
Chapter 18
On Micropolar Theory with Inertia Production

Elena Vilchevskaya

Abstract This paper presents a new aspect in generalized continuum theory, namely
micropolar media showing structural change. Initially the necessary theoretical
framework for a micropolar continuum is presented. To this end the standard
macroscopic equations for mass and linear and angular momentum are complemented
by a recently proposed balance equation for the moment of inertia tensor containing
a production term. The new balance and, in particular, the production is interpreted
mesoscopically by taking the inner structure of micropolar media into account.
Various of examples for the term are presented.
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18.1 Introduction

Mechanics of Micropolar Continua is a theory with independent force and moment
(couple) actions. That theory incorporates local rotations of points as well as
translations assumed in classical elasticity. The idea of a couple stress can be traced to
Voigt (1887) where the effects of couple stresses were investigated and a generalization
of the classical theory of symmetric elasticity to a non-symmetric theory was made.
The approach was further elaborated by the Cosserat brothers (Cosserat and Cosserat,
1909) who suggested to consider the rotational degrees of freedom of material
particles as independent variables and so every particle contains six degrees of
freedom: three displacements assigned to the macro-element, plus three rotations
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referring to the micro-structure. Thus, force and moment actions in the continuum
were introduced independently, as it was done by Euler, and the angular momentum
equation was explicitly used instead of being reduced to a symmetry statement of the
stress tensor. This material model referred to as the Cosserat continuum provides the
mathematical characterization of solid bodies with microstructure in which couple
stresses, body couples, and local motions are included. These peculiarities of the
Cosserat continuum model give a possibility to describe more complex media, for
example, micro-inhomogeneous materials, particle assemblies, viscous fluids, fiber
suspensions, liquid crystals, etc. Later Eringen and associates started to use the term
micropolar to describe Cosserat media.

Although Hellinger (1914) paid tribute to the potential of the theory and obtained
the general constitutive relations for stress and couple-stress, the ideas of the Cosserat
continuum were not widely accepted and it was not until the 1960’s that fully developed
microstructure theories evolved. In fact, it was only after a paper by Ericksen and
Truesdell (1957) that the ideas of the Cosserat brothers were revived. In this paper,
the purely kinematical description of Cosserat continua emphasizing the one- and
two-dimensional cases of rods and shells was developed. The original concept was
modified in two ways. Firstly, the concept of directors defining the orientation of the
material particle was introduced and secondly, these directors were also allowed to
deform to describe a deformation of the material particle at the microscale. These
are micromorphic continua in Eringen’s classification (Eringen, 1999, 2001), which
have nine degrees of freedom (three for microrotation and six for microdeformation).
A particular case is that of continua with microstretch (Eringen, 1969), where the
directors are orthogonal, but permit isotropic expansion or contraction in addition to
rotation. This means, particles of microstretch continua have four additional degrees
of freedom more than classical continua.

Later Günther (1958) developed a linear theory of the Cosserat continuum with
an application to the continuum theory of dislocations, Grioli (1960) elaborated a
theory of elasticity with a non-symmetric stress tensor, and Ericksen (1960c,a,b,
1961) developed a theory of anisotropic fluids and liquid crystal assuming that a fluid
is a three-dimensional point continuum with one director at each point. Since the
mid of 20th century a lot of publications devoted to the Cosserat continuum have
appeared. Not even trying to give detailed information about various contributions
we just refer to Mindlin and Tiersten (1962), Aero and Kuvshinskii (1961), Kröner
(1963), Palmov (1964), Toupin (1962, 1964) as pioneers in the field. Later the
micropolar elasticity was considered for example in Maugin (1998); Neff and Jeong
(2009); Jeong and Neff (2010); Dyszłewicz (2004); Pietraszkiewicz and Eremeyev
(2009); Ramezani and Naghdabadi (2007). There are also many publications on the
plastic and visco-elastic Cosserat continuum, among them Lippmann (1969); de
Borst (1993); Steinmann (1994); Forest and Sievert (2003, 2006); Grammenoudis and
Tsakmakis (2005); Neff (2006). Variational problems in the micropolar continuum are
investigated in Steinmann and Stein (1997); Nistor (2002). It is also worth mentioning
recent collections (Maugin and Metrikine, 2010; Altenbach et al, 2011; Altenbach
and Eremeyev, 2012; Sansour and Skatulla, 2012; Altenbach and Forest, 2016) and
references therein where modern views on the micropolar media are presented.
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The essential developments in the field of micropolar theory were made by Eringen
and Suhubi (1964a,b); Eringen (1999, 2001); Eringen and Kafadar (1976); Eringen
(1997). Unlike Ericksen and Truesdell (1957) and other early contributions, where
the orientation of the material particle was defined by directors, they considered a
field of orthogonal transformations (rotations) and not the directors themselves. In
analogy to rigid body dynamics Eringen extended the Cosserat theory to include body
microinertia effects and used the microinertia tensor J as the orientational descriptor.
A truly new notion in his approach is an establishment of existence of a conservation
law of micro-inertia. It is based on the concept of an indestructible “material particle”
(polar particle) that is phenomenologically equivalent to a rigid body, see for example
Eringen (1997); Truesdell and Toupin (1960); Mindlin (1964); Eringen and Kafadar
(1976), where it is supposed that the inertia tensor changes only due to rotation of the
material particle as a rigid body. So the inertia tensor in the current configuration can
be written as follows:

J = Q · J0 ·QT , (18.1)

where the inertia tensor in the reference configuration, J0, is a priory known constant
tensor, Q is the tensor of microrotation.

Equation (18.1) can be rewritten in differential form:

δJ

δt
= ωωω × J − J ×ωωω , (18.2)

where the Poisson equation
δQ

δt
= ωωω × Q (18.3)

is taken into account. Hereωωω is the angular velocity. We denote by

δ( · )
δt
=

d( · )
dt
+ (v − w) ·∇∇∇( · ) (18.4)

the substantial derivative of a field quantity that characterizes the rate of change a
property of the material point that was in the observation point at the certain moment
of time, d( · )

dt is the total derivative that determines the rate of change of property in
an observation point, v is the velocity of the material point and w is the mapping
velocity of the observational point (see Ivanova et al (2016)).

Even if a micromorphic structure is considered, following Eringen (1976); Eringen
and Kafadar (1976); Eringen (1999), many papers use the balance law for the
conservation of inertia (e.g., see Oevel and Schröter, 1981; Chen, 2007). A different
approach was suggested in Dłuzewski (1993), where it was assumed that the inertia
of polar particles may change as the continuum deforms. Furthermore, in order to
take the interaction of suspensions with viscous fluids surrounding the suspensions
into account, Eringen (1984, 1985, 1991) proposed a modified balance law for
microinertia:

δJ

δt
= ωωω × J − J ×ωωω − F , (18.5)
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where the additional term F describes changes of the microinertia of rigid suspensions
due to the fluid sticking to the suspensions.

This idea was further elaborated by Ivanova and Vilchevskaya (2016) who clearly
stated that the tensor of inertia should be treated as an independent field. They
considered the micropolar theory based on the spatial description. Within the spatial
description, it is customarily to refer thermodynamic state quantities to an elementary
volume V , fixed in space, containing an ensemble of micro-particles. In their approach,
the tensor of inertia associated with the elementary volume was obtained as a result
of averaging of the inertia tensors of micro-particles that constitute V . Because
the elementary volume is an open system, its inertia tensor can change due to
the inertia flux as micro-particles travel across the bounding surface. Moreover,
to take into account internal structural transformations, such as combination or
fragmentation of micro-particles, chemical reactions, or changes of anisotropy of the
material, the authors in Ivanova and Vilchevskaya (2016) assumed that the inertia
tensor in the reference configuration is no longer a constant tensor but an additional
independent variable characterizing structural transformations in the media. As a
result, they proposed a governing equation for the inertia tensor, which in contrast to
former theories contains a production term. On the macroscopic continuum level,
the production term must be considered as a new constitutive quantity for which an
additional constitutive equation has to be formulated. The form of the constitutive
equation depends on the problem under consideration and can be a function of many
physical quantities, such as temperature, pressure, flow rate, etc.

For a better understanding of these new concepts, the authors in Ivanova and
Vilchevskaya (2016) also presented a mesoscopic theory. The main idea was to
connect information on a mesoscale by taking the intrinsic microstructure within
the elementary volume into account with the balances of micropolar continua on
the continuum level in combination with suitable constitutive equations. A similar
approach for the case of material description was presented in the series of papers
by Stojanović et al (1964) and Rivlin (1968), where the discrete structure of macro-
particles constituting the medium was taken into account. It was assumed that each
macro-particle consists of a number of micro-particles and characterizes by a position
vector to the center of gravity of micro-particles and a number of directors. Later a
transition from the dynamics of single particles to micropolar continuum was done by
many researchers, for example, the homogenization approaches in Ehlers et al (2003)
was based on the volume averages and in Mandadapu et al (2018) it was derived
by means of the Irving-Kirkwood procedure. Various homogenization procedures
also were used for the determination of the micropoloar moduli, see for example,
van der Sluis et al (1999); Larsson and Diebels (2007); Larsson and Zhang (2007).
However, the production term in the kinetic equation for the inertia tensor has never
been considered from this point of view, to the best of our knowledge.

