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Preface

The Springer series on Advanced Structured Materials (ASM) was established in 2010
to provide a new forum to present recent results from research on the fundamental
relationships between materials and their structure, and the consequences for their
overall properties (e.g. mechanical, thermal, chemical or magnetic, among others) and
applications. At the beginning it was planed that four volumes should be published
every year within this series.

The constant need and requirement for research in this area is based on the fact
that common engineering materials reach their limits for many applications, and that
new developments are required to fulfil increasing demands on performance and
properties, as well as further considerations such as recyclability and environmental
compatibility. The performance of materials can be increased by combining different
materials to achieve properties better than single constituent materials, or by shaping
the materials or constituents in a specific structure. The interaction between materials
and structures may arise on different length scales, such as at the micro-, meso- or
macroscale, and offers possible applications in quite diverse fields. On the other hand,
new or more accurate material laws allow a more efficient and safer exploitation
of existing and novel materials. Many times, these goals can be only achieved in a
multi-disciplinary approach.

At the beginning it was not clear what will be the format of this series: proceedings,
collections of papers, monographs, among others. Now it is clear that any format was
accepted by the scientific community. The main indicator (downloads) shows that
there is no preferred format. Within the series some books attract a huge number of
scientists world-wide, in other cases the books were published for some specialists.
Today this is not a problem since the electronic copies are used by the majority of the
readers.

On the occasion of the 100th volume in the Advanced Structured Materials series,
we intended to compile a special anniversary monograph to celebrate the success and
acceptance of this Springer book series and to give international experts a forum to
showcase the actual state-of-the-art and future trends in materials modelling. Finally,
59 authors from 14 countries have submitted 20 papers.
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Chapter 1
On Viscoelasticity in the Theory of
Geometrically Linear Plates

Marcus Aßmus and Holm Altenbach

Abstract A phenomenological theory for viscoelastic plates is developed in a
geometrically linear framework whereby present work is based on the direct approach
for homogeneous plates. We confine our research to isotropic viscoelastic materials,
assume stiffness laws by means of rheology, and generalize them in order to describe
the behavior of shear-deformable thin-walled structures. The restriction to isotropy
enables to utilize eigenspace projectors since stiffness tensors are coaxial in this
special case. It is thus possible to formulate the system of tensor-valued differential
equations in orthogonal subspaces and to simplify the calculation rules like those
for scalar-valued expressions. The resulting behavior is illustrated exemplary by
means of uniaxial tests. We furthermore provide information on material parameter
determination.

Keywords: Plate theory ·Viscelasticity ·Rheology · Isotropy ·Eigenspace projections

1.1 Introduction

1.1.1 Motivation

The application of elasticity theory for problems at thin-walled structural elements
that are made of polymeric materials seems to be detrimental. In general, pronounced
viscoelastic phenomena can be observed when deforming rubber, caoutchouc, and
liquid or solid plastics (Ferry, 1980). The associated inelastic material behavior is
called rate-dependent or rheonomous. To an increasing extent, these materials are
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also being used in thin-walled structural elements like plates, shells and composite
structures. The theories are logically based on classical continuum theory and derived
for the special structural element (Naghdi, 1972). Viscoelastic problems, however,
can be solved by two conceptually different approaches.

• one-dimensional viscoelastic equations based on kinematics
• tensor function representations

The latter is phenomenological but simpler in the context of computational handling
and has a wider range of applications additionally. In the literature, different models are
available in the context of the methodology (Gurtin and Sternberg, 1962; Mālmeisters
et al, 1977):

• viscoelastic models of differential-type
• viscoelastic models of integral-type

However, we are not going to have such a strict separation here and leave such
classifications to historians in this field.

In the context of phenomenological rheology, a huge number of circuitries have
been established at least for one-dimensional representations. Three-dimensional
generalizations are widespread in engineering sciences, with isotropic viscoelastic
behavior in the foreground. Contrary to classical procedures based on a three-
dimensional parent-continuum and a degeneration and condensation of the constitutive
equations, it is also possible to introduce viscoelasticity ab initio at dimensionally
reduced continua, at least in the context of plates.

An interesting concept for plates is the direct approach for homogeneous and
inhomogeneous in the thickness direction plates (Altenbach, 1988). It is possible
there to introduce the topic of viscoelasticity directly, also. To date, however, a direct
introduction of viscoelasticity in the most natural way is absent. Thereby, it is much
clearer to distinguish between elastic and viscous deformations while simultaneously
considering dilatoric and deviatoric ones with respect to all deformation states
admissible. The present work can be classified in this area while we enter the topic for
the most simple plate, i.e. isotropic and decoupled. However, we don not want to lapse
into details concerning the rheological circuits. Rather, we would like to emphasize
the clear physical interpretation and the straightforward algebraic handling. Hereby,
we preserve the mathematical structure of the resulting equations, as they are known
from a one-dimensional theory. This guarantees a clear and elegant presentation.
Generally, this paper offers an outline of the linear theory of viscoelasticity for plates.
At the same time, however, it offers an initial introduction to the procedure presented
here.

1.1.2 Organisation of the Paper

In context of a slender three-dimensional body B in the three-dimensional Euclidean
space E3, we operate on the two-dimensional mid-surface S, solely. Referring to
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an orthonormal basis {ei} ∀ i = {1,2,3} one can describe this manifold within the
volume V occupied by B as follows (Aßmus et al, 2020).

V =
{

Xi ∈ B ⊂ E3 : Xα ∈ S ⊂ E2,X3 ∈
[
−

h
2
,+

h
2

]}
(1.1)

Herein E2 is the two-dimensional subspace which is sufficient for the geometric
description of S. However, in the context of a plane two-dimensional manifold,
one can introduce the orthonormal vector-basis {eα, n} ∀α = {1,2} which is more
convenient in plate theory. This resulting two-dimensional mechanical problem will
be introduced ab initio in present treatise, i.e. without any derivation.

At first, we recall some basic relationships which are necessary for the subsequent
considerations. Initially, we introduce the degrees of freedom, the geometry of
deformation, conjugate kinetic quantities, and constitutive relations in the case of
isotropic linear elasticity. The latter are postulated in a special form.

Thereafter, we directly enter the topic of viscoelasticity. Our starting point are
uniaxial rheological models. After introducing their idiosyncrasies at two-dimensional
body manifolds, we present applications of classical circuitries. We limit our attention
initially to continuous histories and assume (without essential loss of generality)
that the medium is in its undeformed state for all times τ ∈ (−∞,0). The tensorial
generalization is thereby derived by a projection methodology. Two briefly described
problems are formulated, and both are more or less solved. Thereby we present the
mechanical behavior for all deformation states considered. Finally, we give hints for
the identification of material parameters.

1.1.3 Preliminaries and Notation

In present work we make use of the direct tensor calculus. We tend to use this
mathematical tool in the sense of a language for everyday use rather than as a body
of theorems and proofs. Nevertheless, a few arrangements have to be made.

Tensors of zeroth-order (or scalars) are symbolised by italic letters (e.g. a or α),
italic lowercase bold letters denote first-order tensors (or monads) (e.g. a = ai ei),
second-order tensors (or dyads) are designated by italic uppercase bold letters (e.g.
A = Alm el ⊗ em), and fourth-order tensors (or tetrads) are symbolised by italic
uppercase bold calligraphic letters (e.g. A = Astuv es ⊗ et ⊗ eu ⊗ ev), whereas
Einstein sum convention is applied. Latin indices run through the values 1, 2, and 3,
while Greek indices run through the values 1 and 2.

Essential operations especially for polyadics used in present manuscript are the
scalar product a · b = α (with α ∈ R), the cross product a × b = c, the dyadic
product a ⊗ b = C, the composition of a second and a first-order tensor A · a = d,
the composition of two second-order tensors A ·B = D, the cross product between
a second and a first-order tensor A × b = G, the double scalar product between
two second-order tensors A : B = γ, the double scalar product between a fourth
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and a second-order tensor A : B = F, and the fourfold scalar product between two
fourth-order tensors A :: B = ω. In context of the cross product introduced, the
permutation symbol εi jk is needed. In three dimensions it is determined via the triple
product of three orthogonal unit vectors.

εi jk = ei · (e j × ek)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+1 if (i, j, k) is an even permutation of (1,2,3)
−1 if (i, j, k) is an odd permutation of (1,2,3)

0 if (i, j, k) is not a permutation of (1,2,3)
(1.2)

Above introduction is based on a Cartesian coordinate system and orthonormal bases,
e.g. {ei}. We furthermore make use of the two-dimensional Hamiltonian (Nabla
operator). This vector valued operator is defined as.

∇ = eα
∂ . . .

∂Xα

It is used to determine the divergence (∇·�) and the gradient (∇�) of a tensor � of
any order. Furthermore,

∇sym� =
1
2
[∇� + ∇��]

is the symmetric part of the gradient ∇�. The transposed gradient is defined as
∇�� = [∇�]�. The transposition of a tensor is given by a · A� · b = b · A · a. For
detailed penetrations of these operations we refer to e.g. Šilhavý (1997).

The Frobenius norm of fourth- and second-order tensors is determined as follows.

‖A‖ = [A :: A]
1
2 ‖A‖ = [A : A] 1

2 (1.3)

In present context we also need invariants of second-order tensors. There are
principal and main invariants. However, since we are working on two-dimensional
body-manifolds, the number of invariants differs slightly in contrast to the classical
standpoint. In view that we are interested in symmetric tensors only, the number of
independent main invariants is identical to the number of principle invariants. The
two invariants of a tensor A ∈ E2 are defined by

InAI = trA (1.4a)

InAII = detA (1.4b)

while trA = A ·P is the trace and detA =
∏
λAα is the determinant of a second-order

tensor A. Herein, λAα are the eigenvalues of A, determined by the eigenvalue problem
A · a = λαa. Furthermore, P = eα ⊗ eα is the first metric tensor of a planar two-
dimensional body manifold. A tensor of first order a features only one invariant,
namely its square (Ina = a · a) (Schade and Neemann, 2009).
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1.2 Linear Elastic Background

First of all, it is sensible to gather a few classical formula of linear isotropic elastic
plates in a clear geometric form. Thereby, we follow the ideas of the basic works
from Kirchhoff (1850); Reissner (1945), and Mindlin (1951) while we here introduce
the subject in a direct manner (Zhilin, 1976).

We consider a plane material surface S which is endowed with five kinematic
degrees of freedom, cf. Fig. 1.1. These are three translations a and two rotations ϕ.

a = v + wn with v = vαeα (1.5a)
ϕ = ϕαeα (1.5b)

Therein, the translations were splitted additively into an in-plane v and an out-of-plane
part w. The rotations ϕ arise from the more physical Mindlinean definition

ψ = ϕ1e2 − ϕ2e1

via
ϕ = ψ × n

We are working with the following set of reduced deformation measures.

G = ∇sym v (1.6a)

B

S

ϕ1

ϕ2
v1

v2
w

e2

e1

n

ν

ν

S

∂S

three-dimensional continuum two-dimensional continuum

Fig. 1.1 Plane surface continuum in context of a three-dimensional slender body
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K = ∇symϕ (1.6b)
g = ∇w+ϕ (1.6c)

Herein, G denotes plane normal and plane shear strains, K normal curvature changes
due to bending and torsion, and g transverse shear strains. Obviously, all three
deformation measures are introduced in analogy to deformation states usual in
engineering. To be exact, these are the in-plane state, the out-of-plane state, and the
transverse shear state.

We introduce dual kinetic measures resulting from principle of cuts. Boundary
measures are defined by forces and moments acting at the surface. Thereby, we make
use of tangential forces sS, orthogonal forces pS, and out-of-plane moments mS.

nν = lim
ΔL→0

ΔsS
ΔL

(1.7a)

mν = lim
ΔL→0

Δ(mS × n)
ΔL

(1.7b)

qν = lim
ΔL→0

ΔpS
ΔL

(1.7c)

Here, L is a plane measure. The vectors and the scalar of the left-hand sides indicate
the boundary resultants of the in-plane state nν , the out-of-plane state mν and the
transverse shear state qν . The orientation of a cut is determined by the corresponding
normal. Here, we use the boundary normals n and ν, while n · ν = 0 holds. Following
Cauchy, a tensor exists to the boundary quantities introduced above. The following
applies to boundaries with normals ν which points along the plane directions.

ν ·N = nν (1.8a)
ν · L = mν (1.8b)
ν · q = qν (1.8c)

However, with the boundary normal n, the following results.

n ·N = o (1.9a)
n · L = o (1.9b)
n · q = 0 (1.9c)

The resulting tensors are the in-plane force tensor N , the polar tensor of moments
L, and the transverse shear force vector q. In context of isotropic materials and
uncoupled deformation states, the equations coupling kinetic and kinematic measures
are defined as follows.

N =A : G (1.10a)
L =D : K (1.10b)
q = Z · g (1.10c)
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Here, the constitutive measures can be given by the aid of the projector representa-
tion (Aßmus et al, 2017) whereby this idea can be traced back to Lord Kelvin (Thomson,
1878). With respect to the deformation states we get the in-plane stiffness tensor A,
the plate stiffness tensor D, and the transverse shear stiffness tensor Z .

A = λAJ PJ (1.11a)

D = λDJ PJ (1.11b)

Z = λZ P (1.11c)

Generally, for the the subscript index J ∈ {1, . . . ,N} holds. In the case of isotropy
we can restrict our presentation to J ∈ {1,2}. The fourth-order isotropic projectors
are given as follows (Rychlewski, 1995; Aßmus et al, 2017).

P1 =
1
2
P ⊗ P P2 = Psym −P1 P = eα ⊗ eα (1.12)

Herein,
Psym =

1
2
(
eα ⊗ eβ ⊗ eα ⊗ eβ + eα ⊗ eβ ⊗ eβ ⊗ eα

)
is the symmetric part of the fourth-order identity of the surface. The fourth-order
eigenprojectors are used to determine the dilatoric and deviatoric portions of a
second-order tensor, cf. Aßmus et al (2017).

P1 : A = Adil

P2 : A = Adev A = Adil + Adev (1.13)

Herein A = Aαβeα ⊗ eβ is chosen arbitrary. The eigenvalues

λ�J ∀ J ∈ {1,2} ∧ � ∈ {A,D}

and λZ are determined by following operations.

λAJ =A :: PJ

| |PJ | |2
(1.14a)

λDJ =D :: PJ

| |PJ | |2
(1.14b)

λZ = Z : P

| |P | |2
= Z : P (1.14c)

This results in a set of five isotropic eigenvalues for A, D, and Z .

λA1 =
Y h

1 − ν
= 2Bh λA2 =

Y h
1 + ν

= 2Gh (1.15a)

λD1 =
Y h3

12(1 − ν)
= 2B

h3

12
λD2 =

Y h3

12(1 + ν)
= 2G

h3

12
(1.15b)
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λZ =
κY h

2(1 + ν)
= κG h (1.15c)

For every fourth-order stiffness tensor, two distinct eigenvalues result, while the
second-order stiffness tensor exhibits only one eigenvalue. The eigenvalues are not
independent since

λDJ =
h2

12
λAJ

holds (Aßmus et al, 2017). To be exact, the engineering parameters Young’s modulus
Y and Poisson’s ratio ν as well as shear G and bulk modulus B are correlated as
follows.

Y =
2
h

λA1 λA2
λA1 + λA2

=
24
h3

λD1 λD2
λD1 + λD2

=
2λZ

κh

[
1 +
λ�1 − λ�2
λ�1 + λ

�
2

]
∀� ∈ {A,D} (1.16a)

ν =
λ�1 − λ�2
λ�1 + λ

�
2

∀� ∈ {A,D} (1.16b)

B =
1
2h
λA1 =

12
2h3 λ

D
1 (1.16c)

G =
1
2h
λA2 =

12
2h3 λ

D
2 =

1
κh
λZ (1.16d)

Herein we of course make use of the bulk modulus of the surface

B =
Y

2(1 − ν)
,

cf. Aßmus et al (2017). Furthermore, 0 < κ ≤ 1 is a correction factor accounting
for transverse shear, cf. Reissner (1945); Mindlin (1951). To correlate the material
parameters introduced by eigenvalues of stiffness tensors to classical stiffnesses of
plate theories, we can give following relations.

DM =
1
2

[
λA1 + λA2

]
DB =

1
2

[
λD1 + λD2

]
DS = λ

Z (1.17)

Here, DM is the in-plane stiffness, DB is the bending stiffness, and DS is the transverse
shear stiffness. The relation

DB =
h2

12
DM

holds true. It is also worth mentioning that

D = h2

12
A
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applies.
By the aid of the projectors presented in Eq. (1.12) we can also write our constitutive

equations Eqs. (1.10a)–(1.10c) in terms of the eigenvalues of corresponding stiffnesses,
cf. Eqs. (1.11a)–(1.11c). Furthermore, we can use these projectors to map the kinetic
and deformations measures into their eigenspaces.

NJ = PJ : N GJ = PJ : G (1.18a)
LJ = PJ : L KJ = PJ : K (1.18b)
qJ = P · q = q gJ = P · g = g (1.18c)

As introduced in Eq. (1.13), if J =̂ 1, the dilatoric portion, and if J =̂ 2, the deviatoric
portion results. Obviously, q and g are idempotent. Both measures are localised in
the deviatoric eigenspace solely. However, in the course of this procedure, we can
also write the constitutive laws in the most natural way.

N = λAJ GJ (1.19a)

L = λDJ KJ (1.19b)

q = λZ g (1.19c)

The power of the projector representation introduced here is that we can reduce
tensorial stiffness measures to scalar ones. This fact will help us to achieve a clear
representation for what follows.

1.3 Constitutive Models for Linear Viscoelasticity

1.3.1 Basic Elements of Rheological Circuits

To describe viscoelastic material behavior in context of rheology, two different basic
elements are required which will be introduced in the sequel.

The pure elastic material is symbolized by a spring. In present context we reduce
ourselves to linear elastic behavior, so that it is sufficient to utilize a linear spring. This
basic element is visualized in Fig. 1.2 on the left-hand side and is called the Hooke
element (Reiner, 1960; Giesekus, 1994; Palmov, 1998). Since the Hooke element
(Hookean spring) refers to pure elastic behavior we make use of the superscript index
E (for elastic) for all further executions. As already introduced in the previous section,
the constitutive relations can be given as follows.

NE =A : GE = λAJ GE
J (1.20a)

LE =D : KE = λDJ KE
J (1.20b)

qE = Z · gE = λZ gE (1.20c)
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E D

Hooke element (E) Newton element (D)

Fig. 1.2 Basic elements of rheological models used to reproduce viscoelastic material behavior

To be exact and for the purpose of comparison with subsequent executions, the elastic
material parameters are given again.

λA1 = 2Bh λA2 = 2Gh (1.21a)

λD1 = 2B
h3

12
λD2 = 2G

h3

12
(1.21b)

λZ = κG h (1.21c)

The second basic element that is needed represents rate-dependency. The simplest
approach to introduce viscous behavior is to apply a viscous law. Usually, this is
represented by a linear damper. Such an element is is visualized in Fig. 1.2 on the
right-hand side and is called the Newton element (or Newtonian dashpot) (Reiner,
1960; Giesekus, 1994; Palmov, 1998).This is representing linear viscous behavior.
Since damping is a dissipative process, we make use of the superscript index D

(for dissipative). Since we assume isotropic viscous behavior, we can split the
viscous relations in the same fashion as already demonstrated for isotropic stiffnesses.
Following constitutive relations result.

ND = B : �GD
= λBJ �GD

J (1.22a)

LD = E : �KD
= λEJ �KD

J (1.22b)

qD = X · �gD = λX �gD (1.22c)

Analogously, B is the in-plane viscosity tensor, E is the plate viscosity tensor, and X
is the transverse shear viscosity tensor. We can specify the isotropic eigenvalues of
these viscosities as follows.

λB1 = 2μh λB2 = 2ηh (1.23a)

λE1 = 2μ
h3

12
λE2 = 2η

h3

12
(1.23b)

λX = ζ η h (1.23c)

Here μ is the surface (dilatational) and η is the shear (deviatoric) viscosity. Further-
more, 0 < ζ ≤ 1 is a correction factor accounting for transverse shear in pure viscous
state. For the sake of simplicity one can consider the coincidence ζ = κ which does
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not necessarily retain its validity for arbitrary deformation states. These eigenvalues
obviously have the same structure as the eigenvalues of the stiffness tensors. In analogy
to established stiffnesses, cf. Eq. (1.17), we can introduce subsequent scalar-valued
viscosities.

VM =
1
2

[
λB1 + λB2

]
VB =

1
2

[
λE1 + λE2

]
VS = λ

X (1.24)

Here, VM is the in-plane viscosity, VB is the bending viscosity, and VS is the transverse
shear viscosity. The relation

VB =
h2

12
VM

applies analogously since

λEJ =
h2

12
λBJ

holds. Consequently,

E = h2

12
B

holds as well.
We reduce our concern to linear-viscoelastic models. Such models can be con-

structed via parallel or series arrangements and arbitrary combinations by using the
rheological elements Ri introduced in present section. For the sake of simplicity we
restrict ourselves to two of the most simple models where the basic rules are presented
in the following two sections. For explanations of subsequent arrangements we use
numerals for different elements so that i ∈ {(1), . . . , (N)} holds instead of explicitly
stating the element type with superscript indices E and D. We are content with two
elements to illustrate the rules. Both arrangements are visualized in Fig. 1.3.

1.3.2 Series Arrangement of Elements

A series circuitry of two elements is illustrated in Fig. 1.3 (left-hand side). The series
arrangement utilizes the so-called ‘iso-stress concept’. To be exact, this entails that
in both elements all kinetic measures are equal independently, while the total of the
individual dual kinematic measure results from the sum of both elements. Applied to

R(1) R(2)

R(1)

R(2)

series arrangement parallel arrangement

Fig. 1.3 Basic arrangements of elements Ri in rheological models
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the kinetic quantities introduced this results in following relations.

N = N (1) = N (2) (1.25a)

L = K (1) = L(2) (1.25b)

q = q(1) = q(2) (1.25c)

Vice versa, the following applies to the deformation tensors.

G = G(1) + G(2) (1.26a)

K = K (1) + K (2) (1.26b)

g = g(1) + g(2) (1.26c)

1.3.3 Parallel Arrangement of Elements

A parallel circuitry of two elements is illustrated in Fig. 1.3 (right-hand side). The
parallel arrangement utilizes the so-called ‘iso-strain concept’. This means that in
both elements all kinematic measures are equal independently, while the total of
the individual dual kinetic measure results from the sum of both elements. For the
kinematic quantities introduced the following applies.

G = G(1) = G(2) (1.27a)

K = K (1) = K (2) (1.27b)

g = g(1) = g(2) (1.27c)

Contrary, the following applies to the kinetic measures.

N = N (1) + N (2) (1.28a)

L = K (1) + L(2) (1.28b)

q = q(1) + q(2) (1.28c)

1.4 Application to Viscoelastic Plates

By the aid of the rules introduced in protruding sections one can construct and
handle arbitrary rheological models. For the sake of simplicity and for reasons of
demonstration we consider the two most simple models used on rheology, only. These
are the Maxwell and the Kelvin model. Their circuitries are visualized in Fig. 1.4.

For an extensive view on mathematical properties of these viscoelastic models
we refer to Gurtin and Sternberg (1962). In the sequel we focus on the tensorial
generalization with application to plates.
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E D

E

D

Maxwell model Kelvin model

Fig. 1.4 Circuits of most simple rheological models in linear viscoelasticity

For all subsequent operations we consider finite ◦-processes and the dual •-
processes between the instants 0 and t, where initial values for ◦(0) and •(0)
∀ ◦/• ∈ {A/B,D/E,Z/X} are needed. If the •-process is prescribed, one wants to
determine the ◦-process, or vice versa.

1.4.1 Maxwell Model

The Maxwell model consists of a series arrangement of spring and damper. Due to
the rules of a series arrangement presented in Subsect. 1.3.2 and the constitutive
relations (1.20) and (1.22), we can formulate the following five tensor-valued equations
for the one-dimensional analogue visualized in Fig. 1.4 (left-hand side).

�G =
1

λAJ
�N J +

1
λBJ

N J (1.29a)

�K =
1
λDJ

�LJ +
1
λEJ

LJ (1.29b)

�g =
1
λZ

�q +
1
λX

q (1.29c)

By integration of these equations we obtain a form explicit in the deformation
measures.

G(t) = G(0) +
1

λAJ
[NJ (t) − NJ (0)] +

1
λBJ

t∫
0

NJ (τ) dτ (1.30a)

K (t) = K (0) +
1
λDJ

[LJ (t) − LJ (0)] +
1
λEJ

t∫
0

LJ (τ) dτ (1.30b)

g(t) = g(0) +
1
λZ

[q(t) − q(0)] +
1
λX

t∫
0

q(τ) dτ (1.30c)

To gain the explicit forms of kinetics, the initial equations are multiplied by
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λ◦J exp
[
λ◦J
λ•J

t
]

∀ ◦ � • with pairs ◦/• ∈ {A/B,D/E,Z/X} (1.31)

which results in an expression which is the outcome of the application of the product
rule for derivatives whereby the time integral in the interval τ ∈ [0,1] has to be
determined. This results in following expressions.

N (t) = NJ (0) exp

[
−
λAJ
λBJ

t

]
+ λAJ

t∫
0

�GJ (τ) exp

[
λAJ
λBJ

(τ − t)

]
dτ (1.32a)

L(t) = LJ (0) exp

[
−
λDJ
λEJ

t

]
+ λDJ

t∫
0

�KJ (τ) exp

[
λDJ
λEJ

(τ − t)

]
dτ (1.32b)

q(t) = q(0) exp

[
−
λZ

λX
t

]
+ λZ

t∫
0

�g(τ) exp

[
λZ

λX
(τ − t)

]
dτ (1.32c)

Handling the integrals by partial integration gives the final set of equations.

N (t) = λAJ GJ (t) +
[
NJ (0) − λAJ GJ (0)

]
exp

[
−
λAJ
λBJ

t

]

−

(
λAJ

)2

λBJ

t∫
0

GJ (τ) exp

[
λAJ
λBJ

(τ − t)

]
dτ (1.33a)

L(t) = λDJ KJ (t) +
[
LJ (0) − λDJ KJ (0)

]
exp

[
−
λDJ
λEJ

t

]

−

(
λDJ

)2

λEJ

t∫
0

KJ (τ) exp

[
λDJ
λEJ

(τ − t)

]
dτ (1.33b)

q(t) = λZ g(t) +
[
q(0) − λZ g(0)

]
exp

[
−
λZ

λX
t

]

−

(
λZ

)2

λX

t∫
0

g(τ) exp

[
λZ

λX
(τ − t)

]
dτ (1.33c)

Using Eqs. (1.30) and (1.33), the viscoelastic behavior of plates can be completely
described by the aid of the Maxwell model.
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1.4.2 Kelvin Model

The Kelvin model consists of a parallel arrangement of spring and damper. Due
to the rules of a parallel arrangement given in Subsect. 1.3.2 and the constitutive
relations (1.20) and (1.22), we can formulate the following tensor-valued equations
for the Kelvin model.

N = λAJ GJ + λ
B
J

�GJ (1.34a)

L = λDJ K J + λ
E
J
�K J (1.34b)

q = λZ g + λX �g (1.34c)

Analogously to the Maxwell model, we determine the explicit forms of kinematics.
Hereby, we multiply our set of equations by the ansatz

1
λ•J

exp
[
λ◦J
λ•J

t
]

∀ ◦ � • with pairs ◦/• ∈ {A/B,D/E,Z/X} (1.35)

which, after minor conversions, results in the following forms.

G(t) = GJ (0) exp

[
−
λAJ
λBJ

t

]
+

1
λBJ

t∫
0

NJ (τ) exp

[
λAJ
λBJ

(τ − t)

]
dτ (1.36a)

K (t) = KJ (0) exp

[
−
λDJ
λEJ

t

]
+

1
λEJ

t∫
0

LJ (τ) exp

[
λDJ
λEJ

(τ − t)

]
dτ (1.36b)

g(t) = g(0) exp

[
−
λZ

λX
t

]
+

1
λZ

t∫
0

q(τ) exp

[
λZ

λX
(τ − t)

]
dτ (1.36c)

The opposite case, deriving the explicit form in the kinetic measures what corresponds
with a relaxation test, is not feasible for this model since finite kinetics cannot introduce
discontinuous kinematics. Therefore, using Eqs. (1.36), the viscoelastic behavior of
plates is completely described by the aid of the Kelvin model.

1.4.3 Visualization of Model Behavior

When it comes to visualizations of simple deformation tests, we make use of
one-dimensional measures for reasons of clarity. These are defined as follows.

N = e1 ·N · e1 G = e1 ·G · e1 (1.37a)
L = e1 · L · e1 K = e1 ·K · e1 (1.37b)
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q = q · e1 g = g · e1 (1.37c)

In this spirit, we can e.g. reduce our constitutive relations to the following expressions

N = Y h G (1.38a)

L = Y
h3

12
K (1.38b)

q = κY h g (1.38c)

at least in the context of elasticity. For the sake of simplicity we consider a constant
load Δ� applied at time ti for a kinetic process

�i(t) = Ξ(t − ti)Δ�(ti) ∀� ∈ {Ninit, Linit,qinit} , (1.39)

whereby Ξ is the Heaviside function

Ξ =

{
0 if τ < 0
1 if τ ≥ 0

, (1.40)

and Δ� ∀� ∈ {N, L,q} is the unit load. Therefore, the unit load is applied for all
times 0 < τ < ∞ in present investigations (no unloading). Such scenarios are known
as retardation tests. Resulting behavior is visualized in Fig. 1.5. The upper row shows
the impact while the lower row shows the response. Dual quantities are directly
juxtaposed, while results of both models applied here are compared qualitatively.

Vice versa, we can also apply a kinematic process while we have to change
Δ� in Eq. (1.39) to � ∈ {Ginit,Kinit,ginit}. This results in so called relaxation tests,
visualized in Fig. 1.6.

The two figures show the mechanical responses of both models introduced
comparatively. However, considering these one-dimensional analogues, the behaviors
are well known in the literature, e.g. Krawietz (1986), so we are not going to discuss
them in detail, here. Rather, we would like to point out that all three deformation
states are completely decoupled, i.e. in-plane, plate and transverse shear state have no
influence on each other.

1.4.4 Ansatz for Viscous Parameters

The presented models are limited to their linearity. Nonlinearity can be taken into
account by the dependence of the viscosities on the dynamic quantities.

λBJ = λB0
J exp(−HN

J ) (1.41a)

λEJ = λE0
J exp(−HL

J ) (1.41b)
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t

G

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

t

K

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

t

g

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

t

N

ΔN

t

L

ΔL

t

q

Δq

Fig. 1.5 Retardation test with Maxwell model (blue) and Kelvin model (red)

λX = λX0 exp(−Hq) (1.41c)

Herein, λB0
J , λE0

J , and λX0 are non-negative stiffness parameters. The relation

λE0
J =

h2

12
λB0
J

holds. Furthermore, the exponents H�
J are linear forms of the i invariants In.

H�
J =

2∑
i=1

H�
Ji In

�
i ∀� ∈ {N,L} (1.42a)

Hq =
1∑
i=1

Hq
i Inqi (1.42b)

In context of our note in Sect. 1.2, we can build isotropic invariants Ini by the aid of a
reduced set of operations. Since our dynamic measures are symmetric ∀H ∈ {G,K }
as well and q is of first order only, these operations result in a whole set of 5 invariants.
It is noteworthy that λBJ , λEJ , and λX are constant during monotonous retardation
tests.

This ansatz is only one possibility which has established itself in practical
application. When restricting to isotropy, the use of von Mises equivalents of present
kinetic measures is another option.
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1.5 Determination of Material Parameters

The determination of material parameters for thin-walled structural elements is a
delicate matter. Usually, parameters must be transferred from the three-dimensional
reality into a two-dimensional model world (Libai and Simmonds, 1983).

In present model a set of 10 eigenvalues for the stiffness tensors is used.

elastic: λAJ , λDJ , λZ ∀ J ∈ {1,2} (1.43a)

viscous: λBJ , λEJ , λX ∀ J ∈ {1,2} (1.43b)

Apparently, this set is not necessarily independent. There are different correlations
within the parameters, cf. Eqs. (1.21) and (1.23). Due to these relations it is possible
to reduce the number of unknowns to the following set.

elastic: B,G (1.44a)
viscous: μ,η (1.44b)

The elastic material parameters can be determined by standard material tests. When
utilizing Eqs. (1.41a)-(1.41c) to consider the nonlinear viscous behavior we can
specify the set of viscous unknowns to the following.

viscous: λB0
J , λ

E0
J , λ

X0 ∀ J ∈ {1,2} (1.45a)

t

N

t

L

t

q

t

G

ΔG

t

K

ΔK

t

g

Δg

Fig. 1.6 Relaxation test with Maxwell model (blue) and Kelvin model (red)
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Since we assume that all viscous deformations are isochoric, μ and thus parameters
with J =̂ 1 are irrelevant

1
λB0

1

=
1
λE0

1

= 0 (1.46)

and can be set to 1. The remaining three parameters (λB0
2 , λE0

2 , λX0) can be
determined by fitting model responses to material tests, i.e. minimizing the discrepancy
between both procedures. For this purpose, data of relaxation and retardation tests is
required, preferably in the relevant load and temperature range. Clearly, the reliability
of predictions computed with present model depends on the variety of experimental
data used for calibration of the material parameters. Since material tests are obviously
carried out on three-dimensional specimens, the correlation to the three-dimensional
bulk modulus B3D seems useful.

B3D =
2(1 − ν)
3(1 − 2ν)

B (1.47)

Nevertheless, we can also find such analogy in the case of the volume shear viscos-
ity μ3D.

μ3D =
2(1 − ν)
3(1 − 2ν)

μ (1.48)

Since we restrict our concern to isotropy, it is sufficient to determine the set of
unknown material parameters for a single direction which can be chosen arbitrary.

In context of the shear correction factors κ and ζ no directional investigations are
required either. Due to their sensitivity to boundary conditions, loading scenarios,
etc., their determination is part of special research efforts (Altenbach, 2000a,b;
Vlachoutsis, 1992).

1.6 Conclusion

The present framework is a generalization of uniaxial rheological models to describe
small viscoelastic deformations for isotropic shear-deformable plates. We have shown
that it is possible to formulate a viscoelastic material model for plates ab initio. The
emphasis was on the discussion of the formal structure of such an approach. Due
to the smart choice of the mid surface position within the original body at X3 = 0
within the transverse limits Xmax

3 = | ± h
2 |, the deformation states considered are

uncoupled but superposed eventually for both, elastic and viscous material behavior
– at least in a geometrically linear framework. This enables to utilize decoupled
constitutive relations which leads to substantial simplification of the mathematical
executions. Additionally, the projector representation aided transparency. Finally, this
mathematical modeling results in a set of ordinary differential equations which can
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be solved by standard methods. The preceding calculations have been performed on
a rather general level. This facilitates the problem description in the most general
form, contrary to usual procedures in phenomenological material modeling. However,
the whole procedure protrudes by its conceptual clearness. The special case of a
viscoelastic shear-rigid plate can be deduced in analogy to the procedure presented
in Aßmus et al (2020).

In present work we make use of two most simple circuits. Extensions of present
models can be realized by considering extended rheological circuits (i.e. Zener
model (Zener, 1948) as well as Poynting (Poynting and Thomson, 1902) or Burgers
model (Burgers, 1939)) or generalized models (generalized Maxwell model or
generalized Kelvin chain) to include the primary and tertiary phase of what is often
referred to as creep (The terminology is not used here due to its vague definition.).
However, in this course, a generalized system equation can be introduced which is
valid for arbitrary rheological models (with respect to the restriction to isotropy and
geometrical symmetry). Nevertheless, we would like to point out that the two models
used here – Maxwell and Kelvin – represent extremes. All extended models work
within these bounds. In this context its also possible to include further rheological
basic elements (Coulomb or St. Venant element) for advanced circuits. Hereby, the
introduction of a directly formulated theory of plasticity for two-dimensional body
manifolds by the aid of eigenspace projectors is an open task. Apparently, however,
we are leaving the topic of pure viscoelasticity theory with such circuitry.

Considering coupled deformation states (due to anisotropies, a deviating reference
surface or an initially curved configuration) will blow up the present format since
we have to increase the number of stiffness and dissipation tensors which must
be taken into account. Furthermore, this format will loose its clarity due to the
coupling of the stiffness and dissipation tensor underneath each other. However, when
considering anisotropies (Weyl, 1997), both, in elastic and viscoelastic behavior,
a harmonic decomposition of the stiffness tensors may be used in dealing with
theoretical problems which also arise in the discussion of geometrical asymmetry.

Basically, it must be noted that the world of thin-walled structural elements
(in-plane loaded plates, out-of-plane loaded plates, shells, and folded structures)
lives from special cases. In this context, it is unfeasible to generalize the present
concept to the whole group. The reason for this is the non-trivial coupling of different
deformation states, at least when transverse shear is to be coupled.

However, the common limit of all presented here rheological models is their
linearity. The viscous behavior of natural materials is often strongly non-linear, e.g.
of polymers. Therefore a large number of extensions can be found in the literature,
e.g. frequency or kinetics dependent damping.

To conclude, the ansatz introduced here is a possible way to describe the viscoelastic
behavior of plates with transverse shear sensitivity. The power of the proposed method
lies in its extensibility. It can also be applied in a geometrically non-linear framework
although the relationships are becoming more complex.
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Chapter 2
Teaching Mechanics

James T. Boyle

Abstract In this Chapter issues associated with teaching mechanics in its broadest
sense are discussed. A historical approach is adopted throughout in the belief that this
is important for novice students to help them comprehend the conceptual difficulties
inherent in this subject. It also highlights the historical problems which its creators
faced and the teaching methods used at the time. The Chapter describes a conceptual
teaching approach, enhanced through technology, which was initially developed
for physics education in large classes, although the pedagogy is based on Socratic
Dialogue. For reasons which will become clear the focus is on introductory courses:
it is considered crucial that novice students are provided with an opportunity to
experience a different way of thinking about mechanics. An emphasis is placed on
conceptual understanding before mathematical technique.

Keywords: Teaching mechanics · Teaching physics · Conceptual mechanics · Intro-
ductory mechanics · History of technology · History of science · History of higher
education · Socratic dialogue · Introductory statics · Continuum mechanics · Royal
College of Science & Technology · University of Strathclyde · Mechanics institutes
· Technology in teaching · Peer instruction · Just in time teaching · Simulation in
teaching · Large lecture format

2.1 Background

In a series of lectures delivered in 1948 to the History of Science Committee in
Cambridge, later published as The Origins of Modern Science (Butterfield, 1959), the
Master of Peterhouse and Professor of Modern History, Herbert Butterfield observed
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that “. . . of all the intellectual hurdles which the human mind has confronted and has
overcome in the last fifteen hundred years, the one which seems to have been the
most amazing in character and the most stupendous in the scope of its consequences
is the one relating to the problem of motion . . . ”. Butterfield’s hope was that the
lectures would stimulate in the historian some interest in science, and in the scientist
some interest in history. It is notable that formal studies of the history of science and
technology only began fairly recently with the publication of the magazine ISIS in
1913. Academic studies of the pedagogical issues associated with the teaching of
science and technology are even more recent. A fundamental feature of the latter has
been an awareness that the historical development of the subject is important (Brush,
1989; Allchin, 1992), primarily for the reason Butterfield identified – the central
intellectual hurdle. In the context of teaching, if the finest scientific minds in history
struggled with the basic concepts of mechanics until at least the early 1600s (and
perhaps to this day) how can the young novice readily comprehend the nature of these
‘hurdles’? The development of the teaching of mechanics in its broadest sense will be
discussed: one aim will be to draw attention to conceptual issues which, in the writer’s
experience, many teaching practitioners may be unfamiliar. Students in secondary
and tertiary education are typically introduced to the minefield of mechanics through
mathematical problem solving which presents the fundamental concepts and laws
as predetermined. It has now well recognised that a mathematical approach, used
exclusively, is insufficient. An understanding of many of the basic concepts remain
undeveloped in the novice student’s mind. A further aim will be to highlight the
strategic importance of using history as a tool (Allchin, 1992). In relation to this aim,
the writer must confess a certain bias:

The University of Strathclyde has played a significant role in the history of
engineering education and in so doing the teaching of mechanics. With direct
origins from Anderson’s University, established in Glasgow in 1796 as “. . . the
place of useful learning . . . ” through the subsequent rapid worldwide expansion
of parallel Mechanics’ Institutes (Walker, 2016) then to the Royal College of
Science & Technology in 1903 (together with the Imperial College in London),
Strathclyde has been at the heart of the development of engineering & technology
education. The Glasgow University Professor William John Macquorn Rankine (1820-
1872) helped develop thermodynamics with his colleague Lord Kelvin and Rudolf
Clausius (Truesdell, 1980) in Germany. Rankine also progressed understanding of
the phenomenon of fatigue and developed methods to calculate forces and ‘stresses’
in framed structures. It is less well known that he was one of the main originators
of organised programs for the training of young engineers – a common interest and
pursuit of professors and college lecturers in Glasgow at the time due to the initiatives
of John Anderson and the Mechanics’ Institutes. Rankine developed ‘Manuals’ for
engineering science and practice to support these programs. Indeed, his Manual of
Applied Mechanics (Rankine, 1858) eventually became widely adopted in engineering
education at university and college level. When he took up his post at the University of
Glasgow engineering was taught in the Faculty of Arts and did not lead to the award
of a degree. However, engineering qualifications could be earned at the Technical
College; Rankine’s Manual of Applied Mechanics was used extensively in the College
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when it was published. Today the Manual looks like quite familiar compared to
modern calculus-based physics textbooks.

With these comments in mind this Chapter begins with an outline of the historical
development of pedagogical views on the teaching of mechanics, followed by an
overview of the main issues.

2.2 The Development of Mechanics Teaching

In the days of Rankine and his European peers the whole idea of teaching mechanics,
indeed engineering in general, to students at university and college was innovative.
As innovators some consideration would have to be given to the manner in which the
subject should be presented, even if the delivery mechanism was tied to the formal,
didactic lecture format of the day. Rankine would surely have given considerable
thought to the order in which kinematics and then dynamics should be presented
to the novice. In fact, his original 1858 textbook began with an overview of statics
before introducing kinematics as a precursor to dynamics (which was the accepted
convention for a logical introduction to mechanics). Later editions, published after his
death, reversed this order ‘in harmony with modern practice’ (Rankine and Bamber,
1873). The history of mechanics appears to be well established, certainly as presented
in most engineering textbooks. As we will see, this assumption can be misleading,
and certainly conceals related issues which are important for teaching the subject.

Mechanics has a history extending over more than two thousand years (Renn et al,
2003). Many engineers would identify the origin of mechanics with Archimedes’ (c.
287-212 BC) Law of the Lever (Archimedes, 1952) although the problem had been
treated about a century before in Aristotle’s (c. 384-382 BC) Mechanical Problems
(Aristotle, 1936). Common experience in ancient times equated the weight of an
object with the force required to lift it up, yet engineers and artisans must have
known at the time that this was not a restriction on either concept. Aristotle (1936)
demonstrated that levers could be used to move great weights with small forces. This
modified the concept of force so that force no longer equates to weight but depends
on the position of the weight. The Mechanical Problems is one of the earliest links
between the practical knowledge of engineers and artisans and the mathematical
philosophers’ theoretical debates on levers and weight. This treatise consists of some
thirty-five problems – simple machines such as the balance, lever, pulley, wedge, oars
and rudders, together with a variety of other topics, including the strength of beams
and projectile motion. Yet this link was subsequently all but forgotten.

As these concepts became more widely used during Medieval times, the study
of balance and weight was considered part of mathematics rather than natural
philosophy, which dealt with the general principles of motion. Natural philosophy did
not consider its usefulness to society, only in its description of natural phenomenon.
Early mechanics was associated with the ideas of natural philosophers so did not
include the science of weight, Archimedean statics or Aristotelian dynamics. While
in Antiquity, treatises on each of these were available, the practical knowledge of
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machines, part of the mechanical arts, was customarily disseminated through oral
tradition with apprentices. This disconnection of fundamental mechanical concepts
(weight, force, motion, machines etc.) possibly impeded the development of mechanics
as a science until the Renaissance. Medieval natural philosophers established the
mathematical analysis of ‘local motion’ (Wallace, 1971). Thomas Bradwardine’s
(Lamar Crosby Jr., 1955) Treatise on Ratios provided a new approach to the study
of motion including the concepts of instantaneous velocity, ‘uniformly accelerated’
motion and an early, but undeveloped, perception of the need for the calculus and
analytical geometry. Over the following two centuries, Bradwardine’s ideas were
refined. Natural philosophers at Merton College, Oxford, emphasised the role of
mathematical analysis in the description of motion and its causes. The ratio of distance
moved to the time elapsed – with velocity as a cause of motion – was considered to
be important. These ideas moved to France, Italy and Spain. Indeed, the Spaniard,
Domingo do Soto, explicitly postulated, probably without experiment, that falling
bodies accelerate uniformly over the time of their fall some eighty years before
Galileo (Laird, 1986). Bradwardine’s mathematical foundations laid the groundwork
for the Renaissance accomplishments in mechanics in Northern Italy:

During the sixteenth century, the Mechanical Problems was re-introduced and led
to the elevation of mechanics to the rank of a theoretical science (Laird, 1986). It was
introduced into the university curriculum at Padua in the 1560s based on a translation
and commentary by Niccolo Leonico Tomeo (1456-1531), published in Venice in
1525. Leonico asserted in his commentary that mechanics, according to the Greeks,
was that part of the art of construction that used machines. A later commentary
in Latin by Alessandro Piccolomini (1508-1579) was published in Rome in 1547
and translated into Italian by the metallurgist Vannoccio Biringuccio in 1582. He
emphasised that mechanics was reflective rather than practical, and mathematical in
nature, somewhat equivalent in rank to astronomy. This mathematical emphasis, when
applied to the problem of motion would eventually lead to Galileo’s new mathematical
science of motion, published as the Third Day of his Two New Sciences in 1638
(Lamar Crosby Jr., 2003). Galileo also considered mechanics as a science which
described the principles of machines. It is evident he understood how to transform the
static balance into the dynamic lever, relating statics and dynamics for possibly the
first time. During the sixteenth century mechanics emerged as a distinctive science
on its own. The chief innovative characteristic of mechanics from the Renaissance
onwards was that it could be used for societal needs.

Early teaching in mechanics was based on the ‘great’ treatises, and any ac-
companying commentaries, which were then debated in small groups directed
by the teacher. In Antiquity the influence of Plato (c. 424-348 BC), a student of
Socrates and a teacher of Aristotle, is well known. Plato’s Dialogues advocated the
method of Socratic Dialogue - a pedagogical technique which we will return to
later. One Dialogue concerns a mathematician, Theaetetus, with whom the narrator
discusses the nature of knowledge. This discussion has some unintended relevance
to knowledge and understanding in mechanics, as it developed over the centuries,
since all definitions proposed on the nature of knowledge were deemed unsatisfactory.
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Plato was known as an accomplished mathematics teacher who differentiated pure
and applied mathematics as separate activities.

More is known about university teaching in the period from the Middle Ages
until the Renaissance from 1100 to 1700 when the Scholastic Method dominated
(Makdisi, 1974). Scholasticism was a method of learning which in the classroom was
characterised by disputation. A topic was proposed in the form of a question followed
by responses, a counterproposal could be argued and any opponents’ arguments
refuted. It is known these techniques were applied to subjects other than law and
theology and in particular to the natural sciences (Hannam, 2011). Interestingly,
medieval students had, for the most part, a highly practical view of the university
as an institution of direct relevance to society, and were known to voice their views
about their education (Cobban, 1971) if this was not the case.

Barely fifty years after Galileo’s Two New Sciences, Isaac Newton published
his Principia in 1687 (Newton, 1729). Undeniably the Principia is considered one
of the most significant works in the history of science; certainly, all elementary
mechanics textbooks begin with Newton’s Laws of Motion and it is every student’s
first introduction to the topic.

Ernst Mach (1960) wrote a well-regarded historical account of the development of
mechanics, including critical and, in later editions, philosophical commentaries. In
his account Newton’s Laws were placed at the centre of mechanics, and in Mach’s
view did not need to be enhanced. Clifford Truesdell (1968) points out that many of
Mach’s views originate in Lagrange’s equally distinguished Méchanique Analytique
(Lagrange, 1997), published almost a century after the Principia. Lagrange included
short historical accounts of statics and dynamics among others. Following Duhem’s
arguments (Duhem, 1996), Truesdell points out that mechanics was not created solely
by Galileo and Newton: indeed, Mach knew that Book I of the Principia ‘was not
entirely original’. At the time of its publication readers were more interested in the
novelty of Newton’s mathematical and deductive approach to problem solving than
the Laws themselves being already known in some form. Newton did not use his own
approach later in the Principia and does not include any differential equations of
motion for systems of more than two point masses. In Duhem and Truesdell’s view,
Newton did not ‘complete the formal enunciation of mechanics’, rather he initiated it.
What is significant in the present context of teaching, is that the Principia, and much
of what followed, did not conclusively explain some central elementary concepts
in mechanics. Mach conceded that the concept of force was weak – is the Second
Law a definition of force, how do we measure it and where does it fit in nature?
Newton was able to discriminate between mass and weight, but was imprecise on
what he meant by a body – sometimes it was a point mass, whereas in other parts
of the Principia he studies ‘bodies’ which have finite volume and distributed mass.
Mach (1960) discusses the relation between mass and weight at length in a form now
adopted in many student textbooks. The point here is that the Laws of Motion, to this
day, are based on concepts which were unclear and perhaps have remained so to many.
The associated quantities are easy to manipulate as part of a mathematical problem,
which is usually emphasised to the novice student, but less easy to conceptualise as
real natural entities.
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As we know, mechanics developed rapidly over the next two hundred years
after Newton and Lagrange primarily due to the efforts of European and Prussian
‘mathematicians’ (in the absence of a better description at the time). The rise, and
eventual nature, of the university during the 19th Century is also well known and
descriptions of the importance of the lecture, tutorial and laboratory system which
emerged are readily available. Inherent in this system is the role of discussion, usually
in small classes, although what this involved is not well documented. William Clark’s
notion of ‘academic charisma’ includes the ethos of ‘lecturing with applause’ which
placed the lecturer at the centre of this teaching system (Clark, 2008).

At the beginning of the Industrial Revolution Glasgow was a favourite gateway to
the Atlantic and was thus a natural centre for industrial development. The scene was
then set to provide education for the workers in industry. Public (rather than military)
engineering education started to appear through open lectures in the engineering
sciences and mechanics in particular. An accompanying literature in English arose
to meet the demand (Emmerson, 1973). Public lecturers were usually itinerant and
brought their demonstration equipment into ‘courses of lectures’ which were often
held in clubs and coffee houses. The Scottish scientist James Ferguson (1710-1776)
was well known, eventually moving to London where his lectures on mechanics were
both very popular and fashionable, with the future King George III occasionally in
attendance. Professor John Anderson (1726-1796) of Glasgow University gave popular
lectures for the townspeople of Glasgow. His evening lectures increased in number
from 30 to 200 ‘people of every rank, age and employment’. One of Anderson’s
abler students, John Robison, succeeded Joseph Black (1728-1799). Black introduced
the concepts of latent and specific heat while at Glasgow University. He was then
appointed as professor of mathematics at Kronstadt Naval School in 1772; where it is
known he interacted with Euler who was nearby in St Petersburg. Robison returned
to Edinburgh in 1774 as professor of natural philosophy and was regarded as one of
the best and most enlightened educators in mechanics, contributing much to the new
Encyclopaedia Britannica (1797). Robison’s talents as a teacher are well illustrated
in these articles. Robison was inspired by Black’s gift for teaching. One of Black’s
students, the eminent lawyer Henry Brougham, wrote (Brougham, 1871): ‘. . . his
style of lecturing was nearly perfect . . . it had all the simplicity which is so entirely
suited to scientific discourse . . . there was no effort, but it was an easy and graceful
conversation . . . in one department of his lectures he exceeded any I have ever known
. . . the manipulation of experiments . . . ’. In his will Anderson left funds (which
were in fact insufficient) to create a new university as a ‘place of useful learning’ for
technical education in 1796 to be named Anderson’s University. The University title
had to be removed later and the institution became the Glasgow Mechanics’ Institute
(Walker, 2016) in 1824. Similar Institutes were established throughout the country and
spread to Paris and the USA (as the Franklin Institute – Benjamin Franklin visited John
Anderson in Glasgow). One of the Glasgow Mechanics’ Institutes lecturers, George
Birkbeck (1776-1841), founded the London Mechanics’ Institute (later Birckbeck
College now part of the University of London). Birkbeck’s lectures were described
(Emmerson, 1973) by one prominent member of his audience: ‘. . . when he at length
completed his illustrations (on the Laws of Attraction) . . . a unanimous plaudit burst
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forth from the delighted audience . . . I was struck that within a century of the death
of Newton . . . his most sublime discoveries could be rendered intelligible to eight
hundred working mechanics . . . ’. A potent example of Clark’s ‘academic charisma’
(Clark, 2008). This was in stark contrast to the practice at the universities such as
Oxford and Cambridge, which emphasised the classics and mathematics at the time.
Professors did little teaching, being the responsibility of ‘fellows’ of the colleges
- although the real teachers were the many private coaches used by the students.
Engineering education was reviewed in Cambridge in 1890. As part of this review
it was noted that the technical colleges and institutes ‘. . . studied a large number of
technical problems which were in fact merely problems in Physics or Mechanics . . . ’.
It was believed that the universities were far better suited to teach these subjects along
with the supporting mathematics. The move to teach engineering (and mechanics) in
universities in the UK subsequently followed.

It is evident that mechanics teaching until the Twentieth Century focussed on
gifted lecturers using original, modern textbooks in a new and exciting subject.
The lectures would seem to have been well attended and well received. Skills in
mathematical problem solving in mechanics were desirable, and practised in tutorials
with small classes. The various sub-topics could be illustrated by laboratory work
and a ‘hands-on’ approach. George Emmerson (1973) provides an excellent overview
of the engineering mechanics textbooks in the 19th Century. In the early part of the
century the French textbooks were well established: Claude-Louis Navier’s Leçons
sur l’Application de la Méchanique (Navier, 1838) was a standard work for French
and German engineers. However, in the later part of the century, ‘. . . transcending all
the engineering textbooks of the century were William J. McQ. Rankine’s A Manual
of Applied Mechanics . . . ’ (Rankine, 1858). ‘. . . in these manuals there was a unique
blend of science and technology . . . ’. It was used to educate several generations of
engineers and was translated into German, French and Italian.

In concluding this section, it should be noted that commentaries on the mode
of teaching are scarce. It is known that the lecture, tutorial and laboratory system
flourished, but there are few observations on their worth. A recent survey (Fox
and Guagnini, 1993) on the development of science and technology education in
Europe and the USA between the mid nineteenth century and the 1930s hardly
mentions teaching methods at all. The survey only remarks on the difficulty in
attracting students away from the colleges to the universities in the UK. This was
different in other countries who introduced higher technical education in different
ways, for example through specialist schools for new subjects in France and the
detailed use of mathematics and calculation in the German Hochschulen. The latter
were reformed, starting in the 1890s, to include more laboratory work. Indeed,
the rise of practical, hands-on instruction in the laboratory was a common feature
throughout Europe. Yet the colleges, then universities, in the USA never seriously
committed to experimental work, which was considered part of an apprenticeship
in a specific industry. The historian Eugene Ferguson (1992) has argued that the
loss of the practical apprenticeship in the American system has not been beneficial
‘. . . engineering education since 1945 has been skewed toward analytical techniques
which are easiest to teach and evaluate . . . ’. This has been exacerbated by the rise of
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mass higher education, making the teaching of engineering, and mechanics in general
with its inherent conceptual hurdles, more difficult.

2.3 A New Conceptual Approach

Educators at the beginning of the twentieth century started to recognise that the
conceptual difficulties associated with introductory mechanics could be problematic
in teaching. Commentaries on the development of dynamics, for example (Barbour,
2001), highlight these conceptual problems throughout each era but there is little
evidence that this was recognised openly in teaching until the twentieth century.

A 1917 discussion by Huntington (1917) proposing a logical structure to teach
elementary dynamics identified the issues with the concept of force: ‘. . . for example,
if no force is acting on a body then there is no change in velocity seems to contradict
our commonest experience of motion which appears to die down of themselves . . . ’
and further ‘. . . what a force means should not be complicated by any discussion of
what a force will do . . . force is an active agent by which matter is buffeted about
according to our will . . . ’. Huntington further argued that ‘. . . textbooks impose a
student’s attention on an unpractical group of systems in which the derived units are
based on mass, length and time instead of force, length and time . . . ’. Fawdry (1920)
believed that calculus should not be used for beginners in mechanics since the work
would more likely to be an exercise in the manipulation of symbols. This was echoed
by Filon (1926) ‘. . . the investigation of principles is frequently replaced by a few
dogmatic statements, and, with an ill-concealed impatience of difficulties which he is
unwilling to face, the teacher hurries on to a mass of numerical or algebraic examples,
often of a highly artificial nature . . . but . . . how are we to meet the difficulty about
mass? . . . ’. There was continuing debate, particularly in the Mathematical Gazette,
around the emphasis on mathematical problem solving; Milne (1954) argued that
in school ‘. . . one does not get a grasp of the principles of mechanics by thinking
about them, however intensely . . . one gets a grasp . . . by carrying out the solutions
of mathematical problems . . . ’. Yet ‘. . . for the university course, some analysis of
the origin of the concepts of mass and force must be traced, and in this regard it is
difficult to do better than follow Mach. In Mach’s presentation, the equality of action
and reaction, Newton’s Third Law, is not adopted as an empirical law, but adopted as
an axiomatic definition leading to a satisfactory definition of equal forces and hence
in due course of mass and force . . . ’.

Perhaps one of the most persuasive discussions on mechanics teaching has been
due to the German/Dutch mathematician Hans Freudenthal in 1993 (Freudenthal,
1993). Freudenthal argued that teaching mechanics to students should begin with
their own (body) experience and be guided to transform their ideas into mechanical
science. Unless this is done at the beginning ‘. . . rather than mechanics, the learners
are taught mechanising. Forces, unless experienced personally, are doomed to remain
phantoms . . . ’. Further, ‘. . . what matters didactically is to get across that force
expresses itself by changing the state of motion . . . ’. Freudenthal then argues that
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Descartes original idea of force, which we recognise as work, should form a basis for
instruction: ‘. . . energy, among all mechanical notions the trouble physicists had with
it in the past . . . seems to be the most concrete notion . . . ’. Indeed, seventy years
before, Fawdry (1920) thought that ‘. . . it is desirable to reduce to a minimum the
time spent on the second and third Laws of Motion, so that we can devote our savings
to the acquisition of facility in dealing with problems by the application of the Energy
principle. If our pupils get into the habit of calculating the acceleration of a moving
body, it is difficult to get them out of it . . . ’. The emphasis on Newton’s Laws in
early mechanics teaching is criticised every so often: we can leave a final comment to
Freudenthal – ‘. . . Action and Reaction: never have you heard me pronounce here this
pair of words. However interesting it might be from a historical standpoint, I simply
do not know how to use it in instruction . . . ’.

During the 1980s a vision arose that elementary mechanics teaching needed to
be revised and that a new approach should be considered; if this was not addressed
then problems with student understanding could continue into later years. A focus of
this observation was the work of Sheila Tobias (1990) who examined the ‘second
tier’ of university students - those who had to study science but whose major was not
physics. These students dismissed the standard of teaching in physics/mechanics as
compared to other classes. From the ‘Eric Experiment’ Tobias quotes this student
as testifying ‘. . . the class consisted basically of problem solving and not of any
interesting or inspiring exchange of ideas. The professor spent the first 15 minutes
defining terms and apparently that was all the new information we were going to get
on kinematics. Then he spent 50 minutes doing problems from chapter 1. He was
not particularly good at explaining why he did what he did to solve the problems,
nor did he have any real patience for people who wanted explanations . . . ’. Further
Tobias pointed out that simple mechanics as taught in the 1980s was not too different
from the 1880s, but delivered to a larger and more diverse audience without revision.
In fact, concerns with introductory courses in mechanics had existed even in the
1800s. James Clerk Maxwell (1831-1879) was considered a poor teacher: although
his classes consisted of less than ten students they were noisy, undisciplined and
uninterested. Yet he is reported as having been forward thinking in his pedagogical
ideas, which find resonance with today’s outlook (Golin, 2013). He believed in the
notion of illustrating the mathematical approach with practical experience, either
in the laboratory or by demonstration and strongly valued the history of science
in teaching. A significant catalyst for change were the studies of David Hestenes
and his colleagues (Halloun and Hestenes, 1985; Hestenes et al, 1992). The Force
Concept Inventory [38] was a revelation: a simple quiz of thirty questions aimed to
test a student’s understanding of the concept of force, in several different situations,
and basic Newtonian mechanics. This was eventually given to over six thousand
freshman students, as reported in 1998 by Hake (1998). As a diagnostic pre-test it
could show the difference between students’ initial knowledge of force as compared
to after some mode of instruction towards the end of a first year class (a post-test).
The pre-test was consistently discouraging even in the best universities and colleges.
There then grew a belief, initially among groups of physics educators in the USA,
that a different approach, emphasising the understanding of concepts, was needed.
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Early work had already been done by the physicist Paul G. Hewitt who wrote a
popular series of textbooks, Conceptual Physics (Hewitt, 1987) and co-authored,
with Lewis Carroll Epstein, the innovative Thinking Physics (Epstein, 1981) which
consists of a large number of conceptual mechanics questions which could be used
in a lecture or tutorial to provoke discussion. Hewitt’s book was the first to attempt
to teach introductory mechanics with minimal mathematics using his own drawings
and cartoons – an approach he later popularised (Hewitt, 2002). A formal teaching
approach, based on the works of Hewitt, Epstein, Tobias, Hestenes et al was later
developed by the Harvard physicist Eric Mazur as Peer Instruction (Mazur, 1997) and
by The University of Massachusetts Physics Education Research Group (UMPERG)
as Minds on Physics (Gerace et al, 2000; Leonard et al, 1990).

A re-evaluation of basic physics teaching, and mechanics in particular, began to
evolve. In addition to the issues already highlighted with conceptual understanding,
other problematic areas emerged: should the subject be introduced in the early stages
using algebra rather than calculus to aid conceptual understanding, should there be
less focus on Newton’s laws perhaps treating energy principles equally and so on. How
should the large lecture format be dealt with and the ubiquity of online resources?
Should practical experience be hands-on in the laboratory or through demonstration
or video or simulation? This pedagogical approach, which was based on presenting
concepts and was based a form of Socratic Dialogue assisted by technology in large
classes, also spread to other subject areas.

2.4 Teaching Introductory Mechanics

The writer adopted concept-based teaching in mechanics over two decades ago
and during that time has experienced students’ conceptual difficulties working with
over three thousand first year students. Numerous seminars on these experiences,
and demonstrations, have been given in schools, colleges and universities across
the globe. Before this journey, like many other educators or academics in higher
education, the writer had seen that a proportion of students had a poor understanding
of mechanics but believed that the abler students were comfortable with the specifics
of the subject. With hindsight it is very likely that the latter were more successful at
preparation for examination questions. A seminar with a large number of secondary
school physics teachers presented by the writer in 1998 was intended to demonstrate
conceptual difficulties in mechanics. But it was disastrous since it was clear the
teachers had similar difficulties. A similar experience has been mentioned by Richard
Hake (1991). Hake’s solution was to follow the teachings of the University of
Washington science educator Arnold Arons (Arons, 1974) who wrote ‘. . . If a teacher
disciplines himself to conduct such Socratic Dialogues . . . he begins to see the
difficulties, misconceptions, verbal pitfalls, and conceptual problems encountered
by the learner . . . in my own case, I have acquired in this empirical fashion virtually
everything I know about the learning difficulties encountered by students. I have
never been bright enough or clairvoyant enough to see the more subtle and significant
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learning hurdles a priori . . . ’. Hake (2019) later recommended what he called the
Arons-Advocated Method for introductory science teaching. This method emphasised
conceptual understanding, interactive engagement, Socratic Dialogue, attention to
cognitive development, attention to preconceptions of beginning students among
several others. All of these are discussed in considerable depth in Aron’s monumental
work Teaching Introductory Physics (Arons, 1997). These ideas eventually led to the
pedagogical tools of Peer Instruction and Minds-On-Physics.

In summary, the importance of paying close attention to conceptual misunderstand-
ings in mechanics in the early years of university, and in particular at the transition
from school, cannot be underestimated. For this reason, these aspects are dealt with
first here:

2.4.1 Conceptual Misunderstandings in Newtonian Mechanics

One basis for the need to re-think mechanics teaching in the early years at university,
has been the very nature of the subject itself: mechanics is counter-intuitive and
often goes against ‘common sense’. Of course this has been a feature of the subject
throughout its history, even with its originators. The central role of adopting Socratic
Dialogue – teaching by questioning – in order to support and reveal conceptual
misunderstandings has been highlighted above. In this section an assortment of such
misunderstandings will be discussed:

The following discussion illustrates some typical multiple-choice questions used to
initiate Socratic Dialogue in a first year mechanics class as part of revision of school
work. The students answer these questions initially using a classroom voting system
(which will be discussed in the following section) before any discussion. Almost all of
these students have come highly qualified from the school system. They have already
studied physics and Newton’s Laws and their applications; some have also studied
connected bodies and circular motion at constant speed. On arrival they naturally
view mechanics as mathematical problem solving. Now they are now faced with a
class where the focus will be on understanding and discussing concepts.

2.4.2 Kinematics & The Law of Falling Bodies

Most, if not all, introductory mechanics courses start with Kinematics and the Law of
Falling Bodies before continuing to Newton’s Laws. However, two simple conceptual
questions usually confuse many students based on their initial responses (or ‘votes’)
without discussion:

Question 1: If you drop an object in the absence of air resistance, it accelerates
downward at 9.8 m/s2. If instead you throw it downward, its downward acceleration
after release is: (1) less than 9.8 m/s2, (2) 9.8 m/s2 or (3) more than 9.8 m/s2.
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Question 2: A person standing at the edge of a cliff throws one ball straight up and
another ball straight down at the same initial speed. Neglecting air resistance, the
ball to hit the ground below the cliff with the greater speed is the one initially
thrown: (1) upward, (2) downward or (3) neither, they both hit at the same speed.

Surprisingly the class will usually be split between choices (2) or (3) in Question 1.
On initial discussion it becomes apparent that those who answered (3) argue that ‘it
is going faster since it was thrown’, even though the question is about the object’s
acceleration under gravity. Responses to Question 2 are equally surprising with only
about half the class choosing the correct answer. Usually the majority of the rest
choose answer (1) with the belief that after being thrown upwards, once it reaches the
top it has a greater distance to fall, so will be going faster when it hits the ground. In
fact, using other questions and further discussion it becomes apparent that not all
students have grasped the difference between velocity and acceleration and so have
not really thought too much about the nature of kinematics.

Instead, students tend to concentrate on the simple equations of motion for linear
kinematics with constant acceleration - relating initial and final velocities, time
elapsed and distance moved - and attempt to interpret situations using these equations
and by ‘plugging in numbers’. In fact, even in situations where acceleration is not
constant most students will initially try to use these equations.

2.4.3 Basic Forces

Before introducing Newton’s Laws themselves, and discussing their implications, it
can be useful to introduce real situations and see if students can interpret what is
happening in terms of forces acting. Three questions are instructive:

Question 3: You are in a cabin on a Ferris observation wheel as it slowly turns at
constant speed. Is there a net force on the cabin? (1) No, its speed is constant, (2)
Yes or, (3) It depends on the speed of the cabin.

Question 4: You’re driving a car up a gentle slope. Put the car into neutral and
coast. At the instant of zero velocity, abruptly put on the brakes. What do you feel?
(1) Nothing, (2) A jerk or, (3) Not enough information

Responses to Question 3 are often divided between choices (1) and (2). Choice (1) is
selected since responders see the phrase ‘constant speed’ and forget that the cabin is
not moving in a straight line so must be accelerating under some force. And what is
the force? Question 4 is even more interesting since nearly all students will select
answer (1). The notion that acceleration can change seems to come as a revelation
to students. When asked to identify how the force on the car changes students are
equally puzzled. Then a familiar situation is proposed and discussed:

Question 5: When you climb up a rope, the first thing you do is pull down on the
rope. How do you manage to go up the rope by doing that?
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Students are generally unable to resolve this situation in terms of the forces acting (in
practice they are asked to discuss in groups and volunteer solutions – a few groups
come close to the correct analysis). Questions like those given above are useful in
getting students to realise that their familiar notions of simple kinematics and the
analysis of forces in realistic situations need to be ‘upgraded’. The problem (which is
well-known amongst science educators but not necessarily by all academics teaching
mechanics) is that ‘force’ is viewed as just a number which is input to Newton’s
Second Law. The ‘force’ may even be given a practical-sounding name but most
students will not have considered what this force actually represents, where it comes
from, or what it does. This is openly debated with the class and the reasons for
devoting so much class time in in the discussion of concepts in mechanics can be
stressed. (At this point the writer habitually has a diversion to the career of the
mathematician Richard E. Bellman (1920-1984). Most students will not have heard of
Bellman but his accomplishments are outlined: dynamic programming, the Bellman
Equation and its role in economic theory. However, they can now appreciate the
relevance of his classic statement ‘. . . the trick one learns over time, a basic part
of mathematical methodology, is to sidestep the equation and focus instead on the
structure of the underlying physical process . . . ” (Bellman, 1984)).

Before examining problem solving methods the writer has found it best to spend
substantial class time discussing several basic forces: gravity, contact, friction and
tension. Newton’s Laws of Motion can be introduced formally before or after this
discussion, but the writer prefers the latter in order to underline the significance of
the various forces as real quantities, rather than as a just number to be input to the
Second Law as a mathematical exercise.

The force of gravity is understood by most students but they are happier dealing
with the acceleration it produces in falling objects:

Question 6: What can you say about the force of gravity acting on a stone and a
feather as they fall in a vacuum? (1) The force is greater on the feather, (2) The
force is greater on the stone, or (3) The force is equal on both always

An instant response from the majority would favour answer (3), confusing force and
acceleration. A follow-up question, without comment on the outcome of Question
6, replacing ‘force of gravity’ with ‘acceleration due to gravity’ elicits the correct
response and allows for discussion. This leads to the relationship between mass and
weight (as a force) and the use of the Second Law as proposed by Mach (1960). The
realisation of the distinction between the force of gravity and acceleration due to
gravity starts to become apparent to students only at this stage and it is worthwhile
outlining the difficulties found in the Principia (Newton, 1729) and those highlighted
by Truesdell (1968) to show the students that it’s not only themselves who get
confused.

While the force of gravity can be perplexing, the force of contact is a complete
mystery (and a novelty) to most incoming students. For example, students can be
asked to support a heavy object in the palm of their hand and discuss the forces acting
on the object. First there is recognition that the force of gravity must be (always)
present and that the object is not moving, and the net force is zero – so what force is
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balancing the force of gravity on the object to stop it moving? Eventually, and this
may take time, the existence of a contact force emerges. Further discussion brings out
that this force must equal the weight, but is it always equal to the weight? (A notion
that was repeatedly discussed in antiquity, Aristotle, 1936; Wallace, 1971; Lamar
Crosby Jr., 1955; Laird, 1986; Truesdell, 1968; Freudenthal, 1993). This can now be
discussed further in another context:

Question 7: Consider a student pulling or pushing a loaded sled on snow with
a force which is applied at an angle. What can we say about the contact force
between the sled and the snow?

After considerable discussion the majority of students will finally realise that the
contact force is greater when pushed than when pulled, and be able to roughly explain
why. The contact force is not equal to the weight in either case. If this realisation
takes some time a further situation can be put to the class:

Question 8: Consider two identical blocks, one resting on a flat surface and the
other resting on an incline. What can we say about the contact force?

Finally, a classic force problem can be introduced:

Question 9: Consider a person standing in an elevator that is accelerating upward.
The upward normal force exerted by the elevator floor on the person is: (1) Larger
than, (2) identical to, or (3) smaller than the weight of the person?

This also brings much discussion, since initial responses commonly prefer answer (2).
At this point Freudenthal’s notion of ‘body experience’ is useful (Freudenthal, 1993):
“what happens when you’re in an elevator in a tall building? Do you feel lighter or
heavier at any point during the motion, and why?”

Of course, the correct resolution of Questions 7-9 requires a free body diagram:
the students are aware of this little picture, but have rarely used in problem solving.
This will be discussed later in this section.

Most engineers are familiar with the difficulties associated with the friction force
since it is basically treated empirically in most university courses. Once the concepts
of kinematic and static friction are summarised (the latter traditionally leading to
much confusion) some common misconceptions can be discussed through questions:

Question 10: As we know from everyday experience, the force of kinetic friction
tends to oppose motion. Do you agree with this?

The majority will agree, yet faced with the next question (which does need a free
body diagram and the students are encouraged to draw this):

Question 11: Consider the following situation: a block sitting on top of another
block and the system moving to the right under the action of an applied force. For
the upper block, how does the direction of the friction force relate to its direction of
motion? (Imagine what happens if we lubricated the surfaces between the blocks).

There is usually a sense of disbelief when confronted with this situation.
The tension force has been used many times in school problems, but is usually

given in a diagram as a symbol or number and an arrow. When introducing tension
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some time has to be taken to talk about ideal ropes/cables etc. in order to reach the
concept that the tension will be the same throughout the rope. Similarly, the notion of
an ideal pulley needs to be discussed. Once this has been done a pair of questions can
be tested:

Question 12: A 10 kg mass is hangs from an ideal cable which passes over an
ideal pulley fixed to a ceiling and is then attached to a wall so that the cable is
horizontal. What is the tension in the cable?

Question 13: Two 10 kg masses are each attached to the ends of an ideal cable.
The cable passes over two ideal pulleys each fixed to the ceiling at the same height.
Between the pulleys the cable is horizontal. The masses hang from each end after
the cable passes over each pulley. What is the tension in the cable?

The majority of students answer Question 12 correctly but surprisingly in Question
13 work out the tension from the sum of the masses and obtain double the correct
value. Experience has shown that the only way to convince them of the correct value
for the tension is to draw a free body diagram, and even then some dispute this.

2.4.4 Connected Bodies, Free Body Diagrams and Problem Solving

A significant amount of time is spent defining what constitutes a valid free body
diagram and working through (again using multiple choice questions and discussion)
many examples. Towards the end of this discussion the idea of connected bodies is
introduced, with multiple masses in contact, or connected by cables etc. The spring
force (ideal linear spring) is also introduced, so that connecting objects by springs
can be examined. Yet again experience has shown that many students have some
difficulty correctly interpreting the forces in (even simple) connected bodies. For
example, the following question causes problems:

Question 14: Two boxes, one large and heavy, the other small and light rest on a
frictionless level floor. You push with a horizontal force on either the small box or
the heavy box. Is the contact force between the two boxes: (1) The same in each
case, (2) larger when you push on the large box, or (3) larger when you push on
the small box?

Without fail the majority of students will answer (1) without thinking. Prompted to
actually draw free body diagrams for each box usually (but not always) convinces
most students. During discussion it usually emerges that their first thoughts still relate
to applying the Second Law, that is thinking in terms of solving a mathematical
problem to the whole system.

The presentation and in-class questioning and discussion of the preceding topics
typically takes twenty hours of class time (ten two hour lectures). This may seem like
an unwarranted amount of time, but after twenty years it has been found to be essential.
The incoming students, while well qualified from school, do not really understand
the basic concepts. By the end of experiencing this novel conceptual approach they
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become acutely aware of this, but at the same time also aware that most their peers
have the same difficulty. Up to this stage only point masses have been studied – later
in the course distributed mass, statics and rigid body rotational dynamics are also
introduced using the same Socratic Dialogue methodology. Before moving on to
more advanced topics, mathematical problem solving is finally reintroduced, but
applied to connected bodies with multiple masses, not single masses. In this course
mechanics is taught only using algebra – the course presentation is intentionally
not calculus based, to distinguish the subject from an application of the calculus.
The students are presented with a structured problem solving framework (Moore,
2009): a diagram of the problem should be sketched and labelled then all variables
must be identified, given appropriate symbols and defined in words from the outset.
Known or unknown quantities should be identified for each mass and then a valid
free body diagram should be drawn. After this the relevant mechanical principle(s)
should be stated and appropriate equations written down and the unknown variables
solved symbolically – only at the end numbers are used and ‘the solution’ given. This
structured problem solving approach uses multiple representations of a problem: there
are three representations – visual (or pictorial, drawing a diagram of the problem),
conceptual (identifying variables and drawing free body diagrams) and mathematical.
The students are told that good problem solving involves looking at the problem in
different ways (multiple representations).

This problem solving methodology is then applied to circular motion with constant
speed and then moves on to energy methods for point masses and conservation of
momentum (again all with many conceptual questions for in-class discussion). A
different structured problem solving framework is introduced for conservation of
energy and momentum. Finally, this approach is used in when introducing statics and
distributed masses.

2.4.5 Using Socratic Dialogue with Technology

Little has been said so far about the methods and systems used to enable Socratic
Dialogue in class. This is easy with a small class, say less than thirty students at most,
but much less so in a large class (the writer routinely had first year mechanics classes
with around four hundred students). Twenty years ago using Socratic Dialogue in
such large classes would be almost impossible, if not chaotic. Affordable computer
based ‘classroom communication’ systems started to emerge in the mid-1990s. The
first, ClassTalk, was a proprietary system of networked Texas Instruments graphing
calculators released in 1994 and described by Dufresne et al (1996) who used it
in freshman physics classes at the University of Massachusetts, Amherst (and was
later adopted by the writer). This system allowed multiple choice questions to be
asked using an overhead projector (or projected on the screen from the accompanying
software) with each student selecting their answer on a shared calculator. The results
were collected by a personal computer linking all calculators in the first ‘wired
classroom’. The combined responses could then be shown graphically on screen as
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histograms to initiate a discussion. Soon after ClassTalk, cheaper handheld systems
began to appear, using firstly infrared then RF technology to collect responses. Each
student could use their own handset which was small and portable. The intention here
is not to describe this type of technology in any detail – it is continually developing
and has already merged with mobile phone technology and Wi-Fi. The current market
leader is Turning Technologies TurningPoint and the interested reader is referred
to their website (Turning Technologies, 2019). These technologies are now used in
thousands of university courses in many disciplines: these are described in more
detail in several surveys (Banks, 2006; Duncan, 2004; Goldstein and Wallis, 2015).

Given the ready availability of this type of voting/polling technology for the large
class, how is it used? Again this will not be discussed in detail since there are many
variants adopted in practice. The most common is Peer Instruction (Mazur, 1997).
The process is very simple but has been shown to be very effective. Firstly, a question
(usually multiple choice) is posed to the class and shown on screen. The students
are asked to think about it for a minute or so without any discussion, then send their
response using their handsets – the results are displayed as a histogram. Very often
the class are divided (and they react to this division amongst their peers). The second
stage is to ask individual students to describe why they chose a particular answer
(they are given time to think about this first) – this can be done by volunteers or by
random selection. Other students are asked to comment on the responses: the lecturer
can direct this, but does not reveal the correct answer at this stage. The third stage is to
ask the students to discuss in groups (essentially those students who are sitting close
to them, but this can be more structured): the class is then polled again, the results
displayed and if necessary discussed again. The lecturer can give hints and continue
with class discussion and further polling as necessary – it usually depends on the
question. In fact, connected sets of questions are often used, but not necessarily all are
presented to the class, again depending on what transpires. Classrooms are very lively
(and noisy) but there is a freshness to large groups of students actively discussing
mechanics concepts in class! Numerous studies on the effect of Peer Instruction are
available: the writer’s own (Banks, 2006; Nicol and Boyle, 2003; Boyle and Nicol,
2003) and those from Mazur and his colleagues (Crouch and Mazur, 2001; Crouch
et al, 2007).

Finally, the discussion in the present section on teaching introductory mechanics
does not give a complete picture of everything that happens in class. The class is not
wholly based on Socratic Dialogue but uses a collection of pedagogical tools, for
example Just-In-Time Teaching (Novak, 1999) and Ranking Tasks (O’Kuma et al,
2000). Extensive video resources are also used such as the Mechanical Universe series
(Olenick et al, 2008), which gives an historical perspective and covers introductory
mechanics, and The Video Encyclopaedia of Physics (The Education Group, 2019),
which provides many physics demonstrations and can be coupled to multiple choice
questions. These are supplemented by videos of practical problems (from sports,
aerospace and structural engineering are good examples). The proper use of all of
this technology must be underpinned by an individual instructor’s reading of research
in student learning. This is not the place to discuss this in any depth, but the reader
can do worse than start with the US National Academies report How People Learn
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(National Research Council, 2000). All of these tools combined help to structure
the class away from a teaching format where a lecturer stands in front of a screen. It
makes mechanics much more interesting and relevant.

2.5 More Advanced Topics: Continuum Mechanics

The reader should now be able to recognise that even basic concepts in mechanics can
be problematic for the new learner while pedagogical techniques which can enhance
deep understanding are available. It is now time to discuss (but in less detail) the
consequences of this in a more advanced topic, namely continuum mechanics. The
problems with teaching introductory mechanics arose through physics education.
Continuum mechanics, and the concepts of stress and strain, elasticity, inelastic
materials and strength of materials are not covered in physics education (but it
has been argued they should be (Golub, 2003)). The immediate question is: are
there conceptual issues here? Most instructors delivering introductory mechanics of
materials courses would recognise that there are, but that these can be of a different
nature, and sometimes subtler. There are two areas in introductory courses where
conceptual issues must be addressed: statics and the concept of stress. There has
been some work done relating to the former, less for the latter.

2.5.1 Teaching Introductory Statics

Most of the work done in this area has been carried out by Paul Steif (Steif and Dollár,
2005) and colleagues at Carnegie Mellon University. This work is an extension of the
developments in introductory physics and mechanics. Certainly for an engineering
student statics is one of the key supporting subjects for later studies of strength of
materials, continuum mechanics and dynamics. It is normally introduced in the first
year of a mechanics course usually after point mass dynamics. Yet it is essentially
a new subject and requires different concepts such as distributed mass, centre of
gravity, moments about a point due to a force, rotational equilibrium and couples (or
torques). Students find the last two concepts quite confusing and mostly learn some
trigonometric ‘rule’ to manage problem solving. Indeed, most introductory textbooks
begin with revision of all the required mathematical tools from trigonometry and
vector algebra and then treat statics as an exercise in applying these tools. Unfortunately
engineering deals with real components, which are often in contact, have internal
forces resulting from externally applied loads, connections and supports. Skill in
drawing valid free body diagrams, now different from those required for connected
point masses, becomes even more essential – this is an order of magnitude more
difficult than introductory mechanics and students struggle. Supports, connections
and joints are simplified and students similarly learn ‘rules’ to represent them in
free body diagrams. The writer strongly believes that Freudenthal’s notion of ‘body
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experience’ (Freudenthal, 1993) is even more crucial here if it is recognised that
most students will not have that experience. As a result, classroom demonstrations
with student participation are felt essential. For example, a student can be asked to
balance a metre stick at a quarter point (with their finger, which is usually quite
entertaining) with a known weight suspended from a light string at the closest end.
Using a multiple-choice question, the class are asked to work out the weight of the
measuring stick. Experience has shown that more than half the class will get this
wrong. Further dialogue reveals that the difficulty lies in knowing where the centre of
gravity of the stick is placed. Additionally, videos are also particularly useful: real
engineering components, structural failures and so on. Numerous videos are available
online and the UK Open University is a good source.

The style of multiple choice question required for most statics teaching using
Socratic Dialogue differs slightly from introductory dynamics. The aim is to get the
students to think about and discuss the nature of forces in some component, often
components in contact and with various supports. There are typically a set of questions
asking the class to think about what happens when the supports are removed and
what’s required in a free body diagram of the whole structure, then each component
is taken on its own and the contact forces are introduced for the free body diagram
and so on. Calculations may be done from step to step, but the emphasis must be on
identifying the correct support forces, contact forces and internal forces. A formal
problem solving strategy can be introduced using the multiple representation method
discussed above and at that stage a complete mathematical analysis can be carried out.
Many examples of conceptual questions for statics can be found throughout Steif’s
writings (Steif and Dollár, 2005); they are fairly straightforward to generate but it is
important to always remember that the identification of forces and the sequence of
free body diagrams must be emphasised. The importance of understanding concepts
in statics should be clear to students by this time following the similar approach used
in introductory dynamics.

Steif recommends that a particular sequence of introducing concepts in statics
should be adopted: (1) 2-D translational and rotational equilibrium of bodies under
the action of forces only, including the concept of centre of gravity, (2) couples
and static equivalence, (3) equilibrium of bodies with forces and couples acting
together, (4) separation of bodies, (5) contacting bodies and distributed forces, (6)
frictional contact forces and their net effects and finally (7) equilibrium with normal
and frictional forces. The concept of separation of bodies is felt to be critical since
students are more likely to fail to appreciate that two concepts are involved: every force
acts between two objects, typically in contact, and that the equations of equilibrium
can apply to a single object with an associated free body diagram. Practical ‘body
experience’ is essential. Friction is not introduced until later in the sequence so that
students can see the importance of neglecting friction in examples used for previous
concepts. The final concept in statics, (7) allows structured problem solving to be
presented but with additional insight into the role of forces, moments and couples.

In the writer’s experience, educators who adopt the more mathematically-based
approaches found in traditional statics texts sometimes fail to appreciate the conceptual
difficulties the students have with this topic. The concepts are usually lost in the
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practical obscurity of the mathematics. Steif and Dantzler (2005) also developed
a statics concept inventory to assess students’ prior misconceptions. Characteristic
results from administering this test highlight conceptual problems with friction, static
equivalence and in particular internal forces between contacting bodies and their
associated free body diagrams.

2.5.2 Introducing Continuum Mechanics

The point at which the concepts of stress and strain, and their relationship for linear
elastic bodies, is introduced can vary. In the writer’s classes this is done as part of
introductory mechanics rather than in a separate new course. It was felt that the
notion of deformable bodies, and an idea of how to deal with them, was important at
a very early stage. Students should understand that statics is not solely concerned
with calculating support and connection forces: internal forces are also calculated
for a reason. Since the science of deformable bodies is new to most students they
arrive with few existing misconceptions. It is then very important not to introduce
any confusing ideas about the nature of this new subject at this early stage.

One fascinating misconception which most students have is related not to mechan-
ics, but rather lies in the mathematics of vectors. Most will claim that the principal
characteristic of a vector, which differentiates it from a scalar, is that it has both
magnitude and direction. Of course they have forgotten (or indeed never been told)
that its definition requires a system of combining similar vectors (an algebra) and that
addition must be commutative. This must be pointed out to avoid misconceptions
when stress and strain tensors are introduced in later years. In relation to this many
novice students will always write Newton’s Second Law in scalar form even if they
acknowledge that force and acceleration are vectors. They should also be forewarned
that not all engineering quantities with ‘directions’ are vectors: finite rotations are a
good example where addition is not commutative which can be easily demonstrated
with a book in class.

Many introductory engineering mechanics textbooks which cover statics will often
introduce stress and strain following the calculation of internal forces in members in
trusses. Stress is immediately defined as the internal force divided by cross-sectional
area and strain, for no apparent reason, as the change in length divided by the original
length. After defining a linear elastic material, Young’s modulus of elasticity is
introduced and some graphs of tensile tests shown. Thus immediately students are
led to believe this is straightforward, or ‘obvious’; but the underlying conceptual
difficulty is hidden. The writer has always found it quite advantageous to start the
discussion of stress from a historical perspective:

To begin with the instructor can point out that until fairly recently in the development
of mechanics, component strength could only be crudely characterized by empirical
means – for example by measuring the deformation of a real structure under a
given load. But as mathematics and engineering science developed numerous simple
mathematical models relating internal force to deformation of specific structures
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(mostly beams and columns) were developed. For example, Galileo, in the second of
his New Sciences (Lamar Crosby Jr., 2003), came up with a theory for the strength of
cantilevered beams - but it was out by a factor of three, since he probably never tested
the theory. Nonetheless, his theory was believed to be widely used. Although he didn’t
have the concepts of stress or strain Galileo, while discussing animal shape and form,
did understand that there was a problem with scaling: ‘. . . (large) increase in height
can be accomplished only by employing a material which is harder and stronger than
usual, or by enlarging the size of the bones, thus changing their shape until the form
and appearance of the animals suggests a monstrosity . . . ". The important concept
here is that, when introducing strength and stiffness of components, students are made
to realise that now the mechanics doesn’t scale. In class this can be discussed using a
simple question adapted from one of Galileo’s dialogues: consider a rope suspending
a heavy weight – how should the dimensions of the rope be changed if the dimensions
of the weight are doubled? After considerable discussion students will finally see that
the ‘load bearing capacity’ of the rope does not depend on its length. The notion of
force divided by area as a significant quantity in mechanics can be appreciated.

When relating stress and strain Young’s Modulus of Elasticity can be introduced.
Thomas Young’s (1773-1829) contribution was based on the observation that in a
tensile test (in his case, as a physician, he was interested in the mechanics of the
eye) it was more useful to plot load divided by area against elongation divided by
original length than to plot simply load against elongation. Using this new method
the plot was the same for all tested specimens. His work was published in 1807 but
largely ignored; he later elaborated his ideas in his Course of Lectures on Natural
Philosophy and the Mechanical Arts (Young, 1845). In fact, Young’s experimental
idea was described twenty-five years earlier by the Italian ‘mechanician’ Giordani
Riccati (and can also be inferred in some studies by Euler in 1727 (Truesdell, 1960)).
This justification for stress and strain is not really historically accurate (Truesdell,
1968): Young did not introduce his modulus as a characteristic of a material, but of
the specimens he was testing and spoke in his initial 1807 lecture about fluxion rather
than stress to add to the confusion. He used the works of the Bernoullis and Euler
but did not reference them. Of course in 1822 Augustin-Louis Cauchy (1789-1857)
introduced his stress principle, published in Cauchy (1827). At first sight this looks
like a branch of advanced mathematics and would be familiar to anyone studying
continuum mechanics today. One of Truesdell’s essays (Truesdell, 1968) describes
the historical development of the stress principle, yet once more this is dominated by
mathematics. It is argued here that from a teaching perspective in an introductory
course this should be avoided. The historical development described above at least
provides some justification for the concepts of stress and strain and the associated
idea of needing global parameters to describe material behaviour. This approach can
be extended to introduce Poisson’s ratio and the yield stress and the concept of an
isotropic material before much of the mathematics of stress and strain is developed.
From a conceptual perspective it has been found crucial to explain to students
why some concept in mechanics is required and why it takes a specific form. The
literature in science education has shown that for a deep understanding of a concept
there must be a clear connection between the concept, its associated mathematical



44 James T. Boyle

variables and what they represent (Laurillard, 2001). Unfortunately, most historical
accounts of the development of the mechanics of deformable bodies emphasise the
mathematical basis of continuum mechanics, even from the earliest by Todhunter and
Pearson (1886). Later accounts (Todhunter and Pearson, 1953; Capecchi and Ruta,
2015), while updating the historical detail, use a similar approach - perhaps this is
unavoidable although Heyman’s history of structural analysis (Heyman, 1998) uses
an approach which is more useful for teaching purposes.

Unfortunately, little has been done in terms of the development of a conceptual
approach in strength/mechanics of materials or continuum mechanics beyond the
introductory stages. The reasons for this are not entirely clear other than the effort
required (and the perceived lack of reward in doing so). It is significant that attempts
led by Paul Steif (Richardson et al, 2003), as part of the US Foundation Coalition
funded by the Engineering Education Program of the National Science Foundation,
to develop a concept inventory for strength of materials was not initially successful.
The group reportedly found it difficult to come up with good ‘distractor’ options for
multiple choice questions. Some follow-up studies are available in the literature but
the approach does not seem to have been widely adopted, other than in Steif’s 2011
Mechanics of Materials textbook (Steif, 2011), which didn’t get beyond a first edition
and appears to have only been released in the USA and Canada.

2.6 Conclusions

This Chapter has attempted to provide an overview of issues in the teaching of
mechanics and describe some new, and old, pedagogical techniques which can
be used in large classes in particular. Mechanics has been notorious as a subject
afflicted by conceptual difficulties which lie in waiting to trap the unsuspecting novice
student. It has been argued that these difficulties need to be highlighted as part of
any teaching methodology which is adopted. Further, Socratic Dialogue, enabled
today by technology in a large class, has proven effective in mechanics teaching
from antiquity. It has also been argued that a historical approach in teaching is
beneficial in highlighting conceptual problems and this should not be avoided in order
to make the subject more ‘modern’. While absolutely fundamental in mechanics,
mathematical techniques should not direct the development of the subject to students
as they strive to learn a difficult subject and leap Butterfield’s hurdle. Students
should see the association between concepts and their related mathematical variables.
As underlined by Freudenthal (1993) students should also be taught to relate their
body experience, and real engineering, to these fundamental concepts and what they
represent in practical terms. Much of the discussion has related to introductory courses
in mechanics, but this stage of students’ learning is probably the most important. This
does not infer that more advanced topics in later teaching years cannot benefit from
the same approach, although this is rarely found in practice. In fact, a case can be
made that discussion (Socratic Dialogue) is more relevant in advanced topics. As an
example, consider how the student’s first experience with inelastic material behaviour
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is usually presented. For metals the elastic limit or yield stress is their first encounter,
taken from a graph of a tensile test. The students can then solve problems which
require the maximum load to ensure elastic behaviour in some component to be
calculated, which becomes a focus for examination preparation. Yet the elastic limit is
perhaps not the most important concept in plastic behaviour of a metal: post-yield it is
the unloading behaviour which is a more significant concept. Further the significance
of plastic collapse for a hypothetical perfectly-plastic material for engineering design
can be misleading. In time-dependent creep of metals students’ first encounter centres
around a standard creep curve from a tensile test when it is the behaviour of creeping
components and the significance of different applied loads and/or fixed constraints
which needs to be better understood in a conceptual framework. Looking at other
topics in advanced material behaviour yields similar awkward concepts: for example,
the Rule of Mixtures for composite materials. Of course nothing has been mentioned
about other areas of mechanics beyond introductory statics or dynamics, but the
interested reader can find similar studies in fluid dynamics and heat transfer – this
Chapter can only cover so much.

Finally, nothing has been said about the role of advanced simulation in teaching
mechanics. Despite a plea in 2006 from the US National Science Foundation Report on
Simulation-Based Engineering Science (NSF/U.S., 2006) for engineering educators
to reflect on possible consequences, there has been arguably little progress. It is
the writer’s view that this remains one of the most pressing unresolved questions in
mechanics teaching. Simulation technology has considerable potential in teaching and
learning, but it should not be forgotten that in the early stages of engineering design
qualitative decisions have to be made and there is usually no time or resource for
detailed finite element simulation. A deep conceptual understanding is then essential
for practising engineers. This issue was perhaps best expressed by the historian Daniel
Boorstin in an interview in the Washington Post published on 29th January 1984.
Boorstin was quoted as saying ‘. . . the greatest obstacle to discovery is not ignorance
– it is the illusion of knowledge . . . ’.
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Chapter 3
Modeling of Damage of Ductile Materials

Michael Brünig, Moritz Zistl, and Steffen Gerke

Abstract The paper discusses a thermodynamically consistent anisotropic continuum
damage model for ductile metals. It takes into account different elastic potential
functions to simulate the effect of damage on elastic material behavior. In addition, a
yield condition and a flow rule describe plastic behavior whereas a damage criterion
and a damage rule characterize various damage processes in a phenomenological
way. To validate the constitutive laws and to identify material parameters different
experiments have been performed where specimens have been taken from thin
metal sheets. As an example, the X0-specimen is tested under different biaxial
loading conditions covering a wide range of stress states. Results for proportional
and corresponding non-proportional loading histories are discussed. During the
experiments strain fields in critical regions of the specimens are analyzed by digital
image correlation (DIC) technique while the fracture surfaces are examined by
scanning electron microscopy (SEM). Corresponding numerical simulations have
been performed and numerical results are compared with available experimental
ones. In addition, based on the numerical analyses stress states as well as plastic and
damage fields can be predicted allowing explanation of different damage processes
on the micro-level. The results also elucidate the effect of loading history on damage
and fracture behavior in ductile metals.
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3.1 Introduction

In various engineering disciplines the realistic and accurate modeling of inelastic
deformation behavior as well as of damage and failure processes of ductile materials
is essential for the solution of different boundary value problems. For example, large
inelastic deformations caused by dislocations along preferred slip planes are often
accompanied by nucleation, growth of defects on the micro-scale leading to reduction
in strength of materials and to shortening the life time of engineering structures. Thus,
these aspects demand to provide realistic information on stress distributions and
localizations in material elements and to lay down safety factors against failure. On
the other hand, due to testing techniques, statistical variations of material properties,
machine precision, or manufacturing processes of specimens scatter of experimental
data occurs and, therefore, phenomenological material models shall predict the
essential features of experimentally observed behavior. Hence, proper understanding
and mechanical modeling of stress-state-dependent damage mechanisms are of great
importance in the analysis of the effects on deterioration of ductile materials and in
elucidating the processes leading from microscopic defects to final fracture.

In order to provide information on stress states in loaded structures and on
stress-state-dependent formation of micro-defects, modeling of damage and failure in
ductile materials received considerable attention during the past decades. Different
constitutive approaches have been published based on experiments or numerical
simulations on the micro-level (Brünig, 2003a; Brünig et al, 2008; Chaboche, 1988a;
Chow and Wang, 1987a; Chow and Yang, 2004; Lemaitre, 1996; Lu and Chow, 1990;
Voyiadjis and Kattan, 1999). Within these continuum damage mechanics concepts
the effect of micro-defects on material properties is analyzed in a phenomenological
way. Critical values of proposed damage variables are used as major parameters
describing the onset of fracture. In this context, an important aspect is the appropriate
choice of the variables characterizing the damage state of the material. For example,
scalar-valued damage parameters are often used due to their simplicity and numerical
efficiency (Lemaitre, 1985a,b; Tai and Yang, 1986). However, in several engineering
applications the scalar damage variables have been found to lead to inaccurate
results (Chow and Lu, 1992; Chow and Wang, 1987a; Wang and Chow, 1989,
1990). Therefore, anisotropic continuum damage models using tensor-valued damage
variables seem to be more suitable to simulate experimentally observed behavior
(Brünig et al, 2015; Chow and Wang, 1987a; Chow and Yang, 2004; Lu and Chow,
1990; Murakami and Ohno, 1980).

Development of an accurate phenomenological constitutive model is based on
specification of characteristic micro- and macroscopic behavior of the investigated
ductile material. For example, damage and failure processes depend on the current
stress state acting in a material point (Bao and Wierzbicki, 2004; Brünig et al, 2015).
In particular, for high stress triaxialities damage is the result of nucleation, growth
and coalescence of nearly spherical micro-voids whereas small positive or negative
stress triaxialities lead to formation and growth of micro-shear-cracks. Combination
of these basic damage modes on the micro-level occur for moderate positive stress
triaxialities and for high negative stress triaxialities no damage has been observed



3 Modeling of Damage of Ductile Materials 51

in experiments with ductile metals. Therefore, detailed experimental and numerical
analysis of these stress-state-dependent damage and failure processes are needed to
develop and to validate accurate continuum damage models.

Numerical analyses on the micro-level examining deformation behavior of micro-
defect-containing unit cells have been performed to get information on stress-state-
dependent damage and fracture mechanisms (Brocks et al, 1995; Brünig et al, 2011,
2013, 2014, 2018b; Chew et al, 2006; Kim et al, 2003; Shen et al, 2014). Based
on these numerical calculations individual behavior of micro-defects in unit cells
under wide ranges of loading conditions can be investigated and the effects of their
coalescence resulting in macro-cracks can be studied in detail. Systematic unit cell
studies enable detection of stress-state-dependent damage and fracture processes
which have not been revealed by experiments alone.

Furthermore, various experiments with carefully designed specimens have been
discussed in the literature to develop and to validate damage and fracture models. In
particular, uniaxial tension tests with unnotched and differently notched specimens
have been performed to examine stress-state-dependent inelastic deformation behavior
as well as damage and fracture modes (Bao and Wierzbicki, 2004; Bonora et al, 2005;
Brünig et al, 2011, 2008; Driemeier et al, 2010). However, as has been shown by
corresponding numerical simulations these tests with uniaxially loaded unnotched,
differently notched and shear specimens only cover a small range of stress states
(see Fig. 3.1) and, thus, further experiments with newly designed specimens have
been proposed. For example, tests with butterfly specimens have been presented (Bai
and Wierzbicki, 2008; Dunand and Mohr, 2011; Mohr and Henn, 2007) which are
uniaxially loaded in different directions using special experimental equipment and,
thus, these tests are able to cover a wide range of stress triaxialities. Alternatively,
two-dimensional experiments with different biaxially loaded specimens have been
developed to examine stress-state-dependent deformation, damage and failure behavior
(Brünig et al, 2015; Brünig et al, 2016; Brünig et al, 2018a; Gerke et al, 2017).

Fig. 3.1 Ranges of stress triax-
ialities for different specimens
(unnotched specimen (green),
notched specimens (red), shear
specimen (blue), X0-specimen
(orange), H-specimen (yellow),
Z-specimen (grey))

0.0-0.5 0.33 1.00.58

stress
triaxiality
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Corresponding numerical simulations have elucidated that these specimens cover a
wide range of stress triaxialities (Fig. 3.1) allowing investigation of various damage
and failure processes on the micro-scale. In addition, proportional as well as different
non-proportional loading paths have been used in these biaxial tests to examine the
effect of the loading history on damage and failure (Brünig et al, 2019; Gerke et al,
2019).

In the present overview article a phenomenological continuum damage model is
motivated and discussed. To validate the constitutive equations and to determine stress-
state-dependent functions experiments with biaxially loaded specimens have been
performed. Experimental results with proportional and different non-proportional
loading conditions are discussed. In addition, corresponding numerical simulations
are used to detect stress states as well as plastic and damage fields. Based on the
numerical results damage and failure mechanisms on the micro-level are revealed
which are also visualized by scanning electron microscopy of fracture surfaces.

3.2 Continuum Damage Model

3.2.1 Basic Ideas

Due to fast technological developments during the past decades modeling and
numerical simulation of inelastic deformation behavior as well as of damage and
fracture processes on the micro-level in materials and structural elements are highly
important subjects in a large number of engineering disciplines. In this context,
constitutive modeling of damage in ductile materials has received considerable
attention with focus on the appropriate choice of efficient damage variables. In the
open literature different ways have been proposed allowing characterization of the
state of internal deterioration of the material properties. Often, phenomenological or
micro-mechanically motivated damage variables are taken into account in mechanical
theories to model their effect on material behavior.

In particular, the area-based damage variable

D =
dAd

dA
(3.1)

has been proposed by Kachanov (1958) where dAd denotes the differential area of
the micro-defects and dA means the differential area of the considered representative
damaged volume element. The advantage of this micro-defect area fraction D is its
direct relation to macroscopic material properties without further micro-mechanical
interpretation. For example, based on the concept of the effective stress (Rabotnov,
1963) and the principle of strain equivalence (Lemaitre, 1996) the scalar damage
parameter D can be directly identified by measuring the variation of Young’s modulus
during cyclic tests of uniaxially loaded specimens. This phenomenological parameter
D has been used in many applications taking into account continuum damage models
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(Bonora et al, 2005; Chaboche, 1988a,b; Lemaitre, 1985a,b; Tai and Yang, 1986). Of
course, the scalar-valued damage parameter D averages many micro-defect-related
parameters (i.e. the number of micro-defects, their shapes and sizes, the degree of
adhesion between the defects, local variations of micro-defect densities, effects of
local concentration of stresses on the micro-level) but it can be taken to be an adequate
phenomenological variable characterizing the current state of damage. On the other
hand, to analyze anisotropic damage behavior a corresponding damage tensor DDD
has been proposed taking into account different micro-defect area fractions in the
principal directions of the anisotropy (Chow and Wang, 1987a,b; Jie et al, 2011; Ju,
1990; Lu and Chow, 1990; Murakami, 1988; Murakami and Ohno, 1980; Voyiadjis
and Kattan, 1992; Wang and Chow, 1990).

An alternative damage variable has been proposed by Gurson (1977) defining the
micro-defect volume fraction

f =
dVd

dV
(3.2)

with the differential volume of the micro-defects dVd and the differential volume of
the representative damaged volume element dV . This continuous damage variable f
is directly given by the microscopic damaged material geometry and, therefore, its
current value can be directly determined by the use of microscopy (Landron et al, 2013,
2011). The scalar-valued damage parameter f also averages the micro-defect-related
parameters discussed above and it is taken to be an adequate micro-mechanically
motivated variable implemented in the Gurson yield condition (Gurson, 1977)
(or respective extended yield criteria) characterizing the current state of damage
(Benzerga and Leblond, 2010; Besson, 2010; Tvergaard, 1989).

Although modeling of damage processes provide a measure of material degradation
at the micro-scale both scalar-valued damage parameters, D (3.1) and f (3.2),
reflect average material degradation at the macro-level. They are based on different
philosophies and their relation depends on the geometry of the examined representative
volume element and the incorporated micro-defect. For example, the relation D = 2

3 f
is valid for a spherical volume element with a spherical micro-void. It should be
noted that both damage parameters have advantages and disadvantages and both have
been successfully taken into account in different damage approaches used in a wide
range of engineering applications.

Since the scalar damage variable f can only simulate isotropic damage behavior,
Brünig (2002, 2003a) proposed a kinematic concept to simulate anisotropic damage
behavior and introduced the trace of the damage strain tensor

tr AAAda = ln
dV

dV − dVd
= ln(1 − f )−1 (3.3)

as a function of the micro-defect volume fraction f . The damage strain tensor
AAAda represents irreversible macroscopic strains caused by formation, growth and
coalescence of defects on the micro-scale. In addition, the rate of the isochoric
damage strain rate tensor
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�HHHda
iso =

1
3
(1 − f )−1 �f 111 . (3.4)

is introduced. In the continuum model discussed in the present paper the damage
strain tensor AAAda as well as the damage strain rate tensor �HHHda are generalized to
model anisotropic damage behavior allowing a wide range of applications in various
engineering fields.

3.2.2 Thermodynamically Consistent Model

The thermodynamically consistent continuum framework proposed by Brünig (2003a,
2016) is used to model anisotropic damage behavior in ductile metals. This phe-
nomenological approach is based on the introduction of the micro-defect volume
fraction f (3.2) as well as the corresponding tensors (3.3) and (3.4) and, thus, uses
a kinematic description of damage caused by stress-state-dependent formation and
growth of different micro-defects. This leads to the definition of damage strain tensors
taking into account isotropic as well as anisotropic behavior providing realistic
simulation of micro-failure induced degradation in ductile materials.

The continuum damage model is based on the introduction of damaged and
corresponding fictitious undamaged configurations, both defined as respective initial,
current and elastically unloaded ones. Based on this kinematic model, the strain rate
tensor can be additively decomposed into the elastic, �HHHel , the effective plastic, �̄HHH

pl
,

and the damage, �HHHda, parts. In the respective undamaged and damaged configurations
free energy functions are introduced to formulate elastic constitutive equations which
are affected by increasing damage. In addition, a yield criterion and a flow rule
characterize the plastic behavior with respect to the undamaged configurations. In a
similar way, in the damaged configurations a damage condition and a damage rule
govern different stress-state-dependent damage processes on the micro-level in a
phenomenological macroscopic manner.

In particular, considering the undamaged configurations constitutive laws for the
elastic-plastic behavior of the undamaged matrix material are formulated. In this
context, plastic internal variables are introduced serving as a basic tool to carry
forward information from the crystal lattice of ductile metals to the macro-level
and to characterize the hardening behavior of the undamaged material. Based on
observations in a large number of experiments with metals undergoing elastic-plastic
deformations the elastic behavior of the undamaged material is not influenced by
the plastic hardening behavior and the evolution of plastic deformations. Thus, in
the undamaged configurations the free energy function is taken to be additively
decomposed into the effective elastic and the effective plastic parts

φ̄ = φ̄el(AAAel) + φ̄pl(γ) (3.5)
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where AAAel is the logarithmic elastic strain tensor and γ represents the internal
mechanical state variable representing the current amount of effective plastic strain.
Thus, the variable γ is taken to be the equivalent plastic strain measure in the proposed
continuum model. The additive decomposition of the effective energy function (3.5)
leads to the hyper-elastic law and to the introduction of the effective Kirchhoff stress
tensor

T̄TT = 2G AAAel +

(
K −

2
3

G
)

trAAAel 111 (3.6)

where G and K are the constant shear and bulk modulus of the undamaged matrix
material, respectively.

Furthermore, isotropic plastic behavior is modeled by the yield condition

f pl
(
Ī1, J̄2, c

)
=

√
J̄2 − c

(
1 −

a
c

Ī1

)
= 0 , (3.7)

where Ī1 = trT̄TT and J̄2 =
1
2 devT̄TT ··· devT̄TT represent the first and second deviatoric

invariants of the effective Kirchhoff stress tensor (3.6) whereas c denotes the equivalent
stress of the undamaged material. In Eq. (3.7) a is the hydrostatic stress coefficient
based on experiments (Spitzig et al, 1975, 1976) indicating that the plastic behavior
of ductile metals is affected by the hydrostatic stress state. It should be noted that
in the present formulation isotropic plastic behavior is assumed which can be seen
as a realistic assumption for many metals and alloys. However, especially in thin
metal sheets, anisotropy must be taken into account. For example, this can be done
by generalization of the invariants by projection tensors containing coefficients of the
current state of plastic anisotropy (Chow and Wang, 1987a, 1988) or by extended
yield conditions (Badreddine et al, 2010; Ha et al, 2018). Further generalization to
take into account kinematic hardening in ductile metals is possible by implementing
a back-stress tensor in the isotropic or anisotropic yield criterion (Badreddine et al,
2010; Chow and Yang, 2004).

Furthermore, the rate of the plastic strain tensor

�̄HHH
pl
= �γ N̄NN (3.8)

models the evolution of isochoric plastic deformations in the undamaged ductile
material taking into account the normalized deviatoric stress tensor

N̄NN =
1√
2 J̄2

devT̄TT

and the equivalent plastic strain rate measure �γ = N̄NN··· �̄HHH
pl

. Since formation of
volumetric plastic strains has not been measured in ductile metals (Spitzig et al, 1975,
1976) the isochoric flow rule (3.8) is taken to accurately simulate the plastic strain
rate behavior. Plastic anisotropy in the flow rule can also be modeled by generalizing
the normalized stress tensor by a projection tensor (Chow and Wang, 1987a, 1988).
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Moreover, modeling of deformation and failure behavior of the anisotropically
damaged material is based on the consideration of the damaged configurations. The
framework of irreversible thermodynamics with internal state variables is used to
develop the equations for the finite elastic-plastic-damage deformations of ductile
materials. In the phenomenological continuum approach the Helmholtz free energy
function φ is introduced as a basis for the formulation of the constitutive equations.
The nonlinearities in ductile material behavior observed in experiments are caused
by two distinct changes in the micro-structure, the plastic flow and the formation of
micro-defects. For example, plastic flow leads to irreversible deformations caused by
dislocation processes along preferred slip planes predominantly controlled by shear
stresses on the micro-level. On the other hand, during loading of the material sample
decohesion or fracture of large inclusions or precipitates lead to micro-voids or micro-
shear-cracks destroying the band between material grains. These mechanisms also
cause irreversible deformations on the macro-scale and, in contrast to the plastic flow,
they affect the elastic material properties. Thus, the elastic part of the energy function
depends on elastic and damage measures whereas the plastic and damage parts are
formulated in terms of two sets of respective internal state variables corresponding to
the formation of dislocations (plastic internal variables) and to nucleation, growth
and coalescence of micro-defects (damage internal variables).

The Helmholtz free energy function of the anisotropically damaged material is
additively decomposed into three parts:

φ = φel(AAAel, AAAda) + φpl(γ) + φda(μ) . (3.9)

The elastic part, φel , is written in terms of both the elastic and the damage strain
tensor, AAAel and AAAda, and the plastic and damage parts are expressed in terms of the
respective plastic and damage internal variables, γ and μ.

It has been observed in experiments that damage affects Young’s modulus
(Lemaitre, 1985a) and Poisson’s ratio (Chow and Wang, 1987b) as well as the
shear and the bulk modulus (Spitzig et al, 1988). Hence, the Kirchhoff stress tensor
of the damaged material

TTT = 2
(
G + η2 trAAAda

)
AAAel

+

[(
K −

2
3

G + 2η1 trAAAda

)
trAAAel + η3

(
AAAda · AAAel

)]
111

+ η3 trAAAelAAAda + η4

(
AAAelAAAda + AAAdaAAAel

)
(3.10)

takes into account the additional constitutive parameters η1, η2, η3 and η4 modeling
deterioration of elastic material behavior caused by damage. Based on the hyperelastic
law (3.10) simulation of independent decrease of Young’s modulus, Poisson’s ratio,
shear modulus and bulk modulus with increasing damage detected in experiments
(Spitzig et al, 1988) can be realized (Brünig, 2003a).

The concept of damage surface is used to determine onset of damage in analogy to
the yield surface concept employed in plasticity theory. Different ways to introduce
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a damage condition have been proposed in the literature. For example, Lemaitre
(1985a) suggested a damage dissipation criterion expressed in terms of the damage
strain energy release rate which is work-conjugate to the damage parameter D (3.1).
In addition, a generalized version for anisotropic damage based on a damage strain
energy release tensor has been developed by Chow and Wang (1987a) but some
anomalies occurred during applications. Therefore, Chow and Wang (1987a) proposed
an alternative damage criterion formulated in terms of the effective stress tensor. The
stress space concept has also been used by Brünig (2003a); Brünig et al (2015, 2008)
expressing the damage condition in terms of the Kirchhoff stress tensor (3.10) with
respect to the damaged configurations. Following this concept, the damage condition
can be written in the form

f da = αI1 + β
√

J2 − σ = 0 (3.11)

where the stress invariants I1 = trT̃TT and J2 =
1
2 devT̃TT ··· devT̃TT (T̃TT is work-conjugate to

�HHHda and simply related to TTT , see Brünig (2003a) for further details) corresponding
to the effects of hydrostatic and deviatoric stresses on damage due to shape and
orientation of micro-defects. In Eq. (3.11) σ denotes the equivalent damage stress
measure which can be seen as material toughness to micro-defect propagation. In
addition, the stress-state-dependent variables α and β are associated to different
damage and failure processes on the micro-level. In the current approach, stress state
dependence is expressed in terms of the stress triaxiality

η =
σm
σeq
=

I1

3
√

3J2
(3.12)

with the mean stress σm = I1/3 and the equivalent von Mises stress σeq =
√

3J2 as
well as on the Lode parameter

ω =
2T̃2 − T̃1 − T̃3

T̃1 − T̃3
with T̃1 ≥ T̃2 ≥ T̃3 (3.13)

written in terms of the principal Kirchhoff stress components T̃1, T̃2 and T̃3.
Furthermore, formation of macroscopic strains caused by damage and failure

processes on the micro-level are analyzed with the damage strain rate tensor

�HHHda
= �μ

(
ᾱ
√

3
111 +

β̄
√

2
NNN + δ̄MMM

)
(3.14)

where �μ is a non-negative scalar factor and represents the equivalent damage strain
rate characterizing the amount of increase in damage. In addition, the normalized
stress related deviatoric tensors

NNN =
1

√
2J2

devT̃TT
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and
MMM =

devS̃SS��devS̃SS
��

with
devS̃SS = devT̃TT devT̃TT −

2
3

J2111 (3.15)

have been introduced. The parameters ᾱ, β̄ and δ̄ in Eq. (3.14) are kinematic parameters
denoting the portion of volumetric and isochoric damage-based deformations also
corresponding to different damage and failure mechanisms on the micro-level. These
stress-state-dependent parameters will be identified by results of numerical simulations
on the micro-scale.

3.2.3 Damage Mode Parameters Based on Numerical Simulations
on the Micro-scale

It is difficult or nearly impossible to identify damage related material parameters
by experiments alone. Thus, to get more inside in the complex damage and failure
processes on the micro-level, Brünig et al (2013) performed three-dimensional
numerical analyses of void-containing unit cells covering a wide range of stress
triaxialities and Lode parameters. The results of the micro-mechanical numerical
calculations are used to detect general trends as well as to propose stress-state-
dependent functions for damage criteria and damage evolution laws.

In particular, for different stress triaxiality coefficients η and Lode parameters ω
the damage mode parameter α is given by

α(η) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for ηcut ≤ η ≤ 0

1
3

for η > 0
(3.16)

where ηcut denotes the cut-off value of stress triaxiality below which no damage
occurs in ductile metals. Based on biaxial experiments with remarkable negative stress
triaxialitites the value ηcut has been shown to be a stress-state-dependent function
(Brünig et al, 2018a). In addition, the parameter β is taken to be the non-negative
function

β(η, ω) = β0(η, ω = 0) + βω(ω) ≥ 0 (3.17)

with

β0(η) =

{−0.45 η + 0.85 for ηcut ≤ η ≤ 0

−1.28 η + 0.85 for η > 0
(3.18)

and
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βω(ω) = −0.017ω3 − 0.065ω2 − 0.078ω . (3.19)

Furthermore, based on the results of the micro-mechanical numerical calculations
the stress-state-dependent parameters ᾱ, β̄ and δ̄ in the damage rule (3.14) have
been developed. In particular, the non-negative parameter ᾱ ≥ 0 corresponding to
volumetric damage strain rates caused by isotropic growth of micro-defects is given
by the relation

ᾱ(η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for η < 0.09864

−0.07903 + 0.80117 η for 0.09864 ≤ η ≤ 1

0.49428 + 0.22786 η for 1 < η ≤ 2

0.87500 + 0.03750 η for 2 < η ≤
10
3

1 for η >
10
3

(3.20)

and dependence on the Lode parameter ω has not been revealed by the numerical
simulations on the micro-scale. In addition, the parameter β̄ corresponding to
anisotropic isochoric damage strain rates caused by evolution of micro-shear-cracks
is given by the relation

β̄(η, ω) = β̄0(η) + fβ(η) β̄ω(ω) (3.21)

with

β̄(η, ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.94840 + 0.11965 η + fβ(η)(1 − ω2) for ηcut ≤ η ≤
1
3

1.14432 − 0.46810 η + fβ(η)(1 − ω2) for
1
3
< η ≤

2
3

1.14432 − 0.46810 η for
2
3
< η ≤ 2

0.52030 − 0.15609 η for 2 < η ≤
10
3

0 for η >
10
3

(3.22)

and
fβ(η) = −0.02520 + 0.03780 η . (3.23)

The additional parameter δ̄ also corresponding to the anisotropic damage strain rates
caused by the formation of micro-shear-cracks is given by the relation
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δ̄(η, ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−0.12936 + 0.19404 η)(1 − ω2) for ηcut ≤ η ≤

2
3

0 for η >
2
3

. (3.24)

It should be noted that these damage mode parameters (3.16)-(3.24) are based on
numerical analysis using symmetry boundary conditions of the unit cells (Brünig
et al, 2013). Additional numerical calculations have been performed using periodic
boundary conditions (Brünig et al, 2018b) and they confirmed the functions (3.16)-
(3.24).

3.3 Experiments and Corresponding Numerical Simulations

3.3.1 Experimental Equipment and Specimens

New biaxial experiments have been proposed (Gerke et al, 2017) to analyze inelastic
deformation behavior as well as stress-state-dependent damage and fracture mecha-
nisms in ductile metals. Different loading scenarios can be taken into account with
proportional and associated non-proportional histories (Gerke et al, 2019) and results
of additional experiments with alternative loading paths are analyzed in the present
paper. The experiments are performed in a biaxial test machine type LFM-BIAX 20
kN (Walter + Bai) shown in Fig. 3.2(a) containing four individually driven cylinders
with loads up to ±20 kN located in perpendicular axes. The specimens are fixed
in the four heads of the cylinders using clamped or hinged boundary conditions,
respectively. During the tests three-dimensional displacement fields are recorded by
digital image correlation (DIC) technique in selected zones of the specimens. In the
stereo setting four 6.0Mpx cameras with corresponding lighting system shown in
Fig. 3.2(b) are used. In addition, after the tests fracture surfaces are investigated by
scanning electron microscopy to reveal different fracture modes depending on the
loading histories.

