
Chapter 11
A Short Review of Electromagnetic Force Models
for Matter - Theory and Experimental Evidence

Wilhelm Rickert and Wolfgang H. Müller

Abstract From Maxwell’s equations balance laws for the electromagnetic linear
momentum, angular momentum, and energy can be found after recasting and using
several identities of vector calculus. Therefore, the obtained equations are not “new
results” but rather identities having the form of a balance law. However, there is some
degree of freedom, (a) during construction of a particular identity and (b) for the choice
of the to-be-balanced quantity, the non-convective flux, and the production term. In
short, one is insecure which of the various forms is correct under which circumstances.
This conundrum is referred to as the Abraham-Minkowski controversy, who first
proposed different expressions for the electromagnetic linear momentum. The proper
choice of electromagnetic force and torque expressions is of particular importance in
matter where the mechanical and electromagnetic fields couple. The question arises
as to whether a comparison between the predicted deformation behavior and the
observed one can help to decide which electromagnetic force model is suitable for a
material of interest. In this paper we shall briefly review the controversy and suggest
new approaches for its solution on the continuum level.

Keywords: Electromagnetic force models · Magnetostriction · Electrostriction ·
Total forces and torques

11.1 Compilation of Relevant Force Models

Our starting point are the local balances of linear momentum for ponderable matter
in regular points,

Wilhelm Rickert · Wolfgang H. Müller
Institut für Mechanik, Kontinuumsmechanik und Materialtheorie, Technische Universität Berlin,
Sek. MS. 2, Einsteinufer 5, 10587 Berlin, Germany,
e-mail: rickert@tu-berlin.de,wolfgang.h.mueller@tu-berlin.de

245© Springer Nature Switzerland AG 2019

in Material Modeling, Advanced Structured Materials 100,
https://doi.org/10.1007/978-3-030-30355-6_11

H. Altenbach and A. Öchsner (eds.), State of the Art and Future Trends

rickert@tu-berlin.de, wolfgang.h.mueller@tu-berlin.de
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30355-6_11&domain=pdf


246 Wilhelm Rickert and Wolfgang H. Müller

∂

∂t
(ρv) + ∇ · (ρv ⊗ v − σ) = ρ f + f EM , (11.1)

and at a singular interface I with the normal n showing no intrinsic properties,

n · [[σ + ρ(w − v) ⊗ v]] = − f EM
I , (11.2)

where double brackets denote the jump across the interface. We denote by ρ the mass
density, by v the particle velocity, by w the mapping velocity, by f the gravitational
body force, and by σ the stress tensor. Unusual symbols worthy of a more detailed
discussion are the volumetric electromagnetic force, f EM, and its counterpart on a
singular interface, f EM

I . For these various expressions can be found in the literature,
at least after some algebraic effort, and we will cite the pertinent references in what
follows.

Probably the best known force model is the one attributed to Lorentz. We write:

f L = qE + J × B , f L
I = qI 〈E〉 + J I × 〈B〉 . (11.3)

Pointed brackets refer to arithmetic averages of the right and left limit field values. q
is the total charge, J is the total current, E and B are the electric and magnetic field
vectors, respectively. The index I refers to the corresponding interface characteristics.
All quantities are explained in detail for example in Müller (2014, Chapter 13). The
correctness of these expressions is demonstrated indirectly in Müller (1985, Section
9.5) by construction of the standard Maxwell stress tensor and Poynting vector
via Maxwell’s equations. A more explicit proof is presented in Reich et al (2018,
Appendix C). Suffice it to say that in the derivation and in those of the following
force models ample use is made of the Maxwell-Lorentz-Aether relations, which hold
true in an inertial system.