In this paper different examples of the production term introduction will be
discussed and a potential of this approach for modeling materials with higher inner
degrees of freedom by various example problems will be illustrated. It will be shown
that the new term in the balance of inertia allows to model additional features of
materials, namely processes inherent of considerable structural changes.
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In what follows, we firstly consider the theoretical aspects of micropolar theory
with the inertia production from the mesoscopic point of view, which results in an
answer to the question of how to determine the inertial and kinematic characteristics
of the polar particle within the spatial description. Then, because the balance for
the inertia tensor field is extended by the production term, we also discuss possible
forms of the production term on the continuum level in relation with properties of
micro-particles which are located in the elementary volume.

18.2 Outline of the Theory

Within the spatial description, it is customary to refer thermodynamic state quantities
to an elementary volume, fixed in space. If the length scale difference between an
elementary or micro-particle (microscale) and the whole medium under consideration
(macroscale) is sufficiently large (e.g., a sand grain in a sand heap), then the elementary
volume containing sufficiently many micro-particles can be introduced in the sense
of a representative volume element (RVE). It means that within that approach a
continuum is understood as a manifold of RVEs (Fig. 18.1). The RVE, by turn, is
constructed as a manifold of micro-particles and links the micro- and mesoscales.
Note that the presence of a very large number of micro-particles in the RVE is
required since establishing a continuous field theory would not be possible otherwise,
and fluctuations would become dominant.

Let us consider a volume element containing N(r, t) micro-particles. The position
vector r corresponds to the geometrical center of the volume and is independent
of the motion of the medium. Generally the volume may be considered as moving
but we will suppose that it is fixed in space. It means that the position vector is

Fig. 18.1 Continuum as a manifold of elementary volumes
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independent on time, t, and the velocity of the observational point in (18.4) equals to
zero. Note that the volume is an open system since, as the medium moves, different
micro-particles each having their own mass, inertia tensor, translational and angular
velocities pass through the volume.

Since at different moments the volume consists of different micro-particles each
having their own mass and inertia tensor, one has to introduce corresponding fields at
the macrolevel as effective characteristics. The micro-particles within the RVE are
assumed to be replaceable by an ensemble of identical average particles each having
an average mass and an average tensor of inertia.

m(r, t) = 1
N

N∑
i=1

mi, Ĵ(r, t) = 1
N

N∑
i=1

J i . (18.6)

The second equation calls for a short explanation. The field Ĵ(r, t) characterizes the
size, shape and orientation of the average particle rather than the mass distribution
over the RVE. In fact, it is nothing more than an effective characteristic of rotational
inertia that should not be associated with a real material particle. Note that if
the micro-particles are randomly oriented within the RVE, then, due to symmetry
consideration, the averaged tensor Ĵ(r, t) must be a spherical tensor.

If n(r, t) = N/V denotes the number of particles per unit volume, then the mass
density, ρ, and the volumetric density of the moment of inertia are expressed as:

ρ = nm, ρJ = nĴ, (18.7)

where J = Ĵ/m is the average geometrical moment of inertia of a single particle.
However, from the continuum point of view, J stands for the specific density of the
moment of inertia of the elementary volume and ρJ refers to the volumetric density
of the inertia tensor of the elementary volume. Thus, the inertial characteristics of the
elementary volume are assumed to coincide with those of the average particle. Within
this approach, the inertial properties of the medium are only weakly dependent on
the size of the elementary volume.

The momentum and spin of the elementary volume consisting of the original
micro-particles are required to equal those of the elementary volume consisting of
average particles. The linear and angular velocities are obtained from these conditions

1
N

N∑
i=1

mivi = mv, or
1
V

N∑
i=1

mivi = ρv, (18.8)

1
N

N∑
i=1

J i ·ωωωi = ρJ ·ωωω. (18.9)

Similar definitions for the mass density and so-called barycentric velocity, v, can be
found in treatises on multi-component and porous media (Loret and Simões, 2005;
Wilmanski, 2008).
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It should be noted that with respect to the translational degrees of freedom, the
spatial description only considers the current configuration. Nevertheless, the concept
of a reference configuration for the rotational degrees of freedom should be introduced.
To describe the average particle rotation, we choose some fixed state of the medium
that may be taken at t = 0 or another fixed instant and call this state the reference
configuration. In order to determine the orientations of particles, reference directors
Dk(r), (k = 1,2,3) must be locally introduced at each point of the space (Fig. 18.1a).
These directors may coincide with the base vectors of the reference coordinate system
or can be chosen independently and, say, coincide with the primary axes of J(r, 0).

Note also that within the spatial description the translational and angular velocities
are the primary quantities. The displacement, u, and the microrotation tensor, Q,
have to be found as solutions from the corresponding differential equations:

v = δu
δt
,
δQ

δt
= ωωω × Q, (18.10)

provided v and ωωω are known. Furthermore, the microrotational tensor is different
from the rotation tensor of the elementary volume as a rigid body as well as from
the rotation tensor obtained by averaging over all micro-particles found in a given
volume element at a given time. In fact, it describes the change of directors from the
reference to the current position. To this end, it suffices to postulate that the tensors
of rotation of all macroparticles in the reference configuration are identity tensors
Q(r, 0) = I .

