
Chapter 7
Inverse Electromagnetic Obstacle
Scattering

This last chapter on obstacle scattering is concerned with the extension of the results
from Chap. 5 on inverse acoustic scattering to inverse electromagnetic scattering. In
order to avoid repeating ourselves, we keep this chapter short by referring back to
the corresponding parts of Chap. 5 when appropriate. In particular, for notations
and for the motivation of our analysis we urge the reader to get reacquainted
with the corresponding analysis in Chap. 5 on acoustics. We again follow the
general guideline of our book and consider only one of the many possible inverse
electromagnetic obstacle problems: given the electric far field pattern for one
or several incident plane electromagnetic waves and knowing that the scattering
obstacle is perfectly conducting, find the shape of the scatterer.

We begin the chapter with a uniqueness result. Due to the lack of an appropriate
selection theorem, we do not follow Schiffer’s proof as in acoustics. Instead of this,
we prove a uniqueness result following Isakov’s approach and, in addition, we use
a method based on differentiation with respect to the wave number. We also include
the electromagnetic version of Karp’s theorem.

We then proceed to establish a continuous dependence result on the boundary
based on the integral equation approach. As an alternative for establishing Fréchet
differentiability with respect to the boundary we present the electromagnetic version
of an approach proposed by Kress and Päivärinta [271]. The following three
sections then will present extensions of some of the iterative methods, decom-
position methods, and sampling methods considered in Chap. 5 from acoustics to
electromagnetics. In particular we will present the electromagnetic versions of the
iterative method due to Johansson and Sleeman, the decomposition methods of
Kirsch and Kress and of Colton and Monk, and conclude with a discussion of the
linear sampling method in electromagnetic obstacle scattering.
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7.1 Uniqueness

For the investigation of uniqueness in inverse electromagnetic obstacle scattering,
as in the case of the Neumann and the impedance boundary condition in acous-
tics, Schiffer’s method of Theorem 5.1 cannot be applied since the appropriate
selection theorem in electromagnetics requires the boundary to be sufficiently
smooth (see [297]). However, the methods used in Theorem 5.6 for inverse acoustic
scattering can be extended to the case of inverse electromagnetic scattering from
perfect and impedance conductors. We consider boundary conditions of the form
BE = 0 on ∂D, where BE = ν × E for a perfect conductor and BE =
ν × curl E − iλ (ν × E) × ν for the impedance boundary condition. In the latter
case, the real-valued function λ is assumed to be continuous and positive to ensure
well-posedness of the direct scattering problem as proven in Theorem 9.17.

Theorem 7.1 Assume that D1 and D2 are two scatterers with boundary conditions
B1 and B2 such that for a fixed wave number the electric far field patterns for both
scatterers coincide for all incident directions and all polarizations. Then D1 = D2
and B1 = B2.

Proof The proof is completely analogous to that of Theorem 5.6 for the acoustic
case which was based on the reciprocity relations from Theorems 3.24 and 3.25 and
Holmgren’s Theorem 2.3. In the electromagnetic case we have to use the reciprocity
relations from Theorems 6.31 and 6.32 and Holmgren’s Theorem 6.5 and instead of
point sources Φ(· , z) as incident fields we use electric dipoles curl curl pΦ(· , z).

��
A corresponding uniqueness result for the inverse electromagnetic transmission

problem has been proven by Hähner [174].
For diversity, we now prove a uniqueness theorem for fixed direction and

polarization.

Theorem 7.2 Assume that D1 and D2 are two perfect conductors such that
for one fixed incident direction and polarization the electric far field patterns
of both scatterers coincide for all wave numbers contained in some interval
0 < k1 < k < k2 < ∞. Then D1 = D2.

Proof We will use the fact that the scattered wave depends analytically on the wave
number k. Deviating from our usual notation, we indicate the dependence on the
wave number by writing Ei(x; k), Es(x; k), and E(x; k). Since the fundamental
solution to the Helmholtz equation depends analytically on k, the integral operator
I + M + iNPS2

0 in the integral equation (6.56) is also analytic in k. (For the reader
who is not familiar with analytic operators, we refer to Sect. 8.5.) From the fact
that for each k > 0 the inverse operator of I + M + iNPS2

0 exists, by using a
Neumann series argument it can be deduced that the inverse (I + M + iNPS2

0)−1

is also analytic in k. Therefore, the analytic dependence of the right-hand side
c = 2 Ei(· ; k) × ν of (6.56) for the scattering problem implies that the solution
a also depends analytically on k and consequently from the representation (6.55)
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it can be seen that the scattered field Es(· ; k) also depends analytically on k. In
addition, from (6.55) it also follows that the derivatives of Es with respect to the
space variables and with respect to the wave number can be interchanged. Therefore,
from the vector Helmholtz equation ΔE + k2E = 0 for the total field E = Ei +Es

we derive the inhomogeneous vector Helmholtz equation

ΔF + k2F = −2kE

for the derivative

F := ∂E

∂k
.

Let k0 be an accumulation point of the wave numbers for the incident waves
and assume that D1 �= D2. By Theorem 6.10, the electric far field pattern uniquely
determines the scattered field. Hence, for any incident wave Ei the scattered wave
Es for both obstacles coincide in the unbounded component G of the complement
of D1 ∪D2. Without loss of generality, we assume that (IR3 \G)\ D̄2 is a nonempty
open set and denote by D∗ a connected component of (IR3 \ G) \ D̄2. Then E is
defined in D∗ since it describes the total wave for D2, that is, E satisfies the vector
Helmholtz equation in D∗ and fulfills homogeneous boundary conditions ν×E = 0
and div E = 0 on ∂D∗ for each k with k1 < k < k2. By differentiation with respect
to k, it follows that F(· ; k0) satisfies the same homogeneous boundary conditions.
Therefore, from Green’s vector theorem (6.3) applied to E(· ; k0) and F(· ; k0) we
find that

2k0

∫
D∗

|E|2dx =
∫

D∗

{
F̄ΔE − EΔF̄

}
dx = 0,

whence E = 0 first in D∗ and then by analyticity everywhere outside D1 ∪D2. This
implies that Ei satisfies the radiation condition whence Ei = 0 in IR3 follows (cf.
p. 231). This is a contradiction. ��

Concerning uniqueness for one incident wave under a priori assumptions on
the shape of the scatterer we note that analogous to Theorem 5.4 using the
explicit solution (6.85) it can be shown that a perfectly conducting ball is uniquely
determined by the far field pattern for plane wave incidence with one direction d and
polarization p. In the context of Theorem 5.5 it has been shown by Liu, Yamamoto,
and Zou [306] that a perfectly conducting polyhedron is uniquely determined by the
far field pattern for plane wave incidence with one direction d and two polarizations
p1 and p2. We note that our proof of Theorem 5.5 for a convex polyhedron can be
carried over to the perfect conductor case.

We include in this section on uniqueness the electromagnetic counterpart of
Karp’s theorem for acoustics. If the perfect conductor D is a ball centered at the
origin, it is obvious from symmetry considerations that the electric far field pattern
for incoming plane waves of the form (6.86) satisfies
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E∞(Qx̂,Qd)Qp = QE∞(x̂, d)p (7.1)

for all x̂, d ∈ S
2, all p ∈ IR3, and all rotations Q, i.e., for all real orthogonal

matrices Q with det Q = 1. As shown by Colton and Kress [98], the converse of
this statement is also true. We include a simplified version of the original proof.

The vectors x̂, p × x̂ and x̂ × (p × x̂) form a basis in IR3 provided p × x̂ �= 0.
Hence, since the electric far field pattern is orthogonal to x̂, we can write

E∞(x̂, d)p = [e1(x̂, d)p] p × x̂ + [e2(x̂, d)p] x̂ × (p × x̂)

where

[e1(x̂, d)p] = [p × x̂] · E∞(x̂, d)p

and

[e2(x̂, d)p] = [x̂ × (p × x̂)] · E∞(x̂, d)p

and the condition (7.1) is equivalent to

ej (Qx̂,Qd)Qp = ej (x̂, d)p, j = 1, 2.

