
Chapter 9
Electromagnetic Waves in an
Inhomogeneous Medium

In the previous chapter, we considered the direct scattering problem for acoustic
waves in an inhomogeneous medium. We now consider the case of electromagnetic
waves. However, our aim is not to simply prove the electromagnetic analogue of
each theorem in Chap. 8 but rather to select the basic ideas of the previous chapter,
extend them when possible to the electromagnetic case, and then consider some
themes that were not considered in Chap. 8, but ones that are particularly relevant
to the case of electromagnetic waves. In particular, we shall consider two simple
problems, one in which the electromagnetic field has no discontinuities across
the boundary of the medium and the second where the medium is an imperfect
conductor such that the electromagnetic field does not penetrate deeply into the
body. This last problem is an approximation to the more complicated transmission
problem for a piecewise constant medium and leads to what is called the exterior
impedance problem for electromagnetic waves.

After a brief discussion of the physical background to electromagnetic wave
propagation in an inhomogeneous medium, we show existence and uniqueness
of a solution to the direct scattering problem for electromagnetic waves in an
inhomogeneous medium. By means of a reciprocity relation for electromagnetic
waves in an inhomogeneous medium, we then show that, for a conducting medium,
the set of electric far field patterns corresponding to incident time-harmonic plane
waves moving in arbitrary directions is complete in the space of square integrable
tangential vector fields on the unit sphere. However, we show that this set of far field
patterns is in general not complete for a dielectric medium. Finally, we establish the
existence and uniqueness of a solution to the exterior impedance problem and show
that the set of electric far field patterns is again complete in the space of square
integrable tangential vector fields on the unit sphere. These results for the exterior
impedance problem will be used in the next chapter when we discuss the inverse
scattering problem for electromagnetic waves in an inhomogeneous medium. We
note, as in the case of acoustic waves, that our ideas and methods can be extended
to more complicated scattering problems involving discontinuous fields, piecewise
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continuous refractive indexes, etc. but, for the sake of clarity and brevity, we do not
consider these more general problems in this book.

9.1 Physical Background

We consider electromagnetic wave propagation in an inhomogeneous isotropic
medium in IR3 with electric permittivity ε = ε(x) > 0, magnetic permeability
μ = μ0, and electric conductivity σ = σ(x) where μ0 is a positive constant. We
assume that ε(x) = ε0 and σ(x) = 0 for all x outside some sufficiently large ball
where ε0 is a constant. Then if J is the current density, the electric field E and
magnetic field H satisfy the Maxwell equations, namely

curlE + μ0
∂H
∂t

= 0, curlH − ε(x)
∂E
∂t

= J. (9.1)

Furthermore, in an isotropic conductor, the current density is related to the electric
field by Ohm’s law

J = σE. (9.2)

For most metals, σ is very large and hence it is often reasonable in many theoretical
investigations to approximate a metal by a fictitious perfect conductor in which
σ is taken to be infinite. However, in this chapter, we shall assume that the
inhomogeneous medium is not a perfect conductor, i.e., σ is finite. If σ is nonzero,
the medium is called a conductor, whereas if σ = 0 the medium is referred to as a
dielectric.

We now assume that the electromagnetic field is time-harmonic, i.e., of the form

E(x, t) = 1√
ε0

E(x) e−iωt , H(x, t) = 1√
μ0

H(x) e−iωt

where ω is the frequency. Then from (9.1) and (9.2) we see that E and H satisfy the
time-harmonic Maxwell equations

curl E − ikH = 0, curl H + ikn(x)E = 0 (9.3)

in IR3 where the (positive) wave number k is defined by k2 = ε0μ0ω
2 and the

refractive index n = n(x) is given by

n(x) := 1

ε0

(
ε(x) + i

σ (x)

ω

)
.
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In order to be able to formulate an integral equation of Lippmann–Schwinger type
for the direct scattering problem we assume that n ∈ C1,α(IR3) for some 0 < α < 1
and, as usual, that m := 1 − n has compact support. As in the previous chapter, we
define D := {x ∈ IR3 : m(x) �= 0}. For an integral equation formulation of the
direct scattering problem in the case when n is discontinuous across ∂D we refer
the reader to [241].

We consider the following scattering problem for (9.3). Let Ei,H i ∈ C1(IR3) be
a solution of the Maxwell equations for a homogeneous medium

curl Ei − ikH i = 0, curl Hi + ikEi = 0 (9.4)

in all of IR3. We then want to find a solution E,H ∈ C1(IR3) of (9.3) in IR3 such
that if

E = Ei + Es, H = Hi + Hs (9.5)

the scattered field Es,Hs satisfies the Silver–Müller radiation condition

lim
r→∞(Hs × x − rEs) = 0 (9.6)

uniformly for all directions x/|x| where r = |x|.
For the next three sections of this chapter, we shall be concerned with the

scattering problem (9.3)–(9.6). The existence and uniqueness of a solution to this
problem were first given by Müller [332] for the more general case when μ = μ(x).
The proof simplifies considerably for the case we are considering, i.e., μ = μ0, and
we shall present this proof in the next section.

9.2 Existence and Uniqueness

Under the assumptions given in the previous section for the refractive index n,
we shall show in this section that there exists a unique solution to the scattering
problem (9.3)–(9.6). Our analysis follows that of Colton and Kress [99] and is based
on reformulating (9.3)–(9.6) as an integral equation. We first prove the following
theorem, where

Φ(x, y) := 1

4π

eik|x−y|

|x − y| , x �= y,

as usual, denotes the fundamental solution to the Helmholtz equation and

m := 1 − n.
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Theorem 9.1 Let E,H ∈ C1(IR3) be a solution of the scattering problem (9.3)–
(9.6). Then E satisfies the integral equation

E(x) = Ei(x) − k2
∫

IR3
Φ(x, y)m(y)E(y) dy

+ grad
∫

IR3

1

n(y)
grad n(y) · E(y)Φ(x, y) dy, x ∈ IR3.

