
Chapter 13
On the Derivation and Application of a Finite
Strain Thermo-viscoelastic Material Model for
Rubber Components

Jonas Schröder, Alexander Lion, and Michael Johlitz

Abstract This contribution deals with a modified material model of the finite
thermoviscoelasticity for the efficient calculation of the dissipative self-heating of
elastomer components. The occurrence of critical temperatures, which can lead
to loss of functionality or component failure, can be identified at an early stage.
Here, the focus lies on industrial applicability, which, in addition to calculation time
and quality, also includes the experimental effort required to identify the material
parameters. This contribution starts with the formulation of a thermomechanically
consistent constitutive model. For this purpose, an appropriate description of the
kinematics and the derivation of the constitutive relationships is carried out. These
are transferred in a suitable way into the form used by the commercial finite element
software ABAQUS and implemented as a thermomechanically fully coupled problem.
Furthermore, an industrially applied elastomer material is characterised and the model
is parameterized in a special method by selecting the potential function. Finally,
the validation of the model and its parameterization are carried out by means of
experimental component tests.

Keywords: Finite element implementation · Fully coupled · Finite thermoviscoelas-
ticity · Dissipative heating · Thermomechanics · Elastomer

13.1 Introduction

Due to their typical material characteristics, elastomer components are used in
almost all areas of engineering and across industries (Elsner et al, 2012). In addition
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to the chemical properties, the physical behaviour of the material is of primary
importance in the selection process. These include the reversible absorption of large
deformations at comparatively low loads as well as the vibration and noise decoupling
properties (Koltzenburg et al, 2013). In many cases, these components are subject to
large cyclic deformations which result in dissipation-induced self-heating. Depending
on the application, elastomer components may also be exposed to elevated ambient
temperatures. Increased component temperatures can lead to impermissible changes in
the material properties, i.e. to loss a function or total failure. Therefore, it is important
to identify critical temperatures and loads early in the development process. The
aim is to replace cost-intensive prototype tests with FEM1 simulations. The concept
shown in Fig. 13.1 is used for the simulation of component temperatures. The input
parameters of this concept are primarily the component geometry and the material
properties. By the suitable formulation of the material model, the relevant material
behaviour is taken into account and used for the calculation. The parameterization
of the model is carried out by experimental material characterization. Subsequently,
boundary conditions and material properties are assigned to the discretized component
geometry such that the local temperature and the load curves can be calculated.

The second section focuses on the phenomenological analysis of elastomer
materials: First the typical material behaviour is explained based on the material
structure, then a selection of the modelled relevant phenomena is made by assessing
their responsibility for self-heating. The following section contains the continuum
mechanical material modelling. A suitable description of the kinematics is introduced
by multiplicative decomposition of the deformation gradient in order to represent
different types of deformation. In addition, the constitutive relationships are derived
by evaluation of the Clausius-Duhem inequality for a general potential function. The

Fig. 13.1 Concept for the derivation of the dissipative heating of elastomer components

1 FEM is the abbreviation of finite element method
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ABAQUS-related heat conduction equation is also specified. The fourth section deals
with the FE implementation. From the heat conduction equation in combination
with the balance of momentum, a fully coupled functional is obtained by applying
Galerkin’s method. This is linearised for the iterative calculation with the Newton
method. Next, the required constitutive relationships and their associated consistent
tangent operators are derived. The selection of the potential functions and the resulting
evaluations of the state vectors and tangent operators are similary carried out in
the fifth section, as well as the conversion into the formulation required for the
UMAT2 implementation. In section six, the validation of the material model and its
parametrization is carried out. This begins with the development of the computational
model and concludes with the comparison of simulated and experimentally determined
characteristics. Chapter seven concludes with a discussion and evaluation of the
model quality and efficiency with regard to industrial applicability. In addition, an
outlook on future trends and prospects is given.

13.2 Elastomer Structure and Behaviour

This section provides the basic considerations leading to the selection of a suitable
material model. For this purpose, the typical behaviour of elastomer materials is first
explained on the basis of the chemical structure and then assessed with regard to the
influence on the dissipative self-heating process. Elastomers are weakly crosslinked
polymers which exhibit the characteristic entropy-elastic behaviour at operating
temperatures. The meaning of this term is deduced from the macroscopic view of
the material. Detailed descriptions of the molecular structure can be found in the
standard literature, e.g. Treloar (1975); Tobolsky et al (1971) or Schwarzl (2013). The
chain molecules perform thermally disordered movements and have a large number
of moving segments. Thus, they occupy the thermodynamically and statistically most
probable arrangement, namely the one of maximum entropy. Therefore, the molecules
are strongly entangled in the material. The elasticity can be traced back to the mobility
of the molecules above the glass transition, which is limited by cross-links and
entanglements. Polymer chains are initially entangled. Under external stress they
rearrange themselves such that the chains get stretched and thereby change the state
of order. Due to that, the directed chains exhibit less entropy and have the tendency
to take up a state of higher disorder or entropy. Therefore, rubber elasticity is also
called entropy-induced (Tobolsky, 1967; Treloar, 1975). This enables large reversible
deformations with almost incompressible material behaviour, whereby the stress
depends non-linearly on the strain (Rivlin and Saunders, 1951), but approximately
linearly on the temperature (Anthony et al, 1942). However, under sufficiently small
constant deformations, a drop in the engineering stress with increasing temperature can
be observed. This phenomenon is generally known as the thermo-elastic inversion and
is based on the overlay of thermal expansion and entropy elasticity. The deformation