Now we assume that the tensor of inertia in spatial description has a representation
similar to (18.1):

J(r, t) = Q(r, t) · J0(r, t) ·QT (r, t), J0(r,0) = J̃0(r). (18.11)

The key point within this approach is that the inertia tensor in the reference configu-
ration is no longer a known characteristic of the medium. Indeed, let us suppose that
ωωω(r, t) = 0, then Q(r, t) = I and Eqns. (18.6), (18.7) determine the reference inertia
tensor J0(r, t). Being the averaged characteristic of the micro-particles within the
elementary volume the inertia tensor in the reference configuration may change due
to different reasons.

• In the case of an inhomogeneous distribution of micro-particles within the medium,
the tensor of inertia associated with the elementary volume changes in a certain
way as micro-particles travel across its boundary surface S. Mathematically, the
balance of ρJ can be expressed as

d
dt

∫
V

ρJ0 dV = −
∫
S

(n ·v)ρJ0 dS, (18.12)

where n is the outward unit normal to S.
Equation (18.12), after application of Gauss’s theorem and pulling the differentia-
tion under the integral, leads to the following local statement for the balance of
inertia:
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δJ0
δt
= 0, ⇐⇒

∂J0
∂t
+ v ·∇∇∇J0 = 0. (18.13)

Here the local conservation of mass is taken into the account. The solution of
equation (18.13) determines the inertia tensor change due to inertia flux, however,
there is no inertia production.

• The size and shape of the micro-particles within the elementary volume may
change due to phase transitions and chemical reactions or due to fragmentation
or combination of the micro-particles. Thus, the size and shape of the average
particle also change and leads to a change of J0.

• Nonspherical micro-particles may have a tendency to align with an external applied
field or conversely to realign due to thermal motion. This describes a transition
from the isotropic state to nonisotropic one or vice versa. It will reflect a change in
the average tensor of inertia. Note that if the micro-particles within the elementary
volume remain the same and only change their orientation in space, from (18.6),
(18.7) follows that the spherical part of the inertia tensor is constant and the
changes of anisotropy of the material are characterized only by the deviatoric part
of J0.

In view of the above remarks, we may conclude that the inertia tensor in the
reference configuration should be treated as a variable rather then a parameter. As a
result the reference inertia tensor has to satisfy the following balance equation:

δJ0
δt
= χχχ0, (18.14)

or in explicit form
∂J0
∂t
= −v ·∇∇∇J0 + χχχ0, (18.15)

where the first term on the right side describes the inertia flux and the production
term χχχ0 reflects structural transformations of the media. The form of the production
term depends on the physical interpretation of microstructural changes. It can, for
instance, depend on J0 as well as other characteristics of the medium, such as density,
temperature, stresses, etc. It can also depend on external stimuli such as external
electric or magnetic fields.

Then from (18.11), (18.10)2 and (18.14) it follows that the tensor of inertia in the
current configuration has the form:

δJ

δt
= ωωω × J − J ×ωωω + χχχ, χχχ = Q · χχχ0 ·QT , (18.16)

where the first two terms describe the inertia tensor change due to rotation of the
average particle and the last term is responsible for the inertia production due to
internal structural transformations.

The inertia tensor production leads to the production of spin. Then the balance of
moment of momentum is formulated as follows

ρ
δ(J ·ωωω)
δt

= ∇∇∇ · μμμ +σσσ× + ρm + ρχχχ ·ωωω. (18.17)
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Hereσσσ and μμμ are the non-symmetric Cauchy and couple stress tensors, (a⊗b)× = a×b
is the Gibbsian cross, and m is the specific couple density. The extra term in the
balance equation, with χχχ, describes the moment of momentum production due to
structural transformations.

However, by taking into account the balance equation for the inertia tensor in the
current configuration (18.16) we obtain the spin balance equation in classical form:

ρJ · δωωω
δt
= −ωωω × J ·ωωω +∇∇∇ · μμμ +σσσ× + ρm. (18.18)

Thus in the suggested model, the basic equations are essentially the same as in
the classical approach except for replacement of the classical conservation law of
micro-inertia by the inertia tensor balance equation containing the production term.

It should be also noted that traditionally the tensor of inertia of a continuum
particle plays a role only in context with rotations. However, within this approach the
balance equation for J and hence the production term in Eqn.(18.14) are physical
meaningful by themselves, independent of the angular velocity and may serve as an
indicator of the internal structural changes.

