
Chapter 5
Surface Elasticity Models: Comparison Through
the Condition of the Anti-plane Surface Wave
Propagation

Victor A. Eremeyev

Abstract In order to discuss the peculiarities of few models of surface elasticity we
consider here the dispersion relations for anti-plane surface waves. We show that the
dispersion curves are quite sensitive to the choice of the model. We consider here the
linear Gurtin-Murdoch model, strain- and stress-gradient surface elasticity models.

Keywords: Surface elasticity · Anti-plane surface wave propagation · Dispersion
curves · Gurtin-Murdoch model · Strain-gradient surface elasticity model · Stress-
gradient surface elasticity models

5.1 Introduction

The interest to generalized models of continua grows recently with respect to
appearance of new microstructured materials as well as in order to describe new
phenomena observed at the micro- and nano-scale, see, e.g., Forest et al (2011);
Liebold and Müller (2015); Aifantis (2016). In particular, the surface elasticity
models found various applications in micro- and nano-mechanics, see, e.g., Duan et al
(2008); Wang et al (2011); Javili et al (2013b,a); Eremeyev (2016) and the reference
therein. Having origin in the landscape works by Laplace (1805, 1806); Young (1805);
Poisson (1831) and Gibbs, see Longley and Van Name (1928), the rational continual
model of the surface elasticity was developed by Gurtin and Murdoch (1975, 1978).
Later it was generalized by Steigmann and Ogden (1997, 1999) in order to take
into account bending surface stiffness. As surface mechanics should describe quite
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different phenomena, in the literature are known various extensions of surface-related
mechanics, see, e.g., dell’Isola and Seppecher (1997); dell’Isola et al (2012b); Placidi
et al (2014); Lurie et al (2016, 2009); Belov et al (2019); Eremeyev (2019b) and the
references therein.

The presence of surface stresses influences the effective (apparent) properties of
nanostructured materials, such as nano-composites (Kushch et al, 2013; Nazarenko
et al, 2016, 2018; Zemlyanova and Mogilevskaya, 2018; Han et al, 2018) or nano-
plates and shells (Altenbach and Eremeyev, 2011; Altenbach et al, 2010, 2012; Ru,
2016). In addition, surface energy may result in new phenomena as the appearance
surface/interfacial waves considered within the Gurtin-Murdoch approach (Xu et al,
2015; Eremeyev et al, 2016) and for certain generalizations of the Gurtin-Murdoch
model (Eremeyev, 2017, 2019b,a). Let us note that this class of waves exist also
for another type of media with surface energy such as strain-gradient media, see
Vardoulakis and Georgiadis (1997); Georgiadis et al (2000); Yerofeyev and Sheshenina
(2005); dell’Isola et al (2012a); Rosi et al (2015); Li et al (2015); Gourgiotis and
Georgiadis (2015). The comparison of the Gurtin-Murdoch model with the Toupin-
Mindlin strain gradient elasticity was given by Eremeyev et al (2018b), whereas the
similarities with the dynamics of a square lattice was discussed by Eremeyev and
Sharma (2019).

The aim of this paper is to compare the dispersion relations and condition of
existence of anti-plane surface waves in various media with surface energy. The
key-point of the surface elasticity is the presence of surface stresses τττ. For the latter
we assume additional constitutive equation. Here we consider the classic Gurtin-
Murdoch model as well two extensions such as surface strain and surface stress
gradient elasticity.

The paper is organized as follows. First, in Sect. 5.2 we present the basic equations
for an elastic half-space with surface stresses. Then in Sect. 5.3 we consider various
constitutive equations for τττ. Here we introduce both the integral and differential
constitutive equations. In other words, we consider both strongly and weak nonlocal
models of surface elasticity. Finally, we discuss the dispersion relations in Sect. 5.4.

