
Chapter 3
Direct Acoustic Obstacle Scattering

This chapter is devoted to the solution of the direct obstacle scattering problem
for acoustic waves. As in [104], we choose the method of integral equations for
solving the boundary value problems. However, we decided to leave out some of the
details in the analysis. In particular, we assume that the reader is familiar with the
Riesz–Fredholm theory for operator equations of the second kind in dual systems
as described in [104, 268]. We also do not repeat the technical proofs for the jump
relations and regularity properties for single- and double-layer potentials. Leaving
aside these two restrictions, however, we will present a rather complete analysis of
the forward scattering problem. For the reader interested in a more comprehensive
treatment of the direct problem, we suggest consulting our previous book [104] on
this subject.

We begin by listing the jump and regularity properties of surface potentials in the
classical setting of continuous and Hölder continuous functions and later present
their extensions to the case of Sobolev spaces. We then proceed to establish the
existence of the solution to the exterior Dirichlet problem via boundary integral
equations and also describe some results on the regularity of the solution. In
particular, we will establish the well-posedness of the Dirichlet-to-Neumann map in
the Hölder and Sobolev space settings. We then proceed with a section on classical
and generalized impedance problems to provide some material to be used later on
in the book. Coming back to the far field pattern, we prove reciprocity relations that
will be of importance in the study of the inverse scattering problem. We then use
one of the reciprocity relations to derive some completeness results on the set of far
field patterns corresponding to the scattering of incident plane waves propagating
in different directions. For this we need to introduce and examine Herglotz wave
functions and the far field operator which will both be of central importance later on
for the inverse scattering problem.

Our presentation is in IR3. For the sake of completeness, we include a section
where we list the necessary modifications for the two-dimensional theory. We
also add a section advertising a Nyström method for the numerical solution of
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the boundary integral equations in two dimensions by a spectral method based
on approximations via trigonometric polynomials. Finally, we present the main
ideas of a spectral method based on approximations via spherical harmonics for
the numerical solution of the boundary integral equations in three dimensions that
was developed and investigated by Wienert [427] and by Ganesh, Graham, and
Sloan [143, 153].

3.1 Single- and Double-Layer Potentials

In this chapter, if not stated otherwise, we always will assume that the bounded
set D is the open complement of an unbounded domain of class C2, that is, we
include scattering from more than one obstacle in our analysis noting that the C2

smoothness implies that D has only a finite number of components.
We first briefly review the basic jump relations and regularity properties of

acoustic single- and double-layer potentials. Given an integrable function ϕ, the
integrals

u(x) :=
∫

∂D

ϕ(y)Φ(x, y) ds(y), x ∈ IR3 \ ∂D,

and

v(x) :=
∫

∂D

ϕ(y)
∂Φ(x, y)

∂ν(y)
ds(y), x ∈ IR3 \ ∂D,

are called, respectively, acoustic single-layer and acoustic double-layer potentials
with density ϕ. They are solutions to the Helmholtz equation in D and in IR3 \D̄ and
satisfy the Sommerfeld radiation condition. Green’s formulas (2.5) and (2.9) show
that any solution to the Helmholtz equation can be represented as a combination
of single- and double-layer potentials. For continuous densities, the behavior of the
surface potentials at the boundary is described by the following jump relations. By
‖ · ‖∞ = ‖ · ‖∞,G we denote the usual supremum norm of real or complex valued
functions defined on a set G ⊂ IR3.

Theorem 3.1 Let ∂D be of class C2 and let ϕ be continuous. Then the single-layer
potential u with density ϕ is continuous throughout IR3 and

‖u‖∞,IR3 ≤ C‖ϕ‖∞,∂D

for some constant C depending on ∂D. On the boundary we have

u(x) =
∫

∂D

ϕ(y)Φ(x, y) ds(y), x ∈ ∂D, (3.1)
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∂u±
∂ν

(x) =
∫

∂D

ϕ(y)
∂Φ(x, y)

∂ν(x)
ds(y) ∓ 1

2
ϕ(x), x ∈ ∂D, (3.2)

where

∂u±
∂ν

(x) := lim
h→+0

ν(x) · grad u(x ± hν(x))

is to be understood in the sense of uniform convergence on ∂D and where the
integrals exist as improper integrals. The double-layer potential v with density ϕ

can be continuously extended from D to D̄ and from IR3 \ D̄ to IR3 \D with limiting
values

v±(x) =
∫

∂D

ϕ(y)
∂Φ(x, y)

∂ν(y)
ds(y) ± 1

2
ϕ(x), x ∈ ∂D, (3.3)

where

v±(x) := lim
h→+0

v(x ± hν(x))

and where the integral exists as an improper integral. Furthermore,

‖v‖∞,D ≤ C‖ϕ‖∞,∂D, ‖v‖∞,IR3\D ≤ C‖ϕ‖∞,∂D

for some constant C depending on ∂D and

lim
h→+0

{
∂v

∂ν
(x + hν(x)) − ∂v

∂ν
(x − hν(x))

}
= 0, x ∈ ∂D, (3.4)

uniformly on ∂D.

Proof For a proof, we refer to Theorems 2.12, 2.13, 2.19, and 2.21 in [104]. Note
that the estimates on the double-layer potential follow from Theorem 2.13 in [104]
by using the maximum–minimum principle for harmonic functions in the limiting
case k = 0 and Theorems 2.7 and 2.15 in [104]. 	


An appropriate framework for formulating additional regularity properties of
these surface potentials is provided by the concept of Hölder spaces. A real or
complex valued function ϕ defined on a set G ⊂ IR3 is called uniformly Hölder
continuous with Hölder exponent 0 < α ≤ 1 if there is a constant C such that

|ϕ(x) − ϕ(y)| ≤ C|x − y|α (3.5)

for all x, y ∈ G. We define the Hölder space C0,α(G) to be the linear space of all
functions defined on G which are bounded and uniformly Hölder continuous with
exponent α. It is a Banach space with the norm
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‖ϕ‖α := ‖ϕ‖α,G := sup
x∈G

|ϕ(x)| + sup
x,y∈G
x �=y

|ϕ(x) − ϕ(y)|
|x − y|α . (3.6)

Clearly, for α < β each function ϕ ∈ C0,β(G) is also contained in C0,α(G).
For this imbedding, from the Arzelà–Ascoli theorem, we have the following
compactness property (for a proof we refer to [104, p. 38] or [268, p. 105]).

Theorem 3.2 Let 0 < α < β ≤ 1 and let G be compact. Then the imbedding
operators

Iβ : C0,β(G) → C(G), Iα,β : C0,β(G) → C0,α(G)

are compact.

For a vector field, Hölder continuity and the Hölder norm are defined analogously
by replacing absolute values in (3.5) and (3.6) by Euclidean norms. We can then
introduce the Hölder space C1,α(G) of uniformly Hölder continuously differen-
tiable functions as the space of differentiable functions ϕ for which grad ϕ (or the
surface gradient Grad ϕ in the case G = ∂D) belongs to C0,α(G). With the norm

‖ϕ‖1,α := ‖ϕ‖1,α,G := ‖ϕ‖∞ + ‖ grad ϕ‖0,α

the Hölder space C1,α(G) is again a Banach space and we also have an imbedding
theorem corresponding to Theorem 3.2.

Extending Theorem 3.1, we can now formulate the following regularity proper-
ties of single- and double-layer potentials in terms of Hölder continuity.

Theorem 3.3 Let ∂D be of class C2 and let 0 < α < 1. Then the single-layer
potential u with density ϕ ∈ C(∂D) is uniformly Hölder continuous throughout IR3

and

‖u‖α,IR3 ≤ Cα ‖ϕ‖∞,∂D.

The first derivatives of the single-layer potential u with density ϕ ∈ C0,α(∂D) can
be uniformly Hölder continuously extended from D to D̄ and from IR3 \ D̄ to IR3 \D

with boundary values

grad u±(x) =
∫

∂D

ϕ(y) gradx Φ(x, y) ds(y) ∓ 1

2
ϕ(x)ν(x), x ∈ ∂D, (3.7)

where

grad u±(x) := lim
h→+0

grad u(x ± hν(x))

and we have
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‖ grad u‖α,D ≤ Cα ‖ϕ‖α,∂D, ‖ grad u‖α,IR3\D ≤ Cα ‖ϕ‖α,∂D.

The double-layer potential v with density ϕ ∈ C0,α(∂D) can be uniformly Hölder
continuously extended from D to D̄ and from IR3 \ D̄ to IR3 \ D such that

‖v‖α,D ≤ Cα ‖ϕ‖α,∂D, ‖v‖α,IR3\D ≤ Cα ‖ϕ‖α,∂D.

The first derivatives of the double-layer potential v with density ϕ ∈ C1,α(∂D) can
be uniformly Hölder continuously extended from D to D̄ and from IR3 \ D̄ to IR3 \D

such that

‖ grad v‖α,D ≤ Cα ‖ϕ‖1,α,∂D, ‖ grad v‖α,IR3\D ≤ Cα ‖ϕ‖1,α,∂D.

In all inequalities, Cα denotes some constant depending on ∂D and α.

Proof For a proof, we refer to the Theorems 2.12, 2.16, 2.17, and 2.23 in [104]. 	

For the direct values of the single- and double-layer potentials on the boundary

∂D, we have more regularity. This can be conveniently expressed in terms of the
mapping properties of the single- and double-layer operators S and K , given by

(Sϕ)(x) := 2
∫

∂D

Φ(x, y)ϕ(y) ds(y), x ∈ ∂D, (3.8)

(Kϕ)(x) := 2
∫

∂D

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ ∂D, (3.9)

and the normal derivative operators K ′ and T , given by

(K ′ϕ)(x) := 2
∫

∂D

∂Φ(x, y)

∂ν(x)
ϕ(y) ds(y), x ∈ ∂D, (3.10)

(T ϕ)(x) := 2
∂

∂ν(x)

∫
∂D

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ ∂D. (3.11)

Theorem 3.4 Let ∂D be of class C2. Then the operators S, K and K ′ are bounded
operators from C(∂D) into C0,α(∂D), the operators S and K are also bounded
from C0,α(∂D) into C1,α(∂D), and the operator T is bounded from C1,α(∂D) into
C0,α(∂D).

Proof The statements on S and T are contained in the preceding theorem and proofs
for the operators K and K ′ can be found in Theorems 2.15, 2.22, and 2.30 of [104].

	

We wish to point out that all these jump and regularity properties essentially

are deduced from the corresponding results for the classical single- and double-
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layer potentials for the Laplace equation by smoothness arguments on the difference
between the fundamental solutions for the Helmholtz and the Laplace equation.

Clearly, by interchanging the order of integration, we see that S is self-adjoint
and K and K ′ are adjoint with respect to the bilinear form

〈ϕ,ψ〉 :=
∫

∂D

ϕψ ds,

that is,

〈Sϕ,ψ〉 = 〈ϕ, Sψ〉 and 〈Kϕ,ψ〉 = 〈ϕ,K ′ψ〉

for all ϕ,ψ ∈ C(∂D). To derive further properties of the boundary integral
operators, let u and v denote the double-layer potentials with densities ϕ and ψ

in C1,α(∂D), respectively. Then by the jump relations of Theorem 3.1, Green’s
theorem (2.3) and the radiation condition we find that

∫
∂D

T ϕ ψ ds = 2
∫

∂D

∂u

∂ν
(v+ −v−) ds = 2

∫
∂D

(u+ −u−)
∂v

∂ν
ds =

∫
∂D

ϕT ψ ds,

that is, T also is self-adjoint. Now, in addition, let w denote the single-layer potential
with density ϕ ∈ C(∂D). Then

∫
∂D

Sϕ T ψ ds = 4
∫

∂D

w
∂v

∂ν
ds = 4

∫
∂D

v−
∂w−
∂ν

ds =
∫

∂D

(K−I )ψ(K ′+I )ϕ ds,

whence
∫

∂D

ϕ ST ψ ds =
∫

∂D

ϕ(K2 − I )ψ ds

follows for all ϕ ∈ C(∂D) and ψ ∈ C1,α(∂D). Thus, we have proven the relation

ST = K2 − I (3.12)

and similarly it can be shown that the adjoint relation

T S = K ′2 − I (3.13)

is also valid. Throughout the book I stands for the identity operator.
Looking at the regularity and mapping properties of surface potentials, we think

it is natural to start with the classical Hölder space case. As worked out in detail by
Kirsch [234], the corresponding results in the Sobolev space setting can be deduced
from these classical results through the use of a functional analytic tool provided by
Lax [290], that is, the classical results are stronger. Since we shall be referring to
Lax’s theorem several times in the sequel, we prove it here.
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Theorem 3.5 Let X and Y be normed spaces both of which are equipped with a
scalar product (· , ·) and assume that there exists a positive constant c such that

|(ϕ, ψ)| ≤ c‖ϕ‖ ‖ψ‖ (3.14)

for all ϕ,ψ ∈ X. Let U ⊂ X be a subspace and let A : U → Y and B : Y → X be
bounded linear operators satisfying

(Aϕ,ψ) = (ϕ, Bψ) (3.15)

for all ϕ ∈ U and ψ ∈ Y . Then A : U → Y is bounded with respect to the norms
induced by the scalar products.