Tests are performed with the aluminum alloy AlSiMgMn (EN AW 6082-T6).
Material parameters have been identified by numerical fitting of experimental stress–
strain curves of uniaxial tension tests with smooth flat dog–bone–shape specimens.

Fig. 3.2 Biaxial test machine
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Initial elastic behavior is modeled by Young’s modulus E = 69,000 MPa and Poisson’s
ratio ν = 0.29. The effect of damage on elastic behavior is taken into account by
the parameters η1 = -20,000 MPa, η2 = -20,000 MPa, η3 = -20,000 MPa, and
η4 = -20,000 MPa for positive stress triaxialities (η ≥ 0) whereas η1 = -4,000 MPa,
η2 = -300,000 MPa, η3 = 600,000 MPa, and η4 = -75,000 MPa have been chosen for
negative stress triaxialities. In addition, an isotropic hardening model is taken into
account and plastic hardening behavior is modeled by the current yield stress

c = co

(
Hoγ

nco
+ 1

)n
(3.25)

with the initial yield stress co = 163.5 MPa, the initial hardening modulus Ho = 850
MPa and the hardening exponent n = 0.182. Damage softening is simulated by the
equivalent damage stress

σ = σo − H1μ
2 (3.26)

with the initial damage stress σo = 242 MPa and the modulus H1 = 400 MPa.
Biaxial specimens are extracted from sheets with 4 mm thickness. In the present

paper results with the X0-specimen shown in Fig. 3.3(a) undergoing proportional
and different corresponding non-proportional loading paths are discussed. The X0-
specimen is based on four crosswise arranged bars with a central opening and four
notched parts arranged at 45◦ (Fig. 3.3(d)) where inelastic deformations as well as
damage and fracture are expected to appear in localized bands. The dimensions of
the X0-specimen are shown in Fig. 3.3(c): its length is 240 mm in each direction and
the depth of the notches is 1 mm on each side leading to thickness reduction from 4

Fig. 3.3 X0-specimen (all dimensions in mm)
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mm to 2 mm. These notched regions are 6 mm long (Fig. 3.3(b)) and their radii are 2
mm in thickness and 3 mm in plane directions, respectively.

The X0-specimen is individually loaded in two directions by the forces F1 and
F2 in the corresponding axes (Fig. 3.3(e)) and different combinations of these loads
lead to tension, compression and shear behavior in the notches. They cause different
damage and fracture processes on the micro-level and their dependence on the loading
history is analyzed in detail in the present paper. During the biaxial experiments the
three-dimensional displacements of the red points shown in Fig. 3.3(e) are monitored
by DIC. As a special case, the in-plane displacements u1.1 and u1.2 in axis 1 as well
as u2.1 and u2.2 in axis 2 lead to the relative displacements Δure f .1 = u1.1 − u1.2 and
Δure f .2 = u2.1 − u2.2 used in the analysis. The displacements normal to the plane are
also controlled to detect possible buckling during compressive loading which must
be avoided to receive comparable experimental results.

3.3.2 Numerical Aspects

The numerical simulations have been carried out using the finite element program
ANSYS. It has been enhanced by a user-defined material subroutine taking into account
the constitutive equations of the proposed continuum damage model. Integration of
the constitutive rate equations (3.8) and (3.14) is performed by the inelastic predictor–
elastic corrector method (Brünig, 2003b). Eight-node-elements of type Solid185
with linear displacement fields have been used to predict the three-dimensional
displacement fields and to quantify strains and stresses in the specimen. The mesh
with 65,736 finite elements is shown in Fig. 3.4 and remarkable refinement can be
seen in the notches of the specimen where high gradients of strain and stress variables
are expected to occur.

Fig. 3.4 Finite element mesh
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3.3.3 Results of Biaxial Experiments and Corresponding
Numerical Simulations

The investigated loading paths are shown in Fig. 3.5 taking into account the pro-
portional as well as three corresponding non-proportional ones. In particular, in the
proportional loading path (P 1/0) the X0-specimen is only loaded by the force F1
and the final load at fracture is F1 = 6.5 kN. In the second case (NP1 1/-1 to 1/0)
the specimen is first loaded by F1 = −F2 = 3.5 kN and, then, the load F1 is kept
constant whereas F2 is reduced to zero until the proportional path is reached. In the
final step of this loading scenario the load F1 is further increased until fracture of
the specimen happens at F1 = 6.8 kN. In the alternative non-proportional loading
path (NP2 1/-1 to 1/0) the X0-specimen is again first loaded by F1 = −F2 but now
up to F1 = −F2 = 3.8 kN before the axis switch takes place. In the next step again
F1 is kept constant and F2 is reduced to zero and the final step is identical to the
proportional case with only further loading by F1 up to final fracture which in this
alternative non-proportional loading history occurs at F1 = 7.0 kN. During the last
non-proportional loading path (NP 1/+1 to 1/0) the specimen is first loaded by F1 = F2
up to F1 = F2 = 5.4 kN, then again F1 is kept constant and F2 is driven to zero and
after the proportional path is reached the load F1 is further increased until fracture
happens at F1 = 8.4 kN. The loading-path-diagram (Fig. 3.5) clearly shows that the
final load at fracture is remarkably affected by the loading history and compared to
the proportional loading path the fracture loads differ up to about 30%.
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P 1/0
NP1 1/-1 to 1/0
NP2 1/-1 to 1/0
NP 1/+1 to 1/0

Fig. 3.5 Loading paths
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Figure 3.6 shows corresponding load-displacement curves. In particular, in the
proportional loading case (P 1/0) the load F1 first nearly linearly increases and
with subsequent inelastic deformation of the specimen up to fracture the relative
displacement in axis 1 (a1) reaches Δure f .1 = 1.0 mm. During this proportional
loading path the load F2 is always zero whereas the relative displacement in axis
2 (a2) is Δure f .2 = -0.57 mm at the end of the test. In the first non-proportional
loading path (NP1 1/-1 to 1/0) the load F1 increases linearly in the elastic part and
non-linearly in the subsequent short inelastic one and the displacement in axis 1 is
Δ u re f .1 = 0.26 mm before the axis switch takes place. Similar behavior can be seen
in axis 2 with compressive loading and the displacement reaches Δure f .2 =-0.29 mm.
In the next step, when load F2 is reduced to zero and the displacement in axis
2 reduces to Δure f .2 = -0.24 mm whereas the load F1 is kept constant and the
corresponding displacement in axis 1 reduces to Δure f .1 = 0.24 mm. In the final
proportional step F1 further increases first linearly indicating elastic behavior with
subsequent non-linear curve corresponding to inelastic behavior. At the final load at
fracture the corresponding displacement in axis 1 is Δure f .1 = 0.87 mm and in axis
2 the final displacement is Δure f .2 = -0.60 mm. In the alternative non-proportional
loading history (NP2 1/-1 to 1/0) with load switch at F1 = −F2 = 3.8 kN the
corresponding displacements are Δure f .1 = 0.57 mm and Δure f .2 = -0.62 mm. Then
after decrease of F2 to zero the displacements are in axis 1 only marginally reduced
to Δure f .1 = 0.55 mm whereas in axis 2 Δure f .2 = -0.56 mm is reached. After the
final proportional step the displacements at fracture are Δure f .1 = 0.96 mm and
Δ ure f .2 = -0.80 mm, respectively. In the last non-proportional loading path (NP
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NP2 1/-1 to 1/0 a2
NP 1/+1 to 1/0 a1
NP 1/+1 to 1/0 a2

Fig. 3.6 Experimental load-displacement curves
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1/+1 to 1/0) both loads F1 and F2 identically increase and before load switch the
corresponding displacements areΔure f .1 = Δure f .2 = 0.04 mm. In the next unloading
step, the load F2 is reduced to zero and the displacement in axis 2 is Δure f .2 = -0.05
mm whereas the displacement in axis 1 reaches Δure f .1 = 0.10 mm. In the final
proportional step F1 further increases and the final displacement in axis 1 is Δure f .1 =
1.19 mm when fracture happens. In axis 2 the final displacement Δure f .2 = -0.72 mm
is reached. These load-displacement curves clearly show that the loading path also
remarkably affects the final displacements at fracture.

Comparison of experimental and numerical results for the load-displacement
curves are shown in Fig. 3.7. Based on the material parameters given above the
experimental and numerically predicted curves show good agreement. Only in the
proportional case (Fig. 3.7(a)) slight over-prediction can be seen whereas for the
non-proportional loading path NP 1/+1 to 1/0 (Fig. 3.7(d)) the numerically predicted
load at fracture is about 10% smaller than the experimental one. For the other
non-proportional loading histories (Figs. 3.7(b) and (c)) the differences are only
marginal. Thus, the finite element program based on the proposed continuum damage
model accurately predicts the load-displacement behavior of the X0-specimen for
proportional and different non-proportional loading histories.

Figure 3.8 shows distribution of the maximum principal strains in the notched
regions of the X0-specimen for various loading paths and at different load stages.

Fig. 3.7 Load-displacement curves: Experiments and numerical simulations



66 Michael Brünig, Moritz Zistl, and Steffen Gerke

Fig. 3.8 First principal strains

Principal strains at the end of the respective first load steps before axis switch (as) of
the load takes place are shown in the left column of Fig. 3.8 based on the experiments
(left pictures) and on the corresponding numerical simulations (right pictures). In
addition, principal strains at the end of the loading paths (end) can be seen in the
right column of Fig. 3.8 based on the experiments for the unfractured (left pictures)
and the fractured notches (middle pictures) as well as based on the corresponding
numerical simulations (right pictures). In particular, at the end of the proportional
loading path (P 1/0 end) the first principal strain (Fig. 3.8(a)) is localized in the notch
in bands oriented from top-right to bottom-left with maximum values of 30% in the
unfractured notch (left picture) and 34% in the fractured one (middle picture). In
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the corresponding numerical simulation the principal strain is slightly smaller with
maximum value of 26% where the deformation of the notch as well as distribution
of the localized principal strain field based on the experiment and the numerical
simulation are very similar. In the first non-proportional loading path (NP1 1/-1 to
1/0) the principal strains remain small after the first load step before axis switch (as) of
the loads. Nearly vertical bands can be seen in Fig. 3.8(b) with maxima of 7% in the
experiment (left picture) and 8% in the numerical simulation. With further loading
increase of the first principal strain occurs and at the end of the test (Fig. 3.8(c)) the
strains are again localized in diagonal bands with maximum values of 21% in the
unfractured notch (left picture) and 38% in the fractured one (middle picture) whereas
in the numerical simulation 22% are reached. In the alternative non-proportional case
(NP2 1/-1 to 1/0) a vertical band of the localized first principal strain can be seen
in Fig. 3.8(d) after the first load step before axis switch (as) with maximum values
of 20% in the experiment (left picture) and 15% in the numerical simulation (right
picture). At the end of this loading process (Fig. 3.8(e)) the vertical band remains in
the unfractured notch with values up to 26% whereas a slightly diagonal band with
orientation from top-right to bottom-left occurs in the fractured notch with maximum
values of 43%. In the numerical simulation also a vertical band of the localized first
principal strain is predicted with values up to 26% corresponding well to the behavior
in the unfractured notch in the experiment. In addition, evolution of the first principal
strain for the final non-proportional loading path (NP 1/+1 to 1/0) are visualized.
After the first load step before axis switch (as) only marginal strains of only 1% occur
(Fig. 3.8(f)). At the end of the loading path, Fig. 3.8(g) shows localized strain bands
with diagonal right-to-left orientation. In the experiments, maximum values of 33%
in the unfractured notch (left picture) and 37% in the fractured notch (middle picture)
are measured whereas in the numerical simulation 26% are predicted (right picture).
It can be summarized that the loading history affects the final principal strain behavior
but similar orientation of localized bands and maximum values are reached. The
numerically predicted strains agree well with those in the unfractured notches where
only damage processes on the micro-scale are active and no cracks occurred.

Distributions of the numerically predicted stress triaxiality η in the notched region
of the X0-specimen for different loading histories are shown in Fig. 3.9. In particular,
at the end of the proportional loading path P 1/0 end (Fig. 3.9(a)) on the surface of
the notch (S) a wide band with η about 0.25 can be seen. In the longitudinal section
(L) a wide area of these stress triaxiality values are predicted with some parts with
slightly higher values. In the cross section (C) the stress triaxiality distribution is
nearly homogeneous with values of about 0.25. These stress triaxialities are typical
for a shear-tension stress state which occurs here during tensile loading in axis 1 only
leading to shear-tension mechanisms in the notches of the X0-specimen. During the
non-proportional path NP1 1/-1 to 1/0 the specimen is in the first step loaded by
F1 = −F2 up to 3.5 kN and at the end of this load step before the axis switch (as)
of the loads takes place a wide area of nearly zero stress triaxialities is numerically
predicted on the surface (S), in the longitudinal section (L) and in the cross section
(C) of the notches of specimen (Fig. 3.9(b)). The load ratio F1 : F2 = −1 leads to
shear mechanisms which are nearly homogeneously distributed in the notched part



68 Michael Brünig, Moritz Zistl, and Steffen Gerke

-0.33 1.00

�

(b) NP1 1/-1 to 1/0 as

(a) P 1/0 end
S L C

(d) NP2 1/-1 to 1/0 as

(f) NP 1/+1 to 1/0 as

S L C S L C

S L C S L C

S L C S L C

(c) NP1 1/-1 to 1/0 end

(e) NP2 1/-1 to 1/0 end

(g) NP 1/+1 to 1/0 end

Fig. 3.9 Stress triaxialities η: S =surface, L = longitudinal section, C = cross section

of the specimen. After further loading up to the proportional part (NP1 1/-1 to 1/0
end) again stress triaxialities of about 0.25 occur in the notch (Fig. 3.9(c)) and the
distribution is very similar to that one after the proportional loading path (Fig. 3.9(a)).
In the second non-proportional path NP2 1/-1 to 1/0 with the first load step F1 = −F2
up to 3.8 kN before axis switch (as) again nearly zero stress triaxialities are predicted
(Fig. 3.9(d)) and they agree well with the stress triaxialites shown in Fig. 3.9(b) for
the same load ratio but earlier in the load step. This clearly indicates that the stress
triaxialities remain nearly unchanged during loading with the same load ratio. At
the end of this load path (NP2 1/-1 to 1/0 end) the stress triaxialities shown in Fig.
3.9(e) are again similar to those ones after the proportional loading path (Fig 3.9(a)).
On the other hand, after the first step of the non-proportional path NP 1/+1 to 1/0
before axis switch (as) takes place the stress triaxiality shown in Fig. 3.9(f) is high
with maximum of η = 0.65 on the surface (S) and higher maxima up to 1.0 in the
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center of the notch (see (L) and (C)) and remarkable gradients of the stress triaxiality
can be seen in the notch. This stress triaxiality distribution is typical for high tensile
loading with remarkable amount of positive hydrostatic stress caused by F1 = F2 and
the geometry of the notches. After further loading up to the proportional path (NP
1/+1 to 1/0 end) the distribution of the stress triaxiality shown in Fig. 3.9(g) is again
similar to all other states at the end of the respective experiments (Figs. 3.9(a), (c)
and (e)). This clearly indicates that the final stress state is not affected by the loading
histories and only depends on the final load ratio.

Corresponding distributions of the Lode parameter ω in the notched parts of the
X0-specimen are shown in Fig. 3.10. At the end of the proportional and the different
non-proportional loading paths very similar distributions and values are numerically
predicted (see Figs. 3.10(a), (c), (e) and (f)) with values of about 0.5 and nearly

(b) NP1 1/-1 to 1/0 as

(a) P 1/0 end
S L C

(d) NP2 1/-1 to 1/0 as

(f) NP 1/+1 to 1/0 as

S L C S L C

S L C S L C

S L C S L C

(c) NP1 1/-1 to 1/0 end

(e) NP2 1/-1 to 1/0 end

(g) NP 1/+1 to 1/0 end

-1.00

�

+1.00

Fig. 3.10 Lode parameters ω: S =surface, L = longitudinal section, C = cross section
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homogeneous fields in the notched region. In addition, after the first steps of the non-
proportional paths NP1 and NP2 the Lode parameter is about zero with homogeneous
distribution in the center of the notch (Figs. 3.10(b) and (d)) corresponding to shear
stress behavior. However, after the first step of the non-proportional path NP (Fig.
3.10(f)) the distribution of the Lode parameter shows remarkable gradients in the
notch with values up to +1.0 at the boundaries. Again it can be concluded that the
final stress state is not affected by the loading histories and only depends on the final
load ratio.

Based on the numerical simulations the equivalent plastic strains γ characterizing
the amount of plastic deformations can be analyzed in detail where again load steps
before axis switch of the loads and at the end of the experiments are considered.
In particular, at the end of the proportional loading path (Fig. 3.11(a)) a slightly
diagonal localized band of the equivalent plastic strain can be seen with values up to
0.27 on the surface (S) of the notch whereas slightly smaller plastic strains occur in
the longitudinal section (L). In the center of the cross section (C) equivalent plastic
strains up to 0.27 are predicted with remarkable gradients. After the first load step of
the non-proportional loading path NP1 1/-1 to 1/0 before axis switch (as) of the loads
(Fig. 3.11(b)) a vertical band of localized equivalent plastic strains can be seen with
small values up to 0.09 on the surface (S) and smaller values in the inner longitudinal
section (L). This behavior with higher values on the surfaces and smaller ones in the
center can also be observed in the cross section (C). However, at this loading stage
the plastic deformations are very small and do not remarkably affect distribution of
plastic strains occurring during further loading. Thus, at the end of this experiment
the distribution of the equivalent plastic strain shown in Fig. 3.11(c) is very similar
to that one at the end of the proportional loading path (Fig. 3.11(a)) whereas the
values are smaller due to earlier fracture discussed above (see Figs. 3.5 and 3.6). In
the alternative non-proportional experiment NP2 with later axis switch of the loads
remarkably larger equivalent plastic strains are predicted after the first load step,
see Fig. 3.11(d). The localized band is again vertical but with values up to 0.20 on
the surfaces of the notch of the X0-specimen and slightly smaller values of about
0.17 in the center. At the end of this experiment equivalent plastic strains up to 0.30
can be seen in Fig. 3.11(e). The orientation of the final localized band is vertical
only with slight diagonal tendency showing that the equivalent plastic strain after
the first load step has an influence on the amount and on the distribution of the final
plastic strains. On the other hand, after the first load step of the non-proportional
loading path NP 1/+1 to 1/0 the equivalent plastic strain remains marginal which
can be seen as a consequence of the stress state predominated by the remarkable
hydrostatic part, see Fig. 3.9(f), which usually does not lead to plastic deformations
in ductile metals. During further loading along the proportional path plastic strains
occur leading to the distribution shown in Fig. 3.11(g) which is very similar to that
one after the proportional loading path (Fig. 3.11(a)) whereas larger values up to 0.30
are numerically predicted caused by the larger displacements and loads at fracture.
Thus, distribution and amount of the equivalent plastic strain depend on the loading
path.
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Fig. 3.11 Equivalent plastic strains γ: S =surface, L = longitudinal section, C = cross section

Furthermore, based on the numerical analysis the behavior of the equivalent damage
strain μ occurring during proportional and various corresponding non-proportional
loading histories can be studied in detail. In particular, after the proportional loading
path a diagonally oriented localized band of equivalent damage strain can be seen
in Fig. 3.12(a). On the surface of the notch (S) μ = 0.06 is predicted whereas only
0.03 is reached in the longitudinal section (L). In the cross section (C) which is the
cut in the mid-plane of the notch maximum values of μ = 0.06 can only be seen on
the left and right boundaries whereas smaller equivalent damage strains up to 0.03
appear in the center of the notch. During the non-proportional path NP1 after the
first load step the equivalent damage strain remains marginal (Fig. 3.12(b)) and at the
end of this step again a slightly diagonal localized band can be seen (Fig 3.12(c)).
However, the values are only about 0.03 on the surface (S) and 0.02 in the center (L).
In the cross section (C) a region with values of about 0.02 can be seen on the left
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Fig. 3.12 Equivalent damage strains μ: S =surface, L = longitudinal section, C = cross section

and right boundaries whereas damage is predicted to be smaller in other parts. In
the alternative non-proportional path NP2 few points with small equivalent damage
strain occur after the first loading step before axis switch indicating onset of damage
at this stage of loading (Fig. 3.12(d)). During further deformation of the X0-specimen
a vertical localized band of equivalent damage strains occurs with values up to 0.05
on the surface (S) and 0.03 in the center (L) (Fig. 3.12(e)). In the cross section (C)
damage reaches values of about 0.05 on the left and right boundaries and slightly
smaller equivalent damage strains are numerically predicted in the center of the notch.
During the non-proportional path NP 1/+1 to 1/0 no damage is predicted after the
first load step (Fig. 3.12(f)) but at the end remarkable equivalent damage strains up to
0.16 can be seen in a localized band on the surface of the notch (S) whereas only 0.09
are reached in the the center (L) (Fig. 3.12(g)). In the cross section (C) the equivalent
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damage strains also reaches the maximum of 0.16 on the left and right boundaries
whereas in the center μ = 0.09 is predicted. It should be noted that the form of the
localized bands of the equivalent plastic strains (Fig. 3.11) and the equivalent damage
strains (Fig. 3.12) for the investigated loading histories are very similar indicating
that damage mainly occurs in the regions where plastic deformations take place.

Figure 3.13 shows photos of the central parts of the fractured specimens as well as
SEM pictures of the fracture surfaces. In the photos, the fracture lines correspond to
the location and orientation of the bands of maximum equivalent damage strains (Fig.
3.13) and only show slight differences whereas effect of the loading history on the
damage and fracture processes on the micro-scale can be clearly seen in the SEM
pictures. In particular, at the end of the proportional loading path (P 1/0 end) growth
of voids in combination with shear effects can be seen which is the typical damage and
fracture mechanism for the tension-shear deformation behavior in the notched regions
of the X0-specimen under the only load F1. At the end of the first non-proportional
loading path (NP1 1/-1 to 1/0 end) remarkable shear effects in combination with
few voids are visualized by SEM. First loading up to F1 = −F2 = 3.5 kN causes
inelastic shear deformation behavior in the notches leading to micro-shear-cracks.
After unloading of F2 additional final loading with F1 leads to additional growth of
some voids with simultaneous formation of further micro-shear-cracks leading to
the shear-predominated fracture behavior shown in Fig. 3.13(b). Compared to the
proportional loading history the shear effects are more predominant with less and
smaller voids on the micro-level. On the other hand, at the end of the alternative
non-proportional loading path (NP2 1/-1 to 1/0 end) more pronounced shear effects
in combination with few voids are visualized by SEM which can be seen as a result
of larger displacements at the load switch compared to the case (NP1 1/-1 to 1/0 end).
During this non-proportional loading path first loading up to F1 = −F2 = 3.8 kN
leads to these remarkable inelastic shear deformation behavior in the notches causing
micro-shear-cracks. After unloading of F2 additional final loading with F1 causes
growth of some voids with simultaneous formation of further micro-shear-cracks
leading to the shear-predominated fracture behavior shown in Fig. 3.13(c). Compared
to the proportional loading history the shear effects are more predominant with less
and smaller voids on the micro-level. Furthermore, after the last non-proportional
loading path (NP 1/+1 to 1/0 end) remarkable voids can be seen in Fig. 3.13(d) which
are slightly sheared and superimposed by few micro-shear-cracks. In this case first
loading with F1 = F2 causes tensile stresses with high portion of hydrostatic stress
due to the notches which causes on the micro-level predominant growth of voids.
After decrease of F2 to zero further loading in axis 1 only leads to further growth of
voids with small superimposed shear effects. Compared to the proportional loading
path more and larger voids can be seen on the micro-scale which are less sheared.
Based on these observations on the micro-level it can be concluded that the loading
path remarkably affects the damage and fracture processes and the mechanisms
occurring firstly are the predominant ones in the final fracture process.
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Fig. 3.13 Fractured specimens and SEM pictures of the fracture surfaces
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3.4 Conclusions

The paper has discussed a continuum framework to model damage of ductile materials.
The phenomenological continuum approach takes into account different branches in
the damage criterion corresponding to different stress-state-dependent mechanisms on
the micro-level. Evolution of plastic and damage strains is modeled by rate equations.
Stress-state-dependent functions for micro-mechanically motivated parameters have
been developed by numerical analysis on the micro-scale studying the behavior
of three-dimensionally loaded void-containing representative volume elements. To
validate the phenomenological continuum damage model and the proposed stress-sate-
dependent functions new experiments with the biaxially loaded X0-specimen have
been performed and results have been compared with those taken from corresponding
numerical simulations. Focus was on different loading paths with the same final
loading ratio. The experimental investigations revealed the effect of non-proportional
loading paths on the damage and fracture behavior in ductile metals compared to
proportional ones. In the critical notched regions of the specimen various shear-tension
behaviors are caused by different proportional and non-proportional biaxial loading
histories leading to different strain states as well as to different stress-state-dependent
damage and fracture processes on the micro-scale. Thus, evolution of damage and
fracture processes on the micro-level are remarkably affected by the loading history
and have to be considered in validation of accurate material models predicting failure
and life time of engineering structures.
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Chapter 4
Creep in Heat-resistant Steels at Elevated
Temperatures

Johanna Eisenträger and Holm Altenbach

Abstract Power generation is one of the most important applications for components
made of heat-resistant steels. Here, creep deformations occur due to the prevailing
high temperatures. In close connection with the aim to reduce the emissions and
costs involved in power generation, precise constitutive modeling for creep has
gained importance over the past years. Therefore, the current contribution provides a
brief overview concerning the state-of-the-art in constitutive modeling for creep of
heat-resistant steels. In its first part, basic notions about creep are introduced, and
microstructural mechanisms are discussed. The second part presents commonly used
models for creep in heat-resistant steels, such as the unified Chaboche-type models,
nonunified approaches, as well as mixture models. Furthermore, the endochronic
theories and multi-surface models are briefly introduced. The contribution concludes
with a section on the constitutive modeling of creep damage, where the physically-
based cavity growth mechanism models as well as approaches based on continuum
damage mechanics are discussed.

Keywords: Creep · Heat-resistant steels · Constitutive modeling

4.1 Introduction

When modeling the mechanical behavior of engineering components in a high-
temperature environment, it is crucial to consider creep, i.e. the inelastic deformation
under sustained loads (below the yield stress σy) particularly at elevated temperatures
(0.3–0.7 of the liquidus temperature TL). This phenomenon can influence the mechan-
ical behavior significantly and reduces the lifetime of components to a great extent.
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One of the most important high-temperature applications for heat-resistant steels is
power generation. In power plants, two major operating modes can be distinguished:
stationary and intermittent service. During stationary service, prevailing high temper-
atures around 600◦C (Masuyama, 2001; Breeze, 2005) induce creep deformations
under constant loads. In order to account for the discontinuous power generation of
renewable sources such as solar or wind energy, the output of conventional fossil-fuel
and nuclear power plants is continuously adapted, resulting in frequent start-ups and
shut-downs of these power plants. Thus, power plant components are also affected by
fatigue. The combination of stationary and intermittent service results in creep-fatigue
loads, i.e. cyclic loads with long holding times, on the components (Fournier et al,
2005; Röttger, 1997).

Within the last twenty years, the need to reduce emissions of power plants and
to improve the thermodynamic efficiency in power generation has become obvious.
These aims can be achieved by raising the operating temperatures – a measure, which
would induce even higher loads on engineering components. In order to reduce costs
and emissions, creep failure must be prevented, and the lifetime of components
should be predicted precisely. This poses complex demands on employed constitutive
models. As additional challenges, which corresponding constitutive models have to
tackle, multiaxial, non-isothermal, and cyclic operating conditions of power systems
are becoming the norm. Thus, not only long-term creep strains should be predicted
accurately, but also short-term plastic strains as well as the interaction of both
deformation modes.

The preceding considerations clearly show that although research in creep has
been conducted for a long time, i.e. since the beginning of the 20th century, this
topic has gained importance throughout the years. For this reason, the contribution at
hand aims at providing a brief overview concerning the state-of-the-art in constitutive
modeling for creep of heat-resistant steels. Note that it is impossible to provide a
complete overview of this topic due to the great variety of developed constitutive
models and the immense number of published works. Instead, this paper seeks to
highlight a selection of commonly used constitutive models for creep in heat-resistant
steels. Any inadvertent omission of relevant publications in the wide body of literature
is not done on purpose and we wish to apologize in advance.

The contribution at hand is divided into five sections. After this first introductory
part, basics about creep in heat-resistant steels, such as microstructural features of
these alloys, a general definition of creep, and the classical creep curve, are discussed in
Sect. 4.2. The third and major section of this contribution presents various constitutive
models for creep, whereby we distinguish between early approaches, unified, and
nonunified models. Section 4.4 provides a brief overview of two major classes of
constitutive models for creep damage: the cavity growth mechanism models and
approaches based on continuum damage mechanics. The final section gives a brief
summary and identifies areas for further research.
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4.2 Basics About Creep in Heat-resistant Steels

4.2.1 Microstructure of Heat-resistant Steels

Since creep is based on various microstructural processes, this section focuses on
typical microstructural characteristics of heat-resistant steels. Note that the influence of
the microstructure on the different creep stages is discussed in Sect. 4.2.3. Furthermore,
the content of this section is primarily based on standard monographs from the field
of material sciences, such as Czichos et al (2014); Weißbach et al (2015).

The microscale of metallic materials exhibits a regular structure, which is com-
monly referred to as lattice. Using a microscope, one can identify individual grains,
i.e. areas with similar lattice orientation, and their boundaries. The grain boundaries
are two-dimensional lattice defects, which separate adjacent grains. With respect to
the magnitude of the disorientation of adjacent grains, one distinguishes high-angle
and low-angle grain boundaries. In general, the boundary between adjacent grains
with a disorientation angle lower than ≈ 15◦ is called “low-angle grain boundary”,
whereas boundaries between adjacent grains with a higher disorientation angle are
referred to as “high-angle grain boundaries” (Priester, 2013). The lattice orientation
might vary slightly inside a grain. Thus, one can distinguish subgrains separated by
low-angle grain boundaries from other subgrains (Straub, 1995), cf. Fig. 4.1.

0.5μm

AA

BB

CC

0.25μm

Subgrain structure (TEM) Subgrain (TEM)

Subgrain (scheme)

Fig. 4.1 Typical microstructure of heat-resistant steels (A carbides, B dislocations, C boundary), cf.
Straub (1995); Polcik (1998); Eisenträger (2018)
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Heat-resistant steels comprise several phases, such as ferrite, martensite, austenite,
and precipitates. If the carbon content of an alloy does not exceed 0.2%, lath martensite
represents the primary phase. Such alloys are not capable of forming an austenitic
phase. Between and also inside the martensite laths, dislocations (one-dimensional
lattice defects) concentrate and form subgrain boundaries. Furthermore, high-angle
grain boundaries separate lath packs of different orientations. Moreover, carbides, i.e.
the most common precipitates in heat-resistant steels, are an important part of the
microstructure and tend to concentrate on the (sub)grain boundaries (Straub, 1995).
This concentration of the carbides on the boundaries is also illustrated in Fig. 4.1.

4.2.2 Definition of Creep and Influence of Stress and Temperature

The phenomenon “creep” describes the continuous increase in deformation under
constant loads, taking place particularly at elevated temperatures and under moderate
load levels. Creep is also closely related to relaxation, which refers to the continuous
decrease of the stress level in a material subjected to constant prescribed strains at
high temperatures. Note that the time-dependent inelastic deformation of structures
is not only affected by creep and relaxation, but stress redistribution occurs as well.
Furthermore, in contrast to creep in homogeneous bulk materials, where uniaxial
stress states prevail, creep in structures results in multiaxial stress states, which should
be accounted for by a constitutive model.

Up to the present, various monographs on creep, particularly related to heat-
resistant steels, have been published and could be consulted to find experimental
data of creep tests and get a brief overview of established constitutive models for
creep (Hult, 1966; Ilschner, 1973; Odqvist, 1974; Frost and Ashby, 1982; Nabarro
and de Villiers, 1995; Penny and Marriott, 1995; Abe et al, 2008; Naumenko and
Altenbach, 2007, 2016). An essential part of constitutive models for creep are
stress and temperature response functions, which describe the dependence of the
strain rate on stress and temperature, respectively. In order to find adequate stress
and temperature response functions, one should take into account that different
deformation mechanisms occur in a material, depending on the applied stress and
temperature level. For this purpose, deformation mechanism maps (Frost and Ashby,
1982; Nabarro and de Villiers, 1995; François et al, 2012) can be consulted since
these maps indicate the dominant deformation mechanism for given stresses and
temperatures. In the following, let us briefly introduce commonly used stress and
temperature response functions with respect to one-dimensional stress and strain
states.

Let us assume that the inelastic strain rate is a function of the stress σ and the
temperature T

�εin = f (σ,T). (4.1)

This function can be extended to include further influences. However, the inelastic
strain rate function of this type has a disadvantage: the identification is difficult if
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we have a common function for all influences. To solve this problem, a separation
ansatz is frequently utilized to define the dependence of the inelastic strain rate �εin on
the stress σ and the temperature T . Thereby, the inelastic strain rate is approximated
as a product of the stress response function fσ and the temperature response
function fT (Naumenko and Altenbach, 2016):

�εin = fσ(σ) fT (T). (4.2)

The Norton power law represents one of the most commonly used choices for the
stress response function (Frost and Ashby, 1982):

fσ(σ) = Aσn. (4.3)

The material parameters A and n (creep exponent) should be estimated from experi-
ments. Diffusional creep is usually described by employing a linear stress function
(Herring, 1950; Harper and Dorn, 1957; Coble, 1963; Lifshitz, 1963), i.e. n = 1:

fσ(σ) = Bσ. (4.4)

Another common choice to describe creep at low temperatures and wide stress ranges
is a hyperbolic function proposed by Dyson and McLean (2001):

fσ(σ) = C sinh (Dσ) . (4.5)

Note that the material parameters B, C, and D must be determined based on
experimental data. To express the dependence of the inelastic strain rate on temperature,
the Arrhenius function is a popular choice (Dorn, 1955; Ilschner, 1973; Xiao and
Guo, 2011):

fT (T) = α exp
(
−

Q
RT

)
(4.6)

with the material parameter α, the activation energy Q, and the universal gas constant
R ≈ 8.31696 J (mol K)−1.

As has already been pointed out, the temperature exerts a significant influence
on creep and relaxation phenomena. This is due to the fact that creep is based on
microstructural processes, which are highly dependent on temperature. However,
because of the great variety of materials affected by creep, the classification of creep
with respect to temperature is not uniform in literature, i.e. a clear and widespread
definition of low and high-temperature creep does not exist. Note that temperature
ranges in creep are often indicated with respect to the liquidus temperature TL of
the material under consideration. According to Naumenko and Altenbach (2016),
high-temperature materials are used at a temperature range of 0.3–0.7TL. In Frost
and Ashby (1982), it is stated that polycrystalline solids start to creep at 0.5TL,
whereas a temperature level of 0.9TL is referred to as “very high” temperature level.
In addition, according to McLean (1966), the temperature range 0.3–0.9TL is most
important for engineering applications, while in this main creep range, two separate
creep regimes are distinguished, low temperature (LT) creep at 0.3–0.5TL and high
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temperature (HT) creep at 0.5–0.9TL. Thus, in the paper at hand, we will define LT
creep with respect to a temperature range of 0.3–0.5TL, while HT creep is assumed
to occur in a temperature range of 0.5–0.7TL. Higher temperatures are related to
other mechanisms and should be presented by the so-called power-break law.

4.2.3 Classical Creep Curve. Primary, Secondary, and Tertiary
Creep

During a creep test, a tensile specimen is subjected to a sustained load under a
constant temperature level. As main result of a creep test, one obtains a creep curve,
as schematically depicted in Fig. 4.2. Further typical examples of creep curves can be
found in several monographs (Odqvist, 1974; Odqvist and Hult, 1962; Penny and
Marriott, 1995) and papers related to the experimental analysis of creep (El-Magd et al,
1996; Hyde et al, 1999; Kloc et al, 2001). Andrade, as one of the first researchers
conducting creep tests, introduced the division of the classical creep curve into
primary, secondary, and tertiary stage (da C. Andrade, 1910, 1914), as indicated by
the symbols “I”, “II”, and “III” in Fig. 4.2. In the following, all three creep stages
are explained, and the governing microstructural mechanisms are discussed. Further
information on this topic can be found in Frost and Ashby (1982); Nabarro and
de Villiers (1995); Rösler et al (2012).

After applying a load to a specimen at the beginning of a creep test, there is an
instantaneous elastic deformation of the specimen. Afterwards, the primary creep
stage prevails. This stage is marked by a decreasing strain rate, which is primarily due
to hardening processes, i.e. the movement of dislocations is inhibited due to subgrain
boundaries, precipitates, and the accumulation of dislocations. However, recovery
and relaxation processes take place as well, e.g. the restructuring of lattice defects
or thermally activated changes in the dislocation structure, such that dislocations
annihilate, climb, and glide. Constitutive models for primary creep often involve a
backstress (Orowan, 1934a,b,c; Malinin and Khadjinsky, 1972; Estrin and Mecking,
1984; Miller, 1987; Krempl, 1999; Dyson and McLean, 2001), cf. Sect. 4.3.

The secondary creep stage is marked by an approximately constant strain rate, cf.
Fig. 4.2, since hardening and recovery processes are balanced. This is in contrast

Fig. 4.2 Typical idealized
creep curve under constant
stress and temperature: strain ε
vs time t time t

st
ra
in
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to the primary creep stage, which is dominated by hardening processes. Frequently,
this stage is also referred to as “stationary” creep – a term, which should be used
with caution, since it does not account for the various instationary processes and
changes on the microstructural level. Note that the inelastic strain rate is not only
constant, but also attains its minimum during this stage. Due to the constant strain
rate, which simplifies the formulation of a constitutive model significantly, the first
constitutive models for creep were related to secondary creep. Within this classical
theory of creep, potentials are introduced (Odqvist, 1974; Odqvist and Hult, 1962).
By deriving these creep potentials with respect to the stresses, one obtains a relation
for the inelastic strain rate.

In addition, there is the tertiary creep stage, which marks the final phase of a creep
test. During this stage, the deformation is accelerated by an increasing strain rate, cf.
Fig. 4.2. This increase in strain rate is attributed to damage and softening processes,
such as the formation, growth, and coalescence of voids, subgrain coarsening, the
coarsening of precipitates such as carbides (particularly at the grain boundaries), and
microstructural aging. The constitutive modeling of tertiary creep is closely related
to the simulation of damage processes, cf. Sect. 4.4.

Above considerations are only valid for one-dimensional stress and deformation
states. However, creep in structures is usually a multiaxial process. In ideal circum-
stances, constitutive models for multiaxial creep are calibrated with experimental data
from multiaxial creep tests. Typical examples for experimental results of multiaxial
creep tests can be found in Lin et al (2005b); Kowalewski (2001). For most materials,
primary and secondary creep is independent of the type of stress state such that a
good correlation of the von Mises equivalent stress σvM =

√
3
2σσσσσσσσσσσσσσσσσ

′ :σσσσσσσσσσσσσσσσσ′ with the strain
rate can be established. Here, σσσσσσσσσσσσσσσσσ′ denotes the deviator of the stress tensor. Thus, for
primary and secondary creep, the results of uniaxial creep tests can also be used
to calibrate the constitutive model. However, in the tertiary creep stage, the strain
rate depends strongly on the stress state such that the von Mises stress is often
not applicable (Naumenko and Altenbach, 2016) and a corresponding constitutive
model should be formulated and calibrated based on multiaxial experimental creep
data. Stress state dependent creep is discussed in Rabotnov (1969); Altenbach and
Zolochevsky (1992, 1994); Altenbach et al (1995) and the references within.

Last but not least it is worth pointing out that the creep curve in Fig. 4.2 is
idealized and serves only as an example to illustrate the three creep stages. One
should keep in mind that the real shape of a creep curve varies strongly depending
on the examined alloy. As one example, creep curves for 9–12% Cr steels, which
are typical representatives of heat-resistant steels, do not usually exhibit a secondary
stage (Simon et al, 2007; Ringel et al, 2004; Blum, 2008; Kimura, 2004). Instead
of a constant strain rate, only the minimum strain rate can be extracted from the
creep curves. Furthermore, for these alloys, the tertiary creep is particularly due to
the coarsening of subgrains as main softening process (Straub, 1995). Nevertheless,
other softening and damage processes, such as the coarsening of carbides and the
formation of voids, also take place at the microstructure. In order to account for
this pronounced softening effect, additional evolution equations can be incorporated
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into the constitutive models, cf. for example the constitutive model presented in
Sect. 4.3.3.2.

4.3 Constitutive Modeling of Creep

This section presents commonly used constitutive models for creep in heat-resistant
steels. It is composed of three parts, while the first part describes the so-called “early
approaches”, i.e. classical plasticity theory, the endochronic theory of Valanis,
and the multi-surface models initiated by Mróz. Section 4.3.2 discusses various
nonunified models, which introduce separate strain measures to describe creep and
plasticity. The unified models, using only one inelastic strain to simulate both creep
and plasticity, are reviewed in Sect. 4.3.3.

Since the research on creep started already at the beginning of the 20th century with
(da C. Andrade, 1910, 1914), an immense number of papers presenting experimental
creep data and various constitutive models for rate-dependent inelasticity has been
published, such that we will only name typical examples in the following. In Benallal
et al (1989); Bruhns et al (1992); Lemaitre and Chaboche (1994); Haupt and Lion
(1995); Khan and Jackson (1999); Krempl (1979); Krempl and Khan (2003), detailed
experimental investigations of inelastic properties of metals can be found. Furthermore,
reviews of various aspects of viscoplasticity are available, e.g. Perzyna (1966); Walker
(1981). Typical examples for constitutive theories for the viscoplastic behavior of
metals are the treatises (Haupt and Lion, 1995; Krempl, 1987; Perzyna, 1966; Lion,
2000).

The earliest constitutive models for creep in heat-resistant steels are theoretical
approaches without internal variables (Stowell, 1957; Perzyna, 1963). Next, viscoplas-
tic models including internal variables are presented, cf. Geary and Onat (1974);
Bodner and Partom (1975); Hart (1976); Miller (1976a,b); Ponter and Leckie (1976);
Krieg (1975). The concept of internal variables has been introduced by (Coleman
and Gurtin, 1967). This concept states that the stress state depends on the strain
as well as on internal variables, which represent a material state depending on the
process history or, with other words, an evolution process. For the internal variables,
ordinary differential equations (ODEs) need to be formulated with respect to time
(creep behavior) or load (plasticity), the so-called “evolution equations”. Up to the
present, internal variables are frequently used to describe inelastic material behavior.
The first models for creep in heat-resistant steels including internal variables have
been refined in the 80s, cf. Stouffer and Bodner (1979); Walker (1981); Chaboche
and Rousselier (1983a,b); Estrin and Mecking (1984); Krempl et al (1986); Lowe
and Miller (1986).

Since a great variety of constitutive models on creep in heat-resistant steels is
available, it is important to establish a systematic classification of these approaches.
Although there are several criteria for classification, one often distinguishes two
general classes of constitutive models: physically-based (microscopic) models and
phenomenological (macroscopic) models (Charkaluk et al, 2002). Physically-based
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or microscopic models describe the macroscopic material behavior by considering
the microstructural evolution of an alloy. Internal variables based on microstructural
quantities, such as the dislocation density, are employed to reflect the micromechanics
of deformation. That is why both microscopic phenomena, such as the evolution of
microstructure, and macroscopic mechanical behavior, e.g. creep and relaxation, are
represented. Typical examples are the models presented in Bodner and Partom (1975);
Hart (1976); Miller (1976a,b); Stouffer and Bodner (1979); Sauzay et al (2005, 2008).
On the other hand, phenomenological or macroscopic models are formulated based
on the results of mechanical tests on a material. These models require significantly
less effort compared to the physically-based approaches, which demand for extensive
micrography to determine the involved parameters. For this reason, the majority of the
presented models in Sect. 4.3.2 and 4.3.3 belongs to the group of phenomenological
approaches.

4.3.1 Early Approaches

4.3.1.1 Classical Plasticity Theory

Since multiaxial creep behavior is similar to classical plasticity in certain aspects (in
both theories, it is assumed that the continuum behaves as a fluid), classical plasticity
theory has been directly employed for multiaxial creep analysis from 1900 to 1950.
Historical reviews on this theory can be found in the monographs of Penny and
Marriott (1995); Boyle and Spence (1983) or in the surveys Bruhns (2014, 2018).
However, this theory is limited in practical application due to its derivation from the
criteria of yielding failure. Furthermore, the physical damage process, cf. Sect. 4.2.3,
is not accounted for (Yao et al, 2007).

Within this theory, the results of uniaxial creep tests are used to formulate effective
stress criteria to compute the creep strains for multiaxial stress states. Thus, uniaxial
constitutive relationships, as already introduced in Sect. 4.2.2, form the basis for
modeling creep with classical plasticity theory. In Eq. (4.2), the separation ansatz
to describe the dependence of the uniaxial strain rate on stress and temperature has
already been introduced. In many cases, a specific time response function ft is also
taken into account, such that Eq. (4.2) can be modified as follows (Boyle and Spence,
1983; Penny and Marriott, 1995):

�εin = fσ(σ) fT (T) ft (t). (4.7)

This equation is a simplification of the generalized ansatz in Eq. (4.1). As already
pointed out in Sect. 4.2.2, Norton’s power law is widely used for the stress response
function, cf. Eq. (4.3), and the Arrhenius’s law in Eq. (4.6) is often utilized for the
temperature response function (Dorn, 1955). Furthermore, Bailey’s law represents a
common choice for the time response function (Bailey, 1935):
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ft (t) = Etm (4.8)

with the material parameters E and m.
In order to formulate a constitutive model for multiaxial creep based on the

previously introduced response functions with respect to the uniaxial stress state,
one should keep in mind that creep is a shear-dominated process for isotropic and
homogeneous materials (Boyle and Spence, 1983; Viswanathan, 1989). Based on this,
the following three assumptions are usually formulated to derive multiaxial creep
models (Boyle and Spence, 1983; Viswanathan, 1989):

1. Volume constancy is preserved during creep, such that the volumetric creep strain
rate tr

(
�εεεεεεεεεεεεεεεεεin) is zero.

2. The principal shear strain rates are proportional to the principal shear stresses.
3. The equivalent (von Mises) strain rate is related to the equivalent (von Mises)

stress in the same way as for the uniaxial case.

There are models which do not assume that the volume constancy is preserved. Such
models are presented in Altenbach et al (1995); Altenbach and Öchsner (2014);
Altenbach et al (2014) and the references within. Models for steady-state multiaxial
creep and the application to high-temperature components can be found in Boyle and
Spence (1983); Penny and Marriott (1995).

4.3.1.2 Endochronic Theory

Another approach to model inelasticity in heat-resistant steels is the endochronic
theory, which has been developed in the 70s by (Valanis, 1970). In contrast to
phenomenological models with internal variables, where the present deformation
and stress state depends only on the present value of observable variables, this
theory requires the knowledge of the whole history of the deformation process. By
introducing a so-called “intrinsic” time, the endochronic theory is able to explain
phenomena, which classical plasticity theory could not cope with, such as cross and
cyclic hardening as well as initial strain problems. In a later work by Valanis, the
theory is slightly modified by introducing an internal time which is related to the
inelastic strain (Valanis, 1978). As further improvement, incremental or differential
forms of the integral relation of stress and strain for inelasticity are formulated
in Valanis and Fan (1983). Note that the obtained differential relation features a
form, which significantly deviates from classical plasticity theory as presented in the
previous section: no yield surface is introduced, and the typical distinction of elastic
and inelastic processes is not required.

Based on the initial works by Valanis, Watanabe and Atluri derive a differential
stress-strain relation based on the concept of intrinsic time (Watanabe and Atluri,
1986). Within this theory, the concept of a yield surface is retained, and elastic
and plastic processes are defined in an analogous way to the concepts in classical
plasticity. In order to allow for numerical solution of complex examples, the theory
is implemented in the finite element method (FEM) by employing a generalized
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midpoint-radial-return algorithm, which enables computing the stress with respect to
given strains.

4.3.1.3 Multi-surface Models

The multi-surface models represent another early approach to model inelasticity
in steels and have been initiated by (Mróz, 1967). In the framework of this theory,
several nested surfaces are introduced, whereby the smallest surface inside is the
yield surface. The other surfaces are the bounding surfaces, since the yield surface
always stays inside the bounding surfaces. If the yield surface meets the subsequent
bounding surface, which now becomes the active surface, they will stay “attached” to
each other at the current loading stress. The translation of the currently active surface
is defined by Mróz’s rule. Furthermore, the translation of the yield surface in the
stress space is described by kinematic hardening and a corresponding backstress.

Based on the idea of the multi-surface model in Mróz (1967), (Dafalias and
Popov, 1975, 1976) as well as (Krieg, 1975) developed two-surface models. Here,
separate isotropic and kinematic hardening rules for the bounding surface and the
yield surface are utilized. Note that Chaboche points out the great flexibility in
modeling when using multi-surface models due to their additional degrees of freedom.
However, these models exhibit significant drawbacks for complex nonproportional
conditions (Chaboche, 2008).

4.3.2 Nonunified Models

Macromechanical models for creep and plasticity can be classified as unified and
nonunified models. The notion of unified models has been established by (Chaboche
and Rousselier, 1983b). This type of models accounts for only one time-dependent
inelastic strain, whereas nonunified models introduce separate variables for instanta-
neous plastic strains and time-dependent inelastic deformation.

A very popular nonunified approach for creep in heat-resistant steels is the two-
layer viscoplasticity model, which was originally developed by Kichenin et al.
to describe the visco-elastic behavior of polyethylene (Kichenin et al, 1996). As
depicted in Fig. 4.3, two independent parallel networks are introduced: a viscous
(time-dependent) and a plastic (time-independent) component. By introducing the
stresses σV and σP in the viscous and plastic network, respectively, one can formulate
the governing equations of the two-layer viscoplasticity model for one-dimensional
stress and strain states Kichenin et al (1996):

σ =σV + σP (4.9)
σV = η �εV = EV (ε − εV) (4.10)
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Fig. 4.3 Two-layer viscoplas-
ticity model (Kichenin et al,
1996): Young’s moduli EP
and EV in plastic and viscous
network, viscosity η, thres-
hold stress σy (yield stress),
coefficient α for kinematic
hardening EV

EP

η

σy, α

σP =

⎧⎪⎪⎨⎪⎪⎩
EPε if σP ≤ σy

σy +
αEP
α + EP

(
ε −
σy

EP

)
if σP > σy

(4.11)

with the total strain ε, the strain εV in the viscous element, the Young’s moduli EP
and EV in the plastic and viscous network, respectively, the viscosity η, the threshold
stress σy, and the coefficient α for kinematic hardening.

Based on the initial work by Kichenin et al., Figiel and Günther implement a
nonlinear isotropic and kinematic hardening model in the elastic-plastic network,
whereas Norton’s power law, cf. Eq. (4.3), is used for the elastic-viscous network
to describe creep deformations (Figiel and Günther, 2008). Note that the two-layer
viscoplasticity model is also implemented in the commercial finite element code
ABAQUS. Later, a similar two-layer viscoplasticity model is introduced in Leen
et al (2010) with combined isotropic and kinematic hardening for plasticity and a
power law creep model in order to describe the cyclic behavior of a high nickel-
chromium alloy at 20–900◦C. Furthermore, Charkaluk and co-workers use the
two-layer viscoplasticity model to represent the cyclic behavior of a cast iron under
thermomechanical loading (Charkaluk et al, 2002). Temperatures up to 700◦C are
taken into account. In Solasi et al (2007), the analysis of polyelectrolyte membranes in
fuel cells is performed based on the two-layer viscoplasticity model. With respect to
heat-resistant steels, Farragher et al. predict the thermo-mechanical cyclic behavior
of a P91 steel at 400◦C and 500◦C with the two-layer viscoplasticity model (Farragher
et al, 2013, 2014).

In the following, let us indicate additional, more recent examples of various
non-unified models for heat-resistant steels. Shang, Leen, and Hyde formulate
another nonunified constitutive model for creep incorporating isotropic and kinematic
hardening models to describe the behavior of superplastic forming dies (Shang
et al, 2006). The nonunified elasto-viscoplastic model of Velay et al. incorporates
several internal variables to simulate the cyclic behavior of the tempered martensitic
steel 55NiCrMoV7 (Velay et al, 2006). Furthermore, another nonunified model is
proposed in Wang et al (2015) in order to model the thermo-mechanical behavior
of a high-chromium heat-resistant steel. Thereby, the authors decompose the total
inelastic strain into a creep strain and a viscoplastic component.
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However, several disadvantages of nonunified constitutive models have been
pointed out, cf. e.g. Chaboche and Rousselier (1983b). Particularly for cyclic creep
and the interaction of creep and plastic deformation, the separation of creep and
plasticity gives unsatisfactory results when compared to experimental data (Krempl,
2000). Furthermore, the notion of “instantaneous” strains is not precisely defined.
Additionally, numerical difficulties can occur when implementing different flow rules
for instantaneous plastic strains and time-dependent inelastic strains. As a remedy,
unified models are available and will be discussed in the next section.

4.3.3 Unified Models

4.3.3.1 Chaboche-type Models

The unified model by Chaboche represents a widespread approach to model creep and
viscoplasticity in heat-resistant steels. General examples for unified Chaboche models
can be found in Miller (1976a,b, 1987); Hart (1976); Cernocky and Krempl (1979,
1980); Walker (1981). For more specific applications of this type of constitutive model
to creep at high temperatures, the interested reader is referred to the papers Moreno
and Jordan (1986); Delobelle and Oytana (1984); Chaboche and Nouailhas (1989);
Chan et al (1988, 1989). Within the unified viscoplasticity model of Chaboche
(Chaboche and Rousselier, 1983a,b), plastic and creep strains are represented by
only one parameter, the inelastic strain. Frequently, the description of the material
behavior is refined by considering kinematic hardening.

Since the Chaboche model is usually formulated in combination with kinematic
hardening, we will provide a short overview on this phenomenon in the following.
Kinematic hardening is a commonly used method to implement the Bauschinger
effect in a constitutive model. This effect refers to the increase of yield strength in
the direction of plastic flow during plastic deformation. In the reverse direction, the
yield strength decreases such that the yield stress in compression is lower than the
yield stress in tension (Zhang and Jiang, 2008). Kinematic hardening describes the
translation of the elastic domain in the stress space (Lemaitre and Chaboche, 1994),
such that the Bauschinger effect can be taken into account. Therefore, all models for
kinematic hardening employ a specific internal variable, the backstress tensor, which
defines the position of the loading surface (Lemaitre and Chaboche, 1994; Chaboche
and Rousselier, 1983a,b). One of the first models to describe kinematic hardening is
the linear model by (Prager, 1949), where the following evolution equation is used
for the backstress βββββββββββββββββ:

�βββββββββββββββββ = B1 �εεεεεεεεεεεεεεεεεin (4.12)

with the material parameter B1 and the inelastic strain rate tensor �εεεεεεεεεεεεεεεεεin. However, a
linear hardening behavior, i.e. the collinearity of the backstress with the inelastic strain,
is rarely observed in experiments. Therefore, the nonlinear Armstrong-Frederick
model is now widely used (Armstrong and Frederick, 1966). This approach comprises
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a nonlinear function for kinematic hardening with a recall term to describe the
dynamic recovery:

�βββββββββββββββββ = B2 �εεεεεεεεεεεεεεεεεin − B3 �εin
vMβββββββββββββββββ, (4.13)

whereby B2 and B3 are material parameters, and �εin
vM =

√
2
3 �εεεεεεεεεεεεεεεεε

in : �εεεεεεεεεεεεεεεεεin denotes the von
Mises equivalent inelastic strain rate. It has been shown in Chaboche (2008) and
many other papers that the dynamic recovery term improves the simulation results
significantly. As a further improvement of the simulation results, Chaboche suggests
to superpose several backstresses (Chaboche and Rousselier, 1983a,b; Jiang and
Kurath, 1996):

βββββββββββββββββ =
r∑
i=1

βββββββββββββββββi (4.14)

with a separate evolution equation for each backstress:

�βββββββββββββββββi = B4i �εεεεεεεεεεεεεεεεε
in − B5i �ε

in
vMβββββββββββββββββi (4.15)

with the material parameters B4i and B5i . Apart from the superposition of several
backstresses in Eq. (4.14) and the corresponding evolution equations (4.15), the
typical Chaboche model features the following governing equations, considering
isothermal conditions and small deformations (Chaboche, 2008):

• the additive decomposition of the strain tensor into the elastic and plastic part:

εεεεεεεεεεεεεεεεε = εεεεεεεεεεεεεεεεεel + εεεεεεεεεεεεεεεεεin, (4.16)

• Hooke’s law for linear elasticity:

σσσσσσσσσσσσσσσσσ = C :
(
εεεεεεεεεεεεεεεεε − εεεεεεεεεεεεεεεεε in

)
(4.17)

with the elastic stiffness tensor C of fourth rank,
• the definition of an elasticity domain based on the scalar function f :

f = | |σσσσσσσσσσσσσσσσσ − βββββββββββββββββ | |H − k ≤ 0, (4.18)

whereby k denotes the initial size of the yield surface, and Hill’s criterion is
employed introducing the fourth-rank tensor H to define the quadratic norm
| |σσσσσσσσσσσσσσσσσ | |H =

√
σσσσσσσσσσσσσσσσσ : H : σσσσσσσσσσσσσσσσσ,

• a flow rule to define the evolution of inelastic strains:

�εεεεεεεεεεεεεεεεεin = �λ
∂ f
∂σσσσσσσσσσσσσσσσσ

(4.19)

with the plastic rate parameter �λ.

In addition, an evolution equation for the size of the yield surface k is required, which
allows for the description of isotropic hardening. In the following, we will provide
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several examples of recent applications of the unified Chaboche model to creep in
heat-resistant steels.

Yaguchi and Takahashi utilize a unified Chaboche-type viscoplastic model to
simulate the cyclic behavior of a 9Cr-1Mo steel at 200–600◦C. The cyclic softening
effect is represented by a modified kinematic hardening equation, and the applied stress
is divided into three components: a backstress, an effective stress, and an aging stress.
This procedure enables a precise description of the inelastic behavior of the 9Cr-1Mo
steel considering monotonic tension, stress relaxation, creep, and non-isothermal
cyclic deformation. Later, this approach is refined by considering Ohno-Wang
kinematic hardening to improve the prediction of ratcheting, i.e. the accumulation
of inelastic strains under cyclic loads (Yaguchi and Takahashi, 2005a,b). In Zhao
et al (2001), a unified Chaboche model is formulated to predict the stabilized cyclic
loops of a nickel-based superalloy at various strain ranges and at high temperatures.
Subsequently, the simulation results are improved by considering several types of
test data such as monotonic, cyclic, relaxation, and creep tests (Tong and Vermeulen,
2003; Tong et al, 2004). Furthermore, static recovery terms as well as plastic strain
memory terms have been included, cf. Zhan and Tong (2007); Zhan et al (2008).

In addition, a combined creep-fatigue damage approach based on the Chaboche
model is presented in Chaboche and Gallerneau (2001). Here, the evolution of creep
damage is coupled with time, while fatigue damage refers to the number of cycles.
This model has been applied to nickel-based superalloys in Yeom et al (2007); Gharad
et al (2006) as well as to a single crystal in Dunne and Hayhurst (1992a,b). Moreover,
Hartrott and co-workers present a unified viscoplasticity model to simulate the
thermo-mechanical behavior of the heat-resistant P23 steel (von Hartrott et al, 2009).
Another unified Chaboche model is developed in Hyde et al (2010) to predict the
mechanical behavior of a 316 stainless steel in the temperature range 300–600◦C.
Last but not least, Saad et al. formulate a unified Chaboche model used for the
thermo-mechanical fatigue of P91 and P92 steels (Saad, 2012; Saad et al, 2011a,b).

It is worth noting that the Chaboche model features certain similarities with
the multi-surface models and the endochronic theory. In Chaboche and Rousselier
(1983a,b), the equivalence between the nonlinear Armstrong-Frederick kinematic
hardening rule and a simple two-surface model, cf. Sect. 4.3.1.3, based on bound-
ing and yield surfaces is demonstrated. Furthermore, in Ohno and Wang (1991),
the generalized nonlinear kinematic hardening rule by Chaboche (Chaboche and
Rousselier, 1983a,b), cf. Eqs (4.14) and (4.15), is transformed into a multi-surface
form. In addition, it is shown in Chaboche (1989) that the Chaboche model features
similarities with a time-independent constitutive model Ohno and Kachi (1986), the
unified viscoplastic models proposed in Walker (1981) and Krempl et al (1986), as
well as the differential form derived in Watanabe and Atluri (1986) for the endochronic
theory, cf. Sect. 4.3.1.2.
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Fig. 4.4 Representation of the microstructure by means of the mixture model, cf. Straub (1995);
Eisenträger (2018)

4.3.3.2 Mixture Models

Another important class of unified constitutive models for inelasticity are the so-called
mixture models. Initially, these models have been developed by material scientists,
e.g. Straub (1995); Polcik (1998); Barkar and Ågren (2005). Furthermore, the original
derivation of the model is closely related to the microscale since the inelastic material
behavior including hardening and softening is simulated by introducing an iso-strain
composite with soft and hard constituents (Straub, 1995; Polcik, 1998). The hard
constituent is related to the (sub)grain boundaries, i.e. regions with a high dislocation
density and a large number of carbides, whereas the soft constituent represents the
subgrain interior, i.e. regions with a low dislocation density and a small number
of carbides (Blum, 2008). This division of the real microstructure into the two
constituents is illustrated in Fig. 4.4. Note that the volume fraction of the hard
constituent is closely related to microstructural features, such as the mean subgrain
size, and assumed to decrease towards a saturation value to model softening due to the
coarsening of subgrains (Naumenko et al, 2011). Usually, results from microscopic
observations are used to calibrate these micromechanical models (Straub, 1995;
Polcik, 1998; Barkar and Ågren, 2005).

Nevertheless, microscopy often requires a lot of effort and time. On the contrary,
macroscopic material tests such as creep or HT tensile tests are straightforward
to conduct and less time-consuming. Therefore, Naumenko et al. transform a mi-
cromechanical mixture model into a macroscopic one, cf. Naumenko et al (2011);
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Naumenko and Gariboldi (2014). With the aim of simplifying the calibration pro-
cedure, a backstress of Armstrong-Frederick-type and a softening variable are
introduced as internal variables. In Eisenträger et al (2017, 2018a); Eisenträger
(2018), a new calibration procedure based on creep and HT tensile tests is presented
and the range of applicability of the model is significantly extended with respect
to temperatures (400◦C ≤ T ≤ 650◦C) and stresses (100 MPa ≤ σ ≤ 700 MPa).
Further details regarding the implementation in the FEM are discussed in Eisenträger
et al (2018b). In the following, the governing equations of the mixture model are
presented briefly. For further details on the derivation, the interested reader is referred
to Eisenträger (2018).

As a starting point, we assume that the individual constituents exhibit an identical
elastic behavior, while their inelastic behavior is different. To indicate the difference
in the inelastic response of both constituents, one is referred to as “soft”, while the
other is labeled “hard”. In the following equations, the index k is employed, taking
the values s and h (�k∀ k ∈ {s,h}). Since the following derivations are restricted to
small strains, we postulate the equality of the linear strain tensor εεεεεεεεεεεεεεεεε in the soft and the
hard constituent (iso-strain assumption, Naumenko et al, 2011):

εεεεεεεεεεεεεεεεε = εεεεεεεεεεεεεεεεεh = εεεεεεεεεεεεεεεεεs. (4.20)

In order to compute the overall stress σσσσσσσσσσσσσσσσσ, a rule of mixture is applied:

σσσσσσσσσσσσσσσσσ = ηsσσσσσσσσσσσσσσσσσs + ηhσσσσσσσσσσσσσσσσσh (4.21)

with the volume fractions ηk . The following relation is valid due to the mass
conservation constraint:

ηs + ηh = 1 ∀ 0 < ηk < 1.

In addition, we introduce the additive split of the strains into the elastic and the
inelastic part, which are denoted by the superscripts �el and �in, respectively:

εεεεεεεεεεεεεεεεε = εεεεεεεεεεεεεεεεεel
k + εεεεεεεεεεεεεεεεε

in
k . (4.22)

To describe the linear isotropic elastic behavior, the three-dimensional Hooke’s law
is employed:

σσσσσσσσσσσσσσσσσk = C : εεεεεεεεεεεεεεεεεel
k . (4.23)

Note that the same stiffness tensor C is used for both constituents because an identical
elastic behavior is assumed. In addition to Eqs (4.20)–(4.23), evolution equations
for the volume fractions ηk and the inelastic strains εεεεεεεεεεεεεεεεεin

k
need to be formulated. In

a next step, two internal variables are introduced in order to enable the calibration
of the model based on macroscopic material tests: an Armstrong-Frederick-type
backstress tensor βββββββββββββββββ and a dimensionless softening variable Γ, which is closely related
to the volume fraction of the hard constituent, cf. Naumenko et al (2011); Eisenträger
(2018). By introducing the new internal variables, the following set of governing
evolution equations for the inelastic strain in the mixture, the backstress, and the
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softening variable is derived (Eisenträger, 2018):

�εεεεεεεεεεεεεεεεεin =
3
2

fσ(σ̃vM) fT (T)
σ̃σσσσσσσσσσσσσσσσ′

σ̃vM
, (4.24)

�βββββββββββββββββ =
1

G(T)
dG(T)

dT
�Tβββββββββββββββββ + 2G(T)

ηh0

1 − ηh0

[
�εεεεεεεεεεεεεεεεεin −

3
2

�εin
vM

βvM�(σvM)
βββββββββββββββββ

]
, (4.25)

�Γ =CΓ [Γ	(σvM) − Γ] �εin
vM (4.26)

with the inelastic strain in the mixture εεεεεεεεεεεεεεεεεin = ηsεεεεεεεεεεεεεεεεε
in
s + ηhεεεεεεεεεεεεεεεεε

in
h , the stress and temperature

response functions fσ and fT , the effective stress deviator σ̃σσσσσσσσσσσσσσσσ′ = σσσσσσσσσσσσσσσσσ′ − Γβββββββββββββββββ, and the
corresponding von Mises equivalent quantities σ̃vM,σvM, �εin

vM, βvM� . The variables G,
ηh0 , Γ	 are temperature-dependent material parameters, which are determined during
the calibration of the model.

In order to determine the model’s response to a prescribed stress state σσσσσσσσσσσσσσσσσ, the
system of ODEs (4.24)–(4.26) must be solved, while providing initial conditions for
the inelastic strain, the backstress, and the softening variable. In Eisenträger et al
(2018a); Eisenträger (2018), the presented mixture model is calibrated based on
creep and HT tensile tests with respect to the heat-resistant steel X20CrMoV12-1.
The subsequent implementation in the FEM based on implicit Euler integration
of the evolution equations (4.24)–(4.26) is discussed in Eisenträger et al (2018b).
Overall, only 14 material parameters are required for robust simulations with respect
to wide ranges of stress and temperature, i.e. 400◦C ≤ T ≤ 650◦C and 100 MPa ≤
σ ≤ 700 MPa (Eisenträger et al, 2018b). The model accounts for rate-dependent
inelasticity in conjunction with nonlinear kinematic hardening. To describe the
tertiary creep stage, a scalar damage variable can be incorporated as additional
internal variable (Naumenko et al, 2011).

To conclude, the presented mixture model offers two main advantages in compari-
son to other approaches: a relatively small number of parameters for wide ranges of
applicability and the possibility to calibrate the model based only on macroscopic
material tests. In contrast to the previously discussed Chaboche models, only a
single backstress and a softening variable are introduced. Since such a low number of
internal variables is required, the resulting number of material parameters is relatively
small, considering the wide range of applicability. The calibration of the model relies
only on macroscopic tests such that time-consuming microscopic observations are
not necessary.

4.4 Constitutive Modeling of Creep Damage

In order to describe the tertiary stage of the creep curve, cf. Sect. 4.2.3, constitutive
models for creep damage are essential. According to Kassner and Hayes (2003);
Goodall and Skelton (2004), the main cause of creep failure is the nucleation, growth,
and coalescence of cavities (or voids) on the grain boundaries. It is important to
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note that macroscopic damage is closely related to microstructural processes. Thus,
damage can be defined as the existence of micro defects, such as line defects, cf.
Lemaitre (1996). In this sense, damage evolution summarizes the development of
micro defects, to be precise the nucleation, growth, and coalescence of defects on
the microstructure (Skrzypek and Ganczarski, 1999). The current section presents
two major types of creep damage models: the microscopic cavity growth mechanism
models and a more phenomenological approach, i.e. models based on continuum
damage mechanics.

4.4.1 Cavity Growth Mechanism Models

Cavity growth mechanism (CGM) models predict the evolution of creep damage by
accounting for microstructural damage processes. The first paper on CGM models
was published in 1959 by Hull and Rimmer (Hull and Rimmer, 1959). In the 70s and
80s, this approach was further refined, cf. Rice and Tracey (1969); Hayhurst (1972);
Manjoine (1975); Gurson (1977); Ashby et al (1978); Edward and Ashby (1979);
Cane (1981); Manjoine (1982); Tvergaard and Needleman (1984); Huddleston (1985);
Raj and Ashby (1975); Cocks and Ashby (1982b,a). More recent works on the CGM
models have been published as well (Hales, 1994; Margolin et al, 1998; Spindler
et al, 2001; Spindler, 2004; Ragab, 2002). According to Lin et al (2005b), typical
applications for CGM models are HT creep, cold and hot metal forming, as well as
superplastic forming. CGM-based models are widely used to predict the influence
of multiaxial stress states on the creep failure strain or the time to rupture (Hull and
Rimmer, 1959; McClintock, 1968; Rice and Tracey, 1969; Hayhurst, 1972; Cocks
and Ashby, 1980; Manjoine, 1975, 1982; Margolin et al, 1998; Ragab, 2002; Spindler
et al, 2001).

The CGM models are based on the physical process of creep cavity growth. Small
voids or cavities are predominantly found at the grain boundaries. In addition, particles
which lack cohesion with the matrix may act as voids. Furthermore, in Edward and
Ashby (1979), grain boundary sliding is indicated as another important cause for
void nucleation. Cavities nucleate particularly during the primary and secondary
creep stage (Kassner and Hayes, 2003), whereas their growth and coalescence occurs
primarily during the tertiary creep stage. This microstructural behavior is verified in
Sklenic̆ka et al (2003) for 9–12% Cr steels.

According to Hales (1994); Michel (2004); Yao et al (2007), three different
types of cavity growth mechanisms can be distinguished: diffusion-controlled cavity
growth, plasticity-controlled cavity growth, and constrained cavity growth. The
diffusion-controlled cavity growth is proposed in Hull and Rimmer (1959); Raj and
Ashby (1975) to predict the time to rupture under creep deformation. Thereby, the
growth rate of cavities is primarily influenced by the shape of voids and the diffusion
process. However, with increasing cavity size, the effect of diffusion-controlled
growth decreases quickly, and the plasticity-controlled growth dominates the material
behavior (Nicolaou et al, 2000). Within the plasticity-controlled growth of voids,
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the viscoplastic deformation of the surrounding material is the underlying cause
for the increase in cavity size (Rice and Tracey, 1969; Hancock, 1976). Note that
this mechanism influences the material behavior particularly under high strain rates.
First models for the plasticity-controlled cavity growth were published in the 60s
(McClintock, 1968; Rice and Tracey, 1969). In recent years, these approaches have
been improved and applied to superplasticity in Khaleel et al (2001); Taylor et al
(2002).

The first constrained cavity growth mechanism model has been proposed in Dyson
(1976), and was refined gradually in further papers (Cocks and Ashby, 1982b,a;
Edward and Ashby, 1979; Cocks and Ashby, 1980; Tvergaard, 1984; Yousefiani
et al, 2000; Delph, 2002). According to this model, cavities grow when the local
deformation rate exceeds the deformation rate of the surrounding material due to cavity
growth, such that the rate of cavity growth is constrained to produce the local strain
at the same rate as the deformation caused by the remote stress. Thus, the constrained
cavity growth is due to the viscoplastic strains and diffusional processes, and this
mechanism can be interpreted as coupled occurrence of the first two mechanisms, i.e.
the diffusion-controlled cavity growth and the plasticity-controlled growth of voids.

4.4.2 Continuum Damage Mechanics Models

Within the continuum damage mechanics (CDM) models, a phenomenological
description of damage is established. Here, damage variables are introduced based on
the equivalence principle and the concept of representative volume elements (RVEs),
such that the micro defects can be “smeared out”, and the stress and strain state can
be considered as homogeneous. Although the CDM models were initiated already
during the 1950s, they have been highlighted again since the 1990s with the rapid
development of computer technology and FEM since these models are straightforward
to implement in numerical methods. In recent years, a multitude of papers on the
CDM models has been published, cf. e.g. Othman et al (1993); Hayhurst et al (1994);
Kowalewski et al (1994b,a); Perrin and Hayhurst (1996, 1999); Hyde et al (1996,
2006); Jing et al (2001, 2003); Xu (2001, 2004); Hayhurst et al (2005b,a); Lin et al
(2005a).

The CDM model were initiated by Rabotnov, who developed a phenomenological
model for creep damage with an evolution equation for a scalar damage variable ω,
see Rabotnov (1959). One year before, the dual variable continuity ψ = 1 − ω was
suggested in Kachanov (1958). A zero damage variable, i.e. ω = 0, indicates the
virgin material state (never existing in real materials), while ω = 1 refers to the
complete failure of the material (in real materials the failure occurs at ω = 0.3 . . . 0.7,
Lemaitre and Chaboche (1994); Lemaitre (1996)). In Leckie and Hayhurst (1974),
this concept was extended for the first time to multiaxial stress states. In addition to
the damage variable concept, Rabotnov introduced the concept of effective stress
(Rabotnov, 1959). Following this concept, the effective stress σ̃ in the uniaxial case
is equal to the real stress σ, modified by the damage variable ω:



4 Creep in Heat-resistant Steels at Elevated Temperatures 99

σ̃ =
σ

1 − ω
. (4.27)

Based on this, Lemaitre established the equivalence principle (Lemaitre, 1971,
1985), which states that any constitutive equation for a damaged material may be
derived in the same way as for a virgin material, except that the usual stress is replaced
by the effective stress. In the following, Chaboche and Lemaitre presented a method
to derive constitutive laws based on the framework of irreversible thermodynamics
and the principle of strain equivalence (Chaboche, 1981; Lemaitre, 1985). However,
the concept of a scalar damage variable does not account for the anisotropic nature
of damage. For this reason, several vector and tensor representations of damage
variables have been developed later to account for anisotropy (Murakami and Ohno,
1981; Krajcinovic and Fonseka, 1981; Fonseka and Krajcinovic, 1981; Betten, 1982;
Krajcinovic, 1983; Murakami, 1983; Chaboche, 1984). In addition, a large number
of textbooks, monographs, and reviews on CDM models is available, e.g. Kachanov
(1986); Chaboche (1988); Krajcinovic (1989); Lemaitre (1996); Voyiadjis and Kattan
(1999); Skrzypek and Ganczarski (1999); Wohua and Valliappan (1998a,b); Lin et al
(2005b); Yao et al (2007); Betten (2008); Murakami (2012). Further applications
of CDM models to simulate creep damage are presented in Murakami et al (2000);
Becker et al (2002); Hayhurst et al (2005b,a), and similar papers with respect to
creep-fatigue damage can be found as well, cf. Jing et al (2003); Stolk et al (2004).

In the following, let us focus on several CDM models, while classifying these
approaches into two groups: multiaxial models with a single damage variable and
multiaxial frameworks incorporating several damage variables. Creep damage models
with a single variable are straightforward to formulate. Nevertheless, the physical
nature of the damage parameter is not examined, and different damage mechanisms
cannot be taken into account. A commonly used approach is the Lemaitre constitutive
equation for damage (Lemaitre, 1985), which is based on the framework of irreversible
thermodynamics and for example used in Jing et al (2001) for the multiaxial creep
prediction of an aero-engine turbine disc. As an alternative, the Kachanov-Rabotnov
constitutive equation (Leckie and Hayhurst, 1974) can be used to model creep damage.
In Becker et al (2002), this approach is utilized for the numerical modeling of a
titanium alloy at 650◦C and a 0.5Cr0.5Mo0.25V steel at 640◦C.

Considering several variables while simulating multiaxial creep damage results
in a more elaborated formulation, but also requires significantly more effort with
respect to the calibration and numerical implementation of the constitutive model.
CDM models with several damage variables resolve the drawback of corresponding
models with only one damage variable, which cannot account for the physical nature
of the involved damage parameter. Furthermore, various studies show that the damage
of high-temperature materials is due to different mechanisms, for example grain
boundary sliding, void growth, diffusion of vacancies along the boundary, and the
coarsening of precipitates, such as carbides, cf. also Sect. 4.2.3. The general form of
equations for CDM models considering n different damage variables ωn is given in
Hayhurst (2005) as follows:

�εεεεεεεεεεεεεεεεε = f (σσσσσσσσσσσσσσσσσ,ω1,ω2, . . . ,ωn,T) , (4.28)
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�ω1 = g1 (σσσσσσσσσσσσσσσσσ,ω1,ω2, . . . ,ωn,T) , (4.29)
�ω2 = g2 (σσσσσσσσσσσσσσσσσ,ω1,ω2, . . . ,ωn,T) , (4.30)

...

�ωn = gn (σσσσσσσσσσσσσσσσσ,ω1,ω2, . . . ,ωn,T) . (4.31)

In CDM models, the hyperbolic stress response function, cf. Eq. (4.5), is frequently
used for the inelastic strain rates (Perrin and Hayhurst, 1996; Othman et al, 1993;
Kowalewski et al, 1994a). The damage rate functions should account for the fact
that the nucleation and growth of cavities reduce the load bearing section and
accelerate creep damage, such that the effect of cavitation damage should be explicitly
represented in the model. As one example, Dyson suggests a specific function for
the cavitation damage, cf. Dyson (1988). In addition, precipitate coarsening should
be taken into account since it represents another important cause for the occurrence
of damage. Note that the evolution equation for a corresponding damage variable
is given in Dyson (1988); Perrin and Hayhurst (1996). Moreover, damage in the
tertiary creep stage is also due to the accumulation of dislocations, which could be
implemented in a constitutive model by the rate function proposed in Dyson (1988);
Othman et al (1993). Finally, many CDM models consider a primary creep state
variable H, which is not explicitly related to damage, but allows for the simulation of
strain hardening during the primary creep stage, cf. Kowalewski et al (1994a); Perrin
and Hayhurst (1996) and Sect. 4.2.3.

In the sequel, let us provide specific examples for CDM models with several
damage variables. In Othman et al (1993), a CDM model is presented to predict
the multiaxial creep behavior of a nickel-based superalloy. Two damage variables
are incorporated: a cavitation damage state variable and a dislocation multiplication
state variable. A total of three damage variables are used in the constitutive model
by Kowalewski and co-workers, which describe cavitation damage, precipitate
coarsening, and hardening during primary creep. Here, the creep behavior of an
aluminum alloy is simulated under multiaxial stress states. Dyson uses another
CDM model to describe the evolution of creep strain based on microstructural
processes, such that his framework involves dominant mechanisms, which determine
the evolution of creep strain as normalized damage parameters. Note that in general,
the Kachanov-Rabotnov constitutive equations with a single variable or several
parameters are widespread in the prediction of multiaxial creep of ferritic steels,
which are commonly used for components for high-temperature applications.

4.5 Conclusion and Outlook

The current contribution aims at providing a brief overview concerning the state-of-
the-art in constitutive modeling for creep of heat-resistant steels. Since it is impossible
to provide a complete overview of this topic due to the great variety of developed
constitutive models and the immense number of published works in this field, this
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paper seeks to highlight a selection of commonly used constitutive models for creep in
heat-resistant steels. At first, basic characteristics of creep in heat-resistant steels are
described, typical microstructural properties of heat-resistant steels are introduced,
the influence of stress and temperature on creep is discussed, and the classical creep
curve including primary, secondary, and tertiary creep is presented. Special emphasis
is placed on the important role of microstructural processes in creep.

The major section of this contribution presents various constitutive models for
creep. As the so-called “early approaches”, classical plasticity theory, the endochronic
theory, and multi-surface models are briefly presented. Next, we discuss several
nonunified models, which utilize separate variables for instantaneous plastic strains
and time-dependent inelastic deformation. Among these models, the two-layer
viscoplasticity model is commonly used. Due to several drawbacks of nonunified
models, particularly due to difficulties while accounting for the interaction of creep
and plasticity, unified models have become popular over the past years. Here, only
one inelastic strain is used to describe creep and plasticity. The contribution at hand
introduces two general approaches: the Chaboche-type models as well as mixture
models. While Chaboche-type models are very popular due to their straightforward
calibration based on macroscopic experimental data, they usually involve a large
number of material parameters. In contrast, the proposed mixture model is formulated
with respect to a microstructural background and allows for robust simulations with
respect to large ranges of stress and temperature, whereas the number of parameters
is relatively low. Nevertheless, one should note that the calibration procedure of the
mixture model is more complex than the calibration of a Chaboche-type model.

Finally, two major classes of constitutive models for creep damage are discussed:
the cavity growth mechanism models and approaches based on continuum damage
mechanics. Note that creep damage models are essential to describe the tertiary creep
stage. While cavity growth mechanism models are closely related to microstructural
processes, continuum damage mechanics models are phenomenological approaches.
However, since continuum damage mechanics models are straightforward to imple-
ment in numerical methods, such as the FEM, these models have become popular in
recent years due to the widespread use of numerical methods.

Power generation represents one of the most important high-temperature applica-
tions for heat-resistant steels. In the future, it is expected that operating temperatures
will raise to more than 600–650◦C in order to increase thermodynamic efficiency.
Thus, one should focus on the development of creep models accounting for this
high temperature range. Furthermore, additional studies are necessary for modeling
complex phenomena such as nonproportional hardening and flow, ratcheting, and
thermo-mechanical behavior. For this purpose, it is crucial to estimate the reliability
of material parameters, which constitutes a major challenge because of the limited
availability of experimental data from creep tests. This is particularly true for recently
developed alloys, such as the 9–12% Cr martensitic steels, so that the availability of
long-term creep data is restricted due to the relatively low age of these steels. In order
to solve this issue, one could extrapolate from short-term creep data to long-term
predictions based on conventional empirical methods. However, further research
should be conducted concerning the reliability of these extrapolation methods.



102 Johanna Eisenträger and Holm Altenbach

References

Abe F, Kern TU, Viswanathan R (eds) (2008) Creep-resistant steels. Woodhead Publishing Limited
Altenbach H, Öchsner A (eds) (2014) Plasticity of Pressure-Sensitive Materials. Engineering

Materials, Springer, Berlin, Heidelberg, doi:10.1007/978-3-642-40945-5
Altenbach H, Zolochevsky A (1992) Energy version of creep and stress-rupture strength theory for

anisotropic and isotropic materials which differ in resistance to tension and compression. Journal
of Applied Mechanics and Technical Physics 33(1):101–106

Altenbach H, Zolochevsky AA (1994) Eine energetische Variante der Theorie des Kriechens und der
Langzeitfestigkeit für isotrope Werkstoffe mit komplizierten Eigenschaften. ZAMM - Journal of
Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
74(3):189–199, doi:10.1002/zamm.19940740311

Altenbach H, Altenbach J, Zolochevsky A (1995) Erweiterte Deformationsmodelle und Versagens-
kriterien der Werkstoffmechanik. Deutscher Verlag für Grundstoffindustrie, Leipzig, Stuttgart

Altenbach H, Bolchoun A, Kolupaev VA (2014) Phenomenological Yield and Failure Criteria. In:
Altenbach H, Öchsner A (eds) Plasticity of Pressure-Sensitive Materials, Engineering Materials,
Springer, pp 49–152, doi:10.1007/978-3-642-40945-5_2

Armstrong PJ, Frederick CO (1966) A Mathematical Representation of the Multiaxial Bauschinger
Effect

Ashby MF, Edward GH, Davenport J, Verrall RA (1978) Application of bound theorems for creeping
solids and their application to large strain diffusional flow. Acta Metallurgica 26(9):1379–1388,
doi:10.1016/0001-6160(78)90153-0

Bailey RW (1935) The utilization of creep test data in engineering design. Proceedings of The
Institution of Mechanical Engineers 131(1):131–349

Barkar T, Ågren J (2005) Creep simulation of 9–12% Cr steels using the composite model with
thermodynamically calculated input. Materials Science and Engineering: A 395(1–2):110–115,
doi:10.1016/j.msea.2004.12.004

Becker AA, Hyde TH, Sun W, Andersson P (2002) Benchmarks for finite element analysis
of creep continuum damage mechanics. Computational Materials Science 25(1–2):34–41,
doi:10.1016/s0927-0256(02)00247-1

Benallal A, Gallo PL, Marquis D (1989) An experimental investigation of cyclic hardening of 316
stainless steel and of 2024 aluminium alloy under multiaxial loadings. Nuclear Engineering and
Design 114(3):345–353, doi:10.1016/0029-5493(89)90112-x

Betten J (1982) Net-stress analysis in creep mechanics. Ingenieur-Archiv 52(6):405–419,
doi:10.1007/bf00536211

Betten J (2008) Creep Mechanics, 3rd edn. Springer, Berlin, Heidelberg
Blum W (2008) Mechanisms of creep deformation in steel. In: Abe F, Kern TU, Viswanathan R

(eds) Creep-resistant steels, Woodhead Publishing, pp 365–402
Bodner SR, Partom Y (1975) Constitutive Equations for Elastic-Viscoplastic Strain-Hardening

Materials. Journal of Applied Mechanics 42(2):385–389, doi:10.1115/1.3423586
Boyle JT, Spence J (1983) Stress Analysis for Creep. Elsevier, doi:10.1016/c2013-0-00873-0
Breeze P (2005) Power Generation Technologies. Newnes, Oxford
Bruhns OT (2014) Some Remarks on the History of Plasticity – Heinrich Hencky, a Pioneer

of the Early Years. In: Stein E (ed) The History of Theoretical, Material and Computational
Mechanics - Mathematics Meets Mechanics and Engineering, Springer, Lecture Notes in Applied
Mathematics and Mechanics, vol 1, pp 133–152, doi:10.1007/978-3-642-39905-3_9

Bruhns OT (2018) History of Plasticity. In: Altenbach H, Öchsner A (eds) Encyclopedia of
Continuum Mechanics, Springer, pp 1–61, doi:10.1007/978-3-662-53605-6_281-1

Bruhns OT, Lehmann T, Pape A (1992) On the description of transient cyclic hardening behaviour
of mild steel CK 15. International Journal of Plasticity 8(4):331–359, doi:10.1016/0749-
6419(92)90054-g

https://doi.org/10.1007/978-3-642-40945-5
https://doi.org/10.1002/zamm.19940740311
https://doi.org/10.1007/978-3-642-40945-5_2
https://doi.org/10.1016/0001-6160(78)90153-0
https://doi.org/10.1016/j.msea.2004.12.004
https://doi.org/10.1016/s0927-0256(02)00247-1
https://doi.org/10.1016/0029-5493(89)90112-x
https://doi.org/10.1007/bf00536211
https://doi.org/10.1115/1.3423586
https://doi.org/10.1016/c2013-0-00873-0
https://doi.org/10.1007/978-3-642-39905-3_9
https://doi.org/10.1007/978-3-662-53605-6_281-1
https://doi.org/10.1016/0749-6419(92)90054-g
https://doi.org/10.1016/0749-6419(92)90054-g


4 Creep in Heat-resistant Steels at Elevated Temperatures 103

da C Andrade EN (1910) On the Viscous Flow in Metals, and Allied Phenomena. Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences 84(567):1–12,
doi:10.1098/rspa.1910.0050

da C Andrade EN (1914) The Flow in Metals under Large Constant Stresses. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences 90(619):329–342

Cane BJ (1981) Creep fracture of dispersion strengthened low alloy ferritic steels. Acta Metallurgica
29(9):1581–1591, doi:10.1016/0001-6160(81)90040-7

Cernocky EP, Krempl E (1979) A non-linear uniaxial integral constitutive equation incorporating
rate effects, creep and relaxation. International Journal of Non-Linear Mechanics 14(3):183–203,
doi:10.1016/0020-7462(79)90035-0

Cernocky EP, Krempl E (1980) A theory of viscoplasticity based on infinitesimal total strain. Acta
Mechanica 36(3–4):263–289, doi:10.1007/bf01214636

Chaboche JL (1981) Continuous damage mechanics — A tool to describe phenomena before crack
initiation. Nuclear Engineering and Design 64(2):233–247, doi:10.1016/0029-5493(81)90007-8

Chaboche JL (1984) Anisotropic creep damage in the framework of continuum damage mechanics.
Nuclear Engineering and Design 79(3):309–319, doi:10.1016/0029-5493(84)90046-3

Chaboche JL (1988) Continuum Damage Mechanics: Part I—General Concepts. Journal of Applied
Mechanics 55(1):59, doi:10.1115/1.3173661

Chaboche JL (1989) Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Interna-
tional Journal of Plasticity 5(3):247–302, doi:10.1016/0749-6419(89)90015-6

Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive theories. International
Journal of Plasticity 24(10):1642–1693, doi:10.1016/j.ijplas.2008.03.009

Chaboche JL, Gallerneau F (2001) An overview of the damage approach of durability modelling at
elevated temperature. Fatigue and Fracture of Engineering Materials and Structures 24(6):405–
418, doi:10.1046/j.1460-2695.2001.00415.x

Chaboche JL, Nouailhas D (1989) A Unified Constitutive Model for Cyclic Viscoplasticity and
Its Applications to Various Stainless Steels. Journal of Engineering Materials and Technology
111(4):424–430, doi:10.1115/1.3226490

Chaboche JL, Rousselier G (1983a) On the Plastic and Viscoplastic Constitutive Equations: Part
I: Rules Developed With Internal Variable Concept. Journal of Pressure Vessel Technology
105(2):153–158, doi:10.1115/1.3264257

Chaboche JL, Rousselier G (1983b) On the Plastic and Viscoplastic Constitutive Equations: Part
II: Application of Internal Variable Concepts to the 316 Stainless Steel. Journal of Pressure
Vessel Technology 105(2):159–164, doi:10.1115/1.3264258

Chan KS, Bodner SR, Lindholm US (1988) Phenomenological Modeling of Hardening and
Thermal Recovery in Metals. Journal of Engineering Materials and Technology 110:1–8,
doi:10.1115/1.3226003

Chan KS, Lindholm US, Bodner SR, Walker KP (1989) High Temperature Inelastic Deformation
Under Uniaxial Loading: Theory and Experiment. Journal of Engineering Materials and
Technology 111(4):345–353, doi:10.1115/1.3226478

Charkaluk E, Bignonnet A, Constantinescu A, Van KD (2002) Fatigue design of structures under
thermomechanical loadings. Fatigue and Fracture of Engineering Materials and Structures
25(12):1199–1206, doi:10.1046/j.1460-2695.2002.00612.x

Coble RL (1963) A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials.
Journal of Applied Physics 34(6):1679–1682, doi:10.1063/1.1702656

Cocks ACF, Ashby MF (1980) Intergranular fracture during power-law creep under multiaxial
stresses. Metal Science 14(8-9):395–402, doi:10.1179/030634580790441187

Cocks ACF, Ashby MF (1982a) Creep fracture by coupled power-law creep and diffusion under
multiaxial stress. Metal Science 16(10):465–474, doi:10.1179/msc.1982.16.10.465

Cocks ACF, Ashby MF (1982b) On creep fracture by void growth. Progress in Materials Science
27(3-4):189–244, doi:10.1016/0079-6425(82)90001-9

Coleman BD, Gurtin ME (1967) Thermodynamics with Internal State Variables. The Journal of
Chemical Physics 47(2):597–613, doi:10.1063/1.1711937

https://doi.org/10.1098/rspa.1910.0050
https://doi.org/10.1016/0001-6160(81)90040-7
https://doi.org/10.1016/0020-7462(79)90035-0
https://doi.org/10.1007/bf01214636
https://doi.org/10.1016/0029-5493(81)90007-8
https://doi.org/10.1016/0029-5493(84)90046-3
https://doi.org/10.1115/1.3173661
https://doi.org/10.1016/0749-6419(89)90015-6
https://doi.org/10.1016/j.ijplas.2008.03.009
https://doi.org/10.1046/j.1460-2695.2001.00415.x
https://doi.org/10.1115/1.3226490
https://doi.org/10.1115/1.3264257
https://doi.org/10.1115/1.3264258
https://doi.org/10.1115/1.3226003
https://doi.org/10.1115/1.3226478
https://doi.org/10.1046/j.1460-2695.2002.00612.x
https://doi.org/10.1063/1.1702656
https://doi.org/10.1179/030634580790441187
https://doi.org/10.1179/msc.1982.16.10.465
https://doi.org/10.1016/0079-6425(82)90001-9
https://doi.org/10.1063/1.1711937


104 Johanna Eisenträger and Holm Altenbach

Czichos H, Skrotzki B, Simon FG (2014) Das Ingenieurwissen: Werkstoffe. Springer, Berlin
Heidelberg, doi:10.1007/978-3-642-41126-7

Dafalias YF, Popov EP (1975) A model of nonlinearly hardening materials for complex loading.
Acta Mechanica 21(3):173–192, doi:10.1007/bf01181053

Dafalias YF, Popov EP (1976) Plastic Internal Variables Formalism of Cyclic Plasticity. Journal of
Applied Mechanics 43(4):645–651, doi:10.1115/1.3423948

Delobelle P, Oytana C (1984) Experimental study of the flow rules of a 316 stainless steel at high and
low stresses. Nuclear Engineering and Design 83(3):333–348, doi:10.1016/0029-5493(84)90126-
2

Delph TJ (2002) Some selected topics in creep cavitation. Metallurgical and Materials Transactions
A 33(2):383–390, doi:10.1007/s11661-002-0099-0

Dorn JE (1955) Some fundamental experiments on high temperature creep. Journal of the Mechanics
and Physics of Solids 3(2):85–116, doi:10.1016/0022-5096(55)90054-5

Dunne FPE, Hayhurst DR (1992a) Continuum Damage Based Constitutive Equations for Copper
under High Temperature Creep and Cyclic Plasticity. Proceedings of the Royal Society A: Math-
ematical, Physical and Engineering Sciences 437(1901):545–566, doi:10.1098/rspa.1992.0079

Dunne FPE, Hayhurst DR (1992b) Modelling of Combined High-Temperature Creep and
Cyclic Plasticity in Components Using Continuum Damage Mechanics. Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences 437(1901):567–589,
doi:10.1098/rspa.1992.0080

Dyson BF (1976) Constraints on diffusional cavity growth rates. Metal Science 10(10):349–353,
doi:10.1179/030634576790431417

Dyson BF (1988) Creep and fracture of metals: mechanisms and mechanics. Revue de Physique
Appliquée 23(4):605–613, doi:10.1051/rphysap:01988002304060500

Dyson BF, McLean M (2001) Micromechanism-quantification for creep constitutive equations. In:
Murakami S, Ohno N (eds) IUTAM Symposium on Creep in Structures, Kluwer, Dordrecht, pp
3–16

Edward GH, Ashby MF (1979) Intergranular fracture during power-law creep. Acta Metallurgica
27(9):1505–1518, doi:10.1016/0001-6160(79)90173-1

Eisenträger J (2018) A Framework for Modeling The Mechanical Behavior of Tempered Martensitic
Steels at High Temperatures. PhD thesis, Otto von Guericke University Magdeburg

Eisenträger J, Naumenko K, Altenbach H, Gariboldi E (2017) Analysis of Temperature and Strain
Rate Dependencies of Softening Regime for Tempered Martensitic Steel. The Journal of Strain
Analysis for Engineering Design 52:226–238, doi:10.1177/0309324717699746

Eisenträger J, Naumenko K, Altenbach H (2018a) Calibration of a Phase Mixture Model for
Hardening and Softening Regimes in Tempered Martensitic Steel Over Wide Stress and
Temperature Ranges. The Journal of Strain Analysis for Engineering Design 53:156–177,
doi:10.1177/0309324718755956

Eisenträger J, Naumenko K, Altenbach H (2018b) Numerical implementation of a phase mixture
model for rate-dependent inelasticity of tempered martensitic steels. Acta Mechanica 229:3051–
3068, doi:10.1007/s00707-018-2151-1

El-Magd E, Betten J, Palmen P (1996) Auswirkungen der Schädigungsanisotropie auf die Lebensdauer
von Stählen bei Zeitstandbeanspruchung. Materialwissenschaft und Werkstofftechnik 27(5):239–
245, doi:10.1002/mawe.19960270510

Estrin Y, Mecking H (1984) A unified phenomenological description of work hardening and
creep based on one-parameter models. Acta Metallurgica 32(1):57–70, doi:10.1016/0001-
6160(84)90202-5

Farragher TP, Scully S, O’Dowd NP, Leen SB (2013) Thermomechanical Analysis of a Pressurized
Pipe Under Plant Conditions. Journal of Pressure Vessel Technology 135:011,204–1–011,204–9,
doi:10.1115/1.4007287

Farragher TP, Scully S, O’Dowd NP, Hyde CJ, Leen SB (2014) High Temperature, Low Cycle
Fatigue Characterization of P91 Weld and Heat Affected Zone Material. Journal of Pressure
Vessel Technology 136(2):021,403–1–021,403–10, doi:10.1115/1.4025943

https://doi.org/10.1007/978-3-642-41126-7
https://doi.org/10.1007/bf01181053
https://doi.org/10.1115/1.3423948
https://doi.org/10.1016/0029-5493(84)90126-2
https://doi.org/10.1016/0029-5493(84)90126-2
https://doi.org/10.1007/s11661-002-0099-0
https://doi.org/10.1016/0022-5096(55)90054-5
https://doi.org/10.1098/rspa.1992.0079
https://doi.org/10.1098/rspa.1992.0080
https://doi.org/10.1179/030634576790431417
https://doi.org/10.1051/rphysap:01988002304060500
https://doi.org/10.1016/0001-6160(79)90173-1
https://doi.org/10.1177/0309324717699746
https://doi.org/10.1177/0309324718755956
https://doi.org/10.1007/s00707-018-2151-1
https://doi.org/10.1002/mawe.19960270510
https://doi.org/10.1016/0001-6160(84)90202-5
https://doi.org/10.1016/0001-6160(84)90202-5
https://doi.org/10.1115/1.4007287
https://doi.org/10.1115/1.4025943


4 Creep in Heat-resistant Steels at Elevated Temperatures 105

Figiel L, Günther B (2008) Modelling the high-temperature longitudinal fatigue behaviour of metal
matrix composites (SiC/Ti-6242): Nonlinear time-dependent matrix behaviour. International
Journal of Fatigue 30(2):268–276, doi:10.1016/j.ijfatigue.2007.01.056

Fonseka GU, Krajcinovic D (1981) The Continuous Damage Theory of Brittle Materials, Part
2: Uniaxial and Plane Response Modes. Journal of Applied Mechanics 48(4):816–824,
doi:10.1115/1.3157740

Fournier B, Sauzay M, Mottot M, Brillet H, Monnet I, Pineau A (2005) Experimentally Based
Modelling of Cyclically Induced Softening in a Martensitic Steel at High Temperature. In: Shibli
IA, Holdsworth SR, Merckling G (eds) ECCC Creep Conference, DES tech publications, pp
649–661

François D, Pineau A, Zaoui A (2012) Mechanical Behaviour of Materials. Springer Netherlands,
doi:10.1007/978-94-007-2546-1

Frost HJ, Ashby MF (1982) Deformation-Mechanism Maps: The Plasticity and Creep of Metals and
Ceramics. Pergamon Press

Geary JA, Onat ET (1974) Representation of nonlinear hereditary mechanical behavior. Tech. rep.,
Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), URL https://www.osti.
gov/servlets/purl/4258567

Gharad AE, Zedira H, Azari Z, Pluvinage G (2006) A synergistic creep fatigue failure model
damage (case of the alloy Z5NCTA at 550◦C). Engineering Fracture Mechanics 73(6):750–770,
doi:10.1016/j.engfracmech.2005.10.008

Goodall IW, Skelton RP (2004) The importance of multiaxial stress in creep deformation and rupture.
Fatigue and Fracture of Engineering Materials and Structures 27(4):267–272, doi:10.1111/j.1460-
2695.2004.00743.x

Gurson AL (1977) Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part
I—Yield Criteria and Flow Rules for Porous Ductile Media. Journal of Engineering Materials
and Technology 99(1):2–15, doi:10.1115/1.3443401

Hales R (1994) The Role of Cavity Growth Mechanisms in Determining Creep-Rupture under
Multiaxial Stresses. Fatigue & Fracture of Engineering Materials and Structures 17(5):579–591,
doi:10.1111/j.1460-2695.1994.tb00257.x

Hancock JW (1976) Creep cavitation without a vacancy flux. Metal Science 10(9):319–325,
doi:10.1179/msc.1976.10.9.319

Harper J, Dorn J (1957) Viscous creep of aluminum near its melting temperature. Acta Metallurgica
5(11):654–665, doi:10.1016/0001-6160(57)90112-8

Hart EW (1976) Constitutive Relations for the Nonelastic Deformation of Metals. Journal of
Engineering Materials and Technology 98(3):193–202, doi:10.1115/1.3443368

von Hartrott P, Holmström S, Caminada S, Pillot S (2009) Life-time prediction for ad-
vanced low alloy steel P23. Materials Science and Engineering: A 510-511:175–179,
doi:10.1016/j.msea.2008.04.117

Haupt P, Lion A (1995) Experimental identification and mathematical modeling of viscoplastic mate-
rial behavior. Continuum Mechanics and Thermodynamics 7(1):73–96, doi:10.1007/bf01175770

Hayhurst DR (1972) Creep rupture under multi-axial states of stress. Journal of the Mechanics and
Physics of Solids 20(6):381–382, doi:10.1016/0022-5096(72)90015-4

Hayhurst DR (2005) CDM mechanisms-based modelling of tertiary creep: ability to predict the life
of engineering components. Archives of Mechanics 57(2–3):103–132

Hayhurst DR, Dyson BF, Lin J (1994) Breakdown of the skeletal stress technique for lifetime
prediction of notched tension bars due to creep crack growth. Engineering Fracture Mechanics
49(5):711–726, doi:10.1016/0013-7944(94)90035-3

Hayhurst DR, Goodall IW, Hayhurst RJ, Dean DW (2005a) Lifetime Predictions For High-
Temperature Low-Alloy Ferritic Steel Weldments. The Journal of Strain Analysis for Engineering
Design 40(7):675–701, doi:10.1243/030932405x30885

Hayhurst RJ, Mustata R, Hayhurst DR (2005b) Creep constitutive equations for parent, Type IV, R-
HAZ, CG-HAZ and weld material in the range 565–640◦C for Cr–Mo–V weldments. International
Journal of Pressure Vessels and Piping 82(2):137–144, doi:10.1016/j.ijpvp.2004.07.014

https://doi.org/10.1016/j.ijfatigue.2007.01.056
https://doi.org/10.1115/1.3157740
https://doi.org/10.1007/978-94-007-2546-1
https://www.osti.gov/servlets/purl/4258567
https://www.osti.gov/servlets/purl/4258567
https://doi.org/10.1016/j.engfracmech.2005.10.008
https://doi.org/10.1111/j.1460-2695.2004.00743.x
https://doi.org/10.1111/j.1460-2695.2004.00743.x
https://doi.org/10.1115/1.3443401
https://doi.org/10.1111/j.1460-2695.1994.tb00257.x
https://doi.org/10.1179/msc.1976.10.9.319
https://doi.org/10.1016/0001-6160(57)90112-8
https://doi.org/10.1115/1.3443368
https://doi.org/10.1016/j.msea.2008.04.117
https://doi.org/10.1007/bf01175770
https://doi.org/10.1016/0022-5096(72)90015-4
https://doi.org/10.1016/0013-7944(94)90035-3
https://doi.org/10.1243/030932405x30885
https://doi.org/10.1016/j.ijpvp.2004.07.014


106 Johanna Eisenträger and Holm Altenbach

Herring C (1950) Diffusional Viscosity of a Polycrystalline Solid. Journal of Applied Physics
21(5):437–445, doi:10.1063/1.1699681

Huddleston RL (1985) An Improved Multiaxial Creep-Rupture Strength Criterion. Journal of
Pressure Vessel Technology 107(4):421–429, doi:10.1115/1.3264476

Hull D, Rimmer DE (1959) The growth of grain-boundary voids under stress. Philosophical
Magazine 4(42):673–687, doi:10.1080/14786435908243264

Hult JAH (1966) Creep in Engineering Structures. John Wiley & Sons Canada
Hyde CJ, Sun W, Leen SB (2010) Cyclic thermo-mechanical material modelling and testing

of 316 stainless steel. International Journal of Pressure Vessels and Piping 87(6):365–372,
doi:10.1016/j.ijpvp.2010.03.007

Hyde TH, Xia L, Becker AA (1996) Prediction of creep failure in aeroengine materials under multi-
axial stress states. International Journal of Mechanical Sciences 38(4):385–403, doi:10.1016/0020-
7403(95)00063-1

Hyde TH, Sun W, Williams JA (1999) Creep behaviour of parent, weld and HAZ materials of new,
service-aged and repaired 1/2Cr1/2Mo1/4V: 2 1/4Cr1Mo pipe welds at 640◦C. Materials at High
Temperatures 16(3):117–129, doi:10.1179/mht.1999.011

Hyde TH, Becker AA, Sun W, Williams JA (2006) Finite-element creep damage analyses
of P91 pipes. International Journal of Pressure Vessels and Piping 83(11-12):853–863,
doi:10.1016/j.ijpvp.2006.08.013

Ilschner B (1973) Hochtemperatur-Plastizität: Warmfestigkeit und Warmverformbarkeit metallischer
und nichtmetallischer Werkstoffe. Reine und angewandte Metallkunde in Einzeldarstellungen,
Springer

Jiang Y, Kurath P (1996) Characteristics of the Armstrong-Frederick type plasticity models.
International Journal of Plasticity 12(3):387–415, doi:10.1016/s0749-6419(96)00013-7

Jing JP, Sun Y, Xia SB, Feng GT (2001) A continuum damage mechanics model on low cycle
fatigue life assessment of steam turbine rotor. International Journal of Pressure Vessels and
Piping 78(1):59–64, doi:10.1016/s0308-0161(01)00005-9

Jing JP, Meng G, Sun Y, Xia SB (2003) An effective continuum damage mechanics model for
creep-fatigue life assessment of a steam turbine rotor. International Journal of Pressure Vessels
and Piping 80(6):389–396, doi:10.1016/s0308-0161(03)00070-x

Kachanov LM (1958) O vremeni razrusheniya v usloviyakh polzuchesti (On the time to rupture
under creep conditions, in Russ.). Izv AN SSSR Otd Tekh Nauk 8:26–31

Kachanov LM (1986) Introduction to continuum damage mechanics. Springer Science & Business
Media, doi:10.1007/978-94-017-1957-5

Kassner ME, Hayes TA (2003) Creep cavitation in metals. International Journal of Plasticity
19(10):1715–1748, doi:10.1016/s0749-6419(02)00111-0

Khaleel MA, Zbib HM, Nyberg EA (2001) Constitutive modeling of deformation and damage in
superplastic materials. International Journal of Plasticity 17(3):277–296, doi:10.1016/s0749-
6419(00)00036-x

Khan AS, Jackson KM (1999) On the evolution of isotropic and kinematic hardening with finite
plastic deformation Part I: compression/tension loading of OFHC copper cylinders. International
Journal of Plasticity 15(12):1265–1275, doi:10.1016/s0749-6419(99)00037-6

Kichenin J, Dang KV, Boytard K (1996) Finite-element simulation of a new two-dissipative mecha-
nisms model for bulk medium-density polyethylene. Journal of Materials Science 31(6):1653–
1661, doi:10.1007/bf00357878

Kimura K (2004) 9Cr-1Mo-V-Nb steel. In: Yagi K, Merckling G, Kern TU, Irie H, Warlimont
H (eds) Creep Properties of Heat Resistant Steels and Superalloys, Advanced Materials and
Technologies, Springer Berlin Heidelberg, pp 126–133, doi:10.1007/10837344_27

Kloc L, Skienička V, Ventruba J (2001) Comparison of low stress creep properties of ferritic
and austenitic creep resistant steels. Materials Science and Engineering: A 319–321:774–778,
doi:10.1016/s0921-5093(01)00943-1

Kowalewski ZL (2001) Assessment of the Multiaxial Creep Data Based on the Isochronous Creep
Surface Concept. In: IUTAM Symposium on Creep in Structures, Springer Netherlands, pp
401–410, doi:10.1007/978-94-015-9628-2_38

https://doi.org/10.1063/1.1699681
https://doi.org/10.1115/1.3264476
https://doi.org/10.1080/14786435908243264
https://doi.org/10.1016/j.ijpvp.2010.03.007
https://doi.org/10.1016/0020-7403(95)00063-1
https://doi.org/10.1016/0020-7403(95)00063-1
https://doi.org/10.1179/mht.1999.011
https://doi.org/10.1016/j.ijpvp.2006.08.013
https://doi.org/10.1016/s0749-6419(96)00013-7
https://doi.org/10.1016/s0308-0161(01)00005-9
https://doi.org/10.1016/s0308-0161(03)00070-x
https://doi.org/10.1007/978-94-017-1957-5
https://doi.org/10.1016/s0749-6419(02)00111-0
https://doi.org/10.1016/s0749-6419(00)00036-x
https://doi.org/10.1016/s0749-6419(00)00036-x
https://doi.org/10.1016/s0749-6419(99)00037-6
https://doi.org/10.1007/bf00357878
https://doi.org/10.1007/10837344_27
https://doi.org/10.1016/s0921-5093(01)00943-1
https://doi.org/10.1007/978-94-015-9628-2_38


4 Creep in Heat-resistant Steels at Elevated Temperatures 107

Kowalewski ZL, Hayhurst DR, Dyson BF (1994a) Mechanisms-based creep constitutive equations
for an aluminium alloy. The Journal of Strain Analysis for Engineering Design 29(4):309–316,
doi:10.1243/03093247v294309

Kowalewski ZL, Lin J, Hayhurst DR (1994b) Experimental and theoretical evaluation of a high-
accuracy uni-axial creep testpiece with slit extensometer ridges. International Journal of
Mechanical Sciences 36(8):751–769, doi:10.1016/0020-7403(94)90090-6

Krajcinovic D (1983) Constitutive Equations for Damaging Materials. Journal of Applied Mechanics
50(2):355–360, doi:10.1115/1.3167044

Krajcinovic D (1989) Damage mechanics. Mechanics of Materials 8(2–3):117–197,
doi:10.1016/0167-6636(89)90011-2

Krajcinovic D, Fonseka GU (1981) The Continuous Damage Theory of Brittle Materials, Part 1:
General Theory. Journal of Applied Mechanics 48(4):809–815, doi:10.1115/1.3157739

Krempl E (1979) An experimental study of room-temperature rate-sensitivity, creep and relaxation
of AISI type 304 stainless steel. Journal of the Mechanics and Physics of Solids 27(5-6):363–375,
doi:10.1016/0022-5096(79)90020-6

Krempl E (1987) Models of viscoplasticity some comments on equilibrium (back) stress and drag
stress. Acta Mechanica 69(1-4):25–42, doi:10.1007/bf01175712

Krempl E (1999) Creep-Plasticity Interaction. In: Altenbach H, Skrzypek JJ (eds) Creep and Damage
in Materials and Structures, Springer Vienna, pp 285–348, doi:10.1007/978-3-7091-2506-9_6

Krempl E (2000) Viscoplastic models for high temperature applications. International Journal of
Solids and Structures 37(1-2):279–291, doi:10.1016/s0020-7683(99)00093-1

Krempl E, Khan F (2003) Rate (time)-dependent deformation behavior: an overview of some
properties of metals and solid polymers. International Journal of Plasticity 19(7):1069–1095,
doi:10.1016/s0749-6419(03)00002-0

Krempl E, McMahon JJ, Yao D (1986) Viscoplasticity based on overstress with a differential
growth law for the equilibrium stress. Mechanics of Materials 5(1):35–48, doi:10.1016/0167-
6636(86)90014-1

Krieg RD (1975) A Practical Two Surface Plasticity Theory. Journal of Applied Mechanics
42(3):641–646, doi:10.1115/1.3423656

Leckie FA, Hayhurst DR (1974) Creep Rupture of Structures. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences 340(1622):323–347,
doi:10.1098/rspa.1974.0155

Leen SB, Deshpande A, Hyde TH (2010) Experimental and Numerical Characterization of the
Cyclic Thermomechanical Behavior of a High Temperature Forming Tool Alloy. Journal of
Manufacturing Science and Engineering 132(5):051,013–1–051,013–12, doi:10.1115/1.4002534

Lemaitre J (1971) Evaluation of Dissipation and Damage in Metals Submitted to Dynamic Loading.
In: Proceedings I. C. M. 1

Lemaitre J (1985) A Continuous Damage Mechanics Model for Ductile Fracture. Journal of
Engineering Materials and Technology 107:83–89

Lemaitre J (1996) A Course on Damage Mechanics. Springer Science & Business Media
Lemaitre J, Chaboche JL (1994) Mechanics of solid materials. Cambridge University Press
Lifshitz IM (1963) On the theory of diffusion-viscous flow of polycrystalline bodies. Soviet Physics

JETP 17:909–920
Lin J, Kowalewski ZL, Cao J (2005a) Creep rupture of copper and aluminium alloy under combined

loadings—experiments and their various descriptions. International Journal of Mechanical
Sciences 47(7):1038–1058, doi:10.1016/j.ijmecsci.2005.02.010

Lin J, Liu Y, Dean TA (2005b) A Review on Damage Mechanisms, Models and Calibration
Methods under Various Deformation Conditions. International Journal of Damage Mechanics
14(4):299–319, doi:10.1177/1056789505050357

Lion A (2000) Constitutive modelling in finite thermoviscoplasticity: a physical approach
based on nonlinear rheological models. International Journal of Plasticity 16(5):469–494,
doi:10.1016/s0749-6419(99)00038-8

Lowe TC, Miller AK (1986) Modeling Internal Stresses in the Nonelastic Deformation of Metals.
Journal of Engineering Materials and Technology 108(4):365–373, doi:10.1115/1.3225896

https://doi.org/10.1243/03093247v294309
https://doi.org/10.1016/0020-7403(94)90090-6
https://doi.org/10.1115/1.3167044
https://doi.org/10.1016/0167-6636(89)90011-2
https://doi.org/10.1115/1.3157739
https://doi.org/10.1016/0022-5096(79)90020-6
https://doi.org/10.1007/bf01175712
https://doi.org/10.1007/978-3-7091-2506-9_6
https://doi.org/10.1016/s0020-7683(99)00093-1
https://doi.org/10.1016/s0749-6419(03)00002-0
https://doi.org/10.1016/0167-6636(86)90014-1
https://doi.org/10.1016/0167-6636(86)90014-1
https://doi.org/10.1115/1.3423656
https://doi.org/10.1098/rspa.1974.0155
https://doi.org/10.1115/1.4002534
https://doi.org/10.1016/j.ijmecsci.2005.02.010
https://doi.org/10.1177/1056789505050357
https://doi.org/10.1016/s0749-6419(99)00038-8
https://doi.org/10.1115/1.3225896


108 Johanna Eisenträger and Holm Altenbach

Malinin NN, Khadjinsky GM (1972) Theory of creep with anisotropic hardening. International
Journal of Mechanical Sciences 14(4):235–246, doi:10.1016/0020-7403(72)90065-3

Manjoine MJ (1975) Ductility Indices at Elevated Temperature. Journal of Engineering Materials
and Technology 97(2):156–161, doi:10.1115/1.3443276

Manjoine MJ (1982) Creep-Rupture Behavior of Weldments. Welding J 61(2):50–57
Margolin BZ, Karzov GP, Shvetsova VA, Kostylev VI (1998) Modelling for transcrystalline and

intercrystalline fracture by void nucleation and growth. Fatigue and Fracture of Engineering
Materials and Structures 21(2):123–137, doi:10.1046/j.1460-2695.1998.00474.x

Masuyama F (2001) Advances in Physical Metallurgy and Processing of Steels. History of Power
Plants and Progress in Heat Resistant Steels. The Iron and Steel Institute of Japan International
41(6):612–625, doi:10.2355/isijinternational.41.612

McClintock FA (1968) A Criterion for Ductile Fracture by the Growth of Holes. Journal of Applied
Mechanics 35(2):363–371, doi:10.1115/1.3601204

McLean D (1966) The physics of high temperature creep in metals. Reports on Progress in Physics
29(1):1–33

Michel B (2004) Formulation of a new intergranular creep damage model for austenitic stainless
steels. Nuclear Engineering and Design 227(2):161–174, doi:10.1016/j.nucengdes.2003.09.005

Miller A (1976a) An Inelastic Constitutive Model for Monotonic, Cyclic, and Creep Deformation:
Part I - Equations Development and Analytical Procedures. Journal of Engineering Materials
and Technology 98(2):97–105, doi:10.1115/1.3443367

Miller A (1976b) An Inelastic Constitutive Model for Monotonic, Cyclic, and Creep Deformation:
Part II - Application to Type 304 Stainless Steel. Journal of Engineering Materials and Technology
98(2):106–113, doi:10.1115/1.3443346

Miller AK (ed) (1987) Unified Constitutive Equations for Creep and Plasticity. Springer Netherlands,
doi:10.1007/978-94-009-3439-9

Moreno V, Jordan EH (1986) Prediction of material thermomechanical response with a unified vis-
coplastic constitutive model. International Journal of Plasticity 2(3):223–245, doi:10.1016/0749-
6419(86)90002-1

Mróz Z (1967) On the description of anisotropic workhardening. Journal of the Mechanics and
Physics of Solids 15(3):163–175, doi:10.1016/0022-5096(67)90030-0

Murakami S (1983) Notion of Continuum Damage Mechanics and its Application to Anisotropic
Creep Damage Theory. Journal of Engineering Materials and Technology 105(2):99–105,
doi:10.1115/1.3225633

Murakami S (2012) Continuum Damage Mechanics - A Continuum Mechanics Approach to the
Analysis of Damage and Fracture, Solid Mechanics and its Applications, vol 185. Springer
Netherlands

Murakami S, Ohno N (1981) A Continuum Theory of Creep and Creep Damage. In: Creep in
Structures, Springer Berlin Heidelberg, pp 422–444, doi:10.1007/978-3-642-81598-0_28

Murakami S, Liu Y, Mizuno M (2000) Computational methods for creep fracture analysis by
damage mechanics. Computer Methods in Applied Mechanics and Engineering 183(1-2):15–33,
doi:10.1016/s0045-7825(99)00209-1

Nabarro FRN, de Villiers HL (1995) The Physics of Creep: Creep and Creep-resistant Alloys. Taylor
& Francis

Naumenko K, Altenbach H (2007) Modeling of Creep for Structural Analysis. Springer Berlin
Heidelberg, doi:10.1007/978-3-540-70839-1

Naumenko K, Altenbach H (2016) Modeling High Temperature Materials Behavior for Structural
Analysis: Part I: Continuum Mechanics Foundations and Constitutive Models. Advanced
Structured Materials, Springer International Publishing, doi:10.1007/978-3-319-31629-1

Naumenko K, Gariboldi E (2014) A phase mixture model for anisotropic creep of forged Al–Cu–Mg–
Si alloy. Materials Science and Engineering: A 618:368–376, doi:10.1016/j.msea.2014.09.012

Naumenko K, Altenbach H, Kutschke A (2011) A Combined Model for Hardening, Softening, and
Damage Processes in Advanced Heat Resistant Steels at Elevated Temperature. International
Journal of Damage Mechanics 20(4):578–597, doi:10.1177/1056789510386851

https://doi.org/10.1016/0020-7403(72)90065-3
https://doi.org/10.1115/1.3443276
https://doi.org/10.1046/j.1460-2695.1998.00474.x
https://doi.org/10.2355/isijinternational.41.612
https://doi.org/10.1115/1.3601204
https://doi.org/10.1016/j.nucengdes.2003.09.005
https://doi.org/10.1115/1.3443367
https://doi.org/10.1115/1.3443346
https://doi.org/10.1007/978-94-009-3439-9
https://doi.org/10.1016/0749-6419(86)90002-1
https://doi.org/10.1016/0749-6419(86)90002-1
https://doi.org/10.1016/0022-5096(67)90030-0
https://doi.org/10.1115/1.3225633
https://doi.org/10.1007/978-3-642-81598-0_28
https://doi.org/10.1016/s0045-7825(99)00209-1
https://doi.org/10.1007/978-3-540-70839-1
https://doi.org/10.1007/978-3-319-31629-1
https://doi.org/10.1016/j.msea.2014.09.012
https://doi.org/10.1177/1056789510386851