2 User-defined material model (UMAT) in ABAQUS can be used to define the mechanical constitutive
behaviour of a material.
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during an adiabatic process results in a temperature change, also known as Joule-
Gough effect (Gough, 1805; Joule, 1859). The reason for this is the compensation
of the deformation-related decrease in entropy due to an increase in temperature.
Since, time-dependent internal sliding and rearrangement processes of molecules
also occur, elastomers are also referred as viscoelastic materials. Infinitely slow
deformation processes, denoted as quasi-static, lead to thermodynamic equilibrium
states. On this occasion the viscous components play a minor role. In the case of
cyclic dynamic loading, a load history and strain rate dependent hysteresis loop
occurs. The enclosed area is a measure of the mechanical energy converted into
thermal energy and is defined as dissipation. The temperature influence on the
viscoelastic material properties, which can be also observed, is based on the fact that
sliding and rearrangement processes accelerate with increasing temperature. The
relationship between temperature and rate dependence can be described with the
time-temperature superposition principle. In order to adapt the material properties
to the technical application, fillers in addition to chemical additives are added to
improve the mechanical properties. Due to the different types of interaction, the
defined properties must be adjusted with regard to a common optimum. Filled
elastomers show significant differences in their characteristic behaviour compared to
unfilled elastomers. With filled materials, the complex temperature behaviour of the
interactions between the fillers and the elastomer matrix superimposes to the entropy
elasticity, such that a completely different stiffness characteristic can be observed.
The elastomer/filler interaction leads to a characteristic softening within the first
loading cycles. The so-called Mullins-effect (Mullins, 1948) results from the breaking
and rearrangement of weak polymer chains and the successive breakage of certain
sections of the filler network until a more or less "constant" material behaviour is
achieved. The viscoelastic behaviour shows a non-linear dependence on the loading.
This amplitude dependence is also known as the Payne-effect (Payne, 1962).

In summary, it can be stated that elastomers, due to their molecular structure, can
take up elongations of several 100%, show no major volume change and return to
their original shape completely when the load is removed. In addition, elastomers
exhibit a marked viscoelastic behaviour, such that cyclic mechanical loads at adequate
amplitudes and frequencies are leading to significant energy dissipation. Therefore,
elastomer components can heat up strongly under insufficient heat removal. The
temperature change leads to a change in the viscoelastic material properties and
generates thermal strains or thermally induced stresses. In the case of filled elastomers,
thermo-elastic effects play only a minor role in self-heating due to the dependencies
described above.

13.3 Continuum Mechanical Material Modelling

Material theory is a subsection of continuum mechanics which deals with material
models. It provides general principles and systematic methods for the formulation of
mathematically and thermodynamically consistent models to describe the individual
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properties of a material body. The derivation of constitutive relations follows the
principles of rational thermomechanics. Here, the second law of thermodynamics
acts as a restriction to obtain a thermomechanically consistent constitutive equation.
In order to formulate consistent models, the dissipation postulate must be fulfilled. In
addition, the axiomatic principles of material theory must be followed. Multiplicative
decomposition of the deformation gradient allow to consider different deformation
mechanisms. The free energy density is an appropriate thermodynamic potential
to model the material properties, whereby its independent variables, or arguments
must be defined. At the beginning of this section, the basics and contexts, which
are necessary for understanding the following considerations, are explained. This
includes the balance relations of thermomechanics and the resulting principle of
irreversibility. In addition, a proper description of the kinematics is introduced, the
independent variables are defined and the constitutive relationships are derived from
the potential.

13.3.1 Balance Equations

This section presents the classical balance equations of thermomechanics. They are
independent of the special properties of the continuum, since they describe universally
valid laws of nature. They can be formulated globally for the entire material body in
integral form, or locally in differential form. Furthermore, the balance equations can
be formulated for each configuration. In the following, the equations are described in
local form using variables related to the reference configuration.

13.3.1.1 Conservation of Mass

∂

∂t
ρ0

(
X, t

)
= 0 ⇒ ρ0 = ρ0

(
X
)
= constant (13.1)

ρ0 is the density related to the reference configuration. It does not depend on time,
thus it depends only on the vector of the material points in the reference configuration
X.

13.3.1.2 Balance of Linear Momentum

ρ0 �V(X, t) = Div
(
P
)
+ ρ0b (13.2)

The time derivative of the momentum on the left hand side is expressed by the time
derivative of the material velocity field �V which is weighted with the density. On
the right hand side the force density, composed of the divergence in relation to the
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material coordinates of the first Piola-Kirchhoff stress tensor P and body force per
unit volume ρ0b.

13.3.1.3 Balance of the Angular Momentum

S = ST or P · FT = F · PT (13.3)

The quantity S is the second Piola-Kirchhoff stress tensor. Its symmetry follows from
the local form of the balance of rotational momentum. The first Piola-Kirchhoff
stress tensor P is generally not symmetric and the characteristic described above
holds, where F = Grad

(
x
)

is the deformation gradient. Here Grad(◦) is the gradient
operator with respect to the material coordinates. The vector x is the current position
of the material point X at time t in the current configuration.

13.3.1.4 Balance of Energy

ρ0 �e = S : �E − Div
(
q0
)
+ ρ0r (13.4)

The energy balance provides the temporal change of the specific internal energy ρ0 �e.
It consists of the volume-related stress power S : �E where �E is the time derivative
of the Green-Lagrange strain tensor and the heat exchange. The vector q0 denotes
the Piola-Kirchhoff heat flux vector and ρ0r is the heat source per unit volume. This
equation is also known as the first law of thermodynamics.

