
Chapter 9
Effective Elastic Properties Using Maxwell’s
Approach for Transversely Isotropic Composites
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Abstract In this contribution an analysis of static properties of transversely isotropic,
porous and nano-composites is considered. Present work features explicit formulas
for effective coefficient in these types of composites. The reinforcements of the
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composites are a set of spheroidal inclusions with identical size and shape. The
center is randomly distributed and the inclusions are embedded in an homogeneous
infinite medium (matrix). An study of theoretical predictions obtained by Maxwell
approach using two different density distribution functions, which describe the
alignment inclusions is done. The method allows to report the static effective elastic
coefficients in composites ensemble with inclusions of different geometrical shapes
and configurations embedded into a matrix. The effective properties of composites are
computed using the Maxwell homogenization method in Matlab software. Another
novelty of this contribution is the calculation of new explicit analytical formulas
for the control of the alignment tensors N∗ and Ns∗ which is in charged of the
alignment distribution of inclusions within matrix through disorder parameters λ
and s, respectively. The alignment tensors N∗ and Ns∗ are obtained as average of
all possible alignments of the inclusions inside the composite. Numerical results
are obtained and compared with some other theoretical approaches reported in the
literature.

Keywords: Maxwell’s scheme · Inhomogeneities · Homogenization · Transversely
isotropic composites

9.1 Introduction

It was the scientist James Clerck Maxwell, who proposed a method to calculate the
effective conductivity of a homogeneous spherical material that contained a finite
amount of inclusions of spherical type in Maxwell (1954). This aroused the interest
of the scientific community since in its method Maxwell did not consider interactions
between inclusions and arrived, in the case of spherical inclusions, to the same
predictions as other methods that take them into account.

In Kanaun (2016); Levin and Kanaun (2012) recent results are presented in this area.
In Kanaun (2016) four methods are compared, the original and generalized Maxwell
schemes and the one-particle and multi-particle effective field methods (EFM). Those
approaches give closed predictions for small volume fractions of inclusions (p < 0.3),
furthermore, another method such as (MT) method is mentioned, concluding that
in the case of isotropic materials with spherical inclusions of equal behaviour, the
original Maxwell and the one-particle effective field methods, coincide in their results,
and in the case of spheroidal inclusions the original Maxwell and the one-particle
EFM deviate substantially from the multi-particle EFM and generalized Maxwell
scheme, being remarkable that both last approaches coincide practically for all
the values of the volume fraction. The Maxwell method is extended in Levin and
Kanaun (2012) to an homogeneous anisotropic medium containing an arbitrary set of
homogeneous anisotropic ellipsoidal inclusions, where it is shown that the explicit
equations obtained by the Maxwell method for isotropic materials coincide in the
case of spherical inclusions with the MT, and for spheroidal inclusions oriented in a
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parallel direction, the equations for the effective elastic modulus tensor are the same,
which are obtained by Maxwell and MT methods.

In addition, in Sevostianov (2014), Maxwell’s scheme is reformulated from the
rigidity and flexibility contribution tensors, being remarkable that the form of the
fictitious building, affects the predictions of the effective coefficients. Moreover,
explicit formula for choosing the aspect ratio of fictitious building is given when it
presents spheroidal shape, and the advantages of the Maxwell method are proposed. It
shows that the reformulation of its scheme as a function of the tensor of contribution of
flexibility, is equivalent to the reformulation as a function of the tensor of contribution
of rigidity. In Sevostianov and Giraud (2013), the Maxwell method reformulated as a
function of the rigidity contribution tensor is illustrated, through four examples: the
first is a material that contains multiple pores of identical form, the second, a material
that contains three families of inclusions that have different properties and forms, the
third, a material that contains circular cracks with certain orientations and, finally, a
material containing randomly oriented pores with no ellipsoidal shapes.

In Martinez-Ayuso et al (2017) a study is presented on the homogenization of
piezoelectric materials with pores, through numerical and analytical methods. The
results obtained in Martinez-Ayuso et al (2017) are compared by two different
methods: (MT) method and self-consistent scheme of Hershey (1954) and Kröner
(1958). Besides, these results are contrasted with two classical bounds known in the
homogenization theory, the Hashin-Strikman and Halpin-Tsai bounds. In addition, a
numerical model (FEM) of representative volume element is developed, based on
the analysis of finite element for different percentage of inclusions in the material.
The locally exact homogenization theory for unidirectional composites with square
periodicity and isotropic phases proposed by Drago and Pindera (2008) is extended in
Wang and Pindera (2016) to architectures with hexagonal symmetry and transversely
isotopic phases, through a numerical method that uses Fourier transformation.

In McCartney and Kelly (2008) the far-field methodology developed by Maxwell
(1954), is used to estimate effective thermoelastic properties in multi-phase isotropic
composites. Furthermore, effective bulk and shear moduli are estimated, as well
as thermal expansion coefficients in these types of composites. Besides, results are
compared with formulas and dimensions, known in the literature. The generalized
Maxwell method is developed by Levin et al (2012) for the calculation of effective
parameters in poroelastic composites. This method is compared with other self-
consistent methods existing in the literature. Moreover, examples of applications
of the generalized method of Maxwell for the calculation of effective parametric
parameters for heterogeneous materials constituted by rocks are reported. The Maxwell
homogenization scheme (Kushch and Sevostianov, 2016) is formulated in terms of
moments of dipole and of the tensor of contribution of element of representative
volume, also deals with the problem of effective conductivity in a composite with
spheroidal inclusions aligned, analyzing the convergence of that solution.

The novelty of the present contribution is the derivation of explicit analytical
formulae for the control of the alignment tensors N∗ and Ns∗. These functions
distribute the alignment of inclusions inside the matrix material through disorder
parameters λ and s, respectively, obtained as an average of all possible alignments of
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the inclusions within the nano transversely isotropic composite. Another novelty of
this contribution consists in the study of Maxwell’s approach predictions using two
different density distribution functions (Sevostianov, 2014; Giraud et al, 2007) for
alignment inclusions inside the composite. The different types of inclusions taken
into account in the model are spheroidals. Spheroidal fibre, spherical inclusion and
spheroidal disk are considered for different ranges of the aspect ratio parameter.
Moreover, explicit formulae for effective elastic tensor are given for porous, nano
and composites with global transversely isotropic behaviour formed by constituents
with transversely isotropic symmetry as well. Comparisons with other theoretical
approaches, such as, closed relations reported by Christensen model and FEM (Dong
et al, 2005), Locally-exact homogenization theory (LEHT) (Wang and Pindera, 2016),
among others are given.