4 Creep in Heat-resistant Steels at Elevated Temperatures 109

Nicolaou PD, Semiatin SL, Ghosh AK (2000) An analysis of the effect of cavity nucleation rate and
cavity coalescence on the tensile behavior of superplastic materials. Metallurgical and Materials
Transactions A 31(5):1425–1434, doi:10.1007/s11661-000-0260-6

Odqvist FKG (1974) Mathematical Theory of Creep and Creep Rupture. Oxford University Press
Odqvist FKG, Hult J (1962) Kriechfestigkeit metallischer Werkstoffe. Springer, doi:10.1007/978-3-

642-52432-5
Ohno N, Kachi Y (1986) A Constitutive Model of Cyclic Plasticity for Nonlinear Hardening

Materials. Journal of Applied Mechanics 53(2):395–403, doi:10.1115/1.3171771
Ohno N, Wang JD (1991) Transformation of a nonlinear kinematic hardening rule to a multisurface

form under isothermal and nonisothermal conditions. International Journal of Plasticity 7(8):879–
891, doi:10.1016/0749-6419(91)90023-r

Orowan E (1934a) Zur Kristallplastizität. I. Zeitschrift für Physik 89(9-10):605–613,
doi:10.1007/bf01341478

Orowan E (1934b) Zur Kristallplastizität. II. Zeitschrift für Physik 89(9-10):614–633,
doi:10.1007/bf01341479

Orowan E (1934c) Zur Kristallplastizität. III. Zeitschrift für Physik 89(9-10):634–659,
doi:10.1007/bf01341480

Othman AM, Hayhurst DR, Dyson BF (1993) Skeletal Point Stresses in Circumferentially Notched
Tension Bars Undergoing Tertiary Creep Modelled with Physically Based Constitutive Equa-
tions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
441(1912):343–358, doi:10.1098/rspa.1993.0065

Penny RK, Marriott DL (1995) Design for Creep. Chapman & Hall
Perrin IJ, Hayhurst DR (1996) Creep constitutive equations for a 0.5Cr–0.5Mo–0.25V ferritic steel

in the temperature range 600–675◦C. The Journal of Strain Analysis for Engineering Design
31(4):299–314, doi:10.1243/03093247v314299

Perrin IJ, Hayhurst DR (1999) Continuum damage mechanics analyses of type IV creep failure
in ferritic steel crossweld specimens. International Journal of Pressure Vessels and Piping
76(9):599–617, doi:10.1016/s0308-0161(99)00051-4

Perzyna P (1963) The constitutive equations for rate sensitive plastic materials. Quarterly of Applied
Mathematics 20(4):321–332, doi:10.1090/qam/144536

Perzyna P (1966) Fundamental Problems in Viscoplasticity. In: Chernyi GG, Dryden HL, Germain P,
Howarth L, Olszak W, Prager W, Probstein RF, Ziegler H (eds) Advances in Applied Mechanics,
vol 9, Elsevier, pp 243–377, doi:10.1016/s0065-2156(08)70009-7

Polcik P (1998) Modellierung des Verformungsverhaltens der warmfesten 9-12% Chromstähle
im Temperaturbereich von 550-650◦C. PhD thesis, Friedrich-Alexander-Universität, Erlangen-
Nürnberg

Ponter ARS, Leckie FA (1976) Constitutive Relationships for the Time-Dependent Deformation of
Metals. Journal of Engineering Materials and Technology 98(1):47–51, doi:10.1115/1.3443336

Prager W (1949) Recent Developments in the Mathematical Theory of Plasticity. Journal of Applied
Physics 20(3):235–241, doi:10.1063/1.1698348

Priester L (2013) Grain Boundaries. From Theory to Engineering. Springer, doi:10.1007/978-94-
007-4969-6

Rabotnov YN (1959) O mechanizme dlitel’nogo razrusheniya (A mechanism of the long term
fracture, in Russ.). Voprosy prochnosti materialov i konstruktsii, AN SSSR pp 5–7

Rabotnov YN (1969) Creep Problems in Structural Members. North-Holland, Amsterdam
Ragab AR (2002) Creep Rupture Due to Material Damage by Cavitation. Journal of Engineering

Materials and Technology 124(2):199–205, doi:10.1115/1.1446076
Raj R, Ashby MF (1975) Intergranular fracture at elevated temperature. Acta Metallurgica 23(6):653–

666, doi:10.1016/0001-6160(75)90047-4
Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields∗. Journal of

the Mechanics and Physics of Solids 17(3):201–217, doi:10.1016/0022-5096(69)90033-7
Ringel M, Roos E, Maile K, Klenk A (2004) Advanced constitutive equations for 10 Cr forged and cast

steel for steam turbines under creep fatigue and thermo-mechanical fatigue. In: 30. MPA-Seminar

https://doi.org/10.1007/s11661-000-0260-6
https://doi.org/10.1007/978-3-642-52432-5
https://doi.org/10.1007/978-3-642-52432-5
https://doi.org/10.1115/1.3171771
https://doi.org/10.1016/0749-6419(91)90023-r
https://doi.org/10.1007/bf01341478
https://doi.org/10.1007/bf01341479
https://doi.org/10.1007/bf01341480
https://doi.org/10.1098/rspa.1993.0065
https://doi.org/10.1243/03093247v314299
https://doi.org/10.1016/s0308-0161(99)00051-4
https://doi.org/10.1090/qam/144536
https://doi.org/10.1016/s0065-2156(08)70009-7
https://doi.org/10.1115/1.3443336
https://doi.org/10.1063/1.1698348
https://doi.org/10.1007/978-94-007-4969-6
https://doi.org/10.1007/978-94-007-4969-6
https://doi.org/10.1115/1.1446076
https://doi.org/10.1016/0001-6160(75)90047-4
https://doi.org/10.1016/0022-5096(69)90033-7


110 Johanna Eisenträger and Holm Altenbach

’Safety and reliability in energy technology’ in conjunction with the 9th German-Japanese
seminar Vol 2 (Papers 27–53), pp 32.1–32.14

Rösler J, Harders H, Bäker M (2012) Mechanisches Verhalten der Werkstoffe. Springer Fachmedien
Wiesbaden, doi:10.1007/978-3-8348-2241-3

Röttger DR (1997) Untersuchungen zum Wechselverformungs- und Zeitstandverhalten der Stähle
X20CrMoV121 und X10CrMoVNb91. PhD thesis, Universität GH, Essen

Saad AA (2012) Cyclic plasticity and creep of power plant materials. PhD thesis, University of
Nottingham, Nottingham, URL http://eprints.nottingham.ac.uk/id/eprint/
12538

Saad AA, Hyde CJ, Sun W, Hyde TH (2011a) Thermal-mechanical fatigue simulation of a P91
steel in a temperature range of 400–600◦C. Materials at High Temperatures 28(3):212–218,
doi:10.3184/096034011X13072954674044

Saad AA, Sun W, Hyde TH, Tanner DWJ (2011b) Cyclic softening behaviour of a P91
steel under low cycle fatigue at high temperature. Procedia Engineering 10:1103–1108,
doi:10.1016/j.proeng.2011.04.182

Sauzay M, Brillet H, Monneta I, Mottot M, Barcelo F, Fournier B, Pineau A (2005) Cyclically
induced softening due to low-angle boundary annihilation in a martensitic steel. Materials
Science and Engineering A 400–401:241–244, doi:10.1016/j.msea.2005.02.092

Sauzay M, Fournier B, Mottot M, Pineau A, Monnet I (2008) Cyclic softening of martensitic
steels at high temperature: Experiments and physically based modelling. Materials Science and
Engineering A 483–484:410–414, doi:10.1016/j.msea.2006.12.183

Shang J, Leen SB, Hyde TH (2006) Finite-element-based methodology for predicting the thermo-
mechanical behaviour of superplastic forming tools. Proceedings of the Institution of Me-
chanical Engineers, Part L: Journal of Materials: Design and Applications 220(3):113–123,
doi:10.1243/14644207jmda85

Simon A, Samir A, Scholz A, Berger C (2007) Konstitutive Beschreibung eines 10%Cr-Stahls
zur Berechnung betriebsnaher Kriechermüdungsbeanspruchung. Materialwissenschaft und
Werkstofftechnik 38(8):635–641, doi:10.1002/mawe.200600125

Sklenic̆ka V, Kuchar̆ová K, Svoboda M, Kloc L, Burs̆ík J, Kroupa A (2003) Long-term
creep behavior of 9–12%Cr power plant steels. Materials Characterization 51(1):35–48,
doi:10.1016/j.matchar.2003.09.012

Skrzypek JJ, Ganczarski A (1999) Modeling of material damage and failure of structures: theory
and applications. Springer Science & Business Media

Solasi R, Zou Y, Huang X, Reifsnider K (2007) A time and hydration dependent viscoplastic
model for polyelectrolyte membranes in fuel cells. Mechanics of Time-Dependent Materials
12(1):15–30, doi:10.1007/s11043-007-9040-7

Spindler MW (2004) The multiaxial creep ductility of austenitic stainless steels. Fatigue and Fracture
of Engineering Materials and Structures 27(4):273–281, doi:10.1111/j.1460-2695.2004.00732.x

Spindler MW, Hales R, Skelton RP (2001) The multiaxial creep ductility of an ex-service type 316H
stainless steel. In: 9th International Conference on Creep and Fracture of Engineering Materials
and Structures, pp 679–688

Stolk J, Verdonschot N, Murphy BP, Prendergast PJ, Huiskes R (2004) Finite element simulation
of anisotropic damage accumulation and creep in acrylic bone cement. Engineering Fracture
Mechanics 71(4-6):513–528, doi:10.1016/s0013-7944(03)00048-1

Stouffer DC, Bodner SR (1979) A constitutive model for the deformation induced anisotropic plastic
flow of metals. International Journal of Engineering Science 17(6):757–764, doi:10.1016/0020-
7225(79)90050-8

Stowell EZ (1957) A Phenomenological Relation Between Stress, Strain Rate and Temperature
for Metals at Elevated Temperatures. Tech. rep., REPORT 1343. National Advisory Commit-
tee for Aeronautics, URL https://ntrs.nasa.gov/archive/nasa/casi.ntrs.
nasa.gov/19930091014.pdf

Straub S (1995) Verformungsverhalten und Mikrostruktur warmfester martensitischer 12%-
Chromstähle. PhD thesis, Friedrich-Alexander-Universität, Erlangen-Nürnberg

https://doi.org/10.1007/978-3-8348-2241-3
http://eprints.nottingham.ac.uk/id/eprint/12538
http://eprints.nottingham.ac.uk/id/eprint/12538
https://doi.org/10.3184/096034011X13072954674044
https://doi.org/10.1016/j.proeng.2011.04.182
https://doi.org/10.1016/j.msea.2005.02.092
https://doi.org/10.1016/j.msea.2006.12.183
https://doi.org/10.1243/14644207jmda85
https://doi.org/10.1002/mawe.200600125
https://doi.org/10.1016/j.matchar.2003.09.012
https://doi.org/10.1007/s11043-007-9040-7
https://doi.org/10.1111/j.1460-2695.2004.00732.x
https://doi.org/10.1016/s0013-7944(03)00048-1
https://doi.org/10.1016/0020-7225(79)90050-8
https://doi.org/10.1016/0020-7225(79)90050-8
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930091014.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930091014.pdf


4 Creep in Heat-resistant Steels at Elevated Temperatures 111

Taylor MB, Zbib HM, Khaleel MA (2002) Damage and size effect during superplastic deformation.
International Journal of Plasticity 18(3):415–442, doi:10.1016/s0749-6419(00)00106-6

Tong J, Vermeulen B (2003) The description of cyclic plasticity and viscoplasticity of waspaloy using
unified constitutive equations. International Journal of Fatigue 25(5):413–420, doi:10.1016/s0142-
1123(02)00162-7

Tong J, Zhan ZL, Vermeulen B (2004) Modelling of cyclic plasticity and viscoplasticity of a
nickel-based alloy using Chaboche constitutive equations. International Journal of Fatigue
26(8):829–837, doi:10.1016/j.ijfatigue.2004.01.002

Tvergaard V (1984) On the creep constrained diffusive cavitation of grain boundary facets. Journal
of the Mechanics and Physics of Solids 32(5):373–393, doi:10.1016/0022-5096(84)90021-8

Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta
Metallurgica 32(1):157–169, doi:10.1016/0001-6160(84)90213-X

Valanis KC (1970) A Theory of Viscoplasticity without a Yield Surface. Tech. rep., Air Force
Office of Scientific Research, Office of Aerospace Research, United States Air Force, URL
www.dtic.mil/dtic/tr/fulltext/u2/725030.pdf

Valanis KC (1978) Fundamental Consequences of a New Intrinsic Time Measure. Plasticity as a Limit
of the Endochronic Theory. Tech. rep., Division of Materials Engineering, The University of
Iowa, Report G224-DME-78-001, URL https://apps.dtic.mil/docs/citations/
ADA302661

Valanis KC, Fan J (1983) Endochronic Analysis of Cyclic Elastoplastic Strain Fields in a Notched
Plate. Trans ASME Journal of Applied Mechanics 50(4a):789–794, doi:10.1115/1.3167147

Velay V, Bernhart G, Penazzi L (2006) Cyclic behavior modeling of a tempered martensitic hot work
tool steel. International Journal of Plasticity 22(3):459–496, doi:10.1016/j.ijplas.2005.03.007

Viswanathan R (1989) Damage mechanisms and life assessment of high temperature components.
ASM international

Voyiadjis GZ, Kattan PI (1999) Advances in Damage Mechanics: Metals and Metal Matrix
Composites. Elsevier New York

Walker KP (1981) Research and Development Program for Nonlinear Structural Modeling with
Advanced Time-Temperature Dependent Constitutive Relationships. Tech. rep., NASA CR-
165533

Wang J, Steinmann P, Rudolph J, Willuweit A (2015) Simulation of creep and cyclic viscoplastic
strains in high-Cr steel components based on a modified Becker–Hackenberg model. International
Journal of Pressure Vessels and Piping 128:36–47, doi:10.1016/j.ijpvp.2015.02.003

Watanabe O, Atluri SN (1986) Internal time, general internal variable, and multi-yield-surface
theories of plasticity and creep: A unification of concepts. International Journal of Plasticity
2(1):37–57, doi:10.1016/0749-6419(86)90015-x

Weißbach W, Dahms M, Jaroschek C (2015) Werkstoffkunde. Springer Fachmedien Wiesbaden,
Wiesbaden, doi:10.1007/978-3-658-03919-6

Wohua Z, Valliappan S (1998a) Continuum Damage Mechanics Theory and Application-
Part I: Theory. International Journal of Damage Mechanics 7(3):250–273,
doi:10.1177/105678959800700303

Wohua Z, Valliappan S (1998b) Continuum Damage Mechanics Theory and Application-
Part II: Application. International Journal of Damage Mechanics 7(3):274–297,
doi:10.1177/105678959800700304

Xiao YH, Guo C (2011) Constitutive modelling for high temperature behavior of
1Cr12Ni3Mo2VNbN martensitic steel. Materials Science and Engineering: A 528(15):5081–
5087, doi:10.1016/j.msea.2011.03.050

Xu Q (2001) Creep damage constitutive equations for multi-axial states of stress for
0.5Cr0.5Mo0.25V ferritic steel at 590◦C. Theoretical and Applied Fracture Mechanics 36(2):99–
107, doi:10.1016/s0167-8442(01)00060-x

Xu Q (2004) The development of validation methodology of multi-axial creep damage constitutive
equations and its application to 0.5Cr0.5Mo0.25V ferritic steel at 590◦C. Nuclear Engineering
and Design 228(1-3):97–106, doi:10.1016/j.nucengdes.2003.06.021

https://doi.org/10.1016/s0749-6419(00)00106-6
https://doi.org/10.1016/s0142-1123(02)00162-7
https://doi.org/10.1016/s0142-1123(02)00162-7
https://doi.org/10.1016/j.ijfatigue.2004.01.002
https://doi.org/10.1016/0022-5096(84)90021-8
https://doi.org/10.1016/0001-6160(84)90213-X
www.dtic.mil/dtic/tr/fulltext/u2/725030.pdf
https://apps.dtic.mil/docs/citations/ADA302661
https://apps.dtic.mil/docs/citations/ADA302661
https://doi.org/10.1115/1.3167147
https://doi.org/10.1016/j.ijplas.2005.03.007
https://doi.org/10.1016/j.ijpvp.2015.02.003
https://doi.org/10.1016/0749-6419(86)90015-x
https://doi.org/10.1007/978-3-658-03919-6
https://doi.org/10.1177/105678959800700303
https://doi.org/10.1177/105678959800700304
https://doi.org/10.1016/j.msea.2011.03.050
https://doi.org/10.1016/s0167-8442(01)00060-x
https://doi.org/10.1016/j.nucengdes.2003.06.021


112 Johanna Eisenträger and Holm Altenbach

Yaguchi M, Takahashi Y (2005a) Ratchetting of viscoplastic material with cyclic softening, part
1: experiments on modified 9Cr-1Mo steel. International Journal of Plasticity 21(1):43–65,
doi:10.1016/j.ijplas.2004.02.001

Yaguchi M, Takahashi Y (2005b) Ratchetting of viscoplastic material with cyclic softening,
part 2: application of constitutive models. International Journal of Plasticity 21(4):835–860,
doi:10.1016/j.ijplas.2004.05.012

Yao HT, Xuan FZ, Wang Z, Tu ST (2007) A review of creep analysis and design
under multi-axial stress states. Nuclear Engineering and Design 237(18):1969–1986,
doi:10.1016/j.nucengdes.2007.02.003

Yeom JT, Lee CS, Kim JH, Lee DG, Park NK (2007) Continuum Damage Model of Creep-
Fatigue Interaction in Ni-Base Superalloy. Key Engineering Materials 340–341:235–240,
doi:10.4028/www.scientific.net/kem.340-341.235

Yousefiani A, Mohamed FA, Earthman JC (2000) Creep rupture mechanisms in annealed and
overheated 7075 Al under multiaxial stress states. Metallurgical and Materials Transactions A
31(11):2807–2821, doi:10.1007/bf02830340

Zhan Z, Fernando US, Tong J (2008) Constitutive modelling of viscoplasticity in a nickel-
based superalloy at high temperature. International Journal of Fatigue 30(7):1314–1323,
doi:10.1016/j.ijfatigue.2007.06.010

Zhan ZL, Tong J (2007) A study of cyclic plasticity and viscoplasticity in a new nickel-based
superalloy using unified constitutive equations. Part I: Evaluation and determination of material
parameters. Mechanics of Materials 39(1):64–72, doi:10.1016/j.mechmat.2006.01.005

Zhang J, Jiang Y (2008) Constitutive modeling of cyclic plasticity deformation of
a pure polycrystalline copper. International Journal of Plasticity 24(10):1890–1915,
doi:10.1016/j.ijplas.2008.02.008

Zhao LG, Tong J, Vermeulen B, Byrne J (2001) On the uniaxial mechanical behaviour of an
advanced nickel base superalloy at high temperature. Mechanics of Materials 33(10):593–600,
doi:10.1016/s0167-6636(01)00071-0

https://doi.org/10.1016/j.ijplas.2004.02.001
https://doi.org/10.1016/j.ijplas.2004.05.012
https://doi.org/10.1016/j.nucengdes.2007.02.003
https://doi.org/10.4028/www.scientific.net/kem.340-341.235
https://doi.org/10.1007/bf02830340
https://doi.org/10.1016/j.ijfatigue.2007.06.010
https://doi.org/10.1016/j.mechmat.2006.01.005
https://doi.org/10.1016/j.ijplas.2008.02.008
https://doi.org/10.1016/s0167-6636(01)00071-0


Chapter 5
Surface Elasticity Models: Comparison Through
the Condition of the Anti-plane Surface Wave
Propagation

Victor A. Eremeyev

Abstract In order to discuss the peculiarities of few models of surface elasticity we
consider here the dispersion relations for anti-plane surface waves. We show that the
dispersion curves are quite sensitive to the choice of the model. We consider here the
linear Gurtin-Murdoch model, strain- and stress-gradient surface elasticity models.

Keywords: Surface elasticity · Anti-plane surface wave propagation · Dispersion
curves · Gurtin-Murdoch model · Strain-gradient surface elasticity model · Stress-
gradient surface elasticity models

5.1 Introduction

The interest to generalized models of continua grows recently with respect to
appearance of new microstructured materials as well as in order to describe new
phenomena observed at the micro- and nano-scale, see, e.g., Forest et al (2011);
Liebold and Müller (2015); Aifantis (2016). In particular, the surface elasticity
models found various applications in micro- and nano-mechanics, see, e.g., Duan et al
(2008); Wang et al (2011); Javili et al (2013b,a); Eremeyev (2016) and the reference
therein. Having origin in the landscape works by Laplace (1805, 1806); Young (1805);
Poisson (1831) and Gibbs, see Longley and Van Name (1928), the rational continual
model of the surface elasticity was developed by Gurtin and Murdoch (1975, 1978).
Later it was generalized by Steigmann and Ogden (1997, 1999) in order to take
into account bending surface stiffness. As surface mechanics should describe quite
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different phenomena, in the literature are known various extensions of surface-related
mechanics, see, e.g., dell’Isola and Seppecher (1997); dell’Isola et al (2012b); Placidi
et al (2014); Lurie et al (2016, 2009); Belov et al (2019); Eremeyev (2019b) and the
references therein.

The presence of surface stresses influences the effective (apparent) properties of
nanostructured materials, such as nano-composites (Kushch et al, 2013; Nazarenko
et al, 2016, 2018; Zemlyanova and Mogilevskaya, 2018; Han et al, 2018) or nano-
plates and shells (Altenbach and Eremeyev, 2011; Altenbach et al, 2010, 2012; Ru,
2016). In addition, surface energy may result in new phenomena as the appearance
surface/interfacial waves considered within the Gurtin-Murdoch approach (Xu et al,
2015; Eremeyev et al, 2016) and for certain generalizations of the Gurtin-Murdoch
model (Eremeyev, 2017, 2019b,a). Let us note that this class of waves exist also
for another type of media with surface energy such as strain-gradient media, see
Vardoulakis and Georgiadis (1997); Georgiadis et al (2000); Yerofeyev and Sheshenina
(2005); dell’Isola et al (2012a); Rosi et al (2015); Li et al (2015); Gourgiotis and
Georgiadis (2015). The comparison of the Gurtin-Murdoch model with the Toupin-
Mindlin strain gradient elasticity was given by Eremeyev et al (2018b), whereas the
similarities with the dynamics of a square lattice was discussed by Eremeyev and
Sharma (2019).

The aim of this paper is to compare the dispersion relations and condition of
existence of anti-plane surface waves in various media with surface energy. The
key-point of the surface elasticity is the presence of surface stresses τττ. For the latter
we assume additional constitutive equation. Here we consider the classic Gurtin-
Murdoch model as well two extensions such as surface strain and surface stress
gradient elasticity.

The paper is organized as follows. First, in Sect. 5.2 we present the basic equations
for an elastic half-space with surface stresses. Then in Sect. 5.3 we consider various
constitutive equations for τττ. Here we introduce both the integral and differential
constitutive equations. In other words, we consider both strongly and weak nonlocal
models of surface elasticity. Finally, we discuss the dispersion relations in Sect. 5.4.

5.2 Anti-plane Motions of an Elastic Half-Space

In what follows we restrict ourselves by isotropic materials undergoing infinitesimal
deformations. So in the bulk we have the Hooke law

σσσ = 2μeee + λ III tr eee, eee =
1
2

(
∇uuu + (∇uuu)T

)
, (5.1)

where σσσ and eee are the stress and strain tensors, respectively, λ and μ are Lamé elastic
moduli, tr is the trace operator, the superscript T stands for the transpose operation,
∇ is the 3D nabla operator, and III is the 3D unit tensor. Hereinafter we use the direct
(coordinate-free) tensor calculus as described in Simmonds (1994); Lebedev et al
(2010); Eremeyev et al (2018a). As a result, the gradient of the displacement vector
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uuu = uuu(xxx, t) is given by

∇uuu =
∂u j

∂xi
iiii ⊗ iii j,

where ⊗ denotes the dyadic product, x1, x2, x3 are Cartesian coordinates with
corresponding base vectors iiik , k = 1,2,3, xxx = xiiiii is the position vector, t is time,
and Einstein’s summation rule is utilized. The equation of the motion is given by

∇ ·σσσ = ρ
∂2uuu
∂t2 , (5.2)

where ρ is the mass density and the dot stands for scalar product. For a free surface
with surface stresses we get the generalized Young-Laplace equation as a boundary
condition

nnn ·σσσ = ∇s · τττ − m
∂2uuu
∂t2 , (5.3)

where nnn is the unit outward vector of normal to the boundary, ∇s ≡ PPP · ∇ is the
surface nabla operator, PPP ≡ III − nnn ⊗ nnn is the surface unit second-order tensor, and m
is the surface mass density, see Gurtin and Murdoch (1978).

Let us consider anti-plane motions of an elastic half-space given by the inequality
−∞ ≤ x3 ≤ 0. The displacement vector takes the form

uuu = u(x2, x3, t)iii1, (5.4)

see Achenbach (1973). In this case the equation of motion (5.2) is reduced to the
wave equation

μΔu = ρ∂2
t u, (5.5)

where Δ = ∂2
2 + ∂

2
3 is the 2D Laplace operator. For brevity, in what follows we will

denote partial derivatives as ∂k = ∂/∂xk and ∂t = ∂/∂t. For the anti-plane motion τττ
takes the form

τττ = τ (iii1 ⊗ iii2 + iii2 ⊗ iii1), τ = τ(x2, x3, t)

with only one surface stress τ(x2, x3, t). As a result, the generalized Young-Laplace
equation (5.3) can be transformed into

σ31 = ∂2τ − m∂2
t u

or, considering Hooke’s law (5.1), into

μ∂3u = ∂2τ − m∂2
t u. (5.6)

Thus, to complete the boundary-value problem statement one needs in the constitutive
relations for τ.
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5.3 Constitutive Relations Within the Surface Elasticity

After Gurtin and Murdoch (1975) in addition to constitutive equations in the bulk
one should independently introduce constitutive relations for surface stresses τττ. Here
we consider the simplified linear Gurtin-Murdoch model and some of its extensions.

5.3.1 Simplified Linear Gurtin-Murdoch Model

Within this model we get the following constitutive relation

τττ = 2μsεεε + λsPPP tr εεε, (5.7)

where the surface strain tensor is defined by the formula

εεε =
1
2
[
PPP · (∇suuu) + (∇suuu)T · PPP

]
,

and λs and μs are the surface Lamé moduli.
For anti-plane deformations we get that

εεε = ε(iii1 ⊗ iii2 + iii2 ⊗ iii1), ε =
1
2
∂2u

and
τ = μs∂2u. (5.8)

Let us note that as the anti-plane motions constitute a very specific class of de-
formations, in this case τ takes form (5.8) also for linearized (non-simplified)
Gurtin-Murdoch model, see also discussion by Ru (2010), as well as for the linear
Steigmann-Ogden model.

5.3.2 Linear Stress-gradient Surface Elasticity

Motivated by long range surface interactions as described by de Gennes (1981);
de Gennes et al (2004); Israelachvili (2011), we recently proposed the integral-type
constitutive relations of Eringen’s type (Eremeyev, 2019a)

τττ(xxx) =
∞∫

−∞

∞∫
−∞

α(‖xxx − xxx ′‖) [2μsεεε(xxx ′) + λs (tr εεε(xxx ′))PPP] dx ′
1dx ′

2, (5.9)

where α(s) is a kernel function, which can be taken as a fundamental solution of an
elliptic differential equation. For example, introducing an elliptic differential operator
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L we define α as the normalized solution of

L(∂1, ∂2)α = δ(xxx),
∞∫

−∞

∞∫
−∞

α(‖xxx − xxx ′‖)dx ′
1dx ′

2 = 1, (5.10)

where δ(xxx) is the Dirac delta-function. In this case we can transform (5.9) into
differential form

L(∂1, ∂2)τττ = 2μsεεε + λsPPP tr εεε . (5.11)

After Eringen (2002) we can consider

L = −q−2Δ + 1,

where the parameter q is a reciprocal length, as an example of proper strongly
non-local model. Here we have

α(s) =
1

2π
K0(qs),

where K0 is a modified Bessel function of the second kind. So we get the following
stress-gradient constitutive equation

− q−2Δτττ + τττ = 2μsεεε + λsPPP tr εεε . (5.12)

Other choices of the kernel functions are also possible, see Eringen (2002). For
example, if we take α = δ(xxx) we get (5.7).

In the case of anti-plane motions, Eq. (5.9) can be transformed into one scalar
integral equation

τ =

∞∫
−∞

∞∫
−∞

α(‖xxx − xxx ′‖)μs∂2u(xxx ′) dx ′
1dx ′

2,

or into its differential counterpart

L(0, ∂2)τ = μs∂2u.

For L = −q−2Δ + 1, this becomes

− q−2∂2
2 τ + τ = μs∂2u. (5.13)

Obviously, Eq. (5.13) transforms into (5.8) at q → ∞. So for this limit we get the
classic Gurtin-Murdoch model. The presented here model belongs to the class of
strongly non-local materials according to Maugin’s classification, see Maugin (2017)
for the general framework and Eremeyev (2019a) for more detail.
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5.3.3 Linear Strain-gradient Surface Elasticity

Another non-local generalization of the Gurtin-Murdoch model can be introduced
considering higher order gradient terms in the surface energy density

Ws = Ws(εεε,∇s∇suuu),

see Eremeyev (2017). Partially the model was motivated by consideration of hyperbolic
metasurfaces, see Eremeyev (2019b) and the reference therein. As a result, we came
to the constitutive relation

τττ = μsεεε + λsPPP tr εεε − μ2∇s · (∇s∇suuu) , (5.14)

where μ2 is an additional surface elastic modulus. Here in the model there also exist
surface hyperstresses as in the 3D strain-gradient elasticity, given by the formula

μμμ = μ2∇s∇suuu.

For anti-plane deformations, Eq. (5.14) takes the form

τ = μs∂2u − μ2∂
3
2 u. (5.15)

As a result, Eq. (5.6) becomes a forth-order differential equation with respect to the
tangent derivative.

5.4 Dispersion Relations

Considering the models above, we came to the boundary-value problem in the
half-space which consists of the wave equation (5.5) and the boundary condition
(5.6) where τ was introduced within the Gurtin-Murdoch, stress- and strain-gradient
models according to (5.8), (5.13), and (5.15), respectively. Assuming steady-state
behaviour, we consider a solution of (5.5) in the form

u = U(x2, x3) exp(−iωt), (5.16)

where U is an amplitude, ω is a circular frequency, and i =
√
−1 is the imaginary

unit. With (5.16), Eq. (5.5) transforms into

μΔU = −ρω2U, (5.17)

which has decaying at x3 → −∞ solution

U = U0 exp(κx3) exp(ik x2), (5.18)

where k is a wavenumber, U0 is a constant, and κ is given by
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κ = κ(k,ω) ≡

√
k2 −

ω2

c2
T

, cT =
√
μ

ρ
,

where cT is the phase velocity of transverse waves in the bulk (Achenbach, 1973).
A nontrivial solution of (5.18), that is with U0 � 0, exists if and only if it satisfies

the boundary conditions at x3 = 0. The latter will lead to a dispersion relation, i.e.,
an equation relating k and ω.

The displacement field u(x2, x3, t) according to (5.16) and (5.18) leads to a surface
stress in the form

τ = T exp(ik x2) exp(−iωt),

where T is a constant. For (5.8), (5.13), and (5.15), T is given by

T =ikμsU0, (5.19)

T =
ik

1 + q−2k2 μsU0, (5.20)

T =ik(μs + μ2k2)U0, (5.21)

respectively. Substituting these dependencies into (5.6) we get the dispersion relations

μκ(k,ω) =mω2 − μsk2, (5.22)

μκ(k,ω) =mω2 − q2 μsk2

k2 + q2 , (5.23)

μκ(k,ω) =mω2 − μsk2 − μ2k4. (5.24)

Introducing the phase velocity c = ω/k and characteristic wavenumber p = ρ/m
we transform (5.22)-(5.24) into dimensionless forms

c2

c2
T

=
c2
s

c2
T

+
p
|k |

√
1 −

c2

c2
T

, (5.25)

c2

c2
T

=
c2
s

c2
T

(
1 +

k2

q2

)−1

+
p
|k |

√
1 −

c2

c2
T

, (5.26)

c2

c2
T

=
c2
s

c2
T

+
K

p4 k4 +
p
|k |

√
1 −

c2

c2
T

, (5.27)

where K = μ2p4/(c2
Tm) and cs =

√
μs/m is the shear wave velocity in the thin film

associated with the Gurtin-Murdoch model.
Typical dispersion curves for these models are shown in Fig. 5.1 for different

values of parameters. Let us discuss some similarities in dispersion curves. All curves
start from the point (0, cT ) with a horizontal tangent. So for small k that is for long
waves there is no significant difference in models as it should be. Indeed, surface
nonlocality plays a role for short waves. Moreover, within a fixed range 0 ≤ k ≤ k1,
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c

k

cs

K
cT

0

0 p

q

cGM(k), the Gurtin-Murdoch model, q → ∞ or K → 0

∞

∞

0

0c0(k) = lim
q→0

cstress(k)

Fig. 5.1 Dispersion relations. cGM curve corresponds to the Gurtin-Murdoch model. The dispersion
curves cstress for stress-gradient surface elasticity occupies the green area whereas dispersion curves
cstrain for strain-gradient surface elasticity are in the yellow area. Here we assumed that cs = 3/4cT

the dispersion curve of the stress-gradient model for q → ∞ will come arbitrarily
close to the dispersion curve of the Gurtin-Murdoch model. The same behaviour
demonstrate the dispersion curves for the strain-gradient model when K → 0. In
what follows we assume the following notations: cGM = cGM(k), cstress = cstress(k),
and cstrain = cstrain(k) denote the phase velocity for the Gurtin-Murdoch, stress- and
strain-gradient models.

For fixed q and K we have different behaviour of the dispersion curves for the
stress- and strain gradient models at k → ∞. For stress-gradient model we have
that cstress → 0 when k → ∞. Let us remind that the Gurtin-Murdoch dispersion
curve tends to the finite velocity cs at k → ∞, see GM-curve in Fig. 5.1. For the
strain-gradient model the dispersion curves approach the line cstrain = cT at k = kmax,
where kmax takes the value

kmax =

√
c2
T − c2

s

K
.

For the stress-gradient surface elasticity all dispersion curves are enclosed between
the lower limiting curve for q → 0, given by the formula



5 Surface Elasticity: Comparison Through the Anti-plane Surface Waves 121

c2
0 =

c2
T p2

2k2
� !
√

1 +
4k2

p2 − 1"#$ , (5.28)

and the dispersion curve of the Gurtin-Murdoch model, see Fig. 5.1. So we have the
following bounds for cstress

c0(k) ≤ cstress(k) ≤ cGM(k). (5.29)

Let us note that the dispersion curves for a square lattice lie also below the GM-curve,
see Eremeyev and Sharma (2019). For the strain gradient model all dispersive curves
are enclosed between the GM-curve and the line c = cT , see Fig. 5.1,

cGM(k) ≤ cstrain(k) ≤ cT . (5.30)

Thus, GM-curve separates dispersion curves for the stress- and stress-gradient model.
For all considered above models we consider the surface kinetic energy in the

simplest form
Ks =

1
2

m∂tuuu · ∂tuuu,

as was introduced by Gurtin and Murdoch (1978). Introduction of higher-order terms
in the surface kinetic energy may significantly change the behaviour of the dispersion
curves as in the case of the 3D models, see e.g. Askes and Aifantis (2011).

5.5 Conclusions

We have considered here the propagation of anti-plane surface waves in an elastic
half-space with surfaces stresses within various models of surface elasticity. The
linear Gurtin-Murdoch elasticity and strain- and stress-gradient surface elasticity
models were compared. From the mathematical point of view the difference between
the models consists of the boundary conditions at the half-space boundary. The
analysis of dispersion relations was performed and the upper and lower bounds for
the dispersion curves were found. In particular, it was shown that the dispersion curve
for the Gurtin-Murdoch model separates the areas of dispersion curves for strain- and
stress gradient surface elasticity.
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Chapter 6
Anisotropic Material Behavior

Artur Ganczarski

Abstract This entry is focused on description of material anisotropy in elastic
and plastic ranges. Concise classification of anisotropic materials with respect to
symmetry of elastic matrices as referred to the crystal lattice symmetry is given,
and extended analogy between symmetries of constitutive material matrices (elastic
and yield/failure) is also discussed. In this entry basic features of anisotropic initial
yield criteria are discussed. Two ways to account for anisotropy are presented: the
explicit vs. implicit formulations. The explicit description of anisotropy is rigorously
based on well established theory of common invariants (Sayir, Goldenblat–Kopnov,
von Mises, Hill). The implicit approach involves linear transformation tensor of the
Cauchy stress that accounts for anisotropy to enhance the known isotropic criteria to
be able to capture anisotropy, hydrostatic pressure insensitivity and asymmetry of the
yield surface (Barlat, Plunckett, Cazacu, Khan). The advantages and differences of
both formulations are critically presented.

Keywords: Symmetry classes in elasticity · Anisotropic yield criteria · Anisotropic
failure criteria

6.1 Elastic Anisotropy

„Material anisotropy means that the constitutive relation takes different forms
depending on the Cartesian coordinate system we use.”
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This definition by Ottosen and Ristinmaa (2005) clearly shows that in the case of
elasticity all information about anisotropy is included in the stiffness or compliance
tensors. Hence, to study the elastic anisotropy means to study classes of symmetry of
aforementioned tensors.

For the purpose of further considerations an analogy between the crystal lattice
symmetry groups and classes and corresponding symmetry of the stiffness matrices
defined for crystalline materials might occur useful (cf. e.g. Nye, 1957). Unit cells
of the eight conventional crystal lattices are demonstrated based on Love (1944)
and Jastrzebski (1987), whereas corresponding constitutive elasticity matrices are
schematically sketched applying Nye’s graphics (symbol • refers to independent
element, symbol ◦ refers to dependent element, symbols •−−• or ◦−−◦ represent
pairs of identical matrix elements, symbols •−−◦· stand for pairs of elements in which
one is doubled (effect of engineering notation applied to shear strain γi j = 2εi j),
whereas symbols •−−−◦ denote pairs of elements of the same absolute value but
opposite signs, respectively.

6.1.1 Triclinic Symmetry

Deformation of representative cube taken of the generally anisotropic material of
the triclinic symmetry subjected to exemplary axial tension along 3 axis is fully
anisotropic. This means that it comprises both anisotropic axial strains (transformation
of the cube to a rectangular prism) as well as anisotropic shear strains (transformation
of the rectangular prism to a parallelepiped). In such a case of general deformation
the elastic compliance matrix is fully populated. In other words, all components of
the columnar stress vector depend on all 6 components of the columnar strain vector
(36 combinations).

Final representation of compliance matrix for fully anisotropic (triclinic) material
is as follows[

E−1] =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

η23(1)
E11

η31(1)
E11

η12(1)
E11

− ν12
E22

1
E22

− ν32
E22

η23(2)
E22

η31(2)
E22

η12(2)
E22

− ν13
E33

− ν23
E33

1
E33

η23(3)
E33

η31(3)
E33

η12(3)
E33

η(1)23
G23

η(2)23
G23

η(3)23
G23

1
G23

μ31(23)
G23

μ12(23)
G23

η(1)31
G31

η(2)31
G31

η(3)31
G31

μ(23)31
G31

1
G31

μ12(31)
G31

η(1)12
G12

η(2)12
G12

η(3)12
G12

μ(23)12
G12

μ(31)12
G12

1
G12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.1)

Symmetry of the elastic compliance matrix (6.1) results from symmetry of both stress
and strain tensors, namely
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Table 6.1 Classification of anisotropic elastic materials with respect to stiffness matrix symmetry
referring to crystal lattice cf. Nye (1957)

νi j

Ej j
=
νji

Eii
−→ νi jEii = νjiEj j

ηi j(k)

Ekk
=
η(k)i j

Gi j
−→ ηi j(k)Gi j = η(k)i jEkk

μi j(ki)

Gki
=
μ(ki)i j

G ji
−→ μi j(ki)G ji = μ(ki)i jGki

(6.2)
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In should be pointed out that the symmetry E−1
i j = E−1

ji holds for elements of com-
pliance matrix but not for corresponding engineering material constants Eii, νi j,Gi j ,
η(i)jk , μi j(ki) as shown in (6.3) vs. (6.1)

[
E−1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E−1
11 E−1

12 E−1
13 E−1

14 E−1
15 E−1

16
E−1

21 E−1
22 E−1

23 E−1
24 E−1

25 E−1
26

E−1
31 E−1

32 E−1
33 E−1

34 E−1
35 E−1

36

E−1
41 E−1

42 E−1
43 E−1

44 E−1
45 E−1

46
E−1

51 E−1
52 E−1

53 E−1
54 E−1

55 E−1
56

E−1
61 E−1

62 E−1
63 E−1

64 E−1
65 E−1

66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.3)

Elastic engineering modules of five types can be sorted in following way, after
Lekhnitskii (1981):

• Eii – axial modules (3 generalized Young’s modules)
• Gi j – shear modules for planes parallel to the co-ordinate planes (3 generalized

Kirchhoff’s modules)
• νi j – Poisson’s ratios characterizing the contraction in the direction of one axis

when tension is applied in the direction of another axis (3 generalized Poisson’s
coefficients)

• μi j(kl) – coefficients characterizing shears in planes parallel to the co-ordinate
planes resulting from shear stresses acting in other planes parallel to the co-ordinate
planes (3 Chencov’s modules)

• ηi(jk) – mutual influence coefficients characterizing extensions in the directions of
the co-ordinate axes resulting from shear stresses acting in the co-ordinate planes
(9 Rabinovich’s modules)

The aforementioned modules are listed in Table 6.2. In case of full anisotropy the
shear stress acting in one plane results a in shear strain appearing in another plane.
This effect is described by the three Chencov modules. Hence, the bottom right-hand
side block of the compliance matrix (6.3) is fully populated, by contrast to the case
of isotropy where shear stress acting in one plane results in shear strain in the same

Table 6.2 Engineering modules defining elements of elastic compliance matrix (6.1) of fully
anisotropic material

Engineering Coupling between Corresponding Number of
elastic modules stress strain axes or planes coefficients
E11, E22, E33 axial extension the same axes: 1 → 1, etc. 3
G12,G32,G31 shear shear strain the same planes: 12 → 12, etc. 3
ν21, ν31, ν32 axial extension different axes: 1 → 2, etc. 3

μ31(23), μ12(23), μ12(31) shear shear strain different planes:13 → 23, etc. 3
η23(1), . . . , η12(3) shear extension normal to shear plane: 23 → 1, etc. 9
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plane exclusively. It means that in case of isotropy the considered blok of compliance
matrix must have the diagonal form.

In order to describe effect of axial stresses on shear strains (upper right-hand side
block), as well as effect of shear stresses on axial strains (lower left-hand side block),
it is necessary to define 9 additional modules η(i)jk , called Rabinovich’s modules
where the appropriate symmetry conditions hold (6.2). Total number of discussed
modules is equal to 21. However, only 18 of them are truly independent because the
compliance matrix [E−1] has to obey transformation with respect to 3 Euler’s angles.
It should be pointed out that in general case of anisotropy it is not possible to find
any reference frame for which any elements of the compliance matrix can be equal to
zero. The general case of anisotropy corresponds to the triclinic symmetry lattice
cell in which all three edges differ each from the other and all three angles between
them differ each from the other and none of them is equal 90◦, as shown in item 1. of
Table 6.1.

6.1.2 Monoclinic Symmetry

Among anisotropic materials the narrower group called monoclinic symmetry can
be distinguished. Monoclinic or oblique symmetry corresponds to monoclinic space
lattice cell symmetry in which all three edges differ each from the other whereas
two angles are equal to 90◦ and one is different, as shown in item 2. of Table 6.1.
The corresponding stiffness matrix symmetry characterizes through incomplete
population in which only 13 elements are not equal to zero, as shown below[

E−1] =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

η12(1)
E11

− ν12
E22

1
E22

− ν32
E22

η12(2)
E22

− ν13
E33

− ν23
E33

1
E33

η12(3)
E33

1
G23

μ31(23)
G23

μ(23)31
G31

1
G31

η(1)12
G12

η(2)12
G12

η(3)12
G12

1
G12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.4)

In other words in case of monoclinic symmetry only 3 of the Rabinovich modules
and only 1 of the Chencov modules are different from zero.
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6.1.3 Trigonal/Rhombohedral Symmetry

Another important narrower case of material anisotropy called trigonal anisotropy can
be distinguished. The trigonal anisotropy corresponds the rhombohedral cell lattice
in which all three edges are equal to each other and all three angles are equal but
different from 90◦, as shown in item 3. of Table 6.1. The corresponding compliance
matrix takes the following representation[

E−1] =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

η23(1)
E11

− ν12
E22

1
E11

− ν31
E11

−η23(1)
E11

− ν13
E33

− ν13
E33

1
E33

η(1)23
G23

−η(1)23
G23

1
G23

1
G31

2μ12(31)
G31

2μ(31)12
G12

2(1+ν12)
E11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.5)

It is seen that in case of trigonal symmetry among Rabinovich’s modules only 2
are non-zeroth but in fact only one of them is independent because they only differ
in sign. Additionally, only one Chencov’s modulus is different from zero but in
fact it is the dependent modulus due to the specific coupling between components
2E−1

14 = E−1
56 and E−1

24 = −E−1
14 as well as E−1

11 = E−1
22 , E−1

44 = E−1
55 , E−1

13 = E−1
23 whereas

E−1
66 = (E−1

11 − E−1
12 )/2 must hold. Finally for trigonal symmetry only 6 elements of

the compliance matrix are independent, see Berryman (2005).

6.1.4 Orthorhombic Symmetry

Majority of engineering materials exhibits a specific symmetry property, which may
result in reduction of the number of non-zeroth elastic modules. It can be done when,
for chosen symmetry group or class, some particular material directions are defined in
such a way that transformation of the compliance matrix from an arbitrary co-ordinate
frame to the given structural symmetry frame leads to the zeroth population of the
top right-hand side and the bottom left-hand side blocks of the compliance matrix
(6.1), and additionally the bottom right-hand side block possesses a diagonal form. In
such practically important case both the nine Rabinovich η(i)jk and the three Chencov
μi j(kl) modules are equal to zero, and consequently, coupling between the shear
stresses and elongations does not exist such that shear strains are produced exclusively
by the action on stresses at the same planes. In this particular symmetry, called
orthotropy, there exist three mutually perpendicular axes (1, 2, 3) that determine the
three material orthotropy planes. The orthotropy symmetry case corresponds to the
orthorhombic lattice in which all three edges differ each from the other but all angles
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are equal to 90◦, as presented in item 4. of Table 6.1.[
E−1] =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

− ν12
E22

1
E22

− ν32
E22

− ν13
E33

− ν23
E33

1
E33

1
G23

0 0
1

G13
0
1

G12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.6)

The following conditions must hold to assure the matrix symmetry

ν21
E11
=
ν12
E22

ν13
E33
=
ν31
E11

ν23
E33
=
ν32
E22

(6.7)

Finally, in case of orthotropy number of independent material constants is 9, that
is 3 generalized Hooke’s modules E11,E22,E33, 3 generalized Kirchhoff’s modules
G12,G23,G31 and three generalized Poisson’s ratios ν21, ν23, ν31.

6.1.5 Tetragonal Transverse Isotropy

For several engineering applications the general orthotropic symmetry model occurs
to be too complicated, since additional symmetry conditions frequently appear. In
particular case when conditions of isotropy hold in selected orthotropy plane the so
called transverse isotropy obeys.

In case of so called tetragonal symmetry material properties in the plane (1, 2)
satisfy condition of cubic symmetry, see item 5. of Table 6.1

E11 = E22, G13 = G23, ν31 = ν32 (6.8)

Hence, in case of transverse isotropy of tetragonal symmetry number of independent
material constants is equal to 6: E11, E33, G23, G12, ν21, ν31. Corresponding crystal
lattice is sketched in item 5. of Table 6.1, where tetragonal lattice being special case
of the orthorhombic lattice with a = b � c obeys.

When the constraints (6.8) are applied to compliance matrix (6.6) the transverse
isotropy tetragonal symmetry case yields
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E−1] =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

1
E11

− ν31
E11
1
E33

1
G23

1
G23

1
G12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.9)

It follows from the constraints (6.8) that 6 independent material constants define the
tetragonal symmetry matrix:

• E11,E33 – two Young’s modulus in the plane of isotropy and direction perpendicular
to this plane,

• ν21, ν31 – two Poisson’s ratios referring to transverse contraction or swelling caused
by tension or compression in direction perpendicular to isotropy plane,

• G12,G23 – two different Kirchhoff’s modules in the isotropy or orthotropy planes.

6.1.6 Hexagonal Transverse Isotropy

In special case of the transverse isotropy called hexagonal symmetry the additional
constraint must obey for the shear modulus in the isotropy plane

G12 =
E11

2(1 + ν21)
or E−1

66 = 2
(
E−1

11 − E−1
12

)
(6.10)

where modulus G12 is expressed in terms of the transverse Young’s modulus E11 and
transverse Poisson’s ratio ν21. Hence, in case of the transverse isotropy of hexagonal
symmetry the number of independent constants is equal to 5: E11, E33, G23, ν21, ν31.
A choice of the five independent material constants from among six can be performed
in optional way, for instance[

E−1] =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

1
E11

− ν31
E11
1
E33

1
G23

1
G23

2(1+ν21)
E11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.11)
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Rolled metals, some multi-phase composite materials, basalt or columnar ice are
examples of transversely isotropic materials, however precise distinction between the
tetragonal or hexagonal symmetry classes is often difficult (see for example Gan et al,
2000).

6.1.7 Cubic Symmetry

Further reduction of number of independent constants leads to the cubic symmetry
for which the compliance matrix is characterized by 3 independent material constants
E11 = E22 = E33 = E , G23 = G31 = G12 = G and ν21 = ν31 = ν32 = ν. Hence,
following form of the compliance matrix is furnished

[
E−1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E − ν

E − ν
E

1
E − ν

E
1
E

1
G

1
G

1
G

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.12)

Note that in case of cubic symmetry the condition (6.10) does not hold. Corresponding
cubic or regular lattice is shown in item 7. of Table 6.1. The particular example of
the cubic symmetry material is the Nickel-based single crystal superalloys widely
used in aircraft engines especially for turbine blades as discussed by Desmorat
and Marull (2011). The cubic symmetry is the narrower symmetry case known
from crystallography, see Jastrzebski (1987), since fully isotropic crystal lattices are
unknown. Consequently, the material isotropy can be considered as a polycrystal (see
item 8. of Table 6.1) being the assembly of sufficiently high number of monocrystals,
randomly distributed and oriented such that constitutive relation does not depend
of coordinate system (stiffness or compliance tensor can be defined by combination
of only two independent material constants and second order unit tensors λδi jδkl +
μ(δikδjl + δilδjk)).

6.2 Plastic Anisotropy

In the case of plasticity, analogously to the case of elasticity, all information about
anisotropy is included in the constitutive law. However, this depends on the yield
criterion and the hardening/softening rule. Hence, to study plastic anisotropy means
at first to study classes of symmetry of yield criteria.
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6.2.1 Goldenblat–Kopnov’s Criterion

In a general case of material anisotropy, extension of the isotropic yield initiation
criteria to the anisotropic yield/failure behaviour (Table 6.3), by the use of common
invariants of the stress tensor and of the structural tensors of plastic anisotropy (cf.
Hill, 1948; Sayir, 1970; Betten, 1988; Życzkowski, 2001), can be shown in a general
fashion

f
(
Π,Πi jσi j,Πi jklσi jσkl,Πi jklmnσi jσklσmn, . . .

)
= 0 (6.13)

where Einstein’s summation convention holds.
In such a case, initiation of plastic flow or failure is governed by the structural

tensors of material anisotropy of even-ranks:

<0>
ΠΠΠ = Π,

<2>
ΠΠΠ = Πi j,

<4>
ΠΠΠ = Πi jkl,

<6>
ΠΠΠ = Πi jklmn, . . . ,

etc. Equation (6.13) owns a general representation, but its practical identification
is limited by a large number of required material tests and, additionally, because
the components of the structural tensors are temperature dependent, which makes
identification much more complicated (cf. e.g. Herakovich and Aboudi, 1999; Tamma
and Avila, 1999). Hence, a general form (6.13) is usually more specified and limited
for engineering needs.

In a particular case when a general tensorially-polynomial form of Eq. (6.13) is
assumed (cf. Sayir, 1970; Kowalsky et al, 1999; Życzkowski, 2001; Ganczarski and
Skrzypek, 2014) the polynomial anisotropic yield criterion is furnished

(Πi jσi j)α + (Πi jklσi jσkl)β + (Πi jklmnσi jσklσmn)γ + . . . − 1 = 0 (6.14)

where if the Voigt notation is used and the structural anisotropy tensors take corre-
sponding matrix forms

[
<2>
ΠΠΠ ] =

⎡⎢⎢⎢⎢⎣
π11 π12 π13
π22 π23
π33

⎤⎥⎥⎥⎥⎦ , [
<4>
ΠΠΠ ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π11 Π12 Π13 Π14 Π15 Π16

Π22 Π23 Π24 Π25 Π26

Π33 Π34 Π35 Π36

Π44 Π45 Π46

Π55 Π56

Π66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.15)

The even-rank structural anisotropy tensors Πi j,Πi jkl,Πi jklmn, . . ., in Eq. (6.14) are
normalized by the common constant Π and α, β, γ . . . etc., are arbitrary exponents
of a polynomial representation. In a narrower case if α = 1, β = 1/2, γ = 1/3, and
limiting an infinite form (6.14) to the equation that contains only three common
invariants, we arrive at the narrower form known as the Goldenblat and Kopnov
criterion (Goldenblat and Kopnov, 1966)
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Πi jσi j + (Πi jklσi jσkl)1/2 + (Πi jklmnσi jσklσmn)1/3 − 1 = 0 (6.16)

which satisfies the dimensional homogeneity of three polynomial components.
Equation (6.16), when limited only to three common invariants of the stress

tensor σ and structural anisotropy tensors of even orders: 2nd Πi j , 4th Πi jkl and 6th

Πi jklmn is not the most general one, in the meaning of the representation theorems,
which determine the most general irreducible representation of the scalar and tensor
functions that satisfy the invariance with respect to change of coordinates and material
symmetry properties (cf. e.g. Spencer, 1971; Rymarz, 1993; Rogers, 1990). However,
2nd, 4th and 6th order structural anisotropy tensors, which are used in (6.16) or in case
if α = 1, β = 1, γ = 1 and the deviatoric stress representation is used by Kowalsky
et al (1999)

h(1)i j si j + h(2)
i jkl

si j skl + h(3)
i jklmn

si j sklsmn − h(0) = 0 (6.17)

are found satisfactory for describing fundamental transformation modes of limit
surfaces caused by plastic or failure processes, namely: isotropic change of size,
kinematic translation and rotation, as well as surface distortion (Betten, 1988;
Kowalsky et al, 1999, cf.).

Altenbach et al (1995); Altenbach and Kolupaev (2015) presented anisotropic
yield criterion being simulteneous extension of the Altenbach–Zolochevsky isotropic
criterion and the Goldenblat–Kopnov anisotropic criterion

αai jσi j + β
(
bi jklσi jσkl

)1/2
+ γ

(
ci jkmnlσi jσklσmn

)1/3 − 1 = 0 (6.18)

where α, β, γ are weight coefficients, whereas structural anisotropy tensors contain 6,
21 and 56 material constants.

6.2.2 Von Mises’ Anisotropic Criterion

In what follows, we shall reduce class of the limit surface from the general tensorially-
polynomial representation to the forms independent of both the first Πi jσi j and
the third Πi jklmnσi jσklσmn common invariants, but preserving the most general
representation for the second common invariant, according to von Mises (1913, 1928).
In such a case the 4th rank tensor of material anisotropy Πi jkl is, in general, defined
by 21 anisotropy modules (but 18 of them independent), since the anisotropy 6 × 6
matrix [ΠΠΠ]i j (6.15) can completely be populated. Further reduction of the number
of modules to 15 will be achieved, when the insensitivity of general von Mises
quadratic form with respect to the change of hydrostatic stress will be assumed. In
such a way the general tensorial von Mises criterion will be reduced to the deviatoric
von Mises form defined by 15 anisotropy modules. A choice of 15 anisotropy
modules considered as independent is, in general, not unique (cf. Szczepiński, 1993;
Ganczarski and Skrzypek, 2013). However, the 15–parameter deviatoric von Mises
criterion is sensitive to the change of sign of shear stresses, which may be considered
as questionable (cf. e.g. Malinin and Rzysko, 1981). Simplest way to avoid a doubtful
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physical explanation for existence of terms linear for shear stresses τi j , a reduction
of the 15–parameter von Mises equation to the 9–parameter orthotropic von Mises
criterion can be done. This form does not satisfy the deviatoric property, but when
the constraints of independence of the hydrostatic stress is consistently applied, it is
easily reduced to the deviatoric form, known as orthotropic Hill’s criterion, with only
6 independent moduli of orthotropy (cf. Hill, 1948).

Limiting ourselves to plastic yield initiation in ductile materials, a consecutive
reduction of the general tensorially-polynomial anisotropic criterion (6.16) to the
form dependent only on the 4th rank common invariant σi jΠi jklσkl holds, as it
was proposed in the von Mises criterion for anisotropic yield initiation (item #8 in
Tab. 6.3) (cf. von Mises, 1913, 1928)

σi jΠi jklσkl − 1 = 0 (6.19)

When the more convenient Voigt’s vector-matrix notation is used, the form equivalent
to (6.19) is obtained

{σ}T [
<4>
Π ] {σ} − 1 = 0 (6.20)

where only one fourth-rank tensor of plastic anisotropyΠΠΠ is saved.
Anisotropic von Mises criterion (6.19) or (6.20), being an initial yield criterion of

anisotropic material is an extension of the isotropic Huber–von Mises criterion.
The structural 4th rank tensor of plastic anisotropy in equation (6.19) must be

symmetric: Πi jkl = Πkli j = Πjikl = Πi jlk , if stress tensor symmetry is assumed.
Hence, in case if none other symmetry properties are implied, the von Mises plastic
anisotropy tensor is defined by 21 modules. However, due to its invariance of the
tensorial transformation rule, number of independent anisotropy modules is reduced
to 18. Finally, the general anisotropic von Mises criterion can be furnished as

Πxxxxσ
2
x + Πyyyyσ

2
y + Πzzzzσ

2
z + 2Πxxyyσxσy+

2Πyyzzσyσz + 2Πzzxxσzσx + 4Πxxyzσxτyz + 4Πxxzxσxτzx+
4Πxxxyσxτxy + 4Πyyyzσyτyz + 4Πyyzxσyτzx + 4Πyyxyσyτxy+
4Πzzyzσzτyz + 4Πzzzxσzτzx + 4Πzzxyσzτxy + 8Πxyyzτxyτyz+
8Πyzzxτyzτzx + 8Πzxxyτzxτxy + 4Πyzyzτ

2
yz + 4Πzxzxτ

2
zx+

4Πxyxyτ
2
xy = 1

(6.21)

where Πi jkl denote 21 components of the von Mises plastic anisotropy tensor.
The von Mises 6 × 6 matrix of plastic anisotropy, being symmetric and fully

populated matrix representation of the 4th rank anisotropy tensor Πi jkl shown in
(6.19), is furnished as follows
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[
<4>
ΠΠΠ ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π11 Π12 Π13 Π14 Π15 Π16

Π22 Π23 Π24 Π25 Π26

Π33 Π34 Π35 Π36

Π44 Π45 Π46

Π55 Π56

Π66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

• • • • • •
• • • • •
• • • •

• • •
• •
•

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.22)

if engineering vectorial representation of the stress tensor {σ} is chosen as

{σ} =
{
σ1 σ2 σ3 σ4 σ5 σ6

}T
=

{
σx σy σz τyz τzx τxy

}T (6.23)

When the matrix coordinates Πi j (6.22) are consistently defined by the tensorial
coordinates Πi jkl

Π11 = Πxxxx Π22 = Πyyyy Π33 = Πzzzz

Π12 = Πxxyy Π13 = Πxxzz Π23 = Πyyzz

Π14 = 2Πxxyz Π15 = 2Πxxzx Π16 = 2Πxxxy . . .
Π44 = 4Πyzyz Π55 = 4Πzxzx Π66 = 4Πxyxy

Π45 = 4Πyzzx Π46 = 4Πxyyz Π56 = 4Πzxxy

(6.24)

we arrive at the general anisotropic von Mises equation equivalent to (6.21)

Π11σ
2
x + Π22σ

2
y + Π33σ

2
z + 2(Π12σxσy + Π23σyσz + Π31σzσx+

Π14σxτyz + Π15σxτzx + Π16σxτxy + Π24σyτyz + Π25σyτzx+
Π26σyτxy + Π34σzτyz + Π35σzτzx + Π36σzτxy + Π45τyzτzx+
Π46τxyτyz + Π56τzxτxy) + Π44τ

2
yz + Π55τ

2
zx + Π66τ

2
xy = 1

(6.25)

Representation of the anisotropic von Mises condition (6.20) in deviatoric form is
not trivial. The von Mises equation in the vector-matrix notation depends on both the
deviatoric s and the hydrostatic part σh1, when stress decomposition σ = s + σh1 is
applied, namely

{s}T [
<4>
ΠΠΠ ] {s} +

(
2 {s}T + σh {1}T

) (
[
<4>
ΠΠΠ ] {1} σh

)
− 1 = 0 (6.26)

The tensorial von Mises equation (6.26) can further be reduced to the deviatoric form
independent of the hydrostatic pressure as follows

{s}T [devΠΠΠ] {s} − 1 = 0 (6.27)

only if the constraint

[
<4>
ΠΠΠ ] {1} = 0 (6.28)
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is consistently applied. The constraint (6.28) guarantees the deviatoric von Mises
equation (6.27) be represented in the reduced 6–dimensional stress space by a
cylindrical surface defined by 15 independent anisotropy modules, when 6 constraints
are satisfied

Π11 + Π12 + Π13 = 0 Π12 + Π22 + Π23 = 0
Π13 + Π23 + Π33 = 0 Π14 + Π24 + Π34 = 0
Π15 + Π25 + Π35 = 0 Π16 + Π26 + Π36 = 0

(6.29)

However, the final matrix representation (6.22) with (6.29) employed depends on a
choice of independent elements. Two of such representations are of special importance.

In the first case, the elements of matrix (6.22) considered as independent are:
Π12,Π13, Π23;Π15,Π16,Π24,Π26,Π34,Π35 and Π44,Π55,Π66;Π45,Π46, Π56, such that
the following first representation for the deviatoric von Mises matrix is furnished

[devΠΠΠ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Π12 − Π13 Π12 Π13

−Π12 − Π23 Π23

−Π13 − Π23

−Π24 − Π34 Π15 Π16

Π24 −Π15 − Π35 Π26

Π34 Π35 −Π16 − Π26

Π44 Π45 Π46

Π55 Π56

Π66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

◦ • • ◦ • •
◦ • • ◦ •
◦ • • ◦

• • •
• •
•

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.30)

if constraints (6.29) are applied as follows

Π11 = −Π12 − Π13, Π14 = −Π24 − Π34
Π22 = −Π12 − Π23, Π25 = −Π15 − Π35
Π33 = −Π13 − Π23, Π36 = −Π16 − Π26

(6.31)

In the second case, the elements of matrix (6.22) chosen as independent are: Π11,Π22,
Π33;Π15,Π16,Π24,Π26,Π34,Π35 and Π44,Π55,Π66;Π45,Π46,Π56, hence we arrive at
the second representation of the deviatoric von Mises matrix as follows
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[devΠΠΠ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π11
1
2 (Π33 − Π11 − Π22) 1

2 (Π22 − Π11 − Π33)

Π22
1
2 (Π11 − Π22 − Π33)

Π33

−Π24 − Π34 Π15 Π16

Π24 −Π15 − Π35 Π26

Π34 Π35 −Π16 − Π26

Π44 Π45 Π46

Π55 Π56

Π66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

• ◦ ◦ ◦ • •
• ◦ • ◦ •
• • • ◦

• • •
• •
•

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.32)

if, instead of (6.31), other substitution is used

Π12 =
1
2
(Π33 − Π11 − Π22) Π14 = −Π24 − Π34

Π13 =
1
2
(Π22 − Π11 − Π33) Π25 = −Π15 − Π35

Π23 =
1
2
(Π11 − Π22 − Π33) Π36 = −Π16 − Π26

(6.33)

A choice of 15 elements in the von Mises matrix (6.22) considered as independent
is not a unique procedure and can result in the different deviatoric von Mises equation
forms. In particular, when a more convenient representation (6.30) is substituted
for [devΠΠΠ] in (6.27) we arrive at the following von Mises equation expressed in the
deviatoric stress space

−Π12
(
sx − sy

)2 − Π13 (sx − sz)2 − Π23
(
sy − sz

)2
+

2
{
τyz

[
Π24

(
sy − sx

)
+ Π34 (sz − sx)

]
+

τzx
[
Π15

(
sx − sy

)
+ Π35

(
sz − sy

) ]
+

τxy
[
Π16 (sx − sz) + Π26

(
sy − sz

) ]
+

Π45τyzτzx + Π46τxyτyz + Π56τzxτxy
}
+

Π44τ
2
yz + Π55τ

2
zx + Π66τ

2
xy = 1

(6.34)

It is visible that above equation owns the clear deviatoric structure hence, when the
tensorial stress space is used instead of the deviatoric one, the analogous equivalent
to (6.34) representation of the deviatoric von Mises equation is also true in terms of
stress components (cf. Szczepiński, 1993)
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−Π12
(
σx − σy

)2 − Π13 (σx − σz)2 − Π23
(
σy − σz

)2
+

2
{
τyz

[
Π24

(
σy − σx

)
+ Π34 (σz − σx)

]
+

τzx
[
Π15

(
σx − σy

)
+ Π35

(
σz − σy

) ]
+

τxy
[
Π16 (σx − σz) + Π26

(
σy − σz

) ]
+

Π45τyzτzx + Π46τxyτyz + Π56τzxτxy
}
+

Π44τ
2
yz + Π55τ

2
zx + Π66τ

2
xy = 1

(6.35)

Note, that equations (6.34) or (6.35) are defined by 15 elements Πi j . However, the
underlined terms are sensitive to change of sign of shear stresses, e.g. τyz(σy−σx) etc.,
which is physically questionable and, finally, such terms are consequently omitted is
some cases (cf. e.g. Malinin and Rzysko, 1981). Nevertheless, the full representation
(6.35), might occur useful when the von Mises–Tsai–Wu extension to the brittle-like
material is sought for (cf. Tsai and Wu, 1971).

6.2.3 Von Mises’ Orthotropic Criterion and Hill’s Deviatoric
Criterion

General form of the 21–parameter anisotropic von Mises criterion (6.25) involves
none material symmetry property. In a particular case if plastic orthotropy is assumed
for the initial yield criterion (6.20), when represented in principal orthotropy axes,
the 9–parameter orthotropic von Mises matrix (6.26) takes the form

[ortΠΠΠ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π11 Π12 Π13 0 0 0
Π22 Π23 0 0 0
Π33 0 0 0

Π44 0 0
Π55 0
Π66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

• • •
• •
•

•
•
•

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.36)

In such a case the general anisotropic von Mises equation (6.25) is reduced to the
narrower 9–parameter orthotropic von Mises criterion

Π11σ
2
x + Π22σ

2
y + Π33σ

2
z + 2(Π12σxσy + Π23σyσz + Π31σzσx)+

Π44τ
2
yz + Π55τ

2
zx + Π66τ

2
xy = 1 (6.37)

When the Voigt notation is used, the 9–parameter orthotropic von Mises criterion
takes the form

{σ}T [ortΠΠΠ] {σ} − 1 = 0 (6.38)
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that involves definition (6.36). Note that equation (6.38) belongs to the class of
hydrostatic pressure sensitive criteria (cf. item #4 in Tab. 6.3 Khan and Liu, 2012;
Khan et al, 2012).

In order to achieve pressure insensitive orthotropic criterion we apply a procedure
described in Sect. 6.2.2. If we decompose again the stress tensor into deviatoric and
volumetric parts σσσ = sss + σh1 in the orthotropic von Mises equation (6.38) we arrive
at the equation analogous to (6.26)

{s}T [ortΠΠΠ] {s} +
(
2 {s}T + σh {1}T

)
([ortΠΠΠ] {1} σh) − 1 = 0 (6.39)

Assuming further hydrostatic pressure insensitive form the following holds

[ortΠΠΠ] {1} = 0 (6.40)

which leads to three constraints instead of six in general case of von Mises anisotropic
equation (6.29)

Π11 + Π12 + Π13 = 0
Π12 + Π22 + Π23 = 0
Π13 + Π23 + Π33 = 0

(6.41)

In this way the orthotropic von Mises criterion (6.38) reduces to the pressure insensitive
criterion called Hill’s criterion Hill (1948, 1950) that contains 6 independent modules

{s}T [ΠΠΠH] {s} − 1 = 0 (6.42)

Hill’s matrix [ΠΠΠH] appearing in equation (6.42) contains 6 independent modules. A
choice of the three independent modules form six involved in equations (6.41) is not
unique. In what follows two of them are discussed (see two aforementioned forms
(6.30) and (6.32)).

In this way we arrive at the following Hill’s matrices

[ΠΠΠH] =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Π12 − Π13 Π12 Π13

−Π12 − Π23 Π23

−Π13 − Π23

Π44

Π55

Π66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

◦ • •
◦ •
◦

•
•
•

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.43)

or
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[ΠΠΠH] =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π11
Π33−Π11−Π22

2
Π22−Π11−Π33

2

Π22
Π11−Π22−Π33

2
Π33

Π44

Π55

Π66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

• ◦ ◦
• ◦
•

•
•
•

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.44)

When the engineering notation is used, corresponding representations of the Hill’s
criterion are

−
[
Π23

(
σy − σz

)2
+ Π13 (σz − σx)2 + Π12

(
σx − σy

)2
]
+

Π44τ
2
yz + Π55τ

2
zx + Π66τ

2
xy = 1

(6.45)

or
Π11σ

2
x + Π22σ

2
y + Π33σ

2
z + (Π33 − Π11 − Π22)σxσy+

(Π22 − Π11 − Π33)σxσz + (Π11 − Π22 − Π33)σyσz+
Π44τ

2
yz + Π55τ

2
zx + Π66τ

2
xy = 1

(6.46)

Both representations (6.45) or (6.46) describe the same Hill’s limit surface, but
applying two different choices of six independent elements of the Hill matrices (6.43)
or (6.44). In order to calibrate Hill’s criterion in the form (6.45) or (6.46) three
tests of uniaxial tension σx = kx, σy = ky, σz = kz and three tests of pure shear
τxy = kxy, τyz = kyz, τzx = kzx , in directions and planes of material orthotropy,
must be performed. These tests allow to express 6 modules of material orthotropy in
equations (6.45) and (6.46) in terms of 3 independent plastic tension limits kx, ky, kz
(in directions of orthotropy), and 3 independent plastic shear limits kyz, kzx, kxy (in
planes of material orthotropy). Hence,

−Π23 =
1
2

(
1
k2
y

+
1
k2
z

−
1
k2
x

)
Π44 =

1
k2
yz

−Π13 =
1
2

(
1
k2
z

+
1
k2
x

−
1
k2
y

)
Π55 =

1
k2
zx

−Π12 =
1
2

(
1
k2
x

+
1
k2
y

−
1
k2
z

)
Π66 =

1
k2
xy

(6.47)

such that orthotropic Hill’s criteria equivalent to (6.45) or (6.46) can be furnished in
terms of plastic anisotropy limits as follows



6 Anisotropic Material Behavior 143

1
2

(
1
k2
y

+
1
k2
z

−
1
k2
x

) (
σy − σz

)2
+

1
2

(
1
k2
z

+
1
k2
x

−
1
k2
y

)
(σz − σx)2 +

1
2

(
1
k2
x

+
1
k2
y

−
1
k2
z

) (
σx − σy

)2
+

(
τyz

kyz

)2
+

(
τzx
kzx

)2
+

(
τxy

kxy

)2
= 1

(6.48)

or (
σx
kx

)2
+

(
σy

ky

)2
+

(
σz
kz

)2
−

(
1
k2
x

+
1
k2
y

−
1
k2
z

)
σxσy−(

1
k2
y

+
1
k2
z

−
1
k2
x

)
σyσz −

(
1
k2
z

+
1
k2
x

−
1
k2
y

)
σzσx+(

τyz

kyz

)2
+

(
τzx
kzx

)2
+

(
τxy

kxy

)2
= 1

(6.49)

Note that under a particular plane stress condition, e.g. in the x, y plane, when
σz = τzx = τyz = 0, both formulas (6.48) and (6.49) reduce to the 4–parameter
orthotropic Hill’s condition

σ2
x

k2
x

+
σ2
y

k2
y

−

(
1
k2
x

+
1
k2
y

−
1
k2
z

)
σxσy +

τ2
xy

k2
xy

= 1 (6.50)

where initiation of plastic flow in the x, y plane is controlled not only by the in-plane
limits kx, ky and kxy , but also by the out-of-plane limit kz , which may finally lead to
inadmissible loss of convexity by the yield surface.

The Hill criterion (6.45) is formulated in the space of principal material directions
of orthotropy which in general do not coincide with directions of principal stresses.
In the particular case when the coaxiality holds σx = σ1, σy = σ2, σz = σ3,
τxy = τyz = τzx = 0 we arrive at simplified

− Π23 (σ2 − σ3)2 − Π13 (σ3 − σ1)2 − Π12 (σ1 − σ2)2 = 1 (6.51)

or when calibration (6.47) is used the explicit form of (6.51) is finally furnished

1
2

(
1
k2

2
+

1
k2

3
−

1
k2

1

)
(σ2 − σ3)2 +

1
2

(
1
k2

3
+

1
k2

1
−

1
k2

2

)
(σ3 − σ1)2 +

1
2

(
1
k2

1
+

1
k2

2
−

1
k2

3

)
(σ1 − σ2)2 = 1

(6.52)

Hill’s condition (6.52) represents cylindrical elliptic surface the axis of which
coincides with the hydrostatic axis. Nevertheless in some cases the limit surface
looses closed form for high othotropy degree which may occur when one of following
expressions

1
k2

2
+

1
k2

3
−

1
k2

1



144 Artur Ganczarski

elsewhere
1
k2

3
+

1
k2

1
−

1
k2

2
or

1
k2

1
+

1
k2

2
−

1
k2

3

changes the sign.

6.2.4 Barlat–Khan’s Implicit Formulations

In this subsection another approach (implicit formulation) is discussed based on a
series of papers developed by Barlat, Planckett, Cazacu and Khan to mention some
names only. The implicit formulation involves the linear transformation of the Cauchy
stress tensor σ to the transformed stress Σ = L : σ by use of transformation tensor L
responsible for orthotropy. Such linear transformation concept of the stress tensor
was first introduced by Sobotka (1969) and Boehler and Sawczuk (1970)

σ̂i j = Ai jklσkl (6.53)

where Ai jkl stands for a certain dimensionless tensor of anisotropy that satisfies
general symmetry conditions Ai jkl = Ajikl = Ai jlk = Akli j and the well known
isotropic yield conditions to hold for anisotropic materials as well if σi j are replaced
by σ̂i j . This approach is not directly based on the theory of common invariants in
sense of Sayir, Goldenblat, Kopnov, Spencer, Boehler, Betten, etc. formalism (explicit
formulation). According to this implicit approach an extension of isotropic initial
yield/failure criteria is performed to account for the tension/compression asymmetry
property and to material anisotropy frame (usually orthotropy) by applying the linear
transformation to the stress tensor and inserting this transformed stress tensor into
the originally isotropic yield/failure criteria.

In Cazacu et al (2006) the authors consider both the isotropic yield criterion for
description of asymmetric yielding

f (J2s, J3s) = (|s1 | − k̂ s1)a + (|s2 | − k̂ s2)a + (|s3 | − k̂ s3)a = 2ka

k̂ =
1 − h( kt

kc
)

1 + h( kt
kc
)

h
(

kt
kc

)
=

[
2a − 2( kt

kc
)a

(2 kt
kc
)a − 2

]1/a
(6.54)

where si, i = 1, . . . ,3 are the principal values of the stress deviator and f gives
the size of the yield locus (isotropic hardening), as well as its extension to include
orthotropy by the use of linear transformation of the Cauchy stress deviator Σ = C : s
through
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C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13
C12 C22 C23
C13 C23 C33

C44
C55

C66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.55)

which lead to following anisotropic equation

(|Σ1 | − k̂Σ1)a + (|Σ2 | − k̂Σ2)a + (|Σ3 | − k̂Σ3)a = 2ka (6.56)

Authors proved convexity of the isotropic yield form (6.54) as well as pressure
insensitivity of its orthotropic form (6.56) obtained through the linear transformation
to the transformed stress frame. However the question of convexity of the orthotropic
form (6.56) remains open.

The proposed yield function appears to be suitable for description of the strong
asymmetry and anisotropy observed in textured Mg-Th and Mg-Li binary alloy sheets
and for titanium 4Al-1/4O2, see Cazacu et al (2006). The orthotropic yield criterion
proposed by Cazacu et al (2006) was also investigated in a series of multiaxial loading
experiments on Ti-6Al-4V titanium alloy by Khan et al (2007).

Extension of Drucker’s isotropic yield criterion to anisotropy by use of common
invariants J0

2 and J0
3 is due to Cazacu and Barlat (2004), and investigated by Yoshida

et al (2013), also discussed in details by Kolupaev (2018)

(J0
2 )

3/2 − cJ0
3 − k3 = 0 (6.57)

The constant c in the equation (6.57) accounts for the tension/compression asymmetry
defined as

c =
3
√

3(k3
t − k3

c )
2(k3

t + k3
c )

(6.58)

and belongs to two ranges

c ∈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
0,

3
√

3
2

)
for kt > kc > 0(

−
3
√

3
2
,0

)
for 0 < kt < kc

(6.59)

The second and third common invariants of orthotropy are defined as
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J0
2 =

1
6
[
a1(σx − σy)2 + a2(σy − σz)2 + a3(σz − σx)2

]
+ a4τ

2
xy + a5τ

2
xz + a6τ

2
zy

J0
3 =

1
27

{
(b1 + b2)σ3

x + (b3 + b4)σ3
y + [2(b1 + b4) − b2 − b3]σ3

z

}
+ 2b11τxyτyzτzx +

1
9
{
2(b1 + b2)σxσyσz − (b1σy + b2σz)σ2

x

− (b3σz + b2σx)σ2
y − [(b1 − b2 + b4)σx + (b1 + b3 + b4)σy]σ2

z

}
−

1
3
{
τ2
yz[(b6 + b7)σx − b6σy − b7σz]

− τ2
zx[2b9σy − b8σz − (2b9 − b8)σx]

− τ2
xy[2b10σz − b5σy − (2b10 − b5)σx]

}

(6.60)

The discussed anisotropic criterion was successfully verified for textured magnesium
Mg-Th and Mg-Li alloy sheets. Authors proved convexity of the enhanced isotropic
yield criterion only for c(kt/kc) belonging to the range

[−
3
√

3
2
,−

3
√

3
2

]

In case of the anisotropic form of Cazacu and Barlat’s criterion (6.57) the general
proof of convexity for the wide class of highly tension/compression asymmetric and
anisotropic materials may not be possible.

More complete representation of J0
2 and J0

3 common invariants as well as the
extended model (6.57) verification for high-purity α-titanium is done by Nixon et al
(2010).

Korkolis and Kyriakides (2008) applied anisotropic extension of Hosford’s isotropic
criterion in terms of principal stress deviator s1, s2 in case of plane stress state

|s1 − s2 |n + |2s1 + s2 |n + |s1 + 2s2 |n = 2kn (6.61)

Following Barlat et al (2003) they introduced anisotropy by use of a concept of
two linear transformations S′ = L′ : s and S′′ = L′′ : s where L′ and L′′ are
transformation tensors introducing anisotropy

|S′
1 − S′

2 |
n + |2S′′

1 + S′′
2 |

n + |S′′
1 + 2S′′

2 |
n = 2kn (6.62)

Experimental validation of (6.62) is due to Korkolis and Kyriakides (2008) applied
to Al-6260-T4 as well as due to Dunand et al (2012); Luo et al (2012) applied to
AA6260-T6 alloys under classical tensile and butterfly shear tests.

Comparison of two different approaches: explicit formulation based of common
invariants and implicit formulation composed as extension of isotropic criteria to
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anisotropy and tension/compression asymmetry leads to the following characteristic
features.

The implicit formulation is very advantageous and fruitful in order to build
numerical models able to capture experimental evidence for broad class of inno-
vative metallic materials (mainly metal based alloys) that simultaneously exhibit
tension/compression asymmetry, anisotropy and hydrostatic pressure insensitivity.
Apart from these advantages some open questions may be highlighted. Among them
there might be mentioned not obvious physical interpretation for the extended criteria
based on known isotropic forms enhanced through strength differential sensitivity
and orthotropic linear transformation of stress. The general proof of convexity is
rather cumbersome and not attached in a complete and convinced form. Although the
isotropic equations have understanding physical interpretations and satisfy convexity
requirements the transposition of these equations to the transformed stress frame may
lead to the loss of convexity.

By contrast use of the explicit approach based on well established theory of
common invariants is more rigorous and so leads to more clear physical interpretation
(energy) and convexity of quadratic or poly-quadratic forms. However this consistent
approach leads to major difficulties when numerical implementation and experimental
validation are considered. Additional difficulties arise when implementing the explicit
approach to more general cases if the material orthotropy frame does not coincide with
the principal stress frame. Such more general problem was discussed by Ganczarski
and Lenczowski (1997) in case of Hill’s and orthotropic Hosford’s criteria. In such
a case it is necessary to transform tensor of structural orthotropy to the frame of
principal stress resulting in a possible loss of convexity and even degeneration of an
initially closed surface to two-fold surface (non closed).

6.2.5 Brief Survey of Anisotropic Yield Criteria

In this section a brief survey of the selected commonly used pressure sensitive and
insensitive initial yield criteria is presented. Chosen anisotropic yield criteria are
collected in Table 6.3. In the item #5 two examples of implementation of implicit
anisotropic extension of the isotropic Drucker yield criterion (dependent on the second
and the third deviatoric stress invariants) referring to works by Cazacu and Barlat
(2004) and Nixon et al (2010) are presented. By contrast to original notation used by
authors the criterion is rewritten in a frame of transformed stress Σ = L : σ instead
of the Cauchy stress frame σ. Due to this concept the second J0

2 and the third J0
3

transformed invariants are expressed in term of only one fourth-rank transformation
tensor L instead of the second-rank

s :
<4>

devΠΠΠ : s

and the third-rank common invariants
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Table 6.3 Survey of pressure sensitive and insensitive anisotropic yield criteria

# Author(s) Limit criterion

1 Goldenblat and Kopnov (1966) (Πi jσi j )α +
(
Πi jklσi jσkl

)β
and Sayir (1970) +

(
Πi jklmnσi jσklσmn

)γ
+ . . . = 1

2 Kowalsky et al (1999) h(0) + h
(1)
i j si j + si jh

(2)
i jkl

skl

+si j sklh
(3)
i jklmn

smn = 0
Altenbach et al (1995, 2014) αai jσi j + β

(
bi jklσi jσkl

)1/2

+γ
(
ci jkmnlσi jσklσmn

)1/3 − 1 = 0
3 von Mises (1913, 1928) Πi jklσi jσkl = 1
4 Khan et al (2012) ortΠi jklσi jσkl = 1

5 Cazacu and Barlat (2004)
{

1
2

tr [(L : σ) · (L : σ)]
}3/2

and Nixon et al (2010) −c
1
3

tr [(L : σ) · (L : σ) · (L : σ)] = k3

6 Szczepiński (1993) s :
<4>

devΠΠΠ : s = 1

7 Hill (1948, 1950) s :
<4>
ΠΠΠH : s = 1

8 Cazacu et al (2006) ( |Σ1 | − k̂Σ1)a + ( |Σ2 | − k̂Σ2)a+

and Khan et al (2007) ( |Σ3 | − k̂Σ3)a = 2ka

9 Ganczarski and Lenczowski (1997) a1 |σy − σz |m + a2 |σz − σx |m+
a3 |σx − σy |m + a4 |τyz |m+
a5 |τzx |m + a6 |τxy |m = 1

10 Korkolis and Kyriakides (2008) |S′
1 − S′

2 |
n + |2S′′

1 + S
′′
2 |

n

+ |S′′
1 + 2S′′

2 |
n = 2kn

s :
<6>

devΠΠΠ : s : s

necessary to be implemented when the Goldenblat–Kopnov explicit formulation
would be used. The discussed implicit formulation shows essential reduction of the
number of material constants that have to be identified in order to capture experimental
data. Note that the transformation tensor L exhibits format of the Hill orthotropy
matrix however it is dimensionless. When compare items #6 and #7 corresponding to
the deviatoric von Mises criterion (6.35) written in the form suggested by Szczepiński
(1993) and to the Hill criterion (6.45) (Hill, 1948, 1950) different population of
corresponding plastic matrices is applied. In case of Hill’s format the terms which are
sensitive to change of sign of shear stresses, for instance τyz(sy − sz), . . . , τyzτzx, . . .
are omitted. It is equivalent to the reduction of a number of independent plastic
modules from 15 to 6.

To describe both the asymmetry between tension and compression and the
anisotropy observed in hexagonal closed packed metal sheets Cazacu et al (2006)
and Khan et al (2007) proposed extension of isotropic criterion (6.54) to the case of
orthotropy represented by item #8. It consists in application of fourth order linear
transformation operator on the Cauchy stress tensor expressed by its principal values.
The proposed anisotropic criterion was successively applied to the description of the
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anisotropy and asymmetry of the yield loci of textured polycrystalline magnesium
and binary Mg–Th, Mg–Li alloys and α titanium.

Orthotropic generalization of the Hosford criterion in which principal axes of
material orthotropy do not coincide with principal stress axes was proposed by
Ganczarski and Lenczowski (1997) in the form of item #9. Next the convexity
check of the yield condition was performed in case of the brass sheet of Russian
commercial symbol Ł22, that is material of strong orthotropy slightly different than
transverse isotropy. The last criterion item #10 is another anisotropic generalization of
Hosford’s isotropic criterion done by Korkolis and Kyriakides (2008) and addressed
to Al-6260-T4 tubes inflated under combined internal pressure and axial load.
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Chapter 7
Coupled Problems in Thermodynamics

Elena A. Ivanova and Dmitry V. Matias

Abstract We consider three basic methods adopted in modern thermodynamics. We
discuss the state of the art, current problems and development prospects. We also
discuss the possibility and necessity of constructing mechanical models of thermal
processes and models of other processes of “non-mechanical nature”. Next, we
consider one of the possible mechanical models of thermal and electromagnetic
processes. In order to illustrate the consequences of this model, we analyze the
mutual influence of thermal and electromagnetic waves at the interface between two
materials.

Keywords: Micropolar continuum · Cosserat continuum · Rotational degrees of
freedom · Thermodynamics · Electrodynamics · Wave propagation

7.1 Introduction

In book “The aim and structure of physical theory”, Pierre Duhem writes (Duhem,
1954, p. 19): “A physical theory is not an explanation. It is a system of mathematical
propositions, deduced from a small number of principles, which aim to represent as
simply, as completely, and as exactly as possible a set of experimental laws.” Classical
thermodynamics fully satisfies this definition. However, modern thermodynamics is
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not only a physical theory in the sense of Duhem’s definition. Modern thermodynamics
is something unique in science.

First of all, we note that modern thermodynamics consists of three branches,
which are not actually associated with each other. They differ from each other both
by interpretations of the basic concepts and by mathematical methods. Discussing
the three branches, we mean, first, thermodynamics that is developed in the frame
of continuum mechanics and is a logical extension of classical thermodynamics,
second, non-equilibrium thermodynamics, which is also an extension of classical
thermodynamics, which is originated by Prigogine and De Groot, and third, statistical
thermodynamics, which arose from the kinetic theory. These three sciences study
the same issues and use the same scientific terms. But there is a non trivial question
of whether the concepts of temperature, entropy and other thermodynamic quanti-
ties used in continuum mechanics, non-equilibrium thermodynamics and statistical
thermodynamics are identical. This question is important since, in modern thermody-
namics, there is a tendency of ideas and methods that developed independently for a
long time, to mutually influence each other and to unite with each other.

Modern thermodynamics long ago went beyond the purely thermal problems,
which resulted in the creation of classical thermodynamics some time ago. With
the development progress, the application field of thermodynamics broadens and
new fields of science such as gas dynamics, thermoelasticity, thermoviscoelasticity,
thermoelectricity, thermomagnetism, the theory of structural and phase transforma-
tions are created. Modern thermodynamics is used in almost all fields of natural
sciences. It is used in describing chemical reactions, studying the structure of matter
and modeling radiation. It plays an important role both in creating the theories
that describe the processes in the microcosm and in creating cosmogonic theories.
Thermodynamics is a link in modeling the mutual influence of processes of different
nature. Such a unique role of thermodynamics is due to the fact that it became not
just a theory describing a specific physical process, but turned into a research method
that can be used to describe a wide variety of the physical processes. We note that
the aforesaid mainly concerns non-equilibrium thermodynamics and statistical ther-
modynamics. Unfortunately, in the most cases, continuum mechanics only considers
either purely mechanical problems or problems at the intersection of mechanics and
other natural sciences. At the present stage of its development, continuum mechanics
rarely claims on the creation of models of processes of “a non-mechanical nature”.
Such a position of continuum mechanics seems to be not promising either for the
development of continuum mechanics itself or for the development of science in
general. Continuum mechanics, as well as non-equilibrium thermodynamics and
statistical thermodynamics is a set of the physical theories describing some specific
processes, on the one hand, and it is a research method that can and should be used to
model processes of different nature, on the other hand. We are deeply convinced that
continuum mechanics should adhere to the similar position with respect to its models
and methods as non-equilibrium thermodynamics and statistical thermodynamics.
This makes it possible for continuum mechanics to play an important role in the study
of all physical processes without exceptions.
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A surprising feature of modern thermodynamics is as follows. On the one hand,
thermodynamics as a phenomenological science is involved in the modeling many
physical processes. On the other hand, in thermodynamics, there is no a generally
accepted model of thermal processes that can be used always and everywhere. A
simple and clear mechanical model, which is the basis of the kinetic theory, has a
limited range of applicability even within the framework of statistical thermodynamics.
In non-equilibrium thermodynamics and continuum mechanics, this model is not
used at all. In continuum mechanics, there are several different mechanical models
of thermal processes. However, none of them can be compared in its popularity
to the model adopted in the kinetic theory. Non-equilibrium thermodynamics is a
purely phenomenological science, in which there are only mathematical models.
Do modern science in general and modern thermodynamics in particular need the
mechanical models? Certainly, this question is controversial. And it has something in
common with another debatable question, which is worded in the above quotation
from Duhem’s book, namely, whether a physical theory should be an explanation?

7.2 Historical Remarks and the State of the Art

7.2.1 Preliminary Remarks

In the short article, we cannot give an extensive historical overview. But there is no
need whatsoever since the history of thermodynamics is well expounded in Müller
(2007). In addition, detailed overviews of different models of thermal conductivity and
thermoelasticity can be found in Ignaczak and Ostoja-Starzewski (2009); Straughan
(2011). In this section, we carry out a comparative analysis of the three basic
approaches, which are being developed in thermodynamics over a long period of
time, and outline the main directions of the development of modern thermodynamics.
The review does not claim to be exhaustive. We purpose only to pay attention to
some facts that, in our opinion, are important for understanding the state of things in
modern thermodynamics.

7.2.2 Statistical Thermodynamics and Continuum Mechanics

For the first time, the idea to reduce thermal phenomena to mechanical phenomena
was implemented in a mathematical form by Daniel Bernoulli. Bernoulli argued that
heat is a manifestation of molecules vibrations, assumed all the molecular velocities
to be equal each other and interpreted the gas pressure to be the result of the action of
the molecules colliding with the vessel wall. The kinetic theory was further developed
in the works of Clausius and Maxwell. In 1857, Clausius derived the basic formula of
the kinetic theory of gases, according to which the gas pressure is equal to two thirds
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of the average kinetic energy of all molecules per unit volume. The derivation of this
formula can be found in many books, see, e.g., Feynman et al (1963). A comparison
of the expression for pressure obtained from the kinetic theory with the expression
given by the ideal gas equation led to the idea of identifying the temperature with the
average kinetic energy of translational motion K̄:

K̄ =
3
2

kBT, (7.1)

where kB is the Boltzmann constant, T is the absolute temperature. In 1859, Maxwell
replaced Bernoulli’s hypothesis of velocity equality with the formula for velocity
distribution, which was later named after him. Thus, beginning with the works of
Clausius and Maxwell, the kinetic theory has become a statistical one. In 1872,
Boltzmann derived the kinetic equation for the distribution function, which describes
non-equilibrium processes (viscous flow, thermal conduction, diffusion) in gases of
low density, and, in 1877, he suggested the famous relation between entropy S and
the thermodynamic probability W , see Boltzmann (1974):

S = kB lnW . (7.2)

A modern account of the Maxwell–Boltzmann statistics can be found, e.g., in
Berkley Physics Course (Reif, 1967). It is important to pay attention to how the
concept of temperature is introduced in Reif (1967). Let us denote by W(E) the
number of possible states of a macroscopic system when its energy is in the range
from E to E + δE . Following Reif (1967), we introduce quantity β(E) as

β(E) =
∂ lnW
∂E
. (7.3)

The dimension of parameter β is equal to unit divided by the dimension of energy.
Let us represent β−1 as

β−1 = kBT, (7.4)

where the new parameter T is called the absolute temperature. In view of Eqs. (7.3),
(7.4), it is easy to get the formula relating entropy, energy and temperature:

T−1 =
∂S
∂E
. (7.5)

It can be proved that, in the case of an ideal monatomic gas, the definition of
temperature (7.3)–(7.5) is equivalent to the definition (7.1). To be exact, the definitions
(7.1) and (7.3)–(7.5) are equivalent under the condition that the Maxwell distribution
is used in Eqs. (7.3)–(7.5).

In the case of any distribution, different from the Maxwell distribution, the
definition of temperature (7.3)–(7.5) cannot be reduced to Eq. (7.1), and hence the
temperature loses its simple and intuitive mechanical interpretation. This fact is very
important since the further development of statistical thermodynamics consists in
creating and using a number of new statistics, based on the distributions different from
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the Maxwell distribution. In 1924, Bose originated a statistics describing systems of
particles with zero spin or integer spin. These particles are called bosons. Photons and
certain nuclei are bosons. Subsequently, this statistics was sophisticated by Einstein.
Now it is called the Bose–Einstein statistics. In 1926, Fermi originated a statistics
describing systems of particles with half-integer spin, which are called fermions.
Electrons, protons and neutrons are fermions. In the same year, Dirac found out
a quantum-mechanical meaning of this statistics. That is why, now it is called the
Fermi–Dirac statistics. In the case of a strongly rarefied gas at temperatures higher
than several tens of kelvins, both the statistics turn into the Maxwell–Boltzmann
statistics. For classical and quantum statistics, the distribution functions can be
expressed in one general form:

〈ni〉 =
ni
Ni
=

1
e(Ei−μ)/kBT + δ

, (7.6)

where Ei is the energy of state, μ is the chemical potential, ni is the number of particles
in the given state, Ni is the multiplicity of state of the particles with energy Ei . For the
Bose–Einstein quantum distribution, δ = −1, for the Maxwell–Boltzmann classical
distribution, δ = 0 and μ = 0, for the the Fermi–Dirac quantum distribution, δ = +1.
A detailed account of statistical thermodynamics, both classical and quantum, can be
found, e.g., in Kubo (1965); Huang (1963); Kittel (1970). Statistical thermodynamics
of non-equilibrium processes is discussed in Eisenschitz (1958); Röpke (2013). A
substantiation of the formalism of statistical thermodynamics is given in Ruelle
(1978); Krylov (2003).

We believe that statistical physics and continuum mechanics have more traits in
common than it seems ex facte. First of all, we note that both statistical physics and
continuum mechanics are the research methods. Nevertheless they differ from each
other from a mathematical point of view, but, in essence, they have the same structure.
Both the sciences are based on certain fundamental equations. The fundamental
equations are used in solving all the problems. But there is a certain freedom of choice,
which allows us to consider various models in the framework of the given concept.
We mean the choice of expression for the internal energy in continuum mechanics
and the choice of distribution function in statistical physics. Certainly, this is a very
schematic representation. There are many nuances, but a detailed discussion of these
issues is beyond the scope of this paper. We aim only to pay attention to a couple
of important facts. First, the choice of distribution function in statistical physics
is the same thing as the choice of expression for the internal energy in continuum
mechanics. Second, in modern statistical physics, as in modern continuum mechanics,
there is no generally accepted mechanical interpretation of temperature and there is
no generally accepted mechanical model of thermal processes.
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7.2.3 Non-equilibrium Thermodynamics and Continuum
Mechanics

A purely phenomenological approach is used for the description of thermal processes
in non-equilibrium thermodynamics. The detailed consideration of the method of
non-equilibrium thermodynamics can be found in works of its originators, namely
Prigogine and De Groot — see Kondepudi and Prigogine (1998); Prigogine (1955);
De Groot (1951). Here we briefly outline the main ideas of the method. In order to
do this, we consider matter with density ρ occupying volume V . Let some property
of the matter be characterized by an extensive thermodynamic parameter B. Quantity
B, as any extensive quantity, satisfies the following relations:

lim
ΔV→0

ΔB
ΔV
= ρb, B =

∫
V

ρb dV, (7.7)

where b is the mass-specific density of B. A change of B in volume V is caused by
two factors. The first factor is a flux of this quantity into volume V from outside. The
second factor is a production of this quantity inside volume V . Let JB denote the flux
density of B through surface Σ, bounding volume V , and σB denote the production
rate of B inside volume V . Then the balance equation for quantity b takes the form:∫

V

d(ρb)
dt

dV = −
∫
Σ

n · JB dΣ +
∫
V

σB dV, (7.8)

where n denotes the unit outer normal vector to the surface Σ. Since the integrands
are considered to be continuous, and Eq. (7.8) is formulated for an arbitrary volume
V , from this equation it follows the local form of the balance equation:

ρ
db
dt
= −∇ · JB + σB . (7.9)

Equation (7.9) is written for the scalar quantity b. However, in accordance with the
ideology of non-equilibrium thermodynamics, analogous equations can be formulated
for vector or tensor quantities having any physical meaning. This is one of the key
differences between non-equilibrium thermodynamics and continuum mechanics.
In classical continuum mechanics, there are only four balance equations: the mass
balance, the momentum balance, the angular momentum balance and the energy
balance. It should be noted that, in modern continuum mechanics, there is a tendency
to include new balance equations, and this is undoubtedly a result of the influence of
non-equilibrium thermodynamics. The breadth of views on the balance equations
allows non-equilibrium thermodynamics to describe almost all physical processes,
which are associated with thermal effects in one way or another. In addition, in the
so-called extended non-equilibrium thermodynamics (Jou et al, 2001), it is considered
acceptable to write the balance equations not only for the basic quantities, but also
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for their fluxes, for fluxes of fluxes, etc. Due to this, extended non-equilibrium
thermodynamics is able to describe any relaxation processes.

The system of balance equations in non-equilibrium thermodynamics, as in
continuum mechanics, is not closed. In order to close this system thermodynamic
forces and fluxes are introduced as conjugate quantities. This is done as follows.
Quantity σB in Eq. (7.9) is represented as

σB =
∑
α

JαXα, (7.10)

where fluxes Jα and thermodynamic forces Xα are not necessarily scalar quantities.
For example, thermodynamic force ∇

(
T−1) corresponds to heat flux h. The relations

between thermodynamic forces and fluxes in non-equilibrium thermodynamics are
analogies of the constitutive equations in continuum mechanics. These relations have
the following form:

Jα =
∑
β

LαβXβ, Lαβ =

(
∂Jα
∂Xβ

)
eq

. (7.11)

Quantities Lαβ are called phenomenological coefficients. They satisfy the Onsager
reciprocal relations

Lαβ = Lβα . (7.12)

The Onsager reciprocal relations play an important role in non-equilibrium thermo-
dynamics. They are considered to be the macroscopic equalities that result from
the microscopic reversibility. The proof of the Onsager reciprocal relations is a
nontrivial problem and this issue is often discussed in literature. We note that in
continuum mechanics the relations similar to Eq. (7.12) are obtained naturally. This
is a feature of the continuum mechanics method, which allows us to obtain the
constitutive equations by using the energy balance equation and the second law of
thermodynamics. Equation (7.11) are postulated, not derived in non-equilibrium
thermodynamics. This is the reason why the Onsager reciprocal relations have to be
proved.

In non-equilibrium thermodynamics, as in continuum mechanics, temperature and
entropy are introduced by the equation relating these quantities to the internal energy,
and in addition, temperature is considered to be a quantity measured by a thermometer,
and entropy is defined as a quantity conjugate to the temperature. However, in non-
equilibrium thermodynamics the concept of entropy flux and the concept of entropy
production are introduced, and the entropy balance equation is considered to be one
of the basic equations. This approach is not the same as compared to the classical
Coleman–Noll procedure based on using the Clausius–Duhem inequality.

Thus, the method of non-equilibrium thermodynamics and the method of contin-
uum mechanics are very similar. However, the postulates, on which these sciences
are based, differ from each other. In addition, because of some historical reasons,
these two sciences have evolved independently of each other. As a result, both the
sciences have acquired such a structure that their contradictionless integration is
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extremely difficult. In fact, any attempt to combine the ideas of non-equilibrium
thermodynamics and continuum mechanics leads to the constracting of an original
theory. We are convinced that the influence of non-equilibrium thermodynamics on
continuum mechanics is useful, primarily because it contributes to an expansion of
the application field of continuum mechanics.

At present, the following situation arises in that part of thermodynamics, which is
a purely phenomenological science. Classical equilibrium thermodynamics, which is
substantially based on experimental studies, is described by the nonlinear equations.
Non-equilibrium thermodynamics, which is increasingly based on theoretical premises
and to a lesser extent on experiments, is a well-developed science only in its linear
version. With regard to the creation of a nonlinear theory, one can only speak of more
or less successful attempts made by different authors. The reason is as follows. Based
on formal mathematical considerations, a linear model can be constructed quite easily
and completely unambiguously. At the same time, from the formal mathematical
point of view, this linear model can be generalized to a nonlinear case by many
ways. Concerning the development prospects of nonlinear thermodynamics, we note
that continuum mechanics with its well-developed methods of nonlinear theory of
elasticity has certain advantages over non-equilibrium thermodynamics.

7.2.4 A Brief Overview of Current Research

In the modern literature on thermodynamics, nonlinear and coupled problems are
actively studied and discussed. Without claiming to be an exhaustive literature
review, we indicate the main research areas in this field. Many papers covering only
mathematical questions are regularly published for several decades. Various aspects
of constructing analytical, semi-analytic and numerical solutions of the nonlinear heat
conduction equations are discussed in such papers — see, e.g., Campo (1982); Jordan
et al (1987); Polyanin et al (2000); Ebadian and Darania (2008); Habibi et al (2015).
Such works usually deal with the simplest nonlinear heat conduction equations. The
nonlinearity of these equations consists in the fact that the material constants of
the linear equations are replaced by some functions of temperature (more often by
polynomials). Among the mathematical works, it is worth mentioning the papers
where the authors consider laser heat sources (see, e.g., Fong et al, 2010), as this
type of thermal influences is most often found in the modern literature. We also refer
to works where methods based on Lagrangian mechanics and variational principles
are developed — see, e.g., Biot (1970, 1984); Lebon and Casas-Vazquez (1974);
Lebon and Dauby (1990); Gay-Balmaz and Yoshimura (2019). Another large group
of publications consists of applied works, which are devoted to modeling thermal
processes in technical devices — see, e.g., Grudinin et al (2011); Chaibi et al (2012);
Huang et al (2012); Markides et al (2013). In such works, the mutual influence of
thermal processes and processes of other physical nature (optical, electrical, magnetic)
is usually taken into account. Other distinctive features of applied works are the
use of numerical methods, the use of parameters of specific technical devices in
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calculations and the comparison of modeling results with the experimental data.
We note that the models of nonlinear thermal processes in the widest scale range,
from geophysical processes (see, e.g., Mottaghy and Rath, 2006), up to biological
processes at the molecular level (see, e.g., LeMesurier, 2008), are presented in the
modern literature. There are a large number of papers devoted to studying nonlinear
effects associated with thermal radiation — see, e.g., Khandekar et al (2015); Ananth
et al (2015). There exist a variety of mathematical models used to describe various
thermal processes. Some of them are based on classical concepts, and others are
based on quantum-mechanical concepts. However, purely empirical relations, which
are not based on any models, play an important role in all nonlinear theories.

The most of modern theoretical studies are devoted to the discussion of the entropy
concept. The interest in this subject arose as soon as it was established that some
models of thermal conductivity, different from the classical Fourier model, contradict
the second law of thermodynamics. Different opinions were expressed and different
approaches were proposed to solve the problem, see, e.g., Rubin (1992); Baik and
Lavine (1995); Dugdale (1996); Barletta and Zanchini (1997); Zanchini (1999); Čápek
and Sheehan (2005); Lieb and Yngvason (1997); Ostoja-Starzewski (2016, 2017).
However, at present this question remains controversial. We believe that the discussion
of this interesting and important topic will continue for a long time. It seems to us
that the problem lies in the ambiguity of the concept of entropy, the absence of its
generally accepted definition and the incomprehensibility of its physical meaning. In
the kinetic theory, where there are clear mechanical models of thermal processes and
temperature has a clear mechanical meaning, the basic equations are derived without
the use of entropy. Boltzmann’s probabilistic definition of entropy has, in our opinion,
a purely mathematical meaning. In modern statistical thermodynamics, where entropy
plays a very important role, not only the physical meaning of entropy does not become
clearer, but also the physical meaning of temperature loses its clarity. We believe that
entropy has a clear physical meaning only in classical equilibrium thermodynamics,
where an adiabatic process is actually an isentropic process. In more complex models,
which are studied in non-equilibrium thermodynamics and continuum mechanics, the
adiabatic process need not to be isentropic and vice versa. That is why the intuitively
clear definition of entropy given in classical thermodynamics can be extended to
the case of non-equilibrium processes in various ways and all definitions of entropy
appropriate for non-equilibrium processes are more formal and less understandable
than the classical definition. It is obvious that the entropy introduced in classical
equilibrium thermodynamics must satisfy the second law of thermodynamics in
its classical form. But it is not obvious at all, whether the entropy introduced for
non-equilibrium processes should satisfy one or another formulation of the second
law. It is quite possible that for this reason many scientists continue to consider various
models of thermal conductivity that conflict with the second law of thermodynamics,
and all attempts to solve the problem of the contradiction are, in fact, reduced to new
interpretations of the second law of thermodynamics.
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7.3 Mechanical Models for Studying Coupled Problems in
Thermodynamics

7.3.1 Preliminary Remarks

The idea of describing magneto-, electro- and thermomechanical processes by means
of continuum mechanics models is well known. Continuum mechanics models
based on rotational degrees of freedom have been suggested in Dixon and Eringen
(1964, 1965); Treugolov (1989); Grekova and Zhilin (2001); Grekova (2001); Zhilin
(2006b,a, 2012); Ivanova and Kolpakov (2013, 2016); Ivanova (2019a), micromorphic
continuum models have been considered in Bardeen et al (1957); Eringen (2003);
Galeş et al (2011), two-component continuum models have been discussed in Tiersten
(1964); Maugin (1988); Eringen and Maugin (1990); Fomethe and Maugin (1996),
continuum models with microstructure based on rotational degrees of freedom have
been constructed in Zhilin (2012); Shliomis and Stepanov (1993); Ivanova (2015).

The presented study continues and develops the research carried out in Ivanova
(2010, 2011, 2012, 2014, 2015, 2017, 2018, 2019a,b); Vitokhin and Ivanova (2017),
where an original approach to constructing theories of thermo- and thermoviscoelas-
ticity, as well as theories of electromagnetism, have been worked out. This approach
is based on the idea to introduce mechanical analogies of physical quantities in the
framework of the suggested model, to show that under a number of simplifying
assumptions the equations of the suggested model coincide with well-known equations
of thermodynamics and electrodynamics and then to explore the properties of the
model in its general form.

7.3.2 The Cosserat Continuum of Special Type

Now we give a brief account of the basic equations of the Cosserat continuum of
special type. Let vector r identify the position of some point of space. We use the
following notations: v(r, t) is the velocity vector field; u(r, t) is the displacement
vector field; P(r, t) is the rotation tensor field, θ(r, t) is the rotation vector field, and
ω(r, t) is the angular velocity vector field. For simplicity’s sake, we consider a linear
theory. We assume that in the reference configuration tensor P(r, t) is equal to the
unit tensor E and rotation vector θ(r, t) is equal to zero. Then, the kinematic relations
have the form

v(r, t) = du(r, t)
dt
, P(r, t) = E + θ(r, t) × E, ω(r, t) = dθ(r, t)

dt
. (7.13)

We consider an isotropic continuum and therefore we assume the mass-specific
densities of kinetic energy, the linear momentum vector and the angular momentum
vector to be
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K =
1
2

v · v + 1
2

J ω · ω, KKK 1 = v, KKK 2 = r × v + J ω, (7.14)

where constant J is the mass-specific density of moments of inertia. The angular
momentum density KKK 2 is calculated with respect to the origin of the reference frame.
We note that the mass balance equation in the linear approximation takes the form
ρ = �

(
1 − ∇ · u

)
, where � is the density of mass in the reference configuration and ρ

is the current value of the mass density.
Now we consider the force vector τn and the moment vector Tn modeling the

surrounding medium influence on the surface S of the elementary volume V . Next,
by standard reasoning, we introduce the concept of stress tensor τ associated with
the stress vector τn and the concept of moment stress tensor T associated with the
moment stress vector Tn. These tensors are defined by the Cauchy relations τn = n ·τ
and Tn = n · T where n denotes the unit outer normal vector to the surface S .
Further, we assume the external forces per unit mass to be equal to zero. In this case,
the dynamics equations are written as

∇ · τ = �
dv
dt
, ∇ · T + τ× + �L f = �J

dω
dt
. (7.15)

Here L f is the mass-specific density of external moments, ( )× denotes the vector
invariant of a tensor that is defined for an arbitrary dyad as (ab)× = a × b.

We consider the continuum to be isolated. In this case, by standard reasoning, the
energy balance equation can be transformed to the form

�
dU
dt
= τT · ·

(
∇v + E × ω

)
+ TT · · ∇ω, (7.16)

where U is the internal energy per unit mass. The double scalar product is defined as
ab · ·cd = (b · c)(a · d).

Further, we accept several simplifying assumptions that are the basis of the theory
under consideration.

Hypothesis 1. The moment stress tensor T has the following form:

T = TE − M × E. (7.17)

In view of assumption (7.17) and the fact that the linear theory is considered, the
energy balance equation (7.16) can be reduced to the form (Ivanova, 2019a):

�
dU
dt
= τT · ·

de
dt
+ �T

dΘρ

dt
+ �M ·

dΨρ

dt
, (7.18)

where the following notations are used:

e = ∇u + E × θ, Θρ = �
−1trΘ, Ψρ = �

−1Θ×, Θ = ∇θ . (7.19)

Here e andΘ are the strain tensors, Θρ and Ψρ are the strain measures corresponding
to the spherical and antisymmetric parts of tensor T, respectively. Factor �−1 is
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introduced for convenience. Since we consider the elastic continuum, from the energy
balance equation (7.18) it follows that the mass-specific density of internal energy is
a function of three arguments, namely U = U

(
e, Θρ, Ψρ

)
.

Hypothesis 2. The mass-specific density of internal energy is a function of only
two arguments, namely

U = U
(
Θρ, Ψρ

)
. (7.20)

Substituting Eq. (7.20) into Eq. (7.18), we obtain the Cauchy–Green relations

τ = 0, T =
∂U(Θρ, Ψρ)
∂Θρ

, M =
∂U(Θρ, Ψρ)
∂Ψρ

. (7.21)

Specifying the mass-specific density of internal energy as

U =
1
2

CΘΘ2
ρ +

1
2

CΨΨ2
ρ, Ψρ =

√
Ψρ · Ψρ, (7.22)

and substituting Eq. (7.22) into Eq. (7.21), we obtain the constitutive equations for T
and M. Stiffness parameters CΘ and CΨ in Eq. (7.22) are considered to be independent
of time.

The angular momentum balance equation contains a vector of external moment
L f . In the considered model, vector L f characterizes a viscous damping. For more
detail on the physical meaning of the moment vector of viscous damping, see Ivanova
(2010, 2011, 2012, 2014, 2017). The solutions of several model problems, which
allow us to determine the structure the moment vector of viscous damping, can be
found in Ivanova (2011, 2012, 2014). Here we specify vector L f taking into account
the results obtained in the mentioned papers.

Hypothesis 3. The moment vector of viscous damping has the form

L f = −βJω, (7.23)

where constant β has the meaning of a damping coefficient.

It is easy to show that the system of the basic equations of the continuum under
study can be separated into two independent systems. The system describing the
translational motion is trivial. The system describing the rotational motion is

∇T − ∇ × M − β�Jω = �J
dω
dt
, T = CΘΘρ, M = CΨΨρ,

Θρ =
Θ

�
, Θ = ∇ · θ, Ψρ =

Ψ

�
, Ψ = ∇ × θ, ω =

dθ
dt
.

(7.24)

Thus, the system of partial differential equations (7.24) describes the behavior of
the continuum based only on rotational degrees of freedom. Further, we use the
continuum for simulating thermodynamic and electromagnetic processes in matter.
We note that, for simplicity’s sake, we neglect all mechanical processes in matter and
we also neglect heat supply from any external sources.
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7.3.3 Mechanical Analogies of Physical Quantities

We suppose that quantities T and Θρ are related to the absolute temperature Ta that
can be measured by a thermometer and the mass-specific density of entropy Θa by
the formulas

T = aTa, Θρ =
1
a
Θa, (7.25)

where a is the normalization factor. We also suppose that the moment stress vector M
is the analogy of the electric field vector EEE and the volume density of proper angular
momentum �J ω is the analogy of the magnetic induction vector BBB, namely

M = χEEE , �Jωωω = χBBB, (7.26)

where χ is the normalization factor. A detailed consideration of prerequisites for
the choice of the analogies of thermodynamic and electromagnetic quantities in the
framework of the suggested model can be found in Ivanova (2019a).

7.3.4 Simulating Thermodynamic and Electromagnetic Processes
in Matter

Now we consider a homogeneous isotropic matter possessing thermodynamic and
electromagnetic properties. We assume that electric charges and electric currents
are absent. In this case, in order to simulate thermodynamic and electromagnetic
processes in the matter we can use the mechanical model considered in Sect. 7.3.2
and the mechanical analogies of the physical quantities considered in Sect. 7.3.3. It
is important to note that since the linear theory is considered the quantity Ta has
the meaning of a small deviation of the temperature from its reference value T∗

a and
quantity Θa has the meaning of a small deviation of the mass-specific density of
entropy from its reference value Θ∗

a.
Next, we assume that the material constants characterizing properties of the

continuum are related to the known physical constants by the formulas

J =
χ2μμ0
�
, CΨ =

χ2�

ε0ε
, CΘ =

a2T∗
a

cv
, β =

a2

χ2
T∗
a

λ μ0μ
, (7.27)

where ε is the relative permittivity, μ is the relative permeability, cv is the specific
heat at constant volume, λ is the heat conduction coefficient. We note that the first
and second formulas in Eq. (7.27) are the exactly same as in Ivanova (2015, 2019a,b),
and the third formula in Eq. (7.27) is in agrement with the corresponding formula
previously obtained for the case of a heat-conductive elastic material, see Ivanova
(2010, 2011, 2012, 2014, 2017).

In view of the adopted physical analogies given by Eqs. (7.25), (7.26) and (7.27),
it is not difficult to show that from Eq. (7.24) it follows that
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∇ ×BBB = ε0εμ0μ
dEEE

dt
,

a
χ
∇Ta − ∇ × EEE −

a2

χ2
T∗
a

λ μ0μ
BBB =

dBBB

dt
,

dΘa

dt
=

a
χ

1
ρ∗μ0μ

∇ ·BBB, Ta =
T∗
a

cv
Θa .

(7.28)

We note that the first equation in Eq. (7.28) coincides with one of Maxwell’s
equations and the last equation in Eq. (7.28) is well known in the linear theory of
thermoelacticity.

Now we transform Eq. (7.28) to the equations for the electric field vector EEE and
the vortex part of the magnetic induction vector BBB:

c2 Δ(∇ × EEE ) = β
d(∇ × EEE )

dt
+

d2(∇ × EEE )
dt2 , ∇ · EEE = 0,

c2 Δ(∇ ×BBB) = β
d(∇ ×BBB)

dt
+

d2(∇ ×BBB)
dt2 , c2 =

1
ε0εμ0μ

,

(7.29)

and the equations for temperature Ta, the mass-specific density of entropy Θa and
the potential part of the magnetic induction vector BBB:

c2
r ΔTa = β

dTa

dt
+

d2Ta

dt2 , c2
rΔΘa = β

dΘa

dt
+

d2Θa

dt2 ,

c2
r Δ(∇ ·BBB) = β

d(∇ ·BBB)
dt

+
d2(∇ ·BBB)

dt2 , c2
r =

a2

χ2
T∗
a

μ0μ �cv
.

(7.30)

It is easy to see that Eq. (7.29) are similar to Maxwell’s equations in a conductive
medium. The only difference is the physical meaning of the terms that ensure damping
of electromagnetic waves. Three equations in Eq. (7.30) are equivalent and coincide
with a hyperbolic heat conduction equation, see Cataneo (1958); Chandrasekharaiah
(1998); Jou et al (2001); Babenkov and Ivanova (2014); Babenkov and Vitokhin
(2018). This equation can be rewritten in the more customary form:

ΔTa =
ρ∗cv
λ

dTa

dt
+

1
c2
r

d2Ta

dt2 . (7.31)

According to Debye’s law, the specific heat is proportional to temperature cubed
at temperatures close to absolute zero and is close to constant value at temperatures
above the Debye temperature. Therefore, as it follows from the last relation in
Eq. (7.30), the propagation velocity of thermal waves cr tends to infinity like 1/T∗

a as
T∗
a → 0 and it tends to infinity like

√
T∗
a as T∗

a → ∞.
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7.3.5 Analysis of the Wave Behavior at the Interface

Now we consider an incident plane wave propagating in a material. This may be a
torsional wave, which is an analogy of a longitudinal wave in the case of translational
degrees of freedom, or this may be a bending wave, which is an analogy of a transverse
wave in the case of translational degrees of freedom. Further, we study wave processes
that take place when the incident wave reaches an interface between two materials
possessing different physical properties. We note that, in the case of rotational degrees
of freedom, the wave processes at the interface are similar to the wave processes
that take place at the interface in the case of translational degrees of freedom. Thus,
when a torsional wave or a bending wave reaches the interface, a different number
of waves (from one to four) can occur. However, in the case of continua based on
translational degrees of freedom, the transverse wave propagation velocity is less
than the longitudinal wave propagation velocity. This restriction does not inherent to
the continua based on rotational degrees of freedom. Below, considering the behavior
of torsional and bending waves, we focus our attention on the conditions that are
impossible in the case of longitudinal and transverse waves. We do not aim to study
in detail the dependence of the wave behavior on the parameters. The results below
are illustrative.