(9.7)

Proof Let x ∈ IR3 be an arbitrary point and choose an open ball B with unit outward
normal ν such that B contains the support of m and x ∈ B. From the Stratton–Chu
formula (6.5) applied to E,H , we have

E(x) = − curl
∫

∂B

ν(y) × E(y)Φ(x, y) ds(y)

+ grad
∫

∂B

ν(y) · E(y)Φ(x, y) ds(y)

−ik

∫
∂B

ν(y) × H(y)Φ(x, y) ds(y)

+ grad
∫

B

1

n(y)
grad n(y) · E(y)Φ(x, y) dy

−k2
∫

B

m(y)E(y)Φ(x, y) dy

(9.8)

since curl H + ikE = ikmE and n div E = − grad n · E. Note that in the volume
integrals over B we can integrate over all of IR3 since m has support in B. The
Stratton–Chu formula applied to Ei,H i gives

Ei(x) = − curl
∫

∂B

ν(y) × Ei(y)Φ(x, y) ds(y)

+ grad
∫

∂B

ν(y) · Ei(y)Φ(x, y) ds(y)

−ik

∫
∂B

ν(y) × Hi(y)Φ(x, y) ds(y).

(9.9)

Finally, from the version of the Stratton–Chu formula corresponding to Theo-
rem 6.7, we see that
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− curl
∫

∂B

ν(y) × Es(y)Φ(x, y) ds(y)

+ grad
∫

∂B

ν(y) · Es(y)Φ(x, y) ds(y)

− ik

∫
∂B

ν(y) × Hs(y)Φ(x, y) ds(y) = 0.

(9.10)

With the aid of E = Ei + Es , H = Hi + Hs we can now combine (9.8)–(9.10) to
conclude that (9.7) is satisfied. ��

We now want to show that every solution of the integral equation (9.7) is also a
solution to (9.3)–(9.6).

Theorem 9.2 Let E ∈ C(IR3) be a solution of the integral equation (9.7). Then E

and H := curl E/ik are a solution of (9.3)–(9.6).

Proof Since m has compact support, from Theorem 8.1 we can conclude that if
E ∈ C(IR3) is a solution of (9.7) then E ∈ C1,α(IR3). Hence, by the relation
gradx Φ(x, y) = − grady Φ(x, y), Gauss’ divergence theorem and Theorem 8.1,
we have

div
∫

IR3
Φ(x, y)m(y)E(y) dy =

∫
IR3

div{m(y)E(y)}Φ(x, y) dy (9.11)

and

(Δ + k2)

∫
IR3

1

n(y)
grad n(y) · E(y)Φ(x, y) dy = − 1

n(x)
grad n(x) · E(x)

(9.12)
for x ∈ IR3. Taking the divergence of (9.7) and using (9.11) and (9.12), we see that

u := 1

n
div(nE)

satisfies the integral equation

u(x) + k2
∫

IR3
Φ(x, y)m(y)u(y) dy = 0, x ∈ IR3.

Hence, from Theorems 8.3 and 8.7 we can conclude that u(x) = 0 for x ∈ IR3,
that is,

div(nE) = 0 in IR3. (9.13)

Therefore, the integral equation (9.7) can be written in the form
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E(x) = Ei(x) − k2
∫

IR3
Φ(x, y)m(y)E(y) dy

− grad
∫

IR3
Φ(x, y) div E(y) dy, x ∈ IR3,

(9.14)

and thus for H := curl E/ik we have

H(x) = Hi(x) + ik curl
∫

IR3
Φ(x, y)m(y)E(y) dy, x ∈ IR3. (9.15)

In particular, by Theorem 8.1 this implies H ∈ C1,α(IR3) since E ∈ C1,α(IR3). We
now use the vector identity (6.4), the Maxwell equations (9.4), and (9.11), (9.13)–
(9.15) to deduce that

curl H(x) + ikE(x) = ik(curl curl −k2)

∫
IR3

Φ(x, y)m(y)E(y) dy

−ik grad
∫

IR3
Φ(x, y) div E(y) dy

= −ik(Δ + k2)

∫
IR3

Φ(x, y)m(y)E(y) dy

−ik grad
∫

IR3
div{n(y)E(y)}Φ(x, y) dy

= ikm(x)E(x)

for x ∈ IR3. Therefore E,H satisfy (9.3). Finally, the decomposition (9.5) and the
radiation condition (9.6) follow readily from (9.7) and (9.15) with the aid of (2.15)
and (6.26). ��

We note that in (9.7) we can replace the region of integration by any domain G

such that the support of m is contained in Ḡ and look for solutions in C(Ḡ). Then
for x ∈ IR3 \ Ḡ we define E(x) by the right-hand side of (9.7) and obviously obtain
a continuous solution to (9.7) in all of IR3.

In order to show that (9.7) is uniquely solvable we need to establish the following
unique continuation principle for the Maxwell equations.

Theorem 9.3 Let G be a domain in IR3 and let E,H ∈ C1(G) be a solution of

curl E − ikH = 0, curl H + ikn(x)E = 0 (9.16)
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in G such that n ∈ C1,α(G). Suppose E,H vanishes in a neighborhood of some
x0 ∈ G. Then E,H is identically zero in G.

Proof From the representation formula (9.8) and Theorem 8.1, since by assumption
n ∈ C1,α(G), we first can conclude that E ∈ C1,α(B) for any ball B with B̄ ⊂ G.
Then, using curl E = ikH from (9.8) we have H ∈ C2,α(B) whence, in particular,
H ∈ C2(G) follows.

Using the vector identity (6.4), we deduce from (9.16) that

ΔH + 1

n(x)
grad n(x) × curl H + k2n(x)H = 0 in G

and the proof is completed by applying Lemma 8.5 to the real and imaginary parts
of the Cartesian components of H . ��
Theorem 9.4 The scattering problem (9.3)–(9.6) has at most one solution E,H in
C1(IR3).

Proof Let E,H denote the difference between two solutions. Then E,H clearly
satisfy the radiation condition (9.6) and the Maxwell equations for a homogeneous
medium outside some ball B containing the support of m. From Gauss’ divergence
theorem and the Maxwell equations (9.3), denoting as usual by ν the exterior unit
normal to B, we have that

∫
∂B

ν × E · H̄ ds =
∫

B

(curl E · H̄ − E · curl H̄ ) dx = ik

∫
B

(|H |2 − n̄ |E|2) dx

(9.17)
and hence

Re
∫

∂B

ν × E · H̄ ds = −k

∫
B

Im n |E|2dx ≤ 0.

Hence, by Theorem 6.11, we can conclude that E(x) = H(x) = 0 for x ∈ IR3 \ B̄.
By Theorem 9.3 the proof is complete. ��

We are now in a position to show that there exists a unique solution to the
electromagnetic scattering problem.

Theorem 9.5 The scattering problem (9.3)–(9.6) for an inhomogeneous medium
has a unique solution and the solution E,H depends continuously on the incident
field Ei,H i with respect to the maximum norm.