A second set of force models goes back to the work of Abraham (1909). Starting
from the electromagnetic momentum density presented in that work and manipulating
it similarly as the expression leading to the Lorentz force in Reich et al (2018) two
different sets of expressions will result due to the intrinsic arbitrariness in the balance
equations (see the example outlined in Reich et al, 2018, Section 2, for this issue):

f A1 = qE + J × μ0H + (∇ × B) × M + μ0D ×
∂M

∂t
,

f A1
I = qI 〈E〉 + J I × μ0〈H〉 − μ0w⊥〈D〉 × [[M]] + (n × [[B]]) × 〈M〉 ,

(11.4)

and

f A2 = qE + J × μ0H − ∇ · (M ⊗ B) + μ0D ×
∂M

∂t
,

f A2
I = qI 〈E〉 + J I × μ0〈H〉 − μ0w⊥〈D〉 × [[M]] + (11.5)

+ (n × [[B]]) × 〈M〉 − n · [〈M〉 ⊗ [[B]] + [[M]] ⊗ 〈B〉] .

We denote by H the electric current potential in matter, by M the magnetization,
D is the total charge potential, μ0 is the vacuum permeability. Note that these two



11 A Short Review of Electromagnetic Force Models for Matter 247

choices are somewhat arbitrary and we could obtain even more force models from
one electromagnetic momentum density.

In the same spirit the electromagnetic momentum density shown in the work by
Minkowski (1910) leads to the following expressions:

f M1 = qE + J f × B + (∇ × M) × B − (∇ × E) × P ,

f M1
I = qI 〈E〉 + J f

I × 〈B〉 + 〈P〉 × (n × [[E]]) + (n × [[M]]) × 〈B〉 ,
(11.6)

and
f M2 = qfE + J f × B − (∇ ⊗ M) · B + (∇ ⊗ E) · P ,

f M2
I = qf

I 〈E〉 + J f
I × 〈B〉 + n(〈P〉 · [[E]] − 〈B〉 · [[M]]) .

(11.7)

J f and J f
I are the free total currents in regular and singular points, respectively, and

qf is the free charge density.
Finally, from the work of Einstein and Laub (1908) we find:

f EL = qfE + J f × μ0H + P · (∇ ⊗ E) +
∂P

∂t
× μ0H +

+ μ0M · (∇ ⊗ H) − μ0
∂M

∂t
× D ,

f EL
I = f M2

I + n[[B · M −
μ0
2
M · M]] − w⊥[[D × μ0M + P × μ0H]] ,

(11.8)

where D denotes the free charge potential.

11.2 Intermezzo

After the various force models have been presented the natural question arises as
to which of them is the correct one? The answer is that all models are correct
on the continuum scale for matter. There is not “the one” that will describe all
situations correctly. Depending on the material one will be more realistic than the
other. Experiments must decide which one this is. Various experiments come to mind.
A first idea could be to measure the total force exerted on a body made of a material
susceptible to external electromagnetic fields and to compare it with the total forces
predicted by the various models. Second, it might be useful to study the deformation
of that body. This requires us to solve a complex boundary value problem, because
then we need to couple mechanics and electrodynamics, in particular we need to
look at the stress-strain correlation. Third, besides forces it might be useful to study
torques resulting during electromagnetic force interaction.

We shall outline the corresponding procedures in what follows in several case
studies, which have been published by us before. Hence we just repeat the results,
compare and comment on them. Our first example concerns a permanent magnetic,
linear elastic sphere, resulting in magnetostriction. The second example is a silicone
oil drop in castor oil (so that the oils do not mix) subjected to an external electric field.
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Due to the different electric polarization in the two media deformation will result.
The third example is the deformation of a spherical linear-elastic electret, similarly to
magnetostriction, but with different types in poralization. And finally we shall report
on the force and torque interaction between two rigid permanent spherical magnets.

11.3 Case I: Magnetostriction of a Spherical Permanent Magnet

This problem was analyzed before in detail in Reich et al (2018, Sect. 6). We
considered the static case of a permanent magnetic sphere of radius R with uniform
magnetization, M = M0ez , which is treated as isotropically linear-elastic, with Lamé
parameters λ and μ, mechanics-wise. In order to evaluate the expressions for the
various force densities the following information for the electro-magnetic quantities
are required:

BI = 2
3 μ0M , H

I = −
1
3
M , q = qf − ∇ · P = 0 ,

J = J f +
∂P

∂t
+ ∇ × M = 0 , qI = qf

I − n · [[P]] = 0 ,

J I = J f
I − [[P]]w⊥ + n × [[M]] = n × [[M]] .