In order to study the wave processes occurring near the interface between two
materials, we can use Eq. (7.28) written in terms of the electromagnetic and ther-
modynamic quantities. However, it is more convenient to use the corresponding
equations written in terms of the mechanical quantities, namely Eq. (7.24). It is easy
to show that Eq. (7.24) can be reduced to the following one:

CΘ
�
∇∇ · θ −

CΨ
�
∇∇ × θ − β�J

dθ
dt

− �J
d2θ

dt2 = 0. (7.32)

Further, we denote the parameters of the first and second materials by indexes 1 and
2, respectively. We introduce the dimensionless time t̃ and the dimensionless gradient
operator ∇̃ as

t̃ = β1t, ∇̃ =
1
�1β1

√
C(1)
Ψ

J1
∇. (7.33)

In view of Eq. (7.33) we can write down Eq. (7.32) for the first and second materials
as

α1∇̃∇̃ · θ − ∇̃∇̃ × θ −
dθ
dt̃

−
d2θ

dt̃2 = 0,

α2∇̃∇̃ · θ − α∇̃∇̃ × θ − α3
dθ
dt̃

−
d2θ

dt̃2 = 0,

(7.34)

where the dimensionless parameters are calculated by the formulas

α =
C(2)
Ψ
�21J1

�22J2C(1)
Ψ

, α1 =
C(1)
Θ

C(1)
Ψ

, α2 =
C(2)
Θ
�21J1

�22J2C(1)
Ψ

, α3 =
β2
β1
. (7.35)
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We note that constants α, α1 and α2 can be expressed in terms of the wave propagation
velocities, namely

α =

(
c(2)

c(1)

)2

, α1 =

(
c(1)r

c(1)

)2

, α2 =

(
c(2)r

c(1)

)2

. (7.36)

A numerical analysis of the wave propagation problem has been carried out by
using the finite-volume method. Results of the analysis are presented in Figs. 7.1–7.5
where distributions of the rotation vector magnitude are shown. Dashed lines in the
figures separate the media with different physical properties. Numbers in the figures
indicate waves of different types.

Certainly, the analysis of Figs. 7.1–7.5 does not allow us to distinguish torsional
waves and bending waves. In order to determine the types of waves, the analysis of
the projections of the rotation vector has been performed. Figures 7.1–7.5 correspond
to moments of time close to the moments when the incident waves reach the second

Fig. 7.1 The case of the
incident torsional wave and
α1 = 15, α2 = 10. Notation: 1
is the incident torsional wave, 2
is the refracted torsional wave,
3 is the refracted bending wave,
4 is the reflected bending wave,
5 is the reflected torsional
wave

Fig. 7.2 The case of the
incident torsional wave with
the incident angle close to
zero and α1 = 10, α2 = 100.
Notation: 1 is the reflected
torsional wave, 2 is the
refracted torsional wave
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Fig. 7.3 The case of the
incident torsional wave with
the large incident angle and
α1 = 10, α2 = 100. Notation:
1 is the incident torsional wave,
2 is the refracted bending wave,
3 is the reflected bending wave,
4 is the reflected torsional
wave

Fig. 7.4 The case of the
incident torsional wave with
the large incident angle and
α1 = 2/3, α2 = 10. Notation:
1 is the incident torsional wave,
2 is the refracted bending wave,
3 is the reflected torsional wave,
4 is the reflected bending wave

Fig. 7.5 The case of the
incident torsional wave and
α1 = 1/15, α2 = 1/10. Nota-
tion: 1 is the incident torsional
wave, 2 is the refracted tor-
sional wave, 3 is the reflected
torsional wave
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medium. Initial distributions of the rotation vector magnitude are shown in the right
bottom corners of the figures. We note that the incident plane waves are generated
through nonuniform initial distributions of the rotation vector. As a result, the waves
propagate in both directions perpendicular to initial peak. In order to easily recognize
reflected and refracted waves, we simulate the wave processes without damping, i.e.,
solving Eq. (7.34) we neglect the terms containing the first time derivatives of θ.
Due to this fact, the amplitudes of refracted and reflected waves are of the same
order as the amplitudes of the incident waves. Constant α characterizing the ratio of
the propagation velocities of bending waves is chosen as α = 1.5 for all examples
considered below. Constants α1 and α2 characterizing the ratios of the torsional wave
propagation velocities to the bending wave propagation velocity in the first material
take different values. Below we consider several examples where the incident wave is
torsional and at the end of this section we briefly discuss what should change if the
incident wave is a bending wave.

At first, we consider the case when c(1) ≈ c(2) < c(1)r ≈ c(2)r , see Fig. 7.1. In this
case, there exist all four waves, namely the reflected torsional wave, the reflected
bending wave, the refracted torsional wave, and the refracted bending wave.

Next, we consider the case when c(1) ≈ c(2) < c(1)r < c(2)r . In this case, the wave
behavior depends strongly on the incident angle. If the incident angle is close to
zero, the reflected and refracted bending waves are absent whereas the reflected and
refracted torsional waves exist. The disturbance band caused by the refracted torsional
wave is wider than the disturbance band caused by the incident wave, however their
amplitudes are approximately same, see Fig. 7.2. If the incident angle is not close to
zero, then reflected torsional wave exists, the refracted torsional wave is absent and
the reflected and refracted bending waves propagate almost perpendicularly to the
interface, see Fig. 7.3.

If c(1) ≈ c(2) ≈ c(1)r < c(2)r and the incident angle is not close to zero, then the
refracted torsional wave is absent but there exist the reflected torsional wave and the
reflected and refracted bending waves, see Fig. 7.4.

When c(1)r ≈ c(2)r < c(1) ≈ c(2), the reflected and refracted bending waves are absent.
The reflected and refracted torsional waves exist and their amplitudes are of the same
order, see Fig. 7.5.

In addition, an analysis of the wave propagation in the case of the bending incident
wave has been carried out. This analysis proves that the wave behavior similar to that
above takes place when the relationships between the wave propagation velocities are
inverted. For example, in the case of c(1) ≈ c(2) > c(1)r ≈ c(2)r , we have the amplitude
distributions as in Fig. 7.1 where the only difference is that 1 is the incident bending
wave, 2 is the refracted bending wave, 3 is the refracted torsional wave, 4 is the
reflected torsional wave, 5 is the reflected bending wave.

As stated above, the ratio of propagation velocities of the bending and torsional
waves can be arbitrary whereas the transverse wave propagation velocity is always
less than the longitudinal wave propagation velocity. This difference is important
since, considering the classical continuum with translational degrees of freedom, in
the case of the incident longitudinal wave we could not obtain the results similar to
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that presented in Fig. 7.5 and in the case of the incident transverse wave we could not
obtain the results similar to that presented in Figs. 7.1–7.4. Thus, on the one hand,
mechanical models and mechanical analogues allows us to predict what processes
are possible and what processes are not possible and give a hint about a direction
of experimental research. On the other hand, if predictions obtained on the basis
of a mechanical model contradict experimental data this is a reason to change the
mechanical model but this is not a reason to assert that it is impossible to describe
the given physical process using the continuum mechanics methods.

7.4 Whether Modern Thermodynamics Needs Mechanical
Models

Summarizing the above analysis of trends in the development of modern thermody-
namics, we note, that along with the significant progress in developing mathematical
methods, there is a completely different situation with mechanical models of thermal
processes. In modern statistical thermodynamics, the mechanical model no longer
plays an important role that it played at the initial stage of the development of this
science. Non-equilibrium thermodynamics is a purely phenomenological science.
In this science, the question of mechanical interpretations of temperature and other
thermodynamic quantities has never been raised. In fact, now mechanical models
of thermal processes are developed only in the framework of continuum mechanics.
In this regard, we return to the issues raised in the introduction, namely, whether
modern science needs mechanical models and whether a physical theory should
be an explanation. We are convinced that the answer to both questions should be
affirmative. In our opinion, the main and almost the only incentive to create a new
theory is the scientist’s desire to understand the essence of the phenomenon, i.e., to
explain this phenomenon, at least to himself. People tend to think using analogies. If
a person finds some kind of analogy between a new phenomenon for him and the one
he knows well or can imagine, he has a feeling that he has found an explanation for
this phenomenon and understands the essence of it. Mechanical models are useful
due to several reasons. Firstly, they create vivid visual images that stimulate intuitive
thinking. Secondly, they allow us to draw analogies with the well-studied phenomena.
Thirdly, the use of mechanical models allows for a more fundamental study, since
it involves the derivation of differential equations from the first principles through
logical reasoning.
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Chapter 8
Estimation of Energy of Fracture Initiation in
Brittle Materials with Cracks

Ruslan L. Lapin, Nikita D. Muschak, Vadim A. Tsaplin, Vitaly A. Kuzkin, and
Anton M. Krivtsov

Abstract We study deformation and fracture of a brittle material under mixed quasi-
static loading. Numerical simulations of deformation of a cubic sample containing
a single crack are carried out using the particle dynamics method. Effect of ratio
of compressive and shear loads on energy of fracture initiation is investigated for
two crack shapes and various crack orientations. The energy of fracture initiation
in a material containing multiple cracks is estimated using the non-interaction
approximation. It is shown that in the case of mixed loading (compression and shear)
the energy is significantly lower than in the case of pure compression. Presented
results may serve for minimization of energy consumption during disintegration of
solid minerals.

Keywords: Brittle fracture · Fracture initiation · Cracks · Particle dynamics method
· Desintegration of rocks · Energy consumption

8.1 Introduction

One of the key technological challenges for mining industry is minimization of
energy consumption during disintegration (fracture) of solid minerals (Vaisberg and
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Kameneva, 2014; Vaisberg et al, 2018a,b). The energy required for fracture of rocks
strongly depends on their heterogeneous internal structure. Development of scanning
technologies, for example, computer microtomography, makes it possible to determine
shapes and sizes of heterogeneities (Vaisberg and Kameneva, 2014; Vaisberg et al,
2018a; Vesga et al, 2008). However, finding relation between microstructure of a rock
and its mechanical properties is still a challenging problem for mechanics (Kachanov
and Sevostianov, 2018; Altenbach and Sadowski, 2015; Altenbach and Öchsner,
2011).

Influence of heterogeneities on effective elastic properties of materials is studied in
many works on micromechanics (Torquato, 1991). Materials with pores (Shafiro and
Kachanov, 1997; Kumar and Han, 2005; Bîrsan and Altenbach, 2011), cracks (Sayers
and Kachanov, 1991; Saenger, 2008; Min and Jing, 2003; Grechka and Kachanov,
2006), and inclusions (Shafiro and Kachanov, 2000) of different shapes are considered.
Proper microstructural parameters determining contribution of heterogeneities to
effective properties are introduced (Kachanov and Sevostianov, 2005; Kachanov,
1999). State of the art in calculation of effective elastic properties is summarized in
the recent book (Kachanov and Sevostianov, 2018). In particular, the non-interaction
approximation allowing to calculate effective properties analytically is discussed in
detail.

Success of micromechanics in prediction of effective elastic properties is caused
by the fact that these properties are insensitive to many features of real microstructure.
Estimation of influence of heterogeneities, e.g. cracks, on strength properties is more
challenging. Complexity of estimation of strength properties is related to the fact that
strength is determined by local stress fields. Therefore many works are devoted to
development of numerical schemes for accurate calculation of the local fields (Linkov,
2002; Krivtsov, 2007; Kuna, 2013). In particular, efficient methods for calculation of
stress intensity factors in materials containing multiple cracks are proposed in Rejwer
et al (2014); Kushch et al (2009); Jaworski et al (2016). Relation between distribution
of stress intensity factor and effective strength of a material is discussed in Rejwer
et al (2014).

From practical point of view, it is important to find relation between loading type
and energy required for fracture of a material. This problem is not fully covered
in literature. In Bratov and Krivtsov (2016), a simple two-dimensional model for
estimation of energy of fracture initiation is proposed. Influence of loading type on
the energy is investigated. It is shown that mixed loading (compression and shear) is
energetically more efficient than pure compression. In the present paper, we generalize
the results of Bratov and Krivtsov (2016) for the three-dimensional case.

The paper is organized as follows. In Sect. 8.2, discrete model of a brittle material is
presented. In Sect. 8.3, simulation of deformation and fracture of a sample containing
an infinite rectangular crack is carried out. Energy of fracture initiation under various
loads for different crack orientations is calculated. Numerical results are compared
with analytical estimates (Bratov and Krivtsov, 2016). In Sect. 8.4, the energy of
fracture initiation is calculated for a penny-shaped crack. Generalization for the case
of multiple non-interacting penny-shaped cracks is carried out in Sect. 8.5.
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8.2 Discrete Model of a Brittle Material

In this section, a discrete model of deformation and fracture of a brittle mate-
rial (e.g. rock) is presented. A material is simulated using the particle dynamics
method (Krivtsov, 2007, 2004, 2003). In this method, a material is represented as
a set of interacting particles (∼material points) connected by bonds. Cubic sample
of a material is considered. Number of particles in the sample is of order of 5 · 105.
Particles form a quasi-random lattice (Tsaplin and Kuzkin, 2017). Positions of the
particles are calculated using the following algorithm, proposed in Tsaplin and Kuzkin
(2017). A perfect face-centered cubic lattice (FCC) is created. Particles are located at
nodes of the lattice (Fig. 8.1A). Then particles get random displacements (Fig. 8.1B).
Magnitudes of the displacements are of order of 0.4d. Here d is the step of the FCC
lattice. Each pair of particles at the distance less than 1.9d is connected by a linear
elastic spring (bond). On average, each particle has 20 bonds. The equilibrium bond
length is equal to the initial distance between connected particles. In Tsaplin and
Kuzkin (2017) it is shown that resulting material has isotropic elastic and strength
properties.

During the simulation, the following equations of motion for particles are solved
numerically:

m�vi =
∑
j

Fi j − βvi . (8.1)

Here, summation is carried out over all particles j connected with particle i; m is
particle mass; vi is particle velocity; Fi j is force in the bond connecting particles i
and j; β is coefficient of artificial dissipation, which is introduced in order to suppress
vibrations caused by deformation of the sample. Forces, Fi j , arising in bonds are
calculated as

Fi j = ci j(ri j − r0
i j)ei j, ci j = c0

d
r0
i j

, (8.2)

where ci j is bond stiffness; ri j is distance between particles i, j; r0
i j is initial bond

length; ei j is unit vector directed along the line connecting the particles; c0 is

(A) (B) (C)

Fig. 8.1 (A) FCC lattice; (B) quasi-random lattice; (C) an example of a crack in the
sample (particles near the crack are shown only)
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stiffness of a bond with initial length equal to d. Equations of motion (8.1) are
solved numerically using the symplectic leap-frog integration scheme with time step
2 · 10−2T∗, where

T∗ = 2π
√

m
c0
.

Periodic boundary conditions in all space directions are used.
Macroscopic elastic moduli of the considered material are calculated in Tsaplin

and Kuzkin (2017). It is shown that the Young modulus and the Poisson ratio are
related with microparameters as

ν = 0.255, E = 1.48
c0
d
. (8.3)

An initial crack is created by removing bonds between the particles that cross a crack
surface (Fig. 8.1C). Contact between crack faces is neglected. Crack propagation is
simulated by removing bonds, satisfying the following inequality:

ri j − r0
i j

r0
i j

> εcr , (8.4)

where εcr is the critical bond deformation. In further calculations εcr is equal
to 2 · 10−4.

8.3 An Infinite Rectangular Crack

In this section, we study initiation of fracture (crack propagation) in a sample
containing an infinite rectangular crack under various loads. An initial crack is shown
in Fig. 8.2A. Angle α is a parameter defining orientation of the crack with respect to
direction of loading. Crack length is equal to 0.35 of periodic cell size. During the
simulation, every 20T∗ a periodic cell is subjected to a uniform strain (Δεzz or Δεyz
or both). Three cases are considered: (a) compression along z axis with increment

(A) (B) (C)

Fig. 8.2 Periodic cell containing an infinite crack (A). Change of the periodic cell under
compression (B) and shear (C)
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Δεzz = 5 · 10−6 (see Fig. 8.2B); (b) pure shear with increment Δεyz = 5 · 10−6 (Fig.
8.2C) and (c) mixed loading with increments Δεzz = Δεyz = 5 · 10−6.

Deformation of the sample leads to breakage of bonds. A moment of fracture
initiation is tracked by the number of broken bonds. It is assumed that the fracture
begins when the number of broken bonds increases by 5% compared to the number
of bonds removed for creation of the initial crack. When the criterion is satisfied, the
strain energy density is calculated as a sum of potential energies of all bonds in the
periodic cell:

U =
1

2V

∑
ci j(ri j − r0

i j)
2, (8.5)

where V is volume of the periodic cell. Further U is referred to as the energy of
fracture initiation.

We compare simulation results with analytical estimates obtained in Bratov and
Krivtsov (2016). In Bratov and Krivtsov (2016), a single crack under compression
and shear loads applied at infinity is considered in two-dimensional formulation.
Solution of corresponding elasticity problem yields stresses near the crack tip. Neuber-
Novozhilov fracture criterion (Novozhilov, 1969) is used. The criterion is used for
estimation of energy of fracture initiation.

Comparison of analytical estimates Bratov and Krivtsov (2016) with the results
of particle dynamics simulations is presented in Fig. 8.3. Every point on the plot
corresponds to average over 5 simulations with different realizations of a quasi-random
lattice. Figure 8.3 shows that numerical and analytical results are in a qualitative
agreement. Deviations are caused by different fracture criteria and material models.
In Bratov and Krivtsov (2016), linear fracture mechanics is used. In the framework
of this approach, at certain crack orientations the fracture criterion is never satisfied.
For example, uniaxial compression of a sample along crack direction does not lead to
fracture. Therefore energy of fracture initiation, U, formally tends to infinity (see Fig.
8.3). In contrast, presented discrete model yields finite energy of fracture initiation
for any crack orientation. Moreover, fracture is possible even in the absence of a

(A) (B) (C)

Fig. 8.3 Energy of fracture initiation, U , as a function of rectangular crack orientation under
uniaxial compression (A), pure shear (B), and compression with a shear (C). In the latter
case Δεzz = Δεyz . Results of particle dynamics modeling (squares) and analytical
estimates (Bratov and Krivtsov, 2016) (solid line) are shown
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crack. Additionally, we note that relation between bond breakage criterion (8.4) and
the Neuber-Novozhilov criterion is not straightforward.

Figure 8.3 shows that the energy of fracture initiation strongly depends on crack
orientation and loading type. In particular, the energy has clear minima corresponding
to the most energetically beneficial crack orientations. In the following section, this
fact is considered in detail for a penny-shaped crack.

8.4 A Penny-shaped Crack

In this section, initiation of fracture in a sample containing a penny-shaped (circular)
crack (Fig. 8.4) is considered. As in the previous section, the sample is subjected
to compressive and shear strains with increments Δεzz and Δεyz every 20T∗. Crack
orientation is specified by angle α (see Fig. 8.4). The ratio of crack diameter to size
of the periodic cell is equal to 0.35.

Influence of crack orientation and ratio of strain increments,

k =
Δεyz

Δεzz
,

on energy of fracture initiation is investigated. Results of numerical simulations are
shown in Fig. 8.5. Each point on the plot corresponds to average over 5 realizations
of a quasi-random lattice. Figure 8.5 shows that under uniaxial compression (k = 0)
energy of fracture initiation, U, has minima at α = 45◦; 135◦ and maxima at
α = 0◦; 90◦; 180◦. Adding shear leads to decrease of minimum and maximum values
of fracture initiation energy. Moreover, for k > 0.5 and for all crack orientations, the
energy of fracture initiation is less than in the case of uniaxial compression. Therefore
mixed loading is energetically more efficient than uniaxial compression.

Fig. 8.4 Periodic cell contain-
ing a penny-shaped crack
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Fig. 8.5 Dependence of the
energy of fracture initiation,U ,
on crack orientation for various
ratios of shear and compressive
strain increments, k (uniaxial
compression corresponds
to k = 0)

8.5 Multiple Randomly Oriented Penny-shaped Cracks
(Non-interaction Approximation)

In this section, energy of fracture initiation in a material containing multiple randomly
oriented penny-shaped cracks is estimated using the results obtained above and
the non-interaction approximation (Kachanov and Sevostianov, 2018). Consider a
material containing randomly located and oriented cracks. Suppose that the cracks are
located far from each other. In the framework of the non-interaction approximation,
we assume that mutual influence of cracks can be neglected. Then for each crack, the
energy of fracture initiation can be estimated using Fig. 8.5. We assume that fracture
starts at cracks with orientations, corresponding to minimum of function U(α). For
each ratio of shear and compressive strains increments, k, the minima are calculated
using results shown in Fig. 8.5. Resulting energy of fracture initiation for a material
containing multiple cracks is presented in Fig. 8.6.

Figure 8.6 shows that the energy of fracture initiation has maximum at k = 0 (uni-
axial compression) and monotonically decreases with increasing shear load. Note that
adding a small shear load, significantly decreases energy of fracture initiation. These
results are in a good qualitative agreement with experimental observations (Vaisberg
et al, 2016) and analytical estimates (Bratov and Krivtsov, 2016).

8.6 Conclusions

Energy of fracture initiation for a material with a single crack under mixed load-
ing (compression and shear) was calculated numerically. Rectangular and penny-
shaped cracks were considered. Dependencies of the energy of fracture initiation on
crack orientation for various ratios of compression and shear loads were obtained.
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Fig. 8.6 Energy of fracture
initiation, U , for a material
with multiple cracks as a func-
tion of the ratio of shear and
compressive strain increments,
k

The dependencies were employed for estimation of energy of fracture initiation in a
material containing multiple cracks under the non-interaction approximation. It was
shown that the energy strongly depends on loading type. It has maximum in the case
of uniaxial compression and it decreases monotonically with increasing shear load. It
was shown that adding a small shear load yields significant decrease of the energy of
fracture initiation.

Presented results may serve for minimization of energy consumption during
disintegration of rocks, for example, in vibrational crushers (Vaisberg et al, 2018b).
In particular, the results suggest that energy consumption under mixed loading is
several times less than under uniaxial compression. This fact is in a good qualitative
agreement with experimental observations (Vaisberg et al, 2018b, 2016).
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Chapter 9
Effective Elastic Properties Using Maxwell’s
Approach for Transversely Isotropic Composites

Leandro Daniel Lau Alfonso, Reinaldo Rodríguez-Ramos, Jose A. Otero, Frédéric
Lebon, Federico J. Sabina, Raul Guinovart-Díaz, and Julián Bravo-Castillero

Abstract In this contribution an analysis of static properties of transversely isotropic,
porous and nano-composites is considered. Present work features explicit formulas
for effective coefficient in these types of composites. The reinforcements of the
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composites are a set of spheroidal inclusions with identical size and shape. The
center is randomly distributed and the inclusions are embedded in an homogeneous
infinite medium (matrix). An study of theoretical predictions obtained by Maxwell
approach using two different density distribution functions, which describe the
alignment inclusions is done. The method allows to report the static effective elastic
coefficients in composites ensemble with inclusions of different geometrical shapes
and configurations embedded into a matrix. The effective properties of composites are
computed using the Maxwell homogenization method in Matlab software. Another
novelty of this contribution is the calculation of new explicit analytical formulas
for the control of the alignment tensors N∗ and Ns∗ which is in charged of the
alignment distribution of inclusions within matrix through disorder parameters λ
and s, respectively. The alignment tensors N∗ and Ns∗ are obtained as average of
all possible alignments of the inclusions inside the composite. Numerical results
are obtained and compared with some other theoretical approaches reported in the
literature.

Keywords: Maxwell’s scheme · Inhomogeneities · Homogenization · Transversely
isotropic composites

9.1 Introduction

It was the scientist James Clerck Maxwell, who proposed a method to calculate the
effective conductivity of a homogeneous spherical material that contained a finite
amount of inclusions of spherical type in Maxwell (1954). This aroused the interest
of the scientific community since in its method Maxwell did not consider interactions
between inclusions and arrived, in the case of spherical inclusions, to the same
predictions as other methods that take them into account.

In Kanaun (2016); Levin and Kanaun (2012) recent results are presented in this area.
In Kanaun (2016) four methods are compared, the original and generalized Maxwell
schemes and the one-particle and multi-particle effective field methods (EFM). Those
approaches give closed predictions for small volume fractions of inclusions (p < 0.3),
furthermore, another method such as (MT) method is mentioned, concluding that
in the case of isotropic materials with spherical inclusions of equal behaviour, the
original Maxwell and the one-particle effective field methods, coincide in their results,
and in the case of spheroidal inclusions the original Maxwell and the one-particle
EFM deviate substantially from the multi-particle EFM and generalized Maxwell
scheme, being remarkable that both last approaches coincide practically for all
the values of the volume fraction. The Maxwell method is extended in Levin and
Kanaun (2012) to an homogeneous anisotropic medium containing an arbitrary set of
homogeneous anisotropic ellipsoidal inclusions, where it is shown that the explicit
equations obtained by the Maxwell method for isotropic materials coincide in the
case of spherical inclusions with the MT, and for spheroidal inclusions oriented in a
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parallel direction, the equations for the effective elastic modulus tensor are the same,
which are obtained by Maxwell and MT methods.

In addition, in Sevostianov (2014), Maxwell’s scheme is reformulated from the
rigidity and flexibility contribution tensors, being remarkable that the form of the
fictitious building, affects the predictions of the effective coefficients. Moreover,
explicit formula for choosing the aspect ratio of fictitious building is given when it
presents spheroidal shape, and the advantages of the Maxwell method are proposed. It
shows that the reformulation of its scheme as a function of the tensor of contribution of
flexibility, is equivalent to the reformulation as a function of the tensor of contribution
of rigidity. In Sevostianov and Giraud (2013), the Maxwell method reformulated as a
function of the rigidity contribution tensor is illustrated, through four examples: the
first is a material that contains multiple pores of identical form, the second, a material
that contains three families of inclusions that have different properties and forms, the
third, a material that contains circular cracks with certain orientations and, finally, a
material containing randomly oriented pores with no ellipsoidal shapes.

In Martinez-Ayuso et al (2017) a study is presented on the homogenization of
piezoelectric materials with pores, through numerical and analytical methods. The
results obtained in Martinez-Ayuso et al (2017) are compared by two different
methods: (MT) method and self-consistent scheme of Hershey (1954) and Kröner
(1958). Besides, these results are contrasted with two classical bounds known in the
homogenization theory, the Hashin-Strikman and Halpin-Tsai bounds. In addition, a
numerical model (FEM) of representative volume element is developed, based on
the analysis of finite element for different percentage of inclusions in the material.
The locally exact homogenization theory for unidirectional composites with square
periodicity and isotropic phases proposed by Drago and Pindera (2008) is extended in
Wang and Pindera (2016) to architectures with hexagonal symmetry and transversely
isotopic phases, through a numerical method that uses Fourier transformation.

In McCartney and Kelly (2008) the far-field methodology developed by Maxwell
(1954), is used to estimate effective thermoelastic properties in multi-phase isotropic
composites. Furthermore, effective bulk and shear moduli are estimated, as well
as thermal expansion coefficients in these types of composites. Besides, results are
compared with formulas and dimensions, known in the literature. The generalized
Maxwell method is developed by Levin et al (2012) for the calculation of effective
parameters in poroelastic composites. This method is compared with other self-
consistent methods existing in the literature. Moreover, examples of applications
of the generalized method of Maxwell for the calculation of effective parametric
parameters for heterogeneous materials constituted by rocks are reported. The Maxwell
homogenization scheme (Kushch and Sevostianov, 2016) is formulated in terms of
moments of dipole and of the tensor of contribution of element of representative
volume, also deals with the problem of effective conductivity in a composite with
spheroidal inclusions aligned, analyzing the convergence of that solution.

The novelty of the present contribution is the derivation of explicit analytical
formulae for the control of the alignment tensors N∗ and Ns∗. These functions
distribute the alignment of inclusions inside the matrix material through disorder
parameters λ and s, respectively, obtained as an average of all possible alignments of
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the inclusions within the nano transversely isotropic composite. Another novelty of
this contribution consists in the study of Maxwell’s approach predictions using two
different density distribution functions (Sevostianov, 2014; Giraud et al, 2007) for
alignment inclusions inside the composite. The different types of inclusions taken
into account in the model are spheroidals. Spheroidal fibre, spherical inclusion and
spheroidal disk are considered for different ranges of the aspect ratio parameter.
Moreover, explicit formulae for effective elastic tensor are given for porous, nano
and composites with global transversely isotropic behaviour formed by constituents
with transversely isotropic symmetry as well. Comparisons with other theoretical
approaches, such as, closed relations reported by Christensen model and FEM (Dong
et al, 2005), Locally-exact homogenization theory (LEHT) (Wang and Pindera, 2016),
among others are given.

9.2 Statement of Fundamental Equations

A solid material of volume V that posses linear elastic behaviour is considered. In
this case, the constitutive equations for a linear elastic solid can be written in terms
of stress tensor σi j and strain tensor εi j through Hooke law

σi j = Ci jklεkl, (9.1)

where Ci jkl is the stiffness fourth order tensor. In previous equation, the indexes i, j, k, l
go from 1 to 3. The elastic constants satisfy the following symmetry relationships

Ci jkl = Cjikl = Ci jlk . (9.2)

The symmetry of elastic constants (9.2) reduces the number of elastic independent
constants from 81 to 36 (see Qu and Cherkaoui, 2006; Roger and Dieulesaint, 2000).
For crystals, stiffness tensor Ci jkl , formed by 36 components, is also symmetric
respect to permutation of pairs of indexes

Ci jkl = Ckli j . (9.3)

The existence of equality (9.3) in the general case, lead to a reduction of the number
of independent components for the stiffness tensor from 36 to 21, that is, the number
of constants of a solid without symmetry.

The strain εεε and displacement uuu are related by the Cauchy linear relationship

εi j =
1
2
(ui, j + u j ,i). (9.4)

The components of elastic tensor moduli, strain and stress in matrix notation, is useful
to write using the abbreviate notation. The binary combinations i j = m (i, j = 1,2,3)
and kl = n (k, l = 1,2,3) are substituted by an index from 1 to 6 following the next
scheme (m,n = 1, . . . ,6)
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(11) → 1; (22) → 2; (33) → 3; (23,32) → 4; (31,13) → 5; (12,21) → 6. (9.5)

Equation (9.1) can be written in matrix notation

�       !

σ1
σ2
σ3
σ4
σ5
σ6

"#######$
=

�       !

C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 c55 C56
C61 C62 C63 C64 C65 C66

"#######$

�       !

ε1
ε2
ε3
ε4
ε5
ε6

"#######$
. (9.6)

Material’s behavior is described through 21 constants of the tensor Ci jkl .
The elastic fourth rank stiffness tensor for composites with transversely isotropic

symmetry, oriented along the x3 symmetry axis, is given by

C =

�        !

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0

0 0 0 0 0
C11 − C12

2

"########$
. (9.7)

As a particular case, if the material has isotropic symmetry, the independent constants
are reduced to 2. Thus, constitutive equation (9.6) can be written

�       !

σ1
σ2
σ3
σ4
σ5
σ6

"#######$
=

�       !

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 1

2 (C11 − C12) 0 0
0 0 0 0 1

2 (C11 − C12) 0
0 0 0 0 0 1

2 (C11 − C12)

"#######$

�       !

ε1
ε2
ε3
ε4
ε5
ε6

"#######$
. (9.8)

In some cases, it is convenient to represent stiffness tensor Ci jkl for isotropic materials
in the form

Ci jkl = λδi jδkl + μ(δikδjl + δilδjk) = Kδi jδkl +G
(
δikδjl + δilδjk −

2
3
δi jδkl

)
, (9.9)

where K and G are the bulk and shear modulus, respectively, and λ and μ are Lame’s
constants, which are related with the constants of tensor Ci jkl of Eq. (9.8) by

C11 = C22 = C33 = λ + 2μ,
C12 = C13 = C23 = λ,

C44 = C55 = C66 = μ = (C11 − C12)/2. (9.10)
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The stress field given by stress tensor represents an equilibrium state with volume
forces fi in all the points of the volume V , it means that stress field satisfies the
equilibrium equation

∂σi j

∂xj
+ fi = 0. (9.11)

Equation (9.11) is valid for any material point inside a continuum medium.
Introducing T basis (Sevostianov, 2014) for transversely isotropic tensor

T1
i jkl = Θi jΘkl, T2

i jkl =
ΘikΘl j + ΘilΘk j − Θi jΘkl

2
, T3

i jkl = Θi jξkξl, (9.12)

T4
i jkl = ξiξjΘkl, T5

i jkl =
Θikξlξj + Θilξkξj + Θjkξlξi + Θjlξkξi

4
, (9.13)

T6
i jkl = ξiξjξkξl, Θi j = δi j − ξiξj, (9.14)

ξ = (ξ1, ξ2, ξ3) = (sinψ cos θ, sinψ sin θ,cosψ), ψ ∈ [0, π], θ ∈ [0,2π], (9.15)

where δi j is the Kronecker delta, and using decomposition of stiffness tensor (9.7) in
T basis oriented along x3 symmetry axis (Sevostianov, 2014), it holds

C = kT1 + 2mT2 + l(T3 + T4) + 4μT5 + nT6, (9.16)
C = (k,2m, l, l,4μ,n),

where

k =
C1111 + C1122

2
, m =

C1111 − C1122
2

,

l = C1133, μ = C2323, n = C3333, (9.17)

where k is the plane-strain bulk modulus for lateral dilatation without longitudinal
extension, m is the rigidity modulus for shearing in any transverse direction, l is the
associated cross-modulus, μ is the longitudinal or axial shear modulus, and n is the
modulus for longitudinal uniaxial strain.

9.3 Geometry of Inclusions

Initially a composite material is considered on the framework of Maxwell approach,
with a fictitious building (the fictitious building is an arbitrary region that is framed
within the composite) of spheroidal shape inside the homogeneous material (matrix).
The composite can be ensemble, in principle, for a single type of inclusion or different
types of spheroidal inclusions. In Fig. 9.1 it is featured a sample of the composite
with the fictitious building (region in dark gray) inside matrix material (region in
normal gray). Three different types of spheroidal inclusions accounted in the present
model are described in a mathematical form through the set
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Fig. 9.1 Representative nano
transversal isotropic material
with spheroidal inclusions and
fictitious building

I =

{
(x, y, z) ∈ R3 :

x2

(γa)2
+

y2

(γa)2
+

z2

a2 ≤ 1,a ∈ R

}
,

where the parameter γ, is denominated aspect ratio of the inclusions. In the present
model, the parameter γ is taken as γ = x1

x3
, taking the value γ = 1 for spherical

inclusions, γ < 1 for fibre cylindrical inclusions and γ > 1 for spheroidal disk
inclusions, Fig. 9.2. Analogously, the aspect ratio of the fictitious building within
matrix material is assigned to the parameter Γ and it describes the geometrical form
of this construction inside the composite through the set

FB =

{
(x, y, z) ∈ R3 :

x2

(Γb)2
+

y2

(Γb)2
+

z2

b2 ≤ 1, b ∈ R

}
.

The different types of inclusions taken into account in the model are spheroidals.
In Fig. 9.1 all possible spheroidal inclusions embedded into the fictitious body is
featured and in Fig. 9.2 spheroidal fibre, spherical and spheroidal disk inclusions are
shown for different ranges of the aspect ratio γ.

Fig. 9.2 Description of three
different types of spheroidal
inclusions taking into account
in the present model γ <

γ =
γ >
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9.4 Maxwell’s Homogenization Approach

Let the effective stiffness tensor C∗ of a transversely isotropic elastic composite, with
different types of spheroidal inclusions Ωm,m = 1, ...,n of volume Vm, and be C0

and Ci the matrix and ith-inclusion stiffness tensor, respectively, being V the volume
of the whole composite. Then, by Maxwell approach, a fictitious building Ω of
volume V̄ is taken inside the composite formed by matrix material and inclusions, the
resulting effect due to applying a constant external strain field ε0 (this fact is shown in
Fig. 9.3) to the matrix material is described by the sum of stiffness contribution tensor
of inclusions

1
V

∑
i ViNi and by the stiffness contribution tensor N̄ (Sevostianov,

2014) of Ω, considering Ω as an individual inclusion with homogeneous unknown
properties C∗, which volume is representative in the whole composite. Later, equating
both produced fields (in a further point ρ of the composite), by inclusions and Ω,
considering this last one like independent inclusion, it holds the effective equation
obtained by Maxwell approach

V̄
V

N̄ = 1
V

∑
i

ViNi . (9.18)

Given in the formula (9.36)-(9.38) of the Appendix, tensor N in the Maxwell approach
contains the information about the geometrical shape and elastic properties of the
inclusions, it also depends on the elastic properties of the matrix material through the
components of tensor P which contains the aspect ratio γ in its integral expressions
(9.27). The tensor P (Hill, 1965) describes the geometrical shape and properties of
fictitious building and it contains the elastic properties of matrix material and the
aspect ratio of the fictitious building Γ, and for ellipsoidal inclusions the following
relation holds

Fig. 9.3 Featuring of fictitious
building in matrix material

Ω Ω

= ∑

ρ

ε
Ω

Ω Ω
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N =
[(

Ci − C0
)−1
+ P

]−1

, (9.19)

and tensor P is calculated

Pi jkl =

∫
Ψ

K∗
i jkl(a

−1k)dΨ, Ki jkl(x) = −
[
∇j∇lGik(x)

]
(i j)(kl), (9.20)

a = � !
1/a1 0 0

0 1/a2 0
0 0 1/a3

"#$ , (9.21)

where Ψ is the unit sphere, a1,a2,a3 are the axis of the ellipsoidal volume V , Gik is
the static Green function of operator ∇jC0

i jkl
∇l and K∗

i jkl
the Fourier transform of

function Ki jkl , given by

K∗
i jkl =

1
4

[
ξj(Gik)−1ξl + ξi(Gjk)−1ξl + ξj(Gil)−1ξk + ξi(Gjl)−1ξk

]
, (9.22)

where ξj are given by (9.15). From (9.19) it holds that when Ω has ellipsoidal form

N̄ =
[(

C∗ − C0
)−1
+ P

]−1

, (9.23)

and then by substitution (9.23) into (9.18), it yields the final expression for effective
stiffness tensor of composite

C∗ = C0 +

[(
1
V̄

∑
i

ViNi

)−1

− P
]−1

. (9.24)

Equation (9.24) is the most important formula of Maxwell method because it allows
to write the explicit expression for computing effective stiffness tensor of composites.
Then, following the idea of (Sevostianov, 2014), one can replace in eq. (9.24) the
sum

∑
i Ni by the quantity N∗ given by formulae (9.49)-(9.54) of the Appendix, and

the quantity
∑

i

Vi

V̄
by parameter v f which denotes the volume fraction of inclusion in

the model, consequently, for two-phase composites Eq. (9.24) becomes

C∗ = C0 + v f ·

[(
N∗

)−1
− v f · P

]−1

, (9.25)

Moreover, the Maxwell approach allows us to replace tensor N∗ of Eq. (9.25) by tensor
Ns∗ given by formulae (9.65)-(9.76) of the Appendix for obtaining two Maxwell
homogenization approaches that differ one from the other in the density distribution
function chosen for modeling the alignment of inclusions within matrix materials.
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9.5 Analysis of Numerical Results

In this section, present model (PM) using the Maxwell method applied to nano-
composites and transversely isotropic composite materials is validated with other
theoretical approaches reported in different works. In Table 9.1 are shown the material
properties used in the calculations.

The present model is compared with Christensen, FEM approach (Table 1 of
Dong et al (2005)) and Locally Exact Homogenization Theory (Wang and Pindera,
2016) for validating the case of composite with isotropic matrix and transversely
isotropic inclusion. Besides, a comparison with Mogilevskaya et al (2014) for
effective tetragonal elastic moduli of two phase fiber reinforced composite is done.
Furthermore, a validation for the porous inclusion case with respect to Sevostianov
(2014); Vilchevskaya and Sevostianov (2015) approaches is performed. The present
model (PM) is compared with the approach reported in Selmi et al (2007) for the case
of two phase nanocomposite. Moreover, a study about the influence on the effective
coefficient through PM using two different density distribution functions (DDF) for
describing parallel alignment inclusions within matrix is reported. From now on,
DDF given by (9.47) and (9.63) are identified by DDF1 and DDF2, respectively. The
procedure given by the Eq. (9.25) using tensor N∗ reported in (9.48) and Ns∗ given in
(9.64) is denoted by PM-DDF1 and PM-DDF2, respectively. The numerical results
shown in the figures are taken from the mentioned literature in each study. Present
model’s predictions are based in the effective equation (9.25) obtained in the last
section.

Table 9.1 Mechanical properties of the constituents used for the computation

material properties (GPa) C1111 C1122 C1133 C3333 C2323

Epoxy 6.64444 3.57778 3.57778 6.64444 1.53333
Boron inclusions 459.667 114.917 114.917 459.667 172.375
3501-6 Epoxy 6.464 3.33 3.33 6.464 1.576
AS4 Graphite 15.6879 3.18792 3.77517 226.51 15
matrix 1 0.5 0.5 1 0.25
moderate inclusion 18 15 15 18 1.5
high inclusion 1200 1000 1000 1200 100
matrix1 130.27 56.0962 56.0962 130.27 37.0869
matrix2 17.9482 10.1082 10.6614 32.2627 8.75362
porous 10.1−7 10.12−7 10.13−7 10.14−7 10.15−7

LaRC-SI 8.14286 5.42857 5.42857 8.14286 1.35714
continuum Graphene 3024 1008 1008 3024 1008
Aluminum 101.9 50.022 50.022 101.9 25.94
SiC 474.2 98 98 474.2 188.1
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9.5.1 Density Distribution Functions

The influence on effective properties obtained through Maxwell approach using
density distribution function given by (9.47) in Appendix denoted by DDF1 for
modeling different inclusion alignment cases inside matrix material, is studied by
Sevostianov (2014) for porous composite. Now, the purpose is to show the results of
Maxwell approach using DDF2 given by (9.63) in Appendix (PM-DDF2) and (PM-
DDF1) for modeling inclusion’s alignment inside composite, and compare these two
approaches between them and other predictions reported in other research works not
only for porous composites but for a more general variety of different composites like
Epoxy/Boron, 3501-6 Epoxy/AS4 Graphite, matrix/moderate inclusion, matrix/high
inclusion, among others.

In Fig. 9.4 is shown the dependence on the alignment parameter s of six alignment
functions τi given by formulae (9.71)-(9.76) of the Appendix when disorder parameter
s → ∞, s controls the alignment of inclusions inside the matrix material through
tensor Ns∗ . Present model takes into account the random or non random alignment
of every type of inclusion inside the matrix through parameter s. Figure 9.4 reflects
that functions τi(s) have horizontal asymptotes at different values as s → ∞. It is
remarkable that these six functions remain constants as the disorder parameter s
approaches to infinity.

In Table 9.2 are shown the predictions of the tensor N∗ numerical values (in
GPa) given by formulae (9.49)-(9.54) for different values of disorder parameter λ,
for modeling cylindrical inclusions within the matrix in a Epoxy/Boron composite
(see Table 9.1), taking into account aspect ratios of inclusions and fictitious building
γ = Γ = 0.01 . From Table 9.2 one can observe that for values of disorder parameter λ
higher than 100, the components of tensor N∗ remain close one each other, it implies
that the components of effective elastic tensor are also closed through PM-DDF1
approach.

Fig. 9.4 Dependence of alignment functions τi given by Eq. (9.71)-(9.76) of the Appendix related
to disorder parameter s
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Table 9.2 Numerical predictions for components of tensor N∗ which describes the alignment of
inclusions inside the composite Epoxy/Boron, γ = Γ = 0.01 for fibre inclusions

λ
N∗

1111+N∗
1122

2 N∗
1111 − N∗

1122 N∗
1133 N∗

3311 4N∗
2323 N∗

3333

2 33.3135 32.5450 29.7264 29.7264 118.2359 156.5058
10 7.2516 5.7731 11.2025 11.2025 45.5601 334.8491
100 6.4908 4.9134 2.8862 2.8862 12.4927 371.1578
1000 6.4911 4.9126 2.7783 2.7783 12.0634 371.5879
3700 6.4911 4.9126 2.7773 2.7773 12.0594 371.5920
5000 6.4911 4.9126 2.7773 2.7773 12.0593 371.5921

Results are given in GPa.

In Table 9.3 are shown numerical values (in GPa) of tensor Ns∗ given by formulae
(9.65)-(9.70) of Appendix, for different values of disorder parameter s, taking into
account γ = Γ = 0.01 for modeling cylindrical Boron inclusions within epoxy matrix
(see the material properties in Table 9.1). From Table 9.3 one can observe that for
values of disorder parameter s higher than 3000, the components of tensor Ns∗ remain
close one each other, it implies that the components of effective elastic tensor are
also closed through PM-DDF2 approach. From Fig.9.4 and Tables 9.2 and 9.3 one
can conclude that best value of parameter s in PM-DDF2 for estimating PM-DDF1
approach with λ = 100 (aligned inclusion case reported by Sevostianov (2014)) is
the value s = 3700.

9.5.2 Study of Composites Constituted by Isotropic Matrix and
Isotropic Inhomogeneities

In Table 9.4 it is shown comparisons between present model through two different
density distribution functions (DDF) and the results obtained by Christensen, FEM
reported in Dong et al (2005) for effective axial bulk K∗

12 and Poisson ratio ν∗31 in a two

Table 9.3 Numerical predictions for components of tensor Ns∗ which describes the alignment of
inclusions within the composite Epoxy/Boron, γ = Γ = 0.01 for fibre inclusions

s
Ns∗

1111+Ns∗
1122

2 Ns∗
1111 − Ns∗

1122 Ns∗
1133 Ns∗

3311 4Ns∗
2323 Ns∗

3333

2 41.3244 40.7217 30.2001 30.2001 119.7988 122.5679
10 11.6640 10.4124 24.9563 24.9563 100.1217 262.1844
100 6.5477 5.0052 6.2418 6.2418 25.8454 357.5077
1000 6.4904 4.9156 3.1396 3.1396 13.5013 370.1455
3700 6.4907 4.9133 2.8755 2.8755 12.4503 371.2004
5000 6.4908 4.9131 2.8500 2.8500 12.3487 371.3022

Results are given in GPa.
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Table 9.4 Comparisons with Table 1 of Dong et al (2005), γ = Γ = 0.001 for fibre inclusions

Effective properties
222 vf 0.1 0.3 0.5 0.7 0.9

K∗
12 (Christensen) 5.83056 7.86606 11.4567 19.4865 53.5138

K∗
12 (FEM) 5.83056 7.8661 11.457 19.487 53.514

K∗
12 (PM-DDF1) 5.8305 7.8658 11.4559 19.4835 53.4872

K∗
12 (PM-DDF2) 5.8305 7.8658 11.4559 19.4834 53.4868

ν∗31 (Christensen) 0.331156 0.296514 0.265414 0.237339 0.211869
ν∗31 (FEM) 0.33116 0.29651 0.26541 0.23734 0.21187
ν∗31 (PM-DDF1) 0.3323 0.2998 0.2707 0.2443 0.2203
ν∗31 (PM-DDF2) 0.3322 0.2995 0.2701 0.2436 0.2195

Results are given in GPa.

phase composite formed by Boron inclusions and Epoxy matrix whose properties are
shown in Table 9.1. Both phases, matrix and inclusions exhibit isotropic symmetry.
The effective coefficients K∗

12, ν
∗
31 are given by formulae (10) of Dong et al (2005).

In the calculations are using for both type of DDF, Boron inclusions aspect ratio
γ = 0.001, the aspect ratio of fictitious building Γ = 0.001, which is the same to the
inclusions. The disorder parameter λ = 100 for modeling parallel aligned inclusion
case using the PM-DDF1 approach, and disorder parameter s = 3700 for PM-DDF2.
From Table 9.4 is remarkable that predictions through present model give good
agreement with those obtained by Christensen, FEM approaches published in Dong
et al (2005).

A comparison with Mogilevskaya et al (2014) and semi-analytical finite element
method (SAFEM) reported in Otero et al (2013, 2017) implemented for this type of
composite under perfect contact is given in Tables 9.5 and 9.6 for tetragonal elastic
moduli of two phase fibre reinforced composites. Numerical predictions for the
effective coefficient C∗

1313 normalized by the shear modulus μ0 of matrix material
for two different composites made of matrix/moderate inclusion and matrix/high
inclusion, are shown in Tables 9.5 and 9.6, respectively. All the constituents in
both composites are in Table 9.1 and have isotropic symmetry. This comparison
corresponds to numerical results obtained by the present approach and different
predictions obtained by the expressions (6), (20) and RUC (Repetitive square unit
cell) model reported in Mogilevskaya et al (2014). The computations are done for
γ = Γ = 0.001, λ = 100 and parameter s = 3700 for PM-DDF1 and PM-DDF2
approaches, respectively. Table 9.5 shows good agreement between PM-DDF1,
PM-DDF2, Eqs. (6), (20) and RUC (Mogilevskaya et al, 2014) as well as SAFEM
approaches for matrix/moderate inclusion composite. On the other hand, Table
9.6 reveals good comparison between PM-DDF1, PM-DDF2, RUC and SAFEM
approaches, however, it is not the same with the results reported by Eqs. (6) and (20)
of Mogilevskaya et al (2014) for the case of matrix/high inclusion composite.

Additionaly, the composites matrix/moderate inclusion and matrix/high inclusions
are considered and numerical calculations for the effective coefficient (C∗

1111−C∗
1122)/2

normalized by the shear modulus of matrix μ0 and the effective coefficient C∗
1133
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Table 9.5 Comparison of the effective coefficient C∗
1313 normalized by the shear modulus of matrix

μ0 with Table 5 of Mogilevskaya et al (2014), γ = Γ = 0.001 for fibre inclusions in the composite
matrix/moderate inclusion

vf Eq. (6) Eq. (20) RUC PM-DDF1 PM-DDF2 SAFEM

0.05 1.074 1.075 1.074 1.0742 1.0742 1.0741
0.1 1.154 1.155 1.154 1.1542 1.1542 1.1538
0.15 1.240 1.242 1.240 1.2406 1.2405 1.2400
0.2 1.333 1.335 1.333 1.3341 1.3341 1.3334
0.25 1.435 1.437 1.435 1.4359 1.4358 1.4351
0.3 1.545 1.548 1.546 1.5469 1.5468 1.5463
0.35 1.667 1.670 1.669 1.6685 1.6683 1.6688
0.4 1.800 1.804 1.805 1.8023 1.8021 1.8045
0.45 1.947 1.952 1.956 1.9503 1.9500 1.9564
0.5 2.111 2.117 2.128 2.1147 2.1144 2.1283
0.55 2.294 2.302 2.326 2.2986 2.2981 2.3256
0.6 2.500 2.511 2.556 2.5055 2.5049 2.5561
0.65 2.733 2.750 2.832 2.7401 2.7394 2.8319
0.7 3.000 3.024 3.173 3.0083 3.0075 3.1731
0.75 3.308 3.344 3.620 3.3180 3.3170 3.6197

Results are given in GPa.

Table 9.6 Comparison of the effective coefficient C∗
1313 normalized by the shear modulus of matrix

μ0 with Table 8 of Mogilevskaya et al (2014), γ = Γ = 0.001 for fibre inclusions in the composite
matrix/high inclusion

vf Eq. (6) Eq. (20) RUC PM-DDF1 PM-DDF2 SAFEM

0.05 1.105 1.106 1.105 1.1239 1.1220 1.1047
0.1 1.221 1.224 1.221 1.2641 1.2598 1.2209
0.15 1.351 1.355 1.351 1.4241 1.4168 1.3509
0.2 1.497 1.502 1.497 1.6085 1.5972 1.4972
0.25 1.662 1.668 1.663 1.8232 1.8067 1.6633
0.3 1.851 1.858 1.854 2.0765 2.0529 1.8540
0.35 2.069 2.077 2.076 2.3797 2.3466 2.0762
0.4 2.322 2.333 2.340 2.7492 2.7027 2.3396
0.45 2.622 2.635 2.659 3.2094 3.1437 2.6590
0.5 2.980 2.999 3.058 3.7983 3.7039 3.0583
0.55 3.418 3.446 3.578 4.5789 4.4392 3.5779
0.6 3.963 4.008 4.294 5.6628 5.4471 4.2939
0.65 4.662 4.737 5.372 7.2694 6.9133 5.3719
0.7 5.590 5.720 7.274 9.8970 9.2429 7.2737
0.75 6.882 7.123 12.227 14.9721 13.5163 12.2267

The results are given in GPa.

normalized by the matrix coefficient Cm
1133 are shown in Tables 9.7 and 9.8, respectively.

Comparisons are given by present model, Mogilevskaya et al (2014), SAFEM reported
in Otero et al (2013, 2017) and asymtotic homogenization method (AHM) proposed
in Bravo-Castillero et al (2012); Guinovart-Diaz et al (2001). Aspect ratio parameters
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Table 9.7 Comparison of the effective coefficient (C∗
1111 −C∗

1122)/2 normalized by the shear
modulus of matrix μ0 with Table 4 of Mogilevskaya et al (2014), γ = Γ = 0.001 for fibre inclusions
in the composite matrix/moderate inclusion

vf Eq. (4) Eq. (13) Eq. (18) RUC PM-DDF1 PM-DDF2 SAFEM AHM

0.05 1.066 1.069 1.069 1.069 1.063 1.063 1.0653 1.0653
0.1 1.137 1.148 1.150 1.148 1.1312 1.1312 1.1409 1.1409
0.15 1.214 1.242 1.244 1.241 1.2052 1.2052 1.2281 1.2281
0.2 1.298 1.349 1.352 1.349 1.2858 1.2857 1.3285 1.3285
0.25 1.389 1.474 1.477 1.474 1.3739 1.3739 1.4438 1.4438
0.3 1.489 1.616 1.621 1.617 1.4707 1.4706 1.5755 1.5755
0.35 1.600 1.777 1.783 1.780 1.5774 1.5774 1.7257 1.7257
0.4 1.722 1.958 1.965 1.965 1.6958 1.6958 1.8963 1.8963
0.45 1.858 2.157 2.166 2.172 1.8277 1.8277 2.0894 2.0893
0.5 2.010 2.374 2.385 2.403 1.9758 1.9758 2.3070 2.3069
0.55 2.181 2.604 2.616 2.656 2.1431 2.143 2.5516 2.5512
0.6 2.376 2.841 2.856 2.929 2.3336 2.3336 2.8253 2.8243
0.65 2.599 3.078 3.096 3.218 2.5526 2.5525 3.1309 3.1282
0.7 2.857 3.306 3.327 3.517 2.8069 2.8068 3.4718 3.4650
0.75 3.158 3.514 3.538 3.823 3.1058 3.1057 3.8532 3.8369

Results are given in GPa.

Table 9.8 Comparison of the effective coefficient C∗
1133 normalized by the coefficient Cm

1133 of the
matrix with Table 9 of Mogilevskaya et al (2014), γ = Γ = 0.001 for fibre inclusions in the
composite matrix/high inclusion

vf Eq. (7) Eq. (21) RUC PM-DDF1 PM-DDF2 SAFEM AHM

0.05 1.032 1.033 1.032 1.1045 1.1036 1.0956 1.0956
0.1 1.068 1.069 1.068 1.2206 1.2188 1.2019 1.2019
0.15 1.109 1.11 1.109 1.3505 1.3475 1.3206 1.3206
0.2 1.154 1.156 1.154 1.4965 1.4923 1.4542 1.4542
0.25 1.205 1.208 1.205 1.662 1.6564 1.6058 1.6058
0.3 1.263 1.267 1.264 1.8512 1.844 1.7796 1.7796
0.35 1.33 1.335 1.331 2.0695 2.0605 1.9810 1.9810
0.4 1.409 1.415 1.411 2.3242 2.313 2.2184 2.2184
0.45 1.501 1.509 1.506 2.6252 2.6114 2.5038 2.5037
0.5 1.611 1.621 1.623 2.9863 2.9694 2.8569 2.8564
0.55 1.746 1.757 1.772 3.4276 3.4069 3.3119 3.3101
0.6 1.913 1.927 1.974 3.9792 3.9537 3.9348 3.9278
0.65 2.127 2.142 2.275 4.6881 4.6564 4.8737 4.8447
0.7 2.411 2.427 2.804 5.6329 5.593 6.5509 6.4123
0.75 2.804 2.819 4.177 6.9548 6.9033 11.0435 9.9304

Results are given in GPa.

γ and Γ in the calculations are taken the same as in Tables 9.5 and 9.6, λ = 100 and
s = 3700.

A validation of the present model (PM) with experimental data reported by
Premkumar et al (1992); Liaw et al (1995); El-Eskandarany (1998); Kumar et al
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(2009); Upadhyay and Singh (2012); Qu et al (2016) is shown in Fig. 9.5. The
experimental and theoretical studies are for the effective Young modulus for different
volume fraction of SiC isotropic spherical inclusions into Aluminum isotropic matrix,
where the properties are given in Table 9.1. The experimental data is reported for
different percentages of volume fraction. PM predictions is consistent with Liaw et al
(1995); Qu et al (2016); Upadhyay and Singh (2012)

E∗
t =

1
S∗

1111
, E∗

a =
1

S∗
3333
, S∗ = (C∗)−1 (9.26)

For isotropic composites the effective axial E∗
a and tangential E∗

t Young modulus are
the same and are given by Eq. (9.26) taking into account that S∗

1111 = S∗
3333.

9.5.3 Study of Composites Constituted by Isotropic Matrix and
Transversely Isotropic Inhomogeneities

Figure 9.6 displays another validation of the present model approach for the effective
axial shear modulus of a material composed by isotropic matrix 3501-6 Epoxy and
AS4 Graphite with transversely isotropic symmetry inclusions. The inclusions are
embedded into the matrix. The elastic properties of the constituents are given in
Table 9.1. This validation assures good concordance with numerical predictions
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Fig. 9.5 Effective Young’s modulus prediction between PM and experimental data reported in
Premkumar et al (1992); Liaw et al (1995); El-Eskandarany (1998); Kumar et al (2009); Upadhyay
and Singh (2012); Qu et al (2016), γ = Γ = 1 for spherical inclusions
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Fig. 9.6 Comparison between PM and LEHT (Wang and Pindera, 2016) approaches for the
effective axial shear modulus in a composite made of isotropic matrix 3501-6 Epoxy and AS4
Graphite with transversely isotropic symmetry, γ = Γ = 0.01 for fibre inclusions

reported by LEHT homogenization approach (Wang and Pindera, 2016). In Fig. 9.6
are shown numerical predictions for effective axial shear modulus of composite
3501-6 Epoxy/AS4 Graphite (Table 9.1) related to the dependence of the volume
fraction of fibre inclusions. A comparison between PM using both density distribution
functions (DDF) and Locally Exact Homogenization Theory (LEHT) is done. In both
models PM-DDF1 and PM-DDF2, the aspect ratio of fictitious building and fibre
inclusions are γ = Γ = 0.01, disorder parameters in DDF1 and DDF2 are λ = 100
and s = 3700, respectively for modeling the case of aligned fibres inside the matrix
material. From Fig. 9.6, PM and LEHT give very close results for this effective
property of the composite in the whole range of volume fraction.

9.5.4 Porous Composite with Isotropic and Transversely Isotropic
Matrix

The next study focus on numerical prediction of porous composites. Validation of PM
with Maxwell approach reported by Sevostianov (2014) (as SMM), Vilchevskaya and
Sevostianov (2015) (as Max. schem.) and experimental results reported in Dong and
Guo (2004) is shown in Fig. 9.7. The effective transversal shear modulus of two phase
composite matrix2/porous (see Table 9.1) is compared between PM, Max. schem.



Fig. 9.7 Effective coefficient a) G∗
t , b) S∗

1212 for matrix2/porous composite, γ = Γ = 1/1.39 for
fibre spheroidal porous inclusions, and c) Ga −G∗

a for matrix1/porous composite normalized by
axial shear modulus Ga of matrix material, γ = 10 for disk spheroidal porous inclusions at four
fixed values of Γ
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Vilchevskaya and Sevostianov (2015) and the experimental data reported by Dong
and Guo (2004) in Fig. 9.7a). The matrix2 exhibits transversely isotropic symmetry.
In both approaches of PM, i.e. PM-DDF1 and PM-DDF2, are taken γ = Γ = 1/1.39,
λ = 100 for PM-DDF1 and s = 3700 for PM-DDF2 as disorder parameters for
modeling the porous inclusion parallel aligned case. From Fig. 9.7a) one can observe
that PM-DDF1 and PM-DDF2 approaches give close results, while both approach
of the present model (PM-DDF1 and PM-DDF2) have good correspondence with
Max. schem. Vilchevskaya and Sevostianov (2015) approach and experimental data
of Dong and Guo (2004). In Fig. 9.7b) it is shown a numerical comparison for
the effective compliance coefficient S∗

1212 between PM and Max. schem. reported
in Vilchevskaya and Sevostianov (2015), for two phase composite matrix2/porous
of Table 9.1. In both predictions of PM approach (PM-DDF1 and PM-DDF2), are
taken the same values of γ, Γ, λ and s like in Fig.9.7a). From Fig. 9.7b) one can
observe that PM-DDF1, PM-DDF2 and Max. schem. Vilchevskaya and Sevostianov
(2015) approaches practically coincide in the whole range of volume fraction. In
Fig. 9.7c) are shown the numerical comparison of the effective axial coefficient
Ga − G∗

a normalized by the matrix material axial shear modulus Ga for two phase
composite constituted by matrix1/porous of Table 9.1 between PM and SMM reported
in Sevostianov (2014). The solid and dash curves indicate PM-DDF1 and PM-DDF2
approaches, respectively. The constituent matrix1 exhibit isotropic symmetry. The
porous aspect ratio are taken as γ = 10 and the aspect ratio of fictitious building Γ is
fixed as Γ = 1,2,4,10 to see the influence of different geometrical shape of fictitious
building on the behavior of this effective coefficient. From Fig. 9.7c), it is observed
that when the effective coefficient (Ga −G∗

a)/Ga > 1 then G∗
a < 0, therefore, this fact

conduces to lost of physical meaning, thus the only curve with real physical meaning
is that none having value Γ = 10, i.e., the same aspect ratio for inclusions and fictitious
building. For PM-DDF1 is taken λ = 100 and for PM-DDF2 s = 3700. Comparisons
between the two approaches of PM (PM-DDF1 and PM-DDF2) and numerical results
(SMM) shown in Fig. 9.7b) of Sevostianov (2014) give close results. Furthermore, in
Table 9.9, numerical comparisons are reported using the present model and SAFEM
for the effective transversal shear modulus G∗

t in the composite matrix2/porous. There
is a good match between results obtained through both approaches.

Table 9.9 Comparison between the present model and SAFEM approach for the effective
transversal G∗

t shear modulus in the composite made by fibre spheroidal porous inhomogeneities
embedded into the matrix2, γ = Γ = 1/1.39, λ = 100, s = 3700

vf SAFEM G∗
t (GPa) PM-DDF1 G∗

t (GPa) PM-DDF2 G∗
t (GPa)

0.1 3.3354 3.2749 3.275
0.2 2.7686 2.7161 2.7162
0.3 2.2516 2.2273 2.2274
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9.5.5 Two-phase Nano-composites

The last validation of the present model (PM) is done for the case of a two phase
nano-composite constituted by isotropic matrix LaRC-SI and continuum graphene as
inclusions with isotropic symmetry. The properties of these materials are shown in
Table 9.1. In Fig. 9.8 are shown numerical predictions of PM-DDF1 and PM-DDF2
approaches for the effective axial G∗

a and transversal G∗
t shear modulus normalized

by the corresponding axial Ga and transversal Gt shear modulus of matrix material
in a two phase nanocomposite LaRC-SI/continuum graphene. The effective axial G∗

a

and transversal G∗
t shear modulus calculated by PM are validated with three different

methods (the Sequential, the Two-level based on Mori-Tanaka method and the FE
approaches) reported in Selmi et al (2007) for nanocomposites. The parameters for
PM predictions are taken γ = Γ = 0.1, λ = 100 and s = 3700 for PM-DDF1 and
PM-DDF2, respectively. Figure 9.8 evidences that PM-DDF1 and PM-DDF2 match
very good with Sequential, Two-level and FE approaches reported in Selmi et al
(2007).

9.6 Conclusions

From the research that has been carried out, it is possible to conclude that based on
the results obtained, Maxwell homogenization approach has been very successful
as a procedure to estimate effective elastic properties of composites constituted by
phases of transversely isotropic symmetry. A methodology for computing the overall
properties is reported from the outcome of our investigation. Closed formulas for
effective stiffness tensor of composites with different arrangement of the inclusions
have been deduced. Current homogenization technique is compared with other
theoretical approaches, getting low computational cost of the implemented algorithm
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Fig. 9.8 Effective axial G∗
a and transversal G∗

t shear modulus normalized by the matrix material
axial Ga and transversal Gt shear modulus, respectively, for a composite LaRC-SI/continuum
Graphene, γ = Γ = 0.1 for fibre inclusions
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derived from the present model and correlating satisfactorily with the results reported
in the studied references . The used method is especially reachable and forthright
procedure for the calculation of effective properties of heterogeneous media with
more of two different types of constituents. As stated in the introduction our main
target was to hand over new analytical formulae for the control alignment tensors N∗

and Ns∗ which are emphasized in the appendix of the current contribution. Besides,
an study about Maxwell approach using two different density distribution functions
is done for predicting effective mechanical properties of transversely isotropic, nano
and porous composites.

Appendix

Tensor P of Maxwell explicit effective formula (9.24) for transversely isotropic
spheroidal inclusions of aspect ratio γ = x1

x3
, where x1, x2, x3 are the inclusion’s axis,

is given by

P1111 =
1
16

( ∫ 1

−1

(1 − u2) · Υ(u)
b

du

)
+

3
16

( ∫ 1

−1

d(1 − u2) · Υ(u)
h0 + h1u2 + h2u4 du

)
,

P1122 = −
1
16

( ∫ 1

−1

(1 − u2) · Υ(u)
b

du

)
+

1
16

( ∫ 1

−1

d(1 − u2) · Υ(u)
h0 + h1u2 + h2u4 du

)
,

P1133 = −
(C1133 + C2323)

4

( ∫ 1

−1

u2 · Υ(u)
h0 + h1u2 + h2u4 du

)
+

+
(C1133 + C2323)

4

( ∫ 1

−1

u4 · Υ(u)
h0 + h1u2 + h2u4 du

)
,

P3333 =
C1111

2

( ∫ 1

−1

u2 · Υ(u)
h0 + h1u2 + h2u4 du

)
+

+
(C2323 − C1111)

2

( ∫ 1

−1

u4 · Υ(u)
h0 + h1u2 + h2u4 du

)
, (9.27)

P2323 = −
(C1133 + C1111)

8
·

( ∫ 1

−1

u2 · Υ(u)du
h0 + h1u2 + h2u4

)
+

1
16

·

( ∫ 1

−1

u2 · Υ(u)du
b

)
+

+
C1111

16
·

( ∫ 1

−1

Υ(u)du
h0 + h1u2 + h2u4

)
+

+
[2C1133 + C3333 + C1111]

16
·

( ∫ 1

−1

u4 · Υ(u)du
h0 + h1u2 + h2u4

)
,
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P1212 =
P1111 − P1122

2
=

1
16

·

( ∫ 1

−1

(1 − u2) · Υ(u)
b

du

)
+

+
1
16

·

( ∫ 1

−1

d(1 − u2) · Υ(u)
(h0 + h1u2 + h2u4)

du

)
,

where
Υ(u) =

γ2[
γ2 + u2(1 − γ2)

]3/2 , (9.28)

and

b =
(C1111 − C1122)

2
(1 − u2) + C2323u2, d = C2323(1 − u2) + C3333u2, (9.29)

h0 = C1111C2323, h1 = C1111C3333 − C2
1133 − 2C1133C2323 − 2C1111C2323, (9.30)

h2 = C3333C2323 + C1111C2323 + 2C1133C2323 + C2
1133 − C1111C3333. (9.31)

Using decomposition (9.16), (9.17) and eq. (9.27), it holds

P = (p1, p2, p3, p4, p5, p6), (9.32)

where

p1 =
P1111 + P1122

2
, p2 = P1111 − P1122, p3 = p4 = P1133, (9.33)

p5 = 4P2323, p6 = P3333.

Tensor N of Maxwell explicit effective formula (9.24) for transversely isotropic
spheroidal inclusions, is given by the relation

N =
[(

C1 − C0
)−1
+ P

]−1

, (9.34)

where C0 and C1 are the stiffness tensor of matrix and inclusions material, respectively.
Explicitly

N = (n1,n2,n3,n4,n5,n6), (9.35)

where

n1 =
1

2�

[
d1 + d2

d5(d1 + d2) − 2d2
3
+ p6

]
, n2 =

d1 − d2
1 + p2(d1 − d2)

, (9.36)

n3 = n4 = −
1
�

[
p3 −

d3

d5(d1 + d2) − 2d2
3

]
, n5 =

4d4
1 + p5d4

, (9.37)
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n6 =
1
�

[
d5

d5(d1 + d2) − 2d2
3
+ 2p1

]
, (9.38)

� =
1 + p6d5 + 2p1(d1 + d2) + 4p3d3

d5(d1 + d2) − 2d2
3

+ 2p1p6 − 2p2
3,

d1 = C1
1111 − C0

1111, d2 = C1
1122 − C0

1122, d3 = C1
1133 − C0

1133,

d4 = C1
2323 − C0

2323, d5 = C1
3333 − C0

3333, (9.39)

where pi, i = 1,2, · · · ,6 are given by eq. (9.33). Remark that this explicit expressions
for components ni, i = 1,2, ...,6 used in the decomposition of tensor N into basis T
given by (9.12)-(9.14) are different and more general than explicit expressions given
by formulae (A.9) and (A.10) of Sevostianov (2014), because they are for a material
with transversely isotropic symmetry.

Expression of tensor Q for transversely isotropic spheroidal inclusions, is given
by the relation

Q = C0 ·
(
I − P · C0

)
, (9.40)

where C0 is the stiffness tensor of matrix material. Explicitly

Q = (q1,q2,q3,q4,q5,q6), (9.41)

and

q1 =
1
2

Da(1 − 2p1Da − 4p3C0
13) − p6Dc, q2 = Db(1 − p2Db), (9.42)

q3 = q4 = C0
13Wa − DaWb − 2p3Dc, q5 = 4C0

44Wc, (9.43)

q6 = C0
33Wa − 4C0

13(Wb − p1C0
13), (9.44)

Da = C0
11 + C0

12, Db = C0
11 − C0

12, Dc = (C0
13)

2, (9.45)

Wa = 1 − p6C0
33, Wb = 2p1C0

13 + p3C0
33, Wc = 1 − p5C0

44, (9.46)

where pi, i = 1, ...6, are the components of tensor P of eq. (9.33). Remark that this
explicit expressions for components qi, i = 1,2, ...,6 used in the decomposition of
tensor Q into basis T given by (9.12)-(9.14) are different and more general than
explicit expressions given by formulae (A.6) of Sevostianov (2014), because they are
for a material with transversely isotropic symmetry.

Then, introducing parameter λ Sevostianov (2014) that controls the random or not
random aligned inclusions cases, by means of density distribution function

Pλ(ψ) =
1

2π
[
(1 + λ2)e−λψ + λe−λ

π
2
]
, (9.47)

using eq. (9.36)-(9.38), thus, tensor N∗ can be calculated by
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N∗
i jkl =

∫ π
2

0
Pλ(ψ) sinψdψ

∫ 2π

0

( 6∑
p=1

npTp
ijkl

)
dθ. (9.48)

Explicitly,

N∗
1111 =

1
2

[
2(w1 + w2) + 2(w3 + w4)g1(λ) +

3
4
w5g2(λ)

]
, (9.49)

N∗
1122 =

1
2

[
2w1 + 2w3g1(λ) +

1
4
w5g2(λ)

]
, (9.50)

N∗
3333 =

1
2

[
2(w1 + w2) + 2(w3 + w4)g3(λ) + 2w5g4(λ)

]
, (9.51)

N∗
1133 =

1
2

[
2w1 + 2w3g5(λ) + 2w5g6(λ)

]
, (9.52)

N∗
1313 =

1
2

[
w2 + w4g5(λ) + 2w5g6(λ)

]
, (9.53)

N∗
1212 =

N∗
1111 − N∗

1122
2

, (9.54)

with

w1 = n1 −
n2
2
, w2 = n2, w3 = 2n3 + n2 − 2n1, (9.55)

w4 = n5 − 2n2, w5 = n6 + n1 +
n2
2

− 2n3 − n5, (9.56)

and functions gj(λ), j = 1,2, · · · ,6 are given by formulas

g1(λ) =
18 − λ(λ2 + 3)e− λπ

2

6(λ2 + 9)
, (9.57)

g2(λ) =
120

(λ2 + 9)(λ2 + 25)
− λ

7λ4 + 178λ2 + 435
15(λ2 + 9)(λ2 + 25)

e−
λπ
2 , (9.58)

g3(λ) =
(λ2 + 3)(3 + λe−λπ/2)

3(λ2 + 9)
, (9.59)

g4(λ) =
24 + (λ2 + 1)(λ2 + 21)

(λ2 + 9)(λ2 + 25)
+ λe−λπ/2

[(λ2 + 9)(λ2 + 25) − 120]
5(λ2 + 9)(λ2 + 25)

, (9.60)

g5(λ) =
3

2(λ2 + 9)
+
(λ2 + 3)(6 + λe−λπ/2)

12(λ2 + 9)
, (9.61)

g6(λ) =
3(λ2 + 5)

(λ2 + 9)(λ2 + 25)
+
λ[(λ2 + 1)(λ2 + 18) + 12]

15(λ2 + 9)(λ2 + 25)
e−λπ/2. (9.62)
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Remark that explicitly expressions obtained here for functions gj(λ), j = 1,2, ...,6
are different of explicit expressions obtained for functions gi(λ) reported in formula
(3.6) of Sevostianov (2014), except for functions g1(λ),g4(λ) that coincides in both
contributions.
On the other hand, one can replace density distribution function given by (9.47) by
density distribution function

Ws(ψ) =
1

4π
s · cosh(s · cosψ)

sinh s
, (9.63)

in which the parameter s is the disorder parameter, and similar to Eq. (9.48), one can
calculate tensor Ns∗ given by

Ns∗
i jkl =

∫ π

0
Ws(ψ) sinψdψ

∫ 2π

0

( 6∑
p=1

npT p
ijkl

)
dθ, (9.64)

which explicitly is written

Ns∗
1111 =

1
4

[
4(w1 + w2) + 4(w3 + w4)τ1(s) +

3
4
w5τ2(s)

]
, (9.65)

Ns∗
1122 =

1
4

[
4w1 + 4w3τ1(s) +

1
4
w5τ2(s)

]
, (9.66)

Ns∗
3333 =

1
4

[
4(w1 + w2) + 4(w3 + w4)τ3(s) + 2w5τ4(s)

]
, (9.67)

Ns∗
1133 =

1
4

[
4w1 +

w3
2
τ5(s) + 4w5τ6(s)

]
, (9.68)

Ns∗
1313 =

1
4

[
2w2 +

w4
4
τ5(s) + 4w5τ6(s)

]
, (9.69)

Ns∗
1212 =

Ns∗
1111 − Ns∗

1122
2

, (9.70)

where wi, i = 1, · · · ,5 are given by Eq. (9.55)-(9.56), and functions τi, i = 1, · · · ,6
are,

τ1(s) =
1
s

[ s − tanh s
s tanh s

]
, (9.71)

τ2(s) =
16
s4

[ s2 tanh s − 3(s − tanh s)
tanh s

]
, (9.72)

τ3(s) =
1
s2

[
s2 tanh s − 2(s − tanh s)

tanh s

]
, (9.73)
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τ4(s) =
2
s4

[
s2(s2 + 8) tanh s − 4(s − tanh s)(6 + s2)

tanh s

]
, (9.74)

τ5(s) =
4
s2

[
s2 tanh s − (s − tanh s)

tanh s

]
, (9.75)

τ6(s) =
1
s4

[
(s − tanh s)(s2 + 12) − 4s2 tanh s

tanh s

]
. (9.76)
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Chapter 10
Advanced Numerical Models for Predicting the
Load and Environmentally Dependent
Behaviour of Adhesives and Adhesively Bonded
Joints

Eduardo André de Sousa Marques, Alireza Akhavan-Safar, Raul Duarte Salgueiral
Gomes Campilho, Ricardo João Camilo Carbas, and Lucas Filipe Martins da Silva

Abstract Adhesive bonding is a very flexible and efficient joining method which
has been extensively adopted in applications where low structural weight and high
mechanical performance is a required. However, the design process and strength
prediction methods for bonded joints is still a topic where intensive research is being
carried out, especially when taking into consideration the recent advances in adhesive
formulations. Several methods, both analytical and numerical, are currently available
for accurately modelling the behaviour of adhesive joints under quasi-static loads
and in unaged conditions. However, experimental testing has also demonstrated
that adhesives and adhesive joints exhibit a large degree of sensitivity to the cyclic
loading and the environmental conditions, which can result in drastic changes to
the mechanical behaviour of a joint. Such changes pose significant challenges when
designing bonded structures and modelling the long-term behaviour of an adhesive
joint, necessitating the development of advanced models, able to introduce a variable
degree of degradation as a function of several environmental variables. This work
presents a description of several cohesive zone models, able to simulate damage, by
first discussing the state of the art techniques available for modelling of adhesives
and adhesive joints, followed by the description of the specific approaches that can
be employed for studying the behaviour under impact rates, fatigue and hygrothermal
ageing.
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Keywords: Adhesive joint · Modelling · Durability · Loading rate · Ageing · Fatigue
· Finite element analysis

10.1 Introduction

Many key players in the manufacturing sector, such as the major automakers, have
significantly increased the use of adhesives for joining load-bearing components
in an effort to reduce vehicle weight, improve fuel economy and reduce emissions.
However, the design process of a large scale bonded structure can be extremely
complex, requiring detailed knowledge of both the substrate properties and those of
the adhesives, which can vary widely from brittle epoxies to highly deformable rubbers
(da Silva et al, 2011). Adhesives, which are mostly polymer based, are viscoelastic,
and their properties greatly depend on several factors such humidity and loading
rate. While some design criteria consider these effects (Kinloch, 1987), there is still
difficulty (Adams and Harris, 1996), in creating models that can accurately represent
the mechanical behaviour of adhesives and adhesive joints under a wide variety of
conditions. This process can be performed by various methods, which are typically
divided into analytical and numerical methods. Analytical methods are simple to
implement but lack the inherent flexibility of the analytical methods. The shear lag
analysis or analytical method of Volkersen (1938) (capable of modelling the elasticity
of the adhesive material) was one of the first analytical methods proposed for the
analysis of single lap joints. It was followed by other methods which of increasingly
higher complexity such as the Goland and Reissner first approximation (Goland
and Reissner, 1944) (which does not neglect the joint rotation), the Generalized
Failure Criterion (Hart-Smith, 1973) (which takes in account of the ability of the
adhesive material to withstand plastic deformation) and the adherend failure criterion
(Adams et al, 1997) which is based on the Goland and Reissner theory and suitable
for adherends that deform plastically. The use of analytical methods, in contrast, has
grown exponentially with the increased availability of commercial finite element
(FE) codes and software. The first authors that used FE models for joints were
Wooley and Carver (1971), followed by Adams and Peppiatt (1974). Despite the
work of Wooley and Carver (1971) being considered as a significant evolution in the
prediction of the failure load in Single lap joints (SLJs), these models still do not
consider fracture mechanics. This method has been recently combined with fracture
mechanics to create cohesive damage models, which offer the possibility of predicting
the crack propagation as a result of simulated degradation of the material. Recently,
numerical models have been developed where the strength of materials and fracture
mechanics approaches have been combined, creating cohesive zone models (CZM).
CZMs attempt to minimize the limitations of the strength of materials and fracture
mechanics approaches (Cavalli and Thouless, 2001; Liljedahl et al, 2006a). These
models can be successfully employed for thin planes of materials, making them
especially well-suited for adhesive joints (Campilho et al, 2007). The evaluation of
new bonded designs for vehicle and aircraft structures may be stream-lined using
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FE analysis, reducing the large costs inherent in building or testing prototypes. This
work presents a detailed explanation of the current trends that govern the research on
modelling the mechanical behaviour of adhesively bonded joints.

This chapter is divided into four major sections, each one describing an area of
study in the numerical modelling of adhesive joints. The first section will describe in
detail the advanced techniques that can be used to predict failure in adhesive joints,
such as the use of CZMs and the use extended finite elements (XFEM). The following
section is focused on modelling the loading rate dependent behaviour of adhesives
and adhesive joints, providing examples on how to model the behaviour of joints
under impact. Another chapter is devoted to modelling the moisture uptake and the
changes in the adhesive behaviour induced by this moisture. Lastly, the final section
provides information on how to simulate fatigue induced damage in adhesives and
adhesive joints.

10.2 Modelling Adhesives and Adhesive Joints Using Cohesive
Zone Models and Extended Finite Element Method

Conventional techniques for strength prediction of bonded joints such as continuum
mechanics or linear elastic fracture mechanics (LEFM) based techniques are usually
limited to small-scale yielding ahead of the crack tip. However, for modern toughened
adhesives the plastic zones that develop in the adhesive layer can lead to much larger
plastic yielding than elastic yielding (Ji et al, 2010). CZMs were developed in the late
1950’s/early 1960’s by Barenblatt (1959) and Dugdale (1960) for static applications.
CZMs are based on spring or more typically cohesive elements (Feraren and Jensen,
2004), connecting two-dimensional (2D) or three-dimensional (3D) solid elements of
structures. The CZM laws can be easily incorporated in conventional FE software to
simulate crack propagation in various materials, including adhesively bonded joints
(Ji et al, 2010). This method defines cohesive laws to model interfaces or entire finite
regions.

The CZM laws are established between paired nodes of cohesive elements. They
can be used to connect superimposed nodes of elements representing different
materials or different plies in composites, to simulate a zero thickness interface (local
approach; Fig. 10.1a; Pardoen et al, 2005), or they can be applied directly between
two non-contacting materials to simulate a thin strip of finite thickness between them,
e.g. to simulate an adhesive bond (continuum approach; Fig. 10.1b; Xie and Waas,
2006). Some numerical works where strength prediction of bonded joints is achieved
by CZMs take advantage of the local approach (Liljedahl et al, 2006a; Campilho
et al, 2005). With this methodology, the plastic dissipations of the adhesive bond
are simulated by the solid finite elements, whilst the cohesive elements simulate
damage growth (Fig. 10.1a). The “intrinsic fracture energy” should be considered for
the CZM laws instead of the fracture toughness (Gc), while the plastic dissipations
of ductile materials take place at the solid elements representative of the adhesive
bond (Liljedahl et al, 2006a). Thus, Gc is the sum of these two components. The
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Fig. 10.1 Cohesive elements to simulate zero thickness failure paths – local approach (a) and to
model a thin adhesive bond between the adherends – continuum approach (b) in an adhesive joint

effects of external and internal constraints on the plastic dissipations of an adhesive
bond are thus accountable for in the local approach. Application of the continuum
approach (Fig. 10.1b) involves the replacement of the entire adhesive bond by a
single row of cohesive elements with the representative behaviour of the adhesive
bond (Campilho et al, 2008a; Kafkalidis and Thouless, 2002). Oppositely to the local
approach, the CZM elements’ stiffness represents the adhesive layer stiffness in each
mode of loading. This approach has been widely used in the simulation of bonded
joints, with accurate results after proper calibrations are undertaken for the CZM laws
(Campilho et al, 2009a). The main disadvantage of this approach is that CZM become
dependent on the joint geometry, which affects the size of the fracture process zone
(FPZ) and plasticity ahead of the crack tip (Ji et al, 2010).

CZMs simulate stress evolution and subsequent softening up to complete failure,
which corresponds to material degradation. The CZM laws are usually represented
by linear relations at each one of the loading stages (Yang and Thouless, 2001).
Figure 10.2 represents the 2D triangular CZM model actually implemented in Abaqus
(Providence, RI, USA) for static damage growth. The 3D additionally includes the
tearing component. More details on the 3D CZM are available in Campilho et al
(2008b) or in Abaqus (2013). The subscripts n and s relate to pure normal (tension)
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Fig. 10.2 Triangular CZM law
(adapted from Abaqus, 2013)

and shear behaviours, respectively. tn and ts are defined as current stresses in tension
and shear, respectively, δ0n and δ0s are the peak strength displacements, and δfn and
δfs the failure displacements (defined by GIc or GIIc, respectively, as these represent
the area under the CZM laws). In the mixed-mode CZM law, t0

m is the mixed-mode
cohesive strength, δ0m the corresponding displacement, and δfm the mixed-mode
failure displacement. Under mixed loading, stress and/or energetic criteria are used to
combine the pure mode laws. With this procedure, the complete failure response of
structures can be simulated (Zhu et al, 2009). Typically, continuum mechanics criteria
are used for the onset of damage and energy criteria for propagation (Chen et al,
2011). This allows the simulation of onset and non-self-similar growth of damage
without user intervention and not requiring an initial flaw, unlike what occurs with
conventional fracture mechanics criteria. On the other hand, compared to continuum
mechanics techniques, CZMs are mesh independent if enough integration points are
simultaneously under softening during the failure process (Campilho et al, 2011,
2009b). This technique also allows combining multiple failure possibilities, and the
knowledge of the damage onset site is not required as input, since damages initiates at
any CZM element when the damage onset criterion is attained. The main limitation
of CZMs is that cohesive elements must exist at the planes where damage is prone to
occur, which, in several applications, can be difficult to know in advance. However,
in bonded joints that damage propagation is restricted to the adhesive layer or the
adhesive/adherend interfaces, which turns the analysis procedure easier. Developed
CZMs include triangular (Alfano and Crisfield, 2001), linear-parabolic (Allix and
Corigliano, 1996), polynomial (Chen, 2002), exponential (Chandra et al, 2002) and
trapezoidal laws (Campilho et al, 2008a). The triangular, linear-exponential and
trapezoidal shapes are the most commonly used CZM shapes (Fig. 10.3). In the
trapezoidal law, δsn and δss are the stress softening onset displacements.

CZMs can also be adapted to simulate ductile adhesive layers by using trapezoidal
laws (Campilho et al, 2009a). Although it is always advised the use of the most
suitable CZM shape and to perform accurate parameter estimations, some works
have demonstrated acceptable predictions for small variations to the optimal CZM
parameters and shapes (Liljedahl et al, 2006a; Biel and Stigh, 2008). Nonetheless,
the effect of the CZM law shape on the strength predictions may significantly vary
depending on the structure geometry and post-elastic behaviour of the materials.
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Fig. 10.3 Different shapes of pure mode CZM laws: triangular or linear-exponential (a) and
trapezoidal (b)

The CZM law effects became evident in the experimental and FE study of Pinto
et al (2009), whose objective was the strength comparison of single-lap joints with
similar and dissimilar adherends and values of tP bonded with the adhesive 3M
DP-8005. The accurate shape of the CZM law was considered fundamental for the
strength prediction and P − δ response of the structure when using stiff adherends.
Under these conditions, peel stresses are minimal and, due to the large longitudinal
stiffness, shear stresses distribute more evenly along the bond length. Thus, the P − δ
curve is very similar in shape to the chosen shear CZM law. On the other hand,
compliant adherends led to large shear and peel stress gradients. Since this implies
different damage states along the adhesive layer, using an inaccurate CZM law gives
adhesive stresses that are over predicted at some elements and under predicted at
others. Thus, by using compliant adherends the overall behaviour gave smaller errors.
Ridha et al (2011) considered scarf repairs on composite panels bonded with the high
elongation epoxy adhesive FM 300M (Cytec). CZM laws with linear, exponential
and trapezoidal softening were compared, and linear degradation resulted in under
predictions of the repairs strength of nearly 20%, on account of excessive plastic
degradation at the bond edges that was not observed in the real joints. Regarding
the application of CZM for strength prediction of adhesive bonds, trapezoidal laws
are recommended for ductile adhesives (Feraren and Jensen, 2004; Campilho et al,
2010), and this is particularly critical when considering stiff adherends, due to the
practically absence of differential deformation effects in these components along the
overlap (Pinto et al, 2009; Alfano, 2006). In contrast, triangular CZMs are efficient
for brittle materials that do not plasticize by a significant amount after yielding
(Campilho et al, 2011), and also for the intralaminar fracture of composite adherends
in bonded structures, due to their intrinsic brittleness (Xie et al, 2006). For adhesives
that exhibit a relatively brittle behaviour in tension while showing large plastic flow
in shear, the proper selection of the CZM parameters and also the minimization of the
constant stress (plastic flow) region in the tensile law result on a good representation
of the adhesive behaviour. The material/interfacial behaviour that the CZM law is
simulating should always be the leading decision factor to select the most appropriate
shape. Despite this fact, other issues should be taken into account (da Silva and
Campilho, 2012). In fact, the CZM law shape also influences the iterative solving
procedure and the time required to attain the solution of a given engineering problem:
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larger convergence difficulties in the iterative solving procedure usually take place
for trapezoidal rather than triangular CZM laws, due to the more abrupt change of
stiffness in the cohesive elements during stress softening. Actually, for a fixed value
of the material properties GIc and GIIc, the larger the constant stress length of the
trapezoidal law, the bigger is the descending slope. Additionally, exponential and
trapezoidal CZM are more difficult to formulate and implement in FE software.

The CZM parameter effects are also detailed in several works. The main joint
geometry parameters that affect the CZM parameters of adhesive layers are tA
(thickness of the adhesive) and tP (thickness of the substrate), which emphasizes the
importance of the tA and tP consistency between the fracture tests and the structures
to be simulated (Leffler et al, 2007; Chai, 1986; Bascom and Cottington, 1976).
In Carlberger and Stigh (2010), the CZM parameters in tension and shear were
determined for a thin layer of adhesive using the DCB and ENF test configurations,
respectively, considering 0.1 ≤ tA ≤ 1.6 mm. It was concluded that the CZM
parameters significantly vary with tA, namely an increase of GIc and GIIc with this
parameter. Corroboration of the adhesive restraining effects was equally accomplished
by Ji et al (2010), which studied the influence of tA on t0

n and GIc for a brittle epoxy
adhesive, by using the DCB specimen and the direct method for parameter estimation.
Results clearly showed a reduction of tn0 and increase of GIc with bigger values of tA.
On the other hand, a few studied showed variations of GIc and GIIc by modification
of tP. In Mangalgiri et al (1987), symmetric and asymmetric DCB specimens were
experimentally tested with different values of tP (by considering 8, 16 or 24 plies of
carbon-fibre adherends). The static tests showed a large improvement of GIc between
composites with 8 and 16 plies. Devitt et al (1980) equally used the DCB test to
investigate this effect and found a 9% increase in the value of GIc of bonded joints
made of glass-epoxy composites by duplicating the number of plies of the adherends.
From these studies, it is clear that the differences take place at relatively low tP values.
Since most bonded joints are made between thin adherends/sheets, the understanding
of how tP affects the fracture toughness is highly relevant.

The eXtended Finite Element Method (XFEM) is a recent improvement of the
FE method for modelling damage growth in structures. It uses damage laws for the
prediction of fracture that are based on the bulk strength of the materials for the
initiation of damage and strain for the assessment of failure (defined by GIc), rather
than the cohesive tractions and tensile/shear relative displacements used in CZM.
XFEM gains an advantage over CZM modelling as it does not require the crack to
follow a predefined path. Actually, cracks are allowed to grow freely within a bulk
region of a material without the requirement of the mesh to match the geometry of the
discontinuities neither remeshing near the crack (Mohammadi, 2008). This method is
an extension of the FE method, whose fundamental features were firstly presented in
the late 90’s by Belytschko and Black (1999). The XFEM relies on the concept of
partition of unity, that can be implemented in the traditional FE by the introduction
of local enrichment functions for the nodal displacements near the crack to allow
its growth and separation between the crack faces (Moës et al, 1999). Due to crack
growth, the crack tip continuously changes its position and orientation depending on
the loading conditions and structure geometry, simultaneously to the creation of the
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necessary enrichment functions for the nodal points of the finite elements around
the crack path/tip. It uses damage laws for the prediction of fracture that are based
on the bulk strength of the materials for the initiation of damage and strain for the
assessment of failure (defined by GIc), rather than the values of t0

n/t0
s or w/v used in

CZM.
Varying applications to this innovative technique were proposed to simulate

different engineering problems. Sukumar et al (2000) updated the method to three-
dimensional damage simulation. Modelling of intersecting cracks with multiple
branches, multiple holes and cracks emanating from holes was addressed by Daux
et al (2000). The problem of cohesive propagation of cracks in concrete structures was
studied by Moës and Belytschko (2002), considering three-point bending and four-
point shear scaled specimens. More advanced features such as plasticity, contacting
between bodies and geometrical non-linearities, which show a particular relevance
for the simulation of fracture in structures, are already available within the scope of
XFEM. The employment of plastic enrichments in XFEM modelling is accredited
to Elguedj et al (2006), which used a new enriched basis function to capture the
singular fields in elasto-plastic fracture mechanics. Modelling of contact by the XFEM
was firstly introduced by Dolbow et al (2001) and afterwards adapted to frictional
contact by Khoei and Nikbakht (2006). Fagerström and Larsson (2006) implemented
geometrical nonlinearities within the XFEM. Fatigue applications for XFEM were
proposed recently (Xu and Yuan, 2009; Sabsabi et al, 2011), but these have not yet
been applied to the mixed mode fracture of bonded joints.

10.3 Modelling of Adhesives and Adhesive Joints Under Varying
Loading Rates and Impact Conditions

The process of modelling the impact behaviour of adhesive joints is highly relevant
for the automotive industry, as it allows the simulation of the crash behaviour of
bonded vehicle structures, enabling optimization processes to be carried out and
reducing the need for costly full scale or component scale crash tests. This approach
usually demands the use of dynamical models, as for large strain rates the influence of
inertial effects becomes significant and introduces added stresses in the joint. Some
authors, such as Harris and Adams (1985) have employed models without any type of
inertial effects but with strain rate dependent properties, which are valid for smaller
rates of loading and small masses. Alternatively, if the materials are not shown to be
strain rate sensitive and the impact speeds are high, models with quasi-static property
descriptions are used in conjunction with inertial modelling to improve accuracy
in stress predictions. This is also valid in joints where adherend yield occurs under
impact, as in these joints the adhesive does not have a significant contribution on
the behaviour of the joint and most metallic adherends do not exhibit strain rate
dependency. Higuchi et al (2002a,b); Sawa et al (2003) used the DYNA3D software
package to model the stress distribution propagation in SLJ specimens under diverse
impact loadings. This type of dynamic models is formulated according to Eq. (10.1)
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[M][A] + [K][U] = [F], (10.1)

where [M] is the mass matrix, [A] is the acceleration vector, [K] is the stiffness
matrix, [U] is the displacement vector and [F] is the external load vector.

Challita and Othman (2010) also employed a three-dimensional FE dynamical
model to assess the stresses present in split Hopkinson pressure bar (SHPB) testing
of double lap joint (DLJ) specimens with metal substrates. For both substrates and
adhesive, an elastic behaviour was assumed. Similar modelling work was performed
by Hazimeh et al (2015) but using composite substrates in DLJ specimens.

More complex models combine the inertial effects with strain rate dependent
properties, either for the adhesive, the adherends or both. In order to achieve reliable
and accurate predictions of impact behaviour of adhesive joints using numerical
models, the material properties used in the model should preferably be determined at
the appropriate strain rates values (Duncan and Pearce, 1999; Charalambides and
Dean, 1997; Dean and Charalambides, 1997). In Xia et al (2009a,b) the authors
aimed to understand in depth the dynamic failure of weld-bonded joints. The models
created by the authors used a fully dynamical analysis that treated the adhesive layer
as a rigid link between the two strain rate dependent substrates. Yang et al (2012)
evaluated the application of a simplified finite element for modelling of a toughened
adhesively bonded joint. The numerical model employed strain rate dependent data
for a toughened epoxy adhesive and for the steel substrates by defining curves of the
failure parameters versus the effective strain rate. This was complemented by the
addition to the model of strain rate dependent data for the pre-failure properties.

As an alternative to the use of experimentally derived strain rate dependent data,
the model can directly employ a constitutive model. Zaera et al (2000) used a Cowper-
Symmonds based model in a finite difference simulation of the impact behaviour of a
bonded ceramic/metal armour. The authors were able to use this relatively simple
constitutive model to model the experimental data sufficiently well for preliminary
design calculations. The work of Sawa et al (2008) and Liao et al (2011, 2013) further
demonstrated that the use of a Cowper-Symonds constitutive model for the adhesive
could model the interface stress distributions in various types of joint geometries.

Dean et al (1997) conducted a study with the intention to compare the measured
and predicted performance of SLJ specimens under impact conditions (strain rates
ranging from 2 · 10−5 to 115 s−1), through the use of a drop weight apparatus. Von
Mises and Drucker-Prager models implemented in a FEA were used to predict joint
failure. The results indicated that the von Mises yield criterion was not suitable for
toughened adhesives, but they indicated that the linear Drucker-Prager model seemed
applicable. The authors concluded that for toughened adhesives, an elastic-plastic
material model is needed and that this model should employ a yield criterion with
sensitivity to the hydrostatic component stress.

Zgoul and Crocombe (2004) employed a rate dependent von Mises mode and
a rate dependent Drucker-Prager to model the numerical behaviour of SLJ and
thick adherent shear testing (TAST) specimens. All models were implemented in
a FEA and the results compared with experimental data. The results were not very
satisfactory as the von Mises model was found to be inaccurate as it did not account
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for hydrostatic sensitivity. The Drucker-Prager model was able to accommodate
hydrostatic sensitivity but was reported to have convergence problems.

Currently, most of the academic and industrial research on the impact behaviour is
focused on using CZMs, applied to complex models (Machado et al, 2018). Carlberger
and Stigh (2007) demonstrated the validity of using this type of approach to predict
impact strength. Authors such as Haufe et al (2010); May et al (2014); Clarke
et al (2011); Avendaño et al (2016); Neumayer et al (2016) have shown that modern
commercial software packages support the prediction accurate failure load predictions
using complex dynamical cohesive models with strain rate dependent data.

In these cases, the simplest approach to model the behaviour of an adhesive joint
under impact using CZM is to determine the average strain rate that an adhesive
joint will be subjected and create a cohesive law that will reflect the properties of the
adhesive at that given strain rate. This approach is somewhat rough as it does not take
into account the fact that an adhesive layer will be almost certainly be subjected to
different local strain rates due to the differential straining an adhesive joint typically
experiences. However, the results can be sufficiently accurate for obtaining satisfactory
load predictions in a design process.

To improve on this case, CZMs can instead be specifically developed to reflect the
properties of adhesive layers as a function of the strain rate. This type of functionality
is available in some commercial finite element software packages and it can also
be implemented in custom designed cohesive elements, for example, using an user
defined material model (UMAT or VUMAT) subroutine of Abaqus. In these elements,
a material law is first necessary, which will provide a method to calculate the value for
each value of strain rate. This can be achieved through a function or table, construed
using experimental data and extrapolation.

For the case of a solution implemented in Abaqus, an UMAT subroutine (user
material) is used to define the Jacobian matrix, ∂Δσ/∂Δε, for the mechanical
constitutive model, updating stress. A scheme of the integration process of UMAT
for each increment can be seen in Fig. 10.4.

Fig. 10.4 Schematic represen-
tation of the UMAT integration
process in Abaqus
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For modelling a basic triangular cohesive law for a CZM, the necessary properties
of the adhesive that should be introduced on the model are the Young’s modulus, E ,
shear modulus, Gs, as well as expression that characterize the strain rate dependent
tensile strength σmax, shear strength, τmax, critical energy release rate in mode I, GIC,
and critical energy release rate in mode II, GIIC. The ultimate stress in mode I, σImax,
is the maximum tensile strength σmax and ultimate stress in mode II σIImax is the
maximum tensile strength τmax.

It is important to note that, even if a code is developed to analyse cases in which
the loading is mainly in mode I, it should be able to accommodate minor loadings
in mode II that may appear during the test. Therefore, an UMAT element must be
developed considering the possibility of mixed mode loads. In this way, if the loading
is in pure mode I, only mode I properties will be considered but, if small mode II
loads emerge, their contribution can still be accounted for.

Abaqus provides, for each time increment, the strain increment and its duration,
which allows the direct determination of strain rate. As mentioned above, if the strain
rate is known, the critical energy release rate in mode I can be determined, based on
the imputed expression. Afterwards, and considering a triangular traction-separation
law, the strain when maximum stress is reached, εi0 (i = I, II), and the maximum
strain, εi f (i = I, II), are determined through the area of the triangle represented in
Fig. 10.5. The stiffness k represents the Young’s modulus and the shear modulus for
mode I and II, respectively.

The current strain in the direction of mode I and II, εi (i = I, II), is also provided
by Abaqus, enabling the calculation of the mixed mode of the loading. Afterwards, a
new triangular law can be established for that mixed mode, combining the properties
for pure mode I and pure mode II, as clarified in Fig. 10.6. The strain when maximum
stress is reached, εm0, maximum strain, εmf , and current strain, εm, are determined
for the mode under analysis.

It is considered that, when the strain in one element reaches εm0, damage initiates,
and as strain progresses from εm0 to εmf a damage coefficient, d, progresses linearly
from 0 to 1 reaching 1 (full damage) when the strain reaches εmf . When εm is less
than εm0, the Jacobian matrix is calculated, and stress is determined. When εm is
higher than εm0, damage is calculated and then stress is determined. The degradation
of the properties when damage occurs can be seen in Fig. 10.7.

Fig. 10.5 Triangular law used
in the UMAT for each pure
mode
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Fig. 10.6 Geometrical repre-
sentation of the pure mode
laws under mixed mode condi-
tions

Fig. 10.7 Triangular law used
in UMAT, showing three
different levels of damage
degradation, under mixed
mode

Overall, the use of cohesive zone modelling for this purpose enables the develop-
ment of robust models, which can be applied to structures with complex geometry.
Two main challenges arise when adopting this procedure, however. The first is related
to the difficulty in determining accurate strain rate dependent properties of the
materials, which require the use of extensive testing procedures using equipment such
as drop weight testers and SHPB. The second challenge is the complexity of these
models, which is not entirely suitable for directly modelling very large structures
due to the large computational costs involved. Considering these challenges, further
research is still advised in both simplifying the testing procedures and the models,
to enable a faster and yet still accurate path for the determination of reliable failure
prediction for adhesive bonded structures under impact conditions.

10.4 Modelling the Behaviour of Adhesives and Adhesive Joints
Under Hygrothermal Ageing Conditions

Structural adhesive joints, especially when used in vehicle construction, are subjected
to varied environmental conditions. In wet environments, moisture ingresses in the
adhesive and changes its properties in a phenomenon known as ageing of the adhesive.
When modelling the mechanical behaviour of an aged adhesive joint, one must take
into account both the degraded properties of the adhesive if the failure is cohesive
in the adhesive (Sugiman et al, 2013a; Hua et al, 2006; Han et al, 2014a; Sugiman
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et al, 2013b) and the degraded properties of the interface (Sugiman et al, 2013b;
Liljedahl et al, 2006b; Crocombe et al, 2006; Liljedahl et al, 2005) if interfacial
failure occurs. Adhesives generally become more ductile and weaker when exposed
to moist environments and the interface is prone to lose its toughness. In an adhesive
joint, this frequently means that there is a gradient in the mechanical properties of the
adhesive layer and on the interface as the exposed faces of the adhesive joint always
absorb water faster than the joint’s centre, which will cause the edges of the joint to
degrade its properties much faster than in the centre if the joint has been exposed to
hygrothermal ageing for a limited time and has not reached saturation yet (Ilioni et al,
2019). Therefore, in practice the numerical simulation must simulate a joint with
graded material properties. In order to assess the gradient of mechanical properties in
the adhesive layer or in the interface, it is necessary to have complete knowledge the
amount of water at each point, which means that the water uptake into the adhesive
joint must be computed, either using an analytical (Crocombe, 1997) or numerical
method (Hua et al, 2006, 2008; Sugiman et al, 2013b; Han et al, 2014b). Crocombe
(1997) was the first to include such simulation. The strength of single-lap adhesive
joints with and without adhesive fillets was predicted using the adhesive failure strain
as a criterion. It was found that, after 30 days of immersion in tap water, the joints were
more prone to fail at their centre, where the adhesive ductility was lower due to the
reduced water uptake. Later, Hua et al (2006) made a similar analysis. In this work, the
von Mises yielding criterion was used as the failure criterion. This critical strain was
calculated using dry and partially moist mixed-mode flexure tests. It was found that
the critical strain determined using bulk specimens was higher than the actual critical
strain in the adhesive joint, indicating that the wet-adhesive–adherend interface was
more susceptible to moisture degradation. Carrere et al (2018) developed a method
for predicting the mechanical behaviour of carbon-epoxy laminates using a finite
fracture mechanics approach. In this model, the damage threshold is influenced by
the aging, but the kinetics of the crack propagation remains almost constant. Usually,
because water penetrates into the adhesive bondline through two directions, a 3D
analysis must be undertaken in order to consider the gradient in the mechanical
properties in both dimensions of the adhesive layer (Hua et al, 2006).

However, there are two cases in which a simpler 2D analysis may be enough to
accurately predict the mechanical behaviour of the adhesive joint:

1. A rectangular adhesive layer, in which the length is considerably smaller than the
width. In this case, the gradient in the width direction will be negligible. Only the
gradient in the length direction will be important;

2. When permeable adherends, such as fibre reinforced plastic, are used. These
adherends allow water to be absorbed through its thickness, allowing for a more
uniform water absorption by the adhesive layer. Most adhesive joints degrade
under service conditions. They absorb water while supporting a mechanical load.
It is known that mechanical loading enhances degradation and water absorption of
adhesives (Liljedahl et al, 2005; Han et al, 2014b).

Some authors have modelled the mechanical behaviour of adhesive joints using
sequentially coupled analyses. This kind of analysis is normally made in two steps:
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1. Calculating the moisture profile using a diffusion analysis;
2. Calculating the parameters used in the model, which are a function of the moisture

amount in the adhesive, predicted in the previous step.
Graded properties are attributed to the adhesive, as the moisture concentration is
usually not constant along the entire overlap. Usually the moisture uptake of the
adhesive is determined using unstressed bulk specimens. However, some studies state
(Liljedahl et al, 2005) that the diffusion of water into adhesives is affected by the
stress state of the adhesive. The sequentially coupled analysis does not consider the
stress enhanced diffusion. To overcome this setback, fully coupled models (Han et al,
2014a) have been developed. Using these models, the stress state of the adhesive is
influenced by the water uptake, which will in turn be influenced by the stress state
of the adhesive. In practice, this means that real adhesive joints, which are usually
stressed during its work life, will absorb more water and their properties will be more
degraded. In order to model the degradation of stressed adhesive joints subjected to
moisture environments and to obtain their residual strength, Han et al (2014a) used
two steps:
Step 1: Modelling the long-term aging process in the adhesive joint under com-

bined thermal-hygro-mechanical service loading conditions with a fully coupled
methodology, an analogy between moisture diffusion and conduction of heat was
made and thermal-displacement-coupled elements were used in the adhesive layer.
The von Mises stress was used to characterize the stress dependence of the moisture
uptake. In this step, a constant creep load was applied to the adhesive joint. The
moisture uptake and equivalent creep strain were defined as field variable and used
in step 2.

Step 2: Simulation of the quasi-static tensile loading process in adhesive joints
using cohesive zone models that had been previously aged (in step 1). The
properties of the adhesive were set to be a function of the field variables defined
in step 1. When an adhesive is aged under a moist environment, swelling occurs
due to the absorbed bond water. However, it has been shown by several authors
(Sugiman et al, 2013b; Reedy and Guess, 1996) that in an adhesive joint, no
significant residual stresses arise due to relaxation of the adhesive and the strength
of the joint remains almost unchanged.

Viana et al (2017c) present a practical example of the modelling of the water uptake
process and its use for predicting the time necessary for achieving saturation. In
this work, the water uptake in the adhesive joint was modelled using FE analysis.
In the studied case, the bondline is very long, and considering that diffusion only
occurs in the width direction is enough to predict the water absorption of the adhesive
joint (Hua et al, 2006). The adhesive joints reached their maximum moisture uptake
sooner than expected if only sorption in the bulk adhesive was considered, taking
into account the adhesive diffusion properties determined in a previous study (Viana
et al, 2017a).This is thought to be due to interfacial diffusion of water. In order to
model this phenomenon, two types of models are usually considered:
1. A one dimensional model, in which the overall water uptake of the joint was

modelled. The diffusion along the width of the joint was modelled using unidi-
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mensional beam elements. The diffusion coefficient attributed to these elements
were fitted so that the numerical prediction would match the moisture uptake that
was calculated, considering the experimentally measured toughness. This way it
was possible to compute the overall diffusion coefficient ( ) of the joint 
through an inverse method;

2. A two-dimensional model, in which the water uptake of the bulk adhesive and
the water uptake in the adhesive-adherend interface were modelled separately. In
this model, the increase in the diffusion speed is attributed to capillary diffusion
happening at the interface between the adhesive and the adherends. In order to
model this phenomenon, two layers were considered (as shown in Fig. 10.8)

One layer of adhesive, whose diffusion properties are shown, as an example, in Table
10.1. Depending on the ageing environment, these adhesives may present Fickian or
dual Fickian behaviour. For this reason, two diffusion coefficients and two equilibrium
moisture uptakes are presented.

A very thin layer that represents the interface. The diffusion coefficient of this
layer was fitted so that the water uptake of the adhesive would match the water uptake
that was calculated from the experimentally measured toughness.

This way it is possible to compute the diffusion coefficient of the interface
(Dinterface) through an inverse method. As the coefficient of diffusion was set to be
higher at the interface, diffusion of water occurs preferentially in this region, which is
then responsible for bringing moisture deeper into the adhesive layer. This moisture

Fig. 10.8 Geometry of the model used to predict interfacial water uptake

Table 10.1 Moisture diffusion parameters of an adhesive

Ageing Environment D1 (m2/s) mwt1 D1 (m2/s) mwt2
XNR Distilled Water 6.0E-13 0.0095 8.0E-14 0.0023

6852-1 Salt Water 6.0E-13 0.0080 8.0E-14 0.0006

Daverage
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is quickly absorbed by the adhesive. Fig. 10.9 shows an example of the computed
moisture uptake of XNR 6852-1 adhesive after 24 hours of immersion.

The phenomenon of diffusion shares mathematics with the phenomenon of heat
conduction and it is possible to model the moisture uptake of the adhesive simply as a
heat transfer problem. The equivalent parameters to permeability coefficient, diffusion
coefficient and solubility coefficient are thermal conductivity, thermal diffusivity
and heat capacity respectively. In both the one-dimensional model and the two-
dimensional model, the heat transfer elements available at the Abaqus library DC1D2
and DC2D4 for the 1D and 2D analyses, respectively, were used. Due to the symmetry
of the problem, in order to reduce the computation effort and to increase the speed
of the analysis only one quarter of the section of the specimens must be modelled.
Considering the geometry shown Fig. 10.8, across line segments [AB], [BC] and
[CD], no mass transfer occurs. In the line segment [AD] equilibrium moisture uptake
is attained instantly because it is in contact with the ageing environment. Using this
methodology, both the average diffusion coefficient and the diffusion coefficient of
the interface can be determined. They are shown in Table 10.2.

The comparison between the experimental diffusion and the numerical predictions
for one of the cases under study is shown in Fig. 10.10. Although there is some
dispersion in the results, which is expected given the method used, the numerical
prediction fits the experimental results well.

Similarly to what was presented for the strain rate dependence of adhesives, it
also possible to formulate a CZM element, which takes into account the moisture
induced change in adhesive properties. A cohesive element for this purpose can be
formulate based on the element proposed by Camanho et al (2003). The element
is a three-dimensional, eight node, zero thickness element that can simulate pure
and mixed mode decohesion. This element utilises a triangular cohesive zone law
to model decohesion between two substrates. The element used for this purpose is
shown schematically in Fig. 10.11.

Fig. 10.9 Numerical prediction of the moisture profile of XNR 6852-1 after 24 hours of ageing.
Upper bar represents one quarter of the adhesive layer while the lower bar represents a colour
coded scale of the predicted moisture uptake

Table 10.2 Moisture diffusion parameters of the joints bonded the adhesive studied

Daverage (m2/s Dinterface (m2/s
Ageing Environment

Obtained with 1D model Obtained with 2D model
Destilled Water 6.0E-13 8.0E-14

XNR 6852-1
Salt Water 6.0E-13 8.0E-14
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Fig. 10.10 Example of experimental data and numerical prediction for one of the cases under study
(XNR 6852-1 in distilled water)

A high initial stiffness (K) is used to hold the top and bottom surfaces of decohesion
element together in the linear elastic range until the yield stress is reached. After
this, softening starts and the load decreases linearly until zero. The toughness of the
adhesive is given by the area of the triangle. Modifications were made to this element
to make it take into consideration the environmental temperature and absorbed
moisture by the adhesive. The element reads the moisture field of the adhesive layer
and attributes the yield stress and toughness of the adhesive according to the read
moisture and environmental temperature. The moisture and temperature dependent

Fig. 10.11 Pure mode cohe-
sive law used in the element
proposed in this study
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cohesive properties of the adhesives studied were determined in previous studies
(Viana et al, 2017a,b). Empirical formulas were used to fit the toughness and yield
stress of the adhesive as a function of temperature and moisture. Based on these
previous studies and as an example, the properties of the XNR6852 adhesive can be
approximated using the following formulas:

Tg = 117.4 − 8.23(M)4 (10.2)

σy = −15.4 − 0.75(T − Tg) (10.3)

Gc = 8.46 − 2.27 × 10−4(T − Tg)2 (10.4)

In which σy is the yield stress of the adhesive, T is the environmental temperature,
Tg is the glass transition temperature, Gc is the fracture toughness and M is the
moisture percentage absorbed by the adhesive. Figure 10.10 shows the variation of
the properties with Tg and the comparison with experimental values. The variation
of the adhesives’ Tg and mechanical properties are graphically represented in Figs.
10.12 and 10.13, respectively.

As Fig. 10.12 shows, the evolution of the Tg of XNR6852 with moisture concen-
tration is not linear. In this study, a polynomial function was used to approximate the
Tg of this adhesive as a function of its moisture absorption. This function matches the
experimental values almost perfectly.

The properties of the adhesive were assumed to be dependent on the difference
between the test temperature and Tg. Moisture absorbed by the adhesive will have the
effect of decreasing the adhesive’s Tg and indirectly affecting the adhesive’s properties.
This is in line with other studies (Jurf and Vinson, 1985). In this study, the evolution
of the yield stress of both adhesives was considered to be linear, while the evolution
of the fracture toughness was modelled with a fourth-degree polynomial equation. It
is important to notice that the values obtained for the fracture toughness correspond
only to cohesive fracture of the adhesive.

Fig. 10.12 Variation of the Tg with moisture absorbed by the adhesive
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Fig. 10.13 Variation of the yield stress and mode I fracture toughness of the XNR6852 adhesive
withT −Tg: column a: Variation of the strain rate, column b: Variation of mode I fracture toughness

The geometry of the specimen was discretised using the commercial FE software
Abaqus. The substrates were modelled using C3D8 full integration elements, available
in Abaqus library, to avoid hourglass effects. The bondline has two layers of elastic
elements, also discretised using C3D8 elements. Between these two layers of elastic
adhesive, the developed cohesive element was placed. The 4 mm wide bondline was
modelled with a refined mesh of 20 elements. The rest of the specimen received a
coarser mesh. Figure 10.14 shows the mesh used in this study.

Due to the symmetry of the specimen, in order to decrease the computational effort,
only half of the specimen was modelled. The corresponding boundary conditions are
shown in Fig. 10.15:

1. Every displacement in the lower substrate was set to zero;
2. A displacement of 0.5 mm was applied to the loading area of the upper substrate;
3. Displacements in the y and x directions of the middle plane were set to zero.

Fig. 10.14 Mesh of the
complex joint geometry used
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Fig. 10.15 Boundary condi-
tion applied to the FE model

The numerical prediction of the mechanical behaviour of the tested adhesive joints
can then be made in two stages:

1. Prediction of the moisture gradient across the width of the adhesive taking into
account the properties of each adhesive, described above.

2. Taking into account the moisture of each element, the moisture and temperature
dependent properties were attributed to each element. This resulted into each
element being assigned a distinct set of properties corresponding to a bondline
with graded properties.

Overall, the published results and the novel techniques available in the literature
demonstrate that it is indeed possible to model the loss in adhesive joint performance
induced by the ingress of moisture in the adhesive. The necessary scientific background
is established, enabling the creation of more powerful model formulations that are
able to replicate experimentally determined behaviour. The main obstacle to the
use of these techniques is, however, the time-consuming process of determining the
parameters related to the water ingress in adhesives.

10.5 Modelling of Adhesives and Adhesive Joints Under Cyclic
Loads

In practice, adhesive joints typically experience a multiaxial state of stress during their
service life. This is typically coupled with cycling loading, a very common loading
condition which sometimes result in a catastrophic failure of the structures. The
mechanical behaviour of bonded structures subjected to these multiaxial, cyclic stress
states is quite challenging to model and the analysis of the problem is more complex
if the adhesive is used for bonding substrates with a configuration that leads mixed
mode that is not constant along the bondline. However, despite these difficulties, the
industrial applications of adhesive joints are increasing because of their significant
advantages and precise numerical simulation methods are being requested by the
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industrial users of adhesive bonding. The goal of this section is to generally explain
the procedure for numerically simulate the behaviour of adhesive joints subjected
to cyclic loadings. A short survey on some already published methods on fatigue
simulation of adhesive joints is also presented.

The total fatigue life of the joints can be divided into two different stages including
the fatigue crack initiation and the fatigue crack propagation lives. For adhesive joints,
especially when the bondline is very thin, is not easy to separate the initiation and
propagation steps. The former corresponds to the life where the fracture energy is less
than the threshold value. As soon as the accumulated energy reaches the threshold
energy, the crack start to initiate and propagate where the fatigue crack propagation
life starts. Depending on the material properties and the loading conditions, the total
life may be governed by the crack initiation life or the crack propagation part. When
the life is mainly spent before the crack initiation, the total life approaches such as
strain based, stress based or a combination of stress and strain should be employed
for fatigue life analysis of adhesive bonding. Using this approach, a good estimation
of fatigue life can usually be obtained. In this condition, usually performing a simple
linear elastic finite element analysis is sufficient to estimate the fatigue life. However,
depending on the fatigue model, extra material (or geometry) constants maybe needed
which should be obtained experimentally. Therefore, the main concern with these
methods is the way that these parameters should be numerically measured. Critical
plan and critical distance approaches are the two recent methods which are considered
for the total fatigue life estimation of the materials.

However, when the crack propagation is an important part of the life or even when
the damage tolerance is the concept considered for designing the joint, the fatigue
crack propagation part should be analysed. Although stress or strain based approaches
can be used for fatigue crack growth simulation (Ishii et al, 1999; Poursartip and
Chinatambi, 1989), the most commonly used method for fatigue crack propagation
analysis is the Paris law relation. Recently, several studies (Masaki et al, 1994;
Alderliesten, 2016; Allegri et al, 2011; Andersons et al, 2004) have dealt with the
numerical analysis of adhesive joints using different Paris law relations. By plotting
the variation of crack length for each cycle as a function of the fracture energy in a
log-log scale diagram a line with a constant slope will be appeared which corresponds
to the stable fatigue crack propagation part of the test (see Fig. 10.16).