5.2 Anti-plane Motions of an Elastic Half-Space

In what follows we restrict ourselves by isotropic materials undergoing infinitesimal
deformations. So in the bulk we have the Hooke law

σσσ = 2μeee + λ III tr eee, eee =
1
2

(
∇uuu + (∇uuu)T

)
, (5.1)

where σσσ and eee are the stress and strain tensors, respectively, λ and μ are Lamé elastic
moduli, tr is the trace operator, the superscript T stands for the transpose operation,
∇ is the 3D nabla operator, and III is the 3D unit tensor. Hereinafter we use the direct
(coordinate-free) tensor calculus as described in Simmonds (1994); Lebedev et al
(2010); Eremeyev et al (2018a). As a result, the gradient of the displacement vector
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uuu = uuu(xxx, t) is given by

∇uuu =
∂u j

∂xi
iiii ⊗ iii j,

where ⊗ denotes the dyadic product, x1, x2, x3 are Cartesian coordinates with
corresponding base vectors iiik , k = 1,2,3, xxx = xiiiii is the position vector, t is time,
and Einstein’s summation rule is utilized. The equation of the motion is given by

∇ ·σσσ = ρ
∂2uuu
∂t2 , (5.2)

where ρ is the mass density and the dot stands for scalar product. For a free surface
with surface stresses we get the generalized Young-Laplace equation as a boundary
condition

nnn ·σσσ = ∇s · τττ − m
∂2uuu
∂t2 , (5.3)

where nnn is the unit outward vector of normal to the boundary, ∇s ≡ PPP · ∇ is the
surface nabla operator, PPP ≡ III − nnn ⊗ nnn is the surface unit second-order tensor, and m
is the surface mass density, see Gurtin and Murdoch (1978).

Let us consider anti-plane motions of an elastic half-space given by the inequality
−∞ ≤ x3 ≤ 0. The displacement vector takes the form

uuu = u(x2, x3, t)iii1, (5.4)

see Achenbach (1973). In this case the equation of motion (5.2) is reduced to the
wave equation

μΔu = ρ∂2
t u, (5.5)

where Δ = ∂2
2 + ∂

2
3 is the 2D Laplace operator. For brevity, in what follows we will

denote partial derivatives as ∂k = ∂/∂xk and ∂t = ∂/∂t. For the anti-plane motion τττ
takes the form

τττ = τ (iii1 ⊗ iii2 + iii2 ⊗ iii1), τ = τ(x2, x3, t)

with only one surface stress τ(x2, x3, t). As a result, the generalized Young-Laplace
equation (5.3) can be transformed into

σ31 = ∂2τ − m∂2
t u

or, considering Hooke’s law (5.1), into

μ∂3u = ∂2τ − m∂2
t u. (5.6)

Thus, to complete the boundary-value problem statement one needs in the constitutive
relations for τ.
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5.3 Constitutive Relations Within the Surface Elasticity

After Gurtin and Murdoch (1975) in addition to constitutive equations in the bulk
one should independently introduce constitutive relations for surface stresses τττ. Here
we consider the simplified linear Gurtin-Murdoch model and some of its extensions.

5.3.1 Simplified Linear Gurtin-Murdoch Model

Within this model we get the following constitutive relation

τττ = 2μsεεε + λsPPP tr εεε, (5.7)

where the surface strain tensor is defined by the formula

εεε =
1
2
[
PPP · (∇suuu) + (∇suuu)T · PPP

]
,

and λs and μs are the surface Lamé moduli.
For anti-plane deformations we get that

εεε = ε(iii1 ⊗ iii2 + iii2 ⊗ iii1), ε =
1
2
∂2u

and
τ = μs∂2u. (5.8)

Let us note that as the anti-plane motions constitute a very specific class of de-
formations, in this case τ takes form (5.8) also for linearized (non-simplified)
Gurtin-Murdoch model, see also discussion by Ru (2010), as well as for the linear
Steigmann-Ogden model.

5.3.2 Linear Stress-gradient Surface Elasticity

Motivated by long range surface interactions as described by de Gennes (1981);
de Gennes et al (2004); Israelachvili (2011), we recently proposed the integral-type
constitutive relations of Eringen’s type (Eremeyev, 2019a)

τττ(xxx) =
∞∫

−∞

∞∫
−∞

α(‖xxx − xxx ′‖) [2μsεεε(xxx ′) + λs (tr εεε(xxx ′))PPP] dx ′
1dx ′

2, (5.9)

where α(s) is a kernel function, which can be taken as a fundamental solution of an
elliptic differential equation. For example, introducing an elliptic differential operator
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L we define α as the normalized solution of

L(∂1, ∂2)α = δ(xxx),
∞∫

−∞

∞∫
−∞

α(‖xxx − xxx ′‖)dx ′
1dx ′

2 = 1, (5.10)

where δ(xxx) is the Dirac delta-function. In this case we can transform (5.9) into
differential form

