
processing capabilities, thus avoiding complex protocol translations. This objective
can be achieved by using Edge Routers [60] mixing IPv4, IPv6, and 6LoWPAN as
shown in Fig. 3.23. The edge router has three objectives:
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1. the data exchange between 6LoWPAN devices and the Internet (or other IPv6
network);

2. local data exchange between devices inside the 6LoWPAN;
3. the generation and maintenance of the radio subnet (the 6LoWPAN network).

3.3.15 Thread

Thread is an IPv6-based networking protocol targeted for use in low-power,
embedded consumer, and commercial IoT devices. Thread’s original contribution in
the IoT protocol context is a secure and reliable mesh network with no single point
of failure. [61]. Figure 3.24 shows a Thread-compliant protocol stack. It shows that
Thread standardization group merged several well-known protocols belonging to
different layers to create a complete communication solution. Up to the Transport
Layer, Thread adopts the well-known 6LoWPAN platform based on IPv6, IEEE
802.15.4, UDP, and ICMPv6. As explained in 6LoWPAN RFC, TCP can be used
even if its support is not optimized. Between UDP and application protocols,
Datagram Transport Layer Security (DTLS) protocol is adopted to introduce the
same security properties of TLS over UDP [62]. At Application Layer, Thread
adopts well-known industrial standards to interact with sensors and actuators:

• Dotdot: ZigBee-based ontologies for different application domains such as home,
building, industrial, retail, health, and energy [63];

• Weave: a secure, reliable communications backbone for Google Nest prod-
ucts [64];

• KNX: an open standard for commercial and domestic building automation;
• CoAP: detailed in Sect. 3.4.6.

At Application Layer, there are also two important service protocols to manage
and use mesh topology, i.e., Mesh Commissioning Protocol (MeshCoP) which was
specifically developed in Thread and Mesh Link Establishment (MLE) which is an
IETF Internet Draft [65].

Fig. 3.24 Thread-compliant
protocol stack; MeshCoP is
highlighted since it was
specifically introduced by
Thread’s
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Thread guarantees a high level of security. Only devices that are specifically
authenticated can join the network. All communications through the network are
secured with a network key. Thread states that there is no single point of failure in
its system. However, if the network is only set up with one edge router, then this can
become a single point of failure. The edge router or another router can assume the
role of leader for specific functions. If the leader fails, another router or edge router
will take its place. This is the main way that Thread guarantees no single point of
failure.

3.3.16 ISA100.11a

ISA100.11a is a competitor of WirelessHART in wireless networks for process
control. It was developed by the International Society of Automation (ISA) and
standardized as IEC 62734 [33] in 2014.

The ISA100.11a Physical Layer is taken from the IEEE 802.15.4-2006 2.4 GHz
DSSS Physical Layer. The Data Link Layer is unique to ISA100.11a and uses a non-
compliant form of the IEEE802.15.4 MAC. It implements graph routing, frequency
hopping and time-slotted time domain multiple access features. The forwarding
of messages within the wireless network is performed at the Data Link Layer by
using a mesh approach. Since the TDMA slot size and the ACK format are not
fully specified, it is possible that two ISA100.11a devices may not be able to
communicate. ISA100.11a leverages 6LoWPAN protocol and addressing for routing
messages outside the wireless domain. The ISA100.11a Transport Layer consists in
a connectionless service based on UDP with an enhanced message integrity check
and end-to-end security. Currently no process control Application Layer is specified.

ISA100.11a and WirelessHART share some similarities and exhibit some dif-
ferences [33]. Each of the technologies uses the IEEE 802.15.4 standard at
Physical Layer. WirelessHART also uses the IEEE802.15.4-2006 Data Link Layer.
ISA100.11a uses a modified, non-compliant version of the same layer. Both have
similar mechanisms for forming the wireless mesh network and transporting data to
and from the gateway. These networks are very low power. The radio spectrum used
in each is in the 2.4 GHz band and does not require licensing. The radio technology
utilizes a combination of channel hopping and Direct Sequence Spread Spectrum to
achieve coexistence with other users of the same spectrum. Networks can occupy
the same physical space and radio spectrum without blocking one another. Both
specifications use similar graph routing, source routing, security, and centralized
network management functions.

The major differences between WirelessHART and ANSI/ISA100.11a-2011
can be directly traced to the differences in the goals of each standard. Whereas
WirelessHART is focused on providing a wireless medium for HART protocol,
ISA100.11a is designed to provide flexibility by offering a variety of build options
to the manufacturer and run-time options for customizing the operation of the
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system. This flexibility can be a source of interoperability. Furthermore, ISA100.11a
exploits all the potentialities of 6LoWPAN instead of designing a custom Network
Layer protocol.

3.3.17 Cellular Network Standards

Wireless devices such as mobile phones or data transmitters receive and send
radio signals with any number of cell site base stations fitted with microwave
antennas [66]. These sites are usually mounted on a tower, pole, or building, located
throughout populated areas, then connected to a cabled communication network and
switching system. The phones have a low-power transceiver that transmits voice and
data to the nearest cell site, normally not more than 8 to 13 Km away. In areas of
low coverage, a cellular repeater may be used, which uses a long-distance high-
gain antenna to communicate with a cell tower far outside of the normal range,
and a repeater to rebroadcast on a small short-range local antenna that allows any
cellphone within a few meters to function correctly.

When the mobile phone or data device is turned on, it registers with the mobile
telephone exchange, or switch, with its unique identifier, and can then be alerted by
the mobile switch when there is an incoming telephone call. The handset always
listens for the strongest signal being received from the surrounding base stations
and can switch seamlessly between sites. As the user moves around the network, the
“handoffs” are performed to allow the device to switch sites without interrupting the
call.

Cell sites have relatively low-power (often only one or two watts) radio transmit-
ters which broadcast their presence and relay communications between the mobile
handsets and the switch. The switch, in turn, connects the call to another subscriber
of the same wireless service provider or to the public telephone network, which
includes the networks of other wireless carriers. Many of these sites are camouflaged
to blend with existing environments, particularly in scenic areas.

The dialogue between the handset and the cell site is a stream of digital data
that includes digitized audio. The technology that achieves this depends on the
system which the mobile phone operator has adopted. The technologies are grouped
by generation. The first-generation systems started in 1979 with Japan, are all
analog and include AMPS and NMT. Second-generation systems, started in 1991
in Finland, are all digital and include GSM, CDMA, and TDMA.

In an effort to limit the potential harm from having a transmitter close to the user’s
body, the first fixed/mobile cellular phones that had a separate transmitter, vehicle-
mounted antenna, and handset (known as car phones and bag phones) were limited
to maximum 3 watts Effective Radiated Power (ERP). Modern handheld cellphones
which must have the transmission antenna held inches from the user’s skull are lim-
ited to a maximum transmission power of 0.6 watts ERP. Regardless of the potential
biological effects, the reduced transmission range of modern handheld phones limits
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their usefulness in rural locations, and handhelds require that cell towers are spaced
much closer together to compensate for their lack of transmission power.

3.3.17.1 Second Generation (2G)

2G (or 2-G) is short for second-generation cellular technology [67]. Second-
generation (2G) cellular networks were commercially launched on the GSM
standard in Finland in 1991. Three primary benefits of 2G networks over their pre-
decessors were that phone conversations were digital. 2G systems were significantly
more efficient on the spectrum enabling far higher wireless penetration levels. The
most common 2G technology was the TDMA-based GSM, originally from Europe
but used in most of the world outside North America. Over 60 GSM operators were
also using CDMA2000 in the 450 MHz frequency band.

2G introduced data services for mobile, starting with Short Message Service
(SMS), i.e., text messages as well as Multimedia Message Service (MMS), i.e.,
pictures. All text messages sent over 2G are digitally encrypted, allowing the
transfer of data in such a way that only the intended receiver can read it. With
General Packet Radio Service (GPRS), 2G offers a theoretical maximum transfer
speed of 50 kbit/s (40 kbit/s in practice). With EDGE (Enhanced Data Rates
for GSM Evolution), there is a theoretical maximum transfer speed of 1 Mbit/s
(500 kbit/s in practice).

3.3.17.2 Third Generation (3G)

3G, short for third generation, is the third generation of wireless mobile telecom-
munications technology [68]. It is the upgrade for 2G and 2.5G mainly for faster
data services. This is based on a set of standards that comply with the International
Mobile Telecommunications-2000 (IMT-2000) specifications by the International
Telecommunication Union. 3G finds application in wireless voice telephony, mobile
Internet access, fixed wireless Internet access, video calls, and mobile TV.

3G telecommunication networks support services that provide an information
transfer rate of at least 0.2 Mb/s. Later 3G releases often denoted 3.5G and 3.75G
also provide mobile broadband access of several Mb/s to smartphones and mobile
modems in laptop computers. The first 3G networks were introduced in 1998.

3.3.17.3 Fourth Generation (4G)

4G is the fourth generation of broadband cellular network technology, succeeding
3G [69]. A 4G system must provide capabilities defined by ITU in IMT Advanced.
Potential and current applications include amended mobile web access, IP tele-
phony, gaming services, high-definition mobile TV, video conferencing, and 3D
television.
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The first 4G networks were introduced in 2008. The first-release Long Term
Evolution (LTE) standard was commercially deployed in Oslo, Norway, and
Stockholm, Sweden, in 2009 and has since been deployed throughout most parts
of the world. It has, however, been debated whether first-release versions should be
considered 4G LTE, as discussed in the technical understanding section below.

As opposed to earlier generations, a 4G system does not support traditional
circuit-switched telephony service, but all-Internet Protocol (IP)-based communi-
cation such as IP telephony. As seen below, the spread-spectrum radio technology
used in 3G systems is abandoned in all 4G candidate systems and replaced
by OFDMA multi-carrier transmission and other frequency-domain equalization
(FDE) schemes, making it possible to transfer very high bit rates despite extensive
multi-path radio propagation (echoes). Smart antenna arrays further improve the
peak bit rate for Multiple-Input Multiple-Output (MIMO) communications.

3.3.17.4 NB-IoT

Narrowband IoT (NB-IoT) is a low-power wide area network radio technology
standard developed by 3GPP to enable a wide range of cellular devices and ser-
vices [70]. The specification was frozen in 3GPP Release 13 (LTE Advanced Pro),
in June 2016. Other 3GPP IoT technologies include eMTC (enhanced Machine-
Type Communication) and EC-GSM-IoT [37].

NB-IoT focuses specifically on indoor coverage, low cost, long battery life,
and high connection density. NB-IoT uses a subset of the LTE standard but limits
the bandwidth to a single narrow-band of 200 kHz. It uses orthogonal frequency-
division multiple access (OFDMA) modulation for downlink communication and a
couple of options for uplink communication (for more information on the uplink
options, refer to the 3GPP specification TR 36.802.). OFDMA is a modulation
scheme in which individual users are assigned subsets of subcarrier frequencies.
This enables multiple users to transmit low-speed data simultaneously.

As depicted in Fig. 3.25, NB-IoT can operate in three different modes:

• Standalone: A GSM carrier is used as an NB-IoT carrier, enabling reuse of
900 MHz or 1800 MHz.

• In-band: Part of an LTE carrier frequency band is allocated for use as an NB-
IoT frequency. The service provider typically makes this allocation, and IoT
devices are configured accordingly. You should be aware that if these devices
must be deployed across different countries or regions using a different service
provider, problems may occur unless there is some coordination between the
service providers, and the NB-IoT frequency band allocations are the same.

• Guard Band: An NB-IoT carrier is between the LTE or WCDMA bands. This
requires coexistence between LTE and NB-IoT bands.

The link budget of NB-IoT is 164 dB. The GPRS link budget is 144 dB, used
by many machine-to-machine services. The additional 20 dB link budget should
guarantee better signal penetration in buildings and basements while improving
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Fig. 3.25 NB-IoT modes of
operation [71]: (a)
Standalone, (b) In Band,
(c) Guard Band
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battery life. At Layer 1, the maximum transport block size (TBS) for the downlink is
680 bits, while uplink is 1000 bits. At Layer 2, the maximum payload size is 1,600
bytes. NB-IoT operates in half-duplex frequency-division duplexing mode with a
maximum uplink data rate of 60 kb/s and downlink of 30 kb/s.

3.3.17.5 LTE Cat M1

LTE category M1 (LTE Cat M1 or simply LTE-M) is 4G profile specifically
designed for IoT and M2M communications. It features a transmit power of
20 dBm and provides an average upload bitrate between 375 kb/s and 1 Mb/s. Main
advantages of this technology are: extended battery lifecycle, excellent in-building
range, and support of voice functionality through Voice over LTE (VoLTE).

LTE-M supports two duplex modes:

• Full-duplex: data can be downloaded and uploaded simultaneously at a rate of
1 Mb/s;

• Half-duplex: data can travel only in one direction at a time at a rate of 375 kb/s.

The advantage of the second mode is that it requires less power, which makes it
suitable for scenarios where there is no need to both send and receive at the same
time.

It is worth noting that both NB-IoT and LTE-M were designed to support a large
number of sensors for environmental monitoring or fleet tracking. LTE-M requires
an LTE infrastructure, while NB-IoT can be hosted in GSM infrastructure. With low
data rate applications, NB-IoT consumes less energy than LTE-M but at the cost of
a lower bitrate.
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3.3.17.6 Fifth Generation (5G)

5G (from “5th generation”) is the latest generation of cellular mobile communi-
cations. 5G targets high data rate, reduced latency, energy saving, cost reduction,
higher system capacity, and massive device connectivity. The first phase of 5G
specifications in Release 15 has been completed by April 2019 to accommodate
the early commercial deployment. The second phase in Release 16 is due to be
completed by April 2020 for submission to the ITU as a candidate of IMT-2020
technology.

The ITU IMT-2020 specification demands speed up to 20 Gb/s, achievable with
wide channel bandwidths and massive MIMO. 3GPP is going to submit the 5G
NR (NR = New Radio) standard proposal. 5G NR can include lower frequencies,
below 6 GHz, and mmWave, above 15 GHz. However, the speeds and latency in
early deployments, using 5G NR software on 4G hardware (non-standalone), are
only slightly better than new 4G systems, estimated from 15% to 50% better.

The key trends which must be accommodated by hardware designers include:

• Increased data rate for Enhanced Mobile Broadband (eMBB) and other appli-
cations, specifically driving the instantaneous available data rate at 10x current
rates [72]. Furthermore, deployment of 5G will also be staged depending on
frequency band, sub-6GHz will be deployed first, followed by the contiguous
bands at mmWave frequencies enabling more key eMBB applications at a
later stage. Simulation of standalone eMBB deployments showed improved
throughput by 2.5× below 6 GHz and by nearly 20× at millimeter waves.

• Connectivity to many more devices will happen because expectations are that
there will be 50 billion connected devices within 2 years. This is partly addressed
by existing standards but will also be encompassed by the current specification
of Massive Machine-Type Communications (mMTC) in Release 16 of 3GPP.

• New usage models, exerting new requirements onto mobile devices and the
cellular infrastructure that they connect to. Good examples include low data rate,
low power requirements for connecting battery-powered IoT end-points within
mMTC. High reliability, low latency cellular for vehicle-to-vehicle and vehicle-
to-infrastructure connectivity (C-V2X) to complement existing V2X solutions
like collision detection. Low latency support for new and emerging applications
like remote surgery and augmented/virtual-reality. The second two examples will
be addressed by the upcoming 3GPP standard for Ultra-Reliable, Low Latency
Connectivity (URLLC).

3.4 Application Layer Protocols

This section describes several Application Layer protocols to build IoT applications.
The starting point is the well-known HyperText Transfer Protocol (HTTP) which is
also the main building block of the World Wide Web. Many IoT-specific Application
Layer protocols have been inspired by HTTP because of its spread.
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3.4.1 HyperText Transfer Protocol (HTTP)

The HyperText Transfer Protocol (HTTP) is for the World Wide Web as the water
for the ocean, and therefore all its definitions are likely to seem restrictive. HTTP is a
textual protocol to build distributed, collaborative, hypermedia information systems.
Even if its origin comes back to the invention by Tim Berners-Lee at CERN in 1989,
HTTP is still updated by IETF. In the last years, privacy, authentication, caching,
and connection persistence have been added to fulfill the requirements of the ever-
increasing types of applications conveyed over HTTP.

HTTP is an Application Layer protocol. Its definition presumes an underlying
and reliable Transport Layer protocol, and Transmission Control Protocol (TCP) is
commonly used. However, HTTP can be adapted to use unreliable protocols such
as the User Datagram Protocol (UDP), for example, in HTTPU and Simple Service
Discovery Protocol (SSDP). HTTP functions as a request/response protocol in the
client/server computing model. A web browser, for example, may be the client and
an application running on a computer hosting a website may be the server. The
client submits the HTTP request message to the server. The server, which provides
resources such as HTML files and other content, or performs other functions on
behalf of the client, returns a response message to the client. The response contains
completion status information about the request and may also contain requested
content in its message body. A web browser is an example of client. Other types of
client include the indexing software used by search providers (web crawlers), voice
browsers, mobile apps, and other software that accesses, consumes, or displays web
content.

HTTP resources are identified and located on the network by Uniform Resource
Locators (URLs), using the Uniform Resource Identifiers (URIs) schemes named
“http” and “https”. An example, including all optional components, is reported
in Fig. 3.26. URIs are encoded as hyperlinks in HTML documents, so as to form
interlinked hypertext documents. In HTTP v1.0 a separate connection to the same
server is made for every resource request. HTTP v1.1 can reuse a connection
multiple times to download images, scripts, stylesheets, etc. after the page has
been delivered. HTTP/1.1 communications therefore experience less latency as the
establishment of TCP connections presents considerable overhead.

HTTP is designed to permit intermediate network elements to improve or enable
communications between clients and servers. High-traffic websites often benefit
from web cache servers that deliver content on behalf of upstream servers to improve
response time. Web browsers cache previously accessed web resources and reuse
them, when possible, to reduce network traffic. HTTP proxy servers at private

Fig. 3.26 Example of Uniform Resource Identifier for HTTP scheme [73]
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network boundaries can facilitate communication for clients without a globally
routable address, by relaying messages with external servers.

3.4.2 WebSocket

WebSocket is an Application Layer protocol, providing a full-duplex communica-
tion channel over a TCP connection originally created for an HTTP connection. The
IETF standardized the WebSocket protocol as RFC 6455 in 2011 [74], and the World
Wide Web Consortium (W3C) is standardizing the WebSocket API in Web Interface
Definition Language [75]. WebSocket and HTTP are located at the Application
Layer in the ISO/OSI model and, as such, depend on TCP at Transport Layer. A
WebSocket connection originates from an HTTP connection by using the HTTP
Upgrade header as shown in the message sequence chart depicted in Fig. 3.27. The
WebSocket protocol enables a peer-to-peer interaction between the agent previously
acting as HTTP client (e.g., a web browser or other client application) and the
one previously acting as HTTP server so that the latter can send content to the
former without being first requested by it as in HTTP. WebSocket protocol also
allows to keep the connection open and support TLS-based security. Since the
WebSocket connection uses the previously created HTTP connection, it is compliant
with NAT-based and firewall-protected networks. In summary, WebSocket protocol
allows two-way conversation without recurring to complex workarounds and thus
facilitating real-time data transfer.

Fig. 3.27 Example of
WebSocket life cycle

Client Server

HTTP Upgrade

WS Request

WS Response

TCP

HTTP

Web
Socket
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3.4.3 Web Services and Representational State Transfer
(REST)

The term web service is a service offered by an electronic device to another
electronic device, communicating with each other via the World Wide Web tech-
nology [76]. In a web service, Web technologies such as HTTP or HTTPS, initially
designed for human-to-machine communication, is utilized for machine-to-machine
communication, more specifically for transferring machine-readable file formats
such as XML and JSON. Web services are usually not very optimized for low-power
and low data rate communications since they rely on HTTP/HTTPS and TCP, but
they have the advantage of being compliant with firewall-protected networks.

Web resources were first defined on the World Wide Web as documents or files
identified by their URLs. However, today they have a much more generic and
abstract definition that encompasses every thing or entity that can be identified,
named, addressed, or handled, in any way whatsoever, on the web. For instance,
a web service can consist of an object-oriented web-based interface to a database
server utilized by several sensor devices to store sensed data or to a regulator server
managing a set of actuation devices.

A first technology to implement web services was based on the Simple Object
Access Protocol (SOAP) which uses XML to encode request and response mes-
sages [77]. Such encoding mechanism revealed to be heavy even for high data rate
networks. Furthermore, according to this paradigm, the server should implement
application logic as a set of running objects whose state information should be
stored for a long time. This feature leads to high memory overhead on the server.
Both drawbacks make SOAP a non-scalable technique for large M2M applications.

A recent web service technique is called Representational State Transfer (REST).
It is a software architectural style that defines a set of constraints to implement M2M
communications by using basic HTTP operations [78]. Web services that conform
to the REST architectural style, termed RESTful web services, allow the requesting
systems to access and manipulate textual representations of web resources by using
a uniform and predefined set of stateless operations. By using a stateless protocol
and standard operations, RESTful systems aim for fast performance, reliability,
and the ability to grow, by re-using components that can be managed and updated
without affecting the system as a whole, even while it is running.

The term “representational state transfer” was introduced and defined in 2000
by Roy Fielding in his doctoral dissertation. Fielding’s dissertation explained the
REST principles based on the “HTTP object model.” The term is intended to evoke
an image of how a well-designed Web application behaves: it is a network of Web
resources (a virtual state-machine) where the user progresses through the application
by selecting links and operations such as GET or DELETE, resulting in the next
resource (representing the next state of the application) being transferred to the end
user.

In a RESTful web service, requests made to a resource’s URI will elicit a
response with a payload formatted in HTML, XML, JSON, or some other format.
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The response can confirm that some alteration has been made to the stored resource,
and the response can provide hypertext links to other related resources or collections
of resources.

It the very common case in which HTTP/HTTPS is used, the REST operations
are mapped onto HTTP methods [79] as follows:

• GET method. It is used to read a representation of a resource. If the path is
correct, GET returns a representation in XML or JSON and an HTTP response
code of 200 (OK). In an error case, it most often returns a 404 (NOT FOUND)
or 400 (BAD REQUEST). According to the design of the HTTP specification,
GET (along with HEAD) requests are used only to read data and not change it.
Therefore, when used this way, they are considered safe, i.e., they can be called
without risk of data modification or corruption. Additionally, GET (and HEAD)
is idempotent, which means that making multiple successive identical requests
ends up having the same result as a single request.

• POST method. It is most often utilized to create new resources. In particular, it is
used to create subordinate resources, i.e., subordinate to some other (e.g., parent)
resource. In other words, when creating a new resource, POST to the parent and
the service takes care of associating the new resource with the parent, assigning
an ID (new resource URI). On successful creation, return HTTP status 201,
returning a Location header with a link to the newly created resource with the 201
HTTP status. POST is neither safe nor idempotent. It is therefore recommended
for non-idempotent resource requests. Making two identical POST requests will
most likely result in two resources containing the same information.

• PUT method. It is most often utilized to update capabilities, i.e., to put to
a known resource URI with the request body containing the newly updated
representation of the original resource. However, PUT can also be used to create a
resource in the case where the resource ID is chosen by the client instead of by the
server, i.e., if the PUT is to a URI that contains the value of a nonexistent resource
ID. Again, the request body contains a resource representation. On successful
update, PUT call returns 200 (or 204 if not returning any content in the body). If
PUT is used to create, it returns HTTP status 201 on successful creation. A body
in the response is optional and a waste of bytes since the client already knows the
resource ID. PUT is not a safe operation, in that it modifies (or creates) state on
the server, but it is idempotent. In other words, if you create or update a resource
using PUT and then make that same call again, the resource is still there and still
has the same state as it did with the first call. It is recommended to keep PUT
requests idempotent and to use POST for non-idempotent requests.

• PATCH method. It is used to modify capabilities. The PATCH request only
needs to contain the changes to the resource, not the complete resource. This
resembles PUT, but the body contains a set of instructions describing how a
resource currently residing on the server should be modified to produce a new
version. This means that the PATCH body should not just be a modified part
of the resource but in some patch languages like JSON Patch or XML Patch.
PATCH is neither safe nor idempotent. However, a PATCH request can be issued
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in such a way as to be idempotent, which also helps prevent adverse outcomes
from collisions between two PATCH requests on the same resource in a similar
time frame. Collisions from multiple PATCH requests may be more dangerous
than PUT collisions because some patch formats need to operate from a known
base-point, or else they will corrupt the resource. Clients using this kind of patch
application should use a conditional request such that the request will fail if
the resource has been updated since the client last accessed the resource. For
example, the client can use a strong ETag in an If-Match header on the PATCH
request.

• DELETE method. It is used to delete a resource identified by a URI. On
successful deletion, it returns HTTP status 200 (OK) along with a response body,
e.g., the representation of the deleted item or a wrapped response. DELETE
operation is idempotent regarding the deleted resource but not regarding the
return code. Calling DELETE on a resource a second time will often return 404
(NOT FOUND) since it was already removed and therefore is no longer available.
This, by some opinions, makes DELETE operations no longer idempotent;
however, the end-state of the resource is the same. Returning a 404 is acceptable
and communicates the status of the call accurately.

3.4.4 Message Queuing Telemetry Transport (MQTT)

Message Queuing Telemetry Transport (MQTT) is an ISO standard (ISO/IEC PRF
20922) describing a publish/subscribe messaging protocol [80, 81]. It works on top
of the TCP/IP Protocol even if MQTT-SN is a variation of the main protocol aimed
at embedded devices on non-TCP/IP networks, such as ZigBee.

3.4.4.1 How MQTT Works

An MQTT session starts with a client creating a TCP/IP connection with the broker
by using either a standard port or a custom port defined by the broker’s operators.
An MQTT connection is established by using the following standard ports: 1883
for non-encrypted communication and 8883 for encrypted communication using
SSL/TLS. The client validates the server certificate to authenticate the server during
the SSL/TLS handshake. The client may also provide a client certificate to the
broker during the handshake, which the broker can use to authenticate the client.
Whilst not part of the MQTT specification, it has become customary for brokers to
support client authentication with SSL/TLS client-side certificates. This protocol is
designed to be low-demanding in terms of resources especially for IoT applications.
As a consequence, relying on SSL/TLS might not be an optimal solution. In these
cases, authentication is done by sending non-encrypted username and password as
part of the CONNECT/CONNACK packet sequence. This is the case with public
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Message Type DUP QoS Level RETAIN
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Fixed
Header

0 1 2 3 4 5 6 7

Bit Field

Fig. 3.28 MQTT packet structure

brokers which are configured to accept anonymous clients (i.e., username and
password are simply left blank).

MQTT is designed to be a lightweight protocol where all the messages have a
small code footprint. The structure of an MQTT message is shown in Fig. 3.28. Each
MQTT message consists of a 2 byte fixed header, followed by an optional variable
header, a message payload that is limited to 256 MB of information. Fourteen types
of MQTT messages can be exchanged [82]:

1. CONNECT: After a Client establishes a Network Connection to a Server, the first
Packet sent from the Client to the Server MUST be a CONNECT Packet.

2. CONNACK: Is sent by the Server in response to a CONNECT Packet received
from a Client.

3. PUBLISH: Is sent from a Client to a Server or from Server to a Client to
transport an Application Message.

4. PUBACK: Is the response to a PUBLISH Packet with QoS level 1.
5. PUBREC: Is the response to a PUBLISH Packet with QoS 2. It is the second

packet of the QoS 2 protocol exchange.
6. PUBREL: Is the response to a PUBREC Packet. It is the third packet of the QoS

2 protocol exchange.
7. PUBCOMP: The PUBCOMP Packet is the response to a PUBREL Packet. It is

the fourth and final packet of the QoS 2 protocol exchange.
8. SUBSCRIBE: The SUBSCRIBE Packet is sent from the Client to the Server to

create one or more Subscriptions. Each Subscription registers a Client’s interest
in one or more Topics. The Server sends PUBLISH Packets to the Client in order
to forward Application Messages that were published to Topics that match these
Subscriptions. The SUBSCRIBE Packet also specifies (for each Subscription)
the maximum QoS with which the Server can send Application Messages to the
Client.

9. SUBACK: A SUBACK Packet is sent by the Server to the Client to confirm
receipt and processing of a SUBSCRIBE Packet. A SUBACK Packet contains
a list of return codes that specifies the maximum QoS level that was granted in
each Subscription that was requested by the SUBSCRIBE.
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Fig. 3.29 Example of MQTT protocol operation at QoS Level 0

10. UNSUBSCRIBE: An UNSUBSCRIBE Packet is sent by the Client to the Server
to unsubscribe from topics.

11. UNSUBACK: The UNSUBACK Packet is sent by the Server to the Client to
confirm receipt of an UNSUBSCRIBE Packet.

12. PINGREQ: The PINGREQ Packet is sent from a Client to the Server. It can be
used to:

• Indicate to the Server that the Client is alive in the absence of any other
Control Packets being sent from the Client to the Server.

• Request that the Server responds to confirm that it is alive.
• Exercise the network to indicate that the Network Connection is active.

13. PINGRESP: The Server sends a PINGRESP Packet to the Client in response to
a PINGREQ Packet. It indicates that the Server is alive.

14. DISCONNECT: The DISCONNECT Packet is the final Control Packet sent from
the Client to the Server. It indicates that the Client is disconnecting cleanly.

MQTT supports three Quality of Service (QoS) levels, which determine the
protocol’s behavior and how it manages the communication. The first QoS level is
shown in Fig. 3.29 and is referred to as at most once, or fire and forget. The publisher
sends a message to the broker one time and then deletes the sent data. The broker
receives the data and sends it to the subscribers one time. The second QoS level is
shown in Fig. 3.30 and is referred to as at least once. In this case, each publish action
from the publisher and the broker, and from the broker to the subscriber, is followed
by an acknowledge. If an acknowledge is not received promptly, the packet is sent
again. The third QoS level is shown in Fig. 3.31 and is referred to as exactly once.
In this third scenario, the mechanism requires two pairs of messages to be sent. The
first pair is publish/pubrec, and the second is pubrel/pubcomp. These two pairs of
messages ensure that, even with multiple retries, subscribers receive the data only
one time.

One of the benefits of the MQTT protocol is that it preserves battery power and
efficiently delivers messages. There are other Application Layer protocols with a
similar publish/subscribe paradigm, e.g., the Advanced Message Queuing Protocol
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Fig. 3.30 Example of MQTT protocol operation at QoS Level 1
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Fig. 3.31 Example of MQTT protocol operation at QoS Level 2
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(AMQP) and the Constrained Application Protocol (CoAP); the former has been
traditionally used in normal Internet, while the latter has been specifically designed
for IoT applications. They are discussed in the next sections.

3.4.5 Advanced Message Queuing Protocol (AMQP)

The Advanced Message Queuing Protocol (AMQP) is an open standard Application
Layer protocol for message-oriented middleware [83]. AMQP is a binary, Applica-
tion Layer protocol, designed to efficiently support a wide variety of messaging
applications and communication patterns. The defining features of AMQP are
message delivery (both client/server and publish/subscribe), queuing, reliability,
and security. It provides flow-controlled, message-oriented communication with
message-delivery guarantees such as at most once (where each message is delivered
once or never), at least once (where each message is certain to be delivered, but may
do so multiple times), and exactly once (where the message will always certainly
arrive and do so only once). Authentication and encryption is based on Simple
Authentication and Security Layer (SASL) and Transport Layer Security (TLS).
It assumes an underlying reliable Transport Layer protocol such as TCP. It provides
a symmetric and asynchronous flow of messages whose format can be extended by
the application designer.

The main difference between AMQP and MQTT is that the former has been
designed as a general-purpose middleware for traditional computers, while the latter
has been optimized for constrained devices. In fact, AMQP provides more features
and allows both client/server and publish/subscribe communication patterns at the
cost of an increased overhead. Both end points of the data transfer can be either
client or server so that communication can start from any direction. MQTT is less
symmetric and allows only the publish/subscribe communication pattern with a
message header size of just 2 bytes. Therefore, MQTT is more suitable for IoT
applications.

3.4.6 Constrained Application Protocol (CoAP)

Constrained Application Protocol (CoAP) is a specialized Internet Application
Layer protocol for constrained devices with limited computation and communi-
cation resources, e.g., nodes with 8-bit microcontrollers with small amounts of
ROM and RAM, connected to wireless network with high packet error rates and
a typical throughput of 10s of kb/s. As defined in RFC 7252 [84], it enables those
constrained nodes to communicate with the broader Internet using a protocol similar
to HTTP/HTTPS that can be easily translated for interoperation. CoAP is designed
for use between devices on the same constrained network (e.g., low-power, lossy
networks), between constrained devices and traditional Internet nodes, and between
devices on different constrained networks linked by Internet. CoAP is also being
used via other mechanisms, such as SMS on cellular networks [85]. CoAP was
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Table 3.5 Comparison
between HTTP and CoAP
architecture

Feature HTTP CoAP

Transport protocol TCP UDP

Network protocol IP 6LoWPAN

Multicast support No Yes, through UDP

Client/server mode Yes Yes

Publish/subscribe mode No Yes

Synchronization requirement Yes No

CPU overhead Large Small

originally designed as a client/server protocol, but in 2019 IETF published an
Internet Draft describing a publish/subscribe mechanism [86].

Table 3.5 compares HTTP and CoAP. Like HTTP, CoAP is an Application Layer
protocol. A client requests a resource at a Uniform Resource Identifier (URI) and
the server responds. Morever, RESTful principles are followed; verbs GET, POST,
PUT, DELETE are used. Protocol is indicated with coap://. Where CoAP differs
from HTTP is that UDP is used for transport instead of TCP. UDP handshaking is
lighter and easier to implement on microcontrollers. CoAP header is only 4 bytes.
CoAP can also use UDP’s broadcast and multicast features. Since there’s no TCP,
CoAP takes care of message acknowledgments, retries with congestion control,
and duplicates detection. With a very simplified reasoning, we can say that CoAP,
MQTT, and AMQP exhibit an increased message overhead with higher consumption
of computational and communication resources as well as energy.

Figure 3.32 shows an example of CoAP/HTTP interoperation. A REST client,
implemented on a constrained node, calls services provided by a REST server
implemented on a powerful Internet node. REST messages flow seamlessly between
client and server as they both were on traditional Internet. On the constrained
network, HTTP, TLS, and IP are replaced by CoAP, DTLS, and 6LoWPAN,
respectively. A proxy node is also shown. It has in charge the mapping between
CoAP messages into HTTP messages and vice versa.

CoAP supports four different message types:

• confirmable (CON);
• non-confirmable (NON);
• acknowledgment (ACK);
• reset (RST).

A confirmable message is considered as a reliable message. Using this kind of
message, the client can be sure that the message will arrive at the server because
it is repeatedly sent until the receiver answers with an acknowledge message.
The acknowledge message must contain the same ID of the confirmable message.
Figure 3.33 shows an example of a confirmable message exchange.

Whenever the server is unable to manage the incoming request, it can answer to
the client with a reset message (RST) instead of the acknowledge message (RST).
Figure 3.34 shows an example where the server answer with a reset message.
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Fig. 3.32 CoAP/HTTP interoperation through a proxy mechanism: in the upper part, network
deployment and interconnection, in the lower part, protocol stacks of the involved nodes

Fig. 3.33 CoAP protocol:
example of confirmable
message exchange

Client Server

CON (ID: 0x0001)

ACK (ID: 0x0001)
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The non-confirmable (NON) messages instead do not require an acknowledge
by the server. They are unreliable messages, which usually do not contain critical
information that must be absolutely delivered to the server. Examples of non-
confirmable messages are those that contain values read from sensors. Even if these
messages are considered unreliable, they still need to have a unique ID associated.
Figure 3.35 shows an example of a non-confirmable message.
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3.4.6.1 CoAP Request/Response Model

The CoAP request/response model consists of confirmable and non-confirmable
messages. As shown in Fig. 3.36, if the request is carried using a confirmable
message and the server can answer immediately, the server sends back to the client
an acknowledge message containing the response or an error code. The confirmable
message also contains a Token, which is different from the ID, and it is used to
match the request and the response.

As shown in Fig. 3.37, if the server cannot answer to the request immediately,
then it sends an acknowledge message with an empty response. As soon as the
response is available, then the server sends a new confirmable message to the client
containing the response. Then, the client sends back an acknowledge message.

Figure 3.38 shows the structure of a CoAP message. It is worth noting that the
CoAP protocol is meant for constrained-size messages, and to avoid fragmentation,
a message occupies exactly the data section of a UDP packet. The CoAP message
consists of:

• Ver (2 bits): Indicates the CoAP version number.
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Ver T TKL Code Message ID

Token

Option

Payload Marker Payload

0 8 16 24 32

Fig. 3.38 CoAP message structure

• T (2 bits): Indicates if this message is of type confirmable (0), non-confirmable
(1), acknowledgment (2), or reset (3).

• TKL (4 bits): It is the token length and indicates the length of the variable-length
token field, which may be 0–8 bytes in length.

• Code (8 bits): It is the CoAP request/response code. The three most significant
bits form a number known as the “class,” which is analogous to the class of HTTP
status codes. The five least significant bits form a code that communicates further
detail about the request or response.

• Message ID (16 bits): It is used to detect message duplication and to match
messages of type acknowledgment/reset to messages of type confirmable/non-
confirmable.

• Option (32 bits): First 4 bits determine which option, the next 4 bits determines
the option length, and the remaining bits is the option itself.

• Payload Marker (8bit): The marker has value 0xFF and indicates the end of
options and the start of the payload.

• Payload (32bit): Contains the transmitted data.

3.4.7 Extensible Messaging and Presence Protocol (XMPP)

Extensible Messaging and Presence Protocol (XMPP) is a communication protocol
for message-oriented middleware based on XML [87] promoted by the XMPP
Standards Foundation (formerly the Jabber Software Foundation) and standardized
by IETF [88]. It enables the near-real-time exchange of structured yet extensible
data between any two or more network entities. Originally named Jabber, the
protocol was developed by the homonym open-source community in 1999 for
near real-time instant messaging (IM), presence information, and contact list
maintenance. Designed to be extensible, the protocol has been used also for publish-
subscribe systems, signaling for VoIP, video, file transfer, gaming, IoT applications
(e.g., smart grids), and social networking services [88, 89].

Unlike most instant messaging protocols, XMPP is defined as an open standard
and uses an open systems approach of development and application, by which
anyone may implement an XMPP service and interoperate with other organizations’
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implementations. Because XMPP is an open protocol, implementations can be
developed using any software license and many servers, clients, and library imple-
mentations are distributed as free and open-source software. Numerous freeware
and commercial software implementations also exist.

3.4.8 OPC Unified Architecture (OPC-UA)

OPC Unified Architecture (OPC-UA) is a machine-to-machine Application Layer
communication protocol for industrial automation developed by the OPC Founda-
tion [90]. The idea behind OPC-UA is providing a platform-independent commu-
nication standard with a service-oriented architecture, where devices communicate
using specific messages of request and response. OPC-UA addresses a wide range
of target applications, i.e., Supervisory Control and Data Acquisition (SCADA),
Human-Machine Interface (HMI) (or, more generally, Human-System Interface
(HSI)), distributed control systems, and management of programmable logic con-
trollers. Sources or destinations of OPC-UA data belong to the so-called shop
floor of the smart factory, e.g., they may be milling machines, 3D printers, robots,
conveyor belts, etc.

Figure 3.39 shows the OPC-UA reference software architecture [91]. At the
lowest level, the fundamental components of OPC-UA are transport mechanisms
and data modeling. The transport mechanisms do not depend on a specific protocol
mapping and allow adding new protocols in the future. The first version of OPC-UA
defined an optimized binary TCP protocol for high-performance intranet communi-
cation as well as a mapping to accepted Internet standards like web services, XML,
and HTTP for firewall-friendly Internet communication. Both transports are using
the same message-based security model known from web services.

The OPC-UA standard can be used to build two main communication scenarios,
which are exemplified in Fig. 3.40, i.e., client/server, and publish/subscribe. The

OPC-UA Transport

(WebService/ OPC-UA Binary)
OPC-UA Data Model

OPC-UA Base Services

DA AC HA Prog

OPC-UA

Basis

Base

Services

OPC Information

Model

EIC, ISA, MIMOSA

EDDL, etc.

Vendor Specific Extensions

Specifications of Information Models

of other Organisations

Fig. 3.39 OPC-UA reference software architecture
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Fig. 3.40 Delivery of data through the OPC-UA architecture. Data, defined in the OPC-UA
Address Space, can be delivered in three different modes, i.e., client/server, broker-less pub-
lish/subscribe, and broker-based publish/subscribe

latter one can be further subdivided into two more scenarios, i.e., broker-less and
broker-based. In the client/server mode, an OPC-UA client requests information
and receives a response from an OPC-UA server. Each device can host multiple
clients and servers. Each client can concurrently interact with more than one
server, and vice-versa a server can concurrently interact with more than one client.
This communication mode is simple and does not require gateway, but client and
server should know each other, and sharing information may lead to message
repetition. The publish/subscribe mode (also known as PubSub) allows to handle
efficiently one-to-many and many-to-many communications by using a message-
oriented middleware. Information providers and consumers are not required to
know each other. In the broker-based scenario, the publisher sends a message to
a broker, which then distributes the messages to the various subscribers. OPC-
UA does not define the message-oriented middleware; instead, it leverages existing
technologies, e.g., MQTT. The broker is an active actor which sends messages to
devices that subscribed on a specific topic. In the broker-less scenario, OPC-UA
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relies on the multicast function of the network infrastructure to deliver messages to
one or more receivers. In this scenario topics are mapped on multicast addresses,
and interested nodes should interact with the low-level network infrastructure to
join a multicast group. Broker-less PubSub mode seems the optimal solution since
message repetitions are avoided without the need of an additional device acting
as a broker. However, broker-less PubSub mode requires connection-less transport
protocols, such as UDP, since TCP cannot be conveyed over multicast transmissions.
Therefore many useful features of TCP (e.g., loss recovery) should be moved inside
UPC-UA implementation in the involved devices.

Data are at the heart of an OPC-UA application. The data modeling defines
the rules and base building blocks necessary to expose an information model with
OPC UA. It defines also the entry points into the address space and base types
used to build a type hierarchy. This base can be extended by information models
building on top of the abstract modeling concepts. In addition, it defines some
enhanced concepts like describing state machines used in different information
models. The standard defines the Address Space to provide a clear paradigm for
information providers to represent data to consumers. Each type of information is
defined as a node in the Address Space. Each node has its own set of attributes.
There are different types of nodes, called NodeClass, based on their specific
purpose, i.e., Variable, Object, Method, View, DataType, VariableType, ObjectType,
and ReferenceType. Depending on the NodeClass, a node can have different
attributes, plus a set of attributes that are common to all the types of nodes. The
Address Space is a network of nodes interconnected by references. Data from the
Address Space are collected into the so-called DataSet, while the DataSetWriter
prepares DataSetMessages starting from the DataSets and makes them available for
publishing.

The OPC-UA Services are the interface between servers as supplier of an
information model and clients as consumers of that information model. The Services
are defined in an abstract manner. They are using the transport mechanisms to
exchange the data between client and server.

This basic concept of OPC UA enables an OPC UA client to access the smallest
pieces of data without the need to understand the whole model exposed by complex
systems. OPC UA clients also understanding specific models can use more enhanced
features defined for special domains and use cases.

To cover all successful features known from Classic OPC, information models
for the domain of process information are defined by OPC-UA on top of the base
specifications. There are four main Information Models defined in OPC-UA:

• OPC Data Access (DA) It gets data out of the control systems into other systems
on the shop floor. Each information about a specific tag or data point contains
some information about it. First you have the data itself, and that is called
Value and of course the Name of it. To that comes a number of other pieces of
information that describes the information; the first is the Timestamp that gives
you the exact time when the value was read. This timestamp can be taken either
directly from the underlying system or assigned to it when the data is read in the
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OPC server. The last piece is called Quality which gives a basic understanding if
the data is valid or not.

• OPC Alarm & Events (AE) It is fundamentally different from the DA model
simply due to the fact that events do not have a current value. This means that
this protocol always is a subscription-based service where the clients gets all the
events that come in. In terms of data that comes with the event, there is no tags
and therefore not any name and quality, but there is of course a Timestamp. But
like in the case with DA, there is no store in the server, and once the event is
transferred, the server forgets it was ever there.

• OPC Historical Analysis (HDA) The difference between DA, AE, and HDA is
that HDA contains historical data and you can call for a large amount of past
data. The model therefore supports long record sets of data for one or more data
points. It was designed to provide a unified way to get out and distribute historical
data stored in SCADA.

• Programs (Prog). It specifies a mechanism to start, manipulate, and monitor the
execution of programs.

Other organizations can build their models on top of the UA base or on top
of the OPC information model, exposing their specific information via OPC-UA.
Examples for standards already working on mappings to OPC-UA are Field Device
Integration (FDI) combining Electronic Device Description Language (EDDL) and
Field Device Tool (FDT) both used to describe, to configure, and to monitor devices,
and PLCopen, a standard for PLC programming languages. Additional vendor-
specific information models will be defined using directly the OPC-UA base, the
OPC models, or other OPC-UA-based information models.

3.5 IoT Network Design Methodology

In Sect. 3.1 we described the general structure of an IoT application and its specific
characteristics:

• strict dependence between application and communication aspects;
• system-of-systems nature;
• strict relationship with the environment.

Because of these characteristics, the design of IoT network structure can be a
complex task, and the huge amount of opportunities provided by standard technolo-
gies (as the ones described in previous sections) can be an issue. Furthermore IoT
applications can be heterogeneous, i.e., they may involve more than one technology
in the same scenario. For instance, a LR-WPAN technology can be used inside
some buildings that are then connected together by using a LP-WAN technology.
Research work addressed this problem. In [92] a communication-aware design flow
is proposed together with a communication-aware formal specification of the whole
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distributed IoT application to formulate and solve the design problem by using an
optimization approach. Such formal specification considers the following aspects:

• Energy consumption and type of energy source. Energy consumption is pro-
portional to the throughput of the node. Therefore, it can be reduced by lowering
the physical bitrate or introducing sleeping periods. High energy consumption
requires to connect the device to a stable energy source such as the power grid or
a large battery to be recharged periodically by a person. Devices that exhibit such
requirements cannot be unattended. This is the case of gateways, coordinators,
network servers, routers. Medium energy consumption allows the use of batteries
that have autonomy of at least 2–3 years. In this case, the replacement period is
acceptable and can be combined with other activities already required in that
application context. This is the case of beacons that highlight the presence of an
object (e.g., in a museum). Low energy consumption allows the use of energy-
harvesting (or energy scavenging) techniques to obtain a small amount of energy
from the surrounding environment [93]. Well-known examples are NFC passive
tags that use radio-frequency energy and sensors supplied by photovoltaic cells.

• Frequency band. There are two main sets of frequency bands, i.e., sub-GHz and
millimeter-wave. Sub-GHz bands allow low-power and long-range operation as
well as obstacle avoidance at the cost of data rates usually far below 1 Mb/s.
Millimeter-wave bands (e.g., 2.4 and 5 GHz bands) allow higher data rates but
requires “line-of-sight” transmission. It is worth noting that frequency bands
that are blocked by walls (as in the case of 5 GHz band) allow intrinsic security
with respect to eavesdropping. Furthermore, as reported below, the choice of an
unlicensed or licensed frequency standard has an impact on telecommunication
cost.

• Quality of service. This is the general term that encompasses some different
performance aspects of the communication. One aspect is the data rate, which
denotes the amount of information transferred in the time unit. Multimedia
data (e.g., the output of a camera) usually require a higher data rate than
physical sensing (e.g., light intensity). If data from several sensors are merged,
the resulting stream may require a high data rate. It is worth noting that data
processing at the edge of the network can help reduce the required data rate;
for instance, in a video surveillance application, object recognition performed by
the camera allows to replace video transmission with a simple alert notification.
Another aspect is delay which denotes the time to move a message from one node
to another of the network. Delay constraints are important in control applications.
The absolute value of delay affects the promptness in device actuation. In closed-
loop control applications, the delay variation is very important since it affects
the stability of control. Finally, the third aspect is error rate which denotes the
fraction of bits whose value is erroneously received at the destination. Bit errors,
if detected, decrease data rate since the message is discarded; otherwise, they can
compromise data processing at the destination.

• Transmission range. The right distance between two communicating devices
is an application requirement. For some applications, e.g., precision agriculture
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and smart metering, long distance values are desirable to avoid the need for
intermediate systems to re-launch the signal. Vice versa, in proximity services
and electronic payments, keeping the maximum distance very short is a require-
ment. It is worth noting that large distance values increase power consumption,
electromagnetic noise, and risk of eavesdropping.

• Mobility. There are two kinds of mobility. In case of low mobility, users are
interested in avoiding the presence of cables to reduce cost or to be able to
change the position of nodes if needed. In the case of high mobility, devices
are transmitting while moving. This feature requires to adapt the transmission
to the changing environmental condition, e.g., distance from the counterpart,
reflections over obstacles, and presence of other electromagnetic sources in the
same frequency range.

• Scalability. Except for mesh networks, usual IoT infrastructures are based on
star or tree topology with intermediate systems connecting a set of end nodes.
In these cases the maximum number of end nodes supported by an intermediate
system is very important. Small values indicate low scalability of the technology
which leads to high cost to deploy intermediate systems.

• Security. Data confidentiality and integrity will become ever more important
in IoT applications according to their diffusion. Security at Data Link and
Network Layer should be directly enforced by the protocol standard. Security at
Application Layer can be easily provided by recurring to the traditional TCP-
based mechanisms (e.g., TLS/SSL). If TCP is not supported by the protocol
stack, then custom mechanisms should be implemented by the application
designer.

• Cost. The cost of an IoT network infrastructure depends on different aspects.
The most evident aspect is the hardware cost of the various devices involved
in the application. Most of these devices are end nodes (e.g., sensors), but the
number of intermediate systems (e.g., gateways) can be significant especially if
the technology is not scalable. We can include in this category also the cost for
the use of cloud services. The second aspect is the telecommunication cost due to
subscription fees for the use of licensed frequency standards. The third aspect is
the energy cost, which encompasses energy bill, purchase of new batteries, and
disposal of the exhausted ones, as well as personnel cost for battery replacement.

Table 3.6 compares some of the standard technologies described before accord-
ing to such aspects. It is interesting the comparison between standards based on
unlicensed frequencies (i.e., IEEE 802.15.4, Bluetooth, ZigBee, WirelessHART, Z-
Wave, IEEE 802.11, LoRaWAN and Sigfox) and cellular standards (i.e., NB-IoT
and LTE-M). Regarding the first set, the use of the radio channel is free of charge but
the noise level due to its shared nature leads to a decrease of the QoS and scalability.
To cope with crowded channels and provide a wide coverage, more gateways are
needed thus increasing deployment cost. Vice versa, in cellular networks, end nodes
can be directly connected to the telecom infrastructure which natively guarantees
a higher QoS and coverage (e.g., for NB-IoT) at the cost of subscription fees. The



164 E. Fraccaroli and D. Quaglia

Table 3.6 Comparison of IoT wireless technologies

Technology Frequency Data rate Range Mobility Energy cons.

2G/3G Cellular bands 10 Mb/s Several km’s High High

LTE Cat M1 Cellular bands 1–10 Mb/s Several Km’s High Medium

NB-IoT Cellular bands 60 kb/s Several Km’s Medium Low

Bluetooth/BLE 2.4 GHz 1/2/3 Mb/s <100 m Low Low

IEEE 802.15.4 2.4 GHz and
Sub-GHz

40, 250 kb/s <100 m Low Low

ZigBee 2.4 GHz and
Sub-GHz

40, 250 kb/s <100 m Low Low

WirelessHART 2.4 GHz 250 kb/s <100 m Low Medium

ISA100.11a 2.4 GHz 250 kb/s <100 m Low Medium

Z-Wave Sub-GHz 40 kb/s ~30 m Low Low

IEEE 802.11 2.4 GHz,
5 GHz and
Sub-GHz

0.1/54 Mb/s <100 m Low Medium

LoRaWAN Sub-GHz <250 kb/s ~15 Km Medium Low

Sigfox Sub-GHz <1 kb/s Several Km’s Medium Low

Credit to https://blog.helium.com/802-15-4-wireless-for-internet-of-things-developers-
1948fc313b2e

designer should consider these aspects to choose the best option according to the
current cost of hardware devices, subscription fees, and the required number of
deployed nodes.

3.5.1 Communications for Localization

A direct effect of Internet of Things applications is the emerging need to recover
the location of such “things.” Since many localization techniques are based on
communications belonging to the previously described standards, it is worth
introducing them briefly in this chapter. Localization services can be classified
into proximity services and positioning services [94]. Proximity services are the
simpler of the two categories and leverage communication protocols to determine
the location of two devices relative to each other. One of the two is a transmitter,
and the other determines if it is within the range and, in some cases, approximately
how far away. Point of interest information (e.g., in a museum or in a shopping mall)
and item finding are typical applications based on proximity services. Bluetooth LE
beacons or NFC tags are often used in this case.

Positioning services aim to determine the physical location of “things” and
involve more sophisticated infrastructure deployments. Real-time locating systems
(RTLS) and indoor positioning systems (IPS) are two of the most popular types
of positioning services. RTLS solutions are used for both asset tracking as well

https://blog.helium.com/802-15-4-wireless-for-internet-of-things-developers-1948fc313b2e
https://blog.helium.com/802-15-4-wireless-for-internet-of-things-developers-1948fc313b2e
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Fig. 3.41 Localization architectures: (a) tag-based, (b) beacon-based

as people tracking. Indoor positioning systems help visitors, such as shoppers in a
mall, travelers in an airport, or workers in a large office building, navigate their way
throughout a facility. As depicted in Fig. 3.41, there are two types of architectures,
i.e., tag-based and beacon-based, depending on the purpose of the localization-based
application. In the tag-based architecture, the “thing” transmits data to receivers,
often referred to as “locators,” in fixed and known locations throughout a facility.
The locators estimate their distance from the “thing” and send such estimates back
to a centralized server that acts as location engine. This configuration is used
when the “thing” is a simple tag attached to an asset or a person that has to be
localized by users far from it. Some tag-based solutions are using Bluetooth [94]
or LoRaWAN [95]. The beacon-based architecture works oppositely. Instead of
receivers, transmitters, commonly referred to as locator beacons, are deployed in
fixed and known locations throughout a facility. The “thing” receives messages from
locator beacons, estimates their distance, and performs localization. This configu-
ration is used when the “thing” is a more sophisticated device such as a mobile
phone, a vehicle or a robot which is directly interested in knowing its location.
Bluetooth [94], Wi-Fi, and cellular network are used in this configuration. In recent
years, positioning services have been also implemented by using passive RFID
systems (usually involved in proximity services) by using arrays of either passive
RFID tags or antennas always combined with complex tracking software [96].

Bluetooth 5.1, the last releases of cellular networks, and Wi-Fi introduce
a direction finding feature that increases localization accuracy with respect to
traditional multi-lateration techniques. Figure 3.42 shows the angle of arrival (AoA)
method. The device to which direction is being determined, such as a tag in a
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Fig. 3.42 Direction finding
by using Angle of Arrival
(AoA) and receiver antennas
array

Transmitter

Receiver

AoA

tag-based configuration, transmits a signal using a traditional antenna. The receiving
devices, such as locators in that configuration, have multiple antennas arranged in an
array. As the transmitted signal crosses the array, the receiving device sees a signal
phase difference due to the difference in distance from each of the antenna in its
array to the transmitting antenna.

3.6 Summary

This chapter has given the main concepts regarding the communication part
of IoT applications. Network aspects have been discussed both in an abstract
context and applied to specific well-known standards. The chapter has presented
the main reference communication scenarios and architectures, as well as the
primary standards behind them. To better describe network standards, the well-
known ISO/OSI model has been adopted as reference, and the basic network
terminology has been introduced. We presented several widespread standards such
as Bluetooth, IEEE 802.15.4-based technologies, LoRaWAN, Sigfox, and, among
cellular standards, NB-IoT and LTE-M. Then application-level technologies have
been presented. Finally, we discussed the aspects to be considered in the design of
the communication part of IoT applications, including localization aspects.
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Chapter 4
Architecting IoT Cloud

Farshad Firouzi and Bahar Farahani

It is better to have your head in the clouds, and know where you
are... than to breathe the clearer atmosphere below them, and
think that you are in paradise.

Henry David Thoreau
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4.1 The IoT Cloud

The independent arenas of Cloud and IoT have been evolving quickly. Although
these models are distinct from one another, their elements are often complimentary
of one another. Integrating them provides benefits for specific application situations.
IoT benefits from the limitless resources and capabilities of Cloud to tackle its tech-
nological constraints such as processing power, less storage, and communication.
For example, Cloud offers IoT service management as well as the ability to deploy
applications and services that use IoT things or generated IoT data. Cloud can also
provide services in many real-life scenarios by acting as an intermediary between
the things and applications. On the other hand, Cloud benefits from IoT’s ability
to address problems in a more dynamic and distributed approach. The primary
motivations for Cloud and IoT integration can be summarized as follows [1]:

• Communication – Application and data sharing are two communication-oriented
drivers for integration. Through a combined Cloud/IoT model, personalized,
pervasive applications can be provided through IoT, while data collection and
distribution can be automated for minimal cost. Cloud technology provides
a cost-effective solution to manage, connect, and monitor anything from any
location at any time through incorporated applications and customized portals.
High-speed networks allow productive coordination, monitoring, communica-
tion, and control of remote IoT things as well as real-time data access. While
the Cloud can remarkably improve IoT communication, it can also lead to some
bottlenecks. In fact, while broadband capacity increased by a factor of only 104

over the last 20 years, data storage density has grown by a factor of 1018 and
processor power has grown by a factor of 1015. Therefore, limitations become
apparent when trying to move huge amounts of raw data to the Cloud from the
edge of the Internet.

• Storage – IoT incorporates a large number of data sources (i.e., IoT
things/devices), generating a large amount of semi-structured or unstructured
data. This data is characterized similarly to big data based on volume, data
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variety, and velocity. An important Cloud/IoT integration motivator is the large-
scale, long-life data storage made possible by the limitless, cost-effective, highly
available storage capacity of the Cloud. Because Cloud is the most suitable
solution to manage IoT data, it creates new opportunities for data aggregation,
integration, and data sharing. After data has been stored in the Cloud, it can be
treated through simple APIs, guarded by world-class security, and accessed and
visualized remotely at any time.

• Computation – Due to processing and energy resource limitations, IoT devices
cannot process complex data on-site. Collected IoT Data must be transferred
to powerful nodes capable of aggregation and processing; however, scalability
is difficult to attain without the right infrastructure. Cloud provides limitless
processing and on-demand usage. This brings another important Cloud/IoT
motivation to the forefront. With the help of Cloud, IoT processing requirements
can be met (e.g., completing holistic data analysis, utilizing scalable, shared
applications, and handling complex tasks).

• Things as a Service – The Internet of Things can be also be thought of as a
network of networks where countless connections generate several opportunities.
An integrated Cloud/IoT model allows the evolution of smart services and
applications as the Cloud expands through things. This enables the Cloud to
handle new, real-life situations and create a Things as a Service model. This
is another key motivator for Cloud/IoT integration as new business models are
created by this particular driver.

The most efficient way to design and implement an IoT Cloud solution is to break
the problem into smaller pieces. Indeed, the solution can be better understood using
a layered architecture that is separated into unique layers responsible for handling
particular functions or roles. Figure 4.1 illustrates the overall architecture of the IoT
Cloud.

Fig. 4.1 Layered view of IoT Cloud architecture



176 F. Firouzi and B. Farahani

• Device Management Layer – This layer is responsible for provisioning, regis-
tration, configuration, monitoring, control, and maintenance of connected IoT
devices.

• Data Ingestion Layer – This layer is the initial stop for data coming in from
different sources. Data is arranged and categorized here to enable data to move
smoothly into the other layers.

• Data Processing Layer – This layer focuses on processing the data collected in
the data ingestion layer. This is the first point where data analysis takes place as
data is transmitted to different destinations.

• Data Storage Layer – Storage can be challenging depending on the size of data
being collected. Utilizing a storage solution appropriate for large data size is
important, and this layer focuses on storing vast amounts of IoT data as efficiently
as possible. This layer includes different components such as data lake, data
warehouse, and databases.

• Application Layer – IoT application is a software consisting of Presentation
Tier/Layer (i.e., front-end), Business Logic Tier, Database Tier, as well as
Application Integration Tier (i.e., APIs and other interfaces) that manages IoT
devices, IoT data, users, and IoT services.

• Data Visualization and Reporting Layer – This layer is also known as a
presentation tier and is likely the most important layer because here is where
users can feel or see the value of the collected IoT data. It is important to grab
the user’s attention and make findings clearly understood.

• Orchestration Layer – IoT Cloud architecture often contains repeated processing
operations inside encapsulated workflows. These workflows convert source data
and transfer it among multiple sources or sinks. In addition, the management of
IoT Cloud is a very complex task that directly results from the sheer number of
virtual servers and application components. As the name of this layer suggests,
the orchestration layer consists of a set of tools to orchestrate the Cloud and other
layers.

4.2 Fundamentals of Cloud Computing

Cloud computing dates back to the 1950s and since then has evolved through
different technologies such as grid computing and large-scale mainframes. Cloud
computing has been defined by the National Institute of Standards and Technology
(NIST) as, “a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction.” The NIST also
suggests that Cloud computing consists of five basic characteristics, three models of
service, and four deployment models [2].
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4.2.1 Cloud Computing Key Characteristics

According to NIST, each Cloud should have the following basic characteristics:

• On-Demand Self-Service – Users are able to independently utilize computing
capability including network storage and server time as needed without human
intervention from individual Cloud service providers.

• Broad Network Access – Computing is accessible via a network and typical
mechanisms that are useable by heterogeneous thick or thin client platforms such
as laptops, mobile phones, workstations, or tablets.

• Resource Pooling – Computing resources such as processing, storage, net-
work bandwidth, and memory are combined to serve many consumers via a
multi-tenant model. Various virtual and physical components are allocated and
reassigned based on client demand. Customers can sometimes at a higher level
of abstraction specify the location (i.e., state, country, or datacenter), but they
do not control or have exact knowledge of where provided resources are coming
from.

• Rapid Elasticity – It is possible to provide and release (sometimes automatically)
capabilities and quickly scale out on-demand. It may appear to clients that
provided capabilities are limitless and always obtainable in any quantity.

• Measured Service – Cloud computing systems control and maximize the use of
resources by utilizing metering abilities pertinent to a specific service type (i.e.,
active user accounts, processing, bandwidth, or storage). The consumption of
resources can be tracked, controlled, and documented for reporting purposes,
creating transparency for consumers and service providers.

4.2.2 Service Models

Providers of Cloud computing services utilize different models to offer services.
According to the NIST, the three typical models include Platform as a Service
(PaaS), Software as a Service (SaaS), and Infrastructure as a Service (IaaS).
Figure 4.2 illustrates the deployment options for IoT applications as well as the
three service models of Cloud. Note that IoT users can deploy their applications in
a private system (called on-premises) or on the Cloud as shown in Fig. 4.2.

• Infrastructure as a Service (IaaS) – This model gives organizations and com-
panies computing resources such as networking, servers, data center space, and
storage, using a pay-per-use structure.

• Platform as a Service (PaaS) – This model creates an environment that includes
all things needed to facilitate complete life cycles for constructing and dis-
tributing Cloud applications without the complications or cost purchasing and
managing all fundamental software, hardware, or hosting.
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Fig. 4.2 Deployment options for IoT applications

• Software as a Service (SaaS) – In this model, Cloud Applicaiton (or other
software as a service) are run on physically distant Cloud computers that are
the property of and operated by others. These applications typically connect with
user computers through an Internet browser.

4.2.3 Deployment Models

According to NIST, Cloud can be deployed in several ways such as:

• On-Premise Private Cloud – This is a Cloud infrastructure that is managed by a
third-party vendor or internally for only one organization. A private Cloud can
be hosted by the organization itself or externally.

• Public Cloud – Cloud services are provided through a network that is available
to the public for use.

• Hybrid Cloud – A hybrid Cloud is made up of at least two (and possibly more)
Clouds that are private or public and remain distinct from one another while being
connected. This connection provides the benefits of more than one deployment
model. Gartner suggests that a “hybrid Cloud is a Cloud computing capability
made up of some aggregation of community, public, or private Cloud services
available from various service providers.”



4 Architecting IoT Cloud 179

4.3 Device Management Layer

The complexity of managing IoT-connected devices increases in relation to the
number of devices added; therefore, an effective device management system is
needed. As with other products, Internet-connected devices have a life cycle that
includes the design and manufacturing phases as well as device installation, in-
operation, and replacement or repair. For each part of the life cycle, the management
solution must meet different requirements to handle the management needs of each
phase appropriately. In general, a device management layer needs to address the
following tasks:

• Provisioning

– Registration
– Configuration

• Monitoring and control
• Software updates and maintenance

4.3.1 Provisioning

The term “provisioning” can mean different things depending upon the industry it is
used in. When it comes to provisioning IoT devices to a Cloud solution, provisioning
is broken into two parts [3]:

• Registration – Registration is the initial phase of the provisioning process where
the first connection between the Cloud and the device is made and IoT devices
are enrolled in the Cloud.

• Configuration – The second phase of the provisioning process is setting up and
configuring the device with an appropriate device configuration based on the
particular requirements of the target IoT solution.

When both parts of the provisioning process have been accomplished, the device
is considered completely provisioned. It is important to remember that there are
some Cloud services that handle only the registration phase of provisioning by
registering devices to the Cloud without configuration. A Device Provisioning
Service is able to automatically handle both registration and configuration, which
enables streamlined provisioning for a device.

Figure 4.3 illustrates a typical device provisioning scenario; however, it should
be noted that the flow of the process can vary greatly depending upon the imple-
mentation and application. Below are the general steps included in the provisioning
process [3, 4]:

1. During the manufacturing process, the registration information, credentials, and
identity (e.g., public and private key) of a device are integrated into the device’s
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storage. The manufacturer also inserts the device registration information on the
Cloud enrollment list.

2. A device makes contact with the registration service and provides the credentials
and registration information to confirm its identity.

3. The device’s identity is confirmed by the registration service by validating the
registration information in comparison to the enrollment list.

4. The device is then registered in the Cloud and a digital representation (i.e.,
shadow, manifesto, or device twin) of the actual device is created in the Cloud.
The Cloud typically stores a common set of device characteristics and state
information such as software details and hardware specifications. It should be
noted that usually document-based NoSQL databases, such as MongoDB, are
used to store heterogeneous device description in the Cloud.

5. Next, the registration service sends an authorization grant to the device.
6. Using the authorization grant, the device can contact the authorization service to

be able to obtain an access token. This token is then utilized by the device when
communicating with any resource in the Cloud.

7. The device connects with the Cloud and provides the access token for each
request.

8. When a request is received from a device, the access token should be reviewed
in the Cloud by authorization service to confirm the validity and to determine if
the device has a suitable right and permission to access a resource/service. If it is
accessible, the Cloud then processes the device’s request.

It should be noted that when the device registration process is finished, users,
applications, organizations, and groups can then be associated with the device.
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Establishing relationships, or defining the right of access, between the owner, user,
device, and organizations is an elemental part of the authorization and authentication
mechanism. At the very least, connected devices can be accessible by three district
user groups including maintenance and operations service providers, owners, and
the original equipment manufacturer (OEM). The access must be thoughtfully
designed and managed to protect against any possible cybersecurity problems.

4.3.2 Software Updates and Maintenance

In a holistic IoT solution, it is very important to be able to perform the over-the-air
firmware and software updates. Indeed, the operations most frequently performed
by administrators are software and firmware updates. To do so, it would be very
helpful to automate these operations using workflow management, which executes
a sequence of commands on the device. These tasks can be completed on-demand
or they can be scheduled at a designated future time. Workflow engines are able to
provide powerful, user-friendly dashboards that specify the details of workflows as
well as scripting capabilities to program the engine.

Figure 4.4 depicts a general update process workflow. The process starts with a
device management tool that notifies the digital twin of the device that a software
update is available. Next, the digital twin sends a message requesting a firmware
update to the device over a reliable and secure connection (i.e., WebSocket, HTTP,
or MQTT). When the device receives the update request, it downloads the image of
the new firmware from the pre-defined repository, verifies the image, extracts and
applies the image, and finally reboots itself. Next, the device sends a message to the
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Fig. 4.4 A typical flow of firmware update
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Cloud indicating that the software update was completed successfully. This message
will cause a configuration synchronization task to begin so that the physical device’s
status and the device’s digital twin can be in sync.

4.3.3 Monitoring and Control

Within a system comprised of thousands of remote devices, the secure and
efficient operation of individual devices can impact the profit margin. Seemingly
small problems can significantly impact customer satisfaction and hinder business
success. Diagnostic and monitoring tools are the key to reducing the negative impact
of device downtime caused by unpredicted operational issues or software problems.
For example, problems or issues can be detected by tracking and analyzing storage,
computing, input/output, and networking statistics at the processor task level.

The ability to download program dumps and logs is also vital to identifying and
resolving software issues because it is not possible to travel to each device to debug
them using a serial terminal. An application developer has to employ solid program
logging and device management software to ensure that the necessary debugging
information is available to be uploaded in the event of an error. In addition, the
device management software must also generate practical problem insights for
issues that occur across many devices.

Often, devices require additional configuration by the user, including attributes
such as location, name, and specific application settings. For example, in IoT-
based fleet management application, a device must monitor vehicle location and
status and then send that information to the Cloud using a cellular connection.
In this context, specific parameters must be written when the device is installed,
including the distinctive truck or trailer ID (e.g., license plate number). Additional
configuration settings such as the time interval for the sending position data can
also be programmed into the device. Unless you want to preconfigure every shipped
device, it is important to be able to remotely access and manage devices to provide
on-demand support and configuration.

4.4 Data Ingestion Layer

Data ingestion is considered as the starting place and the first stage of the IoT data
pipeline in Cloud. This layer is concerned with connecting to different sources of
IoT data, bringing data (particularly, (semi-) unstructured data) into the Cloud as
well as routing data to appropriate destinations in Cloud. Note that in the ingestion
layer, data can be consumed in batches or streamed in real time. When it comes
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to real-time streaming, data is ingested as it arrives. On the other hand, in batch
mode, the data is ingested in pieces at periodic time intervals. As the availability of
IoT devices grows, the variety and volume of data sources are quickly expanding.
Therefore, obtaining data can be a challenge. In general, major challenges facing
data ingestion include [5, 6]:

• Velocity and Volume of Data – Data volume and the frequency of data generation
are incredibly high in IoT.

• Heterologous Data Sources – When data sources have different formats and
natures, it can be difficult to ingest quickly, process, and prioritize data.

• Rapid Evolution – Both data sources and ingestion technologies/frameworks
change quickly over time.

• Independent Data Changes – Data can change independently from the ingestion
application without any prior notice.

• Semantic Data Changes – Data semantics can evolve as the data is used in new
business scenarios.

• Detection and Capture – Detecting and obtaining altered data can be challenging
due to the unstructured or semi-structured nature of data as well as the low-
latency requirements of specific business cases.

When designing a Data Ingestion System, it is important to consider the
following:

• Upgrade Capability – The system must be able to upgrade in order to handle new
data sources, applications, and technologies.

• Data Integrity – We have to ensure that the ingestion application is consistently
obtaining correct and trustworthy data.

• Dependability and Fault Tolerance – The system must be fault tolerant of
overcoming any failures.

• Data Volume – The ingestion layer should be able to handle the high volume
of data. In general, the ability to store all data is preferable; however, in some
instances it may be more appropriate to store aggregated (processed) data.

• Scalability – The system must rapidly consume data, be able to scale based on
volume as well as the speed at which big data of IoT comes in from various
sources including networks, machinery, sensors, human interaction, social media,
and other media sites.

• Heterogeneous Data Source/Format – While data can take different forms, it is
usually structured (i.e., tabular one), unstructured (i.e., video, audio, images),
or semi-structured (i.e., CSS files, JSON files, etc.). The data ingestion layer
should be capable of utilizing various data sources, data formats, technologies,
and operating systems.
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4.4.1 Data Ingestion Frameworks

4.4.1.1 Apache Flume

Apache Flume is a distributed system useful for capturing, aggregating, and routing
massive quantities of streaming data into a data store such as Hadoop. The details of
the Hadoop ecosystem will be discussed in Chap. 6. Flume includes several built-in
channels, sources, and sinks (data destinations). Flume also offers some features
necessary to be able to perform transformations (processing) of data during the
ingestion process. Flume can also be scaled horizontally in order to provide high
availability and scalability.

Apache Flume deployment includes starting one or multiple Flume agents. A
Flume Agent is a JVM process comprised of three elements: Flume Source, Flume
Channel, and Flume Sink (see Fig. 4.5) [7].

1. Flume Source – In Flume, an event is defined as a data unit consisting of a byte
payload and a set of optional string attributes. Data source is responsible for
ingesting the events triggered by an external source such as a Webserver or a
connected sensor.

2. Flume Channel – Afterward, the event is stored in one or more channels by Flume
Source. The stored data will stay in channel until it is consumed by Flume Sink.

3. Flume Sink – Finally, Flume Sink takes the event from channel storage and routes
it to an external depository (e.g., HDFS in Hadoop).

Note that agents are capable of being chained, so multiple Flume Agents can be
utilized. In such a case, Flume Sink of one agent sends the event on to the Flume
Source of the next Flume Agent in the chain.

4.4.1.2 Apache Kafka

Apache Kafka is an open source, high-throughput, distributed message
bus/queue/system to connect data consumers to data providers. In comparison
to Flume, Kafka provides greater scalability and more durable messaging. Kafka is

HDFS
(Hadoop)

Channel

Source SinkClient

Flume agent -JVM process

1

2 3

4

Fig. 4.5 Apache Flume Architecture
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a publish-subscribe system in which messages persist and are categorized based on
the topic. Message creators are known as publishers and the consumers of messages
are known as subscribers. Consumers are able to subscribe to multiple topics and
consume/receive all messages for that particular topic (see Fig. 4.6). There are five
basic components required to move data in and out of Kafka as described below [8]:

• Topics – A topic is a category, channel, or a queue defined by the user under
which messages are published. Within Kafka, topics are multi-subscriber, mean-
ing they can have zero to many consumers subscribed to receive the published
data.

• Partitions – Topics can be divided into partitions which allow users to scale and
parallelize a particular topic by breaking its data across many different brokers
(Kafka Server/Machine). In this approach, each partition can be allocated to an
individual machine, enabling many consumers to read a topic simultaneously.
Every message in Kafka is identifiable by a tuple made up of the message
topic, partition, and offset inside the partition. An offset is a specific immutable
order in which messages are arranged in a partition. In other words, an offset
identifies the location of one record in the partition. Consumers are able to
read messages beginning at a specific offset and can read from any chosen
offset point, enabling consumers to join a topic/partition at any point. To support
fault tolerance features, Kafka can replicate each partition across a configurable
number of servers (see Fig. 4.7). In this case, a partition can function either as
a leader or as a replica. All reads and writes for a partition must pass through
the leader, and the leader handles all read and write requests for a partition. In
addition, the leader is responsible for organizing replica updates with newer data.
In the case of leader failure, a replica is able to function as the leader.

• Producers – Producers are responsible for posting a message to topics. A
message is made up of a topic name referencing where the record will be sent, a
partition number (optional), key (optional), and value (optional). If the partition
is specified by the producer, the message will be routed to that specific partition.
If a partition is not chosen by producer, but a key is indicated, the partition is
picked by the broker based on the key’s hash. In the case that no partition or

Topic A

Topic B
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Consumer 2

Consumer 3

Producer 2

Producer 1

Producer 3

Fig. 4.6 The publish-subscribe mechanism in Kafka
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key is specified, a partition is chosen in a round-robin manner (i.e., partitions are
selected based on a circular order). Kafka broker can also create a timestamp for
each message when it wants to store the message in the partition. Producers can
attach keys to messages, guaranteeing that all messages with the same key are
sent to the same topic partition. Kafka ensures order in a partition but does not
guarantee order across partitions within topics. Therefore, not utilizing a key will
result in round-robin style distribution to all partitions, and it will not maintain
the same order.

• Consumers – Consumers subscribe to a particular topic(s) and process messages
that are posted in the corresponding topic(s).

• Brokers – A Kafka broker, Kafka node, or Kafka server all reference the same
concept and the terms can be used interchangeably. Kafka brokers take in
producer messages and store them on disk categorized by topics/partitions. The
broker also enables consumers to obtain messages based on offset, topic, or
partition.

4.4.1.3 Apache Nifi

Apache Nifi is designed to automate data movement among different systems.
Nifi simplifies data movement between a source and a destination through real-
time control, and it supports different and distributed sources with various formats,
protocols, schemas, sizes, and speeds (i.e., clickstreams, social media feeds, geo-
location devices, videos, log files, etc.). Apache Nifi can be configured to move
data similar to the manner in which UPS or FedEx moves, tracks, and delivers
parcels because this platform enables the user to track real-time data much like
a package delivery. Nifi is also very useful for sensitive data flows which need
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robust compliance and security requirements. In contrast to Kafka and Flume, Nifi
is capable of handling data objects of differing sizes. NiFi comes with a user-
friendly drag-and-drop, web-based user interface which allows users to visualize the
whole process and make necessary changes in real time. The core design concepts
underpinning Nifi are similar to the basic idea of Flow-Based Programming (FBP).
Below are the foundational Nifi concepts and components [9]:

• FlowFile (Information Packet) – It represents the data objects passing through
the system. For each FlowFile, Nifi tracks a set of key/value pair characteristics
of the object as well as its corresponding content (zero or more bytes).

• FlowFile Processor (Processor) – Processor handles a combination of data
transformation, routing, and system mediation. Processors are able to access
FlowFile characteristics as well its content. Processors are able to work on zero
or more FlowFiles in parallel. NiFi processors can either commit the result/out
or can roll back to their previous state (to address fault-tolerant issues). Nifi
comes with a wide assortment of processors (at the time of this writing more than
260 processors) including connectors for Kafka and Flume that may be dragged,
dropped, configured, and immediately put to work. There is also a possibility to
design and implement custom processors for Apache NiFi.

• Connection (Bounded Buffer) – Connections serve as a link between processors.
They function as queues and enable different processes to interact at various
rates. Queues can be arranged dynamically and may include upper bounds on the
load, allowing back pressure. Backpressure references scenarios where queues or
buffers are at capacity (full) and unable to receive new data. In such a case, the
backpressure mechanism ensures that new packets of data are not sent until the
data bottleneck has been resolved or the buffer is no longer full.

4.4.1.4 Elastic Logstash

Elastic Logstash is an open-source data ingestion framework that takes in data from
many sources concurrently, transforms the data, and sends the transformed data to
the Elasticsearch database (a NoSQL Database). Logstash is capable of ingesting
data of varying source, shape, and size from several sources such as logs, and
databases, in a constant, streaming manner. Logstash has a large variety of output
plugins, to support a range of different use cases. Additional Elasticsearch and
Logstash details will be discussed later in this chapter.

4.5 Data Processing Layer

In this section, we will discuss the modern data processing and big data architectures
created to manage huge amounts of data in order to extract the value of IoT data.
Before reviewing data processing architectures, some fundamental terms are defined
below [3, 5, 6, 10, 11]:
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Fig. 4.8 Batch processing versus real-time stream processing

• Streaming Data (Stream) – Stream is a data that is continuously generated and
transferred at a steady, high-speed rate.

• Batch Processing – A batch is made up of data points that have been gathered
within a specified time period often known as a “window of data.” Batch
processing requires that a data set be collected and stored for a certain period
of time. Then, the entire set is processed together at a designated future time.
The parameters for processing can be determined in a number of ways including
a scheduled time interval (e.g., new data is processed every 5 minutes) or through
a specified condition (e.g., batch is processed when it contains five data elements
or when it reaches 1 MB of data). An example of batch processing would include
all of a financial firm’s transactions submitted over the period of a week (see
Fig. 4.8).

• Stream Processing – This type of processing enables real-time data processing
and ascertains conditions in real time. Unlike batch processing, stream processing
processes individual pieces of data as it comes in (arrives) rather than waiting to
process at a specific interval. When it comes to performance, batch processing
latency is minutes to hours while stream processing latency is only milliseconds
to seconds. It should also be noted that although stream processing handles each
new piece of data as an individual unit, many stream processing systems also
allow “window” operations that enable processing to reference data that comes
in during a specific time interval before and/or after current data (see Fig. 4.8).

• Data at Rest – This refers to data collected from a variety of sources but it is
analyzed later. For example, a retail store owner may collect previous monthly
sales data to make strategic business decisions. In this case the analysis of data
occurs separately and after the data collection phase.
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• Data in Motion – Data collection is similar to that of data at rest; however, data
analysis happens in real time as the data-creating event occurs. For example,
a connected wristband can constantly collect and record guest activity data in
an event/conference/fair to customize the guest’s visit with activity suggestions
based on individual behavior, enabling personalized user experience in real time.

4.5.1 Data Processing Architectures

In this section we overview two well-known architectures for data processing,
namely, Lambda architecture and Kappa architecture.

4.5.1.1 Lambda Architecture

Nathan Marz and James Warren first proposed Lambda architecture in “Big Data:
Principles and best practices of scalable real-time data systems.” Lambda was
designed as a universal, fault-tolerant, scalable data processing architecture able to
process massive amounts of data using stream processing and batch processing tech-
niques. Figure 4.9 illustrates the three main elements found in Lambda architecture:
the speed/real-time layer, batch layer, and serving layer [12].

• Batch Layer – Responsible for storing raw data and processing data in batch
model to create batch views. The data scope in the batch layer can encompass
hours to years.
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• Speed Layer – Processes data in real time and computes real-time data views.
• Serving Layer – Stores the result of batch layer and speed layer (i.e., batch views

and real-time views) and responds to ad hoc queries by returning previously
computed batch and real-time views or building new views from the batch and
speed layer outputs stored in the serving layer. This approach provides a more
holistic and complete view by obtaining the best of two worlds (i.e., batch and
real time). Batch views can be processed using more complex rules resulting in
higher data quality and less skew. On the other hand, real-time views provide
instant access to data.

The main benefits of Lambda architecture are as below:

• Real Time – The real-time layer can apply simple data processing and machine
learning algorithms to provide real-time insights and alerts.

• Improved Processing Without Data Loss – The batch layer allows data processing
to take place with great precision using complex algorithms without the loss of
alerts, short-term information, or other insights generated by the real-time layer.

• Reduced Storage Needs – Because of the batch layer, the Lambda architecture
minimizes the need for random write storage.

• Tolerance to Human Errors and Hardware Crashes – A well-implemented batch
layer makes it difficult for hardware crashes or human errors to damage stored
data because the system does not allow existing data to be deleted or updated.
The real-time layer is more vulnerable to errors. Data can be lost or corrupted in
this layer because the data stores are variable. However, if incoming writes are
being transmitted to the batch storage area, the data results will eventually catch
up when the next batch is processed. This means no data will be lost even if the
real-time layer encounters an error. While results may be outdated if the real-time
layer experiences failure, the batch layer data records will not be damaged and
the results will sync again when the real-time layer is functioning correctly again.

While there are benefits to Lambda architecture, there are also shortcomings that
should be considered:

• Complexity – Lambda architecture comprised of many layers, and thus maintain-
ing proper syncing between layers can be costly and requires more thoughtful
effort and handling.

• Maintenance and Support – Because this architecture is made up of two
clearly defined, completely distributed layers (speed and batch), support and
maintenance activities can be difficult.

• Technology Mastery – Many technology proficiencies must be used to create
Lambda architecture. Finding and recruiting qualified professionals with exper-
tise in these areas can be difficult.

• Complex Implementation and Deployment – Creating Lambda architecture using
open-source technologies and then deploying it via the Cloud or on-premises
servers can be complicated.
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4.5.1.2 Kappa Architecture

Kappa architecture was first designed by Jay Kreps. This architecture is focused on
using stream processing, but it is not meant to replace Lambda architecture unless it
truly fits your use case. In this architecture solution, all IoT data are routed through a
real-time layer and results are moved to the serving layer where they can be queried
(see Fig. 4.10). In other words, there is no batch layer in Kappa architecture [13].

The key idea behind Kappa architecture is to address real-time data processing
by constantly reprocessing data through a single stream processing engine. This
implies that the incoming data can be quickly replayed. For example, in the instance
that there are code changes, a second stream process would then replay data through
the real-time engine and then replace the previous views in the serving layer data.

Kappa architecture achieves simplicity compared to Lambda architecture by
maintaining only one code instead of trying to manage two codes (i.e., one for
batch layer and one for speed layer). Additionally, queries do not have to look in
batch or speed views. Instead, queries look in only one serving location. Drawbacks
to this architecture are centered on processing data in a stream. It is easier to
handle duplicate events, cross-reference events, or manage order operations in batch
processing. In addition, having access to the whole data set in the batch layer
can lead to better optimizations, higher performance, and simple algorithms in
Lambda architecture. Finally, in some sophisticated situations, streaming and batch
algorithms can lead to different results.

4.5.2 Data Processing Frameworks

This section will overview the well-known frameworks designed for data process-
ing.

4.5.2.1 Apache Storm

Apache Storm is a distributed, open-source stream processing framework known for
its reliability and fault tolerance. Storm applications are created as a “topology” in
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Fig. 4.11 Apache Storm
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the form of a directed acyclic graph (DAG) that utilizes bolts and spouts. Storm’s
input stream is managed by a spout responsible for moving the data to a bolt that
then transforms the data. A bolt can move the data to a storage area or move it
to another bolt. Storm can be visualized as an interconnected chain of bolts that
somehow transform data collected by the spout (see Fig. 4.11) [14].

4.5.2.2 Apache Flink

Apache Flink is also an open-source streaming framework providing extensive real-
time data processing pipeline capability. It is highly scalable and able to address
millions of events each second. Flink is designed based on the DataFlow model and
processes data as it arrives. One of the great features of Flink is its fault-tolerance
capability based on the checkpointing concept (i.e., saving internal states to external
sources/storage and recovering the state of the system in case of any failure).
Flink also provides an SQL API enabling individuals with a lack of programming
knowledge to develop a Flink solution much easier and faster.

4.5.2.3 Apache Spark

Apache Spark is an efficient, in-memory engine used for data processing. It
provides refined and articulate development APIs that enable data engineers and
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data scientists requiring quick iterative access to data, to execute SQL, machine
learning, or streaming workloads. The details of Apache Spark will be discussed in
Chap. 6.

4.6 Data Storage Layer: A Hybrid Architecture

Another challenge to realize holistic IoT Clouds is data storage. Relational databases
were an appropriate place for data storage in the past; however, as enterprises
strategically utilize big data and IoT applications, data persistence should not
necessarily be relational. Ideally, we need to design and deploy a hybrid architecture
that supports three types of repositories in any IoT environment (see Fig. 4.12)
[15]:

• Cold storage – This repository is usually implemented by a data lake based on
distributed file system technologies. Cold storage intends to store structured or
unstructured data that is accessed infrequently.
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Fig. 4.12 A hybrid architecture to address IoT data
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• Warm storage – This repository, which usually implemented by data warehouses
or databases, intends to store structured data that is accessed moderately fre-
quently.

• Hot storage – This repository is accessed very frequently and hence should be
implemented by fast in-memory databases.

4.6.1 Database

Databases can be categorized into two different groups, namely, SQL databases and
NoSQL databases.

• What Is SQL?

Structured Query Language, abbreviated as “SQL” and pronounced S-Q-L, is
the standard language used when working with Relational Database Management
Systems (RDBMS) including MySQL, PostgreSQL, Oracle, and MS SQL Server,
etc. SQL can be used to simply insert, update, search, or delete database records, but
it’s also suitable for more complex database maintenance and optimization tasks.

Relational Database Management Systems (RDBMS) are the foundation of many
modern databases such as MS Access, MS SQL Server, IBM DB2, Oracle, and
MySQL. An RDBMS is a database management system (DBMS) established using
a relational model first presented by E.F. Codd. In other words, an RDBMS is a type
of DBMS with a row-based table structure which can be accessed by Structured
Query Language (SQL). Therefore, the difference between SQL and RDBMS is
that RDBMS is the actual database software responsible for handling data storage,
updates, queries, and everything else. On the other hand, SQL is a language used to
interact with the system. To better understand RDBMS and SQL, it is very important
to get familiar with the following terminologies:

• Table: RDBMS uses database components known as tables to store data. Tables
are a collection of related data comprised of columns and rows. Figure 4.13
illustrates the concept of tables in RMDBS using an example.

ID Name Country Salary

1 Farshad Germany 85000

2 Mathias Belgium 75000

3 Victor USA 90000

4 Bahar Iran 85000

Row (record)

Column (field)

Key

Fig. 4.13 A simple example of table in RDBMS
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• Record: Records are also known as rows of data which are horizontal entities of
a table. For each entry in the table, there is one row in the table.

• Field: Tables are made up of smaller entities known as fields; these are columns
in a table that hold unique information regarding each table record.

• Key: A key can uniquely identify a row in the table. Keys also enable you to
establish a relationship between tables.

• Database normalization: Database normalization is the means for efficiently
organizing data within a database in order to (1) remove unnecessary data such
as duplicate data across tables and (2) guarantee that data dependencies in
database are properly enforced. These goals are important because they decrease
the amount of space a database requires while ensuring logical data storage.
Normalization guidelines are helpful in developing a solid database structure.
In general, there are three major normal forms in a database:

– 1st normal form – There are no repeating groups of columns in a table.
– 2nd normal form – The table is in first normal form and all the columns are

fully functional dependent on the table’s primary key.
– 3rd normal form – A table in third normal form is a table in the second normal

form that has no transitive dependencies. A transitive dependency can occur
when: P - > Q and Q - > R is true, then P- > R is a transitive dependency. Note
that P, Q, and R are attributes (columns) of a table.

• ACID compliance: ACID compliance in transactions is one of the most important
features of RDBMS. A transaction is a logical unit that typically consists of
several low-level tasks which should be executed for data retrieval or updates
in a database. A transaction must maintain atomicity, consistency, isolation, and
durability (known as ACID) to guarantee the accuracy and completeness, as well
as the integrity of data [16].

– Atomicity – This property makes sure that all of a transaction’s operations
are executed or none are executed; partial completion of a transaction is not
tolerated.

– Consistency – The database must remain in a stable state before and after a
transaction is completed. Transactions should not have a negative effect on
data stored in the database.

– Durability – The database must maintain all recent updates in the event that a
system fails or restarts. If a transaction updates a portion of data and commits
to it, then the database has to maintain the updated data. If a system fails
before a committed transaction can write the data to the disk, then the data
update must take place when the system becomes functional again.

– Isolation – If multiple transactions are being executed at the same time and in
parallel, then all transactions will be completed as if it was the only system
transaction. No single transaction affects any other transaction.
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• What Is NoSQL?

NoSQL which stands for “Not Only SQL” or “Not SQL” is a broad term
covering a variety of technologies that address several key topics such as non-
relational, distributed, open-source, and horizontally scalable. While the name
may seem to imply such, NoSQL is not focused solely on the absence of SQL.
For instance, several NoSQL query languages such as Hive’s query language are
heavily influenced by SQL. NoSQL does not mean that the database is schemaless.
Schemaless means that the database does not have a fixed data structure (e.g., Table
in RDBMS). For instance, PostgreSQL (RDBMS) has evolved to be able to serve
as schemaless document storage as well. ACID-ity which is a main feature of SQL
is not necessarily the focus either. Consider Hyperdex, a NoSQL database able to
support ACID-transactions. When it comes to relationships, most NoSQL databases
do not support joining in the same manner as a traditional database; however, some
do. With some research, a distributed SQL database can also be found, and indeed
more recently created databases are usually distributed in some way. Note that a
join operation in SQL is used to establish a connection/relationship between two or
more tables based on a set of given columns of the target tables. Based on the above
facts, it is not entirely logical to narrowly define NoSQL [17].

A NoSQL database is meant to meet large, distributed data storage needs and is
often used for big data and real-time use web applications such as Twitter, Google,
or Facebook that constantly gather terabytes of user data. While traditional RDBMS
utilizes SQL syntax to store or retrieve data, NoSQL encircles a diverse spectrum of
database technologies that can house polymorphic, unstructured, semi-structured,
or structured data. There are four types of unique NoSQL databases, each useful for
different data needs (see Fig. 4.14):

• Graph Database – Uses graph theory and designed for data represented as
a graph with an undetermined number of relationships among interconnected
elements, for examples, Neo4j and Titan.

• Key-Value Store – A great starting place as it is one of the simplest NoSQL
options, designed to store data comprised of an indexed key and value in
a schemaless manner. Examples: DynamoDB, Cassandra, Redis, Azure Table
Storage (ATS), and BerkeleyDB.

• Column Store (Wide Column Stores) – Rather than storing data in a row, these
databases store data tables in vertical columns. While it may sound like a simple
horizontal versus vertical adjustment, column stores actually offer high-quality
performance and extremely scalable architecture, for examples, HyperTable,
BigTable, and HBase.

• Document Database – This option extends the idea of key-value stores in that
each document is given a unique key needed to retrieve a specific document,
designed to store, manage, and retrieve semi-structured, document-oriented data,
for example, MongoDB and CouchDB.
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Fig. 4.14 Four different types of NoSQL database

• When Should SQL/NoSQL Be Used?

When choosing which database is most appropriate, it is most important to
determine if a relational (SQL) or non-relational (NoSQL) data structure is needed.
Both offer options; however, there are additional differences between SQL and
NoSQL that must be considered. In general, SQL should be used in the following
scenarios:

• When building custom dashboards
• Analyzes behavior-related or custom sessions
• When you need to store or extract database information quickly
• Preferable when using joins and complex queries
• When you need ACID transaction
• When you know the schema (structure of data) in advance and it does not change

over time
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On the other hand, NoSQL is used:

• When ACID support is not required
• When a traditional RDBMS model is insufficient
• When data being stored requires flexible schema
• When constraints or validation logic is not needed
• When logging data from distributed sources
• When storing temporary data or wish lists and session data

4.6.1.1 MongoDB

MongoDB is a document-oriented, cross-platform database that offers high perfor-
mance and data availability while being easily scalable; MongoDB is able to support
diverse schema, balance loads, handle replication, indexing, queries, and filing (i.e.,
to work as a file system) [16, 18].

• Collection: A group of MongoDB documents is called a collection. Documents in
MongoDB are equivalent to tables in RDBMS. Documents housed in a collection
may contain diverse fields; however, all documents in a particular collection are
used for a similar or related purpose.

• Document: A document is known as a set of key-value pairs, often with dynamic
schema, meaning documents within the same collection are not required to have
identical fields or structures and common document fields may hold different
data. Table 4.1 illustrates the relationship between RDBMS terminology and
MongoDB. Figure 4.15 also shows the MongoDB document structure of a blog
site using a comma-separated key-value pair.

• Relationship: In MongoDB, relationships illustrate how different documents
are logically connected to each other. Unfortunately, MongoDB cannot support
traditional primary key – foreign key relationships. However, in MongoDB, 1:1,
1:N, N:1, or N:N relationships can be modeled by two means, namely, embedded
and referenced approaches. In the first approach, one document is embedded
inside another document, and thus all the related data are located in a single
document. On the other hand, in the referenced approach, documents will be
maintained separately; however, documents have a reference field containing the
address of the other documents.

Table 4.1 Relationship of
RDBMS terminology with
MongoDB

RDBMS MongoDB

Database Database
Table Collection
Row Document
Column Field
Primary key Primary key (MongoDB provides

the default key _id itself)
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{
Person: {

first_name: “Farshad”,
last_name: “Firouzi”,
address: [

{ “type”: “home”, “city”: “Dusseldorf”, “country”: “Germany”},
{“type”: “home”, “city”: “Austin”, “country”: “USA”}

],
}

}

Fig. 4.15 A sample MongoDB document

• Index: Indexes are used to execute queries efficiently. Without them, MongoDB
has to scan every document in the collection to select documents matching the
query. However, if an index exists for the stated query, MongoDB can then reduce
the number of scanned documents.

Both RDBMS and MongoDB databases have their own uses. In this section we
highlight the main advantages of MongoDB. However, based on their requirements
of the target IoT application, any of them can be used.

• The main advantage of MongoDB is that it is schemaless. This means that
documents are flexible and you do not need to enforce any schema/structure on
them.

• MongoDB includes a built-in aggregation framework capable of performing
ETL (extract, transform, and load) jobs. It also has a deep query ability with
a document-based language almost as powerful as SQL.

• It is very straightforward to scale (scale-out) MongoDB horizontally.
• MongoDB is “object-oriented” and can easily represent any object structure in

your domain.
• MongoDB enables organizations of all sizes to build data-driven applications

faster. The reason is that MongoDB does not require complex object-relational
mapping (ORM) layer to map objects in code to relational tables. Therefore, it
is much simpler for developers to understand and map the data stored in the
database to data in the application. Moreover, there is no need to spread the data
across different relational tables and all the data can be found only in one single
place.

4.6.1.2 Cassandra

Cassandra is a popular, open-source, wide-column, decentralized/distributed
database used for storing high volumes of (semi)-structured data with high
availability and no single point of failure. The Cassandra is a database-oriented by
column. Rows contain what is often thought of as vertical data that would usually
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be contained in relational columns. Databases that are column-oriented are housed
on disk column-wise. The most obvious benefit of this database is that queries
can resolve quickly. For example, when exploring the average age of users, you
could move to the location where age data is kept and read the required information
rather than searching for age row-by-row as you would in a row-oriented database.
Therefore, Cassandra allows you to ignore irrelevant data easily (see Fig. 4.16) [16,
19].

Cassandra’s model is comprised of columns, column families, keys (column
names), and keyspaces. Table 4.2 compares each element of the Cassandra model to
its counterpart in an RDBMS model.

Query Language Cassandra Query Language (CQL) is similar to SQL, reducing
barriers for users more familiar with relational databases. CQL also uses queries
similar to SQL; however, CQL differs in that it does not support joins, group by,
or foreign keys. Excluding these elements makes writing and retrieving Cassandra
data more efficient.

Name Born Died Country Type

Humphrey 
Bogart

1899 1957 USA Actor

Al Pacino 1940 - USA Actor

Columns

c
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Died

1957

Country

USA
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Actor

Humphrey 
Bogart

c
Born

1940

Died

-

Country

USA
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Al Pacino

c c c c

Column family view

Table view

Row

Row

Cell

Fig. 4.16 How a table view can be converted to a column family model

Table 4.2 Relationship of
RDBMS terminology with
Cassandra

RDBMS Cassandra

Database Keyspace
Table Column family
Primary key Partition key
Column name Column name/key
Column value Column value
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Fig. 4.17 Keyspace and column family in Cassandra

Row key 1

Row key 2

c

c

Column 1

Value 1

Column 2

Value 2

Column 1

Value 1

Column 2

Value 2

Column 3

Value 3

Fig. 4.18 Data model in Cassandra

Table 4.3 Main differences between the relational table and Cassandra column family

Relational table Cassandra column family

The columns are fixed and cannot be changed over time. When a
row is inserted in a table, all the pre-defined columns must have
one value and none of them can be left empty. In case a column
does not have value, it must be filled with Null value.