The Paris law is a fracture mechanics based approach, which links the strain
energy release rate (or the stress intensity factor) to the fatigue crack growth (FCG)
rate. Based on the Paris law curve shown in Fig. 10.16, the total life of the joints
is divided to three regions including the initiation life, the stable crack propagation
stage and the unstable fatigue crack propagation part. The slope of the line (m) for the
second region, gives the exponent of the Paris law and determines the fatigue crack
growth rate of the tested material. Several studies (Allegri et al, 2011; Andersons
et al, 2004; Atodaria et al, 1997; Ramkumar and Whitcomb, 1985) have dealt with
the effect of different Paris law functions on the slope of the Paris law curve. However,
it should be noted that by changing the Paris law parameters, the slope of the curves
may change as well. Using the Paris law values, it would be possible to simulate
the fatigue crack propagation of adhesive joints. However, as the m is a function of
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Fig. 10.16 Schematic view of
the Paris law curve

loading conditions and of the geometries of the joint, to simulate the FCG behaviour,
the m should be first obtained experimentally for a variety of loading conditions and
geometries. To solve this issue, several authors (Masaki et al, 1994; Allegri et al,
2011; Andersons et al, 2004; Atodaria et al, 1997; Ramkumar and Whitcomb, 1985)
have modified the Paris law function. The best relation is the one which could be
able to collapse different Paris law curves into one. In this condition, by considering

Several researchers (Muñoz et al, 2006; Monteiro et al, 2019; Costa et al, 2018)
have employed the Paris law relations to numerically analyse the fatigue behaviour
of adhesive joints. They have considered CZM for FE analysis of adhesive joints
subjected to cyclic loadings. The application of cohesive elements for fatigue life
simulation of the adhesive materials is explained in the following section. The CZM
technique can be used for fatigue numerical simulation of adhesive joints as well
as quasi static analysis. In parallel with the static conditions described previously
in this chapter, for a numerical analysis of fatigue using CZM, a damage initiation
method and a damage evolution model should be defined first. In addition, a mixed
mode criterion should be also employed to combine the pure mode I and pure mode
II cohesive properties of the element based on the mode ratio.

Fatigue failure is a cumulative damage mechanism. Consequently, the mechanical
properties of the adhesive degrade cycle by cycle until a specific number of cycles
is reached and failure takes place. Accordingly, to simulate the fatigue response
of adhesive joints, a degradation method should be also considered. A recently
developed degradation approach is explained in the following section.

Usually the failure models already included in the commercial FE software cannot
perform such a complex analysis for adhesive joints. To solve this issue writing a
subroutine is unavoidable. Using Abaqus, there are different approaches to perform
numerical fatigue life analysis using different types of subroutines. In this section the
more advanced routines called user element (UEL) and user material (UMAT) will
be introduced.

Different degradation approaches have been proposed by authors. Khoramishad
et al (2010) proposed a fatigue damage criterion based on the strain values. They

the experimental results for a specific configuration, the fatigue crack growth can
be simulated for joints with different loading conditions.
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used CZM to simulate the fatigue response of adhesive joints.Muñoz et al (2006) also
considered a damage mechanics based approach for degradation of the properties of
the cohesive elements. A Paris like model is also proposed by some authors (Moroni
and Pirondi, 2011) for degradation of cohesive properties of the cohesive elements
due to the cyclic loadings. In this section one of the most recent models developed by
Costa et al (2018) is introduced

y(N) = y0

(
1 −

N
Nf

)k
(10.5)

In Eq. (10.5) y gives the value of the cohesive parameter (e.g. fracture energy)
when the element has experienced N number of cycles. y0 is the initial value of the
corresponded cohesive parameter and the exponent k is a fitting parameter which
should be obtained experimentally. Nf is the total fatigue life of the joint which can
be estimated using Eq. (10.6)

Nf =
Δa

(da/dN)a
(10.6)

Costa et al (2018) found that a higher degradation rate leads to an increase in the m
and result in a lower threshold energy and of the intercept (C). Naturally, the CZM
parameters were found to decrease faster for higher values of k. The total number
of cycles at failure (Nf ) is a function of the total length of the bonded area and of
the average FCG rate. Based on the results presented by Costa et al (2018) using
Eq. (10.6) a good estimation of the total life of the joints can be obtained. However,
more experimental data, especially at lower load levels, is required to validate this
approach for total fatigue life estimation of adhesive joints.

Figure 10.17 shows a schematic triangular shaped CZM where degradation has
been applied on the cohesive properties of the element. Damage initiates when the
separation is more than δ0 and is completed when the separation reaches δ f .
The area below the triangular shape is defined by Gc. By replacing y in Eq. (10.5)
by fracture energy or traction, the degradation of fracture energy and traction as a
function of the number of cycles can be obtained. Regardless of the degradation
approach, the remaining procedure is similar for numerical simulation of adhesive
joints. The next section presents the constitutive equations of cohesive elements which
can be employed for finite element analysis of joints subjected to cyclic loadings.

Fig. 10.17 The effect of data
degradation on the triangular
shape of the CZM
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Different CZM shapes can be considered for numerical analysis of the fatigue
behaviour of adhesive materials. The bilinear or triangular shape is the most commonly
used model. The constitutive equations of the cohesive elements are as follows:

σ =

⎡⎢⎢⎢⎢⎣
σI
σII
σIII

⎤⎥⎥⎥⎥⎦ = (1 − d)K
⎡⎢⎢⎢⎢⎣
δI
δII
δIII

⎤⎥⎥⎥⎥⎦ − dK
⎡⎢⎢⎢⎢⎣
< −δI >

0
0

⎤⎥⎥⎥⎥⎦ (10.7)

It should be noted that the compressive normal load does not introduce any damage
for the cohesive elements. K in Eq. (10.7) is the initial stiffness of the cohesive
elements and d is the damage value, which is a function of the shape of the CZM.
Based on Eq. (10.7) traction (stress) at each load increment and for each element can
be calculated by knowing the values of the initial stiffness, the amount of damage and
the values of the current separation (strain). Subroutines use the constitutive laws of
cohesive elements for numerical simulation of adhesive joints. Different subroutines
can be employed for fatigue life simulation of adhesive joints. User element (UEL)
and user material (UMAT) are the two advanced subroutines which have been already
employed for fatigue analysis of adhesive materials.

UEL uses the concepts of FE mechanics to calculate the displacement of the
cohesive elements. To achieve this, the stiffness matrix of the element should be
defined first. Equation (10.8) gives the general relation used to estimate the behaviour
of the cohesive elements.

[K] × {d} = { f }, (10.8)

where [K], {d} and { f } are the stiffness matrix, the displacement vector which is
obtained by FE mechanics and the vector of the external forces, respectively. The
stiffness matrix and the vector of the external forces for the cohesive elements can be
calculated using the following matrix formulations:

[K] = w[B]T [Td][B], { f } = w[B]T {T}, (10.9)

where w and [B] are the element width and the matrix of the global displacement-
separation relation. {T} and [Td] are also vector and matrix, respectively and include
the traction-separation laws. Based on the behaviour of the material, the shape
of the traction-separation law will change and consequently will lead to different
formulations for the {T} and [Td].

For mode I loadings in the local coordinate system {T} and [Td] should be defined
as:

{T} =
{

0
t(d)

}
, [Td] =

[
0 0
0 t ′(d)

]
(10.10)

where t(d) corresponds to the equation that define the triangular shape CZM. d0 and
df correspond to the displacement where the damage initiate and the final failure of
the element. t ′(d) is the derivative of t(d). Keff is also the effective initial stiffness. By
applying a minor change, similar equations with a minor change can be also applied
for pure mode II loading conditions. Equation (10.11) shows the relations which
should be employed for pure mode II analysis
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{T} =
{

t(d)
0

}
, [Td] =

[
t ′(d) 0

0 0

]
(10.11)

The basics of the FE mechanics, shape functions, the shape of the CZM and the cycle
by cycle degradation of the cohesive properties of the element should be defined
in UEL implemented in Abaqus. Figure 10.18 shows a schematic of the mode II
loading conditions and the cohesive zone element in a global (x, y) and a local (ξ, η)
coordinate.

4-node, 6-node or even 8-node element can be employed in this analysis. For a
4-node element, 4 shape functions should be defined. Assuming that the height of
the cohesive element is null (ely = 0 mm, see Fig. 10.18), subsequently the shape
functions of node 1,4 and 2,3 should be only defined. At a specific ξ coordinate, the
same functions apply to both nodes:

N1,4 =
1
2
(1 − ξ), N2,3 =

1
2
(1 + ξ) (10.12)

From Eq. (10.12) the matrix of the shape [N] functions can be determined as follows:

[N] =
[

N14 N23 N23 N14
N14 N23 N23 N14

]
(10.13)

The strain displacement is represented by matrix [B]:

[B] = [R][N], (10.14)

where matrix [R] is the transformations matrix from global to local coordinates,
defined as:

[R] =
[

cosα sinα
− sinα cosα

]
(10.15)

α is the angle between the coordinate systems (see Fig. 10.18).
Two different zones (zones 1 and 2 shown in Fig. 10.19) can be considered for

determining the values of ti(d), t ′i (d) and Gi . t1(d), t ′1(d) are defined as follows:

Fig. 10.18 Schematic of the ENF specimen and the cohesive zone element in global (x, y) and
local (ξ, η)
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t1(d) =
tmd
d0
, t ′1(d) =

tm
d0
, t2(d) = tm

(
1 −

d − d0
df − d0

)
, t ′2(d) =

−tm
df − d0

(10.16)

where the exponents 1 and 2 denote the zone 1 and zone 2, respectively. By knowing
the value of fracture energy, the value of df can be easily obtained. Using the above
procedure and by employing a data degradation approach, the values of fracture
energy and separation and subsequently the damage values can be calculated as a
function of number of cycles. More details about the procedure can be found in the
literature (Monteiro et al, 2019; Costa et al, 2018).

UMAT is another advanced subroutine which is considered for fatigue failure analy-
sis of adhesive joints. To employ UMAT, in addition to the data degradation approach,
a mixed mode criterion should be also employed. Power law and Benzeggagh-Kenane
(BK) are the two widely used criteria for mixed mode loading conditions. Equation
(10.17) shows the BK relation, respectively,

Gc = GIc + (Gshear c − GIc)
(

Gshear
GT

)λ
, (10.17)

where in the BK approach, Gshear = GII + GIII and GT = GI + Gshear. The energy
release rate is calculated at each integration point for a given increment using the
reduction factor given in Eq. (10.5). The conditions for damage onset and final failure
can be expressed in terms of the displacement as shown in Eq. (10.18) repectively,

d =
δf(δeq − δ0)
δeq(δf − δ0)

, (10.18)

where:

δeq =
√
δ2I + δ

2
shear, δshear =

√
δ2II + δ

2
III,

δ0
2
= δ2I + δ

2
II + δ

2
III = δ

0
I

2
+

[
δ0shear

2 − δ0I
2]
ωλ,

Fig. 10.19 Different zones in
a triangular CZM shape
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δf =
δ0I δ

f
I + (δ

0
shearδ

f
shear − δ

0
I δ

f
I )ω

λ

δ0
,

ω =
Gshear

GT
=

β2

1 + 2β2 − 2β
, β =

δshear
δshear+ < δI >

where δ0I and δ0shear are the damage initiation conditions for normal and shear directions,
respectively, and δfI and δfshear are displacements at final failure. ω represents the
ratio of Gshear to GT which is a function of the mode ratio. This process should be
followed for each integration point of each element and for all the elements at each
time increment. Whenever the damage (d) reaches 1 or when the fracture energy
or traction is zero the point is fully failed. By this approach the size of the damage
zone increase cycle by cycle. Using the second approach (UMAT) a DCB joint
subjected to cyclic loading was analysed. Table 10.3 gives the material properties of
the adhesive and the substrates. The dimensions of the analysed joint are shown in

Table 10.3 Mechanical properties of the adhesive and substrates (Monteiro et al, 2019)

Properties Substrate Adhesive
Maximum tensile strength (MPa) - 31

Maximum tensile strain (%) - 10.4
Young’s modulus (MPa) 210000 1159

Poisson’s ratio (ν) 0.3 -

Fig. 10.20, while Fig. 10.21 shows a typical damage evolution in adhesive layer for a
joint subjected to mixed mode cyclic loading. The results are obtained based on the
second approach (UMAT).
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Fig. 10.20 Dimensions of the analysed DCB (mm)

Fig. 10.21 Fatigue life analysis of a DCB joint using UMAT
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Chapter 11
A Short Review of Electromagnetic Force Models
for Matter - Theory and Experimental Evidence

Wilhelm Rickert and Wolfgang H. Müller

Abstract From Maxwell’s equations balance laws for the electromagnetic linear
momentum, angular momentum, and energy can be found after recasting and using
several identities of vector calculus. Therefore, the obtained equations are not “new
results” but rather identities having the form of a balance law. However, there is some
degree of freedom, (a) during construction of a particular identity and (b) for the choice
of the to-be-balanced quantity, the non-convective flux, and the production term. In
short, one is insecure which of the various forms is correct under which circumstances.
This conundrum is referred to as the Abraham-Minkowski controversy, who first
proposed different expressions for the electromagnetic linear momentum. The proper
choice of electromagnetic force and torque expressions is of particular importance in
matter where the mechanical and electromagnetic fields couple. The question arises
as to whether a comparison between the predicted deformation behavior and the
observed one can help to decide which electromagnetic force model is suitable for a
material of interest. In this paper we shall briefly review the controversy and suggest
new approaches for its solution on the continuum level.

Keywords: Electromagnetic force models · Magnetostriction · Electrostriction ·
Total forces and torques

11.1 Compilation of Relevant Force Models

Our starting point are the local balances of linear momentum for ponderable matter
in regular points,
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∂

∂t
(ρv) + ∇ · (ρv ⊗ v − σ) = ρ f + f EM , (11.1)

and at a singular interface I with the normal n showing no intrinsic properties,

n · [[σ + ρ(w − v) ⊗ v]] = − f EM
I , (11.2)

where double brackets denote the jump across the interface. We denote by ρ the mass
density, by v the particle velocity, by w the mapping velocity, by f the gravitational
body force, and by σ the stress tensor. Unusual symbols worthy of a more detailed
discussion are the volumetric electromagnetic force, f EM, and its counterpart on a
singular interface, f EM

I . For these various expressions can be found in the literature,
at least after some algebraic effort, and we will cite the pertinent references in what
follows.

Probably the best known force model is the one attributed to Lorentz. We write:

f L = qE + J × B , f L
I = qI 〈E〉 + J I × 〈B〉 . (11.3)

Pointed brackets refer to arithmetic averages of the right and left limit field values. q
is the total charge, J is the total current, E and B are the electric and magnetic field
vectors, respectively. The index I refers to the corresponding interface characteristics.
All quantities are explained in detail for example in Müller (2014, Chapter 13). The
correctness of these expressions is demonstrated indirectly in Müller (1985, Section
9.5) by construction of the standard Maxwell stress tensor and Poynting vector
via Maxwell’s equations. A more explicit proof is presented in Reich et al (2018,
Appendix C). Suffice it to say that in the derivation and in those of the following
force models ample use is made of the Maxwell-Lorentz-Aether relations, which hold
true in an inertial system.

A second set of force models goes back to the work of Abraham (1909). Starting
from the electromagnetic momentum density presented in that work and manipulating
it similarly as the expression leading to the Lorentz force in Reich et al (2018) two
different sets of expressions will result due to the intrinsic arbitrariness in the balance
equations (see the example outlined in Reich et al, 2018, Section 2, for this issue):

f A1 = qE + J × μ0H + (∇ × B) × M + μ0D ×
∂M

∂t
,

f A1
I = qI 〈E〉 + J I × μ0〈H〉 − μ0w⊥〈D〉 × [[M]] + (n × [[B]]) × 〈M〉 ,

(11.4)

and

f A2 = qE + J × μ0H − ∇ · (M ⊗ B) + μ0D ×
∂M

∂t
,

f A2
I = qI 〈E〉 + J I × μ0〈H〉 − μ0w⊥〈D〉 × [[M]] + (11.5)

+ (n × [[B]]) × 〈M〉 − n · [〈M〉 ⊗ [[B]] + [[M]] ⊗ 〈B〉] .

We denote by H the electric current potential in matter, by M the magnetization,
D is the total charge potential, μ0 is the vacuum permeability. Note that these two
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choices are somewhat arbitrary and we could obtain even more force models from
one electromagnetic momentum density.

In the same spirit the electromagnetic momentum density shown in the work by
Minkowski (1910) leads to the following expressions:

f M1 = qE + J f × B + (∇ × M) × B − (∇ × E) × P ,

f M1
I = qI 〈E〉 + J f

I × 〈B〉 + 〈P〉 × (n × [[E]]) + (n × [[M]]) × 〈B〉 ,
(11.6)

and
f M2 = qfE + J f × B − (∇ ⊗ M) · B + (∇ ⊗ E) · P ,

f M2
I = qf

I 〈E〉 + J f
I × 〈B〉 + n(〈P〉 · [[E]] − 〈B〉 · [[M]]) .

(11.7)

J f and J f
I are the free total currents in regular and singular points, respectively, and

qf is the free charge density.
Finally, from the work of Einstein and Laub (1908) we find:

f EL = qfE + J f × μ0H + P · (∇ ⊗ E) +
∂P

∂t
× μ0H +

+ μ0M · (∇ ⊗ H) − μ0
∂M

∂t
× D ,

f EL
I = f M2

I + n[[B · M −
μ0
2
M · M]] − w⊥[[D × μ0M + P × μ0H]] ,

(11.8)

where D denotes the free charge potential.

11.2 Intermezzo

After the various force models have been presented the natural question arises as
to which of them is the correct one? The answer is that all models are correct
on the continuum scale for matter. There is not “the one” that will describe all
situations correctly. Depending on the material one will be more realistic than the
other. Experiments must decide which one this is. Various experiments come to mind.
A first idea could be to measure the total force exerted on a body made of a material
susceptible to external electromagnetic fields and to compare it with the total forces
predicted by the various models. Second, it might be useful to study the deformation
of that body. This requires us to solve a complex boundary value problem, because
then we need to couple mechanics and electrodynamics, in particular we need to
look at the stress-strain correlation. Third, besides forces it might be useful to study
torques resulting during electromagnetic force interaction.

We shall outline the corresponding procedures in what follows in several case
studies, which have been published by us before. Hence we just repeat the results,
compare and comment on them. Our first example concerns a permanent magnetic,
linear elastic sphere, resulting in magnetostriction. The second example is a silicone
oil drop in castor oil (so that the oils do not mix) subjected to an external electric field.
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Due to the different electric polarization in the two media deformation will result.
The third example is the deformation of a spherical linear-elastic electret, similarly to
magnetostriction, but with different types in poralization. And finally we shall report
on the force and torque interaction between two rigid permanent spherical magnets.

11.3 Case I: Magnetostriction of a Spherical Permanent Magnet

This problem was analyzed before in detail in Reich et al (2018, Sect. 6). We
considered the static case of a permanent magnetic sphere of radius R with uniform
magnetization, M = M0ez , which is treated as isotropically linear-elastic, with Lamé
parameters λ and μ, mechanics-wise. In order to evaluate the expressions for the
various force densities the following information for the electro-magnetic quantities
are required:

BI = 2
3 μ0M , H

I = −
1
3
M , q = qf − ∇ · P = 0 ,

J = J f +
∂P

∂t
+ ∇ × M = 0 , qI = qf

I − n · [[P]] = 0 ,

J I = J f
I − [[P]]w⊥ + n × [[M]] = n × [[M]] .

(11.9)

Hence all of the volumetric force densities of all presented models vanish and the
corresponding force densities on the interface are given by:

f L
I =

1
6
μ0M2

0 (sin
2ϑer + 4 sin ϑ cos ϑeϑ) = f (1)I ,

f A1
I =

1
6
μ0M2

0 (sin
2ϑer + 4 sin ϑ cos ϑeϑ) = f (1)I ,

f A2
I =

1
6
μ0M2

0 (1 + 3 cos2ϑ)er = f (2)I ,

f M1
I =

1
6
μ0M2

0 (sin
2ϑer + 4 sin ϑ cos ϑeϑ) = f (1)I ,

f M2
I =

1
6
μ0M2

0 (1 + 3 cos2ϑ)er = f (2)I ,

f EL
I =

1
2
μ0M2

0 cos2ϑer = f (3)I .

(11.10)

It is noteworthy that in this case all models having (the same) symmetric electromag-
netic stress measure (not shown here explicitly) yield the same surface force density.
Interestingly, the non-symmetric Abraham and Minkowski models (also not detailed
here) coincide for this magnetic problem. The Einstein-Laub model is distinct from
the others. However, it can be seen that

f EL
I = f A2

I −
1
6
μ0M2

0 er ,
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hence these models differ only by a constant radial (pressure) offset. Qualitative
representations of the surface force densities indicating the direction of deformation
are shown in Fig. 11.1. The deformation field is now determined based on Hooke’s
law, mechanical equilibrium, and traction boundary conditions containing the various
surface force densities. The method of Hiramatsu and Oka was applied for solving the
resulting Lamé-Navier equations. It allows to obtain closed-form solutions in terms
of Legendre polynomials. Sketches of the sphere deforming into different types of
spheroids is shown in Fig. 11.2. Naively speaking one would now think that a simple
measurement of the surface contour of an originally spherical object deforming
after its magnetization would suffice to identify the “most realistic” surface force
density. Unfortunately for a typical solid and reasonably high values of magnetization

(a) f (1)I (b) f (2)I (c) f (3)I

min

max

Fig. 11.1 Qualitative representations of the surface force densities. In (c), arrows are suppressed for
small force magnitudes

(a) u(1) (b) u(2) (c) u(3)

min

max

Fig. 11.2 Qualitative visualization of the surface displacements for the three electromagnetic force
results. The ratio λ/μ = 1.27 was used in order to model steel
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the displacements are still extremely small (nanometer range), which renders a
trustworthy measurement impossible. A more deformable object is required. Such a
case will be presented in the next section.

11.4 Case II: Deformation of a Spherical Droplet due to Electric
Polarization

This problem was analyzed before in detail in Reich et al (2018, Section 7). We
considered the static case of a spherical silicone oil droplet of radius R in oxidized
castor oil, placed in an homogeneous electric field E0 = E0ez . In fact there exists a
real experiment for this case (Torza et al, 1971). Linear polarization laws with the
relative dielectric constants of silicone oil εSr ≈ 2.8 and of castor oil εCr ≈ 6.3 were
assumed, taken from the reference. Also, the densities of the oils are nearly equal.
Hence, gravitational effects can be neglected.

As in the case of the magnetostriction the electro-magnetic field quantities were
computed first. We found (V is proportional to the electric potential, indices S and C
refer to the regions of the silicone drop and of the castor oil, respectively, r̃ = r

R ):

E = E0(ez − ∇̃V) , [[V]] = 0 ,
PS = ε0(εSr − 1)ES = E0ε0(εSr − 1)(ez − ∇̃VS) ,
PC = ε0(εCr − 1)EC = E0ε0(εCr − 1)(ez − ∇̃VC) ,
DS = ε0ε

S
r E

S = E0ε0ε
S
r (ez − ∇̃VS) ,

DC = ε0ε
C
r E

C = E0ε0ε
C
r (ez − ∇̃VC) ,

VS = −
εCr − εSr
2εCr + εSr

r̃ cos ϑ ,

VC = −
εCr − εSr
2εCr + εSr

r̃−2 cos ϑ .

(11.11)

Similarly to the magnetostriction problem one finds that the volumetric force density
vanishes for all the presented models. The surface densities are given by:

f (4)I = f L
I = f A1

I = f A2
I = f M1

I = −(n · [[P]])〈E〉

= −9
2
ε0E2

0
εCr − εSr

(2εCr + εSr )2
[(εCr + εSr ) cos2ϑer − 2εCr cos ϑ sin ϑeϑ] ,

f (5)I = f M2
I = f EL

I = n(〈P〉 · [[E]])

= −
9
2
ε0E2

0
εCr − εSr

(2εCr + εSr )2
(2εCr εSr − εCr − εSr ) cos2ϑer .

(11.12)

Sketches of the forces are depicted in Fig. 11.3. In order to compute the deformation
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(a) Surface force f (4)I .
min

max

(b) Surface force f (5)I .

Fig. 11.3 Qualitative representation of the computed force results for the oil drop experiment. For
visualization, the values εS

r = 2.8 and εC
r = 6.3 were chosen. Note that the external electric field

points in horizontal direction

the droplet was treated as a fluid at rest in terms of a hydrostatic pressure acting on it.
A linear relationship between the pressure and the volume change was assumed and
linked to the following (normalized) displacement ansatz on the interface

u I = û(ũr (ϑ)er + ũϑ(ϑ)eϑ) . (11.13)

The deformation results of the experiments from Torza et al (1971) are depicted
in Fig. 11.4c. For increasing electric field strength the drop deforms as an oblate
spheroid. In Fig. 11.3 the surface force predictions of the various force models are
qualitatively shown. f (4)I and f (5)I both suggest that the droplet should assume an
oblate shape. Intuitively speaking, the surface force f (4)I might result in the correct
deformation figure since the force f 5

I may cause dimples at poles, deviating from a
spheroid form. Moreover, the magnitudes of the displacements differ. The models
with the force f (4)I yields the smooth deformation figure depicted in Fig. 11.4a which
is in good agreement with the experimental results in Fig. 11.4c. The deformation
figure due to the models with the force f (5)I possesses a different curvature near the
poles. Hence, the deformed body is not an oblate spheroid. However, this form is not
observable in the experimental photographs. Therefore, it is reasonable to conclude
that the models with the force f (5)I yield unphysical results, i.e., the asymmetric
Minkowski and the Einstein-Laub models are unlikely.

11.5 Case III: Elastic Deformation of Spherical Electrets due to
Electric Polarization and Surface Charges

The analysis of this problem will be published in detail in Rickert et al (2019).
Analogously to the droplet problem we shall consider the static case of spherical
electrets. In (I), a linear dielectric in an externally applied electric field E0 is
considered. Then, a real charge electret with surface charge qf

I = Q/Asph is analyzed,
(II). From these solutions the cases of an oriented dipole electret (III) and a real
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(a) Surface
displacement u(4)

I .

min

max

(b) Surface
displacement u(5)

I .
(c) Static case
of (Torza et al,
1971, Fig. 7).

Fig. 11.4 Deformation figures of the oil droplet. (a) and (b): Predicted surface displacement using
parameters εS

r = 2.8, εC
r = 6.3, γ = 1 and λI/μI = 1. Scaling of the displacements was applied. (c):

Experimental photos from Torza et al (1971, Fig. 7). The electric field points vertically. In (c), the
electric field strength increases from the bottom to the top

charge electret with linear dielectric material behavior (IV) are readily obtained.
We wish to calculate the various electromagnetic force densities and use them for
predicting the deformation in situations (I)–(IV). As before the electromagnetic field
quantities need to be determined first. By using the following scaling factors,

qf
I

ε0
= αE ,

P0
ε0
= βE , E0 = γE ⇒ a0 =

α

εr
E , a1 =

β + (εr − 1)γ
2εr + 1

E (11.14)

it can be shown that (a0 = ã0E, a1 = ã1E):

EI = (γ − ã1)E[cos ϑ er − sin ϑ eϑ] = (γ − ã1)Eez = const.

EO =
{[

ã0r̃−2 + (2ã1r̃−3 + γ) cos ϑ
]
er +

(
ã1r̃−3 − γ

)
sin ϑ eϑ

}
E ,

PI = κε0E[cos ϑ er − sin ϑ eϑ] = κε0Eez = const., PO = 0,

qI = ε0

(
qf
I

ε0
− n ·

[[P]]
ε0

)
= ε0E[α + κ cos ϑ] ,

J I = −[[P]]w⊥ + n × [[M]] = 0 ,

(11.15)

where different scaling factors apply for the different situations:
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(I) E = E0 , α = 0 , β = 0 , γ = 1 , (εr � 1)

(II) E =
qf
I

ε0
, α = 1 , β = 0 , γ = 0 , (εr = 1)

(III) E =
P0
ε0
, α = 0 , β = 1 , γ = 0 , (εr = 1)

(IV) E =
qf
I

ε0
, α = 1 , β = 0 , γ = 0 , (εr � 1)

(11.16)

and κ = β + (γ − ã1)(εr − 1). Now the non-vanishing surface force densities result:

f (1)I := f L
I = f A1

I = f A2
I = f M1

I

= ε0E2

[ (
c(1)0 P0(x) + c(1)1 P1(x) + c(1)2 P2(x)

)
er+

+

(
d(1)

1
dP1(x)

dϑ
+ d(1)

2
dP2(x)

dϑ

)
eϑ

]
, (11.17)

f (2)I := f M2
I = f EL

I

= ε0E2
[(

c(2)0 P0(x) + c(2)1 P1(x) + c(2)2 P2(x)
)
er + d(2)

1
dP1(x)

dϑ
eϑ

]
.

Pi(x) denote Legendre polynomials and the coefficients are given by:

c(1)0 =
1
2
αã0 +

1
6 κ(ã1 + 2γ) , c(1)1 =

1
2
α(ã1 + 2γ) + 1

2 κã0 ,

d(1)
1 = α(γ − ã1) , d(1)

2 =
1
3
κ(γ − ã1) ,

c(2)0 =
1
2
αã0 +

1
2 κã1 , c(2)1 =

1
2
α(ã1 + 2γ) +

1
2
κã0 ,

c(1)2 =
1
3
κ(ã1 + 2γ) , d(2)

1 = α(γ − ã1) , c(2)2 = κã1 .

(11.18)

The various force densities are illustrated in Fig. 11.5. They may serve as first
indication for the deformation pattern. Now in complete analogy to Case I the elastic
deformation response can be calculated in closed form for (I)–(IV) as will be shown
in Rickert et al (2019). The resulting forms are shown in Fig. 11.6.

Unfortunately, as in the case of magnetostriction, the displacements are very small
making experimental investigations difficult.
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(a) f (1)I (I) (b) f (1)I (II) (c) f (1)I (III) (d) f (1)I (IV)

(e) f (2)I (I) (f) f (2)I (II) (g) f (2)I (III) (h) f (2)I (IV)

Fig. 11.5 Electret force densities predicted

11.6 Case IV: Force and Torque Interaction Between Spherical
Magnets

The details of this problem will be published in Rickert and Müller (2019). We consider
the interaction between two spherical rigid permanent magnets, homogeneously
magnetized by M (I)

0 and M (II)
0 of radii R(I) and R(II), respectively: Fig. 11.7.

As one can show the dimensionless surface force densities f̃ (EM)
I = f (EM)

I / f̂ are
given by:

f̃ L
I = sin ϑ′e′ϕ × B̃(I) +

{
1
6

M (II)
0

M (I)
0
(sin2 ϑ′e′r + 4 sin ϑ′ cos ϑ′e′ϑ)

}
,

f̃ A1
I = sin ϑ′e′ϕ × H̃(I) +

{
1
6

sin ϑ′
M (II)

0
M (I)

0
(sin ϑ′e′r + 4 cos ϑ′e′ϑ)

}
,
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(a) u(1) (I) (b) u(1) (II) (c) u(1) (III) (d) u(1) (IV)

(e) u(2) (I) (f) u(2) (II) (g) u(2) (III) (h) u(2) (IV)

Fig. 11.6 Electret surface displacement predictions

f̃ A2
I = sin ϑ′e′ϕ × H̃(I) +

{
cos ϑ′B̃(I) +

1
6

M (II)
0

M (I)
0
(1 + 3 cos2 ϑ′)e′r

}
, (11.19)

f̃ M1
I = sin ϑ′e′ϕ × B̃(I) +

{
1
6

M (II)
0

M (I)
0
(sin2 ϑ′e′r + 4 sin ϑ′ cos ϑ′e′ϑ)

}
,

f̃ M2
I = n(B̃(I) · e′z) +

{
1
6

M (II)
0

M (I)
0
(1 + 3 cos2 ϑ′)e′r

}
,

f̃ EL
I =

{
1
6

M (II)
0

M (I)
0
(1 + 3 cos2 ϑ′)e′r − n

(
1
2

M (II)
0

M (I)
0

sin2 ϑ′ +
1
6

M (II)
0

M (I)
0
[4 + 3 cos2 ϑ′]

)}
,
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Fig. 11.7 Interacting spherical
magnets

Ω0
Ω(I)

∂Ω(I)

yx

z

xM

x

∂Ω(II)Ω (II)

y
′z

′

x′
ȳ

z̄

x′ = x̄

β

α

where f̂ = μ0M (I)
0 M (II)

0 , B(I) = μ0M (I)
0 B̃(I) and H(I) = M (I)

0 H̃(I). The expressions in curly
brackets relate to the second magnet. The volumetric force densities normalized with
f̂ R−1

(II) read:
f̃ L = f̃ A1 = f̃ M1 = f̃ M2 = 0 ,
f̃ A2 = −∇̃ · (e′z ⊗ B̃(I)) , f̃ EL = e′z · (∇̃ ⊗ H̃(I)) .

(11.20)

In order to obtain the total force on the second magnet, the surface force densities are
integrated across the surface of the second magnet and the volumetric forces across
its volume. Then, the expressions in curly brackets do not contribute, as it should
be. Moreover, as it can be shown with some effort (Rickert and Müller, 2019), the
resulting forces are all equal independently of the model:

FL = FA1 = FA2 = FM1 = FM2 = FEL . (11.21)

From the experimental point of view this is bad news because a measurement of the
force would not allow us to identify the most realistic force density model. However,
the situation is different when we consider the torque that magnet (I) imposes on
magnet (II). The torque does depend on the model that is used. We find:

ML = MA1 = MM1 = f̂ R3
(II)

∫
∂Ω(II)

sin ϑ′e′ϕ(e′r · B̃(I)) dÃ ,

MA2 = − f̂ R3
(II)

∫
Ω(II)

e′r ×
[
e′z · (∇̃ ⊗ B̃(I))

]
dṼ +

+ f̂ R3
(II)

∫
∂Ω(II)

e′r ×
[
(sin ϑ′e′ϕ × H̃(I) + cos ϑ′B̃(I))

]
dÃ ,

MM2 = f̂ R3
(II)

∫
∂Ω(II)

e′r ×
[
e′r (B̃(I) · e′z)

]
dÃ = 0 ,

MEL = f̂ R3
(II)

∫
Ω(II)

e′r ×
[
e′z · (∇̃ ⊗ B̃(I))

]
dṼ .

(11.22)
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Fig. 11.8 Torques on the magnet (II) due to the magnetic field of the first one for different models
and different configurations of the two magnets

Most interestingly, the second version of the Minkowski model yields no torque in
any configuration of the two magnets. Therefore, we may conclude that this model is
unrealistic. The non-vanishing torques are depicted in Fig. 11.8. From the figure it is
clear, that the total torque on the second magnet is different for the distinct models
and hence, only by measurement the correct force model for this situation can be
found.

11.7 Conclusions and Outlook

The main objective of this paper was to draw attention to the fact that there exist
different electromagnetic force models for ponderable matter. Which one is applicable
depends on the concrete material that is subjected to electromagnetic fields. For a
decision experiments must be performed and compared with theoretical predictions
for the total force, the moment, and the deformation of the body in question. Four
examples were presented to illustrate this complex situation. It is fair to say that in this
context very few experiments have been performed and that the resulting deformations
are usually very small, which makes a decision difficult. In conclusion one may say
that until today the description of processes for bodies with a coupling between their
thermo-mechanical and electromagnetic fields is still far from a complete rational
understanding.
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Chapter 12
Extreme Yield Figures for Universal Strength
Criteria

Philipp L. Rosendahl, Vladimir A. Kolupaev, and Holm Altenbach

Abstract We propose a universal, generally applicable yield criterion that describes
a single convex surface in principal stress space encompassing extreme yield figures
as convexity limits. The novel criterion is derived phenomenologically exploiting
geometrical properties of yield surfaces in principal stress space. It is systematically
compared with known yield criteria using different forms of visualization.

Using a I1-
behavior and
restrictions,
havior. The implementation of the present criterion eliminates the necessity of
choosing a specific

The proposed criterion allows for excellent approximation of experimentat data.
It is applied to measured data of concrete and provides better accuracy than existing
criteria from literature.
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12.1 Introduction

Phenomenological criteria provide a simple way to describe the onset of yielding,
damage or brittle failure of a certain material without consideration of the microstruc-
ture. The critical state of the material is represented only by the stresses at which
the limit of a material is reached. This set of stress states is denoted as limit surface.
Consequently, a corresponding criterion is the mathematical description of all points
on this limit surface.

In order to formulate such phenomenological criteria, the equivalent stress concept
is typically used (Timoshenko, 1953). The concept suggests, that for each multi-axial
stress state represented by a stress tensor σσσ a scalar value σeq, called equivalent
stress, can be computed. This value can be compared to a uniaxial limit stress value
σT where the index T denotes tension. Uniaxial tensile properties of engineering
materials can be readily measured in experiments. Because of its simplicity and
clarity, this method has become widely accepted and found practical use. However,
selecting a specific criterion for a particular material requires certain knowledge of
the material behavior.

Classical yield criteria for isotropic materials such as the von Mises, Tresca, and
Schmidt-Ishlinski hypotheses are applicable to ductile materials and the Rankine
criterion (normal stress hypothesis) to brittle materials. They are mainly used for
didactic purposes. The denomination “hypothesis” with regard to these criteria
expresses the historical character of the concept.

Classical criteria are often too primitive to accurately represent experimental data.
Hence, generalizations of these criteria were proposed. The Mariotte-St. Venant
(strain) criterion (Filonenko-Borodich, 1960; Kolupaev, 2018), the Burzyński-Yagn
criterion (Burzyński, 1928; Yagn, 1931), the Mohr-Coulomb criterion (Mohr,
1900a,b), and the Pisarenko-Lebedev criterion (Lebedev, 1965; Pisarenko and
Lebedev, 1976) comprise one or two of the classical criteria. Owing to the lack of
experimental data they are still seen as the standard in recent applications. However,
applying new materials in critical components and design optimization procedures
requires more comprehensive criteria. Even though several sophisticated generalized
yield and strength criteria were formulated (Altenbach et al, 1995; Kolupaev, 2018;
Pisarenko and Lebedev, 1976; Yu, 2018; Życzkowski, 1981), choosing an appropriate
criterion for a particular material remains challenging because of generally incomplete
data sets and scattering of the available measured data. Trying to fit different existing
criteria is laborious and the optimal evaluation cannot be guaranteed. In order to
eliminate the need to choose a specific criterion, a universally applicable criterion is
necessary.

In the present work, we propose a universally applicable yield criterion that
describes a single convex surface. The criterion exploits geometrical properties
of yield surfaces in principal stress space. It contains extreme yield figures as the
convexity restriction. Convex criteria beyond these limitations are unavailable. The
criterion includes all well-known yield criteria like von Mises, Tresca, Schmidt-
Ishlinsky, etc. Using a I1-substitution as a function of the trace of the stress tensor
the criterion is applicable to pressure-sensitive material behavior. It incorporates
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various conditions to obtain special theories. The criterion is applied to experimental
data of concrete and provides better accuracy than existing criteria from literature.

The present work is organized as follows. Section 12.2 presents requirements
for the formulation of yield and strength criteria. Section 12.3 recalls methods to
formulate the limit surfaces. Section 12.4 derives geometrical properties which can
be used to compare different criteria, approximations, and measured data. In Sect.
12.5 the limits of convexity are discussed. Section 12.6 reviews existing criteria and
proposes a universal yield criterion. In Sect. 12.7 experimental data of concrete are
used to assess the performance of existing criteria and the novel proposition.

12.2 Requirements for Yield Criteria

Yield surfaces for pressure-insensitive isotropic materials are described by a prismatic
or cylindrical body centered around the hydrostatic axis

σI = σII = σIII, (12.1)

in principal stress space. Cross sections orthogonal to the hydrostatic axis are called
deviatoric planes or π-planes sometimes restricted to the π0-plane through the
coordinate origin. Owing to isotropy, cross sections in the π-plane must be of trigonal
symmetry (this includes rotational and hexagonal symmetry), see Fig. 12.1. Further,
we require yield surfaces to be convex. Thus, basic cross sections may be described
by a circle or regular polygons of trigonal or hexagonal symmetries: e.g., equilateral
triangles, hexagons, enneagons (nine-sided polygons), dodecagons (twelve-sided
polygons), among others. Each criterion described by a regular polygon in the π-plane
has a counterpart which is obtained by its rotation by π/n in the π-plane where n is
the number of vertices.

Criteria discussed in the present work are phenomenological. No sufficient
conditions for their formulation can be given. However, the quality of a certain
yield criterion may be assessed considering the following plausibility assumptions
(Kolupaev, 2018):

Fig. 12.1 Yield criteria in
the π-plane normalized with
respect to the equivalent stress
σeq = σT: a. Isogonal (black)
and isotoxal (blue) hexagons of
trigonal symmetry, b. Regular
hexagons of the Schmidt-
Ishlinsky (black) and Tresca
(blue) hypotheses of hexagonal
symmetry and the circle of the
von Mises hypothesis (red) of
rotational symmetry

a. b.
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• explicit solvability of the criterion with respect to the equivalent stress σeq,
• only independent and as few parameters as possible,
• a wide range of possible convex shapes in the π-plane,
• a wide range of possible convex shapes in the meridian cross section (cross section

• once continuous differentiability at the hydrostatic nodes (apices of the limit
surface),

• once continuous differentiability of the criterion in the π-plane except at the border
of the convexity limits,

• a single surface in principal stress space without any additional outer contours
and plane intersections, and

• unique assignment of the limit surface to parameters of the criterion.

These assumptions help to select user-friendly criteria with a wide range of applica-
tions. Yet, to our knowledge, criteria satisfying all of the above assumptions are not
known. Up to now, the Podgórski yield criterion (Podgórski, 1984; Podgórski, 1985),
the modified Altenbach-Zolochevsky yield criterion (Kolupaev, 2017, 2018), and
the modified Yu strength criterion (Kolupaev, 2017, 2018) meet the plausibility
assumptions in the best way possible and are recommended for application. The first
two criteria with appropriate I1-substitution and the Yu strength criterion with straight
meridian line include almost all known criteria and approximate the remaining criteria
in the best way known. Still, different criteria must be chosen to describe specific
shapes of the limit surface.

Possible shapes of yield criteria in the π-plane are limited by the requirement of
convexity. The upper and lower convexity limits may be referred to as extreme yield
figures (Bigoni and Piccolroaz, 2004; Marti, 1980; Sayir and Ziegler, 1969). The aim
of this work is to generalize the description of extreme yield figures using a universal
yield criterion which should satisfy as many plausibility assumptions as possible.

Extreme yield figures may take the shape of isogonal and isotoxal polygons of
trigonal and hexagonal symmetry. Isogonal polygons are equiangular. An isotoxal
polygon is equilateral, that is, all sides are of the same length (Koca and Koca, 2011;
Tóth, 1964). In general, isogonal and isotoxal hexagons are of trigonal symmetry
(Fig. 12.1a). The regular hexagons of the Tresca and Schmidt-Ishlinsky criteria have
an additional symmetry axis and are of hexagonal symmetry (Fig. 12.1b). Isogonal
and isotoxal dodecagons (twelve-sided polygons) are of hexagonal symmetry, too.

12.3 Formulating Yield Criteria

Yield criteria for isotropic material behavior must be invariant with respect to

of the stress tensor are the principal stresses (or principal invariants) σI, σII,
and σIII (Altenbach et al, 1995; Życzkowski, 1981). The following order is assumed

containing the hydrostatic axis),

arbitrary rotation of the coordinate system (Życzkowski, 1981). Therefore, criteria
are formulated using invariants of the symmetric second-rank stress tensor. Eigen-
values

(Burzyński, 1928)
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σI ≥ σII ≥ σIII. (12.2)

Functions of invariants are also invariants (Appendix A.1). Thus we may also
use the trace I1 of the stress tensor and the invariants I ′2, I ′3 of the stress deviator
(12.62) – (12.64) or cylindrical invariants (Novozhilov’s invariants) ξ, ρ, and θ
(12.65) – (12.67) in order to formulate criteria. Yield and strength criteria describe
limit surfaces in stress space which can be formulated for instance according to:

Φ
(
σI, σII, σIII, σeq

)
= 0 or Φ

(
I1, I ′2, I ′3, σeq

)
= 0 or Φ

(
ξ, ρ, θ, σeq

)
= 0,
(12.3)

where ξ (12.65) is the scaled invariant I1 and describes the coordinate of the loading
on the hydrostatic axis, ρ (12.66) is the scaled root of the second invariant I ′2 and
describes the radius in the π-plane and θ is the corresponding stress angle in the
π-plane. ρ may be replaced by the stress triaxiality (inclination) factor ψ (12.69)
which yields a description in spherical invariants. The stress angle θ is sometimes
replaced by ϕ (12.68). All these formulations are equivalent. One or the other may be
preferred depending on the modeling concept or desired application.

In the case of pressure-insensitive material behavior, the first invariant I1 does not
influence failure. For this behaviour, the formulations (12.3) can be reduced to

Φ
(
I ′2, I ′3, σeq

)
= 0 or Φ

(
ρ, θ, σeq

)
= 0. (12.4)

Formulations in terms of I ′2 and I ′3 in polynomial form cannot be recommended for
application because of additional outer contours around the physically meaningful
surface or plane intersections (Kolupaev, 2018).

In order to satisfy the first plausibility assumption, the equivalent stress σeq must
be split from the yield function:

σeq = Φ (ρ, θ) or σeq = Φ (ρ, ϕ) . (12.5)

Such formulations are advantageous for iterative computations, e.g., in FEM codes.
We may further postulate a multiplicative split of yield criteria into a function of
radius and a function of stress angle according to

σeq = Ψ (ρ) Ω (θ) or σeq = Ψ (ρ) Ω (ϕ) . (12.6)

This split is motivated by its practical use. In order to highlight the deviations of the
geometry of the criterion in the π-plane from the circle of the von Mises hypothesis
(Fig. 12.1b)

σeq =
√

3I ′2 with Ω (θ) = 1 or Ω (ϕ) = 1, (12.7)

the function of Ψ (ρ) is often replaced by
√

3I ′2 (Kolupaev, 2017; Kolupaev et al,
2018) which yields

σeq =
√

3I ′2Ω (θ) or σeq =
√

3I ′2Ω (ϕ) . (12.8)



264 Philipp L. Rosendahl, Vladimir A. Kolupaev, and Holm Altenbach

Normalizing criteria with respect to the uniaxial tensile limit loading, e.g., the tensile
strength

σeq = RT, (12.9)

where the index T denotes tension, yields

σeq =
√

3I ′2
Ω (θ)
Ω (0)

or σeq =
√

3I ′2
Ω (ϕ)
Ω (−π/6)

. (12.10)

Reintroducing the first invariant of the stress tensor I1 in (12.4) using the linear
substitution (Kolupaev, 2018), see also Botkin (1940a,b); Drucker and Prager (1952);
Mirolyubov (1953); Sandel (1919); Sayir (1970)

σeq →
σeq − γ1 I1

1 − γ1
with γ1 ∈ [0, 1[, (12.11)

yields a pressure-sensitive generalization of, e.g., the criteria (12.10):

σeq − γ1 I1

1 − γ1
=
√

3I ′2
Ω (θ)
Ω (0)

or
σeq − γ1 I1

1 − γ1
=
√

3I ′2
Ω (ϕ)
Ω (−π/6)

, (12.12)

that does not violate the first plausibility assumption.
The visualization of the criteria (12.12) in the Burzyński-plane (I1,

√
3I ′2) is then

obvious and a direct comparison with the von Mises hypothesis (12.7) is possible.
The reciprocal value of the parameter γ1 describes the intersection of the limit
surface with the I1-axis. This parameter does not interact with other parameters of the
criterion and thus does not influence the geometry of cross sections in the π-plane.

It is to note that although the linear substitution, Eq. (12.11) provides good results
in several cases, it produces an additional conical surface in the region

I1

RT ≥
1
γ1
,

without physical meaning and the apex at hydrostatic tensile loading is C0-continu-
ously differentiable, cf. the fifth plausibility assumption. Further I1-substitutions for
a range of possible convex shapes in the meridian cross section (parabola, hyperbola,
ellipsis) are given in Kolupaev (2018).

12.4 Comparing Different Yield Criteria

For analyses of measured data and comparison of approximations for various materials,
measured data will be normalized by the appropriate limit tensile loading, e.g., by RT

(12.9) ( σI

RT ,
σII

RT ,
σIII

RT

)
, (12.13)
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so that material properties get geometric meaning and different surfaces Φ can be
compared in the same diagrams.

Let us distinguish pressure-insensitive yield criteria, which are comprehensively
described in the π-plane and pressure-sensitive strength criteria. In the π-plane of the
yield criterion (Fig. 12.2) certain types of loading with the stress angle θ share the
same radius ρ (12.66) and collapse onto one point. Introducing the corresponding
nomenclature these are:

• θ = 0: T (uniaxial tension), CC (equibiaxial compression),
• θ = π/6: K (torsion), Tt (biaxial tension with I ′3 = 0), and Cc (biaxial compression

with I ′3 = 0),
• θ = π/3: TT (equibiaxial biaxial tension), C (uniaxial compression).

Radii ρ at these stress angles θ are characteristic properties of the limit surface.
Because of their I1-dependence pressure-sensitive strength criteria have additional
characteristic values which will later be related to the above. In order to visualize
pressure-sensitive criteria certain cross sections I1 = const.
Burzyński-plane are needed.

12.4.1 Geometry of Limit Surfaces in the π-plane

Cross sections of pressure-insensitive criteria Eq. (12.4) may be described in polar
coordinates as functions ρ(θ) where ρ and θ correspond to radius (12.66) and stress
angle (12.67) in the π-plane, respectively. Let us introduce geometrical properties as
relations of radii at the angles θ = {π/12, π/6, π/4, π/3} to the radius ρ(0) as

r15 =
ρ(π/12)
ρ(0)

, r30 =
ρ(π/6)
ρ(0)

, r45 =
ρ(π/4)
ρ(0)

, and r60 =
ρ(π/3)
ρ(0)

. (12.14)

The indices 0, 15, 30, 45, and 60 correspond to the stress angle of the loading point in
degrees. With these values (12.14) as coordinate axes, different criteria can be easily
compared in appropriate diagrams. The chosen angles θ are fractions of the angle
π/3 between the symmetry axes in the π-plane (Figs. 12.3 and 12.4). According to

Fig. 12.2 Isogonal (black)
and isotoxal (blue) hexagons
in the π-plane normalized
with respect to the equivalent
stress σeq = RT (Fig. 12.1a):
Enlarged detail with the
von Mises hypothesis (red)
and the stress states (T, CC
on the 0-meridian, K, Tt, Cc
on the π/6-meridian, and C,
TT on the π/3-meridian) for
comparison

θ =
π

3

π

6

T, CC

C, TT

K, Tt, Cc

in the π-plane and the
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ρ(0)
ρ(π/6)

ρ(π/6) ρ(π/6)

ρ(π/3)

ρ(π/3)

ρ(π/3)π

6

r30 = r60 = 1 r60 ∈ {1/2, 2} r60 = 1a. b. c.

Fig. 12.3 Basic surfaces with the same radius ρ(0) in the π-plane: a. Rotationally symmetric
von Mises criterion (12.7), b. Equilateral triangles R1 and R2, and c. Equilateral hexagons H1 and
H2. The values r30 and r60 are given for comparison

Ishlinsky-
Ivlev

π

6
π

6

π

12
π

12
von Mises

von Mises

Tresca Sokolovsky

Schmidt-
Ishlinsky

ρ(0) ρ(0)ρ(π/12) ρ(π/12)ρ(π/6) ρ(π/6)

ρ(π/3) ρ(π/3)

a. b.

Fig. 12.4 Basic surfaces of hexagonal symmetry in the π-plane: a. Equilateral hexagons H1 and H2
(Tresca and Schmidt-Ishlinsky criteria) and b. Equilateral dodecagons D1 and D2 (Sokolovsky
and Ishlinsky-Ivlev criteria) with the von Mises hypothesis (12.7). Because of hexagonal
symmetry a cut-out of the angle θ ∈ [0, π/3] is representative (Kolupaev, 2018)

Betten-Troost (Betten, 1979, 2001; Bolchoun et al, 2011; Troost and Betten, 1974),
convexity of the criterion is most critical at these angels and needs to be checked
firstly for restriction of the parameters. With

I1 = const. (12.15)

in a specific cross section the relations (12.14) can be introduced for pressure-sensitive
strength criteria, as well. Details on the calculation of the ratios r are given in Appendix
A.2.
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For the rotationally symmetric von Mises hypothesis (12.7) all radii are equal
(Fig. 12.3a) and we obtain

r15 = r30 = r45 = r60 = 1. (12.16)

For criteria of hexagonal symmetry (e.g. Tresca, Schmidt-Ishlinsky, Sokolovsky,
and Ishlinsky-Ivlev (Figs. 12.3c and 12.4)) the radii at the angels θ = 0 and π/3 are
equal ρ(0) = ρ(π/3) and because of hexagonal symmetry we obtain ρ(π/12) = ρ(π/4)
which yields

r60 = 1 and r15 = r45. (12.17)

Ratios r at additional fractions of the π/3 can be given but are not required for the
characterization of surfaces.

Using, the relations of (12.14) as coordinate axes, Figs. 12.5 and 12.6 show
convexity restrictions for criteria of trigonal symmetry in the r60 − r30 diagram and
for criteria of hexagonal symmetry (r60 = 1) in the r15 − r30 diagram, respectively.
These diagrams allow a comparison of all criteria for isotropic material behavior. In
Figs. 12.5 and 12.6 basic yield figures are labeled according to their shape: equilateral
triangles are denoted R, equilateral hexagons H, equilateral dodecagons D, equilateral
icositetragons C and the circular von Mises criterion M. Indices 1 and 2 refer to an
upward pointing tip or upward facing flat base, respectively. The yield figures M, D1,
D2, C1, and C2 coincide in the r60 − r30 diagram (Fig. 12.5) while the yield figures
M, C1, and C2 coincide in the r15 − r30 diagram (Fig. 12.6).

Haythornthwaite

Sayir

Capurso

Haythornthwaite

r30

r60
M

R1

R2

H1

H2

0.6

0.6 0.8

0.8

1.2

1.2 1.4 1.6 1.8 2

Fig. 12.5 Diagram r60 − r30 for convex criteria of trigonal symmetry compared to the von Mises
hypothesis with r30 = r60 = 1 (Kolupaev, 2018). Basic cross sections are visualized (Table 12.1).
Denotation according Kolupaev (2018): Capurso criterion (Capurso, 1967; Sayir, 1970), Sayir
criterion (Sayir, 1970; Sayir and Ziegler, 1969), and Haythornthwaite criterion
(Haythornthwaite, 1961, 1962)
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r30

r15

MAC

MAC

Tresca

Schmidt-Ishlinsky

YYC

Sokolovsky

BCC

Ishlinsky-Ivlev

M

D1

D2 H2

H1
0.90

0.90

0.95

0.95

1.05

1.05 1.10 1.15

Fig. 12.6 Diagram r30 − r15 for convex criteria of hexagonal symmetry (r60 = 1) compared to the
von Mises hypothesis with r15 = r30 = 1. Basic cross sections are visualized (Table 12.1).
Abbreviations: YYC – Yu yield criterion, BCC – bicubic criterion, and MAC – multiplicative
ansatz criterion (Kolupaev, 2018)

12.4.2 Material Properties and Basic Experiments

The relations (12.14) are not only characteristic geometrical properties of limit
surfaces in the π-plane but also describe certain material properties determined in
basic tests. Hence, these distinct properties of the yield surfaces are crucial in order to
determine suitable yield functions for a material. To emphasize this, let us introduce
the following limit loading values related to the uniaxial tensile strength RT (12.9):

rC
60 =

RC

RT and rTT
60 =

RTT

RT , (12.18)

where RC is the uniaxial compressive strength and RTT is the tensile strength under
equibiaxial loading,

rK
30 =

√
3

RK

RT , rCc
30 =

√
3

2
RCc

RT , and rTt
30 =

√
3

2
RTt

RT , (12.19)

where RK is the torsional strength and RTt and RCc are ultimate loadings of thin-walled
tube specimens with closed ends under inner (Tt) and outer pressure (Cc), respectively,
and

rCC
0 =

RCC

RT , (12.20)
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where RCC is the compressive strength under equibiaxial compression. While a
hydrostatic tensile test with σI = σII = σIII > 0 can hardly be realized (Kolupaev et al,
2014), the corresponding property for the hydrostatic tensile strength is important for
the comparison of extrapolations. We may introduce

rTTT =
RTTT

RT =
1

3 γ1
and rCCC =

RCCC

RT . (12.21)

where RTTT and RCCC are hydrostatic strengths under tension and compression,
respectively. Except for porous and granular media, hydrostatic compressive failure
does typically not occur for relevant loadings and rCCC → ∞ can be assumed.

Now, r15, r30, and r60 describe the π-plane geometry at a chosen cross section
(12.15) and rC

60, rTT
60 , rK

30, rCc
30 , rTt

30, rCC
0 , rCCC, and rTTT describe corresponding material

properties. When γ1 = 0, pressure-sensitive strength criteria generally converge to
pressure-insensitive yield criteria and the values on the same meridians (characterized
by the angle θ) coincide (Fig. 12.2):

r60 = rC
60 = rTT

60 , r30 = rK
30 = rCc

30 = rTt
30 and rCC

0 = 1. (12.22)

Hence, certain tests immediately determine specifics points of the yield surfaces.
Convex pressure-insensitive criteria with the properties (12.17) do not distinguish
between tensile and compressive behavior. Because of rotational or hexagonal
symmetry, we additionally obtain

r60 = rC
60 = rTT

60 = rCC
0 = 1. (12.23)

Classical strength criteria such as the normal stress hypothesis, von Mises, Tresca,
and Schmidt-Ishlinsky hypotheses, and also the criteria of Mohr-Coulomb and
Pisarenko-Lebedev describe material behavior with the properties RT = RTT and
RC = RCC which yields

rTT
60 = 1 and rC

60 = rCC
0 , (12.24)

which can be used for the comparison of approximations or for the formulation
of fitting restrictions. Details on parameter identification and fitting procedures for
pressure-sensitive material behavior are given in Appendix A.3.

12.5 Extreme Yield Figures

Lower and upper bounds of convexity for isotropic criteria in the r60 − r30 diagram
(Fig. 12.5) are obtained with extreme yield figures of isotoxal and isogonal hexagons
(Figs. 12.7 and 12.8). The polynomial formulations (12.4) of these hexagons
are known as Capurso and Haythornthwaite criteria, respectively (Kolupaev,
2018). However, their polynomial forms feature additional contours or intersections
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R1R2

scaled R1 triangle scaled R1 triangle
factor 2factor 1/2

Fig. 12.7 Isogonal (equiangular) hexagons (upper convexity limit) are formed by the intersection of
two triangles in the π-plane: the scaled R1 triangle (blue) and the R2 triangle (black)

R1 R2

Fig. 12.8 Isotoxal (equilateral, lower convexity limit, blue) and isogonal hexagons (equiangular,
upper convexity limit, black) in the π-plane with the R1 (blue) and R2 (black) triangle as limit cases

surrounding the physically reasonable shape of the surface Φ which makes the
application involved.

Isotoxal hexagons (lower bound, transition R1–H1–R2 in Fig. 12.5) as function of
stress angle (12.10) can be formulated using the Podgórski criterion (Table 12.1)
which describes the geometry of the Capurso criterion as single surface among others.
A criterion for isogonal hexagons (upper bound, transition R1–H2–R2) as function of
stress angle without case discrimination is missing. Both hexagons degenerate to the
same equilateral triangles R1 and R2 in limit cases (Figs. 12.3b and 12.8) with

r60 ∈
[
1
2
, 2

]
.

These hexagons in the π-plane extended with the linear I1-substitution (12.11)
represent pyramides in principal stress space, which are important strength criteria
for practical applications (Paul, 1968; Wronski and Pick, 1977; Yu, 2018).

The lower and upper bounds of the convexity restriction for isotropic criteria
in the r15 − r30 diagram (Fig. 12.6) are obtained with extremal yield figures of
isotoxal and isogonal dodecagons. Isotoxal dodecagons (lower bound, transition
H1–D1–H2) as function of the stress angle can be described with the modified Yu
(mYu) criterion (Kolupaev, 2018). Only the polynomial formulation for isogonal
dodecagons (upper bound, transition H1–D2–H2) is known (Fig. 12.6, MAC). Both
dodecagons degenerate to the same equilateral hexagons H1 and H2 in limit cases
(Figs. 12.3c and 12.4a) with
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r30 ∈

[√
3

2
,

2
√

3

]
.

Although the I1-substitution (12.11) is possible here, dodecagons are typically used
as pressure-insensitive criteria. The differences between the regular dodecagons D1
and D2 (Figs. 12.4b) with r30 = r60 = 1 (Table 12.1) are

r15 ∈
[
1
2

√
2 +

√
3,

√
2
(√

3 − 1
)]
.

This deviation below ±3.5% between the MAC and YYC includes all criteria of
hexagonal symmetry (Fig. 12.6) compared in Kolupaev (2018). Differences between
the regular icositetragons C1 and C2 (Table 12.1) are minor. They have the pro-
perties (12.16) and coincide with the von Mises hypothesis (12.7) in the r15 − r30
diagram (Fig. 12.6). The icositetragons C1 and C2 will be obtained as a result of the
generalization of the criteria of hexagonal symmetry.

Regular enneagons (9-gons), pentadecagons (15-gons), octadecagon (18-gons),
and icositetragons (24-gons) are conceivable as yield criteria. However, because of
increasing complexity in their formulation and low practical importance, they have
found no applications and are only mentioned for the sake of completeness.

12.6 Generalized Strength Criteria

The phenomenological nature of yield and strength criteria has caused an unmanage-
able number of possible formulations. Having to choose an appropriate criterion can
leave users confused. Connections between material behavior and the criterion are
often not available. Selecting a criterion for a particular application is usually not
based on objective arguments. The best possible approximation of measured data
with physical background (convexity of the meridian and convexity in the π-plane,
range of the inelastic Poisson’s ratios at tension and compression, restriction of the
hydrostatic strength RTTT (12.21) among others) cannot be guaranteed.

Plausibility assumptions reduce the number of applicable criteria significantly. Up
to now, the Podgórski and the modified Altenbach-Zolochevsky criteria with
I1-substitution (12.11) and the modified Yu strength criterion meet the plausibility
assumptions in the best way and are recommended for application. Various materials
can be described using these criteria.

Unfortunately, the listed criteria can not describe all extreme yield figures of
trigonal and hexagonal symmetry (Figs. 12.5 and 12.6). An attempt to formulate
a universal yield criterion will be shown in this section. If a universal criterion is
present, further criteria have rather historical significance. With such criterion it can
be checked whether an optimal approximation of the measured data with the convex
shape in the π-plane is possible. Different approximations are easy to compare.
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Let us examine the modified Yu strength criterion, the modified Altenbach-Zolo-
chevsky criterion, the Podgórski criterion, and the universal yield criterion in detail.
Characteristic geometrical properties and values for basic tests will be computed. In
the next step these criteria will be applied to measured data of concrete.

12.6.1 Modified Yu Strength Criterion

The modified Yu strength criterion (mYu) is derived from a linear combination of the
Yu yield criterion (YYC) (12.98)–(12.99) and the normal stress hypothesis (12.102)
as functions of the stress angle θ. It can be solved for the equivalent stress σeq which
reads

σeq =
1

3 rC
60

[√
3I ′2

[
3
Ω(θ, χ)
Ω(0, χ)

+ 2 (rC
60 − 1) cos θ

]
+ I1 (rC

60 − 1)
]
, (12.25)

with the shape function of the YYC

Ω(θ, χ) = sin
(
χ
π

6
+ arcsin

[
cos

(
1
3

arcsin [cos 3 θ]
)] )
, χ ∈ [0, 1]. (12.26)

The modified Yu strength criterion contains:

• the Mohr-Coulomb criterion (Mohr, 1914) with the parameter χ = 0,
• a continuous analogy of the Pisarenko-Lebedev criterion (Lebedev, 1965;

Pisarenko and Lebedev, 1976) with χ = 1/2,
• an analogon of the twin-shear criterion (TST) of Yu (Yu, 2018) with χ = 1,
• the normal stress hypothesis with rC

60 → ∞ for any χ ∈ [0, 1], and
• the YYC (12.98)–(12.99) with rC

60 = 1 (Yu, 2018).

It is C0-continuously differentiable which leads to ambiguities in the calculation
of the gradient at edges. Like the original Yu strength criterion (YSC) the mYu

criterion

12.6.2 Podgórski Criterion

Normalized with respect to the uniaxial tensile stress (12.9), the Podgórski criterion
(Podgórski, 1984; Podgórski, 1985; Kolupaev, 2017, 2018) reads

σeq =
√

3 I ′2
Ω(θ, β, η)
Ω(0, β, η)

, (12.27)

contains three classical criteria and can be considered a generalized classical
with the properties (12.24). The mYu with two parameters rC

60 and χ is

Yu criterion and its geometric properties is given in Appendix A.4.derivation of the m
convenient for different applications as a yield and strength criterion. A detailed

criterion
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with the shape function

Ω(θ, β, η) = cos
[
1
3
(πβ − arccos[ η cos 3 θ ])

]
, β ∈ [0, 1], η ∈ [−1, 1].

(12.28)
Replacing the parameter η by

η = sin
(γ π

2

)
, γ ∈ [−1,1], (12.29)

yields improved parameter sensitivity and numerical stability for fitting (Fig. 12.9),
cf. Kolupaev (2018). The criterion involves several known criteria (Table 12.1: R1,
M, H1, R2 and Fig. 12.5, Capurso and Sayir ctiteria). For a comparison with other
generalized criteria curves r15 = const. are shown in Fig. 12.10.

The Podgórski criterion (12.27) is C1-continuously differentiable except at the
border R1–H1–R2 of the Capurso criterion. Convex π-plane geometries in the region
between R1–M–R2 and R1–H2–R2 (Fig. 12.5) are not covered with real-valued
parameters β and η (Kolupaev, 2018). However, the criterion is convenient for many
applications as a yield criterion. With the linear I1-substitution (12.11) we obtain the
conical criterion

σeq − γ1 I1

1 − γ1
=
√

3 I2
Ω(θ, β, γ)
Ω(0, β, γ)

, γ1 ∈ [0, 1[. (12.30)

which becomes a pyramid at the border R1–H1–R2.

Haythornthwaite Sayir

Capurso

Haythornthwaite

r30

r60

0.6

0.6

0.8

1.2

1.6 1.8 2

β = 1/2

β = 3/8
β = 5/8

β = 1/4
β = 3/4

β = 1/8
β = 7/8

β = 5/8
β = 3/8

β = 3/4
β = 1/4

β = 7/8
β = 1/8

β = 0
β = 1

β = 1
β = 0

γ = ±1γ = ±0.9

±0.9

γ = ±0.7

±0.7

γ = ±0.5

γ = ±0.5

γ = ±0.3

γ = ±0.3

Fig. 12.9 Podgórski criterion (12.27) in the r30 − r60 diagram (Fig. 12.5). The lines β = const.,
γ ∈ [−1, 1] (solid red) and γ = const., β ∈ [0, 1] (dashed blue) are shown, cf. Podgórski (1984);
Podgórski (1985), adapted from Kolupaev (2017, 2018)
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Fig. 12.10 Podgórski criterion (12.27) with the curves r15 = const. in the r30 − r60 diagram
(Fig. 12.9). The fixed values r15 are taken from Table 12.1. Additionally, the value r15= 0.8273
computed with r60 = 0.6, β = 1, γ = 0.7804 and the value r15 = 1.0269 with r60 = 1.9,
β = 0.0290, γ = 1 are shown

12.6.3 Modified Altenbach-Zolochevsky Criterion

The present modification of the Altenbach-Zolochevsky criterion (Altenbach et al,
1995) was introduced in Kolupaev (2017, 2018) in order to describe all points in the
r60 − r30 diagram (Fig. 12.5). It reads

σeq =
√

3I ′2
Ω(ϕ, r60, ξm)
Ω(−π/6, r60, ξm)

, (12.31)

with the shape function

Ω(ϕ, r60, ξm) =
(

1
r60

− 1
)

sin ϕ

+
1 + r60 − 2 r60 ξm√

3 r60
cos ϕ

+ ξm sin
[ π
6
+ arcsin[cos ϕ]

]
,

(12.32)

and
Ω(−π/6, r60, ξm) = 1. (12.33)

The parameter ξm is a function of the geometrical values r30 and r60 (12.115) and is
limited by the convexity condition
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0 ≤ ξm ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 −

1
r60

for r60 ∈
[
1
2
, 1

]
,

−1 +
2

r60
for r60 ∈ [1, 2].

(12.34)

Curves r15 = const. are shown in Fig. 12.11.
The mAZ criterion (12.31) contains the Capurso criterion (R1–H1–R2) which

follows with ξm = 0. It describes the geometry of the YYC (12.98) with r60 = 1
and the Sokolovsky criterion (Table 12.1) with r60 = r30 = 1. The upper convexity
restriction (12.34) together with (12.115) leads to the relationship r60 (r30) of the
Haythornthwaite criterion (Fig. 12.5). However, the mAZ criterion (12.31) does
not resemble the Haythornthwaite criterion (R1–H2–R2) in all points (Fig. 12.12)
although it contains the criteria R1, H2, and R2.

The mAZ criterion is C0-continuously differentiable and can be recommended as
a strength criterion. Extended with the linear I1-substitution (12.11)

σeq − γ1 I1

1 − γ1
=
√

3I ′2
Ω(ϕ, r60, ξm)
Ω(−π/6, r60, ξm)

, (12.35)

the mAZ has greater fitting capabilities than the mYu criterion (12.25).

12.6.4 Universal Yield Criterion of Trigonal Symmetry

A universal yield criterion must be capable of representing arbitrary C1-continuous
shapes in the r30 − r60 diagram (Fig. 12.5) between the convexity limits described by
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Fig. 12.11 Modified Altenbach-Zolochevsky criterion (12.31) in the r30 − r60 diagram (cf.
Fig. 12.10). Lines ξm = const. (dashed, blue) and r15 = const. (dashed, red) are shown
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Fig. 12.12 Haythornthwaite criterion (Hay: black line) and modified
Altenbach-Zolochevsky criterion (12.31) (mAZ: blue line) with ξm = 2/3 (left) and ξm = 1/3
(right) in the π-plane for the same values r60 and r30 in each case. The circle of the von Mises
hypothesis (red line) is shown for comparison (Kolupaev, 2017, 2018). Reproduced with
permission from American Society of Civil Engineers ASCE

the Haythornthwaite and Capurso criteria. In accordance with the plausibility
conditions, it should describe a single continuous surface in stress space exhibiting
no additional outer contours and plane intersections. Present generalizations are still
limited in this regard. For instance, the modified Altenbach-Zolochevsky criterion
(12.31) is only C0-continuously differentiable and the Podgórski criterion (12.27) is
limited to shapes bounded by the Sayir and the Capurso criteria (Fig. 12.9).

In order to allow a description of any convex shape in the r30 − r60 diagram
(Fig. 12.5), we propose a universal criterion exploiting properties of Podgórski-like
yield figures. To this end, consider the Haythornthwaite criterion which constitutes
the upper limit case in the r30 − r60 diagram. This criterion can be described by the
minimum of an intersection of a triangle R2 and a scaled triangle R1 (Fig. 12.7).
Because of the normalization (12.10) the choice of which triangle to scale is arbitrary
and may be inverted. Both triangles can be described using the Podgórski shape
function (12.28). However, the Podgórski shape function does not only allow for
the description of both triangles but also for the description of any intermediate
shape between the Sayir and the Capurso criteria (Fig. 12.9). The intersection
of other shapes than triangles can now represent any intermediate shape between
the Haythornthwaite and Sayir criteria. The conventional Podgórski criterion
(12.27) can be obtained in limit cases. Hence, any intermediate shapes between the
Haythornthwaite and the Sayir criteria as well as any yield figure between the
Sayir and the Capurso criteria can be described in a single equation.

The intersection of two shape functions κ and λ is obtained using the minimum
function

Ω = min{κ, λ}. (12.36)
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Implementing the min operator necessitates the discrimination between two cases
where either κ or λ is larger. In order to avoid this explicit case discrimination we
may replace the min operator according to Bellman et al (1970) and Walser (2018)

Ω =
1
2

[
κ + λ +

√
(κ − λ)2

]
. (12.37)

Using a shape function containing the R2 triangle (Table 12.1)

κ(θ, β, γ) = cos
[
1
3

(
π β − arccos

[
sin

[
γ
π

2

]
cos[3 θ]

] )]
, (12.38)

and a shape function containing the R1 triangle (Table 12.1) scaled using the parameter
α

λ(θ, α, β, γ) =
1
2
(α + 1) cos

[
1
3

(
π β − arccos

[
− sin

[
γ
π

2

]
cos[3 θ]

] )]
, (12.39)

we obtain the universal yield criterion of trigonal symmetry (CTS)

σeq =
√

3I2
Ω(θ, α, β, γ)
Ω(0, α, β, γ)

, (12.40)

normalized with respect to the unidirectional tensile stress σeq = RT at the angle
θ = 0 (12.10). The parameters α, β, and γ, which adjust the shape of the CTS
criterion, are restricted as follows:

α ∈ [0, 1], β ∈ [0, 1], γ ∈ [0, 1]. (12.41)

For α = 0 we obtain the Podgórski criterion (12.27)–(12.28). In this case, the
function λ is scaled such that it does not intersect with κ anymore. When κ remains
as the only shape function in effect, the same representation of curves β = const.,
γ ∈ [0, 1] as shown in Fig. 12.9 is obtained. Further basic yield functions described
by (12.40) are summarized in Table 12.1. Because the CTS is the intersection of two
convex figures in the π-plane with the same symmetry axes, its resulting yield figures
are convex. Such figures are

The parameter α describes a transition from the triangles R1 and R2 (at α = 0)
to the hexagon H2 (at α = 1), as shown in Fig. 12.13a. That is, it corresponds to
moving along the r60-axis in the r30 − r60 diagram (Fig. 12.14). The parameter β
models the transition from shapes whose tip points up (e.g. R1) to those who feature
a flat topside (e.g. R2), see Fig. 12.13b. This corresponds to moving along the
axis (Fig. 12.15). The parameter γ < 1 smooths the yield surface and provides a
C1-continuous function as shown in Fig. 12.13c. The parameter controls the transition
to the von Mises criterion at γ = 0 (Fig. 12.16).

To visualize the impact of different shape parameters, consider Figs. 12.14–12.17.
Figure 12.14 shows CTS (12.40) curves for different α = const. at γ = 1 in the
r30 − r60 diagram, where β ∈ [0, 1] is the curve parameter. When α < 1, the curves

C0-continuously differentiable.

r -30
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Fig. 12.13 Influence of parameters of the universal criterion of trigonal symmetry (CTS) (12.40)
on the shape of yield surfaces the π-plane. a. α describes a transition from the triangles R1 and R2
(α = 0) to the hexagon H2 (α = 1), b. β describes the transition of shapes whose tips point down
(e.g. R2 at β = 0) to shapes with a flat base (e.g. R1 at β = 1), c. γ smooths the yield surface and
provides a C1-continuously differentiable function for γ < 1
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Fig. 12.14 CTS (12.40) in the r30 − r60 diagram. Curves α = const. are shown for curve
parameters β = [0, 1] at fixed γ = 1. Different values of α are indicated by different line
thicknesses. The parameter β = 0 corresponds to the upper right end of the U-shaped curves,
β = 1/2 is found at r60 = 1, and β = 1 represents the upper left end of the curves

take a U-shape. The parameter β ∈ [0, 1] describes the curve starting at the top left
end passing through the vertical axis r60 = 1 at β = 1/2 and ending at the top right
end of the U-shape. Decreasing α increases the horizontal span of the U-shape until
at α = 0 the limit case of the Capurso criterion is obtained.

In Fig. 12.15 the most distinct CTS paramter α ∈ [0, 1] is used as the curve
parameter. For fixed γ = 6/10, different levels of β = const. are shown. The parameter
α = 0 corresponds to the left and right ends of the green curves and α = 1 is found
at r60 = 1. Different values of the parameter β correspond to a vertical shift of the
curves in the r30 direction. Curves with β < 1/2 are found on the right side of the
vertical r30-axis (r60 ≥ 1), curves with β > 1/2 are found on the left side (r60 ≤ 1).

Using parameters of γ � 1 as shown in Fig. 12.16, shifts the bottom side of the
U-shape of Fig. 12.14 in positive r30-direction. With γ = 1 and α = 0 we obtain the
Capurso criterion. γ = 0 corresponds to the von Mises criterion (12.7) for any α.
The same effect is observed for the parameter γ in the Podgórski criterion (Fig. 12.9).
In the CTS, the effects of α and γ are superimposed.

Figure 12.17 examines the effect of a constant parameter β. Here, γ ∈ [0, 1] is
used as the curve parameter and a fixed value of α = 0.6 is shown. The parameter
β < 1/2 describes shapes on the left side of the vertical r30-axis while β > 1/2
describes shapes on its right side. The parameter β = 1/2 represents shapes on the
r30-axis at r30 < 1. Increasing β from 0 to 1/2 describes a vertical top to bottom
transition on a parallel to the r30 β
between 1/2 and 1 on the right side of the

Fitting capabilities of the CTS Eq. (12.40) are illustrated using curves r15 = const.
(Fig. 12.18). For r15 =

√
2/2 ≈ 0.7071 only the triangle R1 can be represented.

Geometries with r15 = 1.0353 contain the shapes of the Haythornthwaite criterion

r -axis.30

-axis. The equivalent behavior is observed for
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ends of the curves. α = 1 is found at r60 = 1. Lines of Figs. 12.14, 12.16, and 12.17 are shown for
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Fig. 12.16 CTS (12.40) in the r30 − r60 diagram. Curves α = const. are shown for curve
parameters β ∈ [0, 1] each at a different constant value for γ = const. (blue). Different (α, γ) pairs
are indicated by different line thicknesses. β = 0 corresponds to the upper right end of the
U-shaped curves. β = 1/2 is found at r60 = 1 and β = 1 represents the upper left end of the curves.
Lines of Fig. 12.14 are shown for comparison (pale red)

at r60 ≥ 1 and some forms at r60 ≤ 1. For in-between values of r15 = const. several
convex geometries are possible. The CTS provides better fitting capabilities than
Podgórski (12.27) or Altenbach-Zolochevsky (12.31) criteria since for one
r15 = const. entire r30 − r60-patches bounded the other two criteria are covered. The
comparison of the properties of the different criteria, e.g. shown in Figs. 12.10 and
12.11 based on these curves is straightforward.
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Fig. 12.18 CTS (12.40) with curves r15 = const. in the r30 − r60 diagram. Curves of the Podgórski
criterion (12.27) and the Altenbach-Zolochevsky criterion (12.31) are shown for comparison
(Figs. 12.10 and 12.11). The curve r15 = 0.9659 of the CTS is excluded for better illustration

Applying the linear I1-substitution (12.11) to the CTS (12.40) we obtain a universal
conical (pyramidal) criterion

σeq − γ1 I1

1 − γ1
=
√

3I2
Ω(θ, α, β, γ)
Ω(0, α, β, γ)

, γ1 ∈ [0, 1[. (12.42)

The geometrical values r15, r30, and r60 are obtained from (12.93). The basic test value
rCC
0 can be computed according to (12.94). Further basic test values are obtained

with (12.95)–(12.97). Please note that owing to the use of the operator (12.36) the
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assignment
(r60, r30, r15) → (α, β, γ)

is not unique violating the last plausibility assumption.

12.6.5 Universal Deviatoric Function

The properties of the universal yield criterion of trigonal symmetry (CTS) allow
for further generalization of the criterion to incorporate arbitrary yield surfaces of
hexagonal symmetry, as well. To this end, let us introduce an integer parameter
n ∈ N+. We will use this parameter to determine the number of

m = 3 n

edges of equilateral m-gons obtained from κ and λ for α = 0, β ∈ {0,1} and γ = 1.
For this set of parameters, n = 1 yields triangles R1 and R2 and thus, the yield
criterion of trigonal symmetry (12.40) and n = 2 yields hexagons H1 and H2 for the
chosen set of parameters and constitutes a criterion of hexagonal symmetry. Higher
values of n provide yield surfaces with additional edges. The criteria are of hexagonal
symmetry for even n and of trigonal symmetry for odd n.

Again, we exploit reformulation of the min operator (12.37) and shape function
scaling to obtain the general yield criterion with

κ(θ, β, γ, n) = cos
[

1
3n

(
π β − arccos

[
sin

[
γ
π

2

]
cos[3 n θ]

] )]
, (12.43)

and

λ(θ, α, β, γ, n) =
(
α + (1 − α) cos

[ π
3n

] )
cos

[
1
3n

(
π β − arccos

[
− sin

[
γ
π

2

]
cos[3 n θ]

] )]
.

(12.44)

The equivalent stress reads

σeq =
√

3 I2
Ω(θ, α, β, γ,n)
Ω(0, α, β, γ,n)

, (12.45)

with the following parameter restrictions ensuring convexity:

α ∈ [0, 1], β ∈ [0, 1], γ ∈ [0, 1], n ∈ N+. (12.46)

The geometrical values r15, r30, and r60 follow with (12.93). The linear I1-substitution
(12.11) leads to the conical (pyramidal) surface (12.12)
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σeq − γ1 I1

1 − γ1
=
√

3I2
Ω(θ, α, β, γ,n)
Ω(0, α, β, γ,n)

, γ1 ∈ [0, 1[. (12.47)

with the basic test values (12.94)–(12.97). This convex criterion comprises all other
criteria discussed in the present work. In Table 12.1 similarities of the parameters α,
β, and γ for n = 1, 2, 4, and 6 are shown. Regular geometries with n = 2 are often
used in theory of plasticity (Table 12.2). The geometries with n > 2 have not found
application, yet.

Figure 12.19 shows the influence of the parameters α, β, and γ on yield figures of
hexagonal symmetry obtained for n = 2. The parameter α represents the transition
from the hexagons H1 and H2 (α = 0) to the dodecagon D2 (α = 1) shown in
Fig. 12.19a. This corresponds to moving along the r30-axis in the r30 − r15 diagram
(Fig. 12.20). As shown in Fig. 12.19b the parameter β describes the transition from
shapes with a flat base (e.g. H2 at β = 0) to shapes standing on their tips (e.g. H1
at β = 1). This corresponds to moving along the r15 axis in the r30 − r15 diagram
(Fig. 12.23). Again, γ smooths the yield surface providing a C1-continuous function
and describing the transition from any shape to the von Mises criterion at γ = 0
(Figs. 12.19c and 12.22).

Figure 12.20 shows curves α = const. at γ = 1 of the universal criterion of
hexagonal symmetry (CHS) obtained for n = 2 in the r30 − r15 diagram. The
parameter β ∈ [0,1] describes a U-shaped curve starting at its upper right, passing
through r30 = 1 at β = 1/2 and ending at its upper left corner. A smaller α increases
the horizontal span of the U-curves. α = 0 represents the YYC as convexity limit.

Using γ < 1, as shown in Fig. 12.21, translates the U-shapes of Fig. 12.20 in
positive r15-direction along the vertical axis. Again, γ = 1 and α = 0 yields the YYC
and γ = 0 corresponds to von Mises criterion for any α.

Figure 12.22 shows the influence of β in the criterion of hexagonal symmetry
(n = 2). Curves with α = 0.6 and γ ∈ [0,1] as the curve parameter are shown.
β < 1/2 corresponds to curves on the left side of the vertical r15 β > 1/2
describes shapes on its right side. Shapes with β = 1/2 are found on the r15-axis at
r30 = 1. Increasing β from 0 to 1/2 or decreasing it from 1 to 1/2 shifts curves in
negative r15-direction.

Figure 12.23 shows different curves with β = const. and γ = 6/10. Again, β shifts
the curves along the r15-axis. α = 0 represents the left (β > 1/2) and right (β < 1/2)
ends of the curves and α = 1 is found on the r15-axis at r30 = 1.

Table 12.2 Criterion of hexagonal symmetry (CHS): Universal yield function (UDF), Eq. (12.45),
with n = 2 in the π-plane, cf. Table 12.1

π
-p

la
ne

H1 H2 D1 D2 C1 C2 M

α 0 0 [0, 1] 1 1 – [0, 1]
β 1 0 1/2 {0, 1} {1/4, 3/4} – [0, 1]
γ 1 1 1 1 1 – 0

-axis while
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Fig. 12.19 Influence of parameters of the criterion of hexagonal symmetry (CHS) (Eq. (12.45) with
n = 2) on the shape of yield surfaces in the π-plane. a. α describes a transition from the hexagon
H1 and H2 (α = 0) to the dodecagon D2 (α = 1), b. β describes the transition of shapes with a flat
base (e.g. H2 at β = 0) to shapes standing on their tips (e.g. H1 at β = 1), c. γ smooths the yield
surface and provides a C1-continuously differentiable function for γ < 1
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Fig. 12.20 CHS (Eq. (12.45) with n = 2) in the r30 − r15 diagram. Curves α = const. are shown for
curve parameters β ∈ [0, 1] at fixed γ = 1. Different values of α are indicated by different line
thicknesses. The parameter β = 0 corresponds to the upper right end of the U-shaped curves,
β = 1/2 is found at r30 = 1, and β = 1 represents the upper left end of the curves
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Fig. 12.21 CHS (Eq. (12.45) with n = 2) in the r30 − r15 diagram. Three curves α = const. are
shown for curve parameters β ∈ [0, 1] each at a different constant value γ = const. (blue).
Different (α, γ) pairs are indicated by different line thicknesses. β = 0 corresponds to the upper
right end of the U-shaped curves. β = 1/2 is found at r30 = 1 and β = 1 represents the upper left
end of the curves. Lines of Fig. 12.20 are shown for comparison (pale red)
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Fig. 12.22 CHS (Eq. (12.45) with n = 2) in the r30 − r15 diagram. Curves β = const. are shown for
curve parameters γ = [0, 1] at fixed α = 0.6 (black). γ = 1 corresponds to the left (β > 1/2) or
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With n = 1 and n = 2 the UDF (12.45) describes practically all known geometries
in the π-plane. With n > 2 new shapes can be determined for refined material
description. This makes the UDF a powerful tool for material modeling. Fitting the
UDF (12.47) to experimental data provides a description of the failure surface of a

12.7 Application to Concrete

For concrete a comprehensive series of tests under plane stress conditions was
conducted and published in several sources. Evaluations of this data from literature
can be readily compared. Data measured by Kupfer (1973) are given in Tables 12.4,
12.5, and 12.6 (Appendix A.7) and will be used for approximations. For comparison,
measured data are normalized by the tensile strength RT (12.13).

The method shown in this section is not limited to concrete and can be transferred to
any isotropic material with RT > 0. The fitting methods and visualization techniques
used in the following are summarized in Altenbach et al (2014); Altenbach and
Kolupaev (2014) and Kolupaev (2018), applied to several materials, and can be
considered reliable.

12.7.1 Objective Functions

In order to fit failure criteria to experimental data, various objective functions
quantifying the quality of the fit can be employed. Possible objective functions for
yield surface fits are summarized in Kolupaev (2018). Using the mean squared error
as the objective function

f2 =
1

N − 1

N∑
i=1

[√
3I ′2
Ω(θ, pj)
Ω(0, pj)

−
σeq − γ1 I1

1 − γ1

] 2

i

, (12.48)

for the strength criterion (12.12) a rapid convergence of the optimization problem

minimize f2(γ1, pj), (12.49)

can be achieved. Here, N measured data points are used. The hydrostatic node γ1
and the parameters of the deviatoric function pj are the parameters of the selected
strength criterion (12.12).

The objective function

simplicity, the parameter n can be set before fitting based on the present modeling
concept.

material without requiring an a priori choice of a specific failure criterion. For
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f∞ = max
i=1...N

2222√3I ′2
Ω(θ, pj)
Ω(0, pj)

−
σeq − γ1 I1

1 − γ1

2222
i

. (12.50)

with the optimization problem

minimize f∞(γ1, pj), (12.51)

can be sometimes preferred for additional solutions and further comparisons.
In order to solve the resulting optimization problem (12.49), the present work

employs the NMinimize algorithm of the CAS Wolfram Mathematica (Wolfram,
2003). The solution is obtained in the form of parameters of the strength criterion
minimizing the objective function. The optimization problem constrains the parame-
ters pj to ensure convexity of the failure surface in the π-plane. Using NMinimize
readily allows for implementing different constraints and weights.

Parameters obtained using the objective function f2 (12.48) approximate measured
data well. However, the comparison of different strength criteria against each other is
not straightforward. Therefore, we use two “physical” objective functions to compare
different approximations with each other:

• Objective function f3D: Evaluates the regression quality in principal stress space.
For each measurement the normal distance from data points to the limit surface
in principal stress space (σI, σII, σIII) is computed and then averaged over all
measurements.

• Objective function fray: The distances between the experimental points and the
surface of strength criterion Φ are measured along a line connecting the respective
data point with the origin (Wu, 1973) and summarized.

The comparisons are shown in Tables 12.8, 12.10, and 12.12.

12.7.2 Approximation and Restrictions

In the following we will introduce certain restrictions for limit surface approximations
(Kolupaev et al, 2016). Using a straight line through the points T and CC on the
0-meridian (12.89) and through the points C and TT on the π/3-meridian (12.90) in
the Burzyński-plane (Figs. 12.24, 12.25, and 12.26), we can estimate the position of
the hydrostatic node TTT with its coordinate 1/γ1 on the axis I1.

The different estimates are summarized in Table 12.7. The upper limit in

γ1 ∈ [0.2984, 1/3],

can be introduced for fitting based on the normal stress hypothesis with γ1 = 1/3
(Kolupaev, 2017; Kolupaev et al, 2016).

The approximation of the point K follows based on the points in the Burzyński-
plane which are closest to the ordinate with I1 = 0, i.e., T and P1 (Table 12.4), P3



290 Philipp L. Rosendahl, Vladimir A. Kolupaev, and Holm Altenbach

(Table 12.5) or P4 (Table 12.6). Such estimates (Table 12.7) help to control the fitting
procedure and are suitable for comparison with known approximations.

In the next step we constrain all approximations with

rCC
0 ≤

RCC

RT , (12.52)

such that the data point RCC will not be overestimated. If the approximation contains
the point CC, the parameter γ1 follows directly from rCC

0 in Eq. (12.89). Generally,
this leads to overdimensioning in the point C. In the next step we try to approximate
this point with the restriction

rC
60 ≤

RC

RT . (12.53)

If the approximation contains the points T, C, and CC, the comparison of the criteria
is straightforward (Ottosen, 1977). In this case the value rCc

30 is significant for the
comparison. The adaptability of the criteria on the data is directly visible.

The value rCc
30 can be estimated with the straight line through two adjacent points

in the Burzyński-plane M1 and M2 (Table 12.4), M3 and M4 (Table 12.5) or M5 and
M6 (Table 12.6), respectively. The value rTt

30 can be estimated from a straight line
through two adjacent points in the Burzyński-plane L1 and L2 (Table 12.4), L3 and
L4 (Table 12.5) or L5 and L6 (Table 12.6), respectively. Alternatively, estimates for
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Fig. 12.24 Measured data by Kupfer (Table 12.4) with RC = 18.73 MPa normalized with respect
to RT = 1.96 MPa in the Burzyński-plane approximated using the CTS (12.42). The line of the
plane stress state of the modified Yu criterion (12.25) with rC = 11.25 and χ = 0.2596 is shown
for comparison
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Fig. 12.25 Measured data by Kupfer (Table 12.5) with RC = 30.50 MPa normalized with respect
to RT = 2.79 MPa in the Burzyński-plane approximated using the CTS (12.42). The line of the
plane stress state of the modified Yu criterion (12.25) with rC = 12.57 and χ = 0.2693 is shown
for comparison
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Fig. 12.26 Measured data by Kupfer (Table 12.6) with RC = 58.25 MPa normalized with respect
to RT = 5.12 MPa in the Burzyński-plane approximated using the CTS (12.42). The line of the
plane stress state of the modified Yu criterion (12.25) with rC = 13.05 and χ = 0.4203 is shown
for comparison
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the points Cc, K, and Tt can also be obtained with a cubic parabola. Further, we can
estimate the position of the hydrostatic node TTT with the coordinate 1/γ1 based on
the points Cc and Tt.

12.7.3 Comparison of Approximations

Approximations obtained with the discussed criteria are summarized in Tables 12.8–
12.12. The geometry in the π-plane, parameters, and the values of the objective
functions f2, f∞, f3D, and fray are given for comparison. These approximations
are illustrated in the Burzyński-plane (Figs. 12.24, 12.25 and 12.26), the π-plane
(Figs. 12.27, 12.28 and 12.29), and the σI − σII diagram with σIII = 0 (Figs. 12.30,
12.31 and 12.32). Our approximations are given in Tables 12.8–12.13 listing values
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Fig. 12.27 Measured data by Kupfer (Table 12.4) with RC = 18.73 MPa normalized with respect
to RT = 1.96 MPa in the π-plane approximated using the CTS (12.42) (Fig. 12.24). The cross
sections orthogonal to the hydrostatic axis corresponding to the different values of I1 are shown
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Fig. 12.28 Measured data by Kupfer (Table 12.6) with RC = 30.50 MPa normalized with respect
to RT = 2.79 MPa in the π-plane approximated using the CTS (12.42) (Fig. 12.25). The cross
sections orthogonal to the hydrostatic axis corresponding to the different values of I1 are shown

for basic loadings for straightforward comparison. Extrapolations yield the TTT node
corresponding to the hydrostatic tensile strength.

The concretes with RC = 18.73 and RC = 30.50 MPa show the “classical” property
Eq. (12.24)

RT = RTT or rTT
60 = 1.

The concrete with RC = 58.25 MPa shows

RT > RTT or rTT
60 < 1.

For all test series
RCC > RC or rCC

0 > rC
60,

can be observed in the compression region. Thus, the approximations with the
Mohr-Coulomb and the modified Yu criteria can be carried out based on either the
point C or based on CC. Approximations using the Mohr-Coulomb criterion through
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Fig. 12.29 Measured data by Kupfer (Table 12.6) with RC = 58.25 MPa normalized with respect
to RT = 5.12 MPa in the π-plane approximated using the CTS (12.42) (Fig. 12.26). The cross
sections orthogonal to the hydrostatic axis corresponding to the different values of I1 are shown

the points C and CC respectively are shown in the σI − σII diagram (Figs. 12.30,

Mohr-Coulomb criterion though the point C are very conservative. Appro-
Yu criterion through the points C or CC show devia-

All approximations except the CTS with the fixed points T, C, and CC show large
deviations in the third quadrant of the σI − σII diagram (Figs. 12.33, 12.34, and
12.35). In the second (forth) quadrant all approximations practically coincide. Here,
deviations of approximations and data lie in a tolerable range. The measured data
are approximated with convex criteria whereas the data hint at non-convex cluster
in the second quadrant. In the first quadrant all approximations show considerable
deviations from the data.

For the present approximations no ideal parameter settings were found. Different
weights are realized for different approaches. The most important approximations are

12.31, and 12.32) to illustrate the necessity of the generalized criteria. Approximations
using the
ximations using the modified
tions of the measured data from the classical concept. Hence, approximations though
either C or CC are not sufficient for concrete.
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Fig. 12.30 Measured data by Kupfer (Table 12.4) with RC = 18.73 MPa normalized with respect
to RT = 1.96 MPa. Plane stress state σI − σII, σIII = 0: the Podgórski criterion (12.30),
modified Altenbach-Zolochevsky (mAZ) criterion (12.35), and the modified Yu (mYu) criterion
(12.25) with two settings rC

60 = 9.55 and 11.25 (Table 12.8). The von Mises hypothesis and the
Mohr-Coulomb criterion with two settings rC

60 = 9.55 and 11.25 are shown for comparison

summarized in Appendix A.8 in order to illustrate the fitting capabilities of different
criteria. Additional to T, C, and CC different points M can be required to be fittedi
exactly rather than just approximated. Corresponding approximations are shown
in Figs. 12.33, 12.34, and 12.35. The objective functions f3D and fray do not vary
significantly.

Deviations of the the approximations using the CTS (12.42) from measured points
can be explained with a straight meridian line of the linear I1-substitution (12.11)
used for simplification and by requiring the points T, C, and CC to fall onto the curve
exactly. Due to the strength-differential (SD) effect rC

60 ≥ 9.55, the difference in the
approximations in the first quadrant are not directly visible. However, it is to point
out that using the CTS these approximations are better than known from literature.

Comparing the values r30, r60, and γ1 from the approximations Kolupaev et al
(2018) for the measured data by Tasuji (Tasuji, 1976; Tasuji et al, 1978, 1979) and
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Fig. 12.31 Measured data by Kupfer (Table 12.5) with RC = 30.50 MPa normalized with respect
to RT = 2.79 MPa. Plane stress state σI − σII, σIII = 0: the Podgórski criterion (12.30)
modified Altenbach-Zolochevsky (mAZ) criterion (12.35), and the modified Yu (mYu) criterion
(12.25) with two settings rC

60 = 10.95 and 12.57 (Table 12.10). The von Mises hypothesis and the
Mohr-Coulomb criterion with two settings rC

60 = 10.95 and 12.57 are shown for comparison

by Lee-Song-Han (Lee et al, 2004) for concrete with the values computed for the
measured data by Kupfer (Tables 12.8–12.13) shows good agreement. This confirms
the applicability of the introduced method.

Data measured by Kupfer are well discussed in the literature (de Borst et al, 2012;
Chen, 1975; Chen and Saleeb, 1982; Moradi et al, 2018; Schimmelpfennig, 1971;
Speck, 2008; Sun et al, 2011). These data are approximated in Aubertin et al (2000);
Boswell and Chen (1987); Brencich and Gambarotta (2001); Brünig and Michalski
(2017); Comi (2001); Donida and Mentrasti (1982); Fan and Wang (2002); Folino
and Etse (2011); François (2008); Hinchberger (2009); Lade (1982); Link (1976);
Menétrey and Willam (1995); Nielsen (1984); Park and Kim (2005); Ren et al (2008);
Seow and Swaddiwudhipong (2005); Willam and Warnke (1975), among others.
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Fig. 12.32 Measured data by Kupfer (Table 12.6) with RC = 58.25 MPa normalized with respect
to RT = 5.12 MPa. Plane stress state σI − σII, σIII = 0: the Podgórski criterion (12.30)
modified Altenbach-Zolochevsky (mAZ) criterion (12.35), and the modified Yu (mYu) criterion
(12.25) with two settings rC

60 = 11.38 and 13.05 (Table 12.12). The von Mises hypothesis and the
Mohr-Coulomb criterion with two settings rC

60 = 11.38 and 13.05 are shown for comparison

Let us examine the following approximations, which promise good fits of the data,
closely:

• Ottosen et al. (Ottosen, 1975, 1977, 1980; Ottosen and Ristinmaa, 2005; Xiaoping
et al, 1989) for RC = 58.25 MPa series and

• Chen et al. (Boswell and Chen, 1987; Chen and Han, 2007; Chen, 2007; Chen and
Han, 1988; Hsieh et al, 1979, 1980, 1982) for measured series likely either with
RC = 30.50 or RC = 58.25 MPa (without exact specification). Further note that
data shown by Chen, e.g., Fig. 5.32 in Chen (2007), do not correspond exactly to
the measured data published by Kupfer.
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Fig. 12.33 Measured data by Kupfer (Table 12.4) with RC = 18.73 MPa normalized with respect
to RT = 1.96 MPa. Plane stress state σI − σII, σIII = 0 (detail): comparison of the approximations
in the point Cc based on the CTS criterion (12.42) and the Ottosen criterion (12.55) (Tables 12.8
and 12.14)
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Fig. 12.34 Measured data by Kupfer (Table 12.5) with RC = 30.50 MPa normalized with respect
to RT = 2.79 MPa. Plane stress state σI − σII, σIII = 0 (detail): comparison of the approximations
in the point Cc based on the CTS criterion (12.42) and the Ottosen criterion (12.55) (Tables 12.10
and 12.14)

12.7.3.1 Ottosen Criterion

Instead of generalizing possible shapes in the π-plane, Ottosen allowed for shape
variation in the π-plane along the hydrostatic axis. Using the Podgórski shape
function Ω (12.28), the Ottosen criterion can be written as



12 Extreme Yield Figures for Universal Strength Criteria 299

σI/σ+

σII/σ+

measured data
approximation CTSOttosen

CC

Cc

C
mYu
rC

60 = 11.38

M6

M5

-5

-10

-10

-15

-15

Fig. 12.35 Measured data by Kupfer (Table 12.6) with RC = 58.25 MPa normalized with respect
to RT = 5.12 MPa. Plane stress state σI − σII, σIII = 0 (detail): comparison of the approximations
in the point Cc based on the CTS criterion (12.42) and the Ottosen criterion (12.55) (Tables 12.12
and 12.14)

A
I1

RC + B
3I ′2(
RC)2 +C

√
3I ′2

RC
Ω(θ, 0, η)
Ω(π/3, 0, η)

= 1, A ≥ 0, B ≥ 0, and C ≥ 0. (12.54)

With B > 0 we obtain a parable in the meridian cross sections. The geometry in
the π-plane “changes from nearly triangular to more circular shape with increasing
hydrostatic pressure” (Ottosen, 1977), see also Lubliner et al (1989).

The parameters of the approximations A, B, C, and η are given by Ottosen for
the values

rC
60 = 8.33, 10, 12.5 and

rCC
0

rC
60
= 1.16,

and do not correspond precisely to the measured data of concrete (Table 12.14). For
comparison with our approximations, the criterion (12.54) can be normalized with
respect of the uniaxial tension σeq = RT (12.9)

3 (1 − χ) I ′2 + χ σeq

[
(1 − ξ)

√
3 I ′2
Ω(θ, β, η)
Ω(0, β, η)

+ ξ I1

]
= σ2

eq, (12.55)

with the parameters
χ ∈ [0, 1] and ξ ∈ [0, 1]. (12.56)

With χ = 1 we obtain the conical criterion (12.30). In general, it can be replaced
with the universal conical criterion (12.42)

3 (1 − χ) I ′2 + χ σeq

[
(1 − ξ)

√
3 I ′2
Ω(θ, α, β, γ)
Ω(0, α, β, γ)

+ ξ I1

]
= σ2

eq. (12.57)
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It is also conceivable to replace the term in the square bracket with the pyramid of
the mAZ (12.35)

3 (1 − χ) I ′2 + χ σeq

[
(1 − ξ)

√
3 I ′2

Ω(ϕ, r60, ξm)
Ω(−π/6, r60, ξm)

+ ξ I1

]
= σ2

eq. (12.58)

The von Mises hypothesis follows with ξ = 0. With ξ > 0 we obtain circular cross
sections in the π-plane for I1 → −∞. A disadvantage of the criterion is that criteria
of hexagonal symmetry cannot be described in the latter case. To tackle this, the
first term in (12.55), (12.57), and (12.58) can be weighted with appropriate shape
function.

The criterion (12.57) fulfills the plausibility conditions quite well and can be
recommended for application. It was developed with a variable cross sections concept
which differs from the concept of fixed shape of the cross section in the π-plane
used in this work. Compared with (12.42) this effect is controlled with an additional
parameter χ. Note, for a reliable determination of failure surfaces with variable cross
section available measured data are usually incomplete and insufficient. Some mea-

I1 are given in

The criteria (12.55) and (12.57) can be considered as a generalization of

• the Podgórski criterion (12.30) or its corresponding the CTS-formulation (12.42)
with χ = 1,

• the formulation in accordance with (12.54) with β = 0,
• the strain criterion (Kolupaev, 2018) with χ = 1, β = 0, and η = 1 (the normal

stress hypothesis follows then with ξ = 1/3),
• an alternative formulation of the Pisarenko-Lebedev criterion (Kolupaev, 2018;

Pisarenko and Lebedev, 1976) with χ ∈]0, 1[, β = 0, η = 1, and ξ = 1/3,
• the Drucker-Prager (Drucker and Prager, 1952) criterion (rotationally symmetric

cone) with χ = 1, β ∈ {0, 1} and η = 1, and
• the Burzyński-Torre criterion (rotationally symmetric paraboloid) (Balandin,

1937; Burzyński, 1928; Torre, 1947) with χ ∈]0, 1[ and ξ = 1.

The variable cross section approach of the Ottosen criterion is fundamentally
different from the simple fixed cross section approach followed to this point in the
present work. The criterion also allows for parabolic meridian cross sections as
opposed to our assumption of conical meridian cross sections to this point. Because
of this greater flexibility it provides good approximations of experimental data, as
shown in the details of Figs. 12.33, 12.34 and 12.35.

12.7.3.2 Hsieh-Ting-Chen Criterion

The Hsieh-Ting-Chen criterion (Hsieh et al, 1979, 1980, 1982) follows a similar
variable crosse section approach as the Ottosen criterion. It reads

surements regarding the change of the cross section as function of
Launay and Gachon (1971, 1972); Launay et al (1970). Further approximations
are shown in Fahlbusch (2015); Kolupaev (2018), among others. Fitting of such
criteria require increased numerical effort.
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A
I1

RC + B
3I ′2(
RC)2 + C

√
3I ′2

RC + D
max{σI, σII, σIII}

RC = 1. (12.59)

For approximation of the data of concrete with the values

rC
60 = 10 and

rCC
0

rC
60
= 1.15,

the four parameters

A = 0.2312, B = 0.6703, C = 0.5608, and D = 9.1412,

were used. Our approximations with the criterion (12.59) are summarized in the
Table 12.15 for comparison.

With the normal stress hypothesis as function of the stress angle θ (Chen, 2007;
Chen and Zhang, 1991; Kolupaev, 2018) and the normalization σeq = RT (12.9), the
Hsieh-Ting-Chen criterion (12.59) can be rewritten as

3 (1 − χ) I ′2 + χ σeq

[
(1 − ξ − η)

√
3 I ′2 +

1
3
ξ
(
2
√

3 I ′2 cos θ + I1

)
+η I1

]
=σ2

eq,

(12.60)
with the parameter restrictions

ξ ∈ [0, 1], η ∈ [0, 1], ξ + η ≤ 1, and χ ∈ [0, 1]. (12.61)

The parameters of the criterion (12.60) can be converted into the parameters of the
Ottosen criterion but not vice versa.

The modified Hsieh-Ting-Chen criterion (12.60) can be considered as a general-
ization of

• the Leckie-Hayhurst criterion (Hayhurst, 1972; Leckie and Hayhurst, 1977)
with χ = 1,

• the Pisarenko-Lebedev criterion (Lebedev, 1965; Pisarenko and Lebedev, 1976)
with χ = 1, η = 0,

• the strain criterion (Kolupaev, 2018) with χ = 1 and ξ + η = 1 resulted in
γ1 ∈ [1/3, 1[,

• alternative formulation of the Pisarenko-Lebedev criterion (Kolupaev, 2018;
Pisarenko and Lebedev, 1976) with χ ∈]0, 1[, ξ = 1, and η = 0,

• the Drucker-Prager (Drucker and Prager, 1952) criterion (rotationally symmetric
cone) with χ = 1, ξ = 0, and

• the Burzyński-Torre criterion (rotationally symmetric paraboloid) (Balandin,
1937; Burzyński, 1928; Torre, 1947) with χ ∈]0, 1[, η = 1, and ξ = 0.

Some approximations with the criterion (12.60) are summarized in Table 12.16. The
weighting parameter χ in Eq. (12.60), which describes meridian curvature, takes the
values χ ∈ [0.9846, 1] for the discussed measured data (Table 12.16).
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The modified criterion (12.60) comprises only the geometries M–R2 in the π-plane
(Fig. 12.5) and thus has limited fitting possibilities compared to the Ottosen criterion
(12.54). Despite good matches, it is pretentious to infer the material behaviour at
I1 → −∞ from the plane stress state.

12.8 Summary

Enforcing plausibility assumptions the number of applicable yield and strength
criteria reduces to three criteria:

• Podgórski criterion (12.27)–(12.28),
• modified Altenbach-Zolochevsky criterion (12.31)–(12.32), and
• modified Yu (12.25)–(12.26) criterion.

These criteria describe a single surface in principal stress space without any additional
outer contours or plane intersections and as such are preferred over criteria formulated
as polynomials. The explicit solvability of the equations of the criteria with respect to
the equivalent stress σeq simplifies the implementation of the criteria in FEM codes
and reduces the computational effort. A wide range of possible convex shapes in the
π-plane allows the application of these criteria to broad classes of materials.

In the present work, the Podgórski criterion (12.27) and the modified Altenbach-
Zolochevsky criterion (12.31) are extended with the linear I1-substitution (12.11)
in order to describe pressure-sensitive material behavior. The modified Yu criterion
(12.25) is intrinsically a function of the first invariant I1 and can be used for modeling
of pressure-sensitive and pressure-insensitive material behavior.

Despite the versatility of these criteria, they show restrictions in their application.
The Podgórski criterion (12.27) is C1-continuously differentiable except at the
border of the Capurso criterion, but it cannot describe isogonal hexagons in the
π-plane (Fig. 12.7). The modified Altenbach-Zolochevsky criterion (12.31) is
capable of representing all points in the r60 − r30 diagram (Fig. 12.5), but it is
only C0-continuously differentiable. The modified Yu criterion has a fixed relation
between the geometry in the π-plane and the inclination of the meridians. Owing to
these limitation, none of the three above criteria is universally applicable.

In order to resolve the limitations of the above three criteria, the present study
proposes a universal strength criterion of trigonal symmetry (CTS) (12.40) which is
capable of describing isogonal and isotoxal hexagons as well as isotoxal dodecagons
in the π-plane (Table 12.1). The proposed criterion has one additional parameter in
comparison to the Podgórski and the modified Altenbach-Zolochevsky criteria.

Introducing a second additional parameter allows for further generalizing the
proposed criterion to incorporate arbitrary yield surfaces of hexagonal symmetry,
as well. To this end we introduce a universal deviatoric function (UDF) capable of
describing isogonal and isotoxal dodecagons. The universal criterion of hexagonal
symmetry (CHS) formulated using the UDF thus encompasses basic yield crit-
eria (Table 12.1). Its application can be envisaged in theory of plasticity. Further
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geometries can be obtained with the UDF (12.45) with the setting n > 2.
We implicitly presumed that meridians are straight lines in the Burzyński-plane

and the geometry of the surface in the π-plane does not change along the hydrostatic
axis. Lifting this constraint and allowing for variable cross sections in the π-plane
along the hydrostatic axis, even more accurate approximations are possible. Such
approximations for concrete are known by Ottosen, Chen, and also by Cuntze
(Cuntze, 2017; Mittelstedt and Becker, 2016). The variable geometry of Ottosen,
for instance, may be combined with the herein proposed UDF. Of course, variable
cross section criteria require more measured data points.

Despite extensive fitting capabilities, the CTS and CHS do not fulfill all plausibility
assumptions. Certain shapes are not associated to a unique set of parameters and
parameters do not change continuously when describing all possible shapes in the
r60 − r30 and r30 − r15 diagrams. This may cause problems in the fitting procedure,
which can be treated with appropriate parameter restrictions.

Parameter identification follows the method described in Kolupaev (2018); Kolu-
paev et al (2016, 2018). The fitting procedure and different visualizations are provided
in Wolfram Mathematica (Wolfram (2003)). The source codes are freely available.
Approximations obtained with criteria discussed in the present work for three types
of concrete are visualized in the Burzyński-plane, π-plane, and σI − σII plane. The
yield function proposed in the present work provides better accuracy than existing
criteria from literature. Further I1-substitutions (parabola, hyperbola, etc. as meridian)
(Kolupaev, 2018) can improve accuracy even further.

The search for an appropriate strength criterion continues driven by the influence
of current developments in material research and stringent design requirements.
As history demonstrates, only simple and elegant criteria with clear geometrical
background have chances to find practical application.

Acknowledgements The authors thank Dr. Alexandre Bolchoun, ISG Industrielle Steuerungs-
technik GmbH, Stuttgart for his helpful suggestions and comments. We thank Prof. Dr.-Ing. habil.

Appendices

A.1 Invariants of the Stress Tensor

Eigenvalues of the symmetric second-rank stress tensor are principal stresses (or
principal invariants) σI, σII, and σIII (Altenbach et al, 1995; Życzkowski, 1981). The
axiatoric-deviatoric invariants of the stress tensor are used throughout the present
work: The three stress invariants – the trace I1 of the stress tensor

I1 = σI + σII + σIII (12.62)

Wilfried Becker, Technische Universität Darmstadt, for his support of our research. The help
of Sophia Bremm is gratefully acknowledged.
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and the invariants I ′2, I ′3 of the stress deviator

I ′2 =
1
6

[
(σI − σII)2 + (σII − σIII)2 + (σIII − σI)2

]
, (12.63)

I ′3 =
(
σI −

1
3

I1

) (
σII −

1
3

I1

) (
σIII −

1
3

I1

)
, (12.64)

are expressed in principal stresses (Życzkowski, 1981).
Invariants with geometric meaning of the stress state are often preferred: The

scaled invariant I1 of the stress tensor as the loading coordinate on the hydrostatic
axis

ξ = I1/
√

3, (12.65)

the scaled root of the second invariant I ′2 of the stress deviator as the radius ρ in the
π-plane

ρ =
√

2I ′2, (12.66)

and the corresponding stress angle θ in the π-plane

cos 3θ =
3
√

3
2

I ′3(
I ′2
)3/2 , θ ∈

[
0,
π

3

]
, (12.67)

or sometimes the stress angle ϕ

sin 3ϕ = −
3
√

3
2

I ′3(
I ′2
)3/2 , ϕ ∈

[
−
π

6
,
π

6

]
. (12.68)

Further, the invariant tanψ as the stress triaxiality factor or the inclination of the
loading in the Burzyński-plane with coordinates (ξ, ρ)

tanψ =
ρ

ξ
with ψ ∈ [0, π] (12.69)

is useful for the analysis of measured data. Alternatively, the radius ρ (12.66) can be
scaled as

ρ∗ =

√
3
2
ρ =

√
3I ′2 (12.70)

and the stress triaxiality factor is defined as relation

tanψ∗ =
√

3I ′2
I1

with ψ ∈ [0, π]. (12.71)

This adjustment results from the equivalence

I 2
1 = 3I ′2 (12.72)
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for the uniaxial tensile and compression stresses. The axes of the Burzyński-plane are
then (I1,

√
3I ′2). Using the axes (I1,

√
3I ′2) often leads to rational values in evaluations

and the comparison of approximations simplifies. The comparison of measured data
to approximations using the von Mises hypothesis (12.7) is straightforward.

A.2 Geometric Properties in the π-plane

In the following, details on the computation of geometric properties in the π-plane
are given. The radius ρ(0) for the 0-meridian (meridian with the stress angle θ = 0)
in the chosen cross section (12.15) is obtained setting cos 3θ = 1:

σI = I1 − 2σIII, σII = σIII =
1
3
[
I1 − ρ(0)

]
, (12.73)

or
σI = σII =

1
2
(I1 − σIII) , σIII =

1
3
[
I1 + 2 ρ(0)

]
. (12.74)

The radius ρ(π/12) for the π/12-meridian is obtained using cos 3θ =
√

2/2:

σI = I1 +
1
√

3

√
(I1 − 3σIII)2 − 2σIII,

σII = −
1
√

3

√
(I1 − 3σIII)2 + σIII,

σIII =
1
3

[
I1 −

√
2 −

√
3 ρ(π/12)

]
,

(12.75)

or
σI = I1 +

1
√

3

√
(I1 − 3σIII)2 − 2σIII,

σII = −
1
√

3

√
(I1 − 3σIII)2 + σIII,

σIII =
1
3

[
I1 +

√
2 +

√
3 ρ(π/12)

]
,

(12.76)

or
σI = σII =

1
6

[
3 I1 ±

√
3
√
(I1 − 3σIII)2 − 3σIII

]
,

σIII =
1
3

[
I1 −

√
2 ρ(π/12)

]
.

(12.77)

The radius ρ(π/6) for the π/6-meridian is obtained with cos 3θ = 0 or I ′3 = 0:

σI =
1
3

I1 σII =
2
3

I1 − σIII, σIII =
1
3

[
I1 −

√
3 ρ(π/6)

]
, (12.78)
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or

σI =
1
3

I1 σII =
2
3

I1 − σIII, σIII =
1
3

[
I1 +

√
3 ρ(π/6)

]
. (12.79)

For the π/3-meridian setting cos 3θ = −1 yields

σI = I1 − 2σIII, σII = σIII =
1
3
[I1 + ρ(π/3)] , (12.80)

or
σI = σII =

1
2
(I1 − σIII) , σIII =

1
3
[I1 − 2 ρ(π/3)] . (12.81)

Inserting the above stress states into the equation of the criterion Φ (12.3), the values
ρ(0), ρ(π/12), ρ(π/6), and ρ(π/3) in the chosen cross section I1 = const. can be
computed as the respective smallest positive solution.

A.3 Identification of Limit Surface for Pressure-sensitive
Materials

The relations (12.14) describe certain geometrical properties in the π-plane. In
the following, additional points for pressure-sensitive materials are discussed: The
loadings C and TT lie on the π/3-meridian (Fig. 12.2):

σI = σII = 0, σIII = −rC
60 σeq (12.82)

and
σI = σII = rTT

60 σeq, σIII = 0. (12.83)

The loadings K, Tt, and Cc lie on the π/6-meridian:

σI = −σIII =
1
√

3
rK
30 σeq, σII = 0, (12.84)

σI = 0, 2σII = σIII = −
2
√

3
rCc
30 σeq, (12.85)

and
σI = 2σII =

2
√

3
rTt
30 σeq, σIII = 0. (12.86)

The loadings CC and uniaxial tensile loading T lie on the 0-meridian:

σI = 0, σII = σIII = −rCC
0 σeq (12.87)

and
σI = σeq, σII = σIII = 0. (12.88)
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Table 12.3 Basic loading: points, coordinates in the Burzyński-plane (I1,
√

3I ′2), stress angle
(12.67)-(12.68), and the triaxiality factor tanψ∗ (12.71)

Loading Label Coordinates θ ϕ tanψ∗

hydrostatic tension TTT (3 rTTT, 0) – – 0

equibiaxial tension TT (2 rTT
60 , rTT

60 ) π/3 π/6 1/2

biaxial tension with I ′3 = 0 Tt (
√

3 rTt
30 , r

Tt
30) π/6 0 1/

√
3

tension T (1, 1) 0 −π/6 1

torsion K (0, rK
30) π/6 0 ∞

compression C (−rC
60, r

C
60) π/3 π/3 −1

equibiaxial compression Cc (−
√

3 rCc
30 , r

Cc
30 ) π/6 0 −1/

√
3

biaxial compression with I ′3 = 0 CC (−2 rCC
0 , rCC

0 ) 0 −π/6 −1/2

hydrostatic compression CCC (−3 rCCC, 0) – – 0

The values for the plane stress state at the angle θ = π/12 and π/4 can be introduced
equivalently.

The triaxiality factor tanψ∗ (12.71) defines the elevation of the straight line in the
Burzyński-plane (I1,

√
3I ′2) through the origin (0, 0) which contains corresponding

points of the surface Φ (Table 12.3). Some examples are shown in Tables 12.4, 12.5,
and 12.6.

For criteria of pressure-insensitive material behavior Eq. (12.4) with the linear I1-
substitution Eq. (12.11) the estimation of the hydrostatic strength (12.21) is obtained
from a straight line through the measured points:

• on the 0-meridian: CC(−2 rCC
0 , r

CC
0 ) and T(1, 1)

I1/RT − 1
−2rCC

0 − 1
=

√
3I ′2/RT − 1
rCC
0 − 1

(12.89)

• on the π/6-meridian: C(−rC
60, r

C
60) and TT(2rTT

60 , r
TT
60 )

I1/RT + rC
60

2rTT
60 + rC

60
=

√
3I ′2/RT − rC

60

rTT
60 − rC

60
(12.90)

• on the π/3-meridian: K(0, rK
30) and Cc(−

√
3 rCc

30 , r
Cc
30 )

I1/RT

−
√

3rCc
30

=

√
3I ′2/RT − rK

30

rCc
30 − rK

30
, (12.91)

K(0, rK
30) and Tt(

√
3 rTt

30, r
Tt
30) or Cc(−

√
3 rCc

30 , r
Cc
30 ) and Tt(

√
3 rTt

30, r
Tt
30) accordingly.
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Setting
√

3I ′2 = 0 I1 = 3 RTTT for the hydrostatic ten-
reciprocal value of 3 RTTT/RT gives the parameter γ1 (12.21)

γ1 =
1

3 rTTT . (12.92)

The geometrical values r30 and r60 on the corresponding meridians can be estimated
with the discussed meridians (12.89)–(12.91) and the chosen cross section (12.15).
For the criteria (12.12) as functions of the stress angle θ the geometrical values at the
cross section are

r15 =
Ω(0)
Ω(π/4)

, r30 =
Ω(0)
Ω(π/6)

, and r60 =
Ω(0)
Ω(π/3)

. (12.93)

The values for the basic tests as functions of the geometrical values are

• on the 0-meridian

1 − γ1 · (−2 rCC
0 )

1 − γ1
= rCC

0
Ω(0)
Ω(0)

or rCC
0 =

1
1 − 3 γ1

, (12.94)

• on the π/6-meridian

1 − γ1 · (−
√

3 rCc
30 )

1 − γ1
=

rCc
30

r30
,

1 − γ1 · 0
1 − γ1

=
rK
30

r30
, (12.95)

and
1 − γ1 · (

√
3 rTt

30)
1 − γ1

=
rTt
30

r30
, (12.96)

• on the π/3-meridian

1 − γ1 · (−rC
60)

1 − γ1
=

rC
60

r60
,

1 − γ1 · (2 rTT
60 )

1 − γ1
=

rTT
60

r60
. (12.97)

For the criteria (12.12) as functions of the stress angle ϕ the values follow in
analogy (Table 12.3). With γ1 = 0 (pressure-insensitive material behavior) the
geometrical values (12.93) and the values for the basic tests (12.95)–(12.97) coincide,
see Eq. (12.22).