13.3.1.5 Balance of Entropy

ρ0 �η + Div
(q0
θ

)
− ρ0

r
θ
= ρ0η̃ ≥ 0 (13.5a)

⇔ η̃ ≥ 0 (13.5b)

On the left hand side, the temporal change in the entropy per unit volume is described
by the expression ρ0 �η. The heat supply per unit time related to the thermodynamic
temperature θ is used to calculate the entropy supply. Here, q0

θ is the entropy flux
and r

θ is the specific entropy source, whereby θ denotes a time-dependent scalar
field. On the right hand side the specific entropy production η̃ is opposed. For all
thermomechanical admissible processes, the entropy production η̃ must be greater
than or equal to zero. The balance is also known as the second law of thermodynamics.

13.3.1.6 Dissipation Inequality

As mentioned above, the constitutive relations are derived from the Helmholtz free
energy density as a function of deformation and temperature. The equations presented
previously are valid for all material models of continuum mechanics, such that the
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Legendre transform of thermodynamic potentials is used to transform the specific
internal energy ρ0e into the Helmholtz free energy per unit mass:

Ψ = e − θη (13.6)

The insertion of the time derivative of the free energy function (13.6) into the entropy
inequality (13.5a) leads to the well known Clausius-Duhem inequality:

ρ0 �Ψ + S : �E − ρ0 �θη −
q0
θ

Grad θ ≥ 0 (13.7)

Here Grad(◦) is the gradient operator with respect to the material coordinates.
The entire model must satisfy this inequality, which represents the second law of
thermodynamics, to obtain a thermomechanically consistent material model.

13.3.2 Quasi-incompressible Modified Thermoviscoelasticity

Subsequently, this contribution emphasises thermomechanically consistent material
modelling. For this purpose, the concept of the model is motivated on the basis of
a rheological representation. Based on these findings, the description of suitable
kinematics and the definition of independent variables is carried out. Finally, the
constitutive relations are derived respecting thermomechanical consistency. The
development of thermomechanical material models has been the focus of the fol-
lowing research activities Lion (2000); Johlitz (2015); Dippel et al (2014); Reese
(2001). It should be mentioned that this list is not complete. The implementation
of thermomechanically coupled material models has been the subject of Miehe
(1988); Simo and Miehe (1992); Anand (1985); Arruda et al (1995); Heimes (2004);
Bröcker and Matzenmiller (2008); Anand et al (2009); Naumann and Ihlemann
(2011); Bröcker (2013); Hamkar (2013) or Lejeunes et al (2018). The solution of
thermomechanical coupled processes has been investigated among by Glaser (1992)
or Erbts and DüSter (2012). Based on the model of classical viscoelasticity, the
deduced material model can be motivated. The usage of rheological elements as a
method of representation has not only the advantage of special illustration, it also
leads to thermomechanically consistent models. Moreover, these elements can be
extended easily to three-dimensional states of stress and strain and nonlinearities.
In consequence, the model presented in Fig. 13.2 is introduced. The part of the
free energy that depends only on the temperature is described by Ψth. The total
energy stored in the springs can be additively allocated to the respective springs. The
equilibrium part of the free energy Ψeq is assigned to the single spring. In addition
to the elastic behaviour, it represents the equilibrium part of the stress Peq . The
springs of the Maxwell elements represent the overstresses P(k)

neq and can be linear or
non linear. The free energies Ψ(k)

neq are related to them. The temperature-dependent
viscosities η̆(k)(θ) describe the rate dependence of the damper elements. The structure
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Fig. 13.2 Rheological representation of modified finite thermoviscoelasticity (left), decomposition
of the deformation gradient (right): The reference configuration (RC), volumetric-isochoric
intermediate configuration (VIC), elastic-inelastic intermediate configurations (EIC) and the
current configuration (CC)

of the model mapping of the dissipation implies a separation of elastic and inelastic
deformations.

13.3.2.1 Kinematics

First of all, large deformation require a distinction between the reference and the current
configuration. In order to distinguish different types of deformation, it is necessary
to split the deformation gradient multiplicatively. Some intermediate configurations
will be introduced on this occasion. The first multiplicative decomposition of the
deformation gradient is carried out to split the local deformation into volumetric and
isochoric parts and simplifies the representation of quasi incompressible behaviour.
For this purpose the volumetric-isochoric intermediate configuration (Flory, 1961) is
introduced

F = F̂ · F̄ with F̂ = J−
1
3 F and F̄ = J

1
3 I (13.8)

with the definition of the volumetric part F̄ of the deformation and the isochoric part F̂
using the determinant det(F) = J. Finally, the isochoric part is divided multiplicatively
into purely elastic components F̂(k)

e and inelastic components F̂(k)
i . This multiplicative

split introduces elastic-inelastic intermediate configurations (Lubliner, 1985):

F̂ = F̂(k)
e · F̂(k)

i , (13.9)

where the index [◦](k) indicates the respective Maxwell element. At this point, the right
elastic Cauchy-Green deformations tensor Ĉj

e and the right inelastic Cauchy-Green
deformations tensor Ĉj

i are defined:
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Ĉ(k)
e = F̂T(k)

e · F̂(k)
e (13.10)

Ĉ(k)
i = F̂T(k)

i · F̂(k)
i (13.11)

The tensor L̂j
i , known as inelastic spatial velocity gradient of the corresponding

Maxwell element and the inelastic rate of deformation tensor D̂(k)
i is defined as:

L̂(k)
i =

�̂F(k)
i · F̂-1(k)

i (13.12)

D̂(k)
i =

1
2
(
L̂(k)

i + L̂T(k)
i

)
(13.13)

13.3.2.2 Derivation of the Potential Expressions

The free energy density ρ0Ψ for the considered case depends on the right Cauchy-
Green deformation tensor C, the elastic right Cauchy-Green deformation tensors Ĉj

e

and the thermodynamical temperature θ:

ρ0Ψ = ρ0Ψ
(
C, Ĉ1

e, . . . , Ĉn
e , θ

)
(13.14)

Using the temporally free energy , the dissipation inequality (13.7) leads to:

S :
1
2
�C − ρ0

(
2
∂Ψ

∂C :
1
2
�C +

n∑
j=1

∂Ψ

∂Ĉj
e

: �̂Cj
e +
∂Ψ

∂θ
�θ

)
− ρ0 �θη −

q0
θ

Grad θ ≥ 0

(13.15)

The constitutive relations are obtained by fulfilling the Clausius-Duhem inequality
(13.15). If Fourier’s law is applied, the last term is non-negative, due to the negative
proportionality between heat flux and temperature gradient,

q0 = −λC−1 Grad θ with λ ≥ 0, (13.16)

where λ is the heat conduction coefficient. After some transformations under consid-
eration of the kinematic relations, one obtains the following inequality:[

S − 2ρ0

(
∂Ψ

∂C +
n∑
j=1

(det C)−
1
3 F̂j−1

i ·
∂Ψ

∂Ĉj
e
· F̂j−T

i −
n∑
j=1

1
3

(
∂Ψ

∂Ĉj
e

: I
)
C−1

)]
:

1
2
�C

− ρ0

[
η +
∂Ψ

∂θ

]
�θ + 2ρ0

n∑
j=1

∂Ψ

∂Ĉj
e
· ĈjT

e :
1
2
(L̂jT

i + L̂j
i ) (13.17)

+
λ

θ
(Grad θ) · (C−1 Grad θ) ≥ 0
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L̂j
i is known as the inelastic spatial velocity gradient of the corresponding Maxwell

element. The inequality is evaluated according to Coleman and Noll (1963). This
means that each dependent variable is completely characterized by the values of the
process variables and thus independent of their temporal changes. In addition, (13.17)
has to be satisfied for arbitary values of �θ and tensors �C. In this way, the constitutive
equations can be obtained:

S = 2ρ0

(
∂Ψ

∂C +
n∑
j=1

(det C)−
1
3 F̂j−1

i ·
∂Ψ

∂Ĉj
e
· F̂j−T

i −
n∑
j=1

1
3

(
∂Ψ

∂Ĉj
e

: I
)
· C−1

)
(13.18)

η = −
∂Ψ

∂θ
(13.19)

To satisfy the residual inequality, proportionality relations with temperature-dependent
functions η̆ j(θ) ≥ 0 are introduced,

D̂j
i =

2
η̆ j(θ)

∂Ψ

∂Ĉj
e
· ĈjT

e (13.20)

where D̂j
i represents the symmetric part of the inelastic spatial velocity gradient.

Furthermore, η̆ j(θ) are interpreted as temperature-dependent viscosity functions,
which are expressed by the standard Williams-Landel-Ferry equation (Williams et al,
1955):

η̆ j(θ) = η̆ jt exp
(
−

C1(θ − θt )
C2 + θ − θt

)
(13.21)

In this context, η̆ jt is the viscosity that belongs to the reference temperature θt and C1,
C2 are empirical constants adjusted to fit the experimentally observed temperature
dependence. Moreover, the deviatoric form of the evolution equation can be derived
using the condition of incompressibility (det F̂i)· = 0. Taking into account the
kinematic relations, the evolution equation can be reformulated as:

�̂Cj
i = F̂jT

i ·

{
2
η̆ j(θ)

∂Ψ

∂Ĉj
e
·

[
ĈjT

e −
1
3

tr
(
ĈjT

e

)
I
]}

· F̂j
i (13.22)

Here, �̂Cj
i denotes the time derivative of the isochoric right Cauchy-Green deformation

tensor related to the respective Maxwell element. The trace of a second order tensor
is defined as tr(◦) = (◦) : I.

13.3.3 Heat Conduction Equation

From the first law of thermodynamics (13.4) in combination with the usage of the
Legendre transform (13.6), one obtains:
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S :
1
2
�C − ρ0

( �Ψ + η �θ) − ρ0θ �η − Div
(
q0
)
+ ρ0r = 0 (13.23)

Inserting the time derivative of the free energy density (13.14) leads to:

ρ0 �ηθ = Div
(
q0
)
+ ρ0r + 2ρ0

n∑
j=1

∂Ψ

∂Ĉj
e
· Ĉj

e : D̂j
i (13.24)

In addition, the time derivative of the entropy density reads as:

ρ0 �η = ρ0

(
∂η

∂θ
�θ +
∂η

∂C : �C +
n∑
j=1

∂η

∂Ĉj
e

: �̂Cj
e

)
(13.25)

Furthermore, the following simplifying assumption postulates a constant specific
heat capacity c which is approximately equal to the isobaric specific heat capacity cp:

cp ≈ c ≈ −
∂Ψ

∂θ∂θ
θ ≈ const (13.26)

Thus, the heat conduction equation is written in the current configuration as:

ρ c �θ = − div
(
q
)
+ ρ r + ρ δ + ρ π (13.27)

Here, q is the Cauchy heat flux vector with the associated operator div(◦) that relates
to the spatial coordinates. Furthermore, ρ is the density in the current configuration,
ρ δ corresponds to the dissipation term and ρ π represents the thermoelastic coupling
term. Within the UMAT interface in the ABAQUS-software, these terms are added
to the term ρrmat such that the isobaric specific heat capacity remains on the left side
(Abaqus, 2002).