Columns are flexible and
can be added to the column
family whenever it is
required

Only define columns and users fill in values Can define columns or
super column

Keyspace Cassandra Keyspace serves as the data container, with at least one
column family located in each Keyspace. Figure 4.17 provides a schematic example
of Keyspace.

Column Families Cassandra column families are collections of rows holding
ordered columns that embody the structure of housed data (see Figs. 4.16 and
4.18). Table 4.3 details the points of differentiation between a column family and a
relational database table [16, 19]:
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It’s important to note that a column family’s schema is not fixed as it would be in
a relational table. Cassandra does not require each row to have all the columns. The
number of columns is variable across rows within the same column family. Figure
4.18 illustrates what a column family may look like.

Column Columns serve as the foundational data structure with three possible
values – key/column name, value, and timestamp. In Fig. 4.19, you will find the
basic structure of a column.

Super Column Super Columns are special columns that serve as a key-value pair
and store a map of sub-columns. A super column has a unique name and number of
columns (see Fig. 4.20).

Cassandra has gained popularity based on the excellent technical features
available and outlined below:

• Elastic Scalability – Highly scalable, allowing the addition of new hardware to
accommodate higher customer volume and additional data.

• Always On – Architecture contains no single point of failure and is continuously
available to house business-critical applications that cannot fail.

• Linear-Scale Performance – Increases throughput as the number of cluster nodes
increases, maintaining a fast response time.

• Adaptable Data Storage – Houses unstructured, semi-structured, and structured
data and can flex to accommodate changes in a data structure as needed.

• Data Distribution – Efficiently replicates data across many data nodes to
distribute data where needed.
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Fig. 4.21 An example of the Redis data model

• Transaction Property Support – Able to support atomicity, consistency, isolation,
and durability (ACID) transactions.

• Efficient Writing – Runs on low-cost commodity hardware and writes astonish-
ingly quickly while storing hundreds of terabytes of data without slowing down
reading capability.

4.6.1.3 Redis

Redis, also known as REmote DIctionary Server, was created in 2009 as an in-
memory, open-source key-value database. Redis is mainly used as a message broker
or as a cache layer for other databases. Redis is known as a unique option in the
key-value database arena because it can handle complex data types including (see
Fig. 4.21) [20]:

• Binary-safe strings: A Redis string is binary safe, meaning that it can contain
any kind of data (e.g., a JPEG image); however, its size should be maximum 512
megabytes.

• Lists: A list is a linked list of string elements meaning that it keeps the order of
data insertion.

• Sets: A set is a collection of unique, unsorted string elements/members.
• Sorted sets: It is very similar to sets; they are a non-repeating collection of strings.

However, in a sorted set, a numerical value (score) is assigned to each string
element. The elements are always taken sorted by their score. Note that while
members are unique, scores may be repeated. Sorted sets are a great means to
index data to be able to add, remove, update, or retrieve elements.

• Hashes: Hashes are a map between string fields and string value.

As an in-memory, database, it is guaranteed that all data is in memory resulting
in an incredible performance. Redis is also persistent on-disk database; however,
writing to disk is optional. Another advantage offered by Redis is that all operations
are atomic, guaranteeing that if clients access the database simultaneously, Redis
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will obtain the correct updated value. In addition, Redis is a multi-utility tool that
can be used for caching, messaging queues (supports Publish/Subscribe), and short-
life data such as application sessions, page hits, etc.

4.6.1.4 InfluxDB

InfluxDB is a big data, open-source NoSQL time-series database that supports high
availability, massive scalability, and quick read and write functions. This NoSQL
database is designed to store time-series data (series of regular or irregular data
points across time) very efficiently, which makes it a great solution to store IoT
sensor readouts. Regular data measurements take the form of fixed time intervals
(i.e., heartbeat monitoring system data), while irregular data measurements are
based on events such as sensor data, trading transaction data, etc. InfluxDB also
provides query language similar to SQL that is easily tailored to search aggregated
data [21].

In order to fully understand InfluxDB, it is important to define a few key
concepts. The illustration in Table 4.4 demonstrates these vital concepts using a real-
life example of car-counting sensors. This table shows the number of cars counted
by two connected parking sensors mounted at Location 1 and Location 2 during a
specific time interval.

• Time – Each InfluxDB database includes a time column that stores timestamps
associated with corresponding data.

• Field – The next column (#Cars) in our example is field. Fields referred to as
attributes as well. Fields are key-value pairs within the data structure responsible
for recording real data values as well as metadata. Fields are comprised of field
values and field keys. Field keys are strings and store metadata. The field value
can be in the form of floats, strings, Booleans, or integers. As a time-series
database, InfluxDB requires that each field value be associated with a particular
timestamp. In our example, “#Cars” is the key and 10, 5, 5, 7, 9, and 2 are field
values (see Table 4.4).

• Tags – The final two database columns in the sample (location and owner) are
known as tags, which are comprised of tag values and tag keys. Tag values and
keys are maintained as strings and represent metadata. In our example, “Owner’
is tag key and “Farshad/Bahar” is tag value.

Table 4.4 An example of
InfluxDB data model

Time #Cars Location Owner

2019-05-31T00:00:00Z 10 1 Farshad
2015-05-31T00:06:00Z 5 2 Bahar
2015-05-31T05:54:00Z 5 1 Farshad
2015-05-31T06:00:00Z 7 2 Bahar
2015-05-31T06:06:00Z 9 1 Farshad
2015-05-31T06:12:00Z 2 2 Bahar
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• Measurement – This can also be thought of as an SQL table because the
measurement serves as a container for the time column, fields, and tags.

• Retention Policy – Retention policy describes the amount of time that an
InfluxDB database stores data (duration) and how many data copies are kept
within the cluster (replication factor). Data that is older than the given duration
is automatically removed from the database. Generally, the minimum retention
duration is 1 hour and the maximum duration is infinite.

• Sharding – Sharding refers to the horizontal partitioning of data with each
partition known as a shard. InfluxDB also utilizes sharding to address the
scalability problem. Each shard holds compressed, actual data of a particular
series set. A shard can belong to only one shard group, and there may be many
shards in a particular group. All points within a set series in a shard group will
be stored in the same shard. The duration parameter specifies the amount of time
a shard group covers. In other words, the shard duration determines the specific
interval. For example, if shard duration is set to 1 week, each shard group will
cover 1 week and include all data points with timestamps in that week timeframe.

4.6.1.5 Elasticsearch

Elasticsearch (ES) is a highly popular soft real-time search engine used by large-
scale organizations including The Guardian, GitHub, StackOverflow, and Wikipedia.
ES is considered as a document-oriented database created to hold, manage, and
retrieve semi-structured or document-oriented data. Table 4.5 compares Elastic-
search with RDBMS [17, 22, 23].

There are a few basic concepts that one must grasp in order to understand the
functionality and structure of Elasticsearch better.

Cluster Clusters are a collection of servers (nodes) that, when networked together,
hold the complete data set and provide federated indexing and search capability for
all connected servers.

Node A node is a solitary server that contains a portion of data and can contribute
to the cluster’s querying and indexing tasks. Note that each cluster is identified with
a name and a node can be assigned to a particular cluster based on the cluster’s
name. Starting an instance of Elasticsearch from scratch results in the creation of a
cluster with only one node. When the second instance of Elasticsearch starts (with
the same “cluster name”), the cluster will contain two nodes. Additional instances

Table 4.5 Relationship of
RDBMS terminology with
Elasticsearch

RDBMS Elasticsearch

Database Index
Table Mapping
Field Field
Row JSON object
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of Elasticsearch can be started to form a cluster with any number of desired nodes.
Each node within the cluster has knowledge of the other nodes within the same
cluster because they communicate directly with one another via TCP. This is referred
to as fully connected mesh topology. Every node within the cluster handles one or
more roles, namely, a data node, a master node, a client node, or an ingest node [24]:

• Master Node – Responsible for constructing or eliminating indices and adding
or removing nodes. Every time the cluster state changes, the master node notifies
the other nodes within the cluster about the change. Each cluster contains only
one master node at a time.

• Data Node – Each node contains a data shard (a partition of whole data) and
handles data-related operations including creating, reading, deleting, updating,
searching, and aggregating. A cluster may contain many data nodes. If one
data node within the cluster should stop, the cluster continues operations and
rearranges that node’s data on the additional nodes.

• Client Node – It handles sending cluster-related requests to the master node as
well as sending data-related requests to data nodes by serving as a “smart router.”
A client node does not contain data and is unable to become a master node.

• Ingest Node – Before actual indexing occurs, it handles preliminary processing
of documents.

Index An index is a collection of documents with similar characteristics. An index
is represented by a unique name which is used to refer to the index while executing
operations such as index searches, updates, and deletions. A cluster may contain as
many indexes as desired. In Elasticsearch, the index is comparable to the database
schema in RDBMS and can be thought of as a set of tables with logical organization
or grouping. In the same way, Type can be considered equivalent to Table and
Document as equivalent to Row in RDBMS.

Document A document is simply a collection of fields organized in a specific
JSON format. Each document belongs to a type, and it is stored in an index,
associated with a unique identifier (UID).

Type/Mapping Type or mapping refers to a collection of documents that share a
common set of fields found in the same index. For example, an index containing
social networking application data can contain specific user profile data, another
document containing messaging data, and yet another for social media comment
data. We should note that Elasticsearch recently indicated that it would no longer
be possible to include multiple types in an index, with the concept of types being
eliminated in a later version.

Shards and Replicas An index is able to store massive amounts of data exceeding
the hardware capabilities of the node. For example, an index containing 1 billion
documents and requiring 1 TB of disk space may not fit on the node disk or become
too slow to serve search requests from a node. To be able to address this large
amount of data, Elasticsearch gives users the ability to horizontally subdivide an
index into multiple, smaller horizontal pieces known as shards. Because of this,
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each shard contains all of the document properties, but contains fewer JSON objects
than a full index. Horizontal separations allow shards to act as independent nodes
that can be stored in any cluster. Sharding is vital because:

• You can horizontally split or scale content volume.
• You can distribute and parallelize operations across shards on multiple nodes,

increasing performance and throughput.

Elasticsearch enables the user to create one or more copies of index shards known
as replica shards or simply “replicas” (see Fig. 4.22). Replication is vital because:

• It provides increased availability in the case of shard or node failure; therefore,
a replica should never be allocated to the same node as the original shard that it
was created from.

• It supports scalability of search volume and throughput because searches can be
performed on all replicas simultaneously.

The default in Elasticsearch allows each index to allocate five primary shards
and one replica, meaning if you have two nodes in a cluster, the index will have
five primary shards with five subsequent replicas (one complete replica), totaling
ten shards for each index.

Utilizing Elasticsearch requires data to be stored in the JSON document format
that is then queried for retrieval. The query domain-specific language used by
Elasticsearch is Query DSL and requires that you query in JSON format. The user
also has the ability to nest queries to perform very complex searching in stored
documents. Figure 4.23 below demonstrates how an Elasticsearch query functions
[25].

Aggregation Elasticsearch is also able to support aggregations, enabling the user to
a group or extract statistics from data. You can think about aggregations by similarly
equating it to the SQL “group by” and aggregate functions. Within Elasticsearch,
users can execute searches that generate hits and simultaneously return aggregated
results, all in a single response.

Logstash Generally, Elasticsearch is used with Logstash, an open-source, server-
side data processing conduit that ingests data from a legion of sources simultane-

Node 1

Node 2

Node 3

1

2

3

Node 1

Node 2

Node 3

1

2

3

4

5

6

Node 1

Node 2

Node 3

1

2

3

4

5

6

3

1

4

5

6

2

Shard

Replica

Three shards with zero replicas Six shards with zero replicas Six shards with one replica

Index

Cl
us

te
r

Fig. 4.22 A simple example of cluster, shards, and replica in Elasticsearch



208 F. Firouzi and B. Farahani
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Fig. 4.24 How Logstash works

ously, converts it, and then transmits it to a destination, such as Elasticsearch. Main
features of Logstash include (Fig. 4.24) [23]:

• Data Ingestion – Data can be scattered or siloed across multiple systems and in
diverse formats; Logstash is able to handle various inputs that gather events/data
from a mass of different sources such as logs, web applications, data stores, as
well as AWS services in a streaming manner.
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• Data Filtering, Parsing, and Transformation – As data moves from source to
destination, Logstash is able to filter and parse each event and identify named
fields to generate structure and then transform them into a common format to
facilitate quicker analysis and added business value.

• Data Transportation – Uses various outputs to route data where needed, provid-
ing greater pliancy, and allows a deluge of downstream use cases.

Kibana Elasticsearch often includes Kibana, an open-source analytics and data
visualization platform used to search, view, interact, and visually manipulate data
via charts, maps, and tables that are housed in Elasticsearch indices. Although
citizen data scientists may also perform basic data processing and analytics, Kibana
is not considered as a holistic machine learning framework. Figure 4.25 illustrates
how Logstash, Elasticsearch, and Kibana can create a pipeline to ingest, analyze,
and visualize data.

4.6.1.6 Which Database Is Right for Your IoT Project?

Cassandra Greatest strengths include scalability without sacrificing reliability;
Cassandra can be deployed across multiple servers without extensive extra work
because it can replicate with minimal configuration. Cassandra is easy to set up and
maintain regardless of data growth. It is also best used in industries where rapid
database growth is needed. Cassandra does offer easier growth than MongoDB and,
in general, is best for the following use cases:

• Sensor logs
• User preferences
• Geographic information
• Reporting systems
• Time-series data
• Write-heavy applications such as logging

MongoDB MongoDB works best for workloads containing highly unstructured
data. If you are not able to anticipate the scale or type of data you will be using,

Fig. 4.25 Logstash, Elasticsearch, and Kibana pipeline
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MongoDB’s flexible structure is preferable over Cassandra. If you have no clear
schema defined, MongoDB is likely a solid choice. It can also be a good choice if
you require scalability or caching for real-time analytics. MongoDB is not designed
for transactional data such as accounting systems, etc.

Redis Although Cassandra was designed to handle huge amounts of big data, Redis
is faster than Cassandra in retrieving and storing (key-value) data, especially when
it comes to live streaming. Redis is best used when you have rapidly evolving data
and you can estimate that the size of your final data can fit in memory. Redis is also
great for analytics and real-time data communication.

Elasticsearch Primary use cases include:

• Text Search – Preferable when performing text searches where RDBMS cannot
perform well due to poor configuration. Elasticsearch is customizable and
extendable via plug-ins and allows you to create a high-quality search without
extensive knowledge quickly.

• Fuzzy Search – This search allows for spelling errors such as finding “Levenshte”
when searching for “Levenstein.”

• Instant Search – Searching while the user is still typing via simple suggestions
from existing tags, predicting based on search history, or creating a new search
for each keystroke.

• Content-Based Product/Document Recommendation – Elasticsearch can function
as a simple recommendation engine. In this case, Elasticsearch translates user
content recommendation problems into a search query for implied interests of
users. In addition, Elasticsearch includes document scoring by relevancy and
document filtering by attribute.

• Logging and Analysis – Centrally stores logs from various sources for analysis.
Kibana is useful in this case because it connects with Elasticsearch clusters and
promptly creates visualizations.

4.6.1.7 CAP Theorem

CAP Theorem is a fundamental theorem which enables system architects to select
the appropriate database platform for a data-driven solution (see Fig. 4.26). CAP
Theorem states that a distributed database is only capable of meeting two of the
following three conditions: consistency, availability, and partition tolerance (CAP).

Partition Tolerance Systems keep running, in spite of the number of messages
delayed between nodes. A partition-tolerant system can sustain any level of
network failure without reaching whole network failure. Data is replicated across
multiple node combinations and networks to ensure the system stays up throughout
intermittent outages.

High Consistency All nodes see data simultaneously. Executing a “read” operation
returns the value of the newest “write” operation, causing all nodes to send back the
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Fig. 4.26 CAP Theorem Availability
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same data. A high-consistency system means a transaction is able to start and end
with the system in a consistent state. Systems may move into an inconsistent state
during the transaction, but the whole transaction is rolled back if an error is found
during any part of the process.

High Availability Each request receives a success or failure response. Availability
within a distributed system means that the system is operational 100% of the time –
every client receives a response every time no matter the state of an individual
system node.

4.6.2 Data Warehouse

A data warehouse (DWH) can also be referred to as an enterprise data warehouse
(EDW), and it is the main method of data collection in use for the last 30 years.
A DWH serves as a data integration point, responsible for organizing, arranging,
and combining data from a variety of diverse relational databases. Note that in an
enterprise there are several data silos. These silos are a grouping of organizational
information that is separated from and inaccessible to other organizational depart-
ments. For example, it is common practice for each department (i.e., marketing,
sales, accounting/finance) to have its own database. Therefore, a data warehouse
is created to collapse the borders between these data silos and create a single
point of truth (see Fig. 4.27). The DWH is also able to provide senior leadership
with overarching insight regarding company performance via management reports,
dashboards, or ad hoc analysis. A broad range of business data can be analyzed using
a data warehouse, which becomes necessary when operational databases are unable
to maintain performance while also meeting analytical requirements. Running a
complicated database query means the database has to enter a short-term static state,
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Fig. 4.27 Why is a data warehouse needed?

which is generally not supported by transactional databases. Therefore, a DWH is
utilized to handle analytic needs, freeing traditional relational databases to focus on
handling transactions. Additional characteristics of the data warehouse include the
ability to analyze data from diverse sources, such as analyzing customer relationship
management (CRM) data as well as Google Analytics data [26]. Note that DWH can
only work with structured data. It is worth highlighting the main differences between
data warehouses and relational databases.

• Data Optimization and Analytics – While relational databases and data ware-
houses are both relational data system, each of which is created with a different
purpose in mind. Data warehouses are meant to house vast amounts of historical
data and allow users to run quick and/or complicated queries involving all the
data. On the other hand, relational databases are generally created to keep current
daily transactions and empower quick access to clearly defined transactions
for continuous business processes, referred to as online transaction processing
(OLTP).

• Structure of Data – A second substantial difference between data warehouses
and relational databases is the data normalization. While normalization is a usual
practice in relational databases, data warehouses normally use demoralized data.
The reason is that data normalization enables the database to occupy less disk
space while minimizing transaction times. On the other hand, the fast response
time of a query is not the main goal in data warehouses.

• Data Processing – Databases process an organization’s daily transactions, so
they usually do not include historical data. Current data is the most important
component of a normalized, relational database. In contrast, data warehouses
are utilized to meet analytical and business-reporting needs. Usually, data
warehouses maintain historical data by combining transaction data copies from
different sources over time.
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4.6.3 Data Lake

The data lake has been created to address big data and the shortcomings of
traditional databases and data warehouses (see Fig. 4.28). James Dixon, the founder
and CTO of Pentaho, defined data lakes in the following way: “If you think of a
traditional relational database as a store of bottled water – cleansed and packaged
and structured for easy consumption – the data lake is a large body of water in a
more natural state. The contents of the data lake stream in from a source to fill the
lake, and various users of the lake can come to examine, dive in, or take samples.”

In contrast to DWH which only holds cleaned transformed structured data, a data
lake is a data-centered architecture that stores a vast amount of both structured and
unstructured data in its raw format until it is needed. Indeed, a key advantage of
data lakes is their capability to cost-effectively store data of unknown importance
or value that would generally be removed because of the cost required to store
the data securely. As a business’ analytic abilities grow, the prospective data use
cases are revealed, enabling historical data to be utilized in the training of machine
learning models or answer future questions. Note that data lakes store the raw data,
thereby, when they receive a business question, they need to query and transform
data to be able to address the question. The data lake can be built using many
technologies such as Amazon Simple Storage Service, Hadoop, NoSQL DBs, or
various combinations to support a variety of formats such as images, logs, Excel,
CSV, and sensor data. It has been discovered that as more data became available,

Fig. 4.28 The data lake has been designed to address big data
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Table 4.6 The main differences between data lake and data warehouse

Data lake Enterprise data warehouse (EDW)/RDBMS

Structured, semi-structured, unstructured data Structured, processed data
Physical collection of un-curated raw data Data of common meaning
System of insight: unknown data to make
experimentation/data discovery

System of record: well-understood data to do
operational reporting

Any type of data A limited set of data types (i.e., relational)
All workloads – batch, interactive, streaming,
machine learning

Optimized for interactive querying

Not suitable for transactions Suitable for ACID transactions
Higher latency Low latency (transactions)
Need skills to gain insights Easily create reports (good support from BI

tools)
Expensive for large data Low-cost data storage
Schema-on-read (ELT) Schema-on-write (ETL)

new applications could be created to serve business needs. Currently, data lakes
support the following abilities:

• Cost-effective highly scalable storage of raw data
• Storage of diverse data types (structured, semi-structured, and unstructured data)

in the same place
• Query and transform data when a business question arises
• Defines data structure at the time of use (i.e., schema on reading)
• Incorporates new methods of data processing

As previously discussed, corporations have already started integrating data
lakes to address the requirements of their IoT projects. However, note that data
warehouses and data lakes were created to serve different user groups and different
purposes (see Table 4.6). In other words, data lake and data warehouse are comple-
mentary systems. Complementing a data warehouse with the addition of a data lake
is an agile step forward for the most companies. These combined solutions create
greater flexibility and improve speed when it comes to data processing, capturing
streaming, semi-structured, or unstructured data. It also provides increased data
warehouse bandwidth needed for business intelligence. Data lakes can be a powerful
tool useful for individuals, data scientists, and businesses desiring to prepare or
blend data or provide on-demand data profiling or to generate new insights from big
data. On the other hand, data warehouses are a better option for those who require
regularly published data that is already aggregated and processed. Finally note that
data warehouses solely work with structural data based on ETL approach, whereas
data lakes are low-cost storages to hold all types of data (structured and unstructured
data) working based on ELT approach.
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Fig. 4.29 A simple example of ETL and ELT

4.6.3.1 ETL (Extract, Transform, and Load) and ELT (Extract, Load,
and Transform)

As discussed above, one of the key differences between data lakes and data
warehouses is the way they process data. Let us examine the three stages – E, T,
L (see Fig. 4.29):

• Extraction – Reading and collecting raw data from one or several data databases
and routing it to a temporary repository

• Transformation – Converting, filtering, cleaning, processing, and aggregating
the extracted data from the previous stage. Finally, structuring the output into
a specific form to match the structure of the target database

• Loading – Writing the structured and converted data from the previous stage into
the target database or data warehouse

ETL (Extract, Transform, and Load) occurs within a data warehouse while
ELT (Extract, Load, and Transform) occurs within a data lake. Generally, ETL
is a continuous process that occurs using a clearly defined workflow. First, ETL
extracts data from similar or diverse data sources. Next, the data is cleaned,
enhanced, transformed, and finally stored in a data warehouse or in a database.
On the other hand, with the ELT approach, once data is extracted, loading begins
immediately, and all data are transferred to a consolidated data storage area.
However, transformations are performed in the target system. In other words, instead
of transforming the data before it is written in the database, in ELT the process of
transforming the data is completed by the target database. Therefore, ELT minimizes
the processing on the source since the transforming is done in the target system.
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4.6.3.2 Challenges of Data Lakes

While data lakes are a wonderful data management solution in our data-driven
environment, they can come with challenges that are worthy of attention. Gartner
has reminded, “the data lake will end up being a collection of disconnected data
pools or information silos all in one place. Without descriptive metadata and a
mechanism to maintain it, the data lake risks turning into a data swamp.”

To address such risks, a governing layer must be added to the architecture to
answer the questions below and ensure the four pillars of data governance are
included. The data governance is a union of tooling and processes that usually
increases the solution’s total cost of ownership (TCO), but on the other hand, it
increases the chance of return on investment (ROI) as well. The governance in data
lakes must be created with the following questions and elements in mind [27]:

• Data Catalog (What is the data and where is the data stored?) – Data catalogs
enable the user to compile and review metadata and index data so that they
become searchable. Metadata is useful for auditing or for actively driving data
transformation. Some data catalogs are also able to manually tag data to note that
it includes personally identifiable information (PII) or utilize a machine learning
algorithm to identify sensitive data.

• Data Quality (Is the data accurate and useful for a specific purpose?) –
Achieving data quality can be done using master data management (MDM),
a foundational process utilized to synchronize, categorize, centralize, organize,
enrich, or localize master data based on a business’ operational strategy. How-
ever, it is important to remember that MDM is originally established in relational
data warehouses and databases, so it is compatible with structured data only. Best
practices would indicate that MDM be applied selectively within data lakes.

• Data Lineage (Where did the data come from and how has it been trans-
formed?) – Data lineage refers to the origin of data, what is done to it, and
where it goes over time. Possessing the complete audit trail of data, including
origin data, transformation information, and its analytic uses, is a necessity for
meeting the regulatory requirements most organizations currently face. Data
lineage information can also assist engineers in debugging or troubleshooting
issues that arise while handling workloads.

• Data Security (Is the data safe from unauthorized access?) – When creating a
data lake, it is important to address the following data security issues:

– Role-based access control (at suitable granularity level)
– Network isolation (e.g., security groups, firewall rules)
– End-to-end encryption (e.g., SSL certificates)



4 Architecting IoT Cloud 217
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4.6.3.3 Distributed File Systems

Data lake systems are mainly comprised of scalable data stores and distributed
file systems that deploy data by partitioning larger files into smaller blocks or by
partitioning tables that are appropriated across a pool of data servers (data nodes).
In addition, data is usually replicated in several nodes to increase fault tolerance.
In such a distributed system, a load balancer is utilized to increase scalability. This
technique is demonstrated in Fig. 4.30.

Apache Hadoop’s distributed file system and Amazon S3’s Cloud storage are
two well-known data lakes:

• Hadoop Distributed File System (HDFS): HDFS is a Java-based file system
created to be deployed across several commodity servers easily and provides
dependable and scalable data storage. The details of HDFS will be addressed in
Chap. 6.

• Amazon S3 Storage Service (Amazon S3): Amazon S3 Storage Service stores
data objects using an uncomplicated web service interface. It can store and fetch
data in any amount. It is utilized as the main storage option for Cloud-native
applications, as a bulk data depository or as a data lake for analytics. Amazon S3
is also useful for serverless computing, recovery, and backup.

4.6.3.4 Data Lake Tiers

Generally, it is highly recommended to engineer a data lake based on multiple
tiers/layers (not less than two), with one being a quarantine zone. This is particularly
important within tightly regulated industries that utilize highly sensitive data that
must be manually verified by data stewards before transfer to another zone with
wider user access. It is also highly suggested dividing the second tier into several

http://dx.doi.org/10.1007/978-3-030-30367-9_6
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Table 4.7 Common file formats in data lake

File format Properties Use cases

JSON Flexible and human
readable

The consumer of data is an application which
needs small data volume

CSV Fixed schema, but human
readable

The consumer is an analysis and the data volume
is small

Orc Columnar with schema Efficient compression and improved performance
for reading, writing, and processing data, e.g.,
suitable for read-heavy analytical loads

Parquet Columnar with schema
which supports complex
nested data structures

Designed for projects in the Hadoop ecosystem.
Suitable for read-heavy analytical loads

Avro Row-based with schema Suitable for write-heavy workloads

Service-oriented architecture
(coarse-grained)

Microservices
(fine-grained)

Monolithic
(one unit)

Fig. 4.31 Engineering server-side IoT applications via three different software architectures

zones based on the specific use case. For example, a tier could be separated
into a warehouse staging zone, a machine learning training data zone, etc. Every
tier/zone may include its own file formats and individual, granular access levels.
The well-known file formats, their properties, and use cases are demonstrated in
Table 4.7. Finally, note that transferring data between data lake tiers/zones involves
a computing resource to complete the data transformation and process data between
tiers/zones [27].

4.7 Application Layer

IoT applications located in the Cloud can be engineered based on three distinct
architectures, namely, (i) monolithic architecture, (ii) service-oriented architecture
(SOA), and (iii) microservice architecture. Figure 4.31 demonstrates the general
differences between these three options [28].

When creating a server-side application, you can begin with a layered architec-
ture. This architecture typically consists of the following layers/tiers [28]:



4 Architecting IoT Cloud 219

• Presentation – Handles all interface, manages and routes incoming requests to
the business logic, and displays responses in a specific format (e.g., through web
service APIs).

• Application Business Logic – Executes specific business rules associated with the
request to prepare the response.

• Database Access and Logic – Implements the required logic to store and retrieve
data from the database.

• Application Integration – Merging with other services (e.g., through REST API
or messaging protocols such as MQTT).

Although applications usually have a modular nature, they are most often
bundled and utilized as a monolith. There are several benefits of monolithic
architecture for applications, including [28]:

• Simple Development – The implementation of monolithic applications is very
straightforward compared to the other two options.

• Ease of Testing – The testing process is very straightforward. For example, the
whole end-to-end testing can be realized by executing the application and testing
the corresponding user interface (UI) via Selenium (a portable framework for
testing web applications).

• Ease of Deployment – For deployment, you just need to copy the packaged
application to a server.

• Horizontal Scaling Simplicity – The scalability is achieved by running several
copies of the application behind a load balancer.

Many of the largest, highly successful applications in use today began as
monoliths. While monolith architecture works well in early stage development, it
also has drawbacks, namely:

• Slow Change Speed – Applications can be too large or complex to make changes
quickly and accurately.

• Inconvenient Updating and Deployment – The entire application must be re-
deployed for each update and uninterrupted deployment is difficult.

• Manual Testing Needed – Because the impact of changes in the application
cannot be tracked and studied very well, extensive manual testing is usually
required.

• Scaling Compatibility – Scaling is difficult if building-block modules have
diverging resource needs.

• Whole Application Reliability – A bug in one module can bring the whole
application down, and because all application instances (deployed in several
servers) are identical, the bug can affect the whole application’s availability.

• New Technology Barriers – Monolithic architecture cannot adapt to new tech-
nologies easily. The main reason is that any changes in the application frame-
works or application programming language will impact the entire application.



220 F. Firouzi and B. Farahani

Organizations including Netflix, eBay, and Amazon have resolved these issues
by embracing a microservice architecture that breaks applications into small sets of
interconnected services rather than bundling the application into a large, monolithic
structure. Each microservice works as a miniature application with its own business
logic and adapters. Note that at runtime, each instance of microservices can be
deployed in a Virtual Machine or a Docker container. Some microservices offers
an API used by other microservices or consumed by application users while other
microservices might implement a web UI. The main benefits of microservice
architecture include [28]:

• Load Balancing – Can better scale-out an application via advanced load balanc-
ing

• Quicker Development – Ability to develop faster, utilize siloed development
teams, and decrease dependence

• Versatile Deployment – Can deploy each piece without impacting other systems
• Simplicity – Ease of development and maintenance
• Content Caching – Improves performance and reduces the load on the application
• Troubleshooting – Easier to recognize service failures

In the following use cases, it would be better to use monolithic architecture
[28]:

• Small Teams – When you do not have enough developers experienced in and
knowledgeable of different programming languages.

• Building Minimum Viable Product (MVP) Versions – When you just need to
implement enough features very fast to satisfy your early requirements.

• Lack of DevOps – No multimillion-dollar investments to put toward software
development (Dev) and IT operations (Ops) or extra time to spend on complex
architecture.

• Deep Development Experience – You have extensive experience developing
strong frameworks like Node.js, Go, etc.

• No Bottlenecks –There are no apparent issues with future application perfor-
mance or scalability.

On the other hand, microservice architecture is more suitable in the following
scenarios:

• Flexible Deadlines – Microservices require extensive research and planning.
• Diverse Team Experience – When your team members are experienced in and

knowledgeable of different programming languages.
• Have Scalability or Reliability Concerns – When your server-side applications

need to handle the load of millions of requests.
• Co-Located Teams – Development is spread across diverse departments located

in different time zones or geographical locations.
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• Existing Monolithic App – Your current monolithic application is experiencing
issues that could be resolved by breaking the application into multiple microser-
vices.

It is worth pointing out that software community skeptics consider microservices
a simple brand remodeling of service-oriented architecture (SOA). Initial records
regarding the use of distributed services as a means of software architecture can
be dated back to the 1980s. However, SOA was not officially named until the mid-
1990s when the Gartner Group labeled and adopted the new trend, popularizing it
globally.

SOA was not able to address many issues created by monolithic architecture, and
in many aspects, SOA is a monolith. Although it is comprised of multiple services,
SOA is still primarily course-grained with high levels of interdependency. In SOA
architecture, there are several software components that provide services to other
components through a pre-defined communications protocol. In SOA, each module
can function both as a provider of services and as a consumer of services. Enterprise
service bus (ESB) is a form of integration architecture used within SOA that enables
communication through a shared communication bus made up of various point-
to-point consumer and provider connections. Additionally, all services in the SOA
are able to share data storage. Figure 4.32 illustrates an example of SOA and ESB
architecture [29].

Microservice architecture and SOA have several similarities as well as differ-
ences that make them unique. Both architectures contain services with a specific
responsibility; therefore, service development can take place in several technology
stacks, offering technological diversity to development teams. In both architectures,
service development can be divided among multiple teams; however, all teams
should understand the ESB integration in SOA which is not the case in microservice
architecture [29].

Fig. 4.32 Service-oriented
architecture and enterprise
service bus (ESB)
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ESB can become a single point of failure in SOA, impacting the whole
application. Because all services utilize the ESB to communicate, if one service
slows, the ESB could become obstructed with requests for that particular service. On
the contrary, microservices tolerate faults better. For example, a memory leak in one
service only affects that particular service while alternate microservices continue
managing requests.

Heterogeneous interoperability is also a large variation between the two archi-
tecture types. SOA supports the integration of many heterogeneous protocols using
a messaging middleware. The microservice architecture seeks to simplify the
architecture by reducing integration choices.

Another major difference is that unlike SOAs, microservices can both work and
be deployed independently, making it easier to push out updated versions or scale a
particular service. When it comes to deployment, SOA recreates and relaunches the
whole application while microservice architecture allows individual services to be
created and utilized separately. Therefore, microservice architecture empowers fast,
continuous, and automatic deployments.

Data storage is shared among services in SOA; however, services can store
data independently in microservices. Shared data storage has both benefits and
shortcomings. For instance, shared data storage enables data to be recycled among
all services but requires dependency and tight service connections.

Service granularity is another key difference between microservices and SOA.
The diverse services in microservice architecture each does only one thing really
well, while SOA service components can handle anything from small services to
huge enterprise services.

Finally, SOA’s approach to architecture focuses on “sharing as much as pos-
sible” while microservice architecture “shares as little as possible.” SOA is most
concerned with recycling business functionality while microservice architecture is
based on the foundation of bounded context/domain.

4.7.1 Microservice Architecture Pattern

In this section we discuss the engineering details of microservice architecture.

4.7.1.1 API Gateway

An API gateway is an application/service that serves as the system entry point. API
gateways abstracts the architecture of the internal system and then represents it via a
set of APIs. API gateways can also be responsible for authentication, load balancing,
monitoring, static response handling, caching, and request shaping or management.
Figure 4.33 illustrates the basic concept of an API gateway [30].

The API gateway manages composition and requests routing and translation of
protocols. Any client request has to pass through the API gateway where it is routed
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Fig. 4.33 A typical
architecture of API gateway
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to the correct microservice. The API gateway generally manages requests by calling
on (invoke) several microservices and combining results. Indeed, the API gateway
provides a set of coarse-grained APIs for end users; however, behind the scenes, it
actually manages each request by utilizing a variety of services (an average of six
or seven fine-grained backend services). API gateway is also capable of translating
between different web protocols like HTTP or WebSocket protocols.

One of the main drawbacks of API gateway is that it should be highly available.
Therefore, it requires continuous development, deployment, and management,
raising the risk that it could become a development bottleneck. The API gateway has
to be updated in order to expose the endpoint for every microservice. The process
for updating the gateway should be as light as possible to ensure developers are not
left waiting. In light of both the positive and negative aspects of the API gateway,
most state-of-the-art applications make use of the API gateway.

4.7.1.2 Service Invocation

The components of a monolithic application call on (invoke) each other using
function calls or a language-level method while applications using a microservice
architecture function as a distributed system using many machines and inter-process
communication processes. Such mechanisms are grouped based on two specific
features. The first feature is related to client interaction styles [30]:

• One-to-One – Requests from the client are processed by a single service instance.
• One-to-Many – Requests are processed by several service instances.

The second feature is focused on whether the communication is synchronous or
asynchronous in nature:
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• Asynchronous – While waiting for a response, the client does not block and any
response is not immediately sent.

• Synchronous – Clients expect a timely service response and may block while
waiting for the response.

Below you find the variety of synchronous and asynchronous one-on-one
communications [30]:

• Request and Response – The client request is made and then the client waits for
a timely service response. There are multiple protocol options, but two favored
ones include REST and Thrift.

– Representational State Transfer (REST) – An inter-process communication
(IPC) mechanism that usually relies on HTTP. Resource is the main concept
of REST. A resource is a concept that represents a business object (e.g., a
product, customer) in the application or a combination of business objects.
REST manipulates resources using verbs referred via URL. For example,
GET requests to send back a resource representation, likely in the form of
a JSON object or XML document, while a POST request actually creates a
new resource that can be updated via a PUT request.

– Apache Thrift – A framework used to write cross-language remote procedure
call (RPC) servers and clients. Thrift comes with a C-style interface descrip-
tion language (IDL) defining APIs. Next, the compiler creates code for diverse
programming languages such as Java, C++, PHP, Ruby, Python, and Node.js.
Thrift is able to support different message formats such as binary, compact
binary, and JSON. Note that binary is a more efficient choice because it takes
up less space and is faster to decode than JSON.

• Notification (a one-way request) – Request is sent to service by the client without
a reply being sent or expected.

• Request/Async Response – A request is sent to the server by the client and
the server returns an asynchronous response; client waits without blocking and
assumes the response will come later.

Noted below are the different kinds of one-to-many communications:

• Publish/Subscribe – Client publishes a message and it can be consumed by
interested services.

• Publish/Async Response – A request message is published by the client and then
the client waits for a designated timeframe for responses from services that are
interested.

There are several messaging platforms that are open source and available
including Apache Kafka, ActiveMQ, as well as RabbitMQ. Each system is designed
around the idea of messages and channels. The messages are created by a header
(i.e., metadata like security or identity information) and a body and then sent and
received via channels. There are a variety of human-readable, text-based (JSON or
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XML), or binary (Avro) message formats to choose from. Any number of consumers
can receive channel messages and any number of producers can send messages.

4.7.1.3 Service Discovery

In Cloud-based applications consisting of several microservices, discovering the
location of each microservice is a challenging task. Although infrastructure services
(e.g., message brokers) often have a fixed static location/address identified through
operating system (OS) environment variables, finding a service location can be
difficult because application services use dynamically assigned locations/addresses.
In addition, service instances change due to upgrades and auto-scaling. Therefore,
a service discovery component is needed to locate each service. Service discovery
can be driven either by the client or by the server [30]:

• Client-Side Discovery – The client governs network locations for service
instances by querying a service registry containing available service instances;
when a service instance starts, its network location is documented with the
service registry and then removed when the instance ends. The instance registry
is updated periodically with a heartbeat technique. Next, a client selects an
available service instance and makes a request via a load-balancing algorithm.

• Server-Side Discovery – Client uses a load balancer to make a service request. In
this approach, the balancer looks up the service registry and then sends a request
to a free service instance. In the same manner as client-side discovery, in this
approach, instances should also be registered in the service registry.

4.7.1.4 Service Registry

Service registries are a kind of databases that are able to keep track of service
instance and network location information. Since service registry is an integral
component of service discovery, it must be kept up to date and must be highly
available. An example of a good service registry is Netflix Eureka. It includes a
REST API used to query and register service instances. Another registry framework
example would be Apache Zookeeper, originally a Hadoop sub-project that is now
a separate top-tier project [30].

4.7.1.5 Deployment Strategy

Creating a monolithic application requires using one or many identical copies of
one, large application. Generally, you need to prepare N servers (can be virtual
or physical) and run M application instances on each of them. While deploying a
monolithic application is not always an easy task, it is a less complicated process
than that of a microservice application deployment, which is based on hundreds of
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services written in different frameworks and languages. Individual microservices
are mini applications with their own monitoring, resource, and scaling needs. In
addition, each service must have the appropriate memory, CPU, and I/O resources.
Below you will find different approaches used to upload and run services [30].

• Multiple Service Instances Per Host – A more traditional application deployment
approach, requiring the developer to provide one or more hosts (either virtual
or physical) and then run several service instances on each host. Benefits of
this approach include quick deployment and efficient resource usage because
the server and OS are shared among multiple service instances. This approach
provides little to no service instance isolation unless a service instance is
designated as a separate process, which is a large drawback for this approach.

• Single Service Instance Per Host – Each service instance is run separately on its
individual host. Two variations of this approach include:

– Service Instance Per Virtual Machine – Each service is bundled as a virtual
machine (VM) image and then initiated via VM. The details of VMs will be
discussed in Sect. 4.10.

• Benefits – Because the service instance is isolated, it uses only an isolated
set amount of memory and CPU and does not rob resources from other
services. Each microservice can also be monitored, maintained, managed,
and scaled separately.

• Drawbacks – Deployment new service versions can be slow, resources
are used less efficiently, and each service instance requires an entire VM
increasing the overhead of the system. Note that each VM has its own
operating system (guest operating system), and thus its overhead is high
(see Fig. 4.36).

– Service Instance Per Container – Individual services run in separate contain-
ers. The details of the containers will be addressed in Sect. 4.10.

• Benefits – Service instances in containers are isolated from each other. Sim-
ilar to VM the underlying technology is encapsulated; container resource
usage can be monitored. Each microservice can also be monitored, main-
tained, managed, and scaled separately. Since containers do not need to
have an operating system, they can be built and started quicker than VM
(see Fig. 4.36).

• Drawbacks – Infrastructure lacks the maturity of VM infrastructure, and
the level of container security is lower because host OS is shared among
containers.

• Serverless Deployment – The terms of serverless and Functions as a Service
(FaaS) are usually used interchangeably, although this distinction is still being
defined by the tech community. The idea of FaaS is dividing the microservices
into fine-grained functions and then deploying those functions to a third-party
company which charges the application owner only based on the amount of time
each function runs (i.e., serverless deployment). In other words, in serverless
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deployment, all you need to do is deploying your code. The vendor is responsible
for handling all the operational requirements (e.g., scaling). On the other hand,
in virtual machine or container-based deployment, you are responsible for
monitoring and managing your system yourself. The details of serverless and
FaaS will be covered in Sect. 4.10. As an example, AWS Lambda, one of
the most well-known serverless deployment technologies, is compatible with
Python, Java, and Node.js services. To deploy a service, one needs just to upload
the corresponding microservices packaged as ZIP files. AWS Lambda handles
microservice requests by automatically running a sufficient number of instances.
However, this technology is not suitable for deploying long-running services.
The reason is that all requests in AWS must finish in 300 seconds and all services
must be stateless.

4.8 Data Visualization and Reporting Layer

The data visualization layer monitors project success and is the means by which
users perceive data value.

4.8.1 Data Visualization Frameworks

• Kibana: As stated earlier, Kibana is a data visualization framework based on
Elasticsearch. It enables users to understand data through a dashboard depicting
a group of visualizations. Users can resize or rearrange data visualizations at will
and save it to the dashboard so that it can be reloaded or shared. Kibana’s main
focus is enabling users to explore and analyze Elasticsearch’s log data. It does
not support other data sources, so if you are not utilizing Elasticsearch, Kibana
is not a viable data visualization option.

• Grafana: Grafana is an all-purpose, open-source graph composer and dashboard
that functions as a web application. Grafana provides built-in means for obtaining
data from 30+ sources (i.e., Elasticsearch). It is best suited to visualize continu-
ous time-series and streaming data such as metric reporting or sensor data.

4.8.2 Business Intelligence Frameworks

• Tableau: Tableau is a wonderful tool for data visualization because it is widely
available and enables the user to manipulate big data. It has two derivatives
including Tableau Server and the Cloud-based Tableau Online, specifically
designed to handle big data from organizations. Utilizing Tableau does not
require a coding skill. It comes with a user-friendly dashboard with drag and
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drops features. Almost all kinds of data can be connected and effectively
analyzed – from a small amount of data like a spreadsheet to big data like
Hadoop. Note that Tableau is considered as a business intelligence framework
rather than a holistic machine learning platform. For example, users cannot
develop cutting-edge predictive maintenance solutions in Tableau.

• Microsoft Power BI: Microsoft Power BI is a well-known business intelligence
framework on the market, meant to analyze data and share and visualize
subsequent data.

• QlikView: QlikView is a well-known option in the data analytics domain, and
the QlikView tool is one of Tableau’s closest competitors. It offers effective data
visualization, business intelligence, and enterprise reporting options.

4.8.3 Advanced Data Analytical and Machine Learning
Frameworks

• Scikit-learn: Scikit-learn, an open-source library of machine learning algorithms,
is widely used and well documented. It seeks to provide commonly used
algorithms for Python users. It is rapidly becoming the go-to platform for
machine learning and is continuously evolving to provide greater efficiency,
speed, and big data capabilities. Scikit-learn is commonly utilized with smaller
data, but does provide a useful group of algorithms for clustering, out-of-core
classification, decomposition, and regression.

• TensorFlow: TensorFlow, an open-source library of software useful for executing
numerical calculations with data flow graphs, was recently created by Google.
Many would argue that it is the best framework for deep learning and it has been
utilized by top-tier organizations including Twitter, IBM, and Airbus because it
is engineered based on a modular architecture resulting in significant flexibility.
The most widely known TensorFlow use case is Google Translate which
combines multiple functions such as forecasting; natural language processing;
image, speech, and handwriting recognition; tagging; and text classification.

• Caffe: Caffe is another platform for deep learning that supports command-line
interfaces as well as other interfaces like MATLAB, C++, Python, and C. It is
widely recognized for its ability to model convolution neural networks (CNN)
as well its speed and transposability. The greatest benefit of Caffe is that it
has a large repository of networks that have been pre-trained and are ready for
immediate use.

• RapidMiner: RapidMiner is predominantly concerned with speed in achieving
data insights in complicated data science. The visualization interface includes
ready-to-use workflows, machine learning elements, and data connectivity.
RapidMiner can be integrated with several technologies such as Python and R. It
is also capable of automating many tasks such as the selection of models, what-if
gaming, data preparation, and predictive modeling.



4 Architecting IoT Cloud 229

• Splunk: At its beginning, Splunk was a log analysis platform. It has gained a
solid foundation of loyal users and organizations that appreciate the ability to
share graphs and dashboards as well as the way it enables data visualization and
manipulation. It is well known for its analytic abilities as well as a web-based,
user-friendly log review. These capabilities can be also be used to review big data
stored in Hadoop.

• H2O: H2O is a distributed, in-memory, open-source platform for machine
learning that supports linear scalability. It comes with several out-of-box machine
learning and statistical algorithms (i.e., general linear models, deep learning, and
gradient boosted machines, etc.).

• Knime: Knime is an enterprise-level, open-source analytics platform designed
for use by data scientists. The visualization interface includes many nodes for a
variety of uses from data extraction to data presentation, with a clear focus on
statistical models.

• MLlib: MLlib is a component of Apache Spark and provides a scalable library
for machine learning with several methods for regression, collaborative filtering,
optimization primitives, classification, clustering, and dimensionality reduction.
The details of the MLlib will be addressed in Chap. 6.

• IBM Watson Studio: IBM is one of the most widely recognized brands all around
the globe. IBM Watson Studio is an appealing platform useful for creating and
deploying deep learning and machine learning models. It also enables you to
explore, refine, and transform data.

4.8.4 Load Balancing

Adding additional servers are necessary to enable the computing to scale efficiently
and meet high request volumes. Load balancing is a means of effectively spreading
incoming network traffic to a group of backend servers, sometimes referred to as a
server pool or server farm (see Fig. 4.34). You can think of the load balancer much
like the “traffic cop,” of the server pool, sending requests to endpoint servers in a
way that it keeps the workload evenly distributed and avoids lowering performance
level. If one server goes down, the load balancer is able to send requests to the other
servers, and if a new server is added to the pool, the load balancer automatically
starts sending some incoming requests to the newly added server. Generally, a load
balancer handles the following functions:

• Request Distribution – Spreads client requests or network load across multiple
servers in an efficient manner

• Performance Improvement – Guarantees network dependability and high avail-
ability by only sending requests to online servers

• Flexibility Increase – Allows servers to be added or removed based on client
demand

http://dx.doi.org/10.1007/978-3-030-30367-9_6
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Fig. 4.34 A simple example of load balancing

There are many algorithms and techniques available to effectively balance the
load of incoming requests across a server pool. The method chosen highly depends
on the service/application, network status, as well as the condition of servers [31].

• Round Robin – Simply distributes requests to servers in a rotating sequential
manner.

• Weighted Round Robin – In this version of Round Robin, each server has a static
numerical weight/rank and servers with a higher rating receive a greater number
of requests.

• Chained Failover (Fixed Weighted) – In this technique, a logical chain of servers
is created and all requests go to the first server in the chain; when the first server
cannot serve another request, the next server in the chain receives all requests,
etc.

• Least Connection – Unfortunately, Round Robin methods do not consider
current server loads when sending requests. To tackle this problem, in the Least
Connection method, the most current request is sent to the server currently
handling the smallest number of active sessions at the moment.

• Weighted Least Connection – Similar to the Weighted Round Robin method,
each server has a numerical value used by the load balancer to send requests
to servers appropriately. In this method, if two servers serve the same number of
connections, the server with the higher weighting will receive the newest request.

• Agent-Based Adaptive Load Balancing – Every server in the pool utilizes an
agent to report its current load level to the balancer. This information helps
determine which server should receive which request. This method is often used
in partnership with Weighted Least Connection or Weighted Round Robin.
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• Source IP Hash – A unique hash key is created using an algorithm that combines
destination and source IP addresses for the server and client. The key is then
used to send the client to a designated server. Because the key can be recreated if
a session is broken, the same client request will be sent to the same server it was
allocated to before the session was broken. This can be particularly important if
a client needs to connect to the same server after a disconnection.

• Layer 7 Content Switching (URL Rewriting) – This technique utilizes application
layer information to route/send incoming requests in real time to the most
appropriate server for processing.

• Software Defined Networking (SDN) Adaptive – In this approach, information
from layers 4 and 7 and information from layers 2 and 3 are combined to
determine how incoming requests should be apportioned and handled. This
holistic approach enables the load balancer to consider network congestion,
network infrastructure health, application status, and server status when making
decisions.

4.9 Orchestration Layer

Administering Cloud resources across the complete life cycle requires a variety of
processes and services to describe, deploy, select, monitor, and manage resources.
Figure 4.35 illustrates what the term Cloud Resource Orchestration refers to.
Generally, the orchestration of Cloud resources takes the shape of a multilayered
model that includes [32]:

• Description Layer – This layer includes the models and languages used to repre-
sent distribution, configuration, tracking, and control of the Cloud resources.

• Resource Provisioning Layer – This layer is responsible for choosing, distribut-
ing, and administering software such as load balancers and database management
servers and hardware (i.e., network, CPU, and storage). This layer considers the
service level agreement (SLA) when providing services to users. An SLA is a
required agreement between Cloud service providers and users that guarantees
quality of service (QoS) in the areas of reliability, performance, availability, etc.

• User Layer – Consumers such as application developers or system administrators
may utilize dashboards, software development kit (SDK), integrated development
environments (IDEs), or command-line interfaces (CLIs) to interact with the
services of other layers.

Fig. 4.35 Cloud Resource
Orchestration
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4.10 Virtualization

Virtualization is the foundational technology that brought the vision of Cloud
computing to life. Virtualization includes the creation of a virtual (as opposed to
an actual) form of something such as storage devices, network, and computing
resources. Virtualization began in the 1960s, as a means of virtually portioning
the mainframe’s system resources across various applications. Since that time, the
concept of virtualization has expanded. A few key benefits of virtualization include:

• Cost-Efficiency – Due to fear that an application may crash and take down
another application running on the same machine, companies will often only run
one application on a server. Current estimates suggest that most servers utilize
only 10–15% of their total capacity. However, virtualization allows for a single
physical server that would generally have only one purpose to function as a
computing pool with many virtual servers, able to adapt to evolving workloads.

• Energy Savings – Powering servers that are utilizing only a small portion of
their capacity can cost businesses significantly. Virtualization helps to reduce
the number of actual servers required and lowers the amount of energy needed to
cool and power them.

• Efficient IT Operations – Virtualization empowers IT professionals to work
with more agility and efficiency, which lessens the time and effort needed to
maintain resources. For example, IT professionals can easily complete archiving,
recovery, or backups with greater speed and ease. Prior to the widespread use
of virtualization, it could take weeks for a technical team to install and maintain
software or devices on physical servers.

4.10.1 Main Categories of Virtualization

There are three main categories of virtualization, namely, network virtualization,
storage virtualization, and computing server virtualization.

• Network Virtualization: Network virtualization unites all necessary physical
networking components into one, software-based resource while separating the
bandwidth into many, and independent logical channels that can be allocated to
devices and servers in real time.

• Storage Virtualization: Storage virtualization is the collection of physical storage
from many storage devices into what looks like one logical storage device
manageable from a centralized computer. In short, storage virtualization requires
adding a software layer that abstracts the details of the underlying physical
storage devices from users while allowing all storage devices to be managed as a
logical pool.

• Server Virtualization (Hardware Virtualization): Currently, server virtualization
is likely the most widely utilized kind of virtualization. Server virtualization
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includes masking server resources so that they are not visible to users. This
can be accomplished by a server administrator using a software application able
to separate a physical server into many virtual environments. The three main
approaches to server virtualization include system virtualization (virtual machine
method), operating system (OS)-level virtualization (Containers), and function-
level virtualization.

– System Virtualization (Virtual Machine-Based Virtualization): System virtual-
ization requires partitioning a server into multiple virtual servers or machines
with separate operating systems (OS). Although sharing a single computer’s
resources, various virtual machines can run different operating systems and
many applications. In short, system virtualization is the building of a virtual
computer that functions as a physical computer with an OS. A virtual machine
(VM) can also be referred to as a guest machine and functions like a software
simulation of the hardware platform that generates a virtual environment
for the guest OS. The software run on virtual machines is isolated from
the elemental hardware. A hypervisor, also referred to as a Virtual Machine
Monitor (VMM), is software that executes on host hardware and the host
operating system to monitor and manage the running of virtual operating
systems on the guest machines. For example, a computer operating with
Microsoft Windows may host a computer that looks as though it is operating
with the Ubuntu Linux.

– Operating System Virtualization (Containerization or Container-Based Vir-
tualization): In general, a container is a standard software unit that bundles
code and its dependencies to distribute and run applications accessing a
shared OS kernel without requiring VMs. Operating system virtualization is
container-based virtualization that requires an OS structure includes a kernel
which permits many separated user-space instances to exist. These instances
are known as Virtual Environments (VEs), containers (Docker, Solaris),
virtual private servers (OpenVZ), zones (Solaris), partitions, jails (chroot jail,
FreeBSD), or virtual kernels (DragonFly BSD). They may appear to be actual
computers from the perspective of the programs being executed in specific
instances. Docker is the most well-known container technology. It requires
that the application be packaged as an image. The image typically made up of
the application and libraries needed to provide the designated service. After
packaging the application, one or more containers are launched. In general,
several containers run on each host. A cluster manager (e.g., Marathon or
Kubernetes) can be useful in managing containers because the host is treated
as resource pool, deciding where containers belong based on the resources
needed and available on the host. It is very important to understand the main
differences between container and VM (see Fig. 4.36). Virtual machines are
software programs that mimic computing systems or physical hardware by
running a hypervisor software able to replicate hardware resource functional-
ity using the software. VMs encapsulate the OS as well as applications while
containers are responsible for encapsulating applications and their resources
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for deployment while sharing the host OS. Deploying IoT in Cloud requires
a large network of servers, protocols, sensors, and applications with many
endpoints including mobile, web, and firmware that need extensive integration
among applications, data, and devices. These need to expand development
timelines and increase the effort needed, even in an agile environment. Both
microservices and containerization support efficient development by dividing
IoT functions into more manageable, independent modules able to work
in isolation without negatively impacting IoT performance. In an advanced
IoT ecosystem, individual microservices are built with diverse programming
languages such as Java, C, C++, Ruby, or Python. Containers increase service
speed and ease of use by providing isolation within a single host and managing
framework or library dependencies. Containers can also be turned on and off
without adversely affecting subsequent containers located on the same host.

– Function-Level Virtualization: The term “serverless” does not mean that
servers are not required, but that developers do not have to spend much
time thinking about them anymore because the developer’s focus can be
shifted from managing servers to code. Serverless is also known as Functions
as a Service (FaaS). As previously discussed, microservices are used to
break monolithic applications down into smaller services that are more easily
developed, managed, and scaled separately. FaaS takes this idea further by
breaking microservices into even smaller pieces/functions (see Fig. 4.37). In
FaaS and serverless computing, we run the code (function) only on-demand
on a per-request basis (i.e., in response to events based on event-driven
programming model). The current leader in this area is Amazon Lambda,
while the products such as Azure Functions and PubNub Blocks are also
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working on this idea as well. Amazon Lambda allows you to run code for
almost any backend service or application without any administration. You
upload the code and Lambda handles everything needed to run or scale
the code with high availability. The code can be automatically triggered by
another AWS service or be called from any mobile or web application. It is
expected that in a few short years, many more Cloud platforms will evolve
to facilitate serverless architecture in some form. However, despite the rapid
evolution of serverless architecture and the capability to program using highly
popular languages, current serverless computing is limited and is not governed
by a clear blueprint, technical standards, or options.

4.10.2 Behind the Scene of FaaS: OpenWhisk

In this section, we describe the detailed implementation of FaaS technology using
one of the most well-known open-source FaaS platforms. Apache OpenWhisk is
an open-source serverless platform driven mostly by IBM and Adobe. Figure 4.38
illustrates the high-level architecture as well as the programming model of Open-
Whisk. Apache OpenWhisk is designed to function as an asynchronous and loosely
coupled execution environment which can execute functions (event handler) in
response to events at any scale. Events can come from any source such as datastores,
message queues, mobile and web applications, sensors, chatbots, scheduled tasks
(via Alarms), etc. In response to events, a stateless function (called action, event
handler, or code snippet) is executed in serverless mode. Actions, which encapsulate
application logic, can be invoked by the user-created APIs, command-line interface
(CLI) of OpenWhisk, or by Triggers. Triggers are created to automate actions. In
other words, triggers are endpoints and should be explicitly called by events. Rules
create a binding between serverless functions (actions) and triggers. Put differently,



236 F. Firouzi and B. Farahani

Fig. 4.38 High-level architecture as well as the programming model of OpenWhisk

a rule is a loosely coupled association between a trigger and an action. Behind the
scene, OpenWhisk is implemented based on the following main building blocks:

• Nginx: Nginx is an open-source HTTP and reverse proxy server.
• Controller: Controller is an implementation of the actual REST API and Nginx

forward all the HTTP requests to the controller which functions as the gatekeeper
of the OpenWhisk. As its name suggests, the controller performs the authentica-
tion and authorization and finally decides the path that the request will eventually
take. It should be noted that the controller is written in Scala programming
language.

• Redis: Nginx can be optionally connected to Redis for caching.
• CouchDB: CouchDB is a document-oriented NoSQL database which stores the

state of the system, credentials (for authentication and authorization), metadata,
namespaces, and the definitions of actions, triggers, and rules.

• Consul: Consul is a tool that acts as a service registry and discovery in the system.
• Kafka: Kafka is a fault-tolerant distributed message broker which buffers and

delivers the messages sent by the controller to invokers.
• Invoker: Invoker, which is written in Scala, is the component that is responsible

for receiving invocation request from the controller via Kafka, spinning up a
container, and executing the corresponding action. In OpenWhisk, containers are
managed using Docker technology. Docker is the most well-known framework
designed to make it easier to create, deploy, and run containers. When the
execution of an action function is done, the invoker stores the corresponding
results in CouchDB. It should be noted that inside each container, OpenWhisk
puts a light HTTP server with two endpoints, namely, /init and /run. The /init
endpoint is responsible for taking the action’s code, preparing the code for
execution, and the initialization of the container. For example, it might be
necessary to compile the code to be ready for the execution. The /run endpoint
triggers the execution of the action code. Note that the initialization of a container
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comes at a runtime cost. To increase the speedup, in some cases, it might be
possible to reuse containers. For example, if the same action is triggered for the
second time, and the first action has already completed, OpenWhisk might be
able to use the previous container without creating a new container. If a container
is already available, we call it a warm container. On the other hand, when there
is not an already initialized container available, the invoker needs to spin up a
new one. This case is typically referred to as cold start and the newly created
container is called cold container.

4.11 Scaling

Today’s IoT Clouds are required to serve thousands or millions of simultaneous
requests from devices or users and return accurate responses in a quick and
dependable manner. Challenges around scalability are frequently faced by IT
managers because it can be arduous to forecast the growth of applications, storage
needs, and bandwidth consumption. Infrastructure scalability manages evolving
application needs by adding or subtracting resources to accommodate demands as
required. In many instances this can be achieved through vertical scaling (scaling-
up) or through horizontal scaling (scaling-out).

4.11.1 Vertical Scaling (Scale-Up)

Vertical scaling is used to obtain a certain level of performance through increasing
the capacity of an existing machine (server) by addition of more power (CPU,
RAM, storage) to it. For example, web servers or databases require extra resources
such as storage, memory, computing power, or network in order to maintain an
optimal performance level. When the Cloud is utilized to achieve this, applications
are often migrated to a more powerful host or instance as the previous server
is retired. Vertical scaling can also be accomplished in software through the
addition of connections, threads, or by increasing cache size (applicable to database
applications) as well. Note that vertical scaling is not a good option to scale
dynamically, since it usually involves downtime for the system. MySQL is a good
example of scale-up.

4.11.2 Horizontal Scaling (Scale-Out or Clustering)

Clustering, also known as horizontal scaling or scale-out, references the ability to
connect two or more machines so that they appear to function as a single, virtual
machine. Horizontal scaling is most often associated with distributed architectures
and includes the addition of machines (nodes) to a system. This method of scaling
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requires that new machines be added to the system to share in handling the
workload. When it comes to databases, horizontal scaling often means partitioning
data (i.e., a single node only holds part of the data). Horizontal scaling is generally
easier to achieve through the addition of new machines to the existing server pool.
Horizontal scaling examples include MongoDB, Cassandra, and Google Cloud
Spanner. Clustering is usually accomplished by using a load balancer at the front of
the cluster to receive incoming requests and send them to nodes within the cluster.
The primary advantages of clustering include:

• Improved Performance – Adding nodes as required and balancing the load across
them enables quick and accurate responses to client requests.

• Improved Reliability – Clusters eliminate single points of failure because if a
node fails the load balancer sends requests to other notes until that particular
node is functioning properly again.

• Reduced Cost – Clustering is a cost-efficient method for achieving optimal
performance and scale because it requires commodity hardware only.

• Easy Maintenance – Cluster nodes can be taken down for maintenance purposes
or upgraded as required during business operating hours without interrupting
performance because additional nodes within the cluster are able to handle
incoming requests.

4.12 A Paradigm Shift from Cloud to Fog Computing

As the number of devices, data, and interactions continues to rise, Cloud archi-
tecture alone is unable to handle the deluge of information. The Cloud is able to
provide computing access, storage, and easy, cost-effective connectivity; however,
centralized resources can also generate delays and create performance issues if
data or devices are distant from a public Cloud or data center. In this context,
fog/edge computing has been created to tackle the aforementioned problems.
Cisco’s definitions for edge and fog computing are as below [33]:

• Edge Computing (Known as “Edge”) – Moves the processing closer to the data
source and does not require that data be sent to a remote Cloud or centralized
system for processing. Because it removes distance and reduces time usually
required to transfer data to a centralized system, the speed and performance
quality of devices, applications, and data transport are improved.

• Fog Computing – Defines how edge computing works and supports operations
for storage, computing, and network services among endpoint IoT devices and
Cloud computing centers. In other words, while fog is the defining standard,
edge is the foundational concept. Fog provides the required structure in edge
computing, enabling enterprises to move computing from Clouds or centralized
systems to edge, resulting in improved, scalable performance.
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Despite the above definition from Cisco, many companies feel that fog and
edge computing are basically the same because both are focused on utilizing local
network computing capabilities to complete computing tasks normally completed
by the Cloud. In this context, several companies suggest that the biggest difference
between fog and edge computing is where the data processing occurs. Edge
computing generally takes place on the actual endpoint IoT devices (IoT things)
or on a gateway device that is physically close to sensors/actuators. However, fog
computing pushes edge computing to data processing centers connected to the LAN
or to actual LAN hardware that is more physically distant from actuators or sensors.

Key features of fog and edge computing include [34, 35]:

• Heterogeneity – There is a wide heterogeneity of IoT edge devices (e.g., vibration
sensor, temperature sensor), there is a wide heterogeneity in communication
technologies and protocols (e.g., OPC-UA, Modbus, CAN bus, BACnet, MQTT,
REST, SICK SOPAS), and there is a wide heterogeneity in network technologies
(e.g., Wi-Fi, LTE, 3G/4G, Bluetooth) as well. Fog acts as a multi-protocol build-
ing block that can be utilized in diverse environments for protocol translation,
flexible integration, data delivery, and device management.

• Interoperability – Fog should be integrated into many solutions in order to
support a broad range of different services such as data streaming.

• Geographical Distribution – Fog computing is deployed in a distributed manner
to provide top-quality services for stationary and mobile end devices.

• Edge Processing/Storage – A wide range of applications can be executed on the
edge node close to the data source in order to reduce response time and save the
bandwidth between edge and Cloud. Edge can also be utilized as a short-time
historical storage.

• Quality of Service – Fog computing emerged partly to address quality-of-service
constraints of IoT endpoints. To name a few, real-time video streaming, gaming,
and CCTV monitoring are among those applications that demand low-latency
services.

• Real-Time Interaction – Fog can be used in real-time applications, including
real-time traffic monitoring, require real-time processing speed, and capability
as opposed to batch processing.

• Large-scale Sensor Networks – Fog computing is very useful to be utilized in
large-scale sensor networks (e.g., in smart grid or for environmental monitoring
applications) in which utilizing systems with distributed storage and computing
resources are required.

As noted, Cloud computing in IoT networks offers several benefits including
exceptional computing efficiency, enormous storage capability, and wide-area
coverage. On the other hand, edge computing offers a device-centered process,
increased mobility, high QoS, resource pooling at the edge, and the ability to manage
data in real time. Table 4.8 presents the main differences between Cloud and edge
computing.
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Table 4.8 Main differences between Cloud computing and edge/fog computing

Characteristics Cloud computing Edge computing

Computing capacity High Low – medium
Server size and operating
mode

Large, centralized servers Smaller, distributed servers

Application suitability High computational needs,
the delay is acceptable

Low latency, requires a
real-time operation, high QoS

Communication needs High – devices require a
constant Internet connection

Low – devices obtain cache
contents via edge gateway

Deployment planning Complicated planning Possible ad hoc deployment
with little to no planning

4.13 Summary

IoT and Cloud evolved separately as two distinct disciples over time; however,
over the past few years, they have been integrated as complementary technologies.
IoT Cloud paves the way for “device as a service” business model as well as for
unlimited storage and processing power to be able to manage and process big
data generated from millions of IoT devices. In this chapter, we overviewed the
fundamentals of Cloud computing such as characteristics, services, and deployment
techniques. Next, we presented a multilayer architecture for IoT Cloud including
data ingestion, data storage, data processing, and data visualization. Finally, we
detailed each of them covering the underlying technologies and their state-of-the-art
frameworks.
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5.1 Fundamental of Machine Learning

Learning consists of such a broad range of processes that it is hard to define
precisely. In the dictionary, learning is defined as “to gain knowledge, or skill in,
or understanding of, by study, experience, or instruction” and “modification of a
behavioral tendency by experience.” In contrast to zoologists and psychologists
specialized in defining learning from perspectives of biological behaviors, we focus
on the learning process in machines. Many concepts in machine learning are brought
from the efforts of psychologists to make more precise their theories of human
learning through computational models. On the other side, during the development
of machine learning, some concepts or technologies may also inspire certain aspects
of biological learning [2–4].

As for the machine, we may impose the characteristic that a machine learns
whenever the system changes its structure, programmed in such a manner that
its expected future performance improves. The machine can only learn from the
history of its inputs or in response to external information, where more information
or changes shall render a more accurate response model. Some of these changes
(e.g., augmenting a database by adding an event) fall easily within the province of
other disciplines and are not essentially better understood for being called learning.
For instance, when an image recognition machine can eventually differentiate cats
from dogs after seeing several pictures of cats and dogs, we feel quite justified in
that case to say that the machine has learned. A typical machine learning model or
algorithm is similar to the following (see Fig. 5.1). A machine learning process
consists of three main components: input, machine learning model, and output.
Given the information, i.e., inputs, such as precipitation, humidity, and temperature,
we would like to execute our task, i.e., output, predicting the weather to be either
sunny or rainy. The core of this prediction process is a machine learning model,
a.k.a how can we find an appropriate model to accurately map all combination of
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Fig. 5.1 An illustration of a machine learning model for predicting the weather

precipitation, humidity, and temperature to the actual weather. Fortunately, modern
machine learning techniques provide a variety of choices, to name a few, neural
networks, logistic regression, support vector machine, and deep learning.

5.1.1 Fundamental Terminologies

You have likely heard about artificial intelligence, data science, business intelli-
gence, data mining, machine learning, data engineering, and deep learning; however,
you might be unsure how these specialties are really different from one another. This
section will focus on clarifying the specific focus of each area.

• Artificial Intelligence (AI): According to the Merriam-Webster dictionary, intel-
ligence is “the ability to learn or understand, or to deal with new or trying
situations.” The field of artificial intelligence is founded on the idea that machines
or computer programs can have the capacity to reason, understand, learn, and
think as a human being does. AI is focused on mimicking the intelligence
of humans in computer systems or other machines through reasoning, self-
correction, and learning.

• Machine Learning (ML): The area covered by artificial intelligence is extensive,
and machine learning is a subdivision of AI. In short, machine learning is a
method utilized in achieving AI. Machine learning revolves around enabling
computer systems to learn and make accurate forecasts based on data without
requiring programming. This requires that an algorithm be given large amounts
of data, enabling the machine to learn more through the processed information.

• Deep Learning (DL): Deep learning, or deep neural network (DNN), is a
subset of machine learning. The word “deep” is used because there are many
steps required throughout the process of learning. Deep learning algorithms are
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generally shaped by the human brain’s data processing patterns. Data is subject
to several nonlinear transformations through virtual neurons in order to generate
a specific output. The output from one step becomes the input for another, and
this process continues until a final output is achieved. The details of DL will be
discussed in Sect. 5.6.

• Data Science: The term “Data Science” was born in the 1960s when it was
used as an interchangeable name for computer science. Today, the phrase “data
science” carries a very different meaning. Jeff Hammerbacher and D.J. Patil
took the term in a new direction in 2008, when they became the first to refer
to themselves as “data scientists” when describing their positions in Facebook
and LinkedIn, respectively. Today, data science refers to a set of methods or
techniques used to extract insights or information from data. While it intersects
with AI, data science is not a subarea of AI or ML. It is a multidisciplinary field
utilizing skills from a variety of areas, including visualization, statistics, and
machine learning, to manipulate and analyze data, generate insights, or extract
needed information from large amounts of data. In contrast, machine learning
focuses on building programs and algorithms that learn independently and do not
require human intervention to improve. For example, ML techniques are more
appropriate than data science methods when it comes to realizing self-driving
cars.

• Data Mining: Data mining became a widely used term in the database commu-
nities in the 1990s and is a subprocess of Knowledge Discovery in Databases
(KDD), the process of gaining knowledge from information found in databases.
Data mining is focused on recognizing patterns within a set of data and often
requires analysis of massive amounts of historical data that was previously
ignored or thought useless. These patterns are then used to predict future patterns,
which is an important step in the KDD process. In contrast, data science is a
broader field that includes various subareas from data visualization, big data
analytics, and predictive modeling to data mining, statistics mathematics, and
data visualization. The main differences between data science and data mining
can be clarified with an example. If you wanted to review the previous 8 years’
data in order to know how many sweets were sold during the festival seasons of
three different cities, a data mining professional would review the historical data
in legacy systems and use algorithms to extract patterns. On the other hand, if
you need to know which of the sweets received the most positive reviews, the
required data may not be located only in databases. This information could be
spread across social media, customer surveys, or websites, requiring the skill of
a data scientist.

• Data Engineering: The responsibilities and skills of data scientists and data
engineers overlap significantly; however, the main point of difference is the
specific focus of each. Data engineers focus primarily on creating data archi-
tecture or infrastructure. They develop, build, test, and maintain architectures
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like large processing systems or databases for data scientists. On the other hand,
data scientists are concerned with utilizing statistical analysis and advanced
mathematics to extract insights from data.

5.1.2 Review of Probability Theory

Probability plays a key role in machine learning because most learning algorithms
rely on the probabilistic assumption of the data. Therefore, a basic understanding
of probability theory is essential in learning and understanding machine learning
techniques. Probability theory is the mathematical study of uncertainty. Below, we
introduce some basic concepts in probability theory that will familiarize readers
with the language used in machine learning [4].

5.1.2.1 Random Variable

A random variable is a set of possible values from a random experiment. Assume
that we toss a coin, the outcome X of a coin toss can be either head (1) or tail (2). If
the coin is fair, both outcomes X = 1 or X = 2 are equally likely to occur; hence we
would see a probability of 0.5 in the outcome of such experiments. We could state
that the probability of seeing heads when flipping a coin is ½. Note that a random
variable denotes a whole set of outcomes, which means it can take on any of those
values, randomly [5].

5.1.2.2 Distribution

Given a random variable, we can further characterize the probabilities associated
with the random values it can take. If the random variable is discrete (i.e., it can
have only a finite number of values), then this probability assignment is called
a probability mass function (PMF). By definition, a PMF must be non-negative
and must sum to one. Let us take coin flipping example again; if tails and heads
are equally likely, then the random variable X takes values of +1 and −1 with
probability 0.5 each. This can be described as

{
Pr (X = +1) = 0.5
Pr (X = −1) = 0.5
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Fig. 5.2 The left is uniform distribution over [−1,1]; the right is Gaussian distribution with
mean = 0 and variance = 1

In short, we can use an informal representation of the above equations:

p(x) := Pr (X = x)

If we take continuous random variable into account, the distribution function can be
rewritten as a probability density function (PDF). As in the case of a PMF, PDF must
be non-negative and sum to one. We use a similar distribution format as PMF and
illustrate with two distributions: the uniform distribution and Gaussian distribution,
respectively (Fig. 5.2).

p(x) =
{

1
b−a

, if x ∈ [a, b]
0, otherwise

p(x) = 1√
2πσ 2

exp

(
− (x − μ)2

2σ 2

)

5.1.2.3 Mean, Variance, and Covariance

Mean is defined as the average of the numbers: a calculated “central” value of a set
of numbers. Suppose we have an array of [1, 4, 6], we can simply calculate the mean
as (2 + 7 + 9)/3 = 6.

In statistics, we often need to know what the expected value of a random variable
is. For example, we may ask a question on what the expected temperature is
during a certain period of time. We also leverage the concept of “mean” to define
expectations and related quantities of distributions.
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We can define the mean of a random variable X as below:

E [X] :=
∫

xdp(x)

To make it more general, if f : R → R is a function, then f (X) is also a random
variable. Its mean can be calculated as below:

E [f (X)] :=
∫

f (x)dp(x)

If X is a discrete random variable, the integral in the above can be replaced by a
summation:

E [X] =
∑
x

xp(x)

We can simply consider rolling a dice, which has equal probabilities of 1/6.
Therefore, the expected outcome of rolling dice is its mean (1 + 2 + 3 + 4 + 5 + 6)
/6 = 3.5.

Variance is defined to measure how much on average f (x) deviates from a
probability distribution’s expected value, as below:

Var [X] = E
[
(X − E [X])2

]

If we take rolling dice as the example, the variance of rolling a dice is [(1–
3.5)2 + (2–3.5)2 + (3–3.5)2 + (4–3.5)2 + (5–3.5)2 + (6–3.5)2]/6 = 2.91

Variance only operates on one dimension; however, it would be possible to find
and compute the correlation between two features using covariance. Covariance is
a measure of how much two random variables vary together and defined as follows:

cov (X, Y) = E [(X − E [X]) (Y − E [Y ])]

If X and Y are discrete random variables, the corresponding covariance can be
calculated using the following equation:

cov (X, Y) =
∑n

i=1

(
Xi − X

) (
Yi − Y

)
(n − 1)

in which X and Y illustrates the mean of variable X and variable Y, respectively.
Variance and covariance are often represented together by a covariance matrix. In
a covariance matrix, the diagonal elements are variance and off-diagonal elements
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are covariance. Note that a covariance matrix is a symmetric matrix. The following
matrix demonstrates the covariance matrix of three variables:

⎡
⎣ var1 var1,2 var1,3

var1,2 var2 var2,3

var1,3 var2,3 var3

⎤
⎦

5.1.3 Review of Linear Algebra

Linear algebra is a key foundation to the field of machine learning, and it mostly
discusses vectors, matrices, and linear transformations. In this section, we briefly
overview the fundamentals of linear algebra.

A matrix is a rectangular array of numbers organized in columns and rows.
Numbers appear in a matrix are called entries or elements which can be addressed
by their corresponding row number and column number. The number of rows and
columns is called dimension or order of the matrix. For example, the order of the
following matrix is 2∗3:

A =
[

1 3 3
2 5 9

]

The transpose of a matrix is a new matrix whose row and column indices are
switched/flipped as shown by the following example. Note that the transpose of
a matrix is usually represented by AT or A

′
:

AT =
⎡
⎣ 1 2

3 5
2 9

⎤
⎦

A vector is a matrix that has only one column as illustrated below:

v = [2 0 6]

A square matrix is a matrix where the number of its columns is equal to the number
of its rows. A symmetric matrix is a matrix whose transpose is equal to itself:

A = AT =
[

1 2
2 3

]

A diagonal matrix is a square matrix whose off-diagonal elements are equal to zero:

A = AT =
[

1 0
0 3

]
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A scalar matrix is a diagonal matrix whose elements along the diagonal are equal:

A = AT =
[

2 0
0 2

]

An identity matrix (unit matrix) is a scalar matrix whose diagonal elements are equal
to one. Note that the unit matrix is usually represented by I:

I =
[

1 0
0 1

]

A matrix is orthogonal when

A ∗ AT = I

A shear matrix (transvection matrix) is an identity matrix where one of its off-
diagonal zero elements is replaced with one nonzero value (λ):

S =
[

1 λ

0 1

]

A rotation matrix is typically represented as follows:

R =
[

cos θ − sin θ

sin θ cos θ

]

A transformation from Rn to Rm is defined as a mapping function (T) that maps each
vector (x) in Rn to a new vector (T(x)) in Rm. A transformation is linear when the
following conditions are preserved:

T (V1 + V2) = T (V1) + T (V2)

T (αV ) = αT (V )

In the above equation, V and V2 are vectors, and α is a scalar value. Note that a linear
transformation can be represented by a matrix. Figure 5.3 visually illustrates how
scaling matrix, rotation matrix, shear matrix, and symmetric matrix can transform
a vector. As shown in this figure, a symmetric matrix is actually a combination of
rotation (R) and scaling (S) matrices. In other words, a symmetric matrix first rotates,
then scales, and finally rotates back the vectors:

A = R (θ) SR (−θ)
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Scaling Matrix

Original Data Points 
(Circle)

Rotation Matrix Shear Matrix Symmetric Matrix

Fig. 5.3 A visual illustration of matrix transformation

Eigenvector

Normal vector

Fig. 5.4 An illustration of eigenvectors. In contrast to normal vectors, the directions of eigenvector
do not change when a linear transformation is applied

All symmetric matrices (such as covariance matrix) can be decomposed into
three matrices (i.e., rotate, scale, and rotate) as illustrated below:

cov = V DV T

where V is an orthogonal matrix whose columns are the eigenvectors of the
covariance matrix, and matrix D is a diagonal matrix whose elements are the
corresponding eigenvalues. An eigenvector is a vector that changes by only a scalar
factor and whose directions do not change when a linear transformation is applied
(see Fig. 5.4). Eigenvector and eigenvalue can be defined formally by the following
equation:

Av = λv

In the above equation, A is a transformation matrix, v is a column vector that
represents the eigenvectors of the matrix A, and finally λ is a scalar known as the
eigenvalue.
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5.1.4 Supervised and Unsupervised Learning

Based on the tasks to be solved and data available to the task, the machine learning
model also varies. The most common way is to categorize machine learning models
into supervised learning and unsupervised learning.

5.1.4.1 Supervised Learning

Supervised learning is the simplest model that readers can understand. The reason
why this type of modeling is called supervised learning is that the supervised
learning model is learned, or trained in the language of machine learning, from the
training dataset, just like a teacher supervises a student through a learning process.

In a supervised learning model, input and output are clear to the reader, although
the inner algorithm may not be so obvious. For instance, as described in Fig. 5.1, we
would like to predict tomorrow’s weather. The output is clearly defined – weather. It
can be defined as sunny, cloudy, or rainy. Meanwhile, we collect a number of relative
parameters, such as temperature, humidity, etc. These parameters are not directly
reflecting the weather, but indirectly indicating the type of weather. Therefore,
these parameters can be used for predicting the weather. We collected a dataset of
historical records of weather and corresponding relative parameters, based on which
we train the weather prediction model. In the training process, we already know the
right answers. The algorithm iteratively makes predictions on the training data and
is corrected by the teacher, the training process. The learning process stops when
the algorithm achieves an acceptable level of accuracy. Thus, we can use the model
to predict future weather with a certain level of confidence.

To further categorize supervised learning, those algorithms can be grouped into
either (i) classification models or (ii) regression models (Fig. 5.5).

• Classification: Classification refers to a model in which the output is a category,
such as weather (sunny, windy, rainy) or fruit (orange, apple, pear).

Regression
What will be the 

temperature tomorrow?

Classification
What will the weather be 

like tomorrow? Cold or Hot?

Fig. 5.5 Classification vs. regression
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Fig. 5.6 Supervised vs. unsupervised machine learning

• Regression: Regression is a model in which output is a continuous value, such as
weight (how many kilograms a person weighs) or price (how much a table cost).

5.1.4.2 Unsupervised Learning

In contrast to supervised learning, unsupervised learning is the process of infer-
encing from data without explicitly provided labels (see Fig. 5.6). Therefore, we
are not clear about the output of the dataset. Tasks in unsupervised learning model
include clustering, anomaly detection, latent variable learning, etc. Since no labels
are provided, no obvious ground truth can be used for verifying the model, and it
is difficult to compare or judge model performance in most unsupervised learning
algorithms.

One of the commonly used unsupervised algorithms is clustering. This is the
task of grouping a set of objects in such a way that objects in the same group share
similar behavior to each other compared to those in the other groups. For instance,
given a fruit basket, we can group red heart-shaped fist-sized fruits together as apple
or orange-colored fruits together as orange.

5.1.5 Machine Learning in IoT

There is a vast amount of use cases of machine learning in IoT across vertical
segments. In this section, we briefly review three of them to highlight the importance
of machine learning (see Fig. 5.7).

• Classification (Supervised): Classification is one of the most important machine
learning techniques in IoT. For example, by combining machine learning with
a readout of wearable health sensors, we can address several questions in the
healthcare domain. Classification can be applied to ECG signals to detect and
predict heart attacks in real time.



5 Machine Learning for IoT 255

Classificatio
n

Normal

Abnormal

What is my health status? Predictive maintenance: when will the wind turbine fail? 

Regression
In next 36 hours

Clustering

Anomaly detection: cluster motors based on sensor readouts

Which cluster ID

Fig. 5.7 A few use cases of machine learning in IoT

• Faults are reported by end-user

• Afterwards, inventory and the team 
should be scheduled and dispatched

Traditional Corrective Maintenance
• Faults are detected by connected 

sensors in near real-time

• Afterwards, inventory and the team 
should be scheduled and dispatched

Real-time Monitoring (IoT)

• Faults are predicted before they 
really occur 

• There is enough time to schedule the 
team and inventory in advance

Machine Learning
(Predictive Maintenance)

Time: Time:

v

Time:

v

Fig. 5.8 A simple example of predictive maintenance in the energy industry

• Regression (Supervised): Predictive maintenance (PdM) is a cutting-edge mainte-
nance strategy, which has been adopted in several domains (e.g., manufacturing,
energy and supply chain). The key idea of PdM is to identify which equipment
needs maintenance and which component will fail in the future and to predict
the remaining useful life (RUL) of machine parts (see Fig. 5.8). In this context,
regression techniques can be utilized to predict RULs accurately.

• Clustering (Unsupervised): An example of unsupervised learning in IoT is data
processing in a factory producing car engines. Suppose that we want to design a
machine to detect engines that require further adjustments. It is almost impossible
to build a system to detect the defects visually, but this can be achieved by
collecting several key parameters from each engine and then using a clustering
algorithm to find groups/clusters. For example, if the parameters are temperature
and the produced sound, the clustering algorithm (e.g., K-means clustering) will
group the engines into different categories based on their similarity in producing
sound at a specific range of temperature (Fig. 5.9). This will help engineers of
that factory to detect the engines that belong to the problematic group quickly.
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Fig. 5.9 Clustering of engine data

Business & Data 
Understanding

Data Preparation

Modeling & 
Evaluation

Deployment

Fig. 5.10 Machine learning flow

5.1.6 Machine Learning Flow

5.1.6.1 Overall Flow of Machine Learning Projects

The most common methodology for machine learning projects consists of the
following phases (see Fig. 5.10). It should be noted that in the data mining context,
this methodology is known as cross-industry standard process (CRISP).

• Business and Data Understanding: In this phase, we need to define the scope
of the project; understand the problem statement and pain points; study those
factors which might be able to impact the project; construct, gather, and collect
data from several sources (e.g., sensor readouts from IoT devices); and identify
metrics and key performance indicators (KPIs) for measuring success.

• Data Preparation: In this phase, we need to prepare the data for machine learning
algorithms. This phase includes (but not limited to) formatting data according to
our machine learning algorithms, handling missing values, handling categorical
variables, data normalization, and preparing training and test datasets.

• Modeling and Evaluation: In this phase, we build several machine learning
models, evaluate the performance of each of which, and finally select the best
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model which can address the problem. Note that this phase may provide feedback
to the previous phases (i.e., business and data understanding phase as well as the
data preparation phase).

• Deployment: In this phase, we deploy the selected model into production.
Continuous monitoring and maintenance of models are also very important.
Based on the feedback and performance of the deployed models, we might need
to adjust our solution over time.

5.1.6.2 Data Preparation

The data preparation is also known as data preprocessing, data cleaning, and data
cleansing. In general, the following steps are performed in the data preparation
phase. Note that it is not mandatory to apply all of the following steps to your data.
In reality, you need to decide case by case.

1. Preparing Dataset: The first step of the data preparation phase is constructing,
collecting, and formatting data. As studied in previous chapters, in IoT projects,
data comes in many forms including: (i) Structured: It concerns all data which
can be stored in a table with rows and columns; examples of structured are CSV
documents. (ii) Semi-structured: Semi-structured data cannot be stored directly
in a table; however, with some process you can store them in tables; examples of
semi-structured are XML and JSON documents. (iii) Nanostructured: It usually
includes text and multimedia content (such as email messages, videos, photos,
audio files, etc.). In the machine learning literature, we frequently see the word
dataset, which simply refers to a collection of data. It is very common to use
matrix and vector notations (in particular for structured and semi-structured data)
to refer to data (see Fig. 5.11):

Machine Type Serial Number
Working 

Temperature 
(C)

Average 
Working 
Voltage

Humidity

Remaining 
Useful Life 

(days)

Machine A 10293 69 12 Low 85

Machine B 10284 39 NaN Low 80

Machine A 12391 120 11.5 Low 10

Machine C 21033 -10 12 High 90

Machine A 15126 5 10.6 Low 63

Feature
Label

Observation
/Sample

Categorical Missing value

Fig. 5.11 A tabular view of a sample dataset
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(a) Each row of the matrix corresponds to one single observation (it is also called
a sample or a data point or a case).

(b) Each column represents a feature (also known as an attribute or a vector).
A feature is an individual measurable property or attribute of a phenomenon
being observed. In supervised techniques, features are also called indepen-
dent variables.

(c) In supervised machine learning techniques, there is one column correspond-
ing to “label” (also known as “response,” “output,” or “dependent variable”).

2. Handling Missing Values: Possible variations include ‘NaN’, ‘NA’, ‘None’, ‘’,
‘?’ and others (see Fig. 5.11). Missing values can occur both in numerical features
and categorical features:

(a) Numerical Features: Depending on the nature of the problem, you may
consider using one of the following techniques to address missing values:

(i) Ignore those rows with a missing value.
(ii) Use the mean/median/mode value of the feature for those missing

values.
(iii) Use the previous/next values to replace missing values.
(iv) Predict the missing values; for example, curve-fitting and regression

algorithms can be used to find the missing values.

(b) Categorical Features: Note that a categorical feature is a variable that can
take a limited number of possible labeled values. For example, a color feature
with the values “Red” and “Blue.” Dealing with categorical features is tricky.
In general, you might be able to utilize one of the following techniques
depending on the project’s constraints:

(i) Ignore those rows with a missing value.
(ii) Replace the missing value with the most frequent category.

(iii) Use the previous/next values to replace missing values.
(iv) Predict the missing values.

3. Handling Categorical Values: Some machine learning techniques (e.g., decision
tree) can directly use categorical features. However, to be able to use categorical
features in other machine learning algorithms, typically, we need to use an
encoding technique to convert them to numerical features. The most well-
known encoding techniques are integer encoding and one-hot encoding (see
Fig. 5.12).

(a) Integer Encoding (Label Encoding): In this approach, a unique integer
number is assigned to each category.

(b) One-Hot Encoding: Integer encoding can result in poor models because
machine learning algorithms may consider some kind of order between
categories (e.g., 0 < 1 < 2). To tackle this issue, the one-hot encoding
method can be applied to the feature. Let us explain the idea of one-
hot encoding by a simple example. Suppose we have a feature with three
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Machine Type

Machine A

Machine B

Machine A

Machine C

Machine A

Machine Type

1

2

1

3

1

A B C

1 0 0

0 1 0

1 0 0

0 0 1

1 0 0

Categorical Feature Integer Encoding One-hot Encoding

Fig. 5.12 A simple example of integer encoding and one-hot encoding

different categories (i.e., Machine A, Machine B, and Machine C). In 0ne-
hot encoding approach, we generate one boolean column for each category.
Therefore, in our example, we have three columns and only one of these
columns could have the value 1 for each observation (see Fig. 5.12).

4. Normalizing Data: In this step, we rescale all the features/attributes to have a
common scale (usually into the range 0 to 1). For example, suppose we have
a dataset containing two features, temperature and voltage. In this dataset, the
temperature ranges from −30 to 120, whereas the voltage ranges from 0 to 12.
Therefore, the temperature is about ten times larger than the voltage. In this case,
we may consider rescaling those features into the range 0–1.

5. Standardizing Data: In this step, we rescale features so that they have a mean
value of 0 and a standard deviation of 1. In this case, assume that our data has a
Gaussian (bell curve) distribution.

6. Splitting the Dataset into Training and Test Set: In every machine learning
project, there are two well-known techniques to split the dataset for training
and evaluating a model, namely, hold-out and cross-validation (k-fold cross-
validation).

(a) Hold-out: In this technique, the original dataset is divided into three
groups: training dataset, validation dataset, and test (hold-out) dataset (see
Fig. 5.13). The training dataset is the majority of data and typically contains
60–90% of the original set. The validation set is a subset of the training data,
and it is used to evaluate the performance of the model during the training
phase. In other words, the data of the validation test are not used for the
training of the model, but instead, can be used to tune the hyperparameters
of the model. The validation set is very useful to tackle some important
problems in machine learning such as overfitting (it will be discussed in the
next sections). The test dataset is just utilized to evaluate how well the trained
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Fig. 5.13 Hold-out technique: splitting the dataset into training and test set

Fig. 5.14 Threefold
cross-validation
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model can perform on unseen data. Figure 5.13 demonstrates the underlying
concepts related to these datasets.

(b) K-fold Cross-validation: In this technique, the original dataset is repeatedly
and randomly split into “k” equal-sized folds (also called groups, buckets,
or sections). For each unique group, we take it as the test (hold-out) dataset
and the other groups as the training set. This process is iteratively done for k
times until each fold of k folds have been used as the test set (see Fig. 5.14).

5.2 Regression Analysis

Regression analysis is a subcategory of supervised machine learning. It is used to
study the correlation between a dependent (usually called target or output) and an
independent variable (called predictor or features or input). In this machine learning
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method, the impact of the independent variable(s) on the dependent variable(s) is
analyzed. There are several well-known use cases for regression analysis:

• Predictive Analytics: Predictive analytics tries to model and predict future
behaviors by analyzing historical data. This technique has a wide range of
applications in IoT. As an example, predict maintenance predicts the time of
machine failures based on sensor readouts (e.g., vibration data) mounted in
machines in order to minimize downtime and to maximize productivity.

• Operation Efficiency: Regression analysis is used to optimize business processes
and assets (e.g., machine, workstation, laborer on the shop floor). For example,
on the production floor, IoT sensors mounted on machines can track inventory
consumption in real time. Regression analysis can forecast future behavior and
trigger automatic reordering or refill.

• Decision Support Systems: Regression helps make smarter and more accurate
decisions based on the available data.

• Error Correction: Regression analysis can be utilized to correct wrong decisions,
which are sometimes made based on some incorrect observations. For example,
a technical manager on a shop floor may believe that increasing the temperature
of a specific phase of the production line can increase the quality of the products.
However, readouts of IoT sensor and regression analysis indicate that this
assumption is not correct.

• New Insights: Regression analysis can reveal hidden patterns in data that are
difficult to uncover by conventional approaches. For example, regression analysis
techniques can be applied to IoT data of a production line to be able to find out
the relationship between environmental/operating conditions and the quality of
the products.

Formally, the regression task can be formulated as follows:

• There is a training set ((T = {(x(1), y(1)), . . . , (x(T), y(T))}) and we need to inves-
tigate the relationship (a mathematical equation) between the input (independent
variable(s) or features) x = (x1, . . . , xD) and the output (dependent variable) y(i).

• Note that in a training set of regression analysis, the labels y(i) are continuous.
This is one of the differences between regression tasks and classification tasks,
in which the y(i) are categorical.

Some important terminologies related to regression analysis are:

• Outliers: An outlier (Fig. 5.15) is a data point in a dataset in which a very high or a
very low value in comparison to other data points can be observed. An outlier can
be deemed to be an extreme value in the dataset. The presence of outliers leads
to less accurate results in regression; therefore, outliers are sometimes eliminated
through a preprocessing step.

• Multicollinearity: Multicollinearity is the situation of having a high level of cor-
relation among the inputs. This means that the predictors (independent variables)
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Fig. 5.15 An example of an
outlier data point Outlier
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Fig. 5.16 Illustration of heteroscedasticity and homoscedasticity

are also correlated with each other. Multicollinearity leads to an increase in
standard errors in regression analysis. This leads to inaccurate coefficients for
some of the independent variables. In this case, this phenomenon makes some of
the multicollinear variables mathematically insignificant (almost 0), while they
are not.

• Heteroscedasticity: Heteroscedasticity occurs when the variance of the dependent
variable (Y) depends on the independent variable (X). In other words, in this case,
residuals of a regression model do not have a constant variance. This makes
the analysis more complicated because regression analysis assumes that the
variance across the independent variable is constant (called homoscedasticity).
Figure 5.16 demonstrates these concepts visually. As shown in this figure
(heteroscedasticity), when the value of X increases, the variance of Y also
increases. On the other hand, when the case is homoscedasticity, the variance
of Y is independent of the value of X.



5 Machine Learning for IoT 263

Fig. 5.17 A linear regression
fit that minimizes the sum of
squared error of the difference
between the value of data
points and the fitted line

5.2.1 Linear Regression

A general regression model (Fig. 5.17) assumes a linear correlation between the
dependent and independent variables:

ŷ = h(x) = w0 + w1x1 + · · · + wDxD = w0 + 〈w, x〉 = w0 + xwT

where ŷ is the prediction made by the model, h(x) is the linear model which
comprises a linear function with the coefficient of w0 . . . wD, parameter w0 is the
bias, and the 〈w, x〉 is the dot product.

An approach to extract the desired coefficient (i.e., find w0 . . . wD) is to make h(x)
close enough to y for the provided training data. Therefore, we define a mathematical
term to calculate how close hw(x(i)) is to y(i), and this is called the cost function
(Eq. 5.1):

J (w) = 1

2

m∑
i=1

(
hw

(
x(i)

)
− y(i)

)2
(5.1)

Note that x(i) = (x1, . . . , xD) represents the data point (entry) i in the training set
and y(i) is its corresponding output. There are several approaches to solve the above
equation. The most frequently used one is the gradient descent algorithm, in which
the cost function is minimized by moving in the opposite direction of the gradient
of J(w) (the slope of the cost function). This method starts with an initial value of θ

and performs the following update iteratively:

wj = w − α
∂

∂wj

J (w)

In summary, in a gradient descent algorithm, the following steps are followed:

1. Initialize the weights of the linear equation randomly.
2. Calculate the gradient of the cost function.
3. Update the weight proportional to the gradient (W = W – αG), where G =

∂
∂wj

J (w).
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Fig. 5.18 Graphical
presentation of the way that a
gradient algorithm works
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4. Repeat steps 2–3 until some termination criteria (such as the cost J(W)) stop
reducing.

The update is performed for all of the training data, and the value of the gradient
depends on the current values of the model parameters and the cost function.
Parameter α is the learning rate, which controls the step size of each iteration.
This value α should be selected carefully because a high learning rate leads to
overshooting the minimum, and low rate results in reaching the minimum very
slowly. A good approach for a proper selection of learning rate is starting with small
values (such as 0.01 or 0.001) and redefining it based on the behavior of the gradient
descent algorithm.

Figure 5.18 presents an intuition of the gradient descent algorithm. In this
example, a blind man intended to reach the lowest altitude of rough terrain. One
of the simplest approaches for him is to feel the slope of the ground and move
in the direction that descends faster. If he keeps repeating this procedure, he will
reach the lowest altitude point of the terrain. In comparison to the gradient descent
algorithm, the slope is analogous to calculating the gradient; each step is similar to
each iteration, and the cost function is to find lower altitudes.

Gradient descent algorithm can also be formulated stochastically. Stochastic
gradient descent algorithm (SGD) computes the gradient by using a randomly
chosen training data point in each update (instead of considering all data points
of the training dataset). As a result, the algorithm runs faster, and yet, it moves in
the same direction over many updates as traditional gradient descent.

5.2.2 Regularization in Linear Regression

One of the major challenges in regression analysis is overfitting/underfitting.
Overfitting (high variance) occurs when the regression analysis algorithm works
with a high level of efficiency on the training dataset but fails to perform correct
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Fig. 5.19 An example of underfitting (high bias) and overfitting (high variance) regression

Fig. 5.20 Relation of the
complexity of the model and
the error of the training and
test sets

Er
ro

r
Optimum Complexity

Test Set & 
Validation set

Training Set

Complexity of Model

predictions on the test dataset. This is also called the problem of high variance. On
the contrary, when our algorithm works so poorly that it is unable to fit even training
set well, it is said to be underfitting the data. It is also known as the problem of high
bias.