This implies that

∫
S2

ej (x̂, d)p ds(d) =
∫
S2

ej (Qx̂, d)Qp ds(d)

and therefore
∫
S2

E∞(x̂, d)p ds(d) = c1(θ) p × x̂ + c2(θ) x̂ × (p × x̂) (7.2)

for all x̂ ∈ S
2 and all p ∈ IR3 with p × x̂ �= 0 where c1 and c2 are functions

depending only on the angle θ between x̂ and p. Given p ∈ IR3 such that 0 < θ <

π/2, we also consider the vector

q := 2 x̂ · p x̂ − p

which clearly makes the same angle with x̂ as p. From the linearity of the electric
far field pattern with respect to polarization, we have

E∞(x̂, d)(λp + μq) = λE∞(x̂, d)p + μE∞(x̂, d)q (7.3)
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for all λ,μ ∈ IR. Since q × x̂ = −p × x̂, from (7.2) and (7.3) we can conclude that

cj (θλμ) = cj (θ), j = 1, 2,

for all λ,μ ∈ IR with λ �= μ where θλμ is the angle between x̂ and λp + μq. This
now implies that both functions c1 and c2 are constants since, by choosing λ and
μ appropriately, we can make θλμ to be any angle between 0 and π . With these
constants, by continuity, (7.2) is valid for all x̂ ∈ S

2 and all p ∈ IR3.
Choosing a fixed but arbitrary vector p ∈ IR3 and using the Funk–Hecke

formula (2.45), we consider the superposition of incident plane waves given by

Ẽi(x) = i

k
curl curl p

∫
S2

eik x·dds(d) = 4πi

k2 curl curl p
sin k|x|

|x| . (7.4)

Then, by Lemma 6.35 and (7.2), the corresponding scattered wave Ẽs has the
electric far field pattern

Ẽ∞(x̂) = c1 p × x̂ + c2 x̂ × (p × x̂).

From this, with the aid of (6.26) and (6.27), we conclude that

Ẽs(x) = ic1

k
curl p

eik|x|

|x| + c2

k2 curl curl p
eik|x|

|x| . (7.5)

Using (7.4) and (7.5) and setting r = |x|, the boundary condition ν×(Ẽi +Ẽs) = 0
on ∂D can be brought into the form

ν(x) × {g1(r) p + g2(r) p × x + g3(r) (p · x) x} = 0, x ∈ ∂D, (7.6)

for some functions g1, g2, g3. In particular,

g1(r) = 4πi

k2r

{
d

dr

sin kr

r
+ k2 sin kr + c2

4πi

d

dr

eikr

r
+ c2k

2

4πi
eikr

}
.

For a fixed, but arbitrary x ∈ ∂D with x �= 0 we choose p to be orthogonal to x and
take the scalar product of (7.6) with p × x to obtain

g1(r) x · ν(x) = 0, x ∈ ∂D.

Assume that g1(r) �= 0. Then x · ν(x) = 0 and inserting p = x × ν(x) into (7.6)
we arrive at the contradiction g1(r) x = 0. Hence, since x ∈ ∂D can be chosen
arbitrarily, we have that g1(r) = 0 for all x ∈ ∂D with x �= 0. Since g1 does not
vanish identically and is analytic, it can have only discrete zeros. Therefore, r = |x|
must be constant for all x ∈ ∂D, i.e., D is a ball with center at the origin.



278 7 Inverse Electromagnetic Obstacle Scattering

7.2 Continuity and Differentiability of the Far Field
Mapping

In this section, as in the case of acoustic obstacle scattering, we wish to study some
of the properties of the far field mapping

F : ∂D 	→ E∞

which for a fixed incident plane wave Ei maps the boundary ∂D of the perfect
conductor D onto the electric far field pattern E∞ of the scattered wave.

We first briefly wish to indicate why the weak solution methods used in the
proof of Theorems 5.8 and 5.9 have no immediate counterpart for the electro-
magnetic case. Recall the electric to magnetic boundary component map A from
Theorem 6.22 that for radiating solutions to the Maxwell equations transforms the
tangential trace of the electric field onto the tangential trace of the magnetic field.
In the remark after Theorem 6.23 we noted that A is a bijective bounded operator
from H−1/2(Div, ∂D) onto H−1/2(Div, ∂D) with a bounded inverse.

Now let SR denote the sphere of radius R centered at the origin and recall
the definition (6.60) of the vector spherical harmonics Um

n and V m
n . Then for the

tangential field

a =
∞∑

n=1

n∑
m=−n

{
am
n Um

n + bm
n V m

n

}

with Fourier coefficients am
n and bm

n the norm on H−1/2(SR) can be written as

‖a‖2
H−1/2(SR)

=
∞∑

n=1

1

n

n∑
m=−n

{∣∣am
n

∣∣2 + ∣∣bm
n

∣∣2
}
.

Since Div Um
n = −√

n(n + 1) Ym
n and Div V m

n = 0, the norm on the Sobolev space
H−1/2(Div, SR) is equivalent to

‖a‖2
H−1/2(Div,SR)

=
∞∑

n=1

{
n

n∑
m=−n

∣∣am
n

∣∣2 + 1

n

n∑
m=−n

∣∣bm
n

∣∣2

}
.

From the expansion (6.73) for radiating solutions to the Maxwell equations, we
see that A maps the tangential field a with Fourier coefficients am

n and bm
n onto

Aa = 1

ik

∞∑
n=1

{
δn

n∑
m=−n

am
n V m

n + k2

δn

n∑
m=−n

bm
n Um

n

}
(7.7)
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where

δn := kh
(1)′
n (kR)

h
(1)
n (kR)

+ 1

R
, n = 1, 2, . . . .

Comparing this with (5.22), we note that

δn = γn + 1

R
,

that is, we can use the results from the proof of Theorem 5.8 on the coefficients
γn. There does not exist a positive t such that h

(1)
n (t) = 0 or h

(1)
n (t) + th

(1)′
n (t) = 0

since the Wronskian (2.37) does not vanish. Therefore, we have confirmed that the
operator A in the special case of a ball indeed is bijective. Furthermore, from

c1n ≤ |δn| ≤ c2n

which is valid for all n and some constants 0 < c1 < c2, it is confirmed that A maps
H−1/2(Div, SR) boundedly onto itself.

However, different from the acoustic case, due to the factor k2 in the second term
of the expansion (7.7) the operator ikA in the limiting case k = 0 no longer remains
bijective. This reflects the fact that for k = 0 the Maxwell equations decouple.
Therefore, there is no obvious way of splitting A into a strictly coercive and a
compact operator as was done for the Dirichlet to Neumann map in the proof of
Theorem 5.8.

Hence, for the continuous dependence on the boundary in electromagnetic
obstacle scattering, we rely on the integral equation approach. For this, we describe
a modification of the boundary integral equations used for proving existence of a
solution to the exterior Maxwell problem in Theorem 6.21 which was introduced by
Werner [423] and simplified by Hähner [171, 173]. In addition to surface potentials,
it also contains volume potentials which makes it less satisfactory from a numerical
point of view. However, it will make the investigation of the continuous dependence
on the boundary easier since it avoids dealing with the more complicated second
term in the approach (6.55) containing the double curl. We recall the notations
introduced in Sects. 6.3 and 6.4. After choosing an open ball B such that B̄ ⊂ D,
we try to find the solution to the exterior Maxwell problem in the form

E(x) = curl
∫

∂D

Φ(x, y)a(y) ds(y)

−
∫

∂D

Φ(x, y)ϕ(y)ν(y) ds(y) −
∫

B

Φ(x, y)b(y) dy,

H(x) = 1

ik
curl E(x), x ∈ IR3 \ ∂D.

(7.8)
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We assume that the densities a ∈ C0,α(Div, ∂D), ϕ ∈ C0,α(∂D) and b ∈ C0,α(B)

satisfy the three integral equations

a + M11a + M12ϕ + M13b = 2c

ϕ + M22ϕ + M23b = 0

b + M31a + M32ϕ + M33b = 0

(7.9)

where the operators are given by M11 := M , M22 := K , M12ϕ := −ν × S(νϕ),

and

(M13b)(x) := −2 ν(x) ×
∫

B

Φ(x, y)b(y) dy, x ∈ ∂D,

(M23b)(x) := −2
∫

B

b(y) · gradx Φ(x, y) dy, x ∈ ∂D,

(M31a)(x) := iη(x) curl
∫

∂D

Φ(x, y)a(y) ds(y), x ∈ B,

(M32ϕ)(x) := −iη(x)

∫
∂D

Φ(x, y)ϕ(y)ν(y) ds(y), x ∈ B,

(M33b)(x) := −iη(x)

∫
B

Φ(x, y)b(y) dy, x ∈ B,

and where η ∈ C0,α(IR3) is a function with η > 0 in B and supp η = B̄.
First assume that we have a solution to these integral equations. Then clearly

div E is a radiating solution to the Helmholtz equation in IR3 \ D̄ and, by the jump
relations, the second integral equation implies div E = 0 on ∂D. Hence, div E = 0
in IR3 \ D̄ because of the uniqueness for the exterior Dirichlet problem. Now, with
the aid of Theorems 6.4 and 6.8, we conclude that E,H is a radiating solution to
the Maxwell equations in IR3 \ D̄. By the jump relations, the first integral equation
ensures the boundary condition ν × E = c on ∂D is satisfied.