(11.9)

Hence all of the volumetric force densities of all presented models vanish and the
corresponding force densities on the interface are given by:

f L
I =

1
6
μ0M2

0 (sin
2ϑer + 4 sin ϑ cos ϑeϑ) = f (1)I ,

f A1
I =

1
6
μ0M2

0 (sin
2ϑer + 4 sin ϑ cos ϑeϑ) = f (1)I ,

f A2
I =

1
6
μ0M2

0 (1 + 3 cos2ϑ)er = f (2)I ,

f M1
I =

1
6
μ0M2

0 (sin
2ϑer + 4 sin ϑ cos ϑeϑ) = f (1)I ,

f M2
I =

1
6
μ0M2

0 (1 + 3 cos2ϑ)er = f (2)I ,

f EL
I =

1
2
μ0M2

0 cos2ϑer = f (3)I .

(11.10)

It is noteworthy that in this case all models having (the same) symmetric electromag-
netic stress measure (not shown here explicitly) yield the same surface force density.
Interestingly, the non-symmetric Abraham and Minkowski models (also not detailed
here) coincide for this magnetic problem. The Einstein-Laub model is distinct from
the others. However, it can be seen that

f EL
I = f A2

I −
1
6
μ0M2

0 er ,
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hence these models differ only by a constant radial (pressure) offset. Qualitative
representations of the surface force densities indicating the direction of deformation
are shown in Fig. 11.1. The deformation field is now determined based on Hooke’s
law, mechanical equilibrium, and traction boundary conditions containing the various
surface force densities. The method of Hiramatsu and Oka was applied for solving the
resulting Lamé-Navier equations. It allows to obtain closed-form solutions in terms
of Legendre polynomials. Sketches of the sphere deforming into different types of
spheroids is shown in Fig. 11.2. Naively speaking one would now think that a simple
measurement of the surface contour of an originally spherical object deforming
after its magnetization would suffice to identify the “most realistic” surface force
density. Unfortunately for a typical solid and reasonably high values of magnetization

(a) f (1)I (b) f (2)I (c) f (3)I

min

max

Fig. 11.1 Qualitative representations of the surface force densities. In (c), arrows are suppressed for
small force magnitudes

(a) u(1) (b) u(2) (c) u(3)

min

max

Fig. 11.2 Qualitative visualization of the surface displacements for the three electromagnetic force
results. The ratio λ/μ = 1.27 was used in order to model steel
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the displacements are still extremely small (nanometer range), which renders a
trustworthy measurement impossible. A more deformable object is required. Such a
case will be presented in the next section.

11.4 Case II: Deformation of a Spherical Droplet due to Electric
Polarization

This problem was analyzed before in detail in Reich et al (2018, Section 7). We
considered the static case of a spherical silicone oil droplet of radius R in oxidized
castor oil, placed in an homogeneous electric field E0 = E0ez . In fact there exists a
real experiment for this case (Torza et al, 1971). Linear polarization laws with the
relative dielectric constants of silicone oil εSr ≈ 2.8 and of castor oil εCr ≈ 6.3 were
assumed, taken from the reference. Also, the densities of the oils are nearly equal.
Hence, gravitational effects can be neglected.

As in the case of the magnetostriction the electro-magnetic field quantities were
computed first. We found (V is proportional to the electric potential, indices S and C
refer to the regions of the silicone drop and of the castor oil, respectively, r̃ = r

R ):

E = E0(ez − ∇̃V) , [[V]] = 0 ,
PS = ε0(εSr − 1)ES = E0ε0(εSr − 1)(ez − ∇̃VS) ,
PC = ε0(εCr − 1)EC = E0ε0(εCr − 1)(ez − ∇̃VC) ,
DS = ε0ε

S
r E

S = E0ε0ε
S
r (ez − ∇̃VS) ,

DC = ε0ε
C
r E

C = E0ε0ε
C
r (ez − ∇̃VC) ,

VS = −
εCr − εSr
2εCr + εSr

r̃ cos ϑ ,

VC = −
εCr − εSr
2εCr + εSr

r̃−2 cos ϑ .