9.2 Statement of Fundamental Equations

A solid material of volume V that posses linear elastic behaviour is considered. In
this case, the constitutive equations for a linear elastic solid can be written in terms
of stress tensor σi j and strain tensor εi j through Hooke law

σi j = Ci jklεkl, (9.1)

where Ci jkl is the stiffness fourth order tensor. In previous equation, the indexes i, j, k, l
go from 1 to 3. The elastic constants satisfy the following symmetry relationships

Ci jkl = Cjikl = Ci jlk . (9.2)

The symmetry of elastic constants (9.2) reduces the number of elastic independent
constants from 81 to 36 (see Qu and Cherkaoui, 2006; Roger and Dieulesaint, 2000).
For crystals, stiffness tensor Ci jkl , formed by 36 components, is also symmetric
respect to permutation of pairs of indexes

Ci jkl = Ckli j . (9.3)

The existence of equality (9.3) in the general case, lead to a reduction of the number
of independent components for the stiffness tensor from 36 to 21, that is, the number
of constants of a solid without symmetry.

The strain εεε and displacement uuu are related by the Cauchy linear relationship

εi j =
1
2
(ui, j + u j ,i). (9.4)

The components of elastic tensor moduli, strain and stress in matrix notation, is useful
to write using the abbreviate notation. The binary combinations i j = m (i, j = 1,2,3)
and kl = n (k, l = 1,2,3) are substituted by an index from 1 to 6 following the next
scheme (m,n = 1, . . . ,6)
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(11) → 1; (22) → 2; (33) → 3; (23,32) → 4; (31,13) → 5; (12,21) → 6. (9.5)

Equation (9.1) can be written in matrix notation

�       !

σ1
σ2
σ3
σ4
σ5
σ6

"#######$
=

�       !

C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 c55 C56
C61 C62 C63 C64 C65 C66

"#######$

�       !

ε1
ε2
ε3
ε4
ε5
ε6

"#######$
. (9.6)

Material’s behavior is described through 21 constants of the tensor Ci jkl .
The elastic fourth rank stiffness tensor for composites with transversely isotropic

symmetry, oriented along the x3 symmetry axis, is given by

C =

�        !

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0

0 0 0 0 0
C11 − C12

2

"########$
. (9.7)

As a particular case, if the material has isotropic symmetry, the independent constants
are reduced to 2. Thus, constitutive equation (9.6) can be written

�       !

σ1
σ2
σ3
σ4
σ5
σ6

"#######$
=

�       !

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 1

2 (C11 − C12) 0 0
0 0 0 0 1

2 (C11 − C12) 0
0 0 0 0 0 1

2 (C11 − C12)

"#######$

�       !

ε1
ε2
ε3
ε4
ε5
ε6

"#######$
. (9.8)

In some cases, it is convenient to represent stiffness tensor Ci jkl for isotropic materials
in the form

Ci jkl = λδi jδkl + μ(δikδjl + δilδjk) = Kδi jδkl +G
(
δikδjl + δilδjk −

2
3
δi jδkl

)
, (9.9)

where K and G are the bulk and shear modulus, respectively, and λ and μ are Lame’s
constants, which are related with the constants of tensor Ci jkl of Eq. (9.8) by

C11 = C22 = C33 = λ + 2μ,
C12 = C13 = C23 = λ,

C44 = C55 = C66 = μ = (C11 − C12)/2. (9.10)
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The stress field given by stress tensor represents an equilibrium state with volume
forces fi in all the points of the volume V , it means that stress field satisfies the
equilibrium equation

∂σi j

∂xj
+ fi = 0. (9.11)

Equation (9.11) is valid for any material point inside a continuum medium.
Introducing T basis (Sevostianov, 2014) for transversely isotropic tensor

T1
i jkl = Θi jΘkl, T2

i jkl =
ΘikΘl j + ΘilΘk j − Θi jΘkl

2
, T3

i jkl = Θi jξkξl, (9.12)

T4
i jkl = ξiξjΘkl, T5

i jkl =
Θikξlξj + Θilξkξj + Θjkξlξi + Θjlξkξi

4
, (9.13)

T6
i jkl = ξiξjξkξl, Θi j = δi j − ξiξj, (9.14)

ξ = (ξ1, ξ2, ξ3) = (sinψ cos θ, sinψ sin θ,cosψ), ψ ∈ [0, π], θ ∈ [0,2π], (9.15)

where δi j is the Kronecker delta, and using decomposition of stiffness tensor (9.7) in
T basis oriented along x3 symmetry axis (Sevostianov, 2014), it holds

C = kT1 + 2mT2 + l(T3 + T4) + 4μT5 + nT6, (9.16)
C = (k,2m, l, l,4μ,n),

where

k =
C1111 + C1122

2
, m =

C1111 − C1122
2

,

l = C1133, μ = C2323, n = C3333, (9.17)

where k is the plane-strain bulk modulus for lateral dilatation without longitudinal
extension, m is the rigidity modulus for shearing in any transverse direction, l is the
associated cross-modulus, μ is the longitudinal or axial shear modulus, and n is the
modulus for longitudinal uniaxial strain.

9.3 Geometry of Inclusions

Initially a composite material is considered on the framework of Maxwell approach,
with a fictitious building (the fictitious building is an arbitrary region that is framed
within the composite) of spheroidal shape inside the homogeneous material (matrix).
The composite can be ensemble, in principle, for a single type of inclusion or different
types of spheroidal inclusions. In Fig. 9.1 it is featured a sample of the composite
with the fictitious building (region in dark gray) inside matrix material (region in
normal gray). Three different types of spheroidal inclusions accounted in the present
model are described in a mathematical form through the set
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Fig. 9.1 Representative nano
transversal isotropic material
with spheroidal inclusions and
fictitious building

I =

{
(x, y, z) ∈ R3 :

x2

(γa)2
+

y2

(γa)2
+

z2

a2 ≤ 1,a ∈ R

}
,

where the parameter γ, is denominated aspect ratio of the inclusions. In the present
model, the parameter γ is taken as γ = x1

x3
, taking the value γ = 1 for spherical

inclusions, γ < 1 for fibre cylindrical inclusions and γ > 1 for spheroidal disk
inclusions, Fig. 9.2. Analogously, the aspect ratio of the fictitious building within
matrix material is assigned to the parameter Γ and it describes the geometrical form
of this construction inside the composite through the set

FB =

{
(x, y, z) ∈ R3 :

x2

(Γb)2
+

y2

(Γb)2
+

z2

b2 ≤ 1, b ∈ R

}
.

The different types of inclusions taken into account in the model are spheroidals.
In Fig. 9.1 all possible spheroidal inclusions embedded into the fictitious body is
featured and in Fig. 9.2 spheroidal fibre, spherical and spheroidal disk inclusions are
shown for different ranges of the aspect ratio γ.