Proof We denote the norms induced by the scalar products by ‖ · ‖s . Consider the
bounded operator M : U → X given by M := BA with ‖M‖ ≤ ‖B‖ ‖A‖. Then,
as a consequence of (3.15), M is self-adjoint, that is, (Mϕ,ψ) = (ϕ,Mψ) for all
ϕ,ψ ∈ U . Therefore, using the Cauchy–Schwarz inequality, we obtain

‖Mnϕ‖2
s = (Mnϕ,Mnϕ) = (ϕ,M2nϕ) ≤ ‖M2nϕ‖s

for all ϕ ∈ U with ‖ϕ‖s ≤ 1 and all n ∈ IN. From this, by induction, it follows that

‖Mϕ‖s ≤ ‖M2n

ϕ‖2−n

s .

By (3.14) we have ‖ϕ‖s ≤ √
c ‖ϕ‖ for all ϕ ∈ X. Hence,

‖Mϕ‖s ≤
{√

c ‖M2n

ϕ‖
}2−n

≤
{√

c ‖ϕ‖ ‖M‖2n
}2−n

= {√c ‖ϕ‖}2−n ‖M‖.

Passing to the limit n → ∞ now yields

‖Mϕ‖s ≤ ‖M‖

for all ϕ ∈ U with ‖ϕ‖s ≤ 1. Finally, for all ϕ ∈ U with ‖ϕ‖s ≤ 1, we again have
from the Cauchy–Schwarz inequality that

‖Aϕ‖2
s = (Aϕ,Aϕ) = (ϕ,Mϕ) ≤ ‖Mϕ‖s ≤ ‖M‖.

From this the statement follows. 	

We now use Lax’s Theorem 3.5 to prove the mapping properties of surface

potentials in Sobolev spaces. For an introduction into the classical Sobolev spaces
H 1(D) and H 1

loc(IR
3 \ D̄) for domains and the Sobolev spaces Hp(∂D), p ∈ IR,

on the boundary ∂D we refer to Adams [2], Kirsch and Hettlich [244], and
McLean [315]. We note that H 1

loc(IR
3 \D̄) is the space of all functions u : IR3 \D̄ →

C such that u ∈ H 1((IR3 \ D̄) ∩ B) for all open balls B containing D̄. For
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an introduction of the spaces Hp(∂D) in two dimensions using a Fourier series
approach we also refer to [268].

Theorem 3.6 Let ∂D be of class C2 and let H 1(∂D) denote the usual Sobolev
space. Then the operator S is bounded from L2(∂D) into H 1(∂D). Assume further
that ∂D belongs to C2,α . Then the operators K and K ′ are bounded from L2(∂D)

into H 1(∂D) and the operator T is bounded from H 1(∂D) into L2(∂D).

Proof We prove the boundedness of S : L2(∂D) → H 1(∂D). Let X = C0,α(∂D)

and Y = C1,α(∂D) be equipped with the usual Hölder norms and introduce scalar
products on X by the L2 scalar product and on Y by the H 1 scalar product

(u, v)H 1(∂D) :=
∫

∂D

{
ϕψ̄ + Grad ϕ · Grad ψ̄

}
ds.

By interchanging the order of integration, we have

∫
∂D

Sϕ ψ ds =
∫

∂D

ϕ Sψ ds (3.16)

for all ϕ,ψ ∈ C(∂D). For ϕ ∈ C0,α(∂D) and ψ ∈ C2(∂D), by Gauss’ surface
divergence theorem and (3.16) we have

∫
∂D

Grad Sϕ · Grad ψ ds = −
∫

∂D

ϕ S(Div Grad ψ) ds. (3.17)

(For the reader who is not familiar with vector analysis on surfaces, we refer
to Sect. 6.3.) Using again Gauss’ surface divergence theorem and the relation
gradx Φ(x, y) = − grady Φ(x, y), we find that

∫
∂D

Φ(x, y) Div Grad ψ(y) ds(y) = div
∫

∂D

Φ(x, y) Grad ψ(y) ds(y), x �∈ ∂D.

Hence, with the aid of the jump relations of Theorem 3.1 and 3.3 (see also
Theorem 6.13), for ψ ∈ C2(∂D) we obtain

S(Div Grad ψ) = S̃(Grad ψ)

where the bounded operator S̃ : C0,α(∂D) → C0,α(∂D) is given by

(S̃a)(x) := 2 div
∫

∂D

Φ(x, y)a(y) ds(y), x ∈ ∂D,

for Hölder continuous tangential fields a on ∂D. Therefore, from (3.17) we have

∫
∂D

Grad Sϕ · Grad ψ ds = −
∫

∂D

ϕ S̃(Grad ψ) ds (3.18)
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for all ϕ ∈ C0,α(∂D) and ψ ∈ C2(∂D). Since, for fixed ϕ, both sides of (3.18)
represent bounded linear functionals on C1,α(∂D), (3.18) is also true for all ϕ ∈
C0,α(∂D) and ψ ∈ C1,α(∂D). Hence, from (3.16) and (3.18) we have that the
operators S : C0,α(∂D) → C1,α(∂D) and S∗ : C1,α(∂D) → C0,α(∂D) given by

S∗ψ := Sψ̄ − S̃ Grad ψ̄

are adjoint, i.e.,

(Sϕ,ψ)H 1(∂D) = (ϕ, S∗ψ)L2(∂D)

for all ϕ ∈ C0,α(∂D) and ψ ∈ C1,α(∂D). By Theorem 3.3, both S and S∗ are
bounded with respect to the Hölder norms. Hence, from Lax’s Theorem 3.5 we see
that there exists a positive constant C such that

‖Sϕ‖H 1(∂D) ≤ C‖ϕ‖L2(∂D)

for all ϕ ∈ C0,α(∂D). The proof of the boundedness of S : L2(∂D) → H 1(∂D) is
now finished by observing that C0,α(∂D) is dense in L2(∂D).

The proofs of the assertions on K , K ′, and T are similar in structure and for
details we refer the reader to [234]. 	

Corollary 3.7 If ∂D is of class C2, then the operator S is bounded from
H−1/2(∂D) into H 1/2(∂D). Assume further that ∂D belongs to C2,α . Then the
operators K and K ′ are bounded from H−1/2(∂D) into H 1/2(∂D) and the operator
T is bounded from H 1/2(∂D) into H−1/2(∂D).

Proof We prove the statement on S. The L2 adjoint S∗ of S has kernel 2Φ(x, y)

and therefore also is bounded from L2(∂D) into H 1(∂D). By duality, this implies
that S is bounded from H−1(∂D) into L2(∂D). Now the boundedness of S :
H−1/2(∂D) → H 1/2(∂D) follows by the interpolation property of the Sobolev
spaces H 1/2(∂D) (see Theorem 8.13 in [268]). The proofs of the assertions on K ,
K ′, and T are analogous. 	


In view of the compactness of the imbedding operators Ip,q from Hp(∂D) into
Hq(∂D) for p > q, from Corollary 3.7 we observe that the operators S,K , and K ′
are compact from H−1/2(∂D) into H−1/2(∂D) and from H 1/2(∂D) into H 1/2(∂D).
For the following corollary we make use of the trace theorem which states that the
restriction of a function u ∈ C2(D) ∩ C(D̄) to its boundary values u|∂D can be
uniquely extended via a bounded linear operator σ : H 1(D) → H 1/2(∂D) known
as trace operator, i.e.,

‖σu‖H 1/2(∂D) ≤ C ‖u‖H 1(D) (3.19)
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for all u ∈ H 1(D) and some positive constant C and σu = u|∂D (see [315]). In the
following corollary we say that a linear operator mapping H−1/2(∂D) or H 1/2(∂D)

into H 1
loc(IR

3 \ D̄) is bounded if it is a bounded operator into H 1((IR3 \ D̄) ∩ B) for
all open balls B containing D̄.

Corollary 3.8 Let ∂D be of class C2,α . The single-layer potential defines bounded
linear operators from H−1/2(∂D) into H 1(D) and into H 1

loc(IR
3 \ D̄). The double-

layer potential defines bounded linear operators from H 1/2(∂D) into H 1(D) and
into H 1

loc(IR
3 \ D̄).

Proof Let u be the single-layer potential with density ϕ ∈ C0,α(∂D). Then, by
Green’s theorem and the jump relations of Theorem 3.3, we have

∫
D

{
| grad u|2 − k2|u|2

}
dx =

∫
∂D

ū
∂u

∂ν
ds = 1

4

∫
∂D

Sϕ (ϕ + K ′ϕ) ds.

Therefore, by the preceding Corollary 3.7, we can estimate

‖ grad u‖2
L2(D)

−k2‖u‖2
L2(D)

≤1

4
‖Sϕ‖H 1/2(∂D)‖ϕ+K ′ϕ‖H−1/2(∂D)≤c1 ‖ϕ‖2

H−1/2(∂D)

for some positive constant c1. In terms of the volume potential operator V as
introduced in Theorem 8.2, interchanging orders of integration we have

(u, u)L2(D) = (ϕ, V ū)L2(∂D)

and estimating with the aid of the trace theorem and the mapping property of
Theorem 8.2 for the volume potential operator V yields

‖u‖2
L2(D)

≤ C‖ϕ‖H−1/2(∂D)‖V ū‖H 1(D) ≤ c2‖ϕ‖H−1/2(∂D)‖u‖L2(D)

for some positive constant c2. Now the statement on the single-layer potential for
the interior domain D follows by combining the last two inequalities and using
the denseness of C0,α(∂D) in H−1/2(∂D). The proof carries over to the exterior
domain IR3 \ D̄ by considering the product χu for some smooth cut-off function χ

with compact support.
The case of the double-layer potential v with density ϕ is treated analogously

through using

∫
D

{
| grad v|2 − k2|v|2

}
dx = 1

4

∫
∂D

T ϕ̄ (Kϕ − ϕ) ds,

which follows from Green’s theorem and the jump relations, and
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(v, v)L2(D) =
(

ϕ,
∂

∂ν
V v̄

)

L2(∂D)

which is obtained by interchanging orders of integration. 	

In addition to the boundary trace operator for H 1 solutions to the Helmholtz

equation as described by (3.19) we also need to clarify the meaning of the normal
derivative in this case. For this we define H 1

Δ(D) := {
u ∈ H 1(D) : Δu ∈ L2(D)

}
with norm

‖u‖2
H 1

Δ(D)
:= ‖u‖2

H 1(D)
+ ‖Δu‖2

L2(D)

where Δu must be interpreted as a distributional derivative. For u ∈ C2(D̄) and
w ∈ H 1(D), by Green’s integral theorem we have

∫
∂D

w
∂u

∂ν
ds =

∫
D

(wΔu + grad w · grad u) dx.