(11.11)

Similarly to the magnetostriction problem one finds that the volumetric force density
vanishes for all the presented models. The surface densities are given by:

f (4)I = f L
I = f A1

I = f A2
I = f M1

I = −(n · [[P]])〈E〉

= −9
2
ε0E2

0
εCr − εSr

(2εCr + εSr )2
[(εCr + εSr ) cos2ϑer − 2εCr cos ϑ sin ϑeϑ] ,

f (5)I = f M2
I = f EL

I = n(〈P〉 · [[E]])

= −
9
2
ε0E2

0
εCr − εSr

(2εCr + εSr )2
(2εCr εSr − εCr − εSr ) cos2ϑer .

(11.12)

Sketches of the forces are depicted in Fig. 11.3. In order to compute the deformation
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(a) Surface force f (4)I .
min

max

(b) Surface force f (5)I .

Fig. 11.3 Qualitative representation of the computed force results for the oil drop experiment. For
visualization, the values εS

r = 2.8 and εC
r = 6.3 were chosen. Note that the external electric field

points in horizontal direction

the droplet was treated as a fluid at rest in terms of a hydrostatic pressure acting on it.
A linear relationship between the pressure and the volume change was assumed and
linked to the following (normalized) displacement ansatz on the interface

u I = û(ũr (ϑ)er + ũϑ(ϑ)eϑ) . (11.13)

The deformation results of the experiments from Torza et al (1971) are depicted
in Fig. 11.4c. For increasing electric field strength the drop deforms as an oblate
spheroid. In Fig. 11.3 the surface force predictions of the various force models are
qualitatively shown. f (4)I and f (5)I both suggest that the droplet should assume an
oblate shape. Intuitively speaking, the surface force f (4)I might result in the correct
deformation figure since the force f 5

I may cause dimples at poles, deviating from a
spheroid form. Moreover, the magnitudes of the displacements differ. The models
with the force f (4)I yields the smooth deformation figure depicted in Fig. 11.4a which
is in good agreement with the experimental results in Fig. 11.4c. The deformation
figure due to the models with the force f (5)I possesses a different curvature near the
poles. Hence, the deformed body is not an oblate spheroid. However, this form is not
observable in the experimental photographs. Therefore, it is reasonable to conclude
that the models with the force f (5)I yield unphysical results, i.e., the asymmetric
Minkowski and the Einstein-Laub models are unlikely.

11.5 Case III: Elastic Deformation of Spherical Electrets due to
Electric Polarization and Surface Charges

The analysis of this problem will be published in detail in Rickert et al (2019).
Analogously to the droplet problem we shall consider the static case of spherical
electrets. In (I), a linear dielectric in an externally applied electric field E0 is
considered. Then, a real charge electret with surface charge qf

I = Q/Asph is analyzed,
(II). From these solutions the cases of an oriented dipole electret (III) and a real
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(a) Surface
displacement u(4)

I .

min

max

(b) Surface
displacement u(5)

I .
(c) Static case
of (Torza et al,
1971, Fig. 7).

Fig. 11.4 Deformation figures of the oil droplet. (a) and (b): Predicted surface displacement using
parameters εS

r = 2.8, εC
r = 6.3, γ = 1 and λI/μI = 1. Scaling of the displacements was applied. (c):

Experimental photos from Torza et al (1971, Fig. 7). The electric field points vertically. In (c), the
electric field strength increases from the bottom to the top

charge electret with linear dielectric material behavior (IV) are readily obtained.
We wish to calculate the various electromagnetic force densities and use them for
predicting the deformation in situations (I)–(IV). As before the electromagnetic field
quantities need to be determined first. By using the following scaling factors,

qf
I

ε0
= αE ,

P0
ε0
= βE , E0 = γE ⇒ a0 =

α

εr
E , a1 =

β + (εr − 1)γ
2εr + 1

E (11.14)

it can be shown that (a0 = ã0E, a1 = ã1E):

EI = (γ − ã1)E[cos ϑ er − sin ϑ eϑ] = (γ − ã1)Eez = const.