Fig. 9.2 Description of three
different types of spheroidal
inclusions taking into account
in the present model γ <

γ =
γ >



190 Leandro Daniel Lau Alfonso et al.

9.4 Maxwell’s Homogenization Approach

Let the effective stiffness tensor C∗ of a transversely isotropic elastic composite, with
different types of spheroidal inclusions Ωm,m = 1, ...,n of volume Vm, and be C0

and Ci the matrix and ith-inclusion stiffness tensor, respectively, being V the volume
of the whole composite. Then, by Maxwell approach, a fictitious building Ω of
volume V̄ is taken inside the composite formed by matrix material and inclusions, the
resulting effect due to applying a constant external strain field ε0 (this fact is shown in
Fig. 9.3) to the matrix material is described by the sum of stiffness contribution tensor
of inclusions

1
V

∑
i ViNi and by the stiffness contribution tensor N̄ (Sevostianov,

2014) of Ω, considering Ω as an individual inclusion with homogeneous unknown
properties C∗, which volume is representative in the whole composite. Later, equating
both produced fields (in a further point ρ of the composite), by inclusions and Ω,
considering this last one like independent inclusion, it holds the effective equation
obtained by Maxwell approach

V̄
V

N̄ = 1
V

∑
i

ViNi . (9.18)

Given in the formula (9.36)-(9.38) of the Appendix, tensor N in the Maxwell approach
contains the information about the geometrical shape and elastic properties of the
inclusions, it also depends on the elastic properties of the matrix material through the
components of tensor P which contains the aspect ratio γ in its integral expressions
(9.27). The tensor P (Hill, 1965) describes the geometrical shape and properties of
fictitious building and it contains the elastic properties of matrix material and the
aspect ratio of the fictitious building Γ, and for ellipsoidal inclusions the following
relation holds

Fig. 9.3 Featuring of fictitious
building in matrix material

Ω Ω

= ∑

ρ

ε
Ω

Ω Ω
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N =
[(

Ci − C0
)−1
+ P

]−1

, (9.19)

and tensor P is calculated

Pi jkl =

∫
Ψ

K∗
i jkl(a

−1k)dΨ, Ki jkl(x) = −
[
∇j∇lGik(x)

]
(i j)(kl), (9.20)

a = � !
1/a1 0 0

0 1/a2 0
0 0 1/a3

"#$ , (9.21)

where Ψ is the unit sphere, a1,a2,a3 are the axis of the ellipsoidal volume V , Gik is
the static Green function of operator ∇jC0

i jkl
∇l and K∗

i jkl
the Fourier transform of

function Ki jkl , given by

K∗
i jkl =

1
4

[
ξj(Gik)−1ξl + ξi(Gjk)−1ξl + ξj(Gil)−1ξk + ξi(Gjl)−1ξk

]
, (9.22)

where ξj are given by (9.15). From (9.19) it holds that when Ω has ellipsoidal form

N̄ =
[(

C∗ − C0
)−1
+ P

]−1

, (9.23)

and then by substitution (9.23) into (9.18), it yields the final expression for effective
stiffness tensor of composite

C∗ = C0 +

[(
1
V̄

∑
i

ViNi

)−1

− P
]−1

. (9.24)

Equation (9.24) is the most important formula of Maxwell method because it allows
to write the explicit expression for computing effective stiffness tensor of composites.
Then, following the idea of (Sevostianov, 2014), one can replace in eq. (9.24) the
sum

∑
i Ni by the quantity N∗ given by formulae (9.49)-(9.54) of the Appendix, and

the quantity
∑

i

Vi

V̄
by parameter v f which denotes the volume fraction of inclusion in

the model, consequently, for two-phase composites Eq. (9.24) becomes

C∗ = C0 + v f ·

[(
N∗

)−1
− v f · P

]−1

, (9.25)

Moreover, the Maxwell approach allows us to replace tensor N∗ of Eq. (9.25) by tensor
Ns∗ given by formulae (9.65)-(9.76) of the Appendix for obtaining two Maxwell
homogenization approaches that differ one from the other in the density distribution
function chosen for modeling the alignment of inclusions within matrix materials.
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9.5 Analysis of Numerical Results

In this section, present model (PM) using the Maxwell method applied to nano-
composites and transversely isotropic composite materials is validated with other
theoretical approaches reported in different works. In Table 9.1 are shown the material
properties used in the calculations.

The present model is compared with Christensen, FEM approach (Table 1 of
Dong et al (2005)) and Locally Exact Homogenization Theory (Wang and Pindera,
2016) for validating the case of composite with isotropic matrix and transversely
isotropic inclusion. Besides, a comparison with Mogilevskaya et al (2014) for
effective tetragonal elastic moduli of two phase fiber reinforced composite is done.
Furthermore, a validation for the porous inclusion case with respect to Sevostianov
(2014); Vilchevskaya and Sevostianov (2015) approaches is performed. The present
model (PM) is compared with the approach reported in Selmi et al (2007) for the case
of two phase nanocomposite. Moreover, a study about the influence on the effective
coefficient through PM using two different density distribution functions (DDF) for
describing parallel alignment inclusions within matrix is reported. From now on,
DDF given by (9.47) and (9.63) are identified by DDF1 and DDF2, respectively. The
procedure given by the Eq. (9.25) using tensor N∗ reported in (9.48) and Ns∗ given in
(9.64) is denoted by PM-DDF1 and PM-DDF2, respectively. The numerical results
shown in the figures are taken from the mentioned literature in each study. Present
model’s predictions are based in the effective equation (9.25) obtained in the last
section.

Table 9.1 Mechanical properties of the constituents used for the computation

material properties (GPa) C1111 C1122 C1133 C3333 C2323

Epoxy 6.64444 3.57778 3.57778 6.64444 1.53333
Boron inclusions 459.667 114.917 114.917 459.667 172.375
3501-6 Epoxy 6.464 3.33 3.33 6.464 1.576
AS4 Graphite 15.6879 3.18792 3.77517 226.51 15
matrix 1 0.5 0.5 1 0.25
moderate inclusion 18 15 15 18 1.5
high inclusion 1200 1000 1000 1200 100
matrix1 130.27 56.0962 56.0962 130.27 37.0869
matrix2 17.9482 10.1082 10.6614 32.2627 8.75362
porous 10.1−7 10.12−7 10.13−7 10.14−7 10.15−7

LaRC-SI 8.14286 5.42857 5.42857 8.14286 1.35714
continuum Graphene 3024 1008 1008 3024 1008
Aluminum 101.9 50.022 50.022 101.9 25.94
SiC 474.2 98 98 474.2 188.1
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9.5.1 Density Distribution Functions

The influence on effective properties obtained through Maxwell approach using
density distribution function given by (9.47) in Appendix denoted by DDF1 for
modeling different inclusion alignment cases inside matrix material, is studied by
Sevostianov (2014) for porous composite. Now, the purpose is to show the results of
Maxwell approach using DDF2 given by (9.63) in Appendix (PM-DDF2) and (PM-
DDF1) for modeling inclusion’s alignment inside composite, and compare these two
approaches between them and other predictions reported in other research works not
only for porous composites but for a more general variety of different composites like
Epoxy/Boron, 3501-6 Epoxy/AS4 Graphite, matrix/moderate inclusion, matrix/high
inclusion, among others.

