
Chapter 8
Estimation of Energy of Fracture Initiation in
Brittle Materials with Cracks

Ruslan L. Lapin, Nikita D. Muschak, Vadim A. Tsaplin, Vitaly A. Kuzkin, and
Anton M. Krivtsov

Abstract We study deformation and fracture of a brittle material under mixed quasi-
static loading. Numerical simulations of deformation of a cubic sample containing
a single crack are carried out using the particle dynamics method. Effect of ratio
of compressive and shear loads on energy of fracture initiation is investigated for
two crack shapes and various crack orientations. The energy of fracture initiation
in a material containing multiple cracks is estimated using the non-interaction
approximation. It is shown that in the case of mixed loading (compression and shear)
the energy is significantly lower than in the case of pure compression. Presented
results may serve for minimization of energy consumption during disintegration of
solid minerals.
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8.1 Introduction

One of the key technological challenges for mining industry is minimization of
energy consumption during disintegration (fracture) of solid minerals (Vaisberg and
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Kameneva, 2014; Vaisberg et al, 2018a,b). The energy required for fracture of rocks
strongly depends on their heterogeneous internal structure. Development of scanning
technologies, for example, computer microtomography, makes it possible to determine
shapes and sizes of heterogeneities (Vaisberg and Kameneva, 2014; Vaisberg et al,
2018a; Vesga et al, 2008). However, finding relation between microstructure of a rock
and its mechanical properties is still a challenging problem for mechanics (Kachanov
and Sevostianov, 2018; Altenbach and Sadowski, 2015; Altenbach and Öchsner,
2011).

Influence of heterogeneities on effective elastic properties of materials is studied in
many works on micromechanics (Torquato, 1991). Materials with pores (Shafiro and
Kachanov, 1997; Kumar and Han, 2005; Bîrsan and Altenbach, 2011), cracks (Sayers
and Kachanov, 1991; Saenger, 2008; Min and Jing, 2003; Grechka and Kachanov,
2006), and inclusions (Shafiro and Kachanov, 2000) of different shapes are considered.
Proper microstructural parameters determining contribution of heterogeneities to
effective properties are introduced (Kachanov and Sevostianov, 2005; Kachanov,
1999). State of the art in calculation of effective elastic properties is summarized in
the recent book (Kachanov and Sevostianov, 2018). In particular, the non-interaction
approximation allowing to calculate effective properties analytically is discussed in
detail.

Success of micromechanics in prediction of effective elastic properties is caused
by the fact that these properties are insensitive to many features of real microstructure.
Estimation of influence of heterogeneities, e.g. cracks, on strength properties is more
challenging. Complexity of estimation of strength properties is related to the fact that
strength is determined by local stress fields. Therefore many works are devoted to
development of numerical schemes for accurate calculation of the local fields (Linkov,
2002; Krivtsov, 2007; Kuna, 2013). In particular, efficient methods for calculation of
stress intensity factors in materials containing multiple cracks are proposed in Rejwer
et al (2014); Kushch et al (2009); Jaworski et al (2016). Relation between distribution
of stress intensity factor and effective strength of a material is discussed in Rejwer
et al (2014).

From practical point of view, it is important to find relation between loading type
and energy required for fracture of a material. This problem is not fully covered
in literature. In Bratov and Krivtsov (2016), a simple two-dimensional model for
estimation of energy of fracture initiation is proposed. Influence of loading type on
the energy is investigated. It is shown that mixed loading (compression and shear) is
energetically more efficient than pure compression. In the present paper, we generalize
the results of Bratov and Krivtsov (2016) for the three-dimensional case.

The paper is organized as follows. In Sect. 8.2, discrete model of a brittle material is
presented. In Sect. 8.3, simulation of deformation and fracture of a sample containing
an infinite rectangular crack is carried out. Energy of fracture initiation under various
loads for different crack orientations is calculated. Numerical results are compared
with analytical estimates (Bratov and Krivtsov, 2016). In Sect. 8.4, the energy of
fracture initiation is calculated for a penny-shaped crack. Generalization for the case
of multiple non-interacting penny-shaped cracks is carried out in Sect. 8.5.
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8.2 Discrete Model of a Brittle Material

In this section, a discrete model of deformation and fracture of a brittle mate-
rial (e.g. rock) is presented. A material is simulated using the particle dynamics
method (Krivtsov, 2007, 2004, 2003). In this method, a material is represented as
a set of interacting particles (∼material points) connected by bonds. Cubic sample
of a material is considered. Number of particles in the sample is of order of 5 · 105.
Particles form a quasi-random lattice (Tsaplin and Kuzkin, 2017). Positions of the
particles are calculated using the following algorithm, proposed in Tsaplin and Kuzkin
(2017). A perfect face-centered cubic lattice (FCC) is created. Particles are located at
nodes of the lattice (Fig. 8.1A). Then particles get random displacements (Fig. 8.1B).
Magnitudes of the displacements are of order of 0.4d. Here d is the step of the FCC
lattice. Each pair of particles at the distance less than 1.9d is connected by a linear
elastic spring (bond). On average, each particle has 20 bonds. The equilibrium bond
length is equal to the initial distance between connected particles. In Tsaplin and
Kuzkin (2017) it is shown that resulting material has isotropic elastic and strength
properties.