EO =
{[

ã0r̃−2 + (2ã1r̃−3 + γ) cos ϑ
]
er +

(
ã1r̃−3 − γ

)
sin ϑ eϑ

}
E ,

PI = κε0E[cos ϑ er − sin ϑ eϑ] = κε0Eez = const., PO = 0,

qI = ε0

(
qf
I

ε0
− n ·

[[P]]
ε0

)
= ε0E[α + κ cos ϑ] ,

J I = −[[P]]w⊥ + n × [[M]] = 0 ,

(11.15)

where different scaling factors apply for the different situations:
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(I) E = E0 , α = 0 , β = 0 , γ = 1 , (εr � 1)

(II) E =
qf
I

ε0
, α = 1 , β = 0 , γ = 0 , (εr = 1)

(III) E =
P0
ε0
, α = 0 , β = 1 , γ = 0 , (εr = 1)

(IV) E =
qf
I

ε0
, α = 1 , β = 0 , γ = 0 , (εr � 1)

(11.16)

and κ = β + (γ − ã1)(εr − 1). Now the non-vanishing surface force densities result:

f (1)I := f L
I = f A1

I = f A2
I = f M1

I

= ε0E2

[ (
c(1)0 P0(x) + c(1)1 P1(x) + c(1)2 P2(x)

)
er+

+

(
d(1)

1
dP1(x)

dϑ
+ d(1)

2
dP2(x)

dϑ

)
eϑ

]
, (11.17)

f (2)I := f M2
I = f EL

I

= ε0E2
[(

c(2)0 P0(x) + c(2)1 P1(x) + c(2)2 P2(x)
)
er + d(2)

1
dP1(x)

dϑ
eϑ

]
.

Pi(x) denote Legendre polynomials and the coefficients are given by:

c(1)0 =
1
2
αã0 +

1
6 κ(ã1 + 2γ) , c(1)1 =

1
2
α(ã1 + 2γ) + 1

2 κã0 ,

d(1)
1 = α(γ − ã1) , d(1)

2 =
1
3
κ(γ − ã1) ,

c(2)0 =
1
2
αã0 +

1
2 κã1 , c(2)1 =

1
2
α(ã1 + 2γ) +

1
2
κã0 ,

c(1)2 =
1
3
κ(ã1 + 2γ) , d(2)

1 = α(γ − ã1) , c(2)2 = κã1 .

(11.18)

The various force densities are illustrated in Fig. 11.5. They may serve as first
indication for the deformation pattern. Now in complete analogy to Case I the elastic
deformation response can be calculated in closed form for (I)–(IV) as will be shown
in Rickert et al (2019). The resulting forms are shown in Fig. 11.6.

Unfortunately, as in the case of magnetostriction, the displacements are very small
making experimental investigations difficult.
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(a) f (1)I (I) (b) f (1)I (II) (c) f (1)I (III) (d) f (1)I (IV)

(e) f (2)I (I) (f) f (2)I (II) (g) f (2)I (III) (h) f (2)I (IV)

Fig. 11.5 Electret force densities predicted

11.6 Case IV: Force and Torque Interaction Between Spherical
Magnets

The details of this problem will be published in Rickert and Müller (2019). We consider
the interaction between two spherical rigid permanent magnets, homogeneously
magnetized by M (I)

0 and M (II)
0 of radii R(I) and R(II), respectively: Fig. 11.7.

As one can show the dimensionless surface force densities f̃ (EM)
I = f (EM)

I / f̂ are
given by:

f̃ L
I = sin ϑ′e′ϕ × B̃(I) +

{
1
6

M (II)
0

M (I)
0
(sin2 ϑ′e′r + 4 sin ϑ′ cos ϑ′e′ϑ)

}
,

f̃ A1
I = sin ϑ′e′ϕ × H̃(I) +

{
1
6

sin ϑ′
M (II)

0
M (I)

0
(sin ϑ′e′r + 4 cos ϑ′e′ϑ)

}
,
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(a) u(1) (I) (b) u(1) (II) (c) u(1) (III) (d) u(1) (IV)

(e) u(2) (I) (f) u(2) (II) (g) u(2) (III) (h) u(2) (IV)