We now establish that the system (7.9) of integral equations is uniquely solvable.
For this, we first observe that all the integral operators Mij are compact. The
compactness of M11 = M and M22 = K is stated in Theorems 6.17 and 3.4 and the
compactness of M33 follows from the fact that the volume potential operator maps
C(B̄) boundedly into C1,α(B̄) (see Theorem 8.1) and the imbedding Theorem 3.2.
The compactness of M12 : C0,α(∂D) → C0,α(Div, ∂D) follows from Theorem 3.4
and the representation

(Div M12ϕ)(x) = 2 ν(x)·
∫

∂D

ϕ(y){ν(x)−ν(y)}×gradx Φ(x, y) ds(y), x ∈ ∂D,
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which can be derived with the help of (6.43). The term ν(x)−ν(y) makes the kernel
weakly singular in a way such that Corollary 2.9 from [104] can be applied. For
the other terms, compactness is obvious since the kernels are sufficiently smooth.
Hence, by the Riesz–Fredholm theory it suffices to show that the homogeneous
system only allows the trivial solution.

Assume that a, ϕ, b solve the homogeneous form of (7.9) and define E,H

by (7.8). Then, by the above analysis, we already know that E,H solve the
homogeneous exterior Maxwell problem whence E = H = 0 in IR3 \ D̄ follows.
The jump relations then imply that

ν × curl E− = 0, ν · E− = 0 on ∂D. (7.10)

From the third integral equation and the conditions on η, we observe that we may
view b as a field in C0,α(IR3) with support in B̄. Therefore, by the jump relations
for volume potentials (see Theorem 8.1), we have E ∈ C2(D) and, in view of the
third integral equation,

ΔE + k2E = b = −iηE in D. (7.11)

From (7.10) and (7.11) with the aid of Green’s vector theorem (6.2), we now derive

∫
D

{
| curl E|2 + | div E|2 − (k2 + iη)|E|2

}
dx = 0,

whence, taking the imaginary part,

∫
B

η|E|2dx = 0

follows. This implies E = 0 in B and from (7.11) we obtain b = ΔE + k2E = 0
in D. Since solutions to the Helmholtz equation are analytic, from E = 0 in B we
obtain E = 0 in D. The jump relations now finally yield a = ν ×E+ − ν ×E− = 0
and ϕ = div E+ − div E− = 0. Thus, we have established unique solvability for the
system (7.9).

We are now ready to outline the proof of the electromagnetic analogue to the
continuous dependence result of Theorem 5.17. We again consider surfaces Λ which
are starlike with respect to the origin and represented in the form (5.20) with a
positive function r ∈ C1,α(S2) with 0 < α < 1. We recall from Sect. 5.3 what we
mean by convergence of surfaces Λn → Λ, n → ∞, and L2 convergence of
functions fn from L2(Λn) to a function f in L2(Λ). (For consistency with the rest
of our book, we again choose C2 surfaces Λn and Λ instead of C1,α surfaces.)

Theorem 7.3 Let (Λn) be a sequence of starlike C2 surfaces which converges with
respect to the C1,α norm to a C2 surface Λ as n → ∞ and let En,Hn and
E,H be radiating solutions to the Maxwell equations in the exterior of Λn and
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Λ, respectively. Assume that the continuous tangential components of En on Λn are
L2 convergent to the tangential components of E on Λ. Then the sequence (En),
together with all its derivatives, converges to E uniformly on compact subsets of the
open exterior of Λ.

Proof As in the proof of Theorem 5.17, we transform the boundary integral
equations in (7.9) onto a fixed reference surface by substituting x = r(x̂) x̂ to obtain
integral equations over the unit sphere for the surface densities

ã(x̂) := x̂ × a(r(x̂) x̂), ϕ̃(x̂) := ϕ(r(x̂) x̂).

Since the weak singularities of the operators M11, M22 and M12 are similar in
structure to those of K and S which enter into the combined double- and single-
layer approach to the exterior Dirichlet problem, proceeding as in Theorem 5.17 it
is possible to establish an estimate of the form (5.55) for the boundary integral terms
in the transformed equations corresponding to (7.9). For the mixed terms like M31
and M13, estimates of the type (5.55) follow trivially from Taylor’s formula and the
smoothness of the kernels. Finally, the volume integral term corresponding to M33
does not depend on the boundary at all. Based on these estimates, the proof is now
completely analogous to that of Theorem 5.17. ��

Without entering into details we wish to mention that the above approach can also
be used to show Fréchet differentiability with respect to the boundary analogously
to Theorem 5.15 (see [356]).

In an alternate approach for establishing Fréchet differentiability, we extend
a technique due to Kress and Päivärinta [271] from acoustic to electromagnetic
scattering. For this, in a slightly more general setting, we consider a family of
scatterers Dh with boundaries represented in the form

∂Dh = {x + h(x) : x ∈ ∂D} (7.12)

where h : ∂D → IR3 is of class C2 and sufficiently small in the C2 norm on ∂D.
Then we may consider the operator F as a mapping from a ball

V := {h ∈ C2(∂D) : ‖h‖C2 < δ} ⊂ C2(∂D)

with sufficiently small radius δ > 0 into L2
t (S

2).
From Theorem 6.44 we recall the bounded linear operator A : L2

t (∂D) →
L2

t (S
2) which maps the electric tangential components on ∂D of radiating solutions

to the Maxwell equations in IR3 \ D̄ onto the electric far field pattern. Further we
denote by Ah the operator A with ∂D replaced by ∂Dh and define the integral
operator Gh : L2

t (∂Dh) → L2
t (∂Dh) by

(Gha)(x) := ν(x) ×
∫

∂Dh

Ee(x , y)[ν(y) × a(y)] ds(y), x ∈ ∂D,



7.2 Continuity and Differentiability of the Far Field Mapping 283

in terms of the total electric field Ee for scattering of the electric dipole field Ei
e,H

i
e

given by (6.89) from D.

Lemma 7.4 Assume that D̄ ⊂ Dh. Then for the far fields E∞ and Eh,∞ for
scattering of an incident field Ei,H i from D and Dh, respectively, we have the
factorization

Eh,∞ − E∞ = AhGh

(
ν × Hh|∂Dh

)
(7.13)

where Hh denotes the total magnetic field for scattering from Dh.

Proof As indicated in the formulation of the lemma, we distinguish the solution to
the scattering problem for the domain Dh by the subscript h, that is, Eh = Ei + Es

h

and Hh = Hi + Hs
h . By Huygens’ principle, i.e., Theorem 6.24, the scattered field

can be written as

Es(x) =
∫

∂D

[Ei
e(·, x)]�[ν × H ] ds, x ∈ IR3 \ D̄h. (7.14)

From this we obtain that

−Es(x) =
∫

∂D

{
[Es

e(·, x)]�[ν × H ] + [Hs
e (·, x)]�[ν × E]

}
ds

=
∫

∂Dh

{
[Es

e(·, x)]�[ν × H ] + [Hs
e (·, x)]�[ν × E]

}
ds

=
∫

∂Dh

{
[Es

e(·, x)]�[ν × Hi] + [Hs
e (·, x)]�[ν × Ei]

}
ds

=
∫

∂Dh

{
[Es

e(·, x)]�[ν × Hi] − [Hs
e (·, x)]�[ν × Es

h]
}

ds

=
∫

∂Dh

[Es
e(·, x)]�[ν × Hh] ds, x ∈ IR3 \ D̄h,

where we have used the perfect conductor boundary condition, the vector Green’s
theorem (applied component-wise), and the radiation condition.