In Fig. 9.4 is shown the dependence on the alignment parameter s of six alignment
functions τi given by formulae (9.71)-(9.76) of the Appendix when disorder parameter
s → ∞, s controls the alignment of inclusions inside the matrix material through
tensor Ns∗ . Present model takes into account the random or non random alignment
of every type of inclusion inside the matrix through parameter s. Figure 9.4 reflects
that functions τi(s) have horizontal asymptotes at different values as s → ∞. It is
remarkable that these six functions remain constants as the disorder parameter s
approaches to infinity.

In Table 9.2 are shown the predictions of the tensor N∗ numerical values (in
GPa) given by formulae (9.49)-(9.54) for different values of disorder parameter λ,
for modeling cylindrical inclusions within the matrix in a Epoxy/Boron composite
(see Table 9.1), taking into account aspect ratios of inclusions and fictitious building
γ = Γ = 0.01 . From Table 9.2 one can observe that for values of disorder parameter λ
higher than 100, the components of tensor N∗ remain close one each other, it implies
that the components of effective elastic tensor are also closed through PM-DDF1
approach.

Fig. 9.4 Dependence of alignment functions τi given by Eq. (9.71)-(9.76) of the Appendix related
to disorder parameter s
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Table 9.2 Numerical predictions for components of tensor N∗ which describes the alignment of
inclusions inside the composite Epoxy/Boron, γ = Γ = 0.01 for fibre inclusions

λ
N∗

1111+N∗
1122

2 N∗
1111 − N∗

1122 N∗
1133 N∗

3311 4N∗
2323 N∗

3333

2 33.3135 32.5450 29.7264 29.7264 118.2359 156.5058
10 7.2516 5.7731 11.2025 11.2025 45.5601 334.8491
100 6.4908 4.9134 2.8862 2.8862 12.4927 371.1578
1000 6.4911 4.9126 2.7783 2.7783 12.0634 371.5879
3700 6.4911 4.9126 2.7773 2.7773 12.0594 371.5920
5000 6.4911 4.9126 2.7773 2.7773 12.0593 371.5921

Results are given in GPa.

In Table 9.3 are shown numerical values (in GPa) of tensor Ns∗ given by formulae
(9.65)-(9.70) of Appendix, for different values of disorder parameter s, taking into
account γ = Γ = 0.01 for modeling cylindrical Boron inclusions within epoxy matrix
(see the material properties in Table 9.1). From Table 9.3 one can observe that for
values of disorder parameter s higher than 3000, the components of tensor Ns∗ remain
close one each other, it implies that the components of effective elastic tensor are
also closed through PM-DDF2 approach. From Fig.9.4 and Tables 9.2 and 9.3 one
can conclude that best value of parameter s in PM-DDF2 for estimating PM-DDF1
approach with λ = 100 (aligned inclusion case reported by Sevostianov (2014)) is
the value s = 3700.

9.5.2 Study of Composites Constituted by Isotropic Matrix and
Isotropic Inhomogeneities

In Table 9.4 it is shown comparisons between present model through two different
density distribution functions (DDF) and the results obtained by Christensen, FEM
reported in Dong et al (2005) for effective axial bulk K∗

12 and Poisson ratio ν∗31 in a two

Table 9.3 Numerical predictions for components of tensor Ns∗ which describes the alignment of
inclusions within the composite Epoxy/Boron, γ = Γ = 0.01 for fibre inclusions

s
Ns∗

1111+Ns∗
1122

2 Ns∗
1111 − Ns∗

1122 Ns∗
1133 Ns∗

3311 4Ns∗
2323 Ns∗

3333

2 41.3244 40.7217 30.2001 30.2001 119.7988 122.5679
10 11.6640 10.4124 24.9563 24.9563 100.1217 262.1844
100 6.5477 5.0052 6.2418 6.2418 25.8454 357.5077
1000 6.4904 4.9156 3.1396 3.1396 13.5013 370.1455
3700 6.4907 4.9133 2.8755 2.8755 12.4503 371.2004
5000 6.4908 4.9131 2.8500 2.8500 12.3487 371.3022

Results are given in GPa.
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Table 9.4 Comparisons with Table 1 of Dong et al (2005), γ = Γ = 0.001 for fibre inclusions

Effective properties
222 vf 0.1 0.3 0.5 0.7 0.9

K∗
12 (Christensen) 5.83056 7.86606 11.4567 19.4865 53.5138

K∗
12 (FEM) 5.83056 7.8661 11.457 19.487 53.514

K∗
12 (PM-DDF1) 5.8305 7.8658 11.4559 19.4835 53.4872

K∗
12 (PM-DDF2) 5.8305 7.8658 11.4559 19.4834 53.4868

ν∗31 (Christensen) 0.331156 0.296514 0.265414 0.237339 0.211869
ν∗31 (FEM) 0.33116 0.29651 0.26541 0.23734 0.21187
ν∗31 (PM-DDF1) 0.3323 0.2998 0.2707 0.2443 0.2203
ν∗31 (PM-DDF2) 0.3322 0.2995 0.2701 0.2436 0.2195

Results are given in GPa.

phase composite formed by Boron inclusions and Epoxy matrix whose properties are
shown in Table 9.1. Both phases, matrix and inclusions exhibit isotropic symmetry.
The effective coefficients K∗

12, ν
∗
31 are given by formulae (10) of Dong et al (2005).

In the calculations are using for both type of DDF, Boron inclusions aspect ratio
γ = 0.001, the aspect ratio of fictitious building Γ = 0.001, which is the same to the
inclusions. The disorder parameter λ = 100 for modeling parallel aligned inclusion
case using the PM-DDF1 approach, and disorder parameter s = 3700 for PM-DDF2.
From Table 9.4 is remarkable that predictions through present model give good
agreement with those obtained by Christensen, FEM approaches published in Dong
et al (2005).

A comparison with Mogilevskaya et al (2014) and semi-analytical finite element
method (SAFEM) reported in Otero et al (2013, 2017) implemented for this type of
composite under perfect contact is given in Tables 9.5 and 9.6 for tetragonal elastic
moduli of two phase fibre reinforced composites. Numerical predictions for the
effective coefficient C∗

1313 normalized by the shear modulus μ0 of matrix material
for two different composites made of matrix/moderate inclusion and matrix/high
inclusion, are shown in Tables 9.5 and 9.6, respectively. All the constituents in
both composites are in Table 9.1 and have isotropic symmetry. This comparison
corresponds to numerical results obtained by the present approach and different
predictions obtained by the expressions (6), (20) and RUC (Repetitive square unit
cell) model reported in Mogilevskaya et al (2014). The computations are done for
γ = Γ = 0.001, λ = 100 and parameter s = 3700 for PM-DDF1 and PM-DDF2
approaches, respectively. Table 9.5 shows good agreement between PM-DDF1,
PM-DDF2, Eqs. (6), (20) and RUC (Mogilevskaya et al, 2014) as well as SAFEM
approaches for matrix/moderate inclusion composite. On the other hand, Table
9.6 reveals good comparison between PM-DDF1, PM-DDF2, RUC and SAFEM
approaches, however, it is not the same with the results reported by Eqs. (6) and (20)
of Mogilevskaya et al (2014) for the case of matrix/high inclusion composite.