Fig. 11.6 Electret surface displacement predictions

f̃ A2
I = sin ϑ′e′ϕ × H̃(I) +

{
cos ϑ′B̃(I) +

1
6

M (II)
0

M (I)
0
(1 + 3 cos2 ϑ′)e′r

}
, (11.19)

f̃ M1
I = sin ϑ′e′ϕ × B̃(I) +

{
1
6

M (II)
0

M (I)
0
(sin2 ϑ′e′r + 4 sin ϑ′ cos ϑ′e′ϑ)

}
,

f̃ M2
I = n(B̃(I) · e′z) +

{
1
6

M (II)
0

M (I)
0
(1 + 3 cos2 ϑ′)e′r

}
,

f̃ EL
I =

{
1
6

M (II)
0

M (I)
0
(1 + 3 cos2 ϑ′)e′r − n

(
1
2

M (II)
0

M (I)
0

sin2 ϑ′ +
1
6

M (II)
0

M (I)
0
[4 + 3 cos2 ϑ′]

)}
,
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Fig. 11.7 Interacting spherical
magnets

Ω0
Ω(I)

∂Ω(I)

yx

z

xM

x

∂Ω(II)Ω (II)

y
′z

′

x′
ȳ

z̄

x′ = x̄

β

α

where f̂ = μ0M (I)
0 M (II)

0 , B(I) = μ0M (I)
0 B̃(I) and H(I) = M (I)

0 H̃(I). The expressions in curly
brackets relate to the second magnet. The volumetric force densities normalized with
f̂ R−1

(II) read:
f̃ L = f̃ A1 = f̃ M1 = f̃ M2 = 0 ,
f̃ A2 = −∇̃ · (e′z ⊗ B̃(I)) , f̃ EL = e′z · (∇̃ ⊗ H̃(I)) .

(11.20)

In order to obtain the total force on the second magnet, the surface force densities are
integrated across the surface of the second magnet and the volumetric forces across
its volume. Then, the expressions in curly brackets do not contribute, as it should
be. Moreover, as it can be shown with some effort (Rickert and Müller, 2019), the
resulting forces are all equal independently of the model:

FL = FA1 = FA2 = FM1 = FM2 = FEL . (11.21)

From the experimental point of view this is bad news because a measurement of the
force would not allow us to identify the most realistic force density model. However,
the situation is different when we consider the torque that magnet (I) imposes on
magnet (II). The torque does depend on the model that is used. We find:

ML = MA1 = MM1 = f̂ R3
(II)

∫
∂Ω(II)

sin ϑ′e′ϕ(e′r · B̃(I)) dÃ ,

MA2 = − f̂ R3
(II)

∫
Ω(II)

e′r ×
[
e′z · (∇̃ ⊗ B̃(I))

]
dṼ +

+ f̂ R3
(II)

∫
∂Ω(II)

e′r ×
[
(sin ϑ′e′ϕ × H̃(I) + cos ϑ′B̃(I))

]
dÃ ,

MM2 = f̂ R3
(II)

∫
∂Ω(II)

e′r ×
[
e′r (B̃(I) · e′z)

]
dÃ = 0 ,

MEL = f̂ R3
(II)

∫
Ω(II)

e′r ×
[
e′z · (∇̃ ⊗ B̃(I))

]
dṼ .

(11.22)
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Fig. 11.8 Torques on the magnet (II) due to the magnetic field of the first one for different models
and different configurations of the two magnets

Most interestingly, the second version of the Minkowski model yields no torque in
any configuration of the two magnets. Therefore, we may conclude that this model is
unrealistic. The non-vanishing torques are depicted in Fig. 11.8. From the figure it is
clear, that the total torque on the second magnet is different for the distinct models
and hence, only by measurement the correct force model for this situation can be
found.

11.7 Conclusions and Outlook

The main objective of this paper was to draw attention to the fact that there exist
different electromagnetic force models for ponderable matter. Which one is applicable
depends on the concrete material that is subjected to electromagnetic fields. For a
decision experiments must be performed and compared with theoretical predictions
for the total force, the moment, and the deformation of the body in question. Four
examples were presented to illustrate this complex situation. It is fair to say that in this
context very few experiments have been performed and that the resulting deformations
are usually very small, which makes a decision difficult. In conclusion one may say
that until today the description of processes for bodies with a coupling between their
thermo-mechanical and electromagnetic fields is still far from a complete rational
understanding.
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