18.3 Special Cases for the Production Term

We shall now proceed and illustrate the theory by several examples. By the first
example, it is intended to show what happens to the tensor of inertia if the number
of micro-particles and their size within the elementary volume change, for example
due to the presence of a crusher. By the second example, the impact of a changing
moment of inertia onto rotational motion will be demonstrated. In particular, the
change of the state of rotation of a isotropic thermoelastic continuum will be studied.
The average particle will undergo a nonuniform change of external temperature
affecting its moment of inertia. Note that within the classical framework of micropolar
theory a change of temperature would not influence rotation. However, within the
to-be-presented theory, changes in temperature will influence the inertia tensor and
hence couple to angular velocity. The last example will describe changes of anisotropy
of a material under an external electrical field.

18.3.1 Milling Matter in a Crusher

As the first very simple example let us consider a continuous flow of granular matter
of height H moving on a conveyor belt in the x-direction at a constant, prescribed
speed, v0 = v0ex . On its way it enters a region 0 ≤ x ≤ L, where it is continuously
crushed by an external distributed force, p0 = p0ey , applied at the top so that smaller
and smaller particles will form. Note that in spite of the fact that the micro-particles
have a very irregular shape the homogenized tensor of inertia on a continuum level is
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isotropic due to the statistically random distribution of micro-particles of different
size and shape, as illustrated in Fig. 18.2 in the left inset. During the milling process
the mass and characteristic size of a micro-particle will decrease over time (right
inset on the top of the figure), which, under the assumption that the distribution stays
isotropic, leads to a decreasing moment of inertia on the macro-level. At the same
time the mass density of the elementary volume remains the same. The isotropy
means that the production term also has to be a spherical tensor, χ = χI , and Eq.
(18.16) turns into a scalar one:

δJ
δt
= χ. (18.19)

Here the identity a × I = I × a is taken into account.
We assume that the production term is given by the following expression:

χ = −α0 trσσσ (J − J∗)
(
H(x) − H(x − L)

)
I, (18.20)

whereσσσ is the stress tensor, H(x) is the Heaviside step function, J∗ and α0 are positive
constants, which can be interpreted intuitively as being related to the minimum grain
size the particles can be crushed to, and to the inverse of the particle toughness. Thus,
being the characteristics of the material and not of the crusher, they may be considered
as constitutive properties. At the same time trσσσ describes a conversion of the crusher
action to a material response. In other words, it is related to the effectiveness of the
crusher and transmission of its external forces into the material. Hence, in this case,
the production term depends on the material properties, external action, and space.

Since the material in the crusher is under a significant pressure we will model it as
a linear-elastic material. For linear elasticity the Cauchy stresses σσσ is related to the
strain εεε by:

σσσ = C : εεε, C = k(J)I I + 2μ(J)
(
4I −

1
3
I I

)
, (18.21)

Fig. 18.2 Structural shape
change and corresponding
homogenization

p0
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where 4I i jkl = (δikδl j + δilδk j)/2 denotes the fourth rank identity tensor, δi j is the
Kronecker symbol. It is assumed that the bulk and shear, moduli, k and μ, depend on
the particle size:

k(J) = k∗ fk (J/J∗) , μ(J) = μ∗ fμ (J/J∗) , fk(1) = fμ(1) = 1. (18.22)

Here k∗ and μ∗ are the bulk and shear moduli of the material consisting of the particles
of the minimal size. The functions fk and fμ depend on the material and have to be
obtained from experiments. For example, in Hamilton (1971) it was shown that the
bulk modulus decreases and the shear modulus increases with decreasing grain size.
Thus we assume that the elastic modules depend on the moment of inertia as follows:

k(J) = k∗ (J/J∗)2 , μ(J) = μ∗ (J/J∗)−2 . (18.23)

Furthermore it is assumed that the material moves freely along the x-axis while
its movement in the y-direction is limited by the walls. Then in the absence of a body
force the equilibrium condition ∇∇∇ ·σσσ = 0, (18.19) and (18.20) yield:

∂ J̄
∂ t̄
+
∂ J̄
∂ x̄
= −ξ (J̄ − J̄∗)

(
H(x̄) − H(x̄ − 1)

)
, ξ =

9ᾱ

3 +
μ∗
k∗

(
J̄∗
J̄

)4 . (18.24)

The bar on symbols refers to dimensionless quantities, namely,

x̄ =
x
L
, t̄ =

v0
L

t, J̄ =
J
J0 , J̄∗ =

J∗
J0 , ᾱ =

Lp0α0
v0
, (18.25)

where J0 is the maximal moment of inertia.
Eqn. (18.24) has to be supplemented with initial and boundary conditions. In

order to obtain a non-trivial solution, the initial distribution of the particles along the
vertical axis at the left side of the crusher at x = 0 has to be inhomogeneous. For
simplicity we will consider a linear distribution:

J̄(0, z̄, t̄) =
(
J̄∗ − J̄0

)
z̄ + J̄0. (18.26)

The numerical solutions of (18.24), (18.26) based on an explicit method of discrete
integration are presented in Fig. 18.3, where the distributions of the moment of
inertia for a vertical and a horizontal cut within the crusher area (stationary case)
are visualized in dimensionless form. It is clearly visible that the moment of inertia
decreases linearly from the bottom to the top of the crusher. At the same time, the
distributions of the moment of inertia along the x-axis have an exponential shape.