L(∂1, ∂2)τττ = 2μsεεε + λsPPP tr εεε . (5.11)

After Eringen (2002) we can consider

L = −q−2Δ + 1,

where the parameter q is a reciprocal length, as an example of proper strongly
non-local model. Here we have

α(s) =
1

2π
K0(qs),

where K0 is a modified Bessel function of the second kind. So we get the following
stress-gradient constitutive equation

− q−2Δτττ + τττ = 2μsεεε + λsPPP tr εεε . (5.12)

Other choices of the kernel functions are also possible, see Eringen (2002). For
example, if we take α = δ(xxx) we get (5.7).

In the case of anti-plane motions, Eq. (5.9) can be transformed into one scalar
integral equation

τ =

∞∫
−∞

∞∫
−∞

α(‖xxx − xxx ′‖)μs∂2u(xxx ′) dx ′
1dx ′

2,

or into its differential counterpart

L(0, ∂2)τ = μs∂2u.

For L = −q−2Δ + 1, this becomes

− q−2∂2
2 τ + τ = μs∂2u. (5.13)

Obviously, Eq. (5.13) transforms into (5.8) at q → ∞. So for this limit we get the
classic Gurtin-Murdoch model. The presented here model belongs to the class of
strongly non-local materials according to Maugin’s classification, see Maugin (2017)
for the general framework and Eremeyev (2019a) for more detail.
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5.3.3 Linear Strain-gradient Surface Elasticity

Another non-local generalization of the Gurtin-Murdoch model can be introduced
considering higher order gradient terms in the surface energy density

Ws = Ws(εεε,∇s∇suuu),

see Eremeyev (2017). Partially the model was motivated by consideration of hyperbolic
metasurfaces, see Eremeyev (2019b) and the reference therein. As a result, we came
to the constitutive relation

τττ = μsεεε + λsPPP tr εεε − μ2∇s · (∇s∇suuu) , (5.14)

where μ2 is an additional surface elastic modulus. Here in the model there also exist
surface hyperstresses as in the 3D strain-gradient elasticity, given by the formula

μμμ = μ2∇s∇suuu.

For anti-plane deformations, Eq. (5.14) takes the form

τ = μs∂2u − μ2∂
3
2 u. (5.15)

As a result, Eq. (5.6) becomes a forth-order differential equation with respect to the
tangent derivative.

5.4 Dispersion Relations

Considering the models above, we came to the boundary-value problem in the
half-space which consists of the wave equation (5.5) and the boundary condition
(5.6) where τ was introduced within the Gurtin-Murdoch, stress- and strain-gradient
models according to (5.8), (5.13), and (5.15), respectively. Assuming steady-state
behaviour, we consider a solution of (5.5) in the form

u = U(x2, x3) exp(−iωt), (5.16)

where U is an amplitude, ω is a circular frequency, and i =
√
−1 is the imaginary

unit. With (5.16), Eq. (5.5) transforms into

μΔU = −ρω2U, (5.17)

which has decaying at x3 → −∞ solution

U = U0 exp(κx3) exp(ik x2), (5.18)

where k is a wavenumber, U0 is a constant, and κ is given by
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κ = κ(k,ω) ≡

√
k2 −

ω2

c2
T

, cT =
√
μ

ρ
,

where cT is the phase velocity of transverse waves in the bulk (Achenbach, 1973).
A nontrivial solution of (5.18), that is with U0 � 0, exists if and only if it satisfies

the boundary conditions at x3 = 0. The latter will lead to a dispersion relation, i.e.,
an equation relating k and ω.

The displacement field u(x2, x3, t) according to (5.16) and (5.18) leads to a surface
stress in the form

τ = T exp(ik x2) exp(−iωt),

where T is a constant. For (5.8), (5.13), and (5.15), T is given by

T =ikμsU0, (5.19)

T =
ik

1 + q−2k2 μsU0, (5.20)

T =ik(μs + μ2k2)U0, (5.21)

respectively. Substituting these dependencies into (5.6) we get the dispersion relations

μκ(k,ω) =mω2 − μsk2, (5.22)

μκ(k,ω) =mω2 − q2 μsk2

k2 + q2 , (5.23)

μκ(k,ω) =mω2 − μsk2 − μ2k4. (5.24)