Take Fig. 5.19 as an example. In this diagram, the straight line corresponds
to a linear regression, which underfits the data and leads to large errors in the
training set. A regression model of the polynomial kernel (the middle subfigure
in Fig. 5.19) is the most suitable fit because it works well on both the training
and test datasets. Note that the regression model of higher-order polynomial kernel
(the right subfigure in Fig. 5.19) fits better on the training data, but it causes more
error in the test dataset (see Fig. 5.20). In this figure, by moving from the left
subfigure toward the right subfigure, the model tries to learn more details of the
input data. Although higher-order kernel (more complex regression models) leads
to higher accuracy/performance on training data, it may perform inaccurately on
unseen inputs (test data), which means it loses its generality and gets worse. In other
words, increasing the complexity of the model may decrease the training error, but
it may eventually increase the test error, as explained above (Fig. 5.20).

Regularization is a technique of adding information to the learning algorithm to
make the model more generalized. This, in turn, enhances the performance of the
model on the unseen data (test data) as well. By using regularization, the learning
algorithm is modified in a way that it acts more efficiently on unseen data. The
modified regression model contains another term/component in its cost function,
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which it also should be minimized. Among regularization methods, L2 and L1
are the most frequently used methods, which modify the cost function by adding
a generalization term as follows:

Cost function = Loss + Regularization term

Adding the regularization term results in smaller weights/coefficients, which
leads to smaller overfitting. In other words, the regularization term punishes the
cost function. The utilized regularization term is different in L1 and L2 methods. In
L2, the cost function would be as follows:

Cost function = Loss + λ
∑

‖w‖2

where parameter λ is the regularization parameter, a hyperparameter that must be
optimized for better performance. L2 regularization is also called weight decay
because it forces the weights toward zero, however not exactly zero. A regression
analysis method that performs L2 regularization is called ridge regularization. Ridge
regularization is one of the well-known techniques to overcome overfitting.

Similarly, in L1, the cost function is written in this way:

Cost function = Loss + λ
∑

‖w‖

in which the cost function penalizes the absolute value of the weights. However,
unlike L2, the weights can be forced to be absolute zero. Since those input variables
(features) with zero coefficients can be dropped from the regression model, the
L1 regularization is useful for feature selection and reducing the complexity of
the model. L1 regularization methods are also called lasso regularization. In other
words, L1 regularization provides sparse solutions of the model by removing unim-
portant input variables. Getting sparse solutions could decrease the computational
complexity of the model due to the presence of features with a coefficient of zero.

In case of highly correlated features, the ridge generalization distributes the
coefficients among all of the features depending on the correlation, but lasso
regularization chooses the features selectively and makes the coefficient of other
features zero.

5.2.2.1 Geometric Interpretations of Regularization

One can define the L1 norm as the cumulative summation of absolute values of
a vector’s components. As an example, the L1 norm of the vector [x1, x2] is
|x1| + |x2|. With this definition in mind, we plot all the points whose L1 norms
are equal to a constant value (c), as presented by a blue line in Fig. 5.21.

The geometry of L1 norm in Fig. 5.21 looks like a rotated square (an octahedron
in higher dimensional space), in which the points on the tips are sparse (which
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Fig. 5.21 Different forms of the constraint regions in lasso and ridge regression. W1 and W2 are
the weights of regression features [x1, x2]

Fig. 5.22 Solutions of L1 and L2 norms and the effect of penalized parameters

means either w1 or w2 component is zero). Now if we make the box larger enough
(i.e., increase the constant value (c)) to touch the red solution line, a sparse solution
is achieved. It’s worth mentioning that the L1 does not necessarily touch the solution
by a tip, which means that the solution is not sparse in this case (i.e., we need to use
both x1 and x2 in the regression model and none of them can be dropped). As the
coefficients in ridge regression (L2 norm) are not set to zero, the shape of the L2
norm is different from the L1 norm. The shape of the L2 norm is a circle (Fig. 5.21),
which is rotationally invariant and has no corner.

Let us examine the geometric interpretation of penalized linear regression by
a simple regression example with two independent variables x1 and x2. Recall
that w1, w2 are their corresponding coefficients/weights in the regression model.
Suppose y = f(w1, w2) is the original cost function (e.g., Eq. 5.1: mean square
error in regression). We can plot its contour in the space X. Note that a contour
plot is a visualization technique to represent a three-dimensional (y, x1, x2) surface
by a two-dimensional (x1, x2) graph. A contour indicates the area at which the
function (y) has fixed values. In our example, the counters are represented by the
red diagram in Fig. 5.22. The minimum of the function (y = f(x1, x2)) is located
in the center of red circles. In other words, the center of red circles is our solution
(i.e., coefficients/weights of x1, x2), which minimizes the cost function. Now we add
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L1 and L2 regularization parameters to cost function. Let us call the regularization
function g(β):

For lasso regression : g(W) = λ (|w1| + |w2|)

For ridge regression : g(W) = λ
(
w2

1 + w2
2

)

In the above equation, λ is the penalization parameter, and w1 and w2 are the
coefficients of x1 and x2, respectively. g(W) for lasso and ridge are depicted by
the blue diagram in Fig. 5.22. In the cost function of lasso and ridge regression,
we need to minimize f(w1, w2) + g(w1, w2). This is equivalent to find those points
that two contour plots (red and blue diagrams) meet each other. In other words, we
should calculate the minimum of f (W) + g(W), which is the intersection of two
functions (f(W) and g(W)). As shown in Fig. 5.22, in lasso regression, two contour
diagrams can meet at a point where either w1 or w2 is zero. Therefore, the solution
of lasso can be sparse. On the other hand, the contour plots in ridge regression do
not have any tips, and thus it cannot result in any sparse solution.

5.2.2.2 Elastic Net Regularization

Zou and Hastie introduced the concept of the elastic net to overcome the weaknesses
of L1 and L2 regularizations in 2005. When the number of independent variables is
more than the sample size (p > n), only one independent variable can be selected
from any set of highly correlated independent variables using the lasso regression
algorithm (up to n independent variables). In addition, if the number of independent
variables is less than the sample size, the ridge regression method would have a
better performance.

Most of the times, highly correlated independent variables have similar regres-
sion coefficients. This situation is called the grouping effect. In real-world appli-
cations, the grouping effect can be beneficial for building the model. For example,
in gene identification of diseases, the researchers are intended to find associated
independent variables rather than only one from each set (which happens in
lasso). Additionally, selecting a single independent variable from a set of highly
correlated independent variables could result in a less robust model, which increases
the precision error. This fact demonstrates why ridge regression performs more
efficiently than lasso in this situation.

The elastic net algorithm is a combination of both L1 and L2 norms, in which
some coefficients are shrunk (similar to ridge regression) and some are set to zero
(like the lasso regression method). This method has two shrinkage parameters:

w∗ = argmin‖y − xw‖2
2 + λ2‖w‖2

2 + λ1‖w‖1
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Fig. 5.23 Comparison of
geometric interpretations of
lasso (L1), ridge (L2), and
elastic net
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Elastic net is particularly useful when we have several correlated features. When two
features have correlation, lasso selects one of them randomly, whereas the elastic
net considers both. Therefore, it is also more stable in many cases. For example,
imagine a problem in which there are two correlated features. In this case, lasso
chooses one of them randomly, but the elastic net takes both into account. Like
the ridge regression, the elastic net algorithm is more stable in comparison to other
methods for most of the real-world problems. Figure 5.23 depicts the comparison of
these algorithms [6, 7].

5.2.3 Bayesian Linear Regression

In linear regression, we have just one output value (y) for a given input. However,
Bayesian has another point of view. In this approach, y is not a single value, but it
is taken from a probability distribution. Recall that the linear regression approach
models the relation between input data (features) and the output (target) by the
following equation:

y = βT X + ε

in which the response is produced by multiplying model parameters (i.e., weights:
β) by the input (i.e., X) plus the model error (ε), which might be caused by random
sampling noise or latent variables. In the ordinary least squares (OLS) approach, the
model parameter (weights) can be determined by minimizing the sum of squared
errors (Eq. 5.1). However, Bayesian linear regression uses a statistical approach
based on probability distribution such as Gaussian distribution to model the mapping
function between inputs (features) and output:

y ∼ N
(
βT X, σ 2

)
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Fig. 5.24 Bayesian linear regression

In the Bayesian viewpoint, not only the output (y) has a distribution, but also all
the model parameters (weights) have a distribution. In Bayesian regression, the
following terms are defined:

Priors Priors are the initial or guess value of the model parameters that a domain
expert can put into the model prior to training. If there is no knowledge about the
parameters, non-informative priors, such as a normal distribution, could be used
instead.

Maximum likelihood Maximum likelihood estimation is a method to determine
the model parameter values in a way that the produced data (output of the model)
is equal to the actual observed data. For example, for a Gaussian distribution curve,
which has two parameters to be optimized (the mean, μ, and the standard deviation,
σ ), the maximum likelihood method can find the model parameters in a manner that
the generated curve best fits the data.

Posterior Posterior indicates the output distribution of Bayesian linear regression
based on the model parameters and priors. For a given dataset, one can estimate the
posterior probability distribution by the Bayesian rule:

posterior = likelihood × prior

Normalization

Bayesian regression algorithm enables us to compute the distribution of possible
model parameters (posterior) based on the training dataset and the prior (see
Fig. 5.24). Note that when we have infinite data, the posterior converges to the output
of OLS linear regression. On the other hand, when we do not have enough data to
train the model, the distribution of posterior spreads out.

5.3 Feature Selection

Feature selection (also called variable or attribute selection) is the process of
selecting a subset of the input features to construct a high-performance machine
learning model. In other words, feature selection enables us to implement a potential
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more accurate model while requiring fewer feature (input). This is accomplished
by removing the irrelevant or redundant information from the input feature set.
For example, in a supervised learning problem (either classification or regression),
although there could be a large number of available features in the input dataset, only
a subset of those features is relevant to the learning task. In this situation, incorpo-
rating all of the features may result in a risk of overfitting and high computational
cost. Feature selection algorithms allow us to overcome this challenge.

An irrelevant feature is defined as a feature that contains no useful information
regarding the problem (output variables) and is not capable of describing the
relationship in data. Irrelevant features can also adversely impact the performance
of the model. Note that there is a possibility to convert an irrelevant feature to a
relevant one by combining it with some other features. For example, to approximate
an XOR function by a machine learning algorithm, a single input is irrelevant, but as
combined with the other input, their combination can be used to produce the output
of the XOR function. This case is called feature interaction. In the case of feature
interaction, which means that there are multiple interacting features, the impact
of individual features on the output is not significant. However, they may show a
correlation to the target variable when considered in combination.

Another important problem is the presence of highly correlated features. In this
case, any individual feature may provide similar performance to the correlated fea-
ture subset. These correlated features are also called redundant features. Typically,
not much additional information from this type of features can be provided to
achieve a better machine learning model.

The main advantages and benefits of feature selection are listed below:

• Overfitting reduction: Less redundant data helps reduce noises and thus generates
a more accurate output.

• Accuracy improvement: Less irrelevant data contributes to more accurate model.
• Training time reduction: Fewer data accelerates the algorithm training process.
• Fewer attributes: Feature selection results in a simpler model that requires less

explanation.

5.3.1 Feature Selection Techniques

In general, there are two categories of feature selection techniques:

• Univariate method: Input variables are processed one by one to calculate their
relationship with the output, and then the most powerful input variables (i.e.,
those inputs with the highest correlations with output) are selected. This approach
works well in practice but may also fail because it does not take into account the
intercorrelations among input variables and the impacts of inputs on each other.

• Multivariate method: The whole group of variables is processed together.
Although this approach is more efficient than the previous one, it is more complex
and requires more computational resources.
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Feature selection techniques can also be classified as follows:

• Filter methods: Filter method is typically used as a preprocessing phase. Filter
methods are mostly univariate and non-iterative. Filter tries to assess the
predictive power of each feature. To do so, several statistical techniques can be
utilized to be able to compute the score (power) of the feature that demonstrates
its “level of relationship/correlation” with the output. Some famous examples
are chi-squared, F score, information gain, ANOVA, regression, and Pearson
correlation.

• Wrapper methods: Wrapper methods address the feature selection problem
similar to a search problem. These methods are called wrapper because they
wrap a machine learning (e.g., classification) inside the feature selection process.
Wrapper methods can be implemented in several ways, including:

– Forward Selection: Forward selection is an iterative method which starts by
an empty set. Then, we need to execute the machine learning model for each
feature to find the strongest one that results in the best performance. In the
next iteration, the selected feature from the previous step is combined with all
other features one by one to find the best pair of features leading to the highest
performance. We keep these two features and move to the next iteration. In
the next iteration, we try to find the best three features, and so on until the
specified number of features are selected.

– Backward Elimination: This is also an iterative approach. We start with all
features, and in each iteration, we remove/delete one of the features that does
not have a significant impact on the performance of the machine learning
model. This process is iteratively performed until a stopping criterion is
reached.

• Embedded methods: Embedded methods are implemented using those machine
learning techniques that have built-in feature selection abilities. In other words,
feature selection is integrated/embedded as part of the learning algorithm.
Regularization methods, which we discussed before, are one of the most common
approaches in this regard. These methods find the appropriate features by adding
some constraints into the optimization and cost function of the machine learning.
Lasso and elastic net regressions are examples of embedded techniques.

5.3.1.1 Chi-Square Test

The chi-square test (also called the chi-square test of independence, and chi
sounds like “Hi” but with a “K”) is used to study the significant correlation
between two categorical variables. Note that you cannot use chi-square to compare
continuous variables or a categorical with a continuous variable. Let us explain the
fundamentals of this method with a simple example. Suppose we observed 100
people to see who is interested in IoT and who is interested in Arts. Therefore,
we have one categorical feature (independent variable) which shows the gender (i.e.,
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Fig. 5.25 An example of the
chi-square test
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male, female) and one categorical dependent (target) variable that shows the interest
of those individuals. As shown in Fig. 5.25, the observations can be summarized in
a table called a contingency table. In our table, gender corresponds to rows of the
table, interest corresponds to the columns of the table, and each cell corresponds to
the frequency or the count of observations. Next, we need to define two hypotheses
as listed below:

• “Null” hypothesis (default hypothesis): Gender and interest (IoTs or Arts) are
independent (i.e., there is no correlation between the feature and the dependent
variable).

• “Alternate” hypothesis: Gender and interest are not independent (i.e., the feature
and the target are correlated).

The next step is to calculate the expected value for each entry. To do so, we
multiply each column total by each row total and divide by the overall total. As
shown in Figs. 5.25 and 5.60 people are interested in IoT, and 25% of them are men.
Therefore, we would expect 15 (25% of 60 persons) males to be the value (expected
value) in the upper left cell. Next, χ2 − statistic is computed based on the observed
and expected variables as follows:

χ2 =
∑ (observed − expected)2

Expected

In our example, χ2 is equal to 2. Finally, we need to test where the computed χ2 lies
on the χ2 distribution curve to be able to accept or reject the hypothesis. Therefore,
we look up the value 2 in the distribution curve (or in an χ2 distribution table) to find
the probability of this result. According to the distribution table, the corresponding
probability for our example is 0.16. We also need a significance level which is
usually 0.05 in chi-square test. The significance level is defined as the probability
of rejecting the null hypothesis when it is true. For example, when the significance
level is equal to 0.05, it indicates a risk of 5% in rejecting the null hypothesis. In our
case, since 0.16 is bigger than 0.05, we retain our “Null” hypothesis meaning that
there is no correlation between gender and interest.
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5.3.1.2 Pearson Correlation

Pearson correlation methods filter the features based on their correlation coefficient,
so one can write it as follows:

ρi = cov (Xi, Y )

σ(Xi)σY

where Xi is the input (feature), Y is the output, (Xi, Y) is the covariance, and
parameter σ is the standard deviation. The Pearson correlation coefficient, which
is also called a sample correlation coefficient or sample Pearson correlation
coefficient, has a value in the range of [−1,+1]. The 0 coefficient indicates that
there is no correlation between the two variables. A value greater than 0 implies that
there is a positive correlation (i.e., when a variable goes up, the other variable also
tends to increase) between variables, and a value less than 0 indicates a negative
correlation.

5.3.1.3 Entropy

Entropy is a robust tool for correlation estimation and feature selection. Entropy is a
parameter that measures the level of impurity in a group of examples (see Fig. 5.26).
Entropy can be calculated by the following equation:

H(X) = Entropy =
∑

i

p (xi) log2p (xi)

In the above equation, p(xi) shows the probability of class i. Let us explain it with an
example. Assume in our set (group), we have 16 red circles and 14 green triangles.
Therefore, the probability of circle class is 16/(16 + 14), and the probability

Very impure Less impure Minimum impurity

Fig. 5.26 Measuring the level of presence of different elements using the impurity metric
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Fig. 5.27 Entropy vs.
probability (target class is 1)
for a two-class variable (X)
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of triangle class is 14/(16 + 14). As a result, the corresponding entropy can be
calculated as follows:

Entropy =
(

16

16 + 14

)
log2

(
16

16 + 14

)
+

(
14

16 + 14

)
log2

(
14

16 + 14

)

The entropy of a group that contains a single example class is zero. This means that
the group does not have any information. This also indicates that this group is not
a proper training set for the learning algorithm. In contrast, the entropy of a group
with 50% of either class is 1, which indicates that the group is a suitable training set
(i.e., the training set is balanced). Figure 5.27 illustrates the entropy vs. probability
of a two-class variable (e.g., red circle class and green triangle class). As you note,
the minimum of entropy is where the probability is equal to 0 or 1 (i.e., when we
have just red circles or green triangles). On the other hand, entropy rises to 1.0 at
a probability of 0.5 (maximum impurity) when the set is completely balanced (e.g.,
half of the examples are red circles and the other half examples are green triangles).

To be able to use entropy for feature selection, mutual information (MI) is
defined. MI shows how much information a variable has about another variable.
Larger mutual information (e.g., between the target (Y) and feature (X)) indicates
that the feature has more correlation with the target. Mutual information (MI) can
be calculated as

MI (Y,X) = H(Y) + H(X) − H (Y,X)

In the above equation, H(Y, X) is a conditional entropy (entropy of a joint distribu-
tion):

H (Y,X) = −
∑

i

p (yi, xi) log2p (yi, xi)
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Note that MI is zero, when there is not any correlation between X and Y, meaning
that they are statistically independent variables. The maximum of MI happens when
Y is completely dependent on X.

5.3.2 Feature Extraction

Feature extraction is slightly different from feature selection. While the latter selects
a subset of the original input variables, the former generates some new variables
(features) from the original ones. Principal component analysis (PCA), linear
discriminant analysis (LDA), and spectral transformations (such as Fourier and
wavelet transforms) are among the most well-known feature extraction techniques.
Feature extraction improves the performance of the machine learning model by
incorporating new relevant features.

5.4 Classification

Classification is another form of supervised machine learning, in which the output
(target of the dependent parameter) labels are categorical. In other words, the output
is classified into different groups. The goal of classification is to train and create a
model (called classifier) based on the training dataset, which is then able to classify
(i.e., predict the label or class) unseen data. Before presenting the details of different
classification models and approaches, it is crucial to know about performance
metrics, which is the first step for constructing classification models.

5.4.1 Measuring Performance for Classification Problems

Performance metrics are one of the key aspects of every machine learning projects,
which determine how the performance of the algorithm is measured and is compared
with other algorithms. Throughout this section, we explain each performance metric
via a simple classification problem. We would like to predict if a given person has
cancer (true/positive class) or not (false/negative class).

5.4.1.1 Confusion Matrix (Error Matrix)

The confusion matrix is a table to present the performance of a classification model.
For a binary classifier, the confusion matrix is a 2 × 2 matrix similar to Fig. 5.28.
In our example (prediction of cancer), the confusion matrix has two dimensions,
namely, the actual dimension and predicted dimension. The actual dimension has
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Fig. 5.28 Confusion matrix
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columns, and the predicted dimension has two rows corresponding to the number of
available classes. Note that our problem has two classes (i.e., a person has cancer or
not). The following quantities could be obtained through a confusion matrix:

• True Positives (TP): TP show that the observation is positive and is correctly
predicted to be positive.

• True Negatives (TN): TN are negative cases, and they are correctly predicted to
be negative.

• False Positives (FP): FP indicate that the actual class was negative, but we
incorrectly classified it as positive.

• False Negatives (FN): FN show that the actual example was positive, but we
incorrectly predicted it as negative.

Depending on the nature of the application, one of these four parameters can
be minimized. For example, in our case (cancer prediction), missing a person
with cancer is a big mistake because no further treatment or examination will be
performed for him/her. As a result, we should minimize the false negative rate.
Another example could be email spam detection system. In this case, true cases
are spam emails. Now consider someone is waiting for an important email, but the
system incorrectly marked the email as spam. This would be a huge mistake for the
system. In this case, we need to keep the false positive rate as low as possible.

5.4.1.2 Performance Metrics

Some of the most important performance metrics that can be derived based on the
confusion matrix are illustrated in Fig. 5.29.

Accuracy
Accuracy computes the ratio between the number of correct predictions (true
positive and true negative) over all the predictions made by the model:

Accuracy = TP + TN

TP + FP + FN + TN
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Specificity = TN/(TN+FP)

Fig. 5.29 Accuracy, precision, and specificity performance metrics

Accuracy is a good performance metric when the target classes are balanced.
However, it should be avoided when the number of samples in each class is very
different (i.e., imbalanced dataset). The reason is that in imbalanced datasets, the
probability of instances belonging to a minority class is significantly low compared
to a majority class. Therefore, the classifier tends to classify new observations
mostly as the majority class. In our example, imagine that there are only five cases
of cancer out of every 100 cases. In this situation, if the system predicts all 100
cases as noncancerous, the accuracy of the model is 95%, but apparently, the model
is terrible at predicting cancer.

Precision (Positive Predictive Value)
Precision represents the proportion of true, relevant predictions (i.e., the percentage
of your model results, which are relevant, or the ratio between the relevant instances
and the total retrieved instances). Precision is formally defined as the ratio between
the number of true positives and the number of true positives plus the number of
false positives. In our example, the precision is defined as how many of the people
detected as cancerous have cancer. In other words, precision indicates how much
the model is precise. For example, if we predict just one cancerous patient, and the
patient has cancer, the precision is 100%.

Precision = TP

TP + FP

Recall (Sensitivity)
Recall or sensitivity expresses the ability of the model to detect all the relevant cases
(all the points of interest) within a dataset. Formally, recall is the number of true
positives divided by the number of true positives plus the number of false negatives.
In our cancer detection example, recall demonstrates how many of the cancerous
patients are predicted as having cancer. If we mark every patient as cancerous, the
recall is 100%.

Recall = TP

TP + FN
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Choosing the proper metric between precision and recall depends purely on the
problem statement and application. As a general rule, if the focus is on minimizing
the false negatives, effort should be put on making the recall value close to 100%.
On the other hand, if it is important to minimize false positives, the precision value
should be close to 100%.

Specificity (True Negative Rate)
Specificity or true negative rate, as suggested by its name, measures the ability of the
model to identify those cases that are negative correctly. In our example, specificity
would be the proportion of the predicted healthy (i.e., negative: do not have cancer)
people that are correctly marked as healthy. Therefore, the model will have 100%
specificity when it correctly finds all patients without cancer.

Specificity = TN

TN + FP

F1 Score
F1 score is an optimal blend of recall and precision that can be calculated as follows:

F1 = 2 × Precision × Recall

Precision + Recall

This equation is a harmonic mean, and contrary to a simple average, it handles
extreme values. For example, a classifier with a precision of 1.0 and recall of 0
would have an F1 score of 0, which would be 0.5 for a simple average. F1 score is
also called the F score or F measure.

ROC Curve
A ROC curve (receiver operating characteristic curve) is a plot that demonstrates the
performance of a classifier at different thresholds. In the ROC graph, true positive
rate (TPR) is depicted as a function of false positive rate (FPR). As you will see
later in this chapter, classifiers normally generate a probability as output for a given
input (features). This shows the probability that a given input belongs to a specific
class. To be able to classify the input, we need to choose a threshold. An output
value above that threshold indicates positive class and a value below the threshold
indicates negative class. Note that decreasing the classification threshold (decision
threshold) results in predicting more cases as true, which in turn increases both FP
and TP simultaneously. A typical ROC curve is plotted in Fig. 5.30.

AUC (Area Under the ROC Curve)
Area under the ROC curve (AUC) is a statistic parameter for model comparison. As
its name implies, AUC measures the area underneath the entire ROC curve. This
parameter aggregates the performance of the model across different classification
thresholds (Fig. 5.31). This parameter enables us to identify which of the trained
models predicts the classes best. In other words, it helps to rank and sort classifica-
tion models.
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Fig. 5.30 TP and FP rates at
different classification
thresholds
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5.4.2 Over- and Undersampling

As noted in previous sections, classification metrics might be very confusing and
misleading, specifically when the dataset is imbalanced. Over- and undersampling
are widely used to overcome the challenge of imbalanced datasets, in which there
is a majority of one class in comparison to other classes. Figure 5.32 illustrates an
imbalanced dataset graphically. Undersampling, as its name suggests, selects only
part of the majority class equal to the number of data points of the minority class
for model creation. This results in a balance between probability distributions of
classes.

Inversely, in oversampling, copies of the minority class are created in order to
reach the number of examples in the majority class. The copies should be created
in a way that does not affect the distribution of the minority class. Figure 5.32
demonstrates these concepts clearly.
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Fig. 5.32 Undersampling and oversampling techniques to address the problem of imbalanced
datasets

Fig. 5.33 A simple example
of KNN classification
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5.4.3 K-Nearest Neighbor (KNN)

k-nearest neighbors (KNN) is one of the simplest yet popular classification tech-
niques that was first described in the early 1950s. KNN algorithm can be summa-
rized as follows (see Fig. 5.33):

• First, we need to define K.
• Next, we calculate the distance between the given input (which should be

classified) and all samples of the training set.
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• Next, we sort the distances and select K-nearest neighbors of the given input. In
other words, we select K samples of the training set which are closest to the given
input.

• Finally, we use a simple majority to identify the label (class) of the given input
based on the labels (classes) of its neighbors. In other words, the most common
label/classification of its neighbors is selected as the label (class) of the given
input.

5.4.4 Logistic Regression

Logistic regression is the go-to technique for binary classification in which the
dependent variable (target) has just two classes. The main difference between
linear regression and logistic regression is that in logistic regression the dependent
variable is categorical and has as a binary value (two classes). On the other hand,
in linear regression, the output is a numerical value. Logistic regression computes
the probability of the default class. The mathematical form of logistic regression is
given by

hθ (x) = g
(
θT x

)

g(z) = 1

1 + e−z

in which θ is coefficients/weights, x demonstrates the input (features), and g(z) is a
sigmoid function (also called logistic function) which has an S shape (see Fig. 5.35).
To better understand the logistic regression, we need to study the fundamentals of
logit and sigmoid functions.

5.4.4.1 Logit and Sigmoid (Logistic) Functions

Logit and sigmoid functions are widely used functions in machine learning applica-
tions. For a probability p, the corresponding odds (i.e., the ratio of the probability
that an event will occur to the probability that the event will not take place) can be

calculated by
(

p
1−p

)
. The logit function is the logarithm of the odds (Fig. 5.34):

logit (x) = log
( x

1 − x

)
.

The logit function leads to positive infinity and negative infinity as the value of p
approaches 1 and 0, respectively. Due to the fact that the logit function maps the
probability values to a full range of real numbers, it is frequently used in analytics.
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Fig. 5.34 A plot of logit
function. The logit function
yields positive infinity and
negative infinity as the value
of x approaches 1 and 0,
respectively
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Fig. 5.35 A plot of sigmoid (logistic) function

For example, by taking advantage of logit function, one can transform a “yes-no”
input to real-valued quantities. This is one of the fundamental concepts of logistic
regression.

Sigmoid function (also called logistic function) is the inverse of logit function,
so for a given probability p, sigmoid(logit(p)) = p. As a result, the sigmoid function
maps a real value to the range of [0,1]. Larger inputs cause an output closer to 1.

The sigmoid function is declared as σ(x) = 1
/

1 + ex (see Fig. 5.35). One of the

most significant applications of the sigmoid function is the situation that we want to
map a real value into something similar to a probability, which is mostly used at the
end stage of a classification algorithm. We will discuss the details of classification
algorithms in the next section.
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5.4.4.2 Decision Boundary (Decision Surface)

In order to map the returned score of the logistic function (which is a probability
in the range of [0,1]) to a binary class, a threshold is defined, above which the
classification output would be the class 1; otherwise the class would be 0. For
example, when the threshold is 0.5, classes can be identified by the following rule
(see Fig. 5.35):

Class = 1 : hθ (x) ≥ 0.5,

Class = 0 : hθ (x) < 0.5

Now, let us explain the meaning of the decision boundary by an example. Recall
that hθ (x) = g(θTx) in which g() is a sigmoid (logistic) function and x represents the
input (features). When the threshold value is equal to 0.5, according to Fig. 5.35, it
implies that

Class = 1 : θT x ≥ 0,

Class = 0 : θT x < 0

Now suppose that we have a training set similar to Fig. 5.36 and we want to
classify the inputs into two classes (i.e., red circles and green triangles). We can
draw several different hypotheses about θTx. A very simple linear hypothesis
might be hθ (x) = g(θ0 + θ1x1 + θ2x2). As shown in the figure, this hypothesis
represents a line (blue color) which divides the inputs into two different classes.
This line is called the decision boundary. Formally, a decision boundary is a
hyperplane/hypersurface that divides the underlying vector space into classes.

Note that a decision boundary does not need to be just linear. Adding more
precision to the logistic regression model is possible by including higher-order

Fig. 5.36 Linear decision
boundary
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Decision boundary
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Fig. 5.37 Nonlinear decision
boundary
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polynomial terms and creating a nonlinear decision boundary. An example of
a nonlinear decision boundary is depicted in Fig. 5.37 based on the following
equation:

hθ (x) = g
(
θ0 + θ1x1 + θ2x2 + θ3x

2
1 + θ4x

2
2

)

5.4.4.3 Cost Function in Logistic Regression

In the previous subsection, we learned what a linear/nonlinear decision boundary
is. Now the question is how to compute the coefficients/weights of features (input).
Instead of using mean squared errors (MSE) as the cost function (similar to linear
regression), logistic regression uses a cross-entropy function, which is also called
log loss. This cost function is divided into two cost functions for y = 1 (first class)
and y = 0 (second class) separately [8]:

J (θ) = 1

m

m∑
i=1

Cost
(
hθ

(
x(i)

)
, y(i)

)

Cost (hθ (x), y) = − log (hθ (x)) if y = 1

Cost (hθ (x), y) = − log (1 − hθ (x)) if y = 0

which can be written as

J (θ) = − 1

m

m∑
i=1

[
y(i) log

(
hθ

(
xi

))
+

(
1 − y(i)

)
log

(
1 − hθ

(
xi

))]

The cost function for y = 1 and y = 0 is plotted in Fig. 5.38.
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Fig. 5.38 Cost function of logistic regression
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Fig. 5.39 A 2D support vector machine model. (a) There are many possible hyperplanes (e.g., H1,
H2, and H3) that could be chosen to separate the data. (b) Optimal Hyperplane (has the maximum
margin, i.e., the maximum distance between data points of both classes) using the SVM algorithm

5.4.5 Support Vector Machine

Support vector machine (SVM) is one of the popular classification methods that was
created in the late 1990s. SVMs succeed in finding the optimal separation solution to
classify between data points belonging to two classes. Figure 5.39a is an illustration
of SVM in the 2D plot. Three separating hyperplanes (H1, H2, and H3) are plotted,
which are called decision boundaries in classification. As you note, even for a simple
classification problem, we can draw several hyperplanes to partition the underlying
space and classify the inputs. The key question is which of these hyperplanes is the
optimal one and how can it be computed. SVM enables us to address this issue.

The main objective of an SVM algorithm is to find a hyperplane with the
maximum distance from data points of both classes (Fig. 5.39b). In other words, the
goal is to find a hyperplane which has the largest margin (i.e., the one that creates a
street with the largest width between classes). This specific hyperplane is called
maximum-margin hyperplane. In this regard, support vectors play an important
role. Support vectors are data points that are located closest to the hyperplane and
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Fig. 5.40 Mathematical
presentation of a support
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touch the boundary of the margin [9]. Therefore, support vectors determine the
hyperplane position and orientation. For example, in Fig. 5.40 we have just three
support vectors. Note that only these support vectors impact the location of the
hyperplane, and the other data points are not important in the SVM algorithm.

Let us formulate the problem of linear SVM formally. The input of SVM is a
training dataset of n points of the form

(−→
x1 , y1

)
,
(−→
x2 , y2

)
, . . . ,

(−→
xn , yn

)

where each xi represents an n-dimensional real vector (vector of features). Parameter
y represents the output (target) and it is a two-class output (either 1 or −1). The goal
is to maximize the margin. Any hyperplanes can be expressed as

−→w .
−→
x − b = 0

in which parameter −→w is a normal vector (weights), and −→
x is the set of points. If the

data points are linearly separable, we would be able to draw two hyperplanes (e.g.,
hyperplanes A and B in Fig. 5.40). Technically speaking, the margin is surrounded
by these two hyperplanes, and the maximum-margin hyperplane (hyperplane C in
Fig. 5.40) is located exactly in the middle of them. Given a normalized dataset, the
two hyperplanes located at the border of the margin area are described as follows:

−→w .
−→
x − b = 1 (the class with label 1)

−→w .
−→
x − b = −1 (the class with label − 1)

To have better intuition and to understand the impact of −→w and b, see Fig. 5.41.
From a geometrical point of view, the distance between these two hyperplanes is

2‖−→w ‖ . As a result, minimizing the denominator (
∥∥−→w ∥∥ )

results in maximizing the



288 F. Firouzi et al.

X

Y

X

Y

Big small

X

Y

4x + 6y + (-10) = 0 
8x + 12y + (-20) = 0 

2x + 3y + (-5) = 0 

All represent the same 
line

Margin = Margin = 

Fig. 5.41 An example of hyperplanes and the impact of coefficients/weights
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distance. To prevent data points from being in the margin area, we need to add the
following constraints during the optimization:

−→w .
−→
xi − b ≥ 1, if yi = 1

−→w .
−→
xi − b < 1, if yi = −1

which can be rewritten as (for each data point)

yi

(−→w .
−→
xi − b

) ≥ 1, for all 1 ≤ i ≤ n

To put it all together, we should consider minimizing
∥∥−→w ∥∥ while considering the

above constraints (when the classes are linearly separable). This is an optimization
problem that can be solved by the Lagrangian multiplier method [9]. If the data are
not linearly separable (Fig. 5.42), we cannot use the above constraints during the
optimization. In this case, we need to find a hyperplane that penalizes data points
on the wrong side. To do so, we can take advantage of the hinge loss function to
penalize the points on the wrong side:
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Fig. 5.43 Tradeoff between classification error and margin
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Fig. 5.44 Kernel trick in SVM. (a) Non-linearly separable data. (b) Data on higher dimension and
a linear decision boundary. (c) Decision boundary in original dimensions

max
(
0, 1 − yi

(−→w .
−→
xi − b

))

This cost function is 0 if the actual and predicted values are on the same side, but
for the wrong side points, the function’s value (penalty) is increased proportionally
to the distance of the wrong data points from the hyperplane. Now let us study the
example of Fig. 5.43. As shown in this figure, we extract a hyperplane that has a
big margin, but it cannot classify all the data points. On the other hand, we can have
a hyperplane that has a very small margin (which is not good for generalization),
but it can classify all the data points. In SVM, we can make a tradeoff between
classification error and margin. To do so, we define a regularization parameter called
C and the SVM cost function is defined as

Cost = max
(
0, 1 − yi

(−→w .
−→
xi − b

)) + C ∗ ∥∥−→w ∥∥
In a case that data cannot be classified by a linear hyperplane (similar to

Fig. 5.44a), we can apply a technique called kernel trick. The idea is to use a
nonlinear function (kernel) to map the data points to a new high dimensional space,
in which we can find a linear hyperplane using the abovementioned linear SVM
technique [9, 10]. Let us apply the kernel trick to our example (Fig. 5.44a) to clarify
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Fig. 5.45 A decision tree model

it better. In our example, we map our 2D data points to a 3D space. Suppose our
mapping function is x2 + y2 which computes the value of data points in the z-axis.
Now if we plot the data points using the newly computed values (x-z plane), we
can realize that there is a linear hyperplane between two classes (Fig. 5.44b). The
final step in the kernel trick is to move back from the higher dimensional space
to the original space [9, 10]. In our example, transforming back this separation line
(hyperplane) will create a circular boundary similar to Fig. 5.44c. Finally, we should
note that similar to regression analysis, the SVM algorithm can also take advantage
of regularization to generalize the solution and to avoid overfitting [9].

5.4.6 Decision Tree Classifier

A decision tree is a category of classification and regression algorithms. In these
algorithms, a tree-like model of decisions is constructed. Classification of a new
data point is accomplished by simply traversing down the tree. In decision tree
algorithms, the domain (feature space) is divided into several regions, and each
region is marked with a class label (or probability of a label) similar to Fig. 5.45.
The common terms in decision trees are explained below:

• Nodes: In nodes, we check the value of a certain feature (attribute).
• Edges: Edges correspond to the output of the above test (i.e., test the value of a

feature in node). An edge also connects a node to another one or to a leaf.
• Leaves: These are terminal nodes which show the actual prediction.

There are several implementations of decision trees such as C5.0, C4.5, and
Iterative Dichotomiser 3 (ID3). C5.0 is the most well-known decision tree algorithm
which has become the standard approach in the industry. A very simple technique
to build the decision tree is the basic recursive divide-and-conquer algorithm
consisting of the following steps:
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Fig. 5.46 A simple example of selecting the split attribute based on information gain (IG)

• Select a feature (attribute) for the root node of the tree and then create an edge
(i.e., a branch) for each value of the attribute.

• Split (divide) the data points (instances) into subsets (i.e., one for each branch
created in the previous step).

• Repeat the above two steps recursively for each branch (each subset).
• Stop the above recursion for a branch when all its instances are in the same class

(i.e., have the same label).

One important question that we need to address in the above algorithm is how to
select the root in each iteration. In other words, how can we identify which feature to
split upon? There are several methods to select the best attribute for splitting in each
step. In general, a good attribute is the one that splits the successor nodes as pure as
possible. It means that the corresponding branches contain mostly instances of one
class. This can be explained by entropy. The dividing procedure should decrease the
entropy because a good attribute (node) splits a set into subsets (regions) with the
higher homogeneity (higher entropy means there is a mix of different classes in each
region). To be able to implement this process, “information gain (IG)” is defined as
follows:

Inf ormation Gain = Entropy (Parent node)

− [Average Enropy (children nodes)]

Information gains represent the decrease in entropy after a split on an attribute. It
means that we need to select an attribute for splitting procedure that has the highest
information gain. In other words, an attribute with the highest information gain
leads to the most homogeneous branches (lower entropy or very pure subset). Let
us explain the abovementioned process with an example. Assume we have three
attributes (feature) and the target has two classes (see Fig. 5.46). If we split on X
attribute, the IG will be 0.31. On the other hand, if we select Y as our splitting
attribute, the IG will be 1. Therefore, we split based on Y.
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The other challenge in the construction of decision trees is the stop criteria of
splitting procedure, in other words, when we need to stop the splitting. One possible
approach is to continue the splitting until each leaf node in the decision tree is
completely pure (i.e., only the instances/examples of one class are in leaf). This
approach might not be very efficient for all the applications, because it creates a
large number of small regions in the feature space. From a technical perspective,
this increases the overfitting. Pruning techniques are a great solution to tackle this
issue.

• Pre-pruning: We stop growing the tree when the performance of the classifier is
higher than a predefined threshold.

• Post-Pruning: First, we grow the complete decision tree. Although a complete
tree can classify all the training data points correctly, it may suffer from
overfitting. Next, a pruning algorithm is iteratively applied to simplify the tree
by removing some of its nodes. This iterative algorithm decides to remove some
of the nodes if the increase in entropy is below a predefined threshold.

5.4.7 Ensembles

An ensemble machine learning combines several weak models in order to create one
single strong meta-model to be able to tack high bias (underfitting) and high variance
(overfitting) issues. There are two broad categories of ensemble techniques, namely,
bootstrap aggregating (bagging) and boosting.

5.4.7.1 Bootstrap Aggregating (Bagging)

Bootstrap aggregating, which is also called bagging, is an effective technique to
reduce the model overfitting and to handle unstable datasets. It also improves the
performance of training on a dataset with a limited number of training data. For
example, bagging can be used to combine multiple decision trees as a forest model
to obtain a stronger classifier.

This method generates n small training set from the original dataset. Each of
them is called one sample. These samples are produced by random sampling of the
input dataset with replacement, as illustrated in Fig. 5.47. Let us explain the concept
of sampling with replacement with a simple example. Suppose we have three names
and we need to sample two. The names are Farshad, Sani, and Krish. We put these
three names in a hat and randomly choose one of them. Then we put the name back
into the hat and select another name. The possibilities of two-sample names are
(Farshad, Farshad), (Farshad, Sani), (Sani, Sani), and so on.

When all samples are constructed by random sampling with replacement tech-
nique, we independently learn and build n ensembles (i.e., individual learning
models) corresponding to n samples. Each of these weak models is called the
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Fig. 5.47 An overview of bootstrap aggregating based on random sampling with replacement
technique

estimator. Finally, the outputs of these weak models are combined by voting or
simple averaging to provide a meta-model (see Fig. 5.47).

5.4.7.2 Random Forest

Random forest (RF) or random decision forest is one of the implementations of
the bagging technique. Simplicity, flexibility, and great results have made RF one
of the most widely used algorithms for machine learning. The term forest points
to an ensemble of multiple decision trees (each of them is called estimator). This
ensemble of decision trees (estimator) is merged in the random forest method to
obtain predictions with higher accuracy.

That being said, RF adds additional randomness to bagging model by modifying
the original decision tree. Recall that in the original decision tree, in each iteration,
we need to select an attribute/feature to split upon. This attribute is selected among
all available attributes. However, in the modified learning algorithm, when we want
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Fig. 5.48 Schematic presentation of the sequential steps in the boosting algorithm

to grow the tree, first we select a random subset of features. And then, we select
the best attribute for that selected subset. The randomness of selecting a subset
of features produces a wider diversity that contributes to better results. Full-grown
decision trees are also at risk of overfitting. The randomness in selecting a subset of
features in a random forest method prevents overfitting of the model in most of the
cases.

There are two important hyperparameters in the random forest method: number
of estimators and maximum number of features. The former corresponds to the
number of trees the algorithm builds, and the latter is the maximum number
of features the algorithm is allowed to evaluate in an individual tree. The main
bottleneck of random forest method is its performance in real-time applications.
A large number of trees make the algorithm inefficient in this scenario. As a general
rule, RF is fast in training but makes predictions quite slow.

5.4.7.3 Boosting

Boosting is another method for producing ensembles, in which the ensembles are
created sequentially. Recall that in bagging methods are parallel because we create
and learn n base models in parallel. In contrast, the idea of boosting method is
to use feedback from one base model to produce the next base model. In other
words, we consider the training instances of the previously generated base models
which are misclassified (see Fig. 5.48). In comparison to bagging, boosting shows
a better performance for specific applications, but it increases the risk of overfitting
the model.

Adaptive Boosting (AdaBoost)
AdaBoost is one of the well-known implementations of boosting. The core idea of
AdaBoost is to sequentially modify a weak model to make it a better classifier.
In fact, AdaBoost creates a better model by combining several weak classifiers
linearly, and the final classification is performed using this combination, which can
be expressed as
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Fig. 5.49 The overall procedure of the AdaBoost algorithm

f (x) =
T∑

t=1

αtht (x)

in which the ht(x) are the basis classifiers. Here, the weak classifiers are single split
decision trees (called decision stumps). In the beginning, all training data have equal
weight. AdaBoost modifies the weights in a way that difficult to classify instances
get more weight and adds new weak classifiers sequentially with the focus on more
difficult instances. In this regard, each classifier (weak classifier) is trained by taking
a random subset of the training set, and then, AdaBoost assigns higher weights to
misclassified training items. As a result, this misclassified item will have a higher
probability to appear in the next training subset for the next classifier.

A simple example of AdaBoost procedure is depicted in Fig. 5.49. This figure
explains how AdaBoost updates the weights in each step to construct a final model
by a linear combination of several weak classifiers. Bigger weights are illustrated
by larger signs and smaller weights are shown by smaller signs.

Gradient Boosting
There is another type of boosting that is contrary to AdaBoost and works on the basis
of training on the remaining errors (or pseudo-residuals) of stronger classifiers. This
approach is known as gradient boosting, in which at each training iteration, a weak
classifier is fitted on the computed pseudo-residuals. Then the effect of this weak
classifier on the performance of the stronger one is computed based on a gradient
descent optimization process.
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5.5 Dimensionality Reduction

Computers cannot think in the way that human brains do, and developing neural
networks is an attempt to address this issue. An artificial neural network, first
developed in the 1950s, is a simulation of the neurons of the human brains in a
manner that the computer can learn things in the humankind.

Dimensionality reduction is the process of reducing the number of machine
learning features and the dimension of the feature set. The key idea behind
dimensionality reduction is to convert a large set of dependent and correlated
features (which have redundant information) to a small set of independent features.
This enables us to remove the redundant information in the dataset which in turn
improves the speed as well as the performance of machine learning algorithms.

One of the most well-known techniques for dimensionality reduction is principal
component analysis (PCA). In PCA, the directions with the largest variances are
considered as most “important” (i.e., the most principal) features. Therefore, to find
the most important features, one needs to find the directions of the data that have the
maximum amount of variance. PCA algorithm can be summarized in the following
steps (see Fig. 5.50):

• The first step is to perform standardization (i.e., subtracting the mean and
dividing by the standard deviation).

• The next step is to find the covariance matrix of the features.
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Fig. 5.50 An illustration of PCA
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• Since the covariance matrix is a symmetric matrix, it can be decomposed to three
matrices. After the composition, we can find its eigenvectors and eigenvalues.
Principal components are indeed the eigenvectors of the covariance matrix.

• Next, we need to sort the eigenvectors by decreasing eigenvalues and select n
important eigenvectors.

• The final step is to transform and project the original dataset using the eigenvec-
tors onto a smaller subspace in which those eigenvectors form the axes of the
new feature subspace.

5.6 Artificial Neural Networks

5.6.1 Neural Network Models

Computers cannot think in the way that human brains do, and developing neural
networks is an attempt to address this issue. An artificial neural network, first
developed in the 1950s, is a simulation of the neurons of the human brains in a
manner that the computer can learn things in a humankind way. Generally speaking,
a neural network is a class of machine learning techniques that mimic the behavior
of neurons. Back in the 1950s, David Hubel and Torsten Wiesel, two famous
neurophysiologists, performed experiments on cats and proposed their insights on
the structure of the visual cortex, which was credited Nobel Prize in Physiology
or Medicine in 1981. This work was the prototype of the neuron and was later
developed to the entire neural network methodology. The finding of the visual cortex
is that a single neuron only responds to stimuli in a restricted area (region) of the
visual field that partially overlaps the region of close neurons, collectively covering
the entire visual field. Neurons are different from each other. Some neurons are
responsible to horizontal lines, while some are responsible to vertical lines, while
some are responsible to larger areas, but some are responsible to small but complex
patterns, which are a combination of low-level patterns. Therefore, these findings
lead to the idea that layered neuron structure, where some layer neurons detect
only simple patterns, and some layer neurons connected to previous layer neurons
calculate previous layer neurons to detect more complex patterns. These studies
gradually evolved into what we then called deep learning (DL) and Convolutional
neural network (CNN) [11].

A neural network consists of neurons and weights. The neurons apply a function
on the input values and pass the result to the output, and the weights carry this result
to other neurons. Neurons are grouped into layers. Based on the way that the layers
are arranged, they can be any of the input, hidden, or output layers, which are the
main types of the layer in a typical neural network model. Figure 5.51 demonstrates
a schematic view of a neural network model. In this model, every neuron is a
computational unit that performs a function (called activation function) on the
cumulative sum of its input values. The input of each neuron is the multiplication
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Fig. 5.51 Neural network architecture and neuron breakdown

of the output of previous layer neurons (xi) by the corresponding weights that
connect the neuron to the previous layer (wi). Each neuron has also a bias (b), which
contributes to the output of the neuron. As a result, the output of each neuron can be
computed by y = f

(∑
i wixi + b

)
, which is illustrated in Fig. 5.51.

5.6.2 Train a Neural Network Model

In the training process, the internal weights between the neurons of a neural network
are updated in a cascading way. The training process can be summarized as follows
[12]:

• Step 1 (Model Initialization): In this step, each variable (e.g., weights) is a given
value. Random initialization of the network is a common practice.

• Step 2 (Forward Propagation): As the name suggests, in this step, input data is
“forward propagated” through the network layer by layer (from the input layer to
the output layer) to finally produce the output of the network. In other words, we
perform an iterative process. In each iteration, neurons of each layer accept input,
process it, and finally pass the corresponding output to the successive layer.

• Step 3 (Backward Propagation): Once we computed the output and realized the
error of the network (model), we backpropagate the errors from the output layer
to the hidden layers and input layer to be able to update the weights accordingly.

• Step 4: We execute steps 2 and 3 iteratively until all the weights converge.

Let us explain the above three steps in more details. Before the neural network
model training, the initial values of the weights should be selected properly. Zero is
not a good choice because it causes the output of the first layer to be the same,
which leads to a similar gradient during backpropagation. Instead, a commonly
used approach is to initialize all weights randomly with small values. After the
initialization of these parameters, the model can be trained with a gradient descent
algorithm. To do so, a forward pass through the model generates an output value,
which can be used to calculate the model error. We typically use a loss (cost)
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Fig. 5.52 Visual chain rule,
applied in the
backpropagation algorithm
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function to measure the error in relation to the correct output. The error is then
used to update all the weights of the neural network model in the backpropagation
phase using the gradient descent equation:

W [l] = W [l] − α
∂E

∂W [l]

b[l] = b[l] − α
∂E

∂b[l]

in which α is the learning rate. In other words, the new weight can be computed as
(new weight = old weight—derivative rate ∗ learning rate). Recall that we used the
same algorithm to find out the weights of the linear regression model parameters (see
Fig. 5.18). The idea of gradient descent is to update the weight iteratively based on
the derivative (or gradient or slope) of the loss function. Note that in the multilayered
neural network, to be able to extract derivatives of cost/loss concerning an internal
variable (weight), we need to use the chain rule. As an example, let us compute
∂Etotal

∂W5
in Fig. 5.52. The corresponding chain rule can be written as follows:

∂Etotal

∂W5
= ∂Etotal

∂out01
× ∂outo1

∂neto1
× ∂neto1

∂W5

It is also worth noting that in a neural network model, we might encounter several
local optima (Fig. 5.53) because the training process of a neural network is a
non-convex optimization problem. Similar to other machine learning methods,
neural networks are also vulnerable to overfitting, which can be prevented by
generalization techniques such as:

• Reducing the number of hidden layers and the number of neurons in the hidden
layers

• Reducing the weight values by adding extra terms to the performance function
(e.g., L2 regularization which we discussed before)
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Fig. 5.53 Local optima in
the training process of neural
network models

Global 

Local

• Early stopping, which means the learning is stopped before the overfit occurs
• Dropout technique, in which randomly selected neurons are ignored (dropped

out) during some iterations of the training process. This technique makes the
training process noisy. As a result, neurons take the same level of responsibility
and learn a sparse representation, which makes the model more robust.

Early stopping is an effective method for generalization. In this approach, the
data is divided into three datasets: training set, validation set, and the test set. The
training set is used for the backpropagation algorithm and updating the weights of
the model. During the training process, the error of the validation set is monitored,
which should normally show a decreasing trend. But as the network begins to overfit
the data of the training set, the error of the validation set will increase. This behavior
can be used to stop the training process, and the values of the weights and biases
at the time that the validation set error was minimum can be chosen as the proper
result of the training process. Finally, the test set is used to compare the efficiency
of different models [12, 13].

5.6.3 Activation Function

The activation function is one of the key hyperparameters in a neural network.
Sigmoid (σ(z) = 1

1+exp(−z)
), tanh (tanh(z) = exp(z)−exp(−z)

exp(z)+exp(−z)
), and ReLU

(ReLU(z) = max (0, z)) are the most commonly used activation functions.
Figure 5.54 represents the plots of these functions [14].

ReLU Basically, what ReLU does is keeping positive input as is while rectifying all
the negative inputs as 0. Accordingly, one of the key advantages of ReLU compared
to other activation functions is that it does not activate all neurons simultaneously by
throwing out all the negative values. This makes it very computationally efficient,
specially when there is a very big and deep neural network consisting of several
layers with dozens of neurons. In practice, ReLU converges much faster than
sigmoid and tanh activation functions.
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Fig. 5.54 Most popular activation functions

Sigmoid In practical applications, the sigmoid activation function is less used
despite its popularity in the past because of two important problems:

1. Sigmoid function eliminates the gradient, which means when the input value is
very big or very small, the output of the function is either 1 or 0. This will result
in a vanishing gradient problem in the backpropagation algorithm. In this case,
no signal is transmitted through the neurons and thus the neuron will not learn
anything in the training phase.

2. The outputs of the sigmoid function are not zero centered, and in the back-
propagation algorithm, this will create gradients that are either all positive or
all negative. This is also not appropriate for the gradient updates of the weights.

Tanh Similarly, the tanh activation function has the vanishing gradient problem.
However, in contrast to the second problem of the sigmoid function, its output is
zero centered.

ReLU ReLU, an abbreviation of rectified linear unit, has gained great popularity in
recent years. It has been reported that ReLU activation function greatly impacts
the convergence rate of stochastic gradient descent algorithms, six times more
than tanh and sigmoid functions [6–15]. The primary reason for this phenomenon
is its linearity, which causes the gradient not to vanish. Besides, ReLU is less
computationally expensive because it is simple thresholding at zero compared to
tanh and sigmoid functions that depend on exponential and complex operations.
Note that ReLU is sparsely activated because it is zero for all negative inputs. This
sparsity (i.e., not all the neurons are active at the same time) might be a good thing
because it can reduce the power of the neural network, resulting in less overfitting.
The downside is that it can also lead to dying ReLU problem. A dead ReLU refers to
the case where a ReLU always generates outputs with the same value (zero) which
is not important for any inputs and next neuron layers, resulting in an incomplete
learning process and very weak mode. ReLU indeed has another problem as well.
The output of neurons with ReLU activation function can grow dramatically because
the output of ReLU is a linear function of its input (for positive values). In other
words, ReLU does not have any kind of boundary, and thus it cannot truncate
the output. Compare it with sigmoid or tanh functions, in which the outputs are
saturated.
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Fig. 5.55 Schematic presentation of a logistic regression model (a neural network with one
neuron)

Leaky ReLU Leaky ReLU is a workaround for the “dying ReLU” problem. A
leaky ReLU function is defined similar to a normal ReLU, but instead of the output
of zero in the negative region of the x-axis, it has a slight slope. In other words,
leaky ReLU provides a small, positive gradient when the input is below zero.

5.6.4 Softmax Function

Note that logistic regression can be seen as a simple neural network which has just
one neuron with sigmoid function as its activation function (see Fig. 5.55). Also
recall that logistic regression is indeed a two-class classifier which produces a value
between 0 and 1.0. Consider an email classifier as an example. When the output
of the logistic regression is 0.8, it suggests that the target email is spam with a
chance of 80%, and with a chance of 20% is not spam. Softmax regression through
a neural network layer extends this idea into a multiclass world. Softmax regression
is a general form of the logistic regression (Fig. 5.55), which enables us to perform
multiclass classification. This can improve the capability of conventional logistic
regression because logistic regression is only suitable for binary classification tasks.

In softmax regression, we have a neural network with several outputs in a way
that each output corresponds to one class. In softmax regression, we also need
to replace the sigmoid function of the output layer with softmax function (see
Fig. 5.56):

P
(
y = j | z(i)

)
= φsof tmax

(
z(i)

)
= ez(i)

∑k
j=0 ez

(i)
k
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Fig. 5.56 A softmax regression model

in which the z is defined as

z = w0x0 + w1x1 + · · · + wmxm =
m∑

i=0

wixi = wT x

Intuitively, the softmax function produces a probability for each output of the neural
network. Each of them represents the probability of the belonging of given input (x)
to a class. Note that for training the neural network in softmax regression, we also
need to define a loss or cost function to be able to use it during the backpropagation
step. In the softmax regression, generally we use the following cost function (based
on entropy) which should be minimized during the training phase:

J (W ) = 1

n

∑n

i=0
H (Ti,Oi)

in which parameter Ti represents the actual output (target) and Oi is the output of
the softmax function. The cross-entropy function is defined as

H (Ti,Oi) = −
∑
m

Ti. log (Oi)

In fact, the cost function is the average of all cross entropies of training samples.
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Fig. 5.57 Convolution neural network architecture

5.6.5 Convolution Neural Networks

Among all machine learning techniques, one of which called deep neural network
(DNN) has been prevailing hot over the past several years. Both the academy
and the industry witness their wide use and potential benefits in numerous areas.
Convolution neural network (CNN or CovNet) is one of the main categories in
a deep neural network. It is mainly used for visual image analysis tasks, such as
image and video recognition and image classifications. Thanks to its state-of-the-art
performance and revolutionary advances in the realm of the deep neural network,
CNN can also be applied to natural language processing, drug discovery, strategy
gaming, etc.

CNN follows the traditional neural network’s architecture. First, it has an input
layer, which is usually an image’s pixels in the form of (255, 255, 255) RGB values.
Next, it has hidden layers, where in traditional NN, the number of hidden layers is
limited to 1. In CNN, the number of hidden layers becomes tens or even thousands in
state-of-the-art systems. This is why CNN is called one of the deep neural networks.
On the contrary, traditional NN is called shallow neural network. We will come with
more details about what components are located in deep hidden layers soon. Then,
the neural network has an output layer. This layer corresponds to the result, which
is usually person identity in face recognition, age in age detection, or object type
in general image recognition. Now, let us explore the mysterious hidden layers. In
CNN, there are mainly three types of hidden layers (Fig. 5.57) [11]:

• Convolution (CONV) layer
• Pooling (POOL) layer
• Fully connected (FC) layer

5.6.5.1 Convolution Layer

The convolution layer is the main building block of a convolutional neural network
that does most of the computational heavy lifting. Convolution, according to the
definition, is the process of combining two or more functions/values to form a third
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Fig. 5.58 Convolution computation

function/value. In the convolution layer, several pixels are convoluted to form a
representative new value. The convolution layer takes two inputs, namely, input
(image) matrix and a filter (kernel). As an example, consider a 6∗6 image matrix
and a 3∗3 filter as shown in Fig. 5.58. Behind the scene, convolution is a dot product
of the filter with a local zone of the image matrix. Note that we need to slide/move
the filter across the whole matrix to be able to compute the output. The output
matrix is so-called feature map. It should also be noted that convolutional layers
are usually stacked on top of each other to detect more complex patterns and get in-
depth information. To make an analogy, the brain combines low-level features such
as basic shapes and curves and builds more complex shapes out of it. It first identifies
low-level features and then learns to recognize and combine these features to learn
more complicated patterns. These different levels of features come from different
layers of the network.

Convolution and filters are not a new concept, and indeed it was used in image
and signal processing for many years. Filters can be applied to extract features or
perform operations such as edge detection or image blurring (image smoothing).
In traditional image processing and signal processing, filters were mainly hand-
engineered. However, CNN and deep learning technologies largely overcome the
need for prior knowledge and human effort in feature design, since they can learn
these filters/characteristics automatically [11, 16]. Let us take a closer look at edge
detection filters. To detect different types of edge, we apply different filters; some
are used to detect horizontal lines, and some are detecting vertical or diagonal lines
(Figs. 5.59 and 5.60). To be more mathematical, we will study how the vertical
filter works. We would like to utilize a filter to detect vertical edges from a 2D
image. Take Fig. 5.58 as an example. The left side of this figure represents a 6 × 6
grayscale image. The left side of this 6∗6 image is white and its right side is gray.
Therefore, we have a vertical line in the middle (between white and gray). The
convolution operation computes a dot product of the filter with a local region of the
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Fig. 5.59 Different types of
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Fig. 5.60 An example of filter (Left: original picture. Right: horizontal edges produced by
horizontal filters)

image. Note that the local region should be exactly the same dimension as the filter.
We iteratively apply the filter to the image, and in each iteration we slide/move/shift
the filter just one pixel. As a result of this process, we can eventually generate a
4 × 4 matrix (on the right). As we can see, this matrix marks the vertical line in the
middle while zeroing on the side.

5.6.5.2 Stride

The abovementioned sliding window technique has a name called stride. Stride is
defined as the number of pixel shifts when sliding a filter over the input. For instance,
if the stride is equal to 1, then we slide the filter by only 1 pixel at a time. When the
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Fig. 5.61 Stride of 2 pixels with filter size of 3
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stride is equal to 2, it means that we need to slide the filter by 2 pixels at a time and
so on. Figure 5.61 shows convolution would work with a stride of 2. This applies to
both horizontal sliding and vertical sliding.

5.6.5.3 Padding

As you might note, when we slide the filter, those pixels that are located on edges
are used (touched) less compared to the other pixels of the image. That implies that
we are losing some information related to those edge pixels. In addition, the size of
the output is shrinking in each step. Padding techniques are developed to address
this issue. In this technique, we pad the image by placing zeros around the image to
enable the filter to move (slide) on top and keep the size of the output equal to the
size of the input (see Fig. 5.62).

One can use the following equation to compute the size of the output based on
the size of the filter (f), stride (s), pad (p), and input size (n) [16]:

output size =
(

n + 2p − f

s
+ 1

)
×

(
n + 2p − f

s
+ 1

)
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Fig. 5.63 Apply filter on three-channel matrix

Although we explained the concepts with a 2D matrix, in a real application, we
usually do image recognition based on an RGB image (color image) which has
three channels (i.e., R-red, G-green, B-blue). Thus, the input looks like a volume
consisting of three parameters stacked on each other. Note that we can also have
more than three channels. For example, astronomical images have extra channels for
infrared and ultraviolet [11, 16]. The above procedure is explained by an example
in Fig. 5.63.

Until now, we have used just one filter at a time. However, in real-life application,
we need several filters to be able to identify different features. This explains the
concept of building convolutional neural networks [11]. In this case, each filter
provides its own output and then we combine (stack) them together to build an
output volume (see Fig. 5.64). Given the growing dimension of inputs, the number
of output can be recalculated as below [16]:

Input : (n × n × nc) Filter : (f × f × nc)

Output :
([

n + 2p − f

s
+ 1

]
×

[(
n + 2p − f

s
+ 1

)]
× n′

c

)

5.6.5.4 Pooling Layers

Compared to the convolution layer, pooling layer is easier to understand. The task
of pooling layer is to reduce the number of parameters and calculations in the
network to be able to address the overfitting by gradually reducing the spatial size
of the network. Two popular types of pooling layers exist: max pooling and average
pooling. Max pooling (Fig. 5.65) is to pick the max value from the pooling area.
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Input: 6*6*3

Filter: 3*3*3

Output: 4*4*1

=*

Input: 6*6*3

Filter: 3*3*3

Output: 4*4*1

=*

Input: 6*6*3

Filter: 3*3*3

Output: 4*4*1

=*

Final: 4*4*3

Fig. 5.64 Stacking outputs from different filters

Fig. 5.65 Max pooling

Max pooling
Filer size: 2
Stride size: 2

5 6

2 1 6

First, we define a filter (spatial neighborhood), and then as we slide it through the
input, we select the largest item within the region covered by the filter.

Average pooling, as the name suggested, retains the average of the values
encountered within the filter. Note that we need to select several hyperparameters
including the filter size and the stride (it’s common not to use any padding).

In contrast to the convolution layer, the pooling layer does not change the depth
of the network and the depth dimension remains unchanged. The number of outputs
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after pooling is N−F
S

+ 1, where N is the dimension of input to pooling layer, F is
the dimension of filter, and S is stride.

5.6.5.5 Fully Connected Layer

Similar to a traditional neural network, where all layers are fully connected, this
layer also exists in CNN but stays right before the output layer; their activations can
hence be calculated by a matrix multiplication followed by a bias offset. This is the
last phase for a CNN network.

5.6.5.6 Well-Known CNN Architectures

LeNet, AlexNet, VGG, GoogLeNet, and ResNet are the most well-known publicly
available CNN Architectures. Take the example of famous LeNet-5 architecture
developed by Yann LeCun in 1998. This architecture consists of three convolution
layers, two pooling layers, and one fully connected layer. The architecture is used for
detecting hand-written digital recognition (MNIST) of 28 × 28 pixel images. Note
that zero padding is used to construct the input layer as 32 × 32 pixels, while the
rest of the convolutional layers do not have padding anymore. Activation function
for each layer is tanh, except the output layer. The LeNet demo and description can
be easily found on Yann LeCun’s website.

5.7 Clustering

Clustering is a well-known unsupervised learning technique which allows us to
group (cluster) data points in a way that data points in the same cluster are more
similar to each other than those in different clusters. There are multiple ways of
clustering. In this section, we overview two most popular techniques, namely, K-
means clustering and hierarchical clustering.

5.7.1 K-Means Clustering

K-means extracts the clusters based on distance, which usually refers to Euclidean
distance in most context. K in K-means represents the number of clusters in which
we want our data to be divided into. There is a restriction in using K-means that the
data shall be in continuous values rather than category values since K-means does
not work on category data in nature. Moreover, it is advised to normalize the data
before applying the K-means method. The reason still resorts to distance calculation.
An example is that if we consider about clustering people based on both weights in
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Fig. 5.66 An example of K-means clustering algorithm

kilograms and height in centimeters. Then, there is a weighting bias on height versus
weight, which can be solved by a data preparation method called normalization.

Training the K-means algorithm is based on iterative refinement and centroid
calculation that consists of the following steps (see Fig. 5.66):

1. Specify the number of clusters (K) and then randomly select a centroid for each
cluster.

2. Assign/update each data point to the closest cluster (based on the distance of the
data point and centroids).

3. Calculate/update centroid of the cluster. The centroid of each cluster is the
average of all data points in the cluster.

4. Iteratively execute steps 2 and 3. Eventually, the algorithm is terminated when
the change of objective function is below a threshold value.

Note that the accuracy of clustering in the presence of variations depends on the
selection of an appropriate number of clusters k. Researchers usually use the elbow
method for estimating k to make a tradeoff between the accuracy of the clustering
method and the number of clusters.

5.7.2 Hierarchical Clustering

The method of hierarchical clustering produces a specific number of overlapping
clusters of various sizes across a tree that creates a hierarchical system of classifica-
tion. This clustering technique can be accomplished using a variety of methods, with
the most widely used methods being divisive approach and agglomerative approach.
An agglomerative method works from the bottom-up and it consists of the following
steps:



312 F. Firouzi et al.

Fig. 5.67 A simple example of hierarchical clustering

• The algorithm starts by creating a background distance matrix often known as
the Euclidean distance; a distance matrix illustrates the distance between items.

• Next, the algorithm treats each item as a single cluster.
• In an iterative approach, the algorithm merges two most similar clusters until all

clusters are merged into one big cluster. This big cluster should contain all items.
• The output of the algorithm is a tree called dendrogram.

Figure 5.67 depicts what the agglomerative method of hierarchical clustering
looks like. On the other hand, divisive clustering works from the top-down. All
items begin in the same cluster (the root of the tree) and are divided into two separate
clusters as the tree grows. The process of dividing is executed repeatedly until the
designated number of clusters is obtained.

5.8 Summary

Machine learning is playing an important role in enabling IoT solutions to extract
value and uncover insights from the generated data and to enhance the capabilities
and intelligence of devices/applications. This chapter defined two broad categories
of machine learning, namely, supervised and unsupervised techniques. Next, we pre-
sented the details of regression, classification, and clustering techniques. Afterward,
the details of feature engineering including feature extraction and feature selection
have been discussed. Finally, we presented the details of neural networks, deep
learning, and convolutional neural networks.
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Chapter 6
Big Data

Natasha Balac

Errors using inadequare data are much less than those using no
data at all.

Charles Babbage
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6.1 Introduction to Big Data

Big Data has changed the way we manage, analyze, and leverage data across
all industry sectors. Big Data has the potential to examine and reveal trends,
find unseen patterns, discover hidden correlations, reveal new information, extract
insight, enhance decision making and automation, etc. Managing and analyzing
data, in particular in the era of IoT, has always been one of the greatest challenges
within organizations across industries. Finding an efficient and scalable approach
to capturing, integrating, organizing, and analyzing information about IoT devices,
products, and services can be a perplexing task for any organization regardless of
the size or line of business. In the age of the Internet and digital transformation,
the notion of Big Data reflects the changing world we live in. Everywhere around
the world, more and more data is captured and recorded every day. Companies and
organizations are becoming overwhelmed by the complexity and sheer volume of
their data. While some data is still structured and stored in a traditional relational
databases or data warehouses, a vast majority of the modern data sources are
producing unstructured data including documents, conversations, pictures, videos,
Tweets, posts, Snapchats, sensor readouts, click streams, and machine-to-machine
data. Further, the availability and adoption of newer, more powerful mobile devices,
coupled with ubiquitous access to global networks, is continuously driving the
creation of new sources for data.

Although each data source can be independently managed and searched, the
challenge today is how to make sense of the intersection of all these different
types of data. When large amounts of data are coming from so many different
forms, traditional data management techniques falter. While there has always been
a challenging amount of data for existing IT infrastructure, the difference today is
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stark in terms of the sheer volume, speed, and complexity of the data. In parallel,
the value of data is growing in terms of its volume and diversity. Data is emerging as
the world’s newest resource for competitive advantage, as it enables efficient, data-
driven decision making. As the value of data continues to grow, new technologies
are emerging to support the new requirements surrounding it.

6.1.1 Defining Big Data

There has been much hype about Big Data in the past several years for various
reasons. Before investigating the major drivers of Big Data’s popularity, we must
first define the meaning of Big Data as a term. Dictionary.com defines Big Data as:

. . . data sets, typically consisting of billions or trillions of records, that are so vast and
complex that they require new and powerful computational resources to process.

The British Dictionary defines Big Data as:

Data held in such large amounts that it can be difficult to process.

Big Data can be defined and often is described in terms of its four major
characteristics, as shown in Fig. 6.1: volume, velocity, variety, and veracity:

6.1.2 Volume

Volume indicates how much data has been collected. It is perhaps the most obvious
characteristic of Big Data, as the current amount of data created is quite staggering.
For example, in 1 minute on the Internet, Snapchat users share over half a million
messages, YouTube viewers watch over 4 million videos, Twitter users post over
four hundred thousand Tweets, and so on. All of these transactions can be archived
for later consideration.

Fig. 6.1 4 Vs of Big Data

Volume

Velocity

Variety Veracity

http://dictionary.com
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6.1.3 Velocity

Velocity refers to the speed at which data is being transacted. Streaming data can
arrive in milliseconds and require a response within seconds or less. For example,
Facebook’s data warehouse not only stores hundreds of petabytes of data but needs
to accommodate data coming in at the rate of more than 600 terabytes per data
per day. Similarly, Google processes more than 3.5 billion searches per day, which
translates to a velocity of over 40,000 search queries per second.

6.1.4 Variety

The huge variety of the types and structures of data has become one of the critical
challenges of Big Data. Big Data requires systems to handle not only structured data
but also semi-structured and unstructured data as well. As described above, most
Big Data is in unstructured forms such as audio, images, video files, social media
updates, log files, click data, machine and sensor data, etc. Unfortunately, most
analytics techniques have traditionally been focused on analyzing only structured
data, so new techniques and approaches need to be developed. This fact alone helps
explain why there are such a large growing number of start-ups in Big Data.

6.1.5 Veracity

Perhaps the most nuanced of the four Vs is veracity. Veracity describes how
accurate and trustworthy data is in predicting business value through Big Data
analytics. Uncertainty in data is typically due to inconsistency, incompleteness,
latency ambiguities, approximations, etc. Data must be able to be verified based
on both accuracy and context. It is necessary to identify the right amount of high-
quality data that can be analyzed in order to impact business or outcomes.

These four definitions suggest that Big Data typically requires resources (com-
putation and data infrastructure, tools, techniques, expertise, etc.) beyond the
current capabilities of many organizations [1]. Big Data solutions comprise a set
of analytical tools that are geared toward the fast and meaningful processing of
large data sets. This is a key aspect of Big Data analytics, as the goal is to derive
meaning or insight from data that can be used for making data-driven business
decisions. Big Data can be thought of as a process that is used when traditional
data processing and handling techniques alone cannot uncover the insights and
meaning of the underlying data. Often times, real-time processing is needed for a
massive amount of different types and frequencies of data in order to reveal patterns,
trends, and associations. This is especially true when relating to human behavior
and interactions. The goal for Big Data is to enable organizations to gather, store,
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Fig. 6.2 Big Data life cycle
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manage, and manipulate vast amounts of data at the right speed and at the right time
in order to gain the most valuable insights.

The data growth in the past decade has been unprecedented. There are 2.5 quin-
tillion bytes of data created each day, and this will only increase more rapidly with
the growth of the Internet of Things (IoT): an estimated 50 billion IoT devices will
be connected by 2020 [2]. With IoT’s network of RFID tags, machines, appliances,
smartphones, buildings, and many other devices with embedded technology that can
be accessed over the Internet, estimates are projecting between 40 and 50 Zettabytes
(or 270 bytes equaling 1,180,591,620,717,411,303,424 bytes) of data will be created
by 2020. Over 92% of the data in the world was generated in the last 2 years alone.
A large contributor to this skyrocketing data generation are Internet applications like
Snapchat, YouTube, Twitter, and Instagram [3].

In order to convert the vast amount of available data into insight, it is important
to consider the functional requirements for Big Data. Figure 6.2 illustrates a set of
iterative steps in the Big Data functional requirements life cycle. Data first needs to
be captured, then organized, and integrated. The integration process includes data
cleaning and preparation. Once integrated, data can be analyzed in order to solve the
business problems at hand. Often times this analysis includes developing predictive
models utilizing Data Science approaches. Finally, the organization can act based
on the outcome of the Big Data analysis, frequently via the implementation and
utilization of the predictive models.

6.2 Big Data Management and Computing Platforms

As the volume and velocity of data grows, so grows the need to manage and process
it. Optimization, enabling the rapid formulation and testing of many diverse models
and real-time operations, becomes essential, especially in the case of streaming
data. Distributed and parallel processing approaches are well suited for these
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kinds of problems. Distributed processing typically segments large datasets, while
parallel processing simultaneously processes all data or subsets of data. In order
for modern systems to process Petabytes to Exabytes of data in a scalable and
practical manner, a system must be able to sustain partial failure. Any Big Data
processing system needs to continue processing in the face of failures without losing
any data and should be able to recover failed components and then allow them to
rejoin the process when ready. Additionally, failures during execution should not
affect the final result for consistency purposes, and the addition of resources should
automatically increase performance to enable seamless scalability. The Hadoop
framework is able to satisfy all of these requirements and has become one of the
leading components of the Big Data platforms for the last decade.

Hadoop is based on work done by Google in the early 2000s [4, 5]. More
specifically, Hadoop leverages the Google File System’s (GFS) MapReduce con-
cepts, taking a fundamentally new approach to distributed computing [6–8]. Hadoop
meets the requirement for a low-cost, scalable, flexible, and fault-tolerant large-scale
system, while enabling the shared nothing architecture and the use of applications
written in high-level programming languages. The overall goal of Hadoop is to
execute computation where the data is stored, instead of moving large amount of
data to computational resources. Additionally, data is replicated multiple times on
the system for increased availability and reliability.

The Apache Hadoop software library [9] is an open source framework that
enables distributed processing of large data sets across clusters of computers using
simple programming models. It is designed to scale up from single servers to
thousands of machines, each offering local computation and storage. Rather than
relying on hardware to deliver high availability, the library itself is designed to detect
and handle failures at the application layer. This enables highly available services on
top of a commodity cluster where each machine may be prone to failures. Additional
open source projects have been built around the original Hadoop implementation
with the addition of Spark. Figure 6.3 depicts the basic Hadoop environment, which
enables large scale data management and computing.

6.2.1 Big Data System Architecture Components

This section examines in depth the key concepts required when considering imple-
mentation of Big Data, both from the technical and an analytics perspective. As
data systems became larger in recent years, performance became an acute concern.
An approach to efficiently solving a wide range of problems without needing to
change the underlying environment was needed. This type of approach would have
to take advantage of parallel processing of data and additional CPUs availability.
The goal of any analyst or data scientist, regardless of the field of study, is to work
with as much data as is available, build as many models as possible, and improve
model training time and accuracy by simply adding additional CPUs. The ultimate
goal of any Big Data system is to enable development of the best data analytics
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Fig. 6.3 Hadoop ecosystem. (A list of all of the Apache projects can be found at https://hadoop.
apache.org/)

in a shortest amount of time. Finding the patterns hidden within a large, complex
dataset requires processing, filtering, and analyzing massive amounts of data. Over
time, several solutions have been proposed such as developing parallel data mining
algorithms and parallel data source on parallel hardware.

From the technology perspective, Hadoop initially enabled the power of Big Data
by providing large-scale computing sufficiently flexible and affordable storage, so
that a wide variety of organizations could leverage Big Data technology. This is
one of the reasons behind the synonymous use of the terms Big Data and Hadoop.
However, the evolution of technologies has changed the high-tech landscape with a
number of additional tools as discussed in the following sections.

6.2.2 Hadoop History

One of the pillars of the Big Data framework is Apache Hadoop. Hadoop is an
Apache-managed software framework derived from MapReduce and Big Table.
Hadoop is an Apache top-level project built and used by a global community
of contributors and users. It is licensed under the Apache License Hadoop and

https://hadoop.apache.org/
https://hadoop.apache.org/
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was originally developed by Doug Cutting and Mike Cafarella in 2005 to support
distribution for the Nutch search engine project at Yahoo [7]. Doug named the
project after his then 2-year-old son’s toy elephant, hence the product’s current
pachyderm logo.

Hadoop allows applications based on MapReduce to run on large clusters of
commodity hardware. Hadoop is designed to parallelize data processing across
computing nodes to speed computations and minimize latency. Two major compo-
nents of Hadoop are the massively scalable distributed file system that can support
petabytes of data and a massively scalable MapReduce engine that computes results
in batch mode.

Hadoop started out as a scalability solution to high volume and velocity batch
processing. The idea behind the processing paradigm called MapReduce [10] is to
provide a simple yet powerful computing framework that enables computations to
scale over big data easily. This type of system requires high efficiency. Therefore,
instead of moving data to computation, computation is moved closer to data in
Hadoop. Hadoop and MapReduce provide a shared and integrated foundation for
enabling this type of computation and seamlessly integrate additional tools to
support other necessary system functionalities. All of the modules in Hadoop are
designed with a fundamental assumption that hardware failures, whether of individ-
ual machines or racks of machines, are common and thus should be automatically
handled in software by the framework. The notion behind Hadoop’s reliability
requirements is based on the idea that if one computer fails once a year, then a
365-computer cluster will have a failure daily. If this number is scaled by an order
of magnitude, the cluster could be expected to have a hardware failure hourly. It is
essential for truly scalable systems to endure failure of any component.

Since data has been regarded as “new oil” or “new gold” in terms of an asset
value, a new approach to storing and computing has emerged. As the cost of storing
the data continues to decrease, organizations have developed a new approach of
keeping all data. Since data is growing rapidly in size and complexity, the “schema
on read style” has become the approach of choice. This approach enables all of the
data to be ingested in a rough form and then projected into the schema on the fly, as
it is pulled out of the stored location, thereby enabling experiments and new types
of analysis.

6.2.3 The Apache Hadoop Framework Components

All of the Hadoop modules are designed around a fundamental assumption of hard-
ware failures. The entire Apache Hadoop “platform” is now commonly considered
to consist of a number of related projects including Apache Pig, Apache Hive,
Apache HBase, and others. These components will be described in the following
sections and are illustrated in Fig. 6.4.
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Fig. 6.4 Apache Hadoop
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The Apache Hadoop framework is composed of the following modules:

• Hadoop Common: contains the libraries and utilities needed by other Hadoop
modules

• Hadoop Distributed File System (HDFS): a distributed file system that stores data
on the commodity machines, providing very high aggregate bandwidth across the
cluster

• Hadoop YARN: a resource-management platform responsible for managing com-
pute resources in clusters and using them for scheduling of users’ applications

• Hadoop MapReduce: a programming model for large-scale data processing

Although the MapReduce Java code is common, any programming language
can be utilized to implement the “map” and “reduce” parts of the user’s program.
Apache Pig [12] and Apache Hive [13], among other related projects, expose higher
level user interfaces like Pig Latin and a SQL variant, respectively. The Hadoop
framework itself is mostly written in the Java programming language, with some
native code in C and command line utilities written as shell scripts.

The two primary components at the core of Apache Hadoop version 1 are
the Hadoop Distributed File System (HDFS) [14] and the MapReduce parallel
processing framework (Fig. 6.5). These are both open source projects, inspired
by technologies initially developed by Google. Hadoop’s MapReduce and HDFS
components originally derived from Google’s MapReduce and Google File System
(GFS) [11], respectively.

6.2.4 Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) is a distributed, scalable, and portable
file system written in Java. Each node in a Hadoop instance typically has a single
NameNode, and a cluster of DataNodes forming the HDFS cluster [14]. Each
DataNode provides blocks of data using a HDFS-specific block protocol (Fig. 6.6).
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Fig. 6.5 Hadoop’s distributed data storage and processing

Fig. 6.6 Hadoop Distributed File System operations

The file system uses the TCP/IP layer for network communication. HDFS enables
storing and manipulating large data sets by distributing them across multiple hosts.
In addition, it enables reliability by replicating the data across multiple hosts,
without requiring RAID (Redundant Array of Independent Disk) storage. Typically,
data is duplicated on three nodes including two on the same rack, and one on a
different physical rack. Data nodes can communicate to rebalance data, transfer
copies of data and to keep the replication of data at the specified level [14]. HDFS
provides the high-availability capabilities and automatic fail over in the event of
failure.
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The HDFS architecture includes a secondary NameNode; however its role is not
to take over when the primary NameNode goes offline. The secondary NameNode
connects with the primary NameNode on a regular basis and generates snapshots
of the primary NameNode’s directory information. This information is then saved
by the system and can be used to restart a failed primary NameNode in order to
create an up-to-date directory structure without having to repeat the entire set of file
system actions [15].

In the original Hadoop release, NameNode was the single metadata storage and
management information center. However, with the continually increasing number
of files, this approach created challenges. HDFS Federation solves the bottleneck
issue by allowing multiple name spaces served by distinct NameNodes and thereby
enables data awareness between the job tracker and task tracker. The job tracker
schedules map or reduces jobs, minimizing the amount of data movement. This can
have a significant impact on job completion times, especially with data-intensive
jobs.

6.2.4.1 Overview of Data Formats

There are a number of file and compression formats supported by the Hadoop
framework, each with a corresponding set of application-specific strengths and
weaknesses. HDFS enables several formats for storing data including HBase for
data access functionality and Hive for data management and querying functionality.
These file formats are designed for MapReduce or Spark computing engines for
specific purposes, ranging from basic analytics to machine learning applications.

Choosing the most appropriate file format can have a significant impact on
performance. It influences many aspects of the file system including read and write
times, the ability to split files into smaller components, enabling partial reads and
advanced compression support.

Hadoop enables the storage of text, binary, images, or other Hadoop-specific
formats. It provides built-in support for a number of formats specifically optimized
for Hadoop storage and processing. Some of the most common basic data formats
include text, CVS files, and JSON records. More complex formats such as Apache
Avro, Parquet, HBase, or Kudu can also be utilized. While text and CSV files are
very common, they do not support block compression and therefore often come with
a significant read performance cost. One common approach is to create a JSON
document in order to add structure to text files and utilize structured data in HDFS.
JSON is a common data format often used for asynchronous communication. JSON
stands for JavaScript Object Notation records and is an open-standard file format
that uses human-readable text to transmit data objects consisting of attribute-value
pairs and array data types. JSON files store metadata and can “split” files; however
it doesn’t support block compression [16].

Several additional more sophisticated and specialized file formats are available in
the Hadoop environment. One such format is Avro [17]. Avro is a data serialization
standard for the compact binary data format used for storing persistent data on
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HDFS. It provides numerous benefits and has evolved into the de facto standard.
Avro’s lightweight and fast data serialization and deserialization enables fast
data ingestion. It stores metadata with the data itself and allows specification
of an independent schema for reading the files. It can quickly navigate to the
data collections in fast, random data access fashion. In addition, Avro files are
“splittable,” support block compression, and are accompanied by a wide and mature
set of open source tools.

The RC (Record Columnar) file format was the first columnar file in Hadoop.
It provides substantial compression and query performance benefits. However, it
does not support schema evaluation. Optimized RC Files (ORC) represent the
compressed version of RC files with additional improvements including enhanced
compression and faster querying.

The Parquet file format is another column-oriented data serialization standard
enabling compression, encodings, query performance benefits, and efficient data
analytics. This format has gained popularity as it became the choice of format for
Cloudera Impala. This optimization and usability contributed to its popularity in
other ecosystems as well.

Apache HBase is a scalable and distributed NoSQL database on HDFS for storing
key-value pairs. Keys are indexed, which typically enables fast access to the records.

The Apache Kudu file format is scalable and distributed table-based storage.
Kudu provides indexing and columnar data organization to achieve a balance
between ingestion speed and analytics performance. As in the case of HBase,
Kudu’s API enables modification of the data that is already stored in the system.

In general, three major factors should be considered when choosing the best
format for the task at hand: write performance, partial read performance, and
full read performance. These factors provide an indication of how fast the data
can be written, how fast individual columns can be read, and how fast can data
element be read from the data source. Columnar formats typically perform better
in terms of read performance. CSV and other non-compressed formats typically
demonstrate better write performance, but generally demonstrate slower reads due
to lack of compression. Some additional key factors that should be considered
while selecting the best file format include the type of the Hadoop distribution and
associated formats. Additionally, querying and processing requirements should be
considered alongside the processing tools. Further, extraction requirements merit
attention, especially when extracting data from a Hadoop environment into an
external database or other platforms. Finally, storage requirements are critical, as
volume may become a significant factor, and compression may be required.

6.2.5 MapReduce

The MapReduce paradigm is the core of the Hadoop system. MapReduce is
a distributed computing-based processing technique (Fig. 6.7). MapReduce was
designed by Google in order to satisfy the need for efficient execution of a set of
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functions on a large amount of data in batch mode. The “map” function distributes
the programming tasks across a large number of commodity cluster nodes. It
handles the placement of the tasks in a way that balances the load and manages
recovery from failures. After the distributed computation is completed, another
function called “reduce” aggregates all the elements back together in a “shuffle”
and organizes the result. An example of MapReduce usage would be to determine a
word count across thousands of newspaper articles.

MapReduce works with the underlying file system and typically consists of
one JobTracker that receives the client’s MapReduce job requests (Fig. 6.8). The
JobTracker distributes processing to the available TaskTracker nodes in the cluster,
while striving to keep the work as close to the data as possible. JobTracker is aware
of which node contains the data and what neighboring processing is available. If
for some reason processing cannot be executed on the same data hosting node, then
priority is given to computing nodes in the same rack, thereby minimizing network
traffic.

If a TaskTracker fails or times out, that part of the job is rescheduled. The
TaskTracker on each node issues a separate Java Virtual Machine process to prevent
the TaskTracker from failing. A heartbeat is sent from the TaskTracker to the
JobTracker on a regular basis to check its status.

6.2.6 YARN

Apache Hadoop YARN is a sub-project of Hadoop. MapReduce underwent a
complete retrofit in an early version (v0.23) and the MapReduce 2.0 was designed
with YARN [18] as a key component. It separates the resource management and
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Fig. 6.8 MapReduce, detailed view

processing components enabling a broader array of interaction patterns for data
stored in HDFS. The YARN-based architecture provides a more general processing
platform that is not constrained by MapReduce limitations.

The fundamental concept underlying YARN is to split up the two major function-
alities of the Job Tracker, resource management and job scheduling/monitoring, into
separate functionalities. The Global Resource Manager (RM) and per-application
Application Master (AM) are key components. The RM is the ultimate authority
that arbitrates resources among all the applications in the system. The AM is a
framework-specific library tasked with negotiating resources from the RM and
working with the Node Manager(s) to execute and monitor the tasks [18].

YARN enhances the power of a Hadoop-based cluster in several key ways. First,
it enables a higher level of scalability as the processing power in data centers con-
tinues to grow quickly. The YARN RM focuses solely on scheduling and therefore
is able to manage extremely large clusters very efficiently. Furthermore, YARN
enables compatibility with existing MapReduce applications without disruption to
the existing processes. Additionally, YARN significantly improves cluster utilization
by enabling workloads beyond that of MapReduce. The MapReduce RM is a pure
scheduler that optimizes cluster utilization according to specified criteria such as
capacity guarantees, fairness, and SLAs. In contrast, YARN enables additional
programming models for real-time processing such as Spark, graph processing,
machine learning, and iterative modeling. YARN’s processing approach has the
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additional ability to evolve independently of the underlying RM layer in a much
more agile manner.

6.3 An Introduction to Big Data Modeling and Manipulation

With the evolution of computing technology, it is now possible to manage immense
volumes of data that previously could have only been handled at great expense by
supercomputers. Prices of computing and storage systems continue to drop, and as a
result, new techniques for distributed computing have become mainstream. The key
inflection point for Big Data occurred when companies like Yahoo!, Google, and
Facebook came to the realization that they there was an opportunity to monetize the
massive amounts of data collected. New technologies were required to create large
data stores, access those stores, and process huge amounts of data in near real-time.
The resulting solutions have transformed the data management market. In particular,
Hadoop, MapReduce, and Big Table proved to be the start of a new approach to data
management. These technologies address one of the most fundamental problems:
the need to process massive amounts of data efficiently, cost effectively, and in a
timely fashion.

6.3.1 Big Table

Big Table was developed by Google as a distributed storage system intended to
manage highly scalable structured data. Data is organized into tables with rows
and columns. Unlike a traditional relational database model, Big Table is a sparse,
distributed, persistent multidimensional sorted map. It is intended to store massive
volumes of data across a scalable array of commodity servers.

6.3.2 Pig

Pig is the high-level programming component running on top of Hadoop’s MapRe-
duce component. Pig is a procedural language for creating MapReduce programs
used with Hadoop [12]. Pig was originally developed at Yahoo Research in 2006
to enable ad hoc execution of MapReduce jobs on very large data sets. The initial
language was called Pig Latin, enabling a variety of data manipulations in Hadoop.
It is a SQL-like language that enables a multi-query approach on a nested relational
data model where schema is optional. Apache Pig provides a rich set of built-in
operators to support data operations including joining, filtering, sorting, ordering,
nested data types, etc. on both structured and unstructured data. In addition, through
the User Defined Functions (UDF), Pig can invoke code in many other languages
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including JRuby, Jython, and Java. This allows for the development of larger, more
complex applications.

Pig is typically used in ETL applications for describing how a process will extract
data from a source, transform it according to a rule set, and then load it into a
data store. Pig can ingest data from files, streams, or other sources using the UDF.
Once data is ingested, operations similar to the select command, various iterations,
and other complex transformations can be performed. Once the processing is
finalized, Pig stores the results of the transformations into the HDFS. Throughout
the processing steps, Pig scripts are translated into a series of MapReduce jobs
executed on the underlying Hadoop cluster.

6.3.3 Sqoop

Apache Sqoop is a tool designed for efficiently transferring bulk data between
Hadoop and structured data stores such as relational databases [18]. Sqoop is a
portmanteau that stands for SQL-to-Hadoop and is a simple command-line tool
with the several valuable capabilities. Sqoop has the capability to import individual
tables or entire databases to files in HDFS. It also generates Java classes to allow
interaction with imported data. Additionally, Sqoop provides the ability to import
from SQL databases directly into the Hive data warehouse within the Hadoop
environment, thereby enabling computing on the data very rapidly.

6.3.4 Hive

Hive is the data warehouse software platform that enables a SQL-like language for
facilitating, querying, and managing, large datasets residing in HDFS storage [13].
Often times referred to as the Hadoop data warehouse, Hive infrastructure sits on
top of Hadoop and provides data query and analysis. HiveQL is the mechanism used
to project structure onto the data and query the data using a SQL-like language [19].
HiveQL provides schema on read and transparently converts queries to MapReduce,
Apache Tez, and Spark jobs. All three execution engines can run in Hadoop
YARN. To accelerate queries, it provides indexes including bitmap indexes [13].
Additionally, Hive allows traditional and custom map and reduce mechanisms when
HiveQL might be insufficient.

Initially developed by Facebook, Apache Hive is now used and developed
industry wide. Hive supports analysis of large datasets stored in Hadoop’s HDFS
as well as compatible file systems such as the Amazon S3 filesystem.
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6.3.5 HBase

Apache HBase is a column-oriented, distributed, and scalable database management
system that runs on top of HDFS. HBase is a key component of the Hadoop stack,
enabling fast, random access to large data sets. HBase is modeled after Google’s
BigTable, in order to handle massive data tables containing billions of rows and
millions of columns.

It is well suited for sparse data sets, which are common in numerous Big Data
use cases. Unlike relational database systems, HBase does not support a structured
query language like SQL. HBase applications are written in Java similar to a typical
MapReduce application. HBase also supports writing applications in Avro, REST,
and Thrift.

6.3.6 Oozie

Apache Oozie is a scalable, reliable, and extensible system workflow scheduler
system that manages and coordinates Apache Hadoop jobs while supporting
MapReduce, Pig, Hive, Sqoop, etc. Oozie workflow coordinator jobs are Directed
Acyclic Graphs (DAGs) of actions that are recurrent jobs triggered by time
frequency and data availability [20]. Oozie is integrated with the Hadoop stack,
typically with YARN, and supports numerous types of Hadoop jobs including Java
MapReduce, Pig, Hive, Streaming MapReduce, Sqoop, general-purpose Java code,
shell scripts, etc. Oozie itself is a Java Web application that combines multiple
jobs sequentially into one logical unit of work. Oozie Bundle enables packaging
of multiple coordinator and workflow jobs and management of the job’s life cycle.
It enables cluster administrators to develop complex data transformations with
multiple component tasks, thereby providing greater job control recurrence.

6.3.7 Zookeeper

Apache ZooKeeper [21] provides operational services for a Hadoop cluster by
enabling a distributed configuration service, a synchronization service, group
services, and a naming registry for distributed systems [22]. Distributed applications
use Zookeeper to store and mediate updates to important configuration information.

Due to the diversity of types of service implementations for applications,
management can become rather challenging when the applications are deployed.
ZooKeeper’s purpose is to extract the essence of these different services into a sim-
ple interface via a centralized coordination service. The service itself is distributed
and reliable supporting consensus, group management, and presence protocols.
Application-specific utilization consists of a mixture of specific components of
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ZooKeeper and application-specific conventions. ZooKeeper recipes [22] provide
a simple service that can be used to build powerful abstractions.

6.3.8 Data Lakes and Warehouses

A data lake is defined as a centralized storage repository or system that contains a
massive amount of structured, semi-structured, and unstructured raw data. The data
structure and requirements are not defined until the data is needed to run different
types of analytics. Often times a data lake is a single store of all raw enterprise data
including copies of source system data, log files, clickstreams, social media, and
output from IoT devices. It can also include transformed data used for delivering
dashboards, reporting, visualization, new types of real-time analytics, and machine
learning.

A data warehouse is a database optimized to analyze relational data coming
from transactional systems and business applications. The data structure and schema
are defined in advance to optimize for fast queries. The data from a warehouse is
typically used for reporting and analysis. Data is cleaned, enriched, and transformed,
so it can act as the “single source of truth” that users can trust [23]. Many
organizations support both a data warehouse and a data lake, as they serve different
needs and use cases. A data lake enables storage of non-relational data from mobile
apps, IoT devices, and social media and does not require the schema to be defined
when data is captured (referred to as “schema on read”). Massive amounts of data
can be stored without careful schema design, thereby enabling flexibility in terms
of the kinds of questions or data analytics that might need to be performed in the
future. Data lakes enable different types of analytics including big data analytics,
text mining, real-time stream data processing, and machine learning.

One great, early example of a successful data lake is the Big Data implementation
at Mercy Hospital. The hospital leveraged technology to improve medical outcomes
for patients by utilizing one of the first comprehensive, integrated electronic health
record (EHR) systems to provide real-time, paperless access to patient information.
Utilizing the EHR from Epic Systems, every patient’s activity, including clinical
and financial interactions, was captured. The hospital needed to address several
typical challenges associated with Big Data implementations including scalability,
data schema requirements, and response to large data queries. Mercy, in partnership
with Hortonworks (one of the early Big Data providers at the time), has created
the Mercy Data Library, a Hadoop-based data lake. This data lake enabled the
integration, ingestion, and processing of large amounts of batch data extracts from
relational systems, real-time data directly from Epic HER, and information from
social media and even weather sources [24]. The combination of all of these data
sets in a common platform enables the hospital to ask and answer questions at that
were previously impossible due to scale, cost, or both.

One of the projects implemented on the Mercy system utilized thee advanced
analytics techniques on a large amount of intensive care unit (ICU) patients’ vitals
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data. When a patient is admitted to ICU, devices reading the patient’s vitals send a
new data record every second. Each ICU patient generates a large amount of data,
which is often times very noisy. This data is traditionally summarized into 15 minute
or longer intervals due to either the systems’ inability to store and process the large
amounts of more granular data or the cost-effectiveness of doing so. This approach
limits the types of signal detection and analysis that can be performed on the data
at scale. For example, determining which medicines bring down fever fastest would
require a fine-grained measure of various streams (heart rate, breathing, movement,
pain, etc.). Determining the efficacy of the medicine and enabling decision making
in real time or near real time would require data time resolution of seconds or
minutes. By implementing the data lake, researchers at Mercy Hospital were able to
capture diagnostic data at high temporal rates, which in turn enabled real-time and
near-real-time processing of the data.

This real-time data-on-demand model for researchers and clinicians is enabled by
a combination of Sqoop, Storm, and HBase for more granular updates. In addition,
Hive has provided a SQL-like approach to enabling the scalability of the Hadoop
data lake.

6.4 An Introduction to Spark: An Innovative Paradigm
in Big Data

One fundamental component to the Big Data Ecosystem not yet mentioned is Spark
[25]. Although Hadoop captures the most attention for distributed data analytics,
there are alternatives that provide advantages to the typical Hadoop platform.
Apache Spark is an open source cluster computing framework originally developed
in the AMPLab at the University of California, Berkeley, but was later donated to
the Apache Software Foundation where it remains today [26].

Spark is a scalable data analytics platform that incorporates primitives for in-
memory computing and typically demonstrates a significant speedup of the classic
Hadoop’s cluster compute and storage approach. Spark is implemented in the Scala
programming language and provides a unique environment for large-scale data
storage and processing. In contrast to Hadoop’s two-stage, disk-based MapReduce
paradigm, Spark’s multi-stage, in-memory primitives approach provides perfor-
mance up to 100 times faster for certain applications [25]. By allowing user
programs to load data into a cluster’s memory and query it repeatedly, Spark can
enable a fast, efficient implementation of a variety of machine learning algorithms.