During the computation the following parameters were used

ᾱ = 1.5,
μ∗
k∗
= 0.1.



432 Elena Vilchevskaya

Fig. 18.3 Distribution of the
moment of inertia (top inset
– vertical cut, bottom inset –
horizontal cut through crusher
region)
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The influence of the last parameter on the crushing process is shown in Fig. 18.4,
where the stationary distributions of the moment of inertia along the crusher region
for constant and for variable elastic moduli are presented. As can be expected the
difference is more pronounced for large values of the moment of inertia. In Müller
et al (2017) an analytical solution to a very simple one dimensional initial-boundary
value problem for non-homogeneous crushing of particles was found based on the
method of characteristics. The similar problem for viscous material was considered
in Fomicheva et al (2019).
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Fig. 18.4 Profiles of the mo-
ment of inertia for variable and
constant elastic moduli (solid
and dashed lines, respectively)
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18.3.2 Turning Heat Conduction into Space-varying Rotational
Motion

We next consider a medium consisting of thermoelastic micro-particles homoge-
neously distributed over a rectangular plate: x ∈ [0, L], y ∈ [−Ly, Ly], z ∈ [−Lz, Lz].
The medium represents the behavior of a homogeneous mix of micro-particles of
arbitrary size and shape on the mesoscale, that results in the isotropic tensor of inertia
on a continuum level, J = JI .

Initially the temperature of the media is also homogeneous and equal to T0. By
positioning the medium in between two reservoirs kept at temperatures T0 and TL

and attached at positions x = 0 and x = L of the region, respectively, the temperature
of this medium will gradually change. The temperature development is described by
the heat conduction equation after (Zhilin, 2012):

ρ cv
δT
δt
= σσσd : (∇∇∇ ⊗ v + I ×ωωω) + μμμd : (∇∇∇ ⊗ ωωω) + ρq −∇∇∇ ·h . (18.27)

Here T is the absolute temperature, cv is the specific heat capacity at constant volume,
double convolution means (a ⊗ b) : (c ⊗ d) = (a · c)(b ·d), q is the specific heat
source, h is the heat flux, and σσσd and μμμd are the inelastic (dissipative) parts of the
stress tensor and couple stress tensor:

σσσ = σσσe +σσσd, μμμ = μμμe + μμμd, (18.28)

where σσσe and μμμe are the elastic (velocity independent) parts of the stress tensor and
couple stress tensor.

For simplicity we suppose that the macro-particles have only rotational degrees of
freedom and their translational velocities are equal to zero. Then, for an unconstrained
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medium in absence of body forces the momentum balance equation is automatically
fulfilled.

The system of equations (18.18), (18.19) and (18.27) has to be supplemented
by constitutive equations. We suppose that the heat conduction is governed by the
Fourier’s law

h = −κ∇∇∇T,

with κ being the thermal conductivity, the elastic part of the couple stress tensor
equals to zero, and write the following constitutive equation for its dissipative part
according to Zhilin (2012):

μμμd = −β(∇∇∇ ×ωωω) × I, (18.29)

where β has the meaning of a frictional coefficient. In order to formulate a constitutive
equation for the production term we consider the free thermal expansion of the
spherical particle under the assumption that the temperature increase is instantaneously
assumed by the particle. Then the moment of inertia changes in accordance with the
temperature field:

J(x, t) = J0 [1 + α(T(x, t) − T0)]2 , (18.30)

with J0 being the initial moment of inertia, and α being the linear coefficient of
thermal expansion. Therefore the production term can be written as:

χ =
∂J
∂t
= 2J0α (1 + α(T − T0))

∂T
∂t
. (18.31)

As one can see the production depends on the material properties and vanishes at the
constant temperature field.