ρ cp �θ = − div
(
q
)
+ ρ r + ρ rmat (13.28)

13.4 Finite Element Implementation

After the formulation of the material model and the determination of the equations
for the stress and entropy calculation, this section presents the material independent
basic equations and methods for the implementation of the model in the commercial
finite element software ABAQUS. Starting with the initial boundary value problem in
the local form, the variation formulation is required for the approximate calculation.
First, the required weak forms of the local quasi-static momentum balance and the
heat conduction equation are presented and linearized for an iterative method. Here,
it is focused on the constitutive equations and consistent tangent operators.

The balance equations (13.2) and (13.38) are general field equations for the
determination of the displacement field u and the temperature θ. They are completed
by the constitutive relations (13.18), (13.19). However, the determination of initial and
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boundary conditions is mandatory for the unique description of the initial boundary
value problem. From now on, quasi-static processes are considered whereby the
initial conditions for the temperature field and the internal variables are required.

θ(X, t0) = t=0θ(X) and Ĉj
i (X, t0) = t=0Ĉj

i (X) for X ∈ Ω0 (13.29)

The specification of boundary conditions requires that the boundary ∂Ω0 of a body
B0, which occupies the domainΩ0, is divided into disjoint parts. The second subscript
index indicates the type of boundary condition on the partial boundary, such that the
following conditions are valid:

∂Ω0 = ∂Ω0u ∪ ∂Ω0σ with ∂Ω0u ∩ ∂Ω0σ = ∅ (13.30)

∂Ω0 = ∂Ω0θ ∪ ∂Ω0q ∪ ∂Ω0θq with ∂Ω0θ ∩ ∂Ω0q ∩ ∂Ω0θq = ∅ (13.31)

The Dirichlet boundary conditions are assigned to the values that a solution needs to
take a long the boundary of the domain:

u(X, t) = ū(X, t) on ∂Ω0u and θ(X, t) = θ̄(X, t) on ∂Ω0θ (13.32)

The Neumann boundary conditions are assigned to the values in which the derivative
of a solution is applied with

q0 · n0 = q̄0(X, t) on ∂Ω0q and t0 = Pn0 = t̄0(X, t) on ∂Ω0σ . (13.33)

The mixed boundary surfaces, where the condition additionally dependents on the
surface temperature

q0 · n0 = q̄0(X, t, θ) on ∂Ω0θq (13.34)

is specified. This results in a well-defined initial boundary value problem. The
operator (◦̄) denotes a prescribed function on the boundary where n0 is the outward
normal to the boundary ∂Ω0 and t0 depicts the first Piola-Kirchhoff traction vector
which is associated to the reference configuration. An analytical solution of the field
problem is usually not possible. However, an approximate solution can be calculated
using the finite element method exemplary. This requires the formulation of balance
equations in the form of variational principles.

The weak formulation of the problem is mandatory for the finite element imple-
mentation. Therefore, the balance of linear momentum (13.2) has to be rearranged in
terms of quantities which are related to the current configuration first. Secondly, it
is assumed that the acceleration is zero for quasi-static processes. This leads to the
spatial quasi-static balance of momentum.

divσ + ρb = 0 (13.35)

As the next steps to derive the weak formulation. The balance equation is multiplied
with the test function δv and integrated over the area Ω where δv is the first
variation of the spatial velocity vector. Using the Gaussian integral theorem and the
boundary condition (13.33) provides the weak form of mechanical equilibrium as a
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mechanical functional M, where the gradient operator grad(◦) corresponds to the
current configuration.

M(u, θ, δv) =
∫
Ω

σ : grad δv dV −
∫

∂Ωσ

t̄ · δv dA −
∫
Ω

ρb · δv dV = 0 (13.36)

To obtain the variation formulation of the heat conduction equation, the heat con-
duction equation (13.28) is multiplied by the variation of the temperature δθ. The
thermal functional T follows from the subsequent reformulation and insertion of the
boundary condition (13.34):

T(u, θ, δθ) =
∫
Ω

ρcp �θδθdV −
∫

∂Ωq

q̄0δθdA

+

∫
Ω

q · grad δθdV +
∫
Ω

ρ(r + rmat )δθdV = 0

(13.37)
In the following, the thermomechanical problem is formulated. Both functionals
(13.36) and (13.37) have to be fulfilled. The two requirements are combined with
weighting factors to get a fully coupled functional G, such that a closed solution is
achieved.

G =MuM + TθT

=Mu

{ ∫
Ω

σ : grad δv dV −
∫

∂Ωσ

t̄ · δv dA −
∫
Ω

ρb · δv dV

}

+ Tθ

{ ∫
Ω

ρcp �θδθdV −
∫

∂Ωq

q̄0δθdA +
∫
Ω

q · grad δθdV +
∫
Ω

ρ(r + rmat )δθdV

}
(13.38)

Since the functionals are non-linear in temperature and displacement, further consid-
erations are necessary. To solve nonlinear functions, they have to be linearized, e.g.
with the Gâteux derivative:

DΔu(◦(x)) = Du(◦(x))Δu = Δ(◦) = d
dε

(◦(x + εΔu))
22
ε=0 (13.39)

The subscript D(◦) indicates the direction of the linearization. Thus, the solution at
time tk can be determined iteratively from the solution at the time tk−1, for example
with the Newton method. For the i-th iteration step at time t = tk the notation i

k
(◦) is

introduced. The temperature velocity occurring in the thermal functional (13.37) is
approximated from the time discretization with the Euler backward method.

i
k
�θ =

i
k
θ −

k−1θ

Δt
(13.40)
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Then, one obtains the linearized functional in the form