Similar to traditional Hadoop system, Spark requires a cluster manager and a
distributed storage system. For cluster management, Spark supports the standalone
native Spark cluster, Hadoop YARN or Apache Mesos. For distributed storage,
Spark can interface with a wide variety of systems including HDFS, Cassandra,
OpenStack Swift, Amazon S3, or custom solutions.
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6.4.1 The Spark Ecosystem

While often compared to Hadoop and MapReduce, Spark is not a modified version
of Hadoop. Hadoop is simply one of several ways of implementing Spark. In fact,
Spark can run completely independently from Hadoop, powered by its own cluster
management.

Spark typically leverages Hadoop in two ways by utilizing its storage and
processing. As Spark has its own cluster management computation, it often times
only uses Hadoop for storage.

Spark Core is the underlying general execution engine for the Spark platform. It
enables in-memory computing and referencing datasets in external storage systems
(Fig. 6.9).

Spark SQL is a component on top of Spark Core that introduces a new data
abstraction called SchemaRDD, which provides support for structured and semi-
structured data [27].

Spark Streaming leverages Spark Core’s fast scheduling capability to perform
streaming analytics. It ingests data in mini-batches and performs RDD (Resilient
Distributed Datasets) transformations on those mini-batches of data [28].

Spark’s machine learning library called MLlib is a distributed machine learning
framework capable of taking advantage of the computational speedup related to
the distributed memory-based Spark architecture. Spark MLlib is often an order of
magnitude faster than Hadoop’s original, but now retired, Mahout library [29].

GraphX is a distributed graph-processing framework layered on top of Spark. It
provides an API for expressing graph computation. It also enables and optimizes
user-defined graphs and processing by leveraging Pregel abstraction API [30].

Spark provides built-in APIs, supports, and is compatible with many languages
and frameworks including Java, Scala, Python, R, Ruby, JavaScript, SparkSQL,
Hive, Pig, H20, etc.

Spark can run standalone or on top of a cluster computing framework such
as Hadoop. It handles batch, interactive, and real-time analysis within a single
framework. It provides native integration with Java, Python, and Scala, thereby
enabling programming at a higher level of abstraction.

One of the main advantages of Spark is that it is a general-purpose computing
engine that seamlessly encompasses data streaming management, data queries,
machine learning prediction, and real-time access to various analyses.

Spark
General Purpose Execu�on Engine

Spark SQL
Querying

Mllib
Machine Learning 

Spark Streaming
Data Streaming

GraphX
Graph Computa�on

Fig. 6.9 Spark ecosystem
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6.4.2 The Core Difference Between Spark and Hadoop

MapReduce can enable users to write parallel computations using a set of high-
level operators without having to worry about work distribution and fault tolerance.
However, it also demonstrates a number of limitations for complex computational
tasks. While MapReduce is great at one-pass computation, it becomes rather
inefficient for multi-step algorithms due to the lack of efficient data sharing. Every
state between the map and reduce steps requires connection to the distributed file
system and is slow due to replication and disk storage. In most current frameworks,
the only way to reuse data between MapReduce jobs is to write data to an
external storage system and then read from the same location at later time. Since,
iterative and interactive applications require faster data sharing across parallel jobs,
Hadoop’s slow data sharing via MapReduce, due to replication, serialization, and
disk I/O can cause serious computational delays. This is a major contributor to the
often-presented statistic claiming that most of the Hadoop applications spend more
than 90% of the time on the HDFS read and write operations [31].

Iterative operations on MapReduce typically have a need to reuse intermediate
results across multiple computations in multi-stage applications. Figure 6.10 depicts
how a traditional Hadoop framework enables iterative operations via MapReduce,
showcasing data replication, disk I/O, and serialization overheads, causing the
overall computational time consequences.

Interactive operations on MapReduce are typically performed when ad hoc
queries are executed on the same subset of data. In this scenario, each query
will perform the disk I/O, which can dominate application execution time. Figure
6.11 illustrates how the traditional Hadoop framework accomplishes the interactive
queries on MapReduce.

As one might expect, large performance hits were experienced when complex
workflows were executed on large amounts of data. The need for executing com-
plex workflows without writing intermediate results to disk after every operation
becomes a challenge. A new two-pronged approach was proposed to solve these
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Fig. 6.11 MapReduce
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challenges. One aspect of the approach is to cache intermediate results in memory.
The second is to allow users to specify persistence in memory and partition the
dataset across nodes. In order to ensure fault tolerance, granular atomicity via
partitions and transaction logging were used instead of replication.

The highest-level unit of computation in MapReduce is a job that loads data,
applies a map function, shuffles, applies a reduce function, or writes data to
persistent storage. In Spark, on the other hand, the highest-level unit of computation
is an application that can be used for a single batch job, an interactive session with
multiple jobs, or a server repeatedly fulfilling requests. A Spark job can consist of
more than just a single map and reduce. Spark application processes can run on
its behalf even when it’s not running a job. Furthermore, multiple tasks can run
within the same executor, resulting in orders of magnitude faster performance when
compared to MapReduce.

Spark’s goal was to generalize MapReduce to support new applications and
enable more complex, often iterative or recursive, computations within same engine.
Two main additions to Hadoop’s approach were powerful enough to express these
types of computation and overcome deficiencies of the previous models: fast data
sharing and general Directed Acyclic Graphs (DAGs) for computation. These
approaches will be presented in more detail in the following sections. This approach
enables a much more efficient and much simpler approach, as end users can utilize
libraries instead of specialized systems to run complex computational workflows.

6.4.3 Resilient Distributed Datasets in Spark

The Resilient Distributed Dataset (RDD) is Spark’s fundamental data structure. It
is an immutable foundational distributed collection of objects [32]. The original
published paper proposed the concept of the RDD as a resilient, fault-tolerant
data structure. The RDD lineage graph is able to recompute missing or damaged
partitions due to node failures. RDDs are distributed with data residing on multiple
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nodes in a cluster. RDDs do not change once created and can only be transformed
using transformations to new RDDs.

Each dataset in a RDD is divided into logical partitions, which are often
computed on a variety of nodes of the cluster. By definition, RDD is a read-only,
partitioned, fault-tolerant collection of records that can be processed in parallel
manner [32]. RDDs can contain any type of Python, Java, Scala, or user-defined
classes and objects. RDDs can be created in one of two ways: either by parallelizing
an existing collection or referencing a dataset in an external storage system (HDFS,
HBase, etc.). Spark makes use of the concept of RDD to achieve faster and more
efficient MapReduce operations.

As shown in Fig. 6.12, iterative Operations on Spark RDDs store intermediate
results in a distributed memory and thereby offer much faster computation. In cases
when the distributed memory (RAM) is not sufficient to store intermediate results,
Spark will default to storing those results on the disk.

The interactive operations on Spark RDD illustrated in Fig. 6.13 are typically
utilized when different queries are executed on the same set of data repeatedly.
This particular data can be kept in memory to realize significant improvements in
execution times.

Each transformed RDD may be recomputed each time an action is executed on
that RDD. However, RDDs can also persist in memory, in which case Spark will
keep the elements on the cluster for considerably faster access the next time it is
queried. There is also support for persisting RDDs on disk in Spark and replication
across multiple nodes.
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Fig. 6.13 Spark’s approach to fast data sharing for queries

6.4.4 RDD Transformations and Actions

RDDs enable two main types of operations: transformations and actions. Transfor-
mation operations could be applied on RDDs and typically return another RDD,
while action operations trigger computation and return values.

Spark transformation is a function that produces new RDDs from existing
RDDs. It takes RDDs as input and produces one or more RDDs as output based
on the transformation applied. Each time a transformation is applied, a new RDD
is created. Note that the input RDDs cannot be changed due to the RDD design
requirement that they are immutable by nature.

The process of applying transformations builds a RDD lineage. It keeps track of
all of the parent RDDs of the final RDD(s). RDD lineage is also known as the RDD
operator graph or RDD dependency graph. It represents a logical execution plan
in the form of a Directed Acyclic Graph (DAG) of the entire set of parent RDDs.

RDD transformations are evaluated in a “lazy” manner, by performing the
computation only when an action requires a result to be returned. Therefore, they are
not executed immediately. Two of the most basic and often used transformations are
the map and filter. A map function iterates over every line in a RDD and applies that
function to every element of RDD, possibly enabling the flexibility that the input
and the return type of RDD may differ from each other. For example, the input
RDD type can be a string and after applying the map function the return RDD can
be Boolean. Filter functions return a new RDD, containing only the elements that
meet a predicate [32].
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After the transformation, the resultant RDD is different from its parent RDD. It
can be smaller if functions like count, filter, or sample are applied or larger when
functions like Cartesian or union are applied. Alternatively, it could remain the same
size when a map function is applied.

There are two types of transformations: narrow and wide. In narrow transfor-
mations, all the elements that are required to compute the records in single partition
reside in the single partition of the parent RDD. A limited subset of partitions is
used to calculate the result. Typical narrow transformations are considered to be
the result of map or filter functions. Alternatively, in a wide transformation, all the
elements that are required to compute the records in the single partition may reside
in numerous partitions of the parent RDD. Wide transformations typically result
from the application of join or intersection.

Transformations create RDDs from each other. However, in order to work with
the actual dataset, actions need to be performed. Actions are Spark RDD operations
that create non-RDD values. When an action is triggered and the result is calculated,
the new RDD is not automatically formed as it was the case with transformations.
The values of actions are stored to drivers or to the external storage system. In the
example below, the first line defines a base RDD from an external file.

#Create an RDD from a file on HDFS
text = sc.textFile(’hdfs://user1/mytext.txt’)

#Transform the RDD of lines into an RDD of words
mywords=text.flatMap(lambda line: line.split())

#Transform the RDD of words into an RDD of key/value pairs
mykeyvals=mywords.map(lambda word:(word,1))

RDD transformation vs. action

#Map Transformation example counting length
lineLength = text_map(Lambda s: len(s))

#Reduce Action Example
totalLength = lineLength.reduce (Lambda a, b: a+b)
#More RDD manipulation examples

# The saveAsTextFile action writes the contents of
# an RDD to the disk

rdd.saveAsTextFile(’hdfs://user1/myRDDoutput.txt’)

# The count action returns the number of elements
# in an RDD

numElements=rdd.count();
numElements;
print(numElements)

This approach enables executions to be optimized while operations are automati-
cally parallelized and distributed on the clusters. These operations are able to handle
many machine learning algorithms that are iterative by nature, and the interactive ad
hoc queries needed for many analytics applications in an efficient manner. This is
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enabled by reusing intermediate in-memory results across multiple data-intensive
workloads, thereby avoiding movement of large amounts of data over the network.

6.4.5 Datasets and DataFrames in Spark

A Dataset is a distributed collection of data [33]. The Dataset is a new interface
added in Spark 1.6 that provides the benefits of RDDs including the strong
typing and powerful lambda functions, with the benefits of Spark SQL’s optimized
execution engine [33, 34]. A Dataset can be constructed from JVM objects and
then manipulated using functional transformations mentioned in the RDD section
including application of map, filter, etc. The Dataset API is available in Scala
and Java. Python and R do not have the support for the Dataset API, but due to those
languages’ dynamic nature, many of the benefits of the Dataset API are already
available and easily usable.

A DataFrame is a dataset organized into named columns. It is conceptually
equivalent to a table in a relational database or a data frame in R or Python, but with
richer built-in optimizations. DataFrames can be constructed from a wide array of
sources such as structured data files, tables in Hive, external databases, or existing
RDDs. The DataFrame API is available in Scala, Java, Python, and R, typically
represented by a Dataset of Rows [33]. More details on DataFrames are presented
below.

6.4.6 The Spark Processing Engine

While MapReduce is widely adopted for processing and generating large datasets
with a parallel, distributed algorithm on a cluster, more and more iterative and
interactive modes of operation have emerged that require faster data sharing across
parallel jobs. Data sharing is slow in MapReduce due to replication, serialization,
and disk IO. As noted earlier, studies have shown that most of the Hadoop
applications spend more than 90% of the time doing HDFS read-write operations
[25]. In contrast to Hadoop’s two-stage disk-based MapReduce paradigm, Spark’s
iterative in-memory approach enables added computing flexibility and significant
speedup. Additionally, Spark’s ability to load data into memory and query it
repeatedly enables scalable machine learning algorithm performance via the MLlib
library [29]. The ability to perform sophisticated, advanced analytics is one of the
main advantages of Spark, as it also supports SQL queries, streaming data, machine
learning (ML), and graph algorithms.

While MapReduce can achieve complex tasks by defining and chaining various
maps and reduce tasks, it is limited to one directional, sequential execution of the
mappers and reducers. This limitation has been overcome by allowing task definition
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using DAGs in Spark. DAG in Apache Spark is an alternative to the MapReduce. It is
a programming style used in distributed systems enabling multiple levels that form
a tree structure without having to write the intermediate results to disk. A DAG is a
finite directed graph with no directed cycles, consisting of finitely many vertices and
edges. Each edge is directed from one vertex to another in a consistently directed
sequence of edges that can never form a cycle [20].

The DAG concept has successfully been applied to Spark processing. A DAG is
represented by a set of vertices and edges, where vertices represent the RDDs and
edges represent the operation to be applied on the RDD. In order for action to be
executed on the RDD, Spark creates the DAG of the tasks to be executed. The DAG
is then submitted to the DAG scheduler that divides operators into stages of tasks in
order to perform parallel computation.

The principal unit of Spark’s computations is a job. It is typically a piece
of code that reads some input from HDFS, performs computation on the data,
and writes output data. Jobs are divided into stages. Stages are classified as a
Map or Reduce stages and are divided based on computational boundaries. Most
computations are executed over many stages. Each stage has some number of tasks,
and typically one task is executed on one partition of data on one machine. The
Executor is the process responsible for executing a task. The program/process
responsible for running the job over the Spark engine is typically referred to as a
driver. A driver runs on the master node, while the machine on which the executor
runs is referred to as the slave.

6.4.7 Spark Components

Spark applications run as independent sets of processes on a cluster, coordinated by
the SparkContext object located in the driver (see Fig. 6.14). The driver separates
the process to be executed and creates the SparkContext in order to schedule jobs
and negotiate with the cluster manager.

SparkContext can connect to several types of cluster managers (standalone Spark,
Mesos, YARN, or Kubernets), in order to allocate resources across applications.
Once connected, Spark acquires executors on nodes in the cluster. Executor
processes run computations and store application data. Subsequently, it sends
application code as defined by JAR or Python files passed to SparkContext, to the
executors. Finally, SparkContext sends tasks to the executors to run.

Spark jobs contain a series of operators and run on a set of data. All the operators
in a job are used to construct a DAG as shown in Fig. 6.15. The DAG is optimized by
rearranging and combining operators where possible. For example, if the submitted
Spark job contains a map operation followed by a filter operation, Spark’s DAG
optimizer will reorder the operators, as filtering reduces the number of records to
before applying the map operation.
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The Spark system is divided into various layers with individual responsibilities
in order to execute tasks efficiently. The layers are independent of each other. The
primary layer is the interpreter, and Spark uses a Scala interpreter. As commands
are entered in Spark console, Spark will create an operator graph. When an action
is executed, the graph is submitted to a DAG Scheduler. The DAG scheduler divides
the operator graph into a map and reduces stages. Each stage is comprised of
tasks based on partitions of the input data. The DAG scheduler orders operators
to optimize the graph, which is key to Spark’s fast performance. The final result
of a DAG scheduler is a set of stages that are passed to the Task Scheduler. The
Task Scheduler launches tasks via a cluster manager (Spark Standalone, Yarn,
Mesos, Kubernets). Nonetheless, it is unaware of any dependencies among stages
as illustrated in Fig. 6.16. The Worker executes the tasks; however, it knows only
about the code that is has received.
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Fig. 6.16 Spark’s internal job scheduling process

There are several advantages of DAG in Spark. In case of a lost RDD, Spark can
recover the information using the DAG and, with multiple levels of execution, can
execute a SQL query or ML operations with much more flexibility and efficiency
than MapReduce.

6.4.8 Spark SQL

Spark SQL is a Spark module for structured data processing on very large data sets.
Spark SQL provides Spark with additional information about the structure of data
and computation and uses this additional information to perform optimizations.
Spark SQL provides a fast execution engine by utilizing Spark as the underlying
execution engine for low-latency, interactive queries. It also provides the ability for
scale-out and failure recovery. The most common use of Spark SQL is to execute
SQL queries. However, it is also Hive compatible via Hive Query Language (HQL).
This allows it to read data from an existing Hive warehouse without a need to
change queries or move data [26]. Spark enables querying of various data sources
in addition to Hive tables including Parquet and JSON. In addition, Spark SQL
enables combining SQL queries with the data manipulations and complex analytics
supported by RDDs in Python, Java, and Scala [35].

Spark SQL provides three main capabilities for using structured and semi-
structured data. First, it provides a DataFrame abstraction in Python, Java, and
Scala, thereby simplifying the manipulation of structured datasets. Second, it can
read and write data in a variety of structured formats including JSON, Hive Tables,
and Parquet. Third, it enables data query using SQL. This can be accomplished both
inside a Spark program and from external tools that connect Spark SQL to third-
party tools via standard database connectors like JDBC and ODBC [36].
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Fig. 6.17 Many ways to create a DataFrame in Spark

6.4.9 Spark DataFrames

A DataFrame in Spark represents a distributed collection of data organized into
named columns [33]. A DataFrame is conceptually equivalent to a table in a
relational database, a data frame in R or Python’s Panda DataFrame, but with
additional optimizations for the Spark engine. DataFrames support and can be
constructed from a wide array of sources including structured data files, Hive tables,
JSON, Parquet, external databases, HDFS, S3, etc. Additionally, through Spark
SQL’s external data sources API, DataFrames can be extended to support any third-
party data formats or sources, including Avro, CSV, ElasticSearch, Cassandra, etc.
DataFrames are evaluated lazily, just like RDDs, while operations are automatically
parallelized and distributed on clusters. State-of-the-art optimization and code
generation is woven throughout the Spark SQL Catalyst optimizer utilizing a tree
transformation framework. DataFrames can be easily integrated with the rest of the
Hadoop ecosystem tools and frameworks via Spark Core and provides an API for
Python, Java, Scala, and R Programming (Fig. 6.17).

6.4.10 Creating a DataFrame

In order to start any Spark computation, a basic Spark session needs to be initialized
using the sparkR.session() command [33]. Code presented below is adapted
from the Spark http://spark.apache.org website.

From pyspark.sql import SparkSession
spark = SparkSession

.builder

.appName(“Python Spark example”)

.config(“myspark.config.option”, “myvalue”)

.getOrCreate()

http://spark.apache.org
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Reading data from a JSON file into a DataFrame is demonstrated in the code
below:

# Read the data file in JSON format
df = spark.read.json(“/user1/employees.json”)
# Displays the content of the DataFrame
df.show()

6.4.10.1 Example of Reading DataFrame from the Parquet File

dfParquet=spark.read.parquet
(“/user1/employees.parquet”)

display(dfParquet)

6.4.11 DataFrame Operations

DataFrames provide a domain-specific language for structured data manipulation in
Scala, Java, Python, and R. DataFrames are Dataset of Rows in the Scala and Java
APIs. These operations are also referred to as “untyped transformations” in contrast
to “typed transformations” typically associated with strongly typed Scala or Java
Datasets.

Basic examples of structured data processing using Datasets is demonstrated
below:

# Print the schema in a tree format
df.printSchema()

# Select only the “name” column
df.select(“name”).show()

# Select employees with salary greater than 3000
df.filter(df[’salary’] > 3000).show()

# Count people by salary
df.groupBy(“salary”).count().show()

The advantage of a SQL function on a SparkSession is that it enables applications
to run SQL queries programmatically and returns the result as a DataFrame [33].
Temporary views in Spark SQL are session-scoped and will disappear if the session
that creates it terminates. If there is a need for a temporary view to persist and
be shared among all sessions until the Spark application terminates, a global
temporary view should be created. A global temporary view is tied to a system
preserved database global_temp and must use the qualified name to refer it, e.g.,
SELECT * FROM global_temp.employee.

#Temporary view utilized to query the data

df.createOrReplaceTempView(“employees”)
sqlDF = spark.sql(“SELECT * FROM employees ”)
sqlDF.show()
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#DataFrame registered as a global temporary view
df.createGlobalTempView(“employees”)
spark.sql(“SELECT * FROM

global_temp.employees”).show()

#This will be available in the new Spark session
spark.newSession().sql(“SELECT * FROM

global_temp.employee”).show()

Remember to only use SELECT * in cases of small data sets similar to the ones
used in these illustrative examples; otherwise the WHERE clause should be utilized
to prevent the possibly very large amount of queried data.

Some additional examples of the queries enabled by Spark SQL are shown
below:

From pyspark.sql import functions as F

#Show all entries in the column named First name
df.select(“firstName”).show()

# Show all entries where salary >2000
df.select(df[’salary’] > 2000).show()

# Show first name and 0 or 1 depending if they are
# older or younger than 25
df.select(“firstName”, F.when(df.age > 25, 1)

.otherwise(0)).show()

6.4.12 Spark MLlib

Spark MLlib is a library containing various machine learning (ML) functionalities
optimized for the Spark computing framework. MLlib provides an extensive number
of machine learning algorithms and utilities including classification, regression,
clustering, association rules, sequential pattern mining, ensemble models, decompo-
sition, topic modeling, and collaborative filtering [30]. In addition, MLlib supports
various functionalities such as feature extraction, model evaluation, and validation.
All of these methods are designed and optimized to scale across a Spark cluster.
Spark’s machine learning utilities enable construction of pipelines including tasks
that range from data ingest and feature transformations, data standardization,
normalization, summary statistics, dimensionality reduction, etc. to model building,
hyper-parameter tuning, and evaluation. Finally, Spark enables machine learning
persistence by saving and loading models and pipelines [37].
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6.4.13 MLlib Capabilities

MLlib’s capabilities enable utilization of the large number of major machine
learning algorithms including regression (linear, generalized linear, logistic), clas-
sification algorithms (including decision trees, random forest, gradient-boosted
tree, multilayer perceptron, support vector machine, naive Bayes, etc.), clustering
(K-means, K-medoids, bisecting k-means,) latent Dirichlet allocation, Gaussian
mixture model, and collaborative filtering. In addition, it supports feature extraction,
transformations, dimensionality reduction, selection, and the designing, construct-
ing, evaluating, and tuning of machine learning pipelines.

There are many advantages of MLlib’s design including simplicity, scalability,
and compatibility. Spark’s APIs are simple by design and provide utilities that look
and feel like typical data science tools such as R and Python. Machine learning
methods can easily be executed with effective parameter tuning [38]. Additionally,
MLlib provides seamless scalability by enabling the execution of the ML methods
with minimal or no adjustment to the code on a large computing cluster. Spark is
compatible with R, Python pandas, scikit-learn, and many other prevalent ML tools.
Spark’s DataFrames and MLlib provide common data science tool integration with
existing workflows.

The goal of most machine learning experiments is to create an accurate model in
order to predict on future, unseen data. In order to accomplish this goal, a training
data set is used to “train” to fit the model, and a testing data set is used to evaluate
and validate the model obtained on the training data set.

Utilizing the PySpark MLlib features, traditional approaches to machine learning
can now be scaled to large and complex data sets. For example, we can use the
traditionally utilized Iris data set to demonstrate the capabilities of the MLlib to
develop predictive models on Spark.

from pyspark.ml import Pipeline
from pyspark.ml.classification import

DecisionTreeClassifier
from pyspark.ml.evaluation import

MulticlassClassificationEvaluator
from pyspark.ml.feature import

StringIndexer, VectorIndexer
from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import VectorAssembler

#Get Spark Context from Spark Session
SpContext = SpSession.sparkContext

#Load the Iris.CSV file
df = spark.read.csv(“Iris.data”, inferSchema=True)
.toDF(“sepLenght”, “sepWidth”,

“petLenght”, “petWidth”, “class”)

#Print the first 10 rows of the DataFrame
df.show(10)
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Index the label by converting class to numeric using StringIndexer:

class_index = StringIndexer(inputCol=“class”,
outputCol=“classIndex”)

df = class_index.fit(df).transform(df)

# Split the data into train and test
(trainingData, testData) =

df.randomSplit([0.8, 0.2])

#train the Decision Tree Model
dt = DecisionTreeClassifier(labelCol=“ClassIndex”,

featuresCol=“features”)
model = dt.fit(trainingData)

predictions = model.transform(testData)

#Evaluate models’ accuracy
evaluation = MulticlassClassificationEvaluator(
labelCol=“labelIndex”, predictionCol=“prediction”,

metricName=“accuracy”)
accuracy = evaluation.evaluate(predictions)

#Print models’ error
print(“Test Error = %g ” % (1.0 - accuracy))

#Print Model summary
Print(model)

Spark enables solving multiple data problems on one platform, from analytics to
graph analysis and machine learning. The Spark ecosystem also provides a utility for
graph computations called GraphX in addition to streaming and real-time interactive
query processing with Spark SQL and DataFrames [36].

6.4.14 Spark Streaming

Spark Streaming is a Spark component that enables processing of live streams of
data and enables scalable, high-throughput, fault-tolerant data stream processing.

6.4.15 Intro to Batch and Stream Processing

Before looking into how specifics of how Spark Streaming works, the difference
between batch and stream processing should be defined. Typically, batch processing
collects a large volume of data elements into a group at once. The entire group is
then processed simultaneously in a batch at a specified time. The time of batch
computation can be quantified in a number of ways. The computation time can
be determined on a prespecified scheduled time interval or on specific triggered
condition including a number of elements of or amount of data collected. Batch
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data processing is a very efficient way to process large amounts of data collected
over a period of time when there is no need for real-time analytics. Historically, this
has been the most common data processing approach. Traditional databases and data
warehouses, including Hadoop, are common examples of batch systems processing.

Stream processing typically utilizes continuous data and is a key component
in enabling fast data processing. Streaming enables almost instantaneously data
analysis of the data streaming from one device to another. This method of
continuous computation happens as data flows through the system with no required
time limitations on the output. Due to the near instant data flow, systems do not
require large amounts of data to be stored.

The streaming approach processes each new individual piece of data upon arrival.
In contrast to batch processing, there is no waiting until the next batch processing
interval. The term micro-batch is frequently associated with streaming, when
batches are small or processed at small intervals. Although processing may occur at
high frequency, data is still processed a batch at a time in the micro-batch paradigm.
Spark Streaming is an example of a system that supports micro-batch processing.
Stream processing is highly beneficial if the events are frequent, especially over
rapid time intervals, and there is a need for fast detection and response.

6.4.16 Spark Streaming

Spark Streaming is a Spark component that enables processing of live streams
of data by providing an API for manipulating data streams similar to Spark
Core’s RDD API. It enables scalable, high-throughput, fault-tolerant data stream
processing. Spark Streaming’s API enables the same high degree fault tolerance,
throughput, and scalability as Spark Core. Spark Streaming receives input data
streams and divides them into batches called DStreams. DStreams can be created
from a number of sources such as Kafka, Flume, and Kinesis or by applying
operations on other DStreams (Fig. 6.18).

6.4.17 Spark Functionality

Spark Streaming receives input data streams and divides the data into batches. These
batches are then processed by the Spark engine to generate the final stream of results
in batches.

Discretized Stream or DStream is the core concept enabled by Spark Streaming.
It represents a continuous stream of data. DStream is represented by a continuous
series of RDDs. Operations applied to DStreams translate to operations on the
underlying RDDs. Spark Streaming discretizes the data into small micro-batches.
Spark Streaming receivers accept data in parallel and buffer it in the workers nodes’
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Fig. 6.18 Spark Streaming processing

Fig. 6.19 Spark Streaming functionality

memory. The Spark engine processes the batches, while optimizing latency, and
outputs the results to external systems as shown in Fig. 6.19.

Spark Streaming maintains a state based on data coming in a stream often
referred to as stateful computations. In addition, Spark Streaming allows window
operations where a specified time frame could be used to perform operations on
the data. The sliding time interval in the window is used for updating the window,
utilizing the window length and sliding interval parameters. When the window slides
over a source DStream, the underlying RDDs are combined and operated upon to
produce the RDDs of the windowed DStream [28]. Spark tasks are assigned to the
workers dynamically on the basis of data locality and available resources, therefore
optimizing load balancing and fault recovery.

Spark Streaming’s data stream can originate from the source data stream or the
processed data stream generated by transforming the input stream. Internally, a
DStream is represented by a continuous series of RDDs. Every input DStream is
associated with a Receiver, which receives the data from a source and stores it in
executor memory.

Analogous to Spark RDDs, Spark transformations enable DStream modifica-
tions. Input DStreams support many transformations that are applicable to RDDs,
including map, filter, count, countbyvalue, reduce, union, etc. Spark Streaming
enables two categories of built-in streaming sources: basic and advanced sources.
Basic sources are typically directly available in the StreamingContext API, like file
systems, and socket connections. Advanced sources typically include Kafka, Flume,
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Kinesis, etc. and are available through extra utility classes. This requires linking
against extra dependencies via linking utilities [28]. If the application requires
multiple streams of data in parallel, multiple DStreams can be created. Multiple
receivers, simultaneously receiving multiple data streams, can be created, often
requiring allocation of multiple cores to process all receiver’s data [28].

DStream’s data output to external systems, including HDFS, databases or other
file systems, utilizes output operations. Output operations trigger the actual execu-
tion of the DStream transformations as defined by one of many operations including
print, saveAsTextFiles, saveAsObjectFiles, saveAsHadoopFiles, etc. DStreams sim-
ilar to RDDs execute lazily by the output operations.

The example below illustrates a basic application of Spark Streaming: counting
the number of words in text data received from a data server listening on a TCP
socket, as adapted from [28].

from pyspark import SparkContext
from pyspark.streaming import StreamingContext

# Create a local StreamingContext
# batch interval of set to 3 seconds
sc = SparkContext(appName= “NetworkWordCount”)
ssc = StreamingContext(sc, 5)
#Create a DStream for the TCP data stream
#Specify local host and port number where the
system will listen for streaming data

MyStream = ssc.socketTextStream(“localhost”, 9999)

# Split each DStream line into individual words
#Utilize flatMap to create new DStream of words
wordStream =
MyStream.flatMap(lambda line: MyStream.split(“ ”))

# Count each word per batch

wordPairs = wordStream.map(lambda word: (word, 1))
wordCounts = wordPairs.reduceByKey(_+_)
# Print the first ten elements of each RDD
wordCounts.pprint()

# In order to start the computation
ssc.start()
# Wait for the computation to terminate
ssc.awaitTermination()

# Run Netcat to enable application execution in Spark
# Open a socket on port 9999
$ nc -lk 9999
#Check that the port is open
$ nc localhost 9999
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And type the text you would like to be counted – possible example:

Spark streaming is amazing!
This is a great example of a spark streaming application
Run
Execute
Run

#In another terminal run the
$ spark-submit mynetworkcount.py localhost 9999

The output on the screen will indicate the number of words counted.
This example illustrates the Spark Streaming process of ingesting data into a

Discretized Streaming framework. DStreams enable users to capture the data and
perform many different types of computations, as illustrated in this example by a
simple word count of the incoming data set. DStreaming and RDDs are a crucial set
of building blocks that enable construction of complex streaming applications with
Spark and Spark Streaming.

6.5 Big Data Analytics: Building the Data Pipeline

Several different maturity levels can be considered with regard to Big Data
Analytics. There are a number of organizations (DAMM, Gartner, IIA, HIMMS,
TDWI, IBM, etc.) that have defined their own version of analytics maturity
levels. However, they all agree on three general tiers. All organizations start with
raw data and move first to cleaned, standardized, and organized data. They next
progress to basic and advanced reporting. Finally, they may finally graduate to
building predictive models. This process highlights the levels of sophistication
in analytics moving from descriptive, to diagnostic, to predictive, and finally to
prescriptive modeling. Descriptive analytics help understand what has happened in
the past, while diagnostic analytics looks into reasons of why something might have
happened. Predictive analytics techniques build machine learning models to predict
what will happen. These models can then be fed into prescriptive models, which take
the process directly to decision making and action by recommending what should
be done under certain conditions.

6.5.1 Developing Predictive and Prescriptive Models

John Naisbitt famously said, “We are drowning in data, but starving for knowledge!”
A great quote that is made more amazing when one considers that it was made
in 1982. His observation rings ever more true today. While the scale of data has
changed, the need for skills, tools, and techniques to find meaning in the mayhem
of the Big Data world has not. It is costly to collect, store, and secure Big Data
properly, and real return on investment (ROI) hinges on the ability to extract
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actionable information from the data. The field of Data Science is one angle from
which to approach the data deluge. Data scientists endeavor to extract meaning and
tell the story of the data in order to provide insight and guidance. Data scientists
have established technologies that uncover relationships and patterns within large
volumes of data that then can be leveraged to predict future behavior and events.
For example, the development of predictive modeling techniques utilizing machine
learning methods was driven by the necessity to address the data explosion. This
technology learns from experience and predicts future outcomes in order to drive
better business decisions. It extracts rules, regularities, patterns, and constraints from
raw data, with the goal of discovering implicit, previously unknown and unexpected,
valuable information from data.

6.5.2 The Cross Industry Standard Process for Data Mining
(CRISP-DM)

The process of moving from raw data to effective models is an iterative and multi-
phase one. As discussed in Chap. 5, the CRISP-DM standard, depicted in Fig. 6.20,
identifies the six major phases of this data mining process. When approaching
predictive model development, it is essential to deeply understand the application
domain characteristics. This is the goal of phase one, the Business Understanding
phase.

Deployment

Business
Understanding

Data
Understanding

Data
Preparation

Data

Modeling

Evaluation

Fig. 6.20 CRISP-DM process model
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Once the business problem and the overall project goals are fully understood, the
project moves into the Data Understanding phase. Creating the proper dataset is the
goal of this phase. It may involve bringing together data from different sources and
of different types to be able to develop comprehensive models. The rate, quantity,
and quality of the data are carefully considered. The execution of this phase may
require reconsideration of the business understanding based on data availability,
resource limitations, and such.

The data preparation phase is frequently the most time consuming and resource
intensive phase of the process. The preprocessing and cleaning of the data under-
taken in this phase can require considerable effort and should not be underestimated.
Careful, advanced planning of data collection and storage can help minimize the
effort expended in this phase.

The modeling phase can be initiated once the data has been sufficiently prepared.
However, it is typical for data preparation efforts to continue and/or be revised
based on the progress made and insights gained during the modeling process. The
modeling phase involves applying one or more data science techniques to the data
set in order to extract actionable insight.

Once models are developed (or “trained”) in the modeling phase, the evaluation
phase considers the value of the models in the context of the original business
understanding. Frequently, multiple iterations through the process are required to
arrive at a satisfactory data mining solution.

Finally, the deployment phase addresses the implementation of the models within
the organization and completes the process. This may involve multiple personnel
and expertise from a wide variety of groups in addition to the data science team.

6.6 Conclusion

Big Data is fundamentally changing the way organizations and businesses operate
and compete. Big data and IoT also share a closely knitted future to offer data-
driven analysis and insight. In this chapter, we explained how to build and maintain
reliable, scalable, distributed systems with Apache Hadoop and Apache Spark. We
also discussed how to utilize Hadoop and Spark for different types of big data
analytics in IoT projects, including batch and real-time stream analysis as well as
machine learning.
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Chapter 7
Intelligent and Connected Cyber-Physical
Systems: A Perspective from Connected
Autonomous Vehicles

Wanli Chang, Simon Burton, Chung-Wei Lin, Qi Zhu, Lydia Gauerhof,
and John McDermid

The need for connection and community is primal, as
fundamental as the need for air, water, and food.

Dean Ornish
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7.1 Introduction
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together with IoT (Internet of Things). There are different opinions on how they
relate to each other. We tend to think that IoT, while generally also involving both
cyber and physical components, emphasizes more on the connectivity as well as the
functionality enabled by such strong connectivity. CPS, on the other hand, stresses
the interactions between the cyber and physical aspects. An example that belongs to
CPS but not IoT is a vehicle without connection to the outside, neither other vehicles
nor any infrastructure.

There is a trend observed that CPS are getting better and better connected, thus
moving towards the regime of IoT. For instance, although the modern automobiles,
a typical class of CPS, commonly have modules for connection, they cannot be
classified as IoT, since such connection is not strong enough to enable significant
functionality. However, the automotive industry is moving towards connected
autonomous vehicles (CAVs), where the vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communication will completely change the way cars are driven,
together with various kinds of sensors and algorithms. This will then become part
of IoT.

Closed control loops are often found in CPS, and in each loop, there are three
main operations involving sensors, controllers, and actuators:

• Sensing: The states of the physical plants to be controlled are measured with
sensors.

• Computation: The control input is computed by the controllers based on the
measured plant states.

• Actuation: The control input is applied to the plant through actuators.

The plant dynamics is then influenced by the control input, closing the loop.
When the sensors, controllers, and actuators are distributed, a network is required
for communication. A typical architecture of CPS is illustrated in Fig. 7.1.

Conventionally, there is a separate design paradigm for CPS. For instance, the
development of control algorithms is based on idealistic models, and the details of
the embedded implementation platforms are not considered. Large safety margins
are commonly inserted. A new CPS design methodology taking account of all the
layers as well as their interplays is being investigated, in order to achieve assurance
of safety and security, robustness, and resource efficiency. These issues are highly
important for the intelligent and connected CPS. For example, while many groups

Fig. 7.1 Typical CPS architecture
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around the world are able to develop full functionalities of CAVs, as evidenced by
the prototypes and trials, mass production and deployment will not happen if any of
the four issues mentioned above is not sufficiently addressed.

Some recent efforts contributing towards the new methodology are on resource-
aware CPS design [1, 2]. That is, the cyber implementation resources are considered
when developing control algorithms directly influencing the physical processes.
This significantly improves the resource dimensioning and utilization and gains
more trust in the system. There are mainly three types of resources: computation,
communication, and memory. Note that the computational resources are often
related to not only the processors, but also the operating systems. The communica-
tion resources vary with different protocols. The memory resources are commonly
organized in a hierarchy.

The communication protocols are broadly classified into two groups – event-
triggered (ET) and time-triggered (TT) networks. For instance, the Controller Area
Network (CAN) is ET and has been widely used since its first official release in
1986. FlexRay, standardized in 2013, was designed to be faster and more reliable
than CAN and can be found in many premium cars. Media access control in FlexRay
is based on communication cycles of equal and predefined length in time. Each
communication cycle is divided into a TT static and an optional ET dynamic
segment. Messages can be sent with FlexRay over either the TT or ET segment
using a bandwidth of 10 Mbit/s.

The TT static segment follows a timing division multiple access (TDMA)
policy, where the entire segment is divided into multiple slots with the same
predefined length in time. Each application involved in the TT communication
is assigned a dedicated slot. This allows a predictable temporal behavior. Time-
sensitive networking (TSN) is currently being developed to provide deterministic
messaging on standard Ethernet. The key features are time synchronization and
traffic scheduling. They are addressed by the 802.1AS and 802.1Qbv standards,
respectively. All participating devices are synchronized to a global time and are
aware of a network schedule that dictates when prioritized messages will be
forwarded from each switch.

The memory resources often have a multi-level hierarchy. For example, the flash
memory has a large size and stores all the application programs and data, but
experiences high read/write latencies (hundreds of processor cycles). The cache (on-
chip memory in Fig. 7.1) is faster with low read/write latencies (several processor
cycles), but usually limited in size due to its high cost. The access times of cache
and flash memory are denoted as tc and tm, respectively. When a processor executes
an instruction, it checks the cache first. If this instruction is located in the cache,
it is a cache hit and the access time is tc. If this instruction is not in the cache, the
memory block containing it is fetched from the flash memory and then written into
cache. This is a cache miss and the access time is tm. Afterwards, when the same
instruction is called again by the processor, the access time is tc if it is still in the
cache without being replaced. This is a cache reuse.
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A program usually has different execution paths resulting in different execution
times. The worst-case execution time (WCET) is defined to be the maximum length
of time a program takes to be executed. There are two general methods to reduce
the WCET of a program – increasing the cache size and cache reuse. Many CPS
applications are cost-sensitive, which makes it desirable to minimize the cache size.
Therefore, the cache reuse should be maximized. When multiple applications share
the same memory resources, the cache reuse depends on the execution schedule. For
instance, a schedule that consecutively executes the same application increases the
cache reuse.

Computational resources usually mean the available execution time, for a given
processor with a certain operating frequency. When multiple applications share one
processor, in general, the performance of an application can be improved if it is
allowed to access the processor longer. Taking applications running periodic tasks
as an example, a shorter period usually results in better performance. The downside
is a higher processor utilization. On the condition that the performance requirement
can be satisfied, reduction on the processor utilization of an application is desirable,
as more applications can then be mapped to the processor, thereby saving the cost.

Due to the safety-critical nature of many CPS, time-triggered operating systems
(TT OS) often run on the processor. For instance, OSEK/VDX (Open Systems
and Their Corresponding Interfaces for Automotive Electronics/Vehicle Distributed
Executive)-compatible OS are widely used in the automotive domain. OSEK/VDX
OS only offer a limited set of predefined periods. In most cases, the optimal
period is not directly realizable on the OS. The conventional way to handle it
is to use the largest period offered by the OS that is smaller than the optimal
one. This is a straightforward method, yet leads to a waste of computational
resources. Sometimes, a mixture of periods may achieve a better trade-off between
the performance and the processor utilization.

In the rest of this chapter, we will describe the essential technical background on
CPS, organized into cyber components and physical components, emphasizing on
the interactions between them. Resource-oriented efforts taking safety into account
will be discussed to illustrate the new CPS design methodology, which could
incorporate robustness and security. Two case studies on connected autonomous
vehicles (CAVs) will be presented. One is on safety of machine learning (ML)-based
perception for highly automated driving. The other is on robustness and security of
connected vehicles.

7.2 Background

The technical background of CPS includes both the cyber and physical components,
as well as their interactions. For the cyber components, we will focus on the memory
architecture and analysis, real-time operating systems (RTOS), and scheduling.
It is noted that there is a dedicated chapter in this book on communication.
For the physical components, we will cover modelling of plant dynamics, safety
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requirements on control performances and physical constraints, control algorithms,
and stability guarantee. The cross-layer interplay between the cyber and physical
components will be discussed with memory-aware CPS design as an example.

7.2.1 Cyber Components

In the CPS architecture, there is often a hierarchy of memory resources, such as the
flash memory and the on-chip memory in Fig. 7.1. As discussed in the introduction,
cache reuse depends on the execution order of applications. Given a collection of
applications (e.g., C1, C2, C3) sharing the same processor and memory resources,
it is conventional to run them in a round-robin fashion (C1, C2, C3, C1, C2, C3,
· · · ). Since the code for different applications is usually different, the on-chip
cache is frequently refreshed in this process. This results in poor cache reuse and
long WCET. In order to address this issue, each application can be consecutively
executed multiple times, which will increase the cache reuse and shorten the WCET.

An example execution order (C1(1), C1(2), C1(3), C2(1), C2(2), C2(3), C3(1),
C3(2), C3(3), · · · ) is illustrated in Fig. 7.2, where Ci(j) denotes the jth execution of
the application Ci. Before the first execution Ci(1), the cache is either empty (i.e.,
cold cache) or filled with instructions from other applications, which are not used
by Ci (equivalent to cold cache). The WCET of Ci(1) can be computed by a number
of existing standard techniques. Before the second execution Ci(2), the instructions
in the cache are from the same application Ci and thus can be reused. This results
in more cache hits and hence shorter WCET. Depending on which execution path
the program takes, the amount of WCET reduction varies. Therefore, a technique is
required to compute the guaranteed WCET reduction of Ci(2) and Ci(3) relative to
Ci(1), independent of the path taken.

Fig. 7.2 An example memory-aware execution order with three applications
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This technique starts from a control flow graph (CFG) and then sets up the
equations to compute the reaching cache states (RCS) and live cache states (LCS) of
each node, based on which the fixed-point computation is performed. Afterwards,
the guaranteed WCET reduction can be calculated [3, 4]. We will begin our
discussion with some basics.

In the two-level memory hierarchy shown in Fig. 7.1, there are Nc cache lines,
denoted as CL = {

c0, c1, . . . , cNc−1
}

and the flash main memory has Nm blocks,
denoted as M = {

m0,m1, . . . , mNm−1
}
. Each memory block is mapped to a fixed

cache line. A basic block is a straight-line sequence of code with only one entry
point and one exit point. This restriction makes a basic block highly amenable for
program analysis. There are three key terms in memory analysis that are described
as follows:

• Cache states: A cache state cs is described as a vector of Nc elements. Each
element cs[i], where i ∈ {0, 1, . . . , Nc − 1}, represents the memory block in
the cache line ci. When the cache line ci holds the memory block mj, where
j ∈ {0, 1, . . . , Nm − 1}, cs[i] = mj. If ci is empty, it is denoted as cs[i] = ⊥. If the
memory block is unknown, it is denoted as cs[i] = ᵀ. CS is the set of all possible
cache states.

• Reaching cache states: RCS of a basic block bk, denoted as FCSbk
, is the set of

all possible cache states when bk is reached via any incoming path.
• Live cache states: LCS of a basic block bk, denoted as LCSbk

, is the set of all
possible first memory references to cache lines at bk via any outgoing path.

Since the focus is on WCET reduction between two consecutive executions of
Ci, e.g., Ci(1) and Ci(2), it is necessary to compute the RCS of the exit point in
Ci(1) and the LCS of the entry point in Ci(2). By comparing all possible pairs of
cache states, the guaranteed number of cache hits and thus WCET reduction can
be calculated. Conceptually, the program RCS is the set of all possible cache states
after the program finishes execution by any execution path, and the program LCS
is the set of all cache states, where each cache state contains memory blocks that
may be firstly referenced after the program starts execution, for any execution path
to follow. Both the RCS and LCS could contain multiple cache states. Each pair
with one cache state cs from the program RCS and one cache state cs

′
from the

program LCS represents one possible execution path between the two consecutive
executions. For any cache line ci in a pair, if cs[i] is equal to cs

′
[i] and they are not

equal to ᵀ, then there is certainly a hit and thus WCET reduction.
As discussed in the introduction, CPS often run TT OS due to the safety-critical

nature. We will take OSEK/VDX OS, which is a class of RTOS widely used
in the automotive industry, as an example. In general, OSEK/VDX OS supports
preemptive fixed-priority scheduling. That is, priorities are assigned to applications
and at any point in time, the task with the highest priority among all active ones
is executed. Tasks can be triggered by events (e.g., interrupts, alarms, etc.) or by
time. In the TT scheme, each application gets released and is allowed to access
the processor periodically. There are various periods of release times and each
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application is assigned one. Different applications may have different periods. Every
time an application is released, its program gets the chance to be executed.

A timetable containing all the periodic release times within the alleged hyperpe-
riod (i.e., the minimum common multiple of all periods) needs to be configured. An
example with a set of three periods 2 ms, 5 ms, and 10 ms is illustrated in Table 7.1.
The hyperperiod is equal to 10 ms and the timetable repeats itself every 10 ms by
resetting the timer. Independent of the triggering mode (i.e., be it ET or TT), the
assigned priority will still determine the execution order of applications. In the TT
scheme, a higher priority is typically assigned to the application released within a
shorter period, since this generally results in a more efficient use of the processor.

An example with two applications C1 and C2 sharing one processor is illustrated
in Fig. 7.3. C1 has a period of 2 ms and C2 has a period of 5 ms. The execution time
of C1 is assumed to be 0.7 ms and the execution time of C2 is assumed to be 2 ms. C1
has a higher priority than C2. Within a hyperperiod of 10 ms, C1 is released at 0 ms,
2 ms, 4 ms, 6 ms, 8 ms, and 10 ms. C2 is released at 0 ms, 5 ms, and 10 ms. It can be
seen that C2 is executed only when C1 does not require to access the processor. For
instance, at 0 ms, both C1 and C2 are released and require access to the processor.
C1 is permitted to be executed while C2 has to wait. At 0.7 ms, C1 completes its
execution and C2 gets the access to the processor.

Denoting Ewc
i to be the WCET of an application Ci, if the period is h, the

processor utilization for Ci is

Li = Ewc
i

h
.

The upper bound on the utilization of any processor is 1. Considering a single
processor p,

Table 7.1 An example
OSEK/VDX OS timetable of
application release

Time Release

0 ms Applications with periods of 2 ms/5 ms/10 ms
2 ms Applications with the period of 2 ms
4 ms Applications with the period of 2 ms
5 ms Applications with the period of 5 ms
6 ms Applications with the period of 2 ms
8 ms Applications with the period of 2 ms
10 ms Repeat actions at 0 ms

Fig. 7.3 Release and execution time of two applications sharing one processor
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∑
{i|Ci runs on p}

Li ≤ 1.

Clearly, increasing the period of an application decreases its processor utilization
and thus potentially enables more applications to be integrated on the processor.

It is assumed that the set of available periods restricted by OSEK/VDX is φ.
As discussed in the introduction, a mixture of periods may achieve a better trade-off
between performance and processor utilization [5]. An example is shown in Fig. 7.4.
Switching between two periods can only occur at the common multiplier of them.
For instance, switching between 2 ms and 5 ms is possible at the time instant of
10 ms, 20 ms, and so on. Therefore, following this rule, possible sequences of
periods are {2ms, 2ms, 2ms, 2ms, 2ms, 5ms, 5ms, repeat}, {5ms, 5ms, 10ms, repeat},
and so on.

Scheduling is one of the core tasks of an OS. Different scheduling algorithms
have different properties, and the choice of a particular algorithm may favor one
class of processes over another. In choosing which algorithm to use in a particular
situation, we must consider the properties of the various algorithms. Many criteria
have been suggested for comparing scheduling algorithms. Which characteristics
are used for comparison can make a substantial difference in which algorithm is
judged the best. The criteria include the following:

• Processor utilization: We want to keep the processor as busy as possible.
Conceptually, the processor utilization can range from 0% to 100%. In a real
system, it should range from 40% (for a lightly loaded system) to 90% (for a
heavily loaded system).

• Throughput: If the processor is busy executing tasks, then work is being done.
One measure of work is the number of tasks that are completed per time unit,
called throughput. For long tasks, this rate may be one task per hour; for short
tasks, it may be ten tasks per second.

Fig. 7.4 Allowed switching instants among multiple periods
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• Turnaround time: From the point of view of a particular task, the important
criterion is how long it takes to execute that task. The interval from the time
of submission of a task to the time of completion is the turnaround time.

• Waiting time: The processor-scheduling algorithm does not affect the amount of
time during which a task executes. It affects only the amount of time that a task
spends waiting.

It is desirable to maximize the processor utilization and throughput and to
minimize the turnaround time, waiting time, and response time. In most cases, we
optimize the average measure. However, under some circumstances, we prefer to
optimize the minimum or maximum values rather than the average.

There are many different scheduling algorithms. The simplest one is the first-
come, first-served (FCFS) scheduling algorithm. With this scheme, the task that
requests the processor first is allocated the processor first. The average waiting time
under the FCFS policy is often quite long. Note also that the FCFS scheduling
algorithm is nonpreemptive. Once the processor has been allocated to a task, that
task keeps the processor until it releases the processor, often by terminating. The
FCFS algorithm is thus particularly troublesome for time-sharing systems, where it
is important that each task get a share of the processor at regular intervals. It would
be disastrous to allow one task to keep the processor for an extended period.

A different approach to processor scheduling is the shortest-job-first (SJF)
scheduling algorithm. This algorithm associates with each task the length of the
task’s remaining execution time. When the processor is available, it is assigned
to the task that has the shortest remaining execution time. The SJF scheduling
algorithm is provably optimal, in that it gives the minimum average waiting time
for a given set of tasks. Moving a short task before a long one decreases the waiting
time of the short task more than it increases the waiting time of the long task.
Consequently, the average waiting time decreases. The real difficulty with the SJF
algorithm is knowing the length of the remaining execution time, which often has
to be approximated. The SJF algorithm can be either preemptive or nonpreemptive.
If the newly arrived task is shorter than what is left of the currently executing task,
a preemptive SJF algorithm will preempt the currently executing task, whereas a
nonpreemptive SJF algorithm will allow the currently running task to finish.

The SJF algorithm is a special case of the general priority-scheduling algorithm.
A priority is associated with each task, and the processor is allocated to the task with
the highest priority. Equal-priority tasks are scheduled in FCFS order. Priorities
are generally indicated by some fixed range of numbers, such as 0–7 or 0–4095.
However, there is no general agreement on whether 0 is the highest or lowest
priority. Priorities can be defined either internally or externally. Internally defined
priorities use some measurable quantity or quantities to compute the priority of a
task. For example, time limits, memory requirements, and the number of open files
have been used in computing priorities. External priorities are set by criteria outside
the operating system, such as the importance of the task. Priority scheduling can
be either preemptive or nonpreemptive. A major problem with priority scheduling
algorithms is indefinite blocking, or starvation. A priority scheduling algorithm can
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leave some low-priority tasks waiting indefinitely. A solution to this problem is
ageing. Ageing involves gradually increasing the priority of tasks that wait in the
system for a long time.

There are many other scheduling algorithms that will not be discussed in
detail here, such as the round-robin scheduling and multilevel scheduling. For
RTOS, latency becomes the most critical factor. Common scheduling algorithms
include the rate-monotonic scheduling, earliest-deadline-first (EDF) scheduling,
proportional share scheduling, etc. Note that in the above we focus on scheduling
of a single processor. For the multi-processor system, the scheduling becomes more
complicated and a number of issues need to be considered, such as processor affinity
and load balancing.

7.2.2 Physical Components

CPS often involve control applications. A control application is responsible for con-
trolling a plant or dynamical system. For linear single-input single-output (SISO)
control applications, the dynamic behavior is modelled by a set of differential
equations:

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),

where x(t) ∈ R
l is the system state, ẋ(t) is the derivative of x(t) with respect to time,

y(t) is the system output, and u(t) is the control input. The number of system states
is l. The system (or state) matrix is A. The input matrix is B. The output matrix is
C. These matrices A, B, and C are physical properties of the plant. System poles are
eigenvalues of A. In a state-feedback control algorithm, u(t) is computed utilizing
x(t) (feedback signals) and then applied to the plant, which is expected to achieve
certain desired behavior.

In most applications, the controller is implemented in a digital fashion on a
computer. This implies that the system states must be sampled when measured by
the sensors. Assuming the sampling period to be h, the sampled system state is
denoted as

x [k] = x (tk) , tk = kh, k = 0, 1, 2, 3, · · · .

Similarly, the sampled system output is

y [k] = y (tk) .



7 Intelligent and Connected Cyber-Physical Systems: A Perspective. . . 367

The control input taking discrete values is denoted as u[k], which is passed through
a zero-order hold (ZOH) and applied to the plant. The output of the ZOH is given
by

u(t) = u [k] , tk ≤ t < tk+1.

Now the discretized dynamics can be derived:

x [k + 1] = Adx [k] + Bdu [k] ,

y [k] = Cx [k] ,

where

Ad = eAh, Bd =
∫ h

0

(
eAτ ′

dτ ′) B.

Settling time is a widely used metric to quantify the control performance,
especially for real-time control applications [6, 7]. The time it takes for the system
output y[k] to reach and stay in a closed region around the reference value r (e.g.,
0.98r to 1.02r) is the settling time of a control loop and denoted as ts. Shorter settling
time implies better control performance. In order to ensure safety of the CPS, there
is often a requirement on the settling time. That is, ts must be shorter than or equal
to certain bound t0

s .
Besides the control performance, there are system constraints related to the

CPS safety. For instance, in almost every real-world system, due to the physical
constraint of the actuator, there is some maximum available control input signal,
and the controller needs to be designed such that the maximum value of u[k] does
not exceed this limit Umax, i.e., u[k] ≤ Umax. This is the constraint of the input
saturation. Another constraint is on the peak overshoot, which is defined as

ymax − r ≤ φ0r,

where ymax is the maximum system output and φ0 is the overshoot threshold. The
constraint on the steady-state error has been discussed when defining the settling
time. The system output y[k] has to reach and stay in a closed region around r, i.e.,
the system has to settle. If the region is [0.98r, 1.02r], then the steady-state error
tolerance is φe = 2%.

In the state-feedback control algorithm, the control input u[k] is computed
based on the system state x[k]. There can be both linear and nonlinear controllers,
depending on the relationship between u[k] and x[k]. The general structure of a
linear controller is as follows:

u [k] = Kx [k] + Fr,
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where K is the feedback gain and F is the feedforward gain. Clearly, the relationship
between u[k] and x[k] is linear. With this controller, the system dynamics becomes

x [k + 1] = (Ad + BdK) x [k] + BdFr,

i.e., closed-loop dynamics.
Different locations of closed-loop system poles, i.e., eigenvalues of (Ad + BdK),

result in different system behavior. In pole-placement, poles are placed in desired
locations (eigenvalues are set) often to fulfil various high-level goals, such as control
performance maximization and system constraints satisfaction. The desired poles p
can be decided with empirical or optimization techniques. This method is feasible
since there is freedom to choose the feedback gain K. Once pole locations are
decided, the following characteristics equation of z can be constructed with these
poles as roots:

zn + γ1z
n−1 + γ2z

n−2 + · · · + γn = 0.

Then the following is defined:

γc (Ad) = An
d + γ1A

n−1
d + γ2A

n−2
d + · · · + γnI .

According to Ackermann’s formula, the feedback gain used to stabilize the closed-
loop system is calculated as

K = [0 · · · 0 1] CO−1γc (Ad) ,

where

CO =
[
Bd AdBd · · · An−1

d Bd

]

is the square controllability matrix. The static feedforward gain F used to make the
system output y[k] track the reference r is computed by

F = 1

Cd(I − Ad − BdK)−1Bd

.

All eigenvalues of (Ad + BdK) must have absolute values of less than unity in
order to ensure system stability. This is illustrated with a double integrator example
as follows:

A =
[

0 1
0 0

]
, B = [0 1]T , C = [

1 0
]
.
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Fig. 7.5 Different system
output responses for stable
and unstable poles

The initial state is
[

0 0
]

and the reference value is 5. The sampling period is set as

h = 0.001s. The system output responses for two sets of poles p = [
0.5 0.5

]
and

p = [
1.5 1.5

]
are shown in Fig. 7.5.

If the system is controllable, i.e., CO has full rank, there is no restriction on pole
locations. Controllability of a discrete system is defined as the ability to transfer the
system from any initial state x[0] = x0 to any desired final state x[kf ] = xf . The
controllability condition is equivalent to the non-singularity of the controllability
matrix CO. If CO does not have full rank, some of the poles cannot be modified
with a choice of K and thus are uncontrollable. Note that CO is not invertible in
this case. If the uncontrollable poles are stable (with absolute values of less than
unity), then the system is stabilizable. Restricted pole-placement can be used for
stabilizable systems in the way that only controllable poles are placed in the desired
locations and uncontrollable poles remain untouched. Therefore, in the CPS design,
the system is required to be at least stabilizable, if not controllable.

7.2.3 Cyber and Physical Interactions

We will use an example on memory-aware CPS design to illustrate the cross-layer
interplay between the cyber and physical components. First of all, the link between
the WCET of the control programs and the control timing parameters needs to be
established. As discussed in the introduction, the overall control loop performs three
operations: measure, compute, and actuate. The general timing model of a control
loop is illustrated in Fig. 7.6. The compute operation executes the control program,
which takes E time units. As mentioned before, the sampling period is denoted by
h. The time interval between the measure and the corresponding actuate operations
in the same sampling period is the sensor-to-actuator delay τ sa, which is equal to
the WCET of the control program Ewc.

Two example sampling orders are used to show the derivation of control timing
parameters from the WCET results. As illustrated in Fig. 7.7, S1 is the conventional
memory-oblivious scheme and summarized as follows:
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Fig. 7.6 The general timing model of a control loop

Fig. 7.7 The conventional memory-oblivious sampling order S1

S1 :C1(1) −→ C2(1) −→ C3(1) −→ C1(2) −→ C2(2) −→
C3(2) −→ C1(3) −→ C2(3) −→ C3(3) −→ · · · .

There is no cache reuse in S1 between consecutive executions, considering that
different control applications typically have different instructions to execute. In
other words, when Ci(j) starts execution, all instructions of Ci need to be brought
into the cache from the flash memory. Therefore,

Ewc
i (1) = Ewc

i (2) = · · · = Ewc
i ,

where Ewc
i (j) is the WCET of the jth execution for Ci. The WCET of the

application Ci is denoted by Ewc
i , since all executions of the same application

have equal WCET. This can be computed with standard WCET analysis techniques,
as discussed before. Clearly, all control applications run with a uniform sampling
period of

h =
∑

i=1,2,3

Ewc
i .

Moreover, for the sensor-to-actuator delay,

τ sa
i = Ewc

i .

As illustrated in Fig. 7.8, S2 is an example memory-aware sampling order and
summarized as
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Fig. 7.8 An example memory-aware sampling order

S2 :C1(1) −→ C1(2) −→ C1(3) −→ C2(1) −→ C2(2) −→ C2(3) −→
C3(1) −→ C3(2) −→ C3(3) −→ · · · .

The effective WCET taking into account the cache reuse between consecutive
executions is denoted as E

wc

i (j). From the above discussion,

∀i ∈ {1, 2, 3} ,

E
wc

i (1) = Ewc
i ,

since there is no cache reuse from the previous program for the first execution of
every application Ci(1). E

wc

i (2) and E
wc

i (3) are shorter than E
wc

i (1) due to cache
reuse. The amounts of cache reuse are the same for Ci(2) and Ci(3) in the worst
case. Denoting the guaranteed WCET reduction as E

g

i ,

∀i ∈ {1, 2, 3} ,

E
wc

i (2) = E
wc

i (3) = E
wc

i (1) − E
g

i .

From these varying WCETs, the sampling periods of all three applications can be
calculated. Taking C1 as an example, there are three sampling periods h1(1), h1(2),
and h1(3), which repeat themselves periodically:

h1(1) = E
wc

i (1), h1(2) = E
wc

i (2), h1(3) = E
wc

i (3) + �,

where � is computed as

� =
∑
i=2,3

∑
j=1,2,3

E
wc

i (j).

Similar derivation can be done for C2 and C3. The average sampling period of an
application havg is
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havg =
∑

i=1,2,3
∑

j=1,2,3 E
wc

i (j)

3
< h.

Moreover, the corresponding sensor-to-actuator delay τ sa
i (j) also varies with cache

reuse as

∀i ∈ {1, 2, 3} ,

τ sa
i (1) = hi(1) = E

wc

i (1), τ sa
i (2) = hi(2) = E

wc

i (2), τ sa
i (3) = E

wc

i (3).

As all control timing parameters have been derived, it can be seen that the
sampling period hi(j) of a control application is non-uniform for the memory-aware
scheme. The average sampling period of S2 is shorter than the uniform sampling
period of S1, due to the WCET reduction resulting from cache reuse. The sensor-to-
actuator delay τ sa

i (j) varies. The next task is to develop a controller design method
to exploit the shortened non-uniform sampling periods and achieve better control
performance.

For an application Ci with l system states under the conventional memory-
oblivious sampling scheme S1, the constant sampling period h is larger than the
constant sensor-to-actuator delay τ sa

i . Therefore, the discrete-time system is

x [k + 1] = Adx [k] + B1
(
τ sa
i

)
u [k − 1] + B0

(
τ sa
i

)
u [k] ,

where

B0
(
τ sa
i

) =
∫ h−τ sa

i

0
eAtdt × B,B1

(
τ sa
i

) =
∫ h

h−τ sa
i

eAtdt × B.

It is assumed that u[−1] = 0 for k = 0. Clearly, the system dynamics depends on
both u[k] and u[k − 1]. Thus, a new system state is defined as

z [k] = [
x [k] u [k − 1]

]T
,

and the transformed system becomes

z [k + 1] = AS1z [k] + BS1u [k] ,

y [k] = CS1z [k] ,

where
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AS1 =
[

Ad B1
(
τ sa
i

)
0 0

]
, BS1 = [

B0
(
τ sa
i

)
I

]T
, CS1 = [

C 0
]
.

AS1 is a square matrix.
Next, the following input signal is applied:

u [k] = KS1z [k] + FS1r.

The closed-loop system is then

z [k + 1] = (AS1 + BS1KS1) z [k] + BS1FS1r.

In order to find the poles resulting in the best control performance with the pole-
placement technique, a constrained optimization problem is formulated. Decision
variables are the controllable closed-loop system poles, i.e., the controllable eigen-
values of (AS1 + BS1KS1). The optimization objective is the control performance.
One constraint is that the closed-loop system is stable, i.e., the decision variables
have absolute values of less than unity. Another constraint is the input saturation.
Constraints on the overshoot and steady-state accuracy are also considered. A
heuristic can be developed to solve this challenging non-convex optimization
problem. After the poles are placed, the feedback gain KS1 is then calculated and
then the feedforward gain FS1 is computed. As long as (AS1, BS1) is stabilizable,
i.e., uncontrollable poles have absolute values of less than unity, the above design is
feasible.

For the memory-aware scheme, the sampling is non-uniform. The number of
consecutive executions for any application Ci, where i ∈ {1, 2, . . . , n}, in one period
is denoted by mi. Then, the periodically repeating sampling order is denoted by
(m1, m2, . . . , mn). For the ease of understanding, a simple sampling order (2, 2, 2)
of three control applications is considered. Generalization to any periodic sampling
order is straightforward.

As shown in Fig. 7.9, there are two sampling periods hi(1) and hi(2), which are
repeated periodically. The two switching systems are

x [k + 1] = A1x [k] + B1u [k] ,

x [k] = A2x [k − 1] + B1
2u [k − 1] + B2

2u [k] ,

where B1
2 and B2

2 depend on the second sampling period hi(2) and the sensor-to-
actuator delay of the second execution τ sa

i (2). The system output is

y [k] = Cx [k] .
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Fig. 7.9 Periodically switched sampling periods for Ci in the schedule (2, 2, 2)

It should be noted that x[k] is influenced by both u[k − 1] and u[k], since τ sa
i (2) is

smaller than hi(2), i.e., u[k] is applied before the sensing of x[k].

Introducing a new state z [k] = [
x [k] u [k]

]T
, the system becomes

z [k + 1] = Ahol
1 z [k] + Bhol

1 u [k + 1] ,

z [k] = Ahol
2 z [k − 1] + Bhol

2 u [k] ,

where

Ahol
1 =

[
A1 B1

0 0

]
, Bhol

1 = [
0 I

]T
, Ahol

2 =
[

A2 B1
2

0 0

]
, Bhol

2 = [
B2

2 I
]T

.

Both Ahol
1 and Ahol

2 are square matrices. The system output is

y [k] = [
C 0

]
z [k] .

There are two control inputs that need to be designed within one period:

u [k + 1] = K1z [k] + F1r,

u [k] = K2x [k − 1] + F2r.

The closed-loop system dynamics is then

z [k + 1] =
(
Ahol

1 + Bhol
1 K1

)
z [k] + Bhol

1 F1r,

z [k] =
(
Ahol

2 + Bhol
2 K2

)
z [k − 1] + Bhol

2 F2r.
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The number of poles to place, i.e., the number of eigenvalues in
(
Ahol

1 + Bhol
1 K1

)
and

(
Ahol

2 + Bhol
2 K2

)
, is 2l + 2. This is a constrained non-convex optimization

problem. The objective to maximize is the control performance of Ci. Decision
variables are the poles and thus the number of dimensions in the decision space
is 2l + 2. Heuristics can be used to solve this pole-placement optimization problem.
Once poles are placed, K1 and K2 can be computed. Then F1 and F2 can be
calculated. With this method, both feedback gains are designed together taking all
the information into account. The maximum control performance can be obtained
if the optimization technique returns the optimal poles. However, when Ci is
consecutively executed mi times in a sampling order, the number of dimensions
in the decision space becomes mi(l + 1), which compromises the scalability.

The above memory-aware CPS design is able to achieve better control perfor-
mance with the same given memory resources or equivalently satisfies the control
performance requirement with fewer memory resources. This can be generalized to
other types of resources as well. Note that in this design process, the system safety
is always guaranteed, in the sense that the control performance requirements are
always met. Other aspects such as security and robustness can be also addressed by
this new cross-layer CPS design methodology.

For security properties, it is generally difficult to incorporate cryptographic
algorithms and message authentication code into the CPS, since they consume
substantial computational power and communication bandwidth. New approaches
can be developed that design the controllers together with cryptographic algorithms
with a thorough timing analysis of the complete system. A trade-off analysis
between the degree of security, control performance, and platform schedulability
can be performed.

For robustness properties, new techniques can be developed that the control
algorithms are able to tolerate the faults on the implementation side, such as from
sensors, actuators, processors, memory, bus, etc. There are mainly two directions.
First, the statistically expected performance of the CPS can be improved, taking all
sorts of possible faults into account. Second, certain performance of the CPS, e.g.,
the stability of a plant under control, is guaranteed for a limited set of faults.

7.3 Case Studies

7.3.1 Assuring the Safety of Machine Learning-Based
Perception for Highly Automated Driving

This case study describes how to assure the safety of machine learning approaches
using their application to the perception functions of highly automated driving as an
example. An assurance case strategy is described based on an understanding of the
causes of functional insufficiencies in machine learning. A number of techniques for
demonstrating the performance of the functions are discussed, and it is shown how
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these can contribute to a structured assurance case. Finally, we reflect on the current
state of the art in this area and the overall potential for providing a convincing
argument for using machine learning technique in safety-critical applications.

7.3.1.1 Introduction

The transition from hands-on (Levels 1–2 of [8]) driver assistance to hands-off
highly automated driving (HAD) (Levels 3–5) requires a number of changes to
system safety concepts. For example, a higher level of component availability is
required as the system cannot be simply deactivated upon detection of a component
hardware fault. The conditions for being acceptably safe with respect to functional
safety for passenger vehicles are set by ISO 26262 [9]. Adherence to this standard
remains a necessary prerequisite in order to ensure a reliable and fault-tolerant
implementation of the system with respect to random hardware and systematic
failures. For highly automated driving, demonstrating the sufficiency of the system
to meet its overall safety goals becomes more challenging due to the inherent
complexity and unpredictability of the operational design domain. This continually
evolving environment is in itself observed via channels that are imperfect due
to the technical limitations of the sensors. Thus, the understanding and decision-
making components of the system are presented with noisy, incomplete, and partly
inconsistent data about the current situation. Based on this partial understanding
of the environment, the system must make the decisions required to implement a
driving strategy capable of safely navigating the vehicle to its ultimate destination.
The dominating challenge facing the safety assurance of highly automated driving
systems is the derivation and validation of adequate system safety goals and the
demonstration of their fulfilment under all feasible situations. This needs to be
achieved despite the complexity and uncertainty inherent in the domain, sensing and
understanding/decision algorithms. The issue of the insufficiency of the system to
meet the safety goals, due to inherent performance limitations in sensors or actuators
or the inadequacy of the intended function itself, is not directly addressed by ISO
26262. The “Safety of the Intended Functionality” (SOTIF) approach described
in the draft standard ISO 21448 [10] aims to address these issues. However, the
standard was developed with driver assistance (Levels 1 and 2 of SAE model)
systems in mind. It is therefore unclear whether or not the approaches defined by the
standard scale to the level of complexity of HAD systems (Levels 3 and upwards).

The performance limitations in the perception task are typically counteracted
by using multiple sensing channels and finely tuned heuristics. Recent advances
in machine learning algorithms and the availability of increased computing power
have led to the promise of such algorithms being able to solve the perception
tasks required by highly automated driving functions operating in unrestricted
environments. Algorithms such as deep neural networks [11] can make sense of
unstructured data using efficient computations in real time. By providing enough
labelled images as training data, the algorithms learn to identify and classify
objects such as vehicles and pedestrians with accuracy rates that can surpass
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human abilities. Neither of the above-mentioned standards address the application
of machine learning techniques to automated driving tasks. As a result, assurance
methods must be developed and the ability of the system to meet its safety goals
must be systematically argued based on “first principles” where adherence to a
standard is only one part of the overall argument. An assurance case [12] provides a
convincing and valid argument that a set of claims regarding the safety of a system
is justified for a given function based on a set of assumptions over its operational
context.

The rest of this case study is structured as follows. First, safety requirements
allocated to machine learning functions are described from a systems engineering
perspective and an example function, camera-based pedestrian recognition, is
introduced. Next, the potential causes of functional insufficiencies in machine
learning functions are discussed, for which mitigation measures will form a key
component of the safety assurance argument. A number of sources of evidence
of the performance of the machine learning functions are then described. Finally,
we reflect on the current state of the art in this area and the overall potential for
providing a convincing argument for using machine learning technique in safety-
critical applications.

7.3.1.2 Safety Requirements on the Machine Learning Function

The challenges involved in providing a convincing system-level assurance case
will depend on the functional scope of the machine learning application as well
as whether it is trained and validated during development, or whether it continues
to learn in the field. It is expected that, in practice, the initial applications of
machine learning in series development of highly automated driving will be based
on pre-trained functions, implementing well-specified detection tasks which can be
supported by plausibility checks based on alternative channels within the system
context. One such example application, which shall be referenced in the rest of this
case study, is the application of Convolutional Neural Networks (CNNs) [11] to
detect objects such as pedestrians based on camera images as part of a collision
avoidance system for self-driving vehicles. CNNs are a class of feedforward neural
networks (NN) that consist of a large number of connected neurons – computational
units that calculate a weighted sum of their inputs and apply a nonlinear activation
function on this sum. The weights are determined by minimizing a loss function of
the network over a given set of training data (labelled images) and back-propagating
the respective error terms through the network. In this manner, CNNs allow a
classification annotated with a confidence level for each class and a localization
of an object within a given image (e.g., frames of a video).

Performance requirements must be defined and allocated to the machine learning
function in order to ensure that, at a system level, the safety goals are met.
The derivation of performance (Safety) requirements within the system context is
one of the key contributions to ensuring overall system safety and requires deep
domain and system knowledge. Deriving a suitable set of requirements for open
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context systems is a non-trivial task in itself, systematic approaches to systems
engineering are therefore indispensable. Incorrect functioning of the pedestrian
detection function can cause hazards such as “unnecessary emergency breaking or
steering” and “too late or no emergency braking when necessary.” These hazards
potentially violate the safety goal “do not harm pedestrians” of the automated
driving system. Thus, we consider the pedestrian detection function as safety
relevant.

Figure 7.10 summarizes the system-level context of a CNN-based object detec-
tion function. The function takes camera images as an input and operates in parallel
to traditional computer vision algorithms as well as alternative sensing channels
such as Radar. In this case study, pedestrian detection is divided into two subtasks:
(1) classification and (2) localization of the pedestrian within the image. The
specification of each task is derived from the driving context (e.g., ego speed,
distance to object) and system boundaries (e.g., braking distance). For example,
for the first subtask, the specification is derived from the need to detect persons
of a minimum height from a particular distance travelling with a maximum relative
velocity which results in a minimum amount of pixels inhabited by the object within
a single image frame from the camera. The following requirements need to be
defined in detail for each pedestrian class:

• Pedestrian of minimum height (A1 pixels) and of minimum width (A2 pixels)
are classified.

• Pedestrians are detected if B % of the person is concealed.
• There are less than C1 false positives per 1000 frames.
• There are less than C2 false negatives per 1000 frames.
• There are less than D1 misclassified detections.
• Vertical deviation less than E1 pixels to ground truth.
• Horizontal deviation less than E2 pixels to ground truth.

Fig. 7.10 System context of CNN-based object detection
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Such requirements provide a clear measure of performance for the machine
learning environment, but also imply a number of assumptions on the system
context. These assumptions might include that the braking distance and speed are
sufficient to react when detecting persons, for example, 100 m ahead on the planned
trajectory of the vehicle and that other system measures (e.g., alternative sensing
channels) are available to decrease the overall false-negative and false-positive rate
to a sufficiently safe level, etc. The following list contains typical assumptions that
are relevant for the assurance case:

• Assumptions on the operational profile of the system’s environment. For exam-
ple, the types and occurrence distribution of objects in the environment.

• Assumptions on attributes of inputs to the machine learning function. For
example, the camera resolution is sufficient to be able to detect persons from
a distance of 100 m with the required accuracy.

• Assumptions on the performance potential of machine learning. For example, the
chosen CNN approach has the intrinsic potential, given the right parameterization
and set of learning data to fulfil the allocated performance requirements.

Arguing safety when applying machine learning functions therefore not only
requires a demonstration that the performance requirements are met, especially
when evaluated on a specific data set that might be not representative for all driving
situations. Moreover, it is necessary to argue that requirements are appropriate given
the role of the function in the overall automated driving system and environmental
context and that all relevant assumptions have been explicitly defined and validated.

7.3.1.3 Causes of Functional Insufficiencies in Machine Learning

The inherent uncertainty associated with machine learning techniques coupled
with the open context environment lead to different causes of performance issues
compared to traditional, algorithmic, and control-theoretic approaches to vehicle
control. In order to argue the claim that functional insufficiencies within the machine
learning function (here: camera-based object detection, supervised training) are
minimized, it is important to understand the causes of such insufficiencies. As
interest in machine learning safety has grown, a number of authors [13, 14, 15]
have investigated different causes of performance limitations in machine learning
functions. Some examples applicable to the use case described here are described
below:

• Scalable oversight and distributional shift. One of the key differences in machine
learning techniques compared to algorithmic approaches is the lack of a detailed
specification of the target function. Instead, the functional specification can be
seen to be encoded within the set of training data. Therefore, if the training data
does not reflect the target operating context, then there is a strong likelihood that
the learned function will exhibit insufficiencies. Critical or ambiguous situations,
within which the system must react in a predictably safe manner, may occur
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rarely or may be so dangerous that they are not well represented in the training
data. Consider, for example, the situation where a small child enters the road
ahead between two parked vehicles. This leads to the effect that critical situations
remain undertrained in the final function (scalable oversight). In addition, the
system should continue to perform accurately even if the operational environment
differs from the training environment (distributional shift) [14]. This effectively
can be formulated as the robustness of the system to react in a shift of distribution
between its training and operational environment. Distributional shift will be
inevitable in most open context systems, as the environment constantly changes
and can adapt to the behavior of actors within the system. For example, car
drivers will adjust their behavior within an environment in which autonomous
vehicles are present, vehicle and pedestrian appearances change over time, etc.

• Robustness of the trained function. Machine learning techniques are typically
chosen for their ability to approximate target functions based on a finite set of
training data. This has advantages over procedural techniques where the function
to be implemented may be too complex to specify or implement algorithmically
due to an open context environment or due to the unstructured nature of the
input data. In other words, when presented with new data, the function will
predict a correct answer based on already observed input/output pairs. An often
cited problem associated with neural networks, is the possibility of adversarial
perturbations [16, 17, 18]. An adversarial perturbation is an input sample that is
similar (at least to the human eye) to other samples but that leads to a completely
different categorization with a high confidence value. It has been shown that
such examples can be automatically generated and used to “trick” the network.
Although it is still unclear to what extent adversarial perturbations could occur
naturally or whether they would be exploited for malicious purposes, from a
safety validation perspective, they are useful for demonstrating that features
can be learnt by the network and assigned an incorrect relevance. Therefore,
methods are required to minimize the probability of such behavior especially
in critical driving situations. One of the factors that is often attributed to this
class of problems is that the set of possible functions is exponentially larger than
those that can be represented through machine learning techniques. Therefore,
the likelihood that a machine learning technique would select an appropriate
approximation appears at first glance very unlikely. The authors in [19] argue,
however, that deep learning is nevertheless effective because the function to be
approximated is rooted within the physical universe and physics favors certain
classes of exceptionally simple probability distributions that deep learning is
uniquely suited to model. The challenge, therefore, is how to ensure that the
machine learning algorithms focus on those physical properties of the inputs
relevant to the target function without becoming distracted by irrelevant features.
In other words, act within the same hierarchical dimensions as the target function
[19].

• Differences between the training and execution platforms. As discussed above,
machine learning functions can be sensitive to subtle changes in the input data.
When using machine learning to represent a function that is embedded as part of
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a wider system as described here (see Fig. 7.10), the input to the neural network
will have typically been processed by a number of elements already [15], such as
image filters and buffering mechanisms. These elements may vary between the
training and operation environments leading to the trained function becoming
dependent on hidden features of the training environment not relevant in the
target system. In addition, typical reliability issues in the target hardware (e.g.,
random hardware failures) may not manifest themselves directly in obviously
erroneous outputs due to the data driven approach, where deviations of individual
parameters or calculations may have subtle but relevant effects on the overall
decision made by the neural network.

7.3.1.4 Sources of Evidence and Structuring the Assurance Case

The development of methods for demonstrating the performance of machine
learning functions to the level of integrity required by safety-critical systems is
currently an emerging field of research. It is expected that, analogous to traditional
algorithmic-based software approaches, a diverse set of complementary evidence
based on constructive measures, formal analysis, and test methods will be required
to make a robust assurance case. In this section, we discuss different categories of
potential evidence that can be used to support such an assurance case.

The choice of training data has a direct impact on accuracy of a machine
learning function. Criteria are therefore required in order to determine whether or
not the training data has the potential to lead to a sufficient level of performance,
including:

• Training data volume: A sufficient amount of training data is used to provide a
statistically relevant distribution of scenarios and to ensure a stabilization of a
strong coverage of weightings in the neural network.

• Coverage of known, critical scenarios: Domain experience based on well-
understood physical properties of the system and environment as well as previous
validation exercises ensures the identification of classes of scenarios that should
exhibit similar behavior in the function.

• Minimization of unknown, critical scenarios: Some critical attributes of the input
space may not be known during system design [20]. A combination of systematic
identification of equivalence classes in the training data and statistical coverage
during training and validation will therefore be essential to minimize the residual
risk of insufficiencies due to inadequate training data.

Key components of demonstrating the correctness of traditional safety-critical
software are introspective techniques that include manual code review, static
analysis, code coverage and formal verification. These techniques allow for an
argument to be formulated on the detailed algorithmic design and implementation
but cannot be easily transferred to the machine learning paradigms. Other arguments
must therefore be found that make use of knowledge of the internal behavior of the
neural networks.
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• Saliency maps: Based on the back propagation of results in the neural network,
saliency maps [21] highlight those portions of an image that have greatest
influence on classification results and can be used to provide a manual plausibility
check of results as well as to determine potential causes of failed tests.

• Explanations: Another line of research tries to generate natural language expla-
nations referring in human understandable terms to the discriminating contents
of an input image to explain which features were relevant for the classification
[22].

Due to the inherent restrictions of the applicability of white-box approaches to
the verification of the trained function, a strong emphasis will remain on testing
as a means to estimate the achieved performance of the trained function. Standard
approaches to testing machine learning functions involve reserving a proportion of
the data collected for training purposes to performing validation tests. These tests
naturally suffer from the same inadequacies as described above for the training data.
Several additional test approaches are therefore being developed.

• Synthetic data generation and search-based testing: Based on advances in
computer graphics realism as well as the possibility to generate data with specific
properties, the use of synthetically generated data may also play a role [23]
in the assurance case. Synthetic data can be used to generate huge numbers
of test cases, in particular to cover critical or rare situations, otherwise not
adequately represented in naturally occurring data. The use of synthetic data also
allows test cases to be automatically generated together with the corresponding
ground truth. This allows for search-based optimization approaches to be applied
to automatically generate (physically feasible) images which produce incorrect
classifications. However, the use of synthetic data also implies the introduction
of the additional assumption in the assurance case that the synthetic data would
lead to test results that are indeed representative of the operational environment.

• White-box coverage tests: At present, there is no clear consensus on which
stopping criteria to apply when testing machine learning functions. Due to the
fact that deep neural networks operate in a highly dimensional feature space,
choosing test cases based on a set of domain-specific equivalence classes is less
likely to be effective, as there is a high chance that these do not match the
feature dimensions learnt by the neural network. White-box criteria have been
proposed based on the concept of neuron coverage to determine the completeness
and effectiveness of the test data. This involves calculating the ratio of activated
neurons (activation values above a given threshold) to the total number of neurons
for a given set of input data [24, 25]. These approaches have also been combined
with search-based testing techniques to create variations of test data that achieve
coverage. These techniques are only applicable in combination with functional
criteria, and it is as yet unclear how effective such white-box techniques are at
discovering performance issues in the neural networks.

The objective of applying techniques such as those described above should not
only be to demonstrate that a given performance requirement has been met but



7 Intelligent and Connected Cyber-Physical Systems: A Perspective. . . 383

also to understand under which sets of conditions the function does not meet its
expectations. This information can be used to design redundancy concepts and run-
time measures. For example:

• Run-time plausibility checks: Plausibility checks on the outputs of the neural
network could involve tracking results over time (e.g., objects detected in one
frame should appear in contiguous frames, until out of view) or by comparing
against alternative sensor inputs (e.g., radar or LIDAR reflections). Such plau-
sibility checks may mitigate against inaccuracies that occur spontaneously for
individual frames.

• Run-time monitoring of assumptions: If certain assumptions regarding the opera-
tional distribution are determined to be critical, then they could also be monitored
during run-time. Discrepancies between the distribution of objects detected at
run-time and the assumptions could indicate either errors in the trained function
or that the system is operating within a context for which it was not adequately
trained. If such a situation is detected, appropriate actions for mitigating the effect
of the discrepancy can be initiated.

7.3.1.5 Summary

The strategy for arguing the safety of an automated driving system that makes
use of machine learning in its perception functions is summarized in Fig. 7.11. A
systematic analysis of the operating domain is required to identify classes of relevant
scenarios and environmental characteristics that could impact the performance of
the function. This includes explicitly stating assumptions made when selecting
the training data (e.g., typical size and appearance of pedestrians). Based on a
system-level understanding of the functional and performance requirements, a set
of specific requirements must be derived and allocated to the machine learning
function based on an understanding of the inherent performance potential given

Fig. 7.11 Summary of assurance approach for machine learning in automated driving
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the particular learning algorithm and its system context (e.g., camera resolution
and therefore distance at which pedestrians of a given size can be detected). The
allocation of performance requirements should also take into account the ability to
perform plausibility checks based on domain knowledge (e.g., maximum speed of
pedestrians) and alternative sensing channels (such as radar). The verification of
the function itself should consider attributes of the training data as well as diverse
analysis and test methods. Due to inherent robustness issues resulting from the high
dimensional input space and unpredictable manner in which features are learnt,
black-box, statistical testing evidence is not seen as a convincing argument on its
own. The more diverse the set of evidence that can be collected, the greater the
chance that all causes of potential deficiencies in the function are covered. Ideally,
verification and validation activities will provide insight into residual performance
limitations of the trained function to allow for system-level measures to be argued
that compensate these allowing for an overall safe system design.

Some of the approaches described in this case study have yet to be proven in
a series production context, and therefore their ability to predict the performance
of machine learning for safety-critical highly automated driving applications is as
yet unclear. Furthermore, it is expected that the safety arguments will need to be
application specific. For this reason it is crucial that a robust safety argument based
on a diverse set of complementary evidence is made. Such safety argumentation
approaches also need to be supported by further research to validate the effec-
tiveness of techniques at reducing and detecting various classes of insufficiencies.
An industry consensus must also be developed in order to identify strategies
and methodologies that would form the basis of future internationally recognized
development standards.

7.3.2 Assuring the Security and Robustness of Connected
Vehicle Applications

7.3.2.1 Introduction

In recent years, automotive makers, high-tech companies, startups, and even
governments are developing autonomous vehicles aggressively. At the same time,
connected vehicles (or Internet of Vehicles) are another spotlight of this recent
automotive technology revolution. In most cases, connectivity and autonomy can
and should work together and realize a good application. For example, as shown in
Fig. 7.12, at an intelligent intersection controlled by its intersection manager, the
approaching vehicles and the manager can communicate with each other so that
the vehicles can go through the intersection in a safe and much more efficient way
without traffic lights. Here, “connectivity” is necessary to provide environmental
information (e.g., the coming vehicles blocked by buildings and obstacles) that the
sensors on a single vehicle cannot sense, while “autonomy” is necessary to provide
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Fig. 7.12 An intelligent
intersection with connected
autonomous vehicles can
achieve safe and efficient
traffic control without traffic
lights

precise control (e.g., entering the intersection after 5 seconds) that human drivers
cannot achieve.

However, there are some fundamental concerns of connected autonomous vehi-
cles as follows:

• Robustness of connectivity. The connectivity is based on wireless communication
which may suffer message corruption and loss due to the open and uncontrolled
communication environment.

• Robustness of autonomy. The autonomy is based on many machine learning
mechanisms whose models do not provide guarantees, especially when the
corresponding training data is missing. This has also been discussed in the first
case study.

• Security of connectivity. The wireless communication is also vulnerable to
security attacks such as spoofing and jamming.

• Security of autonomy. Those machine learning mechanisms are also vulnerable
to malicious security attacks such as evasion attacks (e.g., misleading classifiers)
and poisoning attacks (e.g., providing misleading training data). Without human
drivers, those attacks can lead to catastrophic incidents.

• System integration. There are many subsystems in a connected autonomous vehi-
cle. However, the resource, such as computational capability and communication
bandwidth, on a connected autonomous vehicle is usually limited, and there are
tight and hard real-time deadlines. Any solution or subsystem for robustness
or security must be compatible with existing systems without violating system
requirements.
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It should be emphasized that a non-malicious fault or error (the first and second
concerns) and a security attack (the third and fourth concerns) are different. The
source of a non-malicious fault or error can usually be measured by probability. In
contrast, a security attack is malicious, and it is possible to attack the weakest part
of a system.

In this case study, we will introduce the security challenges in connected vehicle
applications and discuss three important topics: key management system, intrusion
detection system, and system integration.

7.3.2.2 Security Challenges in Connected Vehicle Applications

As news reported that some cases that a vehicle can be successfully hacked and then
patched, security is a rising concern for automotive systems. However, there are still
many open questions, especially for connected autonomous vehicles (the security
of a single vehicle has been well studied [26, 27, 28]). This is because, inevitably,
autonomous vehicles will rely on decisions of vehicles themselves, and connected
vehicles will make decisions based on external information, so totally separating
internal and external networks cannot match the need. Furthermore, there is still a
gap for connected autonomous vehicles to be realized, and many applications are
still under development, which needs us to address security in advance. Last but not
least, traditional automotive design does not have security in mind, making system
integration more difficult and thus unresolved at this point.

There are many different kinds of security attacks. In this case study, we abstract
them to outsider attacks and insider attacks. An outsider attack is from an entity
which has not been authenticated, while an insider attack is from an entity which
has been authenticated but compromised. Some examples of insider attacks include
a tempered sensor, a discovered hardware or software implementation flaw, a leaked
security key, or a legitimate but malicious user. For outsider protection, a key
management system such as a Public Key Infrastructure (PKI) is the target system
in this chapter. For insider protection, an intrusion detection system is the target
system, as they focus on the information legitimacy which cannot be verified by a
key management system.

7.3.2.3 Key Management System

A key management system is fundamental to protection against outsider attacks.
The proof-of-concept of Secure Credential Management System (SCMS) [29] has
been proposed by the United States Department of Transportation (USDOT) in
recent years to establish trust between connected vehicles and vehicular infras-
tructures and then support security and privacy for vehicular networks. Based on
traditional PKIs, the goal of SCMS is to provide scalability to support millions of
vehicles and trade-offs between security, privacy, and efficiency. A simplified SCMS
architecture design is shown in Fig. 7.13. There are several Certificate Authorities
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Fig. 7.13 A simplified SCMS architecture design [29]

(CAs) establishing a chain of trust and issuing certificates with different lifetime
validity to form the basis of secure communication between connected vehicles and
vehicular infrastructure. Onboard Equipment (OBE), Road Side Entity (RSE), and
Aftermarket Safety Device (ASD) must be registered in the system and must obtain
certificates. Then message exchange can be protected by public and private keys. As
a proof-of-concept system, there are still some detailed design issues which should
be addressed. Please refer to one previous publication for those issues [30].

It should be mentioned that a key management system should be integrated with
the underlying communication protocols. There are two main approaches to realize
the connectivity. One is based on Dedicated Short-Range Communications (DSRC),
and the other one is based on cellular networks. The DSRC has a longer history, and
many field tests have been done by automotive makers. The DSRC provides security
services at the middle layers (network layer, transport layer, and message sublayer)
[31]. Message authentication is supported by using the Elliptic Curve Digital
Signature Algorithm (ECDSA), which is an asymmetric cryptographic algorithm.
When a vehicle intends to send a message, it signs the message with its private key
and sends the message with its signature and certificate digest. A vehicle receiving
the message then uses the public key corresponding to the private key to verify
the message. The generation time of a message and the location of a vehicle are
optionally included in a signed message to protect against replay attacks. Besides
DSRC, many automotive makers and high-tech companies have also formed the 5G
Automotive Association (5GAA). It is necessary to further investigate its security
services.

7.3.2.4 Intrusion Detection System

Besides a key management system which can detect abnormal security key usage
(probably by outsider attackers), an intrusion detection system is needed to monitor
systems, networks, and/or information between vehicles and infrastructures. We
expect an architecture where cloud servers and edge servers can also install intrusion
detection systems, as shown in Fig. 7.14.



388 W. Chang et al.

Fig. 7.14 The cloud server and the edge servers can also install intrusion detection systems

Some initial solutions to intrusion detection for Cooperative Adaptive Cruise
Control (CACC) have been proposed [32]. CACC is more advanced than Cruise
Control (CC) and Adaptive Cruise Control (ACC). In a platoon scenario, each
vehicle collects the information of positions of vehicles (or gaps between vehicles),
velocities of vehicles, and accelerations of vehicles. Usually, radars and LIDARs are
used for sensing velocities and gaps, and accelerations are provided by connectivity.
CACC controls the vehicle’s behavior based on the collected information and
achieves better vehicle-following than CC and ACC due to the additional accel-
eration information. In the previous work [32], it is assumed that fake information
(no matter what the source is) of position, velocity, and acceleration affects the
platoon, and three types of intrusion detection systems based on the rules of
physics, principal component analysis, and hidden Markov model, respectively,
are proposed to detect the fake information. It is observed that there is trade-
off between detection capability and computational efficiency, and thus different
intrusion detection systems have different appropriate locations, such as vehicles
themselves, edge servers (roadside units), and cloud servers.

There are some limitations for a single intrusion detection system. As mentioned
above, the limited computational resource may restrict the detection capability, and
different intrusion detection systems have different strengths against different types
of intruders (the analysis result can be a probabilistic estimation of an intruder).
One potential solution is a consensus algorithm to combine the analysis results from
different intrusion detection systems and achieve a stronger “cooperative” intrusion
detection system. It should be mentioned that a consensus algorithm has a more
general usage, and it has been well studied in the domain of distributed systems
[33, 34, 35]. For connected autonomous vehicles, the challenges come from the
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unstable connection topology (as vehicles are moving) and strict timing constraints.
However, connected autonomous vehicles have the feature that it is easier to identify
neighbors, which can support secure consensus algorithms.

7.3.2.5 System Integration

With a key management system, we can sign and verify messages and much
increase the difficulty for outsider to perform attacks. However, the resource on a
vehicle is usually limited, and there are tight and hard real-time deadlines, implying
that signing and verifying all messages are probably not applicable. One previous
piece of work explored the design space of receiving group assignment within a
single vehicle [36]. The receiving group assignment affects not only the number
of Message Authentication Codes (MACs) transmitted on the network but also the
level of security threats between nodes in the same receiving group. This concept
can be generalized to partial signing and verification without violating security and
other system constraints. This is doable as most messages in automotive systems are
periodic, so a few missing, corrupted, or fake messages may not lead to dangerous
states. In some cases, this can be taken care of by a proper controller design,
following the discussion in the beginning of this chapter.

In a more formal way, the problem of system integration can be formulated by the
Contact-Based Design (CBD) methodology [37, 38] and the Platform-Based Design
(PBD) paradigm [39]. The behavior of different subsystems and components,
including security mechanisms, can be defined by property specification languages,
e.g., Linear Temporal Logic (LTL) and its extensions. Then, formal verification with
assume-guarantee contracts can be applied to guarantee the correctness of system
design. Given that formal verification may have limited efficiency and scalability,
one alternative is the run-time verification which serves a similar role to an intrusion
detection system. On the other hand, the previous work applied the PBD paradigm to
security-aware system design [36]. As shown in Fig. 7.15, the application space and
the architecture space are abstracted (otherwise, they are too complicated and too
specific to be synthesized or analyzed) to models which keep relevant features but
remove irrelevant details. Similarly, security mechanisms also need to be abstracted
and fed into the mapping process to see if they can be integrated into the application
and the architecture. Based on the mapping process, we can select appropriate
security mechanisms, satisfy different kinds of design constraints, and guarantee
the correctness of system design.

7.3.2.6 Summary

Security is a rising concern for automotive systems. To address this concern, security
protection is needed at different layers including external networks (between
vehicles and infrastructures), gateways, in-vehicular networks, and components. In
this case study, we focused on the emerging connected autonomous vehicles and
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Fig. 7.15 Security-aware system design by the PBD paradigm [36]

abstract attacks to outsider attacks and insider attacks. To protect against them, we
introduced the key management system and the intrusion detection systems and
pointed out the need of system integration due to the limited resource and strict
system constraints. We admit that they are just part of the big picture of automotive
security, but we believe that they can provide important insights to secure connected
autonomous vehicles and even other IoT systems.

7.4 Concluding Remarks

CPS are fast developing, demanding a new design methodology that unifies all the
layers, aiming for safety, security, robustness, and resource efficiency. This chapter
gives the technical background on the cyber components, physical components,
and their interactions. A perspective from CAVs is taken with two case studies on
assuring the safety of machine-learning-based perception and assuring the security
and robustness, respectively.

Research and development along the direction of CPS require multidisciplinary
expertise. There are still many challenges that need to be addressed. For instance,
in the perception function of autonomous systems, machine learning algorithms are
dominating in the performance. However, they have obvious drawbacks. First, they
are vulnerable to adversarial attacks. Second, they are hard to analyze and provide
guarantee.
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Chapter 8
Distributed Ledger Technology

Xing Liu, Bahar Farahani, and Farshad Firouzi

The chains of habit are too weak to be felt until they are too
strong to be broken.

Samuel Johnson
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8.1 Introduction to Distributed Ledger Technology and IoT

8.1.1 What Is a Distributed Ledger?

Distributed ledger technology is a general term that is used to describe technologies
for the storage, distribution, and exchange of data between users over private or
public distributed computer networks. Essentially, a distributed ledger is a database
that is spread and stored over multiple computers located at physically different
locations. Each of such computers is frequently referred to as a node. A distributed
ledger can also be considered as a common datasheet stored on multiple distributed
nodes.

Figure 8.1 shows a centralized, a decentralized, and a distributed system.
Distributed ledger technology is based on distributed systems.

(a) (b) (c)

Fig. 8.1 (a) Centralized, (b) decentralized, and (c) distributed system



8 Distributed Ledger Technology 395

Distributed Ledger
Technology (DLT) 

Directed Acyclic
Graph (DAG) 

Blockchain Hybrid DLT

Fig. 8.2 Three different implementations of distributed ledger technology

Distributed ledger technologies can also be classified into three categories based
on the way the technology is implemented. These include blockchain, DAG, and
hybrid DLT, as shown in Fig. 8.2.