In view of this, for u ∈ C2(D̄) we define the normal derivative trace τu by the
duality pairing

〈τu, ϕ〉H−1/2(∂D),H 1/2(∂D) :=
∫

D

(wΔu + grad w · grad u) dx (3.20)

where w ∈ H 1(D) and ϕ ∈ H 1/2(∂D) are such that w = ϕ on ∂D in the sense
of the trace operator in (3.19). Clearly, the right-hand side of (3.20) has the same
value for all w ∈ H 1(D) with boundary trace w = ϕ on ∂D. The well-posedness of
the weak Dirichlet problem for harmonic functions (see [199, 268]) implies that for
w ∈ H 1(D) with Δw = 0 in D and w = ϕ on ∂D we have that

‖w‖H 1(D) ≤ c‖ϕ‖H 1/2(∂D)

with some positive constant c independent of ϕ. Consequently

∣∣〈τu, ϕ〉H−1/2(∂D),H 1/2(∂D)

∣∣ ≤ C‖u‖H 1
Δ(D)‖ϕ‖H 1/2(D) (3.21)

for all ϕ ∈ H 1/2(∂D) and some positive constant C. Thus for each u ∈ C2(D̄) by
(3.20) we have defined a bounded linear functional τu on H 1/2(∂D) with

‖τu‖H−1/2(∂D) ≤ C‖u‖H 1
Δ(D),

i.e., τ : C2(D̄) → H−1/2(∂D) is a bounded linear operator with respect to
‖·‖H 1

Δ(D). By denseness we can extend τ as a bounded linear operator τ : H 1
Δ(D) →

H−1/2(∂D) and can understand τu as normal derivative ∂νu for u ∈ H 1
Δ(D). The
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operator τ is known as normal derivative trace operator. Note that solutions to the
Helmholtz equation in D clearly belong to H 1

Δ(D). From the definition (3.20) it is
obvious that Green’s integral theorem remains valid for functions u ∈ H 1

Δ(D) and
w ∈ H 1(D). These ideas carry over to the exterior domain IR3 \ D̄ by considering
products χu for some smooth cut-off function χ with compact support.

Finally we note that the above analysis by denseness arguments also implies
that the jump relations for the boundary trace and the normal derivative trace of
the single- and double-layer potential remain valid in the Sobolev space setting.
For a different approach to proving Theorem 3.6 and its two corollaries we refer to
McLean [315] and to Nédélec [337].

The jump relations of Theorem 3.1 can also be extended through the use of Lax’s
theorem from the case of continuous densities to L2 densities. This was done by
Kersten [231]. In the L2 setting, the jump relations (3.1)–(3.4) have to be replaced by

lim
h→+0

∫
∂D

|2u(x ± hν(x)) − (Sϕ)(x)|2ds(x) = 0, (3.22)

lim
h→+0

∫
∂D

∣∣∣∣2 ∂u

∂ν
(x ± hν(x)) − (K ′ϕ)(x) ± ϕ(x)

∣∣∣∣
2

ds(x) = 0 (3.23)

for the single-layer potential u with density ϕ ∈ L2(∂D) and

lim
h→+0

∫
∂D

|2v(x ± hν(x)) − (Kϕ)(x) ∓ ϕ(x)|2ds(x) = 0, (3.24)

lim
h→+0

∫
∂D

∣∣∣∣∂v

∂ν
(x + hν(x)) − ∂v

∂ν
(x − hν(x))

∣∣∣∣
2

ds(x) = 0 (3.25)

for the double-layer potential v with density ϕ ∈ L2(∂D). Using Lax’s theorem,
Hähner [171] has also established that

lim
h→+0

∫
∂D

∣∣∣∣grad u(· ± hν) −
∫

∂D

gradx Φ(· , y)ϕ(y) ds(y) ± 1

2
ϕν

∣∣∣∣
2

ds = 0

(3.26)
for single-layer potentials u with L2(∂D) density ϕ, extending the jump
relation (3.7).

3.2 Scattering from a Sound-Soft Obstacle

The scattering of time-harmonic acoustic waves by sound-soft obstacles leads to the
following problem.
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Direct Acoustic Obstacle Scattering Problem Given an entire solution ui to the
Helmholtz equation representing an incident field, find a solution

u = ui + us

to the Helmholtz equation in IR3 \ D̄ such that the scattered field us satisfies the
Sommerfeld radiation condition and the total field u satisfies the boundary condition

u = 0 on ∂D.

Clearly, after renaming the unknown functions, this direct scattering problem is
a special case of the following Dirichlet problem.

Exterior Dirichlet Problem Given a continuous function f on ∂D, find a radiat-
ing solution u ∈ C2(IR3 \ D̄) ∩ C(IR3 \ D) to the Helmholtz equation

Δu + k2u = 0 in IR3 \ D̄,

which satisfies the boundary condition

u = f on ∂D.

We briefly sketch uniqueness, existence, and well-posedness for this boundary
value problem.

Theorem 3.9 The exterior Dirichlet problem has at most one solution.

Proof We have to show that solutions to the homogeneous boundary value problem
u = 0 on ∂D vanish identically. If u had a normal derivative in the sense of uniform
convergence, we could immediately apply Theorem 2.13 to obtain u = 0 in IR3 \ D̄.
However, in our formulation of the exterior Dirichlet problem we require u only
to be continuous up to the boundary which is the natural assumption for posing the
Dirichlet boundary condition. There are two possibilities to overcome this difficulty:
either we can use the fact that the solution to the Dirichlet problem belongs to
C1,α(IR3 \D) provided the given boundary data is in C1,α(∂D) (cf. [104] or [303]),
or we can justify the application of Green’s theorem by a more direct argument using
convergence theorems for Lebesgue integration. Despite the fact that later we will
also need the result on the smoothness of solutions to the exterior Dirichlet problem
up to the boundary, we briefly sketch a variant of the second alternative based on an
approximation idea due to Heinz (see [148] and also [419] and [225, p. 144]). It is
more satisfactory since it does not rely on techniques used in the existence results.
Thus, we state and prove the following lemma which then justifies the application
of Theorem 2.13. Note that this uniqueness result for the Dirichlet problem requires
no regularity assumptions on the boundary ∂D. 	
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Lemma 3.10 Let u ∈ C2(IR3 \ D̄) ∩ C(IR3 \ D) be a solution to the Helmholtz
equation in IR3 \ D̄ which satisfies the homogeneous boundary condition u = 0 on
∂D. Define DR := {y ∈ IR3 \ D̄ : |y| < R} and SR := {y ∈ IR3 : |y| = R} for
sufficiently large R. Then grad u ∈ L2(DR) and

∫
DR

| grad u|2 dx − k2
∫

DR

|u|2dx =
∫

SR

u
∂ū

∂ν
ds. (3.27)

Proof We first assume that u is real valued. We choose an odd function ψ ∈ C1(IR)

such that ψ(t) = 0 for 0 ≤ t ≤ 1, ψ(t) = t for t ≥ 2 and ψ ′(t) ≥ 0 for all t , and
set un := ψ(nu)/n. We then have uniform convergence ‖u − un‖∞ → 0, n → ∞.

Since u = 0 on the boundary ∂D, the functions un vanish in a neighborhood of ∂D

and we can apply Green’s theorem (2.2) to obtain

∫
DR

grad un · grad u dx = k2
∫

DR

unu dx +
∫

SR

un

∂u

∂ν
ds.

It can be easily seen that

0 ≤ grad un(x) · grad u(x) = ψ ′(nu(x)) | grad u(x)|2 → | grad u(x)|2, n → ∞,

for all x not contained in {x ∈ DR : u(x) = 0, grad u(x) �= 0}. Since as a
consequence of the implicit function theorem the latter set has Lebesgue measure
zero, Fatou’s lemma tells us that grad u ∈ L2(DR).

Now assume u = v + i w with real functions v and w. Then, since v and w also
satisfy the assumptions of our lemma, we have grad v, grad w ∈ L2(DR). From

grad vn + i grad wn = ψ ′(nv) grad v + i ψ ′(nw) grad w

we can estimate

|(grad vn + i grad wn) · grad ū| ≤ 2‖ψ ′‖∞
{
| grad v|2 + | grad w|2

}
.

Hence, by the Lebesgue dominated convergence theorem, we can pass to the limit
n → ∞ in Green’s theorem
∫

DR

{(grad vn + i grad wn) · grad ū + (vn + iwn)Δū} dx =
∫

SR

(vn + i wn)
∂ū

∂ν
ds

to obtain (3.27). 	

The existence of a solution to the exterior Dirichlet problem can be based on

boundary integral equations. In the so-called layer approach, we seek the solution
in the form of acoustic surface potentials. Here, we choose an approach in the form
of a combined acoustic double- and single-layer potential



3.2 Scattering from a Sound-Soft Obstacle 57

u(x) =
∫

∂D

{
∂Φ(x, y)

∂ν(y)
− iηΦ(x, y)

}
ϕ(y) ds(y), x ∈ IR3 \ ∂D, (3.28)

with a density ϕ ∈ C(∂D) and a real coupling parameter η �= 0. Then from the
jump relations of Theorem 3.1 we see that the potential u given by (3.28) in IR3 \ D̄

solves the exterior Dirichlet problem provided the density is a solution of the integral
equation

ϕ + Kϕ − iηSϕ = 2f. (3.29)

Combining Theorems 3.2 and 3.4, the operators S,K : C(∂D) → C(∂D) are seen
to be compact. Therefore, the existence of a solution to (3.29) can be established
by the Riesz–Fredholm theory for equations of the second kind with a compact
operator.

Let ϕ be a continuous solution to the homogeneous form of (3.29). Then the
potential u given by (3.28) satisfies the homogeneous boundary condition u+ = 0
on ∂D whence by the uniqueness for the exterior Dirichlet problem u = 0 in IR3 \D̄

follows. The jump relations (3.1)–(3.4) now yield

− u− = ϕ, −∂u−
∂ν

= iηϕ on ∂D. (3.30)

Hence, using Green’s theorem (2.2), we obtain

iη

∫
∂D

|ϕ|2ds =
∫

∂D

ū−
∂u−
∂ν

ds =
∫

D

{
| grad u|2 − k2|u|2

}
dx. (3.31)

Taking the imaginary part of the last equation shows that ϕ = 0. Thus, we
have established uniqueness for the integral equation (3.29), i.e., injectivity of the
operator I+K−iηS : C(∂D) → C(∂D). Therefore, by the Riesz–Fredholm theory,
I + K − iηS is bijective and the inverse (I + K − iηS)−1 : C(∂D) → C(∂D) is
bounded. Hence, the inhomogeneous equation (3.29) possesses a solution and this
solution depends continuously on f in the maximum norm. From the representation
(3.28) of the solution as a combined double- and single-layer potential, with the
aid of the regularity estimates in Theorem 3.1, the continuous dependence of the
density ϕ on the boundary data f shows that the exterior Dirichlet problem is well-
posed, i.e., small deviations in f in the maximum norm ensure small deviations in
u in the maximum norm on IR3 \ D and small deviations of all its derivatives in the
maximum norm on closed subsets of IR3 \ D̄. We summarize these results in the
following theorem.

Theorem 3.11 The exterior Dirichlet problem has a unique solution and the
solution depends continuously on the boundary data with respect to uniform
convergence of the solution on IR3 \ D and all its derivatives on closed subsets
of IR3 \ D̄.



58 3 Direct Acoustic Obstacle Scattering

Note that for η = 0 the integral equation (3.29) becomes nonunique if k

is a so-called irregular wave number or internal resonance, i.e., if there exist
nontrivial solutions u to the Helmholtz equation in the interior domain D satisfying
homogeneous Neumann boundary conditions ∂u/∂ν = 0 on ∂D. The approach
(3.28) was introduced independently by Brakhage and Werner [44], Leis [296],
and Panich [346] in order to remedy this nonuniqueness deficiency of the classical
double-layer approach due to Vekua [414] and Weyl [426]. For an investigation
on the proper choice of the coupling parameter η with respect to the condition of
the integral equation (3.29), we refer to Kress [259] and Chandler-Wilde, Graham,
Langdon, and Lindner [77].

In the literature, a variety of other devices has been designed for overcoming
the nonuniqueness difficulties of the double-layer integral equation. The combined
single- and double-layer approach seems to be the most attractive method from
a theoretical point of view since its analysis is straightforward as well as from
a numerical point of view since it never fails and can be implemented without
additional computational cost as compared with the double-layer approach.

In order to be able to use Green’s representation formula for the solution of the
exterior Dirichlet problem, we need its normal derivative. However, assuming the
given boundary values to be merely continuous means that in general the normal
derivative will not exist. Hence, we need to impose some additional smoothness
condition on the boundary data.