DM(i+1
ku, i+1

kθ, δv) =M(iku,ik θ, δv) + DuM(iku,ik θ, δv)Δu
+ DθM(iku,ik θ, δv)Δθ = 0

(13.41)

DT(i+1
ku, i+1

kθ, δθ) = T(iku,ik θ, δθ) + DuT(iku,ik θ, δθ)Δu
+ DθT(iku,ik θ, δθ)Δθ = 0

(13.42)

or simplified in matrix notation:(
DuM DθM
DuT DθT

) (
Δu
Δθ

)
=

(
−M
−T

)
(13.43)

The implementation of the material model requires the calculation of the state vector
and the definition of the state vector dependent contribution to the tangent stiffness
matrix. Therefore, the linearization of the terms δPint and δKmat are of special
importance and defined as follows:

δPint =

∫
Ω

σ : grad δv dV, δKmat =

∫
Ω

δθρrmat dV (13.44)

The linearization of the mechanical part (13.36) in the direction of the incremental
displacement field Δu leads to the mechanical contribution of the tangent stiffness
matrix follows:

DΔuδPint =

∫
Ω

[δD : �
C : ΔD + δD : ΔWσ − δD : σΔW] dV (13.45)

The additive decomposition of the spatial velocity gradient L contains a symmetric
part known as rate of deformation tensor and the antisymmetric part, the spin
tensor, denoted as D and W, follows respectively. The objective spatial tangent
operator has to be implemented in the Jaumann formulation �

C. This includes the
rotated parts of the stress and the spatial tangent operator 4

C, which can be calculated

from the material tangent operator
4
C. The transposition of the indices is defined as

[(◦)]
i j

T = (◦)i jklej ⊗ ei ⊗ ek ⊗ el . The definition of the required tangent operator is
shown as follows:

�
C =

1
J

4
C +

[
I ⊗ σ

] 23
T
+
[
σ ⊗ I

] 23
T (13.46)

4
C =

[
F ⊗ F

] 23
T :

4
C :

[
FT ⊗ FT] 23

T with
4
C = 4ρ0

∂2Ψ

∂C∂C (13.47)

After the mechanical part (13.36) is linearized in the direction of Δθ, the mechanical-
thermal contribution is obtained:
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DΔθδPint =

∫
Ω

δD : tθΔθ dV (13.48)

It contains The spatial mechanical-thermo coupling tangent to be implemented in the
form of the stress temperature tensor tθ :

tθ = 2
J
ρ0F ·

∂2Ψ

∂θ∂C · FT (13.49)

The same procedure is applied to the thermal component. The thermo-mechanical
contribution is expressed by

DΔθδKmat =

∫
Ω

δθdu : ΔD dV (13.50)

with the following definition of the thermo-mechanical coupling tangent du with
respect to spatial coordinates

du =
2
J
ρ0F ·

∂rmat

∂C · FT (13.51)

and finally the thermal contribution is:

DΔθδKmat =

∫
Ω

δθdθΔθ dV (13.52)

Accordingly, the thermal tangent operator is calculated as:

dθ =
1
J
ρ0
∂rmat

∂θ
(13.53)

13.5 Material Model

The linearization leads to the definition of the material independent tangent operators
(13.46), (13.49), (13.51), (13.53) which are mandatory besides the state vector in order
to solve the fully coupled problem. Since elastomers behave almost incompressible
under isothermal deformations, a volumetric-isochoric separation is advantageous.
Furthermore, the isochoric part of the elastic Cauchy-Green tensor is introduced as
a variable in the isochoric part of the free energy density. There are also different
approaches for the determination of the thermal part of the free energy. The total free
energy is calculated as follows:

ρ0Ψ
(
IĈ, I IĈ, IĈ j

e
, J, θ

)
= ρ0Ψth(θ) + ρ0Ψvol

(
J
)

(13.54)
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+ ρ0Ψeq
(
IĈ, I IĈ

)
+

n∑
j=1
ρ0Ψ

j
neq

(
IĈ j

e

)
In various studies, the temperature-dependent part is specified by the requirement of
a constant heat capacity at a constant deformation. Here, the following approach is
chosen for thus thermal part of the free energy density (Holzapfel, 2000):

ρ0Ψth(θ) = ρ0c
( (
θ − θ0

)
− θ ln

θ

θ0

)
(13.55)

The incompressible material behaviour must be taken into account in the stress
calculation, which can lead to numerical difficulties. The volumetric approaches
usually use the determinant of the deformation gradient as independent variable
(Simo and Taylor, 1982) :

ρ0Ψvol
(
J
)
=

1
2
κ
[ (

J − 1
)2
+
(
ln J

)2] (13.56)

where, the material parameter κ has the function of a penalty parameter. In the
literature, a number of approaches for the isochoric part of the free energy density
can be found e.g. Mooney (1940); Rivlin (1948-1951) or Rivlin (1997). They use the
invariants of the Cauchy-Green tensors I� and I I� as variables.

The equilibrium part of the free energy density reads as follows (Mooney, 1940):

ρ0Ψeq
(
IĈ, I IĈ

)
= C10

(
IĈ − 3

)
+ C20

(
IĈ − 3

)2
+ C01

(
I IĈ − 3

)
(13.57)

The non-equilibrium parts of the free energy density (Mooney, 1940) are assumed as:

n∑
j=1
ρ0Ψ

j
neq

(
IĈ j

e

)
=

n∑
j=1

C j
e10

(
IĈ j

e
− 3

)
(13.58)

Where the material parameters C10,C20,C01,C1
e10, ...,C

n
e10 are temperature independent

and therefore constant. In the following, the free energy densities are used to describe
stresses, heat sources and internal variables. In addition to that, tangent operators for
the mechanical, thermal and coupling behaviour, are presented.