Additionaly, the composites matrix/moderate inclusion and matrix/high inclusions
are considered and numerical calculations for the effective coefficient (C∗

1111−C∗
1122)/2

normalized by the shear modulus of matrix μ0 and the effective coefficient C∗
1133
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Table 9.5 Comparison of the effective coefficient C∗
1313 normalized by the shear modulus of matrix

μ0 with Table 5 of Mogilevskaya et al (2014), γ = Γ = 0.001 for fibre inclusions in the composite
matrix/moderate inclusion

vf Eq. (6) Eq. (20) RUC PM-DDF1 PM-DDF2 SAFEM

0.05 1.074 1.075 1.074 1.0742 1.0742 1.0741
0.1 1.154 1.155 1.154 1.1542 1.1542 1.1538
0.15 1.240 1.242 1.240 1.2406 1.2405 1.2400
0.2 1.333 1.335 1.333 1.3341 1.3341 1.3334
0.25 1.435 1.437 1.435 1.4359 1.4358 1.4351
0.3 1.545 1.548 1.546 1.5469 1.5468 1.5463
0.35 1.667 1.670 1.669 1.6685 1.6683 1.6688
0.4 1.800 1.804 1.805 1.8023 1.8021 1.8045
0.45 1.947 1.952 1.956 1.9503 1.9500 1.9564
0.5 2.111 2.117 2.128 2.1147 2.1144 2.1283
0.55 2.294 2.302 2.326 2.2986 2.2981 2.3256
0.6 2.500 2.511 2.556 2.5055 2.5049 2.5561
0.65 2.733 2.750 2.832 2.7401 2.7394 2.8319
0.7 3.000 3.024 3.173 3.0083 3.0075 3.1731
0.75 3.308 3.344 3.620 3.3180 3.3170 3.6197

Results are given in GPa.

Table 9.6 Comparison of the effective coefficient C∗
1313 normalized by the shear modulus of matrix

μ0 with Table 8 of Mogilevskaya et al (2014), γ = Γ = 0.001 for fibre inclusions in the composite
matrix/high inclusion

vf Eq. (6) Eq. (20) RUC PM-DDF1 PM-DDF2 SAFEM

0.05 1.105 1.106 1.105 1.1239 1.1220 1.1047
0.1 1.221 1.224 1.221 1.2641 1.2598 1.2209
0.15 1.351 1.355 1.351 1.4241 1.4168 1.3509
0.2 1.497 1.502 1.497 1.6085 1.5972 1.4972
0.25 1.662 1.668 1.663 1.8232 1.8067 1.6633
0.3 1.851 1.858 1.854 2.0765 2.0529 1.8540
0.35 2.069 2.077 2.076 2.3797 2.3466 2.0762
0.4 2.322 2.333 2.340 2.7492 2.7027 2.3396
0.45 2.622 2.635 2.659 3.2094 3.1437 2.6590
0.5 2.980 2.999 3.058 3.7983 3.7039 3.0583
0.55 3.418 3.446 3.578 4.5789 4.4392 3.5779
0.6 3.963 4.008 4.294 5.6628 5.4471 4.2939
0.65 4.662 4.737 5.372 7.2694 6.9133 5.3719
0.7 5.590 5.720 7.274 9.8970 9.2429 7.2737
0.75 6.882 7.123 12.227 14.9721 13.5163 12.2267

The results are given in GPa.

normalized by the matrix coefficient Cm
1133 are shown in Tables 9.7 and 9.8, respectively.

Comparisons are given by present model, Mogilevskaya et al (2014), SAFEM reported
in Otero et al (2013, 2017) and asymtotic homogenization method (AHM) proposed
in Bravo-Castillero et al (2012); Guinovart-Diaz et al (2001). Aspect ratio parameters
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Table 9.7 Comparison of the effective coefficient (C∗
1111 −C∗

1122)/2 normalized by the shear
modulus of matrix μ0 with Table 4 of Mogilevskaya et al (2014), γ = Γ = 0.001 for fibre inclusions
in the composite matrix/moderate inclusion

vf Eq. (4) Eq. (13) Eq. (18) RUC PM-DDF1 PM-DDF2 SAFEM AHM

0.05 1.066 1.069 1.069 1.069 1.063 1.063 1.0653 1.0653
0.1 1.137 1.148 1.150 1.148 1.1312 1.1312 1.1409 1.1409
0.15 1.214 1.242 1.244 1.241 1.2052 1.2052 1.2281 1.2281
0.2 1.298 1.349 1.352 1.349 1.2858 1.2857 1.3285 1.3285
0.25 1.389 1.474 1.477 1.474 1.3739 1.3739 1.4438 1.4438
0.3 1.489 1.616 1.621 1.617 1.4707 1.4706 1.5755 1.5755
0.35 1.600 1.777 1.783 1.780 1.5774 1.5774 1.7257 1.7257
0.4 1.722 1.958 1.965 1.965 1.6958 1.6958 1.8963 1.8963
0.45 1.858 2.157 2.166 2.172 1.8277 1.8277 2.0894 2.0893
0.5 2.010 2.374 2.385 2.403 1.9758 1.9758 2.3070 2.3069
0.55 2.181 2.604 2.616 2.656 2.1431 2.143 2.5516 2.5512
0.6 2.376 2.841 2.856 2.929 2.3336 2.3336 2.8253 2.8243
0.65 2.599 3.078 3.096 3.218 2.5526 2.5525 3.1309 3.1282
0.7 2.857 3.306 3.327 3.517 2.8069 2.8068 3.4718 3.4650
0.75 3.158 3.514 3.538 3.823 3.1058 3.1057 3.8532 3.8369

Results are given in GPa.

Table 9.8 Comparison of the effective coefficient C∗
1133 normalized by the coefficient Cm

1133 of the
matrix with Table 9 of Mogilevskaya et al (2014), γ = Γ = 0.001 for fibre inclusions in the
composite matrix/high inclusion

vf Eq. (7) Eq. (21) RUC PM-DDF1 PM-DDF2 SAFEM AHM

0.05 1.032 1.033 1.032 1.1045 1.1036 1.0956 1.0956
0.1 1.068 1.069 1.068 1.2206 1.2188 1.2019 1.2019
0.15 1.109 1.11 1.109 1.3505 1.3475 1.3206 1.3206
0.2 1.154 1.156 1.154 1.4965 1.4923 1.4542 1.4542
0.25 1.205 1.208 1.205 1.662 1.6564 1.6058 1.6058
0.3 1.263 1.267 1.264 1.8512 1.844 1.7796 1.7796
0.35 1.33 1.335 1.331 2.0695 2.0605 1.9810 1.9810
0.4 1.409 1.415 1.411 2.3242 2.313 2.2184 2.2184
0.45 1.501 1.509 1.506 2.6252 2.6114 2.5038 2.5037
0.5 1.611 1.621 1.623 2.9863 2.9694 2.8569 2.8564
0.55 1.746 1.757 1.772 3.4276 3.4069 3.3119 3.3101
0.6 1.913 1.927 1.974 3.9792 3.9537 3.9348 3.9278
0.65 2.127 2.142 2.275 4.6881 4.6564 4.8737 4.8447
0.7 2.411 2.427 2.804 5.6329 5.593 6.5509 6.4123
0.75 2.804 2.819 4.177 6.9548 6.9033 11.0435 9.9304

Results are given in GPa.