From Theorems 3.2 and 3.4 we also have compactness of the operators S,K :
C1,α(∂D) → C1,α(∂D). Hence, by the Riesz–Fredholm theory, the injective
operator I + K − iηS : C1,α(∂D) → C1,α(∂D) again has a bounded inverse
(I + K − iηS)−1 : C1,α(∂D) → C1,α(∂D). Therefore, given a right-hand side
f in C1,α(∂D), the solution ϕ of the integral equation (3.29) belongs to C1,α(∂D)

and depends continuously on f in the ‖ · ‖1,α norm. Using the regularity results of
Theorem 3.3 for the derivatives of single- and double-layer potentials, from (3.28)
we now find that u belongs to C1,α(IR3 \ D) and depends continuously on f .
In particular, the normal derivative ∂u/∂ν of the solution u exists and belongs to
C0,α(∂D) if f ∈ C1,α(∂D) and is given by

∂u

∂ν
= Af

where

A := (iηI − iηK ′ + T )(I + K − iηS)−1 : C1,α(∂D) → C0,α(∂D)

is bounded. The operator A transfers the boundary values, i.e., the Dirichlet data,
into the normal derivative, i.e., the Neumann data, and therefore it is called the
Dirichlet-to-Neumann map.

For the sake of completeness, we wish to show that A is bijective and has a
bounded inverse. This is equivalent to showing that
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iηI − iηK ′ + T : C1,α(∂D) → C0,α(∂D)

is bijective and has a bounded inverse. Since T is not compact, the Riesz–Fredholm
theory cannot be employed in a straightforward manner. In order to regularize the
operator, we first examine the exterior Neumann problem.

Exterior Neumann Problem Given a continuous function g on ∂D, find a radiat-
ing solution u ∈ C2(IR3 \ D̄) ∩ C(IR3 \ D) to the Helmholtz equation

Δu + k2u = 0 in IR3 \ D̄

which satisfies the boundary condition

∂u

∂ν
= g on ∂D

in the sense of uniform convergence on ∂D.

The exterior Neumann problem describes acoustic scattering from sound-hard
obstacles. Uniqueness for the Neumann problem follows from Theorem 2.13. To
prove existence we again use a combined single- and double-layer approach. We
overcome the problem that the normal derivative of the double-layer potential
in general does not exist if the density is merely continuous by incorporating a
smoothing operator, that is, we seek the solution in the form

u(x) =
∫

∂D

{
Φ(x, y) ϕ(y) + iη

∂Φ(x, y)

∂ν(y)
(S2

0ϕ)(y)

}
ds(y), x ∈ IR3 \ D̄,

(3.32)
with continuous density ϕ and a real coupling parameter η �= 0. By S0 we denote the
single-layer operator (3.8) in the potential theoretic limit case k = 0. Note that by
Theorem 3.4 the density S2

0ϕ of the double-layer potential belongs to C1,α(∂D). The
idea of using a smoothing operator as in (3.32) was first suggested by Panich [346].
From Theorem 3.1 we see that (3.32) solves the exterior Neumann problem provided
the density is a solution of the integral equation

ϕ − K ′ϕ − iηT S2
0ϕ = −2g. (3.33)

By Theorems 3.2 and 3.4 both K ′ + iηT S2
0 : C(∂D) → C(∂D) and K ′ +

iηT S2
0 : C0,α(∂D) → C0,α(∂D) are compact. Hence, the Riesz–Fredholm theory

is available in both spaces.
Let ϕ be a continuous solution to the homogeneous form of (3.33). Then the

potential u given by (3.32) satisfies the homogeneous Neumann boundary condition
∂u+/∂ν = 0 on ∂D whence by the uniqueness for the exterior Neumann problem
u = 0 in IR3 \ D̄ follows. The jump relations (3.1)–(3.4) now yield

− u− = iηS2
0ϕ, −∂u−

∂ν
= −ϕ on ∂D (3.34)
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and, by interchanging the order of integration and using Green’s integral theorem as
above in the proof for the Dirichlet problem, we obtain

iη

∫
∂D

|S0ϕ|2ds = iη

∫
∂D

ϕS2
0 ϕ̄ ds=

∫
∂D

ū−
∂u−
∂ν

ds=
∫

D

{
| grad u|2−k2|u|2

}
dx

whence S0ϕ = 0 on ∂D follows. The single-layer potential w with density ϕ and
wave number k = 0 is continuous throughout IR3, harmonic in D and in IR3 \ D̄ and
vanishes on ∂D and at infinity. Therefore, by the maximum–minimum principle
for harmonic functions, we have w = 0 in IR3 and the jump relation (3.2) yields
ϕ = 0. Thus, we have established injectivity of the operator I − K ′ − iηT S2

0 and,
by the Riesz–Fredholm theory, (I − K ′ − iηT S2

0)−1 exists and is bounded in both
C(∂D) and C0,α(∂D). From this we conclude the existence of the solution to the
Neumann problem for continuous boundary data g and the continuous dependence
of the solution on the boundary data.

Theorem 3.12 The exterior Neumann problem has a unique solution and the
solution depends continuously on the boundary data with respect to uniform
convergence of the solution on IR3 \ D and all its derivatives on closed subsets
of IR3 \ D̄.

In the case when g ∈ C0,α(∂D), the solution ϕ to the integral equation (3.33)
belongs to C0,α(∂D) and depends continuously on g in the norm of C0,α(∂D).
Using the regularity results of Theorem 3.3 for the single- and double-layer
potentials, from (3.32) we now find that u belongs to C1,α(IR3 \ D). In particular,
the boundary values u on ∂D are given by

u = Bg,

where

B = (iηS2
0 + iηKS2

0 + S)(K ′ − I + iηT S2
0)−1 : C0,α(∂D) → C1,α(∂D)

is bounded. Clearly, the operator B is the inverse of A. Thus, we can summarize our
regularity analysis as follows.

Theorem 3.13 The Dirichlet-to-Neumann map A which transfers the boundary
values of a radiating solution to the Helmholtz equation into its normal derivative is
a bijective bounded operator from C1,α(∂D) onto C0,α(∂D) with bounded inverse.
The solution to the exterior Dirichlet problem belongs to C1,α(IR3 \ D) if the
boundary values are in C1,α(∂D) and the mapping of the boundary data into the
solution is continuous from C1,α(∂D) into C1,α(IR3 \ D).

Instead of looking for classical solutions in the spaces of continuous or Hölder
continuous functions one can also pose and solve the boundary value problems for
the Helmholtz equation in a weak formulation for the boundary condition either
in an L2 sense or in a Sobolev space setting. This then leads to existence results
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under weaker regularity assumptions on the given boundary data and to continuous
dependence in different norms. The latter, in particular, can be useful in the error
analysis for approximate solution methods.

In the Sobolev space setting, the solution to the exterior Dirichlet problem is
required to belong to the energy space H 1

loc(IR
3 \ D̄) and the boundary condition

u= f on ∂D for a given f ∈ H 1/2(∂D) has to be understood in the sense of
the trace operator. This simplifies the uniqueness issue since the identity (3.27) is
obvious for functions in H 1

loc(IR
3 \ D̄). The existence analysis via the combined

double- and single-layer potential (3.28) with a density ϕ ∈ H 1/2(∂D) and the
integral equation (3.29) can be carried over in a straightforward manner. For
the exterior Neumann problem the boundary condition ∂u/∂ν = g on ∂D for
g ∈ H−1/2(∂D) has to be understood in the sense of the normal derivative trace
operator. Again the existence analysis via the combined single- and double-layer
potential (3.32) with a density ϕ ∈ H−1/2(∂D) and the integral equation (3.33)
carries over. Corollary 3.7 implies well-posedness in the sense that the mapping
from the boundary values f ∈ H 1/2(∂D) onto the solution u ∈ H 1

loc(IR
3 \ D̄)

is continuous. Further, we note that analogous to Theorem 3.13 the Dirichlet-to-
Neumann map A is a bijective bounded operator from H 1/2(∂D) onto H−1/2(∂D)

with a bounded inverse.
Boundary integral equations for obstacle scattering problems can also be

obtained from Green’s representation theorem. The basis of this so-called direct
method can be formulated by the following theorem which follows immediately
from Theorem 2.5 and the jump relations of Theorem 3.1.

Theorem 3.14 Let u ∈ C2(IR3 \ D̄) ∩ C1,α(IR3 \ D) be a radiating solution to the
Helmholtz equation. Then the boundary values and the normal derivative satisfy

⎛
⎝ u

∂u/∂ν

⎞
⎠ =

⎛
⎝K −S

T −K ′

⎞
⎠
⎛
⎝ u

∂u/∂ν

⎞
⎠, (3.35)

i.e., the operator in (3.35) is a projection operator in the product space of the
boundary values and the normal derivatives of radiating solutions to the Helmholtz
equation. This projection operator is known as the Calderón projection.

Obviously, given the Dirichlet data f , any linear combination of the two
equations in (3.35) will lead to an integral equation for the unknown Neumann data
g such as for example

g + K ′g − iηSg = Tf + iη(f − Kf ) (3.36)

as an integral equation of the second kind for the unknown g. The operator in
(3.36) is the adjoint of the operator in the equation (3.29). Therefore, by the Riesz–
Fredholm theory (3.36) is uniquely solvable. We refrain from writing down further
examples. However we note that (3.36), in principle, as consequence of Green’s
representation theorem provides only a necessary condition for the unknown
Neumann data. Therefore, for a complete existence analysis based only on (3.36)
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one still has to show that solutions of (3.36) indeed lead to solutions of the exterior
Dirichlet problem.

We note that Theorem 3.14 remains valid for H 1 solutions to the Helmholtz
equation since Green’s integral theorem and consequently also Green’s representa-
tion formula remain valid for H 1 solutions.

A major drawback of the integral equation approach to constructively proving
existence of solutions for scattering problems is the relatively strong regularity
assumption on the boundary to be of class C2. It is possible to slightly weaken the
regularity and allow Lyapunov boundaries instead of C2 boundaries and still remain
within the framework of compact operators in the spaces of Hölder continuous
functions. The boundary is said to satisfy a Lyapunov condition if at each point
x ∈ ∂D the normal vector ν to the surface exists and if there are positive constants
L and α such that for the angle θ(x, y) between the normal vectors at x and y there
holds θ(x, y) ≤ L|x − y|α for all x, y ∈ ∂D. For the treatment of the Dirichlet
problem for Lyapunov boundaries, which does not differ essentially from that for
C2 boundaries, we refer to Mikhlin [317].

However, the situation changes considerably if the boundary is allowed to have
edges and corners since this affects the compactness of the double-layer integral
operator in the space of continuous functions. Here, under suitable assumptions
on the nature of the edges and corners, the double-layer integral operator can be
decomposed into the sum of a compact operator and a bounded operator with norm
less than one reflecting the behavior at the edges and corners, and then the Riesz–
Fredholm theory still can be employed. For details, we refer to Sect. 3.6 for the
two-dimensional case. Resorting to single-layer potentials in the Sobolev space
setting as introduced above is another efficient option to handle edges and corners
(see Hsiao and Wendland [199] and McLean [315]).

Explicit solutions for the direct scattering problem are only available for special
geometries and special incoming fields. In general, to construct a solution one
must resort to numerical methods, for example, the numerical solution of the
boundary integral equations. An introduction into numerical approximation for
integral equations of the second kind by the Nyström method, collocation method,
and Galerkin method is contained in [268]. We will describe in some detail Nyström
methods for the two- and three-dimensional case at the end of this chapter.

For future reference, we present the solution for the scattering of a plane wave

ui(x) = eik x·d

by a sound-soft ball of radius R with center at the origin. The unit vector d describes
the direction of propagation of the incoming wave. In view of the Jacobi–Anger
expansion (2.46) and the boundary condition ui + us = 0, we expect the scattered
wave to be given by

us(x) = −
∞∑

n=0

in(2n + 1)
jn(kR)

h
(1)
n (kR)

h(1)
n (k|x|) Pn(cos θ), (3.37)
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where θ denotes the angle between x and d. By the asymptotic behavior (2.38) and
(2.39) of the spherical Bessel and Hankel functions for large n, we have

jn(kR)

h
(1)
n (kR)

h(1)
n (k|x|) = O

(
n! (2kR)n

(2n + 1)!
Rn

|x|n
)

, n → ∞,

uniformly on compact subsets of IR3 \ {0}. Therefore, the series (3.37) is uniformly
convergent on compact subsets of IR3 \ {0}. Hence, by Theorem 2.15 the series
represents a radiating field in IR3 \ {0}, and therefore indeed solves the scattering
problem for the sound-soft ball.