8.1.2 Blockchain

Blockchain is the underlying technology of Bitcoin. It has become widely known
since 2008 because of the publication of a paper titled Bitcoin: A Peer to Peer
Electronic Cash System [1] which was authored by perhaps a group of people
pseudonymously named Satoshi Nakamoto.

Although it was not until 2008 that blockchain became well known to the world,
research about digital documents can be dated back to 1991 when Haber and Stor-
netta published their research paper titled How to Time-Stamp a Digital Document
[2]. The paper discussed how to use a computer server to timestamp and link digital
documents as a chain with pointers attached to the data in each document. Any
change in the data would render the pointers invalid. This guaranteed that data
stored could not be tampered after the server had signed the documents. The paper
also coined key concepts and terms such as timestamping, hashing, signature, data
linkage, and distributed trust. These concepts are the cornerstone concepts and terms
of modern blockchains.

The idea of digital currency can be traced even further back than blockchain.
In 1982, David Chaum published his paper titled Blind Signatures [3]. This paper
led to the creation of perhaps the first digital currency in the world called eCash
which was released in 1993. In 1996, Douglas Jackson created a gold-backed digital
currency called e-gold [4]. In 1998, a digital currency called b-money was proposed
by a computer scientist named Wei Dai [5]. After that, Adam Back came up with
his “hashcash” in 2002 [6] which made the first implementation of Proof-of-Work.
About 5 years before 2008 when the Bitcoin paper was published, a decentralized
currency system powered by Proof-of-Work (PoW) was created by the team led by
Emir Sin Gün who published their paper in 2003 [7].
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Since the publication of Satoshi Nakamoto’s Bitcoin paper, an overwhelming
amount of attention has been paid to Bitcoin and other similar digital currencies,
together with the technology used in the currency transfer systems. The enthusiasm
was due to the claimed advantages provided by Bitcoin: there is no need for a
middle man in the transaction process so trustless parties can do business with each
other; there is no central point of failure so system reliability is greatly enhanced;
there is no double-spending so fraud can be avoided; transaction history is traceable
so transactions can be verified; financial benefits are provided to participants and
they are rewarded for their contribution to the operation of the Bitcoin system, for
example, by mining blocks. In recent years, numerous Bitcoin-mining data centers
have been built around the world to make profits. Due to its enhanced security,
privacy, speed, and reduced cost, some organizations have started accepting Bitcoin
as a means of payment, such as tuition fees. Up to date, people have been primarily
focusing on the financial aspects of Bitcoin.

However, since 2014, greater attention has been paid to the technology which
Bitcoin is based on: blockchain. People have realized that blockchain can be
separated from Bitcoin and the technology can be beneficial to other areas where
data security and privacy are of prime importance. Quick surveys of the literature
have revealed that blockchain applications can be found in virtually every aspect
of our lives nowadays. For this reason, the business value of blockchain has been
predicted to be multibillion dollars by 2030.

8.1.3 Types of Blockchain

Blockchains are of different types. First of all, they can be permissionless or
permissioned.

8.1.3.1 Permissionless Blockchains

Permissionless blockchains are public, open source, and based on the Proof-of-
Work consensus algorithm. Anybody can participate in a permissionless blockchain
without obtaining approval beforehand. The person can simply download the
required software program and start running it on his or her own computer. The
person can send transactions to the blockchain and these transactions will be
included in the blockchain only if they are valid. Transactions are transparent so
that everybody on the blockchain can view them, although the transactions are
anonymous. In addition, anybody can participate in validating transactions before
they are added to the blockchain. Well-known examples of public blockchains are
Bitcoin and Ethereum.
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8.1.3.2 Permissioned Blockchains

Blockchains can be permissioned as well. Permissioned blockchains can be further
divided into two types: federated and private.

• Federated – Federated blockchains are usually operated by a special group of
participants. They do not allow the arbitrary participant to validate transactions.
Only preselected participants are involved in the process and are responsible for
the validity of transactions. In federated blockchains, the public can be granted
the right to read the transactions, but only the selected participants can write the
transactions. Examples of federated blockchains are R3 which is for banking and
EWF which is designed to be used in the energy sector.

• Private: A private blockchain is typically centralized to one organization and
only this organization can validate transactions. The public can be allowed to
read the transactions, or only some selected parties can read the transactions.
Multichain is an example of private blockchains.

The difference between a federated blockchain and a private blockchain is
the number of organizations that operate the blockchain. A private blockchain
is operated by one organization. However, a federated blockchain is operated by
multiple organizations, although federated blockchains can still be considered to be
private blockchains.

Private and public blockchains differ in the execution of consensus algorithms,
maintenance of the common ledger, and the authorization to join to the blockchain
network. Table 8.1 shows the differences between the various types of blockchains.

Blockchains use different consensus algorithms which make blockchains dif-
ferent from traditional distributed database technologies. Consensus algorithms are
essentially about decision-making in a group and how the decisions can be made for
the benefit of the majority of group members. Well-known consensus algorithms are
Proof-of-Work (PoW) and Proof-of-Stake (PoS).

8.1.4 Directed Acyclic Graph (DAG)

Similar to a blockchain, a DAG can also store data transactions. In a DAG, a
transaction is represented by a node and is linked to one or several other transactions.

Table 8.1 Comparison of different types of blockchains

Public Private Federated

Permission type Permissionless Permissioned Permissioned
Reading Anybody Restricted Restricted
Writing Anybody Restricted Restricted
Validation Anybody Limited to one Limited to several
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However, the links are directed because they point from earlier transactions to
newer transactions, in a way called topological ordering. A DAG does not allow
loops. That means, a node is not allowed to traverse back to itself by following the
directed links. In this sense, a DAG is acyclic. Essentially, from the standing point of
computer science, a DAG is a graph with transactions being the nodes of the graph
and the edges which have directions.

Unlike blockchains, DAGs do not have blocks. There is no mining in DAGs.
Transactions provide validation for each other but a transaction cannot validate
itself. A new transaction is required to validate one or more previous transactions
when it joins the DAG. Every new transaction refers to its parent transactions, signs
their hashes, and includes the hashes in the new transaction.

8.1.5 Hybrid DLTs Based on Blockchains and DAGs

Blockchains and DAGs can be combined to create hybrid DLTs. An example of
hybrid DLTs is Bexam [8]. Bexam is a platform that leverages blockchain and DAG
technologies with greatly improved speed and scalability.

Bexam uses a flexible chain structure together with a node hierarchy so that it has
the security of a blockchain and the speed of a DAG with approximately 0.2 seconds
per block and about 40 million transactions per second. It is highly scalable because
it combines the concepts of DAG. Bexam uses a new consensus algorithm called
Proof-of-Rounds (PoR) and a KYC (Know Your Customer) verification process to
identify and prevent malicious actions. The electric power and computing resource
requirements of Bexam are also very low.

In addition, a token technology is used in Bexam for its transactions. It is
convenient to integrate Bexam into existing enterprise infrastructures.

8.1.6 Internet of Things (IoT)

Internet of Things is part of the Industry 4.0 revolution. IoT is a research and
industrial focus in recent years.

Essentially, IoT is all about having smart things which are equipped with sensors
and actuators collaborating over the Internet. IoT systems currently in use have a
centralized architecture where data is stored in the cloud. Cloud is a central place
with databases and services.

The IoT ecosystem is very complex. The complexity is due to the vast number
of devices connected, the types of wired and wireless communication networks
involved, and the varieties of software programs used. This complexity makes the
IoT ecosystem vulnerable and susceptible to attacks.

The current IoT ecosystem was developed largely based on available Internet
technologies in the past and did not have a systematically designed secure structure
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in the first place. Therefore, people are concerned with the security of current IoT
systems.

There is a strong belief that blockchain is the solution for IoT security due to its
intrinsic advantages such as distributed data storage and immutability. Blockchain
may be able to improve the overall security of the IoT ecosystem.

8.2 Benefits of DLTs

8.2.1 Blockchain Benefits

A blockchain can be considered as a system that stores an identical copy of a
spreadsheet called ledger on multiple distributed computers. The system frequently
has no central authority. Transactions submitted by participants are validated and
recorded in the ledger which is accessible to the community of participants. The
transactions are cryptographically signed and are then assembled into blocks. The
blocks are linked one after another and are added to the blockchain by consensus
mechanisms. Transactions are immune to changes after they are published. Blocks
are replicated across all computers of the distributed system so that they all hold the
same ledger.

The way a blockchain is created and maintained leads to numerous benefits
in comparison to traditional databases. Prominent features of blockchains such as
decentralization and consensus are the intrinsic attributes of blockchain that give
rise to benefits which are essentially out of the box:

1. First, blockchains allow trustless participants to interact with each other.
No trusted third parties are required to serve as intermediaries and validate
transactions. It is the consensus algorithms that validate the transactions. A
blockchain can maintain itself by handling conflicts automatically and creating
forks if necessary, so that the ledger is always in good standing.

2. Blockchains also make data storage more reliable. This is again due to the
elimination of third-party agents which reduces the risk of unauthorized access
and unwanted modification of stored data. The ledger is not stored in a single
location or managed by any single company. The cryptographic linking between
blocks ensures data unchangeability. Blockchains are robust. Transactions are
processed by multiple participating nodes; therefore, no single node is critical to
the entire database. No central point can be exploited so the system is much better
against hacking and fraud. This equips blockchains with high fault tolerance
capabilities. Blockchains are immune to malicious modifications. It is impossible
to change it back once data has been written into the blockchain. No change of
history is allowed either. Third parties cannot make any changes to the system as
well.

3. Transactions stored in blockchains are permanent. Therefore, they are verifiable
and auditable. Such verifications can be applied not only to data but also to
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interactions and message exchanges among participants. Every transaction is
tagged with a signature and a timestamp so that data ownership is auditable and
traceable. Transactions can be traced back to its origin. Transaction history can
be used to verify data authenticity and prevent fraud. This eliminates backdoor
transactions and possible disputes and prevents data tampering.

4. Transparency is another benefit of blockchain technology. In a public blockchain,
transactions, once they are made, are accurate and consistent among participants.
All changes to a public blockchain are accessible to all participants. Users have
full visibility of transaction information in the system. Anyone can verify the
correctness of the system. Using a single public ledger avoids the complications
of multiple ledgers. Transparency increases trust among participants too. This is
particularly important in scenarios such as fair disbursement of funds or benefits.
Everyone can maintain a copy of the ledger and verify its correctness. This
provides resiliency and trust among participants.

5. Decentralization in blockchains leads to high availability. A blockchain is based
on a large number of nodes working in a peer-to-peer manner. Data is replicated
and updated on all nodes. Being inaccessible to a single node will not cause the
system to stop functioning. Therefore, a system based on blockchains is highly
available.

6. Blockchains have enhanced security and integrity over traditional database
systems. Transactions will not be recorded before they are agreed upon by
participants. Approved transactions are encrypted and linked as a chain. Together
with the distributed copies, a blockchain is very difficult for hackers to break.

7. Blockchains can lead to reduced transaction costs. Transactions can be com-
pleted in a peer-to-peer or business-to-business manner. No third-party interme-
diaries are required. This avoids the cost induced by using a third party such as a
bank. Cost that can be saved includes overhead, governance, auditing, and other
fees.

8. Blockchains make transactions faster. In a blockchain, transaction time can be
even reduced to just a few minutes. However, current interbank transfers and final
settlement could take days. Transaction time is extremely important for industries
such as transportation and energy. Time reduction could potentially save billions
of dollars. The situation is similar in the financial industry. Blockchains can save
time because they eliminate verification, reconciliation, and clearance which are
usually lengthy processes. The reason is that a single version of data already
agreed upon by participating financial institutions is available on the shared
ledger of the blockchain.

9. The other benefit of blockchains is smart contracts. A blockchain such as
Ethereum not only stores data, but also provides a programming logic called
smart contracts. Smart contracts can execute business logic. They are programs
that execute agreements and manage the transfers of digital assets between
participants under specified conditions in a blockchain. They can be considered
a digital version of traditional contracts written in a programming language.
Because smart contracts are deployed and executed on blockchains, they are
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therefore secured as well. The execution is also transparent, immutable, and
decentralized. Essentially, smart contracts make program execution secured.

8.2.2 DAG Benefits

From computer science point of view, a DAG is a graph with directed edges and
no cycles. It is a treelike data structure that is suitable for storing, organizing, and
finding transactions.

As a distributed ledger technology, DAG has advantages over other technologies.
For example, DAG does not have blocks and miners. Validation is done by the
transactions themselves. New transactions validate old transactions in a distributed
manner when they are added to the DAG. This greatly increases the speed of DAG –
hundreds of thousands of transactions can be processed in a DAG in a second.

Distributed validation between transactions leads to much-improved scalability
as well. The newer transactions are added to DAG, the more transactions that are
available for validation, the faster the validation is done. In theory, DAG has infinite
scalability. Because DAG does not have blocks and miners, there is no mining fee
associated with DAG. This makes DAG an appropriate technology for the Internet
of Things which has a large number of transactions between sensors and devices,
and it is not logical and realistic to charge fees.

DAG is also easily made quantum-proof. That is, DAG is safe to use even when
quantum computers become available in the future, because DAG does not rely on
cryptography which could be potentially broken by quantum computers. Algorithms
have been implemented in DAG to make DAG quantum-resistant. An example of
DAG is IOTA technology which is already believed to be resistant against quantum
computing attacks. However, DAG should have a substantial amount of traffic before
it can start working. Greatly reduced traffic will make DAG vulnerable to attacks.
Solutions based on coordinators have been suggested to get a DAG system up and
running. The effectiveness of the suggestion of using coordinators is still under
debate.

It should be noted that there are a number of differences between DAG and
blockchains. First, DAG is blockless. In DAG, transactions validate each other
and transactions are not assembled into blocks. On the other hand, blockchains
assemble transactions into blocks. Secondly, DAG is more scalable. In fact, DAG
is infinitely scalable in theory. This means that the performance of DAG will
not deteriorate as new transactions are added to the graph. On the contrary,
blockchains will experience slowdown when the blockchain gets longer. DAG does
not require mining as well. Therefore, DAG uses much less electric power. However,
blockchains based on PoW use a lot of electric power.

Another difference is that DAG does not charge fees whereas blockchains
do. Furthermore, DAG is much faster because it does not require mining and
validation is done in parallel and not in a chained manner. Finally, DAG is quantum-
proof. Blockchains are susceptible to quantum attacks because they are based on
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cryptography and consensus algorithms which are breakable by quantum computers.
Table 8.2 lists the differences between DAG and blockchains.

8.3 How Blockchain Works

The functionality of a blockchain in Bitcoin is to facilitate money transactions and
the recording of the transactions. A slightly simplified microscopic operation of a
blockchain can be illustrated by looking at the process of how a transaction is started
and settled, as shown in the flowchart in Fig. 8.3.

In general, a successful transaction has to go through a sequence of steps, as
shown in the following:

1. Step 1: Form a transaction. In this step, sender information, receiver information,
sender’s public key, amount of fund to transfer, receiver’s public key, and timing
information are required.

2. Step 2: Form a block. In this step, the previous block hash, the current block
containing the transaction in Step 1, and other transactions are included.

3. Step 3: The block is broadcasted to the entire network.
4. Step 4: Nodes on the network validate the block.
5. Step 5: The block is added to the blockchain.
6. Step 6: Fund transfer is completed.

Table 8.2 Comparing DAG
and blockchain

DAG Blockchain

Using block No Yes
Scalability Good Poor
Mining No Yes (for PoW)
Fees No Yes
Speed Fast Slow
Quantum-proof Yes No

Transaction: user A
wants to send

funds to user B 

Transaction is
added to a
block

The block is
broadcasted to
entire network 

Nodes on the
network validate

the block

The block is
added to the
blockchain 

Funds are transferred
from user A
to user B

Fig. 8.3 Operation of a blockchain
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8.3.1 Transaction, Block, Ledger, and Blockchain

There has been some confusion about the concept of the blockchain and the ledger
that stores the data for a blockchain. To be precise, a blockchain refers to the system
of nodes that make a blockchain operational, whereas the term ledger is the database
stored in the nodes. However, the term ledger is used for accurate descriptions. A
ledger is a data structure that is replicated and shared among distributed nodes of the
blockchain network. A ledger can be considered as a chain of blocks. Each block in
the chain carries a list of transactions and other data. A transaction has a transaction
ID, an input which contains the type of the asset to be transferred and the amount
and signed with the sender’s public key, and an output which includes the type of
asset to be received and the amount and signed with the receiver’s public key. Figure
8.4 shows an example of a transaction which is simplified for the convenience of
description.

After being validated, transactions are assembled into blocks. A block consists
of three parts: the block header, the hash of the block header, and the transactions
inside the block. The block header is made in a special way. It contains the hash
of the header of the previous block, a timestamp when this block is created, and a
Merkle root hash which is derived from the hashes of the transactions of this block.
A Merkle root hash is the hash of all the hashes of all the transactions that are
part of a block. The block also contains two other important parameters, namely,
nonce (which stands for number used only once) and difficulty target. These two
parameters are what make mining (in a Power-of-Work blockchain) tick. The details
of the mining process will be discussed in the next section. Figure 8.5 shows the
details of a block (the shaded area is the block header).

Input Output
Transaction ID Type, Amount, Sender Key Type, Amount, Receiver

Key

Fig. 8.4 A transaction

Fig. 8.5 A block
Version

Hash of Header of Previous Block 

Timestamp

Difficulty Target

Nonce

Merkle Root Hash

Hash of Header of This Block

Transactions
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Other data
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Fig. 8.6 A ledger

Node

NodeNode

Ledge

Ledge Ledge

Ledge

Node

Fig. 8.7 A blockchain as a distributed system of nodes

The very first block of a blockchain is called genesis block which is common to
all nodes in the blockchain and has no parent. The hash of each block is obtained
cryptographically and is the block’s identity. Each block contains the hash of the
previous block; this way a chain of blocks is established. This chain of blocks is the
ledger which is frequently referred to as blockchain. Figure 8.6 depicts a ledger.

It is the ledger shown in Fig. 8.6 that is stored in multiple networked distributed
computers. These computers are called nodes and they form the blockchain. So, it
is the ledger that is stored in the nodes of a blockchain. The nodes communicate via
wired or wireless communication networks in a peer-to-peer manner. A blockchain
is shown in Fig. 8.7.

8.3.2 Transaction Validation and Block Mining

A user who wants to interact with a blockchain must do it through a node, although
several users can share the same node. Through this node, a user can sign and initiate
transactions. Every transaction is signed with the user’s private key and can be
accessed through the user’s public key, which essentially serves as the “address”
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of the transaction. Transactions are broadcasted by a user’s node to its immediate
neighboring nodes.

The neighboring nodes validate each transaction and propagate it further along
possible pathways. All nodes of the blockchain will have this valid transaction after
some time. The neighboring nodes will block and discard transactions that are not
invalid.

After a given time period, a node will have received a number of valid
transactions. The node will then have the transactions organized in order, have them
validated and packed into a timestamped candidate block, find a nonce value to
create a hash which satisfies the difficulty level set by the blockchain, and have the
candidate block broadcasted to all other nodes in the blockchain for verification.

The nodes in the blockchain all participate in verifying the validity of the
candidate block. They make sure that the format of the block is correct. They make
sure that each transaction in the block is valid and is signed by the suitable parties.
They make sure that all hashes in the new block were computed correctly. They also
make sure that the candidate block references to the hash of an appropriate previous
block in the ledger. If the result of the verification process turns out to be positive,
every node will add the block to its own copy of the ledger. If the candidate block is
not valid, then it will be discarded. This process will repeat indefinitely as long as
the computer network is not down for any reason.

A critically important question is how a node should decide if a transaction
is valid. First of all, a node needs to ensure that the signatures (hashes) of the
sender and the receiver are valid. That is, the sender and receiver are both legitimate
registered participants of the blockchain and they do have valid “accounts” in the
blockchain. The amount to be sent should also be valid in terms of the type of
assets and minimum allowed value based on the kind of applications. A node also
must validate if the sender has sufficient unspent funds. Figure 8.8 shows how a
transaction is validated.

However, the above validation process assumes that every node can be trusted,
which is usually not the case for a public blockchain. A public blockchain usually
consists of a group of non-trusting participants. Therefore, a set of rules are required
for the nodes to agree on the validity of the transactions. Because the transactions are
assembled into blocks, blocks need to be validated after the transaction validation is
carried out. In blockchains, consensus algorithms are employed to validate blocks.
The opinion of the majority of the nodes on the blockchain will decide the validity
of the blocks.

The problem is that a bad user can create multiple participant identities via one
specific node and can therefore potentially control the entire blockchain. In order to
avoid such a problem, what Bitcoin does is making the finding of a new valid block
very computationally expensive so that a bad node is not able to beat other nodes
collectively on the blockchain because of a single node’s limited computing power.
This is the consensus mechanism called Power-of-Work. Based on this mechanism,
malicious blocks from a bad node are unlikely to be accepted because it is up to the
majority of the nodes on the blockchain to approve the validity of a candidate block.



406 X. Liu et al.

Y
Y

Invalid

Invalid

Y

Sender

signature

valid?

Receiver

signature

valid?

Amount not less

than

allowed min?

Sender has suffi-

cient unspent

funds?

Transaction

Valid transaction

Invalid

Invalid

Fig. 8.8 Validate a transaction

In a Power-of-Work blockchain, any node can make efforts by conducting mining
to find and recommend a new block as the next valid block for the blockchain.

During mining, a node strives to find a suitable random number called nonce
(“number only used once”) which is embedded in the block’s header (see Fig. 8.9).
A valid nonce is a value that makes the hash (e.g., SHA-256 for Bitcoin mining) of
a block header have the required number of leading zeros, as set by the difficulty
parameter of the blockchain. The number of leading zeroes is called the difficulty
which is set by the blockchain and can be adjusted over time. In other words,
difficulty is a measure of how difficult it is to find a suitable hash based on the
given difficulty target. Note that in blockchain, usually the network automatically
adjusts the difficulty level for mining over time. The validity of a new block can be
easily verified by other nodes because they only need to validate the hash using the
nonce value already found by the node that is recommending the new block. This
takes only a very short amount of time because it involves only the calculation of
one hashing algorithm. Other nodes will adapt and add the validated recommended
block to its own copy of the ledger. In general, nodes will validate and adopt
broadcasted recommended blocks rather than trying to mine its own. It is better
to validate and adopt an existing recommended block and start mining the next
recommended block because this at least gives the node the chance of winning a
reward for successfully mining the next valid block. The rationale of this strategy is
because of the way a blockchain resolves conflicts: only the block which gives the
longest chain will be adopted.
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Therefore, in general, the nodes will validate and adopt the first recommended
block broadcasted over the blockchain, and then they will all start mining the next
recommended block. If there are two nodes that publish a valid candidate block
at the same time, conflict occurs because both candidate blocks will be added to
the ledgers on different nodes. It is very likely that these blocks contain different
transactions; therefore, the last blocks in the ledgers are not the same. If this
happens, a fork is created. The strategy to resolve this conflict is to wait for a new
block to be added. Then all nodes will adopt the ledger that has the longest chain
because it carries the greatest amount of work in a Proof-of-Work-based blockchain.
This way consensus is reached if a block should be in the ledger. The conflict (fork)
scenario is shown in Fig. 8.10 where blocks B1 and B2 are both valid and have been
added to the ledger, but they may contain different transactions inside. Figure 8.11
shows how a conflict is resolved – the longer chain is adopted as a valid ledger.
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8.3.3 Smart Contracts

The second generation of blockchains such as Ethereum [9] uses smart contracts.
Smart contracts are executable computer code stored on a blockchain. Similar
to transactions, smart contract code is transparent and can be examined by all
participants of the blockchain. Smart contracts are accessed via their addresses and
users can activate them by sending them transactions. In an Ethereum blockchain,
smart contracts run on every node of the blockchain which has a virtual machine
running. The smart contracts execute under the virtual machine.

To a large extent, smart contracts are very similar to stored procedures in database
management systems. Functions in smart contracts are defined based on business
rules. Participants can initiate transactions to call functions in smart contracts along
with the required data. Smart contracts are deterministic and the same input to a
smart contract always generates the same output. Smart contracts can call each other
as well. The code of a smart contract can be examined by participants so that they
can predict the outcome before they commit the contract. The outcomes of executing
smart contracts can be verified by participants too. Smart contracts help prevent
possible contract disputes.

8.3.4 Consensus Algorithms

When designing or adopting blockchains, several factors need to be considered.
The first factor to consider is who can access the blockchain. This depends on
whether the blockchain will be openly accessible by the public or not. If it is, public
blockchains must be used. The decision also affects the selection of consensus
mechanisms. A private blockchain needs to be adopted if only specific participants
can access the blockchain. Private blockchains can employ special consensus
algorithms so that time-consuming minings are not required.

As stated previously, a blockchain consists of multiple identical ledgers stored in
distributed computers. A blockchain may not be controlled by any central authority.
It is therefore obvious that malicious users will be very much attempted to take
advantage of the blockchain. This situation of the blockchain is very similar to
the famous Byzantine Generals’ Problem. From this sense, blockchains require
Byzantine Fault Tolerance (BFT). Without BFT, bad users will be able to break the
blockchains by sending malicious transactions. If damages do occur, they will not
be repaired because no central authority is available to carry out corrective actions.
For this reason, consensus algorithms are used to provide BFT.

So far, large numbers of consensus algorithms have been developed for
blockchains. With consensus algorithms, mutually distrustful participants can work
together. Each of the consensus algorithms has its own strengths and weaknesses
and is suited for specific applications. Although the number of proposed consensus
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algorithms is large, only several of them are widely known. Selected consensus
algorithms are discussed below.

8.3.4.1 Proof-of-Work (PoW)

Proof-of-Work, or PoW [10], is the most well-known consensus algorithm which
was used by Bitcoin. The purpose of this algorithm is to validate transactions and
add validated new blocks to the blockchain. Due to its public and distributed nature,
a blockchain needs a mechanism to prevent malicious transactions and attacks. This
is the responsibility of participating nodes called miners through a process called
mining. Essentially, PoW presents a complex mathematical puzzle for the nodes
to solve. Very strong computing power is needed to solve this puzzle in a timely
manner. However, proving the correctness of a solution for the puzzle is easy. In
the meantime, miners receive rewards for solving the complex puzzle. In summary,
in a PoW-based blockchain, miners strive to validate transactions, solve the puzzle,
propose candidate blocks, and receive rewards. The amount of work done by a miner
determines its chance of successfully mining a single block and receiving a reward.

PoW not only provides a solution for the Byzantine Generals’ Problem, but
also provides defense against denial-of-service (DoS) attacks because it takes a
tremendous amount of computational power for an attack to be successful. In
a PoW-based blockchain, the available fund/credit in the attacker’s wallet does
not increase its ability to publish new blocks. What really matters is a node’s
computational power to solve a puzzle and generate new blocks. PoW strongly
discourages DoS attacks on a blockchain because it is highly unlikely that an
attacker has the ability to acquire enough hardware and energy resources to
overpower the rest of the nodes on a blockchain as a whole.

However, PoW has weaknesses and users should be aware of them. First, a
PoW-based blockchain is vulnerable to the so-called 51% attack, in which case
the attacker has the majority of the mining power for whatever reason. With 51%
or more of the mining power, the attacker is able to control the operations of the
blockchain and prevent other mining nodes from creating new blocks. By doing
this, only the attacker will get the rewards. With 51% of the computing power, the
attacker can even reverse transactions.

The second weakness of PoW is huge power consumption due to the need
for solving complex puzzles. It has been observed that the Bitcoin blockchain is
currently using more power than the whole country of Ireland and will use more
power than the whole country of Denmark by 2020.

8.3.4.2 Proof-of-Stake (PoS)

Proof-of-Stake, or PoS [11], was designed to overcome the weaknesses of PoW. The
basic rationale of PoS is that a node who owns more stakes in the blockchain will
more likely want it to succeed. To be able to be admitted to the blockchain, a node
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needs to have a specific amount of assets stored in its wallet. Furthermore, a node
needs to deposit some assets as stake in order to qualify as a miner. Although every
node is entitled to validate and mine new blocks based on their asset possession,
actual miners are randomly chosen by the blockchain based on the assets stored in
their wallets. The blockchain will examine all nodes with their stakes and choose
some of them as miners based on the ratio of their stakes with respect to the overall
system stakes. That is, if a node owns 10% of the total stakes, then it has 10% of the
chance to be selected as a miner. A node with only 1% of the total stakes will only
be selected 1% of the time. The next new block will be voted for by all users with
stakes. However, in PoS-based blockchains, although the nodes with more initial
stakes can potentially accumulate more and more digital assets, the blockchain is
designed in such a way that it is extremely difficult for several nodes to acquire
the majority of assets within the blockchain. This way, no nodes will be able to
dominantly manipulate the blockchain as they wish.

Comparing to PoW-based blockchains, PoS-based blockchains do not need
powerful computing hardware. A functional computer with a stable Internet con-
nection is all that is needed to work as a node. PoS-based blockchains are much
more energy efficient than PoW-based blockchains because they do not use much
electric power in their operations. Not having mining operations also enables PoS-
based blockchains to run much faster than PoW-based blockchain. A PoS-based
blockchain has very little chance of having a 51% attack because of its design.

The main disadvantage of PoS-based blockchains is that it is impossible to
achieve full decentralization. The reason is that in a PoS-based blockchain, only
limited numbers of nodes are participating in creating new blocks.

8.3.4.3 Delegated Proof-of-Stake (DPoS)

Another well-known consensus algorithm is the Delegated Proof-of-Stake (DPoS)
[12] invented by Daniel Larimer. In DPoS, there are three groups of entities:
stakeholders, witnesses, and delegates. The responsibilities of stakeholders are the
election of witnesses. The responsibilities of witnesses are the creation and addition
of blocks to the blockchain. The responsibilities of delegates are maintaining the
blockchain and suggesting changes to the blockchain.

Witnesses are elected by the stakeholders. Each stakeholder has one vote for one
witness. Witnesses with the highest number of votes are elected. Stakeholders vote
to increase the number of witnesses until at least 50% of the stakeholders consider
the blockchain has achieved sufficient decentralization.

Elected witnesses take turns to produce new blocks in given timeframes. How-
ever, the quality of their work is monitored by stakeholders via a reputation scoring
system. Poorly performing witnesses will lose scores or their titles. Stakeholders
will continuously vote for the witnesses. Part of the witnesses is replaced at regular
intervals as well.
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Delegates are also elected by stakeholders. However, their responsibility is to
maintain the blockchain. For example, delegates can suggest block size changes,
paid incentive, and transaction fee changes. The stakeholders will decide if the
proposed changes should be implemented. Delegates may receive rewards as well.

Energy saving and decentralization promotion are the two main advantages of
DPoS. DPoS needs less energy than PoW because witnesses generate blocks based
on specific time schedules, rather than competing with each other to add blocks.
The computing hardware requirement is no longer as demanding as PoW as well.
In addition, greater decentralization is achieved in DPoS because its consensus
mechanism allows stakeholders to choose suitable witnesses to validate transactions.

The main disadvantage of the DPoS consensus mechanism is that it can never
achieve full decentralization, although decentralization can be increased by having
more witnesses validate blocks, due to scalability constraints.

8.3.4.4 Practical Byzantine Fault Tolerance (PBFT)

The practical Byzantine Fault Tolerance (PBFT) consensus algorithm [13] is another
popular consensus algorithm used in blockchains. PBFT enables a blockchain to
tolerate Byzantine faults, i.e., defend against attacks from malicious nodes. The
algorithm is designed to work in asynchronous systems. PBFT has low overhead
time and low latency.

In PBFT, all nodes of a blockchain are organized into a sequence. A specific node
is designated as the leader node. Other nodes are designated as backup nodes. When
a node sends out a message, the rest of the nodes will exchange information with
each other to validate the message in case it is tampered during transmission. It is
expected that the good nodes will reach an agreement on the state of the blockchain
through majority.

Each round (called view) of the PBFT works as follows:

1. A client sends a request to the leader node.
2. The leader node broadcasts the request to backup nodes.
3. The backup nodes execute the request and send a response to the client.
4. The client waits to receive f + 1 node responses with the same result which will

be used as the result of the operation, where f represents the maximum number
of potentially faulty nodes.

To secure its role, the leader node may be changed in a round-robin fashion
during every view. The leader node can even be replaced if it does not broadcast a
request after a given time interval. The majority of good nodes also have the power
to identify a faulty leader node and replace it with the next leader.
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To give more details, here is how PBFT works in Fabric:

1. One of the nodes is elected as a leader.
2. Transaction requests are submitted to the leader.
3. The leader organizes the transactions into an ordered list and broadcasts this list

to all other nodes in the blockchain for validation.
4. Every validating node executes the ordered transactions one by one. Then it

calculates the hash code for the new block which is based on the received
transactions. Then this validating node broadcasts the hash code to other
validating nodes and starts counting the responses from them.

5. If a validating node realizes that two-thirds of all validation peers have the same
hash code, it will add the new block to its own copy of the ledger.

The PBFT model works only if the number of malicious nodes in a blockchain
does not exceed one-third of the total nodes in the system in a given time window.
The more nodes are there in the blockchain, the more unlikely for the malicious
nodes to reach one-third of the total nodes.

The PBFT algorithm has two main advantages compared to other consensus
algorithms. The first advantage is that it can finalize transactions and blocks without
needing confirmations as what is done in PoW. The second advantage of the PBFT
model is that it uses significantly reduced energy, again as compared to PoW.

There are two limitations to the PBFT consensus algorithm. First, it works well
only for blockchains of small sizes due to its communication model among nodes.
Second, it is susceptible to Sybil attacks. Due to the first limitation, the size of the
blockchain cannot be increased significantly just to mitigate Sybil attacks. Luckily,
possible solutions have been identified to solve this problem. For example, PBFT
can be interlaced with PoW to overcome both limitations.

8.3.4.5 IOTA

A totally different technology in the cryptocurrency family is IOTA [14]. IOTA is an
open-source distributed ledger with great potential for applications in the Internet of
Things.

IOTA works on the platform called Tangle. Tangle hashes use Winternitz
signatures [15] which is a hash-based cryptography, unlike blockchains that use
elliptic curve cryptography or ECC. Winternitz signatures are much faster than
ECC. The actual hash function used by Tangle is Kerl [16] which is a version of
SHA-3. Kerl works based on ternary operations, which is more secure than other
crypto technologies used in blockchains. Currently, many crypto algorithms can be
broken by superfast quantum computers. However, it is very difficult for a quantum
computer to break ternary operations used by Kerl. The chances of Tangle suffering
from a quantum attack are roughly 1 million times less than the blockchain.
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8.4 Directed Acyclic Graph (DAG)

8.4.1 What Is a DAG

As discussed previously, DLT, or “distributed ledger technology,” has its set of
records (the ledger) held by multiple distributed nodes. For instance, the cryptocur-
rency Bitcoin has a blockchain which is a DLT with its ledger (transactions) stored
in multiple computers. Each new transaction added to the ledger is copied to other
computers. This ensures that multiple copies of the ledger are available.

DAG is a type of ledger. A DAG is a graph with directed edges and no cycles.
A DAG has its nodes sorted in a special order, which is called topological sorting.
In a DAG, each transaction is linked to at least one other transaction. The edges are
directed from earlier transactions to recent transactions. Loops are not allowed in
DAGs, which means that a transaction cannot travel back to itself if it follows along
the directed edges. Figure 8.12 shows a DAG.

8.4.2 How IOTA Tangle Works

Tangle is IOTA’s DAG that operates in a special way. In Tangle, each new
transaction must validate at least two previous transactions before it can be added
to the DAG. With Tangle, all nodes on the IOTA network can issue and validate
transactions at the same time. In Tangle, data are attached to transactions. However,
Tangle does not assemble transactions into blocks. Therefore, Tangle is blockless.

Tangle does not require mining to reach consensus. This avoids powerful mining
computers and extensive use of electric energy. No mining also means no fees are
needed to reward miners. Users do not need to pay transaction fees as well.

Tangle is highly scalable because of its use of DAG as its ledger and simultaneous
transaction processing. Increased transactions in a DAG do not slow down the IOTA
network. In fact, performance will improve as the number of transactions increases
due to the characteristic of simultaneous validation. IOTA with Tangle has a higher
speed than blockchains.

Fig. 8.12 A directed acyclic graph (DAG)
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When Tangle gets started, it uses a coordinator to prevent malicious activities
because it does not have enough transaction nodes to conduct validation. This
coordinator will be obsolete after the IOTA network becomes more established. The
use of an initial coordinator creates the possibility of a central point of failure.

8.5 DAG Versus Blockchain

Similar to blockchains, DAGs store transactions on a distributed ledger. However,
the ledger is quite different in a blockchain than it is in a DAG. In a blockchain, the
distributed ledger is a chain of blocks which are built using transactions. Blocks are
validated and chained up in chronological order. Chained blocks are not modifiable.
A blockchain is very similar to a linked list concept in computer science. On the
contrary, a DAG is a collection of transactions linked in special ways. There are no
blocks in a DAG. A DAG can be compared to a tree in computer science. Figure
8.13 compares the structures of blockchain and DAG.

Consensus is achieved differently in blockchains and DAGs. In blockchains,
consensus is achieved by validating transactions block by block via mining. On
the other hand, DAGs have transactions validate their immediate predecessors.

Based on the above discussions, blockchains have better immutability than
DAGs, whereas DAGs are better at handling a large number of transactions.
Blockchains do not scale well, but DAGs do. DAGs are vulnerable to attacks if
the volume of transactions is too low.

8.6 Blockchain and Internet of Things

8.6.1 Internet of Things

Internet of Things (IoT) [17] is a natural extension of the human being’s efforts
of connecting the world through computer networks. So far computers around the
world have been connected for sharing information. The World Wide Web (or the

Fig. 8.13 (a, b) Comparison
of blockchain and DAG
structures

(a)

(b)
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Physical Object 1

Physical Object 2

Physical Object n

Gateway Internet Cloud

Fig. 8.14 A typical centralized architecture of the Internet of Things

Web) is an indicator of this usage. The Web has been used to share and exchange
digital textual or visual information in the form of electronic documents. As the
digital revolution continues, the natural next step is to connect all the physical
objects in the world, have them not only exchange data, but also interact with each
other, in order to make our lives more convenient, more efficient, and safer. These
efforts led to the birth of the Internet of Things, or IoT for short.

Currently, most IoT solutions are designed based on a centralized architecture
(see Fig. 8.14).

A current IoT system consists of the physical objects/devices, the gateway, the
Internet, and the cloud. Physical objects can send data through the gateway and
the Internet to the cloud and the data can get stored and analyzed there. Physical
objects can also receive commands from other physical objects through the cloud to
perform specified actions. Commands can be issued from a central manager from
the cloud directly as well. The IoT stack and standard protocols create the layers of
an architecture that provides services to IoT physical objects.

In the history of people’s efforts in trying to connect physical objects in the real
world, large peer-to-peer (P2P) wireless sensor networks (WSNs) were conceived
and were once the focus of research. The missing pieces in these researches in terms
of fundamental architecture design are privacy and security, which should really
have been considered at the beginning of system design. WSNs originally were not
designed to operate at a global scope as well.

8.6.2 Weaknesses of Internet of Things

Core recent developments on IoT moved towards the above cloud-based centralized
architecture. However, the centralized IoT architecture has numerous weaknesses.
In this centralized architecture, all information is sent from the physical objects to
the cloud where data is processed using analytics tools. Responses are sent back
from the cloud to the IoT physical objects if necessary. This type of centralized
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structure has poor scalability. The problem will become even worse when billions
of new physical objects are to be added to IoT networks in the near future.

The second weakness of the centralized IoT architecture is a single point of
failure, because every physical object is potentially a vulnerable point and can
compromise the security of the entire IoT network. Failure of a single physical
object can potentially bring down the entire IoT network as well.

The third weakness of the centralized IoT architecture is to do with maintenance.
Updating software in the current IoT network is extremely difficult due to the fact
that software updates need to be distributed to a huge number of physical objects
which can be physically located anywhere.

The fourth weakness is related to security and privacy. Data spoofing and
corruption can occur anywhere on the IoT network, ranging from the physical
objects, the communication networks over which IoT data travel through, and the
cloud storage where IoT data are gathered, stored, and processed. Unauthorized
access to personal data in the cloud can happen which has always been the concern
of the general public.

The fifth weakness is that IoT systems frequently use resource-constrained
computing devices such as microcontrollers. These microcontrollers lack the com-
puting power and storage capacity to support advanced and computation-intensive
algorithms which can assist in protecting data security and privacy.

The sixth weakness is that current IoT systems have no immutable records of the
history of interactions among physical objects. Because of this weakness, it is very
difficult to track down the causes if problems do occur.

Another weakness of IoT is that the current centralized structure has only one
copy of the data stored in the cloud. If this copy of data is tampered, there is no
way to know what has been changed. There is no way to prevent the tampering from
happening as well.

Because of these weaknesses, IoT faces the challenge of people lacking trust in
technology, primarily due to their concerns on privacy and security. Their perception
of the scale and complexity of IoT systems makes the situation worse because it
is beyond their comfort zone. Granting device access and control to technological
service providers is frequently a difficult decision and is a sensitive matter for IoT
system owners as well.

IoT devices such as connected actuators are often required to perform actions
according to the commands they receive from the cloud or other IoT devices. If
such commands are hijacked, the consequence could be disastrous. A small example
would be that the door of a house is wrongly opened for a burglar. Improper actions
of devices could also lead to fires and flood in buildings and offices.

Overall, current IoT systems are subject to physical object identity-based attacks,
manipulation-based attacks, cryptanalytic attacks, and service-based attacks.
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8.6.3 Blockchains and IoT

Blockchain technologies have exactly what is needed to fix the weaknesses of
centralized IoT. It is easy to perceive that the decentralized structure, the way that
data is created and stored, and the consensus mechanism used will help overcome
most of the weaknesses of the current IoT systems.

Depending on the use cases, blockchain technologies can be applied to each level
of the IoT systems. Blockchains can be used to store and manage device IDs, encode
and verify data packets on the communication networks, and secure data in the cloud
and data stored in the distributed devices.

Blockchain technologies can be applied at a small and local scale such as smart
homes and smart buildings, or to larger scales such as in smart cities, or even at a
global scale for cross-continent IoT systems.

Blockchain technologies will help reduce IoT operational costs and prevent
threats and attacks. Blockchains are unique and attractive because they have the
following features: transactional privacy, security, data immutability, auditability,
integrity, system transparency, and fault tolerance.

Wired and wireless communication technologies have reached new high levels.
The technologies are still evolving, witnessed by the growing interest of adopting
5G technologies in IoT. It can be predicted that the requirements of data transmis-
sion speed by IoT will be up to users’ expectations.

For this reason, privacy, security, and transparency and trust should be at the
center of future IoT system designs. They should be considered right at the
beginning when an IoT system is conceived.

In summary, as an emerging technology, IoT is promising and has a great future.
Current IoT systems use resource-constrained devices which are ideal targets for
cyberattacks. They have poor scalability and have the problem of a single point of
failure. Maintenance is difficult. IoT data are not immutable. Privacy and security
are critical concerns of IoT.

Blockchains can mitigate IoT risks and issues by using a large number of
individual nodes that exchange data on a peer-to-peer (p2p) basis. Data records are
immune to tampering and corruption. The consensus mechanism of blockchain can
prevent malicious nodes from joining the IoT network, rejecting the data they send,
and ensuring data integrity.

Among the various blockchains, practical Byzantine Fault Tolerance (PBFT)-
based blockchains appear to be especially suitable for IoT, due to their abilities to
defend against attacks from malicious nodes, work in asynchronous systems, and
have low overhead time and low latency.

The other promising blockchain IoT platform is IOTA. It was designed specifi-
cally for the Internet of Things. IOTA is blockless and does not use computation-
intensive mining algorithms. Instead, users verify the transactions of other users.
The main advantage of IOTA is greater scalability.
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With the support of blockchain technology, IoT systems will have the character-
istics of decentralized resource management, robustness against threats and attacks,
fault tolerance, and improved trust.

8.6.4 How to Combine Blockchains and IoT

According to the use cases and goals, blockchains can be combined with IoT in
different ways. Figure 8.15 shows a block diagram for the current cloud-based
centralized IoT system.

Blockchains can be applied to IoT systems in two ways, depending on the
purposes of the application. The most comprehensive implementation uses a
blockchain to record all data and interactions between physical objects [18], as
shown in Fig. 8.16.

In Fig. 8.16, all data and interactions go through the blockchain. In this archi-
tecture, data and interactions are validated and their records are immutable. This
is useful if both data and device interactions are important for the application. The
drawback of this architecture is increased latency, increased bandwidth requirement
for the communication network, and increased data flow on the network.

The other choice of combining blockchain and IoT is storing only IoT data in the
blockchain, as shown in Fig. 8.17.
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Fig. 8.15 Data and interactions of IoT physical objects are stored in a central server in centralized
IoT
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Fig. 8.16 Data and interactions of IoT physical objects are stored in the blockchain
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Fig. 8.17 Only data of IoT physical objects are stored in the blockchain
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In Fig. 8.17, interactions between physical objects are not stored in the
blockchain. In this architecture, only IoT data are validated and only data records
are immutable. This is useful if IoT data are important for the application, but
interactions between physical objects are not critical. This architecture has less
latency, reduced bandwidth requirement for the communication network, and
reduced data flow on the network.

In addition, smart contracts can be employed in the blockchain to set up specific
requirements and agreements that govern data flow and usage, as well as monitor,
allow, or disallow interactions to occur.

8.7 Prominent Enterprise DLT Platforms

Although there are tens of DLT platforms introduced in the literature, so far at the
enterprise level, three of the platforms are most prominent. They are Hyperledger
Fabric, Ethereum, and IOTA (See Table 8.3).

Enterprises have special requirements for DLTs. Ideally, enterprises require
decentralized data storage. Data stored should be immutable and permanent.
Security and privacy of data are of prime importance. Enterprise DLTs should
support smart contracts and tokens.

8.7.1 Hyperledger Fabric

Hyperledger refers to several technologies. Hyperledger Fabric, developed by IBM,
is one of them. Hyperledger Fabric was designed for B2B applications. IBM’s client
server-based architectures are used in Hyperledger Fabric to provide decentralized

Table 8.3 Comparing Ethereum, Hyperledger, and IOTA

Data storage

Security
and privacy
of data

Support for
tokens

Support for
smart
contracts

Immutability
and
persistency

Ethereum Truly
decentralized

Offered Offered Offered Supported

Hyperledger
Fabric

In members of a
private
consortium

Offered No
Support

Supported Supported

IOTA Not
decentralized, but
maintained by
several central
components

Offered Not
Offered

Not
Supported

Not
Supported
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data storage. Private transactions are used to provide data security and privacy.
However, Hyperledger Fabric does not support tokens.

Hyperledger Fabric supports smart contracts through chaincode. The operation
of Hyperledger Fabric depends on a number of central participants.

Overall, Hyperledger Fabric is suitable for use cases where data is to be
exchanged between a closed group of companies. It is not suitable for fully
distributed applications.

8.7.2 Ethereum

Ethereum is a truly decentralized DLT which can run as a public blockchain, private
blockchain, or consortium blockchain. Ethereum provides truly decentralized data
storage through its architectural design. Data in Ethereum is less secure and private
because it originally focused on the public chain. Tokenization is supported so that
real assets can be digitally represented. Companies can build digital business models
using Ethereum.

Smart contracts are seamlessly integrated into Ethereum and can be programmed
using its built-in programming language called Solidity. Smart contracts are exe-
cuted in the Ethereum Virtual Machine (EVM). Distributed apps (DApps) can
be developed and run under the EVM. DApps can be deployed on Ethereum
without additional infrastructure. Data immutability is guaranteed by Ethereum’s
architecture.

8.7.3 IOTA

IOTA can be used as a data layer on top of IoT to facilitate transactions between
machines. The nodes in an IOTA network can both generate and confirm transac-
tions. IOTA is a “feeless” DLT. Currently, IOTA is not truly decentralized because
it depends on central maintaining elements. Data security and privacy are achieved
via transaction validation, data encryption, and subscriber authorization. IOTA does
not support tokenization. IOTA does not support smart contracts as well. High speed
and high scalability are two main advantages of IOTA.

The transaction referencing structure in Tangle provides data immunity. In
theory, data can be traced back to the very first transaction(s) in Tangle, although
the snapshotting mechanism makes this impossible.
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8.8 Applications of Blockchain

Blockchain has the potential to be applied to virtually every aspect of our life. Figure
8.18 shows several of the application domains.

8.8.1 Financial Services

Financial service is no doubt the most prominent application domain of blockchain
technology due to its relationship with Bitcoin. Unlike traditional financial services,
blockchain enables transactions to occur in a peer-to-peer manner without involving
third parties. This eliminates intermediary financial services such as banks and saves
costly service fees. Blockchain also records transaction history and such records
cannot be tampered. This will help with verification and in avoiding disputes.

Blockchain will also greatly speed up transaction processing and can reduce the
time needed for processing to seconds, even if the transactions are cross-border, in
which case processing delays can be up to several days. Blockchain-based financial
services are also available to customers around the clock.

Stock trading platforms based on blockchains allow investors to purchase and
sell stocks almost instantly in a secure manner. Funds created from selling stocks
can be made available right after the transactions so that investors can reinvest the
funds without wait times.

Blockchain
Technology

Digital Identity: 
��Academic credentials
��Real estate titles
��Birth certificates

Healthcare: 
��Patient records
��Prescriptions
��Insurance

Supply Chain: 
��Invoicing
��Shipment and transportation
��Payment

Media: 
��Ownership
��Copyright
��Payment

Internet of Things: 
��Sensor ID management
��Data storage
��Transaction tracking 

Finance: 
��E-commerce
��P2P lending
��Global payments 

Fig. 8.18 Blockchain applications
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The way business is conducted will change because of blockchain. For example,
in legal practice, blockchains can be used to store wills and other inheritance records
and wills will not be able to be tampered. Smart contracts can be used to set up
inheritance criteria as well.

A more effective insurance industry will be in place because of blockchains. It
will be very easy to verify asset owners and therefore avoid fraudulent claims. The
whole insurance industry will be more effective and reliable.

Copyrighted digital contents can be better protected when blockchains are used.
Ownership rights can be made transparent. Content creators will be able to receive
royalties speedily.

8.8.2 Healthcare

Healthcare practices will change greatly because of blockchains. Healthcare is
a complex business because it involves doctors, nurses, staff, medical service
providers, insurance companies, testing labs, and pharmacies. Parties involved in
healthcare are distributed in geo-location. However, they can all initiate transactions
and the results of these transactions are supposed to be stored in one system
and are used in an integrated manner. Currently, such transactions are stored in
different systems which are inconvenient, time-consuming, and error-prone to use
by stakeholders. Blockchains will change this completely. All transactions will be
stored in the same ledger. This means patient medical history, test results, benefits
and eligibility, insurance coverage, medication, and allergies are all available on the
same blockchain. Management of healthcare systems will be more efficient because
demands of medication, equipment, and other consumables can be managed by
using blockchains as well.

8.8.3 Energy

The energy industry is another major blockchain application domain [19]. Appli-
cations can be made in electric grid, or in the oil and gas industry. When applied
to the electric grid, blockchains can be used in wholesale or in peer-to-peer
electricity distribution systems. When used in wholesale electricity distribution
systems, blockchains can directly connect end users to the electric grid. Users can
trade energy via the electric grid. No retailers will be necessary any longer so that
electricity costs will be lowered. In fact, it has been envisioned that interconnected
electric grids will be made available and will allow participants to buy and sell
renewable energy at greatly reduced prices. Table 8.4 shows the applications of
blockchain in the energy industry.

Blockchains can be specifically implemented in electricity data systems which
manage fuel prices, market prices, and marginal costs. Such data can be recorded,
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Table 8.4 Blockchain applications in the energy industry

In oil and gas industry In electric grid

Gas and commodity trading Wholesale electricity distribution
Supply and data tracking Peer-to-peer electricity distribution
Consortiums Electricity data management

stored, and tracked by blockchains. With blockchains, clerical errors can be avoided.
Data will not be misreported or unreported. Blockchains will also allow the public
to view transactions and their prices and monitor money movements.

Because privacy and trade secrets are particularly important for oil and gas
companies, they are more interested in private permissioned blockchains and
consortium blockchains. With these blockchains, companies can limit data access
to selected parties. Oil and gas companies are looking into using blockchains for
commodity trading and supply and data tracking.

The potential benefits of blockchains for oil and gas companies are increased
data security, reduced time delays, and reduced data management costs.

8.8.4 Identity Management

Another application area where blockchains are well suited is digital identity
management. This applies to both the identities of properties and human beings.
When blockchains are applied to properties, the use case is called smart property.
Tangible properties such as cars, bikes, houses, appliances, and jewelry can have
their digital identities embedded when they are manufactured. These identities,
together with their owners, will then be stored in blockchains. Ownership transfers
can be recorded and traced through blockchains. The authenticity of the properties
can be verified. Blockchains can manage intangible properties such as patents and
company stock shares too.

It has been envisioned that blockchains will be used in managing the identities of
human beings. Human beings can receive their identities when they are born. The
same identities can be used for governmental registration, health records, motor
vehicle licensing, life insurance, schooling, and employment. This will greatly
simplify the currently used information system structures which are independent
from each other and difficult to synchronize. Current information systems are
susceptible to frauds and mishandling, whereas blockchain-based systems are
secure.

One of the serious problems with current information systems is that, after users
submit their personal data, they do not know exactly where the data is located, for
what purpose the data will be used, who will see the data, and who will use the
data. These are not only problems for the people who submitted the data, but also
problems for organizations who own the databases. Online companies are able to
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abuse user’s personal data or sell the data to advertisers. Blockchains create a so-
called single point of trust and protect our privacy. Data will be encrypted and people
will have control of their own data.

8.8.5 Supply Chain Management

Supply chain management is another best-suited application for blockchains.
Blockchains can be used to record the entire process of transferring physical goods
from the producers to the consumers. Details of farms or greenhouses, delivery
trucks, warehouses, supermarkets, and retail stores, as well as the movements of
physical goods between them, can all be recorded in a blockchain, along with the
temperature, humidity, time, etc.

Blockchains make supply chain management more efficient. Managers can use
blockchains to help with planning and avoid overstocking. Goods can be located in
real time. Causes of problems can be traced back to its origin.

8.8.6 Other Applications

Blockchains will bring revolutions to voting and elections. Digital voting will be
more secure than ever before. Votes will become transparent and immutable. Voters
will be able to find out if their votes have been counted. Election data will not be
able to be tampered. Millions of dollars will be saved in running elections.

Another industry that will benefit from blockchains is real estate. Property titles
and their transfers can be stored in blockchains. The records are transparent to the
public and are permanent.

Student records and certificates can be stored in blockchains. Verification of
credentials can be made instant and will be reliable.

Driver licenses, violations, and accident records can be stored in blockchains
as well. The whole process of vehicle ownership and policy verification will be
efficient without errors.

Blockchains can be used just for data backup. Data backed up are immune to
tampering. However, current cloud-based data storage systems are not immune to
hackers.
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8.9 Other Aspects of DLTs

8.9.1 Scalability and Other Practical Considerations

When it comes to adopting DLTs in an organization, practical considerations
become important. These considerations are to do with common-sense parameters:
memory size and speed. For DLTs and blockchains, these parameters are transaction
size, block size, and transactions per second (TPS). Before each DLT technology is
examined, some information about VisaNet (the credit card processing system) is
useful. It is reported that VisaNet can handle an average of 150 million transactions
per day [20]. This is equivalent to about 1736 transactions per second on average.

8.9.1.1 Bitcoin

Bitcoin generates 1 block every 10 minutes. The size of the block is 1 megabyte
(1,048,576 bytes). This block is broadcasted to the Bitcoin network which had
10,198 nodes on January 17, 2019. The Karlsruhe Institute of Technology reported
that, on January 17, 2019, it took 13,989.42 milliseconds or approximately 14 sec-
onds to propagate the block to 99% of the nodes on the Bitcoin network [21]. This
means that the block propagation time of Bitcoin is about 14 seconds.

The average Bitcoin transaction size is 380.04 bytes on January 17, 2019 [21],
although on May 12, 2019, it was 352.23 bytes per transaction on average [22].
Among the 380.04 bytes, 346 bytes are overheads for the transaction, and only 34
bytes are real data for the transaction.

Therefore, the average number of transactions per block in Bitcoin is
1,048,576/380.04 = 2759.12. This gives 2759.12/(60 × 10) = 4.548 transactions
per second. This is far less than the 1736 transactions per second of VisaNet. In
summary, Bitcoin has the following parameters as shown in Table 8.5.

8.9.1.2 Hyperledger Fabric

The performance of Hyperledger Fabric [23] is a function of the number of endors-
ing peers, number of channels, endorsement policy, ordering service configuration

Table 8.5 Bitcoin performance data
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(i.e., block size and frequency), number of organizations, and ledger database
used. It is also to do with execution complexity of chaincode or smart contracts,
transaction sizes, use of mutual TLS security in network traffic, number of vCPUs,
memory allocation, disk type and speed, and network speed. Furthermore, it is to do
with data centers, CPU speed, and crypto acceleration. An experiment conducted by
[24] tested Hyperledger Fabric 1.3.0 in a single Kubernetes cluster running on the
IBM Container Service. The worker nodes were configured as 4vCPU and 16Gb
memory with SSDs. A two-organization cluster executed on a single channel and
2, 4, and 8 endorsers were used respectively. The corresponding throughput and
average latency are shown in Table 8.6. In this table, TPS stands for “transactions
per second.” The table indicates that, with 2 endorsers, the tested system carried out
785.58 transactions per second, and it took 715 milliseconds for 95% of the nodes to
commit a transaction. Whereas when 8 endorsers were employed, the tested system
was able to finish 1265.5 transactions per second, and it took only 686 milliseconds
for a transaction to be committed by 95% of the nodes in the system.

It should be noted that Samsung SDS revealed that it had developed an
accelerator software to speed up Hyperledger Fabric transactions to 3500 TPS, with
experiments succeeded in achieving 20,000 TPS [25].

8.9.1.3 Ethereum

Unlike Bitcoin, Ethereum does not have a fixed block size. Instead, Ethereum has
a gas limit for each block which determines how many transactions can fit in a
block. The block generation time of Ethereum has achieved about 13 seconds [26].
The TPS of Ethereum is about 15 transactions per second [27]. The history of the
Ethereum block size can be found in [28]. Ethereum performance data is shown in
Table 8.7.

8.9.1.4 IOTA

IOTA does not have blocks. A transaction in IOTA consists of 2673 trytes [29].
Using the IOTA converter [30], 2673 trytes can be converted to 1589 bytes. IOTA
can execute 500–800 transactions per second on average and it will be even faster

Table 8.6 Hyperledger Fabric test results

Number of endorsers 2 4 8

TPS 95% (ms) 785.58 715 948.2 667 1265.5 686

Table 8.7 Ethereum performance data

Block generation time Block size Transactions per second (TPS)

Around 13 seconds Variable 15
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Table 8.8 Ethereum
performance data

Transaction size Transactions per second (TPS)

1.598 bytes 500–800 and above

when more users have participated [31]. IOTA performance data can be found in
Table 8.8.

8.9.1.5 Scalability of DLTs

Gartner defines scalability as the measure of a system’s ability to increase or
decrease in performance and cost in response to changes in application and system
processing demands. In other words, if a system is scalable, it should be able to
grow in size and performance if user demand increases.

Bitcoin does not scale well. In its original design, the block generation time is
fixed at 10 minutes, the block size is fixed at 1 megabyte, and the TPS is fixed
at 4.5. If more and more users participate, the wait time for a transaction to go
through is not acceptable. Technologies such as Segwit (Segregated Witness) have
been developed to mitigate the scalability problem of Bitcoin.

IOTA is scalable. This is due to the fact that IOTA does not store transactions
in blocks which have limited size. In IOTA transactions approve other transactions.
Therefore, the more transactions IOTA has, the more transactions it can approve
simultaneously. IOTA performance will increase with the increase of users.

8.9.2 Token and Token Economics

Technically speaking, a token in a blockchain represents a programmable currency
unit embedded in a blockchain and is part of smart contract logic. In simple non-
technical terms, a token is a kind of private digital currency. A more comprehensive
definition is given by Mougayar [32], where a token is defined as a unit of value that
an organization creates to self-govern its business model, and empower its users to
interact with its products, while facilitating the distribution and sharing of rewards
and benefits to all of its stakeholders.

Tokens can be used to grant rights to use a product, or the rights to vote. Tokens
can also be used as a unit for exchanging values in a blockchain ecosystem. Tokens
can be incentives earned by doing useful work and can be spent when using a service
or product. Tokens can serve as a payment method. Tokens can be distributed in
ICOs (Initial Coin Offerings).

Essentially, tokens help build self-sustainable mini-economies in distributed
autonomous organizations (DAOs) based on blockchains. This is interestingly
termed as “tokenomics” or “cryptoeconomics.”
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8.10 Vulnerabilities of Blockchain

Although blockchain technology provides numerous advantages and application
potentials, it is not perfect. It is important to be aware of its weaknesses. Potential
attacks can occur on several aspects of blockchain technology. Systems based on
blockchain technology can even be used to commit crimes.

The first vulnerability of blockchain technology is originated from its consensus
mechanism, which is susceptible to a 51% attack [33]. Specifically, in a Power-of-
Work-based blockchain network, if the computational power of a single miner node
exceeds 50% of the total power of the entire blockchain network, then the entire
blockchain could potentially be controlled by that attacker. In a Power-of-Stake-
based blockchain network, the 51% attack can also occur if the number of stakes
owned by a single node is more than 50% of that of the total blockchain network.
The attackers of a 51% attack are able to reverse transactions, conduct double-
spending, exclude transactions, reorder transactions, cause problems for operations
for normal transaction confirmation, and stop the mining operations of other mining
nodes.

Sybil attack is also a vulnerability of blockchain which takes advantage of the
fact that public blockchain networks have no centrally trusted nodes and every
transaction is sent to a number of other nodes for processing. A Sybil attack is
initiated by assigning a number of identifiers to the same node. During a Sybil
attack, the attacker is able to outvote honest nodes and takes control of the network.
Therefore, the consequence of a Sybil attack is equivalent to a 51% attack.

Private keys are another source of vulnerabilities in a blockchain network. A
private key is the identity of a user. It is used to sign transactions and verify asset
owners. Private keys are also used in transaction validation and candidate block
verification. However, a legitimate user’s private key can get lost. If this happens,
there is no way to recover the private key. The legitimate user will not be able to
access his/her account on the blockchain network anymore and will therefore lose
the assets he or she owns. If a private key is stolen by a criminal, the legitimate
user’s blockchain account can get tampered. Whatever damage the criminal does
is difficult to track, repair, and recover because there are no centralized third-party
trusted institutions to seek assistance from.

Although it is commonly known that, by introducing consensus algorithms, a
blockchain network can prevent the double-spending attack, as claimed by the
Bitcoin paper [1], it is still possible for double-spending to occur in a blockchain
network. It is misleading to believe that double-spending is fully eliminated by
the consensus mechanism during validation. Among all blockchains, the Power-of-
Work-based blockchain network is especially vulnerable, as the attacker can exploit
the time interval between the initiation and confirmation of two transactions to
quickly launch a double-spending attack. Double-spending refers to the fact that a
malicious user spends the same cryptocurrency for multiple transactions. Knowing
it takes time to mine a block and reach consensus, the attacker could launch a
race attack involving two consecutive transactions. Before the second transaction
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is invalidated, it is possible that the attacker has already received the output of the
first transaction. This results in a double-spending.

As a long-term security problem for the Internet, the distributed denial-of-service
(DDoS) attack is still a threat to blockchain networks. DDoS attacks create a
huge amount of traffic on blockchain networks so that valid transactions cannot
be processed, giving opportunities for invalid transactions to become successful.

On the other hand, blockchain networks can be used by criminals to commit
crimes. One such example is ransomware. A typical ransomware is sent out as an
email attachment. If the email receiver clicks the attachment, the ransomware starts
running as a background process on the receiver’s computer system. What it does
is that it encrypts the files in the receiver’s system so that the victim loses access
to the contents of the files. The ransomware demands the receiver to pay funds to a
blockchain account of the attacker within a given time frame. Otherwise, there will
be no way to restore the encrypted files forever.

Blockchains can also be used by criminals to run underground markets. Bitcoins
are used as the currency and hidden services for such markets. Criminals use
underground markets to sell drugs, weapons, and other controlled items. Due to
blockchain’s anonymous nature, it is difficult to track down the sellers and deals.

8.11 Summary

This chapter discusses distributed ledger technologies (DLTs) which include
blockchain and directed acyclic graphs. The chapter discusses the benefits of
DLTs when they are adopted by current information systems. Detailed descriptions
are given on how blockchain and DAG works and what the differences between
blockchain and DAG are. The chapter also discusses the Internet of Things
(IoT), the weaknesses of current IoT system implementations, why blockchain
can help overcome the weaknesses of IoT, and how to integrate blockchain and
IoT. Applications of DLTs and practical considerations of DLTs in enterprise
environments are also discussed. Vulnerabilities of blockchain are described as
well.
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Chapter 9
Emerging Hardware Technologies for IoT
Data Processing
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No man has a good enough memory to be a successful liar.

Abraham Lincoln

Contents

9.1 Challenges for Data Processing in the Era of IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
9.1.1 IoT System Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
9.1.2 Energy Efficiency as a Paramount Concern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
9.1.3 Bandwidth Limitation for Big Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

9.2 Recent Innovations for Bandwidth and Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
9.2.1 Heterogeneous Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
9.2.2 In-Package Die Stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
9.2.3 Emerging Memory Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
9.2.4 Machine Learning Accelerators in the IoT Era . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
9.2.5 Approximate Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

9.3 Near-Memory Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
9.4 In Situ Processing for IoT Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

9.4.1 Deep Binary Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
9.4.2 The MB-CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
9.4.3 Memristive XNOR Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
9.4.4 The MB-CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
9.4.5 Potentials of the MB-CNN Accelerator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

9.5 In Situ Data Clustering for IoT Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
9.5.1 Data Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
9.5.2 Applications of Data Clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
9.5.3 Data Clustering with Rank-Order Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
9.5.4 Memristive k-Median Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
9.5.5 MISC Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
9.5.6 Potentials of the MISC Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

M. N. Bojnordi (�) · P. Behnam
University of Utah, Salt Lake City, UT, USA
e-mail: bojnordi@cs.utah.edu

© Springer Nature Switzerland AG 2020
F. Firouzi et al. (eds.), Intelligent Internet of Things,
https://doi.org/10.1007/978-3-030-30367-9_9

433

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30367-9_9&domain=pdf
mailto:bojnordi@cs.utah.edu
https://doi.org/10.1007/978-3-030-30367-9_9


434 M. N. Bojnordi and P. Behnam

9.1 Challenges for Data Processing in the Era of IoT

Recent years have witnessed an ever-increasing need for big data processing in
nearly all forms of computing systems from server computers and data centers
to mobile and Internet of things (IoT) devices. The huge demand for big data
processing has been mainly due to an unprecedented increase in the public use of
social networks (e.g., Twitter, Instagram, and Facebook), digital video hosts (e.g.,
YouTube that performs an average of 72 hours’ video upload per minute), smart
phone applications, and IoT systems [1]. In particular, IoT plays a significant role in
big data explosion [2] and is likely to have a profound impact on how computer
systems will be designed and used in the coming decades. For example, one
important sector of IoT-based big data processing is healthcare that builds upon the
biological and social data analytics spanning the latest achievements in data mining,
machine learning, computational intelligence, and statistical methodologies. Similar
to all other sectors of IoT, today’s healthcare applications encounter significant
challenges for storing and moving big data within their computing platforms. These
challenges have been one of the main motivations towards forming a paradigm shift
in the design of memory systems for efficient data processing.

9.1.1 IoT System Architecture

IoT systems heavily rely on hardware-software interfaces that enable various forms
of data communication among interconnected components. A typical IoT system
comprises various hardware and software components used for identification,
sensing, communication, computation, service, and semantic [3]. The IoT nodes
need to be identified by name and address in the system. The electronic product code
(EPC) and ubiquitous code (uCode) methods may be used for device identification,
while IPv4 and IPv6 are normally used for addressing within the IoT network [4,
5]. IoT nodes interact with the user and the environment through actuators and
sensors. Modern IoT systems employ smart sensors and wearable sensing devices
to collect data in various forms such as temperature, audio, image, and video [6].
The system allows heterogeneous devices to be connected within a communication
infrastructure that includes various technologies such as Wi-Fi, Bluetooth, RFID,
and Near Field Communication (NFC). The key component of the IoT system
is computation that is performed at the processing elements of the nodes and
servers. User interfacing applications, real-time operating system (RTOS), hardware
drivers and firmware, and the cloud data processing programs are executed on
the IoT computational platforms that may include one or many microprocessors,
microcontrollers, field-programmable gate array (FPGA) units, graphics processing
unit (GPU) boards, and ASIC accelerators. Unlike the IoT servers that are designed
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for high-performance data processing, the IoT nodes are optimized for computation
at low power consumption in the presence of communication noise. To serve the user
requests, semantic and service components are necessary to operate in tandem. The
semantic component receives the requests and understands the details of requested
services by the user (Fig. 9.1). The service component then receives the details and
serves the requests accordingly while maintaining the service quality high [7].

9.1.2 Energy Efficiency as a Paramount Concern

During the past two decades, power has become the central design problem that
limits the performance of computer systems. Data movement is identified as
one of the most significant contributors to energy dissipation in all classes of
microprocessors [8–10]. In particular, the energy cost of moving data across the
memory hierarchy in next-generation microprocessors is expected to be orders of
magnitude higher than the energy cost of performing a floating-point operation [11,
12]. For example, Fig. 9.2 illustrates the relative energy expended for reading data
from DRAM and performing a double precision addition on a graphics processing
unit (GPU) implemented at the 22 nm technology node. The energy required to fetch
the two operands from DRAM is 50× greater than the energy required to move the
operands from the edge of the GPU chip to its center, which itself is another 10×
higher than the cost of the actual addition.

Novel hardware and software techniques are required to bridge this significant
energy gap between data movement and computation in modern computer systems.
This requirement will pose a more critical challenge in designing future computer
systems, because the gap between the energy cost of data movement and computa-
tion is expected to widen in next technology generations [8, 9]. Thus, minimizing
data movement is a first-order design constraint for future computer systems. Notice
that near-data processing with the help of recent innovations in 3D die-stacking
alleviates the amount of chip-to-chip communication significantly [13]. These
solutions, however, become less effective for extremely large workloads that span
across multiple chips and cannot improve the energy efficiency of data movement in
the processors and memory packages. Nevertheless, it is unclear how current three-
dimensional (3D) die-stacking solutions can amortize the implementation costs and
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Fig. 9.2 The relative energy cost of computation and data movement between DRAM and GPU

fabrication complexities for the commodity computing systems while still relying
on the conventional memory architectures.

9.1.3 Bandwidth Limitation for Big Data Processing

Historically, the microprocessor core counts and the DRAM capacity have doubled
almost in every 2–3 years [14], which translates to a significantly higher rate than the
one experienced for bandwidth improvements. As a result, most computing systems
started to experience the bandwidth wall problem, where the off-chip bandwidth
has become a bottleneck for both performance and throughput. The demand for
memory bandwidth has been growing as the utilization of on-chip computational
units increases through out-of-order execution, multithreading, task pipelining, and
hardware specialization for data-intensive applications [15]. Moreover, to hide
the memory access latency in microprocessors, various forms of data prefetching
[16, 17] have been used that necessitate consuming more memory bandwidth.
Conventional interfacing technologies and the limited number of input/output pins
in the integrated circuit packages constrain the off-chip bandwidth significantly.
Recent achievements in high-speed serial links [18] and through-silicon vias (TSVs)
[19] can alleviate the issues by increasing the aggregate memory bandwidth at the
cost of introducing a new set of reliability issues and fabrication complexity.

9.2 Recent Innovations for Bandwidth and Energy

This section provides a brief overview of a few state-of-the-art solutions for the
energy-efficiency and bandwidth problems in the contemporary computing systems.

9.2.1 Heterogeneous Computing

Hardware accelerators have proven successful in achieving significant energy-
efficiency and speedup over the general-purpose processors mainly due to better
utilizing the computational and memory resources [20]. Along these lines, heteroge-
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neous computers have been proposed that integrate more than one kind of processing
core, each of which optimized for accelerating certain tasks. The main objectives in
heterogeneous computing are (1) to enhance the application development through
a seamless and flexible programing interface and (2) to improve the performance
and energy-efficiency of the user applications by executing parts of the code
on dedicated hardware. For example, consider a coprocessing architecture that
comprises a central processing unit (CPU) to realize complex serial tasks, such
as the sine function, and a graphics processing unit (GPU) that is specifically
designed for accelerating massively data-parallel operations, such as pixel and
vector processing. Other types of processing units, such as digital processing
unit (DSP), field-programmable gate array (FPGA), and deep neural network
(DNN) accelerators, are examples of popular technologies used for heterogeneous
computing. A key challenge in designing heterogeneous computers is to strike a
balance between the expected performance potentials and the cost of integrating
disparate technologies. Typically, an ideal balance between cost and versatility may
only be achieved if the heterogeneous cores require a minimal complexity and
overhead for communication.

9.2.2 In-Package Die Stacking

One of the key solutions to the bandwidth and energy-efficiency problems is to
reduce the high cost of data movement in computer systems. Minimizing the high
cost of data movement in computing systems has been the main motivation for the
recent innovations in 3D die stacking of silicon dice with disparate technologies
within the same package. The 3D stacking technology has enabled energy-efficient
solutions for near-data processing by integrating multiple dice of high-density
memory layers and processor cores within the same package to amortize the high
cost of off-chip data movement. For example, Micron’s hybrid memory cube (HMC)
stacks multiple DRAM layers on a flexible logic layer that communicates through
energy-efficient and fast TSVs (Fig. 9.3) [21]. Intel integrates up to 16 GB of
memory in a multichannel DRAM (MCDRAM) with four times higher bandwidth
than DDR4 in Knights Landing processors [22]. As compared with off-chip memory
systems, in-package integration provides up to ten times more bandwidth with
a significantly lower power and smaller footprint, which make it an attractive
solution for accelerating a variety of data-intensive applications from scientific and
engineering domains [23–26, 116].

Fig. 9.3 An illustrative
example of the 3D stack of
logic and memory layers

Logic Layer

DRAM Layers}TSV
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9.2.3 Emerging Memory Technologies

Power dissipation and the lack of technology scalability have become serious threats
to the future of the conventional charge-based memory systems, such as SRAM
and DRAM. Recently, resistive memory technologies have emerged as a promising
alternative to the conventional memories. The emerging memories are nonvolatile,
free of leakage power, and largely immune to radiation-induced transient faults.
The resistive switching effect has been observed in a wide range of materials such
as perovskite oxide (e.g., SrZrO3, LiNbO3, and SrTiO3), binary metal oxide (e.g.,
NiO, CuO2, TiO2, and HfO2), solid electrolytes (e.g., AgGeS and CuSiO), and
certain organic materials [27, 115]. Resistive RAM (RRAM) is one of the most
promising resistive memory devices under commercial development that exhibits
excellent scalability for less than 10 nm [28, 29], high-speed switching in the order
of nanoseconds [30, 31], low power consumption in the order of pico-Joules [32],
high endurance of performing trillions of writes [33], and high dynamic resistance
range [34, 35].

The resistance of an RRAM element may be programmed to high or low using
a sufficiently high voltage [33] or current [36] at runtime. A smaller voltage and
current are used to read the current resistance state of the element. Numerous array
topologies have been proposed in the literature to optimize the RRAM read and
write operations within memory arrays [37, 38]. Figure 9.4 shows three example
topologies for resistive memory cells using a single resistive element. The double
bitline cell (a) is based on the one-transistor, one-resistor (1T-1R) topology that
employs an access transistor controlled by a wordline. Once activated, the transistor
establishes a current path through the resistive element between bitline and bitline.
The cell’s content may be read or written by applying an appropriate voltage
between bitline and bitline. Similarly, double wordline cell (b) implements a 1T-1R
topology, where the cell’s content is read or written through bitline and wordline.
Unlike the 1T-1R memory cells, the crosspoint cell (c) does not require an access
transistor. The cell’s content is read and written through bitline and wordline
[39]. The crosspoint structure achieves a better density than the 1T-1R memory
cells; however, the absence of access transistor per cell creates a set of significant
challenges in designing large memory arrays, such as half selected cells per access
[40] and sneak current [41].

(a) double bitline cell (b) double wordline cell

wordline

bitline

(c) crosspoint cell

wordline

bitlinebitline

wordline

bitline
wordline

Fig. 9.4 Illustrative examples of the double bitline (a), double wordline (b), and crosspoint (c)
memory cell topologies
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Fig. 9.5 Deep machine learning as a significant fraction of artificial intelligence

9.2.4 Machine Learning Accelerators in the IoT Era

The core application of most IoT devices is to detect different human behaviors,
sense the ambient contexts, and produce the appropriate reaction. Machine learning
has emerged as a key technique to enable these applications through extracting
sensor data, identifying meaningful context, and performing intelligent tasks for
face detection [42], image classification [43], and speech recognition [44]. As
shown in Fig. 9.5, machine learning is a significant fraction of artificial intelligence
(AI). Deep machine learning techniques, such as convolutional neural network
(CNN), have emerged as the most successful class of machine learning that rely
on multilayer neural networks for computation.

Due to the increasing demand of computation, memory, and energy consumption
of machine learning applications, engineers and researchers have considered design-
ing efficient ways to accelerate machine learning workloads. Software libraries
have been proposed to accelerate deep learning tasks such as speech recognition
(speech-to-text and speech-to-command) and computer vision (face detection and
image classification) on low-power mobile GPUs [45, 46]. Recent research work on
wear bench application shows that out-of-order processor cores may be adequate
to achieve a high performance for deep learning workloads on wearable IoT
devices [47]. To maximize the forward progress of IoT applications in unstable
and intermittent power supply environment, nonvolatile processor architectures have
recently been considered in the literature [48].

As an important class of deep learning, CNN has proven successful in image
classification and face recognition [43, 49]. A typical deep convolutional neural
network may require millions of parameters to be learned and stored during
the training phase and to be retrieved and used for inference tasks. In addition
to the stringent memory and storage requirements of the IoT nodes, accessing
these parameters by various layers of the neural network necessitates consuming
significant amounts of energy and time. Interestingly, high-precision parameters
are not important to gain high accuracy in the outcome of a neural network;
as a result, numerous techniques have been proposed in the literature that focus
on trading the computation precision for achieving better energy efficiency and
performance [50–54]. In addition, high-performance and energy-efficient hardware
accelerators have been considered for computation and memory-intensive neural
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network workloads. For example, Dian-Nao [55] introduces a parallel multiply-and-
accumulate (MAC) unit to exploit the scope of parallelism in CNN and deep neural
network (DNN). This architecture leverages the concept of tiling and prefetching
to reduce the long latency of data movement between main memory and the MAC
units. In a newer version of this architecture, DaDian-Nao [15] extends the original
design by alleviating the challenges of needing huge-memory bandwidth in the
CNN and DNN workloads. Both architectures suffer from a limit performance for
large-scale workloads with excessive memory bandwidth. Eyeriss [56] introduces a
spatial architecture that maximizes data reuse through feeding inputs and weights
to multiple processing elements with local storage and compute units. The design
relies on a hierarchical memory organization that reduces the cost of data movement
from main memory to the processing element. Similarly, ShiDian-Nao [57] employs
a systolic array to maximize the reuse of input data and intermediate results in
computing convolution.

Another important class of energy-efficient accelerators focuses on mapping the
fundamental operations of the machine learning tasks onto analog functional units
inside memory. As a result, these accelerators are able to gain significant speed
and energy-efficiency over fully digital architectures. These accelerators that are
often called analog neuromorphic accelerators rely on leveraging a connectionist
model inspired by the human brain [58] to design the physical structure of
memory and processing elements. Sheri et al. propose a spiking neural network
based on memristive synapses to implement a single-step contrastive divergence
algorithm for machine learning tasks [59]. Each synapse of the proposed design
comprises two memristive elements representing limited-precision positive weights.
Prezioso et al. report the fabrication of a memristive single-level perceptron system
that takes ten inputs to produce three outputs. The circuit is used to classify a
3 × 3 black-and-white image [60]. The memristive Boltzmann Machine [61] and In-
Situ Analog Arithmetic in Crossbars (ISAAC) [62] propose novel memory-centric
accelerators that perform binary and multibit dot product operations within the
emerging memory arrays. These accelerators propose to eliminate the need for data
movement between memory and computational units. As a result, the memristive
accelerators gain significant performance and energy efficiency. Similarly, PRIME
[63] is proposed as a software/hardware platform for computing matrix-vector
multiplications in resistive arrays for neural networks.

9.2.5 Approximate Computing

Ever since the power consumption was identified as one of the fundamental lim-
itations for the microprocessors’ performance, researchers have examined various
techniques for making computer systems more energy-efficient. Important examples
of such techniques have been considered in IoT systems that include low-power
VLSI circuits for dynamic power and thermal management, dynamic voltage
scaling, multiple-threshold voltage design, and energy harvesting. These techniques
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have become even more effective with the help of approximate computing that aims
at balancing accuracy, area, delay, and power consumption based on the user’s
computational needs. Most IoT applications include multimedia processing that
may largely tolerate computational errors without incurring a noticeable quality
loss in output. Therefore, approximate computing is a natural fit for designing
efficient IoT systems. Numerous circuits, architectural mechanisms, and design
methodologies have been proposed in the literature that prove significant power
and performance gains are attainable through applying approximate computing to
different components of IoT systems [64–66]. Recent work on designing imprecise
adders for IoT systems indicates that further performance gains and higher energy-
efficiencies are attainable through incorporating design techniques that efficiently
explore the design space of approximate units [67].

Designing the most efficient approximate circuit requires specializing both
hardware and software for a given set of design objectives. For example, one can
improve energy efficiency through hardware and software kernels that reduce the
precision of computation [67–69] or reduce the power and energy consumption
through lowering the supply voltage of the existing circuits [70]. The key to a
successful approximate computation is to accurately identify which parts of the
design are error-resilient. This may be done by software through kernel annotations
and compiler techniques [71, 72] or a dedicated approximate data types [73].
Finally, a mechanism is often required to evaluate the quality of result and decide
when to perform an approximation [74, 75].

Machine learning applications seemed largely amenable to approximate com-
puting because of their massive stochastic computation load. Recent work [76]
exploits the inherent redundancy of data and computation within deep CNN layers
and applies a linear compression (singular value decomposition) technique on a
pretrained model to speed up convolution operation during the inference tasks.
Han et al. [77] exploit the sparsity of network parameters via pruning techniques
to reduce the number of redundant weights. The parameters are represented in
a compressed sparse row (CSR) format to increase the storage efficiency. The
architecture is then extended to deep-compression [78] based on quantizing weights
and applying the Huffman encoding to reduce the memory footprint significantly.
Later, a hardware accelerator, called EIE [50], is designed for the compressed
network that achieves substantial speedups and energy savings over prior work due
to executing a set of sequential operations on the compressed data. It is proven
that high precision weights are not important to achieving high accuracy in deep
neural network. Gong et al. [79] propose to quantize the weights of the fully
connected (FC) layer using vector quantization technique at the expense of 1%
accuracy loss. Binarized neural network (BNN) [80] and XNOR-Net [81] extend
the binarization further by binarizing both input and weights that gains significant
reduction in memory footprint and execution time. Tang et al. [82] propose a
resistive full-fledged BNN accelerator that employs binarized hardware for all the
CNN layers. Moreover, Qiu et al. [83] propose an FPGA platform that accelerates
the convolutional neural network for an embedded system.
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9.3 Near-Memory Processing

Most accelerators employ various techniques for in-memory processing that min-
imize data movement between memory and processor cores to provide significant
energy savings and performance improvements. In-memory processing is an old
concept that has been revisited recently by both industry and academia in the
advent of big data computing and recent advances of technology—e.g., die stacking,
emerging nonvolatile memories, and high-bandwidth memory interfaces. Based
on the location of computation with respect to the memory cells, data-centric
accelerators may be divided into near-memory processing (NMP) [84, 85] and in
situ processing (ISP) [61, 62, 86]. Figure 9.6 illustrates the relative performance
and energy consumption of various design approaches for hardware accelerators
and general purpose processors based on the results from recent work on big data
processing [84, 87], machine learning acceleration [43, 62, 88], and optimization
problems [61, 89]. As shown in the figure, ISP and ASIC NMP provide significantly
better performance and energy savings compared to other techniques. This superior
energy-efficiency is achievable mainly because of exploiting the unprecedented
parallelism at the level of memory arrays and cells while reducing data movement
to a minimal amount through performing digital processing at the periphery of data
arrays or analog computation within memory cells. Examples of these architectures
are (1) computing bitwise Boolean functions, such as NOR, within DRAM arrays
in DRISA [90], (2) utilizing the inherent dot-product capability of memory arrays
to accelerate matrix-vector multiplication in ISAAC [62] and the memristive
Boltzmann machine [61], and (3) performing associative search operations inside
data arrays to realize TCAM-DIMM [91] and AC-DIMM [87]. In the rest of this
section, we will explain the design of two ISP architectures based on memristive
technology for big data processing in IoT systems. First, we introduce an energy-
efficient memory system capable of accelerating binary neural network tasks in
mobile IoT devices [92]. Then, we examine the architecture of an ISP system for
large-scale data clustering for IoT servers and data centers [93].
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Fig. 9.7 Illustrative example of the system architecture of an IoT device

9.4 In Situ Processing for IoT Devices

IoT devices demand critical optimization for stringent ultra-low power require-
ments, which makes the realization of data-intensive applications, such as a
full-fledged deep learning application, a significant challenge. Figure 9.7 shows
an illustrative example of a generic system architecture for IoT devices and
edge nodes. Depending on the application objectives and the design constraints,
a single- or multicore processor is employed for executing the user programs.
Typically, the memory system consists of both volatile and nonvolatile subsystems
that are interfaced to the processor cores via a system bus. Single- or multiple-
cache levels as well as a scratchpad memory may be used as fast and temporary
memory. Nonvolatile memory is commonly used to store application programs and
data permanently. Nowadays, FLASH is a widely used technology for building
nonvolatile memory in wearable and mobile devices [94]. The emerging nonvolatile
memory technologies such as FeRAM [95] and RRAM [96] are expected to replace
the conventional FLASH memories in future [97, 98].

9.4.1 Deep Binary Neural Network

Given the strict power and performance requirements of IoT devices, binarized
CNN seems a promising model of deep neural networks in edge computing. In a
binary deep neural network, both the inputs and weights are binarized. For example,
XNOR-Net is a binary neural network that consists of four main stages, namely
Batch Normalizations, Binary Activation, XNOR Convolution, and Pooling. XNOR-
Net was initially based on converting the parameters into either +1 or −1 using a
sign function defined as the following:

xb =
{ +1 x ≥ 0

− 1 x < 0
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Fig. 9.8 Illustrative example of the two-step XNOR convolution

In the equation, x is a real-valued weight or activation data for which the binarized
output (xb) is computed. On difficulty of such bipolar quantization is the complexity
of computation due to considering opposite signs. Instead, XNOR-Net maps all −1s
to 0 to directly use logical operations for computation in the binary format. The
binary values are then scaled to approximate the real-valued weights and to improve
the accuracy of results. For example, a real-valued filter (W) is approximated by
aB, where a is the scaling factor and B is an instance binary filter chosen from
{+1, 0}x × w × h. A consolidated scaling factor matrix (K) is then generated for all
the input neurons in the binary activation layer. Notice that K is for approximating
the convolution between the input (I) and weight (W) values.

I ∗ W ≈ (sign (I) � sing (W)) � aK

In the above equation, ∗ indicates the real-valued convolution, � represents the
Hadamard product of two binary matrices, and � is the binary convolution based
on the bitwise XNOR and addition (bit-count). Notice that the outcome of every
bit-count operation can be a multibit value, which is passed through a threshold
comparison function to ensure producing binary output for convolution. The
resultant binary matrix is then multiplied by aK that computes a real-valued matrix
to produce the output neurons of a binary convolution layer.

Figure 9.8 shows the two steps of XNOR convolution applied to an example
input data (Xc × h × w = 3 × 3 × 3). X is first convolved with the filter F3 × 2 × 2

using element-wise XNOR operations followed by summation to compute the
intermediate output Y1 × 2 × 2. Next, the intermediate values are summed, and the
result is compared with N/2 to produce a single element of the output matrix. Notice
that N is the total number of elements in the filter used for each layer.
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Fig. 9.9 Overview of an IoT system architecture using the MB-CNN memory-centric accelerator

9.4.2 The MB-CNN Architecture

Designing memory-centric accelerators for deep learning workloads in mobile IoT
devices is challenging because of the increasing demand for more computational
capabilities by the emerging applications. On the other hand, the hardware of
IoT devices is significantly constrained by the stringent cost and power require-
ments. The memristive binary convolutional neural network (MB-CNN) is a
memory-centric accelerator that addresses this challenge by enabling in situ binary
convolution within the resistive crosspoint memory arrays. The key idea is to exploit
the computational capabilities of the resistive crosspoints for performing the key
operations of the XNOR-Net—i.e., binary XNOR and bit-count. MB-CNN may be
used as a nonvolatile memory system that serves ordinary read and write requests.
Furthermore, the structure of memristive arrays with an additional control logic
allows the framework to perform XNOR convolution at low energy and performance
costs. Figure 9.9 shows how MB-CNN may be employed in a mobile IoT system.
The computational platform includes a microprocessor that executes the application
programs on binary CNN models. A volatile memory module is employed to store
the input data prior to execution. The system is complemented with an MB-CNN
module that accelerates the XNOR convolution and stores the network parameters.
The MB-CNN module is connected to the IoT system via an LPDDR3 standard
memory bus [99]. All the network parameters, such as edge weights, are stored to
the RRAM crosspoint arrays. These parameters are then read to complete multiple
inference tasks. Prior to an XNOR convolution task, a direct memory access (DMA)
controller is used to transfer data from DRAM to the MB-CNN module. For each
layer of the neural network, a set of XNOR convolutions is computed and the
intermediate results are reused for the next layer. At the end of this process, the
software program is responsible to collect the final results from the MB-CNN
module. All the communication between the processor cores and the MB-CNN
module is carried out through LPDDR3 commands.
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Fig. 9.10 Performing XNOR operation using the 2R crosspoint cell

9.4.3 Memristive XNOR Convolution

A set of binary XNOR operations between the filter elements and the input channels
followed by bit-counting and binary approximation are necessary to compute an
XNOR convolution.

9.4.3.1 Computing XNOR Within RRAM Crosspoint

The MB-CNN accelerator exploits the computational capabilities of a novel two-
resistor (2R) crosspoint that performs in situ XNOR. The basic operation relies on
a differential bit representation of weights and inputs. Figure 9.10 shows how the
differential form of a bit stored in the 2R cell helps performing an in situ XNOR
operation. The true and complement values of each filter element are stored in a
cell, denoted by b and b. A logical 1 is represented by the low-resistance state
(LRS) and 0 by the high-resistance state (HRS), the memristive element. Notice
that the filter weights are computed during the training phase of the neural network;
therefore, they remain constant for inference tasks. Similarly, an input element has
to be represented in the differential format. Each input bit is applied to the 2R cell via
two wires, denoted by w and w. The 2R cell implements a simple resistive network
that develops an output voltage (out), which is a binary value representing the logical
XNOR between w and b.

In a crosspoint array, all of the memory cells within each column share a
single bitline. Figure 9.11a shows multiple 2R memory cells connected to a shared
bitline. Due to the differential representation of the values, each bitline is capable
of performing a bit-count operation over all of the memory cells. Moreover, each
2R cell can compute the XNOR result of the binary values w and b. As the
outputs of all memory cells are connected to the shared bitline, the final voltage
of the bitline (sum) is an analog signal representing the sum of all partial results
produced by the memory cells. To make sense of the bitline voltage, Fig. 9.11b
illustrates an equivalent circuit to the bitline topology using four resistors. Notice
that each memory cell has two memristive elements that are set to HRS or LRS in
a complementary form. Similarly, the pairs of wordlines are Vdd and Gnd in the
complementary format. The combination of the resistive states and the wordline
voltages results in four possibilities that are considered in the equivalent circuit via
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four resistors. For a bitline connected to n 2R cells, assume that m XNOR operations
produce 1s in their outputs. (Notice that the binary outcome of an XNOR is high (1)
only if Vdd is connected to the RRAM cell with low resistance; otherwise, a low
voltage (0) appears at the output.) The resultant bitline voltage can then be computed
through sum = V dd

mH+(n−m)L
n(H+L)

, where H and L are the amount of high and low
resistances of the RRAM cells. The bitline voltage is linearly proportional to the
number of 1s produced by the XNOR operations—i.e., the bit-count.

By quantizing the bitline voltage, the final binary value for a single convolution
can be computed. Figure 9.12 shows a linear relationship between the bitline voltage
and the number of cells that produce a 1 at the output. MB-CNN employs a
comparator that compares the sum against Vdd/2, thereby quantizing the final output
to 1 if sum ≥ V dd

2 and 0 otherwise.

9.4.3.2 In Situ Bit-Counting

MB-CNN employs an in situ bit-counting technique that requires having all the
operands connected to a single bitline during the XNOR convolution. Therefore,
large crosspoint arrays may be required to compute the bit-count of modern deep
learning workloads. Regrettably, such monolithic data arrays are largely impractical
due to significant limitations in sensing mechanisms, excessive power dissipation,
unacceptable latency of operations, and serious reliability problems. To address all
these challenges, MB-CNN employs a novel hierarchical mechanism for computing
partial bit-counts across multiple arrays. The partial counts are then aggregated into
a single value and then quantized into a single bit. The hierarchical mechanism
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Fig. 9.13 Hierarchical organization of the MB-CNN architecture

needs to convert a bitline voltage (sum) into a multibit digital value. Unlike the
conventional single-level sensing, the proposed mechanism employs an analog-to-
digital converter (ADC) circuit to produce each partial bit-count.

9.4.4 The MB-CNN Architecture

The design of MB-CNN is based on the existing memory system architectures.
Figure 9.13 shows the hierarchical organization of an MB-CNN chip that comprises
an external IO interface and a memory core with a chip controller and multiple
banks. The chip controller orchestrates all of the data movements between the IO
interface and memory banks. MB-CNN banks operate independently and can serve
a memory request or perform an XNOR convolution. For large problems that exceed
the size of a single bank, multiple banks may be involved for an XNOR convolution.
MB-CNN perform inference tasks only, while training is carried out once in the
cloud to produce the network parameters for deployment in IoT devices.

9.4.4.1 MB-CNN Chip Control

Once the network parameters are available, an MB-CNN chip can be configured
according to the number and size of the convolutional layers. A single bank may be
used to store the parameters of one or multiple small layers, while a large layer may
occupy more than one bank. The chip controller includes local nonvolatile RRAM
arrays for tracking the banks that maintain the parameters of each layer. A typical
B-CNN model includes multiple binary convolutional layers, each of which needs
the software to make a call to the accelerator. First, the chip controller receives
an initiation command to specify which layers are used next for computing the
XNOR convolution. Then, the relevant banks will be configured accordingly such
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that the input data for a selected layer are streamed into the accelerator. The chip
controller distributes the data stream among relevant banks internally. Local buffers
are used to collect the convolutional results at the MB-CNN banks. At the end of
every computation, the accelerator notified the software to read the results from the
MB-CNN chip and to proceed with the subsequent layers operations.

9.4.4.2 Bank Organization

Each MB-CNN bank consists of a bank controller, a reduction network with
an H-tree topology, and a set of data arrays. The bank controller is responsible
for managing computed partial bit-counts within a local on-die buffer. Moreover,
the controller is in charge of configuring the full adders and comparators of the
reduction tree for computing the final sum. During each MB-CNN convolution,
partial bit-counts are computed using the memory arrays. The counts are then
merged into a single bit-count while being transferred through the reduction tree
toward the bank controller. Figure 9.14 shows how four partial bit-counts (i.e., b0–3)
are merged in the reduction tree into a multibit digital value (b). Three nodes of
the reduction tree are involved in serial addition. Each node employs a serial adder
to add two single-bit operands and store the carry bit locally. The serial addition
allows for low-cost and energy-efficient computation in the reduction tree. At the
bank controller, a serial comparator is used to compute the difference between the
final bit-count (b) and the quantization threshold (n/2). The values are represented in
two’s complement; therefore, a serial adder/subtractor may be used to compute the
difference. The last bit to be computed by the serial comparator represents the sign
of the result, which indicates whether the result is negative (sum < n/2) or positive
(sum ≥ n/2). The inverted version of this bit represents the binary result.

Each serial adder at tree nodes is reconfigurable using two flip-flops C0 and C1,
each of which is used to mask a branch of the tree. Notice that the value of C0
and C1 determines whether the node performs a serial addition or only copies the
value of one branch to upstream root. Valid combinations of the C0 and C1 flip-flops
are (1, 1) for serial addition, (1, 0) for transferring the upper branch, and (0, 1) for
transferring data from the lower branch. The carry bits of the serial comparator and
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Fig. 9.14 Merging partial bit-counts in the MB-CNN reduction tree
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adders (D) are set to 0 after computing each XNOR convolution. All of the C0 and
C1 flip-flops are configured by the chip controller based on the size of parameters
for the convolutional layers.

9.4.4.3 Array Structure

Each MB-CNN memory array is implemented using an RRAM crosspoint compris-
ing M rows and N columns. Figure 9.15 shows an example 3 × 4 MB-CNN data
array. The RRAM cells are programmed to represent the binary network parameters
(i.e., filter weights). To enable in situ XNOR convolution within the crosspoint
arrays, a set of latches are provided at the periphery of the array to store the input
data, which are applied to the array through horizontal wordlines. Each input bit
requires two wires for its true and complement values. Along the lines of prior
proposals on using multibit sensing mechanisms for analog computation [61, 62, 72,
100], a cost-efficient multibit sensor circuit is employed for quantizing the bitline
voltage (sum). The proposed sensing circuit comprises a differential amplifier, a
sample and hold unit [101], and a digital-to-analog converter [102]. Due to the
exponential increase in the complexity of the sensor circuit with the number of
output bits, its precision is limited to 5 bits only. As a result, each array can compute
the sum of 32 partial XNOR convolutions.