γ and Γ in the calculations are taken the same as in Tables 9.5 and 9.6, λ = 100 and
s = 3700.

A validation of the present model (PM) with experimental data reported by
Premkumar et al (1992); Liaw et al (1995); El-Eskandarany (1998); Kumar et al
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(2009); Upadhyay and Singh (2012); Qu et al (2016) is shown in Fig. 9.5. The
experimental and theoretical studies are for the effective Young modulus for different
volume fraction of SiC isotropic spherical inclusions into Aluminum isotropic matrix,
where the properties are given in Table 9.1. The experimental data is reported for
different percentages of volume fraction. PM predictions is consistent with Liaw et al
(1995); Qu et al (2016); Upadhyay and Singh (2012)

E∗
t =

1
S∗

1111
, E∗

a =
1

S∗
3333
, S∗ = (C∗)−1 (9.26)

For isotropic composites the effective axial E∗
a and tangential E∗

t Young modulus are
the same and are given by Eq. (9.26) taking into account that S∗

1111 = S∗
3333.

9.5.3 Study of Composites Constituted by Isotropic Matrix and
Transversely Isotropic Inhomogeneities

Figure 9.6 displays another validation of the present model approach for the effective
axial shear modulus of a material composed by isotropic matrix 3501-6 Epoxy and
AS4 Graphite with transversely isotropic symmetry inclusions. The inclusions are
embedded into the matrix. The elastic properties of the constituents are given in
Table 9.1. This validation assures good concordance with numerical predictions
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Fig. 9.5 Effective Young’s modulus prediction between PM and experimental data reported in
Premkumar et al (1992); Liaw et al (1995); El-Eskandarany (1998); Kumar et al (2009); Upadhyay
and Singh (2012); Qu et al (2016), γ = Γ = 1 for spherical inclusions
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Fig. 9.6 Comparison between PM and LEHT (Wang and Pindera, 2016) approaches for the
effective axial shear modulus in a composite made of isotropic matrix 3501-6 Epoxy and AS4
Graphite with transversely isotropic symmetry, γ = Γ = 0.01 for fibre inclusions

reported by LEHT homogenization approach (Wang and Pindera, 2016). In Fig. 9.6
are shown numerical predictions for effective axial shear modulus of composite
3501-6 Epoxy/AS4 Graphite (Table 9.1) related to the dependence of the volume
fraction of fibre inclusions. A comparison between PM using both density distribution
functions (DDF) and Locally Exact Homogenization Theory (LEHT) is done. In both
models PM-DDF1 and PM-DDF2, the aspect ratio of fictitious building and fibre
inclusions are γ = Γ = 0.01, disorder parameters in DDF1 and DDF2 are λ = 100
and s = 3700, respectively for modeling the case of aligned fibres inside the matrix
material. From Fig. 9.6, PM and LEHT give very close results for this effective
property of the composite in the whole range of volume fraction.

9.5.4 Porous Composite with Isotropic and Transversely Isotropic
Matrix

The next study focus on numerical prediction of porous composites. Validation of PM
with Maxwell approach reported by Sevostianov (2014) (as SMM), Vilchevskaya and
Sevostianov (2015) (as Max. schem.) and experimental results reported in Dong and
Guo (2004) is shown in Fig. 9.7. The effective transversal shear modulus of two phase
composite matrix2/porous (see Table 9.1) is compared between PM, Max. schem.



Fig. 9.7 Effective coefficient a) G∗
t , b) S∗

1212 for matrix2/porous composite, γ = Γ = 1/1.39 for
fibre spheroidal porous inclusions, and c) Ga −G∗

a for matrix1/porous composite normalized by
axial shear modulus Ga of matrix material, γ = 10 for disk spheroidal porous inclusions at four
fixed values of Γ
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Vilchevskaya and Sevostianov (2015) and the experimental data reported by Dong
and Guo (2004) in Fig. 9.7a). The matrix2 exhibits transversely isotropic symmetry.
In both approaches of PM, i.e. PM-DDF1 and PM-DDF2, are taken γ = Γ = 1/1.39,
λ = 100 for PM-DDF1 and s = 3700 for PM-DDF2 as disorder parameters for
modeling the porous inclusion parallel aligned case. From Fig. 9.7a) one can observe
that PM-DDF1 and PM-DDF2 approaches give close results, while both approach
of the present model (PM-DDF1 and PM-DDF2) have good correspondence with
Max. schem. Vilchevskaya and Sevostianov (2015) approach and experimental data
of Dong and Guo (2004). In Fig. 9.7b) it is shown a numerical comparison for
the effective compliance coefficient S∗

1212 between PM and Max. schem. reported
in Vilchevskaya and Sevostianov (2015), for two phase composite matrix2/porous
of Table 9.1. In both predictions of PM approach (PM-DDF1 and PM-DDF2), are
taken the same values of γ, Γ, λ and s like in Fig.9.7a). From Fig. 9.7b) one can
observe that PM-DDF1, PM-DDF2 and Max. schem. Vilchevskaya and Sevostianov
(2015) approaches practically coincide in the whole range of volume fraction. In
Fig. 9.7c) are shown the numerical comparison of the effective axial coefficient
Ga − G∗

a normalized by the matrix material axial shear modulus Ga for two phase
composite constituted by matrix1/porous of Table 9.1 between PM and SMM reported
in Sevostianov (2014). The solid and dash curves indicate PM-DDF1 and PM-DDF2
approaches, respectively. The constituent matrix1 exhibit isotropic symmetry. The
porous aspect ratio are taken as γ = 10 and the aspect ratio of fictitious building Γ is
fixed as Γ = 1,2,4,10 to see the influence of different geometrical shape of fictitious
building on the behavior of this effective coefficient. From Fig. 9.7c), it is observed
that when the effective coefficient (Ga −G∗

a)/Ga > 1 then G∗
a < 0, therefore, this fact

conduces to lost of physical meaning, thus the only curve with real physical meaning
is that none having value Γ = 10, i.e., the same aspect ratio for inclusions and fictitious
building. For PM-DDF1 is taken λ = 100 and for PM-DDF2 s = 3700. Comparisons
between the two approaches of PM (PM-DDF1 and PM-DDF2) and numerical results
(SMM) shown in Fig. 9.7b) of Sevostianov (2014) give close results. Furthermore, in
Table 9.9, numerical comparisons are reported using the present model and SAFEM
for the effective transversal shear modulus G∗

t in the composite matrix2/porous. There
is a good match between results obtained through both approaches.