To keep the problem one-dimensional we also assume that:

ωωω(x, t) = ω(x, t)ez, m(x, t) = m0ez . (18.32)

Thus the development of temperature, the moment of inertia and angular velocity can
be obtained as a result of solution of a coupled system of partial differential equations
in dimensionless form:

∂T̄
∂ t̄
= δ

(
∂ω̄

∂ x̄

)2
+
∂2T̄
∂ x̄2 ,

∂ J̄
∂ t̄
= 2ᾱ[1 + ᾱ(T̄ − 1)]

∂T̄
∂ t̄
, (18.33)

J̄
∂ω̄

∂ t̄
= η
∂2ω̄

∂ x̄2 + m̄,

ᾱ = αT0, δ =
βm0
κT0J0

, η =
βcv
κJ0
, m̄ = ω0

L2

D
, ω0 =

√
m0
J0
, D =

κ

ρcv
,
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x̄ =
x
L
, t̄ =

D
L2 t, T̄ =

T
T0
, J̄ =

J
J0
, ω̄ =

ω

ω0
.

with the following initial and boundary conditions:

T̄(x̄, t̄ = 0) = 1, J̄(x̄, t̄ = 0) = 1, ω̄(x̄, t̄ = 0) = 0,

T̄(x̄ = 0, t̄) = 1, T̄(x̄ = 1, t̄) =
TL

T0
,
∂ω̄

∂ x̄

2222
x̄=0;1

= 0.

Note that the angular velocity related boundary conditions are necessary only if the
viscosity is taken into the account. The proper choice of boundary conditions for the
angular velocity is a complex issue. Generally, two types of boundary conditions are
considered. The first type is so-called “strict adhesion”, see, for example, Eringen
(2001) (ω̄(x̄ = 0; 1, t̄) = 0). The second one used here corresponds to an absent
couple stress on the boundary.

The developments of angular velocity at three dimensionless times, t̄ = 0.005
(green), t̄ = 0.01 (blue), and t̄ = 0.03 (red) are depicted in Fig. 18.5. It is seen
that the obtained profile of angular velocity is nonlinear in contrast to the classical
approach where the angular velocity does not change over the sample length. The
nonlinear behavior reflects the fact that distribution of the inertia moment over the
sample mimics the temperature profile and as a result it follows from Eq. (18.33)

Fig. 18.5 Angular velocity distribution over the sample at different moments of time (m̄ = 100,
T̄ (x̄ = 1, t̄) = 2, η = 1, δ = 1)
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that the angular acceleration varies for particles with different temperature. Different
boundary conditions and time-dependent the volume moment couple density was
considered in Morozova et al (2019).

18.3.3 Dipolar Polarization

In order to describe anisotropic changes let us consider a material, which, on a
mesoscale, consists of an assembly of dipoles. Due to thermal motion the dipoles are
randomly oriented in the substance so that there is no overall charge in the material
(Fig. 18.6, top left). The initial, homogenized macro-inertia tensor is then the isotropic
spherical tensor.

n

E0
=> =>

n

Fig. 18.6 Structural shape change and corresponding homogenization
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When an external electric field E = E0n is applied, the dipoles tend to align
with the applied field to lower their electrostatic energy, basically the positive end
of the dipole would like to join the negative end of the applied field. Such behavior
can be observed in dipolar polarization, for materials with build-in dipoles that are
independent of each other, i.e. they don’t interact and they can be rotated freely by
an applied field (Kestelman et al, 2013). However, even in case of liquids or gases,
where molecules are free to rotate, a complete alignment is impossible because the
tendency of dipoles to orient along into the field direction will be counteracted by
thermal motion. Thus, as a result of the combined action of the external and internal
actions, a dominating orientation of the molecules along the direction of the electric
field occurs and the transversally-isotropic state is achieved (Fig. 18.6, right).

Upon the applied electric field removal the thermal motion randomizes the
alignment of the dipoles and returns the material into the initial isotropic state. The
objective is now to describe the transition processes.

First note that switching back and forth between the isotropic and transversally-
isotropic states is characterized only by the deviatoric part of the inertia tensor since
the micro-particles within the elementary volume do not change. Thus, we have a
purely deviatoric production. Second, since the micro-particles rotate in all possible
directions during the orientation and disorientation processes, the macroscopic spin
and, therefore, the macroscopic angular velocity is zero. Hence, the macrorotation
tensor is an identity tensor. Under an assumption that the process occurs in the same
manner at all points of space the balance of the inertia tensor simplifies and reads:

J sh(t) = J0I = const,
dJdev(t)

dt
= χχχ, (18.34)

where
Jdev(t) =

1
15

(
c(t)2 − a(t)2

)
(I − 3nn) . (18.35)

a(t) is the semi-axis of the plane of isotropy and c(t) is the semi-axis in the direction
of n.

The production term describing the microparticle alignment has to depend on the
direction of the external field and on the time of particle orientation under the field
action, τp, which defines the polarization setting time. The higher the magnitude
of the electric field and lower the temperature the shorter is the time of dipolar
polarization setting. For instance, τp = α(T)/E0 can be taken as a simple example.
Here the parameter α in units of V · s/m is an increasing function of temperature.
Thus, we can postulate the following form of the production term:

χχχ(t) =
J∞
τp

exp(−t/τp) (I − 3nn) , (18.36)

where J∞ = (c2
∞ − a2

∞)/15 is the value reached at t → ∞. Note that in that case, the
production is explicitly time-dependent. However, since the exponent is a rapidly
decreasing function one can assume that the production stops when t > 5τp. It
also worth mentioning that τp characterizes the combined effect of the electric field
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magnitude and thermal motion. Nevertheless the direction of the electric field appears
explicitly in the production term.