A.4 Derivation of the Modified Yu Strength Criterion

The Yu strength criterion (YSC) contains three classical criteria (the Tresca and
the Schmidt-Ishlinsky hypotheses (Fig. 12.3c) and the normal stress hypothesis)
and the Sokolovsky criterion. It was formulated in principal stresses (Yu, 2002,
2018; Yu and Yu, 2019) and as a polynomial function (Kolupaev, 2018). The Yu

in the criterion we obtain
sile loading. The
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yield criterion (YYC) is obtained setting rC
60 = 1 in the YSC. It contains the criteria

of hexagonal symmetry: the Tresca and the Schmidt-Ishlinsky hypotheses and
the Sokolovsky criterion (Fig. 12.6, transition H1–D1–H2). In order to avoid plane
intersections, the YYC is formulated as a function of the stress angle θ (Kolupaev,
2017, 2018)

ΦYYC =
√

3I ′2
Ω(θ, χ)
Ω(0, χ)

− σeq = 0, r60 = rC
60 = 1, (12.98)

with the shape function

Ω(θ, χ) = sin
(
χ
π

6
+ arcsin

[
cos

(
1
3

arcsin [cos 3 θ]
)] )
, χ ∈ [0, 1]. (12.99)

The values r15 and r30 of the YYC can be computed with (12.93) as

r15 =
Ω(0, χ)
Ω(π/12, χ)

= csc
[ π
12

(5 + 2 χ)
]

sin
[ π
6
(2 + χ)

]
(12.100)

and
r30 =

Ω(0, χ)
Ω(π/6, χ)

=
1
2

(√
3 + tan

[ π χ
6

] )
. (12.101)

The YYC yields with

• χ = 0 the Tresca hypothesis,
• χ = 1/2 the Sokolovsky criterion, and
• χ = 1 the Schmidt-Ishlinsky hypothesis.

The linear combination of the YYC Eqs. (12.98)–(12.99) and the normal stress
hypothesis as function of the stress angle θ, cf. Chen and Zhang (1991)

ΦNSH =
√

3I ′2 cos θ −
σeq − γ∗1 I1

1 − γ∗1
= 0 with γ∗1 =

1
3
, (12.102)

leads to the modified Yu strength criterion (mYu) which is similar to the YSC

3
1 + 2 rC

60
ΦYYC +

(
1 −

3
1 + 2 rC

60

)
ΦNSH = 0 for rC

60 ≥ 1. (12.103)

By solving Eq. (12.103) for the equivalent stress σeq we obtain

σeq =
1

3 rC
60

[√
3I ′2

[
3
Ω(θ, χ)
Ω(0, χ)

+ 2 (rC
60 − 1) cos θ

]
+ I1 (rC

60 − 1)
]
. (12.104)

The basic test values rK
30, rTt

30, and rCc
30 are
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rK
30 =

rC
60√

3
3

(rC
60 − 1) +

Ω(π/6, χ)
Ω(0, χ)

, (12.105)

rTt
30 =

rC
60

2
√

3
3

(rC
60 − 1) +

Ω(π/6, χ)
Ω(0, χ)

, (12.106)

rCc
30 = rC

60
Ω(0, χ)
Ω(π/6, χ)

. (12.107)

The geometrical values r15, r30, and r60 follow with

r15 =
1 + 2 rC

60√
2 +

√
3 (rC

60 − 1) + 3
Ω(π/12, χ)
Ω(0, χ)

, (12.108)

r30 =
1 + 2 rC

60
√

3 (rC
60 − 1) + 3

Ω(π/6, χ)
Ω(0, χ)

, (12.109)

r60 =
1 + 2 rC

60

(rC
60 − 1) + 3

Ω(π/3, χ)
Ω(0, χ)

=
1 + 2 rC

60

2 + rC
60
. (12.110)

Setting rC
60 = 1 we obtain the geometrical values r15 (12.100) and r30 (12.101) of the

YYC Eqs. (12.98)–(12.99). The value γ1 follows to

γ1 =
1
3

(
1 −

1
rC
60

)
. (12.111)

A.5 Properties of the Podgórski Criterion

The geometrical values r60, r30, and r15 (12.93) of the Podgórski criterion are
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r60 =

cos
[
1
3
(
πβ − arccos η

) ]
cos

[
1
3
(
πβ − arccos[−η]

) ] ,

r30 =

cos
[
1
3
(
πβ − arccos η

) ]
sin

[
1
3
π
(
β + 1

) ] ,

r15 =

cos
[
1
3
(
πβ − arccos η

) ]
cos

[
1
3
(
πβ − arccos[η/

√
2]
) ] .

(12.112)

The basic test values follow with Eq. (12.94)–(12.97). Note that in order to avoid
numerical issues the real part function Re can be introduced to the shape function
(12.28).

Ω(θ, β, η) = Re
[
cos

[
1
3
(πβ − arccos[ η cos 3 θ ])

] ]
. (12.113)

A.6 Properties of the Modified Altenbach-Zolochevsky Criterion

The geometrical value r15 is computed as

r15 =

√
2 +

√
3 r30

1 + r30
, (12.114)

and does not depend on the value r60 (Fig. 12.11), cf. Fig. 12.10. The geometrical
value r30 reads

r30 =
2
√

3 r60
2 + 2 r60 − r60 ξm

. (12.115)

Solving Eq. (12.115) for the parameter ξm leads to

ξm = 2

(
1 +

1
r60

−
√

3
r30

)
. (12.116)

The basic test value rCC
0 follows with (12.94). Further basic test values can be

obtained in analogy to (12.95-12.97) for the corresponding angle ϕ (Table 12.3).
A C0-continuously differentiable approximation of the Sayir criterion (R1–M–R2)
is obtained by equating the values r30 in (12.115) and r30 of the Sayir criterion
(Kolupaev, 2017, 2018)
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r30 =
r60√

1 − r60 + r2
60

(12.117)

with
ξm =

2
r60

(
1 + r60 −

√
3
√

1 − r60 + r2
60

)
. (12.118)

A.7 Measured Concrete Data

Data measured by Kupfer for three types of concrete with uniaxial compressive
strength RC = 18.73, 30.50, and 58.25 MPa, respectively, are given in his Table 5 in
Kupfer (Kupfer, 1973). These data were further studied by Kupfer et al. in several
publications (Kupfer et al, 1969; Kupfer and Zelger, 1968; Kupfer and Gerstle, 1973;
Kupfer and Zelger, 1973).

TheσI−σII diagram by Kupfer contains additional measured points (Kupfer, 1973).
These points, normalized with respect to the corresponding uniaxial compressive
strength RC, are:

• RC = 18.73 MPa (191 kp/cm2, 2717 psi): point P1(−0.30, 0.09),
• RC = 30.50 MPa (311 kp/cm2, 4424 psi): points P2(−0.26, 0.08) and

P3(−1.22, −1.01), and
• RC = 58.25 MPa (594 kp/cm2, 8449 psi): point P4(−0.18, 0.06).

Data given by Kupfer (Kupfer, 1973) are completed with the above points (Tables
12.4, 12.5, and 12.6) for fitting strength criteria. The basic loading points in these
tables are labeled in accordance with Table 12.3: T (tension), TT (equibiaxial tension),
C (compression), and CC (equibiaxial compression). The points Li are used for the
estimation of the value rTt

30 (Table 12.7). The measured points additionally weighted
by approximations with the discussed criteria are marked with Mi.

A.8 Estimates and Parameter Studies

Table 12.7 shows estimates for the position of the hydrostatic node for each test series by
Kupfer. Tables 12.8 and 12.9 list identified parameters and corresponding restrictions
for different criteria for the concrete with RC = 18.73 MPa. Tables 12.10–12.11 and
Tables 12.12–12.13 complement the data for the concretes with RC = 30.50 MPa and
RC = 58.25 MPa, respectively. Tables 12.14 and 12.15–12.16 show approximations
obtained using the Ottosen and Hsieh-Ting-Chen criteria, respectively.
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Table 12.4 Data measured by Kupfer (Kupfer, 1973) for concrete with RC = 18.73 MPa
normalized with respect to RT = 1.96 MPa. The axiatoric-deviatoric invariants (12.62) – (12.64),
the invariant

√
3 I ′2, the stress angle θ Eq. (12.67), and the inclination ψ Eq. (12.71) in the

Burzyński-plane are given for the points of the plane stress state σI − σII , σIII = 0

Loading σI σII I1 I ′2 I ′3
√

3 I ′2 cos 3θ θ ψ
point [−] [−] [−] [−] [−] [−] [−] [deg] [deg]

CC −11.25 −11.25 −22.50 42.1875 105.468750 11.25 1 0 −26.6
M1 −12.10 −6.29 −18.39 36.6220 5.904154 10.48 0.0692 28.7 −29.7
M2 −11.90 −2.62 −14.52 39.1032 −75.900560 10.83 −0.8065 47.9 −36.7
C −9.55 0 −9.55 30.4008 −64.517324 9.55 −1 60 −45
– −9.00 0.47 −8.53 28.4770 −57.985383 9.24 −0.9914 57.5 −47.3
– −8.25 0.58 −7.67 24.3868 −45.641113 8.55 −0.9846 56.7 −48.1
– −6.95 0.72 −6.23 17.9300 −28.285879 7.33 −0.9679 55.2 −49.6
– −4.15 0.84 −3.31 7.1347 −6.530822 4.63 −0.8903 51.0 −54.4
P1 −2.86 0.88 −1.98 3.8155 −2.232968 3.38 −0.7784 47.0 −59.6
T 0 1 1 0.3333 0.074074 1 1 0 45
L1 0.25 1.07 1.32 0.3140 0.053341 0.97 0.7874 12.7 36.4
L2 0.58 1.07 1.65 0.2868 −0.008161 0.93 −0.1380 32.7 29.4
TT 1 1 2 0.3333 −0.074074 1 −1 60 26.6

Table 12.5 Data measured by Kupfer (Kupfer, 1973) for concrete with RC = 30.50 MPa
normalized with respect to RT = 2.79 MPa

Loading σI σII I1 I ′2 I ′3
√

3 I ′2 cos 3θ θ ψ
point [−] [−] [−] [−] [−] [−] [−] [deg] [deg]

CC −12.57 −12.57 −25.14 52.6718 147.134955 12.57 1 0 −26.6
P2 −13.34 −11.04 −24.38 50.8390 123.372578 12.35 0.8843 9.3 −26.9
M3 −13.56 −7.05 −20.61 45.9681 8.302879 11.74 0.0692 28.7 −29.7
M4 −13.03 −2.87 −15.89 46.8690 −99.598833 11.86 −0.8065 47.9 −36.7
C −10.95 0 −10.95 39.9726 −97.273015 10.95 −1 60 −45
– −9.33 0.49 −8.85 30.6101 −64.620990 9.58 −0.9914 57.5 −47.3
– −8.45 0.59 −7.86 25.5878 −49.053849 8.76 −0.9846 56.6 −48.1
– −6.76 0.70 −6.06 16.9659 −26.035380 7.13 −0.9679 55.2 −49.6
– −4.01 0.81 −3.20 6.6750 −5.909940 4.47 −0.8903 51.0 −54.4
P3 −2.84 0.85 −1.99 3.7355 −2.187486 3.35 −0.7872 47.3 −59.2
T 0 1 1 0.3333 0.074074 1 1 0 45
L3 0.25 1.07 1.32 0.3164 0.053933 0.97 0.7874 12.7 36.4
L4 0.56 1.03 1.59 0.2667 −0.007316 0.89 −0.1380 32.6 29.4
TT 1 1 2 0.3333 −0.074074 1 −1 60 26.6
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Table 12.6 Data measured by Kupfer (Kupfer, 1973) for concrete with RC = 58.25 MPa
normalized with respect to RT = 5.12 MPa

Loading σI σII I1 I ′2 I ′3
√

3 I ′2 cos 3θ θ ψ
point [−] [−] [−] [−] [−] [−] [−] [deg] [deg]

CC −13.05 −13.05 −26.09 56.7325 164.473547 13.05 1 0 −26.6
M5 −14.66 −7.62 −22.28 53.7222 10.489972 12.70 0.0692 28.7 −29.7
M6 −14.04 −3.09 −17.13 54.4485 −124.710928 12.78 −0.8065 47.9 −36.7
C −11.38 0 −11.38 43.1629 −109.147567 11.38 −1 60 −45
– −8.45 0.44 −8.01 25.0926 −47.961777 8.68 −0.9914 57.5 −47.3
– −6.82 0.48 −6.34 16.6650 −25.782965 7.07 −0.9846 56.6 −48.1
– −4.94 0.51 −4.43 9.0680 −10.173324 5.22 −0.9679 55.2 −49.6
– −3.30 0.67 −2.63 4.4978 −3.268868 3.67 −0.8903 51.0 −54.4
P4 −2.02 0.65 −1.37 1.9427 −0.790808 2.41 −0.7588 46.5 −60.5
T 0 1 1 0.3333 0.074074 1 1 0 45
L5 0.22 0.97 1.19 0.2567 0.039425 0.88 0.7874 12.7 36.4
L6 0.48 0.89 1.37 0.1971 −0.004649 0.77 −0.1380 32.6 29.4
TT 0.93 0.93 1.86 0.2878 −0.059413 0.93 −1 60 26.6

Table 12.7 Position of the hydrostatic nodes 1/γ1 on the axis I1 estimated from a straight line
through the points T and CC on the 0-meridian and through the points C and TT on the
π/3-meridian. The values rK

30, rCc
30 , and rTt

30 are estimated from a straight line through the closest
points

RC γ1 [−] γ1 [−] rCc
30 [−] rK

30 [−] rTt
30 [−]

[MPa] straight line straight line straight line straight line straight line
T–CC C–TT M1–M2 P–T L1–L2

18.73 0.3037 0.2984 10.50 1.80 0.93
30.50 0.3068 0.3029 11.75 1.78 0.90
58.25 0.3078 0.3295 12.70 1.60 0.78
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Table 12.8 Approximation of the measured data by Kupfer with RC = 18.73 MPa (Table 12.4)
with the discussed criteria. The objective functions f∞ and fray are used for comparison of
approximations

Crit. r15
[−]

r30
[−]

r60
[−]

γ1
[−]

Parameters
[−]

f2
[−]

f∞
[−]

fray
[−]

(1
2.

25
)

1.04 1.15 1.74 0.2984 rC
60 = 9.5500, χ = 1.0000 0.101975 0.586026 0.386292

1.03 1.15 1.74 0.2984 rC
60 = 9.5500, χ = 0.8658 0.104695 0.591279 0.389918

1.05 1.20 1.74 0.2984 rC
60 = 9.5500, χ = 1.8221 0.098926 0.551753 0.557997

1.03 1.14 1.77 0.3037 rCC
0 = 11.2500, χ = 0.7408 0.056954 0.444263 0.331007

1.02 1.12 1.77 0.3037 rCC
0 = 11.2500, χ = 0.2596 0.060221 0.465772 0.307861

1.03 1.13 1.77 0.3037 rCC
0 = 11.2500, χ = 0.4598 0.058004 0.456457 0.308258

(1
2.

30
) 1.03 1.14 1.70 0.3037 β = 0.0173, γ = 0.8404 0.041897 0.359271 0.332844

1.02 1.12 1.70 0.3037 β = 0.0526, γ = 0.9082 0.051722 0.432348 0.269141
1.02 1.12 1.70 0.3037 β = 0.0589, γ = 0.9210 0.056594 0.453178 0.277316
1.02 1.12 1.70 0.3037 β = 0.0560, γ = 0.9149 0.054139 0.443095 0.272733

(1
2.

35
) 1.04 1.15 1.70 0.3037 r60 = 1.7049, ξm = 0.1731 0.099343 0.583903 0.411533

1.02 1.12 1.70 0.3037 r60 = 1.7049, ξm = 0.0828 0.107750 0.609975 0.368762
1.04 1.17 1.70 0.3037 r60 = 1.7049, ξm = 0.2245 0.101147 0.569055 0.545360
1.03 1.13 1.70 0.3037 r60 = 1.7049, ξm = 0.1200 0.102506 0.599250 0.365609

(1
2.

42
) 1.03 1.13 1.70 0.3037 α = 0.1731, β = 0.0322, γ = 0.9913 0.024633 0.265907 0.276391

1.02 1.12 1.70 0.3037 α = 0.1731, β = 0.0497, γ = 1.0000 0.031098 0.349299 0.218284
1.02 1.11 1.70 0.3037 α = 0.1731, β = 0.0604, γ = 1.0000 0.043493 0.417015 0.243727
1.02 1.12 1.70 0.3037 α = 0.1731, β = 0.0564, γ = 0.9159 0.054527 0.444733 0.273408

Table 12.9 Restrictions and values for the evaluations of the measured data normalized w.r.t.
RT = 1.96 MPa (Table 12.4) for the approximations (Table 12.8). The surfaces do not cross the
hydrostatic axis in the compression region: rCCC → ∞

Restrictions rCC
0 rCc

30 rC
60 rK

30 rTt
30 rTT

60 rTTT

Crit. Points Parameters [−] [−] [−] [−] [−] [−] [−] [−]

(1
2.

25
)

C χ ∈ [0, 1] 9.55 11.03 9.55 1.65 0.89 1 1.12
C M1 χ ∈ [0, 1] 9.55 10.60 9.55 1.64 0.89 1 1.12
C M2 χ ∈ [0, 1] restriction for χ is exceeded

CC χ ∈ [0, 1] 11.25 12.04 11.25 1.64 0.88 1 1.10
CC M1 χ ∈ [0, 1] 11.25 10.51 11.25 1.61 0.87 1 1.10
CC M2 χ ∈ [0, 1] 11.25 11.12 11.25 1.62 0.88 1 1.10

(1
2.

30
) CC C γ ∈ [0, 1], β ∈ [0, 1] 11.25 11.84 9.55 1.64 0.88 0.98 1.10

CC C M1 γ ∈ [0, 1], β ∈ [0, 1] 11.25 10.50 9.55 1.61 0.87 0.98 1.10
CC C M2 γ ∈ [0, 1], β ∈ [0, 1] 11.25 10.27 9.55 1.60 0.87 0.98 1.10
CC C M1 − M2 γ ∈ [0, 1], β ∈ [0, 1] 11.25 10.37 9.55 1.61 0.87 0.98 1.10

(1
2.

35
) CC C r60 ∈ [1, 2], ξm ∈ [0, 2/r60 − 1] 11.25 13.00 9.55 1.66 0.89 0.98 1.10

CC C M1 r60 ∈ [1, 2], ξm ∈ [0, 2/r60 − 1] 11.25 10.51 9.55 1.61 0.87 0.98 1.10
CC C M2 r60 ∈ [1, 2], ξm ∈ [0, 2/r60 − 1] restriction for ξ is exceeded
CC C M1 − M2 r60 ∈ [1, 2], ξm ∈ [0, 2/r60 − 1] 11.25 11.41 9.55 1.63 0.88 0.98 1.10

(1
2.

42
) CC C α, β, γ ∈ [0, 1] 11.25 11.28 9.55 1.63 0.88 0.98 1.10

CC C M1 α, β, γ ∈ [0, 1] 11.25 10.51 9.55 1.61 0.87 0.98 1.10
CC C M2 α, β, γ ∈ [0, 1] 11.25 10.10 9.55 1.60 0.87 0.98 1.10
CC C M1 − M2 α, β, γ ∈ [0, 1] 11.25 10.36 9.55 1.61 0.87 0.98 1.10
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Table 12.10 Approximation of the measured data by Kupfer with RC = 30.50 MPa (Table 12.5)
with the discussed criteria. The objective functions f∞ and fray are used for comparison of
approximations

Crit. r15
[−]

r30
[−]

r60
[−]

γ1
[−]

Parameters
[−]

f2
[−]

f∞
[−]

fray
[−]

(1
2.

25
)

1.04 1.15 1.77 0.3029 rC
60 = 10.9507, χ = 1.0000 0.057316 0.482342 0.332630

1.03 1.14 1.77 0.3029 rC
60 = 10.9507, χ = 0.7814 0.060343 0.490058 0.340084

1.04 1.18 1.77 0.3029 rC
60 = 10.9507, χ = 1.4851 0.056122 0.464921 0.406116

1.03 1.13 1.79 0.3068 rCC
0 = 12.5704, χ = 0.5618 0.032054 0.360376 0.258222

1.02 1.12 1.79 0.3068 rCC
0 = 12.5704, χ = 0.2693 0.033323 0.370303 0.248285

1.02 1.13 1.79 0.3068 rCC
0 = 12.5704, χ = 0.2849 0.033185 0.369747 0.247891

(1
2.

30
) 1.03 1.14 1.74 0.3068 β = 0.0281, γ = 0.8882 0.020901 0.281872 0.255183

1.02 1.12 1.74 0.3068 β = 0.0462, γ = 0.9240 0.024478 0.329869 0.205349
1.02 1.12 1.74 0.3068 β = 0.0573, γ = 0.9467 0.031512 0.372026 0.222628
1.02 1.12 1.74 0.3068 β = 0.0527, γ = 0.9372 0.028009 0.353001 0.211167

(1
2.

35
) 1.03 1.15 1.74 0.3068 r60 = 1.7411, ξm = 0.1245 0.054737 0.487200 0.309511

1.02 1.12 1.74 0.3068 r60 = 1.7411, ξm = 0.0687 0.058247 0.503709 0.288861
1.04 1.16 1.74 0.3068 r60 = 1.7411, ξm = 0.1570 0.055925 0.477593 0.381836
1.03 1.13 1.74 0.3068 r60 = 1.7411, ξm = 0.0905 0.056043 0.497271 0.284960

(1
2.

42
) 1.03 1.13 1.74 0.3068 α = 0.1487, β = 0.0326, γ = 0.9991 0.010906 0.229776 0.226458

1.02 1.12 1.74 0.3068 α = 0.1487, β = 0.0441, γ = 1.0000 0.013683 0.233645 0.170687
1.02 1.12 1.74 0.3068 α = 0.1487, β = 0.0575, γ = 1.0000 0.026592 0.336903 0.209145
1.02 1.12 1.74 0.3068 α = 0.1462, β = 0.0533, γ = 0.9384 0.028414 0.355348 0.212328

Table 12.11 Restrictions and values for the evaluations of the measured data normalized w.r.t.
RT = 2.79 MPa (Table 12.5) for the approximations (Table 12.10). The surfaces do not cross the
hydrostatic axis in the compression region: rCCC → ∞

Restrictions rCC
0 rCc

30 rC
60 rK

30 rTt
30 rTT

60 rTTT

Crit. Points Parameters [−] [−] [−] [−] [−] [−] [−] [−]

(1
2.

25
)

C χ ∈ [0, 1] 10.95 12.64 10.95 1.66 0.89 1 1.10
C M3 χ ∈ [0, 1] 10.95 11.86 10.95 1.64 0.88 1 1.10
C M4 χ ∈ [0, 1] restriction for χ is exceeded

CC χ ∈ [0, 1] 12.57 12.79 12.57 1.64 0.88 1 1.09
CC M3 χ ∈ [0, 1] 12.57 11.78 12.57 1.62 0.87 1 1.09
CC M4 χ ∈ [0, 1] 12.57 11.83 12.57 1.62 0.87 1 1.09

(1
2.

30
) CC C γ ∈ [0, 1], β ∈ [0, 1] 12.57 12.64 10.95 1.64 0.88 0.99 1.09

CC C M3 γ ∈ [0, 1], β ∈ [0, 1] 12.57 11.77 10.95 1.62 0.87 0.99 1.09
CC C M4 γ ∈ [0, 1], β ∈ [0, 1] 12.57 11.25 10.95 1.61 0.87 0.99 1.09
CC C M3 − M4 γ ∈ [0, 1], β ∈ [0, 1] 12.57 11.46 10.95 1.62 0.87 0.99 1.09

(1
2.

35
) CC C r60 ∈ [1, 2], ξm ∈ [0, 2/r60 − 1] 12.57 13.56 10.95 1.65 0.88 0.99 1.09

CC C M3 r60 ∈ [1, 2], ξm ∈ [0, 2/r60 − 1] 12.57 11.78 10.95 1.62 0.87 0.99 1.09
CC C M4 r60 ∈ [1, 2], ξm ∈ [0, 2/r60 − 1] restriction for ξ is exceeded
CC C M3 − M4 r60 ∈ [1, 2], ξm ∈ [0, 2/r60 − 1] 12.57 12.42 10.95 1.63 0.87 0.99 1.09

(1
2.

42
) CC C α, β, γ ∈ [0, 1] 12.57 12.39 10.95 1.63 0.87 0.99 1.09

CC C M3 α, β, γ ∈ [0, 1] 12.57 11.78 10.95 1.62 0.87 0.99 1.09
CC C M4 α, β, γ ∈ [0, 1] 12.57 11.14 10.95 1.61 0.87 0.99 1.09
CC C M3 − M4 α, β, γ ∈ [0, 1] 12.57 11.43 10.95 1.62 0.87 0.99 1.09
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Table 12.12 Approximation of the measured data by Kupfer with RC = 58.25 MPa (Table 12.6)
with the discussed criteria. The objective functions f∞ and fray are used for comparison of
approximations

Crit. r15
[−]

r30
[−]

r60
[−]

γ1
[−]

Parameters
[−]

f2
[−]

f∞
[−]

fray
[−]

(1
2.

25
)

1.04 1.15 1.78 0.3040 rC
60 = 11.3793, χ = 0.9879 0.023397 0.284273 0.245538

1.03 1.15 1.78 0.3040 rC
60 = 11.3793, χ = 0.9244 0.023464 0.281898 0.243994

1.04 1.15 1.78 0.3040 rC
60 = 11.3793, χ = 1.0000 0.023399 0.284727 0.246131

1.02 1.13 1.80 0.3078 rCC
0 = 13.0460, χ = 0.3293 0.018787 0.290799 0.171696

1.03 1.13 1.80 0.3078 rCC
0 = 13.0460, χ = 0.4203 0.018919 0.294128 0.174632

1.03 1.14 1.80 0.3078 rCC
0 = 13.0460, χ = 0.6138 0.020000 0.300903 0.199590

(1
2.

30
) 1.02 1.12 1.75 0.3078 β = 0.0534, γ = 0.9454 0.017017 0.291169 0.137864

1.03 1.13 1.75 0.3078 β = 0.0343, γ = 0.9067 0.021042 0.320538 0.149306
1.02 1.12 1.75 0.3078 β = 0.0489, γ = 0.9359 0.017288 0.298592 0.120174
1.02 1.13 1.75 0.3078 β = 0.0429, γ = 0.9237 0.018373 0.307979 0.117224

(1
2.

35
) 1.03 1.14 1.75 0.3078 r60 = 1.7495, ξm = 0.0920 0.018788 0.274852 0.176708

1.03 1.13 1.75 0.3078 r60 = 1.7495, ξm = 0.0831 0.018888 0.271949 0.173781
1.04 1.17 1.75 0.3078 r60 = 1.7495, ξm = 0.1864 0.030082 0.363400 0.492240
1.03 1.14 1.75 0.3078 r60 = 1.7495, ξm = 0.1084 0.019127 0.280194 0.196362

(1
2.

42
) 1.02 1.12 1.75 0.3078 α = 0.0711, β = 0.0534, γ = 0.9454 0.017017 0.291167 0.137871

1.03 1.13 1.75 0.3078 α = 0.1431, β = 0.0343, γ = 0.9067 0.021042 0.320538 0.149306
1.02 1.12 1.75 0.3078 α = 0.1432, β = 0.0491, γ = 0.9398 0.017283 0.298525 0.120510
1.02 1.13 1.75 0.3078 α = 0.0101, β = 0.0436, γ = 0.9252 0.018190 0.306785 0.116231

Table 12.13 Restrictions and values for the evaluations of the measured data normalized w.r.t.
RT = 5.12 MPa (Table 12.6) for the approximations (Table 12.12). The surfaces do not cross the
hydrostatic axis in the compression region: rCCC → ∞

Restrictions rCC
0 rCc

30 rC
60 rK

30 rTt
30 rTT

60 rTTT

Crit. Points Parameters [−] [−] [−] [−] [−] [−] [−] [−]

(1
2.

25
)

C χ ∈ [0, 1] 11.38 13.09 11.38 1.66 0.89 1 1.10
C M5 χ ∈ [0, 1] 11.38 12.85 11.38 1.65 0.88 1 1.10
C M6 χ ∈ [0, 1] 11.38 13.14 11.38 1.66 0.89 1 1.10

CC χ ∈ [0, 1] 13.05 12.43 13.05 1.63 0.87 1 1.08
CC M5 χ ∈ [0, 1] 13.05 12.76 13.05 1.64 0.87 1 1.08
CC M6 χ ∈ [0, 1] 13.05 13.47 13.05 1.65 0.88 1 1.08

(1
2.

30
) CC C β ∈ [0, 1], γ ∈ [0, 1] 13.05 11.76 11.38 1.62 0.87 0.99 1.08

CC C M5 β ∈ [0, 1], γ ∈ [0, 1] 13.05 12.74 11.38 1.64 0.87 0.99 1.08
CC C M6 β ∈ [0, 1], γ ∈ [0, 1] 13.05 11.99 11.38 1.62 0.87 0.99 1.08
CC C M5 − M6 β ∈ [0, 1], γ ∈ [0, 1] 13.05 12.30 11.38 1.63 0.87 0.99 1.08

(1
2.

35
) CC C r60 ∈ [1, 2], ξm ∈ [0, 2/r60 − 1] 13.05 13.05 11.38 1.64 0.88 0.99 1.08

CC C M5 r60 ∈ [1, 2], ξm ∈ [0, 2/r60 − 1] 13.05 12.76 11.38 1.64 0.87 0.99 1.08
CC C M6 r60 ∈ [1, 2], ξm ∈ [0, 2/r60 − 1] restriction for ξ is exceeded
CC C M5 − M6 r60 ∈ [1, 2], ξm ∈ [0, 2/r60 − 1] 13.05 13.64 11.38 1.65 0.88 0.99 1.08

(1
2.

42
) CC C α, β, γ ∈ [0, 1] 13.05 11.76 11.38 1.62 0.87 0.99 1.08

CC C M5 α, β, γ ∈ [0, 1] 13.05 12.74 11.38 1.64 0.87 0.99 1.08
CC C M6 α, β, γ ∈ [0, 1] 13.05 11.98 11.38 1.62 0.87 0.99 1.08
CC C M5 − M6 α, β, γ ∈ [0, 1] 13.05 12.26 11.38 1.63 0.87 0.99 1.08
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praca odkształcenia jako miara wytężenia materyału). Czasopismo Techniczne 22:34–40, 49–50,
61–62, 80–81

Ishlinsky AY (1940) Hypothesis of strength of shape change (in Russ.: Gipoteza prochnosti
formoizmeneniya). Uchebnye Zapiski Moskovskogo Universiteta, Mekhanika 46:104–114

Ivlev DD (1959) The theory of fracture of solids (in Russ.: K teorii razrusheniya tverdykh tel). J of
Applied Mathematics and Mechanics 23(3):884–895

Ivlev DD (1960) On extremum properties of plasticity conditions (in Russ.: Ob ekstremal’nykh
svoistvakh uslovij plastichnosti). J of Applied Mathematics and Mechanics 24(5):1439–1446

Koca M, Koca NO (2011) Quasi regular polygons and their duals with Coxeter symmetries Dn

represented by complex numbers. In: J. of Physics: Conference Series, Group 28: Physical and
Mathematical Aspects of Symmetry, IOP Publishing, vol 284, pp 1–10

Kolupaev VA (2017) Generalized strength criteria as functions of the stress angle. J of Eng Mechanics
143(9), doi:10.1061/(ASCE)EM.1943-7889.0001322

Kolupaev VA (2018) Equivalent Stress Concept for Limit State Analysis. Springer, Cham
Kolupaev VA, Becker W, Massow H, Dierkes D (2014) Design of test specimens from hard

foams for the investigation of biaxial tensile strength (in German: Auslegung von Probekörpern
aus Hartschaum zur Ermittlung der biaxialen Zugfestigkeit). Forschung im Ingenieurwesen
78(3-4):69–86

Kolupaev VA, Yu MH, Altenbach H (2016) Fitting of the strength hypotheses. Acta Mechanica
227(2):1533–1556

Kolupaev VA, Yu MH, Altenbach H, Bolchoun A (2018) Comparison of strength criteria based
on the measurements on concrete. J of Eng Mechanics 144(6), doi:10.1061/(ASCE)EM.1943-
7889.0001419

Kupfer H (1973) Das Verhalten des Betons unter mehrachsiger Kurzzeitbelastung unter besonderer
Berücksichtigung der zweiachsigen Beanspruchung, Ernst & Sohn, Berlin, pp 1–105. Deutscher
Ausschuss für Stahlbeton, Vol. 229

Kupfer H, Zelger C (1968) Biaxial Strength of Concrete (in German: Zweiachsige Festigkeit
von Beton: Bau und Erprobung der Belastungseinrichtung). Technische Hochschule München,
Materialprüfungsamt für das Bauwesen

Kupfer H, Zelger C (1973) Bau und Erprobung einer Versuchseinrichtung für zweiachsige Belastung,
Ernst & Sohn, Berlin, pp 108–131. Deutscher Ausschuss für Stahlbeton, Vol. 229

Kupfer H, Hilsdorf HK, Rusch H (1969) Behavior of concrete under biaxial stresses, Title no. 66–52.
ACI Journal 66(8):656–666

Kupfer HB, Gerstle KH (1973) Behavior of concrete under biaxial stresses. J of the Eng Mechanics
Division 99(4):853–866

Lade PV (1982) Three-parameter failure criterion for concrete. J of the Engineering Mechanics
Division 108(5):850–863

https://doi.org/10.1061/(ASCE)EM.1943-7889.0001322
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001419
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001419


322 Philipp L. Rosendahl, Vladimir A. Kolupaev, and Holm Altenbach

Launay P, Gachon H (1971) Strain and ultimate strength of concrete under triaxial stress. In:
Proceedings of the First International Conference on Structural Mechanics in Reactor Technology,
Berlin, September 20-24, 1971. Commission of the European Communities, Brussels (EUR-4820),
Vol. 3, paper Hl/3, pp 23–40

Launay P, Gachon H (1972) Strain and ultimate strength of concrete under triaxial stress, paper SP
34-13. In: Kesler CE (ed) Concrete for Nuclear Reactors, Bundesanstalt für Materialprüfung in
Berlin, Oct. 5-9, 1970, ACI Publication SP-34, American Concrete Institute, Detroit, pp 269–282

Launay P, Gachon H, Poitevin P (1970) Déformation et résistance ultime du béton sous étreinte
triaxiale. Annales de l’institut Technique du Batiment et de Travaux Publics, Série: Essais et
Mesures (123) 269(5):21–48

Lebedev AA (1965) Generalized criterion for the fatigue strength (in Russ.: Obobshchennyi kriterij
dlitel’noj prochnosti). In: Thermal Strength of Materials and Structure Elements (in Russ.:
Termoprochnost’ materialov i konstrukcionnykh elementov), vol 3, Naukova Dumka, Kiev, pp
69–76

Leckie FA, Hayhurst DR (1977) Constitutive equations for creep rupture. Acta Metallurgica
25(9):1059–1070

Lee SK, Song YC, Han SH (2004) Biaxial behavior of plain concrete of nuclear containment
building. Nuclear Engineering and Design 227(2):143–153

Link J (1976) Eine Formulierung des zweiaxialen Verformungs- und Bruchverhaltens von Beton
und deren Anwendung auf die wirklichkeitsnahe Berechnung von Stahlbetonplatten. Deutscher
Ausschuss für Stahlbeton 270:1–119

Lubliner J, Oliver J, Oller S, Onate E (1989) A plastic-damage model for concrete. Int J of Solids
and Structures 25(3):299–326

Mariotte E (1718) Traité du Mouvement des Eaux et des Autres Corps Fluides. J. Jambert, Paris
Marti P (1980) Zur plastischen Berechnung von Stahlbeton. Diss., Institut für Baustatik und

Konstruktion ETH Zürich, Birkhäuser Verlag, Basel
Menétrey P, Willam KJ (1995) Triaxial failure criterion for concrete and its generalization. ACI

Structural Journal 92(3)
Mirolyubov IN (1953) On the generalization of the strengt theory based on the octaedral stresses in the

case of brittle materials (in Russ.: K voprosu ob obobshchenii teorii prochnosti oktaedricheskikh
kasatel’nykh napryazhenij na khrupkie materialy). Trudy Leningradskogo Technologicheskogo
Instituta pp 42–52

von Mises R (1913) Mechanik des festen Körpers im plastischen deformablen Zustand. Nachrichten
der Königlichen Gesellschaft der Wissenschaften Göttingen, Mathematisch-physikalische Klasse
pp 589–592

Mittelstedt C, Becker W (2016) Strukturmechanik ebener Laminate. Technische Universtät Darmstadt,
Darmstadt

Mohr O (1900a) Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials.
Zeitschrift des VDI 45:1524–1530

Mohr O (1900b) Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials.
Zeitschrift des VDI 46:1572–1577

Mohr O (1914) Abhandlungen aus dem Gebiete der technischen Mechanik. Wilhelm & Sohn, Berlin
Moradi M, Bagherieh AR, Esfahani MR (2018) Damage and plasticity constants of conventional and

high-strength concrete. Part II: Statistical equation developmentt using genetic programming. Int
J Optim Civil Eng 8(1):135–158

Nielsen MP (1984) Limit analysis and concrete plasticity. Prentice-Hall, Englewood Cliffs
Ottosen NS (1975) Failure and elasticity of concrete. Report Risø-M-1801, Danish Atomic Energy

Commission, Research Establishment Risö, Engineering Department, Roskilde
Ottosen NS (1977) A failure criterion for concrete. J of the Engineering Mechanics Division

103(4):527–535
Ottosen NS (1980) Nonlinear finite element analysis of concrete structures. Tech. rep., Risø-R-411,

Roskilde: Risø National Laboratory
Ottosen NS, Ristinmaa M (2005) The Mechanics of Constitutive Modeling. Elsevier Science, London



12 Extreme Yield Figures for Universal Strength Criteria 323

Park H, Kim JY (2005) Plasticity model using multiple failure criteria for concrete in compression.
Int J of Solids and Structures 42(8):2303–2322

Paul B (1968) Macroscopic plastic flow and brittle fracture. In: Liebowitz H (ed) Fracture: An
Advanced Treatise, vol II, Academic Press, New York, pp 313–496

Pisarenko GS, Lebedev AA (1976) Deformation and Strength of Materials under Complex Stress
State (in Russ.: Deformirovanie i prochnost’ materialov pri slozhnom napryazhennom sostoyanii).
Naukowa Dumka, Kiev

Podgórski J (1984) Limit state condition and the dissipation function for isotropic materials. Archives
of Mechanics 36(3):323–342

Podgórski J (1985) General failure criterion for isotropic media. J of Engineering Mechanics
111(2):188–201

Ren XD, Yang WZ, Zhou Y, Li J (2008) Behavior of high-performance concrete under uniaxial and
biaxial loading. ACI Materials Journal 105(6):548–557

Sandel GD (1919) Über die Festigkeitsbedingungen: Ein Beitrag zur Lösung der Frage der zulässigen
Anstrengung der Konstruktionsmaterialen. Diss., TeH, Stuttgart

Sayir M (1970) Zur Fließbedingung der Plastizitätstheorie. Ingenieur-Archiv 39:414–432
Sayir M, Ziegler H (1969) Der Verträglichkeitssatz der Plastizitätstheorie und seine Anwendung auf

räumlich unstetige Felder. Zeitschrift für angewandte Mathematik und Physik ZAMP 20(1):78–93
Schimmelpfennig K (1971) Concrete strength under multiaxial stress (in German: Die Festigkeit

des Betons bei mehraxialer Belastung). Bericht Nr. 5, Institut für Konstruktiven Ingenieurbau,
Forschungsgruppe Reaktordruckbehälter, Ruhr-Universität Bochum

Schmidt R (1932) Über den Zusammenhang von Spannungen und Formänderungen im Verfesti-
gungsgebiet. Ingenieur-Archiv 3(3):215–235

Seow PEC, Swaddiwudhipong S (2005) Failure surface for concrete under multiaxial load - A
unified approach. J of Materials in Civil Engineering, ASCE 17(2):219–228

Shesterikov SA (1960) On the theory of ideal plastic solid (in Russ.: K postroeniju teorii ideal’no
plastichnogo tela). Prikladnaja Matematika i Mekhanika, Otdelenie Tekhnicheskikh Nauk
Akademii Nauk Sojusa SSR 24(3):412–415

Speck K (2008) Beton unter mehraxialer Beanspruchung. Diss., Fakultät Bauingenieurwesen,
Technische Universität Dresden

Sun L, Huang WM, Purnawali H (2011) Constitutive model for concrete under multiaxial loading
conditions. Advanced Materials Research 163–167:1171–1174

Tasuji ME (1976) The behavior of plan concrete subject to biaxial stress. Research report no. 360,
Department of Structural Engineering, Cornell University, Ithaca

Tasuji ME, Slate FO, Nilson AH (1978) Stress-strain response and fracture of concrete in biaxial
loading. ACI J Proceedings 75(7):306–312

Tasuji ME, Nilson AH, Slate FO (1979) Biaxial stress-strain relationships for concrete. Magazine of
Concrete Research 31(109):217–224

Timoshenko SP (1953) History of Strength of Materials: With a Brief Account of the History of
Theory of Elasticity and Theory of Structure. McGraw-Hill, New York

Torre C (1947) Einfluß der mittleren Hauptnormalspannung auf die Fließ- und Bruchgrenze.
Österreichisches Ingenieur-Archiv I(4/5):316–342

Tóth LF (1964) Regular Figures. Pergamon Press, Oxford
Tresca H (1868) Mémoire sur l’ecoulement des corps solides. Mémoires Pres par Div Savants

18:733–799
Troost A, Betten J (1974) Zur Frage der Konvexität von Fließbedingungen bei plastischer Inkom-

pressibilität und Kompressibilität. Mechanics Research Communications 1:73–78
Walser H (2018) Isogonal polygons (in German: Isogonale Vielecke). http://www.walser-h-m.ch,

Frauenfeld
Willam KJ, Warnke EP (1975) Constitutive model for the triaxial behavior of concrete. In: Colloquium

on Concrete Structures Subjected to Triaxial Stresses, vol 19, pp 1–30
Wolfram S (2003) The Mathematica Book: The Definitive Best-Selling Presentation of Mathematica

by the Creator of the System. Wolfram Media, Champaign
Wronski AS, Pick M (1977) Pyramidal yield criteria for epoxides. J of Materials Science 12(1):28–34



324 Philipp L. Rosendahl, Vladimir A. Kolupaev, and Holm Altenbach

Wu EM (1973) Phenomenological anisotropic failure criterion. In: Broutman LJ, Krock RH,
Sendeckyj GP (eds) Treatise on Composite Materials, Academic Press, New York, vol 2, pp
353–431

Xiaoping V, Ottosen NS, Thelandersson S, Nielsen MP (1989) Review of constructive models
for concrete, EUR 12394 EN. Final Report Ispra, Reactor Safety Programme 1985-1987,
Commission of the European Communities, Nuclear Science and Technology, Contract No.
3301-87-12 ELISPDK, Luxembourg

Yagn YI (1931) New methods of strength prediction (in Russ.: Novye metody rascheta na prochnost’).
Vestnik inzhenerov i tekhnikov 6:237–244

Yu MH (1961) General behaviour of isotropic yield function (in Chinese). Scientific and Technolog-
ical Research Paper of Xi’an Jiaotong University pp 1–11

Yu MH (2002) Advances in strength theories for materials under complex stress state in the 20th
century. Applied Mechanics Reviews 55(3):169–218

Yu MH (2018) Unified Strength Theory and its Applications. Springer, Singapore
Yu MH, Yu SQ (2019) Introduction to Unified Strength Theory. CRC Press/Balkema, London
Życzkowski M (1981) Combined Loadings in the Theory of Plasticity. PWN-Polish Scientific Publ.,

Warszawa



Chapter 13
On the Derivation and Application of a Finite
Strain Thermo-viscoelastic Material Model for
Rubber Components

Jonas Schröder, Alexander Lion, and Michael Johlitz

Abstract This contribution deals with a modified material model of the finite
thermoviscoelasticity for the efficient calculation of the dissipative self-heating of
elastomer components. The occurrence of critical temperatures, which can lead
to loss of functionality or component failure, can be identified at an early stage.
Here, the focus lies on industrial applicability, which, in addition to calculation time
and quality, also includes the experimental effort required to identify the material
parameters. This contribution starts with the formulation of a thermomechanically
consistent constitutive model. For this purpose, an appropriate description of the
kinematics and the derivation of the constitutive relationships is carried out. These
are transferred in a suitable way into the form used by the commercial finite element
software ABAQUS and implemented as a thermomechanically fully coupled problem.
Furthermore, an industrially applied elastomer material is characterised and the model
is parameterized in a special method by selecting the potential function. Finally,
the validation of the model and its parameterization are carried out by means of
experimental component tests.

Keywords: Finite element implementation · Fully coupled · Finite thermoviscoelas-
ticity · Dissipative heating · Thermomechanics · Elastomer

13.1 Introduction

Due to their typical material characteristics, elastomer components are used in
almost all areas of engineering and across industries (Elsner et al, 2012). In addition
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to the chemical properties, the physical behaviour of the material is of primary
importance in the selection process. These include the reversible absorption of large
deformations at comparatively low loads as well as the vibration and noise decoupling
properties (Koltzenburg et al, 2013). In many cases, these components are subject to
large cyclic deformations which result in dissipation-induced self-heating. Depending
on the application, elastomer components may also be exposed to elevated ambient
temperatures. Increased component temperatures can lead to impermissible changes in
the material properties, i.e. to loss a function or total failure. Therefore, it is important
to identify critical temperatures and loads early in the development process. The
aim is to replace cost-intensive prototype tests with FEM1 simulations. The concept
shown in Fig. 13.1 is used for the simulation of component temperatures. The input
parameters of this concept are primarily the component geometry and the material
properties. By the suitable formulation of the material model, the relevant material
behaviour is taken into account and used for the calculation. The parameterization
of the model is carried out by experimental material characterization. Subsequently,
boundary conditions and material properties are assigned to the discretized component
geometry such that the local temperature and the load curves can be calculated.

The second section focuses on the phenomenological analysis of elastomer
materials: First the typical material behaviour is explained based on the material
structure, then a selection of the modelled relevant phenomena is made by assessing
their responsibility for self-heating. The following section contains the continuum
mechanical material modelling. A suitable description of the kinematics is introduced
by multiplicative decomposition of the deformation gradient in order to represent
different types of deformation. In addition, the constitutive relationships are derived
by evaluation of the Clausius-Duhem inequality for a general potential function. The

Fig. 13.1 Concept for the derivation of the dissipative heating of elastomer components

1 FEM is the abbreviation of finite element method
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ABAQUS-related heat conduction equation is also specified. The fourth section deals
with the FE implementation. From the heat conduction equation in combination
with the balance of momentum, a fully coupled functional is obtained by applying
Galerkin’s method. This is linearised for the iterative calculation with the Newton
method. Next, the required constitutive relationships and their associated consistent
tangent operators are derived. The selection of the potential functions and the resulting
evaluations of the state vectors and tangent operators are similary carried out in
the fifth section, as well as the conversion into the formulation required for the
UMAT2 implementation. In section six, the validation of the material model and its
parametrization is carried out. This begins with the development of the computational
model and concludes with the comparison of simulated and experimentally determined
characteristics. Chapter seven concludes with a discussion and evaluation of the
model quality and efficiency with regard to industrial applicability. In addition, an
outlook on future trends and prospects is given.

13.2 Elastomer Structure and Behaviour

This section provides the basic considerations leading to the selection of a suitable
material model. For this purpose, the typical behaviour of elastomer materials is first
explained on the basis of the chemical structure and then assessed with regard to the
influence on the dissipative self-heating process. Elastomers are weakly crosslinked
polymers which exhibit the characteristic entropy-elastic behaviour at operating
temperatures. The meaning of this term is deduced from the macroscopic view of
the material. Detailed descriptions of the molecular structure can be found in the
standard literature, e.g. Treloar (1975); Tobolsky et al (1971) or Schwarzl (2013). The
chain molecules perform thermally disordered movements and have a large number
of moving segments. Thus, they occupy the thermodynamically and statistically most
probable arrangement, namely the one of maximum entropy. Therefore, the molecules
are strongly entangled in the material. The elasticity can be traced back to the mobility
of the molecules above the glass transition, which is limited by cross-links and
entanglements. Polymer chains are initially entangled. Under external stress they
rearrange themselves such that the chains get stretched and thereby change the state
of order. Due to that, the directed chains exhibit less entropy and have the tendency
to take up a state of higher disorder or entropy. Therefore, rubber elasticity is also
called entropy-induced (Tobolsky, 1967; Treloar, 1975). This enables large reversible
deformations with almost incompressible material behaviour, whereby the stress
depends non-linearly on the strain (Rivlin and Saunders, 1951), but approximately
linearly on the temperature (Anthony et al, 1942). However, under sufficiently small
constant deformations, a drop in the engineering stress with increasing temperature can
be observed. This phenomenon is generally known as the thermo-elastic inversion and
is based on the overlay of thermal expansion and entropy elasticity. The deformation

2 User-defined material model (UMAT) in ABAQUS can be used to define the mechanical constitutive
behaviour of a material.
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during an adiabatic process results in a temperature change, also known as Joule-
Gough effect (Gough, 1805; Joule, 1859). The reason for this is the compensation
of the deformation-related decrease in entropy due to an increase in temperature.
Since, time-dependent internal sliding and rearrangement processes of molecules
also occur, elastomers are also referred as viscoelastic materials. Infinitely slow
deformation processes, denoted as quasi-static, lead to thermodynamic equilibrium
states. On this occasion the viscous components play a minor role. In the case of
cyclic dynamic loading, a load history and strain rate dependent hysteresis loop
occurs. The enclosed area is a measure of the mechanical energy converted into
thermal energy and is defined as dissipation. The temperature influence on the
viscoelastic material properties, which can be also observed, is based on the fact that
sliding and rearrangement processes accelerate with increasing temperature. The
relationship between temperature and rate dependence can be described with the
time-temperature superposition principle. In order to adapt the material properties
to the technical application, fillers in addition to chemical additives are added to
improve the mechanical properties. Due to the different types of interaction, the
defined properties must be adjusted with regard to a common optimum. Filled
elastomers show significant differences in their characteristic behaviour compared to
unfilled elastomers. With filled materials, the complex temperature behaviour of the
interactions between the fillers and the elastomer matrix superimposes to the entropy
elasticity, such that a completely different stiffness characteristic can be observed.
The elastomer/filler interaction leads to a characteristic softening within the first
loading cycles. The so-called Mullins-effect (Mullins, 1948) results from the breaking
and rearrangement of weak polymer chains and the successive breakage of certain
sections of the filler network until a more or less "constant" material behaviour is
achieved. The viscoelastic behaviour shows a non-linear dependence on the loading.
This amplitude dependence is also known as the Payne-effect (Payne, 1962).

In summary, it can be stated that elastomers, due to their molecular structure, can
take up elongations of several 100%, show no major volume change and return to
their original shape completely when the load is removed. In addition, elastomers
exhibit a marked viscoelastic behaviour, such that cyclic mechanical loads at adequate
amplitudes and frequencies are leading to significant energy dissipation. Therefore,
elastomer components can heat up strongly under insufficient heat removal. The
temperature change leads to a change in the viscoelastic material properties and
generates thermal strains or thermally induced stresses. In the case of filled elastomers,
thermo-elastic effects play only a minor role in self-heating due to the dependencies
described above.

13.3 Continuum Mechanical Material Modelling

Material theory is a subsection of continuum mechanics which deals with material
models. It provides general principles and systematic methods for the formulation of
mathematically and thermodynamically consistent models to describe the individual
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properties of a material body. The derivation of constitutive relations follows the
principles of rational thermomechanics. Here, the second law of thermodynamics
acts as a restriction to obtain a thermomechanically consistent constitutive equation.
In order to formulate consistent models, the dissipation postulate must be fulfilled. In
addition, the axiomatic principles of material theory must be followed. Multiplicative
decomposition of the deformation gradient allow to consider different deformation
mechanisms. The free energy density is an appropriate thermodynamic potential
to model the material properties, whereby its independent variables, or arguments
must be defined. At the beginning of this section, the basics and contexts, which
are necessary for understanding the following considerations, are explained. This
includes the balance relations of thermomechanics and the resulting principle of
irreversibility. In addition, a proper description of the kinematics is introduced, the
independent variables are defined and the constitutive relationships are derived from
the potential.

13.3.1 Balance Equations

This section presents the classical balance equations of thermomechanics. They are
independent of the special properties of the continuum, since they describe universally
valid laws of nature. They can be formulated globally for the entire material body in
integral form, or locally in differential form. Furthermore, the balance equations can
be formulated for each configuration. In the following, the equations are described in
local form using variables related to the reference configuration.

13.3.1.1 Conservation of Mass

∂

∂t
ρ0

(
X, t

)
= 0 ⇒ ρ0 = ρ0

(
X
)
= constant (13.1)

ρ0 is the density related to the reference configuration. It does not depend on time,
thus it depends only on the vector of the material points in the reference configuration
X.

13.3.1.2 Balance of Linear Momentum

ρ0 �V(X, t) = Div
(
P
)
+ ρ0b (13.2)

The time derivative of the momentum on the left hand side is expressed by the time
derivative of the material velocity field �V which is weighted with the density. On
the right hand side the force density, composed of the divergence in relation to the
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material coordinates of the first Piola-Kirchhoff stress tensor P and body force per
unit volume ρ0b.

13.3.1.3 Balance of the Angular Momentum

S = ST or P · FT = F · PT (13.3)

The quantity S is the second Piola-Kirchhoff stress tensor. Its symmetry follows from
the local form of the balance of rotational momentum. The first Piola-Kirchhoff
stress tensor P is generally not symmetric and the characteristic described above
holds, where F = Grad

(
x
)

is the deformation gradient. Here Grad(◦) is the gradient
operator with respect to the material coordinates. The vector x is the current position
of the material point X at time t in the current configuration.

13.3.1.4 Balance of Energy

ρ0 �e = S : �E − Div
(
q0

)
+ ρ0r (13.4)

The energy balance provides the temporal change of the specific internal energy ρ0 �e.
It consists of the volume-related stress power S : �E where �E is the time derivative
of the Green-Lagrange strain tensor and the heat exchange. The vector q0 denotes
the Piola-Kirchhoff heat flux vector and ρ0r is the heat source per unit volume. This
equation is also known as the first law of thermodynamics.

13.3.1.5 Balance of Entropy

ρ0 �η + Div
(q0
θ

)
− ρ0

r
θ
= ρ0η̃ ≥ 0 (13.5a)

⇔ η̃ ≥ 0 (13.5b)

On the left hand side, the temporal change in the entropy per unit volume is described
by the expression ρ0 �η. The heat supply per unit time related to the thermodynamic
temperature θ is used to calculate the entropy supply. Here, q0

θ is the entropy flux
and r

θ is the specific entropy source, whereby θ denotes a time-dependent scalar
field. On the right hand side the specific entropy production η̃ is opposed. For all
thermomechanical admissible processes, the entropy production η̃ must be greater
than or equal to zero. The balance is also known as the second law of thermodynamics.

13.3.1.6 Dissipation Inequality

As mentioned above, the constitutive relations are derived from the Helmholtz free
energy density as a function of deformation and temperature. The equations presented
previously are valid for all material models of continuum mechanics, such that the
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Legendre transform of thermodynamic potentials is used to transform the specific
internal energy ρ0e into the Helmholtz free energy per unit mass:

Ψ = e − θη (13.6)

The insertion of the time derivative of the free energy function (13.6) into the entropy
inequality (13.5a) leads to the well known Clausius-Duhem inequality:

ρ0 �Ψ + S : �E − ρ0 �θη −
q0
θ

Grad θ ≥ 0 (13.7)

Here Grad(◦) is the gradient operator with respect to the material coordinates.
The entire model must satisfy this inequality, which represents the second law of
thermodynamics, to obtain a thermomechanically consistent material model.

13.3.2 Quasi-incompressible Modified Thermoviscoelasticity

Subsequently, this contribution emphasises thermomechanically consistent material
modelling. For this purpose, the concept of the model is motivated on the basis of
a rheological representation. Based on these findings, the description of suitable
kinematics and the definition of independent variables is carried out. Finally, the
constitutive relations are derived respecting thermomechanical consistency. The
development of thermomechanical material models has been the focus of the fol-
lowing research activities Lion (2000); Johlitz (2015); Dippel et al (2014); Reese
(2001). It should be mentioned that this list is not complete. The implementation
of thermomechanically coupled material models has been the subject of Miehe
(1988); Simo and Miehe (1992); Anand (1985); Arruda et al (1995); Heimes (2004);
Bröcker and Matzenmiller (2008); Anand et al (2009); Naumann and Ihlemann
(2011); Bröcker (2013); Hamkar (2013) or Lejeunes et al (2018). The solution of
thermomechanical coupled processes has been investigated among by Glaser (1992)
or Erbts and DüSter (2012). Based on the model of classical viscoelasticity, the
deduced material model can be motivated. The usage of rheological elements as a
method of representation has not only the advantage of special illustration, it also
leads to thermomechanically consistent models. Moreover, these elements can be
extended easily to three-dimensional states of stress and strain and nonlinearities.
In consequence, the model presented in Fig. 13.2 is introduced. The part of the
free energy that depends only on the temperature is described by Ψth. The total
energy stored in the springs can be additively allocated to the respective springs. The
equilibrium part of the free energy Ψeq is assigned to the single spring. In addition
to the elastic behaviour, it represents the equilibrium part of the stress Peq . The
springs of the Maxwell elements represent the overstresses P(k)

neq and can be linear or
non linear. The free energies Ψ(k)

neq are related to them. The temperature-dependent
viscosities η̆(k)(θ) describe the rate dependence of the damper elements. The structure
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Fig. 13.2 Rheological representation of modified finite thermoviscoelasticity (left), decomposition
of the deformation gradient (right): The reference configuration (RC), volumetric-isochoric
intermediate configuration (VIC), elastic-inelastic intermediate configurations (EIC) and the
current configuration (CC)

of the model mapping of the dissipation implies a separation of elastic and inelastic
deformations.

13.3.2.1 Kinematics

First of all, large deformation require a distinction between the reference and the current
configuration. In order to distinguish different types of deformation, it is necessary
to split the deformation gradient multiplicatively. Some intermediate configurations
will be introduced on this occasion. The first multiplicative decomposition of the
deformation gradient is carried out to split the local deformation into volumetric and
isochoric parts and simplifies the representation of quasi incompressible behaviour.
For this purpose the volumetric-isochoric intermediate configuration (Flory, 1961) is
introduced

F = F̂ · F̄ with F̂ = J−
1
3 F and F̄ = J

1
3 I (13.8)

with the definition of the volumetric part F̄ of the deformation and the isochoric part F̂
using the determinant det(F) = J. Finally, the isochoric part is divided multiplicatively
into purely elastic components F̂(k)

e and inelastic components F̂(k)
i . This multiplicative

split introduces elastic-inelastic intermediate configurations (Lubliner, 1985):

F̂ = F̂(k)
e · F̂(k)

i , (13.9)

where the index [◦](k) indicates the respective Maxwell element. At this point, the right
elastic Cauchy-Green deformations tensor Ĉj

e and the right inelastic Cauchy-Green
deformations tensor Ĉj

i are defined:
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Ĉ(k)
e = F̂T(k)

e · F̂(k)
e (13.10)

Ĉ(k)
i = F̂T(k)

i · F̂(k)
i (13.11)

The tensor L̂j
i , known as inelastic spatial velocity gradient of the corresponding

Maxwell element and the inelastic rate of deformation tensor D̂(k)
i is defined as:

L̂(k)
i =

�̂F(k)
i · F̂-1(k)

i (13.12)

D̂(k)
i =

1
2
(
L̂(k)

i + L̂T(k)
i

)
(13.13)

13.3.2.2 Derivation of the Potential Expressions

The free energy density ρ0Ψ for the considered case depends on the right Cauchy-
Green deformation tensor C, the elastic right Cauchy-Green deformation tensors Ĉj

e

and the thermodynamical temperature θ:

ρ0Ψ = ρ0Ψ
(
C, Ĉ1

e, . . . , Ĉn
e , θ

)
(13.14)

Using the temporally free energy , the dissipation inequality (13.7) leads to:

S :
1
2
�C − ρ0

(
2
∂Ψ

∂C :
1
2
�C +

n∑
j=1

∂Ψ

∂Ĉj
e

: �̂Cj
e +
∂Ψ

∂θ
�θ

)
− ρ0 �θη −

q0
θ

Grad θ ≥ 0

(13.15)

The constitutive relations are obtained by fulfilling the Clausius-Duhem inequality
(13.15). If Fourier’s law is applied, the last term is non-negative, due to the negative
proportionality between heat flux and temperature gradient,

q0 = −λC−1 Grad θ with λ ≥ 0, (13.16)

where λ is the heat conduction coefficient. After some transformations under consid-
eration of the kinematic relations, one obtains the following inequality:[

S − 2ρ0

(
∂Ψ

∂C +
n∑
j=1

(det C)−
1
3 F̂j−1

i ·
∂Ψ

∂Ĉj
e
· F̂j−T

i −
n∑
j=1

1
3

(
∂Ψ

∂Ĉj
e

: I
)
C−1

)]
:

1
2
�C

− ρ0

[
η +
∂Ψ

∂θ

]
�θ + 2ρ0

n∑
j=1

∂Ψ

∂Ĉj
e
· ĈjT

e :
1
2
(L̂jT

i + L̂j
i ) (13.17)

+
λ

θ
(Grad θ) · (C−1 Grad θ) ≥ 0
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L̂j
i is known as the inelastic spatial velocity gradient of the corresponding Maxwell

element. The inequality is evaluated according to Coleman and Noll (1963). This
means that each dependent variable is completely characterized by the values of the
process variables and thus independent of their temporal changes. In addition, (13.17)
has to be satisfied for arbitary values of �θ and tensors �C. In this way, the constitutive
equations can be obtained:

S = 2ρ0

(
∂Ψ

∂C +
n∑
j=1

(det C)−
1
3 F̂j−1

i ·
∂Ψ

∂Ĉj
e
· F̂j−T

i −
n∑
j=1

1
3

(
∂Ψ

∂Ĉj
e

: I
)
· C−1

)
(13.18)

η = −
∂Ψ

∂θ
(13.19)

To satisfy the residual inequality, proportionality relations with temperature-dependent
functions η̆ j(θ) ≥ 0 are introduced,

D̂j
i =

2
η̆ j(θ)

∂Ψ

∂Ĉj
e
· ĈjT

e (13.20)

where D̂j
i represents the symmetric part of the inelastic spatial velocity gradient.

Furthermore, η̆ j(θ) are interpreted as temperature-dependent viscosity functions,
which are expressed by the standard Williams-Landel-Ferry equation (Williams et al,
1955):

η̆ j(θ) = η̆ jt exp
(
−

C1(θ − θt )
C2 + θ − θt

)
(13.21)

In this context, η̆ jt is the viscosity that belongs to the reference temperature θt and C1,
C2 are empirical constants adjusted to fit the experimentally observed temperature
dependence. Moreover, the deviatoric form of the evolution equation can be derived
using the condition of incompressibility (det F̂i)· = 0. Taking into account the
kinematic relations, the evolution equation can be reformulated as:

�̂Cj
i = F̂jT

i ·

{
2
η̆ j(θ)

∂Ψ

∂Ĉj
e
·

[
ĈjT

e −
1
3

tr
(
ĈjT

e

)
I
]}

· F̂j
i (13.22)

Here, �̂Cj
i denotes the time derivative of the isochoric right Cauchy-Green deformation

tensor related to the respective Maxwell element. The trace of a second order tensor
is defined as tr(◦) = (◦) : I.

13.3.3 Heat Conduction Equation

From the first law of thermodynamics (13.4) in combination with the usage of the
Legendre transform (13.6), one obtains:
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S :
1
2
�C − ρ0

( �Ψ + η �θ) − ρ0θ �η − Div
(
q0

)
+ ρ0r = 0 (13.23)

Inserting the time derivative of the free energy density (13.14) leads to:

ρ0 �ηθ = Div
(
q0

)
+ ρ0r + 2ρ0

n∑
j=1

∂Ψ

∂Ĉj
e
· Ĉj

e : D̂j
i (13.24)

In addition, the time derivative of the entropy density reads as:

ρ0 �η = ρ0

(
∂η

∂θ
�θ +
∂η

∂C : �C +
n∑
j=1

∂η

∂Ĉj
e

: �̂Cj
e

)
(13.25)

Furthermore, the following simplifying assumption postulates a constant specific
heat capacity c which is approximately equal to the isobaric specific heat capacity cp:

cp ≈ c ≈ −
∂Ψ

∂θ∂θ
θ ≈ const (13.26)

Thus, the heat conduction equation is written in the current configuration as:

ρ c �θ = − div
(
q
)
+ ρ r + ρ δ + ρ π (13.27)

Here, q is the Cauchy heat flux vector with the associated operator div(◦) that relates
to the spatial coordinates. Furthermore, ρ is the density in the current configuration,
ρ δ corresponds to the dissipation term and ρ π represents the thermoelastic coupling
term. Within the UMAT interface in the ABAQUS-software, these terms are added
to the term ρrmat such that the isobaric specific heat capacity remains on the left side
(Abaqus, 2002).

ρ cp �θ = − div
(
q
)
+ ρ r + ρ rmat (13.28)

13.4 Finite Element Implementation

After the formulation of the material model and the determination of the equations
for the stress and entropy calculation, this section presents the material independent
basic equations and methods for the implementation of the model in the commercial
finite element software ABAQUS. Starting with the initial boundary value problem in
the local form, the variation formulation is required for the approximate calculation.
First, the required weak forms of the local quasi-static momentum balance and the
heat conduction equation are presented and linearized for an iterative method. Here,
it is focused on the constitutive equations and consistent tangent operators.

The balance equations (13.2) and (13.38) are general field equations for the
determination of the displacement field u and the temperature θ. They are completed
by the constitutive relations (13.18), (13.19). However, the determination of initial and
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boundary conditions is mandatory for the unique description of the initial boundary
value problem. From now on, quasi-static processes are considered whereby the
initial conditions for the temperature field and the internal variables are required.

θ(X, t0) = t=0θ(X) and Ĉj
i (X, t0) = t=0Ĉj

i (X) for X ∈ Ω0 (13.29)

The specification of boundary conditions requires that the boundary ∂Ω0 of a body
B0, which occupies the domainΩ0, is divided into disjoint parts. The second subscript
index indicates the type of boundary condition on the partial boundary, such that the
following conditions are valid:

∂Ω0 = ∂Ω0u ∪ ∂Ω0σ with ∂Ω0u ∩ ∂Ω0σ = ∅ (13.30)

∂Ω0 = ∂Ω0θ ∪ ∂Ω0q ∪ ∂Ω0θq with ∂Ω0θ ∩ ∂Ω0q ∩ ∂Ω0θq = ∅ (13.31)

The Dirichlet boundary conditions are assigned to the values that a solution needs to
take a long the boundary of the domain:

u(X, t) = ū(X, t) on ∂Ω0u and θ(X, t) = θ̄(X, t) on ∂Ω0θ (13.32)

The Neumann boundary conditions are assigned to the values in which the derivative
of a solution is applied with

q0 · n0 = q̄0(X, t) on ∂Ω0q and t0 = Pn0 = t̄0(X, t) on ∂Ω0σ . (13.33)

The mixed boundary surfaces, where the condition additionally dependents on the
surface temperature

q0 · n0 = q̄0(X, t, θ) on ∂Ω0θq (13.34)

is specified. This results in a well-defined initial boundary value problem. The
operator (◦̄) denotes a prescribed function on the boundary where n0 is the outward
normal to the boundary ∂Ω0 and t0 depicts the first Piola-Kirchhoff traction vector
which is associated to the reference configuration. An analytical solution of the field
problem is usually not possible. However, an approximate solution can be calculated
using the finite element method exemplary. This requires the formulation of balance
equations in the form of variational principles.

The weak formulation of the problem is mandatory for the finite element imple-
mentation. Therefore, the balance of linear momentum (13.2) has to be rearranged in
terms of quantities which are related to the current configuration first. Secondly, it
is assumed that the acceleration is zero for quasi-static processes. This leads to the
spatial quasi-static balance of momentum.

divσ + ρb = 0 (13.35)

As the next steps to derive the weak formulation. The balance equation is multiplied
with the test function δv and integrated over the area Ω where δv is the first
variation of the spatial velocity vector. Using the Gaussian integral theorem and the
boundary condition (13.33) provides the weak form of mechanical equilibrium as a
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mechanical functional M, where the gradient operator grad(◦) corresponds to the
current configuration.

M(u, θ, δv) =
∫
Ω

σ : grad δv dV −
∫

∂Ωσ

t̄ · δv dA −
∫
Ω

ρb · δv dV = 0 (13.36)

To obtain the variation formulation of the heat conduction equation, the heat con-
duction equation (13.28) is multiplied by the variation of the temperature δθ. The
thermal functional T follows from the subsequent reformulation and insertion of the
boundary condition (13.34):

T(u, θ, δθ) =
∫
Ω

ρcp �θδθdV −
∫

∂Ωq

q̄0δθdA

+

∫
Ω

q · grad δθdV +
∫
Ω

ρ(r + rmat )δθdV = 0

(13.37)
In the following, the thermomechanical problem is formulated. Both functionals
(13.36) and (13.37) have to be fulfilled. The two requirements are combined with
weighting factors to get a fully coupled functional G, such that a closed solution is
achieved.

G =MuM + TθT

=Mu

{ ∫
Ω

σ : grad δv dV −
∫

∂Ωσ

t̄ · δv dA −
∫
Ω

ρb · δv dV

}

+ Tθ

{ ∫
Ω

ρcp �θδθdV −
∫

∂Ωq

q̄0δθdA +
∫
Ω

q · grad δθdV +
∫
Ω

ρ(r + rmat )δθdV

}
(13.38)

Since the functionals are non-linear in temperature and displacement, further consid-
erations are necessary. To solve nonlinear functions, they have to be linearized, e.g.
with the Gâteux derivative:

DΔu(◦(x)) = Du(◦(x))Δu = Δ(◦) = d
dε

(◦(x + εΔu))
22
ε=0 (13.39)

The subscript D(◦) indicates the direction of the linearization. Thus, the solution at
time tk can be determined iteratively from the solution at the time tk−1, for example
with the Newton method. For the i-th iteration step at time t = tk the notation i

k
(◦) is

introduced. The temperature velocity occurring in the thermal functional (13.37) is
approximated from the time discretization with the Euler backward method.

i
k
�θ =

i
k
θ −

k−1θ

Δt
(13.40)
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Then, one obtains the linearized functional in the form

DM(i+1
ku, i+1

kθ, δv) =M(iku,ik θ, δv) + DuM(iku,ik θ, δv)Δu
+ DθM(iku,ik θ, δv)Δθ = 0

(13.41)

DT(i+1
ku, i+1

kθ, δθ) = T(iku,ik θ, δθ) + DuT(iku,ik θ, δθ)Δu
+ DθT(iku,ik θ, δθ)Δθ = 0

(13.42)

or simplified in matrix notation:(
DuM DθM
DuT DθT

) (
Δu
Δθ

)
=

(
−M
−T

)
(13.43)

The implementation of the material model requires the calculation of the state vector
and the definition of the state vector dependent contribution to the tangent stiffness
matrix. Therefore, the linearization of the terms δPint and δKmat are of special
importance and defined as follows:

δPint =

∫
Ω

σ : grad δv dV, δKmat =

∫
Ω

δθρrmat dV (13.44)

The linearization of the mechanical part (13.36) in the direction of the incremental
displacement field Δu leads to the mechanical contribution of the tangent stiffness
matrix follows:

DΔuδPint =

∫
Ω

[δD : �
C : ΔD + δD : ΔWσ − δD : σΔW] dV (13.45)

The additive decomposition of the spatial velocity gradient L contains a symmetric
part known as rate of deformation tensor and the antisymmetric part, the spin
tensor, denoted as D and W, follows respectively. The objective spatial tangent
operator has to be implemented in the Jaumann formulation �

C. This includes the
rotated parts of the stress and the spatial tangent operator 4

C, which can be calculated

from the material tangent operator
4
C. The transposition of the indices is defined as

[(◦)]
i j

T = (◦)i jklej ⊗ ei ⊗ ek ⊗ el . The definition of the required tangent operator is
shown as follows:

�
C =

1
J

4
C +

[
I ⊗ σ

] 23
T
+

[
σ ⊗ I

] 23
T (13.46)

4
C =

[
F ⊗ F

] 23
T :

4
C :

[
FT ⊗ FT] 23

T with
4
C = 4ρ0

∂2Ψ

∂C∂C (13.47)

After the mechanical part (13.36) is linearized in the direction of Δθ, the mechanical-
thermal contribution is obtained:



13 Finite Strain Thermo-viscoelastic Material Model 339

DΔθδPint =

∫
Ω

δD : tθΔθ dV (13.48)

It contains The spatial mechanical-thermo coupling tangent to be implemented in the
form of the stress temperature tensor tθ :

tθ = 2
J
ρ0F ·

∂2Ψ

∂θ∂C · FT (13.49)

The same procedure is applied to the thermal component. The thermo-mechanical
contribution is expressed by

DΔθδKmat =

∫
Ω

δθdu : ΔD dV (13.50)

with the following definition of the thermo-mechanical coupling tangent du with
respect to spatial coordinates

du =
2
J
ρ0F ·

∂rmat

∂C · FT (13.51)

and finally the thermal contribution is:

DΔθδKmat =

∫
Ω

δθdθΔθ dV (13.52)

Accordingly, the thermal tangent operator is calculated as:

dθ =
1
J
ρ0
∂rmat

∂θ
(13.53)

13.5 Material Model

The linearization leads to the definition of the material independent tangent operators
(13.46), (13.49), (13.51), (13.53) which are mandatory besides the state vector in order
to solve the fully coupled problem. Since elastomers behave almost incompressible
under isothermal deformations, a volumetric-isochoric separation is advantageous.
Furthermore, the isochoric part of the elastic Cauchy-Green tensor is introduced as
a variable in the isochoric part of the free energy density. There are also different
approaches for the determination of the thermal part of the free energy. The total free
energy is calculated as follows:

ρ0Ψ
(
IĈ, I IĈ, IĈ j

e
, J, θ

)
= ρ0Ψth(θ) + ρ0Ψvol

(
J
)

(13.54)
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+ ρ0Ψeq
(
IĈ, I IĈ

)
+

n∑
j=1
ρ0Ψ

j
neq

(
IĈ j

e

)
In various studies, the temperature-dependent part is specified by the requirement of
a constant heat capacity at a constant deformation. Here, the following approach is
chosen for thus thermal part of the free energy density (Holzapfel, 2000):

ρ0Ψth(θ) = ρ0c
( (
θ − θ0

)
− θ ln

θ

θ0

)
(13.55)

The incompressible material behaviour must be taken into account in the stress
calculation, which can lead to numerical difficulties. The volumetric approaches
usually use the determinant of the deformation gradient as independent variable
(Simo and Taylor, 1982) :

ρ0Ψvol
(
J
)
=

1
2
κ
[ (

J − 1
)2
+

(
ln J

)2
]

(13.56)

where, the material parameter κ has the function of a penalty parameter. In the
literature, a number of approaches for the isochoric part of the free energy density
can be found e.g. Mooney (1940); Rivlin (1948-1951) or Rivlin (1997). They use the
invariants of the Cauchy-Green tensors I� and I I� as variables.

The equilibrium part of the free energy density reads as follows (Mooney, 1940):

ρ0Ψeq
(
IĈ, I IĈ

)
= C10

(
IĈ − 3

)
+ C20

(
IĈ − 3

)2
+ C01

(
I IĈ − 3

)
(13.57)

The non-equilibrium parts of the free energy density (Mooney, 1940) are assumed as:

n∑
j=1
ρ0Ψ

j
neq

(
IĈ j

e

)
=

n∑
j=1

C j
e10

(
IĈ j

e
− 3

)
(13.58)

Where the material parameters C10,C20,C01,C1
e10, ...,C

n
e10 are temperature independent

and therefore constant. In the following, the free energy densities are used to describe
stresses, heat sources and internal variables. In addition to that, tangent operators for
the mechanical, thermal and coupling behaviour, are presented.

The internal variables are described by the evolution equations (13.22). Using
(13.58), they can be solved numerically according to a method proposed by Shutov
et al (2013) and expressed further by the isochoric elastic left Cauchy-Green tensor
B̂e = F̂ · Ĉ−1

i · F̂T:

�̂Cj
i =

4C j
e10

η̆ j(θ)

[
Ĉ −

1
3

tr
(
Ĉ · Ĉj−1

i

)
Ĉj
i

]
(13.59)

Inserting the free energy densities (13.56)-(13.58) into the stress definition (13.18)
and transforming the quantities to the current configuration, the Cauchy stress is
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obtained:

σ = σvol + σeq +

n∑
j=1

σ j
neq (13.60)

The volumetric part of Cauchy stress is:

σvol = J−1κ
(
J
(
J − 1

)
+ ln J

)
I (13.61)

The equilibrium part of Cauchy stress is:

σeq =
2
J

[(
C10 + 2C20

(
IB̂ − 3

)
+ C01IB̂

)
B̂ − C01B̂2

−
1
3

(
IB̂

(
C10 + 2C20(IB̂ − 3

) )
+ 2C01I IB̂

)
I
] (13.62)

The non-equilibrium part of the Cauchy stress is:

σneq =

n∑
j=1

C j
e10

(
IB̂ j

e
− 3

)
(13.63)

The inelastic stress power is represented by variables of the current configuration:

rmat =

n∑
j=1

1
η̆ j(θ)

σ j
neq : σ j

neq (13.64)

Using the equation (13.47) and (13.56)-(13.58) yields to the tangent of the current
configuration

4
C =

4
Cvol +

4
Ceq +

n∑
j=1

4
C
j

neq (13.65)

The volumetric part of the tangent is:

4
Cvol =

1
J

[
κ
(
J
(
2J − 1) + 1

) [
I ⊗ I

]
+ 2κ

(
J
(
1 − J

)
− ln J

) [
I ⊗ I

] 23
T ] (13.66)

The equilibrium part of the tangent is:
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4
Ceq =

4
3J

[
−

(
C10 + 2C20

(
IB̂ − 3

)
+ 2IB̂

(
C20 + C01

) ) [
I ⊗ B̂ + B̂ ⊗ I

]
+

(
2C20 + C01

) [
B̂ ⊗ B̂

]
+

2
3

C01

[
I ⊗ B̂2 + B̂2 ⊗ I

]
+ C01

[
B̂ ⊗ B̂

] 23
T

+
1
9

(
IĈ

(
C10 + 2C20

(
IĈ − 3

)
+ 2C20IĈ

)
+ 4C01I IĈ

) [
I ⊗ I

]
+

1
3

(
IĈ

(
C10 + 2C20

(
IĈ − 3

) )
+ 2C01I IĈ

) [
I ⊗ I

] 23
T ]

(13.67)

Non-equilibrium part of the tangent:

4
Cneq =

n∑
j=1

4
3J

C j
e10

[
tr
(
B̂j
e)
[1
3

I ⊗ I +
[
I ⊗ I

] 23
T ]

−
[
B̂j
e ⊗ I + I ⊗ B̂j

e

] ]
(13.68)

The remaining tangents of the current configuration are formulated by definitions
(13.49), (13.51), (13.53) derived in the previous section. The stress temperature
tensor is zero:

tθ = 0 (13.69)

The thermal-mechanical tangent is:

du =
n∑
j=1

4
η̆ j(θ)

σ j
neq ·

(
J σ j

neq −
1
3

tr
(
J σ j

neq

)
I
)

(13.70)

The thermal tangent is:

dθ =

n∑
j=1

η̆ j(θ)−2

J

C1 C2 η̆
j
t exp(−C1(θ−θt )

C2+θ−θt )(
− C2 − (θ − θt )

)2 σ j
neq : σ j

neq (13.71)

The last step is to formulate the required quantities in the Voigt notation. To this
end, it is essential to symmetrize the tensors if necessary. Now, all tangent operators
(13.46), (13.69), (13.70), (13.71) and state vectors (13.58) and (13.64) required for
the fully coupled calculation are defined correctly.

13.6 Model Validation

The material model is validated as discussed in this section. First, the derivation
of the parameter set is explained. Secondly, the structure of the calculation of the
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model is explained as well as the derivation of the boundary and initial conditions.
With these definitions, the simulation results are compared with the experimentally
determined data.

13.6.1 Parameter Identification

First, the parameter Set used for the current model is listed in Table 13.1. With
the exceptions explained below, these are all independently determined parameters.
One characteristic of the parameter set is that the compression modulus κ is cho-
sen at least three orders higher than the shear modulus in order to formulate the
quasi-incompressible material behaviour and thus is used as a penalty parameter.
Furthermore, the optimized heat capacity coptp is of particular importance. The inte-
gration of the heat conduction equation with respect to the current configuration over
a period of time T in the stationary range shows the independence of the stationary
state from the heat capacity cp . Where ϑ

(
X, t

)
is a scalar temperature field depending

on the location coordinate and time. Regarding the left side of the term, one can
conclude that:

Table 13.1 Parameter set used for the modified finite strain thermo-viscoelastic material model

parameter value unit
Quasi-incompressible hyperelasticity: Mooney-RivlinMooney (1940)

C10 0.0788 MPa
C20 0.0107 MPa
C01 0.1739 MPa
ρ0 1.0748 · 10−9 kg/m3

κ 1000 MPa
viscoelasticity: Neo-HookeMooney (1940)
C1

e10 0.0042 MPa
η̆1
t 0.005 MPas

C2
e10 0.1020 MPa
η̆2
t 0.1201 MPas

temperature dependence η̆ j (θ), Williams, Landel, FerryWilliams et al (1955)
C1 −16 -
C2 −730 K
θt 296 K

thermal material properties
λ 0.3280 mW/K · mm
cp 1.639 · 109 mJ/t · K
c
opt
p 1.639 · 107 mJ/t · K

heat transfer
ᾰES 22 · 10−3 mW/mm2 · K
ᾰEA 5 · 10−3 mW/mm2 · K
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1
T

t+T∫
t

ρcp �ϑ(s)ds = ρcp
(
ϑ(t + T) − ϑ(t)

)
= 0. (13.72)

This motivates to the usage of an optimized heat capacity to reduce the calculation
time to reach the stationary state. Finally, the heat transfer coefficients from elastomer
to air ᾰEA is calculated from Stephan (2002) and that from elastomer to steel ᾰES is
taken from Schlanger (1983) or Klauke (2015).

13.6.2 Computational Model

For the computational model (Fig. 13.3), the formulation of the boundary conditions
is mandatory. This section describes the boundary condition formulation as shown in
Fig. 13.3. For the mixed boundary conditions, the heat transfers from the elastomer
to the ambient air and from the elastomer to the steel are defined as heat flows
qEA

0 = −ᾰEA(θ∂Ω − θt) and qES
0 = −ᾰES(θ∂Ω − θt), respectivley. In addition, the

displacement boundary conditions are defined in the form ūFIX
0 = 0 for the fixed

constraint and ūSYMX
0 = [0 u2 u3]T or ūSYMY

0 = [u1 0 u3]T for the symmetry constraint.
The force is applied at the reference point PREF by f = [F0 sin(ω t) 0 0] where
F0 = 1.4/4 [kN] and ω = 4π [1/s]. This results in a completely thermomechanically
coupled problem.

13.6.3 Analysis

The simulation results are now compared to the experimental data. Multiple experi-
ments were carried out as part of the so-called Elasto-Opt II project at the Fraunhofer
LBF in Darmstadt (Schröder and Parra Pelaez, 2019). First, the force-displacement
curve at the reference point is considered and shown in Fig. 13.4 (right). A nearly

Fig. 13.3 Computational
model showing mixed bound-
ary conditions and displace-
ment boundary conditions as
well as fixed and symmetry
constraints
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Fig. 13.4 Local stresses on the engine bearing (left). Force-displacement hysteresis of the engine
bearing at the reference point (right)

identical hysteresis is observed. This means that in addition to the mechanical i.e. the
force-displacement, behaviour, the dissipative behaviour, which is characterized by
the hysteresis area, is also mapped. Accordingly, the local loads can be deduced at
this point as shown in Figure 13.4.
The self-heating caused by dissipation is shown in Fig. 13.5. The surface temperatures
were experimentally determined using an infrared camera technology. For reasons
of clarity, the experimental data smoothed. This was performed with the calculated
temperature curve. In Fig. 13.5 (right), the agreement of the stationary temperature
values can be recognized. However, it is observed that the calculation duration is
significantly reduced by the suitable selection of the heat capacity. Furthermore, the
local temperature profile in the stationary state can be inferred. In consequence, a
temperature rise of approximately 18 K can be observed under the given conditions.
The point in time at which the stationary temperature equilibrium is reached is marked

Fig. 13.5 Local temperature distribution in the engine bearing (left). Temperature evolution with
respect to the time of the engine bearing at the hotspot (right)



346 Jonas Schröder, Alexander Lion, and Michael Johlitz

with τs . Using this variable, the time-dependent temperature curves are now described.
At this point it is also interesting to compute temperature curves which are difficult to
measure. In particular, the thickest component cross-section is considered here. The
path defined on the finite element mesh is used to evaluate the temporal temperature
curve as shown in Fig. 13.6. Finally, the simulation shows a high concordance to the
experimental data under consideration of an efficient simulation methodology.

13.7 Summary and Conclusion

In this work, a calculation concept for the estimation of the change in local component
temperatures caused by dissipative heating was presented. Based on the phenomeno-
logical consideration of elastomer materials, phenomena relevant to self-heating were
identified and used as a basis for the constitutive modelling. A modified model of
the finite thermoviscoelasticity was continuum mechanically modelled. In addition
to the kinematic description, a thermomechanically consistent derivation of the
constitutive relations as well as the formulation of the heat conduction equation was
performed. Within the framework of finite element implementation, the unique initial
and boundary value problem was presented and a fully coupled functional was derived
using the variation principle. The tangent operators were subsequently determined
by linerisation. A special approach of the total free energy density was defined and
used for the analytical calculation of state vectors and consistent tangent operators.
Finally, the model was validated, starting with the explanation of the parameterisation
and model calculations, followed by comparison of experiments and simulations
as well as their discussion. Last but not least, not only the experimental setup but
also the calculation effort can be significantly reduced compared to the classical
model of finite thermal viscoelasticity by neglecting the thermoelastic effects. In
summary, it can be said that the implemented concept is a suitable instrument for the

Fig. 13.6 Local temperature distribution in the engine bearing (left). Temperature evolution with
respect to the time of the engine bearing at the path (right)
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robust, cost-effective and valid estimation of dissipation-related temperature changes
in components. In the future, characteristic diagrams of the stationary component
temperatures over large amplitude and frequency ranges should be created with
this methodology. The necessity of the experimental determination of a parameter
or the use of literature data shall be determined by means of a parameter analysis.
Furthermore, of different components and elastomer compounds may be validated as
part of a follow-up project.

References

Abaqus (2002) ABAQUS/CAE 6.14 User’s Manual. Hibbitt, Karlsson & Sorensen, Incorporated
Anand L (1985) Constitutive equations for hot-working of metals. International Journal of Plasticity

1(3):213–231
Anand L, Ames NM, Srivastava V, Chester SA (2009) A thermo-mechanically coupled theory

for large deformations of amorphous polymers. part i: Formulation. International Journal of
Plasticity 25(8):1474–1494

Anthony RL, Caston RH, Guth E (1942) Equations of state for natural and synthetic rubber-like
materials. i. unaccelerated natural soft rubber. The Journal of Physical Chemistry 46(8):826–840

Arruda EM, Boyce MC, Jayachandran R (1995) Effects of strain rate, temperature and thermome-
chanical coupling on the finite strain deformation of glassy polymers. Mechanics of Materials
19(2-3):193–212

Bröcker C (2013) Materialmodellierung für die simultane Kalt-/Warmumformung auf Basis
erweiterter rheologischer Modelle. kassel university press GmbH

Bröcker C, Matzenmiller A (2008) Modellierung und simulation thermo-mechanisch gekoppelter
umformprozesse. In: Proceedings in Applied Mathematics and Mechanics, Wiley Online Library,
vol 8, pp 10,485–10,486

Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and
viscosity. Archive for Rational Mechanics and Analysis 13:167–178

Dippel B, Johlitz M, Lion A (2014) Thermo-mechanical couplings in elastomers - experiments and
modelling. Journal of Applied Mathematics and Mechanics doi:10.1002/zamm.201400110

Elsner P, Eyerer P, Hirth T (2012) Domininghaus - Kunststoffe: Eigenschaften und Anwendungen.
VDI-Buch, Springer Berlin Heidelberg

Erbts P, DüSter A (2012) Accelerated staggered coupling schemes for problems of thermoelasticity
at finite strains. Computers & Mathematics with Applications 64(8):2408–2430

Flory PJ (1961) Thermodynamic relations for high elastic materials. Transactions of the Faraday
Society 57:829–838

Glaser S (1992) Berechnung gekoppelter thermomechanischer Prozesse. Dissertation, Institut für
Baumechanik und Numerische Mechanik, Universität Hannover, Bericht-Nr. F88/6

Gough J (1805) A description of a property of caoutchouc, or indian rubber. Memories of the
Literacy and Philosophical Society of Manchester 1:288–295

Hamkar AW (2013) Eine iterationsfreie Finite-Elemente Methode im Rahmen der finiten Thermo-
viskoelastizität. Universitätsbibliothek Clausthal

Heimes T (2004) Finite Thermoviskoelastizität. Forschungs- und Seminarbericht aus dem Gebiet
Technische Mechanik und Flächentragwerke, Universität der Bundeswehr München

Holzapfel GA (2000) Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science.
Wiley

Johlitz M (2015) Zum Alterungsverhalten von Polymeren: Experimentell gestützte, thermo-
chemomechanische Modellbildung und numerische Simulation. Habilitationsschrift Institut für
Mechanik an der Universität der Bundeswehr München

https://doi.org/10.1002/zamm.201400110


348 Jonas Schröder, Alexander Lion, and Michael Johlitz

Joule JP (1859) On some thermo-dynamic properties of solids. Philosophical Transactions of the
Royal Society of London 149:91–131

Klauke R (2015) Lebensdauervorhersage mehrachsig belasteter Elastomerbauteile unter beson-
derer Berücksichtigung rotierender Beanspruchungsrichtungen. Fakultät für Maschinenbau der
Technischen Universität Chemnitz, Institut für Mechanik und Thermodynamik

Koltzenburg S, Maskos M, Nuyken O (2013) Polymere: Synthese, Eigenschaften und Anwendungen.
Springer-Verlag

Lejeunes S, Eyheramendy D, Boukamel A, Delattre A, Méo S, Ahose KD (2018) A constitutive
multiphysics modeling for nearly incompressible dissipative materials: application to thermo–
chemo-mechanical aging of rubbers. Mechanics of Time-Dependent Materials 22(1):51–66

Lion A (2000) Thermomechanik von Elastomeren. Berichte des Instituts für Mechanik der Universität
Kassel (Bericht 1/2000)

Lubliner J (1985) A model of rubber viscoelasticity. Mechanics Research Communications 12:93–99
Miehe C (1988) Zur numerischen Behandlung thermomechanischer Prozesse. Dissertation, Institut

für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Universität Stuttgart
Mooney M (1940) A theory of large elastic deformation. Journal of Applied Physics 11:582–592
Mullins L (1948) Effect of stretching on the properties of rubber. Rubber Chemistry and Technology

21(2):281–300
Naumann C, Ihlemann J (2011) Thermomechanical material behaviour within the concept of

representative directions. In: Constitutive Models for Rubber VII, Balkema Leiden, pp 107–112
Payne AR (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. part i.

Journal of applied polymer science 6(19):57–63
Reese S (2001) Thermomechanische Modellierung gummiartiger Polymerstrukturen. Habilitation,

Bericht-Nr. F01/4 des Instituts für Baumechanik und Numerische Mechanik, Universität Hannover
Rivlin RS (1948-1951) Large elastic deformations of isotropic materials part:vii. Philosophical

Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences
Rivlin RS (1997) Some applications of elasticity theory to rubber engineering. In: Collected papers

of R. S. Rivlin, Springer, pp 9–16
Rivlin RS, Saunders DW (1951) Large elastic deformations of isotropic materials vii. experiments

on the deformation of rubber. Philosophical Transactions of the Royal Society of London Series
A, Mathematical and Physical Sciences 243(865):251–288

Schlanger HP (1983) A one-dimensional numerical model of heat transfer in the process of tire
vulcanization. Rubber Chemistry and Technology 56(2):304–321

Schröder J, Parra Pelaez G (2019) Erfassung, simulation und bewertung der thermomechanis-
chen schädigungsmechanismen von elastomerbauteilen unter dynamischen mechanischen
beanspruchungen ii. FKM-Abschlussbericht Heft 334(FKM-Vorhaben Nr.603)

Schwarzl FR (2013) Polymermechanik: Struktur und mechanisches Verhalten von Polymeren.
Springer-Verlag

Shutov AV, Landgraf R, Ihlemann J (2013) An explicit solution for implicit time stepping in
multiplicative finite strain viscoelasticity. Comp Meth Appl Mech Engrg 265:213–225

Simo JC, Miehe C (1992) Associative coupled thermoplasticity at finite strains: Formulation, numer-
ical analysis and implementation. Computer Methods in Applied Mechanics and Engineering
98(1):41–104

Simo JC, Taylor RL (1982) Penalty function formulations for incompressible nonlinear elastostatics.
Computer Methods in Applied Mechanics and Engineering 35:107–118

Stephan P (2002) Vdi wärmeatlas: Berechnungsblätter für den wärmeübergang. Verein Deutscher
Ingenieure

Tobolsky AV (1967) Mechanische Eigenschaften und Struktur von Polymeren. Berliner Union
Tobolsky AV, Mark HF, Bondi AA, Deanin RD, DuPre DB, Gent AN, Mark H, Peterlin A, Rebenfeld

L, Samulski E, et al (1971) Polymer science and materials. Wiley-Interscience New York
Treloar L (1975) The physics of rubber elasticity. Oxford University Press, USA
Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms

in amorphous polymers and other glass-forming liquids. Journal of the American Chemical
Society 77(14):3701–3707



Chapter 14
Additive Manufacturing: A Review of the
Influence of Building Orientation and Post Heat
Treatment on the Mechanical Properties of
Aluminium Alloys

Enes Sert, Leonhard Hitzler, Markus Merkel, Ewald Werner, and Andreas Öchsner

Abstract Selective laser melting is one of the powder bed-based processes that
allows a layered fabrication of components, which has become the most widely
utilized additive manufacturing technique for metal processing. The ability to create
futuristic designs and non-standard topology-optimized structures is one of the biggest
advantages of additive manufacturing. On the other hand, one of the major challenges
is to account for the anisotropic and inhomogeneous material properties. This work
presents an overview of the most relevant studies, concerning the influence of building
directions and post heat treatments on the mechanical properties of selective laser
melted aluminium alloys.
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14.1 Nomenclatur

SLM Selective laser melting
AM Additive manufacturing
3D-CAD Three dimensional computer aided design
STL Standard triangulation language
STEP Standard for the the exchange of model data
BO Building orientation
OT Operating temperature
HIP Hot isostatic pressing
SH Surface hardness
UE Upper edge
LE Lower edge
CH Core hardness
E Young’s modulus
Rp0.2 Yield strength
Rm Ultimate tensile strength
At Elongation at failure
CT Computed tomography
VED Volumetric energy density
P Laser power
d Layer thickness
x Hatch spacing
vscan Scan speed
Φ Polar angle

14.2 Introduction

The additive manufacturing (AM) of metals is a key technology and an emerging
industry for the manufacture of highly specialized components. Recently, extensive
research has been performed on achievable material properties, as well as on the
correlation between process parameters and material characteristics.

The main focus on titanium-based alloys seen in this area results from the main
sectors of medicine, as well as the aerospace industry, in which additive manufacturing
technologies have already partially established themselves (Buchbinder et al, 2015;
Hitzler et al, 2017c). Aluminium alloys offer a further possibility for additive manu-
facturing, opening up utilization in the automotive segment. Additive manufacturing
using aluminium alloys is an interesting alternative, especially for prototypes and for
components with complex geometry, rendering prototype production via die casting
very costly (Sert et al, 2019a). Due to the large growth in different areas of application,
the structural mechanical properties are becoming increasingly important (Aboulkhair
et al, 2015). The specification of anisotropies, preferred directions and weak points
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in the microstructure vary with the considered material, and completely opposite
behavior patterns are not uncommon (Hitzler et al, 2016a). Thus, it is becoming
increasingly important to gain precise knowledge about the mechanical properties of
additively manufactured components. The aim of this work is to provide an overview
on the mechanical properties of additively produced aluminium alloys. In particular,
the influence of various heat treatments and the orientation of the components in
the built environment is examined. Furthermore, the selective laser melting process
(SLM), alternative also called laser beam melting (LBM) , which is the most common
AM process for aluminium alloys, will be considered in more detail to prepone a
possible digital data chain.

14.3 Additive Manufacturing - Selective Laser Melting

The selective laser melting (SLM) process is closely related to selective laser sintering
(SLS) and it is based on the further development of laser-sintering of metal powder.
As with all layered powder bed fusion processes, the construction process takes
place in individual layers, incrementally lowering the work platform step by step
downwards (z-direction). In order to prevent thermal distortion, the working platform
for aluminum alloys is usually heated to an operating temperature of 200◦C, thereby
ensuring that the temperature conditions during the manufacturing process remain
constant, thus allowing for a continuous construction process. The layer thicknesses
vary between 20 μm and 100 μm, depending on the laser capabilities and the
desired accuracy and productivity (Frazier, 2014; Beese and Carroll, 2015). During
the manufacturing process, the unexposed powder remains unfused, whereby the
unbounded powder serves on the one hand as a protection for the components and on
the other hand as support for the creation of thin-walled or overhanging components
and the stacking of several components one above the other. By attaching support
structures between the work platform and the component, the heat energy generated
during the melting process is conducted into the platform and is dissipated by the
thermal management system. SLM systems are often equipped with an automatic
powder recycling unit in the closed protective gas atmosphere (commonly either
argon or nitrogen). The production space is emptied of unused powder by means of
vacuum suction. This powder is then sieved using a vibrating screen and is returned
into the storage container for the creation of a new layer (see Fig. 14.1).
Given the similarities amongst the various AM procedures, the bonding mechanism
is used to distinguish one process from another. Within SLM the raw material is
fully molten and the process returns a dense part. The older selective laser sintering
process corresponds to liquid phase sintering with different binder and structural
material. After the plastic coating of the metal powder particles has melted, the
emerging porous green body has to be thermally treated and infiltrated in a multi-step
procedure. The disadvantage of multiple steps is avoided in SLM processing due to
complete melting of the metallic material. During the binderless bonding process,
only small punctiform connections between the articles are created or the parts are
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Fig. 14.1 Schematic setup of powder-bed fusion techniques

manufactured by powder metallurgy under high pressure and temperature, dense
parts being formed by diffusion processes in solids. The porosity of the components
depends on how much heat energy is supplied. The alloyed or unalloyed particles can
be melted and bonded to a residual porosity of about 2% (Frazier, 2014; Beese and
Carroll, 2015; Bikas et al, 2015; Singh et al, 2017; Lewandowski and Seifi, 2016;
Wong and Hernandez, 2012; Gong et al, 2014).

The starting point of additive manufacturing is a complete 3D model of the
component to be built, usually obtained via 3D-CAD modeling (newly designed
components and prototypes). A second method of capturing the model data, important
for spare parts (duplicating) and for medical applications, is the use of reverse
engineering. Thereby, the data sets are generated from measurements, surface scans
or CT scans. From these data sets surface and/or volumetric models are generated,
utilizing polygonization and triangulation algorithms. With the obtained refined
models containing the geometric information of the part to be fabricated or duplicated
STL data sets can be obtained and are then transferred to the generative production
process in STL format. This data conversion is software-aided and automatized as far
as possible (VDI-Richtlinie, 2014, see Fig. 14.2).

14.4 Mechanical Properties

Additive manufacturing has the advantages of flexible geometric design, and corre-
spondingly an outstanding potential for mass reduction (Sert et al, 2019a). The full
exploitation of these benefits requires predictable mechanical properties. Due to the
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Fig. 14.2 Schematic representation of a possible digital data chain for additive manufacturing

complete melting of the powder in the selective laser melting process, it is possible
to produce almost completely dense parts. The relative density of the components
produced is an important quality characteristic that is related to the mechanical
properties and process parameters. The influence of the latter is mainly attributed
to the surface condition and pore formation (Dai and Gu, 2015; Aboulkhair et al,
2014). In contrast, the melt pool itself mainly depends on the energy density of the
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irradiation and the powder characteristics, such as chemical composition, particle
size distribution, morphology and flowability (Hitzler et al, 2016b):

VED =
P

d × x × vscan
(14.1)

where VED is the volumetric energy density, P is the laser power, d is the layer
thickness, x is the hatch spacing, and vscan is the scan speed.

Several studies have shown that the applied energy density correlates with numerous
properties, such as relative density, tensile strength, and hardness of the created body
(Spierings et al, 2011; Cherry et al, 2014). However, the energy density includes
several parameters, which affect the process in an individual way and thus, similar
energy densities can lead to varying results (Prashanth and Eckert, 2017; Hitzler et al,
2017b). The present work tries to give an overview on the studies on the mechanical
properties of aluminum alloys. Specifically, the influence of space orientation and
post heat treatment on the hardness and tensile properties are considered in detail.

14.4.1 Hardness

AlSiMg alloys exhibit significantly higher strength and hardness compared to other
aluminum alloys (Hafenstein and Werner, 2019). Due to the rapid cooling (105 to
106 K/s) from the melt to the preset preheating temperature in SLM, a supersaturated
aluminum solid solution is obtained (Buchmayr et al, 2017). Age-hardenable AlSiMg
alloys offer the potential for further hardening after consolidation (Prashanth and
Eckert, 2017). The high cooling rate leads to a very fine microstructure, which in turn
is responsible for the corresponding high hardness. Aging at increased temperature
initiate diffusion-controlled precipitation of the alloying elements. First coherent
precipitates and then partially coherent and incoherent Mg2Si precipitates are formed,
with the duration and temperature of the aging heat treatment being the significant
factors determining the state of the precipitates. Due to the layered structure and the
different cooling rates with increasing overall height, inhomogeneities occur related
to the building direction in the component (Read et al, 2015).

These inhomogeneities, which are caused among other things by the different
stages of precipitation hardening, can be detected by hardness measurements. Recent
studies focus on the correlation between surface and core hardness, as the process
parameters for the surface and core differ. However, the studies demonstrate that the
hardness values between surface and core are very similar in most cases (Sert et al,
2018; Hitzler et al, 2018).

The inhomogeneous nature, coupled with the dependencies of the manufacturing
parameters, evidence a tendency for the hardness to decrease with increasing built
height, Fig. 14.3 (Hitzler et al, 2016a; Sert et al, 2018; Aboulkhair et al, 2016a;
Buchbinder et al, 2009). This trend was also confirmed by other studies, see Table
14.1.
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Fig. 14.3 Vickers hardness in terms of as built and post heat treatment from different studies
(Aboulkhair et al, 2016a; Buchbinder et al, 2009; Hitzler et al, 2016a; Sert et al, 2018)

Table 14.1 Summary of the hardness of AlSi alloys

Alloy Conditions HV Comment Ref.

AlSi10Mg as-built 109.7 ± 0.9 BO 0◦ Spierings
et al (2011)99.07 ± 2 BO 90◦

AlSi10Mg as-built 125 ± 1

Aboulkhair
et al (2016b)

1 h 520◦C 100 ± 1
+ 6 h 160◦C
6 h 520◦C 103 ± 2

+ 7 h 160◦C

AlSi10Mg as-built 134 ± 4 BO 90◦
Buchbinder
et al (2015)

90 ± 8 OT 200◦C / BO 90◦
130 ± 7 BO 0◦
84 ± 3 OT 200◦C / BO 0◦

Al7075 as-built 130 ± 10

Montero-
Sistiaga et al
(2016)

Al7075 + 1%Si as-built 150 ± 10
Al7075 + 2%Si as-built 147 ± 15
Al7075 + 3%Si as-built 156 ± 9
Al7075 + 4%Si as-built 159 ± 9

10 h 120◦C 163 ± 5
6 h 150◦C 171 ± 4

Continued on next page
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Summary of the hardness of AlSi alloys – continued from previous page

Alloy Conditions HV Comment Ref.

2 h 170◦C 165 ± 3
2 h 470◦C 103 ± 3
2 h 470◦C 120 ± 2

+ 6 h 150◦C

AlSi10Mg as-built 119.6 ± 3.8

Uzan et al
(2017)

2 h 300◦C 93.1 ± 3.2
2 h 300◦C 89.2 ± 4

+ HIP 250◦C
2 h 300◦C 52 ± 2

+ HIP 500◦C

AlSi10Mg as-built 115 BO 0◦

Hitzler et al
(2016a)

118 BO 45◦
107 BO 90◦

6 h 525◦C 56 BO 0◦
+ 6 h 165◦C 52 BO 45◦

51 BO 90◦
6 h 300◦C 66 BO 0◦

+ 6 h 180◦C 70 BO 45◦
63 BO 90◦

4 h 500◦C 110 BO 0◦
+ 6 h 180◦C 110 BO 45◦

109 BO 90◦

AlSi10Mg as-built 103 ± 1 SH / BO 0◦ / right

Sert et al
(2019a)

102 ± 2 SH / BO 0◦ / left
107.3 ± 1.2 SH / BO 0◦/90◦ / right
95.7 ± 3.1 SH / BO 0◦/90◦ / left
115 ± 2.6 SH / BO 30◦ / UE
89.7 ± 2.5 SH / BO 30◦ / LE
114.7 ± 1.2 SH / BO 45◦ / UE
85.7 ± 2.5 SH / BO 45◦ / LE
105.3 ± 2.1 SH / BO 75◦ / UE

96 ± 1 SH / BO 75◦ / LE
101.7 ± 1.5 SH / BO 90◦ / UE
90.3 ± 3.5 SH / BO 90◦ / LE

AlSi10Mg 4 h 170◦C 103 ± 1 SH / BO 0◦ / right
104.3 ± 2.1 SH / BO 0◦ / left
110.7 ± 1.5 SH / BO 0◦/90◦ / right
97.3 ± 1.5 SH / BO 0◦/90◦ / left

Continued on next page
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Summary of the hardness of AlSi alloys – continued from previous page

Alloy Conditions HV Comment Ref.

115.7 ± 0.6 SH / BO 30◦ / UE

Sert et al
(2019a)

87.3 ± 1.2 SH / BO 30◦ / LE
116.3 ± 0.6 SH / BO 45◦ / UE

80 ± 0 SH / BO 45◦ / LE
127.3 ± 1.5 SH / BO 75◦ / UE

79 ± 2 SH / BO 75◦ / LE
124.3 ± 2.5 SH / BO 90◦ / UE
94.3 ± 4.2 SH / BO 90◦ / LE

AlSi10Mg as-built 110.7 ± 2.1 CH / BO 0◦ / right

Sert et al
(2019a)

107.3 ± 1.5 CH / BO 0◦ / left
105.7 ± 0.6 CH / BO 0◦/90◦ / right
111 ± 1.7 CH / BO 0◦/90◦ / left

112.3 ± 2.1 CH / BO 30◦ / UE
107 ± 3 SH / CH 30◦ / LE

101.3 ± 1.5 CH / BO 45◦ / UE
105 ± 1 SH / CH 45◦ / LE

93.3 ± 1.5 CH / BO 75◦ / UE
109 ± 2.6 CH / BO 75◦ / LE
92.3 ± 2.5 CH / BO 90◦ / UE
101.3 ± 2.1 CH / BO 90◦ / LE

AlSi10Mg 4 h 170◦C 115.3 ± 2.5 CH / BO 0◦ / right

Sert et al
(2019a)

110.7 ± 4 CH / BO 0◦ / left
106 ± 2 CH / BO 0◦/90◦ / right

112.7 ± 0.6 CH / BO 0◦/90◦ / left
113.3 ± 3.1 CH / BO 30◦ / UE
105.7 ± 1.5 SH / CH 30◦ / LE
101.3 ± 1.5 CH / BO 45◦ / UE

105 ± 1 SH / CH 45◦ / LE
102 ± 2.6 CH / BO 75◦ / UE

108.7 ± 2.1 CH / BO 75◦ / LE
117.3 ± 1.2 CH / BO 90◦ / UE
115 ± 1.7 CH / BO 90◦ / LE

This phenomenon is caused by differing stakes of the precipitated resulting from
varying dwell times in the built chamber after consolidation. By post heat treatments,
the inhomogeneities related to the height can be reduced. Therefore, the choice of
temperature and the aging time are of significant importance. The T6 heat treatment
or the stress-relief annealing at 300◦C for 2 hours results in a homogenization of the
hardness profile, but at the expense of a coarsening of the microstructure, Table 14.1.
Hitzler et al (2016a); Sert et al (2019a) showed that it is possible to homogenize the
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hardness profile while maintaining the as-fabricated microstructure by means of a
second aging heat treatment.

14.4.2 Tensile Strength

In order to assess the quality of an additive manufactured component destructive
material testing is inevitable. The studies summarized in Table 14.2 documents the
anisotropic material behavior, which was determined via tensile testing.

Table 14.2 Summery of tensile properties of AlSi alloy

Alloy Conditions E [GPa] Rp0.2 [MPa] Rm [MPa] At [%] Ref.

A
lS

i1
0M

g as-built 77 ± 5 268 ± 2 333 ± 15 1.4 ± 0.3
Aboulkhair
et al (2016b)

2 h 535◦C 73 ± 4 239 ± 2 292 ± 4 3.9 ± 0.5
+ 10 h 158◦C

A
35

7

as-built
Aversa et al
(2017)

OT 100◦C 245 ± 4 389 ± 3 5.2 ± 0.2
OT 140◦C 284 ± 3 408 ± 5 4.9 ± 0.2
OT 170◦C 288 ± 7 397 ± 9 3.8 ± 0.3
OT 190◦C 246 ± 4 362 ± 2 4.4 ± 0.3

A
lS

i1
0M

g

as-built
Buchbinder
et al (2015)

OT 220◦C
/ BO 0◦ 130 300 6.5

OT 170◦C
/ BO 90◦ 150 250 4
BO 0◦ 210 400 8
BO 90◦ 240 450 5.4
BO 0◦ 210 400 6
BO 90◦ 240 450 3.2

A
l7

07
5+

4%
Si as-built 279 ± 10

Montero-
Sistiaga et al
(2016)

338 ± 13

A
lS

i1
2 as-built

BO 0◦ 227.31 261.8 0.87

Continued on next page
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Summery of tensile properties of AlSi alloy – continued from previous page

Alloy Conditions E [GPa] Rp0.2 [MPa] Rm [MPa] At [%] Ref.

±20.16 ±37.01 ±0.004

Rashid et al
(2018)

BO 45◦ 262.36 367.33 2.57
±10.08 ±29.88 ±0.008

BO 90◦ 224.78 398.57 3.42
±33.52 ±16.48 ±0.004

A
lS

i1
0M

g as-built 319 ± 2.8 477.5 ± 4.9 4 ± 4.9

Zhang et al
(2018)

2 h 300◦C 266 ± 4 369 ± 4 7.5 ± 1.5
1 h 530◦C 151 ± 2.8 253 ± 5.6 10.5 ± 2
2 h 535◦C 197.5 ± 2 253 ± 5.6 10.5 ± 2

+ 10 h 158◦C

A
lS

i1
0M

g

as-built

Wang et al
(2018a)

BO 0◦ 325 3
BO 90◦ 375 8

3/4 h 380◦C
BO 0◦ 105.7 171.3 9.4
BO 90◦ 171.7 16.5

A
lS

i1
0M

g

as-built

Wang et al
(2018b)

BO 0◦ 334 3.64
BO 90◦ 358

2 h 535◦C
+10 h 158◦C

BO 0◦ 174 267.3 9.28
BO 90◦ 160 278

A
lS

i1
0M

g

as-built 241 ± 10 384 ± 16 6 ± 1

Uzan et al
(2017)

2 h 300◦C 205 ± 8 253 ± 18 18 ± 3
2 h 300◦C 186 ± 5 233 ± 7 22 ± 2

+ HIP 200◦C
2 h 300◦C 115 ± 5 141 ± 8 35 ± 3

+ HIP 500◦C

A
lS

i1
0M

g

as-built 72.322 206.74 366.43 6.12

Hitzler et al
(2017b)

±2.9953 ±4.419 ±12.506 ±1.096
BO 0◦/5◦ 72.888 241.15 399.10 6.47

±1.1788 ±5.697 ±7.33 ±0.361
BO 0◦/85◦ 71.715 222.83 360.27 5.33

±1.1462 ±9.301 ±10.442 ±0.457
BO 45◦/0◦ 65.64 188.15 330.11 4.47

±3.5145 ±7.038 ±10.385 ±0.152
BO 45◦/5◦ 69.515 179.71 314.32 3.97

Continued on next page
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Summery of tensile properties of AlSi alloy – continued from previous page

Alloy Conditions E [GPa] Rp0.2 [MPa] Rm [MPa] At [%] Ref.

±2.3033 ±8.313 ±7.236 ±0.449
BO 90◦/5◦ 70.422 208.57 357.49 3.15

±2.6857 ±16.942 ±19.6 ±0.080
BO 90◦/45◦ 62.560 198.13 344.73 3.2

±3.7283 ±13.635 ±20.564 ±0.189

A
lS

i1
0M

g as-built
Dai et al
(2018)

BO 0◦ 287.2 476.8 7.33
2 h 300◦C

BO 0◦ 201.3 320.5 13.3

A
l3

.5
Cu

1.
5M

g as-built 233 ± 4 366 ± 7 5.3 ± 0.3

Wang et al
(2018c)

2 h 535◦C 368 ± 6 455 ± 10 6.2 ± 1.8
+ 10 h 158◦C

A
lS

i1
0M

g

4 h 170◦C

Sert et al
(2019b)

BO 0◦ 66.71 226.14 352.05 5.21
±1.6449 ±8.0951 ±8.875 ±0.4802

BO 45◦ 68.43 190.07 322.60 4.41
±2.1194 ±3.9837 ±3.5846 ±0.33

BO 60◦ 66.50 205.69 348.39 4.29
±0.9991 ±5.4356 ±6.4003 ±0.2656

BO 70◦ 68 201.41 356.62 4.18
±5.1241 ±7.0740 ±10.1685 ±0.2018

BO 80◦ 67.91 188.11 344.35 4.55
±2.1674 ±5.1051 ±6.6534 ±0.2592

BO 90◦ 66.11 185.87 344.78 4.85
±1.5225 ±3.9003 ±5.9526 ±0.25

A
lS

i1
0M

g

as-built

VDI-
Richtlinie
(2017)

BO 0◦ 67...72 239...292 372...473 4...7
BO 45◦ 71...76 213...295 370...478 4...6
BO 90◦ 68...78 210...272 353...482 2...5

6 h 525◦C
BO 0◦ 66...73 132...151 236...257 10...17
BO 45◦ 60...72 134...156 239...260 12...18
BO 90◦ 57...73 126...160 221...254 11...18

6 h 525◦C
+ 7 h 165◦C

Continued on next page
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Fig. 14.4 Applied nomenclature for the description of the orientation of tensile specimens

Summery of tensile properties of AlSi alloy – continued from previous page

Alloy Conditions E [GPa] Rp0.2 [MPa] Rm [MPa] At [%] Ref.

BO 0◦ 71...76 225...262 287...311 5...10
BO 45◦ 70...80 226...271 289...320 5...9
BO 90◦ 69...77 222...260 281...309 6...10

In order to clarify the comprehensibility with respect to the building orientation, the
polar angle was introduced as shown in Fig. 14.4. The polar angle varies between
0◦ (horizontal) and 90◦ (vertical). As tensile specimens are loaded only along their
longitudinal direction, the consideration of the alignment of their longitudinal axis
in the fabrication / built space is sufficient for a unique designation. The directional
dependency is such that the highest material characteristics measured samples with
layer oriented parallel to the macroscopic load (Buchbinder, 2013; Sert et al, 2019b).
This seems to stem from the increased likelihood that irregularities and voids will
occur as the number of layers increases.

However, this is not necessarily synonymous with an increased degree of porosity,
but it has been shown that the connections between individual laser tracks and layers
predominantly change the importance of anisotropy on the tensile properties (Zhao
et al, 2018; Reschetnik et al, 2016; Qiu et al, 2013; Shifeng et al, 2014; Cloots
et al, 2016). As Table 2 demonstrates, this wording cannot be applied generally but
the qualitative dependence should be similar. The specified values vary depending
on the settings and machine conditions. Some studies indicate that removal of the
surface and the associated removal of the increased pore density in the transition zone
between the surface and the core can lead to an increase in strength (Aboulkhair et al,
2015; Bagherifard et al, 2018; Tang and Pistorius, 2017; Hitzler et al, 2017a; Zhang,
2004). Heat treatment can markedly influence the mechanical properties. AlSi alloys
show an inhomogeneous composition and grain size over each individual layer, which
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lead to a heterogeneous distribution of the Si particles during solidification. Via
heat treatments, such as the T6 treatment, the alloys can be homogenized. Solution
annealing leads to a coarsening of the microstructure, resulting in lower strength
and high ductility (Bagherifard et al, 2018; Buchmayr et al, 2017; Ngnekou et al,
2017, 2018). Several studies examined the effects of stress relief heat treatment
on mechanical properties. Figures 14.5 and 14.6 illustrate that the yield strength
and the tensile strength decrease in comparison to the as-built state while ductility
increases (Uzan et al, 2017; Zhang et al, 2018; Dai et al, 2018). This is contrasting
cast AlSi alloys, for which in most cases conventional post heat treatments result in
higher strength and lower ductility. Due to the subsequent aging, the microstructure
is homogenized by adjusting different precipitation hardening states. This eliminates
the inhomogeneity (Aboulkhair et al, 2015; Hitzler et al, 2018; Montero-Sistiaga et al,
2016; Sert et al, 2019b; Aversa et al, 2017).

14.5 Conclusions

AM techniques combine the advantages of geometric design freedom with good
mechanical properties. Based on the process-related layered production in the powder
bed environment, the components have anisotropic properties that are more or less
emphasized depending on the manufacturing conditions and the raw materials. In
addition, anisotropy may be superimposed with inhomogeneities resulting from
microstructural developments over different dwell times at elevated temperatures
in the built environment. These directional and spatial dependencies make it more

Fig. 14.5 Yield strength in terms of as bulit and post heat treatment from different studies (Zhang
et al, 2018; Uzan et al, 2017; Dai et al, 2018)
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Fig. 14.6 Ultimate tensile strength of as-built and post heat treated taken from different studies
(Zhang et al, 2018; Uzan et al, 2017; Dai et al, 2018)

challenging to characterize material properties and render their full description
difficult. This, however, is of utmost importance when predicting part properties
by employing micromechanical approaches, since components manufactured with
identical machines can have different mechanical properties simply by changing their
orientation in space during manufacture. Therefore, it is very important to consider
the manufacturing conditions and their effects on the resulting properties in the design
and dimensioning processes.