9.4.4.4 Data Organization

One of the key challenges in performing an efficient MB-CNN convolution is how to
lay out data within and across memory arrays. This section describes how the inputs
and network parameters are mapped onto the MB-CNN accelerator. Figure 9.16
shows an illustrative example of the data organization MB-CNN. The size of feature
map the ith convolution layer is Ic × h × w = 32 × 7 × 7, where c denotes the input
depth and h and w are the height and width, respectively. The input is convolved
with a kernel (Kc×h×w

0 = 32 × 2 × 2). Assuming that there are 128 such kernels,
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Fig. 9.16 Distribution of a convolution layer among four MB-CNN crosspoint arrays

the convolution layer will need to produce 128 different output feature maps of size
Oh × w = 6 × 6. If we consider an array size of 64 × 64 for the memristive crosspoint
arrays, then we need four such crosspoint arrays to map the entire convolution layer
with a bank. The memristive arrays are denoted by a0, a1, a2, and a3 in the figure.
Kernel K0 is distributed among the first column of all the arrays with a maximum
of 32 elements per array. Similarly, all the other kernels are mapped into the entire
bank. Kernel Kn is distributed among the jth columns of all four arrays, where j is
reminder of n by 64 and n is the position of the bitline in the memristive array. In
this example, K0 has a total of 128 (32 × 2 × 2) elements {w00, w01...w0127} ∈
K0, where w00...w031 are mapped to n0 of a0. Similarly, w032...w063 are mapped
to n0 of a1 and so on. K64 is mapped to the lower half of n0 in all arrays where
{w640, w641...w64127} ∈ K64. In a similar fashion, K1... K127 are mapped to n1...n63
of a0...a3. Notice that the chip controller feeds 128 elements of the input I to the
bank to be convolved with the kernels. The chip controller initiates streaming data
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to the crosspoint per XNOR convolution. The inputs are then distributed among the
four arrays. Due to using a 5-bit sensor, only 32 rows (cell segment) of the arrays
are driven by the input data. All the other rows remain inactive and do not contribute
to the in situ computation.

As mentioned in Sect. 4.4.2, the 5-bit partial results from the arrays are given
to the serial adders of the reduction tree to compute the final outputs {z0, z1... z35},
where zn is the result of a convolution between input I and kernel Kn. An internal
control mechanism is employed to switch a new set of 32 cells into each sensor every
five cycles. The switching operation happens in a pipelined fashion inside the bank
to produce one output element (zn) every seven cycles. Ultimately the first element
of all output feature becomes available at local output buffer after 7 × 128 cycles.

The chip controller feeds the next set of inputs to the memristive arrays
for convolution once the current subset is reused by all convolution filters.
Therefore, producing the complete output of a convolution layer takes
7 × 128 × 6 × 6 = 32,256 cycles. Notice that more concurrent computation is
possible through increasing the number of sense amplifiers per memristive arrays
and by replicating the same kernel parameters across multiple banks. However, that
improved performance requires more chip area and power consumption.

9.4.5 Potentials of the MB-CNN Accelerator

The MB-CNN accelerator can be integrated in mobile systems with single- or
multicore processors. This section examines the energy and performance potentials
of the accelerator used by single- and multicore processors that realize the MIPS64
instruction set architecture (ISA). For better evaluations, a GPU-based solution and
an ASIC accelerator for processing-in-memory (PIM) are considered as the baseline
systems for comparisons. The GPU solution is based on the Nvidia Tegra X1 low-
power system with 256 processing cores [53]. The low power GPU is mainly used
to implement the floating-point convolutions in the first and last layers of an end-
to-end inference task. The PIM ASIC solution integrates additional gates near the
RRAM arrays to implement the XNOR trees and bit-counters that fetch data from
the arrays and compute the XNOR convolution. Like the MB-CNN hardware, the
outcome of each XNOR convolution is transferred to software for completing the
layer computation. Moreover, the PIM baseline is optimized so that it occupies
the same area as that of MB-CNN; however, it does not support in situ XNOR
computation.

Figure 9.17 shows the relative execution time and system energy of the XNOR-
Net inference across various system configurations, namely CPU, GPU, PIM, and
MB-CNN. For each configuration, three design points with respect to the number
of processor cores—i.e., single (S), dual (D), and quad (Q)—are considered. MB-
CNN outperforms all of the baseline systems. As compared with CPU, MB-CNN
achieves 4.17×, 4.25×, and 3.71× performance improvements for the single-,
dual-, and quad-core systems, respectively. Although the PIM accelerator achieve
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a better performance than the GPU-based systems, MB-CNN outperforms the PIM-
like ASICs by 1.29×, 1.58×, and 2× in the single-, dual-, and quad-core systems,
respectively. Notice that MB-CNN benefits from in situ computation within memory
arrays that enables massive parallelism and eliminates unnecessary data movement.

Moreover, MB-CNN achieves average energy savings of 4×, 3.83×, and 3.64×
over the CPU baselines with single-, dual-, and quad-core processors. The GPU-
based systems consume more chip area and power to improve performance.
However, they can only achieve a better energy saving that the PIM accelerator with
a quad-core processor. This is mainly because of the reduced leakage energy in the
GPU as the overall execution time on the processor decreased. MB-CNN achieves
better energy savings over the PIM- and GPU-based accelerators by respective
2.46×, 2.61×, and 2.63× for the single-, dual-, and quad-core systems, respectively.

9.5 In Situ Data Clustering for IoT Servers

This section presents the memristive in-situ clustering (MISC) architecture as
another example of in situ accelerators. The MISC architecture is designed to
perform energy-efficient and fast data clustering within memristive arrays. The
memory arrays are specifically re-structured to support the basic operations of
MISC. Moreover, algorithmic techniques and special design strategies are consid-
ered to enable large-scale data clustering on MISC.
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9.5.1 Data Clustering

Data clustering refers to partitioning a set of objects into meaningful groups
(a.k.a. clusters) without using predefined labels [103]. Data clustering tasks are
computationally difficult (NP-hard) problems. The entities of each cluster are more
similar to each other than to those in other clusters. The class of k-means algorithms
are the most prominent clustering techniques that have been successfully employed
in numerous fields of science and engineering [104]. Algorithm 9.1 shows the basic
steps of k-means clustering, where k centroids are defined to represent the clusters.
A centroid is either a representative member of the cluster, such as the median of
the cluster, or an additional data point computed based on the similarities among
all of the cluster members (e.g., the arithmetic mean). The former has been proven
to find better clusters than the latter due to its resistance against outlier members
[103, 104]. Prior to partitioning the data, the k centroids are randomly selected for
the clusters. The clustering task is carried out through two algorithmic steps (lines 3
and 4 in Algorithm 9.1) that are repeated after the initial step. Firstly, the clusters are
formed by assigning data points to their closest centroids. Secondly, new centroids
are computed for all of the clusters. These two steps are repeated for a constant
number of iterations defined by the application or until convergence is reached and
none of the members switches their clusters during the first step.

Algorithm 9.1 Basic k-Means Clustering

1: select k initial centroids randomly
2: repeat
3: from k clusters: assign data points to their closest centroids
4: recompute the centroid of each new cluster
5: until convergence is reached

9.5.2 Applications of Data Clustering

We can find numerous applications of k-means clustering in the literature. This
section reviews only two representative examples for gene expression analysis
(GEA) and text data mining.

9.5.2.1 Gene Expression Analysis

Recently, clustering has seen wide use in the field of medical research, such
as cancer diagnosis and drug discovery. An accurate clustering algorithm can
significantly improve the correctness of these applications. Lu and Han [105] have
shown that data clustering techniques may be employed to classify cancerous cells
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Fig. 9.18 Clustering gene samples to detect cancerous cells

based on the abundance of gene expression data. Interestingly, certain clustering
techniques may achieve a higher accuracy rather than the traditional morphological-
and clinical-based methods. A gene is defined as part of a deoxyribonucleic acid
(DNA) that represents the basic unit of heredity transferred from parent to an
offspring. Gene expression is the process of transcribing a gene’s DNA sequence
into ribonucleic acid. This process changes during biological phenomena, such as
cell development. For example, in the case of diseases such as cancer, the genes of
normal body cells undergo multiple mutations to evolve cancerous cells. Figure 9.18
shows how this anomaly is now possible to be detected through gene expression
analysis (GEA). Genes are first sampled to create an input dataset. Thousands of
gene samples are often required to achieve an acceptable output accuracy. The
dataset is then processed by a clustering engine (e.g., k-means) to generate the
clustered data. Finally, the clustered data are examined to produce the final results.

9.5.2.2 Document Clustering

An important branch of text mining is based on clustering text documents to
organize paragraphs, sentences, and terms into meaningful clusters. This process
improves information retrieval, document browsing, and data analytics [106].
Figure 9.19 shows an example flow of clustering text documents. First, the text
corpus is converted into numerical vectors through a data-preprocessing mechanism.
The vectors represent the features of the corpus and are used to group similar terms
into the same clusters. Normalized term frequency (TF) is a commonly used feature
vector for text clustering. The TF vector represents the number of word occurrences
in every document divided by the total number of words. For each word, an inverse
document frequency (IDF) is defined as the logarithmic ratio of the total number
of documents to those documents that contain the word. The two metrics are then
multiplied to compute a TF-IDF score matrix. Finally, the documents are partitioned
into multiple groups with similar members using the clustering algorithm (i.e., k-
means).
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9.5.3 Data Clustering with Rank-Order Filters

MISC proposes to leverage rank-order filtering to enable energy-efficient data clus-
tering within memory arrays. Rank-order filters are nonlinear digital components
widely used in signal and image processing. They are mainly used to filter out
noise from input signals. A general rank-order filter may be characterized by the
number of input signals (N) and an index (i) that determines which input signal
must appear at the output. The filter needs to send the ith largest (or smallest)
input signal to the output. A median filter may be viewed as a particular case
of the rank-order filter where i is set to N/2. The median filter may be used to
compute the cluster centroids for the k-medians algorithm. However, rank-order
median filters are memory and compute intensive operations. Numerous hardware
and software optimizations have been proposed for median filters in the literature,
which pursue two different approaches. The first approach is word-based search that
sequentially examines all of the objects to find the median. The second approach is
based on a bit-serial process to computes the majority of selected bits from all of
the objects in parallel. When applied to large-scale datasets, both approaches suffer
from excessive memory traffic and high data movement costs.

9.5.3.1 Bit-Serial Median Filter

MISC relies on the bit-serial median filter for clustering. In principle, one can find
the median of a list by sorting the data points. This technique, however, is complex
and inefficient. In 1981, Danielsson [117] proposed the first bit-serial algorithm for
median filtering that eliminates the need for sorting. Thereafter, numerous hardware
and software implementations of the bit-serial median filter have been examined that
rely on the majority function. Notice that the majority function defines a mapping
from N binary data to a single binary output. The output is 0 if N/2 or more inputs
are 0; otherwise, it is set to 1.

Figure 9.20 shows four major steps of the bit-serial algorithm to find the median
of five numbers. Initially, all numbers are represented in their binary forms (1).
Starting from the most significant bit (MSB) to the least significant bit (LSB), the
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Fig. 9.20 Computing the median of five numbers using the bit-serial algorithm

algorithm computes majority (2) and propagate minorities (3). The majority vote
computation is a vertical process that results in a single bit computed for the selected
column. The minority propagation is a horizontal process that depends on the result
of the majority function from the previous step. During the horizontal process, the
minority bits of the selected column are identified and are used to replace all of the
bits on their right-hand side. Repeating steps (2) and (3) for all bit positions results
in computing the median of all five numbers (4).

9.5.4 Memristive k-Median Clustering

The key idea of MISC is to exploit the computational capabilities of the memristive
arrays to perform the necessary computation for bit-serial median filtering in the
memory cells. Therefore, MISC can reduce the latency, bandwidth, and energy
overheads associated with streaming data out of the memory arrays during the
clustering process. By eliminating the need for transferring data to/from memory
arrays, MISC unlocks the unexploited massive parallelism in bit-serial median
algorithm for data clustering.

9.5.4.1 The MISC Architecture

The MISC accelerator is designed as a memory module that consists of multiple
chips. Figure 9.21 shows the hierarchical organization of MISC with respect to the
CPU and main memory. Every MISC chip comprises a hierarchy of data arrays
interconnected with a reconfigurable reduction tree. The memory cells are capable
of storing data bits and computing the basic operations required for bit-serial median
filters. The on-chip interconnection network allows for retrieving or merging partial
results from the data arrays. The MISC module is connected to the processor via a
standard double-data rate memory interface [107]. This modular organization of the
proposed accelerator allows the user to selectively integrate MISC in those computer
systems that execute data clustering workloads. The MISC memory architecture
supports two operational modes: the storage mode to serve ordinary read and write
requests and the compute mode that is for in situ data clustering. For a given
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computation task, three steps are followed by hardware and software. First, the
MISC module is configured by software for solving the clustering problem. Next,
the in situ computation will be initiated after transferring the input data from the
main memory to the accelerator chips. Finally, the MISC controller notifies the CPU
to collect the results.

9.5.4.2 The Design Principles for MISC

MISC requires three major operations to fully implement the bit-serial median
filter within memory arrays. The operations are (1) computing the majority of bits
within a selected column, (2) determining which rows hold the minority bit, and
(3) replacing the LSBs of those rows with the minority bit. MISC realizes these
operations using two basic topologies for memristor elements. As shown in Fig.
9.22, the serial and parallel topologies of the resistive elements are used to perform
binary XNOR and to compute the majority vote of multiple bits.

Computing the Majority Vote The majority function is computed through parallel
memristive cells connected to a single bitline. Assuming that each memory cell
employs its high- and low-resistance states to represent 1 and 0, respectively, the
number of 1s determines the amount of current (I) flowing through the bitline. One
can determine the number of 1s by measuring this current and comparing it with a
threshold. If the number of 1s is greater than the half of bits, the output is set to 1;
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otherwise, the output is 0. This functionality matches the definition of the majority
vote, which is leveraged to implement the vertical computation step in the bit-serial
median filtering algorithm.

Performing In Situ Bit Comparison Figure 9.22(b) shows an illustrative example
circuit for performing in situ bit comparison using two serially connected memris-
tive elements. Depending upon the input voltage (V) and the states of memristive
elements (r0 and r1), the output voltage (vout) varies between V and 0. According to
parts (c) and (d) of Fig. 9.22, vout represents the results of a binary XOR/XNOR on
v and r. This novel functionality is used in the bit-serial median filter for finding the
minority bits, as well as in the k-medians algorithm for searching and selecting all
the members of a dynamically formed cluster prior to finding new centroids.

9.5.5 MISC Building Blocks

The MISC accelerator is designed based on three fundamental building blocks: a
memory cell, a majority unit, and a network reduction unit. The building blocks are
designed and optimized to achieve high memory density, low-energy consumption,
and capacity for massive parallel computation at the memory cells.

9.5.5.1 Memory Cell

An example physical layout for the MISC memory cell is shown in Fig. 9.23. The
cell is capable of (1) serving ordinary reads and writes, (2) performing in situ XNOR
between the cell contents and an external input, and (3) propagating the minority bit
to its adjacent cell on right. The cell comprises four transistors and four memristive
elements that can be viewed as a combination of four conventional 1T-1R RRAM
cells. Three wordlines and four bitlines are employed to perform read, write, and
compute operations on the cell. Each memristive element of the MISC cell can be
read or written through a set of three bitlines and wordlines. Also, it is possible to
use the cells as four individual 1T-1R memory cells to store data. For example, R in
the data bit is accessed using

{
I, C,C

}
; R in the XNOR part is accessed through

R M

XNOR

R RR
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Fig. 9.23 Illustrative example of the proposed memory cell
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Computing the Median Inside MISC Array Computing bit-serial median
requires multiple steps, each of which involves selecting cells through bitlines
and wordlines. Figure 9.24 shows the main operations of adjacent MISC cells in a
row. On every iteration, only one cell of each memory row will be processed. First,
P and I are initialized with nonzero binary values to determine if the cell should be
included in computation. This is necessary to ensure that irrelevant data points are
not included in median computation. To compute the majority vote of a bit position
(bi), bitlines C from columns bi and bi−1 are connected to ground and bitline C of
the bit position bi is connected to Vdd. As shown in Fig. 9.24a, two current paths
are possible between Vdd and ground. One path is established through column bi

based on the content of data bit (1). Another possible path includes the memristive
element (low) of the neighboring column (bi−1) that determines the amount of
current pulled from the computed bitline in case of bit propagation (2). These two
paths are controlled by P and I such that only one (or none) of the columns per
every row contributes to the bitline current. Therefore, only three combinations of
the P and I values (i.e., 00, 01, and 10) are used for computation. However, the P
and I values may change during the computation of a row. First, none of the cells
are selected if P I = 00; second, column bi is selected to be included in the majority
computation if P I = 01; and third, column bi−1 contributes to the majority vote
computation if P I = 10. At every step, the majority is computed by measuring
the total current driven through the compute bitline (C) and comparing it with a
threshold.

One difficulty for the in situ bit-serial median computation is propagating the
minority bit within each row. This operation may result in forming long chains of
MISC cells per row, which impacts the area, delay, and power dissipation signif-
icantly. The MISC architecture, however, avoids forming long chains by allowing
only 1s to be propagated from bi−1 to bi. Firstly, 1 and 0 are represented with the
low- and high-resistance states, respectively. Secondly, because of the significant
difference between the high- and low-resistance states in RRAM [108], the currents
contributed to the bitline by those memristive cells in high-resistance states can be
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omitted. This optimization is considered by dedicating a low memristive element in
bi−1, which is included in the current summation only if P = 1. After completing
the majority vote at the current bit position (bi), P and I are recomputed for the next
bit position (bi+1). Figure 9.24b shows how P and I are recomputed using bi. The
true and complement values of the newly computed majority vote are applied to M
and M . Then, E is connected to Vdd to enable the XNOR part of the cell. The result
of XNORing M and R is produced on the wordline I. The wordline is connected
to a control circuit that detects a 1-to-0 transition and locks it to 0 till the end of
computation. Moreover, the control circuit sets P to 1 only if M is equal to 1.

Updating the Cell Recall that the MISC cell stores the true and complement values
of the data bits; therefore, updating the contents of every cell requires additional
writes. MISC employs a two-phase update mechanism that writes all 1s in the first
phase and then all of the 0s. This process does not incur significant overhead in
a data clustering problem because the dataset is written in the memory once and
is read by the algorithm multiple times. Moreover, the performance and energy
benefits of in situ computing surpass this overhead significantly.

9.5.5.2 Analog Bit Counter and Reduction Network

Theoretically, solving a large-scale data clustering problem with MISC needs
computing the majority vote of a large number of data points stored in a single
memory array. Building large MISC arrays is impractical due to significant sensing
and reliability issues. Instead, MISC stores data points in multiple limited sized
arrays, and only a fraction of the cells within each column is processed using the
analog bit counters. The multibit sensors are similar to those used in the MB-
CNN arrays. Multiple MISC array computations are performed in parallel to gain
significant performance. Again, a hierarchical merging mechanism is proposed to
compute the majority vote of many data points stored in multiple MISC arrays. An
interconnection network comprising reduction units merges the partial bit-counts
computed per arrays into a single majority bit. The main purpose of the reduction
tree is to merge the partial counts computed by the analog bit counters.

A reconfigurable reduction tree is used inside each bank to interconnect the data
arrays and the chip controller. The tree is capable of selectively merging the partial
counts from the data arrays into a single count value. Figure 9.25 shows the MISC
reduction unit with nine possible ways of reading data from the children arrays A,
B, C, and D. Each MISC reduction unit is configured using a 2-bit mode register
(m). By sharing the modes values among the reduction units of each layer, nine
useful configurations are possible for reducing the partial results in MISC. Similar
to MB-CNN, the nodes are programmed to appropriate operational modes prior to
a computation task. MISC makes it now possible to read the individual arrays that
are used for serving ordinary read requests or to read the sum of values provided
by every two or four adjacent arrays. Such flexibility has been essential to achieve
significant energy efficiency in solving problems that partially occupy the MISC



462 M. N. Bojnordi and P. Behnam

A C

B D

reduction units

m0 m1
m0

Operationm1 m0
01 01 Read A
01 10 Read B
01 11 Read A+B
10 01 Read C
10 10 Read D
10 11 Read C+D
11 01 Read A+C
11 10 Read B+D
11 11 Read A+B+C+D

data arrays

+

mode
(m)

Fig. 9.25 Proposed configurable reduction tree for banks

Label Array Data Array

R
o
w

 S
el

ec
to

r

R
o
w

 D
ec

o
d
er

Searching Label

Accessing Data/Median

Majority Bits

Reading/Writing Label

R
o
w

 D
ec

o
d
er

3

4

5

6

Bank Controller

Centroids

1

2
7

Fig. 9.26 Illustrative example of the MISC array comprising the cells and peripheral circuits

banks. Indeed, software is responsible for computing the mode bits for any given
problem size. The mode bits are then streamed into the accelerator during the chip
initialization phase.

9.5.5.3 MISC Array Organization

Each MISC bank includes a controller consisting of buffers for maintaining local
data (e.g., centroids), serial adders, comparators, and logic for controlling iterative
tasks, such as partitioning and recomputing the centroids. The bank controller makes
it possible to read, write, and compute a set of selected data arrays efficiently.
Figure 9.26 shows the structure of an MISC array with two subarrays used to
maintain the data points and cluster labels.

Seven major steps are followed by the bank controller to initialize centroids, for
new clusters, and compute medians.

• Initializing Centroids: Every k-medians clustering task begins with randomly
initializing the centroids, which are maintained by the bank controller in local
buffers (1). The index of each centroid in this table is used as a label for the
corresponding cluster.
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• Forming New Clusters: The bank controller forms new partitions by reading the
data points from the data subarrays and comparing them with the centroids (2).
The index of the closest centroid to every data point is used as the new cluster
label for these data and will be written to the label array (3). This is accomplished
through a set of serial comparators at the bank controller. As the data points are
read out, the serial comparator determines the index of the closest centroid to the
data.

• Computing Medians: The centroid of each cluster must be recomputed by
applying the bit-serial median algorithm to all the elements of every cluster. This
requires the bank controller to keep track of the cluster members at all time. The
label array uses the same structure as the data array to carry out the required book
keeping for all of the data points. At the beginning of every median computation,
the label arrays are searched for matching entries using the cluster labels one
after another (4). The outcome of every search operation is the matching lines
in the label subarray connected to a row selector unit to determine the I and P
values for the data array (5). Next, the median bits are computed by iteratively
performing the vertical majority vote computation followed by the horizontal
minority propagation (6). The median bits are streamed to the bank controller for
updating the centroids as they are serially computed by the MISC arrays (7). This
process ends after a certain number of iterations defined by the software. One
other possibility for ending the program is to stop the process if all of the newly
computed centroids are the same as the old ones. In other words, the computation
is repeated until convergence is reached.

9.5.5.4 MISC Data Representation

MISC needs to represent the data points in a fixed-point positive format due to the
limits of the bit-serial median algorithm on negative or real numbers. The software
performs all the necessary data conversion and preprocessing for clustering real
numbers and negative values prior to loading the data points into the MISC chips.

Clustering Real Numbers MISC converts the real valued numbers to fixed-point
data prior to clustering. A 64-bit fixed-point format achieves virtually the same
results obtained with a double-precision IEEE floating point format for a wide range
of applications and datasets. However, for more sensitive applications, MISC is
flexible enough to compute the medians of wider bit representations by increasing
the number of vertical majority vote computation and applying minimal changes
to the control logic. Figure 9.27 shows an example clustering tasks for five real
valued numbers. A preprocessing step is considered to convert floating point to the
fixed point. The input floating point data are scaled by a factor of 23. Then, the bit
serial median algorithm is used to compute the median. Finally, the median value is
identified.

Handling Negative Numbers The median computation by the bit-serial median
algorithm assumes that the input data are positive integers. This may not be
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Fig. 9.27 Illustrative example of handling real valued numbers in the MISC framework
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Fig. 9.28 Illustrative example of handling negative numbers in the MISC framework

necessarily true for real-world applications. The dataset may include negative
numbers. MISC addresses this issue by representing data in a biased notation. A
bias value of 2n is added to all of the data points, regardless of being negative and
positive. Then the clustering algorithm is performed for the positive values. Finally,
the median value is identified in the original dataset. Figure 9.28 shows an example
of computing the median of five integer values. The bias is 23, which is added to all
the data points.

9.5.5.5 Handling Even Number of Data Points

Another limitation of the bit-serial median computation algorithm is to compute
the median of an even number of data points. MISC addresses this problem by
including a virtual data point in the median computation process. The members of
a given cluster may be spread across different arrays and banks of the accelerator.
Moreover, the number of cluster members may change per each iteration due to
cluster reformation. Therefore, MISC has to find the number of cluster member first
through sending a cluster label to the label array and counting the matches. The
same analog bit counter is used to find the number of matches in all label arrays.
If the cluster contains an even number of elements, the median of that cluster is
computed in two steps. Figure 9.29 shows the two steps for an example problem.
First, a virtual data point with value 0 is included in the cluster so that the number
of data points becomes odd. Then, the first median (M1) is computed. In the second
step, a virtual data point with all 1s is included to compute the second median (M2).
MISC used the average of M1 and M2 as true median of this cluster.
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9.5.6 Potentials of the MISC Accelerator

MISC is another software-hardware approach to large-scale data clustering with
significant energy savings and performance potentials. The simulation results on a
clustering library with real datasets [109–111] and two applications pertaining to
k-means clustering prove the significant energy-efficiency of MISC. This section
provided the highlights of these potentials when compared to a baseline CPU
and an ASIC processor-in-memory (PIM) accelerator. Figure 9.30 illustrates the
impact of an increase in the number of clusters on the overall system energy and
execution time of the CPU, PIM, and MISC. Each design point represents the
relative execution time and system energy averaged on three runs of the library
for 8 MB data from breast cancer, indoor localization, and US census datasets. The
results indicate that the energy and execution time of data clustering increase as
the number of clusters grows; however, such increase is much more significant for
the PIM and CPU baselines. Overall, the MISC accelerator achieves 22–290 k×
and 8–81× better energy-delay products compared to the CPU and PIM baselines,
respectively.
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Chapter 10
IoT Cyber Security

Brian Russell

For happiness one needs security, but joy can spring like a
flower even from the cliffs of despair.

Anne Morrow Lindbergh

Contents

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
10.2 A Complex Threat Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

10.2.1 Threat Actors and Risk Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
10.2.2 Threat Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

10.3 Cyber Security Controls for IoT Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
10.3.1 Establishing a Secure IoT System Development Methodology . . . . . . . . . . . . 481
10.3.2 Integrating Safety and Security Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
10.3.3 Safeguarding Stakeholder Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

10.4 Securing the IoT Edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
10.4.1 Use a Hardware Security Element to Support Trusted Operations . . . . . . . . . 490
10.4.2 Configure a Secure Real-Time Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . 491
10.4.3 Implement Physical Security Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
10.4.4 Deploy Confidentiality Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
10.4.5 Implement Strong Authentication and Access Controls . . . . . . . . . . . . . . . . . . . . 495
10.4.6 Harden Network Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
10.4.7 Implement Logging and Behavioral Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
10.4.8 Implement Framework Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

10.5 A Secure Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
10.5.1 Secure Wireless Sensor Network (WSN) Configuration . . . . . . . . . . . . . . . . . . . 498
10.5.2 Segment the Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
10.5.3 Implement Zero-Trust/Software-Defined Perimeter . . . . . . . . . . . . . . . . . . . . . . . . 499
10.5.4 Protect the Perimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
10.5.5 Secure Discovery Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
10.5.6 Implement Asset Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
10.5.7 Implement Vulnerability Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
10.5.8 Audit and Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

B. Russell (�)
TrustThink, LLC, San Diego, CA, USA
e-mail: russell_brian@trustthink.net

© Springer Nature Switzerland AG 2020
F. Firouzi et al. (eds.), Intelligent Internet of Things,
https://doi.org/10.1007/978-3-030-30367-9_10

473

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30367-9_10&domain=pdf
mailto:russell_brian@trustthink.net
https://doi.org/10.1007/978-3-030-30367-9_10


474 B. Russell

10.5.9 Vulnerability Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
10.5.10 Penetration Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

10.6 A Secure Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
10.6.1 Evaluate the Security of the CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
10.6.2 Design the Cloud Service to be Resilient and Available . . . . . . . . . . . . . . . . . . . . 505
10.6.3 Securely Configure the Cloud Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
10.6.4 Apply Encryption to Cloud Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
10.6.5 Manage Cloud Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
10.6.6 Require Multi-Factor Cloud Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
10.6.7 Audit Cloud Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
10.6.8 Monitor the Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
10.6.9 Implement Cloud Identity Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
10.6.10 Use Zero-Touch Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
10.6.11 Role-Based Access Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
10.6.12 Secure Data in the Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
10.6.13 Secure Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

10.7 Secure System Users and Administrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
10.7.1 User Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
10.7.2 Administrator Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
10.7.3 Incident Response Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

10.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

10.1 Introduction

In 2013, Linux.Aidra was released on the Internet. The malware automatically
identified and exploited vulnerable routers. Since then, dozens of new or derived
botnets have been discovered that prey on basic weaknesses in Internet of Things
(IoT) products. BASHLITE, Remaiten, Mirai, and others scan the Internet for open
ports and then run exploits against known vulnerabilities in connected IoT products.
This automated malware is programmed with well-known username and password
combinations that are very often left unchanged as IoT products are deployed into
networks.

Automated botnets have gained significant media attention because of the
damage that can be achieved when using them to take down Internet sites and
services. But, botnets almost never include zero-day exploits and rarely represent
the true capabilities of cyber criminals. More advanced exploits and capabilities
exist that are often kept secret until the time is right to use them. Bad actors
are even commercializing their exploits. Malware-as-a-Service, for example, now
allows less-skilled adversaries to purchase or rent exploits and tools developed by
savvy criminals. As we continue to see a risk in the use of malware-as-a-service, we
will likely see a continued rise in attempts to compromise IoT products and systems.

Effective cyber security must become a fundamental goal within all IoT products
and systems. This chapter details methods that can be used to understand and
mitigate the myriad cyber security threats faced by IoT developers and operators. We
discuss the complex threat environment that IoT systems operate within and provide
guidance for implementing cyber security measures across the core architectural
elements of an IoT system: the edge, the network, the cloud, and the user.
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10.2 A Complex Threat Environment

We borrow from the domain of Systems Engineering and the Systems Engineering
Body of Knowledge (SEBoK) [1] to define an IoT system as a “system-of-systems.”
According to the SEBoK, a system-of-systems has unique engineering and design
considerations when compared to a standard “system.” These include dynamic
and reconfigurable boundaries and interfaces, complex performance measurements
given the need to operate across different stakeholder systems, and metrics that are
often difficult to define and quantify given independent management of component
systems. For purposes of simplicity, we will use “system-of-system” and system
interchangeably in this chapter.

Complex IoT system-of-systems incorporate sensors and actuators, gateways,
attached storage devices, mobile applications, enterprise applications, cloud ana-
lytics, workflow management, notification systems, and various cloud services. IoT
systems also incorporate Application Programming Interfaces (APIs) and Software
Development Kits (SDKs) that allow users to mix-and-match capabilities within a
network. The use of these APIs and SDKs makes it easy for an enterprise to create
new features based on machine-to-machine interactions that were not previously
intended by the IoT product manufacturer.

IoT systems also rely upon multiple points of integration. Dozens of communica-
tion protocols exist to bind together devices and applications over both wireless and
wired networks. Messaging protocols such as the Constrained Application Protocol
(CoAP) or Message Queue Telemetry Transport (MQTT) protocol provide IoT
systems with the ability to pass data in a standardized format. Even legacy bus
protocols such as ModBus or a vehicle’s CAN Bus can be seen as components
within an IoT system.

Mobile applications play a vital role in most IoT systems. Mobile apps can be
used to interface directly with IoT products or the gateways and cloud services
that support those products. These might connect via protocols such as Bluetooth
or Wi-Fi. Cloud services also interact with IoT products. APIs collect data and
communicate management commands to and from devices at the edge.

As IoT systems begin to provide new autonomous capabilities across different
industries, their reliance on sensor inputs becomes critical. Autonomous vehicles
(AV), for example, rely upon a suite of cameras, sensors, radar, lidar, Global
Positioning System (GPS), and vehicle-to-vehicle communications in order to
support critical functions such as mission planning, behavioral planning, and motion
planning. These inputs can be spoofed and denied resulting in unexpected and even
dangerous behavior from the vehicle.

This web of components and interfaces makes the job of cyber security pro-
fessionals difficult at best. A malicious actor needs to only identify and exploit a
weakness in a single component of this system-of-systems to gain a foothold into
the IoT. A weakness left open in a single insecure product, network device, cloud
service, mobile application, or even protocol can leave the door wide open to an
attacker gaining access. Once inside, bad actors can begin moving toward higher
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value targets, for example, databases that store sensitive information. This “lateral
movement” through the system is difficult to protect against and one of the reasons
that traditional perimeter security measures such as firewalls are no longer sufficient
to protect an organization’s data. An incident in 2014 against target shows the
exposure to unexpected attack vectors now constantly faced by IoT system security
engineers.

In 2014, attackers gained access to target networks via credentials stolen from a Heating,
Ventilation and Air Conditioning (HVAC) vendor. Fazio Mechanical Service – the HVAC
vendor was the victim of a phishing campaign which led to the compromise of their network
login credentials, giving the attackers access to Fazio systems. Fazio also had an established
connection with Target in order to support electronic billing and contract management. This
allowed attackers to leverage the login credentials stolen to access Target networks and
identify a method to implant the Trojan.POSRAM malware onto target’s payment card
systems [2].

As can be seen, the target payment card system was breached only after
bad actors identified a weakness exposed by a third-party vendor. The original
weakness was not even a technology weakness. Instead the attackers targeted the
humans associated with the system in an attempt to trick them into giving up their
credentials. Indeed, technological implementations are not the only aspects of a
system that must be secured. Users of systems must also understand their unique
weaknesses and how their actions can impact the security of the enterprise. Although
the target breach occurred 5 years ago, we have seen additional security research
that demonstrates that users still represent a weakness to IoT system security. Smart
cameras, for example, are still being compromised through unauthorized access to
their owner’s usernames and passwords, allowing strangers to view them in their
homes [3].

Another consideration is the need to protect the integrity of the data generated
within IoT systems. Even video is susceptible to manipulation when sufficient cyber
security safeguards are not applied. Systems that collect and act upon video footage
must protect the video from manipulation. This includes the deletion, modification,
or even replacement of collected footage.

Security expert Josh Mitchell demonstrated in 2016 the ability to remotely
compromise police video cameras in order to download, edit, and then re-upload
video footage [4]. Consider this threat in terms of analytics systems that process
data from distributed sensors and video recorders. If the source data is untrusted,
then actions based on that data are of limited worth.

Unfortunately, video camera products are one of the worst offenders in terms of
IoT cyber security weaknesses. Well-known default passwords, insecure configura-
tions, known-insecure network services, and software vulnerabilities have exposed
many IoT products to attack by the various threat actors in the world whose goal is
to compromise systems.
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Fig. 10.1 NTP amplification attack

10.2.1 Threat Actors and Risk Likelihood

Not every system is targeted for attack by the same bad actors. Different people
and organizations have different motivations. Some attackers aim to simply make a
name for themselves, others chase opportunities for financial wealth, while others
seek to disrupt the operations of organizations that operate in a manner for which
they disagree. Each of these threat actors has a finite amount of resources, limited
capabilities, and some level of risk tolerance. At the far end of the threat actor
spectrum lives a threat actor that is different from the rest. The nation-state threat
is often characterized as an adversary with virtually unlimited resources and a high
degree of subject matter expertise. These are often government organizations that
employ teams of engineers capable of reverse engineering software and developing
zero-day exploits based on vulnerabilities that they identify for themselves or
introduce through a compromised supply chain.

When determining the level of risk associated with any particular threat, one
of the primary considerations is the threat actor(s) involved. The likelihood of
a risk being realized is based heavily on the capabilities and motivations of the
attackers that will target a system. The perpetrators of the target breach were
highly motivated and knowledgeable, for example, and the financial prize provided
significant motivation. Most organizations will never be targeted by nation-state
actors; however, all organizations must be cognizant that there are individuals or
groups of individuals with resources and training that are capable of executing
complex campaigns to capture sensitive data, disrupt operations, or cause physical
or monetary damage. Figure 10.1 describes common threat actors (Table 10.1).

It helps when designing cyber security architectures to understand the types of
attackers that might be targeting your systems. To gain a better understanding of the
attacks that might be levied against systems, an understanding of the motivations
and abilities of attackers is required.

10.2.2 Threat Types

We previously discussed in this chapter the threat of data modification and the need
to implement integrity protections to ensure data is legitimate. That threat is simply
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Table 10.1 Threat profiles

Threat actor Motivations and capabilities

Nation-State A well-funded government with an established offensive cyber security
program. Motivations include large-scale financial gain or disruption, access
to intellectual property, political influence, or physical damage to critical
infrastructure. Nation-state actors are often involved in the creation of
zero-day exploits.

Cyber Terrorist May be well-funded. Attacks may be focused on inflicting damage or
disruption, or aimed at inducing fear within a population.

Hacktivist May use existing tools to exploit known weaknesses in a system. May write
automated attack scripts and target specific organizations or industries.
Mostly politically motivated.

Organized
Crime

Most likely financially driven. Will often use existing tools to exploit known
weaknesses in systems.

Insider/System
User

A trusted insider to the system or organization. Often has at least minimal
privileges within the system or at times elevated privileges. May feel
unappreciated or wronged.

one in many that an IoT system must be designed to guard against. Additional types
of threats faced by IoT systems include:

Identity Spoofing Consider the ability for an attacker to misrepresent himself or
herself as trusted entities within a system. If an attacker is able to compromise the
identity of a system user, then he or she will be able to perform actions that include
modification of configurations, theft of data, or insertion of malicious content. Since
IoT systems include human users and operators, those people that use or manage the
system are at risk of having their identities spoofed. Additionally, the IoT introduces
the ability for adversaries to insert rogue devices into the network. Rogue devices
can be used by bad actors to inject false data into the data stream, or even to monitor
the activities of the system or its users.

Tampering with Data Tampering can occur at any point in the lifecycle of data.
We have discussed tampering at the source – that is by gaining access to an IoT
device at the edge and manipulating the generated data. Data is often distributed
across the network and ingested by analytic processing systems. Consider an
attackers’ opportunity to access and modify data within a network attached storage
(NAS) device, or as it is streamed to the cloud. Cloud storage and processing
systems must also be considered as attack vectors for data tampering.

Repudiation Repudiation is an important concept in terms of IoT systems. As
these systems begin to use analytics to support coordination of autonomous actions,
being able to ensure that one organization or product cannot repudiate inputs to
an action or the actions themselves is critical to being able to assign liability for
malfunctions or accidents induced by the system. If a system performs an action
that results in harm (physical, financial), then a trail of evidence must be available
to review and determine root cause. Without proper non-repudiation controls within
a system, that trail will not be trusted.
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Information Disclosure One of the most well-known cyber security controls is
confidentiality. Confidentiality protections such as the application of encryption can
prevent information disclosure in traditional Information Technology (IT) systems.
The same is true with IoT systems. Proper placement of cryptographic protections
can ensure that sensitive information is not disclosed to unauthorized parties.
Without proper confidentiality controls in place, there are many methods an attacker
might use to eavesdrop or steal information from a system.

IoT systems introduce a new concept related to information disclosure, however.
It is not simply the risk of application-layer information that must be protected
against. Instead, metadata that could be used to track or surveil the location or usage
patterns of system users must also be protected. Disclosure of this metadata can have
dire consequences. This is why complex IoT systems such as Advanced Metering
Infrastructure (AMI) and Connected Vehicles (CV) engineer robust privacy and
anonymity controls into their applications. Within an AMI, for example, system
designers must guard against leakage of usage patterns from the smart meter. Within
Connected Vehicle implementations, system designers must guard against the ability
of someone to track the location of a vehicle or to be able to determine a vehicle
owner based on the vehicle’s identity.

Denial or Degradation of Service IoT systems are beginning to provide safety-
critical and health-critical capabilities. These systems must be designed to ensure
that they can withstand the threat of denial or degradation of service. A traditional
distributed denial of service attack coordinates the flooding of networks by thou-
sands of computers. There are ways for attackers to increase the magnitude of the
attack as well. For example, amplification attacks take minimal input to generate
maximum output against a victim machine. Amplification attacks take advantage of
inherent features of well-known protocols. A Network Time Protocol (NTP)-based
amplification attack is a good example.

NTP amplification attacks were enabled by the use of the NTP monlist command.
Monlist returns a list of the last 600 Internet Protocol (IP) addresses that access the
NTP server. This enabled a small input to generate a maximum-sized output directed
at a victim server. Now consider these attacks being levied against the cloud services
that support your IoT systems.

We must also include concern for any degradation of service when discussing
life-critical and safety-critical IoT systems. Many IoT systems require near real-
time processing capability and any reduction in that ability can have severe
consequences. For example, researchers [5] have shown that it is possible to blind
cameras on AVs for an infinite amount of time using lasers. This reduces an AV’s
ability to use those cameras for the functions of lane detection, object detection, and
even traffic sign identification.

Bypassing Physical Security A relatively unique threat to IoT systems is the
ability of attackers to gain physical access to IoT devices in order to evaluate their
security posture and perform reverse engineering. In some cases, devices can simply
be bought online and analyzed in the comfort of an attackers’ lab. In other cases,
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firmware that runs a device can be found online and analyzed for vulnerabilities
using firmware analysis tools. Devices may also be installed in exposed locations,
leaving them open to theft. When an attacker has physical access to an IoT machine,
he or she has many methods to compromise that machine. Physical security controls
must be considered whenever an IoT system includes machines that are physically
exposed to untrusted humans.

10.3 Cyber Security Controls for IoT Systems

The selection of security controls that can mitigate the threats described in this
chapter must be made across the various layers of an IoT system. Controls are not
simply technological in nature. Process-based controls and security controls applied
to the human users of IoT systems must also be incorporated. In the following
sections, we detail cyber security controls that can be applied at discrete layers
within the IoT system (Fig. 10.2).

We begin with a framework for the secure development of a new IoT system and
then discuss specific controls that can be applied to the devices at the edge of an IoT
system, within the network layer that supports IoT systems and within the cloud
services that enable IoT features. We finish by examining security controls that can
be used to help secure the human element of any IoT system.

Fig. 10.2 Cyber security controls
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10.3.1 Establishing a Secure IoT System Development
Methodology

Much of today’s software is exposed to multiple threats when deployed. Pressure
to meet Sprint and Release commitments often overrides the proper handling of
security requirements within an application or device. It is easy to push off security
functionality in favor of satisfying a functional requirement or staying on track
with cost and schedule. The approach defined in this section provides a framework
for ensuring that software and firmware are developed on a secure foundation
and that cyber security requirements are not dropped from a sprint backlog. The
recommendations here are based on adaptation of the Microsoft Agile Development
model [6] as well as secure agile approaches from the Open Web Application
Security Program (OWASP). Each development project begins with a threat model,
which is created during project initiation and updated continuously as the project
matures. The threat model requires an examination of the functionality of the
application or device in order to understand the threats and vulnerabilities associated
with the system.

10.3.1.1 Threat Modeling an IoT System

Organizations typically have a limited amount of resources that can be applied to
the cyber security of their systems. Leaders must make informed decisions as to
the impact of a particular threat as well as the likelihood of that threat occurring to
be able to determine where to invest funds for mitigations. Threat modeling is the
process of documenting a system, identifying the threats to that system and then
rating the threats based on their impact and likelihood. Without threat modeling,
security engineers operate somewhat in the dark as to what risks require the most
attention, and may possibly invest in security tools that don’t even apply to the
most serious concerns. Microsoft’s threat modeling approach – a component of
the Microsoft Agile SDL – begins with documenting the assets within a system,
creating and analyzing a system architecture, decomposing the system to identify
data flows, and identifying high value assets within the system. These are the assets
that a malicious actor might attempt to compromise – for example, a database or
gateway. Once complete, the process includes steps to identify, document, and rate
the threats to the system (Fig. 10.3).

Simply because a threat to your system exists does not mean that action must
be taken. There may be esoteric threats that would likely never occur. In these
instances, it is often better to invest funds in mitigating threats that would be much
more likely to occur. Risk analysis allows security engineers to assign a risk score to
each risk in the system. The risk score (Risk = Likelihood of Occurrence ∗ Impact
of Occurrence) provides a quantifiable view of all the risks of a system and allows
them to be objectively prioritized. The Microsoft Agile SDL includes a process
termed DREAD that security engineers can use to assign risk scores.
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Fig. 10.3 Threat modeling
flow

• Damage – what amount of damage (physical, monetary, reputation) would occur?
• Reproducibility – can the attack be reproduced easily?
• Exploitability – how difficult is it to execute the attack?
• Affected users – how many customers or stakeholders will be impacted?
• Discoverability – is the threat well known? Can anyone discover it?

Once risks are quantified and prioritized, leaders can choose to mitigate the risk,
defer the risk, or even to accept the risk.

10.3.1.2 Documenting Cyber Security Requirements

Identifying the specific security user stories to include in your backlog requires an
analysis of the specific threats faced by your system. Once understood, engineers
can begin to document the cyber security requirements that must be satisfied to
secure the system. Determining when to spend time on specific requirements can
be difficult though in an agile development process, since agile projects focus on
showcasing potentially shippable products at the end of each sprint. Some might
consider cyber security requirements as a “tax” on system development, with a
handful of these requirements being added to each sprint backlog. A better approach
is to review and categorize all cyber security requirements during the creation
and/or update of the product backlog and release roadmap. Microsoft’s Agile SDL
provides guidance on handling security requirements within the cadence of an agile
development. Three types of requirements are defined and aligned to the sprint
planning process.
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• Every-Sprint Requirements: These requirements are included within each sprint.
They reduce your team’s velocity. An example of an “every-sprint” user story
is: As a user I can expect that my software is free from known vulnerabilities
identified in the OWASP Top 10. This user story ensures code is analyzed each
sprint and cannot be deemed complete until all OWASP Top 10 vulnerabilities are
remediated. Alternatively, a development team might consider adding this type
of requirement to their “definition of done.” Either way, the team’s velocity is
decreased as these important security requirements must be handled each sprint.

• Bucket Requirements: These requirements are allocated to sprint backlogs as
velocity permits over the course of product development. The “bucket” that
contains each of these requirements must be emptied by the end of the project.
Proper management of these bucket requirements is essential to ensure that
there is a manageable amount of work left as the project completion nears.
Considerations regarding the release schedule of the project must also be taken
into account. If an IoT system continuously releases new features, then these
requirements should be incorporated during each release.

• One-Time Requirements: These requirements are included in a sprint one-time
only. Activities such as setting up a secure configuration management repository
or designing the security architecture can be included as one-time requirements.
Although these requirements are only included in a single sprint, they are usually
critically important to the cyber security posture of the product or system.
An example of a one-time user story that drives architectural decision making
might be: As a device administrator, I can be assured that my device’s private
key material is stored in protected hardware at all times, so that potential
compromise of device cryptographic keys is mitigated.

10.3.1.3 Establishing a Cyber Security Culture

The cyber security of an IoT product or system is everyone’s responsibility.
Members of the DevOps team must understand this, and all staff must be on the
lookout for poor security hygiene and bad operational security (OPSEC) practices.
There are a number of ways to instill a culture of cyber security within your
organization. This begins with appointing an executive to be accountable for the
security of the system. This executive must be given the authority to ensure that
sufficient investments are made to provide the team with the resources they need to
properly execute their cyber security responsibilities. There should also be security
evangelists identified within an organization. In some cases, these are funded
security professionals. In constrained environments, developers with an interest in
cyber security can be identified and trained in secure software development. The
role of the evangelist is to motivate the rest of the team to take security seriously
and to work with executive leadership to identify gaps in the secure development
process.

Best practices traditionally advocated within Extreme Programming (XP) are
useful for establishing cyber security processes across the development team. Pair
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programming, for example, is a valuable cyber security tool. Teams can rotate
security-aware developers with the rest of the development team to instill that
awareness across the team over time. The process of pair programming also has
additional benefits. Higher quality code can be developed given a second pair of
eyes. Also, skills can be shared and learned across different members of the team to
eliminate single points of failure.

Each development team should also codify a set of secure coding guidelines.
OWASP provides a useful Secure Coding Cheat Sheet that can be used as a template
to customize your own secure coding guidelines [7]. In addition to establishing
secure coding guidelines, make sure to incorporate peer reviews into your process.
This can be handled organically when pair programming is used, but at a minimum
ensure that peer reviews occur each sprint.

Secure configuration management (CM) practices must also be put in place
for IoT system development. Ensure that your CM tool is locked down to allow
only authorized access. Do not embed API keys directly in code – instead use
configuration files that can be updated separately from the code. Make sure that
critical Secure Shell (SSH) keys that provide administrative access to cloud servers
are accounted for and only provided to authorized users. Keep an eye out for any
sensitive data that may be posted to public repositories.

Do not forget the need to provide training to your development teams. Orga-
nizations such as SAFECode and SANS provide secure development training
courses that can provide required skills to the development team. SANS also offers
certifications such as the GIAC Secure Software Programmer (GSSP)-Java and
GSSP-.NET certifications. Additionally, have your development teams review best
practices from industry organizations to gain a better understanding of the latest
recommendations for securing connected products. Table 10.2 provides a listing of
some well-written guidance documents that can provide valuable information for
security teams.

Table 10.2 References for industry best practices

Industry guidance Applicability Available at

IoT Security Foundation
(IoTSF) IoT Security
Framework

Enterprise IoT
systems

https://iotsecurityfoundation.org/wp-
content/uploads/2016/12/IoT-Security-
Compliance-Framework.pdf

European Network and
Information Security Agency
(ENISA) Baseline Security
Recommendations for IoT

Enterprise IoT
systems

https://www.enisa.europa.eu/publications/
baseline-security-recommendations-for-
iot

Cloud Security Alliance
(CSA) Future Proofing the
Connected World

IoT Machine
Development

https://downloads.cloudsecurityalliance.
org/assets/research/internet-of-things/
future-proofing-the-connected-world.pdf

OWASP/CSA Secure Medical
Devices IoT Deployment

Deployment of
Medical IoT
devices

https://downloads.cloudsecurityalliance.
org/assets/research/owasp/OWASP_
Secure_Medical_Devices_Deployment_
Standard_7.18.18.pdf

https://iotsecurityfoundation.org/wp-content/uploads/2016/12/IoT-Security-Compliance-Framework.pdf
https://iotsecurityfoundation.org/wp-content/uploads/2016/12/IoT-Security-Compliance-Framework.pdf
https://iotsecurityfoundation.org/wp-content/uploads/2016/12/IoT-Security-Compliance-Framework.pdf
https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot
https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot
https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot
https://downloads.cloudsecurityalliance.org/assets/research/internet-of-things/future-proofing-the-connected-world.pdf
https://downloads.cloudsecurityalliance.org/assets/research/internet-of-things/future-proofing-the-connected-world.pdf
https://downloads.cloudsecurityalliance.org/assets/research/internet-of-things/future-proofing-the-connected-world.pdf
https://downloads.cloudsecurityalliance.org/assets/research/owasp/OWASP_Secure_Medical_Devices_Deployment_Standard_7.18.18.pdf
https://downloads.cloudsecurityalliance.org/assets/research/owasp/OWASP_Secure_Medical_Devices_Deployment_Standard_7.18.18.pdf
https://downloads.cloudsecurityalliance.org/assets/research/owasp/OWASP_Secure_Medical_Devices_Deployment_Standard_7.18.18.pdf
https://downloads.cloudsecurityalliance.org/assets/research/owasp/OWASP_Secure_Medical_Devices_Deployment_Standard_7.18.18.pdf
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10.3.1.4 Conducting Code Audits and Automating Processes

Code auditing today should occur continuously. Static and dynamic analysis tools
provide feedback that can identify weaknesses in code. Dynamic analysis is used
to identify weaknesses during the operation of the software. Static analysis tools
review the source code for known weaknesses. Depending on the sensitivity of
the code being developed, manual source code reviews can also be required.
Systems today often contain millions of lines of code (LoC), so any manual
review must be focused on high-value areas of the code. For example, a manual
review might be required based on the results of a static or dynamic analysis
tool output. Architectural reviews should also be conducted regularly. As time
progresses, the features and functions of an application or system may change
substantially. Revisiting the security architecture can ensure that open weaknesses
are not unintentionally exposed.

Binary analysis should also be performed. There are many binary analysis tools
available. Binwalk is an open source tool that supports analysis of the files contained
within firmware. The tool is available for use within Kali Linux distributions [8].

Premium binary analysis products also exist. VDOO, for example, provides
a firmware analysis tool that maps results to cyber security standards and best
practices available from organizations such as ENISA, Cloud Security Alliance,
IoT Security Foundation (IoTSF), and the National Institute of Standards and
Technology (NIST) [9].

Additional testing such as fuzzing should also be performed. Fuzz testing
is a black box testing method that introduces unexpected inputs into software.
By injecting “bad” data such as malformed data automatically to the software,
anomalies can be identified in the way that the software handles unexpected inputs.
Tools such as Peach [10] allow security engineers to quickly begin the process of
fuzzing their software. Fuzzing should include the initial connection setup, state
changes such as power on or power off, and http or protocol fields such as headers
or length/value fields.

Automation has been a critical enabler of quality code development for years
now. Automated test tools evaluate developer adherence to coding standards and
quickly pinpoint bugs in code. The same is true for evaluating the cyber security
posture of software used within your IoT system. Automated analysis tools can
be integrated into your Continuous Integration (CI) environment to check for
adherence to secure coding guidelines. Static analysis tools, dynamic analysis tools,
firmware analysis tools, and even fuzz testers can now be incorporated within
the CI environment. These tools can be integrated with requirements management
platforms such as JIRA to automatically open ISSUES that must be addressed by
the development team.
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10.3.1.5 Gaining Visibility into Your Supply Chain

It is difficult to understand the cyber security posture of your IoT system without
having full visibility into the libraries and third-party components that together make
up your software and firmware. As an IoT system developer, make sure to establish
processes to document all components used within your system – a bill of materials
(BOM).

Communicating the BOM to your customers is also important. This allows
the customers that implement your products to understand their risk exposure
by providing visibility into the dozens or hundreds of libraries used across their
enterprise systems. This also provides customers with a valuable tool to determine
what patches must be applied to their IoT systems to ensure that they do not remain
vulnerable. Today, there are two competing standards that can be used to create a
bill of materials. Software Package Data Exchange (SPDX) Tools is available from
The Linux Foundation [11]. Cisco offers a propriety tool known as SWID.

The US National Telecommunications and Information Administration (NTIA)
has spearheaded a project to create a standardized bill of materials (BOM) for
software. The premise is that third-party software introduces risk into the supply
chain and must be properly tracked to be able to close vulnerabilities quickly.
A good example of this problem was seen in 2018 when a bug was found by
researchers GraphicsFuzz in the Qualcomm Adreno 630 graphics driver [12]. This
bug in the Adreno driver was able to be exploited to cause a reboot of the Samsung
Galaxy S9.

Adreno 630 is a graphics card used in the Qualcomm Snapdragon 845 System-on-Chip
(SoC) used in a variety of smartphones. A bug in the 630 driver could have impacts on not
only the Samsung Galaxy S9 but also on other mobile phones that make use of that driver.
This means that when a bug is found in the driver associated with one mobile phone, other
mobile phone manufacturers should take action to patch their systems as soon as possible.
Without good visibility into the libraries used within your systems though, that would be
difficult at best.

10.3.1.6 Working with the Security Research Community

In 2018, the IoTSF conducted a study to analyze the vulnerability disclosure pro-
grams across consumer IoT companies. The study found that 90% of consumer IoT
companies did not have a formal vulnerability disclosure process in place [13]. This
means that security researchers have not pre-defined method of communicating bugs
and vulnerabilities found in those company’s products. A vulnerability disclosure
process establishes formal procedures for accepting inputs from external sources.
Make sure to provide a Pretty Good Privacy (PGP) public key on your organization’s
website to support encrypted submissions.

The security research community has led the creation of a grassroots vulner-
ability research function. Researchers across the globe are constantly analyzing
products to identify new vulnerabilities. As a developer of IoT products and systems,
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make it easy for those researchers to share their information by establishing a
formalized vulnerability disclosure program. The IoTSF also provides guidance on
establishing a vulnerability disclosure program [14].

Bug bounty programs are also an option for proactively engaging with the
security community. Organizations like BugCrowd (https://www.bugcrowd.com/
product/bug-bounty/) can support the creation of a bug bounty program. The
organization HackerOne (https://www.hackerone.com/) successfully established a
bug bounty for the Department of Defense (DoD) in 2016. The first Hack the
Pentagon event identified 138 unique vulnerabilities [15].

10.3.2 Integrating Safety and Security Engineering

IoT systems integrate the cyber and physical domains. As such, both safety and
security engineering disciplines must be incorporated in order to mitigate both
safety and security risks.

Safety and security engineering have some similarities. IoT systems must be
engineered to adhere to security and safety goals simultaneously. A safety engi-
neers’ primary modeling tool is the fault tree. Fault tree analysis (FTA) identifies
common mode failures.

There are similarities between fault trees and a common cyber security modeling
tool known as attack trees. Fault trees, however, do not take into account the creative
approaches used by attackers to cause system disruption. IoT system designers must
be able to evaluate both attack trees and fault trees. This helps to analyze how a
motivated attacker might target the safety controls within a system, for example.

Establish a safety engineering function within your development team to analyze
the safety impacts of your system. Given the intended use of the system, is there a
potential for physical harm if the device stopped working, or malfunctioned. Even if
the machine itself is not safety-critical, consider whether there are any other safety-
critical devices or services that depend upon outputs from the machine. Consider
how potential harm from machine failure could be minimized or avoided.

A good example of the integration of safety and cyber security is the definition of
a fail-safe state that is entered upon detection of a cyber security event. For example,
with an AV the vehicle may be programmed to enter into this fail-safe mode that
brings it to a safe stop at the side of the road upon detection of a serious event.
Alternatively, the system may simply report the event to the cabin occupant and
instead fail-operationally, allowing the driver to take control and decide on a course
of action.

https://www.bugcrowd.com/product/bug-bounty/
https://www.bugcrowd.com/product/bug-bounty/
https://www.hackerone.com/
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10.3.3 Safeguarding Stakeholder Privacy

Privacy in IoT systems is about more than simply safeguarding Privacy Protected
Information (PPI). IoT systems can expose information about users that allow
tracking of user habits or even the locations of individuals. IoT system designers
have to consider privacy at the beginning and throughout an IoT implementation.
The best method of integrating privacy protections into a system is through the
concept of Privacy by Design (PbD). PbD incorporates strategies and activities that
protect user privacy and give users control over how their data is used. To learn
more about implementing the foundational principles of PbD, review the paper by
Ann Cavoukian, PhD: Privacy by Design – The Seven Foundational Principles [16].

There are a number of activities that must be conducted based on these PhD
principles. Organizations should prepare a Privacy Impact Assessment (PI) for each
system and routinely review privacy impacts based on updates to the system. All
data collected by a device and/or processed within a system should be documented
and categorized to identify PPI. After documenting this data collection, make an
active effort to limit the amount and types of data collected to only what is actually
needed for system operation. Establish policies and procedures that are fair to
customers as well. Notify customers regarding data collection and the expected
use of their data. Provide a mechanism for customers to opt-in or opt-out of data
collection. Also, setup a breach notification program that alerts customers to a data
breach within acceptable timelines per local and national regulations.

10.4 Securing the IoT Edge

When we visualize the “IoT,” we usually envision devices installed at the edge of
a network. These devices interact with their physical world by collecting data or
performing actions. Devices may be anywhere in the world and may be installed
in remote locations. This gives attackers the advantage of being able to physically
access their targets. The ability to introduce unexpected behavior in physical
environments makes IoT devices a prime target for attackers. Product developers
must keep in mind the need to:

• Protect from adversaries obtaining firmware and reverse engineering devices
• Protect from adversaries gaining access to a device either locally or remotely
• Design devices to be resilient – to operate even in the face of attacks
• Protect from adversaries installing malicious software or hardware into devices

(e.g., Skimmers or backdoors)

Many of the automated attacks against IoT devices have been successful because
of a small number of common weaknesses at the edge. In 2018, a team from the
Cloud Security Alliance composed of the author, Michael Roza, Aaron Guzman
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and Hananel Levine identified the common weaknesses exposed at the edge [17]. A
summary of the common weaknesses identified include:

• Insecure default credentials. This includes well known username/password
combinations. These are often published in data dictionaries used by password
cracking tools and automated malware to quickly compromise a device. Also
included are hard-coded passwords that cannot be changed and password shared
across many devices in a family.

• Insufficient encryption. This includes not encrypting communications between
IoT devices and peer devices, gateways, or servers. This also includes a lack
of encryption on storage mediums allowing attackers to compromise sensitive
information. This also includes failure to protect the keys used by cryptographic
algorithms to secure information.

• Weaknesses in authentication. This includes a failure to authenticate remote
access to the device or cloud service. This also includes failure to require multi-
factor authentication to access cloud services that are directly integrated with the
device.

• Use of vulnerable network services. Telnet, FTP, UPnP, and other well-known
insecure network services can leave open insecure ports that are targeted by
automated malware and other exploits.

• Software vulnerabilities. Just as Information Technology (IT) systems require
secure software, so do IoT devices and services. Standard vulnerabilities such as
cross site scripting, command injection and buffer overflows can be exposed by
not sufficiently testing the security of a product.

• Weaknesses in firmware or software update processes. This includes allowing
unsigned firmware to be loaded to a device, or not validating the signature of
a firmware file. These inactions allow bad actors to upload modified firmware
files with new and potentially malicious capabilities that provide an easy path for
gaining root privileges on an IoT device.

• Failure to enforce least privilege. This includes failure to restrict access limit
privileges assigned to non-admin/root accounts, allowing bad actors to take
advantage of the excess privilege to perform unintended functions.

The threats associated with IoT devices is real. Once at attacker gains access to
the firmware of an IoT device, there are high quality tools available that can reverse
engineer and identify or insert vulnerabilities. For example:

• Firmwalker: This tool supports firmware file system searches [18].
• IDA-Pro: Supports disassembly and debugging of software [19].
• Binwalk: Signature-based file scanning and extraction [20].

If attackers can gain physical access to a machine, there are many opportunities
to capture the firmware. For example, JTAG or UART interfaces may provide
unauthenticated access to extract firmware. Attackers may also use tools such as
the ones mentioned above to modify firmware and change the intended behavior of
a device.
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Defending against firmware modification is possible using techniques such as
tamper resistance and firmware integrity protections. To sufficiently guard against
the myriad attacks possible against IoT devices though, a layered security approach
must be implemented. In the following sections we describe techniques that can be
used to secure IoT devices at the edge. We categorize these recommendations based
on the need for:

• A Hardware Security Element that Supports Trusted Operations
• Configure a Secure Real-Time Operating System
• Implement Physical Security Controls
• Deploy Confidentiality Protections
• Implement Strong Authentication and Access Controls
• Harden Network Services
• Implement Logging
• Integrate Framework Security

10.4.1 Use a Hardware Security Element to Support Trusted
Operations

The cyber security posture of an edge machine begins with the security features
provided at the platform layer. This includes a hardware security module, a secure
real-time operating system, and physical protections against tamper. Many hardware
security features were previously only found in hardware security modules (HSMs);
however, there are many products on the market today that meet strict size, weight,
and power requirements while still offering secure hardware features. MCUs on the
market today come from vendors such as FreeScale, Atmel, NXP, microchip, and ST
Microelectronics. Security features provided by a hardware security module should
include:

Trusted Boot A cryptographic boot loader can be implemented to validate the
integrity of the operating system prior to boot. The trusted boot process initializes
the trusted execution environment. The process involves validation of signed hashes
applied to operating system components including the kernel and system partition.
A hardware root of trust applies the signature of the hash which is then verified prior
to loading.

Trusted Execution Environment A hardware root of trust can be used to segregate
untrusted and trusted portions of an IoT machine. Trusted applications can be
installed that are validated prior to allowing to run on the machine. The Trusted
Computing Group (TCG) and others have worked on adapting TEE specifications
to the IoT environment. The TEE incorporates hardware capabilities of the machine
including storage, peripheral access, and the secure element. The TEE also incor-
porates trusted OS drivers and exposes a client API that can be used by untrusted
applications to interact with trusted components [21].
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Secure Firmware Processes Firmware should be encrypted before transmitting to
an IoT machine. Encryption provides confidentiality to protect Intellectual Property
(IP) within the firmware. Machines must authenticate firmware images prior to
updating the image. Firmware is signed using a privacy key and validated with the
associated public key. This requires a secure key management process to ensure that
the private keys are not compromised. Compromise of the private firmware signature
key would allow anyone to sign firmware which would then allow that firmware to
be uploaded and run on the IoT machines.

Cryptographic Co-processing Hardware-based cryptographic co-processors sup-
port higher-speed processing of cryptographic operations. This is useful when
encryption processes are used in near real-time messaging constructs. There are
also specialized security co-processors that can be integrated into devices. An
example is the microchip CEC 1302 model crypto processor. The CEC 1302 comes
with a random number generator (RNG) which is essential for the creation of
cryptographic key material. There is also a 32KB secure BOOT ROM and dedicated
crypto processors for SHA and AES. In addition, there is a public key accelerator.
Developers can use these crypto processors to offload cryptographic operations from
the core processor within the device and to enable secure storage of cryptographic
primitives.

Tamper-Based Zeroization Zeroization is the process of deleting critical data files
upon detection of a tamper event. Zeroization can erase key material within the
device that protects sensitive data (e.g., a Key Encryption Key – KEK). Selective
zeroization allows designers to choose the specific files to delete upon tamper.

Entropy Source A high value entropy source is required for random number
generation supporting cryptographic operations. This is required when generating
cryptographic keys to be used for protocols such as Transport Layer Security (TLS).

Secure Key Storage Cryptographic keys are the foundation for many of the other
security services used by IoT machines. Hardware security elements store keys in
hardware protections which limit the ability of attackers to extract those keys and
use them to impersonate machine identities or eavesdrop on communications.

10.4.2 Configure a Secure Real-Time Operating System

IoT machines often run a scaled down version of an operating system, known as a
real-time operating system (or RTOS). The RTOS is responsible for various low-
level services such as task scheduling and hardware abstraction. The RTOS for an
IoT edge device can provide many of the same features as a secure MCU/SoC.
Some RTOS have minimal security features however and should be avoided, even
for low-risk commercial devices.

Developers can select a device RTOS that is certified for use in specific industries
(airborne, industrial control systems, medical devices, transportation systems).
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Examples of RTOS include those from VXWorxs, FreeRTOS, and Windows 10 IoT
Core, among many others. Security features to look for in the chosen RTOS include:

Microkernel The likelihood of security vulnerabilities expands when code
becomes bloated with unneeded features. An important component of a secure
RTOS is a microkernal that has been optimized for use. Optimization should
include removal of all unneeded features from the kernel. A microkernel may
provide interprocess communication (IPC), memory management, and central
processing unit (CPU) management. Features outside of these are then pushed up
to run within the user space, including device drivers.

Kernel Separation IoT Machines that operate in high threat environments can
make use of a separation kernel. A separation kernel implements secure partitions
within the machine and controls the flow of information across those partitions.
Information flows across partitions must be explicitly allowed in order to execute
[22].

Secure Memory RTOS that make use of a separation kernel can implement secure
memory protections. For example, the INTEGRITY RTOS available from Green
Hills Software uses the separation kernel to prevent processes from accessing data
from outside a specified partition.

Trusted Applications Applications that run within a Trusted Execution Environ-
ment can be specified as trusted applications and the operating system can validate
the integrity of the application prior to executing.

Process Isolation Process isolation techniques prevent one process from interact-
ing with another process. Each process is assigned a separate memory space [23].

Application Sandboxing Sandboxing allows the RTOS to manage the privileges
of an application. For example, a sandboxed application may not be able to access
the sandbox of another application. This effectively limits the spread of malware
that might have entered through one application.

Hardware Abstraction One of the primary functions of an operating system
is management of hardware resources. An RTOS may implement a Hardware
Abstraction Layer (HAL). A Secure RTOS can restrict which processes and
applications have access to the hardware on the machine.

10.4.3 Implement Physical Security Controls

Since IoT machines operate so often in unprotected spaces, the physical security of
those machines becomes important. Physical Security Controls designed into IoT
machines at the edge should include:

Tamper Protections For machines that warrant additional protections, implement
tamper protections that restrict access to the computing hardware. These can range
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from simple seals or locked covers to piezo-electric circuits depending on the threat
environment.

Authenticated or Disabled Debug Ports The ability to disable debug/test ports or
at minimum apply password restrictions (JTAG, UART, etc.)

10.4.4 Deploy Confidentiality Protections

Artifacts from your threat model provide detailed information on the data flows
within your IoT system. These artifacts will guide security engineers in determining
whether sensitive information is generated, processed or stored at points within
the system. Once sensitive data flows are identified, confidentiality controls can be
put in place to secure data. One of the key methods of securing data is through
cryptography.

Cryptography works at various layers of the communication stack. At Layer 2 of
the OSI model, link layer encryption protects network packets completely. Layer 3
network encryption protects the Internet Payload (IP) packet payload – for example,
using the IPsec protocol. Layer 4 Session Layer encryption encrypts UDP and TCP
communications. At Layer 7 Application layer encryption can be applied to enable
end-to-end encrypted and authenticated communications.

IoT protocols make extensive use of cryptography. Machines may use cryp-
tography to support authentication of devices to peers or to network services,
for data integrity, for non-repudiation, or for confidentiality of data at rest or in
transit. Encryption is the process of transforming plaintext data to ciphertext data.
Ciphertext is unintelligible to those that are not authorized to have access to the
data. A decryption key is required to transform the ciphertext back to plaintext form.
Encryption enables data confidentiality (Fig. 10.4).

One of the most used protocols for data encryption is Transport Layer Security
(TLS). TLS uses certificates to enable a secure channel between two endpoints.
TLS operates with Transport Control Protocol (TCP)-based communications. For
example, a web server hosted on an IoT machine to enable http-based remote man-
agement would implement TLS. This provides confidentiality of the data between
the remote management station and the machine. TLS also provides authentication
services. Typically, on the Internet, a web server scenario is provisioned with an
X.509 certificate that authenticates the server to the remote management client.
To support authenticated remote management for IoT machines, a certificate is
provisioned to the remote user. That certificate is used to authenticate the remote

Fig. 10.4 Encryption flow
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user to the IoT machine to ensure that only authorized users are able to access the
web server and make configuration changes.

Short range Radio Frequency (RF) protocols also make use of cryptography.
Bluetooth-LE for instance uses cryptography for pairing devices, bonding (where
pairing keys are stored for the future), device authentication, and encryption.

ZigBee makes use of the IEEE 802.15.4 protocol for security services. 802.15.4 defines
security protections at the APS, Network and MAC layers of the wireless frames. At the
APS and Network layers, the AES algorithm in Counter mode is used with CBC MAC for
message integrity. The MAC layer also uses AES in Counter mode for confidentiality and
AES in CCM when integrity is required.

Key Management is an important aspect of cryptography. Take, for example,
the ZigBee protocol. There are three primary types of keys that can be employed
within a ZigBee network. Master keys are often pre-installed by the vendor and
protect the exchange between two ZigBee nodes as they generate link keys. Link
keys support node-to-node communications, and network keys support broadcast
communications. All of these keys need to be sufficiently secured across their entire
lifecycle.

Remember also that there are tools available that can harvest data and attempt
to crack encryption keys. When encryption keys are weak this becomes trivial
to accomplish. AirCrack, for example, is an example of an 802.11 cracking tool.
AirCrack can be used against WEP, WPA, and WPA2- Pre-Shared Key (PSK)
security and features several modes of operation for cracking keys including the
use of dictionary attacks and brute force.

Popular IoT messaging protocols also require cryptographic protections. Mes-
sage Queue Telemetry Transport (MQTT), for example, requires higher-layer
cryptographic services as there are not inherent encryption features built into
the MQTT protocol. The use of the Transport Layer Security (TLS) protocol is
recommended when using MQTT. MQTT by itself simply passes the username and
password of the node or broker in cleartext.

Another popular IoT messaging protocol – the Constrained Application Protocol
(CoAP) – is UDP-based; it employs Datagram Transport Layer Security (DTLS) for
cryptographic services. DTLS can use various types of keys, including preshared
keys or symmetric keys which can also be used to establish group communications.
DTLS can use public keys which are not bound to certificates and can also use X.509
certificates.

A Note on confidentiality of API Keys: establish policies that API keys and other credentials
not be stored in public-facing source control systems (e.g., gitlab/github) and establish API
key management procedures. Do not hardcode API keys into firmware, mobile applications
or any client-based application. Monitor at least quarterly to verify that API keys and other
credentials are not stored in public-facing source control systems.
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10.4.5 Implement Strong Authentication and Access Controls

Cryptography also supports authentication. Require authentication for access to all
services and ports. Establish good password processes. Do not hard-code passwords
into the device and do not provision duplicate identities or passwords across multiple
devices. Require password changes on a quarterly basis.

When possible, use certificates as an authentication method instead of passwords.
When managed properly, certificates provide a higher degree of assurance that
the authentication token has not been compromised. A private key is used to
authenticate and the associated public key stored in a Certificate Authority (CA)
provisioned certificate “vouches” for the signer. Keys and certificates are used for a
variety of processes across an IoT ecosystem as detailed in Table 10.3.

10.4.5.1 Authorization and Access Control

Access within an IoT system can be further secured by implementing authorization
and access controls. Define roles to limit access to IoT devices. For example, assign
a role to devices that categorizes them as either privileged or standard. Additionally,
assign anyone that accesses a device with a role: either as a user or administrator.

Implement the concept of Least Privilege Adopt the concept of least privilege
within the system and on the device. Limit the applications that run as root. For
example, do not run network services such as web servers as root. Further, disable
the root password. Users that require administration access to the device should
instead use sudo. Using sudo allows an audit trail to be created and attributed
directly to the user. With root login, it is difficult to attribute actions to a specific user.

Table 10.3 Authentication and access controls for devices/software

Device/software Key/certificate options Discussion

IoT
Devices/Sensors

None
Symmetric Keys
Raw Public/Private
Keys
Certificates and key pair
Code Signing
Certificates

Many existing sensors do not have the
capability to support encrypted
communication and therefore would not be
provisioned with key material. Certificates
can also be used by machines and users to
authenticate to web servers, applications and
network services.

Web Servers TLS Certificates TLS Certificates are used by clients to verify
that the web server is authentic and to
support encryption of data traffic between
clients and server

Mobile Applications Code Signing
Certificates

Code signing certificates support secure
software updates

Application
Software

Code Signing
Certificates

Code signing certificates support secure
software updates
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Use Geofencing Systems can be configured to track IoT device locations and take
actions when a device leaves an authorized location. For example, by applying
Global Positioning Satellite (GPS) tracking to an IoT device, alerts can be triggered
when the device leaves a configured boundary. Devices can also be configured to
automatically deactivate services upon leaving a geofenced boundary.

Establish Time-of-Use Time-of-use restrictions can be applied to IoT machines
to restrict access to the machine outside of a configured time window, or for the
machine to interact with other machines or system services.

10.4.6 Harden Network Services

Harden one of the primary entry points into IoT devices and systems. Disable
all services on IoT devices that are not explicitly required by your applications.
Do not use network services that are known-vulnerable. Instead design devices
to use more secure network services that require authentication and can support
encrypted communications. Common services that should be avoided when possible
include:

• Telnet which operates on port 23. Telnet is a well-known port targeted by many
automated malware variants include Mirai.

• File Transfer Protocol (FTP) which operates on port 21. FTP allows for insecure
data transfers.

• Universal Plug and Play (UPnP) supports network discovery of devices.
• Server Message Block (SMB) operates on ports 139 and 445. It supports file

sharing.

Other protocols and services can be implemented within your device; however,
each service should be configured securely.

Secure Shell (SSH) Access Secure access to the SSH service. Require certificate-
based authentication. Do not allow log-in over SSH using the root account.

X-Windows Many IoT machines do not require a Graphical User Interface (GUI).
Although most RTOS operate as headless implementations, some IoT machines do
require the configuration of a GUI. Depending on your use case, ensure that X-
windows is disabled if you do not require user interaction with a GUI.

Network Time Protocol (NTP) Without a common time reference, correlating
activities occurring across multiple points within a system is difficult. Configure
IoT machines to use the network time protocol (NTP) to synchronize on a standard
time reference.
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10.4.7 Implement Logging and Behavioral Analytics

Logging allows system administrators to have visibility into the actions occurring
within IoT machines. Enable logging on IoT machines and configure log files to be
automatically transmitted to an aggregation point. This could be a local gateway or
the cloud. Not all devices support complex auditing and logging, however. When
this is the case, use behavioral analytics to identify anomalies in operation. For
example, look for use of unexpected wireless or messaging protocols being used by
the device or unexpected message sequences.

10.4.8 Implement Framework Security

IoT machines can be developed using common frameworks and platforms. This
allows machines to inherit security controls from that framework and enables
interoperability across device types. Take advantage of the various security services
offered by these frameworks.

Onboarding By provisioning an initial set of credentials to IoT machines, admin-
istrators can securely bootstrap those machines into the operational environment.
Onboarding provides the initial set of device credentials which can be transitioned
to operational device credentials, for example, by wrapping an operational key pair
in the original device credential (e.g., a bootstrap key).

Configuration Management Frameworks/platforms provide simple UIs and APIs
that allow a system administrator to configure the operational details of a device or
set of devices. This includes configuration items such as passwords, device names
or even the ability to quickly reset devices.

Asset Management Frameworks/Platforms may provide the ability for a
user/administrator to track IoT assets within a system. This is enabled through
APIs that support services such as geolocation as well as maintenance of a device
hardware and software profile (e.g., versions, third-party libraries).

Discovery Frameworks/platforms often support secure discovery services. This
enables IoT devices to find peers or locate appropriate services in the cloud.

Secure Connections This may include out-of-the-box support of cryptographic
libraries that enable protocols and algorithms for secure data at rest and data in
transit, for example, DTLS and TLS.

Cloud Gateways Frameworks/platforms often provide cloud gateways that IoT
devices can communicate with securely, providing a link between a local network
and the cloud to support global interactions.
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10.5 A Secure Network

The concept of edge networking is being transformed. Cloud Service Providers
(CSPs) are pushing analytics capabilities directly into the physical device and Fog
computing now provides analytics, storage, protocol abstraction, service discovery
and policy management nearer to the edge. This allows new operating models
that enable automation across product lines and makes the network an integral
component of an IoT system. In this section, we discuss techniques to enhance
the cyber security posture of IoT networks. We discuss recommendations for
implementing IoT networks that:

• Limit a bad actors’ ability to gain unauthorized access to network services.
• Limit the ability of bad actors from being able to move laterally through a

network.
• Keep network services available at all times
• Protect the confidentiality and integrity of data processed and stored within the

network.

Network designers should consider the following techniques for implementing a
secure and available IoT network.

10.5.1 Secure Wireless Sensor Network (WSN) Configuration

Wireless Sensor Networks (WSNs) may be used extensively in AI-driven IoT sys-
tems. These networks use RF protocols such as ZigBee or ZWave to communicate
between peers and gateways. Configure WSN gateways in a cluster formation to
support handling of heavy loads and automated fail-over. Configure monitoring to
alert on low batteries within edge machines. In certain instances, it may be prudent
to tune the power levels of these edge devices to avoid signal leakage outside of a
defined geographic boundary. Implement physical security controls to restrict access
to the machines.

10.5.2 Segment the Network

A method for limiting lateral movement across a system is to segment IoT machines
from sensitive enterprise applications on the network. To segment the network,
identify categories of machine types and configure Virtual Local Area Networks
(VLANs) for each category.
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10.5.3 Implement Zero-Trust/Software-Defined Perimeter

Zero-trust configurations allow system owners to restrict access at the network layer.
Machine, users and even applications authenticate themselves to the network prior to
gaining access. Once access is granted, these users, applications, and machines are
only provided the privileges needed to accomplish their authorized activities. This
least-concept model of network access is useful to restrict access to the enterprise
should a machine be compromised.

10.5.4 Protect the Perimeter

Even with the concept of zero-trust, security controls that protect the perimeter
should still be implemented within an IoT system. Firewalls have been around a long
time. Firewalls Access Control Lists (ACLs) can be configured to restrict access
across a perimeter and offer capabilities such as threat management and virtual
private networking (VPN). Forward firewall log data to a Security Information Event
Management (SIEM) system for correlation and security analysis.

Intrusion Detection and Prevention systems (IDS/IPS) also play a vital role in
network security. IDS/IPS monitor the network and report on potential security
issues. An IPS can also be configured to block unauthorized connections. Place
IDS sensors at strategic points within the network architecture. An example of an
open source IDS is snort [24].

10.5.5 Secure Discovery Services

A quick look at a site such as Shodan [25] shows how easy it can be to identify
IoT machines configured with various protocols. Many of these protocols provide
discovery services can be useful for dynamic configuration of networks, but also
enable easy reconnaissance efforts by potential attackers. Disable discovery services
or at a minimum require authenticated access to discovery services within networks.

10.5.6 Implement Asset Management

One of the most valuable cyber security measures to apply to a network is to
implement an asset tracking program. Configuration management tools should be
used to track all hardware and software used within a network. Strict change control
procedures should also be implemented to ensure that unknown devices and services
are not installed on the network. This basic security measure will provide the data
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necessary to better understand the threat profile of an IoT system. This includes
tracking of third-party libraries installed within each IoT product to allow tracking
of patches associated with not only the devices but also the subcomponents used
within each of the devices.

10.5.7 Implement Vulnerability Tracking

Your networks are populated with many devices and software. Each exposes their
own potential vulnerabilities. These vulnerabilities are found over time, by the
research community. As vulnerabilities are identified, vendors implement patches
to resolve the vulnerabilities. If system administrators do not patch software, then
the software remains exposed to those vulnerabilities. Time is of the essence here;
once a vulnerability is known, exploits begin being crafted in the wild. Keep track
of vulnerabilities. Monitor sources such as MITREs Common Vulnerabilities and
Exposures (CVE) which publishes vulnerabilities through the National Vulnera-
bility Database (NVD) [26]. Also, use the Common Vulnerability Scoring System
(CVSS) which assigns ratings for IT vulnerabilities.

Many industries have Information Sharing and Analysis Centers (ISACs) that
share information on attacks.

10.5.8 Audit and Monitoring

Automated malware can wreak havoc on an IoT system. Task network security tools
to search for new botnet activity and immediately remove infected IoT devices upon
detection. Many well-known botnets use telnet to spread so monitor for activity
on ports 23 and 2323. Botnets such as Reaper, Mirai, IoTroop, and Satori can
spread on many other ports, including 21 (FTP), 80 (http), and ephemeral ports
such as 37215. Also monitor for Command and Control (C2C) communications
that enable coordinated use of botnets. For example, JenX uses port 127 for C2C
communications.

System designers should also plan for monitoring of their network of IoT
devices and services. There are, however, many challenges associated with this.
For example, some IoT devices may not generate any security audit logs. Other IoT
devices typically do not support formats such as syslog and may require custom
connectors. In addition, gaining timely access to audit logs from remotely deployed
and RF-based IoT devices may provide difficult. For example, devices may not
be reachable over a low-bandwidth RF link or may only wake during times of
operation. Finally, confidence in the integrity of audit logs collected from IoT
devices may be limited given potential lack of cryptographic controls.
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An auditing and monitoring framework should collect security-relevant events.
These might include (source: Russell, VanDuren, PACKT Publishing, Practical IoT
Security):

• Device not reachable: A device that is disconnected from the network may have
been compromised and brought offline or suffering from a denial of service
attack.

• Time-based anomalies: Determine standard time-of-use characteristics for the
system and monitor for use outside of these time restrictions.

• Spikes in velocity: Increased velocity can mean that a device has been hijacked
by automated malware and is being used in botnet activity.

• New protocols on the network: If seeing abnormal protocols/ports are being used,
this may indicate repurposing of an IoT machine for nefarious purposes.

• Authentication anomalies: Repeated authentication failures may mean that an
IoT machine or service has been targeted by a malicious actor.

• Attempted elevation of privilege: Attempts to increase privilege by accessing the
root account or attempting sudo access may indicate that the machine has been
compromised.

• Drops in velocity: A drop in velocity may indicate network congestion or
attempted denial of service against the IoT machine or service.

• Rapid change in device physical state. A rapidly increased Central Processing
Unit (CPU) usage may mean that an attempt to drain the device battery is being
conducted by executing multiple new applications or that the device is operating
outside of standard parameters.

• Communications with unexpected destinations: Most IoT machines are config-
ured to communicate with a limited number of devices and gateways. When
communication from an edge machine to a non-normal service or device is
detected, it may indicate attempted lateral movement through the system. Even
if these attempts are low in volume they should be investigated.

• Unexpected audit results: Logging should be enabled on all computers and
machines in the system. These logs must be audited on a regular basis. Abnormal
audit findings may indicate attempted or successful compromise.

• Purged audit trails: A deleted audit log may be indicative of a trusted insider
attempting to cover his or her tracks. Modification or deletion of audit logs should
be restricted to an “audit group” but even members of this trusted group must be
monitored for malicious activity.

• Sweeping for topics: Topic sweeping using publish/subscribe protocols may be
indicative of a user attempting to gain access to data he or she is not authorized
to view.
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10.5.9 Vulnerability Scanning

Vulnerability scanning should be performed at least annually and preferably
continuously. If hiring an outside consultant, the processing begins by reviewing
agreements and assumptions, providing a detailed listing of IP addresses to be
scanned, planning the approach, setting up user accounts, and assembling tools
and network access. The scanning process is executed using the selected tools and
an extensive review process is conducted to verify the discovered vulnerabilities,
prioritize findings, and identify remediation. Finally, remediation is the process of
fixing the problems, for example, by patching or making configuration changes to
devices and services.

There are many tools available to conduct vulnerability scanning. OWASP
maintains a listing of vulnerability scanners and this list is updated regularly [27].
One of the most well-known tools used for this activity is Nessus.

10.5.10 Penetration Testing

Vulnerability scans and penetration testing are two different activities. People often
mistake one for the other. Vulnerability scans look for known vulnerabilities in a
network and the scanning process is well suited for automation. Penetration tests are
designed to exploit weaknesses in a network or system. Penetration tests include not
only electronic methods but also non-electronic methods. For example, “dumpster
diving” to collect information that may be useful in reconstructing passwords or
aiding in social engineering attacks. There is a high degree of creativity that goes
into a penetration test.

There are three basic types of penetration test.

• A white box test involves a tester that has intimate knowledge of the system under
test. The tester is provided with information such as IP addresses, ports, and
services in use, network diagrams and may even be provided with user accounts.

• A black box test assumes the tester has no inside knowledge of the system under
test. This type of test requires the most creativity from the tester as he or she must
be able to amass information used to attack the system.

• A gray box test is a hybrid of the black and white box tests. The tester may be
provided some limited amount of information, for example, IP addresses and a
basic description of the applications.

Once a penetration test has been set for a system, the tester will begin by
enumerating the system to collect and later analyze data. Information on the devices
and computers that are on the network, and their operating systems, versions and
more can be found using network scanners. This can also include the open ports
that are being listened on and the associated services being used.
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A tester will examine the system for basic weaknesses. She will look for
default passwords used across IoT machines and gateways, or even the networking
equipment within the system. The tester will examine the system for untrusted
services such as telnet, ftp, and UPnP and look for out-of-date firmware, software,
and third-party libraries with known vulnerabilities that can be exploited quickly.

A Penetration Tester will also deploy tools to monitor traffic within the system.
He will use tools such as Wireshark, SecBee, AirCrack, KillerBee, BlueMaho, etc.
depending on the target protocols used within the system. For testers with advanced
RF knowledge, a tool such as HackRF can be configured to monitor the RF spectrum
from 1 MHz to 6 GHz. This allows the tester to look for unencrypted or unexpected
communications within the system. Password crackers can also be used to attempt
to find weak passwords and keys.

A Penetration Tester will use creativity to examine the hardware of the IoT
machines at the edge. This includes evaluation of the device operating location
to determine if the device can be taken without an alert being generated or
someone noticing. If the device can be surreptitiously swapped out, then perhaps the
firmware can be extracted and analyzed. Tamper protections will also be evaluated
to determine any controls that prevent opening the device casing. Testing and debug
ports will be evaluated to determine if any allow unauthenticated access to device
internals or the command line. Tools such as Shika [28] can be used to interface
with device hardware and attempt to dump memory or download firmware.

A good penetration tester will also examine the system for process weaknesses.
This includes analyzing the process of updating firmware, if no authentication or
integrity check is performed by a machine prior to loading new firmware, then he or
she will attempt to reconfigure and upload a malicious firmware version. Additional
processes associated with the handling or administration of devices will also be
examined. When applicable social engineering skills will be put to use to attempt to
trick trusted insiders into giving out knowledge needed to access the system.

As can be seen, a thorough penetration test will do much more than a vulnera-
bility scan. A creative tester can probe for system weaknesses at multiple points in
the architecture, including the human elements. This very closely mimics the length
and effort that a malicious actor might go to try and gain unauthorized access to the
system.

10.6 A Secure Cloud

The cloud has become a key component of any IoT system. Cloud services provide
the web servers that allow IoT services to collect and process information and
implement unique capabilities. The cloud also provides data storage, analysis, and
work-flow management features. Capabilities such as machine-learning are vital to
injecting intelligence into IoT systems and these are often configured to run in the
cloud.
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The Cloud also serves as an integration point for edge machines and gateways.
Multi-protocol interfaces support connectivity from the edge. These interfaces must
be authenticated and encrypted. Standard interfaces from the edge to cloud include
HTTP, MQTT, and AMQP, although custom interfaces can be implemented as
well.

• HTTP: Encrypt all HTTP connections using Transport Layer Security (TLS) 1.2
or later. Use certificates to authenticate TLS connections.

• MQTT: Encrypt and authenticate MQTT communications using TLS 1.2 or later
as well. MQTT communications must ensure that the native username/password
field is encrypted and never sent in cleartext.

• CoAP: Secure UDP-based communications such as CoAP using DTLS.

There are many threats that must be guarded against within the cloud. For
example, most CSPs provide an identity registry that stores the identifies and
configurations of devices connected to the cloud. Amazon Web Services (AWS)
terms these “Thing Shadows.” Proper access controls must be applied to ensure that
unauthorized access to these configuration repositories is not allowed. Similarly,
access to keys must be restricted within the cloud. The use of Hardware Security
Modules (HSMs) in the cloud is often warranted. Unauthorized database access
must also be guarded against.

There are a number of recommendations listed here to lock down an IoT cloud.
Some of these make use of capabilities offered directly by a CSP and others require
the use of third party processes and tools.

10.6.1 Evaluate the Security of the CSP

Each CSP implements its own security architecture and it can be difficult to
objectively evaluate the security state of each provider. To aid in this evaluation,
download and review the Cloud Security Alliance (CSA) Cloud Controls Matrix
(CCM) which provides a set of evaluation criteria to methodically review the
security state of a CSP [29]. This registry contains self-assessments and third-
party assessment results covering dozens of CSPs. When choosing a CSP to host
IoT system applications, review these assessment results and make comparisons
within the evaluation process to ensure selection of an optimal CSP partner. Once
selected, work with the CSP to establish Service Level Agreements (SLAs) that
detail minimum service levels and include penalties when a CSP does not meet
minimum availability or performance metrics.
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10.6.2 Design the Cloud Service to be Resilient and Available

IoT services should be designed to operate in the face of adversity and to be
highly available. A robust cloud architecture will support these goals. For example,
implement load balancers in front of virtual servers to evenly distribute load across
applications and effectively handle peak traffic. You can also contract with Content
Delivery Networks (CDNs) to help improve the performance of your services. Make
use of CSP availability zones and regions and ensure that system infrastructure
spans multiple zones/regions. This will support disaster recovery. If a particular
availability zone or region goes dark, then failover will switch operations to the other
zones/regions. You can also implement rate-limiting on IoT APIs to defend against
malicious attacks coming from trusted devices that may have been compromised.

10.6.3 Securely Configure the Cloud Network

Each CSP offers the ability to configure firewall policies that restrict access from
external sources and from sources internal to the cloud. Make use of these policies
to restrict communications between subnets and nest sensitive resources such as
databases within subnets. For example, do not allow devices to interact directly
with cloud databases, instead require them to go through applications which are
then configured via policy as trusted by database subnets.

Additionally, ensure that all management access to servers in the cloud is secured.
This includes Secure Shell (SSH) access to manage virtual machines. Implement
strict policies and procedures for managing the SSK keys that allow access to each
VM. This includes restricting ownership and access to SSH keys within their VM
directories.

10.6.4 Apply Encryption to Cloud Communications

All cloud interfaces should be encrypted. Use Transport Layer Security (TLS)
whenever possible. When using User Datagram Protocol (UDP)-based protocols,
implement the Datagram TLS (DTLS) security system. Limit TLS cipher suites
used within your cloud configurations to those recommended in the latest version of
NIST SP 800-52. This will reduce the risk of a successful cipher suite downgrade
attack being run against your IoT systems.
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10.6.5 Manage Cloud Identities

Management of IoT devices across a global organization will quickly become
challenging if a standard naming approach is not agreed upon and implemented.
Guard against future scalability issues by implementing a central directory. Use
globally unique names for all devices.

10.6.6 Require Multi-Factor Cloud Authentication

A cyber security best practice today is to use multi-factor authentication for all
access. Although this is often difficult to achieve at the device level, this requirement
should always be implemented for access to the cloud services that support edge
devices. Various MFA approaches can be implemented to include requiring SMS-
based texts or email validation of codes prior to logging in. Look to protocols such as
those from Fast Identity Online (FIDO) (e.g., FIDO 2) to implement cost-effective
MFA methods.

10.6.7 Audit Cloud Services

Many CSPs will allow your team to conduct limited-scope penetration testing of the
services running in the cloud. Ensure that this is allowable and if so schedule regular
penetration tests against the cloud installation. Also monitor for adherence to all
SLA metrics and promptly notify a CSP if any metric fails to meet requirements.

10.6.8 Monitor the Cloud

Make use of native CSP monitoring services and integrate into a wider enterprise
monitoring strategy. Make use of third-party managed security service providers
(MSSP) when necessary and feasible to monitor 24/7 for suspected malicious
activity. CSP monitoring services can often provide near real-time inputs on actions
occurring on the API and within the cloud itself.

10.6.9 Implement Cloud Identity Management

Establish an identity and access management (IAM) process for all credentials
used to authenticate to the cloud, including those provisioned to edge machines.
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Prefer the use of certificate and token-based approaches instead of passwords
whenever feasible. Do not generate private keys for edge machines in the cloud
unless absolutely necessary. Instead, generate private keys on machine and request
certificates from your Public Key Infrastructure (PKI) Certificate Authority (CA).
Do not share credentials (passwords or certificates) across devices.

Authentication of cloud interfaces consists of both authentication at the gateway
or cloud service (e.g., “the server”) as well as authentication of the edge machine.
Authentication considerations vary somewhat based on the protocol employed. Use
certificates for intra-cloud authentication between cloud servers and gateways.

Establish a global naming convention for IoT machines and services used in
the system. IoT device identities should be unique across an enterprise. Establish
device attribute metadata for each machine to support ease-of-lookup when needed.
Establish group management capabilities to group IoT machines based on their
profiles or usage characteristics.

Some CSPs provide “Identity Registries” which maintain the unique identifiers
of each device and support lifecycle management of devices identities to include
the provisioning, update and deletion of edge IoT device identities. Require
authentication for write access to device identity registries.

10.6.10 Use Zero-Touch Provisioning

Standard such as Device Identifier Composition Engine (DICE) from the Trusted
Computing Group (TCG) specify methods for provisioning cloud trust directly at
manufacture time. Zero-touch provisioning allows implementers acquiring these
cloud-secure MCUs to be provided with a list of Electronic Serial Numbers (ESNs)
and associated public keys to register devices in their specific environment and
securely bootstrap products into an operational environment. Contract with your
MCU vendor enable zero-touch provisioning.

10.6.11 Role-Based Access Controls

Establish roles for applications, gateways, users and machines that interact with or
operate within the cloud. Assign privileged roles to applications and users that are
authorized to manage or configure edge machines. Assign standard roles to single
purpose devices that require limited-scope read/write permissions or to gateways
that provided limited functionality such as simply storing data. Example roles
include:

• Gateway
• Privileged Gateway
• Management Application
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• Device
• Privileged Device
• System Application
• Privileged Application
• Auditor
• Third Party

10.6.12 Secure Data in the Cloud

Categorize data elements generated by edge machines and transmitted to the cloud
for storage and processing. Implement authenticated access to cloud data storage
and apply encryption to database fields associated with sensitive information.

Configure cloud gateways to accept communications from only trusted devices
and require encrypted communications. Document authorized ports and protocols
on cloud gateways and disable non-authorized ports/protocols. Blacklist any unau-
thorized device that attempts to communicate and log and report the action. Keep
all cloud infrastructure updated and patched.

10.6.13 Secure Web Services

A 2018 report by Barracuda Networks [30] found that vulnerabilities in mobile
applications and web services allowed attackers to steal the credentials of IoT
devices. IoT machines operate in an interconnected ecosystem, and weaknesses in
any part of that system can result in compromise of individual system components.

Implement encrypted communications between the web application and the
IoT machine. Use token-based authentication for access. Implement secure pairing
methods for short-range RF transactions. Keep mobile devices and applications that
access edge machines updated and configure storage of all key material in hardware.
Develop web services in accordance with OWASP security guidance.

• https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
• https://www.owasp.org/index.php/Web_Service_Security_Cheat_Sheet V18 of

ASVS 4.0
• https://github.com/OWASP/ASVS/blob/master/4.0/en/0x23-V18-API.md

Also secure the Application Programming Interface (API) keys used by your
applications by not exposing the API keys within public configuration management
tools/repositories.

https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/Web_Service_Security_Cheat_Sheet
https://github.com/OWASP/ASVS/blob/master/4.0/en/0x23-V18-API.md
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10.7 Secure System Users and Administrators

Any system is only as secure as the weakest link in that system. The weakest link is
usually the user of the system that is untrained in the basics of cyber security. Users
can be turned from a weakness to an advantage by educating them on the threats
faced by the systems they use and the ways they can help to keep systems and data
secure.

10.7.1 User Training

Establish training for system users. Training for users should include the following
topics at minimum:

• The risks associated with use of their IoT systems. This includes a discussion
of the threat actors that target their systems and the motivations for attempting
to gain access to systems. Users should have a clear understanding why their
systems are at risk of being compromised and the impact that a system/data
breach would have on their organization and the customers of the organization.

• The types of IoT devices that are authorized to be used within the system. This
includes any restrictions on devices that may be brought from home and added
to the system, or any policies that limit use of certain types of devices within the
system.

• The presence of any safety-related risks associated with the IoT system. This
is especially important in human/robot collaborative systems where interaction
with automated machinery may occur.

• General guidance on avoiding phishing attempts and other attempts to trick users
into divulging sensitive account information.

10.7.2 Administrator Training

System administrators should also be trained on the proper function and security
of their IoT systems. System administrator training should be extensive and should
include:

• A detailed technological overview of the IoT system that includes a discussion
of all sensitive data collected by the system, key architectural components of the
systems, high value components of the system.

• Policies for allowable use of the IoT system. This includes a detailed description
of the policies for integrating new device types into the network. For example,
any requirement that a product be certified as secure by a third party. This can
include procedures for bringing new devices online, procedures for monitoring
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the security state of IoT machines, and the rest of the services. Also include
proper procedures and timing of firmware and software updates within the
system and proper procedures for patch management. Proper procedures for
patch management of the system.

• General guidance on maintaining security awareness, to include training on the
identification of malicious software and attempts to trick administrators into
divulging passwords or other sensitive information (e.g., phishing attacks).