Proof By Theorems 9.2 and 9.4, it suffices to prove the existence of a solution
E ∈ C(IR3) to (9.7). As in the proof of Theorem 8.7, it suffices to look for solutions
of (9.7) in an open ball B containing the support of m. We define an electromagnetic
operator Te : C(B̄) → C(B̄) on the Banach space of continuous vector fields in
B̄ by
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(TeE)(x) := −k2
∫

B

Φ(x, y)m(y)E(y) dy

+grad
∫

B

1

n(y)
grad n(y) · E(y)Φ(x, y) dy, x ∈ B̄.

(9.18)

Since Te has a weakly singular kernel it is a compact operator. Hence, we can
apply the Riesz–Fredholm theory and must show that the homogeneous equation
corresponding to (9.7) has only the trivial solution. If this is done, Eq. (9.7) can be
solved and the inverse operator (I − Te)

−1 is bounded. From this it follows that
E,H depend continuously on the incident field with respect to the maximum norm.

By Theorem 9.2, a continuous solution E of E − TeE = 0 solves the homoge-
neous scattering problem (9.3)–(9.6) with Ei = 0 and hence, by Theorem 9.4, it
follows that E = 0. The theorem is now proved. ��

9.3 The Far Field Patterns

We now want to examine the far field patterns of the scattering problem (9.3)–(9.6)
where the refractive index n = n(x) again satisfies the assumptions of Sect. 9.1.
As in Sect. 6.6 the incident electromagnetic field is given by the plane wave
described by the matrices Ei(x, d) and Hi(x, d) defined by

Ei(x, d)p = i

k
curl curl p eik x·d = ik (d × p) × d eik x·d ,

H i(x, d)p = curl p eik x·d = ik d × p eik x·d ,

(9.19)

where d is a unit vector giving the direction of propagation and p ∈ IR3 is a constant
vector giving the polarization. Because of the linearity of the direct scattering
problem with respect to the incident field, we can also express the scattered waves
by matrices. From Theorem 6.9, we see that

Es(x, d)p = eik|x|

|x| E∞(x̂, d)p + O

(
1

|x|2
)

, |x| → ∞,

H s(x, d)p = eik|x|

|x| x̂ × E∞(x̂, d)p + O

(
1

|x|2
)

, |x| → ∞,

(9.20)

where E∞ is the electric far field pattern. Furthermore, from (6.88) and Green’s
vector theorem (6.3), we can immediately deduce the following reciprocity relation.

Theorem 9.6 Let E∞ be the electric far field pattern of the scattering prob-
lem (9.3)–(9.6) and (9.19). Then for all vectors x̂, d ∈ S

2 we have
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E∞(x̂, d) = [E∞(−d,−x̂)]�.

Motivated by our study of acoustic waves in Chap. 8, we now want to use
this reciprocity relation to show the equivalence of the completeness of the set of
electric far field patterns and the uniqueness of the solution to an electromagnetic
interior transmission problem. In this chapter, we shall only be concerned with the
homogeneous problem, defined as follows.

Homogeneous Electromagnetic Interior Transmission Problem Find a solution
E0, E1,H0,H1 ∈ C1(D) ∩ C(D̄) of

curl E1 − ikH1 = 0, curl H1 + ikn(x)E1 = 0 in D,

curl E0 − ikH0 = 0, curl H0 + ikE0 = 0 in D,

(9.21)

satisfying the boundary condition

ν × (E1 − E0) = 0, ν × (H1 − H0) = 0 on ∂D, (9.22)

where again D := {x ∈ IR3 : m(x) �= 0} and where we assume that D is connected
with a connected C2 boundary.

In order to establish the connection between electric far field patterns and the
electromagnetic interior transmission problem, we now recall the definition of the
Hilbert space

L2
t (S

2) :=
{
g : S2 → C3 : g ∈ L2(S2), ν · g = 0 on S

2
}

of square integrable tangential fields on the unit sphere. Let {dn : n = 1, 2, . . . } be a
countable dense set of unit vectors on S

2 and consider the set F of electric far field
patterns defined by

F := {
E∞(· , dn)ej : n = 1, 2, . . . , j = 1, 2, 3

}

where e1, e2, e3 are the Cartesian unit coordinate vectors in IR3. Recalling the
definition of an electromagnetic Herglotz pair and Herglotz kernel given in Sect. 6.6,
we can now prove the following theorem due to Colton and Päivärinta [122].

Theorem 9.7 A tangential vector field g is in the orthogonal complement F ⊥ of
F if and only if there exists a solution of the homogeneous electromagnetic interior
transmission problem such that E0,H0 is an electromagnetic Herglotz pair with
Herglotz kernel ikh where h(d) = g(−d).
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Proof Suppose that g ∈ L2
t (S

2) satisfies

∫
S2

E∞(x̂, dn)ej · g(x̂) ds(x̂) = 0

for n = 1, 2, . . . and j = 1, 2, 3. By the reciprocity relation, this is equivalent to

∫
S2

E∞(−d,−x̂)g(x̂) ds(x̂) = 0

for all d ∈ S
2, i.e.,

∫
S2

E∞(x̂, d)h(d) ds(d) = 0 (9.23)

for all x̂ ∈ S
2 where h(d) = g(−d). Analogous to Lemma 6.35, from the integral

equation (9.7) it can be seen that the left-hand side of (9.23) represents the electric
far field pattern of the scattered wave Es

0,H
s
0 corresponding to the incident wave

Ei
0,H

i
0 given by the electromagnetic Herglotz pair

Ei
0(x) =

∫
S2

Ei(x, d)h(d) ds(d) = ik

∫
S2

h(d) eik x·d ds(d),

H i
0(x) =

∫
S2

Hi(x, d)h(d) ds(d) = curl
∫
S2

h(d) eik x·d ds(d).

Hence, (9.23) is equivalent to a vanishing far field pattern of Es
0,H

s
0 and thus, by

Theorem 6.10, equivalent to Es
0 = Hs

0 = 0 in IR3\B, i.e., with E0 := Ei
0, H0 := Hi

0
and E1 := Ei

0 + Es
0, H1 := Hi

0 + Hs
0 we have solutions to (9.21) satisfying the

boundary condition (9.22). ��
In the case of a conducting medium, i.e., Im n �= 0, we can use Theorem 9.7 to

deduce the following result [122].

Theorem 9.8 In a conducting medium, the set F of electric far field patterns is
complete in L2

t (S
2).