For the far field pattern, we see by Theorem 2.16 that

u∞(x̂) = i

k

∞∑
n=0

(2n + 1)
jn(kR)

h
(1)
n (kR)

Pn(cos θ). (3.38)

Clearly, as we expect from symmetry reasons, it depends only on the angle θ

between the observation direction x̂ and the incident direction d.
In general, for the scattering problem the boundary values are as smooth as the

boundary since they are given by the restriction of the analytic function ui to ∂D. In
particular, for domains D of class C2 our regularity analysis shows that the scattered
field us is in C1,α(IR3 \D). Therefore, we may apply Green’s formula (2.9) with the
result

us(x) =
∫

∂D

{
us(y)

∂Φ(x, y)

∂ν(y)
− ∂us

∂ν
(y)Φ(x, y)

}
ds(y), x ∈ IR3 \ D̄.

Green’s theorem (2.3), applied to the entire solution ui and Φ(x, ·), gives

0 =
∫

∂D

{
ui(y)

∂Φ(x, y)

∂ν(y)
− ∂ui

∂ν
(y)Φ(x, y)

}
ds(y), x ∈ IR3 \ D̄.

Adding these two equations and using the boundary condition ui + us = 0 on ∂D

gives the following theorem. The representation for the far field pattern is obtained
with the aid of (2.15).

Theorem 3.15 For the scattering of an entire field ui from a sound-soft obstacle D

we have

u(x) = ui(x) −
∫

∂D

∂u

∂ν
(y)Φ(x, y) ds(y), x ∈ IR3 \ D̄, (3.39)

and the far field pattern of the scattered field us is given by

u∞(x̂) = − 1

4π

∫
∂D

∂u

∂ν
(y) e−ik x̂·y ds(y), x̂ ∈ S

2. (3.40)
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In physics, the representation (3.39) for the scattered field through the so-called
secondary sources on the boundary is known as Huygens’ principle.

We conclude this section by briefly giving the motivation for the Kirchhoff
or physical optics approximation which is frequently used in applications as a
physically intuitive procedure to simplify the direct scattering problem. The solution
for the scattering of a plane wave with incident direction d at a plane Γ := {x ∈
IR3 : x · ν = 0} through the origin with normal vector ν is described by

u(x) = ui(x) + us(x) = eik x·d − eik x·d̃ ,

where d̃ = d−2 ν ·d ν denotes the reflection of d at the plane Γ . Clearly, ui+us = 0
is satisfied on Γ and we evaluate

∂u

∂ν
= ik{ν · d ui + ν · d̃ us} = 2ik ν · d ui = 2

∂ui

∂ν
.

For large wave numbers k, i.e., for small wavelengths, in a first approximation a
convex object D locally may be considered at each point x of ∂D as a plane with
normal ν(x). This leads to setting

∂u

∂ν
= 2

∂ui

∂ν

on the region ∂D− := {x ∈ ∂D : ν(x) · d < 0} which is illuminated by the plane
wave with incident direction d, and

∂u

∂ν
= 0

in the shadow region ∂D+ := {x ∈ ∂D : ν(x) · d ≥ 0}. Thus, in the Kirchhoff
approximation for the scattering of a plane wave with incident direction d at a
convex sound-soft obstacle the total wave is approximated by

u(x) ≈ eik x·d − 2
∫

∂D−

∂eik y·d

∂ν(y)
Φ(x, y) ds(y), x ∈ IR3 \ D̄, (3.41)

and the far field pattern of the scattered field is approximated by

u∞(x̂) ≈ − 1

2π

∫
∂D−

∂eik y·d

∂ν(y)
e−ik x̂·y ds(y), x̂ ∈ S

2. (3.42)

In this book, the Kirchhoff approximation does not play an important role since
we are mainly interested in scattering at low and intermediate values of the wave
number.
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3.3 Impedance Boundary Conditions

In addition to the two standard boundary conditions for sound-soft and sound-hard
obstacles, the so-called impedance boundary conditions were introduced to model
scattering problems for penetrable obstacles approximately by scattering problems
for impenetrable obstacles. The classical impedance condition for the total wave
u = ui + us , also known as the Leontovich condition, is given by

∂u

∂ν
+ ikλu = 0 on , ∂D (3.43)

where λ ∈ C(∂D) is a given complex valued function with nonnegative real part.
On occasion we will also call the impedance boundary condition a Robin condition.
The generalized impedance boundary condition is described by

∂u

∂ν
+ ik (λu − Div μ Grad u) = 0 on ∂D, (3.44)

where λ ∈ C(∂D) and μ ∈ C1(∂D) are given complex valued functions with
nonnegative real parts. Grad and Div denote the surface gradient and surface
divergence on ∂D. For their definition and basic properties we refer the reader to
Sect. 6.3. As compared with the Leontovich condition, the wider class of impedance
conditions (3.44) can provide more accurate models, for example, for imperfectly
conducting or coated obstacles (see [135, 168, 389]).

As in the previous section, after renaming the unknowns we consider the
scattering problems as special cases of exterior boundary value problems and
begin with the classical impedance condition. Given a function g ∈ C(∂D) the
exterior impedance boundary value problem consists of finding a radiating solution
u ∈ C2(IR3 \ D̄) ∩ C(IR3 \ D) to the Helmholtz equation satisfying the boundary
condition

∂u

∂ν
+ ikλu = g on ∂D, (3.45)

where, as for the exterior Neumann problem, the normal derivative is understood
in the sense of uniform convergence on ∂D. The uniqueness of a solution follows
from Theorem 2.13. Existence can be shown by seeking a solution in the form of
the modified single- and double-layer potential (3.32) and imitating the proof of
Theorem 3.12. For convenience we formulate the following theorem leaving the
details of the proof to the reader.

Theorem 3.16 The exterior impedance problem has a unique solution and the
solution depends continuously on the boundary data with respect to uniform
convergence of the solution on IR3 \ D and all its derivatives on closed subsets
of IR3 \ D̄.
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We now consider the exterior boundary value problem with the generalized
impedance boundary condition: Given a function g on ∂D find a radiating solution
to the Helmholtz equation in IR3 \ D̄ which satisfies the boundary condition

∂u

∂ν
+ ik (λu − Div μ Grad u) = g on ∂D. (3.46)

Deviating from the prevailing practice in this book to treat the boundary integral
equations in the classical spaces of continuous and Hölder continuous functions, in
order to deal with the differential operator in the boundary condition (3.46) we have
chosen to work in a Sobolev space setting. As in [43], where existence of a solution
is established by a variational approach, for a given g ∈ L2(∂D), we seek a solution
u in

H
1,1
loc (IR3 \ D̄) :=

{
u ∈ H 1

loc(IR
3 \ D̄) : u|∂D ∈ H 1(∂D)

}
.

Note that the boundary trace of functions in H 1
loc(IR

3 \ D̄), in general, only belongs
to H 1/2(∂D), see the trace theorem (3.19). Then the surface gradient Grad u is in
L2(∂D) and the surface divergence Div μ Grad u has to be understood in the weak
sense of Definition 6.15, i.e., the boundary condition (3.46) means that u has to
satisfy

∫
∂D

(
ψ

∂u

∂ν
+ ikλψu + ikμ Grad ψ · Grad u

)
ds =

∫
∂D

ψg ds (3.47)

for all ψ ∈ H 1(∂D). The normal derivative in (3.47) has to be understood in the
sense of duality as defined by (3.20).

For a solution u for the homogeneous problem, inserting ψ = ū|∂D in the weak
form (3.47) of the boundary condition for g = 0 we obtain that

∫
∂D

ū
∂u

∂ν
ds = −ik

∫
∂D

{
λ|u|2 + μ |Grad u|2

}
ds.

Hence in view of our assumption Re λ ≥ 0 and Re μ ≥ 0, we can conclude that

Im
∫

∂D

ū
∂u

∂ν
ds ≤ 0

and from this u = 0 in IR3 \ D̄ follows again by Theorem 2.13. We note that
Theorem 2.13 remains valid for H 1 solutions to the Helmholtz equation since its
proof is based on Green’s integral theorem and Green’s representation formula
which also hold for H 1 solutions as pointed out earlier. Therefore the exterior
boundary value problem with generalized impedance boundary condition has at
most one solution.
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We seek the solution u in the form of a combined double- and single-layer
potential of the form (3.28) with a density ϕ ∈ H 1(∂D). Then, by Theorem 3.6
and Corollary 3.8 we have that u ∈ H

1,1
loc (IR3 \ D̄). From the jump relations (3.22)

and (3.23) for L2 densities we observe that the boundary condition (3.46) is satisfied
provided ϕ solves the integro-differential equation

Aϕ = 2g (3.48)

with the operator A given by

A := T + iη(I − K ′) + ik (λI − Div μ Grad) (I + K − iηS). (3.49)

For the differential operator in this equation we provide the following lemma.

Lemma 3.17 The modified Laplace–Beltrami operator given by

Lϕ := − Div Grad ϕ + ϕ

is an isomorphism from H 1(∂D) onto H−1(∂D).

Proof From the definition (6.39) of the weak surface divergence we have that

(Lϕ,ψ) = (Grad ϕ, Grad ψ) + (ϕ, ψ)

for ϕ,ψ ∈ H 1(∂D) and consequently

‖Lϕ‖H−1(∂D) = sup
‖ψ‖

H1(∂D)
=1

|(Lϕ,ψ)| ≤ C1‖ϕ‖H1(∂D) (3.50)

and

|(Lϕ, ϕ)| ≥ C2‖ϕ‖2
H1(∂D) (3.51)

for all ϕ ∈ H 1(∂D) and some positive constants C1 and C2. From (3.50) we have
that L : H 1(∂D) → H−1(∂D) is bounded and from (3.51) we can conclude
that it is injective and has closed range. Assuming that it is not surjective implies
the existence of some χ �= 0 in the dual space

(
H−1(∂D)

)∗ = H 1(∂D) that
vanishes on L

(
H 1(∂D)

)
, i.e., (Lϕ, χ) = 0 for all ϕ ∈ H 1(∂D). Choosing ϕ = χ

yields (Lχ, χ) = 0 and from (3.51) we obtain the contradiction χ = 0. Hence
L : H 1(∂D) → H−1(∂D) is bijective and by Banach’s open mapping theorem it is
an isomorphism. 	

Lemma 3.18 Assume that ∂D is of class C3,α . Then the operator

A + ikμL : H 1(∂D) → H−1(∂D)

is compact.
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Proof By Theorem 3.6 the operators T and K ′ are bounded from H 1(∂D) into
L2(D) and, in extension of Theorem 3.6, it is known that S and K map H 1(∂D)

into H 2(∂D) and are bounded provided ∂D is of class C3,α (see [233, 315]). Clearly,
L is bounded from H 2(∂D) into L2(∂D). Therefore, in view of our assumptions
μ ∈ C1(∂D) and λ ∈ C(∂D), all terms in the sum defining the operator A are
bounded from H 1(∂D) into L2(∂D) except the term ϕ �→ ik Div μ Grad ϕ. Then,
observing that in the decomposition

Div μ Grad ϕ = μ Div Grad ϕ + Grad μ · Grad ϕ

the second term is also bounded from H 1(∂D) into L2(∂D), we can conclude that
the operator A + ikμL : H 1(∂D) → L2(∂D) is bounded. Hence the statement of
the lemma follows from the compact embedding of L2(∂D) into H−1(∂D). 	

Lemma 3.19 Assume that μ(x) �= 0 for all x ∈ ∂D and that ∂D is of class C3,α .
Then for each g ∈ L2(∂D) the Eq. (3.48) has a unique solution ϕ ∈ H 1(∂D) and
this solution depends continuously on g.

Proof Because of Lemmas 3.17 and 3.18 by the Riesz–Fredholm theory it suffices
to show that the operator A is injective. Assume that ϕ ∈ H 1(∂D) satisfies Aϕ = 0.
Then, the combined double- and single-layer potential (3.28) satisfies the homo-
geneous generalized impedance condition on ∂D and the above uniqueness result
implies u = 0 in IR3 \ D̄. Taking the boundary trace implies ϕ + Kϕ − iηSϕ = 0.
From the existence proof for the exterior Dirichlet problem in Theorem 3.11 we
know that I + K − iηS is injective in C(∂D). The proof for this remains valid in
H 1(∂D). Hence, finally we conclude that ϕ = 0 and our proof is finished. 	