On the other hand, the representation (7.14) applied to Dh yields

Es
h(x) =

∫
∂Dh

[Ei
e(·, x)]�[ν × Hh ds, x ∈ IR3 \ D̄h,

and (7.13) follows by adding the last two equations and passing to the far field. ��
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Theorem 7.5 The boundary to far field mapping F : ∂Dh 	→ E∞ is Fréchet
differentiable. The derivative is given by

F ′(∂D) : h 	→ Eh,∞,

where Eh,∞ is the electric far field pattern of the uniquely determined radiating
solution Eh,Hh to the Maxwell equations in IR3 \ D̄ satisfying the boundary
condition

ν × Eh = −ik ν × (H × ν) ν · h − ν × Grad{(ν · h) (ν · E)} on ∂D (7.15)

in terms of the total field E = Ei + Es,H = Hi + Hs .

Proof We use the notations introduced in connection with Lemma 7.4. For sim-
plicity we assume that ∂D is analytic. Then, by the regularity results on elliptic
boundary value problems, the fields E,H and Ee,He can be extended as solutions
to the Maxwell equations across the boundary ∂D. (This follows from Sects. 6.1
and 6.6 in [325] by considering the boundary value problem for the Maxwell equa-
tions equivalently as a boundary value problem for the vector Helmholtz equation
with boundary condition for the tangential components and the divergence.) Hence
(7.13) remains valid also if D̄ �⊂ Dh provided that h is sufficiently small.

For simplicity we confine ourselves to the case where k is not a Maxwell
eigenvalue. As in the proof of Theorem 6.43, from Huygen’s principle (6.58) we
obtain the integral equation

b + M ′b = 2{ν × Hi} × ν (7.16)

for the tangential component b = {ν × H } × ν of the magnetic field. Because
of our assumption on k the operator I + M ′ : L2

t (∂D) → L2
t (∂D) has a trivial

nullspace and consequently a bounded inverse. By M ′
h we denote the operator M ′

with ∂D replaced by ∂Dh and interpret it as an operator M ′
h : Ct(∂D) → Ct(∂D)

by substituting x = ξ + h(ξ) and y = η + h(η). With the aid of the decomposition
(6.32) of the kernel of M , proceeding as in the proof of Theorem 5.14 it can be
shown that

‖M ′
h − M ′‖∞ ≤ c‖h‖C2(∂D)

for some constant c depending on ∂D. Hence, by a Neumann series argument, from
(7.16) it can be deduced that we have continuity

|νh(y + h(y)) × Hh(y + h(y)) − ν(y) × H(y)| → 0, ‖h‖C2(∂D) → 0,

uniformly for all y ∈ ∂D. From this, in view of the continuity of H , it follows that

∫
∂Dh

Ee(x, ·)[ν × Hh] ds =
∫

∂Dh

Ee(x, ·)[ν × H ] ds + o
(‖h‖C2(∂D)

)
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uniformly for all sufficiently large |x|.
Using the symmetry relation (6.93) and the boundary condition ν ×Ee(x, ·) = 0

on ∂D, from Gauss’ divergence theorem we obtain

∫
∂Dh

Ee(x, ·)[ν × H ] ds − ik

∫
D∗

h

{
[Ee(· , x)]�E + [He(· , x)]�H

}
χ dy,

where

D∗
h := {y ∈ Dh : y �∈ D} ∪ {y ∈ D : y �∈ Dh}

and χ(y) = 1 if y ∈ Dh and y �∈ D and χ(y) = −1 if y ∈ D and y �∈ Dh. With
the aid of the boundary condition ν ×E = 0 on ∂D it can be shown that the volume
integral over D∗

h can be approximated by a surface integral over ∂D through

∫
D∗

h

{
[Ee(· , x)]�E + [He(· , x)]�H

}
χ dy

=
∫

∂D

{
[Ee(· , x)]�[ν (E · ν)]+[He(· , x)]�[ν × (H × ν)]

}
ν · h ds+o

(‖h‖C1(∂D)

)

uniformly for all sufficiently large |x|. Note that ν × E = 0 on ∂D implies that
ν · H = 0 on ∂D as consequence of the Maxwell equations and the identity (6.43).
Also as a consequence of the latter identity, with the help of the surface divergence
theorem we can deduce that

k

∫
∂D

ν·h [Ee(· , x)]�[ν (E·ν)] ds = −i

∫
∂D

[He(· , x)]�[ν×Grad{(ν·h) (ν·E)}] ds.

Hence, putting the preceding four equations together and using the boundary
condition (7.15) we find that

∫
∂Dh

Ee(x, ·)[ν×Hh] ds =
∫

∂D

[He(· , x)]�[ν×E] ds+o
(‖h‖C2(∂D)

)
. (7.17)

On the other hand, from the Stratton–Chu formula (6.16) applied to Eh,Hh, the
radiation condition and the boundary condition ν ×Ee = 0 on ∂D we conclude that

Eh(x) =
∫

∂D

[He(· , x)]�[ν × E] ds, x ∈ IR3 \ D̄.

Therefore, we can rewrite (7.17) as

∫
∂Dh

Ee(x, ·)[ν × Hh] ds = Eh(x) + o
(‖h‖C2(∂D)

)
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and passing to the far field, with the aid of the identity (7.13), it follows that

Eh,∞ − E∞ = Eh,∞ + o
(‖h‖C2(∂D)

)
.

This completes the proof. ��
This approach to proving Fréchet differentiability has been extended to the

impedance boundary condition by Haddar and Kress [169].

7.3 Iterative Solution Methods

All the iterative methods for solving the inverse obstacle problem in acoustics
described in Sect. 5.4, in principle, have extensions to electromagnetic inverse
obstacle scattering.

Here, in order to avoid repetitions, we only present an electromagnetic version
of the method due to Johansson and Sleeman as suggested by Pieper [350]. We
recall Huygens’ principle from Theorem 6.24 and to circumvent the use of the
hypersingular operator N we start from the representation

H(x) = Hi(x) + curl
∫

∂D

ν(y) × H(y)Φ(x, y) ds(y), x ∈ IR3 \ D̄, (7.18)

for the total magnetic field H in terms of the incident field Hi and the representation

H∞(x̂) = ik

4π
x̂ ×

∫
∂D

ν(y) × H(y) e−ik x̂·y ds(y), x̂ ∈ S
2, (7.19)

for the magnetic far field pattern H∞. From (7.18), as in the proof of Theorem 6.43,
from the jump relations we find that the tangential component

a := ν × H on ∂D

satisfies

a(x) − 2
∫

∂D

ν(x) × {curlx Φ(x, y)a(y)} ds(y) = 2 ν(x) × Hi(x), x ∈ ∂D,

(7.20)
and (7.19) can be written as

ik

4π
x̂ ×

∫
∂D

a(y)e−ik x̂·y ds(y) = H∞(x̂), x̂ ∈ S
2. (7.21)

We call (7.20) the field equation and (7.21) the data equation and interpret them
as two integral equations for the unknown boundary and the unknown tangential



7.3 Iterative Solution Methods 287

component a of the total magnetic field on the boundary. Both equations are linear
with respect to a and nonlinear with respect to ∂D. Equation (7.21) is severely ill-
posed whereas (7.20) is well-posed provided k is not a Maxwell eigenvalue for D.

As in Sect. 5.4 there are three possible options for an iterative solution of the
system (7.20)– (7.21). Here, from these we only briefly discuss the case where,
given an approximation for the boundary ∂D, we solve the well-posed equation
of the second kind (7.20) for a. Since the perfect conductor boundary condition
ν ×E = 0 on ∂D by the identity (6.43) implies that ν ·H = 0 on ∂D, the full three-
dimensional field H on ∂D is available via H = a × ν. Then, keeping H fixed,
Eq. (7.21) is linearized with respect to ∂D to update the boundary approximation.