Proof Recalling that an electromagnetic Herglotz pair vanishes if and only if
its Herglotz kernel vanishes (Theorem 3.27 and Definition 6.33), we see from
Theorem 9.7 that it suffices to show that the only solution of the homogeneous
electromagnetic interior transmission problem (9.21) and (9.22) is E0 = E1 =
H0 = H1 = 0. However, analogous to (9.17), from Gauss’ divergence theorem and
the Maxwell equations (9.21) we have

∫
∂D

ν · E1 × H̄1 ds = ik

∫
D

(|H1|2 − n̄ |E1|2) dx,
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∫
∂D

ν · E0 × H̄0 ds = ik

∫
D

(|H0|2 − |E0|2) dx.

From these two equations, using the transmission conditions (9.22) we obtain

∫
D

(|H1|2 − n̄ |E1|2) dx =
∫

D

(|H0|2 − |E0|2) dx

and taking the imaginary part of both sides gives

∫
D

Im n |E1|2dx = 0.

From this, we conclude by unique continuation that E1 = H1 = 0 in D. From (9.22)
we now have vanishing tangential components of E0 and H0 on the boundary
∂D whence E0 = H0 = 0 in D follows from the Stratton–Chu formulas (6.8)
and (6.9). ��

In contrast to Theorem 9.8, the set F of electric far field patterns is not in general
complete for a dielectric medium. We shall show this for a spherically stratified
medium in the next section.

We conclude this section with a short analysis of the far field operator F :
L2

t (S
2) → L2

t (S
2) defined by

(Fg)(x̂) :=
∫
S2

E∞(x̂, d)g(d) ds(d), x̂ ∈ S
2, (9.24)

and begin with an analog of Theorem 8.17.

Lemma 9.9 Let Ei
g,H

i
g and Ei

h,H
i
h be electromagnetic Herglotz pairs with kernels

g, h ∈ L2
t (S

2), respectively, and let Eg,Hg and Eh,Hh be the solutions of
(9.4)–(9.6) with Ei,H i equal to Ei

g,H
i
g and Ei

h,H
i
h, respectively. Then

k

∫
D

Im nEgĒh dx = −2π(Fg, h) − 2π(g, Fh) − (Fg, Fh),

where (· , ·) denotes the inner product on L2
t (S

2).

Proof Noting that

H̄h · (ν × Eg) = − 1

ik
(ν × Eg) · curl Ēh

and

Ēh · (ν × Hg) = 1

ik
Ēh · (ν × curl Eg) = − 1

ik
(ν × Ēh) · curl Eg



356 9 Electromagnetic Waves in an Inhomogeneous Medium

from Green’s second vector integral theorem we obtain

∫
∂D

{
Hh · (ν × Eg) − Eh · (ν × Hg)

}
ds = 2k

∫
D

Im nEgĒh dx.

Now the statement of the lemma follows from (6.103). ��
Theorem 9.10 Assume that Im n = 0. Then the far field operator F is compact and
normal, i.e., FF ∗ = F ∗F , and has an infinite number of eigenvalues.

Proof Under the assumption Im n = 0 from Lemma 9.9 we have that

2π(Fg, h) + 2π(g, Fh) + (Fg, Fh) = 0.

From this the normality of F follows analogous to the proof of Theorem 6.39 with
the aid of the reciprocity relation in Theorem 9.6. By the uniqueness result contained
in Theorem 9.7 the nullspace of F is either trivial or finite dimensional since by
Remark 4.4 in [59] the transmission eigenvalues have finite multiplicity. From this
the statement on the eigenvalues follows by the spectral theorem for compact normal
operators (see [375]). ��
Corollary 9.11 Assume that Im n = 0. Then the scattering operator S : L2

t (S
2) →

L2
t (S

2) defined by

S := I + 1

2π
F

is unitary.

Proof Analogous to the proof of Corollary 6.40. ��
To conclude this section, with the aid of Lidski’s Theorem 8.15 we will extend

the statement of Theorem 9.10 on the eigenvalues of F to the case where Im n �= 0.
For this we note that the argument for showing that the far field operator F is a trace
class operator (see p. 324) carries over from the acoustic case to the electromagnetic
case.

Theorem 9.12 The far field operator F has an infinite number of eigenvalues.

Proof In view of Theorem 9.10 we only need to consider the case where Im n �= 0.
Recall that we assume that n(x) ≥ 0 for all x ∈ D.

We first show that in this case F is injective. From Fg = 0, by Rellich’s lemma
and the unique continuation principle we conclude that the scattered wave for the
solution Eg,Hg to (9.4)–(9.6) with Ei,H i equal to the electromagnetic Herglotz
pair Ei

g,H
i
g with kernel g ∈ L2

t (S
2) vanishes in IR3. Therefore Eg = Ei

g and by
Lemma 9.10 and again the unique continuation principle we obtain that Ei

g = 0 in

IR3, whence g = 0 follows by Theorem 3.27.
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By Lemma 9.9 we have that

4π Im(−iFg, g) = 2π [(Fg, g) + (g, Fg)] = k

∫
D

Im n |Eg|2dx + ‖Fg‖2 ≥ 0

for all g ∈ L2
t (S

2). Therefore the operator −iF satisfies the assumptions of
Theorem 8.15 and the statement of the theorem follows. ��
Corollary 9.13 If Im n �= 0 the eigenvalues of the far field operator F lie in the
disk

|λ|2 + 4π Re λ < 0

whereas if Im n = 0 they lie on the circle

|λ|2 + 4π Re λ = 0

in the complex plane.

Proof This follows from Lemma 9.9 by setting g = h and Fg = λg. ��

9.4 The Spherically Stratified Dielectric Medium

In this section, we shall consider the class F of electric far field patterns for a
spherically stratified dielectric medium. Our aim is to show that in this case there
exist wave numbers k such that F is not complete in L2

t (S
2). It suffices to show

that when n(x) = n(r), r = |x|, Im n = 0 and, as a function of r , n ∈ C2, there
exist values of k such that there exists a nontrivial solution to the homogeneous
electromagnetic interior transmission problem

curl E1 − ikH1 = 0, curl H1 + ikn(r)E1 = 0 in B,

curl E0 − ikH0 = 0, curl H0 + ikE0 = 0 in B,

(9.25)

with the boundary condition

ν × (E1 − E0) = 0, ν × (H1 − H0) = 0 on ∂B, (9.26)

where E0,H0 is an electromagnetic Herglotz pair, where now B is an open ball
of radius a with exterior unit normal ν and where Im n = 0. Analogous to the
construction of the spherical vector wave functions in Theorem 6.26 from the scalar
spherical wave functions, we will develop special solutions to the electromagnetic
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transmission problem (9.25) and (9.26) from solutions to the acoustic interior
transmission problem

Δw + k2n(r)w = 0, Δv + k2v = 0 in B, (9.27)

w − v = 0,
∂w

∂ν
− ∂v

∂ν
= 0 on ∂B. (9.28)

Assuming that the solutions w, v of (9.27) and (9.28) are three times continu-
ously differentiable, we now define

E1(x) := curl{xw(x)}, H1(x) := 1

ik
curl E1(x),

E0(x) := curl{xv(x)}, H0(x) := 1

ik
curl E0(x).