• Procedures for investigating and responding to incidents involving the IoT
system. This includes requirements for escalating issues to senior technical and
managerial leadership within the organizations and procedures for interacting
with third-party organizations to perform investigations and remediations – for
example, cloud service providers. This also includes procedures for conducting a
root cause analysis (RCA) as well as requirements for maintaining a secure chain
of custody during an investigation.

• Policies for performing penetration testing and vulnerability scanning of the
system. This includes a description of any tools that should be used in the conduct
of vulnerability analysis.

• Procedures for proper disposal of IoT system equipment. This includes any
procedures associated with sanitization of data stored on IoT products or attached
storage systems.

Proper training of users and administrators is required in order to ensure an
IoT system is operated securely. Without proper training, users and administrators
may fall victim to countless phishing attacks or may improperly dispose of IoT
equipment. By educating users on why the IoT systems they use are targeted by bad
actors and how users can play a role in defending their systems, they can become
powerful allies that can aid in helping to secure large complex IoT systems.

10.7.3 Incident Response Planning

Another aspect of the human element of cyber security is associated with incident
response planning. Planning for the response to incidents involving IoT systems is
similar in nature to traditional I.T. incident response planning. The four phases of an
incident response include (1) planning; (2) detection and analysis; (3) containment,
eradication, and recovery; and (4) post-incident activity. The planning process
involves:

• Identification and assignment of the Incident Response Team
• Establishment of a communication plan
• Development of a training plan that allows the team to execute and respond to

simulated incidents
• Creation of a coordination plan. The coordination plan is essential for IoT

systems as the myriad business-area owners responsible for each IoT system
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or subsystem must be identified. These business area owners will be contacted
immediately during an incident response to begin coordination.

Detection and analysis activities are related to the ongoing monitoring of
system operations for anomalies. This also includes threat intelligence sharing to
ensure that the Security Operations Center (SOC) team is looking for the latest
attempts to exploit devices and services. Additionally, ongoing monitoring includes
monitoring of activities occurring in the cloud and within the Radio Frequency (RF)
environment on-premise.

Containment, eradication, and recovery include the actions related to quarantine
of infected devices or computers. This is necessary to contain the threat and limit
the spread of an infection or an adversaries’ attempts to move laterally through the
system. This also includes the process of eradicating the incident and returning to
normal operations while continuously monitoring for a repeat of the incident.

Post-incident activity includes performing an RCA to determine the exact cause
of the incident as well as how the implemented security defenses failed to achieve
their goals. This also includes information sharing across not only the other security
professionals within the organization but also trusted third-party organizations and
importantly an update to the incident response plan to take into account the realized
incident.

10.8 Conclusion

This chapter described approaches to enhance the cyber security of an IoT system.
The chapter explored the many components which make up an IoT system and the
vulnerabilities associated with the components. We discussed the unique threats
to IoT systems and then provided recommendations for developing secure IoT
products and systems. We then described specific controls that can be applied to
IoT devices at the edge, to the network, and to the cloud as well as to the human
users and administrators of IoT systems. Overall, we gave an in-depth analysis of
vulnerabilities which exist in IoT systems and ways to mitigate such risks to ensure
the integrity of the IoT system.
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Healthcare IoT
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We have a moral obligation to get healthcare to people who
need it.
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11.1 Modern Healthcare Challenges

Many parts of the world are facing significant healthcare challenges to manage the
rapidly increasing aging population, people with chronic issues, disease epidemics,
child mortality, poor living conditions with lack of sanitation, lack of clean water,
and rising pollution. While the need for medical care has increased over the last
several years, the traditional hospital-centric model of care requiring patients to visit
a physician when sick is still the norm. Managing chronic conditions requires that
patients visit a clinic or hospital so that a physician may monitor disease progression
and adjust treatment based on clinical observations. Generally, hospitals are based
on a reactive, physician-and-disease-centered model that does not include patients
as active participants in the medical process. The main obstacles and challenges
faced by hospital-centered healthcare practices are listed below [1, 2].

• Time and perspective limitations – Because the number of people dealing with
illness or disabling conditions continues to grow, physicians are unable to
spend significant quality time with patients. Shorter exam times leave physicians
with less perspective into the patient’s daily life including diet, sleep, physical
activity, social interactions, etc. Understanding all of these aspects is important
in appropriately diagnosing and treating patients effectively.

• Adherence monitoring – Physicians are often ill-equipped to monitor patient
compliance with prescribed treatments such as rehabilitative exercise, medica-
tion, or dietary restrictions. Non-compliance with treatment can increase the
risk of future hospitalization which increases a patient’s healthcare cost and the
economic burden [3].

• Increasing geriatric population – The number of older adults (60+ years)
worldwide is anticipated to grow by more than 200%, from 841 million people
in 2013 to over 2 billion people by 2050; therefore, additional medical facilities
and healthcare resources will be required to treat a larger geriatric population [1].

• Urbanization – The world health organization (WHO) forecasted that by 2015,
70% of the global population would live in urban areas, implying that large cities
would require greater healthcare infrastructure to care for rising populations.
Additionally, large urban areas are a more likely center of disease epidemics,
allowing contagious diseases to quickly infect densely populated areas.

• Healthcare workforce shortages – As the need for healthcare services increases,
the demand for physicians, surgical staff, nurses, caregivers, and medical labora-
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tory staff able to support the healthcare system in both urban and rural areas also
increases. One possible solution to this challenge is to increase the prevalence of
telemedicine.

• Rising medical costs – One of the largest challenges in the medical field is the
rapidly rising cost of healthcare. For example, the cost of diabetes care in the
United States jumped to approximately $245 billion in 2016, an increase of 21%
since 2007 [4].

11.2 What Is IoT-Driven Healthcare: Transitioning
from Hospital-Centric to Patient-Centric

Patient-centered care (PCC) is an emerging healthcare model focused on the
individual medical needs of patients, which originally was coined by the
Picker/Commonwealth Program developed by the Picker Institute in 1988. The
Institute of Medicine defined PCC in a 2001 landmark report as [5] “Healthcare
that establishes a partnership among practitioners, patients, and their families (when
appropriate) to ensure that decisions respect patients want, needs, and preferences
and that patients have the education and support they need to make decisions and
participate in their own care.”

While many initiatives have provided evidence of PCC’s success on smaller
scales, the potential of PCC has yet to be realized on a larger scale due to its
conflicts with the existing hospital-centric model. PCC is not meant to eliminate
the need for hospitals or clinics; on the contrary, PCC leverages these institutions
in a shared model of patient care through the utilization of IoT. As discussed in
previous chapters, IoT is a convergence of telecommunication, sensors, actuators,
cloud computing, and Big Data through the Internet to provide specific services.
IoT can be customized to meet the challenges of modern healthcare. Healthcare
system can be categorized into three main areas: i) large healthcare institutions (i.e.,
hospitals), ii) small clinics and pharmacies, and iii) non-clinical environments (i.e.,
patient homes, communities, rural areas lacking healthcare). To understand IoT’s
role in the healthcare field, one must first understand the operations of each area.
Because IoT has the potential to make a specific operation less costly and more
reliable or timely, it would eventually impact operations in other areas, resulting in
a more stable, self-sustaining healthcare ecosystem. Next, we will explore the areas
where IoT technology could take on a key role [1].

• Hospitals: Hospitals are growing to admit and treat an increasing number of
patients. In order to support operations, hospitals constantly rely on advanced
technology. The addition of smart ambulances, integrated with IoT, would
allow in-ambulance diagnosis, enabling medical staff to arrange for appropriate
treatment before the patient even arrives at the hospital. Smart ambulances would
require dependable diagnostic medical sensors, the secure communication link
with the hospital, and intelligent workflow management tools designed to help
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hospitals prepare operating rooms or other needed tools in advance. In addition,
surgery could become more efficient and proactive if IoT were utilized to
exchange information and orchestrate activities among medical staff, physicians,
and medical devices in the operating room. In a similar vein, IoT could play a
role in other hospital areas such as the intensive care unit (ICU), primary care
unit (PCU), or other specialized areas.

• Clinics: Primary care physicians, the main source of healthcare for many patients,
could also benefit from IoT in many ways. Doctors could more efficiently access
virtual laboratory reports prior to examining a patient. IoT would also enable
physician offices to verify insurance coverage in real time or provide secure,
bidirectional communication for making appointments without the need for
telephone calls. IoT would also serve as a cost-efficient solution for connected
pre-visit screenings, enabling physicians to invest more quality time with indi-
vidual patients. Doctors could also prescribe low-cost IoT smart devices designed
for self-testing at home.

• Anywhere (non-clinical settings): There is currently much excitement around
IoT’s role in telehealth or remote care, which benefits patients in exciting
ways:

– Mobile clinics: Interest in mobile clinics is growing worldwide. In African
countries mobile clinics have proven to provide high-quality, low-cost care for
at-risk populations without access to basic healthcare in rural areas. Because
mobile clinics have limited medical facilities, IoT could greatly improve their
infrastructure and capability for care by enabling them to collaborate with
hospitals remotely to make diagnoses or other treatment determinations [6].

– Telemedicine: Telemedicine is the primary stakeholder in IoT today. It is
estimated that the telemedicine market is worth approximately $23, 244
million worldwide. The telemedicine market is expected to expand by 18.8%
to reach a value of $66,606 million by 2021 [7]. Because most of the world’s
population has access to smartphones able to connect with other sensors, IoT
has much to offer in this area. Smartphones enable patients to self-test health
and generate data that can predict future health or disease issues. In addition,
doctors and medical staff can see patients virtually through teleconferencing.
In the future, IoT could further improve telemedicine with the addition of
networking sensors for tele-screening. An increase in virtual care services
would enable hospitals to function with fewer healthcare staff.

– Wellness: The well-known proverb that “an ounce of prevention is work a
pound of cure” is especially true in the area of healthcare. Many people are
beginning to understand that preventative care and maintaining wellness is
preferable to suffering or requiring preventable medical care later in life.
Around the world, patients are taking advantage of IoT connectivity via sports
technology, wearable fitness trackers, and self-testing medical devices that
provide continuous health and wellness monitoring. IoT could be useful in
creating an economic framework that reduces health insurance costs through
wellness rewards, based on health monitoring. Establishing a more efficient,
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patient-centered system could be one more way to encourage patients to
become active partners in healthcare.

– Smart homes: Telemedicine services are useful for reducing the number
of hospital or clinic visits for elderly, disabled, or chronically ill patients.
However, a technical infrastructure in their homes would provide efficient,
inconspicuous support, enabling patients to live more independently while
enjoying a greater quality of life and well-being. Ambient assisted living (a
smart home’s framework) utilized in Europe serves as an ambient intelligence
that improves a person’s capability through sensitive, responsive digital
environments. IoT has already found its way into the home automation market
as homeowners control systems and appliances using smartphones. IoT could
also be applied to the healthcare needs of geriatric patients. For example, smart
toilets could handle regular urine testing without requiring a physician visit.
Smart homes could also adapt lighting or noise levels to meet the sensory
needs of individuals with autism [8].

– Smart cities/connected communities: People are migrating to urban areas
all over the world, increasing the demand on city infrastructures. Efforts
are being made globally to create smart cities and connected communities
by connecting and integrating infrastructures in order to make urban areas
more affordable, efficient, and sustainable. IoT architecture is being used to
provide information at the right places and times so that citizens can make
decisions more quickly. Because healthcare is an integral part of urban areas,
it has been included in the infrastructure of smart cities in many ways. For
example, widespread environmental sensors can stream data to centralized
locations accessible by the healthcare system. Environmental information
about pollutants, temperature, humidity, water contamination, or allergens
could be distributed to citizens in a timely manner, helping prevent health
issues. For example, asthma patients could be notified to avoid areas with
high pollen or dust counts. IoT would also be benefit the healthcare system
by integrating smart traffic lights to assist with ambulance routing, saving
lives through cooperation with transportation infrastructure. IoT’s future is
bright when it comes to healthcare and wellness; however, it requires a smart
ecosystem enabling interconnection among stakeholders including physicians,
patients, hospitals, cities, and communities.

11.3 Benefits of Adopting IoT Healthcare

Healthcare research brings together a wide range of disciplines and fields, in
such a way that scientist in medicine, microbiology, biomedical engineering,
computer science, and Big Data analytics frequently find themselves working and
collaborating on related projects. Considering all these areas of expertise together,
it becomes clear that many gaps remain between them; these gaps present major
technological challenges in the way of the development of a unified and highly
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adaptive framework for healthcare. In our view, the most direct way to develop this
framework is to construct an IoT-based solution, in order to facilitate breakthroughs
in all areas mentioned above.

Advances in the IoT help create significant advances in healthcare. For instance,
technologies such as microfluidic biochips and wearable biosensors can improve
clinical diagnostics in a variety of applications, from the laboratory to the hospital.
In the foreseeable future, IoT-enabled devices will allow health providers to
routinely assess patients who suffer from breast, lung, and colorectal cancers and
perform point-of-care molecular testing as an aspect of standard care. This will
help provide physicians with the information they need to create truly data-driven
treatment plans, significantly improving the chance of a successful recovery.

When these tests are time-stamped, location-tagged, and also tagged with data
on the testing environment and other situational information, as well as personal
information such as age, weight, height, and gender, a data fabric will begin to take
shape, spotlighting not only the patient’s condition but also overall patterns in the
population as a whole (e.g„ helping predict an outbreak of an epidemic). In short,
IoT-enabled healthcare (e-Health) can move disease research forward, enable more
accurate diagnoses at the point of care, and speed up the development of beneficial
pharmaceuticals. It should be noted that IoT e-Health is not just the simple stack
of different worlds. Instead, these pieces are networked together in order to assess,
predict, and adapt in close to real time.

As the above vision is realized, the benefits of adopting IoT e-Health can be
summed up as follows (see Fig. 11.1) [1, 9]:

• All-encompassing – IoT e-Health has a holistic solution for everyone needs and
it is useful in diverse areas including beauty, health monitoring, exercise, and
patient safety.

• Resiliency – The e-Health framework can also be self-learning and resilient to
inaccuracies.

• Seamless fusion and integration – IoT e-Health overcomes technological barriers
to enable diverse or complex technologies to collaborate.

• Big Data processing and analytics – IoT e-Health can effectively process,
analyze, and manipulate the tsunami of multi-modal, multiscale, distributed, and
heterogeneous data created by network sensors within a reasonable timeframe,
resulting in the timely receipt of actionable information.

• Personalized service or content – Big Data analytics and IoT can widen the
possibilities to meet the needs of personalized healthcare or treatments, playing
a key role in personal well-being. For example, Big Data analytics and machine
learning can be utilized to predict health conditions such as heart attacks, cancer
development, or infections before they actually occur, enabling patients and
physicians to act quickly.

• Lifetime monitoring – Patients can benefit from the receipt of comprehensive,
past, present, and future health data.
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Fig. 11.1 Main benefits of IoT healthcare

• Ease of use – IoT e-Health can be easily adopted by users since they only
require clicks on wearable devices and/or some simple operations on smartphone
applications.

• Cost reduction – Because IoT e-Health is able to integrate diverse technologies,
there is no need to pay for separate technologies and patients are better equipped
to monitor their own health, enabling them to only pay for physician consultation
when health status drops out of a recommended range.

• Increased physician involvement – Because physicians can obtain patient health
data in real time, fewer intensive exams are needed. Additionally, doctors are
able to monitor a higher number of patients through healthcare IT systems if the
organizational structure can evolve to optimize the use of real-time data through
telemedicine.

• Accessibility and availability – Patients, caregivers, and healthcare professionals
can access e-Health data or services at any time without any geographical
barriers.

• Online assistance – Allows 24/7, real-time connection with healthcare profes-
sionals such as physicians, nurses, etc.

• Efficient healthcare resource management – IoT guarantees that patients can
learn about their health status and equips physicians to easily monitor patient
status, driving more efficient use of healthcare resources.
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Fig. 11.2 A layered view of fog-driven IoT e-Health architecture

• International partnerships – Health professionals worldwide are connected
through the IoT e-Health systems, giving patients greater access to international
medical facilities at any time.

11.4 Fog-Driven IoT Healthcare Architecture: A Layered
View

In this section, we explain the general architectural elements required for IoT e-
Health systems. As shown in Fig. 11.2, this system consists of three main layers: i)
things layer, ii) network layer, and iii) cloud layer [1, 9].

11.4.1 Things Layer

With a rich set of connected IoT medical devices, patients can monitor their health
data in real time on any computer or mobile device, and their information is securely
synchronized with a cloud-based e-Health platform. The main key requirements of
connected medical devices are [10]:

1. Unobtrusiveness: An essential requirement in the design of wireless medical
sensors relates to their lightweight and miniature size. These characteristics
allow both noninvasive and unobtrusive continuous monitoring of health. In this
contact, energy harvesting as well as flexible and printed batteries hold promise
for wearable devices.

2. Security and privacy: The essential design fundamentals of a connected IoT
medical device and eventually the entire ecosystem are security and privacy. For
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example, data integrity must be ensured where the sensors must fulfill the privacy
requirements provided by the law.

3. Interoperability: The main objective is to reform the chaotic and at times
dysfunctional nature of information exchange among healthcare stakeholders
such as hospitals, doctors, and patients.

4. Low-power communication: It is very important to consider the trade-off between
communication, computation, and energy consumption to be able to design
an optimal system. Many constraints and policies such as sampling rate can
impact the selection of the communication technology. For example, instead
of sending raw electrocardiogram (ECG) data from sensors, we can perform
feature extraction on the wearable devices and transfer only information about
the particular event.

The state-of-the-art IoT e-Health devices are typically classified into two cate-
gories:

1. Physical sensors: In general, any wired/wireless medical device can be used in
an e-Health ecosystem to track the physical wellness of patients and digitally
monitor their health.

(a) Electrocardiogram (ECG): Electrical activity of the heart. ECG is a contin-
ued waveform showing the contraction and relaxation phases of the cardiac
cycles.

(b) Heart rate: The speed at which the heart beats.
(c) Heart sounds: A record of heart sounds, produced via stethoscope (chest

microphone).
(d) Electroencephalogram (EEG): Electrical activity generated by the brain.

These signals enable doctors to better monitor and tackle brain diseases such
as seizure.

(e) Electromyogram (EMG): Electrical activity produced by skeletal muscles.
(f) Blood pressure: Arterial pressure measured in the vessels and chambers of

the heart which shows the performance of the heart and the resistance of the
vessels. Blood pressure is represented by two numbers: i) systolic, highest
level your blood pressure reaches when the heart beats, and ii) diastolic,
lowest level blood pressure reaches when the heart relaxes between beats.
According to American Heart Association, there are five blood pressure
ranges as follow:

i. Normal: Blood pressure numbers of less than 120/80 mmHg.
ii. Elevated: When the readings consistently range from 120 to 129 systolic

and less than 80 mmHg diastolic.
iii. Hypertension stage 1: When pressure consistently ranges from 130 to 139

systolic or 80 to 89 mmHg diastolic.
iv. Hypertension stage 2: When blood pressure ranges at 140/90 mmHg or

higher.
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v. Hypertensive crisis: When blood pressure exceeds 180/120 mmHg. In this
case, patients experience signs of possible organ damage, e.g., chest/back
pain, shortness of breath, change in vision, or difficulty speaking.

(g) Blood glucose (sugar): Concentration of glucose present in the blood. For
non-diabetics, it should be between 70 and 130 milligrams per deciliter.

(h) Hemoglobin: It is a protein in red blood cells. Oxygen entering the lungs
adheres to this protein, allowing blood cells to transport oxygen.

(i) Respiration rate: It is the number of breaths you take per minute. The normal
respiration rate for an adult at rest is 12 to 20 breaths per minute.

(j) Blood oxygen saturation level: Oxygen saturation is concentration of oxygen
that is dissolved or carried in a given medium. In healthcare, it represents
the fraction of [oxygen]-saturated hemoglobin relative to total hemoglobin
(unsaturated + saturated) in the blood. Note that a healthy individual at sea
level should exhibit oxygen saturation between 96% and 99%.

(k) Skin conductance (SC): It is also known as electrodermal response, electro-
dermal activity (EDA), or as galvanic skin response (GSR). Skin resistance
mainly changes with the state of sweat glands in the skin. As perspiration
increases, more sweat glands begin to conduct electricity, which in turn
increases skin conductance.

(l) UV radiation: It is intended to measures your exposure to ultraviolet
radiation that can adversely impact body skin and eyes which can ultimately
lead to cancer.

(m) Context-aware body movement: Body motion can reveal so many informa-
tion about an individual. For example, it can show whether a person is in
light sleep or deep sleep. Using these sensors in diseases such as Parkinson,
caregivers can determine how effective is the medicinal dosage based on
the body movement. These wearable sensors can also be used in several
applications such as fall detection, activity monitoring, or measuring calories
burned.

(n) Hydration level: This wearable enables individuals to manage hydration
status and address several important questions including when to drink, what
to drink, and how much to drink. There are several approaches to implement
this functionality in wearables; however, the most common approach is to
use infrared light to measure water in the blood.

(o) Ultrasound scanning: Nowadays, there is also an opportunity to perform 3D
ultrasound scanning via wearable devices which can be exploited in several
health applications. For example, it allows pregnant mothers to track the
movement of the baby. Three-dimensional wearable scanners can also be
used to perform breast scans and localize breast lesions.

(p) Pregnancy wearable: There are several sensors for pregnancy. For example,
wearable sensors can measure the electrical activity of the uterine muscle
of mothers, which in turn can be used to compute baby contractions. There
are also several wearables which allow to boost and hear the sound of your
baby’s heartbeat.
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2. Virtual sensors: Virtual sensors use software and mobile applications to gain
patient’s health and contextual data from the environment. A virtual sensor
includes many categories such as remote monitoring, remote consultation,
diagnostic, patient health record, nutrition, and medical reference applications.

11.4.2 Network Layer

There is a need to enable multi-protocol data communication technology between
devices at the edge as well as gateways, fog nodes, and the cloud servers. As
discussed in the third chapter of this book, common groups of IoT network
technology are as follows:

• Body area network (BAN) and personal area network (PAN): The scale of this
network is a few meters. This network is used to connect the edge nodes (e.g.,
sensors, actuators, devices, control systems, and assets) to gateways and fog
nodes. BAN/PANs are usually wireless and more constrained by antenna distance
(and sometimes battery life) than LANs. A notable example of BAN/PAN is the
Bluetooth technology, mostly used for connecting wearable devices to portable
devices like smartphones, laptops, tablets, etc.

• Home area network (HAN): The scale of this network is a few tens of meters. At
this scale, common wireless technologies for IoT include ZigBee and Bluetooth
Low Energy (BLE).

• Field area network (FAN): The scale of this “open space” network is several tens
of meters to several hundred meters. FAN typically refers to an outdoor area
larger than a single group of house units. 6LoWPAN is one of the most well-
known technologies for FAN.

• Local area networks (LAN): The scale of this network is up to 100 m. This term
is very common in networking, and it is therefore also commonly used in the IoT
space when standard networking technologies (such as Ethernet or Wi-Fi) are
used.

• Metropolitan area network (MAN) and wide-area networks (WAN): The scale
of MAN is up to a few kilometers and the scale of WAN is more than a
few kilometers. These networks provide connectivity for data and control flow
between the IoT gateway (or fog nodes) and the cloud. WANs can be wired
(e.g., using fiber-optic cable) or wireless such as 3G/4G mobile networks or even
satellite networks. It should be noted that with the introduction of low-power
wide-area network (LPWAN) such as NB-IoT and LoRa, there is a possibility
to directly connect endpoint IoT devices (without any gateway) to cloud servers
without the need to use 3G or Wi-Fi.

In this context, there is a vast variety of protocols. Figures 11.3 and 11.4 show
the IoT e-Health protocol stack. Note that the selection of the best connectivity and
the communication protocol depends on the application and the specific use-case
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Fig. 11.3 IoT e-Health protocol stack compared to Web stack

Fig. 11.4 Power source, range, and throughput of various network technologies

[11]. For example, a Wi-Fi connection is ideal when transferring many documents.
However, BLE works well for short-range, low-power communications.

Today’s e-Health cloud architectures are not designed to adequately handle the
volume, variety, and velocity of data generated by e-Health devices. To tackle
this issue, there is a need to revisit the network architecture, pushing certain data,
processing, and services away from the massive centralized infrastructure of the
cloud to the edge of the network where the data originates. An edge node (sometimes
nicknamed fog node) is defined as a device with integrated computing, storage, and
networking [12]. The edge node is inserted between the cloud and all IoT e-Health
devices add two important features to the system [1, 9]:

• Real-time analytics and decision making: Some important applications of IoT
e-Health such as myocardial infarction (MI) detection cannot tolerate latency. In
these time-sensitive applications, it is a necessity to process and act on health data
in seconds. In such applications, it is not practical to transfer patients’ sensitive
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medical data, vital signs, and bio-signals across a wide geographical area in
the presence of various environmental conditions and store and process them
in different data centers or the cloud. Instead, moving intelligence to the edge is
a promising approach to eliminate latency and evolve IoT e-Health solutions. In
this approach, an edge node with localized processing capability enables us to
respond more quickly than the cloud by making time-sensitive decisions closer
to the source of data. Thereby, this solution results in a more efficient solution
that can better handle low-latency demands of e-Health applications.

• Traffic reduction on overburdened networks: Considering the limited network
bandwidth, it is not practical and in certain use cases even not necessary to
transfer enormous volume of big raw data from millions of e-Health devices
to the cloud. Edge computing reduces the data transport costs, which can be
significant for data-intensive applications, such as genomic-association analysis,
generating several GBs of raw time-series data within a day. In this regard, edge
nodes can process, filter, and compact the medical data before delivering it to the
cloud to dramatically minimize bandwidth requirements.

Other important tasks of a fog node are explained below:

• Two-way connectivity: Fog nodes establish a secure reliable bidirectional data
flowing between e-Health devices and the cloud platform. An edge node gathers
feeds in real time from health devices using an appropriate protocol and,
after processing, sends the corresponding summary periodically to the cloud to
facilitate the long-term data sets aggregation, exploration, analysis, and globally
intelligent decision making. On the other hand, it might also need to receive
commands, configuration data, etc., from the cloud. Note that the edge node is
also dealing with the compliance challenges associated with connectivity such
as protocol translation, security, switching, routing, and networking analytics.
For example, nodes might not be assigned with a public IP address. Therefore,
to enable reachability from the cloud, an edge node can rely on different
mechanisms such as WebSocket, MQTT (message queue telemetry transport),
and IP tunneling.

• Time-series data capture: Edge nodes can either use an interrupt or a polling
mechanism for data acquisition. Depending on the application, time precision
might also be required to be able to extract the trend over time. In such a case,
accuracy is increased if the time stamp is generated in close proximity to the
e-Health device generating the data. In this regard, edge nodes time-stamp the
incoming data and store it in a historian database.

• Transient data storage: Fog nodes are required to provide short-time historical
storage for e-Health device data. For example, filtering outliers of data (i.e., in
the case of deviation from normal) depend on previous samples of the data.

• Device management: This includes device discovery, device registration, and
device control.

• Edge processing: A rich set of applications can be executed on the edge node. For
example, edge nodes are capable of on-demand data cleaning, data normaliza-
tion, filtering, data reducing, compressing, integrity check, and formatting, data
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sharing, data purging, and data buffering. An edge node may also include, as
an example, signal processing, concurrent streaming, event handling, embedded
web server, embedded WebSocket server, etc.

• Streaming edge analytics: In some e-Health applications such as anomaly detec-
tion, it is a major necessity to learn actionable insight and actionable information
in real time close to the local context. Keeping this in mind, edge nodes should
be able to analyze the stream of device and sensor data with millisecond response
time. To do so, edge nodes can incorporate lightweight feature extraction,
data mining, time-series pattern recognition, machine learning, rule-based event
processing, and automated reasoning.

• Data delivery: Edge nodes can rely on either of the following message-exchange
techniques to deliver the IoT data: (i) message-based, (ii) request-based, and (iii)
publish-subscribe.

• Security and data protection: To protect patient data, the fog node offers multi-
layer security measures for authentication, encryption, and access control to fully
meet the requirements of FDA standards.

• Flexible integration: Considering the availability of different device vendors and
OEMs, edge nodes should implement a wide-range of interface standards to
maintain interoperability. To address the integration concern, edge nodes should
be compatible with a large variety of communication protocols and peripherals
(e.g., UART, SPI, and USB), PAN and WSN protocols (e.g., RFID, BLE, Zigbee,
Wi-Fi, 3G/4G, and Ethernet), and wired protocols (e.g., Ethernet).

• Protocol translation: Another challenge arises from the fact that there is a large
number of communication protocols at different levels of abstraction as follow:

– Network layer: An IoT e-Health network is scattered among various network-
ing protocols (e.g., BLE, ZigBee, Wi-Fi). To bridge the gap among these
protocols, the edge node needs to convert and translate the incoming stream
to an appropriate format and propagate it to the destination network.

– Message layer: A large number of application-level protocols (e.g., MQTT,
CoAP, and XMPP) or processing messages exists. Thereby, it is very crucial
that edge nodes despite the underlying differences of standards be able to
transfer messages among different protocols.

– Data annotation layer: Different organizations proposed distinct standards for
integration, exchange, and retrieval of e-Health information (such as HL7).
Whenever it is required, edge nodes should be capable of understanding,
processing, and translating the data.

11.4.3 Cloud Layer

The cloud platform can benefit from a multi-layer architecture that consists of the
following layers (see Fig. 11.5) [1, 9].
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Fig. 11.5 The multi-layer architecture of the e-Health cloud

1. Cloud gateway: This layer includes many built-in features needed to create a
connection between IoT things such as e-Health devices, sensors, actuators,
fog/edge nodes, BI tools, dashboards, social networks, external databases,
applications, and the cloud. This layer delivers ultimate flexibility to select an
appropriate communication method based on different protocols (e.g., MQTT,
WebSocket, Representational State Transfer APIs, ODBC, JDBC, etc.) that suits
the requirements of the given health application.

2. Data lake: James Dixon, the CTO of Pentaho and the creator of the term data
lake, defines this term as “If you think of a traditional database as a store of
bottled water cleaned and packaged and structured for easy consumption, the
data lake is a large body of water in a more natural state. The content of the data
lake stream in from a source to fill the lake, and various users of the lake can
come to examine, dive in, or take samples.” The main advantages of a data lake
are as follow:

(a) It is capable of deriving values from many different data sources.
(b) It can store and converge both structured and instructed data from sensor

data, to e-Health documents, to social media data.
(c) It can efficiently handle a growing amount of data by leveraging a distributed

file system such as the hadoop distributed file system (HDFS).
(d) It can process a large and diverse set of data.
(e) It is very flexible in a way that it can be extended by several distributed

applications to enable different access and process patterns of the stored data:
batch (MapReduce), SQL Query (Hive, Impala, Spark SQL), Script (Pig),
Stream (Spark), and many other processing engines.

(f) It changes the old Early-binding ETL (Extract: retrieving raw data: Trans-
form: structuring the raw data and storing it in a data repository; Load:
loading the structured data for analysis) paradigm of the traditional databases
and data warehouses to process the data. Indeed, a data lake follows a
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Late-binding ELT approach, leading to more flexibility and faster access to
all data at any time responding to any and all future needs.

3. Data warehouse: It is a highly structured repository used mainly for reporting
and representing an abstracted picture of the e-Health system. The data stored
in this repository can be uploaded from the data lake or from the operational
systems (such as sales). However, note that before storing any data, we need to
process, model, and give the data a specific structure.

4. Data flow manage and orchestration: This layer is responsible for managing,
automating, and orchestrating the cloud sources (e.g., data ingestion, data
storage, data processing, and visualization).

5. User, device, and data management: The cloud integrates data from multiple
sources. It captures data from many fog nodes and stores the data in a safe and
secure manner. In this way, the data is always there to be accessed by those
engaged in patient care. This platform seamlessly integrates with non-sensor
sources such as EHRs, e-prescriptions, web sources, and more. As a result,
patients, physicians, or any other member of a patient’s care team can access
vital health data when needed. This significantly increases collaboration across
all disciplines, increasing the efficiency of the healthcare plan. Moreover, cloud-
based platforms offer a unified schema to capture and query transactions. In
doing so, the versatility to create new applications is increased. This module is
also used to manage users, groups, devices, and fog nodes and access permissions
and roles.

6. Big Data analytics: This is a key component for analyzing medical data. The
use of analytics allows the platform to use event- and rule-based processing,
data mining, machine learning, and automated reasoning-based algorithms on
stored historical records. This way, the platform can make meaningful insights
about patient health. Having these early health insights could be a game-changer
for a patient who can begin to take preventative action against an otherwise
fatal ailment. The configurations of the connected e-Health devices can also be
adjusted using the extracted insights. For instance, users may alter the frequency
and type of information collected, as well as the multimedia (images and videos)
resolution. Note that, there are two different engines in the analytical module.
The first one handles all requests that are subject to (near) real-time constraints.
The second one deals with batch data and extracting historical intelligence.

7. Output integration: This is typically based on an Enterprise Service and Inte-
gration Bus such as Apache Camel with a rich set of protocols (e.g., REST
API, Message Broker, Websocket, etc.) that enables connection with any system,
application, or portal. It should also be noted that this module can exploit in-
memory databases (such as Redis and HBase) to answer fast incoming queries
by merging and caching the results from warehouse, data lake, analytics, etc.
However, this database only stores very recent data and results.
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11.5 Key Services and Applications of IoT Healthcare

In this section, we will briefly review a few of the applications made possible within
the IoT e-Health ecosystem [1, 9].

11.5.1 Mobile Health (m-Health)

Cloud technology makes it possible for patients to access health information no
matter where they are. m-Health can be accessed via smartphone applications or a
web-based cloud dashboard. Medical professionals or caregivers can also make use
of the IoT platform and m-Health smartphone applications through P2P video and
audio, which enable patient/caregiver interaction anywhere and at any time. This
technology allows patients to more conveniently receive diagnoses and treatment
such as prescription medication refills without a hospital or clinic visit. Because
healthcare professionals can access a patient’s holistic health database through
the cloud platform at any time, they are able to receive the most effective and
appropriate treatment possible. Therefore, a holistic IoT e-Health system would
grant the patient’s better access to the most appropriate care available.

11.5.2 IoT in Ambient Assisted Living

An IoT e-Health ecosystem would also enable geriatric or disabled individuals to
live longer and more independently. The geriatric population is growing signifi-
cantly and current estimates suggest that 20% of the world’s population will be age
60 or older by 2050. Increased age brings a greater risk of chronic illnesses such
as cancer, type II diabetes, stroke, etc. The integration of IoT technology through
ambient assisted living (AAL) allows real-time, location-specific monitoring of
patient living parameters (i.e., heart rate) as well as environmental conditions [8].

11.5.3 IoT Medication

IoT can also be useful in determining compliance with medication regiments and in
the prevention of fatal adverse drug reactions (ADR) [13]. A combination of smart
pill bottle technology, wearable audio sensors, and classification capability is able
to accurately determine medication compliance. Research shows that the ADR rate
in hospitals is approximately 6.5% worldwide [14]. IoT medication, in partnership
with NFC-equipped smart pill bottles, a cloud-based electronic medical records
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(EMR), and a knowledge-based system could help to prevent the administration
of incorrect drugs and their subsequent adverse reactions.

11.5.4 IoT to Assist Individuals with Disabilities or Special
Needs

In 2011, the world health organization (WHO) completed its initial survey concern-
ing disabilities and discovered that more than 1 billion people, almost 15% of the
world’s population, lives with some kind of disability. IoT e-Health could signif-
icantly improve quality of life to this population through automated, dependable,
resistive technologies. For example, smart gloves with cost-efficient inertia sensors
have been developed to enable those living with hearing loss to communicate with
others who are not fluent in american sign language (ASL). Smartwatches can
be utilized to assist patients with speech disorders to learn speech functions in
rural areas. IoT systems are also able to improve wheelchair access in smart cities
for those with mobility issues, collect information about individual special needs
remotely, or enable schools to make special needs education more obtainable and
productive for disabled children. One example of an IoT device available today is
the Wireless Nano Retina Eyeglasses that enable communication between retinal
implants to support real-time vision fine-tuning for blind patients.

11.5.5 Smart Medical Implants

Beyond wearable medical devices, IoT e-Health is also introducing very sophisti-
cated, reliable implantable medical devices designed to improve or restore human
bodily functions. Examples of some of these electronic implants include deep
brain stimulation (DBS) systems that use controlled electrical pulses to stimulate
brain areas to lessen involuntary movements caused by neurological disorders like
Parkinson’s disease or essential tremors, pacemakers needed for regulating heart
rhythm, and cochlear implants that use electrodes inside the inner ear to restore
hearing. These electronic implants utilize tiny circuits that house analog front ends,
micro-controllers, and battery power management. The IoT model continues to
be explored to help make medical implants more efficient, secure, and context-
specific. For example, research continues to find ways to improve DBS using inertia
sensors worn on the arms or legs. IoT also provides a fundamental structure for
the programming and tele-management of cochlear implants so that patients do not
have to make unnecessary trips to implant centers to receive device programming
services.
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11.5.6 IoT for Early Warning Score (EWS)

Because a large variety of bio-sensors create a huge volume of medical data from
thousands of patients, it is not practical to monitor every patient directly. An
IoT-based early warning score (EWS) is able to assist medical professionals by
accurately predicting or quickly detecting the deterioration of a patient’s health [15].
Basically, EWS processes and analyzes six basic vital signs including respiratory
rate, body temperature, pulse rate, systolic blood pressure, oxygen saturation level,
and degree of consciousness. These signs are then translated to a composite
patient deterioration risk score. Each processed vital sign is scored so that the
size of the score corresponds to the level of divergence from its established norm.
When all the scores are combined, a composite score is created, reflecting the
total level of deterioration risk for a particular patient. The EWS approach is in
widespread use in hospitals around the world, and many studies have indicated that
EWS is able to forecast patient complications approximately 24 hours before the
actual complication arises. In this context, IoT e-Health systems allow medical
professionals to constantly monitor vital signs remotely and then calculate the
patient’s deterioration risk level remotely as well. This is a revolutionary model
able to spot deterioration early enough to save lives and reduce mortality rates.

11.5.7 IoT-Based Anomaly Detection

There are two apparent drawbacks related to EWS. First, EWS does not evaluate
all biosignals such as hydration and sweat levels. In addition, EWS is based on
supervised machine learning and may not be able to accurately capture deviations
that are outside the supervisor’s real knowledge. Overcoming these drawbacks could
be addressed by utilizing an anomaly detection system that learns and evolves
continuously over time [16]. For example, hierarchical temporal memory (HTM) is
an unsupervised machine learning technique, which can be used to detect anomalies
(see Fig. 11.6). This model enables medical professionals to quickly recognize
anomalies pointing to a potentially severe problem such as a stroke or heart attack.
The image below depicts the main steps such a system uses to perceive anomalies.

Fig. 11.6 IoT-based anomaly detection system
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In short, timed bio-signals are monitored by sensors in the IoT e-Health device
and those signals are transmitted to fog nodes. The fog nodes then sort, process,
extract, and compress the data before the processed, timestamped data is sent to the
cloud through a secure connection. Next, the data is converted to a sparse distributed
representation (SDR). The SDRs are then put through the HTM model, which
attempts to mimic neocortex brain activities by learning temporal SDR patterns
constantly. Over time, the HTM creates a complex, adaptive model that is able
to predict the next incoming SDR sequence. If the next actual sequence does not
match the predicted sequence, an anomaly alert is triggered. Reducing data variance
induced false-positive results requires that HTM calculate a time-varying average of
the error that is compared with the distribution of all errors. This comparison enables
HTM to forecast the accuracy level of the predicted anomaly or alert. The outputs
generated by the risk analysis and warnings can be viewed via a dashboard and
sent to patients and medical professionals tasked with providing the best possible
treatment.

11.5.8 Population Health Management

IBM has estimated that available medical data will double every 73 days by 2020
[17]. Big Data analytics can be used to help comprehend the data and extract deep
insights in order to improve medical outcomes and reduce costs through more
customized care plans and early intervention. IBM has also reported that the Medical
Center of Columbia University used Big Data analytics to review medical data
from patients suffering from strokes in order to predict serious complications up to
48 hours before traditional models. The Rizzoli Orthopedic Institute also used Big
Data analytics to better understand the clinical differences in families with genetic
bone diseases, resulting in a 30% decrease in yearly hospitalizations. Similarly, the
Hospital for Sick Children reviewed diverse Big Data analysis methods to monitor
and process patient vital signs and predict infections up to 24 hours faster than
traditional methods. Additionally, machine learning methods have been considered
for automatically monitoring psycho-physiological stress from bio-signals including
skin conductance and an accelerometer. Generally, Big Data analytics is useful in
answering the important questions listed below:

• How can alarm-based screenings be used to predict which patients are at the most
risk?

• Which treatments and plans of care generate the best patient outcomes?
• How can bio-signals and medical data be processed to accurately predict

complications?
• How can an automatic diagnostic system use classification techniques to help

patients even if a medical professional is not present?
• How can a recommendation system using collaborative filtering systems be

created to suggest the most beneficial treatment or HCC gene-based treatment
based on similar measures between patients or treatments?
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11.6 Major Challenges of IoT Healthcare

IoT e-Health seamlessly connects patients, clinics, and hospitals across a vast
variety of locations to coordinate and orchestrate healthcare. There are, however,
many research issues that must be carefully addressed before it can become viable
for mainstream deployment [1, 9].

11.6.1 Interoperability, Standardization, and Regulation

IoT has generated concerns when it comes to standardization. Manufacturers, end
users, and service providers all require operating standards within and among IoT
focus areas. The issue of standardization is complex because IoT seeks to capture a
diverse range of disciplines that are monitored and regulated by different regulatory
agencies. The issue is further complicated by the stringent guidelines mandated
by guiding medical authorities. For example, in the United States standardizing
wireless medical devices requires a multi-agency regulatory collaboration including
the food and drug administration (FDA), centers for medicare and medicaid services
(CMS), and the federal communications commission (FCC). This means that
companies must carefully evaluate the policies and procedures required by all three
agencies. IoT e-Health will also need to maneuver through a complicated structure
comprised of multiple agencies before IoT e-Health products will become readily
available in the market. These issues are not unique to the United States; e-Health
will come up against similar issues in other areas of the world [1, 9].

11.6.2 Heterogeneity

IoT healthcare applications require a broad range of contextual data obtained
using both different and heterogeneous health sources. Heterogeneity is generally
perceived in two forms [18]:

• Data heterogeneity – Multimodal sensors that are different in structure, format,
and semantics result in significant heterogeneity in data. These data sets can be
inconvenient to share or reuse because they lack formal descriptions.

• Sensor heterogeneity – Integrating several sensors that function at differing
frequencies and require differing network protocols creates issues around inter-
operability. In addition, combining devices and sensors can create increased
levels of interference. When interference and the ranges as well as the working
frequencies of coexisting wireless networks overlap, the healthcare network
system can be substantially affected, hindering the availability of important data.
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11.6.3 Interfaces and Human Factor Engineering

It is important to consider additional factors such as human acceptability of a
particular system and the level to which that system supports human interactions.
The interface of sensors, front-end technology, tablets, smartphones, computers, and
other interactions is one of the main factors in IoT e-Health. In order for individuals
with little experience using technology to be able to use IoT e-Health devices, it
is important that end users be able to train themselves how to use high-tech tools
intuitively. Generally, end users have little knowledge about sensor syncing, wireless
networks, or other technical operations. Therefore, when devices are utilized in
remote environments, it is important that establishing the e-Health system be as
forthright and autonomous as possible. For example, geriatric populations are one
of the largest stakeholder groups in IoT e-Health, and device interfaces must be
user-friendly, requiring minimal assistance from experts. Successful human factor
engineering includes participatory design that encourages end users to participate
with the design team by providing continuous feedback regarding ease of use,
dislikes, likes, and comfort levels.

11.6.4 Scalability

IoT on a smaller scale requires that portable devices contain data collection
sensors and that centralized servers process user requests to ensures all users are
able to access medical services using compact devices like smartphones. This
functionality can be scaled up to serve an entire hospital so that patients can utilize
medical services, receive status updates, and benefit from continuous monitoring.
In addition, this model could be scaled up to serve a whole city, assuming antenna
and sensors in the city are able to gather data. Smart Big Data algorithms and APIs
could be used to process data and evaluate user requests while smart interfaces can
provide users with the status of requests in real time. A smart, e-Health-based city
could collect and process all data via smartphones and mobile applications, sending
feedback to patients so that each is aware of personal health status and has access to
results of medical testing or examinations seamlessly. Utilizing IoT medical services
saves patients’ time waiting for appointments or results and provides clear access to
basic medical services and resources. Scaling up from a small network to the level
of a smart city has the potential to improve efficiency, support relationship building,
and promote greater trust between medical professionals and patients [1, 9].
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11.6.5 Power Consumption

The consumption of energy is another important factor in IoT healthcare. The finite
battery life of sensors can negatively impact an application’s life cycle. Charging
or replacing batteries in many real-life IoT systems is complicated and inefficient,
especially if multiple sensors are utilized. Generally, an IoT device’s battery life
span is dependent upon the network (i.e., transmission range, duty cycle, and
utilization of communication channels) and the level of complexity of signal or data
processing.

11.6.6 Intrusiveness

There are some IoT e-Health applications that necessitate that a subject continually
carries or wears the sensor, which can become an inconvenient task. Therefore,
additional effort should be made to keep from violating the subject’s quality of life.

11.6.7 Design Automation Challenges

The design challenges for IoT e-Health systems arise from a combination of the
following characteristics [9]:

• Cross-domain: IoT e-Health is about the intersection of many fields that spans
bioengineering, embedded system, to network design, and to data analytics.
Therefore, modeling, design, verification, and monitoring of such a heteroge-
neous system require multi-disciplinary knowledge.

• Heterogeneous: IoT e-Health spans the cyber and physical worlds. Therefore,
it involves many components such as hardware and software, network, etc.
As a result, it is very important to pay detailed attention to interfacing and
interoperability of such a holistic system.

• Dynamic environments: IoT e-Health incorporates a significant dynamic environ-
ment. Therefore, the system should be able to evolve continually.

• Distributed systems: IoT e-Health is built on top of many layers and physically
and/or temporally separated components that are tightly networked.

• Large-scale: IoT e-Health is a swarm of connected devices, network components,
and computation systems that must deal with data volume, variety, velocity, and
veracity.

• Human aspects of the design: Since IoT e-Health is used in close collaboration
with humans, it is very important that the design of such a system considers the
role of humans as well as human interfacing.
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• Learning-based: IoT e-Health should be designed based on suitable data-driven
learning techniques to handle the varying dynamics of cyber and physical
components.

• Time-aware: Spatial and temporal variations in the dynamics of the cyber and
physical components of an IoT e-Health must also be addressed.

11.6.8 Data Management

In the healthcare sector, IoT e-Health faces many of the same data management
challenges as in other fields. One distinguishing factor, however, is the fact that e-
Health data originates from medical sensors worn by human subjects, and the human
body is a constantly changing system. Thus, from an IoT e-Health perspective,
an ongoing flux of data will continually flow inward from edge sensors via fog
computing nodes. On a positive note, sensors and computing are both declining in
cost, making Big Data more cost-effective to be collected in a brief timeframe. IoT
e-Health has evolved to deal with the complicated nature of these data, even as their
variety, volume, and velocity have continued to increase. At the same time, IoT faces
a challenge almost unknown 10 years ago: that of data variety. Dozens of healthcare
applications targeted at end users use their own data format; for example, ECG data
is often encoded in XML, while camera-based IoT devices typically record data in
a variety of image formats. Meanwhile, various edge computer manufacturers use
their own data formats, which can also vary by customer. Data models on the cloud
also vary widely, creating a desperate need for standardization. Difficulties related
to data volume and velocity, on the other hand, are more related to the ability of
the fog node hardware to acquire, analyze, store, and transmit data from medical
devices (which could be located at hospitals or clinics or carried with the patient)
at high fidelity and resolution. This creates a clear demand for fog administrators
capable of supervising the data flux between computing in the cloud and the fog
[1, 9].

11.6.9 Context Awareness

A complete, detailed picture of a particular patient’s context enables a system to
determine its actual need for assistance more appropriately. In the area of IoT
healthcare, events and data must be accurately interpreted in order to obtain a
reasonable, holistic understanding of contextual data. For example, based on a
patient’s condition and context, not every detected fall indicates a critical case
or requires a reaction by a caregiver or health provider. In general, the creation
of context-aware healthcare applications is challenging due to the issues of data
acquisition (e.g., determining which data is important enough to capture) and data
analysis methods, including presentation of context-based services and information.
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When designing context-aware monitoring systems, it is important to give proper
consideration to reasoning, interpretation, and observation of the patient’s condition
from multiple perspectives including environmental, behavioral, and physiological
areas. A system also has to consider all pertinent context dimensions including
human activities, objects, location, time, frequency, and posture. Available historical
data such as health documentation of disease, diagnoses, treatment plans, daily
behavior, noted health changes, and environmental conditions (i.e., humidity and
temperature) are also influential to system intelligence [18].

11.6.10 Availability and Reliability

Enabling accessibility to suitable health data in a timely fashion is another important
issue for consideration in IoT healthcare. Dependable data delivery affects the
availability of health information, and lack of data can negatively affect a patient at a
critical point. The reliability of data accessible via wireless networks in healthcare is
dependent upon several factors such as device range, network coverage, availability
of power, routing protocols, and device or network failure. Issues of reliability can
be categorized into data acquisition, communication, data analysis, data measure-
ment, and data governance.

11.6.11 Data Transmission

Choosing a method for transmitting data collected from sensors to back-end
cloud servers for processing and analysis is a frequent challenge in the design
and implementation of IoT healthcare applications. The transmission of data in
a network is classified into four different schemes: anycast, broadcast, multicast,
or unicast. Broadcast or multicast schemes can improve reliability because both
concurrently supply packets to multiple receivers. However, this policy can increase
network traffic and can cause transmission delays. Unicast schemes include the
least amount of network traffic and deliver packets to a solitary receiver; however,
a procedure for locating an alternate receiver is required in case a transmission
should fail. The anycast scheme includes lower overhead traffic in comparison to
multicast or broadcast schemes and is a newer routing method that sends data
packets to the closest receiver. It is considered more dependable than the unicast
scheme when it comes to locating new receivers, but anycast requires more complex
network routing and devices. More comprehensive considerations born out of the
challenge of data transmission include the amount of transmitted data, transmission
technology and frequency, and normal packet size. Each of these considerations can
have a significant impact on a system’s availability, dependability, effectiveness,
energy use, and network traffic [18].
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11.6.12 Security and Privacy

IoT e-Health devices, like all networked devices, will present some level of
the potential risk to the security and privacy of end users, through the use of
unauthorized authentications. This is an especially significant concern in the area of
healthcare, where personal safety could be put at risk. In fact, the entire life cycle of
IoT e-Health is built around privacy and security, from specification generation and
all the way to implementation and deployment. Even so, a holistic multi-layered set
of strategies will be necessary in order to overcome the complex security challenges
of engineering an IoT healthcare ecosystem. This approach can be described as
follows [1, 9]:

1. Device layer: Connected devices such as sensors, medical devices, gateways,
fog nodes, and mobile devices, when are involved in capturing, aggregating,
processing and transferring medical data to the cloud. Widespread forms of
attacks in the device layer include tag cloning, spoofing, RF jamming, cloud
polling, and direct connection. In a cloud polling attack, network traffic is
redirected in order to inject commands directly to a device, through the use of
man-in-the-middle (MITM) attacks as well as changes to domain name system
(DNS) configuration. The most effective defense against this attack is an ongoing
policy of evaluation and verification of certifications, at the device level, in order
to ensure that every certificate actually belongs to the e-Health cloud. A direct
connection attack, meanwhile, involves the use of Service Discovery Protocol
like universal plug and play (SSDP/UPnP), or the on-board properties of BLE, to
locate and target IoT devices. This type of attack is best prevented by a policy of
ignoring and blocking unauthenticated requests at the device level, through the
use of robust cryptographic algorithms, along with a key management system.
Other device-layer security measures include identity, authentication, and autho-
rization management, secure booting (i.e., prevent unauthorized applications to
be executed), application sandboxing, whitelisting, fine-grained access control
capability of resources, protection of data during capture, storage, and transit,
traffic filtering feature, fault tolerance, password enforcement policies, secure
pairing protocols, and secure transmission mechanisms. It is also important
to take into account the extremely limited memory, processing capabilities,
power resource, network range, embedded operating systems, and thin embedded
network protocol stacks of many devices while implementing security algorithms
in an IoT Health system [1, 9].

2. Network layer: In this layer, a multitude of diverse network protocols, including
Wi-Fi, BLE, and ZigBee can be leveraged to establish appropriate connections
among sensors. Eavesdropping, Sybil attacks, sinkhole attacks, sleep deprivation
attacks, and Man-in-the-Middle attacks are all common at this level. Thus, the
use of trusted routing mechanisms is crucial, as is the use of message integrity
verification techniques (using hashing mechanisms like MD5 and SHA) and
point-to-point encryption techniques based on cryptographic algorithms. These
algorithms fall broadly into two groups: symmetric algorithms such as AES,
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DES, Blowfish, and Skipjack and asymmetric public-key algorithms such as
the Rabin’s Scheme, NtruEncrypt, and Elliptic Curve Cryptography. As a rule,
symmetric algorithms are less computationally intensive, making them for low-
power 8-bit/16-bit IoT devices. At the same time, problematic key exchange
mechanisms and confidentiality issues often create difficulties [1, 9].

3. Cloud layer: A large body of literature exists on the security issues involved in
the deployment of cloud applications. Any provider of e-Health products and
services will need to establish an efficient, effective set of tactics for proactively
combating the negative impacts of attacks. Widespread vulnerabilities in the
cloud include Denial-of-service (DoS) attacks, SQL injections, malicious code
injections, Spear-Phishing attacks, sniffing attacks, path traversals, unrestricted
file uploading (remote code execution), cross-site scripting (XSS), Trojan horses,
viruses, and brute-force attacks using weak password recovery methods [1, 9].

4. Human layer: The fundamental principle of IoT e-Health security is that
individuals should receive training on how and when to avoid disclosing private
healthcare information. If a knowledgeable group of attackers gain physical
access to an end user’s IoT e-Health device, those attackers could directly pull
data from the device’s internal memory and firmware and modify its settings to
obtain partial or complete control over it. In addition, it will be crucial to train
users to avoid common security pitfalls such as sharing physical or electronic
keys, choosing weak passwords, or purchasing used medical equipment [1, 9].

11.7 Case Study: Collaborative Machine Learning-Driven
Healthcare Internet of Things

To justify the proposed multi-layer architecture for healthcare, as a case study, we
discuss how an online arrhythmia detection can be mapped to the architecture.
In this case study, we build a collaborate solution that distributes the intelligence
between endpoint IoT health device, fog node, and the cloud. This strategy
enables us to have the best of different worlds and to have a tradeoff between
accuracy, communication latency (transmission time), processing time, and energy
consumption. Note that in the cloud we can execute very complex algorithms,
but it has two drawbacks. First, cloud-based arrhythmia detection is not real time.
Second, the device needs to transfer a large amount of raw data (ECG signals) to
the cloud resulting in high power consumption which is not suitable for wearable
devices. On the other hand, endpoint IoT devices and fog nodes can provide real-
time decision making; however, unfortunately we cannot execute holistic machine
learning techniques on those devices due to their limited processing capabilities.
Thereby, this can result in inaccuracy. To tackle this issue, we use a collaborative
technique [19]. In this collaborative solution, we distribute the intelligence across
device, edge, and the cloud. We utilize a shallow neural network to fast ECG-based
anomaly detection in the endpoint IoT devices. Although the accuracy of this type
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of machine learning is not high, it can increase the lifetime of the battery. In the
fog node, we utilize an advance convolutional neural network (CNN) to identity
anomalies with the maximum accuracy. Fog nodes (e.g., smartphones) usually
have enough power and processing resource to be able to run CNNs. Finally, we
perform all the machine learning trainings in the cloud. The reason is that cloud
has unlimited resources to ingest and process a large amount of data collected from
several patients and the results (machine learning models) are dispatched to the edge
of the system. With this approach we can make a trade-off between response time,
power consumption, and accuracy.

• Machine learning on chip (IoT device): As mentioned, endpoint IoT devices
suffer from enough processing power. Therefore, we design and execute a light
machine learning algorithm to meet this limitation. To do so, we train and
implement a three-layer neural network to detect any heart anomalies based on
ECG signals. In particular, we implement the following functions in device:

– Signal pre-processing: In this stage we remove any unwanted noise from ECG
recordings. In particular we perform:

• DC noise removal
• High-frequency noise removal
• Low-frequency noise removal
• Power line interference removal

– Feature engineering: A typical normal ECG signal is depicted in Fig. 11.7.
Since our goal is to implement the ECG signal processing on an IoT wearable
device, we need to extract the lowest possible number of working features.
This includes four features:

• Backward time difference of two consequent heartbeats (pre-RR)
• Forward time difference of two consequent heartbeats (post-RR)

Fig. 11.7 A typical normal
ECG signal
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• The average of 10 consequent pre-RR values (local-RR)
• Similar to local-RR but for the last 20 minutes instead of the last 10 values

(Global-RR)

– Neural network: As mentioned above, we utilize a shallow neural network
with a few layers and neuron as our machine learning on chip (IoT devices).
Our rich experiments show that the accuracy of this network for arrhythmia
detection is above 90%.

• Edge/fog intelligence: Utilizing a fog layer allows delay-sensitive applications
(e.g., arrhythmia detection) to make online real-time decisions. The fog enables
us to develop more complex machine learning algorithms offering better accu-
racy compared to shallow neural networks which we used in endpoint IoT
devices. In this case study, we design and implement a convolutional neural
network that have been proven to be very effective in several areas such as
image classification. To do so, the fog node converts the ECG signal to an
equivalent image and feeds it into a CNN. In this case, we use an AlexNet CNN.
Our experimental results show that CNN is able to significantly improve the
performance of arrhythmia detection. Indeed, AlexNet can detect the anomalies
in ECG signals with the accuracy of 97%. As a result, the patient can switch
between machine learning on chip (endpoint IoT device) and fog node depending
on the working conditions and requirements. Note that the wearable ECG
monitoring device (endpoint IoT device) can be connected to the fog node (e.g.,
smartphone) via Bluetooth. However, transferring raw ECG signals can drain the
battery.

• Big Data analytics in the cloud: Although we moved the decision making task
to endpoint IoT devices and fog nodes, we need to train the machine learning
algorithms (shallow neural network and CNN) in the cloud. The reason is that
training is a huge computational burden for such devices. In addition, in the
cloud we have access to more data (ECG signals) from several patients resulting
in better machine learning modes. The cloud enables us to continuously train
and improve the models, and periodically, we can dispatch the model parameters
(e.g., coefficient, weights, etc.) to edge.

11.8 Summary

As the Internet of Things (IoT) paradigm becomes more widespread, a host of novel
opportunities have arisen. Technologies such as miniature wearable biosensors,
along with advances in Big Data, especially with respect to efficient handling of
large, multiscale, multimodal, distributed, and heterogeneous data sets, have opened
the floodgates for e-Health and m-Health services that are more personalized and
precise than ever before. However, IoT hints at an even greater change in healthcare
paradigms; it promises greater accessibility and availability, personalization and
tailored content, and improved returns on investments in delivery. Even so, as IoT
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e-Health broadens the horizons of fulfillment in terms of existing healthcare needs,
quite a few major hurdles remain before consistent, suitable, safe, flexible, and
power-efficient solutions can be deployed to address many medical demands. In this
chapter, we presented a holistic hierarchical multi-layer IoT e-Health ecosystem,
where various applications such as early warning systems can be mapped to those
layers. We then finally discussed and addressed the main benefits as well as
major challenges of IoT e-Health such as data management, scalability, regulations,
interoperability, device-network-human interfaces, security, and privacy.
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If it weren’t for electricity, we’d all be watching television by
candlelight.

George Gobel
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12.1 Introduction of Bioelectricity and Biomechanics

In the current scenario, the innovation in technology is increasing as per the
requirements of our lives. This fact is also true for the area of health-care services
and medicine. The recent advancement in health-care system leads to effective
diagnosis and better treatment of diseases with the help of biomedical engineering.
Biomedical engineering includes two major fields, medicine and engineering.
The engineering field has assisted health-care technology by providing tools and
techniques such as biosensors, signal processing, image processing, and artificial
intelligence. These tools and techniques help health-care technology in the research,
diagnosis, and treatment of various diseases [1]. The field of biomedical engineering
also includes many new areas of research such as bioelectricity and biomechanics.

Bioelectricity is also known as electrophysiology [2]. Bioelectricity has the same
principle which the electricity has in the atmosphere and solid-state materials. One
of the major differences in bioelectricity and electricity is that the living systems
derive their electrical energy from the difference of ionic concentration which
is present across cell membranes as compared to man-made electrical systems.
Therefore, the energy sources in living systems are distributed in space along the
membrane, and this energy can be utilized by involving a flow of current across the
membrane. In other words, the systems designed by humans have a localized energy
source, for example, a battery, which conducts the currents through a conductor,
whereas living systems have distributed sources of energy. The bioelectricity is
quantified with the help of potentials and currents which values are functions of
position. The animals and people have huge volumes with conducting solution
through which ionic currents can flow. Hence, the study of bioelectricity is important
for understanding the electrical phenomena in different parts of a living system [3].

On the other hand, the biomechanics is a study of human movement which
is defined as the interdisciplinary that describes, analyzes, and assesses human
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movements [4]. Biomechanics includes the fields of engineering mechanics, biol-
ogy, and physiology. The knowledge of biomechanics helps us to understand the
normal and pathologic gait, mechanics of neuromuscular control, and mechanics of
growth and form. This understanding plays a significant role during the development
of medical diagnostic and treatment procedures. The human athletic performance
has also been enhanced with the help of biomechanics [5].

There are broad varieties of physical movements involved in biomechanics such
as the lifting of a load by a factory worker and the performance of a superior athlete.
These cases have used the same physical and biological principles, but the specific
movement tasks and level of detail change from case to case. Thus, the biomechanics
is all about the highest level of assessment of human movements [4].

12.2 Biosensors

The biomedical field basically depends on the monitoring of physical parameters
and chemical properties for effective outcomes. The analysis of these physical
parameters is performed in centralized laboratories, which require both capital and
skilled labor. However, these methods of analysis of physical parameters seem
to be accurate, but they have certain disadvantages such as time consuming and
inability to monitor concentrations at any instant in real-time situations. Therefore,
the development of biosensors has played an important role in instant monitoring
of biochemical under real-time situations which involve invasive and noninvasive
methods that offer an economic, fast, and easy analytical tool. The applications of
biosensors in the biomedical field have revolutionized the biomedical field with the
concept of self-monitoring. Biosensor can be defined as a device which monitors
the products of an enzymatic reaction in order to obtain the potentiometric response
[6].

A biosensor generally has two main components: a molecular recognition or
bioreceptor component and a transducer component [7, 8]. Figure 12.1 shows a typ-
ical biosensor in which an analyte is used to provide information to bioreceptor. The
bioreceptor component can be an enzyme, antibody, nucleic acid, microorganism,
and whole cell or tissue. The transducer component can be optical, electrochemical,
and mass-based. The types of biosensors based on these two main components
include temperature, light, spectrophotometry, fluorescence, and immunosensors.
The description of these biosensors is given below [9].

12.2.1 Temperature Sensors

Temperature sensors are most widely used in biological systems. The temperature
sensors which are especially used for the biomedical application must exhibit high
sensitivity and fast response. The semiconductor-based temperature sensors fulfill
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Fig. 12.1 Block diagram of a
typical biosensor [9]

Fig. 12.2 Working principle of thermocouple [9]

the criteria of higher sensitivity compared to the others. Their response is also very
fast because they are typically operated in direct contact with the medium, usually
water. Hence, the semiconductor-based temperature sensors, namely, thermocouple,
thermistor, diode, and transistor temperature sensors, are generally used for biomed-
ical application and whose descriptions are as follows [9].

12.2.1.1 Thermocouple

A thermocouple consists of two dissimilar metals joined together as depicted in
Fig. 12.2 [9]. The Thot represents the hot junction temperature where two metals
joined together while the temperature at the open junction is the cold junction
temperature which is represented by Tcold. The temperature difference between Thot
and Tcold causes flow of heat and this heat flow creates a flow of electric current
which is known as the Seebeck effect [9]. The metals used for thermocouple have
some degree of resistance which will generate voltage drop VA and VB across
metals. The difference of these voltages provides the output voltage V [9].
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12.2.1.2 Thermistor

The conventional resistors may also be used as temperature sensors because the volt-
age drop across a resistance is inversely proportional to the temperature. A special
type of resistance which is very sensitive to temperature is known as thermistor. The
relationship between temperature and resistance for thermistor can be approximated
through the use of the following curve-fitting equation as follows [9]:

1

T
= A + B ln(R) + C[ln(R)]3 (12.1)

where T = degrees Kelvin (K), R = resistance of thermistor (�), and A, B, and C
are curve-fitting constants. The abovementioned expression in (12.1) is called the
Steinhart–Hart equation.

12.2.1.3 Diode Temperature Sensor

In the category of diodes, the Zener diode is specifically used for temperature
sensing. Figure 12.3 represents the current–voltage (I-V) curve of a typical Zener
diode [9]. The Zener diode is a unique type of diode which has a reverse bias
configuration. The reverse bias operation of a Zener diode using negative quadrants
is shown in Fig. 12.4 for understanding the working principle of Zener diode as a
temperature sensor [9]. It can be observed from Fig. 12.4 that the Zener voltage
is constant for a certain range of Zener currents (0.5–5 mA). This Zener voltage
changes with the environmental temperature and it is linearly proportional to the
temperature. On the basis of this phenomenon, we can use a Zener diode to sense
temperature within a certain range of current. It is also clear from Fig. 12.4 that the
high Zener current produces self-heating effect [9]. The typical working temperature
range of Zener diode sensors is −400 ◦C to +1200 ◦C, which are approximately

Fig. 12.3 I-V characteristic
of a Zener diode [9]
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Fig. 12.4 Reverse bias V-I
characteristic of a Zener
diode [9]

Fig. 12.5 V-I characteristics
of bipolar transistor [9]

similar to the range of a thermistor. The sensitivity of Zener diode is also similar
to that of a thermistor. The only benefit of a Zener diode temperature sensor is its
linear operation.

12.2.1.4 Transistor Temperature Sensor

The collector current and base–emitter voltage characteristic of a transistor is very
similar to reverse bias V-I characteristic of Zener diode and it can be seen in
Fig. 12.5. The base–emitter part (P-N) of a bipolar transistor is actually a diode
(P-N), and if we join the base and collector terminals, the bipolar transistor behaves
very similar to a diode. The operating temperature range is same as that of a Zener
diode and it also gives linearity over a range of temperatures [9].
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12.2.2 Light Sensors

Light sensors are very important in many biosensor applications and are commonly
used in conjunction with fluorescent dyes. Light is basically a part of electromag-
netic radiation which is visible to the eyes of humans, and it is known as visible
light. The word light is also used for some other electromagnetic radiations which
are not visible to the eyes of humans such as ultraviolet (UV) or infrared (IR).
The existence of light is basically in tiny energy packets which are known as
photons. The properties of waves and particles are exhibited by photons. In light,
the waves are sinusoidal and its peak-to-peak distance is called wavelength (λ). The
wavelength of light determines its color in visible light range. A light contains a
single wavelength (monochromatic) or multiple wavelengths (polychromatic). The
speed of light in vacuum is always constant and its value is 3 × 108 m/s [9].

The light sensors which are made out of semiconductors are photoresistor,
photodiode, and phototransistor, and the descriptions of these light sensors are as
follows [9].

12.2.2.1 Photoresistor

A photoresistor is a photoconductive cell which conducts only when it is exposed
to light. The semiconductor materials used for making photoresistor are cadmium
sulfide (CdS), lead sulfide (PbS), and cadmium selenide (CdSe). Figure 12.6
shows a conventional photoresistor which conducts with the exposure of light. The
photoresistor is usually S-shaped in order to increase the area of light exposure. In
the photoresistor, the holes and electrons are bound together, and when the light
(i.e., photons) is exposed to these photoresistor materials, this process creates extra
electrons. Therefore, these extra electrons provide extra energy which can make the
material more conductive and lowers its resistance. The mechanism in photoresistor
is somewhat similar to that of a thermistor [9].

Fig. 12.6 Photoresistor [9]
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Fig. 12.7 Photodiode in photovoltaic mode [9]

12.2.2.2 Photodiode

A diode which is sensitive to photons is known as photodiode. A photodiode can
be used without or with the applied voltage in order to sense light. A photodiode
is constructed with a very thin P-type semiconductor which is diffused into the N-
type semiconductor. The P-side of photodiode is exposed to light during operation.
The mechanism of photodiode without applied voltage is shown in Fig. 12.7. This
mode of operation of photodiode is also known as photovoltaic. In Fig. 12.7, the
N-type semiconductor contains free electrons and P-type semiconductor contains
holes. The electrons and holes repel each other. Thus, a small depletion region is
formed between them. This depletion region resulted in a “less conductive” region.
The sufficient supply of photons filled the depletion region with extra holes and
electrons. Therefore, the depletion region will start conducting and a noticeable
electric current will flow between these two semiconductors which can be observed
with an ammeter [9].

12.2.2.3 Phototransistor

A phototransistor is basically a transistor which produces high current as compared
to photodiode when exposed to light. The phototransistor can be constructed in
two different manners which are NPN and PNP phototransistors. In an NPN
phototransistor, the base current is replaced with light which provides significant
energy to jump the electrons and holes from emitter to collector and vice versa.
Figure 12.8 shows an NPN phototransistor which is fabricated by diffusing P-
type semiconductor (base) into the N-type semiconductor (collector), followed by
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Fig. 12.8 An NPN
phototransistor [9]

diffusing the N-type (emitter) into the P-type. A phototransistor has also a built-in
amplifying ability [9].

12.2.3 Spectrophotometry

A spectrophotometer measures the light intensity which is transmitted or absorbed
through a material. This material may be a liquid solution or gas in a container. This
measure can be performed for a specific color (wavelength) or a range of colors
(wavelengths). If the measurement is observed for a specific color, then it is known
as photometry. On the other hand, if the measurement is observed for a range of
colors, then it is known as spectrometry. This measure provides us a light intensity–
wavelength curve which is called a spectrum (or spectra) [9].

The principle of absorption is most commonly used in spectrophotometer
because it has certain applications in biomedical field. Figure 12.9 shows a
schematic of a simple spectrophotometer. In Fig. 12.9, the source of light is a lamp
which generates light of all colors in approximately equal proportions resulting in a
white light source. This white light is transmitted through a monochromator which
consists of a prism and a slit. The slit passes a particular color of light and this
selected beam of light finally passes through a rectangular container that holds a
liquid solution or gas mixture. The liquid solution or gas mixture attenuates the light
intensity and the attenuated light intensity hits on the surface of photodiode which
provides a current corresponding to attenuated light intensity. The absorbance A can
be calculated by comparing this light intensity (l) with that from the light source
(l0) [9]:

A = log

(
l0

l

)
(12.2)
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Fig. 12.9 A simple spectrophotometer [9]

where l = attenuated light intensity and l0 = light intensity from the light source.

12.2.4 Fluorescence

The fluorescence principle is based on the absorption spectrophotometry in which
we change the solute in a solution with fluorescent dyes. The color of emitted
light from the container is shifted to longer wavelength. The term fluorescence was
derived from the mineral fluorite, which is largely calcium fluoride. In fluorescence,
the light irradiation excited the molecules and placed them in unstable excited states.
The excited molecules lose their excessive energy due to their unstable nature, and
this process requires emitting of the photons at the identical wavelength as that of
initial light irradiation [9].

The commonly used example of fluorescence is a fluorescent lamp. In a
fluorescent lamp, the charged tube of mercury vapor is used to produce ultraviolet
(UV) light upon applying electrical voltage. The fluorescent coating is applied to
the inner surface of the tube in order to absorb UV light and emit visible light [9].

12.2.5 Immunosensors

Biosensors which use antibodies or antigens as bioreceptors are called immunosen-
sors. Immunosensors are widely developed for medical and veterinary diagnostics,
food safety, and environmental monitoring because antibodies are very specific
to proteins, viruses, bacteria, cells, etc. In comparison to other biosensors, the
immunosensors are provided good sensitivity and specificity. Immunosensors have
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become very popular recently [9], although the use of antibodies in biological assays
has been a very common analysis in laboratory.

12.3 Basics of Signals and Systems

The signal definition plays a very important role in understanding the behavior of
signal processing algorithm and its interpretation. The signal can be represented as a
function of independent variables and these independent variables can vary from one
to many. In other words, signal can be considered as a physical quantity which varies
with respect to these independent variables and this physical quantity also contains
some kind of information and behaves as a function of one or many independent
variables.

12.3.1 Types of Signals

The major classification of signals is as follows [10].

12.3.1.1 Continuous, Discrete Time, and Digital Signals

The signals which have continuous amplitude and continuous time are known as
continuous signals. These signals are also known as analog signals and such signals
are defined at any point of time. These signals are generally denoted by f (t) where
f is a function which depends on the continuous variable t which is continuous in
nature. Figure 12.10 shows an example of continuous-time signal.

Fig. 12.10 Continuous-time sinusoidal signal
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Fig. 12.11 Discrete-time sinusoidal signal

Fig. 12.12 Digital signal

Discrete-time signals have discrete time and continuous amplitude. In these
signals, discretization of time is performed using sampling theorem on analog
signals. Many signals are discrete signals based on the nature of their measurement.
For example, if we measure the weight of a person every day for 1 month, then
the plot of weight with respect to whole 30 days can be considered as a discrete-
time signal. Such signals are represented by x[n]. The small n indicates time index
or discrete time which is corresponding to the actual time t = nT, where T is the
sampling interval. Here, n is also known as normalized time. Discrete-time signals
can be also represented in the form of sequences. Figure 12.11 shows an example of
discrete-time signal.

The digital signals are those signals which have discrete time and discrete
amplitude. These signals have a finite number of values. For example, binary
digital signal will have only two values either zero or one. The analog to digital
converter (ADC) process can be used to obtain digital signal from the analog signal.
Figure 12.12 shows an example of digital signal.
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Fig. 12.13 Periodic cosine signal

Fig. 12.14 Aperiodic exponential signal

12.3.1.2 Periodic and Aperiodic Signals

The signal which follows repetition after a time interval is known as periodic signal.
For a given signal x(t), it can be mathematically expressed as follows:

x(t) = x (t + T ) (12.3)

Here, T is known as the period of the signal.
Sine and cosine waves are examples of periodic signals and Fig. 12.13 shows an

example of periodic cosine signal.
On the other hand, the aperiodic signal does not satisfy the abovementioned

condition in Eq. (12.3). An example of aperiodic signal is shown in Fig. 12.14.
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Fig. 12.15 Deterministic cosine signal

Fig. 12.16 Random noise signal

12.3.1.3 Deterministic and Random Signals

Deterministic signals are those signals which can be represented by mathematical
expression and such kind of signals are well determined at any point of time. Sine,
cosine, and exponential signals are examples of deterministic signals. Figure 12.15
shows an example of a deterministic signal.

On the other hand, random signals are nondeterministic signals which include
uncertainty in the signal values at some point of time. For representation of such
kind of signals instead of mathematical representation, they require probabilistic
models. Random noise is an example of random signal. Figure 12.16 shows a
random noise generated in Matlab.

12.3.1.4 Even and Odd Signals

Even signals x(t) satisfy the following condition:
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Fig. 12.17 Even signal (Gaussian window)

Fig. 12.18 Odd sinusoidal signal

x(t) = x (−t) (12.4)

On the other hand, odd signals satisfy the following condition:

x(t) = −x (−t) (12.5)

Figures 12.17 and 12.18 represent the even and odd signals, respectively.
It should be noted that any signal x(t) can be represented in terms of even signal

and odd signal.

xeven(t) = x(t) + x (−t)

2
(12.6)



562 R. B. Pachori and V. Gupta

xodd(t) = x(t) − x (−t)

2
(12.7)

12.3.1.5 Energy and Power Signals

Energy signals have finite energy and the energy of the signal x(t) can be defined as
follows:

E =
∞∫

−∞
x2(t)dt (12.8)

The power signals are those signals which have finite power and the mathematical
expression for power can be given as follows:

P = lim
T →∞

1

2T

T∫
−T

x2(t)dt (12.9)

It should be noted that any signal cannot be power and energy signal together
and it is also possible that a signal may be neither energy nor power signal.

12.3.2 Types of Systems

Systems are required to process the signals for various applications. There are
various types of systems which can be categorized as follows [10]:

12.3.2.1 Linear and Nonlinear Systems

A system which follows homogeneity and additivity principles is known as linear
system. On the other hand, a nonlinear system does not follow these principles.

For two input signals x1(t) and x2(t), the homogeneity and additivity principles
are as follows:

L {a1x1(t) + a2x2(t)} = a1L {x1(t)} + a2L {x2(t)} = a1y1(t) + a2y2(t)

(12.10)

Here, L{a1x1(t) + a2x2(t)} is the overall response of the system and
a1L{x1(t)} + a2L{x2(t)} represents the individual response of systems of signals x1(t)
and x2(t), respectively. The overall response of system is equal to the response of
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individual systems for a linear system where the sum of these individual responses
is not equal to the overall response in a nonlinear system.

Example of a linear system is as follows:

y(t) = 7x(t) (12.11)

Example of a nonlinear system is as follows:

y(t) = x(t) + 7 (12.12)

12.3.2.2 Time-Invariant and Time-Variant Systems

A system can be considered as time-invariant if input–output characteristics of the
system do not vary with time. On the other hand, a time-variant system does not
follow such characteristics.

A system with input signal x(t) and output signal y(t) is time-invariant when

L {x (t − τ)} = y (t − τ) (12.13)

where τ is shifting a parameter.
Example of time-invariant system is

y(t) = cos {x(t)} (12.14)

Example of time-variant system is

y(t) = x(3t) (12.15)

12.3.2.3 Linear Time-Invariant and Linear Time-Variant Systems

If a system satisfies linear and time-invariant properties, then it is known as linear
time-invariant system and a system which satisfies linear and time-variant properties
is called a linear time-variant system.

12.3.2.4 Static and Dynamic Systems

A system which does not require memory is known as static system and a system
which requires memory is called as dynamic system.

Example for memory-less static system is as follows:

y(t) = 3x(t) (12.16)



564 R. B. Pachori and V. Gupta

Example of a dynamic system is as follows:

y(t) = 3x(t) + x (t − 3) (12.17)

12.3.2.5 Causal and Noncausal Systems

For causal system, the output depends on the present and past values of the input
signal. On the other hand, the noncausal system output also depends on the future
values of the input signal.

Example of causal system is as follows:

y(t) = x(t) + x (t − 2) (12.18)

The following is the example of a noncausal system:

y(t) = x (t + 2) (12.19)

12.3.2.6 Invertible and Non-invertible Systems

A system can be considered as an invertible system if the input signal can be
obtained on the output signal of the system. When input signal cannot be obtained
on the output of the system, then a system is known as non-invertible system.

Example of an invertible system is as follows:

y(t) = 3x(t) (12.20)

Example for a non-invertible system is as follows:

y(t) = 0 (12.21)

12.3.2.7 Stable and Unstable Systems

In stable system, bounded input signal provides bounded output signal, whereas in
unstable system, we will get unbounded output signal for the bounded input signal.

Example of stable system is given as follows:

y(t) = x(t) (12.22)

Example of unstable system is as follows:

y(t) =
∫

x(t)dt (12.23)
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Fig. 12.19 Schematic block diagram of signal acquisition [11]

12.3.3 Signal Acquisition

Signal acquisition is a process in which we study how the physical signals collected
from the sensors get into the computers or digitized for the processing of signal
in computers and machines. The main blocks of signal acquisition process contain
signal conditioning which is mainly possible with a sample and hold circuit and
ADC by which a physical analog signal can be converted into a digital signal.
The block diagram of signal acquisition process along with sensor and computer
interface units is shown in Fig. 12.19. In this Fig. 12.19, sensor senses the physical
signal and then signal conditioning is applied with the help of sample and hold
circuit, and in order to get this signal in digital domain, an ADC is used. Thus,
the converted signal has a number of bits which represent the analog signal at a
particular instant of time and which can be stored in a computer with this interfacing
mechanism [11].

The typical signal acquisition process has some additional processing units
because the sensors have multiple channels. Therefore, a multiplexing unit with
sample and hold circuit which quickly scans all the channels and provides data to
sample and hold circuit in the short interval of time is required. On the other hand,
each ADC has a certain dynamic range of working. The violation of dynamic range
of ADC leads to approximation errors during analog to digital conversion process.
Thus, it is necessary to amplify the signal to increase the resolution of the ADC.
The isolation is also a part of signal acquisition process because the electric and
magnetic fields may affect the signal properties. Therefore, a good signal acquisition
process should be properly isolated in order to get less interference of external
factors. In addition to these abovementioned units, an anti-aliasing filter just after
the multiplexer unit is also required because the outputs from the multiplexer are
very closely placed in time and the sample and hold circuit with ADC will also take
some time to complete the analog to digital conversation process [11].

12.3.4 Time- and Frequency-Domain Representations

The digital signals stored in computer have significant information which enable us
to extract the desired information present in the signal. These signals physically exist
in time domain and we can analyze the behavior for most of the signals by visual
inspection. However, the frequency-domain characterization is equally important for
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the analysis of a signal. Therefore, the Fourier transform is a commonly used tool
for spectral representation of a time-domain signal. The main motivation behind
the uses of different types of transformations in signal processing techniques is due
to the fact that transforms can highlight certain characteristics present in signal in
different domains.

According to Fourier, a continuous periodic signal x(t) can be formed by
combining a number of scaled and phase-shifted sinusoidal components. The
frequencies of these components are in multiple of the fundamental frequency (ω0)
for the signal x(t). Hence, the synthesis equation for a general periodic signal x(t)
can be written as [12]:

x(t) =
∞∑

k=0

gk cos
(
2πkf 0t + �k

)
(12.24)

where gk and �k are sets of constants and f0 = ω0
2π

. Suppose pk = gk cos (�k) and
qk = − gk sin (�k), then Eq. (12.24) with the help of trigonometric expansion can
be written as [12]:

x(t) =
∞∑

k=0

[pk cos (2πfkt) + qk sin (2πfkt)] (12.25)

Equation (12.25) can also be written as [12]:

x(t) =
∞∑

k=−∞
Ak [cos (ωkt) + j. sin (ωkt)] (12.26)

where j = √−1, Ak = pk±jqk

2 , and it is a complex number for k > 0 and k < 0,
respectively. Equation (12.26) with the help of Euler’s relation can be written as
[12]

x(t) =
∞∑

k=−∞
Ake

+jkω0t (12.27)

Here, the magnitude of coefficient, |Ak| = gk =
√(

p2
k + q2

k

)
and phase

� Ak = �k = tan−1(qk/pk). Equation (12.27) is known as Fourier synthesis equation
for a periodic continuous signal x(t).

Conversely, the Fourier analysis equation for a periodic continuous signal x(t)
with time period T0 can be written as [12]:

Ak = 1

T0

∫
x(t)e−jkω0t dt (12.28)
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It should be noted that k has only integer values and Ak is a discrete function in
Eq. (12.28).

Fourier transform is a linear transform which plays a very important role in
digital signal processing applications, and fast Fourier transform (FFT) algorithm
is commonly used in analyzing the spectral content of any deterministic signal due
to less computational complexity.

The discrete Fourier transform (DFT) allows the decomposition of discrete-
time signals into sinusoidal components whose frequencies are multiples of a
fundamental frequency. The amplitudes and phases of the sinusoidal components
can be determined using the DFT and is represented mathematically as [12]

X(k) = 1

N

N−1∑
n=0

x(n)e
−j

(
2πkn

N

)
(12.29)

For a given signal x(n) whose sampling period is T with N number of total
samples (NT is therefore the total duration of the signal segment). The spectrum
X(k) is determined at multiples of fs/N, where fs is the sampling frequency.

On the other hand, the spectrum can also be obtained using Fourier–Bessel
series expansion (FBSE) [13–15]. In FBSE, the Bessel functions are used as basis
sets for signal representation, and these basis functions are aperiodic and decay
over time. These features make FBSE-based representation suitable for analysis of
nonstationary signals, while DFT has certain limitations for these kinds of signals.
FBSE has been successfully applied for nonstationary and biomedical signals [16–
25].

The FBSE of u(n) using zero-order Bessel functions can be expressed as follows
[25]:

u(n) =
L∑

k=1

MkJ0

(
βkn

L

)
, n = 0, 1, . . . , L − 1 (12.30)

where Mk are FBSE coefficients of u(n) which can expressed as follows [25]:

Mk = 2

L2(J1 (βk))
2

L−1∑
n=0

nu(n)J0

(
βkn

L

)
(12.31)

where J0(.) and J1(.) represent zero- and first-order Bessel functions, respectively.
The ascending order positive roots of zero-order Bessel function (J0(β) = 0) are
represented by βk with k = 1, 2, . . . , L. The order k of the FBSE coefficients is
corresponding to continuous-time frequency fk (Hz) and it can be computed by the
expression given as follows [25]:

βk ≈ 2πfkL

fs

(12.32)
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Fig. 12.20 EEG signal of a normal person during eyes-closed condition

Fig. 12.21 Magnitude spectrum of Fourier transform

where βk ≈ βk − 1 + π ≈ kπ and fs is sampling frequency. From Eq. (12.32), the
order k can be expressed as follows [25]:

k ≈ 2fkL

fs

(12.33)

It can be observed from Eq. (12.33) that order k should be varied from 1 to L in
order to cover the entire bandwidth of signal u(n). Hence, the magnitude spectrum
of FBSE is the plot of magnitude of FBSE coefficients (|Mk|) versus frequencies
(fk).

The time- and frequency-domain representations of an eyes-closed normal EEG
signal obtained from Bonn University EEG database are shown in Figs. 12.20,
12.21, and 12.22, respectively. The sampling frequency of this EEG signal is
173.61 Hz [26].
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Fig. 12.22 Magnitude spectrum of FBSE

12.3.5 Finite Impulse Response (FIR) and Infinite Impulse
Response (IIR) Filters

The response of a FIR filter depends on current and past inputs. Thus, the filter
will not produce outputs if it has not received any inputs. The impulse response
of this kind of filter is unequal to zero for a finite range. On the other hand, the
response of an IIR filter is based on current inputs, past inputs, and past outputs.
The dependency of this filter on past outputs generates outputs even after the filter
has stopped receiving inputs. The impulse response of an IIR filter is unequal to
zero for infinite range. The mathematical forms of FIR and IIR filters for the input
signal x(n) and output signal y(n) are as follows [27, 28]:

FIR filter : y(n) =
M∑
i=0

Gix (n − i) (12.34)

IIR filter : y(n) =
M∑
i=0

Gix (n − i) −
p∑

j=1

Hjy (n − i) (12.35)

where G and H are the filter coefficients. The physical structure which will realize
Eqs. (12.34) and (12.35) are shown in Figs. 12.23 and 12.24, respectively. In Figs.
12.23 and 12.24, Z−1 represents the unit delay element.

The main reason for the description of FIR and IIR filters in this chapter is
because the biomedical signals have small amplitude. These signals are contam-
inated by various artifacts and interferences which change the properties of the
signals. One of the commonly present interference in biomedical signals is power
line frequency of 50 or 60 Hz. The FIR and IIR filters are used in order to reduce
the noise due to power line frequency of 50 or 60 Hz [29].
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Fig. 12.23 Physical structure of FIR filter [28]

Fig. 12.24 Physical structure of IIR filter [28]

12.4 Types of Biomedical Signals

The electric activities present in the cell which create a potential difference across
the cell membrane are used for a number of biomedical signal measurements. These
biomedical signals are categorized based on the functioning of different parts of
biological system and the descriptions of these biomedical signals are as follows
[30].
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12.4.1 Electroencephalogram (EEG)

In the biological system, the monitoring and control over the different parts are
processed through the brain. The action potentials are used to generate neural
activity in the brain and this brain activity can be recorded with the help of
electrodes. The signals obtained with these electrodes are known as EEG signals.

The history behind the use of EEG signal is based on an experiment performed
in 1929 in which a German psychiatrist named Hans Berger was performing an
experiment on his daughter’s head to verify the hypothesis that the brain exhibits
electrical activity. He observed that the electrical activity increased when she was
trying to solve some difficult multiplications. Thus, he deduced from this experiment
that the wave patterns observed in the brain recordings reflected the depth of the
brain activity [30].

It has been observed that the approximate range of nerve cells in the brain is in
the order of 1011. The potential of a nerve cell in steady state is typically around
−70 mV, and it is generally negative. On the other hand, the action potential peak
is +30 mV and it approximately falls for 1 ms. Thus, the nerve impulse has a
peak-to-peak amplitude of approximately 100 mV. In the gray matter, each neuron
releases the action potentials during the process of sensing inputs transmitted from
other neurons or external stimuli. The spatially weighted sum of all these action
potentials at the surface of the skull can be measured by EEG signal. The instrument
which is used to record EEG signals is less expensive and accurately measures the
brain’s electrical activity from the skull. These EEG recordings can be possible in
unipolar or bipolar manner. The depolarization signals from the nerve cells may
attenuate while passing through the skull because it has complex impedances. Thus,
the collections of these signals are possible with quality contact of electrodes with
the skull in order to overcome the impedance mismatch created by the hair and
dead skin on the skull. The collected EEG signals from the surface of the skull are
amplified to represent these signals on electric potential versus time graph [30].

The electric activity in a brain is simultaneously present at many different loca-
tions of the head. The most common recording technique of EEG signals utilized 21
electrodes to record these simultaneously occurring electrical activities. The number
of these electrodes varies from 64 to 256 for other measuring techniques. The
frequency range of amplifiers used to record EEG signals should cover the range
from 0.1 to 100 Hz for the analysis of all activities [30].

The EEG signals are broadly used for the diagnosis of various diseases or
disorders such as epilepsy, sleep disorders, neurodegenerative diseases, and brain
death. The EEG signals of a normal person with eyes-open condition and an
epileptic patient during seizure are depicted in Figs. 12.25 and 12.26, respectively
[26]. These signals are also obtained from Bonn University database.

The EEG signals are also used in research of brain functional activity. The
analysis of evoked potentials (EPs) and event-related potentials (ERPs) of the brain
using EEG signal is most common of them. In such applications, the responses
of EEG signals are recorded providing specific stimuli such as auditory and visual
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Fig. 12.25 Normal EEG signal with eyes open

Fig. 12.26 Seizure EEG
signal from patient

inputs. The EPs and ERPs are particularly used to investigate the response of a brain
corresponding to specific stimulation. The level of attention and stress can also be
monitored with the help of EPs during experiment.

The major limitation present in EEG signals is that the EEG signals cannot reveal
the information about the structure which is responsible for originating these signals.
The limitation is due to the fact that the EEG signals are the spatial sum of all action
potentials transmitted from billions of neurons at different depths below the cerebral
cortex. Therefore, the functional magnetic resonance imaging (fMRI) is used where
the functional information from the structures deeply situated in the brain is required
[30].

12.4.2 Electrocardiogram (ECG)

The electrical activity recorded from the heart is known as ECG. The ECG signal
is used for the clinical diagnosis of heart diseases. The cellular electrical excitation
due to cardiac muscle contraction can be recorded by ECG signals. The functioning
of these cells can be indicated by its electrical activation, while the depolarization
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Fig. 12.27 A sample ECG signal with P, Q, R, S, and T wave representation

indicates the shortening of muscle cells. The repolarization and depolarization
generate electric potential differences on the muscle cells, which can be recorded
using electronic recording instrument. Thus, the ECG signal is due to controlled
repetitive electric depolarization and repolarization patterns of the heart muscle
cells.

In early history, the ECG signal recording was possible by the efforts of a Dutch
scientist Willem Einthoven in 1903. He designed a galvanometer to record the
action potentials. The galvanometer was directly coupled to an ink pen. This pen
was moved directly on paper as a voltage leading to a deflection of galvanometer
was given. Nowadays, the electrodes are directly coupled to amplifiers and filters in
order to record ECG signals.

The characterization of ECG signal is usually possible by five waves. These
waves are denoted by letters P, Q, R, S, and T. These P, Q, R, S, and T waves
can be seen in Fig. 12.27. The ECG signal is also characterized sometimes by a
sixth wave with letter U. The P wave in ECG signal is due to depolarization of the
atrium, while the Q, R, S, and T waves are caused by the ventricle. The time duration
for P wave in ECG signal is approximately for 90 ms and the amplitude for this
wave does not usually exceed 2.5 × 10−4 V. During P wave, the atrium contracts
to fill the ventricle due to the depolarization. The QRS complex in ECG signal
is occurring for time duration of 80 ms with amplitude of about 1 mV. The QRS
complex represents the depolarization of the septum and Purkinje fiber conduction.
The septum is a wall which separates the left and right ventricle. In simple language,
the QRS complex shows the depolarization of ventricular wall from bottom to top
and from inside to outside. It should be noted that the quiet time between the P wave
and the QRS complex is generally used as a reference line. The repolarization effects
of ventricular wall from outside to inside which is also opposite to depolarization
represent with a pulse called T wave. During the repolarization process, the atrium
is relaxed and filled back. The repolarization process can be distinguished from
the depolarization process with the fact that the repolarization process takes longer
time as compared to depolarization process. The action potential gradient of the
repolarization process is also straightforward wherein it incorporates a smaller
gradient in the time derivative of the cell membrane potential. The U wave also
shows sometimes a portion of the ventricular repolarization [30].

The ECG signals are used for the diagnosis of various cardiovascular diseases
such as myocardial infarction and coronary artery disease (CAD). The ECG signals
of a normal person and a patient suffering from CAD are shown in Figs. 12.28
and 12.29. These ECG signals of a normal person and a patient are obtained
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Fig. 12.28 Normal ECG signal

Fig. 12.29 CAD ECG signal

from Fantasia open access database and St. Petersburg Institute of Cardiological
Technics 12-lead Arrhythmia Database, respectively [31]. The sampling frequencies
of normal and CAD ECG signals are 250 and 257 samples per second, respectively.

12.4.3 Electromyogram (EMG)

The recording of muscle’s electrical activities is known as EMG signal. Moreover,
the EMG signal is a signal which records the electrical activities produced by
the depolarization of muscle cells during muscle contraction. This recording also
contains the nerve impulses that initiate the depolarization of the muscle.

In 1907, the first time recording of action potentials produced by human muscle
contraction was reported by Hans Piper. The EMG signal has emerged as vital
signal in the biomedical field because a number of neuromuscular disorders can
be diagnosed using EMG signals.

The recording of the electrical activities of muscle tissue is possible with two
methods. In first method, the electrodes are applied on the skin and the signals are
recorded from surface of the skin. The second method actually uses the insertion of
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Fig. 12.30 Normal EMG signal

needles with electrodes into the muscle. The EMG signals are the spatially weighted
sum of the electrical activities collected from the surface of the skin due to a number
of motor units. However, the information present in EMG signal is the combined
information of the entire muscle groups. In general, the EMG signal is used to
identify the muscle groups which are involved in a particular motion or action.

The EMG signals of specific motor unit can be measured with subcutaneous
concentric needle electrodes after implanting it on the muscle. The depolarization of
the muscle cells which are present surrounding the needle electrodes can be recorded
with these electrodes. Moreover, the electrical activity of a single motor unit can be
directly measured with these types of electrodes, and if the needle has more than
one electrode, then the bipolar measurement is also possible. There is a short burst
activity happening during needle electrode insertion for recording of EMG signals.
These burst activities may be repeated several times when an axon of a nerve is
touched. The EMG signals also have muscle potential spikes which may be present
during muscle contraction. These spikes are not true action potentials of muscle cells
because the muscle excitation is usually due to the presence of calcium, potassium,
and chlorine ions. Thus, the electrical potential measured from the surface or inside
the skin is a triphasic potential phenomenon [30].

The presence of amplitude in excitation potential is sometimes due to the distance
between the muscle fibril and the electrode. This amplitude will reduce with the
square of distance to the source. The typical range of muscle potential is between 2
and 6 mV with range of time duration of 5–8 ms. The processing of raw EMG signal
is performed in a different way as compared to other biomedical signals because
these signals often have many noise. The raw EMG signals for a normal person and
myopathy patient are shown in Figs. 12.30 and 12.31. These signals are obtained
from PhysioBank ATM [31]. The sampling frequency of these signals is 4000 Hz.
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Fig. 12.31 Myopathy EMG signal

12.4.4 Electrooculogram (EOG)

A signal that measures the skin around the eyes is known as EOG signal. The
EOG signal is used to determine the gaze and the dynamics of the eye motion.
The electrodes used for recording of EOG signals are implanted on the sides of the
eyes in order to measure horizontal motions of the eyes. The vertical motions of the
eyes are measured with the placement of electrodes above and below the eyes. The
motions of the eyes are measured with potential difference between each pair of
these electrodes for both cases with the help of differential amplifiers. The presence
of this potential difference is due to eyeball movement and it is generated by the
cornea and retina. The range of this potential is often between 0.4 and 1.0 mV. The
sampling frequency of EOG signal is often in the range of 0–100 Hz and it can be
identified by the mechanical limitations of the eye motion.

There are various disorders which can be detected by the EOG signals such as
laziness of the eyes in tracking moving objects. In laziness detection, the subject
tracks the moving object on a monitor with their eyes and the EOG signals are
captured during this event. The diagnosis is based on the lag between the cursor
movement and the captured EOG signals.

In another application, the EOG signals help the severely paralyzed patients.
In the United States, it is observed that the number of patients who are paralyzed
due to spinal injuries is about 150,000. The EOG signals from patients help them
to communicate with their caretakers and computers. This communication process
requires a large board with an array of commands and placed opposite to the patient.

The gaze angle obtained with EOG signals identifies the command the patient
is trying to execute. Similar kinds of systems find importance for navigation of
aircrafts and boats.

The EOG signal is very closely related to a signal known as electroretinogram
(ERG) signal. This signal is the potential difference among the retina and the eyeball
surface. The EOG signal is frequently used to represent ERG signal [30].
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Fig. 12.32 EOG signal recorded with the left eye

Fig. 12.33 EOG signal recorded with the right eye

The EOG signals of the left and right eyes obtained from PhysioBank ATM
are shown in Figs. 12.32 and 12.33, respectively. The sampling frequency of these
signals is 1 Hz [31].

12.4.5 Magnetoencephalogram (MEG)

The magnetic field activities of brain neurons are captured by MEG signals. The
fact behind the involvement of MEG signal to capture brain activities is based
on the electromagnetic theory. The change in electric field causes a magnetic
field proportional to electric field. Thus, the change in electric charges of the
neurons produces a proportional magnetic field which can be used to measure brain
activities. The MEG signal can measure the extracranial magnetic fields created by
intraneuronal ionic current flow inside the appropriately oriented cortical pyramidal
cells.