To describe this linearization in more detail, using the parameterization (5.20)
for starlike ∂D and recalling the notation (5.32), we introduce the parameterized far
field operator

A∞ : C2(S2) × L2
t (S

2) → L2
t (S

2)

by

A∞(r, b)(x̂) := ik

4π
x̂ ×

∫
S2

νr(ŷ) × b(ŷ)e−ikr(ŷ) x̂·ŷds(ŷ), x̂ ∈ S
2. (7.22)

Here νr denotes the transformed normal vector as given by (5.33) in terms of the
transformation pr : S2 → ∂D. Now the data equation (7.21) can be written in the
operator form

A∞(r, b) = H∞ (7.23)

where we have set

b := Jr (a ◦ pr) × νr (7.24)

with the Jacobian Jr of pr . To update the boundary, the linearization

A′∞(r, b)q = H∞ − A∞(r, b)

of (7.23) needs to be solved for q. The derivative A′∞ is given by

(
A′∞(r, ψ)q

)
(x̂) = k2

4π
x̂ ×

∫
S2

νr(ŷ) × b(ŷ)e−ikr(ŷ) x̂·ŷ x̂ · ŷ q(ŷ)ds(ŷ)

+ ik

4π
x̂ ×

∫
S2

(ν′
rq)(ŷ) × b(ŷ)e−ikr(ŷ) x̂·ŷds(ŷ), x̂ ∈ S

2,
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where

(νr )
′q = pq − Grad q√

r2 + | Grad r|2 − rq + Grad r · Grad q

r2 + | Grad r|2 νr

denotes the derivative of νr , see (5.33) and (5.37).
We present two examples for reconstructions that were provided to us by Olha

Ivanyshyn. The synthetic data were obtained by applying the spectral method of
Sect. 3.7 to the integral equation (6.56) for η = k. For this, the unknown tangential
vector field was represented in terms of its three Cartesian components and (6.56)
was interpreted as a system of three scalar integral equations and the variant (3.146)
of Wienert’s method was applied. In both examples the synthetic data consisted of
242 values of the far field.

Correspondingly, for the reconstruction the number of collocation points on S
2

for the data equation (7.21) also was chosen as 242. For the field equation (7.20)
again Wienert’s spectral method (3.146) was applied with 242 collocation points
and 338 quadrature points corresponding to N = 10 and N ′ = 12 in (3.148). For
the approximation space for the radial function representing the boundary of the
scatterer, spherical harmonics up to order six were chosen.

The wave number was k = 1 and the incident direction d = (0, 0,−1) and
the polarization p = (1, 0, 0) are indicated in the figures by a solid and a dashed
arrow, respectively. The iterations were started with a ball of radius 3.5Y 0

0 = 0.9873
centered at the origin. For the surface update H 1 penalization was applied with the
regularization parameter selected by trial and error as αn = αγ n depending on the
iteration number n with α = 0.5 and γ = 2/3.

Both to the real and imaginary part of the far field data 1% of normally distributed
noise was added, i.e.,

‖H∞ − Hδ∞‖L2(S2)

‖H∞‖L2(S2
≤ 0.01.

In terms of the relative data error

εr := ‖H∞ − Hr,∞‖L2(S2)

‖H∞‖L2(S2)

with the given far field data H∞ and the far field Hr,∞ corresponding to the radial
function r , a stopping criterion was incorporated such that the iteration was carried
on as long as εr > 0.05 or εr > εr+q . The figures show the exact shape on the left
and the reconstruction on the right.

The first example is a cushion shaped scatterer with radial function

r(θ, ϕ) = √
0.8 + 0.5(cos 2ϕ − 1)(cos 4θ − 1), θ ∈ [0, π ], ϕ ∈ [0, 2π ].
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Figure 7.1 shows the reconstruction after 19 iteration steps with the final data error
εr = 0.026.

The second example is a pinched ball with radial function

r(θ, ϕ) = √
1.44 + 0.5 cos 2ϕ(cos 2θ − 1), θ ∈ [0, π ], ϕ ∈ [0, 2π ].

Figure 7.2 shows the reconstruction after nine iteration steps with data error εr =
0.012.

In passing we note that, in principle, instead of (7.24) one also could substitute
b := (a ◦ pr) × νr , i.e., linearize also with respect to the surface element. However,
numerical examples indicate that this variant is less stable.

For an implementation of regularized Newton iterations for the simultaneous
linearization of the field equation (7.20) and the data equation (7.21) using spectral
methods in the spirit of [145, 146] we refer to [217, 298, 299] where both the
theoretical and numerical analysis were made more efficient by the use of the Piola
transformation from continuum mechanics.

Fig. 7.1 Reconstruction of a cushion from noisy data

Fig. 7.2 Reconstruction of a pinched ball from noisy data
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7.4 Decomposition Methods

We begin this section by describing the electromagnetic version of the decomposi-
tion method proposed by Kirsch and Kress for inverse acoustic obstacle scattering.
We confine our analysis to inverse scattering from a perfectly conducting obstacle.
Extensions to other boundary conditions are also possible.

We again first construct the scattered wave Es from a knowledge of its electric far
field pattern E∞. To this end, we choose an auxiliary closed C2 surface Γ with unit
outward normal ν contained in the unknown scatterer D such that k is not a Maxwell
eigenvalue for the interior of Γ . For example, we can choose Γ to be a sphere of
radius R such that jn(kR) �= 0 and jn(kR)+kRj ′

n(kR) �= 0 for n = 0, 1, . . . . Given
the internal surface Γ , we try to represent the scattered field as the electromagnetic
field

Es(x) = curl
∫

Γ

Φ(x, y)a(y) ds(y), Hs(x) = 1

ik
curl Es(x) (7.25)

of a magnetic dipole distribution a from the space L2
t (Γ ) of tangential L2 fields on

Γ . From (6.26) we see that the electric far field pattern of Es is given by

E∞(x̂) = ik

4π
x̂ ×

∫
Γ

e−ik x̂·ya(y) ds(y), x̂ ∈ S
2.

Hence, given the (measured) electric far field pattern E∞, we have to solve the ill-
posed integral equation of the first kind

M∞a = E∞ (7.26)

for the density a where the integral operator M∞ : L2
t (Γ ) → L2

t (S
2) is defined by

(M∞a)(x̂) := ik

4π
x̂ ×

∫
Γ

e−ik x̂·ya(y) ds(y), x̂ ∈ S
2. (7.27)

As for the corresponding operator (5.70) in acoustics, the operator (7.27) has an
analytic kernel and therefore the integral equation (7.26) is severely ill-posed. We
now establish some properties of M∞.

Theorem 7.6 The far field operator M∞ defined by (7.27) is injective and has
dense range provided k is not a Maxwell eigenvalue for the interior of Γ .

Proof Let M∞a = 0 and define an electromagnetic field by (7.25). Then Es has
vanishing electric far field pattern E∞ = 0, whence Es = 0 in the exterior of
Γ follows by Theorem 6.10. After introducing, analogous to (6.33), the magnetic
dipole operator M : L2(Γ ) → L2(Γ ), by the L2 jump relation (6.53) we find that

a + Ma = 0.
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Employing the argument used in the proof of Theorem 6.23, by the Fredholm
alternative we see that the nullspaces of I + M in L2(Γ ) and in C(Γ ) coincide.
Therefore, a is continuous and, by the jump relations of Theorem 6.12 for
continuous densities, Hs,−Es represents a solution to the Maxwell equations in
the interior of Γ satisfying the homogeneous boundary condition ν ×Hs = 0 on Γ .
Hence, by our assumption on the choice of Γ we have Hs = Es = 0 everywhere in
IR3. The jump relations now yield a = 0 on Γ , whence M∞ is injective.

The adjoint operator M∗∞ : L2
t (S

2) → L2
t (Γ ) of M∞ is given by

(M∗∞g)(y) =
(

ν(y) × ik

4π

∫
S2

eik x̂·y x̂ × g(x̂) ds(x̂)

)
× ν(y), y ∈ Γ.

Let M∗∞g = 0. Then

E(y) :=
∫
S2

eik x̂·y x̂ × g(x̂) ds(x̂), H(y) := 1

ik
curl E(y), y ∈ IR3,

defines an electromagnetic Herglotz pair satisfying ν × E = 0 on Γ . Hence, E =
H = 0 in the interior of Γ by our assumption on the choice of Γ . Since E and
H are analytic in IR3, it follows that E = H = 0 everywhere. Theorem 3.27 now
yields g = 0 on Γ , whence M∗∞ is also injective and by Theorem 4.6 the range of
M∞ is dense in L2

t (S
2). ��

We now define a magnetic dipole operator M̃ : L2
t (Γ ) → L2

t (Λ) by

(M̃a)(x) := ν(x) × curl
∫

Γ

Φ(x, y)a(y) ds(y), x ∈ Λ, (7.28)

where Λ denotes a closed C2 surface with unit outward normal ν containing Γ in
its interior. The proof of the following theorem is similar to that of Theorem 7.6.

Theorem 7.7 The operator M̃ defined by (7.28) is injective and has dense range
provided k is not a Maxwell eigenvalue for the interior of Γ .

Now we know that by our choice of Γ the integral equation of the first kind (7.26)
has at most one solution. Analogous to the acoustic case, its solvability is related to
the question of whether or not the scattered wave can be analytically extended as a
solution to the Maxwell equations across the boundary ∂D.