References

Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C (2014) Reducing porosity in alsi10mg parts
processed by selective laser melting. Additive Manufacturing 1-4:77–86

Aboulkhair NT, Stephens A, Maskery I, Tuck C, Ashcroft I, Everitt NM (2015) Mechanical properties
of selective laser melted alsi10mg: Nano, micro, and macro properties. In: Solid Freeform
Fabrication Symposium, pp 1026–1035

Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM (2016a) Improving the fatigue behaviour
of a selectively laser melted aluminium alloy: Influence of heat treatment and surface quality.
Materials & Design 104:174–182

Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM (2016b) The microstructure and
mechanical properties of selectively laser melted alsi10mg: The effect of a conventional t6-like
heat treatment. Materials Science and Engineering: A 667:139–146

Aversa A, Lorusso M, Trevisan F, Ambrosio E, Calignano F, Manfredi D, Biamino S, Fino P,
Lombardi M, Pavese M (2017) Effect of process and post-process conditions on the mechanical
properties of an a357 alloy produced via laser powder bed fusion. Metals 7:68



364 Enes Sert, Leonhard Hitzler, Markus Merkel, Ewald Werner, and Andreas Öchsner

Bagherifard S, Beretta N, Monti S, Riccio M, Bandini M, Guagliano M (2018) On the fatigue
strength enhancement of additive manufactured alsi10mg parts by mechanical and thermal
post-processing. Materials & Design 145:28–41

Beese AM, Carroll BE (2015) Review of mechanical properties of ti-6al-4v made by laser-based
additive manufacturing using powder feedstock. Jom 68:724–734

Bikas H, Stavropoulos P, Chryssolouris G (2015) Additive manufacturing methods and modelling
approaches: a critical review. The International Journal of Advanced Manufacturing Technology
83(1-4):389–405

Buchbinder D (2013) Selective laser melting von aluminiumgusslegierungen. Dissertation, RWTH
Aachen

Buchbinder D, Mainers W, Wissenbach K, Müller-Lohmeier K, Brandl E, Skrynecki N (2009) Rapid
manufacturing of aluminium parts for serial production via selective laser melting (slm), in 4th
international conference on rapid manufacturing

Buchbinder D, Meiners W, Wissenbach K, Poprawe R (2015) Selective laser melting of aluminum
die-cast alloy—correlations between process parameters, solidification conditions, and resulting
mechanical properties. Journal of Laser Applications 27(S2):S29,205

Buchmayr B, Panzl G, Walzl A, Wallis C (2017) Laser powder bed fusion - materials issues
and optimized processing parameters for tool steels, AlSiMg- and CuCrZr-alloys. Advanced
Engineering Materials 19(4):n/a

Cherry JA, Davies HM, Mehmood S, Lavery NP, Brown SGR, Sienz J (2014) Investigation into
the effect of process parameters on microstructural and physical properties of 316l stainless
steel parts by selective laser melting. The International Journal of Advanced Manufacturing
Technology 76(5-8):869–879

Cloots M, Kunze K, Uggowitzer PJ, Wegener K (2016) Microstructural characteristics of the
nickel-based alloy in738lc and the cobalt-based alloy mar-m509 produced by selective laser
melting. Materials Science and Engineering: A 658:68–76

Dai D, Gu D (2015) Tailoring surface quality through mass and momentum transfer modeling using
a volume of fluid method in selective laser melting of tic/alsi10mg powder. International Journal
of Machine Tools and Manufacture 88:95–107

Dai D, Gu D, Zhang H, Zhang J, Du Y, Zhao T, Hong C, Gasser A, Poprawe R (2018) Heat-induced
molten pool boundary softening behavior and its effect on tensile properties of laser additive
manufactured aluminum alloy. Vacuum 154:341–350

Frazier WE (2014) Metal additive manufacturing: A review. Journal of Materials Engineering and
Performance 23(6):1917–1928

Gong X, Anderson T, Chou K (2014) Review on powder-based electron beam additive manufacturing
technology. Manufacturing Review 1

Hafenstein S, Werner E (2019) Pressure dependence of age-hardenability of aluminum cast alloys
and coarsening of precipitates during hot isostatic pressing. Materials Science and Engineering:
A 757:62–69

Hitzler L, Charles A, Öchsner A (2016a) The influence of post-heat-treatments on the tensile
strength and surface hardness of selective laser melted alsi10mg. Defect and Diffusion Forum
370:171–176

Hitzler L, Janousch C, Schanz J, Merkel M, Mack F, Öchsner A (2016b) Non-destructive evaluation
of alsi10mg prismatic samples generated by selective laser melting: Influence of manufacturing
conditions. Materialwissenschaft und Werkstofftechnik 47(5-6):564–581

Hitzler L, Hirsch J, Merkel M, Hall W, Öchsner A (2017a) Position dependent surface quality in
selective laser melting. Materialwissenschaft und Werkstofftechnik 48(5):327–334

Hitzler L, Janousch C, Schanz J, Merkel M, Heine B, Mack F, Hall W, Öchsner A (2017b) Direction
and location dependency of selective laser melted alsi10mg specimens. Journal of Materials
Processing Technology 243:48–61

Hitzler L, Williams P, Merkel M, Hall W, Öchsner A (2017c) Correlation between the energy input
and the microstructure of additively manufactured cobalt-chromium. Defect and Diffusion Forum
379:157–165



14 Additive Manufacturing: A Review of Mechanical Properties 365

Hitzler L, Merkel M, Hall W, Öchsner A (2018) A review of metal fabricated with laser- and powder-
bed based additive manufacturing techniques: Process, nomenclature, materials, achievable
properties, and its utilization in the medical sector. Advanced Engineering Materials 20(5)

Lewandowski JJ, Seifi M (2016) Metal additive manufacturing: A review of mechanical properties.
Annual Review of Materials Research 46(1):151–186

Montero-Sistiaga ML, Mertens R, Vrancken B, Wang X, Van Hooreweder B, Kruth JP, Van Humbeeck
J (2016) Changing the alloy composition of al7075 for better processability by selective laser
melting. Journal of Materials Processing Technology 238:437–445

Ngnekou JND, Nadot Y, Henaff G, Nicolai J, Ridosz L (2017) Influence of defect size on the fatigue
resistance of alsi10mg alloy elaborated by selective laser melting (slm). Procedia Structural
Integrity 7:75–83

Ngnekou JND, Henaff G, Nadot Y, Nicolai J, Ridosz L (2018) Fatigue resistance of selectively laser
melted aluminum alloy under t6 heat treatment. Procedia Engineering 213:79–88

Prashanth KG, Eckert J (2017) Formation of metastable cellular microstructures in selective laser
melted alloys. Journal of Alloys and Compounds 707:27–34

Qiu C, Adkins NJE, Attallah MM (2013) Microstructure and tensile properties of selectively laser-
melted and of hiped laser-melted ti–6al–4v. Materials Science and Engineering: A 578:230–239

Rashid R, Masood SH, Ruan D, Palanisamy S, Rahman Rashid RA, Elambasseril J, Brandt M (2018)
Effect of energy per layer on the anisotropy of selective laser melted alsi12 aluminium alloy.
Additive Manufacturing 22:426–439

Read N, Wang W, Essa K, Attallah MM (2015) Selective laser melting of alsi10mg alloy: Process
optimisation and mechanical properties development. Materials & Design (1980-2015) 65:417–
424

Reschetnik W, Brüggemann JP, Aydinöz ME, Grydin O, Hoyer KP, Kullmer G, Richard HA (2016)
Fatigue crack growth behavior and mechanical properties of additively processed en aw-7075
aluminium alloy. Procedia Structural Integrity 2:3040–3048

Sert E, Hitzler L, Merkel M, Öchsner A (2018) Entwicklung von topologieoptimierten adapterele-
menten für die fertigung mittels additiver verfahren: Vereinigung von reinelektrischem antrieb-
sstrang mit konventionellem chassis. Materialwissenschaft und Werkstofftechnik 49(5):674–682

Sert E, Hitzler L, Heine B, Merkel M, Werner A, Öchsner A (2019a) Influence of heat treatment
on the microstructure and hardness of additively manufactured alsi10mg samples. Practical
Metallography

Sert E, Schuch E, Öchsner A, Hitzler L, Werner E, Merkel M (2019b) Tensile strength perfor-
mance with determination of the poisson‘s ratio of additively manufactured alsi10mg samples.
Materialwissenschaft und Werkstofftechnik 50(5):539–545

Shifeng W, Shuai L, Qingsong W, Yan C, Sheng Z, Yusheng S (2014) Effect of molten pool
boundaries on the mechanical properties of selective laser melting parts. Journal of Materials
Processing Technology 214(11):2660–2667

Singh S, Ramakrishna S, Singh R (2017) Material issues in additive manufacturing: A review.
Journal of Manufacturing Processes 25:185–200

Spierings AB, Herres N, Levy G (2011) Influence of the particle size distribution on surface quality
and mechanical properties in am steel parts. Rapid Prototyping Journal 17(3):195–202

Tang M, Pistorius PC (2017) Oxides, porosity and fatigue performance of alsi10mg parts produced
by selective laser melting. International Journal of Fatigue 94:192–201

Uzan NE, Shneck R, Yeheskel O, Frage N (2017) Fatigue of alsi10mg specimens fabricated by
additive manufacturing selective laser melting (am-slm). Materials Science and Engineering: A
704:229–237

VDI-Richtlinie (2014) Additive fertigungsverfahren grundlagen, begriffe, verfahrensbeschreibungen,
3405

VDI-Richtlinie (2017) Additive fertigungsverfahren laser-strahlschmelzen metallischer bauteile
materialkenndatenblatt aluminiumlegierung alsi10mg, 3405, blatt 2.1

Wang L, Sun J, Zhu X, Cheng L, Shi Y, Guo L, Yan B (2018a) Effects of t2 heat treatment on
microstructure and properties of the selective laser melted aluminum alloy samples. Materials
(Basel) 11(1)



366 Enes Sert, Leonhard Hitzler, Markus Merkel, Ewald Werner, and Andreas Öchsner

Wang LF, Sun J, Yu XL, Shi Y, Zhu XG, Cheng LY, Liang HH, Yan B, Guo LJ (2018b) Enhancement
in mechanical properties of selectively laser-melted alsi10mg aluminum alloys by t6-like heat
treatment. Materials Science and Engineering: A

Wang P, Gammer C, Brenne F, Prashanth KG, Mendes RG, Rümmeli MH, Gemming T, Eckert
J, Scudino S (2018c) Microstructure and mechanical properties of a heat-treatable al-3.5cu-
1.5mg-1si alloy produced by selective laser melting. Materials Science and Engineering: A
711:562–570

Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mechanical Engineering
2012:1–10

Zhang C, Zhu H, Liao H, Cheng Y, Hu Z, Zeng X (2018) Effect of heat treatments on fatigue
property of selective laser melting alsi10mg. International Journal of Fatigue 116:513–522

Zhang D (2004) Entwicklung des selective laser melting (slm) für aluminumwerkstoffe. Dissertation,
RWTH Aachen

Zhao J, Easton M, Qian M, Leary M, Brandt M (2018) Effect of building direction on porosity
and fatigue life of selective laser melted alsi12mg alloy. Materials Science and Engineering: A
729:76–85



Chapter 15
Efficient Numerics for the Analysis of
Fibre-reinforced Composites Subjected to Large
Viscoplastic Strains

Alexey V. Shutov and Igor I. Tagiltsev

Abstract Fibre-reinforced composites which sustain large multi-axial inelastic strains
are of great importance for modern engineering. Besides, numerous biological soft
tissues like blood vessels and heart valves as well as their artificial substitutes can be
idealized as fibre-reinforced composites as well. Therefore, there is a growing demand
for sufficiently accurate and numerically efficient modelling approaches which can
reproduce the mechanical behaviour of such materials. In the current study we focus
on the phenomenological material modelling and the related numerics. The kinematics
of inelastic body is based on the well-proven multiplicative decomposition of the
deformation gradient in combination with hyperelastic relations between stresses and
elastic strains. An efficient numerical algorithm is suggested for the implementation
of a phenomenological material model which accounts for the plasticity both in
matrix and fibre. The performance of the algorithm is tested and its applicability is
exemplified in terms of a demonstration problem.

Keywords: Fibre-reinforced composite · Large strain · Elasto-visco-plasticity ·
Efficient numerics

15.1 Introduction

Applications involving multi-axial straining of fibre-reinforced composites in the
plastic and viscoplastic modes are versatile (Uddin, 2013). Originally, the interest in
such composite materials was related to engineering purposes like a design of tires
and air springs (Helnwein et al, 1993; Meschke and Helnwein, 1994; Holzapfel and
Gasser, 2001; Donner and Ihlemann, 2013). Since the 80s, biomechanical agenda

Alexey V. Shutov · Igor I. Tagiltsev
Lavrentyev Institute of Hydrodynamics, pr. Lavrentyeva 15 & Novosibirsk State University, ul.
Pirogova 1, 630090, Novosibirsk, Russia,
e-mail: alexey.v.shutov@gmail.com,i.i.tagiltsev@gmail.com

367© Springer Nature Switzerland AG 2019

in Material Modeling, Advanced Structured Materials 100,
https://doi.org/10.1007/978-3-030-30355-6_15

H. Altenbach and A. Öchsner (eds.), State of the Art and Future Trends

alexey.v.shutov@gmail.com,i.i.tagiltsev@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30355-6_15&domain=pdf


368 Alexey V. Shutov and Igor I. Tagiltsev

motivates an in-depth study of mechanical behaviour of “fibre-reinforced” living soft
tissues (Chuong and Fung, 1986; Holzapfel et al, 2000; Gasser et al, 2002; Marino
et al, 2018); a closely related issue is the analysis of their artificial substitutes like
blood vessel prosthesis and engineered heart valves (Chernonosova et al, 2018).

Although a substantial progress has been achieved within the micromechanical
modelling of fibre-reinforced composites (see, for example, Wongsto and Li, 2005;
Maligno et al, 2009; Vaughan and McCarthy, 2011), the phenomenological approach
is a method of choice when working with large and complex systems as well as
multiple time scales. The main advantages of the phenomenological approach are
its relative simplicity combined with the efficient numerical implementation, see,
among others, Holzapfel et al (2000); Gasser et al (2002); Tagiltsev et al (2018); Liu
et al (2019).

In the current study we deal with the multiplicative approach, used both for the
matrix and the fibre. Within that approach, the deformation gradient is decomposed
into the inelastic (viscoplastic) and elastic (hyperelastic) parts by a multiplicative split.
Since both parts can be finite, the setting is geometrically exact. Using the multiplica-
tive split one may create a model which is a-priory objective, thermodynamically
consistent, and free from non-physical shear oscillations (Shutov, 2016). The chosen
framework also allows for a pure isochoric/volumetric split (Shutov, 2016) and a big
number of hyperelastic potentials can be employed for more accurate simulations.
Other studies which also employ the multiplicative approach to the inelasticity of
fibre and matrix are presented in Nguyen et al (2007); Huang et al (2012); Liu et al
(2019).

Unfortunately, in case of viscoelasticity and viscoplasticity, the underlying evolu-
tion equations are stiff. For that reason, implicit time discretization methods must
be used. Typically, the resulting system of nonlinear algebraic equations is solved
by a Newton-Raphson-like iteration, which is time consuming. Within a large scale
FEM computation the material law needs to be evaluated for a big number of times,
the number of evaluations ranges up to 1010 in some applications with globally
implicit FEM; even a larger computational effort may arise when using a globally
explicit FEM. The very large computational effort may become a serious issue in
the analysis of surgical operations which needs to be carried out in real time and
in the solution of inverse problems, typical in engineering. In this contribution we
present a simple iteration-free algorithm of implicit integration for the fibres and
a simple one-equation-integrator for the matrix. The overall performance of the
numerical scheme is tested; the applicability of the framework is validated in terms
of a simple demonstration problem which involves large elastic and plastic strains of
the composite material.

15.2 Material Model of the Fibre-reinforced Composite

Following the conventional iso-strain approach, the material model of the fibre-
reinforced composite is a parallel connection of elasto-viscoplastic submodels of two
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Fig. 15.1 Rheological model
of the fibre-reinforced compos-
ite

matrix

fibre family 1#

fibre family #N

types: for the matrix and for the fibre, see Fig. 15.1. Dealing with strain-controlled
loadings, the submodels are completely uncoupled. The coupling appears if a stress-
controlled loading is considered, or in a more general setting of a boundary value
problem.

15.2.1 Isotropic Viscoplasticity for the Matrix

To capture the behaviour of the matrix we employ the viscoplastic model originally
proposed in Simo and Miehe (1992). Later this model was re-written on the reference
configuration in Lion (1997). The application of this framework to viscoelasticity
was popularized in Reese and Govindjee (1998). The advantages of this approach are
discussed in Shutov (2016) in case of viscoelasticity and in Shutov and Ihlemann
(2014) in case of elasto-plasticity.

The deformation gradient F is decomposed into the elastic part Fmatrix
e and the

inelastic (viscoplastic) part Fmatrix
i ; the inelastic part gives rise to the inelastic right

Cauchy-Green tensor Ci:

F = Fmatrix
e Fmatrix

i , Ci = Fmatrix
i

TFmatrix
i . (15.1)

The viscoplastic flow is governed by the following initial value problem:

�Ci =
√

6 �s
1
F
(CT̃)DCi, Ci |t=0= C0

i . (15.2)

Here, �s is the rate of the accumulated plastic arc-length; C is the right Cauchy-Green
tensor; T̃ is the second Piola-Kirchhoff stress tensor. The norm of the Kirchhoff stress
deviator is denoted byF. It can be computed in terms of the referential Mandell stress
CT̃:

F =

√
tr((CT̃)D)2. (15.3)

Let Ψmatrix be the specific free energy per unit mass; it defines the hyperelastic
properties of the matrix. The following expression can be obtained for the stresses in
the matrix by the Coleman-Noll procedure
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T̃ = 2ρR
∂Ψmatrix(CC−1

i )
∂C . (15.4)

Here, ρR stands for the mass density in the reference configuration. In case of the
neo-Hookean potential the stress tensor equals

T̃ = 2μC−1(CC−1
i )D, (15.5)

where μ is the shear modulus; C = (detC)−1/3C is the isochoric part of C. The rate
of the accumulated plastic arc-length is related to the rate of the viscoplastic flow; it
is computed using the Perzyna rule

�s =
√

2
3

1
ηmatrix

〈F −
√

2
3 Kmatrix

k0

〉mmatrix
, k0 = 1KPa. (15.6)

Here, Kmatrix is the uniaxial yield stress of the matrix; mmatrix and ηmatrix are the
viscosity parameters; 〈x〉 = max(0, x) is the positive part of a real number. In the
Perzyna rule (15.6), the norm of the Kirchhoff stress deviatorF is seen as the driving
force of the viscoplastic flow; k0 is not a material parameter.

The model of Simo and Miehe (1992) summarized here is objective and thermo-
dynamically consistent. Moreover, it is w-invariant under isochoric changes of the
reference configurations, see Shutov and Ihlemann (2014). As shown in Shutov and
Kreißig (2010), the exact solution is exponentially stable with respect to perturbations
of initial data, which brings advantages with respect to efficient numerics.

15.2.2 Anisotropic Viscoplasticity for the Fibre

In practice, fibre-reinforced materials are usually reinforced by N families of fibres
exhibiting different orientations and structural properties. Again, following the iso-
strain approach, we neglect the interaction between the fibre families by assuming a
parallel connection of corresponding submodels (see Fig. 15.1). There are different
approaches to the analysis of inelastic properties of individual fibre families. For
instance, in Holzapfel and Gasser (2001) and related papers the authors use convolution
integrals, which (for general relaxation kernels) requires the integration over the entire
deformation history. An alternative approach is advocated in the current contribution.
It is based on the multiplicative decomposition in combination with hyperelastic
relations and evolution equations governing the changes of internal variables. As in the
previous subsection, the fibre kinematics is based on the multiplicative decomposition:

F = Ffibre
e Ffibre

i . (15.7)

Although the matrix and the fiber experience the same deformation F, the intermediate
(stress-free) configuration for the considered fibre family differs from the one of
the matrix. Therefore, superscripts “matrix” and “fibre” are used in the current
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contribution. Let a unit vector ã represent the direction of the chosen fibre family in
the reference configuration. The corresponding structure tensor M̃ is as follows

M̃ = ã ⊗ ã, ‖ã‖ = 1. (15.8)

Next, let λ = ‖Fã‖ be the stretch of the fibre family. Considering the isochoric part
of the deformation, the stretch can be computed by the double contraction

λ =
√

C : M̃. (15.9)

Let λi = ‖Ffibre
i ã‖ be the inelastic stretch of the fibre. We assume that the inelastic

deformation does not change the fibre direction: Ffibre
i ã = λiã. In that case it is

natural to introduce the elastic stretch as λe = ‖Ffibre
e ã‖. Thus, the multiplicative

decomposition (15.7) yields a decomposition of the fibre stretch: λ = λeλi.
In the simplest case one may assume that the free energy stored in the fiber family

is a function of the elastic stretch λe:

Ψfibre = Ψfibre(λ2
e), f =

d Ψfibre(λ2
e)

d(λ2
e)

. (15.10)

Here, the derivative f is introduced for convenience. To be definite, we use the
potential proposed by Holzapfel et al (2000)

ρR f (λ2
e) = kfibre

1 (λ2
e − 1) exp(kfibre

2 (λ2
e − 1)2), (15.11)

where kfibre
1 ≥ 0 is the stiffness parameter of the fibre and kfibre

2 > 0 is a non-
dimensional parameter attributed to the nonlinearity of the stress response under
finite tension. The potential proposed by Holzapfel and co-workers is one the most
common energy storage functions, extensively used in biomechanical applications.
Its modifications are presented in Tagiltsev et al (2018); Marino et al (2018).

As shown in Tagiltsev et al (2018), the Clausius-Duhem inequality for the
considered constitutive assumptions takes the following form

f · �λi ≥ 0. (15.12)

This inequality states that the fibre subjected to tensile stress can not contract
( f > 0 ⇒ �λi ≥ 0) and compressed fibres can not elongate ( f < 0 ⇒ �λi ≤ 0). In
this paper we formulate a flow rule which identically satisfies this inequality.

Our intention now is to build a flow rule similar to the Perzyna rule (15.6) of the
matrix. The axial component of the Kirchhoff stress is given by

σ =
4
3
ρR f

(
λ2

e

)
λ2

e =
4
3
ρR f

(
λ2

λ2
i

)
λ2

λ2
i
,

the rate of the logarithmic strain equals �λi
λi

. Thus, we naturally obtain the following
initial value problem for the inelastic stretch:



372 Alexey V. Shutov and Igor I. Tagiltsev

�λi
λi
=

1
ηfibre

〈 4
3 ρR f (λ2

λ2
i
)λ2

λ2
i
− Kfibre

k0

〉mfibre

, λi |t=0= λ
0
i , (15.13)

where ηfibre, Kfibre, and mfibre are the material parameters; again, k0 = 1 KPa. Note
that according to this flow rule the fibre yields under tension only. In case of a constant
fiber stretch λ = const, the flow rule takes an equivalent form

−
�λe
λe
=

1
ηfibre

〈 4
3 ρR f (λ2

e )λ2
e − Kfibre

k0

〉mfibre
. (15.14)

After some algebra (see Tagiltsev et al, 2018), the contribution of the fibre family to
the second Piola-Kirchhoff stress takes the form

T̃ = 2ρR
f (λ2

e )
λ2

i
PC : M̃, PC : M̃ = M̃ −

1
3

tr(CM̃)C−1. (15.15)

15.3 Efficient Numerics

15.3.1 Isotropic Viscoplasticity of the Matrix

Consider a typical time-step tn �→ tn+1, Δt = tn+1 − tn > 0. Assume that the
previous Ci and the current C are known. Denote them by nCi and n+1C, respectively.
Within the time step we need to update Ci and to compute the current value of the
second Piola-Kirchhoff stress n+1T̃. Combining the evolution equation (15.2) with
the neo-Hookean relation (15.5) we arrive at the following differential equation

�Ci =
√

6 �s
2μ
F

(CC−1
i )DCi. (15.16)

This equation is stiff. Therefore, it needs to be integrated using an implicit time-
stepping method. If �s/F is assumed to be constant within the time step, the flow
rule (15.16) coincides with the evolution equation governing the Maxwell fluid, see
Shutov et al (2013). Therefore, an update formula from Shutov et al (2013) can be
used:

n+1Ci = nCi + 2μ
ξ

F
n+1C, (15.17)

where ξ = Δt
√

3/2 �s is the so-called inelastic strain increment. Note that, according to
the Perzyna rule (15.6), the norm of the driving forceF can be obtained as a function
of the strain increment ξ. Indeed, multiplying both sides of (15.6) with

√
3/2Δt we

obtain

ξ =
Δt
ηmatrix

〈F −
√

2
3 Kmatrix

k0

〉mmatrix
. (15.18)
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In case of the inelastic flow we have F >
√

2
3 Kmatrix and

F = F̃(ξ) =
√

2/3Kmatrix + k0(ξηmatrix/Δt)1/mmatrix . (15.19)

Using this function and the update formula (15.17), we define

n+1Ci(ξ) = nCi + 2μ
ξ

F̃(ξ)
n+1C. (15.20)

Employing the function n+1Ci(ξ) we define two dependencies:

n+1T̃(ξ) = 2μ n+1C−1 (n+1C (n+1Ci(ξ))−1)D
, (15.21)

F̂(ξ) =
√

tr((n+1C n+1T̃(ξ))D)2. (15.22)

The unknown strain increment ξ is found from the yield condition (15.18). In the
incremental form it can be written as H(ξ) = 0 or D(ξ) = 0 with

H(ξ) = ξηmatrix/Δt −
(F̂(ξ) − √

2/3Kmatrix

k0

)mmatrix
, (15.23)

D(ξ) = (ξηmatrix/Δt)1/mmatrix −
F̂(ξ) −

√
2/3Kmatrix

k0
. (15.24)

Elastic predictor. First, we compute a trial driving force Ftrial = F̂(0), which
corresponds to a purely hyperelastic load increment with a frozen inelastic flow
(ξ = 0). If Ftrial ≤

√
2
3 Kmatrix then we put ξ = 0, n+1Ci =

nCi, n+1T̃ = n+1T̃(ξ = 0);
the time step is complete. Otherwise, an inelastic corrector step is needed.

Inelastic corrector. A reasonable correction procedure is as follows (see the
discussion in Shutov and Kreißig (2008)). First, a single iteration of the Newton
method is carried out for the equation H(ξ) = 0 using ξ = 0 as the initial approximation.
The remaining iterations of the Newton method are performed for D(ξ) = 0. After
the inelastic strain increment ξ is found, the internal variables and the stresses are
updated using (15.20) and (15.21). The corrector step is thus complete.

Since the entire procedure boils down to a single equation, it is the so-called
one-equation-integrator. A similar one-equation-integrator can also be obtained if the
free energy is given by a more general assumption of the Mooney-Rivlin potential,
see Shutov (2018). Another important property of the algorithm is that it preserves
the incompressibility of the inelastic flow: det(Ci) = 1. As shown in Shutov and
Kreißig (2010), such an integrator does not accumulate numerical errors even when
working with big time spans and large time steps.
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15.3.2 Anisotropic Viscoplasticity of the Fibre

15.3.2.1 Conventional Iteration-based Approach

For the time-step tn �→ tn+1 assume that n+1λ and nλi are known. To complete the
time step, we need to compute the current inelastic stretch n+1λi and the current
stress n+1T̃. Just as in the isotropic case, we subdivide the time step into the elastic
predictor and the inelastic corrector.

Elastic predictor. First, we assume that the fibre stretch λ changes instantly from
nλ to n+1λ. The corresponding trial elastic stretch equals n+1λtrial

e = n+1λ/nλi. The
trial stress n+1σtrial is then obtained using n+1λtrial

e :

n+1σtrial =
4
3
ρR f

(
(n+1λtrial

e )2
)
(n+1λtrial

e )2. (15.25)

If n+1σtrial < K then we set n+1λe =
n+1λtrial

e , n+1σ = n+1σtrial; the evaluation of the
time step is thus complete. Otherwise we proceed to the inelastic corrector step.

Inelastic corrector. Within the inelastic corrector, the total fibre stretch remains
constant: λ ≡ n+1λ. The elastic stretch is computed using the evolution equation
(15.14) and assuming the trial elastic stretch as the initial condition: λe |t=tn=
n+1λtrial

e . The classical Euler-backward method for (15.14) is used here to obtain an
unconditionally stable procedure:

n+1λe − nλe
Δt

= −
n+1λe
η

〈 4
3 ρR f (n+1λ2

e )n+1λ2
e − Kfibre

k0

〉mfibre
. (15.26)

This nonlinear algebraic equation is equivalent to the equation H(n+1λe) = 0 or
D(n+1λe) = 0, where

H(x) = (λtrial
e − x)

η

Δt
− x

( 4
3 ρR f (x2)x2 − Kfibre

k0

)mfibre
; (15.27)

D(x) =
(λtrial

e − x
xΔt

η
)1/mfibre

−
( 4

3 ρR f (x2)x2 − Kfibre

k0

)
. (15.28)

Just as in the previous section, an efficient Newton-like iteration process can be
organised as follows. First Newton iteration is carried out for the equation H(n+1λe) = 0
using n+1λtrial

e as the initial approximation for the unknown n+1λe. All the subsequent
Newton iterations are carried out for the equation D(n+1λe) = 0. After n+1λe is found,
we make the update: n+1λi =

n+1λ/n+1λe.

15.3.2.2 Iteration-free Approach

The iterative approach described above can lead to a very large computational effort,
especially when a big number of fibre families is involved. An efficient iteration-free
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stress update algorithm will be presented here. Note that for fixed time step size Δt
and fixed material parameters, the current elastic stretch n+1λe is a unique function
of the trial elastic stretch n+1λtrial

e . A typical transition curve n+1λtrial
e �→ n+1λe is

presented in Fig. 15.2.
Note that it is smooth and it is given by a straight line for n+1λtrial

e ≤ λcre , where
λcre is the critical elastic stretch corresponding to the initial plastification of the fibre.
Therefore, the transition curve can be approximated by a cubic spline with a sufficient
accuracy. For instance, we consider the key-points of the spline interpolation listed in
Table 15.2. In order to build the interpolation, the transition curve is pre-computed at
these key-points using the conventional iteration-based approach described above;
the interpolation result is shown in Fig. 15.2.

The new efficient approach is as follows. First, the elastic predictor is carried
out: n+1λtrial

e = n+1λ/nλi. Next, an approximated elastic stretch is estimated using
the cubic spline: n+1λest

e = Spline(n+1λtrial
e ). Finally, n+1λe is computed using a

single Newton iteration for the equation D(n+1λe) = 0 starting from n+1λest
e : n+1λe =

n+1λest
e − D(n+1λest

e )/D′(n+1λest
e ). The inelastic stretch is updated as in the previous

scheme: n+1λi =
n+1λ/n+1λe.
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Fig. 15.2 Transition curve with parameters from Table 15.1 (solid line) and its interpolation by
cubic splines using key-points from Table 15.2 (dashed line). The transition curve is a straight line
for n+1λtrial

e ≤ λcr
e

Table 15.1 Simulation parameters for transition curve

kfibre
1 kfibre

2 ηfibre Kfibre mfibre Δt

130 KPa 0.5 4000 s 500 KPa 2 2−5 s
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Table 15.2 Key points for the spline-approximation of the transition curve

X1 X2 X3 X4 X5

0.6 1.25 1.4 1.55 2.05

15.4 Tests and Applications

15.4.1 Single Fibre

It is instructive to test the stress update algorithm proposed in Subsubect. 15.3.2.2
using a single fibre family. In a suitable Cartesian coordinate system the deformation
gradient tensor and the orientation vector of the fibre family are given by

F =
�  !
λ 0 0
0 λ− 1

2 0
0 0 λ−

1
2

"##$ , ã = � !
1
0
0

"#$ , (15.29)

which corresponds to an incompressible uniaxial tension along the fibre. The
prescribed dependence of the logarithmic strain lnλ on time t is shown in Fig.
15.3. The used material parameters are listed in Table 15.3. The numerical solution
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Fig. 15.3 Prescribed dependence of the logarithmic strain lnλ on the time t used for testing

Table 15.3 Numerical parameters for the test with a single fibre family

kfibre
1 kfibre

2 ηfibre Kfibre mfibre Δt

130 KPa 0.5 4000 s 500 2 2−7 s

obtained with a very small time step size using the conventional iteration-based
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Fig. 15.4 Computed axial component of the Cauchy stress: the exact solution and the solution with
Δt = 2−7 s

method is referred to as the exact solution. The numerically computed Cauchy stresses
with a finite time step size and the corresponding exact solution are plotted against
time in Figure 15.4. As is seen from the figure, the efficient algorithm is sufficiently
accurate for engineering and biomechanical applications.

15.4.2 Inflation of a Viscoplastic Composite Tube

Now we proceed to the demonstration problem which is related to the inflation
of a thick-walled tube. In the initial state, the inner and outer radii equal 7 mm
and 10 mm, respectively. The tube is made of a single layer of the composite
material, the material is reinforced by two families of fibres, each of them is inclined
at the angle β = 64o to the hoop (circumferential) direction, see Fig. 15.5. The
material parameters are summarized in Table 15.4. The loading is controlled by a

Fig. 15.5 Composite tube
reinforced by two families of
fibres

R

R

a

�

o

i
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Table 15.4 Material parameters of the viscoplastic composite tube

ηmatrix μmatrix Kmatrix mmatrix kfibre
1 kfibre

2 ηfibre Kfibre mfibre
1600 s 80 KPa 20 KPa 2 130 KPa 0.5 4000 s 130 KPa 2

prescribed internal pressure p(t) that increases linearly from 0 to 40 KPa within
one second. To mimic the effect of sealed ends, an axial force is applied which
equals F(t) = p(t) × π × (current inner radius)2. The boundary-value problem is
solved using a semi-analytical procedure, already used in Tagiltsev et al (2018)1. A
relatively large time step size is used for numerical computations: Δt = 5 · 10−3 s. In
Fig. 15.6, the stretches in the hoop and axial directions are plotted as functions of
the applied pressure. The hoop-stretch-curve (Fig. 15.6, left) indicates two distinct
yielding events which correspond to the plastification of the matrix and the fibre.
Before the fibre yields, the tube shortens under action of the internal pressure (see
the axial-stretch-curve in Fig. 15.6, right). This shortening effect is attributed to the
fibre-reorientation along the hoop direction, which is the dominant mechanism of
the volume increase. After the plastification of fibres, the tube wall stretches both in
hoop and axial directions. Ultimately, this leads to the loss of stability.
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Fig. 15.6 Simulation results for the thick-walled pressurized composite tube. Stretches in the hoop
(left) and axial (right) directions as functions of the applied pressure

1 This procedure benefits from the simplified kinematics. In case of incompressible material the
entire deformation field is a function of two scalars: the internal radius and the length of the tube.
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15.5 Discussion and Conclusion

In the current contribution, a phenomenological approach to material modelling and
the corresponding numerics are developed. It is shown that the model kinematics
based on the multiplicative split of the deformation gradient allows one to capture
complex geometrically nonlinear mechanical phenomena. Within the advocated
multiplicative approach it is possible to incorporate differen kinds of hyperelastic
potentials with various flow rules of viscous type. The resulting models are objective,
thermodynamically consistent and they respect the material symmetries. Another
advantage of the multiplicative approach lies in the possibility to model residual
(initial) stresses: Different constituents of the composite can posses different stress-free
configurations, which brings additional freedom into the modelling framework. Such
a flexibility is especially important when dealing with natural grown biological tissues.
The presented numerical integration approach based on pre-computed splines allows
one to carry out highly efficient numerical computations, which is demonstrated by
the solution of a boundary value problem.

In opinion of the authors, the future of composite modelling will be an increased
use of physics-based multi-scale material models combined with development of
refined phenomenological approaches. Computationally heavy micromechanical
models will be used for development, calibration, and validation of computationally
efficient phenomenological models. Another promising direction of research are phe-
nomenological models which provide an entry point for physically sound constitutive
assumptions.
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Chapter 16
An Artificial Intelligence-based Hybrid Method
for Multi-layered Armour Systems

Filipe Teixeira-Dias, Samuel Thompson, and Mariana Paulino

Abstract The design of protective structures is a complex task mostly due to threat-
related unknowns, such as the exact kinetic energy of the impactor and the dominant
energy dissipation mechanisms. The design process is often costly and inefficient due
to the number of these unknowns and to the cost of necessary steps such as laboratory
testing and numerical modelling. In this chapter the authors propose a hybrid method
that significantly increases the efficiency of the design process, and consequently
decreasing its cost. The method combines an energy-based analytical approach with
a set of deep learning (DL) models. Finite Element Analysis (FEA) and experimental
results are used to train the artificial intelligence (AI) models and verify and validate
the design process. The energy-based analytical method generates solutions for the DL
algorithms, which can then be used to find optimal configurations for the protective
structure. The proposed deep learning model is a neural network which is trained
using experimental results and analytical data, to understand the ballistic response
of a specific material, and predict the residual velocity for a given impact velocity,
layer thickness and material properties. Networks trained for individual layers of the
armour system are then interconnected in order to predict the residual velocity of
blunt projectiles perforating multi-layered composite structures. Validation tests are
done on systems including single and multi-layered targets.

Keywords: Multi-layered protective structures · Ballistic impact · Perforation ·
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16.1 Introduction

Protective structures are used for a number of different purposes, ranging from
protection from the environment to blast and ballistic impact. The design of protective
barriers, structures and armour systems is often complex due to the number of
unknowns associated with the threat, which often include the kinetic energy of the
impactor (velocity and mass) and the mechanisms of energy dissipation within the
protective structure or armour system. These mechanisms have been thoroughly
studied and can include, for example, dissipation through plastic deformation, ductile
hole growth, petalling or plugging. Multi-layered structures are known to potentially
increase the protection capability without significant increase in weight (Liu et al,
2018; Ali et al, 2017; Elek et al, 2005). The design of said structures is thus very
closely associated with known factors (e.g. the specific application) and unknown
parameters such as those associated to the threat. The design process is often expensive
and inefficient due to the number of unknowns and to the cost of involved steps such
as laboratory testing and numerical modelling.

A hybrid method is proposed that increases the efficiency of the design process
while at the same time significantly decreasing its cost. The method relies on a
combination of a sound analytical method, which is inherently cost efficient, and
artificial intelligence (AI) deep learning (DL) models. Experimental results are used
not only to inform and train the AI models but also to validate the whole design
process, together with Finite Element Analysis. The energy-based analytical method
is developed to generate a set of solutions for the DL algorithm in order to find
an optimal configuration for the protective structure, considering the most relevant
energy dissipation mechanisms, and to determine perforation and residual velocity.

The deep learning model is a neural network trained using experimental results
and analytical data, with the aim of understanding the ballistic response of a specific
material or set of materials, and predicting the residual velocity for given impact
conditions and layer thicknesses.

16.1.1 The Hybrid Methodology

The proposed method relies on experimental data for the training of the AI. Finite
element analysis is used as a second validation stage, albeit not strictly necessary.
Verification and validation tests are done on multiple systems, including single
and multi-layered, in-contact target plates. This chapter describes the methods and
presents the advantages of the proposed hybrid method over conventional FEA and
experimental testing-based methodologies.

The impact of a projectile on a target can result in penetration or perforation. The
former is defined as a projectiles entrance into a target without fully completing
its passage through the body (Backman and Goldsmith, 1978). This means that the
striker leaves an indentation on the target, without completely perforating it. The
latter describes a ballistic impact which completely pierces the target (Zukas, 1980).
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In this scope, the Ballistic Limit Velocity (BLV) is the minimum projectile velocity
that ensures perforation (Børvik, 200; Zhang and Stronge, 1996). This velocity is a
property of the armour system and is determined by a number of parameters, such as
the projectile and target material properties, projectile mass and target configuration
(e.g. thickness). The residual velocity is the projectile velocity after it has perforated
the target. The definition of the BLV implies that if v0 = v	 then vr = 0, where v0 is
the projectile velocity just before impact, v	 is the BLV of the target and vr is the
residual velocity of the projectile. The residual velocity is zero if the target is struck
by a projectile at its BLV (Sikarwar et al, 2014).

The following sections detail the analytical models and AI methods used and how
they are integrated in a tool that can be used to predict post-perforation residual
velocities from ballistic impacts on metallic layered targets.

16.2 Plugging of Ductile Plates: Analytical Modelling

Protective structures and plates can be perforated in a number of different ways,
which are often grouped in six main distinct perforation mechanisms (Jia et al, 2014;
Woodward, 1987; Taylor, 1948; Thomson, 1955; Atkins et al, 1998; Landkof and
Goldsmith, 1985). The most common in ductile plates are ductile hole growth and
plugging, shown schematically in Figs. 16.1(a) and (b) (Teixeira-Dias et al, 2018).
This chapter focuses on perforation by orthogonal plugging, which occurs in finite
thickness targets impacted at right angles by blunt cylindrical projectiles travelling
close to or above the target’s ballistic limit velocity (BLV). The impactor forms a
plug of target material of similar diameter to the projectile by adiabatic shearing.
Plugging is initiated by plastic strains caused by high stress concentrations in a small
area (and thus high stress and strain gradients), leaving the remainder of the target
unaffected. Plastic strain energy is converted into heat, increasing the temperature in
the shearing zone, which leads to further localisation of the plastic strain, as shown
in Fig. 16.1(c). In plugging this process continues until the plug completely exits the
target (Krauthammer, 2008; Børvik et al, 2001).

This section describes the main principles and derivations involved in analysing
ballistic perforation of ductile plates using energy-based principles. Conservation
of energy, which is the basic principle behind these approaches, can be stated as∑

Ein =
∑

Eout where Ein and Eout are the input (initial) and output (final) energies
of the system. The basic assumption is that all energy is transformed during the
impact (Greszczuk et al, 1982; Horne, 2014; Goldsmith, 2001).

These energy-based approaches are often simplistic and thus based on a large
number of geometrical, mechanical and physical assumptions and simplifications. In
such models it is often assumed, for example, that thermal effects can be neglected.
In the case of plugging, where adiabatic shearing is the predominant deformation
mechanism, this is potentially too big an assumption. The analytical model proposed
and described in this chapter tries to compensate for this by considering an additional
friction term between the projectile and the target.
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Fig. 16.1 Schematic representation of the most common mechanisms of ductile plate perforation:
(a) ductile hole growth, (b) plugging and (c) detail of the adiabatic shear layer, where v is the
current projectile and plug velocity (adapted from Teixeira-Dias et al, 2018)

The model assumes a rigid (non-deformable) projectile, is based on the relationship
between stiffness and impact velocity and on the conservation of momentum. The
elastic wave velocities of the projectile and target, cp and ct are, respectively,

cp =

√
Ep

ρp
and ct =

√
(1 − νt)E

ρt(1 + νt)(1 − 2νt)
(16.1)

where Ep and ρp are the projectile’s Young’s modulus and density, and Et and ρt are
the target’s Young’s modulus and density, respectively. Based on the above and on
the compatibility relation between the projectile and target, the contact compressive
stress σc, dependent on the relative velocity V , is (Teixeira-Dias et al, 2018; Sikarwar
et al, 2014)

σc = ϕV =
(
ρtctρpcp

ρtct + ρpcp

)
V (16.2)

The conservation of momentum condition applied to the whole system is

Mpv0 = vf Mp + vf Mg (16.3)

where vf is the free impact final velocity, Mp is the mass of the projectile, Mg is the
mass of the plug (the material from the target) and v0 is the projectile impact velocity.
On a purely inelastic collision, the kinetic energy of the projectile is converted into
deformation and heat during the impact (Efn) and loss of work due to adiabatic
shearing (Wn). When the projectile perforates the target there are two additional
kinetic energy terms that need to be accounted for: (i) the kinetic energy of the
projectile after impact (Ekp) and (ii) the kinetic energy of the plug after impact (Ekg).
The energy balance equation can be written as (Recht and Ipson, 1963)
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1
2

Mpv
2
0 = Efn +Wn

1
2

Mpv
2
r +

1
2

Mgv
2
r (16.4)

where vr is the residual velocity of the projectile, assumed to be the same for the plug.
The total energy fraction lost to deformation and heat during free impact, Efn, must
equal the difference between initial and final kinetic energies, that is,

Efn =
1
2

(
Mg

Mp + Mg

)
Mpv

2
0 (16.5)

The work due to adiabatic shearing, Wn, is

W	
n =

1
2

(
Mp

Mp + Mg

)
Mp

(
v	

)2 (16.6)

which is derived for an initial velocity equal to the ballistic limit velocity (BLV) of the
target, that is v0 = v	. Wn is insensitive to changes in velocity as long as the dynamic
shear stress of the target material remains constant (Sikarwar et al, 2014).

For targets with multiple layers, the projectile is subjected to increasing compres-
sion contact stresses due to the formation of multiple plugs. Figure 16.2 shows the
plug formation sequence for a multi-layered target (Teixeira-Dias et al, 2018). By
considering this incremental contact stress, which can be determined by considering
the mechanical impedance resistance caused by the peripheral shear area, the energy
fraction lost to deformation and heat for layer i becomes

E i
fn =

1
2

(
M i

gΩ
j

M i
g +Ω

j

) (
σi

c
)2
+ σ2

τ(
ϕi

)2 (16.7)

where

Ωj = M i−1
p +

i−1∑
j=1

M j
g and στ =

4hiτi

d
(16.8)

The additional energy dissipated into the peripheral shear area W i
n can be defined

by considering the average work done by the projectile in order to displace the plug
of the i-th layer

W i
n =

1
2
πd

(
hi
)2
τi (16.9)

Assuming the residual velocity is zero (vr = 0) and substituting Eqs. (16.7) and (16.9)
into Eq. (16.4), rearranging for the ballistic limit velocity v	 and simplifying yields

v	i =
4hiτiϕiM i

g

dΩj

⎡⎢⎢⎢⎢⎣1 +
√√√
Ωj

M i
g

(
1 +

πd3

16τi
(
ϕi

)2 M i
g

)⎤⎥⎥⎥⎥⎦ (16.10)

This however, does not account for the velocity loss due to friction between the
projectile and the hole, for each layer of the target. Based on geometrical and kinematic
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Fig. 16.2 Plugging in an in-contact multi-layered target: (a) initial penetration stage, (b) formation
of first plug and (c) formation of second plug (Teixeira-Dias et al, 2018)

considerations, this velocity loss can be described by the relation

vfi = −

(
σi
cπdL̄μik

Mp

) ⎡⎢⎢⎢⎢⎢⎣
vi−1 ±

√(
vi−1)2 − 2aihi

ai

⎤⎥⎥⎥⎥⎥⎦ (16.11)

where L̄ is the friction length — the total thickness of the target or the length of
the projectile, whichever is smaller. The coefficients of kinetic friction are μik, the
deceleration of the projectile going through layer i is ai = (vir −vi−1

r )/ti . The projectile
contact time with each layer is ti .

A generalised expression for the residual velocity can now be derived by rewriting
Eq. (16.4) for multi-layered targets as

1
2

M i−1
p

(
vi−1

r

)2
= E i

fn +W i
n +

1
2

M i−1
p

(
vir

)2
+

1
2

M i
g

(
vir

)2
(16.12)

Rearranging the previous equation for the residual velocity of the i-th layer vir and
including the friction term yields

vir =
M i−1

p

M i−1
p + M i

g

√(
vi−1

r
)2 −

(
v	i

)2 − v2
fi (16.13)

16.3 Plugging of Ductile Plates: Neural Network Model

Neural networks have been applied successfully to a wide variety of application cases,
from autonomous vehicles to voice-controlled home assistants. They are entirely
data-driven and the quality of the output from the trained network is dependent on the
quality of the data used and the available computational resources. As such, in recent
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years, deep learning techniques have become much more commonplace amongst
researchers due to the increasing availability of data and advances in hardware and
parallel computing. This section details the use of a Multi-Layer Perceptron (MLP)
network to predict the residual velocity of blunt, cylindrical projectiles perforating
metallic plates. A MLP network consists of at least three layers of nodes; an input
layer, a hidden layer and an output layer. MLP networks utilise a supervised learning
technique called back propagation for training and can distinguish between linear and
non-linear data. They are particularly suitable for predicting solutions to problems
where a series of numeric inputs correspond to a single target output.

16.3.1 Training Process

The layers within a MLP network are made of nodes (perceptrons). A node can
be visualised as a place where a computation occurs. A node combines data from
the input with a set of coefficients, or weights, that either amplify or dampen that
input, thereby assigning significance to inputs with regard to the task the algorithm
is trying to learn. These input-weight products are summed and passed through the
nodes activation function to determine whether, and to what extent, the signal should
progress further through the network and influence the final predictions. For clarity, a
node within a MLP network performs a function that takes in multiple inputs and
produces a single output. This function is made up of two parts: a weighted sum of
all the inputs plus a constant (bias), and an activation function. The operation at a
node can be expressed mathematically as

y = f

(
b +

n∑
i=1

wi xi

)
(16.14)

where y is the output, wi is the vector of weights, xi is the vector of inputs, b is the
bias constant and f is the activation function. Adjusting the weights and bias at the
node makes it possible to change y to more closely match the desired output, hence
training the network. Figure 16.3 shows a schematic of the operations that occur at a
single node within a neural network. On its own, however, the active node is trivial —
complex operations can be performed when these nodes are combined and arranged
into layers to create a mesh-like network. The term deep learning is given to networks
composed of multiple hidden layers.

A hidden layer is a vector of these nodes that switch on or off as the input is
fed through the network. Each layer’s output becomes the subsequent layer’s input,
stemming from the initial input layer that receives the data that was fed into the
network. Pairing the model’s adjustable weights with input features makes it possible
to assign significance to those features with regard to how the network classifies and
clusters input. Deep learning networks are distinguished from the more commonplace
single hidden-layer neural networks by their depth (see Fig. 16.4), that is, the number
of node layers through which data must pass through before reaching the output. Once
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Fig. 16.3 Schematic representation of an active node in a MLP neural network

again, the output for each layer can be expressed mathematically as in Eq. (16.14),
where y is now an output vector, b is the bias vector and f is now a vector operation.
The mathematical reasoning behind why layering is useful is denoted by Taylor’s
theorem where a function can be represented as an infinite linear combination of
polynomials. This is analogous to a layered network and thus with an infinitely large
network it is possible to model any function precisely.

The MLP network is structured such that key parameters including the number
of inputs, outputs, number of hidden layers and the type of activation functions
that are selected are best suited to model the problem case. MLP are well suited to
regression-based prediction problems where a real quantity is desired given a set of
inputs. The network is trained on a tabular data-set arranged in samples, where a
single sample consists of a series of inputs and a corresponding target output.

In the present case, the target output is the residual velocity of the projectile vr. A
training algorithm cycles the data-set through the network such that the model learns
the relationship between its inputs and outputs. Once the network has been trained, it
is possible to provide new inputs that the model has not been trained on to create new
predictions.

(a) (b)

layer
Output

layer
Hidden

layer
Input

layer
Input

layer
Hidden

layer
Output

Fig. 16.4 Schematic diagram of (a) a neural network and (b) a deep neural network
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The Levenberg-Marquadt algorithm is an efficient optimisation algorithm and has
been selected to train the MLP network. More detailed information regarding the
algorithm can be found in Ahmadian (2016). Put simply, the Levenberg-Marquadt
algorithm is a combination of a loss function and an optimiser that assigns weights
and biases to each node in order to best represent the function. The loss function,
E(y, t) depends on two parameters: the values predicted by the model y and the
target values t. However, y depends on the previous layer’s outputs and the current
neuron’s weights and activation function. Therefore it is possible to use the chain
rule to differentiate E(y, t) with respect to the current neurons weights,

∂E
∂wnm

=
∂E
∂om

∂om
∂im

∂im
∂wnm

(16.15)

where wnm is the weight from neuron n in the previous layer to the current neuron
m. The output of and input to m are om and im, respectively. The error is then fed
back through the network in a process referred to as back-propagation. Using this
information, the algorithm adjusts the weights of each connection in order to reduce
the value of the error function. This process is repeated for a sufficiently large number
of training cycles as the network converges to a state where the error in the calculations
meets a target criteria. There are multiple ways to do this, but general methods for
non-linear optimisation are improvements on the stochastic gradient descent. This is
where a constant learning rate, η, is defined across all the weights and adjusts weights
such that

Δwi j = −η
∂E
∂wi j

(16.16)

where Δwi j is the change in the weight at position (i, j). The negative sign ensures
that Δw is always reducing the error. The back-propagation process is the method
used to calculate the gradient needed in the calculation of the weights to be used in
the network. The term back-propagation is used since the error is computed at the
output and distributed backwards through the networks layers. The larger the gradient,
the larger the adjustments and vice-versa. This is done so that on the next iteration,
the prediction from the forward pass is closer to the ground truth, ultimately creating
a model that is ’trained’ to give a particular response given certain inputs.

16.3.2 Problem Setting

The main aim of this work is to develop a robust hybrid method to predict residual
velocities from plugging metallic layered armour plates. It combines a number of
experimental results by Børvik et al (2003), an analytical model developed by the
authors, numerical simulation using the finite element method and two separate
neural networks. One of these is trained on a data-set generated by the analytical
model and the other entirely on experimental data collected from the literature.
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All experiments use a blunt-nosed cylindrical projectile with geometry and material
properties listed in Table 16.1. The target plates were manufactured from Weldox
460 E steel and the corresponding material properties of the plate can be found in
Table 16.2. The target is assumed to be fully clamped at the supports, which is a
reasonable assumption as far boundary conditions are of minor importance in ballistic
penetration by small mass projectiles in the ordnance velocity range when the target
diameter is greater than just a few projectile diameters.

16.3.3 Artificial Intelligence Setup

16.3.3.1 Data Collection

In this study, two different MLP neural networks have been trained and the results
compared. One network was trained only on experimental data and the other on
data generated using the analytical model described in Sect. 16.2. Experimental
data was collected from a series of publications regarding the perforation of metal
plates by blunt cylindrical projectiles (Xiao et al, 2019b,a; Rosenberg et al, 2016;
Wei et al, 2012a; Børvik et al, 1999; Huang et al, 2018; Zhou and Stronge, 2008;
Rodriguez-Millan et al, 2018; Yunfei et al, 2014a,b; Holmen et al, 2016; Børvik
et al, 2003; Wei et al, 2012b; Awerbuch and Bodner, 1973). The data includes key
experimental parameters such as the diameter, impact velocity and residual velocity
of the projectile and the thickness, modulus of elasticity, yield stress and density of
the metal target plate. Data from various aluminium alloys and steel were collected to
form a data-set of 232 samples. Evidently, the experimental data used to train the
model was limited by what experiments have been performed, what materials and
projectile type the researchers selected and finally what was made accessible in the
literature. As a result, the collected experimental data-set is not optimal. A perfect
data-set to train the neural network would include the residual velocities associated
with a wider range of impact parameters, across a range of plate thicknesses and for a
number of different materials. This would give a neural network the best opportunity

Table 16.1 Geometry and material properties of the blunt, cylindrical projectile (Børvik et al, 2003)

Diameter Length Density Elastic modulus Yield stress
[mm] [mm] [kgm−3] [GPa] [MPa]

20 80 7850 204 490

Table 16.2 Mechanical properties of the metal plate (Børvik et al, 2003)

Test Thickness Density Elastic modulus Yield stress
# [mm] [kg/m3] [GPa] [MPa]

1 10 7850 290 300
2 16 7850 290 300
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to understand how the input parameters affect the residual velocities of the projectiles
as they perforate metal plates. It is for this reason that a separate MLP network was
trained on data generated by the analytical model. This represents a best case scenario
where the ideal data-set can be replicated and presents an opportunity to assess the
suitability of using neural networks to make predictions in this domain. It should
be noted that the experimental data-set collected from publications is subject to
instrumental error, which is frequently defined in the region of 10% when measuring
the velocity of the projectile (Børvik et al, 2003). Random noise in the range of 0 to
10% was added to impact and residual velocities in the analytical training data-set to
simulate measurement error.

16.3.3.2 Setup and Training Parameters

This section details the parameters and criteria defined for the training of the neural
network, which was done on both the experimental and analytical data-sets. Each
network has six nodes in the input layer and one node in the output layer. The six
input nodes allow each sample containing information regarding the diameter and
impact velocity of the projectile, and the thickness, modulus of elasticity, yield stress
and density of the metallic target plate to be introduced into the network. The single
output node is reserved for the residual velocity of the projectile, as can be seen in
Fig. 16.5. The MLP network is a deep network consisting of 15 hidden layers and
utilises a Rectified Linear Unit (ReLu) activation function. The experimental data set
was split such that 70% of the samples were used for training, 15% for validation and
the remaining 15% to test the performance of the model. The data set allocated for
training is used to fit the model and determine the weights between connections and
biases associated with each node.

The goal of neural networks is to be able to make accurate predictions on new
data, which the network has not been trained on; the validation data-set is used here
to expose the trained network to a new data-set and measure its performance. This
allows for a second opportunity to modify the network parameters defined before
training (hyper-parameters), such as the initial weights, biases and number of hidden
layers, to improve its performance on new data. Without this step, the network may
be susceptible to over-fitting. This is where the error on the training set is driven
down to a very small value, but when new data is presented to the network the error

Fig. 16.5 Schematic diagram
of the architecture of the
deep neural network with 15
hidden layers, highlighting
the six input nodes (projectile
diameter d, plate thickness h,
elastic modulus E , density ρ,
yield constant ϕ and impact
velocity v0) and single output
node (residual velocity vr)
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is large. This occurs when the network has become extremely tailored to the training
examples, but has not learned to generalise to new situations and input combinations.
The validation data-set is therefore useful to moderate this phenomenon. Finally, the
test set is another independent data-set used to test the performance of the network.

16.4 Results and Discussion

The results in Fig. 16.6 illustrate a regression plot during the training of the neural
network on the experimental data-set. They show the performance of each sample
during the training, validation and testing phases of training the network, and the
distribution of residual velocities in the data-set, where it can be seen that the majority
lie in the range of [0 − 400] m/s. The line vO

r = vT
r is plotted to show how much

the predicted output from the neural network deviates from the actual target. The
R-square statistical measure was used to measure how successful the fitting model
was in explaining the variation of data and achieved a score of R = 0.988.

R = 1 −
∑n

i=1(yi − fi)2∑n
i=1(yi − y)2

(16.17)

where y refers to values from the data-set, f refers to fitted values predicted by
the network and y is the mean of the data-set values such that y = 1

n

∑n
i=1 yi . The
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Fig. 16.6 Regression plot of the performance of each sample of experimental data used during the
training, validation and testing of the MLP neural network with 15 hidden layers
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R-square value of 0.988 means that the fit explains 98.8% of the total variation in the
data about the average.

Figures 16.7(a) and 16.7(b) present the results from the analytical model and
the predictions from each MLP network with the experimental results published by
Børvik et al (2003) for the perforation of a blunt, cylindrical projectile perforating 10
mm and 16 mm Weldox 460 E plates.

The predictions from the analytical model and each neural network on Figs. 16.7(a)
and 16.7(b) show good agreement with the experimental data published by Børvik
et al (2003). The analytical model and MLP network trained on the analytical data-set,
shown in Fig. 16.7(a), predict a BLV lower than that found by Børvik et al. The
MLPN

a predictions match very closely to that predicted by the analytical model, this
relationship is expected as the network was trained on data produced by the model,
albeit with added noise to compensate for the 10% measurement error stated in
Børvik et al.’s experiments (Børvik et al, 2003). The predictions made by the MLPN

e ,
i.e. the predictions made by the MLP network trained on the experimental data-set,
predicted a projectile response that matches very closely with the experimental results
with respect to both the BLV and the shape of the ballistic curve. It should be noted
that the results produced by the MLPN

e for higher velocities, i.e. greater than 400 m/s,
are less reliable than the predictions made at relatively lower impact velocities. This
is because the predictions from the AI model are trained solely on the experimental
data-set. Referring back to Fig. 16.6, the majority of training samples used to train
the network are within the range of [0 − 400] m/s. The network has therefore been
exposed to more experimental data in that range and as such the respective weights
and bias at each node have been optimised to best match these values. As a result, the
predictions for higher velocities are less reliable and it would not be advised to use
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Fig. 16.7 Analytical, neural network and experimental residual versus impact velocity curves of a
blunt cylindrical projectile with a diameter of 20 mm perforating (a) a 10 mm and (b) a 16 mm
Weldox 460 E plate, where Resultsa refers to the analytical model, MLPN

a are the predictions from
the MLP network trained on the analytical data-set and MLPN

e are the predictions of the network
trained on the experimental data-set
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this network to study the ballistic response of materials at impact velocities above
400 m/s.

The network was additionally tested with a set of multi-layered targets. Information
in literature regarding experimental tests on multi-layered targets with blunt rigid
projectiles is, however, almost nonexistent. As such, the authors used a set of
experimental tests by Yunfei et al (2014a) to validate the proposed AI network and
method. These authors impacted 12 mm bi-layer steel targets with deformable blunt
cylindrical projectiles with a diameter of 12.67 mm. The first layer is 45 steel with
6 mm thickness and the second layer is Q235 steel, also with 6 mm thickness, and the
results are shown in Fig. 16.8. There is a clear and significant discrepancy between
the experimental and the MLP results. This is, however, justified, because the multi-
layered target MLP was trained with analytical results, which assume the projectile
is rigid. A deformable projectile, such as the one used by Yunfei et al (2014a),
needs significantly more energy to perforate the target, as is evident in Fig. 16.8. To
account for this, the authors developed FEA models with both deformable and rigid
projectiles.
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Fig. 16.8 Predictions of a blunt, cylindrical projectile with a diameter of 12.67 mm perforating a
12 mm metal bi-layer target. The first layer is a 6 mm thick 45 steel plate and the second layer is a
6 mm thick Q235 steel plate. Results presented from the analytical model and MLP network trained
on the analytical data-set and compared with experimental results published by Yunfei et al (2014a)
and FEA simulations by the authors
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16.4.1 Finite Element Modelling

The efficiency of the AI described above, namely when predicting residual velocities
of blunt projectiles impacting layered metallic armour plates, was tested with a set
of numerical examples. The authors used finite element analysis (FEA) and the
hydrocode LS-Dyna to replicate a number of ballistic impact tests. On a first instance
the FEA models were calibrated for the ballistic limit velocity using experimental
results obtained by Børvik et al (2003). Validation models were developed for plates
with the characteristics listed in Table 16.3. Figure 16.9 shows a snapshot of finite
element analysis Tests 2, for a ballistic limit velocity of 240 m/s, and the corresponding
projectile velocity profile. The formation of the plug can be seen in Fig. 16.9(a) and a
residual velocity of approximately 18 m/s was obtained for this model, indicating
that the corresponding BLV will be slightly lower than 240 m/s.
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Fig. 16.9 Snapshots of finite element analysis results for Test 2 (see Table 16.3) for a ballistic limit
velocity of 240 m/s: (a) deformed plate showing the formation of the plug and (b) velocity profile
for the projectile

A number of additional numerical tests were ran to further validate the hybrid-
method here proposed, which combines analytical and experimental results to train
a predictive neural network. The models, which were defined with specifications
outside the set of results used for training the AI, are listed in Table 16.4. All these

Table 16.3 Characteristics of the tests used to validate the finite element models and corresponding
ballistic limit velocities (BLV); numerical BLV shown in brackets. Material properties can be found
in Table 16.2

Test Plate material Thickness Ballistic limit Number of
number [mm] velocity (FEA) [m/s] elements

1 Weldox 460 E 10 165.6 (166) 135,000
2 Weldox 460 E 16 236.6 (240) 225,000
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tests were done at impact velocities above the ballistic limit velocity and the residual
velocity was used as the validation parameter. As can be seen from these results, there
is very good agreement with the experimental results with the AI model always lower
than 5.1%. Discrepancies become significant (as high as 35.2% for Test V4) when
comparing with the FEA results, however, this is believed to be related to the method
used to model adiabatic shearing and the formation of the plug. The finite element
analyses use element deletion for this, which is known to be inaccurate and potentially
deviating from mass conservation of the system. Figure 16.10 shows a snapshot of
validation Test V3, for an impact velocity of 320 m/s and the corresponding projectile
velocity profile.
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Fig. 16.10 Snapshots of finite element analysis results for validation Tests V3 (see Table 16.4) for
an impact velocity of 320 m/s: (a) deformed plate showing the initial stages of the formation of the
plug and von Mises stresses, and (b) velocity profile for the projectile

Table 16.4 Specifications, results and comparison of the tests used to validate the AI algorithm.
Tests V1 to V6 are monolithic plates and V7 to V9 are multi-layered targets. FEA models of Tests
V7/V8 are with rigid projectile, and Test V9 is with a deformable projectile

Test h v0 Experimental FEA AI FEA/AI Exp/AI
ID [mm] [m/s] vr [m/s] vr [m/s] vr [m/s] [%] [%]

V1 10 220.0 143.1 126.6 136.2 7.0 (−) 5.1 (+)
V2 10 280.0 201.7 184.1 196.6 6.4 (−) 2.6 (+)
V3 10 320.0 234.6 221.7 226.4 2.1 (−) 3.6 (+)
V4 16 260.0 83.5 108.7 79.9 35.2 (+) 4.5 (+)
V5 16 280.0 111.9 143.3 108.7 31.8 (+) 2.9 (+)
V6 16 320.0 153.3 189.4 157.6 20.2 (+) 2.7 (−)
V7 2 × 6 240.0 – 42.3 39.9 6.0 (+) –
V8 2 × 6 400.0 – 291.5 268.0 8.8 (+) –
V9 2 × 6 680.0 45.4 498.5 – – –



16 An Artificial Intelligence-based Hybrid Method for Multi-layered Armour Systems 397

a)

0 5 · 10−2 0.1 0.15 0.2
280

300

320

340

360

380

400

Time, t [ms]

Ve
lo

ci
ty

,v
[m

/s]
b)

Fig. 16.11 Impact on a multi-layered target: (a) detail of the interaction between the projectile and
target for Test V8 (rigid projectile) showing the formation of the double plug, and (b) the
corresponding projectile velocity profile

To further validate the AI method, finite element analyses were run on models
of multi-layered targets with rigid and deformable projectiles, and the results are
shown in Fig. 16.8 and listed in Table 16.4 (Tests V7 to V9). As expected, the FEA
results match very well the AI predictions, with differences not exceeding 8.8%, as
these were trained assuming a rigid projectile. To support the justification on the
discrepancy between the AI and experimental results by Yunfei et al (2014a), an
FEA model was developed with a deformable projectile. The corresponding results,
however, do not match the experimental observations within reasonable differences.
This is most probably due to a combination of factors, namely, the FEA model not
being able to capture correctly the plastic deformation levels observed on the real
projectile and the extremely high strain levels experienced by the projectile, leading
to excessive and unnatural element deformation and distortion. This also explains
why the results from the FEA model with a deformable projectile are closer to the
AI predictions. Figures 16.11(a) and 16.11(b) illustrate the interaction between the
projectile and bi-layer target for Test V8 (rigid projectile), and the corresponding
velocity profile, respectively.

16.5 Conclusions and Final Remarks

This chapter presents a new approach to efficiently predict residual velocities from
impacts on monolithic and multi-layered metallic ductile targets. The proposed
method is based on a combination of experimental, analytical and numerical methods,
and a set of Deep Learning (DL) models. The main aim is to increase design efficiency
by significantly reducing testing and computational costs. The experimental and
analytical results are used to train the Artificial Intelligence (AI) models, while the
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Finite Element Analyses (FEA) are used primarily to validate results. Excellent
agreement was obtained in most cases of impact on monolithic targets, with error
levels under 10%. The proposed hybrid approach looses efficiency, however, when the
dominant energy dissipation mechanisms are not considered or are dificult to model
in the analytical and numerical approaches. These energy dissipation mechanisms
include high levels of plastic deformation on the projectile or target deformation
modes other than plugging. This is illustrated in this chapter in the examples of
ballistic impact on multi-layered targets.
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Chapter 17
A Review on Numerical Analyses of Martensitic
Phase Transition in Mono and Polycrystal
Transformation-induced Plasticity Steel by
Crystal Plasticity Finite Element Method with
Length Scales

Truong Duc Trinh and Takeshi Iwamoto

Abstract Strain-induced martensitic transformation (SIMT) plays an essential role
for enhancing the mechanical properties of TRIP steel such as high strength, ductility
and toughness. Thus, the mechanical responses including the SIMT are significantly
important for an engineering design of the materials with microstructural predictions.
It is proven that length scales such as a grain size of the parent phase influence
the deformation behavior of TRIP steel, and it is necessary to understand deeply
the SIMT behavior considering with specific length scales. This review focuses on
computational analyses of SIMT in both single crystal and polycrystal TRIP steel
by the crystal plasticity finite element method (CPFEM) for predicting the SIMT
behavior with the appropriate length scales such as grain size. Then, in order to
discuss the size-dependency, examples of computational results under an assumption
of plane strain tension with two planar slip systems are shown for both single crystal
and polycrystal TRIP steel by the proposed framework of CPFEM in the past without
any length scales.

Keywords: Transformation-induced plasticity · Strain-induced martensitic transfor-
mation · Crystal plasticity · Finite element method · Length scales
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17.1 Introduction

Steel containing metastable austenitic phase has significantly important roles in struc-
tural materials because it owns outstanding combinations of mechanical properties
such as strength, toughness and ductility. These mechanical properties are due to an
effect of the transformation-induced plasticity (TRIP) (Zackay et al, 1967; Tamura,
1982), and the steels with this kind of phenomenon are called TRIP steels in a wide
meaning. In engineering applications, TRIP steels are considered as one of suitable
alloys for automotive industries because of the greatly-improved formability without
degradation of the mechanical properties. There are two different types of TRIP steels
based on the chemical composition of TRIP steels. In particular, the high-alloyed steel
has only metastable austenitic constituent in the microstructure at room temperature,
for instance, type 304 austenitic stainless steel could be one of the high-alloyed
TRIP steel. On the other hand, the low-alloyed TRIP steel, originally it is called
TRIP-assisted (Bhadeshia, 2002) or TRIP-aided (Barbe et al, 2001) steel, contains
not only metastable austenite but also ferrite and bainite at room temperature. Thus,
the low-alloyed TRIP steel has naturally a hyponym “multiphase”. It is important to
notice that martensitic-transformed phase exists inside austenitic phase with some
geometrical and crystallographic patterns at a scale of crystal lattices in both types
of TRIP steels during the process of plastic deformation. From the viewpoint of
solid mechanics, the TRIP effect can be realized by an appropriate combination
between the plastic deformation behavior in the both phases and the strain-induced
martensitic transformation (SIMT) process at the moment in which the retained or
single metastable austenitic phase (Iwamoto et al, 1998; Fischer et al, 2000; Iwamoto
and Pham, 2015).

In order to predict and control accurately the superior mechanical properties
of TRIP steel, it is indispensable to understand deeply the SIMT with different
crystallographic patterns at the microstructural level. For such purpose, a compu-
tational simulation becomes a quite effective tool. With the rapid development of
the tools to solve micromechanically-based problems, a lot of physical aspects at the
microstructures can be included and explained by an appropriate modeling such as
a multi-scale modeling. As the great majority of the microstructures in materials
from the nature is in forms of crystalline, crystalline-based numerical models have
got many concentrations from researchers. Among the models, continuum crystal
plasticity (CCP) (Asaro, 1983; Peirce et al, 1983) showed its great benefits when it is
combined with finite element method (FEM). This framework is so-called crystal
plasticity finite element method (CPFEM). As a consequence, the CCP is continuously
developed to be an independent group of constitutive models which is able to deal
with huge number of problems in mechanics of crystals (Roters et al, 2010). One
of the most important advantages of the CCP is its high flexibility to include and
extend to constitutive equations based on various frameworks for a flow theory and
hardening mechanisms in plasticity. Also, the CPFEM is capable effectively when
dealing with complicated boundary conditions to express the nature of mechanics in
crystallites as the interaction at a micro scale between grains or inside the grain itself,
for example.
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The importance and positive effects of the CCP in solving the problems on any
elasto-viscoplastic deformation have begun to be recognized (Barbe et al, 2001;
Staroselsky and Anand, 2003; Diard et al, 2005; Graff et al, 2007; Kratochvil,
2012; Forest and Aifantis, 2010). The capability of CPFEM is demonstrated in a
texture prediction of pure aluminum during the equal channel angular extrusion
(Li et al, 2005) to investigate the mechanism of microstructural deformation due
to an crystallographic orientation effect. In Ardeljan et al (2014), a hardening
model based on dislocation density, which can include a specific length scale, is
employed successfully for polycrystalline of two-phase metallic composite into the
framework of CPFEM. The CCP keeps being enhanced in a recent study by a new
constitutive model based on the elasto-viscoplastic self-consistent theory subjected
to complicated loading histories in the austenitic stainless steel (Wang et al, 2017).
Noticeably, though the CCP is not applied directly, the theoretical concept of the CCP
is also applicable and continuously improved in various frameworks of numerical
studies. Originally, constitutive formulations for the shape memory alloy with the
stress-induced martensitic transformation, and TRIP steel are proposed based on the
analogy of the CCP in some greatly influent research works (Tokuda et al, 1998;
Cherkaoui et al, 1998; Diani and Parks, 1998). Among the improvements of the
constitutive model, a constitutive model for single crystal TRIP steel is fulfilled as an
exceptional mark to explore the martensitic transformation behaviors by coupling
the effects between slip deformation on a slip plane and variants in the SIMT on
a habit plane using automata cellular approach (Iwamoto and Tsuta, 2004). The
numerical studies based on CCP for martensitic transformation keep receiving great
contributions of researchers (Tjahjanto et al, 2008; Sidhoum et al, 2018; Taejoon
et al, 2019). Recently, CPFEM in solving the martensitic transformation problems is
continuously developing by coupling with a phase-field approach (Schmitt et al, 2017;
Levitas, 2014; Levitas and Javanbakht, 2015). Remarkably, Levitas and Javanbakht
(2015) have proposed a phase field model based on a framework of nonlinear
continuum thermodynamics with large strains to investigate the phase interface
propagation during martensitic transformation, especially, the transformation shear
strain is considered as one of order parameters and coupled successfully with plastic
shear strain. Nonetheless, studies on martensitic phase transition in polycrystal TRIP
steel including specific length scales as well as a good approach to describe the
morphology of polycrystal material are still very little.

The present review focuses on the significant effects of length scales as the size
of austenitic grains and the nuclei of martensite on the strain-induced martensitic
transformation (SIMT) in TRIP steel. To complete the review, the computational
results of SIMT and deformation behavior in not only mono but also polycrystal
TRIP steel under the plane strain condition with two planar slip systems are shown
by the numerical simulation based on the platform of CPFEM (Iwamoto and Tsuta,
2004; Trinh and Iwamoto, 2019). For analyses here, the CPFEM coupling with
the crystallography of martensitic transformation (Bowles and Mackenzie, 1954) is
employed to derive the constitutive formulation of single crystal TRIP steel. In order
to express the important effect of the length scales on the SIMT and mechanical
behavior in polycrystal TRIP steel, two different patterns of the initial crystallographic
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orientations with two different numbers of grains by the Voronoi tessellation approach
are assigned randomly for each grain.

17.2 Literature Survey of Problems on Length Scales Regarding
with Martensitic Phase Transformation

17.2.1 Effects of Length Scales in the Parent Phase

At the microstructural scale, huge shear and dilatation which generate unavoidable
dislocations in crystal structure are induced by the martensitic transformation. The
increasing number of dislocations is able to affect plastic deformation behaviors,
as a result, the dislocations provide more hardening for the materials. As a critical
point of view, the length scale effect is significantly important and complicated since
it is changed due to the deformation of microstructures. Thus, some length scales
including Burgers vector are dependent on the grain size (Voyiadjis and Abu Al-Rub,
2005; Cheong et al, 2005; Ehrler et al, 2008; Faghihi and Voyiadjis, 2012; Dunstan
and Bushby, 2014; Yeddu, 2018) which is the one of length scales. As evidences, by
introducing the geometrical effect of austenitic grain into a generalized macroscopic
model for the kinetics of SIMT, the size-dependent deformation and SIMT behavior in
TRIP steel can be expressed by combining with the Hall-Petch relation (Iwamoto and
Tsuta, 2000). Furthermore, the dependence of austenitic grain size on the martensitic
phase transition is studied by a newly-developed experimental technique which is an
accurate heat treatment combined with a dilatometry measurement, so it is able to
obtain the precise starting temperature and finishing temperature of the martensitic
transformation as well as the size-dependent microstructure of martensite (Hanamura
et al, 2013).

On the other hand, the martensite is transformed through a formation process of
microstructures due to the energy minimization, while the appropriate combination
between plastic deformation and the microstructure by SIMT is established from
inherent inhomogeneity in parent phase, as a consequence, the combination makes the
microstructure inside martensite become size-dependent. There are various concepts
of length scales at microstructure relevant to plastic deformation. For instance, at the
smallest scale, in order to measure the dimension of a crystal, the magnitude of the
Burgers vector is used representing for the lattice spacing. Additionally, a diameter
in a dislocation core or stacking fault width of a partial dislocation can be used as
other length scale (Eisenmann et al, 2005; Hunter and Beyerlein, 2013). The length
scale effect is confirmed in several research works. For instance, the length scale
effect is included as a function of plastic strain and grain size to express the physical
phenomenon by introducing a gradient plasticity theory (Fleck and Hutchinson,
1993) for metal which is mainly relied on the framework of the hardening model of
crystallographic dislocation mechanics through the Taylor model (Abu Al-Rub and
Voyiadjis, 2006; Liu and Dunstan, 2017).
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Among the methods to describe the grain size effect, another approach by
geometrically necessary dislocations (GNDs) representing the length scale in plasticity
is discussed (Gao and Huang, 2003; Gurtin, 2008; Littlewood et al, 2011). It is
pointed out that the length scales where GNDs occur play an important role in
the deformation behavior of material. To extend the theory of plasticity and give a
clearer physical understanding, the hardening by GNDs is taken into account with
a specific material length scale based on the framework of higher-order governing
equations (Fleck and Hutchinson, 1993). Next, in order to understand the grain size
effect to initial yield stress of polycrystal material (Ohno and Okumura, 2007), the
self-energy of GND is considered to derive the higher-order stress work-conjugate
incorporating with strain gradient plasticity theory of Gurtin (2008). In Gurtin (2008),
the microstress is defined as the work-conjugate to the slip gradient for a slip system
(Gurtin, 2002). Though it is not necessary to introduce the higher order stress in their
analyses as Aifantis and Ngan (2007), the grain size effect is successfully expressed
by using an internal length scale parameter to measure the effect of the GND. The
size dependence of the mechanical properties of materials can be resulted from an
evolution in strain gradient at a very small area. The strain gradient is induced by
interactions of dislocations, as a result, an additional hardening is provided. Therefore,
GNDs to Taylor’s hardening law Voyiadjis and Abu Al-Rub (2005), stacking fault
width created by partial dislocation emission from grain boundary (Hunter and
Beyerlein, 2013), or Burgers vector related to mobile dislocation density (Richeton
et al, 2018) are applied to the same concept expressing the length scale via the
mechanism of dislocation motions. Importantly, those research works emphasizes that
plasticity is naturally a multi-scale problem in which the related size considerations
can vary from atom scale to millimeter scale, and depend on the dislocation motion.
In another word, the length scale changes with the microstructural deformation due
to the evolution of dislocation and strongly depended on the grain size.

Next, an analysis on SIMT based-deformation gradient crystallographic theory
with the influence of the austenitic grain size on the mechanical behavior of multiphase
carbon steel is done by 3D CPFEM model (Turteltaub and Suiker, 2006). In this
work, the grain size is considered via a surface energy parameter in the Helmholtz
free energy associated with regions near the habit planes as an indirect length
scale (Turteltaub and Suiker, 2006). Recently, the direct dependence of kinetics of
athermal martensite on the austenitic grain structure and prior austenitic grain size
in martensitic transformation process is also studied theoretically by applying the
Koistinen-Marburger kinetic equation, while the fcc lattice expansion process is taken
into account by dilatometry is applied to obtain the volume fraction of martensite
and describe the kinetics of phase transformation (Carola et al, 2019). In another
research work, the TRIP effect with different austenitic grain size on the properties of
austenitic stainless steel during the bending process of a single crystal beam is studied
by using ferrite-scope and thermographic camera to measure the martensitic volume
fraction and temperature during phase transformation process, after that, a numerical
simulation is implemented to confirm experimental work by a commercial software
(Gupta et al, 2015). In their simulation (Gupta et al, 2015), a higher order non-local
crystal plasticity model is applied in which the different hardening effects caused by
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statistically stored dislocation (SSD) and geometrically necessary dislocation can be
taken into account simultaneously.

17.2.2 Effects of Length Scales in the Product Phase

As reviewed above, there are numbers of research works investigating the effect of
length scales in the plasticity of the parent phase into SIMT. Nevertheless, there are
very limited publications mentioning about the influence of length scale in martensitic
phase to the phase transformation process regardless its incompliant understanding.
Since the morphology and kinetics of the martensitic transformation depend directly
on the austenitic grain size (Iwamoto and Tsuta, 2000), it is clear that the grain size
of austenite could induce the expected mechanical properties of TRIP steel. From the
above discussions, the plasticity in martensitic phase with GNDs can be considered
as one of the mechanisms of the length scale effect.

On the other hand, by applying the Ginzburg-Landau equation, the size-dependent
microstructure by the interface motion between the parent austenite and martensitic
product phase is studied (Levitas, 2014; Levitas and Javanbakht, 2015; Militzer,
2011; Tuma and Stupkiewicz, 2016). Although the interface motion can be introduced
successfully by the evolution of an order parameter with the length scale as an
interface thickness, there are still limitations to describe clearly the effect of grain size
as a length scale as well as the martensitic nucleation. At the athermal transformation,
martensite nucleates due to the dislocation-initiating slip in the austenitic parent
phase for the accommodated process through plastic deformation. The nucleation of
martensite is a significantly complicated and rapid process which is very difficult to
understand well by in situ. It is demonstrated theoretically or computationally that
there is a specific size of the martensitic embryo which plays a dominant role in the
evolution of martensitic microstructure (Suezawa and Cook, 1980; Ghosh and Olson,
1994). Therefore, a knowledge on the critical size in the martensitic embryos through
simulating martensitic transformation is able to obey better understanding of aspects
on martensitic nucleation as well as the effect of this length scale on SIMT behaviors.
It is noticeable that the most direct mechanism of such heterogeneous nucleation is
the size dependence of martensitic transformation.

Additionally, the volume fraction of martensite is able to influence greatly the
mechanical properties of multiphase steel at a macroscopic scale. Using the law
of energy balance, a macroscopic model is proposed to study the martensitic
transformation of Fe-Ni alloy without external stress and SIMT as a first order
phase transition (Yu, 1997). Hueper et al (1999) examines the influence of the
volume fraction of the harder phase by FEM to indicate the macroscopic stress-strain
relationship of dual phase material in three stages of elastoplastic deformation.
The role of martensitic volume fraction is continuously studied more significant
in an another micromechanical model based an axisymmetric unit cell to capture
the macroscopic elastoplastic response of dual phase steel model (Lai et al, 2016).
Nevertheless, a use of volume fraction of martensite as an internal state variable in
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the continuum theory of plasticity for a macroscopic analysis eliminates the length
scale effect in martensitic product phase which is much smaller than the macroscopic
length scale. Generally, based on the framework with the CPFEM, the kinetics model
with the volume fraction should not be employed. However, it is necessary to have
a good approach to capture the length scale effect in martensitic phase as well as
the complex of microstructural heterogeneity of martensite. For the purpose, several
research works have focused on martensitic volume fraction in order to understand
quantitatively the kinetics of a phase transition process by different approaches such
as the mean-field analysis, or the self-consistent method (Wang et al, 2017; Davies,
1978; Taillard et al, 2008; Perdahcioglu and Geijselaers, 2012). As well as these
approaches, an asymptotic homogenization method (Iwamoto, 2004) might be a
solution by direct coupling with the CPFEM.

17.3 Computational Aspects

The easiest recognizable feature of martensitic transformation is the microstructure
that it produces under the effect of martensitic transformation. The morphology
with various kinds of complicated geometrical and crystallographic patterns in the
material is formed in the microstructure at the length scales which varies from nano
to micrometers, and it depends on the grain size. The complicated microstructure is
affected by the crystallographic orientation as well as its rotation in the parent and
product phases during the plastic deformation (Iwamoto and Tsuta, 2004). Besides
that, polycrystal models also play an important role in the numerical analyses since
almost actual steels including TRIP steel is in the form of polycrystalline. In the
polycrystal materials, there is a number of grains aggregating and the amount of
martensite varies among the grains. Thus, the variation of grain size is able to
express a great change in the SIMT behavior. In addition, it is necessary to have an
appropriate method to describe the structural geometry of grains for the polycrystal
materials. Recently, the Voronoi polyhedral is an ideal and useful approach to describe
the geometrical shape of grains in the polycrystalline materials since the produced
crystals would have easy geometrical descriptions respecting to faces, edges and
vertices (Kobayashi and Sugihara, 2002; Kirubel and Lori, 2015). In this section, the
constutitve model for monocrystal TRIP steel proposed by Iwamoto and Tsuta (2004)
and computational polycrystal model employed by Trinh and Iwamoto (2019) are
briefly reviewed.
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17.3.1 A Model of Single Crystal Transformation-induced
Plasticity Steel Based on Continuum Crystal Plasticity
Suggested by Iwamoto and Tsuta (2004)

Let us consider the mono-crystal TRIP steel which undergoes a thermo-elasto-plastic
deformation with the martensitic transformation. The total deformation gradient F
can be decomposed multiplicatively into three parts as stretching and rotation of
crystal lattice Fe, slip deformation on slip planes Fp and martensitic transformation
on a habit plane Ftr as follows (Levitas, 1998)

F = FeFtrFp . (17.1)

Similar to the conventional derivation process of CCP (Asaro, 1983) and when the
tangent modulus method (Peirce et al, 1983) is applied to enhance the stability of FE
computation, the following constitutive equation can be obtained

∇
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Here,
∇
Si j is the Jaumann rate of Kirchhoff stress and di j is the stretching tensor. �b(a),

�btr(I ), C(a)
i j and Ctr(I )

i j are derived from a procedure related to the tangent modulus
method (Peirce et al, 1983). P(a)

i j and Q(I )
i j are Schmid tensors for slip and variant

systems, respectively. De
i jkl

is the elastic modulus tensor and Be
i j is the tensor related

to the thermal expansion. The other variables in Eq. (17.2) can be referred in Iwamoto
and Tsuta (2004) and Trinh and Iwamoto (2019).

Here, the transformation strain rate is dependent on the resolved shear stress
(Tokuda et al, 1998; Stringfellow et al, 1992). In order to obtain the accurate amount
of transformation strain on the active variant system as similar to slip systems, the
rate-dependent constitutive equation for transformation strain rate �γtr(I ) is assumed
following a power law

�γtr(I ) = �a(I )
τtr(I )

gtr(I )

2222τtr(I )gtr(I )

2222 1
m−1

. (17.3)

where m is strain rate sensitivity exponent and �a(I ) is the reference strain rate and
can be expressed by Dirac’s δ function since the martensitic transformation occurs
explosively.

�a(I ) = γtr(I )δ
[
G(I ) − G0

] �G(I ) (17.4)

where G(I ) is the transformation driving force on the I th variant and G0 is the
critical driving force for transformation. The Dirac’s δ function is derived from
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the time derivative of Heaviside step function with respect to the transformation
condition shown in the above equation. The concept to employ the Heaviside function
is following the sharp interface theory. The resistance gtr(I ) against the martensitic
transformation and its evolution equation for the whole variant systems can be
formulated by the cross-variant hardening through the analogy with slip deformation
(Iwamoto and Tsuta, 2004). All the details on the model can be found in Iwamoto
and Tsuta (2004), and Trinh and Iwamoto (2019).

17.3.2 Computational Models and Conditions for Single and
Polycrystal Transformation-induced Plasticity Steel

Figures 17.1 and 17.2 show rectangular blocks made of mono and polycrystalline
TRIP steel with two planar slip systems. Two planar slip systems is considered for
both mono and polycrystal models in which the initial crystallographic orientation φ
are given as shown in Fig. 17.1(d). The height L and width W of the block are 1.0

Fig. 17.1 Finite element models for single crystal TRIP steel and two planar slip systems with
different finite element discretizations
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(a) 6 grains (b) 20 grains

Fig. 17.2 Finite element models for polycrystal TRIP steel with different numbers of grains

mm, respectively. The each quadrilateral indicates a four crossed-triangular plane
strain element discritizing the model. The crystalline models shown in these figures
are subjected to the plane strain tension with nominal strain rate of �εn = 5 × 10−4 s−1

at environmental temperature Tenv = 298 K. The actual values of parameters in Eq.
(17.2) to (17.4) can be referred in Iwamoto and Tsuta (2004) and Trinh and Iwamoto
(2019). For the stablized computation, the Dirac’s δ function in Eq. (17.4) is not
realistic. Thus, the smooth function with respect to the time is introduced for the δ
function. The rise time of the function is equivalent to the time period to complete
the martensitic transformation. It is important to notice that the interaction term
of variant systems in gtr(I ) of Eq. (17.3) is vanished because the interaction effect
can be expressed directly between finite elements with different variant systems
transformed. Here, the total number of variant systems is 24 (Nishiyama, 1978). To
determine the condition for the occurrence of phase transformation defined by Eq.
(17.4), the transformation criterion proposed by Kitajima et al (2002) is calculated at
each Gaussian integration point. As the transformation criterion is satisfied at first
in one of 24 variant systems, the martensitic α′ phase will be formed with the only
the variant system in the element. Then, the transformation strain rate is computed
and martensitic phase will occupy whole area of the element when transformation
finishes. From this procedure, it is understandable that the one triangular element
when the transformation condition is just satisfied is considered as the martensitic
embryo.

In the monocrystal model, the infinite single crystal of austenite is considered.
Thus, the representative unit cell with the periodic boundary condition on it is applied
(Smit et al, 1998). The boundary condition must be satisfied two following demands.
Firstly, the two edges on the left and right sides as well as upper and lower sides in
the unit cell must remain the identical shapes during deformation. Secondary, the
traction vectors acting on the boundaries must have an opposite sign. According
to these demands, the stress and strain will be continuous though the boundaries.
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As shown in Fig. 17.1(a) to (c), the unit cell is discretized regularly by 10 x 10,
15 x 15, and 20 x 20 in horizontal and vertical directions with the element. Hereafter,
the mesh divisions are called a coarse mesh, intermediate mesh, and finer mesh,
respectively. φ is constantly set to 60◦ for all the mesh divisions. In order to realize
tensile deformation, the additional boundary conditions at three nodes are imposed
as shown in this figure.

In the polycrystal model, each Voronoi polygon is assumed to correspond to
the crystal grain in order to express the various crystal grains with different crystal
orientation. A set of Voronoi tessellation with the numbers of crystal grains of 6 and
20 is chosen as shown in Fig. 17.2 (a) and (b). The φ is randomly given from 0◦ to
90◦ in the each grain. The Voronoi polygons are discretized by 32 quadrilaterals as
the crossed-triangular plane strain elements. One triangular element is considered
as each crystal lattice. Furthermore, the polycrystal TRIP steel with an ideal texture
which all the grains have a preferred orientation of φ = 60◦ is also simulated in the
case of 20 grains. It must be emphasized that there are no concepts of the length scale
effect in the current simulation except for the martensitic nuclei.

17.4 Computational Results and Discussions

17.4.1 Effect of Mesh Discritization for Single Crystal
Transformation-induced Plasticity Steel

Figure 17.3 describes (a) nominal stress versus nominal strain εn and (b) volume
fraction of martensitic phase versus εn in the case of monocrystal TRIP steel when
φ is set as 60◦ in comparison of coarse, intermediate and finer meshes. Though the
nominal stress of TRIP steel in all three cases of mesh discretization is almost the

(a) Nominal stress - nominal strain (b) Volume fraction of martensite - nominal
strain

Fig. 17.3 Dependence of mesh refinement on macroscopic behavior of single crystal TRIP steel
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same as shown in Fig. 17.3 (a), there is a clear difference in volume fraction of
martensite.

In the case of the rough mesh, the discretization behavior in volume fraction
of martensite is appeared, while it is increased eventually linearly in the case of
intermediate and finer meshes. Thus, the mesh dependence induces a significant
effect to the numerical results. In order to eliminate the dependence on mesh size, the
use of strain gradient plasticity theory as above mentioned is recently recognized and
considered as an effective tool to overcome effects related to the mesh dependency.
Here, the present review focuses on the dependence of length scale in SIMT behavior.

Figure 17.4 presents the distribution of the martensitic α′ phase as εn = 0.8 ∼ 1.2 in
the comparison among three meshes. In this figure, the regions with white and black
color denote γ and α′ phases, respectively. As shown in this figure, the band-like
structures are observed as the evolution of martensitic phase transition. Importantly,
it can be observed that at the same step for nominal strain, the evolutions of α′
phase between the rough and the intermediate meshes are different. Even though the
stepwise changes are not appeared in the evolution of martensitic volume fraction as

(a) Coarse mesh (b) Intermediate mesh

(c) Fine mesh

Fig. 17.4 Distribution of martensitic phase of single crystal TRIP steel in different mesh refinement



17 Crystal Plasticity FEA of Martensitic Transition in TRIP Steel with Length Scales 413

shown in Fig 17.3 for two cases of intermediate and finer meshes as shown in Fig.
17.4, the distributions of martensitic phases have a clear difference in the band-like
structure. As a consequence, the size of martensitic nuclei is influenced.

17.4.2 Polycrystal Transformation-induced Plasticity Steel

In this part, the numerical results of polycrystalline TRIP steel are presented. Figure
17.5 shows (a) nominal stress versus εn and (b) volume fraction of martensitic phase
versus εn in the consideration of 6 and 20 grains. In addition, the result of the material
with ideal texture is also included. As shown in this figure, the nominal stress and
the volume fraction of martensite at the saturation level in the case of 20 grains is
higher than those in the case of 6 coarse grains. It is reasonable since the hardness of
austenitic grain is relatively increased as the size of the austenitic grain reduced.

On the other hand, it is obviously that φ is able to induce great effects to SIMT and
deformation process. When polycrystal material has a preferred orientation, it cannot
be estimated that the material with the texture is weak, moderate or strong before
the simulation. In this case, the imposed ideal texture provides a weaker material
property. Thus, the nominal stress is greatly small. The volume fraction of martensite
will be intermediate between 6 and 20 grains with random patterns of φ.

Figure 17.6 represents the distribution of martensitic phase from εn = 0 ∼ 1.0
as a comparison between 6 and 20 grains. As similar to Fig. 17.4, the regions with
white and black color denote γ and α′ phases, respectively. It is clear that the α′
phase in 6 grain starts generating in the center and left upper regions on the side
surface while it appears around the center and right bottom regions in the case of 20
grains at the same εn. It is noticed that these regions is developed with the promotion
of deformation and near necking-like regions for both grains. Finally, not only the

(a) (b)

Fig. 17.5 (a) Nominal stress versus nominal strain and (b) the volume fraction of martensite versus
nominal strain under various initial crystallographic orientations in parent phase



414 Truong Duc Trinh and Takeshi Iwamoto

(a) 6 grains

(b) 20 grains

Fig. 17.6 Distribution of martensitic phase of polycrystal TRIP steel in the case of different number
of grains

distribution of α′ but also the growth of deformation profiles are different compared
between two numbers of grains.

Figure 17.7 shows distribution of rotation angle of the slip systems for εn = 0.7∼ 1.2
in the comparison between the ideal texture and 20 grains with the random φ. In Fig.
17.7, the rotation angles as counter-clockwise direction are positive. The region with
the higher rotation angles can be observed with the promotion of deformation. The
range of rotation angle in the case of ideal texture as from 0.078◦ to 7.5◦ is smaller
than that in the case of 20 grains as from −12◦ to 22◦. It is important to understand
that the plastic deformation can be considered as a result of a crystalline slip. The
clear difference in distribution of rotation angle of slip system between two cases
can be understood based on the mismatches of orientation of slip systems. In the
case of ideal texture, all the grains have a preferred orientation, thus the possibility to
have mismatching among the grains due to rotation angle is reduced comparing to
the case which the grains have random φ for each grain. Partially, it affects to the
mechanical properties due to the change of interaction among the grains. Therefore,
in order to have deep understanding on this topic, the inclusion of grain boundary in
grain size effect is necessary to analyze the phenomenon of grain mismatching in
polycrystalline materials.
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(a) An ideal texture

(b) Randomly-oriented

Fig. 17.7 Distribution of rotation angle of the slip system in the polycrystal TRIP steel with 20
grains in comparison of different textures

Next, the distribution of rotation angle of transformation variant in the case of
20-grain polycrystal TRIP steel from εn = 0.2 ∼ 1.2 as a comparison between the
ideal texture and the randomly initial oriented angle φ for each grain is shown in Fig.
17.8. As shown in the figure, the counter-clockwise direction for the rotation angle is
also positive as similar to Fig. 17.7. The range of rotation angle in the case of the ideal
texture as −51◦ to 69◦ is greater than that in the case of randomly-oriented 20 grains
as from −48◦ to 63◦. In the case of the ideal texture, the rotation angle distributes quite
homogeneously even though its deformation is heterogeneous. When the material has
a preferred orientation, the nucleation will occur at this preferred site, and it is much
easier to consume the available free energy for starting the martensitic transformation.
The rotation angle increases with a promotion of deformation. However, some huge
distorted areas with very low rotation angle appears suddenly at εn = 1.2. In the case
of randomly-oriented 20 grains, it is noticed that the region with higher rotation angle
corresponds to the region with the α′ phase as shown in Fig 17.6 (b). The formation
of the α′ phase and the transformation strain induce a great effect to the change of
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(a) An ideal texture

(b) Randomly-oriented

Fig. 17.8 Distribution of rotation angle of the transformation variant system in the polycrystal
TRIP steel with 20 grains in comparison of different textures

the distribution of rotation angle. As a consequence, the distribution of rotation angle
becomes inhomogeneous and the variant system rotates during deformation process.

Nevertheless, in the analysis of the polycrystal model, there are still limitations on
boundary condition and a use of relatively coarse mesh. It is necessary to understand
more deeply the size effect at this level of the specific length scale to SIMT behavior.
Hence, approaches to describe the hardening during phase transformation such as
non-local model, or generalized stresses balance are considered in the future work.
Furthermore, to express the infinite medium in the polycrystal model, the unit cell
with periodic boundary condition must be employed to fulfill the polycrystal TRIP
steel.

Lastly, just one pattern of random distribution on φ is imposed for the polycrystal
models with different number of grains. It has already been understood that the many
trials of simulation with different pattern and statistical processing of the results are
necessary to find the true phenomena.
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17.5 Summary

This review focused on computational analyses of the martensitic transformation in
mono and polycrystal TRIP steel including the appropriate length scales implemented
to the crystal plasticity finite element method. The importance of martensitic phase
transition in materials and advances in continuum crystal plasticity theory to include
the length scale effect at microstructure were reviewed.

In order to discuss the length scale effect, the computational simulation of single
and polycrystal TRIP steel based on the CPFEM with the cellular automata and the
Voronoi tessellation approaches proposed by Iwamoto and Tsuta (2004) and Trinh
and Iwamoto (2019) were performed.

From the numerical results, in the model of single crystal TRIP steel, the mesh
affects significantly to the volume fraction of martensite, then the morphology
during the phase transition is also different with the promotion of deformation. By
a comparison between two numbers of grains which the initial orientations in each
grain are set randomly, the strength, the evolution of volume fraction of martensite,
and the distribution of martensitic phase are affected greatly.

It is clearly that it is still far to fulfill the study on the strain-induced martensitic
transformation. Additionally, the influence of austenitic grain and martensitic nuclei
related to the SIMT is needed to examine. Thus, a non-local model could be one
of the most suitable approaches since it is able to capture the influence of grain
boundaries. Moreover, in order to have the overall observation, it is indispensable to
explore the 2D model into 3D with an appropriate approach to describe the complex
morphology of polycrystal materials.
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Chapter 18
On Micropolar Theory with Inertia Production

Elena Vilchevskaya

Abstract This paper presents a new aspect in generalized continuum theory, namely
micropolar media showing structural change. Initially the necessary theoretical
framework for a micropolar continuum is presented. To this end the standard
macroscopic equations for mass and linear and angular momentum are complemented
by a recently proposed balance equation for the moment of inertia tensor containing
a production term. The new balance and, in particular, the production is interpreted
mesoscopically by taking the inner structure of micropolar media into account.
Various of examples for the term are presented.

Keywords: Micropolar continua · Structural transformations · Inertia production

18.1 Introduction

Mechanics of Micropolar Continua is a theory with independent force and moment
(couple) actions. That theory incorporates local rotations of points as well as
translations assumed in classical elasticity. The idea of a couple stress can be traced to
Voigt (1887) where the effects of couple stresses were investigated and a generalization
of the classical theory of symmetric elasticity to a non-symmetric theory was made.
The approach was further elaborated by the Cosserat brothers (Cosserat and Cosserat,
1909) who suggested to consider the rotational degrees of freedom of material
particles as independent variables and so every particle contains six degrees of
freedom: three displacements assigned to the macro-element, plus three rotations
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referring to the micro-structure. Thus, force and moment actions in the continuum
were introduced independently, as it was done by Euler, and the angular momentum
equation was explicitly used instead of being reduced to a symmetry statement of the
stress tensor. This material model referred to as the Cosserat continuum provides the
mathematical characterization of solid bodies with microstructure in which couple
stresses, body couples, and local motions are included. These peculiarities of the
Cosserat continuum model give a possibility to describe more complex media, for
example, micro-inhomogeneous materials, particle assemblies, viscous fluids, fiber
suspensions, liquid crystals, etc. Later Eringen and associates started to use the term
micropolar to describe Cosserat media.

Although Hellinger (1914) paid tribute to the potential of the theory and obtained
the general constitutive relations for stress and couple-stress, the ideas of the Cosserat
continuum were not widely accepted and it was not until the 1960’s that fully developed
microstructure theories evolved. In fact, it was only after a paper by Ericksen and
Truesdell (1957) that the ideas of the Cosserat brothers were revived. In this paper,
the purely kinematical description of Cosserat continua emphasizing the one- and
two-dimensional cases of rods and shells was developed. The original concept was
modified in two ways. Firstly, the concept of directors defining the orientation of the
material particle was introduced and secondly, these directors were also allowed to
deform to describe a deformation of the material particle at the microscale. These
are micromorphic continua in Eringen’s classification (Eringen, 1999, 2001), which
have nine degrees of freedom (three for microrotation and six for microdeformation).
A particular case is that of continua with microstretch (Eringen, 1969), where the
directors are orthogonal, but permit isotropic expansion or contraction in addition to
rotation. This means, particles of microstretch continua have four additional degrees
of freedom more than classical continua.

Later Günther (1958) developed a linear theory of the Cosserat continuum with
an application to the continuum theory of dislocations, Grioli (1960) elaborated a
theory of elasticity with a non-symmetric stress tensor, and Ericksen (1960c,a,b,
1961) developed a theory of anisotropic fluids and liquid crystal assuming that a fluid
is a three-dimensional point continuum with one director at each point. Since the
mid of 20th century a lot of publications devoted to the Cosserat continuum have
appeared. Not even trying to give detailed information about various contributions
we just refer to Mindlin and Tiersten (1962), Aero and Kuvshinskii (1961), Kröner
(1963), Palmov (1964), Toupin (1962, 1964) as pioneers in the field. Later the
micropolar elasticity was considered for example in Maugin (1998); Neff and Jeong
(2009); Jeong and Neff (2010); Dyszłewicz (2004); Pietraszkiewicz and Eremeyev
(2009); Ramezani and Naghdabadi (2007). There are also many publications on the
plastic and visco-elastic Cosserat continuum, among them Lippmann (1969); de
Borst (1993); Steinmann (1994); Forest and Sievert (2003, 2006); Grammenoudis and
Tsakmakis (2005); Neff (2006). Variational problems in the micropolar continuum are
investigated in Steinmann and Stein (1997); Nistor (2002). It is also worth mentioning
recent collections (Maugin and Metrikine, 2010; Altenbach et al, 2011; Altenbach
and Eremeyev, 2012; Sansour and Skatulla, 2012; Altenbach and Forest, 2016) and
references therein where modern views on the micropolar media are presented.
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The essential developments in the field of micropolar theory were made by Eringen
and Suhubi (1964a,b); Eringen (1999, 2001); Eringen and Kafadar (1976); Eringen
(1997). Unlike Ericksen and Truesdell (1957) and other early contributions, where
the orientation of the material particle was defined by directors, they considered a
field of orthogonal transformations (rotations) and not the directors themselves. In
analogy to rigid body dynamics Eringen extended the Cosserat theory to include body
microinertia effects and used the microinertia tensor J as the orientational descriptor.
A truly new notion in his approach is an establishment of existence of a conservation
law of micro-inertia. It is based on the concept of an indestructible “material particle”
(polar particle) that is phenomenologically equivalent to a rigid body, see for example
Eringen (1997); Truesdell and Toupin (1960); Mindlin (1964); Eringen and Kafadar
(1976), where it is supposed that the inertia tensor changes only due to rotation of the
material particle as a rigid body. So the inertia tensor in the current configuration can
be written as follows:

J = Q · J0 ·QT , (18.1)

where the inertia tensor in the reference configuration, J0, is a priory known constant
tensor, Q is the tensor of microrotation.

Equation (18.1) can be rewritten in differential form:

δJ

δt
= ωωω × J − J ×ωωω , (18.2)

where the Poisson equation
δQ

δt
= ωωω × Q (18.3)

is taken into account. Hereωωω is the angular velocity. We denote by

δ( · )
δt
=

d( · )
dt
+ (v − w) ·∇∇∇( · ) (18.4)

the substantial derivative of a field quantity that characterizes the rate of change a
property of the material point that was in the observation point at the certain moment
of time, d( · )

dt is the total derivative that determines the rate of change of property in
an observation point, v is the velocity of the material point and w is the mapping
velocity of the observational point (see Ivanova et al (2016)).

Even if a micromorphic structure is considered, following Eringen (1976); Eringen
and Kafadar (1976); Eringen (1999), many papers use the balance law for the
conservation of inertia (e.g., see Oevel and Schröter, 1981; Chen, 2007). A different
approach was suggested in Dłuzewski (1993), where it was assumed that the inertia
of polar particles may change as the continuum deforms. Furthermore, in order to
take the interaction of suspensions with viscous fluids surrounding the suspensions
into account, Eringen (1984, 1985, 1991) proposed a modified balance law for
microinertia:

δJ

δt
= ωωω × J − J ×ωωω − F , (18.5)
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where the additional term F describes changes of the microinertia of rigid suspensions
due to the fluid sticking to the suspensions.

This idea was further elaborated by Ivanova and Vilchevskaya (2016) who clearly
stated that the tensor of inertia should be treated as an independent field. They
considered the micropolar theory based on the spatial description. Within the spatial
description, it is customarily to refer thermodynamic state quantities to an elementary
volume V , fixed in space, containing an ensemble of micro-particles. In their approach,
the tensor of inertia associated with the elementary volume was obtained as a result
of averaging of the inertia tensors of micro-particles that constitute V . Because
the elementary volume is an open system, its inertia tensor can change due to
the inertia flux as micro-particles travel across the bounding surface. Moreover,
to take into account internal structural transformations, such as combination or
fragmentation of micro-particles, chemical reactions, or changes of anisotropy of the
material, the authors in Ivanova and Vilchevskaya (2016) assumed that the inertia
tensor in the reference configuration is no longer a constant tensor but an additional
independent variable characterizing structural transformations in the media. As a
result, they proposed a governing equation for the inertia tensor, which in contrast to
former theories contains a production term. On the macroscopic continuum level,
the production term must be considered as a new constitutive quantity for which an
additional constitutive equation has to be formulated. The form of the constitutive
equation depends on the problem under consideration and can be a function of many
physical quantities, such as temperature, pressure, flow rate, etc.

For a better understanding of these new concepts, the authors in Ivanova and
Vilchevskaya (2016) also presented a mesoscopic theory. The main idea was to
connect information on a mesoscale by taking the intrinsic microstructure within
the elementary volume into account with the balances of micropolar continua on
the continuum level in combination with suitable constitutive equations. A similar
approach for the case of material description was presented in the series of papers
by Stojanović et al (1964) and Rivlin (1968), where the discrete structure of macro-
particles constituting the medium was taken into account. It was assumed that each
macro-particle consists of a number of micro-particles and characterizes by a position
vector to the center of gravity of micro-particles and a number of directors. Later a
transition from the dynamics of single particles to micropolar continuum was done by
many researchers, for example, the homogenization approaches in Ehlers et al (2003)
was based on the volume averages and in Mandadapu et al (2018) it was derived
by means of the Irving-Kirkwood procedure. Various homogenization procedures
also were used for the determination of the micropoloar moduli, see for example,
van der Sluis et al (1999); Larsson and Diebels (2007); Larsson and Zhang (2007).
However, the production term in the kinetic equation for the inertia tensor has never
been considered from this point of view, to the best of our knowledge.

In this paper different examples of the production term introduction will be
discussed and a potential of this approach for modeling materials with higher inner
degrees of freedom by various example problems will be illustrated. It will be shown
that the new term in the balance of inertia allows to model additional features of
materials, namely processes inherent of considerable structural changes.
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In what follows, we firstly consider the theoretical aspects of micropolar theory
with the inertia production from the mesoscopic point of view, which results in an
answer to the question of how to determine the inertial and kinematic characteristics
of the polar particle within the spatial description. Then, because the balance for
the inertia tensor field is extended by the production term, we also discuss possible
forms of the production term on the continuum level in relation with properties of
micro-particles which are located in the elementary volume.

18.2 Outline of the Theory

Within the spatial description, it is customary to refer thermodynamic state quantities
to an elementary volume, fixed in space. If the length scale difference between an
elementary or micro-particle (microscale) and the whole medium under consideration
(macroscale) is sufficiently large (e.g., a sand grain in a sand heap), then the elementary
volume containing sufficiently many micro-particles can be introduced in the sense
of a representative volume element (RVE). It means that within that approach a
continuum is understood as a manifold of RVEs (Fig. 18.1). The RVE, by turn, is
constructed as a manifold of micro-particles and links the micro- and mesoscales.
Note that the presence of a very large number of micro-particles in the RVE is
required since establishing a continuous field theory would not be possible otherwise,
and fluctuations would become dominant.

Let us consider a volume element containing N(r, t) micro-particles. The position
vector r corresponds to the geometrical center of the volume and is independent
of the motion of the medium. Generally the volume may be considered as moving
but we will suppose that it is fixed in space. It means that the position vector is

Fig. 18.1 Continuum as a manifold of elementary volumes
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independent on time, t, and the velocity of the observational point in (18.4) equals to
zero. Note that the volume is an open system since, as the medium moves, different
micro-particles each having their own mass, inertia tensor, translational and angular
velocities pass through the volume.

Since at different moments the volume consists of different micro-particles each
having their own mass and inertia tensor, one has to introduce corresponding fields at
the macrolevel as effective characteristics. The micro-particles within the RVE are
assumed to be replaceable by an ensemble of identical average particles each having
an average mass and an average tensor of inertia.

m(r, t) = 1
N

N∑
i=1

mi, Ĵ(r, t) = 1
N

N∑
i=1

J i . (18.6)

The second equation calls for a short explanation. The field Ĵ(r, t) characterizes the
size, shape and orientation of the average particle rather than the mass distribution
over the RVE. In fact, it is nothing more than an effective characteristic of rotational
inertia that should not be associated with a real material particle. Note that if
the micro-particles are randomly oriented within the RVE, then, due to symmetry
consideration, the averaged tensor Ĵ(r, t) must be a spherical tensor.

If n(r, t) = N/V denotes the number of particles per unit volume, then the mass
density, ρ, and the volumetric density of the moment of inertia are expressed as:

ρ = nm, ρJ = nĴ, (18.7)

where J = Ĵ/m is the average geometrical moment of inertia of a single particle.
However, from the continuum point of view, J stands for the specific density of the
moment of inertia of the elementary volume and ρJ refers to the volumetric density
of the inertia tensor of the elementary volume. Thus, the inertial characteristics of the
elementary volume are assumed to coincide with those of the average particle. Within
this approach, the inertial properties of the medium are only weakly dependent on
the size of the elementary volume.

The momentum and spin of the elementary volume consisting of the original
micro-particles are required to equal those of the elementary volume consisting of
average particles. The linear and angular velocities are obtained from these conditions

1
N

N∑
i=1

mivi = mv, or
1
V

N∑
i=1

mivi = ρv, (18.8)

1
N

N∑
i=1

J i ·ωωωi = ρJ ·ωωω. (18.9)

Similar definitions for the mass density and so-called barycentric velocity, v, can be
found in treatises on multi-component and porous media (Loret and Simões, 2005;
Wilmanski, 2008).
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It should be noted that with respect to the translational degrees of freedom, the
spatial description only considers the current configuration. Nevertheless, the concept
of a reference configuration for the rotational degrees of freedom should be introduced.
To describe the average particle rotation, we choose some fixed state of the medium
that may be taken at t = 0 or another fixed instant and call this state the reference
configuration. In order to determine the orientations of particles, reference directors
Dk(r), (k = 1,2,3) must be locally introduced at each point of the space (Fig. 18.1a).
These directors may coincide with the base vectors of the reference coordinate system
or can be chosen independently and, say, coincide with the primary axes of J(r, 0).

Note also that within the spatial description the translational and angular velocities
are the primary quantities. The displacement, u, and the microrotation tensor, Q,
have to be found as solutions from the corresponding differential equations:

v = δu
δt
,
δQ

δt
= ωωω × Q, (18.10)

provided v and ωωω are known. Furthermore, the microrotational tensor is different
from the rotation tensor of the elementary volume as a rigid body as well as from
the rotation tensor obtained by averaging over all micro-particles found in a given
volume element at a given time. In fact, it describes the change of directors from the
reference to the current position. To this end, it suffices to postulate that the tensors
of rotation of all macroparticles in the reference configuration are identity tensors
Q(r, 0) = I .

Now we assume that the tensor of inertia in spatial description has a representation
similar to (18.1):

J(r, t) = Q(r, t) · J0(r, t) ·QT (r, t), J0(r,0) = J̃0(r). (18.11)

The key point within this approach is that the inertia tensor in the reference configu-
ration is no longer a known characteristic of the medium. Indeed, let us suppose that
ωωω(r, t) = 0, then Q(r, t) = I and Eqns. (18.6), (18.7) determine the reference inertia
tensor J0(r, t). Being the averaged characteristic of the micro-particles within the
elementary volume the inertia tensor in the reference configuration may change due
to different reasons.

• In the case of an inhomogeneous distribution of micro-particles within the medium,
the tensor of inertia associated with the elementary volume changes in a certain
way as micro-particles travel across its boundary surface S. Mathematically, the
balance of ρJ can be expressed as

d
dt

∫
V

ρJ0 dV = −
∫
S

(n ·v)ρJ0 dS, (18.12)

where n is the outward unit normal to S.
Equation (18.12), after application of Gauss’s theorem and pulling the differentia-
tion under the integral, leads to the following local statement for the balance of
inertia:
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δJ0
δt
= 0, ⇐⇒

∂J0
∂t
+ v ·∇∇∇J0 = 0. (18.13)

Here the local conservation of mass is taken into the account. The solution of
equation (18.13) determines the inertia tensor change due to inertia flux, however,
there is no inertia production.

• The size and shape of the micro-particles within the elementary volume may
change due to phase transitions and chemical reactions or due to fragmentation
or combination of the micro-particles. Thus, the size and shape of the average
particle also change and leads to a change of J0.

• Nonspherical micro-particles may have a tendency to align with an external applied
field or conversely to realign due to thermal motion. This describes a transition
from the isotropic state to nonisotropic one or vice versa. It will reflect a change in
the average tensor of inertia. Note that if the micro-particles within the elementary
volume remain the same and only change their orientation in space, from (18.6),
(18.7) follows that the spherical part of the inertia tensor is constant and the
changes of anisotropy of the material are characterized only by the deviatoric part
of J0.

In view of the above remarks, we may conclude that the inertia tensor in the
reference configuration should be treated as a variable rather then a parameter. As a
result the reference inertia tensor has to satisfy the following balance equation:

δJ0
δt
= χχχ0, (18.14)

or in explicit form
∂J0
∂t
= −v ·∇∇∇J0 + χχχ0, (18.15)

where the first term on the right side describes the inertia flux and the production
term χχχ0 reflects structural transformations of the media. The form of the production
term depends on the physical interpretation of microstructural changes. It can, for
instance, depend on J0 as well as other characteristics of the medium, such as density,
temperature, stresses, etc. It can also depend on external stimuli such as external
electric or magnetic fields.

Then from (18.11), (18.10)2 and (18.14) it follows that the tensor of inertia in the
current configuration has the form:

δJ

δt
= ωωω × J − J ×ωωω + χχχ, χχχ = Q · χχχ0 ·QT , (18.16)

where the first two terms describe the inertia tensor change due to rotation of the
average particle and the last term is responsible for the inertia production due to
internal structural transformations.

The inertia tensor production leads to the production of spin. Then the balance of
moment of momentum is formulated as follows

ρ
δ(J ·ωωω)
δt

= ∇∇∇ · μμμ +σσσ× + ρm + ρχχχ ·ωωω. (18.17)
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Hereσσσ and μμμ are the non-symmetric Cauchy and couple stress tensors, (a⊗b)× = a×b
is the Gibbsian cross, and m is the specific couple density. The extra term in the
balance equation, with χχχ, describes the moment of momentum production due to
structural transformations.

However, by taking into account the balance equation for the inertia tensor in the
current configuration (18.16) we obtain the spin balance equation in classical form:

ρJ · δωωω
δt
= −ωωω × J ·ωωω +∇∇∇ · μμμ +σσσ× + ρm. (18.18)

Thus in the suggested model, the basic equations are essentially the same as in
the classical approach except for replacement of the classical conservation law of
micro-inertia by the inertia tensor balance equation containing the production term.

It should be also noted that traditionally the tensor of inertia of a continuum
particle plays a role only in context with rotations. However, within this approach the
balance equation for J and hence the production term in Eqn.(18.14) are physical
meaningful by themselves, independent of the angular velocity and may serve as an
indicator of the internal structural changes.

18.3 Special Cases for the Production Term

We shall now proceed and illustrate the theory by several examples. By the first
example, it is intended to show what happens to the tensor of inertia if the number
of micro-particles and their size within the elementary volume change, for example
due to the presence of a crusher. By the second example, the impact of a changing
moment of inertia onto rotational motion will be demonstrated. In particular, the
change of the state of rotation of a isotropic thermoelastic continuum will be studied.
The average particle will undergo a nonuniform change of external temperature
affecting its moment of inertia. Note that within the classical framework of micropolar
theory a change of temperature would not influence rotation. However, within the
to-be-presented theory, changes in temperature will influence the inertia tensor and
hence couple to angular velocity. The last example will describe changes of anisotropy
of a material under an external electrical field.

18.3.1 Milling Matter in a Crusher

As the first very simple example let us consider a continuous flow of granular matter
of height H moving on a conveyor belt in the x-direction at a constant, prescribed
speed, v0 = v0ex . On its way it enters a region 0 ≤ x ≤ L, where it is continuously
crushed by an external distributed force, p0 = p0ey , applied at the top so that smaller
and smaller particles will form. Note that in spite of the fact that the micro-particles
have a very irregular shape the homogenized tensor of inertia on a continuum level is
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isotropic due to the statistically random distribution of micro-particles of different
size and shape, as illustrated in Fig. 18.2 in the left inset. During the milling process
the mass and characteristic size of a micro-particle will decrease over time (right
inset on the top of the figure), which, under the assumption that the distribution stays
isotropic, leads to a decreasing moment of inertia on the macro-level. At the same
time the mass density of the elementary volume remains the same. The isotropy
means that the production term also has to be a spherical tensor, χ = χI , and Eq.
(18.16) turns into a scalar one:

δJ
δt
= χ. (18.19)

Here the identity a × I = I × a is taken into account.
We assume that the production term is given by the following expression:

χ = −α0 trσσσ (J − J∗)
(
H(x) − H(x − L)

)
I, (18.20)

whereσσσ is the stress tensor, H(x) is the Heaviside step function, J∗ and α0 are positive
constants, which can be interpreted intuitively as being related to the minimum grain
size the particles can be crushed to, and to the inverse of the particle toughness. Thus,
being the characteristics of the material and not of the crusher, they may be considered
as constitutive properties. At the same time trσσσ describes a conversion of the crusher
action to a material response. In other words, it is related to the effectiveness of the
crusher and transmission of its external forces into the material. Hence, in this case,
the production term depends on the material properties, external action, and space.