The internal variables are described by the evolution equations (13.22). Using
(13.58), they can be solved numerically according to a method proposed by Shutov
et al (2013) and expressed further by the isochoric elastic left Cauchy-Green tensor
B̂e = F̂ · Ĉ−1

i · F̂T:

�̂Cj
i =

4C j
e10

η̆ j(θ)

[
Ĉ −

1
3

tr
(
Ĉ · Ĉj−1

i

)
Ĉj
i

]
(13.59)

Inserting the free energy densities (13.56)-(13.58) into the stress definition (13.18)
and transforming the quantities to the current configuration, the Cauchy stress is
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obtained:

σ = σvol + σeq +

n∑
j=1

σ j
neq (13.60)

The volumetric part of Cauchy stress is:

σvol = J−1κ
(
J
(
J − 1

)
+ ln J

)
I (13.61)

The equilibrium part of Cauchy stress is:

σeq =
2
J

[(
C10 + 2C20

(
IB̂ − 3

)
+ C01IB̂

)
B̂ − C01B̂2

−
1
3

(
IB̂
(
C10 + 2C20(IB̂ − 3

) )
+ 2C01I IB̂

)
I
] (13.62)

The non-equilibrium part of the Cauchy stress is:

σneq =

n∑
j=1

C j
e10

(
IB̂ j

e
− 3

)
(13.63)

The inelastic stress power is represented by variables of the current configuration:

rmat =

n∑
j=1

1
η̆ j(θ)

σ j
neq : σ j

neq (13.64)

Using the equation (13.47) and (13.56)-(13.58) yields to the tangent of the current
configuration

4
C =

4
Cvol +

4
Ceq +

n∑
j=1

4
C
j

neq (13.65)

The volumetric part of the tangent is:

4
Cvol =

1
J

[
κ
(
J
(
2J − 1) + 1

) [
I ⊗ I

]
+ 2κ

(
J
(
1 − J

)
− ln J

) [
I ⊗ I

] 23
T ] (13.66)

The equilibrium part of the tangent is:
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4
Ceq =

4
3J

[
−
(
C10 + 2C20

(
IB̂ − 3

)
+ 2IB̂

(
C20 + C01

) ) [
I ⊗ B̂ + B̂ ⊗ I

]
+
(
2C20 + C01

) [
B̂ ⊗ B̂

]
+

2
3

C01

[
I ⊗ B̂2 + B̂2 ⊗ I

]
+ C01

[
B̂ ⊗ B̂

] 23
T

+
1
9

(
IĈ
(
C10 + 2C20

(
IĈ − 3

)
+ 2C20IĈ

)
+ 4C01I IĈ

) [
I ⊗ I

]
+

1
3

(
IĈ

(
C10 + 2C20

(
IĈ − 3

) )
+ 2C01I IĈ

) [
I ⊗ I

] 23
T ]

(13.67)

Non-equilibrium part of the tangent:

4
Cneq =

n∑
j=1

4
3J

C j
e10

[
tr
(
B̂j
e)
[1
3

I ⊗ I +
[
I ⊗ I

] 23
T ]

−
[
B̂j
e ⊗ I + I ⊗ B̂j

e

] ]
(13.68)

The remaining tangents of the current configuration are formulated by definitions
(13.49), (13.51), (13.53) derived in the previous section. The stress temperature
tensor is zero:

tθ = 0 (13.69)

The thermal-mechanical tangent is:

du =
n∑
j=1

4
η̆ j(θ)

σ j
neq ·

(
J σ j

neq −
1
3

tr
(
J σ j

neq

)
I
)

(13.70)

The thermal tangent is:

dθ =

n∑
j=1

η̆ j(θ)−2

J

C1 C2 η̆
j
t exp(−C1(θ−θt )

C2+θ−θt )(
− C2 − (θ − θt )

)2 σ j
neq : σ j

neq (13.71)

The last step is to formulate the required quantities in the Voigt notation. To this
end, it is essential to symmetrize the tensors if necessary. Now, all tangent operators
(13.46), (13.69), (13.70), (13.71) and state vectors (13.58) and (13.64) required for
the fully coupled calculation are defined correctly.

13.6 Model Validation

The material model is validated as discussed in this section. First, the derivation
of the parameter set is explained. Secondly, the structure of the calculation of the
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model is explained as well as the derivation of the boundary and initial conditions.
With these definitions, the simulation results are compared with the experimentally
determined data.

13.6.1 Parameter Identification

First, the parameter Set used for the current model is listed in Table 13.1. With
the exceptions explained below, these are all independently determined parameters.
One characteristic of the parameter set is that the compression modulus κ is cho-
sen at least three orders higher than the shear modulus in order to formulate the
quasi-incompressible material behaviour and thus is used as a penalty parameter.
Furthermore, the optimized heat capacity coptp is of particular importance. The inte-
gration of the heat conduction equation with respect to the current configuration over
a period of time T in the stationary range shows the independence of the stationary
state from the heat capacity cp . Where ϑ

(
X, t

)
is a scalar temperature field depending

on the location coordinate and time. Regarding the left side of the term, one can
conclude that:

Table 13.1 Parameter set used for the modified finite strain thermo-viscoelastic material model

parameter value unit
Quasi-incompressible hyperelasticity: Mooney-RivlinMooney (1940)