For the same reasons as in the acoustic case, we combine a Tikhonov regulariza-
tion for the integral equation (7.26) and a defect minimization for the boundary
search into one cost functional. We proceed analogously to Definition 5.23 and
choose a compact (with respect to the C1,β norm, 0 < β < 1,) subset U of the
set of all starlike closed C2 surfaces described by

Λ =
{
r(x̂) x̂ : x̂ ∈ S

2
}

, r ∈ C2(S2),
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satisfying the a priori assumption

0 < ri(x̂) ≤ r(x̂) ≤ re(x̂), x̂ ∈ S
2,

with given functions ri and re representing surfaces Λi and Λe such that the internal
auxiliary surface Γ is contained in the interior of Λi and that the boundary ∂D of
the unknown scatterer D is contained in the annulus between Λi and Λe. We now
introduce the cost functional

μ(a,Λ;α) := ‖M∞a−E∞‖2
L2

t (S
2)

+α‖a‖2
L2

t (Γ )
+γ ‖ν×Ei+M̃a‖2

L2
t (Λ)

. (7.29)

Again, α > 0 denotes the regularization parameter for the Tikhonov regularization
of (7.26) and γ > 0 denotes a suitable coupling parameter which for theoretical
purposes we always assume equal to one.

Definition 7.8 Given the incident field Ei , a (measured) electric far field pattern
E∞ ∈ L2

t (S
2), and a regularization parameter α > 0, a surface Λ0 from the compact

set U is called optimal if there exists a0 ∈ L2
t (Γ ) such that a0 and Λ0 minimize the

cost functional (7.29) simultaneously over all a ∈ L2
t (Γ ) and Λ ∈ U , that is, we

have

μ(a0,Λ0;α) = m(α),

where

m(α) := inf
a∈L2

t (Γ ), Λ∈U

μ(a,Λ;α).

For this reformulation of the electromagnetic inverse obstacle problem as a
nonlinear optimization problem, we can state the following counterparts of The-
orems 5.24–5.26. We omit the proofs since, except for minor adjustments, they
literally coincide with those for the acoustic case. The use of Theorems 5.17
and 5.21, of course, has to be replaced by the corresponding electromagnetic
versions given in Theorems 7.3 and 7.7.

Theorem 7.9 For each α > 0 there exists an optimal surface Λ ∈ U .

Theorem 7.10 Let E∞ be the exact electric far field pattern of a domain D

such that ∂D belongs to U . Then we have convergence of the cost functional
limα→0 m(α) = 0.

Theorem 7.11 Let (αn) be a null sequence and let (Λn) be a corresponding
sequence of optimal surfaces for the regularization parameter αn. Then there exists
a convergent subsequence of (Λn). Assume that E∞ is the exact electric far field
pattern of a domain D such that ∂D is contained in U . Then every limit point Λ∗ of
(Λn) represents a surface on which the total field vanishes.
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Variants of these results were first established by Blöhbaum [34]. We will not
repeat all the possible modifications mentioned in Sect. 5.5 for acoustic waves such
as using more than one incoming wave, the limited aperture problem or using near
field data. It is also straightforward to replace the magnetic dipole distribution on
the internal surface for the approximation of the scattered field by an electric dipole
distribution.

The above method for the electromagnetic inverse obstacle problem has been
numerically implemented and tested by Haas, Rieger, Rucker, and Lehner [163].

We now proceed with briefly describing the extension of Potthast’s point source
method to electromagnetic obstacle scattering where again we start from Huygens’
principle. By Theorem 6.24 the scattered field is given by

Es(x) = i

k
curl curl

∫
∂D

ν(y) × H(y)Φ(x, y) ds(y), x ∈ IR3 \ D̄, (7.30)

and the far field pattern by

E∞(x̂) = ik

4π
x̂ ×

∫
∂D

[ν(y) × H(y)] × x̂ e−ik x̂·y ds(y), x̂ ∈ S
2, (7.31)

in terms of the total magnetic field H . We choose an auxiliary closed C2 surface Λ

such that the scatterer D is contained in the interior of Λ and approximate the point
source Φ(x, ·) for x in the exterior of Λ by a Herglotz wave function such that

Φ(x, y) ≈ 1

4π

∫
S2

eik y·dgx(d) ds(d) (7.32)

for all y in the interior of Λ and some scalar kernel function gx ∈ L2(S2). In
Sect. 5.5 we have described how such an approximation can be achieved uniformly
with respect to y up to derivatives of second order on compact subsets of the interior
of Λ by solving the ill-posed linear integral equation (5.93). With the aid of (6.4)
and gradx Φ(x, y) = − grady Φ(x, y), we first transform (7.30) into

Es(x) = i

k

∫
∂D

([ν(y)) × H(y)] · grady

)
grady Φ(x, y) ds(y)

+ik

∫
∂D

ν(y) × H(y)Φ(x, y) ds(y), x ∈ IR3 \ D̄.

(7.33)

With the aid of

(
a(y) · grady

)
grady eik y·d + k2a(y) eik y·d = k2d × [a(y) × d] eik y·d
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for a = ν × H we now insert (7.32) into (7.33) and use (7.31) to obtain

Es(x) ≈
∫
S2

gx(d)E∞(−d) ds(d) (7.34)

as an approximation for the scattered wave Es . Knowing an approximation for
the scattered wave, in principle the boundary ∂D can be found from the boundary
condition ν × (Ei + Es) = 0 on ∂D. For further details we refer to [29].

We conclude this section on decomposition methods with a short presentation
of the electromagnetic version of the method of Colton and Monk. Again we
confine ourselves to scattering from a perfect conductor and note that there are
straightforward extensions to other boundary conditions.

As in the acoustic case, we try to find a superposition of incident plane
electromagnetic fields with different directions and polarizations which lead to
simple scattered fields and far field patterns. Starting from incident plane waves
of the form (6.86), we consider as incident wave a superposition of the form

Ẽi(x) =
∫
S2

ik eik x·dg(d) ds(d), H̃ i(x) = 1

ik
curl Ẽi(x), x ∈ IR3, (7.35)

with a tangential field g ∈ L2
t (S

2), i.e., the incident wave is an electromagnetic
Herglotz pair. By Lemma 6.35, the corresponding electric far field pattern

Ẽ∞(x̂) =
∫
S2

E∞(x̂, d)g(d) ds(d), x̂ ∈ S
2

is obtained by superposing the far field patterns E∞(·, d)g(d) for the incoming
directions d with polarization g(d). We note that by the Reciprocity Theorem 6.30
we may consider (7.35) also as a superposition with respect to the observation
directions instead of the incident directions and in this case the method we are
considering is sometimes referred to as dual space method.

If we want the scattered wave to become a prescribed radiating solution Ẽs, H̃ s

with explicitly known electric far field pattern Ẽ∞, given the (measured) far field
patterns for all incident directions and polarizations, we need to solve the linear
integral equation of the first kind

Fg = Ẽ∞ (7.36)

with the far field operator F : L2
t (S

2) → L2
t (S

2) defined by (6.98).
We need to assume the prescribed field Ẽs, H̃ s is defined in the exterior of the

unknown scatterer. For example, if we have the a priori information that the origin
is contained in D, then for actual computations obvious choices for the prescribed
scattered field would be the electromagnetic field
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Ẽs(x) = curl aΦ(x, 0), H̃ s(x) = 1

ik
curl Ẽs(x)

of a magnetic dipole at the origin with electric far field pattern

Ẽ∞(x̂) = ik

4π
x̂ × a,

or the electromagnetic field

Ẽs(x) = curl curl aΦ(x, 0), H̃ s(x) = 1

ik
curl Ẽs(x)

of an electric dipole with far field pattern

Ẽ∞(x̂) = k2

4π
x̂ × (a × x̂).

Another more general possibility is to choose the radiating vector wave functions of
Sect. 6.5 with the far field patterns given in terms of vector spherical harmonics (see
Theorem 6.28).