Now we can summarize our existence analysis in the following theorem. The
continuous dependence follows from Theorem 3.6 and Corollary 3.8.

Theorem 3.20 Assume that μ(x) �= 0 for all x ∈ ∂D and that ∂D is of class
C3,α . Then for each g ∈ L2(∂D) the exterior generalized impedance problem has a
unique solution u and the solution depends continuously on g with respect to both
the norm on H 1(∂D) and the norm on H 1((IR3 \ D̄) ∩ B) for all open balls B

containing D̄.

The above impedance conditions (3.43) and (3.46) are local conditions whereas
we now also will briefly discuss nonlocal impedance conditions of the form

Au + B
∂u

∂ν
= g on ∂D (3.52)

for solutions u to the Helmholtz equation defined either in IR3 \ D̄ or in D for
a given function g on ∂D. Here, one of the two operators A and B will contain
integral operators, or more general pseudo differential operators defined in Sobolev
spaces on ∂D. In general, these nonlocal impedance conditions have no immediate
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physical interpretation and only will serve us as an analytic tool for the investigation
of mathematical problems related to direct and inverse obstacle scattering.

We have already met a nonlocal impedance condition in the proof of Theo-
rem 3.12. The Cauchy data (3.34) for the modified single- and double-layer potential
u correspond to the nonlocal impedance condition

u− + iηS2
0

∂u−
∂ν

= 0 on ∂D

whereas (3.30) corresponds to the classical impedance condition

∂u−
∂ν

− iηu− = 0 on ∂D.

We recall from Sect. 2.1 the transmission problem to find the scattered field us as
a radiating solution to the Helmholtz equation with wave number k in IR3 \ D̄ and
the transmitted field v as a solution to the Helmholtz equation with wave number kD

in D such that the total field u = ui + us and v satisfy the transmission conditions

u = v,
1

ρ

∂u

∂ν
= 1

ρD

∂v

∂ν
on ∂D. (3.53)

For the sake of simplicity, we only consider the case where ρD = ρ. The extension
of the following analysis to the case ρD �= ρ is straightforward. We also want
to allow absorption, i.e., complex wave numbers kD with nonnegative real and
imaginary part. For an incident field ui = 0, by Green’s integral theorem we find
that

Im
∫

∂D

us ∂ūs

∂ν
ds = Im

∫
∂D

v
∂v̄

∂ν
ds = 2 Re kD Im kD

∫
D

|v|2 dx ≥ 0.

By Theorem 2.13 it follows that us = 0 in IR3 \ D̄, that is, we have uniqueness for
the solution.

Usually this transmission problem is reduced to a two-by-two system of bound-
ary integral equations over the interface ∂D for a pair of unknowns, see among
others [97, 272]. This can be done either by the direct method combining the
Calderón projections from Theorem 3.14 and its counterpart for the domain D or by
a potential approach. For a survey on methods for solving the transmission problem
using only a single integral equation over ∂D we refer to [253]. As an addition to the
selection of available single integral equations for the transmission problem, we will
reduce the transmission problem to a scattering problem in IR3 \ D̄ with a nonlocal
impedance boundary condition in terms of the Dirichlet-to-Neumann operator for
the domain D which then can be solved via one integral equation. To prepare for this
we establish the following theorem on the invertibility of the single-layer boundary
integral operator.
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Theorem 3.21 Assume that k2 is not a Dirichlet eigenvalue of −Δ in D and that
∂D is of class C2. Then the single-layer potential operator S : C0,α(∂D) →
C1,α(∂D) is bijective with a bounded inverse.

Proof Let ϕ ∈ C0,α(∂D) satisfy Sϕ = 0. Then the single-layer potential u with
density ϕ has boundary values u = 0 on ∂D. By the uniqueness for the exterior
Dirichlet problem u vanishes in IR3 \ D̄, and by the assumption on k it also vanishes
in D. Now the jump relations for the normal derivative of single-layer potentials
imply ϕ = 0. Hence S is injective.

To prove surjectivity, we choose a second wave number k0 > 0 such that k2
0 is not

a Neumann eigenvalue for −Δ in D and distinguish the fundamental solutions and
the boundary integral operators for the two different wave numbers by the indices k

and k0. Let ψ ∈ C1,α(∂D) satisfy Tk0ψ = 0. Then the double-layer potential v with
density ψ has normal derivative ∂νv = 0 on both sides of ∂D. By the uniqueness
for the exterior Neumann problem v vanishes in IR3 \ D̄, and by the assumption
on k0 it also vanishes in D. Therefore the jump relations imply ψ = 0. Hence
Tk0 : C1,α(∂D) → C0,α(∂D) is injective.

Then, given f ∈ C1,α(∂D) the two equations Skϕ = f and Tk0Skϕ = Tk0f for
ϕ ∈ C0,α(∂D) are equivalent. In view of (3.13) we have Tk0Sk = C − I where

C := K ′2
k0

+ Tk0(Sk − Sk0).

From the first term in the series

4π Gradx[Φk(x, y) − Φk0(x, y)] =
∞∑

m=2

im

m! (k
m − km

0 ) Gradx |x − y|m−1

we observe that Grad(Sk −Sk0) has the same mapping properties as the single-layer
potential operator. This implies that Sk −Sk0 is bounded from C(∂D) into C1,α(∂D)

and therefore compact from C0,α(∂D) into C1,α(∂D). Then Theorem 3.4 implies
that C : C0,α(∂D) → C0,α(∂D) is compact. Therefore, the Riesz–Fredholm theory
can be applied and injectivity of Tk0Sk implies solvability of Tk0Skϕ = Tk0f and
consequently also of Skϕ = f . Hence, we have bijectivity of Sk and the Banach
open mapping theorem implies the boundedness of the inverse S−1

k : C1,α(∂D) →
C0,α(∂D). 	


Returning to the transmission problem, we assume that k2
D is not a Dirichlet

eigenvalue for −Δ in D. Then the Dirichlet-to-Neumann operator

AkD
: C1,α(∂D) → C0,α(∂D)

is well defined by the mapping taking f ∈ C1,α(∂D) into the normal derivative
AkD

f := ∂νv of the unique solution v ∈ C1,α(D̄) of Δv + k2
Dv = 0 satisfying

the Dirichlet condition v = f on ∂D. Using the preceding Theorem 3.21 and a
single-layer approach for the interior Dirichlet problem the representation
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AkD
= (I + K ′

kD
)S−1

kD
(3.54)

can be obtained. In particular, this implies that AkD
: C1,α(∂D) → C0,α(∂D) is

bounded. Then, for ρD = ρ, the transmission problem (3.53) can be seen to be
equivalent to the scattering problem for u = ui + us in IR3 \ D̄ with the nonlocal
impedance condition

∂us

∂ν
− AkD

us = −∂ui

∂ν
+ AkD

ui on ∂D. (3.55)

Once we have determined the scattered wave us in IR3 \ D̄ from (3.55), the
transmitted wave v in D can be obtained via Green’s representation theorem from
its Cauchy data v = u and ∂νv = AkD

v = AkD
u = ∂νu on ∂D.

The single-layer potential us with density ϕ ∈ C0,α(∂D) and wave number k

satisfies the boundary condition (3.55) provided

− ϕ + K ′
kϕ − AkD

Skϕ = −2
∂ui

∂ν
+ 2AkD

ui . (3.56)

From the uniqueness for the solution of the transmission problem, and consequently
also for the solution of its equivalent reformulation (3.55), it follows that for a
solution ϕ of the homogeneous form of (3.56) the corresponding potential vanishes
us = 0 in IR3 \ D̄. Taking the boundary trace we obtain that Skϕ = 0. If we assume
that in addition to k2

D also k2 is not a Dirichlet eigenvalue for −Δ in D we have
injectivity of Sk and therefore ϕ = 0. Hence the operator −I + K ′

k − AkD
Sk is

injective.
With the aid of (3.54) we rewrite

−I + K ′
k − AkD

Sk = −I + K ′
k − I − K ′

kD
− AkD

(Sk − SkD
).

From the proof of the preceding Theorem 3.21 we know already that Sk − SkD
:

C0,α(∂D) → C1,α(∂D) is compact. Since the Dirichlet-to-Neumann operator is
bounded from C1,α(∂D) into C0,α(∂D) in addition to K ′

k,K
′
kD

: C0,α(∂D) →
C0,α(∂D) also AkD

(Sk − SkD
) : C0,α(∂D) → C0,α(∂D) is compact. Thus, finally

the Riesz–Fredholm theory applies to equation (3.56) and we can summarize in the
following theorem.

Theorem 3.22 Under the assumption that both k2 and k2
D are not Dirichlet

eigenvalues for the negative Laplacian in D the equation (3.56) is uniquely solvable.

To avoid the restriction on kD , instead of using the Dirichlet-to-Neumann
operator, we propose using the Robin-to-Neumann operator RkD

: C1,α(∂D) →
C0,α(∂D) defined by the mapping taking f ∈ C1,α(∂D) into the normal derivative
RkD

f = ∂νv of the unique solution v ∈ C1,α(D) of Δv + k2
Dv = 0 satisfying the

Robin condition
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v + i
∂v

∂ν
= f on ∂D. (3.57)

Uniqueness for the solution follows by inserting the homogeneous form of the
boundary condition (3.57) into Green’s integral theorem applied to v and v̄ and
taking the imaginary part. From the single-layer approach for the solution of (3.57)
we observe that

RkD
= (I + K ′

kD
)[SkD

+ i(I + K ′
kD

)]−1. (3.58)

The corresponding nonlocal impedance condition now becomes

∂us

∂ν
− RkD

[
us + i

∂us

∂ν

]
= −∂ui

∂ν
+ RkD

[
ui + i

∂ui

∂ν

]
on ∂D. (3.59)

For all wave numbers k and kD we are allowing, this impedance problem can be
dealt with via a uniquely solvable integral equation as derived from the modified
single- and double-layer approach (3.32). We omit working out the details.

In Sect. 10.2 in our analysis of transmission eigenvalues we again will treat a
transmission problem by transforming it equivalently into a boundary value problem
with a nonlocal impedance condition in a Sobolev space setting.

3.4 Herglotz Wave Functions and the Far Field Operator

In the sequel, for an incident plane wave ui(x) = ui(x, d) = eik x·d we will indicate
the dependence of the scattered field, of the total field, and of the far field pattern on
the incident direction d by writing, respectively, us(x, d), u(x, d), and u∞(x̂, d).

Theorem 3.23 The far field pattern for sound-soft obstacle scattering satisfies the
reciprocity relation

u∞(x̂, d) = u∞(−d,−x̂), x̂, d ∈ S
2. (3.60)

Proof By Green’s theorem (2.3), the Helmholtz equation for the incident and the
scattered wave and the radiation condition for the scattered wave we find

∫
∂D

{
ui(· , d)

∂

∂ν
ui(· ,−x̂) − ui(· ,−x̂)

∂

∂ν
ui(· , d)

}
ds = 0

and

∫
∂D

{
us(· , d)

∂

∂ν
us(· ,−x̂) − us(· ,−x̂)

∂

∂ν
us(· , d)

}
ds = 0.
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From (2.14) we deduce that

4πu∞(x̂, d) =
∫

∂D

{
us(· , d)

∂

∂ν
ui(· ,−x̂) − ui(· ,−x̂)

∂

∂ν
us(· , d)

}
ds

and, interchanging the roles of x̂ and d,

4πu∞(−d,−x̂) =
∫

∂D

{
us(· ,−x̂)

∂

∂ν
ui(· , d) − ui(· , d)

∂

∂ν
us(· ,−x̂)

}
ds.

We now subtract the last equation from the sum of the three preceding equations to
obtain

4π{u∞(x̂, d) − u∞(−d,−x̂)}

=
∫

∂D

{
u(· , d)

∂

∂ν
u(· ,−x̂) − u(· ,−x̂)

∂

∂ν
u(· , d)

}
ds

(3.61)

whence (3.60) follows by using the boundary condition u(· , d) = u(· ,−x̂) = 0
on ∂D. 	


In the derivation of (3.61), we only used the Helmholtz equation for the incident
field in IR3 and for the scattered field in IR3 \ D̄ and the radiation condition.
Therefore, we can conclude that the reciprocity relation (3.60) is also valid for
the sound-hard, Leontovich, generalized impedance, and transmission boundary
conditions. It states that the far field pattern is unchanged if the direction of the
incident field and the observation directions are interchanged.