During the simulation, the following equations of motion for particles are solved
numerically:

m�vi =
∑
j

Fi j − βvi . (8.1)

Here, summation is carried out over all particles j connected with particle i; m is
particle mass; vi is particle velocity; Fi j is force in the bond connecting particles i
and j; β is coefficient of artificial dissipation, which is introduced in order to suppress
vibrations caused by deformation of the sample. Forces, Fi j , arising in bonds are
calculated as

Fi j = ci j(ri j − r0
i j)ei j, ci j = c0

d
r0
i j

, (8.2)

where ci j is bond stiffness; ri j is distance between particles i, j; r0
i j is initial bond

length; ei j is unit vector directed along the line connecting the particles; c0 is

(A) (B) (C)

Fig. 8.1 (A) FCC lattice; (B) quasi-random lattice; (C) an example of a crack in the
sample (particles near the crack are shown only)
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stiffness of a bond with initial length equal to d. Equations of motion (8.1) are
solved numerically using the symplectic leap-frog integration scheme with time step
2 · 10−2T∗, where

T∗ = 2π
√

m
c0
.

Periodic boundary conditions in all space directions are used.
Macroscopic elastic moduli of the considered material are calculated in Tsaplin

and Kuzkin (2017). It is shown that the Young modulus and the Poisson ratio are
related with microparameters as

ν = 0.255, E = 1.48
c0
d
. (8.3)

An initial crack is created by removing bonds between the particles that cross a crack
surface (Fig. 8.1C). Contact between crack faces is neglected. Crack propagation is
simulated by removing bonds, satisfying the following inequality:

ri j − r0
i j

r0
i j

> εcr , (8.4)

where εcr is the critical bond deformation. In further calculations εcr is equal
to 2 · 10−4.

8.3 An Infinite Rectangular Crack

In this section, we study initiation of fracture (crack propagation) in a sample
containing an infinite rectangular crack under various loads. An initial crack is shown
in Fig. 8.2A. Angle α is a parameter defining orientation of the crack with respect to
direction of loading. Crack length is equal to 0.35 of periodic cell size. During the
simulation, every 20T∗ a periodic cell is subjected to a uniform strain (Δεzz or Δεyz
or both). Three cases are considered: (a) compression along z axis with increment

(A) (B) (C)

Fig. 8.2 Periodic cell containing an infinite crack (A). Change of the periodic cell under
compression (B) and shear (C)
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Δεzz = 5 · 10−6 (see Fig. 8.2B); (b) pure shear with increment Δεyz = 5 · 10−6 (Fig.
8.2C) and (c) mixed loading with increments Δεzz = Δεyz = 5 · 10−6.

Deformation of the sample leads to breakage of bonds. A moment of fracture
initiation is tracked by the number of broken bonds. It is assumed that the fracture
begins when the number of broken bonds increases by 5% compared to the number
of bonds removed for creation of the initial crack. When the criterion is satisfied, the
strain energy density is calculated as a sum of potential energies of all bonds in the
periodic cell:

U =
1

2V

∑
ci j(ri j − r0

i j)
2, (8.5)

where V is volume of the periodic cell. Further U is referred to as the energy of
fracture initiation.

We compare simulation results with analytical estimates obtained in Bratov and
Krivtsov (2016). In Bratov and Krivtsov (2016), a single crack under compression
and shear loads applied at infinity is considered in two-dimensional formulation.
Solution of corresponding elasticity problem yields stresses near the crack tip. Neuber-
Novozhilov fracture criterion (Novozhilov, 1969) is used. The criterion is used for
estimation of energy of fracture initiation.