(9.29)

Then, from the identity (6.4) together with

Δ{xw(x)} = xΔw(x) + 2 grad w(x)

and (9.27) we have that

ik curl H1(x) = curl curl curl{xw(x)} = − curl Δ{xw(x)}

= k2 curl{xn(r)w(x)} = k2n(r) curl{xw(x)} = k2n(r)E1(x),

that is,

curl H1 + ikn(r)E1 = 0,

and similarly

curl H0 + ikE0 = 0.

Hence, E1,H1 and E0,H0 satisfy (9.25). From w − v = 0 on ∂B we have that

x × {E1(x) − E0(x)} = x × {grad[w(x) − v(x)] × x} = 0, x ∈ ∂B,

that is,

ν × (E1 − E0) = 0 on ∂B.

Finally, setting u = w − v in the relation
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curl curl{xu(x)} = −Δ{xu(x)} + grad div{xu(x)}

= −xΔu(x) + grad

{
u(x) + r

∂u

∂r
(x)

}

and using the boundary condition (9.28), we deduce that

ν × (H1 − H0) = 0 on ∂B

is also valid. Hence, from a three times continuously differentiable solution w, v to
the scalar transmission problem (9.27) and (9.28), via (9.29) we obtain a solution
E1,H1 and E0,H0 to the electromagnetic transmission problem (9.25) and (9.26).
Note, however, that in order to obtain a nontrivial solution through (9.29) we have
to insist that w and v are not spherically symmetric.

We proceed as in Sect. 8.4 and, after introducing spherical coordinates (r, θ, ϕ),

look for solutions to (9.27) and (9.28) of the form

v(r, θ) = aljl(kr) Pl(cos θ),

w(r, θ) = bl

yl(r)

r
Pl(cos θ),

(9.30)

where Pl is Legendre’s polynomial, jl is a spherical Bessel function, al and bl are
constants to be determined, and the function yl is a solution of

y′′
l +

(
k2n(r) − l(l + 1)

r2

)
yl = 0 (9.31)

for r > 0 such that yl is continuous for r ≥ 0. However, in contrast to the analysis
of Sect. 8.4, we are only interested in solutions which are dependent on θ , i.e., in
solutions for l ≥ 1. In particular, the ordinary differential equation (9.31) now has
singular coefficients. We shall show that if n(r) > 1 for 0 ≤ r < a or 0 < n(r) < 1
for 0 ≤ r < a, then for each l ≥ 1 there exist an infinite set of values of k

and constants al = al(k), bl = bl(k), such that (9.30) is a nontrivial solution
of (9.27) and (9.28). From Sect. 6.6 we know that E0,H0, given by (9.29), is an
electromagnetic Herglotz pair. Hence, by Theorem 9.7, for such values of k the set
of electric far field patterns is not complete.

To show the existence of values of k such that (9.30) yields a nontrivial solution
of (9.27) and (9.28), we need to examine the asymptotic behavior of solutions
to (9.31). To this end, we use the Liouville transformation

ξ :=
∫ r

0
[n(ρ)]1/2dρ, z(ξ) := [n(r)]1/4yl(r) (9.32)

to transform (9.31) to
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z′′ + [k2 − p(ξ)]z = 0 (9.33)

where

p(ξ) := n′′(r)
4 [n(r)]2 − 5

16

[n′(r)]2

[n(r)]3 + l(l + 1)

r2n(r)
.

Note that since n(r) > 0 for r ≥ 0 and n is in C2, the transformation (9.32) is
invertible and p is well defined and continuous for r > 0. In order to deduce the
required asymptotic estimates, we rewrite (9.33) in the form

z′′ +
(

k2 − l(l + 1)

ξ2 − g(ξ)

)
z = 0 (9.34)

where

g(ξ) := l(l + 1)

r2n(r)
− l(l + 1)

ξ2 + n′′(r)
4 [n(r)]2 − 5

16

[n′(r)]2

[n(r)]3 , r = r(ξ), (9.35)

and note that since n(r) = 1 for r ≥ a we have

∫ ∞

1
|g(ξ)| dξ < ∞ and

∫ 1

0
ξ |g(ξ)| dξ < ∞.

For λ > 0 we now define the functions Eλ and Mλ by

Eλ(ξ) :=

⎧⎪⎪⎨
⎪⎪⎩

[
−Yλ(ξ)

Jλ(ξ)

]1/2
, 0 < ξ < ξλ,

1, ξλ ≤ ξ < ∞,

and

Mλ(ξ) :=

⎧⎪⎨
⎪⎩

[2 |Yλ(ξ)| Jλ(ξ)]1/2, 0 < ξ < ξλ,

[
J 2

λ (ξ) + Y 2
λ (ξ)

]1/2
, ξλ ≤ ξ < ∞,

where Jλ is the Bessel function, Yλ the Neumann function, and ξλ is the smallest
positive root of the equation

Jλ(ξ) + Yλ(ξ) = 0.

Note that ξλ is less than the first positive zero of Jλ. For the necessary information on
Bessel and Neumann functions of nonintegral order we refer the reader to [86, 293].
We further define Gλ by
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Gλ(k, ξ) := π

2

∫ ξ

0
ρM2

λ(kρ) |g(ρ)| dρ

where g is given by (9.35). Noting that for k > 0 and λ ≥ 0 we have that Gλ is finite
when r is finite, we can now state the following result from Olver [343, p. 450].

Theorem 9.14 Let k > 0 and l ≥ −1/2. Then (9.34) has a solution z which, as a
function of ξ, is continuous in [0,∞), twice continuously differentiable in (0,∞),
and is given by

z(ξ) =
√

πξ

2k
{Jλ(kξ) + εl(k, ξ)} (9.36)

where

λ = l + 1

2

and

|εl(k, ξ)| ≤ Mλ(kξ)

Eλ(kξ)

{
eGλ(k,ξ) − 1

}
.