For the scattering of a point source wi(x, z) = Φ(x, z) located at z ∈ IR3 \ D̄

we denote the scattered field by ws(x, z), the total field by w(x, z), and the far field
pattern of the scattered wave by ws∞(x̂, z).

Theorem 3.24 For obstacle scattering of point sources and plane waves we have
the mixed reciprocity relation

4πws∞(−d, z) = us(z, d), z ∈ IR3 \ D̄, d ∈ S
2. (3.62)

Proof The statement follows by combining Green’s theorems

∫
∂D

{
wi(· , z) ∂

∂ν
ui(· , d) − ui(· , d)

∂

∂ν
wi(· , z)

}
ds = 0

and

∫
∂D

{
ws(· , z) ∂

∂ν
us(· , d) − us(· , d)

∂

∂ν
us(· , z)

}
ds = 0
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and the representations

∫
∂D

{
ws(· , z) ∂

∂ν
ui(· , d) − ui(· , d)

∂

∂ν
ws(· , z)

}
ds = 4πws∞(−d, z)

and

∫
∂D

{
us(· , d)

∂

∂ν
wi(· , z) − wi(· , z) ∂

∂ν
us(· , d)

}
ds = us(z, d)

as in the proof of Theorem 3.23. 	

Again the statement of Theorem 3.24 is valid for all boundary conditions. Since

the far field pattern Φ∞ of the incident field Φ is given by

Φ∞(d, z) = 1

4π
e−ik d·z, (3.63)

from (3.62) we conclude that

w∞(d, z) = 1

4π
u(z,−d) (3.64)

for the far field pattern w∞ of the total field w.
The proof of the following theorem is analogous to that of the two preceding

theorems.

Theorem 3.25 For obstacle scattering of point sources we have the symmetry
relation

ws(x, y) = ws(y, x), x, y ∈ IR3 \ D̄. (3.65)

We now ask the question if the far field patterns for a fixed sound-soft obstacle D

and all incident plane waves are complete in L2(S2). We call a subset U of a Hilbert
space X complete if the linear combinations of elements from U are dense in X,
that is, if X = span U. Recall that U is complete in the Hilbert space X if and only
if (u, ϕ) = 0 for all u ∈ U implies that ϕ = 0 (see [130]).

Definition 3.26 A Herglotz wave function is a function of the form

v(x) =
∫
S2

eik x·dg(d) ds(d), x ∈ IR3, (3.66)

where g ∈ L2(S2). The function g is called the Herglotz kernel of v.

Herglotz wave functions are clearly entire solutions to the Helmholtz equation.
We note that for a given g ∈ L2(S2) the function
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v(x) =
∫
S2

e−ik x·dg(d) ds(d), x ∈ IR3,

also defines a Herglotz wave function. The following theorem establishes a one-to-
one correspondence between Herglotz wave functions and their kernels.

Theorem 3.27 Assume that the Herglotz wave function v with kernel g vanishes in
all of IR3. Then g = 0.

Proof From v(x) = 0 for all x ∈ IR3 and the Funk–Hecke formula (2.45), we
see that

∫
S2 g Yn ds = 0 for all spherical harmonics Yn of order n = 0, 1, . . . . Now

g = 0 follows from the completeness of the spherical harmonics (Theorem 2.8). 	

Lemma 3.28 For a given function g ∈ L2(S2) the solution to the scattering
problem for the incident wave

vi(x) =
∫
S2

eik x·dg(d) ds(d), x ∈ IR3

is given by

vs(x) =
∫
S2

us(x, d)g(d) ds(d), x ∈ IR3 \ D̄,

and has the far field pattern

v∞(x̂) =
∫
S2

u∞(x̂, d)g(d) ds(d), x̂ ∈ S
2.

Proof Multiply (3.28) and (3.29) by g, integrate with respect to d over S
2, and

interchange orders of integration. 	

Now, the rather surprising answer to our completeness question, due to Colton

and Kirsch [90], will be that the far field patterns are complete in L2(S2) if and only
if there does not exist a nontrivial Herglotz wave function v that vanishes on ∂D.
A nontrivial Herglotz wave function that vanishes on ∂D, of course, is a Dirichlet
eigenfunction, i.e., a solution to the Dirichlet problem in D with zero boundary
condition, and this is peculiar since from physical considerations the eigenfunctions
corresponding to the Dirichlet eigenvalues of the negative Laplacian in D should
have nothing to do with the exterior scattering problem at all.

Theorem 3.29 Let (dn) be a sequence of unit vectors that is dense on S
2 and define

the set F of far field patterns by F := {u∞(· , dn) : n = 1, 2, . . .}. Then F is
complete in L2(S2) if and only if there does not exist a Dirichlet eigenfunction for
D which is a Herglotz wave function.

Proof Deviating from the original proof by Colton and Kirsch [90], we make
use of the reciprocity relation. By the continuity of u∞ as a function of d and
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Theorem 3.23, the completeness condition

∫
S2

u∞(x̂, dn)h(x̂) ds(x̂) = 0, n = 1, 2, . . . ,

for a function h ∈ L2(S2) is equivalent to the condition

∫
S2

u∞(x̂, d)g(d) ds(d) = 0, x̂ ∈ S
2, (3.67)

for g ∈ L2(S2) with g(d) = h(−d). By Theorem 3.27 and Lemma 3.28, the
existence of a nontrivial function g satisfying (3.67) is equivalent to the existence of
a nontrivial Herglotz wave function vi (with kernel g) for which the far field pattern
of the corresponding scattered wave vs is v∞ = 0. By Theorem 2.14, the vanishing
far field v∞ = 0 on S

2 is equivalent to vs = 0 in IR3 \ D̄. By the boundary condition
vi + vs = 0 on ∂D and the uniqueness for the exterior Dirichlet problem, this is
equivalent to vi = 0 on ∂D and the proof is finished. 	


Clearly, by the Funk–Hecke formula (2.45), the spherical wave functions

un(x) = jn(k|x|) Yn

(
x

|x|
)

provide examples of Herglotz wave functions. The spherical wave functions also
describe Dirichlet eigenfunctions for a ball of radius R centered at the origin with
the eigenvalues k2 given in terms of the zeros jn(kR) = 0 of the spherical Bessel
functions. By arguments similar to those used in the proof of Rellich’s Lemma 2.12,
an expansion with respect to spherical harmonics shows that all the eigenfunctions
for a ball are indeed spherical wave functions. Therefore, the eigenfunctions for
balls are always Herglotz wave functions and by Theorem 3.29 the far field patterns
for plane waves are not complete for a ball D when k2 is a Dirichlet eigenvalue.

The corresponding completeness results for the transmission problem were given
by Kirsch [232] and for the resistive boundary condition by Hettlich [186]. For
extensions to Sobolev and Hölder norms we refer to Kirsch [233].

We can also express the result of Theorem 3.29 in terms of a far field operator.

Theorem 3.30 The far field operator F : L2(S2) → L2(S2) defined by

(Fg)(x̂) :=
∫
S2

u∞(x̂, d)g(d) ds(d), x̂ ∈ S
2, (3.68)

is injective and has dense range if and only if there does not exist a Dirichlet
eigenfunction for D which is a Herglotz wave function.

Proof For the L2 adjoint F ∗ : L2(S2) → L2(S2) the reciprocity relation (3.60)
implies that
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F ∗g = RFRḡ, (3.69)

where R : L2(S2) → L2(S2) is defined by

(Rg)(d) := g(−d). (3.70)

Hence, the operator F is injective if and only if its adjoint F ∗ is injective. Observing
that in a Hilbert space we have N(F ∗)⊥ = F(L2(S2)) for bounded operators F (see
Theorem 4.6), the statement of the corollary is indeed seen to be a reformulation of
the preceding theorem. 	


The far field operator F will play an essential role in our investigations of
the inverse scattering problem in Chap. 5. For the preparation of this analysis we
proceed by presenting some of its main properties.

Lemma 3.31 The far field operator satisfies

2π {(Fg, h) − (g, Fh)} = ik(Fg, Fh), g, h ∈ L2(S2), (3.71)

where (· , ·) denotes the inner product in L2(S2).

Proof If vs and ws are radiating solutions of the Helmholtz equation with far field
patterns v∞ and w∞, then from the far field asymptotics and Green’s second integral
theorem we deduce that

∫
∂D

(
vs ∂ws

∂ν
− ws

∂vs

∂ν

)
ds = −2ik

∫
S2

v∞w∞ ds. (3.72)

From the far field representation of Theorem 2.6 we see that if wi
h is a Herglotz

wave function with kernel h, then

∫
∂D

(
vs(x)

∂wi
h

∂ν
(x) − wi

h(x)
∂vs

∂ν
(x)

)
ds(x)

=
∫
S2

h(d)

∫
∂D

(
vs(x)

∂e−ik x·d

∂ν(x)
− e−ik x·d ∂vs

∂ν
(x)

)
ds(x) ds(d)

= 4π

∫
S2

h(d) v∞(d) ds(d).

Now let vi
g and vi

h be the Herglotz wave functions with kernels g, h ∈ L2(S2),
respectively, and let vg and vh be the solutions to the obstacle scattering problem
with incident fields vi

g and vi
h, respectively. We denote by vg,∞ and vh,∞ the far
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field patterns corresponding to vg and vh, respectively. Then we can combine the
two previous equations to obtain

−2ik (Fg, Fh) + 4π(Fg, h) − 4π(g, Fh)

= −2ik

∫
S2

vg,∞ vh,∞ ds + 4π

∫
S2

vg,∞ h̄ ds − 4π

∫
S2

g vh,∞ ds

=
∫

∂D

(
vg

∂vh

∂ν
− vh

∂vg

∂ν

)
ds.

(3.73)

From this the statement follows in view of the boundary condition. 	

Theorem 3.32 The far field operator F is compact and normal, i.e., FF ∗ = F ∗F ,
and has an infinite number of eigenvalues.

Proof Since F is an integral operator with continuous kernel, it is compact. From
(3.71) we obtain that

(g, ikF ∗Fh) = 2π
{
(g, Fh) − (g, F ∗h)

}

for all g, h ∈ L2(S2) and therefore

ikF ∗F = 2π(F − F ∗). (3.74)

Using (3.69) we can deduce that (F ∗g, F ∗h) = (FRh̄, FRḡ) and hence, from
(3.71), it follows that

ik(F ∗g, F ∗h) = 2π
{
(g, F ∗h) − (F ∗g, h)

}

for all g, h ∈ L2(S2). If we now proceed as in the derivation of (3.74), we find that

ikFF ∗ = 2π(F − F ∗) (3.75)

and the proof for normality of F is completed. By the spectral theorem for compact
normal operators (see [375]) there exists a countable complete set of orthonormal
eigenelements of F . By Theorem 3.30 the nullspace of F is finite dimensional and
therefore F has an infinite number of eigenvalues. 	

Corollary 3.33 The scattering operator S : L2(S2) → L2(S2) defined by

S := I + ik

2π
F (3.76)

is unitary.

Proof From (3.74) and (3.75) we see that SS∗ = S∗S = I . 	
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In view of (3.76), the unitarity of S implies that the eigenvalues of F lie on the
circle with center at (0, 2π/k) on the positive imaginary axis and radius 2π/k.

The question of when we can find a superposition of incident plane waves such
that the resulting far field pattern coincides with a prescribed far field is answered
in terms of a solvability condition for an integral equation of the first kind in the
following theorem.

Theorem 3.34 Let vs be a radiating solution to the Helmholtz equation with far
field pattern v∞. Then the integral equation of the first kind

∫
S2

u∞(x̂, d)g(d) ds(d) = v∞(x̂), x̂ ∈ S
2 (3.77)

possesses a solution g ∈ L2(S2) if and only if vs is defined in IR3 \ D̄, is continuous
in IR3 \ D and the interior Dirichlet problem for the Helmholtz equation

Δvi + k2vi = 0 in D (3.78)

and

vi + vs = 0 on ∂D (3.79)

is solvable with a solution vi being a Herglotz wave function.

Proof By Theorem 3.27 and Lemma 3.28, the solvability of the integral equation
(3.77) for g is equivalent to the existence of a Herglotz wave function vi (with kernel
g) for which the far field pattern for the scattering by the obstacle D coincides with
the given v∞, i.e., the scattered wave coincides with the given vs . This completes
the proof. 	