Table 9.9 Comparison between the present model and SAFEM approach for the effective
transversal G∗

t shear modulus in the composite made by fibre spheroidal porous inhomogeneities
embedded into the matrix2, γ = Γ = 1/1.39, λ = 100, s = 3700

vf SAFEM G∗
t (GPa) PM-DDF1 G∗

t (GPa) PM-DDF2 G∗
t (GPa)

0.1 3.3354 3.2749 3.275
0.2 2.7686 2.7161 2.7162
0.3 2.2516 2.2273 2.2274
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9.5.5 Two-phase Nano-composites

The last validation of the present model (PM) is done for the case of a two phase
nano-composite constituted by isotropic matrix LaRC-SI and continuum graphene as
inclusions with isotropic symmetry. The properties of these materials are shown in
Table 9.1. In Fig. 9.8 are shown numerical predictions of PM-DDF1 and PM-DDF2
approaches for the effective axial G∗

a and transversal G∗
t shear modulus normalized

by the corresponding axial Ga and transversal Gt shear modulus of matrix material
in a two phase nanocomposite LaRC-SI/continuum graphene. The effective axial G∗

a

and transversal G∗
t shear modulus calculated by PM are validated with three different

methods (the Sequential, the Two-level based on Mori-Tanaka method and the FE
approaches) reported in Selmi et al (2007) for nanocomposites. The parameters for
PM predictions are taken γ = Γ = 0.1, λ = 100 and s = 3700 for PM-DDF1 and
PM-DDF2, respectively. Figure 9.8 evidences that PM-DDF1 and PM-DDF2 match
very good with Sequential, Two-level and FE approaches reported in Selmi et al
(2007).

9.6 Conclusions

From the research that has been carried out, it is possible to conclude that based on
the results obtained, Maxwell homogenization approach has been very successful
as a procedure to estimate effective elastic properties of composites constituted by
phases of transversely isotropic symmetry. A methodology for computing the overall
properties is reported from the outcome of our investigation. Closed formulas for
effective stiffness tensor of composites with different arrangement of the inclusions
have been deduced. Current homogenization technique is compared with other
theoretical approaches, getting low computational cost of the implemented algorithm
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Fig. 9.8 Effective axial G∗
a and transversal G∗

t shear modulus normalized by the matrix material
axial Ga and transversal Gt shear modulus, respectively, for a composite LaRC-SI/continuum
Graphene, γ = Γ = 0.1 for fibre inclusions
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derived from the present model and correlating satisfactorily with the results reported
in the studied references . The used method is especially reachable and forthright
procedure for the calculation of effective properties of heterogeneous media with
more of two different types of constituents. As stated in the introduction our main
target was to hand over new analytical formulae for the control alignment tensors N∗

and Ns∗ which are emphasized in the appendix of the current contribution. Besides,
an study about Maxwell approach using two different density distribution functions
is done for predicting effective mechanical properties of transversely isotropic, nano
and porous composites.

Appendix

Tensor P of Maxwell explicit effective formula (9.24) for transversely isotropic
spheroidal inclusions of aspect ratio γ = x1

x3
, where x1, x2, x3 are the inclusion’s axis,

is given by

P1111 =
1
16

( ∫ 1

−1

(1 − u2) · Υ(u)
b

du

)
+

3
16

( ∫ 1

−1

d(1 − u2) · Υ(u)
h0 + h1u2 + h2u4 du

)
,

P1122 = −
1
16

( ∫ 1

−1

(1 − u2) · Υ(u)
b

du

)
+

1
16

( ∫ 1

−1

d(1 − u2) · Υ(u)
h0 + h1u2 + h2u4 du

)
,

P1133 = −
(C1133 + C2323)

4

( ∫ 1

−1

u2 · Υ(u)
h0 + h1u2 + h2u4 du

)
+

+
(C1133 + C2323)

4

( ∫ 1

−1

u4 · Υ(u)
h0 + h1u2 + h2u4 du

)
,

P3333 =
C1111

2

( ∫ 1

−1

u2 · Υ(u)
h0 + h1u2 + h2u4 du

)
+

+
(C2323 − C1111)

2

( ∫ 1

−1

u4 · Υ(u)
h0 + h1u2 + h2u4 du

)
, (9.27)

P2323 = −
(C1133 + C1111)

8
·

( ∫ 1

−1

u2 · Υ(u)du
h0 + h1u2 + h2u4

)
+

1
16

·

( ∫ 1

−1

u2 · Υ(u)du
b

)
+

+
C1111

16
·

( ∫ 1

−1

Υ(u)du
h0 + h1u2 + h2u4

)
+

+
[2C1133 + C3333 + C1111]

16
·

( ∫ 1

−1

u4 · Υ(u)du
h0 + h1u2 + h2u4

)
,
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P1212 =
P1111 − P1122

2
=

1
16

·

( ∫ 1

−1

(1 − u2) · Υ(u)
b

du

)
+

+
1
16

·

( ∫ 1

−1

d(1 − u2) · Υ(u)
(h0 + h1u2 + h2u4)

du

)
,

where
Υ(u) =

γ2[
γ2 + u2(1 − γ2)

]3/2 , (9.28)

and

b =
(C1111 − C1122)

2
(1 − u2) + C2323u2, d = C2323(1 − u2) + C3333u2, (9.29)

h0 = C1111C2323, h1 = C1111C3333 − C2
1133 − 2C1133C2323 − 2C1111C2323, (9.30)

h2 = C3333C2323 + C1111C2323 + 2C1133C2323 + C2
1133 − C1111C3333. (9.31)

Using decomposition (9.16), (9.17) and eq. (9.27), it holds

P = (p1, p2, p3, p4, p5, p6), (9.32)

where

p1 =
P1111 + P1122

2
, p2 = P1111 − P1122, p3 = p4 = P1133, (9.33)

p5 = 4P2323, p6 = P3333.

Tensor N of Maxwell explicit effective formula (9.24) for transversely isotropic
spheroidal inclusions, is given by the relation

N =
[(

C1 − C0
)−1
+ P

]−1

, (9.34)

where C0 and C1 are the stiffness tensor of matrix and inclusions material, respectively.
Explicitly

N = (n1,n2,n3,n4,n5,n6), (9.35)

where

n1 =
1

2�

[
d1 + d2

d5(d1 + d2) − 2d2
3
+ p6

]
, n2 =

d1 − d2
1 + p2(d1 − d2)

, (9.36)

n3 = n4 = −
1
�

[
p3 −

d3

d5(d1 + d2) − 2d2
3

]
, n5 =

4d4
1 + p5d4

, (9.37)
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n6 =
1
�

[
d5

d5(d1 + d2) − 2d2
3
+ 2p1

]
, (9.38)

� =
1 + p6d5 + 2p1(d1 + d2) + 4p3d3

d5(d1 + d2) − 2d2
3

+ 2p1p6 − 2p2
3,

d1 = C1
1111 − C0

1111, d2 = C1
1122 − C0

1122, d3 = C1
1133 − C0

1133,

d4 = C1
2323 − C0

2323, d5 = C1
3333 − C0

3333, (9.39)

where pi, i = 1,2, · · · ,6 are given by eq. (9.33). Remark that this explicit expressions
for components ni, i = 1,2, ...,6 used in the decomposition of tensor N into basis T
given by (9.12)-(9.14) are different and more general than explicit expressions given
by formulae (A.9) and (A.10) of Sevostianov (2014), because they are for a material
with transversely isotropic symmetry.