In order to apply Theorem 9.14 to obtain an asymptotic estimate for a continuous
solution yl of (9.31), we fix ξ > 0 and let k be large. Then for λ > 0 we have that
there exist constants C1 and C2, both independent of k, such that

|Gλ(k, ξ)| ≤ C

{∫ 1

0
M2

λ(kρ) dρ + 1

k

∫ ∞

1
|g(ρ)| dρ

}

≤ C1

{
1

k

∫ 1

1/k

dρ

ρ
+ 1

k

}
= C1

{
ln k

k
+ 1

k

}
.

(9.37)

Hence, for z defined by (9.36) we have from Theorem 9.14, (9.37) and the
asymptotics for the Bessel function Jλ that

z(ξ) =
√

πξ

2k

{
Jλ(kξ) + O

(
ln k

k3/2

)}

= 1

k
cos

(
kξ − λπ

2
− π

4

)
+ O

(
ln k

k2

) (9.38)

for fixed ξ > 0 and λ as defined in Theorem 9.14. Furthermore, it can be shown that
the asymptotic expansion (9.38) can be differentiated with respect to ξ , the error
estimate being O(ln k/k). Hence, from (9.32) and (9.38) we can finally conclude
that if yl is defined by (9.32) then
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yl(r) = 1

k[n(r)]1/4[n(0)]l/2+1/4 cos

(
k

∫ r

0
[n(ρ)]1/2dρ − λπ

2
− π

4

)
+ O

(
ln k

k2

)

(9.39)
where the asymptotic expansion for [n(r)]1/4yl(r) can be differentiated with respect
to r , the error estimate being O(ln k/k).

We now note that, from the above estimates, w, as defined by (9.30), is a C2

solution of Δw + k2n(r)w = 0 in B \ {0} and is continuous in B. Hence, by
the removable singularity theorem for elliptic differential equations (cf. [366],p.
104) we have that w ∈ C2(B). Since n ∈ C1,α(IR3), we can conclude from
Green’s formula (8.14) and Theorem 8.1 that w ∈ C3(B) and hence E1 and H1
are continuously differentiable in B.

We now return to the scalar interior transmission problem (9.27) and (9.28)
and note that (9.30) will be a nontrivial solution provided there exists a nontrivial
solution al, bl of the homogeneous linear system

bl

yl(a)

a
− aljl(ka) = 0

bl

d

dr

(
yl(r)

r

)
r=a

− alkj
′
l (ka) = 0.

(9.40)

The system (9.40) will have a nontrivial solution provided the determinant of the
coefficients vanishes, that is,

d := det

⎛
⎜⎜⎜⎝

yl(a)

a
−jl(ka)

d

dr

(
yl(r)

r

)
r=a

−kj ′
l (ka)

⎞
⎟⎟⎟⎠ = 0. (9.41)

Recalling the asymptotic expansions (2.42) for the spherical Bessel functions, i.e.,

jl(kr) = 1

kr
cos

(
kr − lπ

2
− π

2

)
+ O

(
1

k2

)
, k → ∞,

j ′
l (kr) = 1

kr
sin

(
kr − lπ

2
+ π

2

)
+ O

(
1

k2

)
, k → ∞,

(9.42)

we see from (9.39) and (9.42) and the addition formula for the sine function that

d = 1

a2k [n(0)]l/2+1/4

{
sin

(
k

∫ a

0
[n(r)]1/2dr − ka

)
+ O

(
ln k

k

)}
.

Therefore, a sufficient condition for (9.41) to be valid for a discrete set of values of
k is that either n(r) > 1 for 0 ≤ r < a or n(r) < 1 for 0 ≤ r < a. Hence we have
the following theorem [122].
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Theorem 9.15 Assume that Im n = 0 and that n(x) = n(r) is spherically stratified,
n(r) = 1 for r ≥ a, n(r) > 1 or 0 < n(r) < 1 for 0 ≤ r < a and, as a function of
r , n ∈ C2. Then there exists an infinite set of wave numbers k such that the set F of
electric far field patterns is not complete in L2

t (S
2).

9.5 The Exterior Impedance Boundary Value Problem

The mathematical treatment of the scattering of time harmonic electromagnetic
waves by a body which is not perfectly conducting but which does not allow
the electric and magnetic field to penetrate deeply into the body leads to what is
called an exterior impedance boundary value problem for electromagnetic waves
(cf. [223, p. 511] and [411, p. 304]). In particular, such a model is sometimes used
for coated media instead of the more complicated transmission problem. In addition
to being an appropriate theme for this chapter, we shall also need to make use of
the mathematical theory of the exterior impedance boundary value problem in our
later treatment of the inverse scattering problem for electromagnetic waves. The
first rigorous proof of the existence of a unique solution to the exterior impedance
boundary value problem for electromagnetic waves was given by Colton and Kress
in [96]. Here we shall provide a simpler proof of this result by basing our ideas
on those developed for a perfect conductor in Chap. 6. We first define the problem
under consideration where for the rest of this section D is a bounded domain in IR3

with connected C2 boundary ∂D with unit outward normal ν.

Exterior Impedance Problem Given a Hölder continuous tangential field c on ∂D

and a positive constant λ, find a solution E,H ∈ C1(IR3 \ D̄) ∩ C(IR3 \ D) of the
Maxwell equations

curl E − ikH = 0, curl H + ikE = 0 in IR3 \ D̄ (9.43)

satisfying the impedance boundary condition

ν × curl E − iλ (ν × E) × ν = c on ∂D (9.44)

and the Silver–Müller radiation condition

lim
r→∞(H × x − rE) = 0 (9.45)

uniformly for all directions x̂ = x/|x|.
The uniqueness of a solution to (9.43)–(9.45) is easy to prove.

Theorem 9.16 The exterior impedance problem has at most one solution provided
λ > 0.
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Proof If c = 0, then from (9.44) and the fact that λ > 0 we have that

Re k

∫
∂D

ν × E · H̄ ds = −λ

∫
∂D

|ν × E|2ds ≤ 0.