C10 0.0788 MPa
C20 0.0107 MPa
C01 0.1739 MPa
ρ0 1.0748 · 10−9 kg/m3

κ 1000 MPa
viscoelasticity: Neo-HookeMooney (1940)
C1

e10 0.0042 MPa
η̆1
t 0.005 MPas

C2
e10 0.1020 MPa
η̆2
t 0.1201 MPas

temperature dependence η̆ j (θ), Williams, Landel, FerryWilliams et al (1955)
C1 −16 -
C2 −730 K
θt 296 K

thermal material properties
λ 0.3280 mW/K · mm
cp 1.639 · 109 mJ/t · K
c
opt
p 1.639 · 107 mJ/t · K

heat transfer
ᾰES 22 · 10−3 mW/mm2 · K
ᾰEA 5 · 10−3 mW/mm2 · K
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1
T

t+T∫
t

ρcp �ϑ(s)ds = ρcp
(
ϑ(t + T) − ϑ(t)

)
= 0. (13.72)

This motivates to the usage of an optimized heat capacity to reduce the calculation
time to reach the stationary state. Finally, the heat transfer coefficients from elastomer
to air ᾰEA is calculated from Stephan (2002) and that from elastomer to steel ᾰES is
taken from Schlanger (1983) or Klauke (2015).

13.6.2 Computational Model

For the computational model (Fig. 13.3), the formulation of the boundary conditions
is mandatory. This section describes the boundary condition formulation as shown in
Fig. 13.3. For the mixed boundary conditions, the heat transfers from the elastomer
to the ambient air and from the elastomer to the steel are defined as heat flows
qEA

0 = −ᾰEA(θ∂Ω − θt) and qES
0 = −ᾰES(θ∂Ω − θt), respectivley. In addition, the

displacement boundary conditions are defined in the form ūFIX
0 = 0 for the fixed

constraint and ūSYMX
0 = [0 u2 u3]T or ūSYMY

0 = [u1 0 u3]T for the symmetry constraint.
The force is applied at the reference point PREF by f = [F0 sin(ω t) 0 0] where
F0 = 1.4/4 [kN] and ω = 4π [1/s]. This results in a completely thermomechanically
coupled problem.

13.6.3 Analysis

The simulation results are now compared to the experimental data. Multiple experi-
ments were carried out as part of the so-called Elasto-Opt II project at the Fraunhofer
LBF in Darmstadt (Schröder and Parra Pelaez, 2019). First, the force-displacement
curve at the reference point is considered and shown in Fig. 13.4 (right). A nearly

Fig. 13.3 Computational
model showing mixed bound-
ary conditions and displace-
ment boundary conditions as
well as fixed and symmetry
constraints
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Fig. 13.4 Local stresses on the engine bearing (left). Force-displacement hysteresis of the engine
bearing at the reference point (right)

identical hysteresis is observed. This means that in addition to the mechanical i.e. the
force-displacement, behaviour, the dissipative behaviour, which is characterized by
the hysteresis area, is also mapped. Accordingly, the local loads can be deduced at
this point as shown in Figure 13.4.
The self-heating caused by dissipation is shown in Fig. 13.5. The surface temperatures
were experimentally determined using an infrared camera technology. For reasons
of clarity, the experimental data smoothed. This was performed with the calculated
temperature curve. In Fig. 13.5 (right), the agreement of the stationary temperature
values can be recognized. However, it is observed that the calculation duration is
significantly reduced by the suitable selection of the heat capacity. Furthermore, the
local temperature profile in the stationary state can be inferred. In consequence, a
temperature rise of approximately 18 K can be observed under the given conditions.
The point in time at which the stationary temperature equilibrium is reached is marked

Fig. 13.5 Local temperature distribution in the engine bearing (left). Temperature evolution with
respect to the time of the engine bearing at the hotspot (right)



346 Jonas Schröder, Alexander Lion, and Michael Johlitz

with τs . Using this variable, the time-dependent temperature curves are now described.
At this point it is also interesting to compute temperature curves which are difficult to
measure. In particular, the thickest component cross-section is considered here. The
path defined on the finite element mesh is used to evaluate the temporal temperature
curve as shown in Fig. 13.6. Finally, the simulation shows a high concordance to the
experimental data under consideration of an efficient simulation methodology.

13.7 Summary and Conclusion

In this work, a calculation concept for the estimation of the change in local component
temperatures caused by dissipative heating was presented. Based on the phenomeno-
logical consideration of elastomer materials, phenomena relevant to self-heating were
identified and used as a basis for the constitutive modelling. A modified model of
the finite thermoviscoelasticity was continuum mechanically modelled. In addition
to the kinematic description, a thermomechanically consistent derivation of the
constitutive relations as well as the formulation of the heat conduction equation was
performed. Within the framework of finite element implementation, the unique initial
and boundary value problem was presented and a fully coupled functional was derived
using the variation principle. The tangent operators were subsequently determined
by linerisation. A special approach of the total free energy density was defined and
used for the analytical calculation of state vectors and consistent tangent operators.
Finally, the model was validated, starting with the explanation of the parameterisation
and model calculations, followed by comparison of experiments and simulations
as well as their discussion. Last but not least, not only the experimental setup but
also the calculation effort can be significantly reduced compared to the classical
model of finite thermal viscoelasticity by neglecting the thermoelastic effects. In
summary, it can be said that the implemented concept is a suitable instrument for the

Fig. 13.6 Local temperature distribution in the engine bearing (left). Temperature evolution with
respect to the time of the engine bearing at the path (right)
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robust, cost-effective and valid estimation of dissipation-related temperature changes
in components. In the future, characteristic diagrams of the stationary component
temperatures over large amplitude and frequency ranges should be created with
this methodology. The necessity of the experimental determination of a parameter
or the use of literature data shall be determined by means of a parameter analysis.
Furthermore, of different components and elastomer compounds may be validated as
part of a follow-up project.
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