Expression of tensor Q for transversely isotropic spheroidal inclusions, is given
by the relation

Q = C0 ·
(
I − P · C0

)
, (9.40)

where C0 is the stiffness tensor of matrix material. Explicitly

Q = (q1,q2,q3,q4,q5,q6), (9.41)

and

q1 =
1
2

Da(1 − 2p1Da − 4p3C0
13) − p6Dc, q2 = Db(1 − p2Db), (9.42)

q3 = q4 = C0
13Wa − DaWb − 2p3Dc, q5 = 4C0

44Wc, (9.43)

q6 = C0
33Wa − 4C0

13(Wb − p1C0
13), (9.44)

Da = C0
11 + C0

12, Db = C0
11 − C0

12, Dc = (C0
13)

2, (9.45)

Wa = 1 − p6C0
33, Wb = 2p1C0

13 + p3C0
33, Wc = 1 − p5C0

44, (9.46)

where pi, i = 1, ...6, are the components of tensor P of eq. (9.33). Remark that this
explicit expressions for components qi, i = 1,2, ...,6 used in the decomposition of
tensor Q into basis T given by (9.12)-(9.14) are different and more general than
explicit expressions given by formulae (A.6) of Sevostianov (2014), because they are
for a material with transversely isotropic symmetry.

Then, introducing parameter λ Sevostianov (2014) that controls the random or not
random aligned inclusions cases, by means of density distribution function

Pλ(ψ) =
1

2π
[
(1 + λ2)e−λψ + λe−λ

π
2
]
, (9.47)

using eq. (9.36)-(9.38), thus, tensor N∗ can be calculated by
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N∗
i jkl =

∫ π
2

0
Pλ(ψ) sinψdψ

∫ 2π

0

( 6∑
p=1

npTp
ijkl

)
dθ. (9.48)

Explicitly,

N∗
1111 =

1
2

[
2(w1 + w2) + 2(w3 + w4)g1(λ) +

3
4
w5g2(λ)

]
, (9.49)

N∗
1122 =

1
2

[
2w1 + 2w3g1(λ) +

1
4
w5g2(λ)

]
, (9.50)

N∗
3333 =

1
2

[
2(w1 + w2) + 2(w3 + w4)g3(λ) + 2w5g4(λ)

]
, (9.51)

N∗
1133 =

1
2

[
2w1 + 2w3g5(λ) + 2w5g6(λ)

]
, (9.52)

N∗
1313 =

1
2

[
w2 + w4g5(λ) + 2w5g6(λ)

]
, (9.53)

N∗
1212 =

N∗
1111 − N∗

1122
2

, (9.54)

with

w1 = n1 −
n2
2
, w2 = n2, w3 = 2n3 + n2 − 2n1, (9.55)

w4 = n5 − 2n2, w5 = n6 + n1 +
n2
2

− 2n3 − n5, (9.56)

and functions gj(λ), j = 1,2, · · · ,6 are given by formulas

g1(λ) =
18 − λ(λ2 + 3)e− λπ

2

6(λ2 + 9)
, (9.57)

g2(λ) =
120

(λ2 + 9)(λ2 + 25)
− λ

7λ4 + 178λ2 + 435
15(λ2 + 9)(λ2 + 25)

e−
λπ
2 , (9.58)

g3(λ) =
(λ2 + 3)(3 + λe−λπ/2)

3(λ2 + 9)
, (9.59)

g4(λ) =
24 + (λ2 + 1)(λ2 + 21)

(λ2 + 9)(λ2 + 25)
+ λe−λπ/2

[(λ2 + 9)(λ2 + 25) − 120]
5(λ2 + 9)(λ2 + 25)

, (9.60)

g5(λ) =
3

2(λ2 + 9)
+
(λ2 + 3)(6 + λe−λπ/2)

12(λ2 + 9)
, (9.61)

g6(λ) =
3(λ2 + 5)

(λ2 + 9)(λ2 + 25)
+
λ[(λ2 + 1)(λ2 + 18) + 12]

15(λ2 + 9)(λ2 + 25)
e−λπ/2. (9.62)
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Remark that explicitly expressions obtained here for functions gj(λ), j = 1,2, ...,6
are different of explicit expressions obtained for functions gi(λ) reported in formula
(3.6) of Sevostianov (2014), except for functions g1(λ),g4(λ) that coincides in both
contributions.
On the other hand, one can replace density distribution function given by (9.47) by
density distribution function

Ws(ψ) =
1

4π
s · cosh(s · cosψ)

sinh s
, (9.63)

in which the parameter s is the disorder parameter, and similar to Eq. (9.48), one can
calculate tensor Ns∗ given by

Ns∗
i jkl =

∫ π

0
Ws(ψ) sinψdψ

∫ 2π

0

( 6∑
p=1

npT p
ijkl

)
dθ, (9.64)

which explicitly is written

Ns∗
1111 =

1
4

[
4(w1 + w2) + 4(w3 + w4)τ1(s) +

3
4
w5τ2(s)

]
, (9.65)

Ns∗
1122 =

1
4

[
4w1 + 4w3τ1(s) +

1
4
w5τ2(s)

]
, (9.66)

Ns∗
3333 =

1
4

[
4(w1 + w2) + 4(w3 + w4)τ3(s) + 2w5τ4(s)

]
, (9.67)

Ns∗
1133 =

1
4

[
4w1 +

w3
2
τ5(s) + 4w5τ6(s)

]
, (9.68)

Ns∗
1313 =

1
4

[
2w2 +

w4
4
τ5(s) + 4w5τ6(s)

]
, (9.69)

Ns∗
1212 =

Ns∗
1111 − Ns∗

1122
2

, (9.70)

where wi, i = 1, · · · ,5 are given by Eq. (9.55)-(9.56), and functions τi, i = 1, · · · ,6
are,

τ1(s) =
1
s

[ s − tanh s
s tanh s

]
, (9.71)

τ2(s) =
16
s4

[ s2 tanh s − 3(s − tanh s)
tanh s

]
, (9.72)

τ3(s) =
1
s2

[
s2 tanh s − 2(s − tanh s)

tanh s

]
, (9.73)
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τ4(s) =
2
s4

[
s2(s2 + 8) tanh s − 4(s − tanh s)(6 + s2)

tanh s

]
, (9.74)

τ5(s) =
4
s2

[
s2 tanh s − (s − tanh s)

tanh s

]
, (9.75)

τ6(s) =
1
s4

[
(s − tanh s)(s2 + 12) − 4s2 tanh s

tanh s

]
. (9.76)
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