Integration of the Eq. (18.34) with zero initial condition gives a development of
the inertia tensor in time:

J(t) = J0I +
1
15

(
c2
∞ − a2

∞

) (
1 − exp(−t/τp)

)
(I − 3nn) . (18.37)

A few comments are now in order. First, note that the inertia tensor (18.37)
corresponds to a particle that is oriented in the direction of the electric fields. Then
the moment couple on the macro level will be zero and therefore zero angular velocity
satisfies the spin balance in the absence of stress tensors. Second, the parameter J∞
cannot be defined easily. If all dipoles would be uniformly aligned in n-direction
then the homogenized tensor of inertia would coincide with the inertia tensor of the
dipole. But the perfect alignment is not reachable because of randomizing effect of
the thermal motion. Hence J∞ characterizes the “equilibrium” distribution of dipoles
over orientations. It is tempting to interrelated J∞ to the maximal polarization density
P that can be reached in the material at the given electric field and temperature, but
we leave it with this remark.

Now let us consider the reverse process. The production term associated with the
thermal motion of the dipoles depends on the temperature and has to disappear as
soon as the isotropic case is reached. Having that in mind, we choose the production
of microinertia in the most simple form:

χχχtm(t) = −
1
τr (T)

Jdev(t), (18.38)

where τr defines the relaxation time. The smaller it is, the faster the transition from
order to disorder will be achieved. Being a quantity associated with the thermal
motion the relaxation time has to be a decreasing function of the temperature.

Then it follows that the deviatoric part of the inertia tensor decreases exponentially
in time and the inertia tensor turns eventually into a spherical tensor:

J(t) = J0I +
1
15

(
c2

1 − a2
1

)
exp(−t/τr ) (I − 3nn) . (18.39)

Here c1 and a1 are the spheroid axes at the moment t1, when the external field was
removed.

18.4 Conclusions and Outlook

The intention of this paper is to draw attention on some recent activities in the field
of micropolar media capable of structural change. One of its main feature is a new
balance equation for the tensor of inertia containing a production term. The new
balance and in particular the production are interpreted mesoscopically by taking
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the inner structure of micropolar matter into account. In fact, it is an attempt to
generalize the classical approach based on the concept of an indestructible material
particle consisting of a statistically significant number of subunits on a mesoscopic
scale. Within the classical approach, there should be no exchange of subunits between
the material particles. Furthermore, the polar continuum particle assumed to be
equivalent to a rigid body and can be neither destroyed nor generated. However,
this means that within this framework certain processes and effects in materials can
simply not be modeled.

The new approach emphasizes the idea that it may become necessary to abandon
the concept of the rigid material particle if one wishes to describe micropolar matter
in which structural changes or chemical reactions occur. The approach is based
on the spatial description where a representative volume element is treated as a
continuum polar particle. It does not impose strict constraints on the motion of
micro-particles, rather it embraces the idea of an open system, allowing a priori for
exchange of mass, momentum, energy, tensor of inertia, etc., between and within the
representative volume elements. For a better understanding of this new concept an
underlying mesoscopic theory is presented. The main idea is to connect information
on a mesoscale by taking the intrinsic microstructure within RVE into account with
the macroscopic world, i.e., with the balances of micropolar continua in combination
with suitable constitutive equations. This new approach enables us to study the
temporal development of rotational inertial characteristics. In this context, the tensor
of inertia is an additional internal variable characterizing structural transformations
of the media. Moreover, in contrast to the material description where all neighboring
material particles have to remain in the neighborhood during their motion, the spatial
description does not impose strict constraints on the motion of material points. As a
result, the neighboring particles can separate and travel significant distances from
one another as happens in soils, granular and powder-like materials.

The extended theory seems particularly promising in context with the description
of materials with complex or variable structure, such as suspensions or liquid crystals
where the structural state of the fluid matter is actively controlled by applying
external electromagnetic fields and temperature changes. Also, the approach has a
potential for modeling processes going on under an influence of different physical
and thermo-mechanical factors or taking into account their mutual influence. For
example, a dielectric polarization in an alternating electric and temperature fields or
electret production where a dielectric is placed in strong electric field and subjected
to additional physical action or mechanoelectrets where the electret state can occur
from mechanical deformation without external electrical field.

Acknowledgements The author is deeply grateful to E.A. Ivanova and W.H. Müller for useful
discussions on the subject.
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