We have already investigated the far field operator F . From Corollary 6.37,
we know that F is injective and has dense range if and only if there does not
exist an electromagnetic Herglotz pair which satisfies the homogeneous perfect
conductor boundary condition on ∂D. Therefore, for the sequel we will make the
assumption that k is not a Maxwell eigenvalue for D. This then implies that the
inhomogeneous interior Maxwell problem for D is uniquely solvable. The classical
approach to solve this boundary value problem is to seek the solution in the form of
the electromagnetic field of a magnetic dipole distribution

E(x) = curl
∫

∂D

a(y)Φ(x, y) ds(y), H(x) = 1

ik
curl E(x), x ∈ D,

with a tangential field a ∈ C0,α(Div, ∂D). Then, given c ∈ C0,α(Div, ∂D), by the
jump relations of Theorem 6.12 the electric field E satisfies the boundary condition
ν × E = c on ∂D if the density a solves the integral equation

a − Ma = −2c (7.37)

with the magnetic dipole operator M defined by (6.33). The assumption that there
exists no nontrivial solution to the homogeneous interior Maxwell problem in D

now can be utilized to show with the aid of the jump relations that I − M has a
trivial nullspace in C0,α(Div, ∂D) (for the details see [104]). Hence, by the Riesz–
Fredholm theory I −M has a bounded inverse (I −M)−1 from C0,α(Div, ∂D) into
C0,α(Div, ∂D). This implies solvability and well-posedness of the interior Maxwell
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problem. The proof of the following theorem is now completely analogous to that
of Theorem 5.27.

Theorem 7.12 Assume that k is not a Maxwell eigenvalue for D. Let (En,Hn) be
a sequence of C1(D) ∩ C(D̄) solutions to the Maxwell equations in D such that
the boundary data cn = ν × En on ∂D are weakly convergent in L2

t (∂D). Then
the sequence (En,Hn) converges uniformly on compact subsets of D to a solution
E,H to the Maxwell equations.

From now on, we assume that IR3 \ D is contained in the domain of definition
of Ẽs, H̃ s , that is, for the case of the above examples for Ẽs, H̃ s with singularities
at x = 0 we assume the origin to be contained in D. We associate the following
uniquely solvable interior Maxwell problem

curl Ẽi − ikH̃ i = 0, curl H̃ i + ikẼi = 0 in D, (7.38)

ν × (Ẽi + Ẽs) = 0 on ∂D (7.39)

to the inverse scattering problem. From Theorem 6.41 we know that the solvability
of the integral equation (7.36) is connected to this interior boundary value problem,
i.e., (7.36) is solvable for g ∈ L2

t (S
2) if and only if the solution Ẽi , H̃ i to (7.38)

and (7.39) is an electromagnetic Herglotz pair with kernel ikg.
The Herglotz integral operator H : L2

t (S
2) → L2

t (Λ) defined by

(Hg)(x) := ik ν(x) ×
∫
S2

eik x·dg(d) ds(d), x ∈ Λ, (7.40)

where ν denotes the unit outward normal to the surface and Λ represents the
tangential component of the electric field on Λ for the Herglotz pair with kernel ikg.

Theorem 7.13 The Herglotz operator H defined by (7.40) is injective and has
dense range provided k is not a Maxwell eigenvalue for the interior of Λ.

Proof The operator H is related to the adjoint of the far field integral operator given
by (7.27). Therefore, the statement of the theorem is equivalent to Theorem 7.6. ��

We are now ready to reformulate the inverse scattering problem as a nonlinear
optimization problem analogous to Definition 5.28 in the acoustic case. We recall
the description of the set U of admissible surfaces from p. 291 and pick a closed
C2 surface Γe such that Λe is contained in the interior of Γe where we assume
that k is not a Maxwell eigenvalue for the interior of Γe. We now introduce a cost
functional by

μ(g,Λ;α) := ‖Fg−Ẽ∞‖2
L2

t (S
2)

+α‖Hg‖2
L2

t (Γe)
+γ ‖Hg+ν×Ẽs‖2

L2
t (Λ)

. (7.41)
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Definition 7.14 Given the (measured) electric far field E∞ ∈ L2
t (S

2 × S
2) for

all incident and observation directions and all polarizations and a regularization
parameter α > 0, a surface Λ0 from the compact set U is called optimal if

inf
g∈L2

t (S
2)

μ(g,Λ0;α) = m(α)

where

m(α) := inf
g∈L2

t (S
2), Λ∈U

μ(ϕ,Λ;α).

For this electromagnetic optimization problem, we can state the following
counterparts to Theorems 5.29–5.31. Variants of these results were first established
by Blöhbaum [34].

Theorem 7.15 For each α > 0, there exists an optimal surface Λ ∈ U .

Proof The proof is analogous to that of Theorem 5.29 with the use of Theorem 7.12
instead of Theorem 5.27. ��
Theorem 7.16 For all incident and observation directions and all polarizations let
E∞ be the exact electric far field pattern of a domain D such that ∂D belongs to U .
Then we have convergence of the cost functional limα→0 m(α) = 0.

Proof The proof is analogous to that of Theorem 5.30. Instead of Theorem 5.22 we
use Theorem 7.13 and instead of (5.100) we use the corresponding relation

Ẽ∞ − Fg = A(Hg + ν × Ẽs) (7.42)

where A : L2
t (∂D) → L2

t (S
2) is the bounded injective operator introduced in

Theorem 6.44 that maps the electric tangential component of radiating solutions
to the Maxwell equations in IR3 \ D onto the electric far field pattern. ��
Theorem 7.17 Let (αn) be a null sequence and let (Λn) be a corresponding
sequence of optimal surfaces for the regularization parameter αn. Then there exists
a convergent subsequence of (Λn). Assume that for all incident and observation
directions and all polarizations E∞ is the exact electric far field pattern of a domain
D such that ∂D belongs to U . Assume further that the solution Ẽi , H̃ i to the
associated interior Maxwell problem (7.38) and (7.39) can be extended as a solution
to the Maxwell equations across the boundary ∂D into the interior of Γe with
continuous boundary values on Γe. Then every limit point Λ∗ of (Λn) represents a
surface on which the boundary condition (7.39) is satisfied, i.e., ν × (Ẽi + Ẽs) = 0
on Λ∗.

Proof The proof is analogous to that of Theorem 5.31 with the use of Theorems 7.12
and 7.13 instead of Theorems 5.27 and 5.22 and of (7.42) instead of (5.100). ��

Using the completeness result of Theorem 6.42, it is possible to design a variant
of the above method for which one does not have to assume that k is not a Maxwell
eigenvalue for D.
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As in acoustics, the decomposition method of Colton and Monk is closely
related to the linear sampling method that we are going to discuss in the next
section. For numerical examples using the latter method to solve three-dimensional
electromagnetic inverse scattering problems we refer the reader to [59].

7.5 Sampling Methods

Analogous to Sect. 5.6, based on the far field operator F which in the case of
electromagnetic waves is defined in Theorem 6.37, i.e.,

(Fg)(x̂) :=
∫
S2

E∞(x̂, d)g(d) ds(d), x̂ ∈ S
2, (7.43)

a factorization method can be considered in terms of the ill-posed linear operator
equation

(F ∗F)1/4gz = Ee,∞(·, z)p. (7.44)

Here the right-hand side Ee,∞(·, z)p is the far field pattern of an electric dipole with
source z and polarization p. However, at the time this is being written, this method
has not yet been justified, for example, by proving an analogue of Corollary 5.41
although the far field operator is also compact and normal in the electromagnetic
case (see Theorem 6.39). In addition a factorization of the far field operator also is
available in the form

F = 2πi

k
AN∗A∗

in terms of the tangential component to far field operator A of Theorem 6.44 and
the hypersingular boundary integral operator N defined in (6.48). However, for
establishing an obvious analogue of Lemma 5.38 coercivity of Ni (the operator N

with k replaced by i) remains open. Nevertheless, for the case of a ball the above
factorization method has been justified by Collino, Fares, and Haddar [85].