We can now conclude from Theorem 6.11 that E = H = 0 in IR3 \ D̄. ��
We now turn to the existence of a solution to the exterior impedance problem,

always assuming that λ > 0. To this end, we recall the definition of the space
C0,α(∂D) of Hölder continuous functions defined on ∂D from Sect. 3.1 and
the space C

0,α
t (∂D) of Hölder continuous tangential fields defined on ∂D from

Sect. 6.3. We also recall from Theorems 3.2, 3.4, and 6.14 that the single-layer
operator S : C0,α(∂D) → C0,α(∂D) defined by

(Sϕ)(x) := 2
∫

∂D

Φ(x, y)ϕ(y) ds(y), x ∈ ∂D,

the double-layer operator K : C0,α(∂D) → C0,α(∂D) defined by

(Kϕ)(x) := 2
∫

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ ∂D,

and the magnetic dipole operator M : C
0,α
t (∂D) → C

0,α
t (∂D) defined by

(Ma)(x) := 2
∫

∂D

ν(x) × curlx{a(y)Φ(x, y)} ds(y), x ∈ ∂D

are all compact. Furthermore, with the spaces

C0,α(Div, ∂D) =
{
a ∈ C

0,α
t (∂D) : Div a ∈ C0,α(∂D)

}

and

C0,α(Curl, ∂D) =
{
b ∈ C

0,α
t (∂D) : Curl b ∈ C0,α(∂D)

}

which were also introduced in Sect. 6.3, the electric dipole operator N :
C0,α(Curl, ∂D) → C0,α(Div, ∂D) defined by

(Na)(x) := 2 ν(x) × curl curl
∫

∂D

Φ(x, y) ν(y) × a(y) ds(y), x ∈ ∂D,

is bounded by Theorem 6.19.
With these definitions and facts recalled, following Hähner [170], we now look

for a solution of the exterior impedance problem in the form
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E(x) =
∫

∂D

Φ(x, y)b(y) ds(y) + iλ curl
∫

∂D

Φ(x, y) ν(y) × (S2
0b)(y) ds(y)

+ grad
∫

∂D

Φ(x, y)ϕ(y) ds(y) + iλ

∫
∂D

Φ(x, y)ν(y)ϕ(y) ds(y),

H(x) = 1

ik
curl E(x), x ∈ IR3 \ D̄,

(9.46)
where S0 is the single-layer operator in the potential theoretic limit k = 0 and the
densities b ∈ C

0,α
t (∂D) and ϕ ∈ C0,α(∂D) are to be determined. The vector field E

clearly satisfies the vector Helmholtz equation and its Cartesian components satisfy
the (scalar) Sommerfeld radiation condition. Hence, if we insist that div E = 0
in IR3 \ D̄, then by Theorems 6.4 and 6.8 we have that E,H satisfy the Maxwell
equations and the Silver–Müller radiation condition. Since div E satisfies the scalar
Helmholtz equation and the Sommerfeld radiation condition, by the uniqueness for
the exterior Dirichlet problem it suffices to impose div E = 0 only on the boundary
∂D. From the jump and regularity conditions of Theorems 3.1, 3.3, 6.12, and 6.13,
we can now conclude that (9.46) for b ∈ C

0,α
t (∂D) and ϕ ∈ C0,α(∂D) ensures the

regularity E,H ∈ C0,α(IR3 \ D) up to the boundary and that it solves the exterior
impedance problem provided b and ϕ satisfy the integral equations

b + M11b + M12ϕ = 2c

−iλϕ + M21b + M22ϕ = 0,

(9.47)

where

M11b := Mb + iλNPS2
0b − iλPSb + λ2{M(ν × S2

0b)} × ν + λ2PS2
0b,

(M12ϕ)(x) := 2iλ ν(x) ×
∫

∂D

gradx Φ(x, y) × {ν(y) − ν(x)}ϕ(y) ds(y)

+λ2(PSνϕ)(x), x ∈ ∂D,

(M21b)(x) := −2
∫

∂D

gradx Φ(x, y) · b(y) ds(y), x ∈ ∂D,

M22ϕ := k2Sϕ + iλKϕ,

and where P stands for the orthogonal projection of a vector field defined on ∂D

onto the tangent plane, that is, Pa := (ν × a) × ν. Noting the smoothing property
S0 : C0,α(∂D) → C1,α(∂D) from Theorem 3.4, as in the proof of Theorem 6.21 it is
not difficult to verify that M11 : C

0,α
t (∂D) → C

0,α
t (∂D) is compact. Compactness
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of the operator M12 : C0,α(∂D) → C
0,α
t (∂D) follows by applying Corollary 2.9

from [104] to the first term in the definition of M12. Loosely speaking, compactness
of M12 rests on the fact that the factor ν(x)−ν(y) makes the kernel weakly singular.
Finally, M22 : C0,α(∂D) → C0,α(∂D) is compact, whereas M21 : C

0,α
t (∂D) →

C0,α(∂D) is merely bounded. Writing the system (9.47) in the form

(
I 0

M21 −iλI

)(
b

ϕ

)
+

(
M11 M12

0 M22

) (
b

ϕ

)
=

(
2c

0

)
,

we now see that the first of the two matrix operators has a bounded inverse because
of its triangular form and the second is compact. Hence, we can apply the Riesz–
Fredholm theory to (9.47).

For this purpose, suppose b and ϕ are a solution to the homogeneous equation
corresponding to (9.47) (i.e., c = 0). Then the field E,H defined by (9.46) satisfies
the homogeneous exterior impedance problem in IR3 \ D̄. Since λ > 0, we can
conclude from Theorem 9.16 that E = H = 0 in IR3 \ D. Viewing (9.46) as
defining a solution of the vector Helmholtz equation in D, from the jump relations
of Theorems 3.1, 3.3, 6.12, and 6.13 we see that

− ν × E− = iλν × S2
0b, −ν × curl E− = b on ∂D, (9.48)

− div E− = −iλϕ, −ν · E− = −ϕ on ∂D. (9.49)

Hence, with the aid of Green’s vector theorem (6.2), we derive from (9.48)
and (9.49) that

∫
D

{
| curl E|2 + | div E|2 − k2|E|2

}
dx = iλ

∫
∂D

{
|S0b|2 + |ϕ|2

}
ds.

Taking the imaginary part of the last equation and recalling that λ > 0 now shows
that S0b = 0 and ϕ = 0 on ∂D. Since S0 is injective (see the proof of Theorem 3.12),
we have that b = 0 on ∂D. The Riesz–Fredholm theory now implies the following
theorem. The statement on the boundedness of the operator A follows from the
fact that by the Riesz–Fredholm theory the inverse operator for (9.47) is bounded
from C

0,α
t (∂D) × C0,α(∂D) into itself and by applying the mapping properties of

Theorems 3.3 and 6.13 to the solution (9.46).