Comparison of analytical estimates Bratov and Krivtsov (2016) with the results
of particle dynamics simulations is presented in Fig. 8.3. Every point on the plot
corresponds to average over 5 simulations with different realizations of a quasi-random
lattice. Figure 8.3 shows that numerical and analytical results are in a qualitative
agreement. Deviations are caused by different fracture criteria and material models.
In Bratov and Krivtsov (2016), linear fracture mechanics is used. In the framework
of this approach, at certain crack orientations the fracture criterion is never satisfied.
For example, uniaxial compression of a sample along crack direction does not lead to
fracture. Therefore energy of fracture initiation, U, formally tends to infinity (see Fig.
8.3). In contrast, presented discrete model yields finite energy of fracture initiation
for any crack orientation. Moreover, fracture is possible even in the absence of a

(A) (B) (C)

Fig. 8.3 Energy of fracture initiation, U , as a function of rectangular crack orientation under
uniaxial compression (A), pure shear (B), and compression with a shear (C). In the latter
case Δεzz = Δεyz . Results of particle dynamics modeling (squares) and analytical
estimates (Bratov and Krivtsov, 2016) (solid line) are shown
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crack. Additionally, we note that relation between bond breakage criterion (8.4) and
the Neuber-Novozhilov criterion is not straightforward.

Figure 8.3 shows that the energy of fracture initiation strongly depends on crack
orientation and loading type. In particular, the energy has clear minima corresponding
to the most energetically beneficial crack orientations. In the following section, this
fact is considered in detail for a penny-shaped crack.

8.4 A Penny-shaped Crack

In this section, initiation of fracture in a sample containing a penny-shaped (circular)
crack (Fig. 8.4) is considered. As in the previous section, the sample is subjected
to compressive and shear strains with increments Δεzz and Δεyz every 20T∗. Crack
orientation is specified by angle α (see Fig. 8.4). The ratio of crack diameter to size
of the periodic cell is equal to 0.35.

Influence of crack orientation and ratio of strain increments,

k =
Δεyz

Δεzz
,

on energy of fracture initiation is investigated. Results of numerical simulations are
shown in Fig. 8.5. Each point on the plot corresponds to average over 5 realizations
of a quasi-random lattice. Figure 8.5 shows that under uniaxial compression (k = 0)
energy of fracture initiation, U, has minima at α = 45◦; 135◦ and maxima at
α = 0◦; 90◦; 180◦. Adding shear leads to decrease of minimum and maximum values
of fracture initiation energy. Moreover, for k > 0.5 and for all crack orientations, the
energy of fracture initiation is less than in the case of uniaxial compression. Therefore
mixed loading is energetically more efficient than uniaxial compression.

Fig. 8.4 Periodic cell contain-
ing a penny-shaped crack
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Fig. 8.5 Dependence of the
energy of fracture initiation,U ,
on crack orientation for various
ratios of shear and compressive
strain increments, k (uniaxial
compression corresponds
to k = 0)

8.5 Multiple Randomly Oriented Penny-shaped Cracks
(Non-interaction Approximation)

In this section, energy of fracture initiation in a material containing multiple randomly
oriented penny-shaped cracks is estimated using the results obtained above and
the non-interaction approximation (Kachanov and Sevostianov, 2018). Consider a
material containing randomly located and oriented cracks. Suppose that the cracks are
located far from each other. In the framework of the non-interaction approximation,
we assume that mutual influence of cracks can be neglected. Then for each crack, the
energy of fracture initiation can be estimated using Fig. 8.5. We assume that fracture
starts at cracks with orientations, corresponding to minimum of function U(α). For
each ratio of shear and compressive strains increments, k, the minima are calculated
using results shown in Fig. 8.5. Resulting energy of fracture initiation for a material
containing multiple cracks is presented in Fig. 8.6.

Figure 8.6 shows that the energy of fracture initiation has maximum at k = 0 (uni-
axial compression) and monotonically decreases with increasing shear load. Note that
adding a small shear load, significantly decreases energy of fracture initiation. These
results are in a good qualitative agreement with experimental observations (Vaisberg
et al, 2016) and analytical estimates (Bratov and Krivtsov, 2016).

8.6 Conclusions

Energy of fracture initiation for a material with a single crack under mixed load-
ing (compression and shear) was calculated numerically. Rectangular and penny-
shaped cracks were considered. Dependencies of the energy of fracture initiation on
crack orientation for various ratios of compression and shear loads were obtained.
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Fig. 8.6 Energy of fracture
initiation, U , for a material
with multiple cracks as a func-
tion of the ratio of shear and
compressive strain increments,
k

The dependencies were employed for estimation of energy of fracture initiation in a
material containing multiple cracks under the non-interaction approximation. It was
shown that the energy strongly depends on loading type. It has maximum in the case
of uniaxial compression and it decreases monotonically with increasing shear load. It
was shown that adding a small shear load yields significant decrease of the energy of
fracture initiation.

Presented results may serve for minimization of energy consumption during
disintegration of rocks, for example, in vibrational crushers (Vaisberg et al, 2018b).
In particular, the results suggest that energy consumption under mixed loading is
several times less than under uniaxial compression. This fact is in a good qualitative
agreement with experimental observations (Vaisberg et al, 2018b, 2016).
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