Introducing the phase velocity c = ω/k and characteristic wavenumber p = ρ/m
we transform (5.22)-(5.24) into dimensionless forms

c2

c2
T

=
c2
s

c2
T

+
p
|k |

√
1 −

c2

c2
T

, (5.25)

c2

c2
T

=
c2
s

c2
T

(
1 +

k2

q2

)−1

+
p
|k |

√
1 −

c2

c2
T

, (5.26)

c2

c2
T

=
c2
s

c2
T

+
K

p4 k4 +
p
|k |

√
1 −

c2

c2
T

, (5.27)

where K = μ2p4/(c2
Tm) and cs =

√
μs/m is the shear wave velocity in the thin film

associated with the Gurtin-Murdoch model.
Typical dispersion curves for these models are shown in Fig. 5.1 for different

values of parameters. Let us discuss some similarities in dispersion curves. All curves
start from the point (0, cT ) with a horizontal tangent. So for small k that is for long
waves there is no significant difference in models as it should be. Indeed, surface
nonlocality plays a role for short waves. Moreover, within a fixed range 0 ≤ k ≤ k1,
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c

k

cs

K
cT

0

0 p

q

cGM(k), the Gurtin-Murdoch model, q → ∞ or K → 0

∞

∞

0

0c0(k) = lim
q→0

cstress(k)

Fig. 5.1 Dispersion relations. cGM curve corresponds to the Gurtin-Murdoch model. The dispersion
curves cstress for stress-gradient surface elasticity occupies the green area whereas dispersion curves
cstrain for strain-gradient surface elasticity are in the yellow area. Here we assumed that cs = 3/4cT

the dispersion curve of the stress-gradient model for q → ∞ will come arbitrarily
close to the dispersion curve of the Gurtin-Murdoch model. The same behaviour
demonstrate the dispersion curves for the strain-gradient model when K → 0. In
what follows we assume the following notations: cGM = cGM(k), cstress = cstress(k),
and cstrain = cstrain(k) denote the phase velocity for the Gurtin-Murdoch, stress- and
strain-gradient models.

For fixed q and K we have different behaviour of the dispersion curves for the
stress- and strain gradient models at k → ∞. For stress-gradient model we have
that cstress → 0 when k → ∞. Let us remind that the Gurtin-Murdoch dispersion
curve tends to the finite velocity cs at k → ∞, see GM-curve in Fig. 5.1. For the
strain-gradient model the dispersion curves approach the line cstrain = cT at k = kmax,
where kmax takes the value

kmax =

√
c2
T − c2

s

K
.

For the stress-gradient surface elasticity all dispersion curves are enclosed between
the lower limiting curve for q → 0, given by the formula
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c2
0 =

c2
T p2

2k2
� !
√

1 +
4k2

p2 − 1"#$ , (5.28)

and the dispersion curve of the Gurtin-Murdoch model, see Fig. 5.1. So we have the
following bounds for cstress

c0(k) ≤ cstress(k) ≤ cGM(k). (5.29)

Let us note that the dispersion curves for a square lattice lie also below the GM-curve,
see Eremeyev and Sharma (2019). For the strain gradient model all dispersive curves
are enclosed between the GM-curve and the line c = cT , see Fig. 5.1,

cGM(k) ≤ cstrain(k) ≤ cT . (5.30)

Thus, GM-curve separates dispersion curves for the stress- and stress-gradient model.
For all considered above models we consider the surface kinetic energy in the

simplest form
Ks =

1
2

m∂tuuu · ∂tuuu,

as was introduced by Gurtin and Murdoch (1978). Introduction of higher-order terms
in the surface kinetic energy may significantly change the behaviour of the dispersion
curves as in the case of the 3D models, see e.g. Askes and Aifantis (2011).

5.5 Conclusions

We have considered here the propagation of anti-plane surface waves in an elastic
half-space with surfaces stresses within various models of surface elasticity. The
linear Gurtin-Murdoch elasticity and strain- and stress-gradient surface elasticity
models were compared. From the mathematical point of view the difference between
the models consists of the boundary conditions at the half-space boundary. The
analysis of dispersion relations was performed and the upper and lower bounds for
the dispersion curves were found. In particular, it was shown that the dispersion curve
for the Gurtin-Murdoch model separates the areas of dispersion curves for strain- and
stress gradient surface elasticity.
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