578 R. B. Pachori and V. Gupta

The main reason behind the use of MEG signal over EEG signal is that the EEG
signals have significant noise because of the muscles’ electrical activities being very
close to the electrodes, whereas the MEG signal can record from DC to very high
frequency (>600) without skin contact. The MEG signal is also capable of detecting
neuronal electrical activities from deep inside the brain, while the neuronal electrical
activities close to surface of the brain are often captured by EEG signals. Moreover,
the MEG signal has less distorted signals which provide much better spatial and
temporal representation of the brain. A major advantage of MEG signal is that it
can provide an exact location and timing of cortical generators for event-related
responses and spontaneous brain oscillations. The MEG signal provides a spatial
accuracy of a few millimeters along with submillisecond accurate temporal reso-
lution under optimal conditions. These accurate configurations provide the much
effective spatiotemporal tracking of distributed resolution in case of cognitive tasks
or epileptic discharges. The weak magnetic field in MEG signal recording machine
is sensed by large superconducting quantum interference devices (SQUIDs). The
SQUID sensors are able to deliver both natural and evoked physiological responses
in MEG signal due to weak strength of magnetic field which is about picotesla (pT).
The interference present in MEG signal is mainly due to earth’s magnetic field and
this interference can be filtered by the MEG signal recording machine. The analysis
of MEG signals is possible in a similar way as the EEG signals due to resemblance.
Thus, the same processing techniques which are used for EEG signals can be utilized
for MEG signals [30].

The MEG signals of left, right, forward, and backward movements from subject
S01 are shown in Fig. 12.34, respectively. These signals are obtained from BCI
competition IV dataset 3 [32]. The dataset contains ten channels of MEG signals,
namely, LC21, LC22, LC23, LC31, LC32, LC41, LC42, RC41, ZC01, and ZC02.
These signals are recorded with two subjects S01 and S02 with a sampling frequency
of 400 Hz. A total of 400 samples are present in a signal resulting in a 1-s time
duration.

12.4.6 Other Biomedical Signals

Biomedical signals are not limited to the abovementioned category of signals.
There are many other biomedical signals which are used for clinical and research
purpose. The signals which are used for the diagnosis of heart sounds are known
as phonocardiogram (PCG) signals. In PCG signals, the heart sounds are observed
during the inside and outside flow of the blood in the heart compartments. These
signals are often recoded with the help of mechanical stethoscopes which amplify
the heart sounds. However, the mechanical stethoscopes have an uneven frequency
response and this frequency response distorted the heart sound signals. Thus, an
electronic stethoscope can overcome this problem and provide a less distorted heart
sound signal.
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Fig. 12.34 MEG signal of (a) left, (b) right, (c) forward, and (d) backward movements recoded
with LC21 electrode from S01 subject

A typical application of PCG signals is to detect heart murmurs. In murmurs, the
heart sounds are usually due to imperfections in the heart valves or the heart walls.
These murmurs are also present in infants due to flow of blood from one side to the
other side of the heart through a hole. This hole in infants is usually filled in a few
weeks after birth which will stop the heart murmur.

Another signal which records the electrical activity of the stomach is known
as electrogastrogram (EGG) signal. The midcorpus of the stomach generates this
electrical activity with intervals of approximately equal to 20 s in humans. This
signal consists the rhythmic waves of depolarization and repolarization of stomach
muscle cells. These waves are related to the spatial and temporal organization of
gastric contractions. The external (cutaneous) electrodes can record the EGG signal
[33].

12.5 Physiological Phenomena and Biomedical Signals

The biomedical signals can also represent the physiological phenomenon. Hence,
the physiological parameters can be reflected by biomedical signal parameters.
These biomedical signal parameters can be obtained with an adequate knowledge
of their physiological causes for diagnosis purpose. Figure 12.35 shows a block
diagram approach to extract physiological parameters from recorded biomedical
signals. These parameters are extracted using signal processing techniques and
the radically different biomedical signals may have information of the same
physiological parameter (heart rate, respiratory rate, etc.) [34].
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Fig. 12.35 Block diagram
for physiological parameter
extraction process [34]

12.5.1 Vital Phenomena and Their Parameters

There are various physiological phenomena as well as biomedical signals. There-
fore, we focus on some of the vital phenomena which are frequently used in
clinical practice such as heartbeat, blood circulation, blood oxygenation, and body
temperature. A brief description of these phenomena is given as follows [34].

12.5.1.1 Heartbeat

The heart is used for pumping blood into the circulatory system using its rhythmic
contractions which create pulsating waves of blood pressure and blood flow. The
cardiac cycle obtained with this heart rate is very important for diagnosis purpose
[34].

There are three widely used methods to register this cardiac activity. In the first
method, the ECG signal is used to show the rhythmic waves and peaks which are
corresponding to heart muscle excitation with heart rate. An optical biomedical
signal named as optoplethysmogram (OPG) is used in the second method to
represent a smoother waveform reflecting pulsating blood absorption of incident
light. In the third method, the PCG signal represents two consecutive temporary
signal deflections corresponding to heart sounds which are induced by consecutive
closures of heart valves. The cardiac activity recorded with the ECG signal has
nearly instant response at the corresponding sensor location, while the time delayed
response is observed in the recording of OPG and PCG signals due to the pulse wave
propagation velocity and sound velocity, respectively [34].

Although the spontaneous cardiac activity is inherently present in many pace-
maker tissues of the heart, the heart rate level and its change are mostly controlled
by the autonomic nervous system. This control is possible with the sinoatrial
node, which is the main pacemaker in the heart. The activities of sympathetic and
parasympathetic nervous systems directed to the sinoatrial node are characterized by
discharges synchronous with each cardiac cycle. These activities can be modulated
with central oscillators present in the central nervous system and peripheral oscil-
lators which depend on respiratory movements and arterial pressure fluctuations.
The balance between these activities determines the instantaneous heart rate. The
central and peripheral oscillators create noisy fluctuations in the corresponding
instantaneous heart rate. However, these types of fluctuations can also be observed
at different timescales [34].

The estimation of energy expenditure in the body is the most efficient measure
which can be calculated with the help of the heart rate level because heart rate
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increases with increase in oxygen consumption at an instant. The heart period which
is a reciprocal of heartbeat is generally referred to as RR interval (the time interval
between two consecutive R peaks in ECG signal). The only criterion for considering
the RR interval is that the sampling frequency should be very high (>500 Hz) to
assess the sinoatrial node activities.

The heart rate variability (HRV) is another standard term which describes heart
period oscillation as well as the oscillation between consecutive instantaneous
values of heart rate. The HRV is very closely related to the mechanism of the
autonomic nervous system which gives immediate response to any physiological
states such as respiration phase, sleep stages, and emotional activities. The HRV is
also good in representing functional integrity of a physiological process (thermal,
hormonal, neural, etc.) Therefore, the assessment of HRV gives early signs of
pathological developments such as cardiovascular diseases [34].

12.5.1.2 Respiration

In the respiration process, the lung plays a major role which delivers oxygen to
the bloodstream and releases carbon dioxide from the blood through a rhythmic
expansion and contraction process. The assessment of respiratory cycle performs an
important role in the diagnosis of various diseases. There are numerous methods to
register the respiration on which the three well-established methods are discussed
here [34].

In the first method, the mechanorespirogram signal is a mechanical biomedical
signal used to record the circumference changes of the abdomen and chest during
breathing. A periodic waveform showing respiratory rate is observed through this
process during normal breathing. On the other hand, this waveform disappears
during holding of breath. The amplitude deflection in this signal increases during
snoring in order to overcome an increased respiratory resistance. The recorded
mechanorespirogram signal from the abdomen and chest may differ in amplitude
and phase due to different strengths of abdominal and chest breathing. The wave-
form recorded from abdominal breathing is delayed with respect to the waveform
recorded with chest during breathing [34].

The lung sounds are also present in PCG signal during normal breathing due
to air turbulences in the lung branching airways. These sounds have much lower
amplitude; due to this reason, it cannot be easily distinguished over time. In addition,
an overlapping signal component is also recognizable during the inspiration phase
of snoring sounds. This signal component is present due to elastic oscillations of the
pharyngeal walls which may lead to a temporal closure of the airways [34].

In the third method, a mechanical biomedical signal is used which records the
airflow through the mouth considering nasal airflow is stopped using a tube with a
woven screen inside which acts as a flow resistance. This method is commonly used
in clinical practice. In this method, the airflow is considered positive and negative
corresponding to inspiration and expiration during normal breathing, respectively.
The flow is zero during holding of breath. The high-frequency oscillations of the
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flow can be obtained during inspiratory phase of snoring. The amplitude of flow is
also increased during the phase of both inspiration and expiration of snoring. These
oscillations and increased amplitude of flow are due to intermittent closures of the
airways and the aforementioned intensified respiratory efforts [34].

In addition to these methods, the thermal biomedical signal is known as
thermorespirogram signal in which variations of the air temperature are observed in
front of the nostrils during breathing. The temperature increases during expiration
and decreases during inspiration phases of breathing. The registration of the respira-
tory activity is also possible with an electric signal known as electroplethysmogram
signal. In this method, the inflated and deflated lung changes the thoracic electrical
impedance which can be observed by electroplethysmogram signal. The optical
biomedical signal known as optoplethysmogram signal can also be used to register
the respiration activities. This signal reflects the peripheral blood volume changes
over the respiratory cycle [34].

During respiration, the breath-holding condition deserves some extended
description. This condition is generally known as a Greek word apnea
(breathlessness) in which a complete or partial cessation of effective respiration
occurs. This breath-holding condition can also be possible during sleep at
night and it is known as sleep apnea. The sleep apnea is usually detected by
polysomnography [34].

12.5.1.3 Blood Circulation

The blood circulation mainly depends on systemic and pulmonary circulation in
which the first one comprises the rhythmic transport of the oxygenated blood to
the body and the deoxygenated blood back to the heart, whereas the second one is
used for the transportation of the deoxygenated blood to the lungs and oxygenated
blood back to the heart. In addition to assessment of cardiac cycle with heart rate, a
simultaneous registration of blood circulation is also required for the highly relevant
diagnosis purpose with the help of circulatory parameters, namely, blood pressure,
blood flow, and arterial radius. The brief description for the registration of these
circulatory parameters is as follows [34].

Blood Pressure

The unobtrusive and long-term monitoring is difficult in blood pressure registration.
The characteristics such as systolic value, diastolic value, and the pressure pulse
waveform are used to assess the blood pressure. There are basically some invasive
and direct methods as well as noninvasive and indirect methods to register the
artifacts of free blood pressure values [34].

In invasive and direct methods, the blood pressure is directly recorded in the
vessel by inserting a catheter with a mounted internal pressure sensor or a fluid-
filled and rigid catheter for transmitting the blood pressure characteristics to the



12 Biomedical Engineering Fundamentals 583

external pressure sensor. Although these methods are precise and direct, they are
not popular due to their invasiveness and related complications for routine use.
On the other hand, the noninvasive methods are popular for the determination of
blood pressure characteristics. These methods include the auscultatory method,
oscillometric method, volume clamp method, and tonometric method [34].

In auscultatory method, the Korotkoff sounds are detected by a stethoscope to
determine systolic and diastolic values. In this method, an inflatable cuff encircles an
extremity (upper arm) and the cuff pressure is increased until a complete cessation
of downstream blood circulation is observed. The first release of the cuff pressure
after cessation resulted in the Korotkoff sound which indicates the time instant when
the upper (systolic) part of the blood pressure pulse wave passes under the cuff and
the cuff pressure is equal to systolic value. On the other hand, the transition from
muffling to silence indicates the time instant when the lower (diastolic) part of the
pulse wave passes and at this time instant the cuff pressure is equal to diastolic
value [34].

The second method is the successor of the ancient mercury sphygmomanometer.
It is based on the principle that the pulsatile blood flow generates radial oscillations
of the arterial vessel wall. These radial oscillations are transmitted to the cuff
encircling an extremity and then to a pressure sensor kept inside it. During
the deflation, the intra-arterial blood pressure exceeds the cuff pressure and the
oscillations of the vessel walls are strengthened due to turbulent flow of blood and
progressing arterial decompression. The cuff pressure during the initial increase in
oscillation amplitude is proportional to the systolic value and the diastolic value is
proportional to cuff pressure value at the time of subsequent rapid decrease in the
oscillations. In this method, the maximal amplitude of the oscillations for the vessel
walls and cuff pressure is obtained when the cuff pressure passes the mean arterial
pressure [34].

The volume clamp method is another noninvasive method in which a minia-
turized cuff fixes on a finger. This cuff is equipped with as optical transmission
sensor. This method is based on the principle that the radius (volume) of the
finger artery tends to increase at the time of the blood pressure (volume) pulse
and this increased radius is detected by transmitted light intensity. Afterward, the
cuff pressure (volume) is increased just enough to keep the radius and transmural
pressure constant. The resulting cuff pressure is proportional to blood pressure
waveform because the cuff pressure follows the intra-arterial pressure up to a
constant factor at constant transmural pressure. A pneumatic feedback system is also
used in this method for cuff pressure (volume) control so that a maximum pulsatile
change of the vessel radius is achieved when transmural pressure approaches zero.
The cuff pressure pulsations roughly equal to intra-arterial pressure at the time
of zero transmural pressure. The main advantage of this method is that it does
not require previous calibration with patients to attain absolute blood pressure
values [34].

The last one method is the tonometric method which is a successor of the ancient
sphygmograph. In this method, a rounded probe over a superficial (radial or carotid)
artery which has a backside support of bone is pressed, allowing the artery to be
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flattened in a reproducible way. The flattening removes the tangential forces in the
arterial wall and the rounded probe is barely exposed to the artery pressure. During
flattened artery, the applied force by the rounded probe is opposite and equal to the
pulsatile force. This force exerts in such way that the pressure of blood exerts on the
flattened arterial wall. This rounded probe is connected to a pressure sensor which
reflects waveform of blood pressure. This method requires an initial calibration
with the patient to compensate changes of arterial mechano-elastic function among
patients in order to obtain absolute blood pressure values [34].

Blood Flow

The recording way of blood flow is analogous to blood pressure. The blood flow can
also be recorded in invasive and noninvasive ways. The stroke volume, blood flow
velocity, and pulsatile flow waveform are the parameters of interest in blood flow
registration [34].

The invasive methods for blood flow monitoring have fewer acceptances due to
invasiveness and related complications. Some of the invasive methods are indicator
method, electromagnetic method, and transit-time ultrasonic method [34].

In indicator method, the oxygen is used as an indicator which is introduced into
the stream of blood flow and the resulting arterial as well as venous concentrations
from this indicator are measured based on Fick principle. Alternatively, a thermistor
catheter is used to introduce a bolus of ice-cold saline into the right atrium. This
catheter is also used to detect the resulting drop in temperature of the blood which
is present in the pulmonary artery. The amount of indicator injected divided by the
area under the blood temperature dilution curve represents the cardiac output in this
method. In the second method, the blood vessel with flowing blood is exposed to
electromagnetism. The blood vessel is placed in transverse magnetic field which
induced a potential difference in the blood vessel with flowing blood. This potential
difference is directly proportional to internal diameter of the vessel and the mean
blood flow velocity which can be used to measure the blood flow. In the last transit-
time ultrasonic method, an ultrasound beam (wave) passes through the blood vessel.
There are two ultrasound receivers placed diagonally on either side of the vessel.
The difference of time taken for the ultrasound to pass in one direction as opposed
to the other is used to obtain waveform for the flow velocity of blood [34].

The noninvasive methods for the determination of blood flow parameters are
frequently acceptable. There are many methods for the noninvasive registration of
blood flow from which three of the most popular are echocardiographic method,
impedance cardiography method, and pressure pulse contour method [34].

The echocardiographic method is based on ultrasonic Doppler effect. In this
method, an ultrasound beam in the frequency range of a few MHz is backscattered
from the moving blood cells. The blood velocity is related to frequency shift due
to backscattered sound. In other words, the frequency increases when the blood
moves toward the ultrasound probe. The volumetric blood flow can be computed
from the velocity profile over the cross-sectional area of the vessel combined with
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the cross-sectional dimensions. In impedance cardiography method, an electric
current is introduced and the resulting voltage is measured across the axial direction
of the thorax while most of electric current follows the path of least resistance
and seeks the path of blood-filled aorta. The thoracic impedance is represented
by measured voltage. During the cardiac cycle, the volumetric changes of the
aorta induced thoracic impedance changes allowing for the determination of the
cardiac stroke volume in absolute units. This method is also known as electric
field plethysmography. In another pressure pulse contour method for blood flow
registration, a generalized transfer function is used to derive the aortic pressure
from the radial pressure and then the aortic flow obtained with applying an aortic
impedance model. This model indicates the ratio of aortic pressure and flow. During
a cardiac cycle, the stroke volume is the integral of the flow waveform. This method
requires a previous calibration to achieve absolute blood flow values [34].

Arterial Radius

The mean value of the arterial radius and its pulsatile waveform are interesting
topic in physiological phenomena. There are various invasive and noninvasive
methods for the monitoring of arterial radius like blood pressure and blood flow.
The methods used to calculate arterial radius are somewhat similar which are used
for blood pressure measurement. However, the measurement of arterial radius is
more sensitive than that of blood pressure measurement due to the reason that the
radius changes up to 10%, while blood pressure may change up to 50% [34].

The invasive methods for the measurement of arterial radius are based on
resistance/inductive strain gauges, photoelectric devices, and transit-time ultrasonic
approach [34].

In the first method, the resistance/inductive strain gauges are fixed directly to
the outer artery wall or even inserted into the artery in order to measure radius
by the catheter. The second method is based on photoelectric devices in which a
pulsating artery casts a shadow on a photocell. The transit-time ultrasonic approach
is similarly used like those for blood flow registration. In this method, the two
ultrasound transceivers are placed opposite to each other on the outer sides of the
arterial wall. The time taken between the impulse emission and its reception on the
opposite side is proportional to the arterial radius [34].

The most popular noninvasive methods for the registration of arterial radius are
based on ultrasonic beams, optical plethysmography, and mechanical plethysmog-
raphy [34].

In ultrasonic beam method, the reflections of the ultrasound waves are used
and the time taken between the impulse emission from the ultrasound probe on
the skin and reflected impulse reception from both arterial walls is calculated,
which delivered the arterial radius. The method based on optical plethysmography
is an indirect method to assess the local pulsatile volume of the transilluminated
artery. In this method, the arterial radius increases with each blood pulse and the
transilluminated region encloses with an increased ratio of blood which strongly
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absorbs the incident light as compared to the surrounding tissue. As a consequence,
the intensity of transmitted light decreases for increased arterial radius or at the
time of systole. This method not only assesses the pulsatile changes of the local
blood volume but also assesses the basic level of blood absorption related to blood
oxygenation. The recorded biomedical signal shows similarity with blood pressure
from the carotid artery and mild similarity with blood pressure recorded with the
ascending aorta but no similarity is obtained with the radial artery blood pressure.
Another method is based on mechanical plethysmography which targets local skin
curvature in order to assess a superficial artery such as the carotid artery on the neck.
During arterial cardiac deflections, the curvature of the local skin changes and it can
be assessed by a skin curvature sensor [34].

12.5.1.4 Blood Oxygenation

Blood circulation implies a rhythmic transportation of oxygenated and deoxy-
genated blood from the lung and back to the lung. Hence, the blood oxygenation
level is a vital physiological parameter which is usually extracted with optical
biomedical signals. In this method, the light absorption due to pulsatile arterial
blood is measured at two wavelengths and interrelated by an algorithm. The
blood oxygenation level is usually maintained at a fairly constant level. Thus, the
monitoring of blood oxygenation level is very important in order to diagnose cardiac
and vascular anomalies. This examination is more specific for anesthesiology to
prevent an inadequate oxygen supply. The presence of oxygen in arterial blood is
due to binding of oxygen molecules with hemoglobin and dissolving of oxygen
with blood plasma in gaseous state. However, the quantity of oxygen in the
blood is mainly due to hemoglobin oxygenation as blood plasma carries a very
less amount of oxygen. Therefore, the oxygenated hemoglobin implies as a local
oxygen buffer to maintain the partial pressure of oxygen in the plasma. On the
other hand, the reduced hemoglobin reserves oxygen in the pulmonary capillaries
by depleting partial pressure of oxygen in the plasma, resulting in oxygenated
hemoglobin. Although blood plasma contains a negligible amount of oxygen, it
plays an important role in delivering oxygen to the tissues and the storing of oxygen
in the pulmonary capillaries by hemoglobin. It should be noted that the noninvasive
assessment of blood oxygen level in the elderly is faced with progressing accuracy
problems by optical method [34].

12.5.1.5 Body Temperature

The temperature of the human body is generally governed by the heat production
and loss. During rest condition, the heat production is usually carried out by the
inner organs such as kidneys, liver, heart, intestines, and brain under the scope
of metabolic activity. The rest condition in metabolic activity generally consumes
almost 50–70% of daily energy. During normal condition, the inner organs produce
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more than 50% of thermal energy and about 20% by the skin and muscles,
whereas the contribution of the skin and muscles may reach to 90% during physical
work [34].

On the other hand, the heat loss is represented by heat radiation, heat convection,
and evaporation. The heat radiation and evaporation are proved more powerful
at room temperature and warm environment. The heat loss cannot be efficiently
realized by the proximal skin surface because its shape is too flat for efficient heat
transfer to the environment. Hence, the heat loss mostly occurs from distal body
parts such as fingers and toes which have high surface to volume ratio in order
to conduct heat to the environment. In other words, the body consists of a heat-
producing core which regulates the temperature at 37 ◦C homeostatically. The core
body temperature reflects a circadian variation of about ±0.6 ◦C with a maximum in
the early evening nearly around 6 p.m. and a minimum during 3 a.m. The regulating
mechanisms involve a readjustment of the target temperature value of 37 ◦C during
the whole day. This target value is instructed by the central nervous system of
the brain (hypothalamus region), while the actual value registration of core body
temperature by the thermal receptors is also carried out in hypothalamus region [34].

12.5.2 Parameter Behavior

The vital physiological phenomena of the heartbeat, respiration, blood circulation,
blood oxygenation, and body temperature represent specific changes in their reflex-
ive and tonic behavior. The typical behavior and interrelations of the physiological
parameters are also a major concern in order to coordinate and integrate body
functions. The physiological parameter behavior with their mutual coordination
facilitates vital physiological functions, limited resources of body energy, limited
space and time in organs and cells for life-supporting functions, environmental
changes adaptation, adaptation to physical and mental stress, and regeneration task
of the body with sleep [34].

The behavior and coordination of the physiological parameters can be explained
with a feedback control loop represented in Fig. 12.36. The hypothesis behind the
control loop is that the central nervous controls the physiological phenomenon or
function through a quantitative feedback such as thermal, chemical, and pressure
receptors. The desired performance can be obtained by minimizing the error calcu-
lated with the difference between the target and actual value of the physiological
parameters. In this way, controlled body functions can be achieved with the help
of the central nervous system. In Fig. 12.36, the controller comprises neurogenic,
myogenic, and hormonal controls. The neurogenic control yields a fast response
with the help of the autonomic nervous system while as myogenic control through
muscle excitation. The slow response is obtained with hormonal control with the
release of hormones [34].

The cardiovascular system is an example of this feedback control system in
which when blood pressure drops below the normal value, the arterial stretch-
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Fig. 12.36 Feedback control loop of the physiological parameters [34]

sensitive receptors (baroreceptors) give an imbalance signal of blood pressure to
the brain. The difference of the actual and target values of the blood pressure starts
neurogenic control inhibiting the vagus nerve parasympathetic activity which is
connected to the sinoatrial node (pacemaker) of the heart. Afterward, the heart rate
and contractility of the heart muscles increased. In parallel to this activity, myogenic
control forces are applied to increase the total peripheral resistance through smooth
muscle activation in the peripheral arteries and increase in regulatory action
normalizing the blood pressure level [34].

Mutual interrelations of physiological functions and parameters are basically
depending on control loops. In particular, physiological parameter interrelations are
needed for the efficient use of energy in humans. The main interrelations of the
physiological phenomena during inspiration are cardiorespiratory and cardiovascu-
lar interrelations [34].

In cardiorespiratory interrelations, an increase in the inspired air volume resulted
in decrease in the left ventricular stroke volume as well as increase in heart rate to
level off the cardiac output; due to this efficient blood supply is achieved [34].

In cardiovascular interrelations, a decrease in the systolic blood pressure over-
lapped with an increase in heart rate to level of the blood pressure [34].

The cardiorespiratory and cardiovascular interrelations are driven by a complex
interaction of the circulatory and pulmonary systems with the hemodynamic and
nervous systems [34].

In addition, a phenomenon known as biological rhythms which is a periodic
and cyclic phenomena of living organs and organisms is described in order to
explain the fact that organism needs to give a special performance as well as
operating efficiency should be assured by regeneration. These rhythms are used
to integrate and coordinate body functions. These rhythms can also be used to
anticipate environmental rhythms around the body. This can help to reduce energy
due to tuning and synchronization of rhythms, especially during rest or sleep. The
exogenous and endogenous are the two types of biological rhythms. In exogenous
rhythms, the rhythms are directly controlled by the environment around the body
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Fig. 12.37 Electrical model for the registration of induced optic biomedical signal [35]

such as the presence of light. On the other hand, the internal biological clocks drive
the endogenous rhythms [34].

12.6 Sensing by Optic Biomedical Signals

The optic biomedical signals are induced biomedical signals in which an artificial
light source is coupled to biological tissue. This source resulted in a transmitted
light intensity which is strongly governed by the light absorption and scattering
phenomenon in the biological tissue. The induced optic biomedical signal due to this
phenomenon is proportional to the light absorption strength and is usually registered
for diagnosis purpose such as blood oxygenation and blood volume. Consequently,
the transmitted light intensity also shows multiple physiological parameters which
are very useful for the assessment of the health state [35].

The optic biomedical signals are traditionally used to register blood oxygenation
and heart rate. The recent advancement in medical technology has also the waveform
analysis of optic biomedical signals which facilitate the derivation of respiratory
rate. The state of vascular structures (arteries and veins) can also be indicated by the
waveform of optic biomedical signals [35].

The model for the understanding of formation and sensing aspects of optic
biomedical signals can be seen in Fig. 12.37. In Fig. 12.37, the incident artificial
light source is represented by voltage source S which is applied on the skin
and coupled to body tissue. The coupling losses are represented by electrical
impedance Z2

’. The propagation of the coupled light throughout tissue modulated
by diverse physiological phenomena and the electrical impedance for modulation
is Z1. Consequently, some light portion leaves the body and it is available for the
detection purpose over the skin. This light is coupled with light sink at a certain
distance from the light source in which coupling losses are represented by electrical
impedance Z2. Afterward, the transmitted light intensity is converted into an electric
signal which resulted in registration of optic biomedical signals [35].
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12.6.1 Formation Aspects

The formation aspects basically revealed the propagation light modulation in body
tissues simultaneously with dynamic physiological phenomena. This modulation
extracts the physiological information present in optic biomedical signals. The
formation aspects of the induced optic biomedical signal include an artificial
incident light source which entered the body through the skin, incident light
coupling into body, and light propagation through body tissues to a distant light
sink applied on the skin [35].

The emission of the artificial incident light depends on the accelerated charge
in which energy is released during the transition of electrons from higher to
lower energy levels resulting in light emission. The sources of light used for this
purpose are of two types, namely, broadband and narrowband. The broadband light
sources emit light in a relatively wide band of the electromagnetic spectrum such
as incandescent lamps and noble gas arc lamps whereas a narrowband is covered
by narrowband light sources such as lasers, fluorescent sources, and light-emitting
diode (LED) [35].

In these light sources, the LED is the most popular and widely used light
source in order to induce optic biomedical signals. The LED basically works on
the principle of electroluminescence. A charge migration takes place to obtain the
light photon [35].

After coupling of light source, the transmission of light through biological tissue
is a major aspect. The optical light path is started with the light source and then
it diffuses through tissue. The diffusion is subjected to changes in light intensity
because of the light absorption, diffraction, reflection, scattering, and refraction. A
large portion of light intensity has also dissipated and does not reach the skin where
a light sink is placed due to this fact [35].

The interaction between light and tissue can be determined quantitatively such
as quantitative strength and duration of the interaction and the spatial distribution
of the tissue interaction. The interaction is limited to areas of tissue where coupled
light is easily reached. This interaction depends on light and tissue characteristics in
which light characteristics represent size of incident light, while light transmission
is determined by tissue characteristics [35].

The propagation velocity (υ) of light in a biological medium which oscillates
with frequency (f ) and wavelength (λ) along its propagation path can be written as
[35]:

υ = λ × f (12.36)

where the electric and magnetic properties of propagation medium determine the
value of υ and it can be computed as follows [35]:

υ = c√
μrεr

(12.37)
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Here, c is the speed of light in vacuum (c = 3 × 108 meter/second), μr is the
relative magnetic permeability (μr ≈ 1 in biological media), and εr is the relative
electric permittivity (εr �1 in biological media).

The light energy (photon energy) can also exist and it can be given as follows
[35]:

W = h × υ

λ
(12.38)

Here, W is the photon energy and h is Plank’s constant (h = 6.6 × 10−34 Joule
second).

The induced light is subjected to volume and inhomogeneity effects. In volume
effects, the light absorption takes place which attenuates the propagation of light
beam in homogenous medium. On the other hand, the heterogeneous medium
causes scattering, diffraction, reflection, and refraction effects which attenuate and
redirect the light beam in a particular direction in inhomogeneity effects. These
effects are not fully independent to each other [35]. The basic inhomogeneity
effects are shown in Fig. 12.38 [36]. In Fig. 12.38, the reflection of light occurs
at biological tissue interface and the refraction of light occurs when the light
enters in tissue that has different refractive index. The absorption and scattering
of light also take place in between the tissue structure. The physical parameters
such as refractive index, absorption coefficients, and scattering coefficients related to
these inhomogeneity effects vary continuously at biological tissue boundaries. The
different biological tissues have different strengths of absorption coefficients which
determine penetration power and energy absorption into a specific tissue from a
particular light source. The absorption degree is depending on the type of tissue and
wavelength of light in many cases. The mainly light absorption takes place between
the wavelength range of UV (<400 nm) and IR (>2 μm). Hence, the light cannot
deeply penetrate in this spectral range and attenuation due to scattering is less in this
range. The scattering causes broadening of light beams and the light beams decay
as it travels through the tissue due to this scattering phenomenon. This scattering
phenomenon dominates over absorption in the spectral range of 600–1600 nm and
the forward and backward scattering of incident light within tissue are used in
various optic biomedical applications such as Raman vibrational spectroscopy and
surface-enhanced Raman scattering (SERS) [36].

The reflection and transmitted modes of light can also be used for various optic
biomedical applications such as optical plethysmography. The different arrange-
ments of light source and sink are used for reflection and transmitted modes of
operation. Figures 12.39 and 12.40 show the different arrangements of light source
and sink for reflection and transmitted modes of operation applied on a finger,
respectively. In reflection mode, red and near-IR lights are generally used due to
the fact that these lights can penetrate tissue to relatively large depths as compared
to other lights. The arrangement of light source and sink for red and near-IR lights
are shown in Fig. 12.41. In Fig. 12.41, the light source and sink for red and near-IR
lights are arranged in reflection mode which yields different pathways by photons
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Fig. 12.38 Inhomogeneity
effects [36]

Fig. 12.39 Reflection mode
[35]

Light source Light sink

Skin

Light paths

Fig. 12.40 Transmitted
mode [35]

Light sink

Light source

of both wavelengths and these paths vary with hemoglobin oxygen saturation which
is denoted by S [35].

The light is also dynamically modulated by physiological phenomena in tissue
due to the reason that a physiological phenomenon modulates optical properties
of the tissue. There are various light absorbers present in tissue such as pulsatile
arterial blood, nonpulsatile arterial blood, capillary blood, venous blood, bloodless
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Fig. 12.41 Different arrangements of light source and sink for red and near-IR lights in reflection
mode [35]

tissue, etc. The large volume of nonpulsatile arterial blood in the light path
decreases the intensity of transmitted light. However, the transmitted light intensity
passing through biological tissue experiences a relatively fast modulation from
physiological point of view. The cardiac activity, respiratory activity, and blood
oxygenation changes are basically responsible for the achievement of this fast
modulation [35].

12.6.2 Sensing Aspects

The sensing aspects of the induced optic biomedical signal include transmitted light
coupling with the light sink which is applied on the skin at a certain distance from
the incident light source and its conversion into an electrical signal within light sink.
In this way, the optic biomedical signals are registered with the help of transmitted
incident light through tissues [35].

The fast fluctuations in local blood volume residing in the light propagation path
modulate light absorption in tissue and slow fluctuations are present in the density
of dominant chromophores in tissue. Due to this fact, there are three technologies
which can mainly be used for the optic biomedical signals without considering the
designed factor of optical sensors, namely, spectrometry, optical plethysmography,
and optical oximetry [35].

In spectrometry, the light is absorbed by a chromophore in tissue which depends
on the density of chromophore and the wavelength of applied light. Similarly, the
light absorption spectrum gives a signature of the chromophore type as a function
of wavelength. The amount of chromophore at the sensor is used for monitoring the
local environment of the tissue [35].

The optical plethysmography detects the variations in the light absorption in
tissue. The pulsating volume of arterial blood produces these variations in the
illumination region due to transmitted light. The changing of optical path lengths
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Fig. 12.42 Registration of optic biomedical signals from the finger in order to extract physiologi-
cal parameters [35]

changes the total light absorption in the tissue. However, the total optical path
length of the light beam is almost constant in tissue. The registered variations in
the transmitted light intensity gives a signature of blood volume changes from the
illumination region of transmitted light and these variations can be used for the
monitoring of cardiac and respiratory activities [35].

The optical oximetry includes both existing technologies which are spectrometry
and optical plethysmography for the assessment of blood oxygenation. In this
technique, the level of the hemoglobin oxygen saturation in pulsatile arterial blood
is calculated. The spectrometry technique in this method is used for evaluation of
degree of hemoglobin oxygenation with the help of light absorption in the blood. On
the other hand, the optical plethysmography is used for the separation of absorption
by the pulsatile arterial blood from the nonpulsatile absorption with the help of
the pulsatile nature of the transmitted light intensity. The registration of blood
oxygenation during exploiting arterial pulsations is called pulse oximetry [35].

In spectrometry, the coefficient of absorption is the parameter of interest, whereas
the path length is the parameter of interest for optical plethysmography [35].

The registration of optic biomedical signal for the extraction of physiological
parameters, namely, cardiac activity, respiration activity, and blood oxygenation, is
shown in Fig. 12.42. In Fig. 12.42, the optoplethysmogram signal is recorded from
the finger in order to extract the physiological parameters. The amplifier is used to
amplify the recorded signal, whereas the recording and processing block is used for
the de-noising purpose. The recorded signal simultaneously offers the three different
physiological parameters with multiparametric processing [35].
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12.7 Analysis of Biomedical Signals

Biomedical signals are primarily used for the diagnosis and monitoring of specific
pathological/physiological states. In some cases, the researchers have also used
these signals for decoding and eventual modeling of specific biological systems.
The recent advancement in technology allows the acquisition of multiple channels
of biomedical signals. This process leads to additional signal processing challenges
to identify meaningful interactions between these channels. The main aim of signal
processing is generally noise removal, accurate signal modeling, extraction of
components for analysis purpose, and feature extraction for deciding function or
dysfunction of the heart and brain. The signal processing is used in biological
applications due to several reasons. In most of the cases, the monitored biological
signal contains an additive combination of signal and noise. The presence of noise
can be due to instruments (sensors, amplifiers, filters, etc.) and electromagnetic
interference (EMI). Therefore, the different conditions suggest different assump-
tions for noise characteristics, which will eventually lead to an appropriate choice
of signal processing method [37].

12.7.1 Time-Domain Analysis

The time-domain analysis of biomedical signals is usually fast and easy to imple-
ment, because time-domain analysis does not need any transformation of biomedical
signals. In time-domain analysis, several features based on different characteristics
of signal are computed from biomedical signals. These time-domain features have
been generally used in different areas of medical as well as engineering research.
A major drawback of these features is due to the nonstationary nature of the
biomedical signal, which changes the statistical properties over time. Therefore, the
computed values of time-domain features may vary largely when the biomedical
signal is recorded in interference and noisy environments. However, the time-
domain features have been widely used for biomedical signal due to their lower
computational complexity [38]. There are different time-domain characteristics
which vary from one biomedical signal to the other.

In the time-domain analysis of EEG signals, the artifact which usually exceeded
instantaneous amplitude as compared to normal instantaneous amplitude present
in EEG signal is determined by amplitude thresholds. The muscle artifacts can be
minimized with the use of slope or steepness threshold. The first-order derivative
of EEG signal gives us the slope. In addition to first-order derivative, the second-
order derivative is also used to measure the complexity present in EEG signal
[30]. Apart from this measure, there are some other complexity measures such as
fractal dimension and entropy which are also frequently used as features. The fractal
dimension of the EEG signal decreases as the age increases in humans. Hence, it can
be concluded with this fact that the fractal dimension is higher for a brain whose all
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parts are active, but it is lower for an old brain whose parts are considerably less
active. The same behavior is also recorded for the other complexity measures from
EEG signals of older people as compared to younger people. This phenomenon
is also true for a person suffering from diseases like epilepsy and Alzheimer’s.
The complexity measures decrease due to the presence of such kind of diseases.
Moreover, the reduction of 30% fractal dimension is used as diagnosis criteria for
epilepsy from EEG signals [30].

The most common feature in time-domain analysis of ECG signals is the duration
of the heart cycle. The heart cycle duration is basically a time span from one R wave
to the next occurring R wave. The other generally used features for ECG signal are
the duration of QRS complex and the time interval between T and P waves. The QRS
complex is determined by the characteristic shape and relative stable time constant
in the pattern [30].

The time-domain analysis of EMG signals is possible with several features.
The mean absolute value (MAV), root mean square (RMS), zero crossing, v order,
log detector, waveform length (WL), Willison amplitude (WAMP), and slope sign
change (SSC) are commonly used for the time-domain analysis of EMG signals.
The MAV feature provides the information about energy and fatigue present in EMG
signals. On the other hand, the RMS feature represents the non-fatigue as well as
fatigue contraction. The frequency information present in EMG signals is provided
by time-domain features such as zero crossing, WAMP, and SSC. The v- order and
log detector features estimate the muscle contraction force and fatigue [39].

12.7.2 Frequency-Domain Analysis

The frequency-domain analysis of biomedical signals is possible with Fourier
transform which converts the time-domain representation of a signal into frequency
domain. The frequency-domain analysis is mainly used to characterize the fre-
quency contents present in a signal. The major limitation of this technique is that the
Fourier transform works only for stationary signals because the time information is
lapsed in frequency-domain analysis.

In frequency-domain analysis of EEG signals, the main feature is the compu-
tation of power of the particular frequencies from the power spectra of the EEG
signal. The spectral analysis of EEG signal will quickly identify any irregular pattern
of higher harmonics in the frequency spectrum. The spectrum of EEG signal is
generally analyzed only over a consecutive short-time segment. This short-time
segment of EEG signal is known as “epoch.” The length of epochs decides the
frequency resolution of EEG signal in frequency spectrum. However, the selection
of longer time segments will result in lower time resolution which is a trade-off
between time and frequency resolution.

The frequency components of EEG signal such as alpha, beta, delta, and theta
waves are very informative and it can be easily extracted from the power spectra
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of the EEG signal. These frequency components are also used in the diagnostics of
various diseases and disorders.

The analysis of EEG signals is also possible with frequency measure which is
known as spectral edge frequency (SEF). This measure plays a significant role in
the analysis of depth of anesthesia. It is found that a decrease in the value of SEF
corresponds to a deeper level of anesthesia [30].

Similarly, median peak frequency (MPF) is another frequency measure in which
frequency situated at 50% of the energy level is considered. The MPF gives the high-
frequency contribution present in the frequency spectrum. This measure is also used
in the analysis and classification of anesthesia depth [30].

In the frequency-domain analysis of ECG signal, the QRS complex is well
localized in the high-frequency region. On the other hand, the low-frequency
components are mainly due to P and T waves. The ST segment in the ECG signal
mostly contains the low-frequency component. The frequency contents in a normal
ECG signal and the deviating ECG signal have a significant difference because
the normal heart rate is in the range of 60–100 beats per minute, whereas the
fibrillation can exceed the range of 200 beats per minute. The depolarization and
repolarization ramps in ECG signal are also changed under diseased conditions. This
requires a much wider frequency bandwidth to identify different phenomena. The
minor deviation of higher frequency in ECG signal creates a much larger number
of harmonics which describe the frequency-domain features in the ECG signal.
Therefore, a frequency span of 0–100 Hz usually represents normal ECG signal,
whereas arrhythmias may require a high-frequency analysis up to 200 Hz. However,
the high-frequency spectra will also be dominated by noise and it may not contribute
any additional information [30].

A disease named as sinus tachycardia is also often detected in the frequency
domain. A sinus tachycardia is detected when a sinus rhythm higher than 100 beats
per minute appears. This similar condition may also occur during a physiological
response to physical exercise or physical stress but it may lead to congestive heart
failure in diseased cases. The case of sinus arrhythmia is also possible when the
longest PP or RR intervals exceed the shortest interval by 0.16 s. This condition is
frequent in teenage groups who have never suffered a heart disease [30].

The detection of fetal heart diseases using ECG signal during pregnancy is
another area where the frequency-domain analysis plays a vital role. The ECG
signals recorded from the leads placed on the abdomen of the mother are used to
monitor the fetal heart diseases. The P and T waves obtained with the maternal ECG
signal can easily be recognized in most cases. The maternal heart rate is usually
lower than the fetal heart rate which is distinct from the mother’s and the baby’s
ECG signals using filters designed in the frequency-domain.

The frequency-domain analysis of EMG signal leads to the fact that the frequency
spectrum is mostly in the higher frequencies during fatigue, whereas the power
spectrum is shifted toward lower frequencies after fatigue. This frequency shift
indicates the muscle status such as rest and contraction states [30]. There are
many features which are used for the frequency-domain analysis of EMG signals.
The mean frequency (MF) measure is able to denote muscle fatigue during cyclic
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dynamics. The median (MD) frequency measure is a universal index for muscle
force and fatigue. The peak frequency (PF) feature is used for identifying fatigue
state. The mean and total power features are also used for the identification of
fatigue. The first, second, and third spectral moments are alternative statistical
measures for fatigue identification. The frequency ratio is also used as a feature
to distinguish between rest and contraction states of muscles [39].

12.7.3 Time-Frequency Domain-Based Analysis

The time-frequency domain analysis is widely used for the analysis of nonstationary
signals because it provides time and frequency information together for a given sig-
nal. There are several time-frequency domain analysis methods such as short-time
Fourier transform (STFT), wavelet transform (WT), and Wigner-Ville distribution
(WVD) [40].

The time-frequency analysis is used for detecting spike-like epileptic patterns
in EEG signals because these patterns appear for a short time period or random
in most suspected epileptic EEG signals. Due to random occurrence of these
patterns, the frequency-domain analysis does not provide exact time information for
these patterns. The choice of epoch length is an important issue in time-frequency
domain analysis of EEG signal. The epoch lengths of 1–2 s duration are usually
recommended for time-frequency domain analysis of EEG signal. The epochs of
this time duration may provide stability in data features [30].

The time-frequency analysis of ECG signal identifies the typical pattern or wave.
The time-frequency analysis provides the separation of the mother’s and baby’s
ECG signals. It should be noted that the waveform of the fetal ECG signal is
analogous to adult ECG signal [30].

12.7.4 Other Methods

In real situations, most of the signals are nonlinear and nonstationary in nature. The
analysis of such type of signals is a tedious task. The predefined basis function
may fail to provide solutions. This problem can be overcome by an adaptive
or signal-dependent basis which is used for the representation of nonlinear and
nonstationary signals. A method named Hilbert-Huang transform (HHT) is an
adaptive and empirical method. HHT consists of two parts for signal analysis. One
of them is empirical mode decomposition (EMD) and the second one is Hilbert
spectral analysis (HSA). This method provides good results for time-frequency-
energy representations of many signals [41].

Another method for analysis of real signals is higher-order spectra (HOS). A
real signal most specifically a non-Gaussian signal can be decomposed into higher-
order spectral functions in which each higher-order spectral function may contain
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different information about the signal [42]. These methods also provide significant
contribution in biomedical signal analysis.

12.8 Modeling of Biomedical Signals

Biomedical signals can be modeled by mathematical functions. The procedure is
started with finding a model which follows the laws of physics. The equations
are solved for typical functions. The response of these equations is compared with
developed physical model with the same typical functions. If these two responses are
approximately equal, then we can use the developed model for analysis; otherwise,
we have to improve our developed model [43].

12.8.1 Models for ECG Signal Representation

The ECG signals have pseudo-periodicity feature and features related to the
constituent signals (P, QRS, and T). The modeling of ECG signals can be possible
with parametric and nonparametric models. Most of them are parametric models
such as impulse response of a pole-zero model and damped sinusoid model.
The nonparametric models fail to exploit the nature of ECG signals. Hence, the
parametric models overcome these problems.

The autoregressive (AR)/autoregressive moving-average (ARMA) model which
is a parametric model is also used for the modeling of ECG signals. The amplitude-
modulated (AM) sinusoidal signal model which is a special case of AR/ARMA
model is also used due to its burst-like feature [44]. The model based on hidden
Markov is also proposed to model every specific abnormal beat classification [45].
The dynamical model based on three coupled ordinary differential equations was
used for generating synthetic ECG signals [46]. The Hilbert transform-based model
is a recent approach for ECG signal modeling [47].

12.8.2 Models for EEG Signal Representation

The EEG signals have certain deviation or patterns as compared to the normal
EEG signals during neurological disorders. These patterns occur for one or few
seconds in the EEG signals. These patterns can be identified by modeling of EEG
signals to detect various neurological diseases. The parametric modeling of EEG
signal is the most common approach among them. The parametric model which is
mostly used for EEG signal modeling is a rational transfer function with selected
parameters. If the parameters lie in the denominator, then it is known as an all-
pole or AR model, whereas if all the parameters lie in the numerator, then it is
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known as all-zero or moving-average (MA) model. A model with parameters lie
in the numerator and a denominator is known as pole-zero or ARMA model [48].
The parametric modeling of ictal EEG signal using Prony’s method is also possible.
This method is based on the assumption that the original signal is a sum of damped
complex exponential sinusoids, and it has good frequency resolution compared to
AR model. This method suggests that the modeling of ictal EEG signal is based
on the poles of EEG signal [49]. A method based on second-order linear time-
varying AR (TVAR) with appropriate chosen length obtained using FBSE is used
for parametric modeling of EEG signal [17].

12.8.3 Models for EMG Signal Representation

The main purpose for modeling EMG signal is to understand electrophysiological
information for the detection of neuromuscular disorders. The EMG signal mod-
eling can also be possible by AR model [50]. A modified method autoregressive
integrated moving-average (ARIMA) model has been also proposed for EMG
signals in the literature [51].

12.8.4 Models of Other Biomedical Signals

The parametric modeling of PCG signals for the detection of murmurs is possible
with AR modeling. This model used dominant poles for pattern classification and
spectral tracking [52, 53].

The modeling of respiratory sound signals can be possible with mechanical as
well as electrical models. In these models, the vocal and respiratory tract of humans
can be represented by tubes and pipes and their electrical equivalent circuits [54].

12.9 Applications

The biomedical signals have also been used in certain areas of applications based on
signal processing techniques such as detection of heart-related diseases, neurologi-
cal disorders, neuromuscular diseases, postural stability analysis, and other related
disease. The description of these applications is illustrated below.
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12.9.1 Detection of Heart-Related Disorders

The heart-related signals are very useful to detect cardiovascular diseases. These
detections are generally based on heart sounds and ECG signals. The detection
of congestive heart failure (CHF) is carried out using eigenvalue decomposition
from HRV signals extracted with ECG signals [55, 56]. The heart valve disorders
can be classified with the method based on tunable-Q wavelet transform (TQWT)
[57]. The diagnosis of arrhythmia using flexible analytic wavelet transform (FAWT)
from ECG signals has significant importance [58]. The FAWT method is used for
the detection of myocardial infarction (MI), which is a condition that indicates
injury of the heart cell [59]. The automated detection system of CAD is developed
with FAWT method using ECG signals [60]. In another work [61], the detection
of CAD is also possible with HRV signals involving the FAWT. A method for
diabetic patients using RR interval signals obtained from ECG signal is developed
for screening [23].

12.9.2 Detection of Brain-Related Diseases

The brain-related diseases and disorders such as epilepsy, Alzheimer’s, Parkinson’s,
and sleep disorder can be detected by EEG and MEG signals. The detection
technique based on EMD method using EEG signals for epileptic seizure has been
proposed [62]. The phase space representation of intrinsic mode functions has
been also utilized to classify epileptic seizure EEG signals [63]. The second-order
difference plot of intrinsic mode functions has been also used for epileptic seizure
classification [64]. The entropy of intrinsic mode functions has been used for the
automated detection of focal EEG signals [65]. The detection of ictal EEG signals
using fractional linear prediction has been also proposed [66]. The sleep stages have
been also classified using time-frequency image of EEG signals [67]. The iterative
filtering method has been also used to develop an automated system for sleep stage
classification [68].

12.9.3 Detection of Neuromuscular Diseases

The diagnosis of neuromuscular diseases has been also possible using computer-
aided method. The technique based on wavelet neural network applied on EMG
signals has been proposed for neuromuscular disorder detection [69]. A technique
based on discrete wavelet transform for EMG signal classification with comparison
of decision tree algorithms has been proposed [70]. The detection of muscle fatigue
using EMG signals with time-frequency methods has been presented [71]. The
fatigue during dynamic contractions of the muscle has been also detected using
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EMG signals [72]. The automated classification of hand movements using TQWT-
based filter bank with EMG signals has been also proposed [73].

12.9.4 Postural Stability Analysis

The postural control is very useful for everyday movement and the central nervous
system provides sensory information for postural control. This system is used to
maintain a proper postural balance. Any postural imbalance may lead to instability,
falls, and injury. The center of pressure signals are commonly used to examine the
postural control [74]. These signals can be analyzed with various signal processing
methods. The method based on FBSE applied on the center of pressure signals has
been used for postural stability analysis [74]. The method for assessment of standing
postural stability in children has been also proposed [75]. The EMD method with
second-order difference plots has been used for postural time-series analysis [76].

12.9.5 Other Related Applications

The knee joint pathological conditions change the vibroathrographic (VAG) signals.
These VAG signals provide the abnormalities associated with knee joints. The
automated screening of knee joints using double density dual-tree complex WT has
been proposed [77]. The detection of direction of eyes movement has been possible
using EOG signals [78]. This detection provides help to various disabled persons.
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There are no secrets to success. It is the result of preparation,
hard work, and learning from failure.

Colin Powell
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13.1 Introduction

In this chapter, we provide a snapshot of the state-of-the-art research in mobile and
IOT e-health studies that leverage AI technologies for making sense of personal
health measurement and assessment, as well as for delivering situational, actionable
insights in care flows. In recent years, the proliferation of consumer and pervasive
health technologies has enabled a whole new generation of sensor-based precision
measurement technologies and mobile ecological momentary assessments that are
able to capture patient-specific characteristics in context [1–3]. The captured phys-
iomes (i.e., a collection of quantitative and integrated descriptions of the functional
behavior of the physiological state of an individual [4]) can help detect physiological
macro-phenotypes such as inflammatory response and fatigue [5], as well as critical
conditions such as seizure and atrial fibrillation [6, 7]. The accumulated longitudinal
records of such phonemes are also expected to capture patterns that can help
distinguish individual physiological differences, e.g., being insulin-sensitive or
insulin-resistant, which will make a difference in disease diagnosis and prognosis
[5].

Moreover, the patient-specific characteristics include not only physiome patterns
exhibited in physiological measures but also behavioral patterns and its associated
contexts in daily-life settings, which explain more than 50% of the premature deaths
in the United States for the past 50 years and become one of the major categories
of health determinants [8]. Take cardiovascular health for an example: Public
health experts have advocated on the importance of healthy behaviors for reducing
cardiovascular risk, which estimatedly sums up to 41% of global cardiovascular
disease burden [9, 10]. Past research has also demonstrated the benefit of healthy
behavior (e.g., regular physical activity) on emotional well-being [11, 12].

Being able to capture behavioral patterns in context would have tremendous
implications to healthcare applications. However, despite the success of capturing
the varying patient-specific characteristics, early evidence of using them to improve
outcomes yields only mixed results [3, 13–15].

On the one hand, simply providing technologies for self-monitoring is not
sufficient to activate and sustain behavioral changes. Individuals in different stages
of change would need different ways to communicate and different types of
intervention. This, in turn, resulted in the failure of many implementation plans
for integrating mobile and IOT e-health data to guide behavioral change that often
require more intuitive reasoning and explanation capability [16].

On the other hand, a number of theoretical model-driven interventions have
been shown to have positive impact on activating and sustaining health behavioral
changes. For example, implementation intentions (i.e., representations of simple
plans that can translate goal intentions into behavior under specific conditions)
have a medium to large effect on goal attainment of physical activity behavior [17],
especially when coupled with e-health capabilities [18–22].

As a middle ground, behavioral scientists and healthcare service researchers are
now working together to employ e-health technologies as an interactive platform
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to conduct ecological momentary assessment and further provide tailored feedback
from clinicians to patients, based on each person’s ongoing performance [23–26].
For example, by using mobile and wearable devices to record a user’s exercise
patterns, caloric intake and health status, the user is then provided with personalized
advices that help make sense of his own data and reflect on the impact of exercise
or food on himself. As another example, mobile and IOT e-health data are used
to personalize messages from clinicians [27, 28] and to support the tracking and
communication of outcomes between clinical visits for conditions such as obesity
[29], chronic obstructive pulmonary disease [30] and post-traumatic stress disorder
[31].

Beyond self-monitoring and clinician-patient communication, mobile and IOT
e-health technologies have also been studied for its benefits on delivering behav-
ioral interventions to sustain healthy behavior change in a variety of self-care
settings. The applications widely range from behavior change theory-driven lifestyle
interventions for chronic disease management [32, 33] to self-regulation-based
psychotherapeutic interventions for the management of mental health [34], stress
[35] and substance use disorders [36].

13.1.1 Key Challenges in Smart Learning for Mobile and IOT
e-Health

The increasing accumulation of mobile and IOT e-health data has enabled an
immense potential of applying AI for smart learning. The recent emerging AI
technologies (including but not limited to the neural modeling and reinforcement
learning approaches) have offered promises to capture the patient-specific, dynamic
and intricate relationships through an end-to-end learning framework. The frame-
work is flexible enough to allow for the incorporation of additional exogenous
patient data sources, ranging from patient-reported outcomes and contexts to sensor
measurements such as heart rate variability (HRV) and electroencephalogram (EEG)
signals.

Meanwhile, the detection of context-aware physiological and behavioral patterns
over time enables healthcare professionals to understand how a treatment plan
or care management program is working for a particular patient. More frequent
checkpoints between clinical visits allow for more pertinent analysis of how a
patient responds to a certain medication, treatment plan or engagement strategy. In
the cases where constant monitoring is feasible, real-time analysis can be provided
to care teams at any given moment. It will also allow for just-in-time intervention at
the time of adverse events.

One great domain wherein smart learning for mobile and IOT e-health can make
great impacts is to generate feedback and recommend behavioral interventions
based on both the small (personal-level) and big (population-level) data collected.
Two key challenges emerge. One is regarding how to generate adaptive strategies
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to guide a target user’s choice of actions by learning from real-world experiences
leading to desired health outcomes. The other regards how to make the learned
strategies more interpretable by representing the decision rules in a simpler form
that can be digested by users with ease as well as by providing the target user
with actionable goal-setting guidance, e.g., the predictive sub-goal performance on
outcome improvement. The multilayer challenges current smart learning methods,
which are often biased and uninterpretable [37, 38], to deliver interpretable action-
able insights to individuals.

To address the first challenge, researchers could leverage a long line of studies
in adaptive clinical trial and adaptive treatment regime, which have established the
benefits of incorporating sequential multiple adaptive randomized trial (SMART)
methods to achieve best mean outcomes [39–42]. More recently, researchers have
considered supporting just-in-time delivery of adaptive interventions [43, 44]. To
address the second challenge, researchers have started developing interpretable
machine learning models for healthcare applications [45]. However, most of these
studies define interpretability as a measure of model characteristics (e.g., complex-
ity) learned by the algorithms. The problem of such an operational definition is its
disconnection with actual user interpretation [46, 47].

To address both challenges simultaneously, most recently policy learning meth-
ods such as reinforcement learning are being studied to lend support to the
generation of easy-to-interpret adaptive strategies according to the observations of
target users [48, 49].

Another great domain wherein smart learning for mobile and IOT e-health can
make great impacts is to provide systematic support for operationalizing patient
education and coaching programs in daily-life settings. The prevalence of low health
literacy and self-efficacy in the population is one of the central problems in the
healthcare system. Due to the service-oriented nature of strict time scheduling,
physicians often cannot contribute significantly to patient education. A possible
solution is the use of automated educational systems, which adapt the delivery
of knowledge according to a learner’s needs and level of knowledge. Although
adaptive automated educational systems for other topics have been applied in
practice, the adaptive automated patient education system practically does not exist.

Several challenges have emerged therein. The key challenge lies on its long
development phase and non-standardized evaluation. Additionally, specific limita-
tions in the domain of healthcare lie on the needed amount of personal information
about the user and the number of related time-consuming assessments on the
patient’s side. Furthermore, there exist challenges on the bandwidth of healthcare
experts needed for implementing such systems and the difficulties in explicating
their knowledge.
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13.1.2 Incorporating Domain Knowledge in Data-Driven
Learning

To overcome these challenges, incorporating domain knowledge in the data-driven
learning framework would help. First, structural knowledge bases, such as decision
rules used in clinical practice guidelines (CPG), can help shorten the development
cycle and reduce the amount of data needed for training. Second, it can help avoid
the biased results because of its capability to better generalize and make the results
more self-interpretable among domain experts.

However, how to leverage structural knowledge bases to guide data-driven
learning remains to be a challenging issue. This is especially true in healthcare,
which has amassed evidence-based, comprehensive knowledge bases over the
years and is in need for interpretable decision rules to trust AI/ML-augmented
recommendations [50–52].

Previous solutions could be roughly divided into two categories. One is the
homogeneous method, which integrates knowledge-based representations (e.g.,
logic rules) with data-driven learning tasks into a unified inference framework
[53–55]. The other is the heterogeneous method, which integrates the respective
inference results from knowledge-based and data-driven modules [56]. While both
categories of methods have its merits, each has its own gap to fill before knowledge
bases and data-driven models can work together to generate real-world evidence in
healthcare practice.

13.1.3 Structure of the Book Chapter

In the rest of this book chapter, we will use three case studies to illustrate the
challenges and opportunities facing the development of a smart learning framework.
Across the three case studies, we will especially focus on the lessons learned from
applying smart learning for mobile and IOT e-health and embedding actionable
insights in care flows for decision-making.

The aim of this chapter is twofold. First, we would like to provide an overview
of the status quo of this emerging field of applying and developing a smart learning
framework for mobile and IOT e-health technologies. Second, we would identify
gaps and gather requirements to achieve the goal of generating real-world evidence
in practice. After introducing the cases studies, we will discuss the best practices
and barriers of implementing such a smart learning framework in real-life settings
and further developing a hybrid infrastructure that will allow the generation of
knowledge-augmented, data-derived insights for mobile and IOT e-health.
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13.2 Predictive and Reinforcement Learning for Life
Coaching

In the first theme of case studies, we introduce the potential of collecting heteroge-
neous personal health data via mobile/IOT e-health technologies and discuss how
to handle the issues regarding the volume, variety, veracity and velocity of such
data sources. In particular, we illustrate a number of smart learning approaches that
help with not only association mining from population-level “big data” but also the
identification of N-of-1 behavioral signature from personal-level “small data.” We
also emphasize on the importance of a smart learning framework and discuss how
policy learning approaches, which are inspired by reinforcement learning tasks such
as Q-learning, can be used to improve interpretability and actionable personalization
insights. The case study will be presented in two examples of application: exercise
behavior prediction and personalized stress management.

13.2.1 Background: Stress-Activity Data

Psychosocial stress contributes to heart diseases by affecting health-related behavior
patterns [8]. Exercise helps reduce psychosocial stress, thus in turn alleviating heart
disease risks [57]. There potentially exists a bidirectional relationship between stress
and exercise behavior. Therefore, understanding how exercise behavior influences
stress can provide insights of developing stress management tools; reversely,
understanding how stress affects exercise behavior can help build healthy lifestyle
interventions. To explore and test the bidirectional relationship, a single cohort,
12-month randomized controlled experiment has been conducted (refer to [58] for a
complete description of the protocol and data curation process). The dataset used in
this case study would be referred to as stress-activity data hereafter.

To achieve personalized stress management, how to collect real-time stress
assessment and exercise statistics continuously is a crucial but challenging problem.
There is a growing interest in using mobile and IOT technologies, such as
smartphones and wearable devices, for collecting health-relevant data and delivering
health guidelines [59]. The stress-activity data are collected from 79 participants
who were followed for up to a 1-year period with physical activity objectively
monitored by actigraphy and stress recorded via ecological momentary assessment
on a mobile app. Physical activity can be continuously monitored via mobile devices
(e.g., Fitbit) over a long time horizon. The Fitbit device tracks users’ daily physical
activity, including step counts, walked distance and burned calories. Fitbit wirelessly
transmits individual activity data in real time, thus preventing loss of data for
individuals who may otherwise not return the device. To collect stress data, an
electronic diary in mobile devices was used to capture momentary and summary
aspects of users’ stress experience. Self-evaluated stress level was recorded at
the end of each day via the electronic diary with specifically designed questions.
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The range of self-evaluated stress level is from 0 (“not at all”) to 10 (“extremely
likely”). In addition, exogenous and environmental variables retrieved from public
archives, such as day in a week, daylight time, temperature and precipitation, are
also included. These assessment instruments have been used extensively in the
literature with smartphone for EMA in recent studies [60].

The continuously collected personal health data is one type of the ecological
momentary assessments (EMA), which are used to repeatedly sample individuals’
experience and behavior in real time under their natural environments [61]. The
advantage of collecting EMA data is that it reduces recall bias and allows for a
closer investigation of the process dynamics that influence individuals’ real-world
state and behavior. EMA data collected from mobile and IOT e-health devices can
be used to personalize messages to individuals [28] and to support their self-care
management of certain concerns [62].

Powerful statistical methods have been proposed to model massive mobile health
data and characterize the bidirectional relationship between stress and exercise
behavior. With the advance of mobile and IOT technologies, data can be collected
in real time over a long time horizon. For data collected from an individual, referred
to as “small data,” N-of-1 analytical methods are available to estimate individual
effect and to provide personalized healthcare advices. To handle data collected
from a large group of individuals, referred to as “big data,” actionable learning
methods (inspired by reinforcement learning) are able to learn population-level
patterns and make recommendations to individuals. These methods offer a smart
learning framework to model large-scale and complex mobile and IOT e-health data
and shed light on the diverse and bidirectional nature of the relationship between
stress and exercise behavior in general.

13.2.2 Case Study: N-of-1 Analytical Methods

Individual information can be collected via mobile and IOT e-health technologies
for a long or even indefinite period of time. It is challenging to gain insights
from a massive volume of data to understand how modifiable variables influence
health outcomes of interest. The understanding of the relationship is traditionally
obtained at a population level. However, the environment exposures, individual
characteristics, and modifiable elements that affect the dynamics of the relationship
are usually individual-specific. Therefore, individual-specific analytical approaches
are desirable to design personalized guidance and tailor for individual needs. This
motivates the use of N-of-1 methods instead of the traditional population-based
approach. An N-of-1 trial is a clinical trial in which only a single individual is in
the entire trial and in which random allocation can be used to decide the order of
interventions given to the target individual. N-of-1 analytical methods utilize the
data collected from N-of-1 trials and provide a personalized assessment that leads
to better learning.
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To gain insights of how stress influences exercise behavior, [63] has proposed
to incorporate into the smart learning framework an N-of-1 method, which uses
random forest and classification tree techniques to model the individual trajecto-
ries. The understanding of stress-behavior pathway is traditionally attained at the
population level; thus, it ignores individual heterogeneity and may lead to biased
estimation.

The proposed approach explores whether an N-of-1 model can better capture
an individual’s stress-behavior pathway, thus providing useful individual-specific
pattern of stress to predict exercise behavior. This method consists of three steps:
First, a classification decision tree is built for each participant. Second, a ranking of
variable importance is measured by classification accuracy; only those variables that
achieve significant decrease in classification accuracy would be kept. Third, another
classification tree is built for exercise prediction using the selected variables. The
experiment result shows that the proposed N-of-1 approach achieved an average
lower classification error compared to a nomothetic approach. An example of an N-
of-1 tree and a nomothetic tree is illustrated in Fig. 13.1. A nomothetic tree predicts
exercise based on the data of all study participants, and an N-of-1 tree predicts for
each of the three study participants.

In this case study, we follow sport medicine guidelines to define exercise as any
consecutive 30-minute period within which 24 or more minutes were classified as
moderate or vigorous intensity. The analyses on the stress-activity data show that

Fig. 13.1 From Fig. 13.2 in [63]. Top: A nomothetic model of exercise prediction using all study
participants’ data. Bottom: three “N-of-1” models of exercise prediction for three study participants
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the average effect of a 30-minute bout of exercise on stress reported at the end
of that day is negative and highly significant. This effect has a high variability at
the individual level. In addition, there exists a significant negative average effect
of anticipated stress for a given day on the probability of exercising that day. This
effect also exhibits a high variability at the individual level.

Furthermore, a substantial proportion of individuals demonstrated significant
bidirectional effect of stress and exercise. This indicates that the anticipated stress
is associated with a lower chance for the individual to exercise, and exercising is
associated with a lower reported stress on the same day. However, the significant
effect in either direction is only demonstrated on a small number of individuals.

These findings highlight the limitation of the homogeneous assumption of
individuals and the necessity of investigating stress-behavioral pathways at the
individual level. This case study shows promise to research on personalized
medicine and maintaining health practices at the individual level.

13.2.3 Case Study: Actionable Learning Methods

Mobile and IOT e-health technologies that are able to continuously collect data over
an extended period of time could deliver interventions in an adaptive manner. In this
way, individuals can be provided with personalized coaching plans based on their
ongoing performance. Understanding the relationship between stress and exercise
behavior will facilitate transforming behavior patterns into actionable interventions.
In this case study, we leverage the stress-activity data to explore how to recommend
a sequence of actions to individuals in order to maximize the overall stress reduction.

One solution to that is to model the data through a sequential decision-making
process using reinforcement learning [64]. Particularly, Q-learning is a commonly
used reinforcement learning technique, which uses a sequence of state-action-
reward triples to determine a sequence of decision rules to maximize the cumulative
reward. Such decision models have been developed and tailored in the healthcare
area, with regression models to approximate the expected reward given action and
state [39, 40, 42]. Another solution is to model the expected rewards through direct
maximization when a particular form of decision rules is of interest [65–67].

However, as mentioned in the introduction of this chapter, there still exist
multilayer challenges in making the adaptive strategies interpretable. The decision
rules of assigning interventions, i.e., policies, generated by black-box learning
algorithms can be difficult to explain, rendering them unappealing in practical
settings in the healthcare domain.

To make recommendations for e-health users, it is hence imperative to develop
actionable analytics methods that can provide highly relevant and person-specific
insights. As healthcare decisions often involve unclear choices, we need methods
that can account for human psychology to support the implementation of effective
engagement technologies beyond simply addressing clinical efficacy. For example,
[68, 69] have proposed a method to estimate an interpretable policy that guides the



616 P.-Y. S. Hsueh et al.

delivery of interventions. This method applies a regression model to approximate
the expected reward with an additional threshold finding step, referred to as multi-
stage threshold Q-learning (mTQL), in order to produce explainable policies. The
estimated policy is a tree-structured policy that maps from historical observations to
a next-step recommendation, with the split threshold as a sub-goal of intermediate
reward change that helps differentiate whether a subject can obtain an optimal out-
come by adopting a different strategy. By applying mTQL to study the relationship
between stress and exercise behavior, the task of multi-stage stress management can
be cast as a sequential decision-making task of recommending exercise based on
micro-level feedback for stress reduction [68, 69].

In the stress-activity case study, the mTQL models stress reduction as the reward
to maximize and exercise behavior as the action to intervene. The action defined
as a binary variable to indicate whether the mean duration of daily moderate or
vigorous physical activity (MVPA) bout over the time period was greater than
30 minutes or not. The stress reduction is defined as the stress level difference of
current stage from a previous stage. The estimated policy is then used to understand
how exercise patterns affect users’ perceived stress levels and to perform coaching
more effectively.

An example of the estimated policy is shown in Fig. 13.2. For individuals who
have baseline stress level lower than a certain threshold, it would be important to
observe whether being active in the first week followed by a decrease of mean stress
level in the next week. If the mean stress level decreases less than a threshold, then
it is better not to suggest the active action any further to accommodate the individual
behavioral preferences and barriers. The analysis results show that dividing the
study period into multiple stages and incorporating more sub-goals for micro-
level feedback potentially help individuals achieving better stress reduction. Also,
when an individual has started going astray from his usual path, a corresponding
recommendation should be proposed for adaptation.

Moreover, another challenge is inherent in the large volume of mobile and
IOT e-health data, which can often be collected continuously over time due to
sensing technologies. In order to extract key features from these time series, [70]
proposed a novel quantile coarsening analysis (QCA) and applied to analyze daily
physical activity data. The key idea of QCA is to represent a time series by a
small number of quantiles of time of activity. By construct of this representation,
QCA is effective at capturing the time regions with high level of activities, in
addition to the magnitude of activity. These are usual key features of behavioral
patterns. In the analysis of about 20,000 time series of daily activity counts, [70]
represented each time series of 1440 time points by 19 quantile features (1.3%
of original data), used the quantiles as inputs in unsupervised learning, and was
able to identify clusters that were distinctly associated with users’ characteristics
(e.g., employment status) and extraneous variables (e.g., weekday vs weekend).
From a computational viewpoint, since quantile transformation requires only simple
and scalable computations, QCA can be efficiently applied to large-scale data and
facilitates “on-the-device” computations in mobile phones. While developed in the
context of activity counts, QCA is a versatile analytical tool that can be applied to
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Fig. 13.2 From Fig. 13.3 in [69]. Estimated optimal policy for a four-stage study using the stress-
activity data. Note: bl means baseline

data streams collected through mobile devices such as heart rate variability, sleep
duration, and location for geofencing.

In summary, there exist various learning technologies that help us uncover the
previously implicit cognitive map of bidirectional pathway between stress and
exercise behavior for individual users. These insights serve as the foundation for
a more progressive version of behavioral coaching and patient-centered care in the
future.
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Fig. 13.3 In [71] division of
learning modules in the
category daily care activities
(n = 243)

13.3 Knowledge Symbiosis Learning for Care Management

In the second theme of case studies, we introduce the potential of applying a smart
learning framework that incorporates domain knowledge with data-driven learning
into a fully automated patient education system. In particular, we focus on providing
situational support to caregivers via mobile assistants that can learn from user
feedback. We will discuss two major types of learning approaches and provide
evidence on the superior performance of the hybrid approach. In this case study,
we will describe a major German national cohort study, Witra-Care, and use it to
illustrate how the Mobile Care Backup (MoCaB) system adopts a knowledge-based
infrastructure to enable a mobile agent to act intelligently in response to a situation.
As such, a variety of assessments would be deployed to monitor caregivers and
their relatives. The knowledge-based infrastructure would then derive actionable
insights from the assessments to check on patient compliance and provide the
aforementioned situational support.

13.3.1 Application: AI in Intelligent Education for Healthcare

One of the central problems of the global healthcare system is the low health
literacy at the population level. Take Germany for example. More than half of
the German population have considerable difficulties in finding, understanding,
assessing, or applying relevant information [72]. Based on the WHO estimates
[73], an approximated burden of 15 billion euros per year is imposed on the
German healthcare system. Similar trends are commonly observed across the globe.
Increasing access to health-relevant knowledge is hence a highly important task for
the society.

However, the solution is not straightforward in current system, wherein the
strict scheduling of physicians only allows for limited time for patient education
[74]. Over the years, with the increasing technical competence of e-health users,
the barriers have decreased for the adoption of a technology-enabled solution for
healthcare education. However, so far – to the authors’ knowledge – there has
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not been a technology-enabled education system in healthcare yet. Meanwhile,
the idea of building automated education systems already finds its application in
many other fields, such as student education. In this case study, we will discuss
the development of a hybrid smart learning framework that incorporates knowledge
symbiosis learning in the implementation of similar applications.

13.3.2 Background in Intelligent Tutoring Systems

The intelligent tutoring system (ITS) is a typical example for educational systems.
Here, teachers are supported by a computer system that can help structure a student’s
learning process. This sort of intelligent systems is expected to lend support to
personalized tutoring and in turn reduce the teacher-student ratio. This would help
grant easier access to quality education. ITS is different from computer-assisted
instruction, where computers are utilized for administering the delivery of content
with predetermined rules. Instead, ITS adapts the learning process individually for
each student and therefore is referred to as intelligent. Typical applications of ITS
include automated diagnosis of student weakness areas and automatic adjustment of
education content according to the degree of difficulty.

The current development of ITS benefits from the foundation set by learning
theories developed over the past few decades. For example, cognitivistic theories
help inform ITS design in knowledge provisioning in relation to a learner’s pre-
existing knowledge [75, 76], whereas constructivistic theories help ITS to provide
exercises in the learner’s realistic settings and select learning tasks relevant to the
learner’s living experiences [77]. (For a review of the major learning theories, please
refer to [78].)

A prerequisite of ITS is a lower barrier of access to technology. This was first
reached in the 1980s by the introduction of personal computers leading to a boom of
ITS. One example from that time is the LISPITS [79]. It was developed for teaching
the programming language LISP. The system was able to detect errors and provide
constructive feedback in real time [79, 80]. LISPITS has yielded positive evaluation,
reducing the required time for learners to complete their assigned exercises while
also improving on their scores [81].

The smart learning framework developed to support ITS consists of the following
four models:

• Domain model
• Student model
• Tutoring model
• User interface model

First, the domain model or expert model represents the domain knowledge of
an expert. More precisely as depicted in [82], it “contains the concepts, rules and
problem-solving strategies of the domain to be learned. It can fulfill several roles: as
a source of expert knowledge, a standard for evaluating the student’s performance
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or for detecting errors, etc.” To represent the domain models, both glass box model
and the black-box model have been developed. In the glass box model, domain
knowledge is represented by an expert system, which claims to be capable of
representing the experts’ problem-solving strategy and is accessible by the students.
The black-box model, on the contrary, does not claim this [83].

Second, the student model represents a variety of properties of the students. The
functionality of the ITS depends directly on the amount of information provided
by the student model; therefore, the student model should be as comprehensive as
possible. This includes all the factors that influence the student’s learning behavior,
e.g., the student’s cognitive and affective state or learning progress. Based on the
data collected, the student model infers new knowledge about the target student
and to leverage such knowledge for selecting a pedagogical strategy. Sometimes
it is called diagnostic model as it is used to diagnose the learning process. One
common way to model the student’s knowledge is to model it as a subset of the
expert knowledge base or as the difference from the expert knowledge base.

Third, the tutoring model unites the knowledge from both the domain and the
student model to adapt the tutoring strategies. It simulates the pedagogic behavior
of a human teacher to select content and plan for interventions.

Finally, the interactions with the learner are realized by the user interface model.
Because the presentation type often affects student’s learning capabilities, ITS
would need to account for different visualization strategies [82].

For the implementation of these models in the smart learning framework, various
artificial intelligence approaches have been deployed. In particular, two main
categories of methods emerge: symbolic AI and soft computing. The first category
of symbolic AI methods is knowledge-driven and requires the explicit representation
of knowledge bases, which means to explicitly express expert knowledge in
formal forms using a representation language. The expatiating process incorporates
significant cognitive work and therefore often results in high-quality knowledge
bases.

Contrarily, the second category of soft computing methods is data driven and
learns a desired behavior by investigating existent data. During the learning process,
the parameters of a mathematical model are adapted according to the observation of
learner performance. Generally, the learned internal representation is not directly
accessible and not understandable by humans, as most soft computing models
behave like black boxes.

Since both categories of method have their strengths and weaknesses, researchers
have investigated into the possibility of combining methods from both categories
into a knowledge symbiosis learning framework. (For comprehensive analysis,
please refer to [84].)

For example, [85] developed an ITS that aims to leverage the everyday working
knowledge of control center operators for incident analysis and diagnosis as
well as for service restoration. The system consists of two parts, DiagTutor and
CoopTutor. The first part is used for the training of fault diagnosis, and the second
part is used for restoration training. During diagnosis, control center operators
must analyze a combination of alarm messages and additional information, for
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example, temporal sequence of the alarms, in order to identify the root cause of the
fault. Furthermore, the control center operators need to deal with incomplete and
inconsistent information due to data loss or additional errors. The user is modeled
by his conclusions about the faced problem, and as domain model an existing expert
system is used. This expert system [86] is in use as a decision support system at
a real power plant to identify operators’ misconceptions and to assist in problem
solving with hints by monitoring a student’s learning process. The main components
of this expert system were written in Prolog, a knowledge representation language
that had a huge impact in AI.

The tutoring module, named as curriculum planning module, utilizes case-based
reasoning to find a problem fitting the target student’s needs. In order to increase
the coverage of scenarios the ITS can handle, the knowledge base consists of both
situations from a real control center and artificial cases. A rule-based system in
the backend is implemented to adapt the level of difficulty of the content, taking
the student’s global knowledge level and the student’s learning rate into account.
The ITS also leverages an artificial neural network to calculate the distance for
case-based reasoning. Given a student’s knowledge level, it calculates the adequacy
for every case in parallel. This setup is a good example of how the two different
AI techniques can be integrated. The CoopTutor also adopts constrained-based
modeling, a mathematical approach in which decisions have to be made in a rule-
bound system, in order to accommodate the cooperation aspect in a multiagent
system. All important roles of the control center are either simulated or taken by
students. When educating a team of students, the interaction pattern is analyzed by
the system to ensure everybody is participating in the training [85].

In terms of knowledge representation, typical techniques for student modeling
include ontologies [87–89] and fuzzy logic [90, 91]. The same techniques are
commonly used for the domain model. A few student models have used artificial
neural networks [92]. ITS systems commonly apply the same technique for both
model types [87–91]. This is due to the increased implementation effort when
deploying multiple techniques in a single system.

An exception is provided in [93], where fuzzy logic is used for domain modeling
and a combination of fuzzy logic and rules is used for student modeling. This
approach exhibits no explicit tutor model. The tutor functionality in this ITS is
implicitly implemented by the combination of the other two models. The tutoring
modeling commonly adopts techniques such as fuzzy logic [87, 90, 91] and case-
based reasoning [91, 94]. The extensive use of soft computing approaches is an
indication of the elusiveness of this problem.

13.3.3 Challenges Facing the Development of ITS

The development of an intelligent tutoring system has confronted several challenges.
First, the development process is usually a very long-term task. The development of
the above-presented system by [85], for example, spanned longer than 10 years.
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Such a long development process is cost-intensive and can hold a high risk of poor
transferability in real world settings. As a result, its development often does not pass
the prototype phase.

Second, the evaluation process of ITS is also challenging as ITS is often complex
and composed of multiple system components. The combination of a variety of AI
methods complicates the task as well. Although different evaluation techniques have
been developed [95], there is still no one-fits-all approach; hence, no guarantee to
the generalizability of the evaluation results. Generally, only the behavior of the
complete system can be observed, and even if a fault is detected during evaluation,
the localization of the fault inside the system can be difficult.

Third, the elusiveness of expert knowledge also poses challenges. When being
inquired on the same question multiple times, the surveyed experts would often
provide different answers to the same question. One approach to tackle this
elusiveness is soft computing, in particular, fuzzy logic.

However, additional challenges arise when ITS is to be implemented in the
healthcare domain to counter the health literacy issues of the population. For one, the
target learners of ITS in this domain start with little domain knowledge. Therefore,
a proper ITS must address a wide range of topics. But with the increasing range
of topics, the domain and tutoring models must also be more comprehensive; yet,
the features and information needed for doing so in the healthcare domain are highly
heterogenous. A comprehensive assessment indicates a significant time commitment
and burden for the patients, which results in the decrease of system usability.

Last but not least, healthcare experts often find it difficult to formalize the
knowledge bases needed for building up ITS knowledge delivery strategies inside
the domain and tutoring models. Furthermore, these are the experts who have very
strict time constraints, and consequently the very short evaluation makes it difficult
to properly evaluate the systems validity.

13.3.4 Case Study: Implicit Knowledge Learning for Nurses

Personal exchange has a strong influence on the learning process in nursing [96],
but heavy workloads and high employee turnover show the necessity of on-the-
job training. In this case study, we introduce the Witra Care (a German acronym
for knowledge transfer) project, which aims to employ mobile technologies to
support on-the-job training processes for nurses by recording, categorizing, and
re-providing knowledge snippets in the form of micro-learning modules [97]. At
Hannover Medical School (MHH), experienced nurses support new employees for
several weeks by sharing their knowledge. In Witra Care, nine new employees
and seven experienced nurses created micro-learning modules in a mixed form
of text, images or recorded video and audio via a mobile application. As such,
they collectively created 303 learning modules, which were structured around the
following three categories: daily healthcare activities, health quality management,
and general information for new employees. These categories are not disjunctive,
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and each has several subcategories. Most modules were allocated to the category
of daily care activities. Among the learning modules, those regarding specific care
activities were mostly created by new employees, whereas those regarding general
information for new employees were mainly created by experienced nurses (see
Fig. 13.1) [71].

Using these learning modules, the nurses’ explicit and implicit knowledge could
be visualized and utilized for instructing new employees to the ward. Furthermore, it
is now possible to tell the differences between what new employees and experienced
conversant nurses consider as important for acquisition. The findings could help
improve the training process of new employees. A main mobile app-based interface
was developed. Furthermore, speech-controlled smart glass-based interface was also
developed as a hands-free device for tasks such as preparing for an operation.
The nurses showed interest in the use of new technologies for supporting on-the-
job training. However, there exist technical limitations, e.g., short battery lifetime,
inherent to the wearable interface, which significantly limit the use of such wearable
interfaces in real-life settings [97].

13.3.5 Case Study: Implicit Knowledge Learning for
Caregivers

In Germany, there are about 2.9 million people in need of care, with 1.38 million
being generally supplied by relatives only [98]. In this case study, Mobile Care
Backup (MoCaB), a support system for informal caregivers taking care of their
relatives, is developed in the form of a mobile application. The situation of caring for
a relative often comes spontaneous and surprising and so informal caregivers often
complain about a lack of required knowledge. Therefore, the main component of the
supportive system is a proactive knowledge provision. Besides this, the caregiving
relative receives instructional exercises for self-relief and support with his or her
organizational network. These knowledge-driven components account for the fact
that the knowledge demand of a caregiver differs from professional nurses, and
hence the knowledge provided must be comprehensive yet easy to interpret.

In this case study, experts in nursing science created 87 knowledge resources,
each of which was presented as a textual dialog with a caregiver. The knowledge
resources focus on fundamental topics and topics relevant to caregivers caring
relatives suffering from stroke or dementia.

In addition to knowledge resources, the experts also formulated delivery strate-
gies regarding the care recipient’s disease, residential situation, and the duration of
the care situation. These strategies are implemented as an ontology using the web
ontology language (OWL). However, the experts were only able to formulate an
explicit delivery strategy for a very small number of knowledge resources as this
is not their main expertise. For the rest of knowledge resources, the experts were
not able to formulate such delivery strategies, but still indicated that these were
important topics to be covered.
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This gap surfaces the need to handle both explicit and implicit knowledge. While
the implicit knowledge is elusive and would often require the use of examples to
make such knowledge interpretable, the example-oriented approach did not cover
all the topics. Therefore, to characterize the rest of critical knowledge resources, the
assessment forms from the student model were used.

In particular, the student model utilizes two comprehensive assessment instru-
ments: (1) the caregiver burden inventory (CBI) [99] and (2) a German survey
assessment (NBA) [100]. The first assessment instrument, as the name suggests,
measures the burden of a caregiver. It includes 24 items, which are divided into
five segments: time dependence, developmental burden, physical burden, social
burden and emotional burden. The regular use case of the second instrument,
the NBA, is the determination of the amount of financial relief due to persons’
needs of assistance. It spans six different areas, including mobility, cognitive
and communicative abilities, psychological problems, self-reliance and organizing
everyday life. In the use case’s student model, parts of it are used to infer from the
patient’s needs to the caregiver’s issues. All items of the assessment tools used in
the student model are represented as Boolean values.

To explicitly extract the implicit knowledge delivery strategies from the experts’
minds, they were asked to weigh each assessment item with the score of 0–3 for
every knowledge resource. Thereby, a zero weighting indicates that the item is not
important for the provision of this knowledge resource and a weighting of three
indicates that the item is highly important for the provisioning of the knowledge
resource. To make a statement about the importance of a knowledge resource for
a specific caregiver, the caregiver’s profile and the experts’ weighting must be
matched. This is done by calculating a score based on formula (13.1), where ni

is the number of profile items marked with weight i and ci is the number of profile
items of weight i fulfilled by the caregiver:

s = c1 ∗
1
6

n1
+ c2 ∗

1
3

n2
+ c3 ∗

1
2

n3
(13.1)

The weights assigned by the experts are dynamized by dividing a fixed portion
by the number of items marked with this weight (ni). The fixed portions follow the
same distances as the weights assigned by the experts. The use of dynamical weights
provides an edge, wherein the percentile of a weighting group i is independent
from the number of items with this weight [101]. If the scores are calculated for
all knowledge resources in a given profile, the knowledge resources then can be
ordered by importance and delivered in descending order (from the most important
to the least).

But even with the comprehensive assessment by CBI and NBA and formula
(13.1), it is not possible to deliver all knowledge resources dynamically. A small
number of knowledge resources about basic care knowledge are problematic. Since
some of these knowledge resources include fundamental knowledge, they will
be shown to all caregiving relatives before starting with the dynamical proactive
delivery of knowledge. Thus, the delivery strategies of the tutoring model are
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Fig. 13.4 Dialog-based user
interface for knowledge
delivery of the MoCaB
mobile application translated
from German

composed of two parts: the first part handles the rule-based delivery of basic care
knowledge in the beginning, implemented as an OWL ontology, and the second part
is based on a statistical scoring function. Thereby, the ontology excludes irrelevant
knowledge resources and includes relevant knowledge resources, which are then
rated by the scoring function.

The knowledge delivery user interface is based on a dialog with a hypothetical
advisor, who guides the conversation. The interface is similar to messenger chat
histories (see Fig. 13.4), commonly used by smartphone users. For system interac-
tions, two buttons are provided. The first button above indicates the choice of getting
more knowledge about a specific topic, and the second button below helps skip to the
next topic. For this, the knowledge resources are all represented in an XML-based
format. The first button plays the next system-side message with the next belonging
user answer inside a knowledge resource, and the second button leads to the next
dialog from the list ordered by the importance as determined by the tutoring model.

Furthermore, additional information about the relationship between the caregiver
and the care recipient is used to personalize the dialogs. In order to emphasize on the
personalization aspect of the knowledge delivery strategy, a direct addressing was
used instead of the German polite form in the dialogs. This dialog-based presenta-
tion for content delivery received positive feedback in the usability evaluation study;
the subjects were all able to operate the whole dialog without further intervention
[102]. Besides the proactive delivery, all knowledge resources can be accessed
independently from the user profile of the mobile application.
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In another follow-up evaluation study, the subjects also provided positive
feedback to the knowledge delivery strategies. In addition, another expert group
was also consulted to assess the validity of the knowledge delivery strategies. In
this follow-up evaluation study, the experts were asked to judge the orderings of
knowledge resources for given profiles. The test scenarios used in this part of
evaluation included not only the orders obtained by the MoCaB system but also
artificial orders that were designed to be (partly) incorrect. This evaluation process
was repeated a few weeks later with the same group of experts.

The evaluation results show that the experts were able to capture and correct
inconsistencies in the implicit part of the domain model. But on the one hand,
it is not possible to find all inconsistencies with this approach, and, on the other
hand, the experts’ judgments from the first and second repetition differed in
some cases, illustrating the elusiveness of their implicit knowledge. Moreover, this
evaluation only incorporates the opinions from a small number of experts, leaving
its generalizability to be questionable.

However, in this case study, the focus is on educating informal caregivers by
providing them personalized knowledge, and this group of users should be able
to judge and provide feedback on whether the knowledge profile created for them
fits their own expectation. By utilizing the additional information, the system
can address the abovementioned problems by adding an algorithm-driven learning
capacity. Since the internal structure of delivery strategy after feedback optimization
is not known, the algorithm must have the capability to adapt. For example, an
artificial neural network (ANN) is particularly suitable for its strength in capturing
intricate relationship in high dimensional data.

Even though the knowledge delivery algorithms mentioned above seem to work
quite well [101], it could be further improved by user feedback. To achieve this, both
the domain model and the tutoring model should be integrated into the artificial
neural network. There are multiple ways to implement this. The first option is to
train the ANN for importance scoring. Because the goal of the overall task is to
determine the ordering of available knowledge resources, the ANN could calculate
the scores for all knowledge resources in parallel, which then must be ordered
externally. Another option would be to train the ANN for both scoring and ordering.
To enable the second option, a more complex network structure is needed, which
would in turn result in a much longer training phase. The extra effort is non-trivial,
compared to simply applying a common sorting algorithm.

The schematic representation of a working ANN structure is shown in Fig. 13.5.
It first receives the input from the student model (via the CBI and NBA assess-
ments) and returns a score for the importance of every knowledge resource, each
represented by an output neuron. In this setup, the neural network must extract the
implicit knowledge (e.g., experts’ domain knowledge and the delivery strategies
from the tutoring model) from observation data while training. The regression
models themselves are each performed by a strain inside the network. The strains
consist of three fully connected layers. Whereas one layer is for extracting the
expert weightings while training, the other two layers are for regression itself. In
the first training step, the artificially created profiles are used to teach the ANN
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Fig. 13.5 Schematic representation of the artificial neural network used for user feedback
utilization. The number of neurons inside the single strains are simplified and not representative

the expert’s domain knowledge and existent delivery strategy, followed by a second
training step utilizing the user feedback. In the second step, the user feedback will
be consolidated to adjust the output of the ANN.

13.4 Continuous Learning for In-Field Decision-Making

Last but not least, we introduce the potential of learning from continuous monitoring
over time, especially how to learn actionable insights from long-term monitoring not
only to inform in-field operation decisions at the personal level but also to inform
policy-making decisions at the population level. The case study of Blast Gauge, a
small device currently being worn by US Army Soldiers in Afghanistan, would be
given to illustrate how applying smart learning methods to learn from continuous
monitoring data can help quickly assess the possible impact of explosive blasts,
come to rapid treatment of the affected troops, and eventually lead to important
longer-term policy decisions.

13.4.1 Application: Risk Inference for Traumatic Brain Injury

Traumatic brain injury (TBI) is a major cause of death and disability, contributing
to more than 2.5 million ED visits, 282,000 hospitalizations, and 30% of injury
deaths in United States alone [103]. In battlefields, TBI is the result from non-
kinetic explosive effects on soldiers, yielding more than 200,000 injuries per year
[104]. Previous studies such as DARPA’s Preventing Violent Explosive Neurologic
Trauma (PREVENT) program have shown that TBI caused by blast exposure has to
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be treated differently from typical overpressure injuries, hence needing a granular
understanding of the relationship between the blast components and neurological
injury. However, existing practice of medical personnel relies on visual signs and
personal accounts of patients to alert them about the possibility of TBI.

In this case study, we introduce the DARPA Blast Gauge project, which aims
to identify a quantitative means for measuring blast-related exposure and in turn
provide a screening tool for medical personnel to better identify soldiers at risk for
TBI. The Blast Gauge collects quantitative data along with the screening tool in
order to uncover the mechanisms of TBI.

During the course of pilot testing over 2 years, the Blast Gauge has been used
to check on soldiers who suffered shrapnel injuries (visible wounds) but did not
report blast exposures to the medical personnel. By design, the Blast Gauge is a
wristwatch-sized, self-contained system that continuously measures the amount of
blast exposure a soldier has been exposed to. The color of the light (red, green,
yellow) on the gauges display signals the level of exposure occurred during the
engagement. Following the light indicator, different treatments would be prescribed
according to the standard protocol. For example, if the light is yellow, which
indicates moderate exposure, the medical personnel would download the data from
the Gauge to evaluate the risk for TBI. If a mild TBI is detected, then follow-up
treatment for TBI will begin immediately.

The pilot testing study consisted of two phases. The first phase of the pilot
involved approximately 900 soldiers of an Army brigade in their active combat
roles. The second phase of the pilot study deployed the Gauge to more than 10,000
soldiers in a variety of units across the military. The monitoring data collected by
the Gauge not only provide accurate information collected by the Gauge are used
for medical personnel to understand what their patients actually experienced during
an exposure. This capability enables actionable insights being generated for in-field
decision-making for medics and doctors and embedding such actionable insights
directly in the care flow that provides immediate triaging to injured soldiers. For
example, DARPA was using the data compiled from these devices to understand
blast propagation, provide new insights into sources and causes of traumatic
brain injury, and ultimately develop technologies that help minimize exposure and
improve medical care.

The continuous measurements and visible signs for person-level in-field
decision-making, but also provide a quantitative basis to enable policy-level
decision-making and develop a long-term TBI diagnostic solution for the battlefield.
This is especially important to the Army, in which soldiers are used to the mentality
of not seeking medical aid for the “invisible” injuries, such as TBI. The Gauge
not only stop at the diagnosis of the TBI risk, but also helps ensure the triage –
even in the cases in which soldiers might downplay their own symptoms to avoid
being taken out of fight. The positive results of the pilot study have led to the
encouragement of the House Armed Services Committee in its 2013 National
Defense Authorization Act Report [105].
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13.5 Discussion

Generally, a smart learning framework consists of three major components –
representation, evaluation, and optimization [37]. Using the above three themes of
case studies, we provided a snapshot of three major applications using state-of-the-
art smart learning methods in this framework on mobile and IOT e-health.

By incorporating N-of-1 analytics and actionable learning methods, the smart
learning framework helps uncover the previously implicit behavioral pathways
that depict the sequential bidirectional relationship between stress perception and
exercise behavior. It also helps improve the experience of using the actionable and
interpretable insights learned from mobile and IOT e-health data, leading to better
integration of data science and science of care for patient-centered care.

By incorporating knowledge-enhanced learning methods, the framework can
leverage the injected knowledge bases to provide a better learning performance with
less bias and more interpretability. Table 13.1 lists a few examples of knowledge-
enhanced learning methods in the framework.

First, for the representation component in the framework, knowledge injection
can help refine input features in at least the following three ways: (1) adding
knowledge-based features; (2) reconstructing features based on the hierarchical
structure of knowledge bases; (3) discovering novel feature relationships from
knowledge bases.

Second, for evaluation, knowledge injection can enhance our understanding
of data-driven models or even help refine model parameters. Take clustering
for example, treatment guidelines can help estimate how many sub-populations
(clusters) could be identified by the algorithm. Take graph modeling as another
example. Literature about disease stages can help determine the number of latent
states. Finally, for optimization, we can perform model compression with knowl-
edge distillation [56], filter knowledge-conflicting targets from recommendations
directly, or perform knowledge-based regularization in learning networks [53]. In
particular, logic rules have been used for knowledge-based post-regulation, e.g., in
[53], to improve the deep neural networks such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs). Similarly, incorporating logic rules
into Latent Dirichlet Allocation has been introduced in [54, 55].

Table 13.1 The three components of learning frameworks and examples of knowledge injection-
based enhancement

Representation Evaluation Optimization

Adding knowledge features; Verify weighting of feature
correlations;

Knowledge filtering;

Reconstructing features with
knowledge-based hierarchy;

Determine the number of
sub-populations to be clustered;

Post-regularization

Discovering novel feature
relationships from knowledge

Determine the number of hidden
states (e.g., disease stages)
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Besides, the framework could be developed with different smart learning princi-
ples, ranging from supervised learning to unsupervised learning and reinforcement
learning. The data sources could be structured (e.g., electronic health records),
unstructured (e.g., clinical notes), or semi-structured (e.g., medical images). The
knowledge sources could be clinical guidelines (e.g., NICE guideline for type 2
diabetes management [106]), well-known risk models (e.g., Framingham Cardiovas-
cular Disease 10-year risk model), and medical concept graphs (e.g., a knowledge
graph of medical concepts for estimating feature correlations). The applications of
such frameworks widely range from the determination of clinical trial eligibility
[107] to risk assessment and treatment recommendations [56].

In retrospect of the MoCaB case study, quite a few lessons about the best practice
and requirements for future implementation have been learned. For example, at
the beginning of the study, the plan was to implement a fully rule-based system.
However, because only a small portion of the experts’ knowledge is explicitly
expressible, this plan had to be adapted by finding an appropriate assessment to
extract the implicit knowledge for the domain model. Yet this task has been proven
to be time-consuming, since it involves an iterative process incorporating extensive
cooperation between domain experts in healthcare and experts in computer science.
This workload should be regarded when planning to develop such systems in the
future.

Furthermore, the integration of the target users plays an important role for the
development of an ITS system for care management. The choice of the system’s
target user group and recruiting of participants should account for not only their
information and social need, but also the burden on their time commitment.

Our results indicate that AI-based systems can contribute to adaptive education of
caregivers for care management. While this approach necessitates intensive efforts
in terms of participatory system design and evaluation, its potential benefits may
prove rewarding.

In this chapter, we have gathered requirements for evolving a smart learning
framework to incorporate N-of-1 actionable insights and knowledge learning sym-
biosis in healthcare, aiming to generate real-world evidence in practice. In particular,
this chapter focuses on promising applications and smart learning methods that help
combine data with a priori knowledge for decision support. This chapter aims to
share with leading practitioners and researchers in the field about the requirements
for the next-generation, data-knowledge fusion systems, especially in areas where a
large amount of evidence has been accumulated in knowledge bases.

We provided an overview for the principles and methodologies of the framework
for better interpretability. To achieve this, there exist new challenges that would
require breakthroughs in both continuous learning analytics and implementation
science. While the former uncovers relationships between patient-specific character-
istics, treatment trajectory and patient response to interventions, the latter provides
guidance to embed actionable insights into care flows in practice for sense-making
and decision support.

In the future, the smart learning framework for mobile/IOT e-health is expected
to further help patients in chronic disease management scenarios, or monitor
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mental health conditions such as Parkinson’s, Alzheimer’s, Huntington’s disease,
post-traumatic stress disorder (PTSD), and behavioral conditions such as autism
and ADHD. Further analysis of a patient’s speech or written notes can identify
additional indicators of meaning, syntax and intonation in language. Combining the
various measurements from heterogeneous mobile and IOT e-health data with other
clinical information sources such as magnetic resonance imagings (MRIs) and EEGs
can paint a more complete picture of the individual-specific characteristics for health
professionals to better identify, understand, and treat the underlying disease. The
important part of mobile and IOT e-health is to make what were once invisible signs
become clear signals of patients behavioral risk and how well they are responding
to interventions, complementing regular clinical visits with EMA assessments in
daily-life settings.
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