Since the material in the crusher is under a significant pressure we will model it as
a linear-elastic material. For linear elasticity the Cauchy stresses σσσ is related to the
strain εεε by:

σσσ = C : εεε, C = k(J)I I + 2μ(J)
(
4I −

1
3
I I

)
, (18.21)

Fig. 18.2 Structural shape
change and corresponding
homogenization

p0
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where 4I i jkl = (δikδl j + δilδk j)/2 denotes the fourth rank identity tensor, δi j is the
Kronecker symbol. It is assumed that the bulk and shear, moduli, k and μ, depend on
the particle size:

k(J) = k∗ fk (J/J∗) , μ(J) = μ∗ fμ (J/J∗) , fk(1) = fμ(1) = 1. (18.22)

Here k∗ and μ∗ are the bulk and shear moduli of the material consisting of the particles
of the minimal size. The functions fk and fμ depend on the material and have to be
obtained from experiments. For example, in Hamilton (1971) it was shown that the
bulk modulus decreases and the shear modulus increases with decreasing grain size.
Thus we assume that the elastic modules depend on the moment of inertia as follows:

k(J) = k∗ (J/J∗)2 , μ(J) = μ∗ (J/J∗)−2 . (18.23)

Furthermore it is assumed that the material moves freely along the x-axis while
its movement in the y-direction is limited by the walls. Then in the absence of a body
force the equilibrium condition ∇∇∇ ·σσσ = 0, (18.19) and (18.20) yield:

∂ J̄
∂ t̄
+
∂ J̄
∂ x̄
= −ξ (J̄ − J̄∗)

(
H(x̄) − H(x̄ − 1)

)
, ξ =

9ᾱ

3 +
μ∗
k∗

(
J̄∗
J̄

)4 . (18.24)

The bar on symbols refers to dimensionless quantities, namely,

x̄ =
x
L
, t̄ =

v0
L

t, J̄ =
J
J0 , J̄∗ =

J∗
J0 , ᾱ =

Lp0α0
v0
, (18.25)

where J0 is the maximal moment of inertia.
Eqn. (18.24) has to be supplemented with initial and boundary conditions. In

order to obtain a non-trivial solution, the initial distribution of the particles along the
vertical axis at the left side of the crusher at x = 0 has to be inhomogeneous. For
simplicity we will consider a linear distribution:

J̄(0, z̄, t̄) =
(
J̄∗ − J̄0

)
z̄ + J̄0. (18.26)

The numerical solutions of (18.24), (18.26) based on an explicit method of discrete
integration are presented in Fig. 18.3, where the distributions of the moment of
inertia for a vertical and a horizontal cut within the crusher area (stationary case)
are visualized in dimensionless form. It is clearly visible that the moment of inertia
decreases linearly from the bottom to the top of the crusher. At the same time, the
distributions of the moment of inertia along the x-axis have an exponential shape.

During the computation the following parameters were used

ᾱ = 1.5,
μ∗
k∗
= 0.1.
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Fig. 18.3 Distribution of the
moment of inertia (top inset
– vertical cut, bottom inset –
horizontal cut through crusher
region)
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The influence of the last parameter on the crushing process is shown in Fig. 18.4,
where the stationary distributions of the moment of inertia along the crusher region
for constant and for variable elastic moduli are presented. As can be expected the
difference is more pronounced for large values of the moment of inertia. In Müller
et al (2017) an analytical solution to a very simple one dimensional initial-boundary
value problem for non-homogeneous crushing of particles was found based on the
method of characteristics. The similar problem for viscous material was considered
in Fomicheva et al (2019).
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Fig. 18.4 Profiles of the mo-
ment of inertia for variable and
constant elastic moduli (solid
and dashed lines, respectively)
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18.3.2 Turning Heat Conduction into Space-varying Rotational
Motion

We next consider a medium consisting of thermoelastic micro-particles homoge-
neously distributed over a rectangular plate: x ∈ [0, L], y ∈ [−Ly, Ly], z ∈ [−Lz, Lz].
The medium represents the behavior of a homogeneous mix of micro-particles of
arbitrary size and shape on the mesoscale, that results in the isotropic tensor of inertia
on a continuum level, J = JI .

Initially the temperature of the media is also homogeneous and equal to T0. By
positioning the medium in between two reservoirs kept at temperatures T0 and TL

and attached at positions x = 0 and x = L of the region, respectively, the temperature
of this medium will gradually change. The temperature development is described by
the heat conduction equation after (Zhilin, 2012):

ρ cv
δT
δt
= σσσd : (∇∇∇ ⊗ v + I ×ωωω) + μμμd : (∇∇∇ ⊗ ωωω) + ρq −∇∇∇ ·h . (18.27)

Here T is the absolute temperature, cv is the specific heat capacity at constant volume,
double convolution means (a ⊗ b) : (c ⊗ d) = (a · c)(b ·d), q is the specific heat
source, h is the heat flux, and σσσd and μμμd are the inelastic (dissipative) parts of the
stress tensor and couple stress tensor:

σσσ = σσσe +σσσd, μμμ = μμμe + μμμd, (18.28)

where σσσe and μμμe are the elastic (velocity independent) parts of the stress tensor and
couple stress tensor.

For simplicity we suppose that the macro-particles have only rotational degrees of
freedom and their translational velocities are equal to zero. Then, for an unconstrained
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medium in absence of body forces the momentum balance equation is automatically
fulfilled.

The system of equations (18.18), (18.19) and (18.27) has to be supplemented
by constitutive equations. We suppose that the heat conduction is governed by the
Fourier’s law

h = −κ∇∇∇T,

with κ being the thermal conductivity, the elastic part of the couple stress tensor
equals to zero, and write the following constitutive equation for its dissipative part
according to Zhilin (2012):

μμμd = −β(∇∇∇ ×ωωω) × I, (18.29)

where β has the meaning of a frictional coefficient. In order to formulate a constitutive
equation for the production term we consider the free thermal expansion of the
spherical particle under the assumption that the temperature increase is instantaneously
assumed by the particle. Then the moment of inertia changes in accordance with the
temperature field:

J(x, t) = J0 [1 + α(T(x, t) − T0)]2 , (18.30)

with J0 being the initial moment of inertia, and α being the linear coefficient of
thermal expansion. Therefore the production term can be written as:

χ =
∂J
∂t
= 2J0α (1 + α(T − T0))

∂T
∂t
. (18.31)

As one can see the production depends on the material properties and vanishes at the
constant temperature field.

To keep the problem one-dimensional we also assume that:

ωωω(x, t) = ω(x, t)ez, m(x, t) = m0ez . (18.32)

Thus the development of temperature, the moment of inertia and angular velocity can
be obtained as a result of solution of a coupled system of partial differential equations
in dimensionless form:

∂T̄
∂ t̄
= δ

(
∂ω̄

∂ x̄

)2
+
∂2T̄
∂ x̄2 ,

∂ J̄
∂ t̄
= 2ᾱ[1 + ᾱ(T̄ − 1)]

∂T̄
∂ t̄
, (18.33)

J̄
∂ω̄

∂ t̄
= η
∂2ω̄

∂ x̄2 + m̄,

ᾱ = αT0, δ =
βm0
κT0J0

, η =
βcv
κJ0
, m̄ = ω0

L2

D
, ω0 =

√
m0
J0
, D =

κ

ρcv
,
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x̄ =
x
L
, t̄ =

D
L2 t, T̄ =

T
T0
, J̄ =

J
J0
, ω̄ =

ω

ω0
.

with the following initial and boundary conditions:

T̄(x̄, t̄ = 0) = 1, J̄(x̄, t̄ = 0) = 1, ω̄(x̄, t̄ = 0) = 0,

T̄(x̄ = 0, t̄) = 1, T̄(x̄ = 1, t̄) =
TL

T0
,
∂ω̄

∂ x̄

2222
x̄=0;1

= 0.

Note that the angular velocity related boundary conditions are necessary only if the
viscosity is taken into the account. The proper choice of boundary conditions for the
angular velocity is a complex issue. Generally, two types of boundary conditions are
considered. The first type is so-called “strict adhesion”, see, for example, Eringen
(2001) (ω̄(x̄ = 0; 1, t̄) = 0). The second one used here corresponds to an absent
couple stress on the boundary.

The developments of angular velocity at three dimensionless times, t̄ = 0.005
(green), t̄ = 0.01 (blue), and t̄ = 0.03 (red) are depicted in Fig. 18.5. It is seen
that the obtained profile of angular velocity is nonlinear in contrast to the classical
approach where the angular velocity does not change over the sample length. The
nonlinear behavior reflects the fact that distribution of the inertia moment over the
sample mimics the temperature profile and as a result it follows from Eq. (18.33)

Fig. 18.5 Angular velocity distribution over the sample at different moments of time (m̄ = 100,
T̄ (x̄ = 1, t̄) = 2, η = 1, δ = 1)
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that the angular acceleration varies for particles with different temperature. Different
boundary conditions and time-dependent the volume moment couple density was
considered in Morozova et al (2019).

18.3.3 Dipolar Polarization

In order to describe anisotropic changes let us consider a material, which, on a
mesoscale, consists of an assembly of dipoles. Due to thermal motion the dipoles are
randomly oriented in the substance so that there is no overall charge in the material
(Fig. 18.6, top left). The initial, homogenized macro-inertia tensor is then the isotropic
spherical tensor.

n

E0
=> =>

n

Fig. 18.6 Structural shape change and corresponding homogenization
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When an external electric field E = E0n is applied, the dipoles tend to align
with the applied field to lower their electrostatic energy, basically the positive end
of the dipole would like to join the negative end of the applied field. Such behavior
can be observed in dipolar polarization, for materials with build-in dipoles that are
independent of each other, i.e. they don’t interact and they can be rotated freely by
an applied field (Kestelman et al, 2013). However, even in case of liquids or gases,
where molecules are free to rotate, a complete alignment is impossible because the
tendency of dipoles to orient along into the field direction will be counteracted by
thermal motion. Thus, as a result of the combined action of the external and internal
actions, a dominating orientation of the molecules along the direction of the electric
field occurs and the transversally-isotropic state is achieved (Fig. 18.6, right).

Upon the applied electric field removal the thermal motion randomizes the
alignment of the dipoles and returns the material into the initial isotropic state. The
objective is now to describe the transition processes.

First note that switching back and forth between the isotropic and transversally-
isotropic states is characterized only by the deviatoric part of the inertia tensor since
the micro-particles within the elementary volume do not change. Thus, we have a
purely deviatoric production. Second, since the micro-particles rotate in all possible
directions during the orientation and disorientation processes, the macroscopic spin
and, therefore, the macroscopic angular velocity is zero. Hence, the macrorotation
tensor is an identity tensor. Under an assumption that the process occurs in the same
manner at all points of space the balance of the inertia tensor simplifies and reads:

J sh(t) = J0I = const,
dJdev(t)

dt
= χχχ, (18.34)

where
Jdev(t) =

1
15

(
c(t)2 − a(t)2

)
(I − 3nn) . (18.35)

a(t) is the semi-axis of the plane of isotropy and c(t) is the semi-axis in the direction
of n.

The production term describing the microparticle alignment has to depend on the
direction of the external field and on the time of particle orientation under the field
action, τp, which defines the polarization setting time. The higher the magnitude
of the electric field and lower the temperature the shorter is the time of dipolar
polarization setting. For instance, τp = α(T)/E0 can be taken as a simple example.
Here the parameter α in units of V · s/m is an increasing function of temperature.
Thus, we can postulate the following form of the production term:

χχχ(t) =
J∞
τp

exp(−t/τp) (I − 3nn) , (18.36)

where J∞ = (c2
∞ − a2

∞)/15 is the value reached at t → ∞. Note that in that case, the
production is explicitly time-dependent. However, since the exponent is a rapidly
decreasing function one can assume that the production stops when t > 5τp. It
also worth mentioning that τp characterizes the combined effect of the electric field
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magnitude and thermal motion. Nevertheless the direction of the electric field appears
explicitly in the production term.

Integration of the Eq. (18.34) with zero initial condition gives a development of
the inertia tensor in time:

J(t) = J0I +
1
15

(
c2
∞ − a2

∞

) (
1 − exp(−t/τp)

)
(I − 3nn) . (18.37)

A few comments are now in order. First, note that the inertia tensor (18.37)
corresponds to a particle that is oriented in the direction of the electric fields. Then
the moment couple on the macro level will be zero and therefore zero angular velocity
satisfies the spin balance in the absence of stress tensors. Second, the parameter J∞
cannot be defined easily. If all dipoles would be uniformly aligned in n-direction
then the homogenized tensor of inertia would coincide with the inertia tensor of the
dipole. But the perfect alignment is not reachable because of randomizing effect of
the thermal motion. Hence J∞ characterizes the “equilibrium” distribution of dipoles
over orientations. It is tempting to interrelated J∞ to the maximal polarization density
P that can be reached in the material at the given electric field and temperature, but
we leave it with this remark.

Now let us consider the reverse process. The production term associated with the
thermal motion of the dipoles depends on the temperature and has to disappear as
soon as the isotropic case is reached. Having that in mind, we choose the production
of microinertia in the most simple form:

χχχtm(t) = −
1
τr (T)

Jdev(t), (18.38)

where τr defines the relaxation time. The smaller it is, the faster the transition from
order to disorder will be achieved. Being a quantity associated with the thermal
motion the relaxation time has to be a decreasing function of the temperature.

Then it follows that the deviatoric part of the inertia tensor decreases exponentially
in time and the inertia tensor turns eventually into a spherical tensor:

J(t) = J0I +
1
15

(
c2

1 − a2
1

)
exp(−t/τr ) (I − 3nn) . (18.39)

Here c1 and a1 are the spheroid axes at the moment t1, when the external field was
removed.

18.4 Conclusions and Outlook

The intention of this paper is to draw attention on some recent activities in the field
of micropolar media capable of structural change. One of its main feature is a new
balance equation for the tensor of inertia containing a production term. The new
balance and in particular the production are interpreted mesoscopically by taking
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the inner structure of micropolar matter into account. In fact, it is an attempt to
generalize the classical approach based on the concept of an indestructible material
particle consisting of a statistically significant number of subunits on a mesoscopic
scale. Within the classical approach, there should be no exchange of subunits between
the material particles. Furthermore, the polar continuum particle assumed to be
equivalent to a rigid body and can be neither destroyed nor generated. However,
this means that within this framework certain processes and effects in materials can
simply not be modeled.

The new approach emphasizes the idea that it may become necessary to abandon
the concept of the rigid material particle if one wishes to describe micropolar matter
in which structural changes or chemical reactions occur. The approach is based
on the spatial description where a representative volume element is treated as a
continuum polar particle. It does not impose strict constraints on the motion of
micro-particles, rather it embraces the idea of an open system, allowing a priori for
exchange of mass, momentum, energy, tensor of inertia, etc., between and within the
representative volume elements. For a better understanding of this new concept an
underlying mesoscopic theory is presented. The main idea is to connect information
on a mesoscale by taking the intrinsic microstructure within RVE into account with
the macroscopic world, i.e., with the balances of micropolar continua in combination
with suitable constitutive equations. This new approach enables us to study the
temporal development of rotational inertial characteristics. In this context, the tensor
of inertia is an additional internal variable characterizing structural transformations
of the media. Moreover, in contrast to the material description where all neighboring
material particles have to remain in the neighborhood during their motion, the spatial
description does not impose strict constraints on the motion of material points. As a
result, the neighboring particles can separate and travel significant distances from
one another as happens in soils, granular and powder-like materials.

The extended theory seems particularly promising in context with the description
of materials with complex or variable structure, such as suspensions or liquid crystals
where the structural state of the fluid matter is actively controlled by applying
external electromagnetic fields and temperature changes. Also, the approach has a
potential for modeling processes going on under an influence of different physical
and thermo-mechanical factors or taking into account their mutual influence. For
example, a dielectric polarization in an alternating electric and temperature fields or
electret production where a dielectric is placed in strong electric field and subjected
to additional physical action or mechanoelectrets where the electret state can occur
from mechanical deformation without external electrical field.

Acknowledgements The author is deeply grateful to E.A. Ivanova and W.H. Müller for useful
discussions on the subject.
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Chapter 19
Hencky Strain and Logarithmic Rate for Unified
Approach to Constitutive Modeling of Continua

Si-Yu Wang, Lin Zhan, Hui-Feng Xi, Otto T. Bruhns, and Heng Xiao

Abstract A survey is presented for new approaches and main results in developing
finite deformation elastic and inelastic constitutive models of continua based on
Hencky’s logarithmic strain and the co-rotational logarithmic rate. Emphasis is placed
on four aspects, including (i) a new set of Hencky invariants by means of which new
and explicit approaches are established to obtain multi-axial elastic potentials for
rubber-like solids; (ii) log-rate-based self-consistent elastoplastic constitutive models
for finite deformation behaviors of usual metals, shape memory alloys and soft solids;
(iii) innovative elastoplastic J2−flow models automatically incorporating cyclic and
non-cyclic failure effects as inherent constitutive features; as well as (iv) the latest
discovery of the deformable micro-continua that display all known quantum effects
exactly as do quantum entities at atomic scale, such as electrons, etc. These suggest
that both Hencky strain and the co-rotational logarithmic rate play a unified role
in modeling large elastic and inelastic deformation behaviors of a wide variety of
continua covering usual metals and alloys, shape memory alloys, polymeric solids
and, perhaps unexpectedly, quantum entities at atomic scale. In particular, complete
responses over the entire strain range up to failure are also covered in a broad, unified
sense. In passing, most recent issues raised concerning the appropriateness of the
logarithmic rate with reference to the elastoplastic J2−flow model are clarified by
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examining the applicability ranges of both the Hencky elastic potential and the von
Mises yield function, etc.

Keywords: Metals · Elastomers · SMAs · SMPs · Quantum entities · Finite defor-
mation · Logarithmic strain · Logarithmic rate · Elasticity · Plasticity · Constitutive
Modeling · Unified approach

19.1 Introduction

Large deformation elastic and inelastic constitutive models of metallic solids and
rubber-like solids play essential roles in effective design of components and parts
in engineering structures and, in particular, in assessing their in-service safety and
reliability. Such models for the purpose of engineering design are required to establish
direct relationships between stress, deformation and temperature as well as their
histories. Here, attention is directed to these direct models for large elastic and
inelastic deformation behaviors of continua.

On one hand, it is customary to model large elastic deformation behaviors of
rubber-like solids with the scalar function of a strain tensor, known as the elastic
strain-energy function or the elastic potential. For this purpose, work-conjugate pairs
of strain and stress tensors are usually taken into consideration (Ogden, 1984) and,
in particular, the choice of a suitable strain measure proves to be essential. On the
other hand, the Eulerian rate-type formulation1 of finite elastoplastic deformation
behaviors establishes objective Eulerian rate constitutive equations for the elastic
and the plastic part of the natural deformation rate, i.e. the stretching tensor. This
formulation presents a direct, natural extension of the well established Prandtl-Reuss
equations to finite deformations (Bruhns, 2014a). Use of objective tensor rates is
characteristic of such formulation.

In the past two decades, Hencky’s logarithmic strain and the co-rotational loga-
rithmic rate have been found to play substantial roles both in resolving fundamental
issues and in leading to new and explicit approaches toward modeling large elastic and
inelastic deformation behaviors of continua. Here, a survey2 will be presented for new
approaches and main results in six topics, including (i) a new set of Hencky invariants
by means of which a new, explicit approach is established to obtain hyper-elastic
potentials for rubber-like solids; (ii) log-rate-based self-consistent elastoplastic con-
stitutive models for usual metals and alloys; (iii) log-rate-based elastoplastic J2−flow
models for shape memory effects and pseudo-elastic effects of shape memory alloys;
(iv) log-rate-based elastoplastic constitutive models for rate effects and the Mullins
effect of polymeric solids; (v) innovative elastoplastic J2−flow models automatically
incorporating cyclic and non-cyclic failure effects as inherent constitutive features;
as well as (vi) the latest discovery of the deformable micro-continua that display

1 Other formulations, such as the Lagrangian formulation and the multiplicative formulation etc.,
will be merely touched on in subsequent account.
2 Cf. an early survey (Xiao, 2005) for the origin of Hencky strain and its applications.
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all known quantum effects exactly as do quantum entities at atomic scale, such as
electrons, etc. In passing, most recent issues raised concerning the reasonableness of
the logarithmic rate with reference to the elastoplastic J2−flow model will be clarified
by examining the applicability ranges of both the Hencky elastic potential and the
von Mises yield function.

19.2 Hencky Invariants and Rubber-like Elasticity

19.2.1 Modeling of Rubber-like Elasticity

Large elastic deformation behaviors of rubber-like solids are characterized by the
elastic potential as the scalar function of a strain tensor. The central issue in rubber-like
elasticity is finding out forms of this potential for various kinds of highly elastic
solids. This central issue has attracted much attention in the past decades. Indeed,
“the area of rubber-like elasticity has had one of the longest and most outstanding
histories in all of polymeric science”, as pointed out in Erman and Mark (1989).
After 80 years’ continuing efforts, however, it appears that a complete solution is still
to be worked out and much remains to be done.

The essential complexity lies in the fact that the nonlinear elastic behavior of
a rubber-like solid is strongly dependent on deformation modes, namely, distinct
nonlinear response features will be expected for various deformation modes. Accord-
ingly, toward comprehensive characterization of the nonlinear elasticity of a rubbery
solid, nonlinear response features for a few benchmark deformation modes, including
uniaxial extension, equi-biaxial extension and plane-strain extension, should be
known from testing (cf. Jones and Treloar, 1975; Treloar, 1958, for early results) and,
then, a multi-axial elastic potential should be presented to reproduce as closely as
possible such nonlinear response features for these benchmark modes and, in the
meanwhile, should provide reasonable predictions for response features for other
deformation modes.

Both statistical approach and phenomenological approach have been developed in
obtaining forms of the elastic potential for various kinds of elastomeric materials.
On the one hand, the statistical approach derives various forms of elastic potentials
in terms of certain micro-structural parameters via averaging procedures based on
certain approximations and idealizations concerning the network structures of long
chainlike macromolecules. Numerous results in this respect are available, see, e.g.
the survey articles Boyce et al (2000); Ogden et al (2006) and the references therein
for some representative works. On the other hand, the phenomenological approach
directly presents various nonlinear forms of the elastic potential in terms of either
strain invariants or principal stretches with a number of unknown parameters. Then,
predictions of the presented elastic potentials are compared with benchmark test
data in identifying the unknown parameters introduced. Many results have also been
obtained in this respect. For details, refer to, e.g. Ogden (1984); Treloar (1958) for
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early results and some reviews (Beatty and Millard, 1987; Horgan and Saccomandi,
2006) for certain recent results.

Of the existing results, those with fewer parameters (e.g., two parameters) display
excellent agreement with uniaxial extension data up to a very large stretch ratio of
800%, but merely achieve approximate agreement with biaxial extension data. On
the other hand, those with more parameters (e.g., six parameters) can achieve good
agreement with both uniaxial and biaxial data, but have to cope with the cumbersome
task of identifying more parameters. Details may be found in the foregoing references.

Moreover, it appears that all the existing results are still at the stage with no
reference to the bounded stress and the softening effect up to failure. On the contrary,
unbounded strain energies would be predicted with unbounded stresses.

Recently, new approaches have been established based on a new set of invariants of
the Hencky strain. These new approaches are explicit and straightforward in the sense
that benchmark test data for uniaxial and biaxial extension as well as plane-strain
extension can be automatically reproduced by means of single-variable stress-strain
functions for the three benchmark deformation modes. Furthermore, realistic effects
over the entire strain range can be simulated, including bounded stresses and softening
effects up to eventual failure. Main results in these recent developments will be
explained below.

19.2.2 Direct Potential with Hencky Strain

Infinitely many strain tensors may be introduced to prescribe multi-axial strained states
at finite deformations. Details may be found in Ogden (1984). Of them, Hencky’s
logarithmic strain or Hencky strain (Hencky, 1928) was given prominence (cf., e.g.
Hill, 1968, 1970, 1979). Let F be the deformation gradient. The three eigenvalues
of the left Cauchy-Green deformation tensor G = F · FT are designated by λ2

1, λ2
2,

λ2
3 and the three corresponding orthonormal eigenvectors by n1, n2, n3. Then, the

Hencky strain, denoted h, is given by

h =
1
2

ln G =
3∑

s=1
(ln λs) ns ⊗ ns . (19.1)

For an isotropic hyper-elastic solid, the Kirchhoff stress τ, i.e. the Cauchy stress
σ weighted by the volumetric ratio J = detF, is directly derivable from an elastic
potential of the Hencky strain h, denoted W = W(h), namely,

τ = Jσ =
∂W
∂h
, (19.2)
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where the Hencky-strain-based potential3 W = W(h) is an isotropic scalar function
of the Hencky strain h. Details may be found in Hill (1968, 1970); Fitzgerald (1980);
Xiao and Chen (2003).

For an incompressible, isotropic hyper-elastic solid, the direct potential relation
Eq. (19.2) is reducible to (cf., Hill, 1968, 1970; Xiao et al, 2004)

σ =
∂W
∂h
+ qI , (19.3)

with the incompressibility constraint below:

trh = 0 . (19.4)

Here, q is the all-around stress, I is the identity tensor and trA = A11 + A22 + A33.

19.2.3 Bridging Invariants and Mode Invariant

Since the potential W = W(h) is isotropic, as indicated before, it is reducible to a
function of three basic invariants of the Hencky strain h. The latter are given by trhr ,
r = 1,2,3. For our purpose, new Hencky invariants are needed, as given below.

The first Hencky invariant is

i1 = trh . (19.5)

This invariant provides the simple, direct condition for the incompressibility constraint
as given in Eq. (19.4).

Two bridging invariants are given as follows:

ϕ =

√
2
3

j2 , (19.6)

φ =

√
1
2

j2 , (19.7)

with

j2 = trh̃2
, (19.8)

where h̃ is the deviatoric part of the Hencky strain h, namely,

3 The elastic potential is expressible as the scalar function of any chosen strain tensor other than the
Hencky strain, but the direct potential relationships as in Eqs. (19.2)-(19.3) would no longer hold
true.
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h̃ = h −
1
3
(trh)I . (19.9)

For incompressible solids, Eq. (19.4) holds true and hence h = h̃. The two invariants
ϕ and φ exactly supply the axial Hencky strains for the uniaxial extension mode
and the plane-strain extension mode, respectively, and they are accordingly named
bridging invariants for these two modes.

Moreover, the following Hencky invariant is introduced:

γ =
√

6
j3

j1.5
2
, (19.10)

where j2 is given by Eq. (19.8) and

j3 = trh̃3
. (19.11)

The invariant γ ranges from −1 to 1, viz., −1 ≤ γ ≤ 1, and can exactly distinguish
between all different deformation modes and hence it is named the mode invariant. In
particular,

γ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+1 for uniaxial extension mode ,
−1 for uniaxial compression mode ,
0 for plane-strain extension mode .

(19.12)

Details may be found in Xiao (2015b).

19.2.4 Elastic Potentials Automatically Reproducing Uniaxial and
Biaxial Responses

Let σ and h denote the axial Cauchy stress and the axial Hencky strain in the uniaxial
extension and compression modes, respectively. For any given uniaxial stress-strain
relation, namely,

σ = f (h) , (19.13)

the strain energy below is available for the uniaxial extension and compression modes:

P(h) =
∫ h

0
σdh =

∫ h

0
f (h)dh . (19.14)

With the bridging invariant and the mode invariant given in Eqs. (19.6) and (19.10)
as well as the single-variable potential given above, a multi-axial elastic potential is
obtainable for incompressible, isotropic hyper-elastic solids, as given below (Xiao,
2012):
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W =
1
2
(1 + γ)P(ϕ) +

1
2
(1 − γ)P(−ϕ) . (19.15)

It may be evident that the above potential can automatically reproduce the uniaxial
tensile and compressive response given in Eq. (19.13) for h ≥ 0 and h ≤ 0,
respectively. As a consequence, whenever the function f (h) can fit test data given for
the uniaxial extension and compression modes, the multi-axial potential Eq. (19.15)
can automatically fit such data.

It is indicated that the uniaxial function Eq. (19.13) may be given by either a
polynomial interpolating function (Wang et al, 2014) or piecewise spline functions
(Li et al, 2014) in a sense of achieving accurate agreement with any given data
without errors. In particular, it is found (Xiao, 2012; Zhang et al, 2014a) that a simple
rational function may be used to fit Treloar’s large strain data (Treloar, 1958) with
strain-stiffening effects at both extension and compression. Such a function is of the
following form:

σ = f (h) =
2Eh(

1 − h
he

) (
1 + h

hc

) − Eh , (19.16)

where he and hc are referred to as the extension limit and the compression limit.
Whenever the strain is approaching either of these two limits, the strain-stiffening
effects is displayed with rapidly increasing stress. Results in fitting Treloar’s data are
shown in Fig. 19.1.

As contrasted with other forms of the elastic potential with a number of adjustable
parameters, the two strain limits he and hc in the new potential Eq. (19.15) with Eq.
(19.16) are of direct physical meanings and obtainable directly from sufficient test
data in arriving at good agreement with Treloar’s data (Treloar, 1958) for all three
benchmark modes.

The new potential Eq. (19.15) is further developed to treat general biaxial data
(Zhang et al, 2014b) and, moreover, further results are given to cover bounded strain
energies (Jin et al, 2015; Yu et al, 2015b) and failure effects (Yu et al, 2015a).

Fig. 19.1 Model predictions
compared with Treloar’s
data (Treloar, 1958): the
upper, middle, lower predicted
curves for biaxial, plane-strain,
uniaxial extension; F and λ
for the nominal stress and the
stretch in the loading direction



450 Si-Yu Wang, Lin Zhan, Hui-Feng Xi, Otto T. Bruhns, and Heng Xiao

19.2.5 Elastic Potentials Automatically Reproducing both Uniaxial
and Plane-strain Responses

Although the new potential Eq. (19.15) can automatically reproduce the uniaxial
tensile and compressive responses, for the plane-strain mode it can not simultaneously
achieve good agreement with test data for the two normal stresses in the loaded and
undeformed directions. Most recently, new multi-axial potentials (Cao et al, 2017)
have been explicitly constructed based on Hermitian interpolating procedures and the
three Hencky invariants given in Eqs. (19.6)-(19.7) and (19.10). For the plane-strain
mode, let h be the Hencky strain in the loaded direction and let σ1 and σ2 be the two
normal stresses in the loaded and undeformed directions. The stress responses in the
plane-strain mode are given by two functions below:{

σ1 = y(h) ,
σ2 = s(h) .

(19.17)

Then, the strain energy for the plane-strain mode is as follows:

Q(h) =
∫ h

0
σ1dh =

∫ h

0
y(h)dh . (19.18)

A new multi-axial potential is obtained by extending Hermitian interpolating pro-
cedures to the three benchmark deformation modes, i.e. the uniaxial extension and
compression and the plane-strain extension. The essential idea is to use the mode
invariant γ (cf., Eq. (19.10)) in representing the three benchmark modes (cf., Eq.
(19.12)). The new potential is of the following form (Cao et al, 2017):

W = (γ + 1)2
[
2 − γ

4
P (ϕ) +

γ − 1
4
Γ+

]
+ (γ − 1)2

[
2 + γ

4
P (−ϕ) +

γ + 1
4
Γ−

]
,

(19.19)

where

Γ+ =
5
2

P(ϕ) −
1
2

P(−ϕ) − 2Q (φ) −
2
√

3
9

(y (φ) − 2s (φ)) , (19.20)

Γ− =
1
2

P(ϕ) −
5
2

P(−ϕ) + 2Q (φ) −
2
√

3
9

(y (φ) − 2s (φ)) . (19.21)

In the above, P(h) and Q(h) are the strain energies for the uniaxial mode and the
plane-strain mode, given respectively in Eqs. (19.14) and (19.18), and y(h) and s(h)
are the normal stresses in the loaded and undeformed directions in the plane-strain
case.

It is demonstrated (Cao et al, 2017) that the potential Eqs. (19.19)-(19.21) can
automatically reproduce the stress-strain responses for all the three benchmark modes.
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With the three response functions f (h), y(h) and s(h) (cf., Eqs. (19.13) and (19.17))
given by rational functions of the simple form as in Eq. (19.16), results are presented
in fitting Jones and Treloar’s data (Jones and Treloar, 1975), as shown in Figs. 19.2
and 19.3. Results are also given in fitting data for gels up to breaking. Details may be
found in Cao et al (2017).

Further results are also obtained in a few respects, including the best approximation
with error estimation (Xiao, 2015b; Gu et al, 2015) and extensions to compressibility
effects (Xiao, 2013a; Yuan et al, 2015; Xiao et al, 2017), as well as treatments of
breaking effects (Cao et al, 2017; Xiao et al, 2017) for gellan gels.

19.3 Self-consistent Prandtl-Reuss Equations with Log-rate

We now direct attention to finite elastoplastic deformations for metallic solids. In the
past decades, numerous constitutive formulations of finite elastoplastic deformations
have been proposed from various standpoints. Representatives of them are the Prandtl-
Reuss formulation, the Lagrangian formulation and the multiplicative formulation.

Fig. 19.2 Model predictions
compared with Jones and
Treloar’s data (Jones and
Treloar, 1975): Uniaxial and
equi-biaxial extension (solid
triangles for test data)

Fig. 19.3 Model predictions
compared with Treloar’s data
(Jones and Treloar, 1975):
Plane-strain extension (solid
dots and crosses for test data;
dotted line for the stress σ2
derived from the potential
given in Eq. (19.15)
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As indicated in the introduction section, the Prandtl-Reuss formulation is of
Eulerian rate type and establishes elastoplastic constitutive equations between the
stretching and objective stress rates etc. As a natural, direct extension of the classical
Prandtl-Reuss formulation for small deformations, the just mentioned formulation
for finite deformations is deeply rooted in the long tradition (Bruhns, 2014a) of the
classical theory of elastoplasticity. After certain inherent inconsistency issues have
been disclosed, however, it appears that this formulation has been discredited in a
broad sense and relegated to a status that it could merely be used in an approximate
sense with very small elastic strain. As such, essentially different formulations
have been established, such as the Lagrangian formulation and the multiplicative
formulation, etc. For details in this respect, refer to the early critical review by Naghdi
(1990) and the recent survey by Xiao et al (2006a).

In a series of recent developments, new self-consistent Prandtl-Reuss equations
have been established by eliminating the inconsistency issues inherent in the Prandtl-
Reuss formulation with objective stress rates. The essential idea is to use the newly
discovered co-rotational logarithmic rate that is based on the unique kinematic feature
of the Hencky strain Eq. (19.1). Results in this respect and most recent advances will
be explained in this and the subsequent sections.

19.3.1 Prandtl-Reuss Equations with Objective Rates

Consider an elastoplastic body undergoing finite deformation. Let X be the position
vector of a generic material particle in an initial configuration at t = 0 and let x be
the corresponding current position vector at time t. Then, the latter is a mapping of
the former and the time t, namely,

x = x(X, t).

The deformation gradient F and the velocity gradient L are given by

F = ∂x
∂X , L = ∂ẋ

∂x = Ḟ · F−1 . (19.22)

The symmetric and anti-symmetric parts of L provide the stretching tensor, namely,
the natural deformation rate D, and the vorticity tensor W, viz.,

D = 1
2
(L + LT ),W = 1

2
(L − LT ). (19.23)

Besides,
τ = Jσ, J = detF, (19.24)

supply the Kirchhoff stress and the volumetric ratio (the Jacobian), as indicated in
subsection 2.2.
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The Eulerian rate formulation of finite elastoplasticity is based on the additive
separation of the stretching D below (Xiao et al, 2006a):

D = De + Dp, (19.25)

With this separation, objective Eulerian rate constitutive equations need be established
to prescribe the elastic part De and the plastic part Dp , as will be done below.

First, a hypo-elastic equation of Eulerian rate type should be given to relate the
elastic part De in the separation Eq. (19.25) to a stress rate. For this purpose, an
objective stress rate, denoted τ̊, should be used in order to fulfill the objectivity
requirement. Such an elastic rate equation is of the form (cf., e.g. Xiao et al, 2006a;
Bruhns et al, 1999, 2003, 2005)

De =
∂2W
∂τ2 : τ̊ , (19.26)

where W is a complementary elastic potential characterizing finite hyper-elastic
behavior. Equation (19.26) is for initial isotropy. Refer to Xiao et al (2007b) for
treatment of initial anisotropy.

The next step is to formulate a flow rule for the plastic part Dp in the separation
Eq. (19.25). It has been demonstrated Bruhns et al (2005) that a normality flow rule
of the following form (cf., e.g., Xiao et al, 2006a; Bruhns et al, 1999, 2003, 2005) is
derivable from a weakened form of Ilyushin’s postulate:

Dp =
1
2
ζ

h̆

(
f̆ + | f̆ |

) ∂ f
∂τ
. (19.27)

In the above, ζ and f are the plastic indicator taking values 1 and 0 in the loading
and unloading cases (Bruhns et al, 1999, 2003) and the yield function, while f̆ and h̆
are the strain-rate-based loading factor and the normalized plastic modulus. They are
given below, separately.

First, the yield function f is the von Mises function with combined hardening
effects, namely,

f =
1
2

tr (τ̃ − χ)2 −
1
3

r2 . (19.28)

In the above, the yield strength r is of the form:

r = r(ϑ) (19.29)

with the dissipated work ϑ specified by

�ϑ = (τ̃ − χ) : Dp . (19.30)

The ϑ-dependent yield strength r characterizes the isotropic hardening effect. More-
over, the kinematic or anisotropic hardening effect is characterized by the back stress
χ governed by the evolution equation below:
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χ̊ = cDp − ξ �ϑχ , (19.31)

where c and ξ are referred to as the Prager modulus and the hysteresis modulus,
respectively.

Next, the strain-rate-based loading factor f̆ and the normalized plastic modulus h̆
are of the following forms:

f̆ =
∂ f
∂τ

: S : D , (19.32)

h̆ =
∂ f
∂τ

: S :
∂ f
∂τ

−
∂ f
∂ϑ

(
(τ̃ − χ) :

∂ f
∂τ

)
−
∂ f
∂χ

: H :
∂ f
∂τ
, (19.33)

where S is the elastic stiffness tensor given by

S =

(
∂2W
∂τ2

)−1

(19.34)

and H is the hardening tensor by

H = cI − ξχ ⊗ (τ̃ − χ) (19.35)

with the 4th-order identity tensor I.
Finally, the plastic indicator ζ is given by (cf., Xiao et al, 2007b):

ζ =

{
1 for f = 0, f̆ > 0 ,
0 for f < 0 or ( f = 0, f̆ ≤ 0) . (19.36)

The choice of the objective rates in Eq. (19.26) and Eq. (19.31) will be discussed
later on. Moreover, the elastoplastic deformation features are characterized by the
three constitutive quantities including the complementary elastic potential W , the
yield strength r , the Prager modulus c and the hysteresis modulus ξ. Their forms will
be presented in the sequel for different cases.

19.3.2 Inconsistency Issues with Zaremba-Jaumann Rate

During the years from 1950 to 1960, attention was directed to the definition of
an appropriate objective stress rate. Of the four objective rates then known, the
Zaremba-Jaumann rate was selected earlier by Prager (1960) based on the yielding
stationarity criterion and had been widely used since then. However, the foundation
of the Prandtl-Reuss formulation was shaken by the discoveries of the spurious shear
oscillating responses (Lehmann, 1964, 1972; Dienes, 1979; Nagtegaal and Jong,
2010). According to such responses, the shear stress would not be increasing but
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oscillating with increasing shear strain, indicating that there would be something
wrong with the Prandtl-Reuss formulation based on the Zaremba-Jaumann rate.

The inherent inconsistency was further substantiated by the non-integrability
issue of the elastic rate equation. For metallic solids with small elastic strain, the
complementary elastic potential W in the elastic rate equation Eq. (19.26) is given as
follows:

W =
1

4G
trτ2 −

ν

2E
(trτ)2. (19.37)

In the above, E , ν and G are used to denote the Young’s modulus, the Poisson ratio and
the shear modulus evaluated at infinitesimal strain, respectively, and E = 2G (1 + ν).
The elastic rate equation (19.26) with the above potential reduces to

De =
1

2G
τ̊ −
ν

E
(trτ̊) I . (19.38)

For the pure elastic deformation case with De = D, it was found (Simo and Pister,
1984) that the above elastic rate equation with the Zaremba-Jaumann rate below:

τ̊ = �τ + τ ·W −W · τ (19.39)

would not be self-consistent, in the sense that it would fail to be integrable to deliver
an elastic stress-strain relation. Furthermore, it was known (Simo and Pister, 1984)
that that would be case for a few objective rates then known.

The above finding means that none of the rates then known is compatible with the
definition of elasticity. Further issues are studied, e.g., in Xiao et al (2005, 2006b).
Since then, there had been a general tendency to believe (Lubliner, 1992; Khan and
Huang, 1995; Simo and Hughes, 2008) that the disclosed inconsistency issue might
be inherent in the Prandtl-Reuss formation.

19.3.3 Self-consistent Formulation with Log-rate

Toward clarifying the above situation, it has been indicated (Xiao et al, 2000a) that,
in addition to the fundamental criterion from the objectivity (frame-indifference)
requirement, a consistent formulation of Eulerian elastoplasticity should fulfill
certain further consistency criteria, including the self-consistency criterion for the
elastic rate equation and Prager’s yielding stationarity criterion for the composite
structure of Eulerian elastoplastic rate equations. In this sense, self-consistent Eulerian
elastoplastic J2−flow models have been established in a previous study (Bruhns et al,
1999) based on the newly discovered logarithmic rate (cf., e.g., Xiao et al, 1997).
These models have been shown (Xiao et al, 1999, 2000a) to be unique among all
Eulerian models based on all possible co-rotational stress rates and other known
stress rates by virtue of the consistency criteria in the foregoing.

The above development arises from the discovery of the unique kinematic feature
of the Hencky strain h in correlation with the stretching D. It is found (Xiao et al,
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1997) that, in a spinning frame with the spin Ωlog, the changing rate of the Hencky
strain h is identical to the stretching, viz.,

�h + h ·Ωlog −Ωlog · h = D . (19.40)

It is known (Xiao et al, 1997) that any given strain tensor other than the Hencky strain
h could not enjoy the above property, namely,

�S + S ·Ω −Ω · S � D (19.41)

for any given strain tensor S � h and for every possible spin (skew-symmetric tensor)
Ω.

The spin Ωlog is uniquely determined from the kinematic identity Eq. (19.40) and
hence referred to as the logarithmic spin. Its expression is given in Xiao et al (1997,
1999, 2000a) (see also Xiao et al, 1998a,b).

With the logarithmic spinΩlog, the logarithmic stress rate, denoted τ̊log, is defined
as follows (Xiao et al, 1997):

τ̊log ≡ �τ + τ ·Ωlog −Ωlog · τ . (19.42)

It is demonstrated in Xiao et al (1997, 1999, 2000a) that the inconsistency issue in
the foregoing can be eliminated simply by replacing the rate τ̊ with the logarithmic
stress rate given above. As such, the elastic rate equation Eq. (19.26), in particular,
Eq. (19.38), is exactly integrable to deliver a hyper-elastic equation based on the
Hencky strain, namely,

D = ∂
2W
∂τ2 : τ̊log ⇐⇒ h =

∂W
∂τ
. (19.43)

Note that the elastic equation in the above is just the dual formulation of Eq. (19.2)
via the Legendre transformation (Xiao and Chen, 2003) below:

W +W = τ : h . (19.44)

With Prager’s yielding stationarity criterion (Prager, 1960), it is further demonstrated
in Xiao et al (2000a) that the rate of the back stress χ in the evolution equation
(19.31) should also be given by the logarithmic rate.

Further results may be found in Bruhns et al (2004) for non-corotational rates and
in Xiao et al (2007b) both for thermal effects and for thermodynamic consistency,
and simple shear and torsion problems with the Swift effect are studied in Bruhns
et al (2001b); Xiao et al (2001); Bruhns et al (2001c).
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19.3.4 Remarks on Recently Raised Issues

In a most recent article (Jiao and Fish, 2017), the Prandtl-Reuss formulation based
on the separation of the natural deformation rate has been given prominence by
highlighting certain favorable constitutive features and, however, the applicability of
the logarithmic rate in this formulation has been questioned by presenting numerical
experiments on presumably unreasonable stress ratcheting responses for a certain
type of strain cycles starting at an induced plastic state, among other things.

In response to the above concern, constitutive implications of elastoplastic J2−flow
models based on the logarithmic rate will further be explained by examining the
applicability ranges of the Hencky elastic potential and the von Mises yield function
incorporated. Response features of this model will be studied for strain cycles starting
at a plastic state.

Toward modeling different elastoplastic features of various kinds of realistic
materials, suitable forms of the elastic potential W in the elastic rate equation (19.26)
and the yield function in the flow rule Eq. (19.27) should be presented in a sense
consistent with experimental facts. It may be essential to note that a given form of
either W or f is merely applicable for a certain range of deformation and would have
no relevance to any realistic material behavior in an extreme case far beyond such a
range, irrespective of the fact that from a formal mathematical standpoint it may be
well defined over the whole range of deformation. Below, details will be explained
for the widely used quadratic elastic potential as given in Eq. (19.37) and the von
Mises yield function as given in Eq. (19.28) and, moreover, remarks will be given for
other cases. For the sake of simplicity, the anisotropic hardening effect is neglected
with χ = O.

19.3.4.1 The Hencky Potential for Moderate Elastic Strain

A simple form of the complementary elastic potential W as given in Eq. (19.37) is
quadratic and referred to as Hencky potential. The elastic rate equation (19.26) with
the Hencky potential above is given by Eq. (19.38). Prior to the initial yielding, from
Eq. (19.43) it follows that the integration of Eq. (19.38) with De = D produces a
finite strain hyper-elastic equation of Hookean type below:

h =
1

2G
τ −
ν

E
(trτ) I . (19.45)

Equation (19.45) is known as Hencky elastic equation (Hencky, 1928). It is
known (Anand, 1979, 1986) that this equation can well represent moderate elastic
deformations with each principal stretch falling within the range [0.7,1.3]. Beyond this
range, however, the Hencky elastic equation (19.45) would be no longer applicable
(cf., Anand, 1979, 1986; Bruhns et al, 2001a) and merely of formal sense.
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19.3.4.2 Small Volumetric Strain: von Mises Yield Function

On the other side, a simple form of the yield function f is also quadratic and in the
absence of anisotropic hardening it is given by the von Mises function below:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f =
1
2

J2 −
1
3

r2,

J2 =
1
2

tr̃τ2,

r = r(κ),

(19.46)

where κ is the plastic work specified by

�κ = τ : Dp . (19.47)

It is well known that the von Mises yield function above is applicable for metals with
small volumetric strain, e.g., |J − 1| <0.001. In this case, the Kirchhoff stress τ = Jσ
agrees nearly with the Cauchy stress σ. Note that the latter is used in the original
form of von Mises function.

The von Mises function (19.46) would not be applicable for cases beyond small
volumetric strain. Here, a relevant point is that, for a volumetric ratio J not close to 1
the Kirchhoff stress τ deviates considerably from the Cauchy stress σ.

19.3.4.3 The J2−flow Model with Isotropic Hardening

The Hencky potential Eq. (19.37) and von Mises yield function Eq. (19.46) jointly
lead to the following elastoplastic J2−flow model with isotropic hardening:

D =
1

2G
τ̊log −

ν

E

(
trτ̊log

)
I +

1
2
ζ

h̆

(
f̆ + | f̆ |

)
τ̃ , (19.48)

�κ =
1
3
ζ

h̆

(
f̆ + | f̆ |

)
r2 , (19.49)

with the plastic indicator ζ given by Eq. (19.36) and the loading factor f̆ and the
normalized plastic modulus h̆ by

f̆ = 2Gτ̃ : D, (19.50)

h̆ =
4
9

r2 (3G + rr ′) . (19.51)

Here, the notation r ′ is used to denote the derivative of r with respect to κ.
It follows from the last two subsections that the J2−flow model is applicable for

elastoplastic behavior with moderate elastic strain and small volumetric strain. This



19 Hencky Strain and Logarithmic Rate for Unified Approach to Constitutive Modeling 459

model could not be used for elastoplastic behavior either with large elastic strain or
with large volumetric strain, as will be explained in the next subsection.

19.3.4.4 On Large Elastic Strain and Large Volumetric Strain

Large volumetric strain is involved in elastoplastic behavior of porous materials such
as porous metals (Gurson, 1977) and geo-materials (Nemat-Nasser, 1983), etc., while
large elastic strain incorporated in elastoplastic deformations is related to elastoplastic
behavior of rubber-like materials (cf., e.g., Xiao, 2015a) such as elastomers etc. Both
cases would go beyond the applicability range of either the Hencky potential Eq.
(19.37) or the von Mises yield function Eq. (19.46) and, accordingly, results derived
from the J2−flow model with large elastic strain and large volumetric strain would be
merely of formal sense, irrespective of the fact that, from a mathematical standpoint,
both the Hencky potential Eq. (19.37) and the von Mises yield function Eq. (19.46)
are well defined over the whole deformation range, as indicated before.

With the above facts in mind, we are going to address the main concern raised in
Jiao and Fish (2017).

19.3.4.5 On the Unloading Stress Ratcheting Obstacle Test

A numerical test for the J2−flow model as described in Subsubsect. 19.3.4.4, called
the unloading ratcheting obstacle test, was performed in Jiao and Fish (2017) by
calculating the stress response of a rectangular block to a certain type of two-
dimensional strain cycles starting at a plastic state. With two directions held fixed, the
block is stretched under tensile load along the other direction to reach a plastic state
and then brought back to its initial shape by removing the tensile load and applying
compressive load. Whenever the block reaches its initial shape, the block is subjected
to undergo two-dimensional strain cycles. Specifically, the current position vector
x = xiei of a generic particle relies on the initial coordinate variables Xi of this
particle and the time t and is given by

x1 = X1, x2 = λ(t)X2, x3 = X3 , (19.52)

where
λ(t) =

{
1 + t, 0 ≤ t ≤ 2 ,
5 − t, 2 ≤ t ≤ 4 , (19.53)

for the first stage, and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 = X1 + 0.7(sin(t − 4)π)X2 ,

x2 = (1 + 0.7(1 − cos(t − 4)π))X2 ,

x3 = X3 ,

(19.54)

for strain cycles starting at t = 4.
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The parameter values below were assumed in Jiao and Fish (2017):

E = 1.95 × 1011MPa, ν = 0.3, r0 = 9 × 1010MPa , (19.55)

where r0 is the initial yield strength4. It was found in Jiao and Fish (2017) that,
for the strain cycles at issue, the log-rate-based J2−flow model with the parameter
values assumed above could not produce the expected cyclic stress responses in the
unloading cases but, instead, produce unloading stress ratcheting responses.

However, the above unreasonable responses reported would be merely of formal
mathematical sense. In fact, by utilizing the Hencky elastic equation (19.45) and the
yield condition

1
2

J2 −
1
3

r2
0 = 0

at the initial yielding, it may be inferred that, at the first stage of the deformation path
as given in Eqs. (19.52)-(19.53), the elastic stretch at the initial yielding is given by

er0/2G = 2.0927

for the parameter values assumed and, in particular, it follows from Eq. (19.54) that,
at t = 5, the principal stretch in the e2−direction is given by 2.4.

On the other side, the volumetric ratio J is given by

J =
∂x2
∂X2
,

and, therefore,

J =

{
3.0, t = 2 ,
2.4, t = 5 ,

for the assumed parameter values.
Comparisons with the bounding values 1.3 for elastic stretch and 0.001 for

volumetric strain, as indicated in Subsubsects 19.3.4.3 and 19.3.4.4, suggest that the
above values for the elastic stretch and the volumetric ratio go drastically beyond
the applicability ranges of the Hencky elastic potential and the von Mises yield
function. That may particularly be the case for the volumetric strain. As indicated in
Subsubsect. 19.3.4.5, for large elastic strain and large volumetric strain, the Hencky
elastic potential Eq. (37) and the von Mises yield function Eq. (19.46) would be of
no physical relevance and should be replaced by other suitable forms, as has been
known in developing elastoplasticity models for elastomers and porous media, etc.

4 The parameter values for hardening effects, also listed in Jiao and Fish (2017), are not needed here.
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19.3.4.6 Remarks

From the foregoing results it follows that the obstacle test reported in Jiao and Fish
(2017) would be merely of formal mathematical sense, albeit results therein are sound
from a mathematical standpoint.

With the requirement that the elastic property should be kept intact in each process
of repeatedly loading and unloading, a modified form of the logarithmic stress rate
is proposed in Jiao and Fish (2017). As such, it is assumed that, at each current
elastoplastic strained state, there exist an unstressed intermediate state via an elastic
loading process, so that the constitutive formulation be unchanged relative to such
unstressed intermediate states. It appears that the requirement just mentioned would
merely be an idealized assumption concerning elastoplastic deformation behaviors,
which could not be consistent with realistic elastoplastic deformation behaviors in two
respects. On the one hand, it would be at variance with fatigue effects under cyclic
loadings, as will be explained later on in Sect. 19.6. In fact, after experiencing an
elastoplastic deformation process, an elastoplastic material should inevitably undergo
changes in its initial mechanical behavior with irreversible changes in internal micro-
structures such as dislocations and micro-defects, etc., as commonly known from
micro-mechanisms responsible for the elastoplastic behavior.

Furthermore, it has been demonstrated in Xiao et al (2000b, 2007a) that the
multiplicative elastoplastic formulation should be consistently incorporated as par-
ticular cases in the log-rate-based self-consistent elastoplastic formulation, in a
mathematical sense of eliminating the non-uniqueness inherent in the latter. Perhaps
more essentially, even the unstressed intermediate state via elastic unloading might be
inaccessible, as has been indicated in Xiao et al (2006a) and will be exemplified in the
next section. Indeed, even in the uniaxial tension case of a bar sample the unstressed
intermediate configuration could not be attained by performing an unloading elastic
process, as shown in Fig. 19.4, since the inverse yielding would be induced just at a
certain tensile stress.

In passing, it should be pointed out that, just like the Zaremba-Jaumann rate (cf.,
Eq. (19.39)), an objective stress rate as kinematic quantity should be well-defined
with no reference to any particular material behavior. However, the modified rate in
Jiao and Fish (2017) would be different for different kinds of elastic behaviors.

Finally, short remarks are presented on the so-called weak invariance requirement
imposed on finite deformation behaviors of solids, which was cited in Jiao and Fish
(2017) and postulated in Shutov and Ihlemann (2014). According to this newly-
postulated requirement, the elastoplastic behavior of a solid should be invariant under
every volume-preserving change superimposed on a given reference state. It is noted
that this assumption would be inconsistent with realistic material behaviors indicated
in the foregoing. Also, it may be quite puzzling just with the basic feature of any
solid behavior. In fact, change in stress would always be induced under any change
relative to an undistorted reference state, except for certain rotations representing
the material symmetry. In particular, it may readily be demonstrated that the weak
invariance requirement would imply that every elastic solid should be an elastic fluid.
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Fig. 19.4 Simulation results compared with test data in Saburi et al (1982) for the pseudo-elastic
hysteresis loop of a Ni-Ti alloy (test data in solid dots, the axial Hencky strain x in percent and the
axial stress y in MPa)

19.4 Log-rate-based Elastoplastic J2−flow Equations for Shape
Memory Alloy Pseudo-elasticity

A great number of constitutive models have been established to simulate shape
memory effects and pseudo-elastic effects of shape memory alloys (SMAs) from
various standpoints. Such models are based on either micro-structural mechanisms or
phase variables related to solid-solid phase transitions. Details may be found, e.g., in
the survey articles (Lagoudas et al, 2006; Patoor et al, 2006).

In most recent developments, it is found that deformation effects of SMAs may be
directly simulated based on elastoplastic J2−flow equations with nonlinear combined
hardening, in a sense with involving no phase variables. Early results may be found
in Xiao et al (2010a,b) for treating pseudo-elastic loops of simple shapes and in Xiao
et al (2011) for the shape memory effect.

A straightforward, explicit approach (Xiao, 2013b) is developed to treat pseudo-
elastic loops in which the stress-strain curve at the loading case may be of any given
shape. Toward this objective, the elastoplastic J2−flow equations (19.25)-(19.31)
with the Hencky potential in Eq. (19.37) are used. Let

h = p(τ) , (19.56)

where h and τ are the axial strain and the axial Kirchhoff stress, represent the uniaxial
stress-strain curve generated at loading (cf., the upper curve in Fig. 19.4). The yield
strength r, the Prager modulus c and the hysteresis modulus ξ are given below in
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explicit forms:

r =
1
2

r0

(
1 + e−βϑ/r0

)
, (19.57)

c =
2
3
(K(r) − rr ′) , (19.58)

r−1ξ = r ′ −
K (r + |Λ|) − K(r)

Λ
(19.59)

with

Λ = 1.5r−1(τ̃ − χ) : χ , (19.60)

K(τ) = p(τ)p′(τ) . (19.61)

With the three quantities given above, the elastoplastic J2−flow equations (19.25)-
(19.31) with Eq. (19.37) automatically reproduce a pseudo-elastic hysteresis loop in
each loading-unloading cycle, in which the upper stress-strain curve at loading is just
given by the curve represented by the function h = p(τ).

With the above results, each pseudo-elastic hysteresis loop can be automatically
simulated simply by choosing a suitable form of the function h = p(τ) in fitting test
data. A simple form of the function h = p(τ) is given in Xiao (2013b) with a few
parameters. Comparison of simulation results with test data are shown in Fig. 19.4.

The approach proposed in Xiao (2013b) applies merely to pseudo-elastic loops
with the upper and lower stress-strain curves parallel with each other. A new approach
is developed in Xiao (2014a) for pseudo-elastic loops of any given shape. In this case,
the three quantities r, c and ξ can also be given in explicit forms. Details may be
found in Xiao (2014a).

Most recently, further results have been obtained in treating a few issues, including
tension-compression asymmetry (Wang et al, 2015) of pseudo-elastic loops, the
plastic effect (Xiao et al, 2016) in a loading-unloading cycle, as well as the plastic-
to-pseudoelastic transition (Zhan et al, 2019a) under multiple loading-unloading
cycles.

With the results reported in the foregoing references, a perhaps unexpected yet
noticeable finding is as follows: In a loading-unloading cycle in the uniaxial tension,
both the usual plastic flow at the loading stage and the unusual plastic flow at the
subsequent unloading stage are induced, as indicated in Fig. 19.4, and such two
plastic flows jointly lead to the strain recovery effect, i.e. the pseudo-elastic effect,
and it turns out that the latter represents such an exceptional kind of anisotropic
hardening that the reverse yielding be induced not at a compressive but a tensile
stress. In contrast with this, the reverse yielding for a usual metal is invariably induced
at a compressive stress.
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19.5 Log-rate-based Elastoplastic Equations for Shape Memory
Effects

It has been demonstrated (Xiao, 2015a; Xiao et al, 2011; Li et al, 2017) that the
elastoplastic J2−flow equations (19.25)-(19.31) may be extended to cover thermal
effects and such thermo-coupled equations can exactly simulate shape memory effect
of both shape memory alloys and polymers.

The main finding is a perhaps noticeable phenomenon, namely, plastic flow may
also be induced in a process of pure heating in the absence of stress and such
thermo-induced plastic flow may be responsible for recovery of a pre-strain prior
to heating. This represents the very feature of shape memory materials at heating,
including both shape memory alloys (SMAs) and shape memory polymers (SMPs).
As will be shown below, simple, exact results may be derived for general multiaxial
cases.

19.5.1 Log-rate-based Elastoplastic Equations with Thermal
Effects

For our purpose, a complementary thermo-elastic potential is introduced as follows:

Ŵ = W(τ,T) , (19.62)

where the T is the absolute temperature.
Now, the elastic part De in the separation Eq. (19.25) is determined by a log-rate-

based thermo-elastic rate equation below (Xiao et al, 2011; Li et al, 2017):

De =
∂2W
∂τ2 : o

τ log +
∂2W
∂τ∂T

�T , (19.63)

Next, the plastic part Dp in the decomposition Eq. (19.25) is prescribed by the
following normality rule Xiao et al (2007b):

Dp =
ζ

ĥ

(
∂ f
∂τ

: o
τ log +

∂ f
∂T

�T
)
∂ f
∂τ
, (19.64)

where the yield function f is the von Mises function given in Eq. (19.28). The yield
strength r now relies on the temperature T , viz.,

r = r(T) . (19.65)

In addition, the plastic indicator ζ is specified by Xiao et al (2011):
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ζ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 for

[
f = 0,

1
ĥ

(
∂ f
∂τ

: o
τ log +

∂ f
∂T

�T
)
≥ 0

]
,

0 for f < 0 or
[

f = 0,
∂ f
∂τ

: o
τ log +

∂ f
∂T

�T ≤ 0
]
.

(19.66)

The plastic modulus ĥ is given in Xiao et al (2011) (cf., Eq. (19.82) given later on).
The back stress χ is governed by the evolution equation below:{ o

χ log = cDp ,

c = c(T) .
(19.67)

19.5.2 Plastic Flow Induced at Pure Heating

Now we take into account a heating process with the temperature T changing from T0
to T∗, in the absence of stress, i.e., τ = O. In this case, the yield strength r is assumed
to rely merely on the temperature T . Usually, the yield strength r should decrease
with increasing temperature. Namely,

dr
dT
< 0 . (19.68)

At an initial temperature T0, a pre-strain or a plastic strain is induced in a material
sample. Let r0, ϑ0, F0 and χ0 be the yield strength, the dissipated work, the
deformation gradient and the back stress at T = T0, respectively. At T = T0 following
the unloading, the value of the yield function f is negative, i.e.,

f0 =
1
2
|χ0 |

2 −
1
3
(r(T0))2 < 0 . (19.69)

In a heating process with �T > 0, we are going to known whether plastic flow will
be induced as from a certain temperature T∗

0 ≥ T0. To this end, we first study the
changing of the yield function with increasing temperature, namely,

f =
1
2
|χ0 |

2 −
1
3
(r(T))2 . (19.70)

Since the yield strength r(T) is decreasing with increasing temperature (cf., Eq.
(19.68)), we deduce that the foregoing value is increasing with increasing temperature.
Then, it is possible that f may increase from the initial negative value f0 < 0 (cf., Eq.
(19.69)) at T0 to zero at a certain temperature T∗

0 . In this case, we have

1
2
|χ0 |

2 −
1
3
(r(T∗

0 ))
2 = 0 . (19.71)
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This means that the yield condition is met. Moreover, with vanishing stress τ = O
and increasing temperature �T > 0 as well as Eq. (19.66) we deduce that the following
holds true:

1
ĥ

(
∂ f
∂τ

: o
τ log +

∂ f
∂T

�T
)
= −(cr)−1 dr

dT
�T > 0 . (19.72)

For details, refer to Xiao et al (2011). From Eqs. (19.71)-(19.72) it may be deduced
that the loading condition given by Eq. (19.66)1 may be fulfilled. As such, plastic
flow may indeed be induced in a pure heating process and emerges as from T ≥ T∗

0 .
A closed-form solution for the response of the above plastic flow at pure heating is

derivable from the constitutive equations in Subsubsect. 19.5.1. Results are as follows
(Xiao et al, 2011):

χ =

√
2
3

χ0
|χ0 |

r(T), T ≥ T∗
0 (19.73)

for the back stress, and

h =
1
2

ln
(
F0 · FT

0

)
+

√
2
3

χ0
|χ0 |

∫ T

T ∗
0

1
c

dr
dT

dT (19.74)

for the Hencky strain.

19.5.3 Recovery Effect

As indicated before, an initial plastic deformation, F0, and an initial back stress χ0
are produced in a loading-unloading process at a certain temperature T0. Then, a
process of pure heating follows as from T0 in the absence of stress. Thermo-induced
plastic flow emerges as from a temperature T∗

0 > T0 (cf., Eq. (19.71)). The last term
in Eq. (19.74) gives the contribution from the plastic flow for T ≥ T∗

0 . It turns out
that the minimum of the magnitude of this thermo-induced plastic strain h is always
smaller than the initial value |h0 | at T0. This implies that the thermo-induced plastic
flow in a process of pure heating always leads to recovery of a pre-strain. As a
result, the thermal recovery at pure heating is derived as a direct, natural consequence
of the thermo-coupled elastoplastic J2−flow equations established in Subsubsect.
19.5.1. Furthermore, it may be inferred that the complete recovery corresponds to the
following case:

χ0 = c0h0 (19.75)

Details may be found in Xiao et al (2011).
As an example, consider a Prager modulus of the form below:

c =
1
2
(c0 + c∗0) −

1
2
(c0 − c∗0) tanh

[
3

T − T0
T∗

0 − T0

]
.

Then, Eq. (19.74) results in
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h =

(
c0
c∗0

r
r∗0

− c0
c∗0
+ 1

)
h0 ,

r∗0 = r |T=T ∗
0
=
√

1.5c0 |h0 | .
(19.76)

his applies to general multi-axial cases. For the uniaxial case, it may be evident that,
given the uniaxial temperature-strain relation of any given form, the temperature-
dependent yield strength r is accordingly determined. This implies that any given
uniaxial data for the shape memory effect may be fitted in an accurate, explicit sense.

An example for the yield strength r with the shape memory effect at heating is
given as follows:

r = r∗0

[
1 −

c∗0
c0

tanh 3
T − T∗

0
Tm − T∗

0

]
, (19.77)

where the temperature T∗
0 > T0 at the initial yielding (cf. Eq. (19.62)) and the

temperature Tm > T∗
0 may be of any given values. Comparisons with test data are

shown in Fig. 19.5. At T = 348K, the strain drops from the pre-strain h0 = 0.18 to
0.008 and the strain recovery is actually completed.

19.5.4 Further Results

Two-way memory effects for SMAs are studied in Xiao et al (2011). In a broad sense
(Xiao, 2015a), the elastoplastic J2−flow equations in Subsubsect. 19.5.1 are extended
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Fig. 19.5 Comparisons with test data in Tobushi et al (2001) for the strain recovery effect of a SMP
sample
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to cover both rate effects and thermal effects, and new rate-dependent elastoplastic
equations with thermal effects are established with a smooth, natural transition to
the rate-independent case. Such equations apply to both hard and soft solids, such
as metals and polymers, etc. In particular, it is shown (Xiao et al, 2011) that the
Mullins effect may be simulated by finding out a complementary elastic potential
W = W(τ, ϑ) changing with both the stress τ and the dissipated work ϑ. Explicit
expressions are presented for the yield strength r and such a potential, in a sense of
automatically reproducing the unloading curves related to the Mullins effect. For
details, refer to Xiao et al (2011); Li et al (2017).

19.6 Innovative Elastoplastic Equations Automatically
Incorporating Failure Effects

The plastic indicator ζ either in Eq. (19.36) or in Eq. (19.66) demarcates the loading
and the unloading case centered on the notion of yielding and represents the very
feature of plastic behavior in an idealized sense. In fact, it is assumed that no plastic
deformation would be induced at unloading, namely, ζ = 0 at unloading, whereas
plastic deformation would be induced as the yielding is reached and maintained,
namely, ζ = 1 at loading. There arise troublesome issues with such a plastic indicator;
refer to Xiao et al (2014); Xiao (2014b) for details. One of them, viz., the never-
changing response under every cyclic loading process, as schematically shown in Fig.
19.6, would be plainly at variance with observed fatigue effects of metals (cf., e.g.
Suresh, 1998).

On the contrary to the usually assumed loading-unloading behaviors centered on
the notion of yielding, it is known (cf., e.g. Suresh, 1998) that fatigue failure effects
for metals etc. will inevitably be induced at certain stages in every cyclic loading
process with the stress amplitude either above or under the initial yield stress and
even with a very low stress amplitude (cf., e.g. Bathias, 1999). As such, ratcheting
effects under cyclic loadings are usually observed and the never-changing responses
shown in Fig. 19.6 would simply unrealistic. In general, usual elastoplastic models

Fig. 19.6 Never-changing
responses predicted from usual
elastoplasticity models under
the uniaxial stress cycling from
0 to the amplitude S and then
back to 0 with S = τ1 < r0
or S = τ2 > r0 (here r0 is the
initial yield stress)

1

r0

2

cycling

cycling

h
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based on the notion of yielding would fail to simulate any fatigue failure effects under
cyclic loadings. Details will be explained slightly later.

Very recently, innovative elastoplastic constitutive equations have been established
with a smooth transition from the elastic to the plastic state. It has been demonstrated
that such new equations can automatically incorporate failure effects as inherent
constitutive features. Developments in this respect will be surveyed in this section.

19.6.1 New Elastoplastic Constitutive Equations

The separation Eq. (19.25) still serves as the starting point and elastic rate equation
is still given as in Eq. (26). As mentioned before, the notion of yielding is central to
usual formulations of elastoplasticity and leads to non-smooth transitions from the
elastic to the plastic state. However, such non-smooth transitions would be foreign to
realistic materials, as reported, e.g., in Bell and Truesdell (1984). The occurrence of
a non-smooth transition from the elastic to the plastic state means that not only the
constitutive equations have to be presented by two distinct forms applicable separately
to two cases, but also these two forms manifest themselves in a non-smooth manner
with strong discontinuities in tangent moduli. As such, a consequence is that, without
assuming additional variables and failure criteria, no fatigue failure effects under
cyclic loadings, such as high and low cycle fatigue failure effects, could be simulated
by any usual elastoplasticity model centered on the notion of yielding.

Unlike the usual flow rule Eq. (19.27) with the discontinuous plastic indicator ζ
as given in Eq. (19.36), a new plastic indicator ζ smoothly taking values between 0
and 1 may be introduced. The value of this smooth indicator ζ grows up from 0 to 1
whenever the stress point is going from the center onto the yield surface f = 0 in the
classical sense, whereas the value of this ζ becomes vanishingly small whenever the
stress point stays far away from the surface f = 0. With such a new, smooth plastic
indicator, possible issues involved in a usual flow rule may be rendered irrelevant and,
in particular, both high and low cycle fatigue failure may be incorporated into inherent
constitutive features. For details, reference may be made to the general framework in
Xiao (2014b). Here, a new normality flow rule in an innovative sense with a smooth
plastic indicator ζ is given by (cf., Xiao et al, 2014; Xiao, 2014b):

Dp =
1
2
ζ

h̆

(
f̆ + | f̆ |

) ∂ f
∂τ
, (19.78)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ =
g

η
e−m(1−g/η) ,

g =
1
2

tr (τ̃ − χ)2 ,

η =
1
3

r2 ,

(19.79)
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where both f̆ and h̆ are given in Eqs. (19.32)-(19.33) and m > 0 is a dimensionless
parameter.

The r in the von Mises function f in Eq. (19.28) and Eq. (19.79) is rephrased as
the stress limit. The isotropic hardening-softening effects are characterized by the
stress limit r changing with the dissipated work ϑ (cf., Eq. (19.30)), as shown in
Eq. (19.29), while the anisotropic hardening-softening effects are prescribed by Eq.
(19.31).

19.6.2 A Criterion for Critical Failure States

With the new flow rule in Eqs. (19.78)-(19.79), several issues involved in the usual
flow rule (cf., Eq. (19.27) with ζ = 0 or 1) based on the notion of yielding may be
rendered irrelevant, as explained in Xiao et al (2014); Xiao (2014b). In particular, it
has been demonstrated (Xiao, 2014b) that failure effects under cyclic and non-cyclic
loadings may be incorporated as inherent constitutive features of the new model,
namely, failure effects under cyclic and non-cyclic conditions may be automatically
derived as direct consequences of the simple asymptotic properties below (Xiao,
2014b): ⎧⎪⎪⎪⎨⎪⎪⎪⎩

limϑ→∞ r = 0 ,
limϑ→∞ c = 0 ,
limϑ→∞ ξ > 0 .

(19.80)

It is noted that the stress limit r in Eq. (19.79) and the two moduli c and ω in
the evolution equation (19.31) is just the constitutive quantities representing the
mechanical strength withstanding plastic flow. Hence, the above asymptotic properties
just mean a natural, basic fact, namely, failure effects would eventually be induced
with asymptotic loss of the material strength in each process of accumulation of the
dissipated work. Since the dissipated work ϑ is constantly growing with development
of any plastic flow, it follows that failure effects would inevitably be induced at a
certain stage in each cyclic or non-cyclic loading process.

In a newest development (Wang and Xiao, 2017a), it has been shown that there
exist critical states heralding eventual failure. A unified criterion for prescribing such
states is derivable from the new elastoplastic equations and of the following form
(Wang and Xiao, 2017a):

4G(1 − ρ)g + ĥ = 0 , (19.81)

where

ĥ = −
∂ f
∂ϑ

(τ̃ − χ) :
∂ f
∂τ

−
∂ f
∂χ

: H :
∂ f
∂τ
. (19.82)
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Here, perhaps an essential point is as follows: the new flow rule Eq. (19.78) with a
smooth plastic indicator ζ as given by Eq. (19.79) ensures continuing accumulation
of the dissipated work ϑ in every cyclic process. From this it follows that the strength
property becomes degraded in each cyclic process, since each ϑ-dependent strength
quantity decreases as the ϑ is increasing due to its cumulative effect. Thus, with the
strength quantities of the asymptotic properties specified by Eq. (19.80), the new
model ensures (cf., Wang and Xiao, 2017a) that the criterion Eq. (19.81) will be met
at a certain stage of each cyclic process, namely, the fatigue failure will be inevitably
induced as the dissipated work is constantly growing in every cyclic process, as will
be exemplified from the full-range responses up to failure shown in Fig. 19.7 below.

19.6.3 Full-strain-range Response up to Failure

As load cycling is constantly progressing, a material would eventually fail with loss
of its load-bearing capacity, as schematically shown in Fig. 19.7.

As sharply contrasted with the never-changing response shown in Fig. 19.6
under cyclic loadings, now the full-strain-range response predicted from the new
elastoplastic equations indeed displays the ratcheting effect prior to the critical failure
state. After the latter is exceeded, eventual failure will inevitably be induced.

19.6.4 Failure Effects Under Various Stress Amplitudes

In a series of most recent developments (Wang and Xiao, 2017a; Wang et al, 2017b;
Wang and Xiao, 2017b; Wang et al, 2017a; Zhan et al, 2018; Wang et al, 2018;
Zhan et al, 2019b), new elastoplasticity models at finite deformations are proposed
for the purpose of simulating the fatigue failure effects for metals etc. With such

Fig. 19.7 Full-strain-range
response up to failure predicted
from the new elastoplastic
equations under uniaxial stress
cycling from 0 to 200MPa
and then back to 0, in which a
critical failure state is reached
at the cycle number of 3089
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new models, both the yield condition and the loading-unloading conditions in usual
sense need not be involved but may be automatically incorporated into inherent
constitutive features and, as such, both low and high cycle fatigue failure effects
may be straightforwardly represented by simple asymptotic conditions as given in
Eq. (19.80), without involving any additional damage-like variables and any failure
criteria of ad hoc nature. Ratcheting effects up to eventual failure may be automatically,
reasonably simulated based on these new models. To illustrate these, consider the
simple case in the absence of the back stress, namely, χ = O. In this case, only the
stress limit r is involved and the dissipated work ϑ is reduced to the plastic work κ
given in Eq. (19.47). A simple example of the stress limit r meeting the asymptotic
property Eq. (19.80)1 is as follows:

r =
1
2

r0

[
1 − tanh β

(
κ

κc
− 1

)]
, (19.83)

where β > 0 is a dimensionless parameter and κc is the critical value of the plastic
work. Ratcheting responses up to failure are predicted from the new model under
cycling uniaxial stresses. A numerical example is depicted in Fig. 19.7. Moreover,
the S − N curve of the stress amplitude versus the cycle number to failure is also
obtainable and may be compared with test data. Numerical examples are shown in
Fig. 19.8.

Fig. 19.8 Comparison with the data (dots) in Koster et al (2016) under non-symmetric stress
cycling: stress amplitude versus cycle number to failure (R is the ratio of the minimum to the
maximum stress in each cycle)
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With the new J2−flow model in the absence of the back stress effect, it has been
demonstrated that simulation results for various rate-independent cases (Wang and
Xiao, 2017a; Wang et al, 2017b; Wang and Xiao, 2017b) and rate-dependent cases
(Wang et al, 2017a) of uniaxial stress cycling and uniaxial strain cycling (Wang
et al, 2017a) as well as thermo-mechanical cycling (Zhan et al, 2018) compare well
with test data for fatigue failure effects. Moreover, comprehensive simulation results
(Wang et al, 2018; Zhan et al, 2019b) for monotonic and cyclic failure effects of
twisted cylindrical tubes with either free-ends or fixed-ends are derived from new
models with combined hardening and good agreement with test data are achieved.

19.7 Deformable Micro-continua for Quantum Entities at
Atomic Scale

Now we come to the last topic, namely, the Hencky strain leads to the newest but
perhaps unexpected discovery of the quantum-continua at atomic scale, referred
to as the quantum-continua. The latter are deformable micro-continua that display
all known quantum effects exactly as do quantum entities at atomic scale, such as
electrons etc. The main results will be summarized below. For details, refer to the
latest references (Xiao, 2017b,a, 2019).

19.7.1 The Quantum-continua

At each instant a quantum-continuum occupies the entire space but assemblies an
overwhelming part of its whole mass into a tiny region at atomic scale. How it can
behave this way depends on its own deformability nature prescribed slightly later as
well as external actions. Let x denote the current position vector of a generic point
in such a continuum at instant t. It is moving and deforming in a force field and a
torque field, designated respectively by b(x, t) and β(x, t) with values measured per
unit current volume. At each instant t it displays itself with a spatial configuration
prescribed and hence represented by four basic field variables including the velocity
field u(x, t), the mass density field θ(x, t) and the all-around stress field q(x, t), as
well as the field for the intrinsic angular momentum per unit current volume, called
the intrinsic angular momentum density field and denoted α(x, t).

During a process of deformation, a quantum-continuum presents itself with a
continuous family of time-varying configurations. As indicated in the foregoing, each
current configuration at time t is prescribed by the four field variables θ(x, t), u(x, t),
q(x, t) and α(x, t). Of them, the mass density field θ(x, t), the velocity field u(x, t)
and the all-around stress field q(x, t) are well known, whereas the intrinsic angular
momentum density field α(x, t) is in response to the applied torque field β(x, t)
and not involved in usual deformable continua. The field α(x, t) is inherent in the
dynamic effects of quantum entities at atomic scale. In fact, each infinitesimal mass
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element with an infinitesimal volume dv is constantly spinning around its mass center
in response to the applied torque βdv and, then, an intrinsic angular momentum,
i.e., αdv, is induced, in addition to the usual orbital angular momentum. As such,
the field α(x, t) naturally gives rise to the total intrinsic angular momentum of a
quantum-continuum.

Let m be the total mass, i.e., m =
∫
θdv. Here and henceforth,

∫
(· · · )dv is used

to designate the volume integration over the whole space. In the sequel, the usual
mass density field θ will no longer be treated but, instead, will be replaced by the
normalized density field ρ = θ/m with⎧⎪⎪⎨⎪⎪⎩

lim |x |→∞ ρ = 0 ,∫
ρdv = 1 ,

(19.84)

for the purpose of conforming to certain standard forms.

19.7.2 Continuity Equation and Balance Equations

In the non-relativistic case, the mass conservation and balances of the linear and
angular momenta produce (Xiao, 2017b):

∂ρ

∂t
+ ∇ · (ρu) = 0 , (19.85)

∇q − ρ∇V = mρ
[
∂u

∂t
+ u · ∇u

]
, (19.86)

d
dt

(
α

ρ

)
= gs

α

ρ
× B . (19.87)

Here, the notation ∇ is used to denote the differential vector, i.e.

∇ =
∂

∂xi
ei ,

and the force field b and the torque field β are given by

b = −ρ∇V ,

β = gsα × B ,

where V is the potential for a conservative force field and B is the external magnetic
field and gs is a gyro-magnetic ratio.
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19.7.3 Constitutive Equation for Deformability Nature

The deformability nature of the quantum-continua is prescribed or defined by the
constitutive equation below (Xiao, 2017b,a, 2019):

q
ρ
=

�2

4m
∇2 (ln ρ) (19.88)

where the � is Planck’s constant, i.e., � = 1.05457 × 10−34Js, and m is the mass of
the quantum-continuum at issue.

In Eq. (19.88), the ln ρ is referred to as the Hencky density and directly related
to the logarithmic volumetric strain ln J. The strain-energy density per unit mass is
given by H/m with

H =
�2

8m
|∇(ln ρ)|2 =

�2

8m

[(
∂ ln ρ
∂x1

)2
+

(
∂ ln ρ
∂x2

)2
+

(
∂ ln ρ
∂x3

)2
]
. (19.89)

This strain energy density is directly derivable from a reduced form of the Hencky
potential given in Eq. (19.37) by considering the localized property of the quantum-
continua at issue. Details may be found in Xiao (2019).

19.7.4 Inherent Response Features of the Quantum-continua

The responses of a quantum-continuum in external fields are governed by the coupled
system formed by the nonlinear field equations (19.85)-(19.88) governing the four
field variables ρ, u, q and α. It is perhaps surprising that this coupled system is
exactly reducible to a single linear dynamic field equation governing a complex
field variable, denoted Ψ = Ψ(x, t), from which exact closed-form solutions for the
foregoing four field variables are obtainable in terms of the complex field variable
Ψ = Ψ(x, t). Namely, Eqs. (19.84)-(19.88) are exactly reducible to

i �
∂Ψ

∂t
= −

�2

2m
∇2Ψ + VΨ , (19.90)

lim
|x |→∞

Ψ = 0 , (19.91)

∫
ΨΨdv = 1 , (19.92)

with the exact closed-form solutions below:
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ρ = ΨΨ ,

u =
�
m

∇

[
arctan

(
i
Ψ − Ψ
Ψ + Ψ

)]
,

q =
�2

4m

(
ΨΨ

)
∇2

[
ln

(
ΨΨ

)]
,

α =
(
ΨΨ

)
exp

⎡⎢⎢⎢⎢⎣EEE · � !
t∫

0

gsBdt"#$
⎤⎥⎥⎥⎥⎦ · S0 .

(19.93)

In the above, i is used to denote the imaginary unit, i.e., i =
√
−1, andΨ is the complex

conjugate of Ψ. In the last expression above, the EEE is the 3rd-order Eddington tensor
and the S0 is the total initial intrinsic angular momentum of the quantum-continuum
at issue.

It turns out that Eq. (19.90) is just the Schrödinger equation in quantum mechanics
and, moreover, that the complex field variable Ψ is just the wave function.

It appears that the above findings disclose for the first time the physical meanings
and the dynamic features of both the Schrödinger equation and the wave function. It
is noted that it has long been mysterious concerning what the Schrödinger equation
and the wave function really mean. Now it is known that both emerge out of the
inherent response features of the quantum-continua, as summarized in Fig. 19.9.

With the discovery of the quantum-continua, various puzzling patterns of prob-
abilistic nature for quantum entities may be rendered irrelevant and, accordingly,
certain long-standing issues may be clarified. Details may be found in Xiao (2017b,a,
2019).

19.7.5 New Patterns for Hydrogen Atom as Quantum-continuum

As an illustrative example, we are going to find out how the quantum-continuum
representing an electron responds to the centripetal force field generated by the charge
e of the proton in a hydrogen atom, viz., the Coulomb potential (in SI units) below is
taken into consideration:

V = −
e2

4πε0
1
r
. (19.94)

Here, r = |x |. In the time-independent force field prescribed by the Coulomb
potential above, the stationary density distribution of the electron as a deformable
micro-continuum, i.e. ρ = ρ(x), is determined by

�2

4m
∇

(
ρ∇2(ln ρ)

)
+

e2

4πε0
x

r3 ρ = 0 (19.95)

with the boundary condition lim |x |→∞ ρ = 0 at infinity.
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Fig. 19.9 The Schrödinger equation (SE) and the complex wave function Ψ emerge out of the
inherent nonlinear response features of the deformable micro-continua governed by Eqs.
(19.84)-(19.88): The clockwise arrowed direction shows that the SE is just the exact linearization
(EL) of the coupled nonlinear governing equations (19.84)-(19.88) for the quantum-continua via Ψ,
while the anti-clockwise arrowed direction indicates that as the EL of Eqs. (19.84)-(19.88) the SE
generates exact closed-form solutions of Eqs. (19.84)-(19.88) via Ψ

It may come as a surprise that, for the Coulomb potential as given in Eq. (19.94),
infinitely many solutions for the density distribution ρ(x) may be derived from the
highly nonlinear differential equation (19.95). These solutions give rise to infinitely
many stationary configurations for the hydrogen atom. Then, the hydrogen atom
presents itself with infinitely many stationary configurations of discretized nature in
response to the Coulomb force field generated by the charge of its heavy nucleus. Each
such configuration gives rise to different spatial distributions of the mass density, the
internal stress and the intrinsic angular momentum density, as given in Eq. (19.93).
Examples for these stationary configurations are depicted in Fig. 19.10 for six cases
of the three quantum numbers (n, l, k). Sharply localized nature at a scale of the Bohr
radius a is evidenced from these examples.

Both the allowed energies and the intrinsic angular momentum of the hydrogen
atom emerge as natural consequences of the above new pattern. Now, long-standing
issues with the usual particle-based pattern of probabilistic nature may be rendered
irrelevant. Below is the new insight into the most outstanding issue, namely, the
uncertainty principle. Details for this and other issues may be found in Xiao (2017b,a,
2019).
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Fig. 19.10 Localized configurations of the hydrogen atom with six combinations of the quantum
numbers (n, k , l): the mass density growing from dark to bright and size of each bright region is
around 2 ∼ 10a with the Bohr radius a = 5.3 × 10−11m

19.7.6 New Insight into the Uncertainty Principle

With the response patterns of the quantum-continua, new insights may be gained
into such quantities as intended for quantifying uncertainties, namely, the standard
deviations of observables. According to the current quantum theory, these quantities
have to be evaluated as expectation values from the statistical standpoint based
simply on formal mathematical procedures via certain ad hoc Hermitian operators
and, therefore, they might possibly deviate from the intended meanings assigned to
them. Here, as illustrative examples the standard deviations of the position and the
momentum, are taken into consideration.

First, the standard deviation of the a-th coordinate of the position, i.e. σxa , is
specified by

σ2
xa
=

∫
Ψ(xa − [x̂a])2Ψdv =

∫
ρ(xa − [x̂a])2dv , (19.96)

where
[x̂a] =

∫
ΨxaΨdv =

∫
ρxadv
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is the expectation value of the a-th coordinate of the position, which is just the a-th
coordinate of the mass center of the quantum-continuum.

Next, via the Hermitian operator p̂a = −i� ∂
∂xa

for the a-th component of the linear
momentum, the quantity below may be evaluated:

σ2
pa
=

∫
Ψ(p̂a − [p̂a])2Ψdv , (19.97)

where [p̂a] is the expectation value of the a-th component of the linear momentum
given by

[p̂a] =
∫
Ψp̂aΨdv = −i�

∫
Ψ
∂Ψ

∂xa
dv , (19.98)

which is just the a-th component of the total momentum of the quantum-continuum,
namely (cf., Xiao, 2017b, 2019),

[p̂a] =
∫

mρuadv .

Now Eq. (19.97) may be converted to (cf., Xiao, 2019)

σ2
pa
=

∫
ρ(mua − [p̂a])2dv +

�2

4

∫
ρ

(
∂ ln ρ
∂xa

)2
dv . (19.99)

Note in the above that the first term on the right-hand side is in a direct sense the
standard deviation of the a-th momentum component.

According to the current quantum theory, the quantity σpa given by Eq. (19.97)
is intended for the standard deviation of the a-th momentum component. However,
this quantity itself is of ad hoc nature and could not justify the physical relevance
intended for the standard deviation of the a-th momentum component. In fact, from
Eq. (19.99) it turns out that not only the squared standard deviation of the a-th
momentum component, but also an additional term, i.e., 2m times the a-th component
of the strain energy (cf., Eq. (19.89)), are included in Eq. (19.97). This suggests that
the quantity σpa in Eq. (19.97) would not represent what it is intended for, i.e., the
uncertainty for the a-th momentum component.

Now the commonly-known inequality σxaσpa ≥ �
2 can still be derived, but the

two conjugate quantities σxa and σpa need be reinterpreted based on the response
patterns of the quantum-continua, as described below:

(i) As σpa tends to vanish, a quantum-continuum tends to the spreading extreme
with a uniform density field over the whole space and, accordingly, the position
deviation σxa tends to infinity; and

(ii)As σxa tends to vanish, a quantum-continuum tends to the localization extreme
with a concentrated mass and, accordingly, the momentum deviation tends to
vanish, viz., ∫

ρ(mua − [p̂a])2dv → 0 ,
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and, in particular, the total strain energy tends to infinity.

Since the energy could not be unbounded, the inequality Eq. (19.72) suggests that
the localization extreme would be inaccessible. Namely, the inequality Eq. (19.72)
would just set a limit for the particle pattern.

19.7.7 Remarks

The newest discovery summarized above suggests that each quantum entity such as
electron would not be a zero-dimensional particle but turns out to be a deformable
micro-continuum at atomic scale, as exemplified in Fig. 19.10 for a hydrogen
atom. Such micro-continua are the quantum-continua with the deformability feature
prescribed by the constitutive equation (19.88). It is found that the Hencky density
ln ρ plays a central role in characterizing both the deformability feature and the
strain energy of the quantum-continua, as evidenced in Eqs. (19.88)-(19.89). Now
the origins and the meanings of the Schrödinger equation (19.90) and the complex
wave function Ψ are emergent exactly from the inherent nonlinear dynamic features
of the quantum-continua, as shown in Fig. 19.9. With new response patters of the
quantum-continua, long-standing issues concerning quantum entities would become
irrelevant. Details may be found in Xiao (2017b,a, 2019).

19.8 Concluding Remarks

In the previous sections, new approaches and main results have been surveyed in
modeling finite elastic and inelastic deformation behaviors of continua based on the
Hencky strain and the newly-discovered logarithmic rate. The Hencky strain as a
coherent thread has played an essential, unified role in these recent developments. With
the Hencky strain and the logarithmic rate, seemingly unrelated finite deformation
effects may be simulated in a unified constitutive framework, including rubber-like
elasticity, metal elastoplasticity, pseudo-elasticity, shape memory effects, cyclic
and non-cyclic failure effects, as well as quantum effects at atomic scale. Such
developments may be unexpected in the respects of pseudo-elastic and shape memory
effects and perhaps quite surprising in the respect of quantum effects.

Impressed probably by the above developments, one likes to know more about the
creator of the Hencky strain, that is Heinrich Hencky. Two excellent articles Tanner
and Tanner (2003); Bruhns (2014b) present accounts of his life and achievements.
Also, certain profound results in geometry of the Hencky strain have been disclosed
and expounded very recently in the reference Neff et al (2016), in which a short
biography of Heinrich Hencky is also included in an appendix.
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Chapter 20
A Multi-disciplinary Approach for Mechanical
Metamaterial Synthesis: A Hierarchical
Modular Multiscale Cellular Structure
Paradigm
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Barchiesi, Francesco dell’Isola, and François Hild

Abstract Recent advanced manufacturing techniques such as 3D printing have
prompted the need for designing new multiscale architectured materials for various
industrial applications. These multiscale architectures are designed to obtain the
desired macroscale behavior by activating interactions between different length
scales and coupling different physical mechanisms. Although promising results have
been recently obtained, the design of such systems still represents a challenge in
terms of mathematical modeling, experimentation, and manufacturing. In this paper,
some research perspectives are discussed aiming to determine the most efficient
methodology needed to design novel metamaterials. A multidisciplinary approach
based on Digital Image Correlation (DIC) techniques may be very effective. The
main feature of the described DIC-based approach consists of the integration of
different methodologies to create a synergistic relationship among the different steps
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from design to fabrication and validation. Experimental techniques and modeling
approaches are envisioned to be combined in feedback loops whose objective is to
determine the required multiscale architectures of newly designed metamaterials.
Moreover, it is necessary to develop appropriate mathematical models to estimate the
behavior of such metamaterials. Within this new design approach, the manufacturing
process can be effectively guided by a precise theoretical and experimental framework.
In order to show the applicability of the proposed approach, some preliminary results
are provided for a particular type of mechanical metamaterial, namely, pantographic
metamaterials. Lastly, the most relevant challenges are highlighted among those that
must be addressed for future applications.

Keywords: Synthesis of metamaterials · Generalized models · Analog circuits ·
Pantographic structures · Digital image correlation · Homogenization

20.1 Introduction

It is possible to find natural materials that exhibit very exotic and unusual behavior
due to their microstructures organized with complex hierarchies (Lakes, 1993). These
hierarchical architectures consist of a combination of numerous structural patterns
at different length scales, and each pattern is made of architectured microstructures
characterized by lower length scales. Here, the overall response generated at the
macroscale is related not only to each of the lower-scale microstructures but also
to their interactions. The most common example of such natural materials is bone
tissues (Maggi et al, 2017; Giorgio et al, 2017; Chia and Wu, 2015; Cima et al,
1994). In Fig. 20.1, their structural hierarchy is illustrated from macro- to nano-scales.
The overall response of bone is obtained by the interactions of various features at
different length scales. As can be seen from Fig. 20.1, the microstructure of bone also
gives very inspirational ideas to design new metamaterials, namely, different parts
of a material may have various microstructural patterns depending on the desired
macroscale response. In this particular example, osseous tissues (i.e. cancellous
and cortical bones) have different structural patterns at the microscale, lamellae are
arranged in different manners to form trabeculae and ostea. Consequently, different
responses are obtained at particular locations.

Plant stems are another example of natural multiscale materials. They need to
resist both axial load from their own mass and bending moment from the wind. Fig.
20.2 shows an example of an internal microstructure enabling for such a strength.
A scanning electron micrograph of a hawthorn stem reveals its foam-like interior
structure. Gibson et al (1995) showed that this foam-like architecture improves the
buckling resistance of the plant.

It can be noted that multiscale natural materials have been inherently optimized by
natural selection through a very long process. For instance, bone tissues living now
on Earth are the result of a very long (many million year) selection and adaptation
process. During the so-called Cambrian explosion, the diversification of living species
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Fig. 20.1 Structural elements of bone at different length scales

Fig. 20.2 Microstructure (right and center) of hawthorn stem (left)

experienced an exponential growth, and in the most recent taxonomy list, it is possible
to find at least 69,276 different species. Therefore, many adaptations occurred in
the evolution of bone tissues, and different structures at various length scales are
observed nowadays. If enough time were given to natural selection, one would still
discover new multiscale materials!

With the newest manufacturing techniques, in particular with 3D printing, many
researchers are trying to design novel materials whose exotic macroscopic properties
are obtained with suitably designed multiscale microstructures (Liu et al, 2013;
Geers et al, 2003). Materials that do not exist in nature, and whose design is
based on multiscale modeling to exhibit desired performances, are sometimes called
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metamaterials (Barchiesi et al, 2019; Gatt et al, 2015). The concept of metamaterials
is becoming more and more popular, and their applications are garnering considerable
academic and industrial interest (dell’Isola et al, 2019a,b). Therefore, the multiscale
structures observed in nature may inspire the design of such materials for technological
applications (Wegst et al, 2015). For instance, based on the multiscale structure of
bones (Fig. 20.1), artificial bio-resorbable materials have been invented and produced
for bone grafting processes (Fig. 20.3). Scaffolds used to favor bone reconstruction
and remodeling have more chances to be effective if their internal microstructures
have suitable bone-mimicking features. Further, trabecular metals are being used
in bone reconstruction (Fig. 20.3). Moreover, the structure of bone has been the
source of inspiration for light-weight structure applications such as aluminum foams
(Fig. 20.3, Andrews et al, 1999).

In addition to biomechanical applications, a lot of attempts have been made
to design multiscale architectured materials (e.g. metamaterials) inducing some
specific types of overall behavior that is not observed in existing natural materials.
In such designs, application-tailored responses are obtained by coupling different
physical phenomena, and the interactions between different length scales. In general,
metamaterials are categorized based on the main interaction phenomena occurring
in their microstructures. Although electromagnetic interactions were first used to
design optical metamaterials (Veselago, 1968), other important physical phenomena
are currently exploited in their design. For example, metamaterials that are designed
to control the propagation of acoustic (elastic) waves are referred to as acoustic
metamaterials (di Cosmo et al, 2018). In such materials, an elementary cell is
periodically repeated in the microstructure. In order to control wave propagation, the

Fig. 20.3 Some multiscale materials. Example of bone tissue (a) and a bio-resorbable artificial graft
(b) Giorgio et al (2016b). In (c) and (d) the multi-scale structure of bone is evident: from trabeculae
to osteons. In (e) trabecular metal Andreykiv et al (2005) and in (f) aluminum foam are shown
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elementary cell is designed with a smaller length scale compared to that involved
in the targeted application. In the field of optical and acoustic metamaterials, many
novel products have been designed. Typical examples are materials with negative
index of refraction (Veselago, 1968, 1967), and those behaving like a low-density
plasma with an effective dielectric constant that becomes negative below the effective
plasma frequency (Pendry et al, 1996). Other important trends in metamaterial
design are images focusing below the diffraction limit (Deng et al, 2009; Zhang et al,
2009; Ambati et al, 2007; Ao and Chan, 2008; Jia et al, 2010; Liu et al, 2007) (e.g.
hyperlenses are able to transform evanescent waves into propagating waves, which
can be detected at large distance, and superlenses amplify these evanescent waves)
and metafluids (Norris, 2009).

This paper focuses on mechanical metamaterials, namely multiscale materials
whose behavior is only determined in terms of mechanical interactions among different
structures at different scales. Mechanical metamaterials have been investigated in
a large number of different studies (e.g. see Kadic et al, 2012; Lee et al, 2012;
dell’Isola et al, 2015c; Vangelatos et al, 2018, 2019; Barchiesi et al, 2018; Misra
et al, 2018; Laudato et al, 2018; Del Vescovo and Giorgio, 2014a; Carcaterra et al,
2015; Turco et al, 2017a; Barchiesi and Placidi, 2017; Placidi et al, 2017b)). Auxetic
structures (Lakes, 1987) (i.e. materials which have negative Poisson’s ratio) and
locally resonant microstructured materials (Liu et al, 2000) with negative refraction
index are typical examples. There are many interesting mathematical problems to
be solved in the design of such metamaterials. In reality, the long natural selection
process that did manage to optimize the functionality of many natural materials has
to be sped up because some applications cannot wait so long.

A main change in research paradigm is needed for the design of new metamaterials.
Usually, in mathematical physics, a model is built by conjecturing some postulates
assumed to be satisfied to model some specific aspects of the physical reality. For
instance, if one wants to model a deformable body in the elastic regime, a time-
dependent field of placement and an action functional (e.g. see Germain, 1973; Auffray
et al, 2014)) in the set of admissible motions is introduced to describe its evolving
shape. Once the postulated action functional is conjectured, the motions predicted
by means of the Principle of Least Action can be compared with experimental
evidence. If the material parameters appearing in the action functional are usually
determined with a small set of measurements, and allow for the description of many
more experiments, then one can say that the experimental evidence supports the
validity of conjectured models. In this way, the mathematical model for a given class
of phenomena is tailored to predict the overall performance of the given material
under different design conditions.

Conversely, in the design of metamaterials, an approach that reverses the above-
described conceptual order is followed (dell’Isola et al, 2016a). A mathematical
model that a priori describes the desired overall behavior is first proposed. Then, the
corresponding synthesis problem is solved, namely, finding a (possibly multiscale
and/or multiphysics) micro-architecture whose overall behavior is modeled with the
selected mathematical model. The synthesized multiscale structure is then fabricated,
and its behavior experimentally tested. The final steps of the described “reversed
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order” process have been made possible with the recent developments in 3D printing
technologies. A specific example of such novel metamaterials is given by the so-called
pantographic sheets. In Alibert et al (2003); Seppecher et al (2011), a synthesis problem
was solved to model this type of structures. In these studies, to find microstructures
for one-dimensional and two-dimensional continua, the governing equations for the
described microstructures were obtained by a Lagrangian whose potential energy
depends on the second gradient of displacement fields at the macroscale in the case
of plane motions.

The current increasing interest in metamaterials is mainly due to the availability
of new advanced manufacturing techniques such as 3D printing (Rumpf et al,
2013), optical lithography (Madou, 2011), roll-to-roll processing (Ok et al, 2012),
electrospinning (Teo and Ramakrishna, 2006), dry and wet etching(Pearton et al, 1993),
micro-molding (Heckele and Schomburg, 2003), and micro-machining (Masuzawa
et al, 1985). With this spectacular progress obtained in advanced manufacturing
techniques in the past ten years, it is much easier to design and manufacture
multiscale architectures performing desired overall responses in different industrial
applications (Engheta and Ziolkowski, 2006). All these new manufacturing techniques
are seen as solutions in a more and more complex manufacturing environment,
specifically in terms of customization, multifunctionality, innovative design, and
geometry. These new manufacturing technologies not only enable for accurate
fabrication with characteristic lengths of the order of micrometers and even less but
they are also getting less expensive and more reliable. Thus, with these new techniques,
it is possible to manufacture multiscale materials obtained as a result of the solution
to the synthesis problem mentioned above. As an example, the relevant length scales
of a pantographic sheet that was designed and 3D printed for light-weight structural
applications are shown in Fig. 20.4.

Furthermore, the reassessment of the existing mathematical models for the
description of deformable bodies is unavoidable from theoretical points of view
as another consequence of this progress in material technology. Since materials
may have complex hierarchical architectures, the classical description of continuum
mechanics is no longer applicable to model exotic responses (dell’Isola et al, 2017).
Therefore, researchers have to develop and reformulate many well-known classical
concepts such as stress, strain, strain energy, constitutive laws, and balance equations
(Eugster and Glocker, 2017). The improvement of existing theoretical frameworks
can be achieved with variational approaches and suitable homogenization techniques,
which provide efficient micro-to-macro identification (Francfort and Murat, 1986;
Abdoul-Anziz and Seppecher, 2018; dell’Isola et al, 2016b).

Although many results have been presented in the literature (and they are really
promising), the design of new metamaterials still remains a formidable challenge.
The main issue to overcome corresponds to the “complexity” that is involved at
every stage of the process in terms of modeling, experimentation, and manufacturing.
The sought description requires a robust design approach that creates a synergistic
interplay among all involved highly complex design stages to provide an efficient
feedback loop in data analysis. This kind of approach may provide the expected
progress in the field of the design of novel metamaterials. In order to mitigate such
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Fig. 20.4 Relevant scales from macro to micro (a-d) for pantographic sheets

challenge, it is suggested to focus, as a first stage, on the design of mechanical
metamaterials. For such materials, the behavior at the macroscale is achieved with
mechanical interactions of structural networks arranged at different length scales.

The design strategies need to be improved. A systematic methodology, which
combines modeling, experimental and manufacturing points of view simultaneously,
is called for. Instead of conjecturing metamaterial microstructures without any the-
oretical guidance, and then trying to experimentally investigate their mechanical
properties, an a priori synthesis can precede any 3D printing activity, while the feed-
back from experiments allows for verifying the quality of the theoretical elaboration
and, possibly, guide new theoretical investigations. Furthermore, using Lagrangian
variational formalisms, one can carefully and efficiently study both static and dynamic
responses of every type of materials and design new metamaterials for different
industrial applications (Del Vescovo and Giorgio, 2014b; Placidi et al, 2014; Rosi
et al, 2013).

The organization of the remainder of the paper is as follows. In Sect. 20.2, more
details are given on the proposed synergistic design approach. Some conjectures
about the steps required in the design approach are detailed in Sect. 20.3, and
promising preliminary results are presented for an additively manufactured mechanical
metamaterial in Sect. 20.4.
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20.2 Synergistic Approach for Metamaterial Synthesis and
Fabrication

The design and fabrication of new metamaterials is a challenging task. A new
approach can be followed as the usual logical order is reversed. First, one has to
start by characterizing, with suitable Lagrangians, the desired constitutive model.
Then, the microstructure of the material whose macroscopic behavior is described
by the a priori chosen Lagrangian is identified. Lastly, the designed metamaterial
is manufactured for the targeted applications. From modeling, experimental and
manufacturing standpoints, this procedure is challenging, namely, it consists of
designing, fabricating and validating suitable multiscale architectures. In order to be
successful, it is crucial to develop an efficient conceptual framework that integrates
all the involved design steps by creating a synergistic feedback loop among different
disciplines and techniques.

Among many different techniques, Digital Image Correlation (DIC) may have
a very prominent role (Sutton et al, 2009; Grédiac and Hild, 2012) to create the
envisioned synergistic approach. To check the validity of the design and synthesis of
multiscale structures, refined and detailed measurements of material deformations
is essential to guide the synthesis process and to validate its results. DIC is an
(automatic) image analysis method that measures the deformation of tested specimens
and generates displacement and strain fields at prescribed resolution. DIC is very
popular in experimental mechanics (Sutton, 2013). This non-contact technique is
carried out by using mathematical/numerical registration procedures to process digital
images of specimens recorded during the experiment. Sophisticated DIC methods
have been recently developed (Hild and Roux, 2012b; Sutton et al, 2009; Hild and
Roux, 2012a; Tomičević et al, 2013), which are applicable to many mechanical
situations, in particular, in the case of large deformations (Chevalier et al, 2001;
Hild et al, 2002). The DIC techniques can efficiently enable the comparison between
experimental evidence and theoretical models (Leclerc et al, 2009).

To transform digital images into data, experimental and numerical tools have to
be used. The surface of the specimen has generally to be first prepared to make the
motion of material points distinguishable for the DIC process. During the experiment,
digital images are to be recorded with possibly high-definition cameras. At the
beginning of the experiment, a reference digital image is recorded, to represent
the reference configuration, and then the displacement field is calculated with a
correlation between the reference image and subsequent images of the deformed
configuration. The concepts at the basis of continuum mechanics, in particular, its
kinematics and “deformatics”, play a central role in DIC (Sutton et al, 2009; Hild
and Roux, 2012b).

The DIC techniques have proven to be effective in analyzing experimental results,
and they can provide a rapid feedback to guide numerical and theoretical applications
in metamaterial design (dell’Isola et al, 2019a,c). Due to the complexity of the
considered mechanical systems, no closed-form solutions for their deformation
problems are generally available. Hence, numerical simulations must be performed
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to predict deformation patterns. In general, these simulations must consider large
deformation phenomena, and therefore sophisticated algorithms. By comparing the
DIC results with numerical results (e.g. finite element simulations, see for example
Niiranen et al (2017); Khakalo and Niiranen (2017); Niiranen et al (2016); Khakalo
and Niiranen (2018); Eugster et al (2014); Cazzani et al (2016d); Turco et al (2016b);
Cazzani et al (2016a,c,b); Grillanda et al (2019); Cazzani et al (2018b,a)), it is
possible to validate the results of theoretical and practical syntheses. The detailed
analysis of deformations made possible by DIC will point toward weak points in the
process. DIC can also be used to analyze the image sets by using displacement fields
generated via numerical simulations (i.e. via integrated frameworks (Leclerc et al,
2009; Mathieu et al, 2015)). Let us note that in some previous studies (Quiligotti
et al, 2002), the calibration of material parameters was based on the choice of few
geometrical properties of the specimen used in the experiments and in the analysis
of the difference between these measured quantities and their predicted values. DIC
analyses allow for more thorough and systematic comparisons between predicted and
measured displacement fields.

Further, DIC techniques are also capable of measuring displacement fields at
different length scales (Turco et al, 2018; dell’Isola et al, 2019a,b). This is another
essential feature of DIC that will have to be exploited in a more extensive way in the
present context as multiscale models are developed in the description and design of
metamaterials. By using multiscale DIC analyses, and considering both the desired
overall behavior and its microscopic features, the mathematical synthesis process and
its transformation into 3D printed specimens can be modified or developed again and
again based on the data provided by the DIC-based synergistic procedure.

The theoretical synthesis process of a specific metamaterial produces an architec-
tured microstructure that is represented by the CAD modeler (e.g. standard tessellation
language or STL file), and then used in the fabrication step. Within the described
design framework, this file can be used in both numerical simulations and 3D printing
processes. Among all the advanced manufacturing techniques, 3D printing is one
of the most promising technologies for the fabrication of complex materials and
geometries. It can be easily optimized to produce specimens made of multiscale
architectured materials. Among its main features, 3D printing has a very significant
advantage in comparison with conventional manufacturing techniques, namely, it
can easily make complex 3D objects with its layer-wise approach, by eliminating the
dependence on additional design constraints. One can easily deal with geometric
complexity and control the microstructure of fabricated parts in detail. The process
of 3D printing also enables for effective multimaterial fabrication. This feature will
increase its range of applications in the design of metamaterials.

A further step in the development of the proposed methodology will consist in the
formulation of a corrective algorithm, which must automatically modify the STL file
once the results of some experiments are analyzed with DIC techniques. A DIC-based
system, which couples DIC registration algorithms with synthesis and finite element
procedures, may expedite and make effective the feedback redesigning action. In this
way, one can automatically unify theoretical and experimental studies by integrating
the whole design and verification processes.
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20.3 Digital Image Correlation-based Metamaterial Design
Process

In this section, the main steps of the DIC-based metamaterial design process is
discussed and its main features are delineated. In the first step of the process, the
required macroscopic behavior has to be identified carefully. At this step, it would
be ideal to find out possible design constraints due to the applied manufacturing
technology. One cannot 3D print any kind of designed microstructure because of the
limits related to geometry, material and resolution of the printing device.

Many interesting macroscopic responses may be sought for different applications.
For instance, one can

• require that the designed material remain elastic in large deformation regimes;
• demand the design of a material to exhibit wide frequency band gaps;
• look for an optimized bone scaffold, favoring the reconstruction and remodeling

of bone tissues.

A clear understanding of all involved phenomena is an unavoidable prerequisite for
this type of design processes, and a precise mathematical formulation is needed
for the description of designed metamaterials. For example, in the design of bio-
resorbable grafts (Madeo et al, 2011) for bone healing applications (Fig. 20.1), the
resorption mechanism must be understood as the material is expected to have a
successful and effective integration with the bone structure, biological activities and
healthy tissues (Giorgio et al, 2016a; Eugster and Glocker, 2013). Therefore, it is
important to understand the driving features of newly designed metamaterials and
their compatibility with existing systems. All these phenomenological aspects of the
designed metamaterial must be specified by means of Lagrangian action functionals
(and possibly Rayleigh dissipation functionals), which are assumed a priori to govern
the behavior of the designed metamaterials (dell’Isola and Placidi, 2011).

In the second step, the hierarchical architecture of the metamaterial is synthesized.
From the theoretical standpoint, a mathematical model, which describes the desired
behavior, has been already proposed at the previous step. Due to the hierarchical
complexity of the material, a multiscale modeling procedure must be followed in the
synthesis scheme. It has to be noted that only few materials (i.e. very restricted classes
of Lagrangian and Rayleigh functionals) can be synthesized by using a single scale
architecture. Instead of trying to implement ineffective trial and error computations
between microscopic and macroscopic scales, an extra intermediate step may be
included in the synthesis scheme. Different discrete mechanical systems at several
intermediate scales are to be introduced.

The proposed process is very similar to that used in the theory of synthesis of
analogue circuits (Giorgio et al, 2015). As every passive linear n-port circuit can be
synthesized by using an algorithmically produced graph and by linking any pair of
points of this graph with four specific circuital elements (i.e. resistances, inductances,
capacitors and transformers), it is expected that the most general microstructures for
mechanical metamaterials can be built by reproducing some basic microstructures at
different length scales. Moreover, by introducing only discrete mesoscopic models, the
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numerical algorithms are implemented efficiently, and the micro-to-macro transition
process can be performed more easily (Turco et al, 2016a). As a further perspective,
deduced from the analogue circuits field, it would be interesting and useful to produce
piezoelectromechanical microstructures to be controlled by means of piezoelectric
actuators. Some relevant results already present in the literature about this perspective
can be found in Casadei et al (2012); Bergamini et al (2006, 2015).

In the third step, the synthesis scheme previously obtained must be transformed
into real-world specimens, for instance by means of 3D printing techniques. Every
basic microstructure must be built by supplying a suitable STL file to the selected 3D
printer. These files can efficiently be used as a basis for a posteriori finite elements
analyses and, at the same time, as guide for DIC data collection. This step requires
the development of innovative engineering solutions (Golaszewski et al, 2018; Turco
et al, 2017b; Gunenthiram et al, 2017; Haboudou et al, 2003; Andreau et al, 2019).

In the fourth step, the validation of the synthesis and construction steps must be
performed. This step requires the systematic use of DIC-based techniques. Due to
the multiscale nature of the considered microstructures, some computational meshes
must be generated at different length scales by using, for instance, the gray level
images of the tested specimens.

We give here an example already available in dell’Isola et al (2019b). In Fig. 20.5,
meshes at macroscopic and mesoscopic levels are shown in the case of a pantographic
sheet. These meshes overlap with the gray images of the test specimen. In the analysis,
a coarse discretization of the region of interest is first created with triangular elements
independent from its mesostructure or microstructure (Fig. 20.5 a). Then, the mesh
is successively refined to increase the accuracy of the results, and in this way, the
convergence of the analysis is expected. From the multiscale standpoint, this step
looks like the transitions from continuum to discrete models.

The final steps consist of going back, thanks to the experimental results as elaborated
by DIC, to the synthesis step and/or to the construction step. The discrepancies between
the desired and the measured responses, as revealed by multiscale DIC analyses,
redirect both the synthesis process and the scheme of specimens production. This
feedback loop is made easier by the fact that the DIC meshes are tailored for
micro-to-macro model identifications (Grédiac and Hild, 2012).

a) b)

Fig. 20.5 Example of multiscale mesh applied to a pantographic structure
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20.4 Preliminary Results

In this section, some preliminary results are presented to show the applicability
of the proposed approach for the design of mechanical metamaterials. For this
purpose, pantographic structures are considered. This is an example of a theoretical
problem formulated as the result of experimental observations via DIC analyses. This
multiscale design approach can be further utilized to develop more sophisticated DIC
techniques to design and fabricate metamaterials (dell’Isola et al, 2019a,b).

The studies related to the design of higher gradient continua (Mindlin, 1965;
dell’Isola et al, 2015a) would be addressed to show the potential of such a synergistic
approach. For classical continuum media, the Cauchy theory is applied in terms of
balance equations. This theory assumes that the strain energy is only a function of the
first gradient of the displacement field. However, with the design of new advanced
materials, it was shown that the strain energy can be a function of higher gradients of
displacement fields (Seppecher et al, 2011; Alibert et al, 2003). Thus, higher gradient
theories are developed to derive the macroscopic behavior of multiscale materials. In
Fig. 20.6, the design of a beam whose strain energy depends on higher gradients of
the displacement field in the axial direction is presented. A unit cell of the beam is
arranged as shown in Fig. 20.6a), and the different levels of the structure in Fig. 20.6c).
Then, by using appropriate homogenization techniques, it was proven that the strain
energy depends on the second gradient of the displacement field in both vertical
and horizontal directions (Seppecher et al, 2011). To simplify the micro-to-macro
upscaling, a discrete model consisting of a network of mass particles connected with
rotational and extensional springs was introduced (dell’Isola et al, 2016b). For the
fabrication of the designed metamaterials, the theoretical data are transformed into a
manufacturing process. For this particular structure, the following design has been
proposed. Two layers of beams are oriented orthogonally and connected with a set
of cylinders or joints allowing for the relative displacement of the beams (dell’Isola
et al, 2015b). The alternation of empty and filled spaces enables DIC analyses for the
resulting specimen (Turco et al, 2018). As seen from this example, one can extend

Fig. 20.6 Example of a multiscale scheme for higher gradient one-dimensional
material (Seppecher et al, 2011)
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this model and fabricate higher order gradient systems by exploiting this multiscale
design approach (see Fig. 20.6b) for third gradient model).

The equilibrium shapes of the pantographic structures are shown in Fig. 20.7 for
different cases. In Fig. 20.7a)-b), the experimental results are presented for shear
and torsion loadings of a pantographic sheet. These pantographic sheets are made
of aluminum alloy, and they are 3D printed and designed based on composition of
elementary blocks. In Fig. 20.7c), the shear deformation is tracked by performing
local DIC registrations.

The displacement fields of the macro- and meso-scale meshes (Fig. 20.5) are
reported in Fig. 20.8. In this particular example, the results are presented for
longitudinal displacement fields measured during a tensile (i.e. bias) test.

Regarding the experimental study, three major challenges were observed. First,
the extension of this application to three dimensional problems might be difficult as
the fabrication of beam lattices deforming in 3D is a more complex procedure. It is
clearly more complicated to design a material exhibiting the desired overall behavior
in three dimensional applications. Using ball joint links would be helpful to make
this design possible. In Fig. 20.9, the design of a pivot/hinge link is illustrated. They
can be fabricated with 3D printing technologies. Second, a multiscale architecture
with nonlinear macroscale responses might be synthesized. This can be avoided by
exploiting the synergistic nature of the design framework. Third, possible instability
and buckling at the microscale may create a dramatic change in the macroscopic

Fig. 20.7 Experiments on 3D printed pantographic sheet

a) b)

Fig. 20.8 Deformation of different DIC meshes in longitudinal direction
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Fig. 20.9 Designed and printed pivot/hinge link dell’Isola et al (2019c)

response of the material. Hence, different critical phenomena must be taken into
account to increase the reliability of the approach.

Moreover, from the manufacturing point of view, the structural pattern of the
material must be arranged regarding the technological limits of the selected 3D printing
technique. Some design rules must be standardized for 3D printing applications.
Although it seems that 3D printing can easily deal with any geometric complexity, some
important criteria have to be considered before fabricating the designed metamaterials.
In general, these rules are applied for the design of supported/unsupported walls,
overhangs, holes, connecting/moving parts, and engravings, and may vary for different
3D printing technologies. Further, in 3D printing applications, the overall quality of
printed parts is highly dependent on the processing parameters. The latter ones may
vary for different materials and applications. Therefore, it is crucial to investigate the
behavior of printed materials with different processing parameters and their feasibility
in metamaterial applications.

20.5 Conclusion

In this paper, in the process of synthesis and construction of novel metamaterials, it
is proposed to systematically use DIC-based methodologies. Based on DIC output,
the synthesis process of a specific metamaterial may be partially or totally automated
by using algorithms similar to those utilized in structural optimization. In the short
term, it is expected that by using DIC techniques to design, characterize and validate
the overall properties of newly designed metamaterials, many interesting novel
microstructures and useful exotic mechanisms may be invented. Another possible
field of application for this techniques consists in the family of micropolar materials
(Eremeyev and Pietraszkiewicz, 2016; Eremeyev and Lebedev, 2011) and elastic shells
(Eremeyev and Zubov, 2007; Altenbach et al, 2015; Eremeyev and Lebedev, 2016). If
one wants to address dynamical studies in the field of mechanical metamaterials, new
methods and new approaches must be introduced. Some results useful for a future
characterization of the dynamics in memamaterials can be found in Cazzani and
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Ruge (2016, 2013); Piccardo et al (2014); Ferretti and Piccardo (2013); Luongo and
Zulli (2012); Luongo et al (2008).

To show the applicability of the introduced approach, some preliminary results
were presented, namely, those concerning so-called pantographic structures (see for
example Placidi et al, 2017a; Scerrato et al, 2016; Boutin et al, 2017). Possible issues
related to the design and manufacturing phases have been discussed and highlighted
for the future applications.

It is envisioned that the proposed synergistic approach can be extended to the
design of the following solutions:

1. metamaterials remaining in their elastic regime for large deformations,
2. metamaterials maintaining their mechanical properties under large temperature

changes and experiencing only very limited creep phenomena,
3. metamaterials for bone scaffolds that are optimized for being bio-resorbable and

bio-compatible with the host tissues.

Concerning this last class of metamaterials (e.g. see Madeo et al, 2012; Lekszycki and
dell’Isola, 2012), the DIC-based framework may design bone scaffolds with adaptive
optimal behavior. The latter is obtained when the metamaterial exhibits a proper
response to a vast variety of external stimuli. Further, the desired overall response of
biomechanical metamaterials can be achieved by enriching their microstructure with
other exotic materials such as shape memory alloys.
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