In Sect. 5.6 we described the linear sampling method for solving the inverse
scattering problem for a sound-soft obstacle. Our analysis was based on first
presenting the factorization method for solving this inverse scattering problem and
then deriving Corollary 5.43 as the final result on the linear sampling method as
a consequence of the factorization method. As just pointed out, the factorization
method has not been established for the case of a perfect conductor and hence we
can develop the linear sampling method for electromagnetic obstacle scattering only
up to the analogue of Theorem 5.35 (cf. [51, 59, 88]). Although we shall not do so
here, the inverse scattering problem with limited aperture data can also be handled
[49, 59].
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Analogous to the scalar case, our analysis is based on an examination of the
equation

Fg = Ee,∞(·, z)p, (7.45)

where now the far field operator F is given by (7.43) and

Ee,∞(x̂, z)p = ik

4π
(x̂ × p) × x̂ e−ik x̂·z

is the far field pattern of an electric dipole with source z and polarization p (we
could also have considered the right-hand side of (7.45) to be the far field pattern
of a magnetic dipole). Equation (7.45) is known as the far field equation. If z ∈ D,
it is seen that if gz is a solution of the far field equation, then by Theorem 6.41 the
scattered field Es

g due to the vector Herglotz wave function ikEg as incident field

and the electric dipole Ee(·, z)p coincide in IR3 \ D̄. Hence, by the trace theorem,
the tangential traces ν × Es

g = −ik ν × Eg and ν × Ee(·, z)p coincide on ∂D. As
z ∈ D tends to ∂D we have that

‖ν × Ee(·, z)p‖H−1/2(Div,∂D) → ∞,

and hence ‖ν × Eg‖H−1/2(Div,∂D) → ∞ also. Thus ‖g‖L2
t (S

2) → ∞ and this
behavior determines ∂D. Unfortunately, the above argument is only heuristic since
it is based on the assumption that g satisfies the far field equation for z ∈ D, and
in general the far field equation has no solution for z ∈ D. This follows from the
fact that by Theorem 6.41 if g satisfies the far field equation, then the Herglotz pair
E = ikEg , H = curl Eg is the solution of the interior Maxwell problem

curl E − ikH = 0, curl H + ikE = 0 in D, (7.46)

and

ν × [E + Ee(·, z)p] = 0 on ∂D, (7.47)

which in general is not possible. However, using denseness properties of Herglotz
pairs the following foundation of the linear sampling method can be established.

To achieve this, we first present modified versions of the denseness results of
Theorems 6.44 and 7.13.

Corollary 7.18 The operator A : H−1/2(Div, ∂D) → L2
t (S

2) which maps the
electric tangential component of radiating solutions E,H ∈ Hloc(curl, IR3 \ D̄) to
the Maxwell equations onto the electric far field pattern E∞ is bounded, injective,
and has dense range.

Proof Injectivity of A is a consequence of Rellich’s lemma and the trace estimate
(6.52). Boundedness of A follows from the representation (6.115) via duality pairing
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in view of the continuous dependence of the solution to the scattering problem on
the incident direction d of the plane waves. From (6.115) we also observe that the
dual operator A� : L2

t (S
2) → H−1/2(Curl, ∂D) of A is given by

A�g = A∗g, g ∈ L2
t (S

2),

in terms of the L2 adjoint A∗. From the proof of Theorem 6.44 we know that A∗
is injective. Consequently A� is injective and therefore A has dense range by the
Hahn–Banach theorem. ��
Corollary 7.19 The Herglotz operator H : L2

t (S
2) → H−1/2(Div, ∂D) defined by

(Hg)(x) := ik ν(x) ×
∫
S2

eik x·dg(d) ds(d), x ∈ ∂D, (7.48)

is injective and has dense range provided k is not a Maxwell eigenvalue for D.

Proof In view of Theorem 7.13 we only need to be concerned with the denseness
of H(L2

t (S
2)) in H−1/2(Div, ∂D). From (7.48), in view of the duality pairing for

H−1/2(Div, ∂D) and its dual space H−1/2(Curl, ∂D), interchanging the order of
integration we observe that the dual operator H� : H−1/2(Curl, ∂D) → L2

t (S
2) of

H is given by

H�a = 2π

ik
ANa, a ∈ H−1/2(Curl, ∂D), (7.49)

in terms of the boundary data to far field operator A : H−1/2(Div, ∂D) → L2
t (S

2)

and the electric dipole operator N : H−1/2(Curl, ∂D) → H−1/2(Div, ∂D). Since A

and N are bounded, (7.49) represents the dual operator on H−1/2(Curl, ∂D). Both
A and N are injective, the latter because of our assumption on k. Hence H� is
injective and the dense range of H follows by the Hahn–Banach theorem. ��

When k is not a Maxwell eigenvalue, well-posedness of the interior Maxwell
problem (7.46)–(7.47) in H(curl,D) with the tangential trace of the electric dipole
replaced by an arbitrary c ∈ H−1/2(Div, ∂D) can be established by solving the
integral equation (7.37) in H−1/2(Div, ∂D). Now Corollary 7.19 can be interpreted
as denseness of Herglotz pairs in the space of solutions to the Maxwell equations in
D with respect to H(curl,D). For an alternate proof we refer to [102].

Lemma 7.20 Ee,∞(· , z)p ∈ A
(
H−1/2(Div, ∂D)

)
if and only if z ∈ D.

Proof If z ∈ D, then clearly A(−ν×Ee(·, z)p) = Ee,∞(· , z)p. Now let z ∈ IR3\D̄

and assume that there is a tangential vector field c ∈ H−1/2(Div, ∂D) such that
Ac = Ee,∞(·, z)p. Then by Theorem 6.11 the radiating field Es corresponding to
the boundary data c and the electric dipole Ee(·, z)p coincide in (IR3 \ D̄) \ {z}. But
this is a contradiction since Es ∈ Hloc(curl, IR3 \ D̄) but Ee(·, z)p is not. ��
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Now we are ready to establish our main result on the linear sampling method in
inverse electromagnetic obstacle scattering.

Theorem 7.21 Assume that k is not a Maxwell eigenvalue for D and let F be the
far field operator (7.43) for scattering from a perfect conductor. Then the following
hold:

1. For z ∈ D and a given ε > 0 there exists a gε
z ∈ L2

t (S
2) such that

‖Fgε
z − Ee,∞(·, z)p‖L2

t (S
2) < ε (7.50)

and the Herglotz wave field Egε
z

with kernel gε
z converges to the solution of (7.46)

and (7.47) in H(curl,D) as ε → 0
2. For z �∈ D every gε

z ∈ L2
t (S

2) that satisfies (7.50) for a given ε > 0 is such that

lim
ε→0

‖Hgε
z
‖H(curl,D) = ∞.

Proof As pointed out above, under the assumption on k we have well-posedness
of the interior Maxwell problem in the H(curl,D) setting. Given ε > 0, by
Corollary 7.19 we can choose gz ∈ L2

t (S
2) such that

‖Hgε
z + ν × Ee(·, z)p‖H−1/2(Div,∂D) <

ε

‖A‖ ,

where A denotes the boundary component to far field operator from Corollary 7.18.
Then (7.50) follows from observing that

F = −AH.

Now if z ∈ D, then by the well-posedness of the interior Maxwell problem the
convergence Hgε

z + ν × Ee(·, z)p → 0 as ε → 0 in H−1/2(Div, ∂D) implies
convergence Egε

z
→ E as ε → 0 in H(curl,D) where E is the solution to

(7.46) and (7.47). Hence, the first statement is proven.
In order to prove the second statement, for z �∈ D assume to the contrary that

there exists a null sequence (εn) and corresponding Herglotz wave functions En

with kernels gn = g
εn
z such that ‖En‖H(curl,D) remains bounded. Then without

loss of generality we may assume weak convergence En ⇀ E ∈ H(curl,D) as
n → ∞. Denote by Es,Hs ∈ Hloc(curl IR3\D̄) the solution to the exterior Maxwell
problem with ν × Es = ν × E on ∂D and denote its electric far field pattern by
E∞. Since Fgn is the far field pattern of the scattered wave for the incident field
−En from (7.50) we conclude that E∞ = −Ee,∞(·, z)p and therefore Ee,∞(·, z)p
in A(H−1/2(Div, ∂D)). But this contradicts Lemma 7.20. ��

In particular we expect from the above theorem that ‖gε
z‖L2

t (S
2) will be larger for

z ∈ IR3 \ D̄ than it is for z ∈ D. We note that the assumption that k is not a Maxwell
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eigenvalue can be removed if the far field operator F is replaced by the combined
far field operator (cf. Theorem 6.42)

(Fg)(x̂) = λ

∫
L2

t (S
2)

E∞(x̂, d)g(d) ds(d)

+ μ

∫
L2

t (S
2)

H∞(x̂, d)[g(d) × d]ds(d), x̂ ∈ S
2,

where H∞ is the magnetic far field pattern [49]. We also observe that in contrast
to the scalar case of the linear sampling method an open question in the present
case is how to obtain numerically the ε-approximate solution gε

z of the far field
equation given by Theorem 7.21. In all numerical experiments implemented to date,
Tikhonov regularization combined with the Morozov discrepancy principle is used
to solve the far field equation and this procedure leads to a solution that exhibits the
same behavior as gε

z (cf. [59]).
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