Theorem 9.17 Suppose λ > 0. Then for each c ∈ C
0,α
t (∂D) there exists a unique

solution to the exterior impedance problem. The operator A mapping the boundary
data c onto the tangential component ν × E of the solution is a bounded operator
A : C

0,α
t (∂D) → C0,α(Div, ∂D).

For technical reasons, we shall need in Chap. 11 sufficient conditions for the
invertibility of the operator
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NR − iλR(I + M) : C0,α(Div, ∂D) → C
0,α
t (∂D)

where the operator R : C
0,α
t (∂D) → C

0,α
t (∂D) is given by

Ra := a × ν.

To this end, we first try to express the solution of the exterior impedance problem in
the form

E(x) = curl
∫

∂D

a(y)Φ(x, y) ds(y), x ∈ IR3 \ D̄,

where a ∈ C0,α(Div, ∂D). From the jump conditions of Theorems 6.12 and 6.13,
this leads to the integral equation

NRa − iλRMa − iλRa = 2c (9.50)

for the unknown density a. However, we can interpret the solution of the exterior
impedance problem as the solution of the exterior Maxwell problem with boundary
condition

ν × E = Ac on ∂D,

and hence a also is required to satisfy the integral equation

a + Ma = 2Ac.

The last equation turns out to be a special case of Eq. (6.56) with η = 0 (and a
different right-hand side). From the proof of Theorem 6.21, it can be seen that if k is
not a Maxwell eigenvalue for D then I + M has a trivial nullspace. Hence, since by
Theorem 6.17 the operator M : C0,α(Div, ∂D) → C0,α(Div, ∂D) is compact, by
the Riesz–Fredholm theory (I + M)−1 : C0,α(Div, ∂D) → C0,α(Div, ∂D) exists
and is bounded. Hence, (I +M)−1A : C

0,α
t (∂D) → C0,α(Div, ∂D) is the bounded

inverse of NR − iλR(I + M) and we have proven the following theorem.

Theorem 9.18 Assume that λ > 0 and that k is not a Maxwell eigenvalue for D.
Then the operator NR− iλR(I +M) : C0,α(Div, ∂D) → C

0,α
t (∂D) has a bounded

inverse.

We shall now conclude this chapter by briefly considering the electric far field
patterns corresponding to the exterior impedance problem (9.43)–(9.45) with c

given by

c := −ν × curl Ei + iλ (ν × Ei) × ν on ∂D
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where Ei and Hi are given by (9.19). This corresponds to the scattering of the
incident field (9.19) by the imperfectly conducting obstacle D where the total
electric field E = Ei + Es satisfies the impedance boundary condition

ν × curl E − iλ (ν × E) × ν = 0 on ∂D (9.51)

and Es is the scattered electric field. From Theorem 6.9 we see that Es has the
asymptotic behavior

Es(x, d)p = eik|x|

|x| Eλ∞(x̂, d)p + O

(
1

|x|2
)

, |x| → ∞,

where Eλ∞ is the electric far field pattern. From (6.88) and (9.51) we can easily
deduce the following reciprocity relation [12].

Theorem 9.19 For all vectors x̂, d ∈ S
2 we have

Eλ∞(x̂, d) = [Eλ∞(−d,−x̂)]�.

We are now in a position to prove the analogue of Theorem 9.8 for the exterior
impedance problem. In particular, recall the Hilbert space L2

t (S
2) of tangential L2

vector fields on the unit sphere, let {dn : n = 1, 2, . . . } be a countable dense set
of unit vectors on S

2 and denote by e1, e2, e3 the Cartesian unit coordinate vectors
in IR3. For the electric far field patterns we now have the following theorem due to
Angell, Colton, and Kress [12].

Theorem 9.20 Assume λ > 0. Then the set

Fλ = {
Eλ∞(· , dn)ej : n = 1, 2, . . . , j = 1, 2, 3

}

of electric far field patterns for the exterior impedance problem is complete in
L2

t (S
2).

Proof Suppose that g ∈ L2
t (S

2) satisfies

∫
S2

Eλ∞(x̂, dn)ej · g(x̂) ds(x̂) = 0

for n = 1, 2, . . . and j = 1, 2, 3. We must show that g = 0. As in the proof of
Theorem 9.7, by the reciprocity Theorem 9.19, we have

∫
S2

Eλ∞(−d,−x̂)g(x̂) ds(x̂) = 0
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for all d ∈ S
2 , i.e.,

∫
S2

Eλ∞(x̂, d)h(d) ds(d) = 0 (9.52)

for all x̂ ∈ S
2 where h(d) = g(−d).

Now define the electromagnetic Herglotz pair Ei
0,H

i
0 by

Ei
0(x) =

∫
S2

Ei(x, d)h(d) ds(d) = ik

∫
S2

h(d) eik x·d ds(d),

H i
0(x) =

∫
S2

Hi(x, d)h(d) ds(d) = curl
∫
S2

h(d) eik x·d ds(d).

Analogous to Lemma 6.35 it can be seen that the left-hand side of (9.52) represents
the electric far field pattern of the scattered field Es

0,H
s
0 corresponding to the

incident field Ei
0,H

i
0. Then from (9.52) we see that the electric far field pattern

of Es
0 vanishes and hence, from Theorem 6.10, both Es

0 and Hs
0 are identically zero

in IR3 \ D. We can now conclude that Ei
0,H

i
0 satisfies the impedance boundary

condition

ν × curl Ei
0 − iλ (ν × Ei

0) × ν = 0 on ∂D. (9.53)

Gauss’ theorem and the Maxwell equations (compare (9.17)) now imply that

∫
∂D

ν × Ei
0 · H̄ i

0 ds = ik

∫
D

{
|Hi

0|2 − |Ei
0|2

}
dx

and hence from (9.53) we have that

λ

∫
∂D

|ν × Ei
0|2ds = ik2

∫
D

{
|Ei

0|2 − |Hi
0|2

}
dx

whence ν × Ei
0 = 0 on ∂D follows since λ > 0. From (9.53) we now see that

ν × Hi
0 = 0 on ∂D and hence from the Stratton–Chu formulas (6.8) and (6.9) we

have that Ei
0 = Hi

0 = 0 in D and by analyticity (Theorem 6.3) Ei
0 = Hi

0 = 0 in IR3.
But now from Theorem 3.27 we conclude that h = 0 and consequently g = 0. ��
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