Special cases of Theorem 3.34 include the radiating spherical wave function

vs(x) = h(1)
n (k|x|)Yn

(
x

|x|
)

of order n with far field pattern

v∞ = 1

kin+1
Yn.

Here, for solvability of (3.77) it is necessary that the origin is contained in D.
The integral equation (3.77) will play a role in our analysis of the inverse

scattering problem in Sect. 5.6. By reciprocity, the solvability of (3.77) is equivalent
to the solvability of

∫
S2

u∞(x̂, d)h(x̂) ds(x̂) = v∞(−d), d ∈ S
2, (3.80)
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where h(x̂) = g(−x̂). Since the Dirichlet problem (3.78) and (3.79) is solvable
provided k2 is not a Dirichlet eigenvalue, the crucial condition in Theorem 3.34 is
the property of the solution to be a Herglotz wave function, that is, a strong regularity
condition. In the special case v∞ = 1, the connection between the solution to
the integral equation (3.80) and the interior Dirichlet problem (3.78) and (3.79) as
described in Theorem 3.34 was first established by Colton and Monk [111] without,
however, making use of the reciprocity Theorem 3.23.

The original proof for Theorem 3.29 by Colton and Kirsch [90] is based on the
following completeness result which we include for its own interest.

Theorem 3.35 Let (dn) be a sequence of unit vectors that is dense on S
2. Then the

normal derivatives of the total fields
{

∂

∂ν
u(· , dn) : n = 1, 2, . . .

}

corresponding to incident plane waves with directions (dn) are complete in L2(∂D).

Proof The weakly singular operators K − iS and K ′ − iS are both compact from
C(∂D) into C(∂D) and from L2(∂D) into L2(∂D) and they are adjoint with respect
to the L2 bilinear form, i.e.,

∫
∂D

(K − iS)ϕ ψ ds =
∫

∂D

ϕ (K ′ − iS)ψ ds

for all ϕ,ψ ∈ L2(∂D). From the proof of Theorem 3.11, we know that the operator
I +K − iS has a trivial nullspace in C(∂D). Therefore, by the Fredholm alternative
applied in the dual system 〈C(∂D),L2(∂D)〉 with the L2 bilinear form, the adjoint
operator I + K ′ − iS has a trivial nullspace in L2(∂D). Again by the Fredholm
alternative, but now applied in the dual system 〈L2(∂D), L2(∂D)〉 with the L2

bilinear form, the operator I + K − iS also has a trivial nullspace in L2(∂D).
Hence, by the Riesz–Fredholm theory for compact operators, both the operators
I + K − iS : L2(∂D) → L2(∂D) and I + K ′ − iS : L2(∂D) → L2(∂D) are
bijective and have a bounded inverse. This idea to employ the Fredholm alternative
in two different dual systems for showing that the dimensions of the nullspaces for
weakly singular integral operators of the second kind in the space of continuous
functions and in the L2 space coincide is due to Hähner [172].

From the representation (3.39), the boundary condition u = 0 on ∂D, and the
jump relations of Theorem 3.1 we deduce that

∂u

∂ν
+ K ′ ∂u

∂ν
− iS

∂u

∂ν
= 2

∂ui

∂ν
− 2iui .

Now let g ∈ L2(∂D) satisfy

∫
∂D

g
∂u(· , dn)

∂ν
ds = 0, n = 1, 2, . . . .
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This, by the continuity of the Dirichlet-to-Neumann map (Theorem 3.13), implies

∫
∂D

g
∂u(· , d)

∂ν
ds = 0

for all d ∈ S
2. Then from

∂u

∂ν
= 2(I + K ′ − iS)−1

{
∂ui

∂ν
− iui

}

we obtain

∫
∂D

g (I + K ′ − iS)−1
{

∂

∂ν
ui(· , d) − iui(· , d)

}
ds = 0

for all d ∈ S
2, and consequently

∫
∂D

ϕ(y)

{
∂

∂ν(y)
eik y·d − ieik y·d

}
ds(y) = 0

for all d ∈ S
2 where we have set

ϕ := (I + K − iS)−1g.

Therefore, since I + K − iS is bijective, our proof will be finished by showing that
ϕ = 0. To this end, by (2.15) and (2.16), we deduce from the last equation that the
combined single- and double-layer potential

v(x) :=
∫

∂D

ϕ(y)

{
∂Φ(x, y)

∂ν(y)
− iΦ(x, y)

}
ds(y), x ∈ IR3 \ D̄,

has far field pattern

v∞(x̂) = 1

4π

∫
∂D

ϕ(y)

{
∂

∂ν(y)
e−ik y·x̂ − ie−ik y·x̂

}
ds(y) = 0, x̂ ∈ S

2.

By Theorem 2.14, this implies v = 0 in IR3 \ D̄, and letting x tend to the boundary
∂D with the help of the L2 jump relations (3.22) and (3.24) yields ϕ+Kϕ−iSϕ = 0,

whence ϕ = 0 follows. 	

With the tools involved in the proof of Theorem 3.35, we can establish the

following result which we shall also need in our analysis of the inverse problem
in Chap. 5.

Theorem 3.36 The operator A : C(∂D) → L2(S2) which maps the boundary
values of radiating solutions w ∈ C2(IR3 \ D̄) ∩ C(IR3 \ D) to the Helmholtz
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equation onto the far field pattern w∞ can be extended to an injective bounded
linear operator A : L2(∂D) → L2(S2) with dense range.

Proof From the solution (3.28) to the exterior Dirichlet problem, for x̂ ∈ S
2 we

derive

w∞(x̂) = 1

2π

∫
∂D

{
∂

∂ν(y)
e−ik y·x̂ − ie−ik y·x̂

}(
(I + K − iS)−1f

)
(y) ds(y)

with the boundary values w = f on ∂D. From this, given the boundedness of the
operator (I + K − iS)−1 : L2(∂D) → L2(∂D) from the proof of Theorem 3.35, it
is obvious that A is bounded from L2(∂D) → L2(S2). The injectivity of A is also
immediate from the proof of Theorem 3.35.

In order to show that A has dense range we rewrite it as an integral operator. To
this end we note that in terms of the plane waves ui(x, d) = eik x·d the far field
representation (2.14) for a radiating solution w of the Helmholtz equation can be
written in the form

w∞(x̂) = 1

4π

∫
∂D

{
∂ui(y,−x̂)

∂ν(y)
w(y) − ui(y,−x̂)

∂w

∂ν
(y)

}
ds(y), x̂ ∈ S

2.

(See also the proof of Theorem 3.24.) From this, with the aid of Green’s integral
theorem and the radiation condition, using the sound-soft boundary condition for
the total wave u = ui + us on ∂D we conclude that

w∞(x̂) = 1

4π

∫
∂D

∂u(y,−x̂)

∂ν(y)
w(y) ds(y), x̂ ∈ S

2,

that is,

(Af )(d) = 1

4π

∫
∂D

∂u(y,−d)

∂ν(y)
f (y) ds(y), d ∈ S

2. (3.81)

Consequently the adjoint operator A∗ : L2(S2) → L2(∂D) can be expressed as the
integral operator

(A∗g)(x) = 1

4π

∫
S2

∂u(x,−d)

∂ν(x)
g(d) ds(d), x ∈ ∂D. (3.82)

If for g ∈ L2(S2) we define the Herglotz wave function vi
g in the form

vi
g(x) =

∫
S2

e−ik x·dg(d) ds(d) =
∫
S2

ui(x,−d)g(d) ds(d), x ∈ IR3,

then from Lemma 3.28 we have that



3.4 Herglotz Wave Functions and the Far Field Operator 83

vg(x) =
∫
S2

u(x,−d)g(d) ds(d), x ∈ IR3,

is the total wave for scattering of vi
g from D. Hence,

A∗g = 1

4π

∂vg

∂ν
= 1

4π

{
∂vi

g

∂ν
− Avi

g|∂D

}
(3.83)

with the Dirichlet-to-Neumann operator A. Now let g satisfy A∗g = 0. Then
(3.82) implies that ∂vg/∂ν = 0 on ∂D. By definition we also have vg = 0 on
∂D and therefore, by Holmgren’s Theorem 2.3, it follows that vg = 0 in IR3 \ D̄.
Thus the entire solution vi

g satisfies the radiation condition and therefore must
vanish identically. Thus g = 0, i.e., A∗ is injective. Hence A has dense range by
Theorem 4.6. 	

Theorem 3.37 For the far field operator F we have the factorization

F = −2πAS∗A∗. (3.84)

Proof For convenience we introduce the Herglotz operator H : L2(S2) →
L2(∂D) by

(Hg)(x) :=
∫
S2

eik x·dg(d) ds(d), x ∈ ∂D. (3.85)

Since Fg represents the far field pattern of the scattered wave corresponding to Hg

as incident field, we clearly have

F = −AH. (3.86)

The L2 adjoint H ∗ : L2(∂D) → L2(S2) is given by

(H ∗ϕ)(x̂) =
∫

∂D

e−ik x̂·yϕ(y) ds(y), x̂ ∈ S
2,

and represents the far field pattern of the single-layer potential with density 4πϕ.
Therefore

H ∗ = 2πAS (3.87)

and consequently

H = 2πS∗A∗. (3.88)

Now the statement follows by combining (3.86) and (3.88). 	
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We now wish to study Herglotz wave functions more closely. The concept of the
growth condition in the following theorem for solutions to the Helmholtz equation
was introduced by Herglotz in a lecture in 1945 in Göttingen and was studied further
by Magnus [309] and Müller [329]. The equivalence stated in the theorem was
shown by Hartman and Wilcox [184].

Theorem 3.38 An entire solution v to the Helmholtz equation possesses the growth
property

sup
R>0

1

R

∫
|x|≤R

|v(x)|2dx < ∞ (3.89)

if and only if it is a Herglotz wave function, i.e., if and only if there exists a function
g ∈ L2(S2) such that v can be represented in the form (3.66).

Proof Before we can prove this result, we need to note two properties for integrals
containing spherical Bessel functions. From the asymptotic behavior (2.42), that is,
from

jn(t) = 1

t
cos
(
t − nπ

2
− π

2

){
1 + O

(
1

t

)}
, t → ∞,

we readily find that

lim
T →∞

1

T

∫ T

0
t2[jn(t)]2dt = 1

2
, n = 0, 1, 2, . . . . (3.90)

We now want to establish that the integrals in (3.90) are uniformly bounded with
respect to T and n. This does not follow immediately since the asymptotic behavior
for the spherical Bessel functions is not uniformly valid with respect to the order n.
If we multiply the differential formula (2.35) rewritten in the form

jn+1(t) = − 1√
t

d

dt

√
t jn(t) +

(
n + 1

2

)
1

t
jn(t)

by two and subtract it from the recurrence relation (2.34), that is, from

jn−1(t) + jn+1(t) = 2n + 1

t
jn(t),

we obtain

jn−1(t) − jn+1(t) = 2√
t

d

dt

√
t jn(t).

Hence, from the last two equations we get
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∫ T

0
t2
{
[jn−1(t)]2 − [jn+1(t)]2

}
dt = (2n + 1)T [jn(T )]2

for n = 1, 2, . . . and all T > 0. From this monotonicity, together with (3.90) for
n = 0 and n = 1, it is now obvious that

sup
T >0

n=0,1,2,...

1

T

∫ T

0
t2[jn(t)]2dt < ∞. (3.91)

For the proof of the theorem, we first observe that any entire solution v of the
Helmholtz equation can be expanded in a series

v(x) = 4π

∞∑
n=0

n∑
m=−n

in am
n jn(k|x|) Ym

n

(
x

|x|
)

(3.92)

and the series converges uniformly on compact subsets of IR3. This follows from
Green’s representation formula (2.5) for v in a ball with radius R and center at
the origin and inserting the addition theorem (2.43) with the roles of x and y

interchanged, that is,

Φ(x, y) = ik

∞∑
n=0

n∑
m=−n

jn(k|x|) Ym
n

(
x

|x|
)

h(1)
n (k|y|) Ym

n

(
y

|y|
)

, |x| < |y|.

Since the expansion derived for two different radii represents the same function in
the ball with the smaller radius, the coefficients am

n do not depend on the radius
R. Because of the uniform convergence, we can integrate term by term and use the
orthonormality of the Ym

n to find that

1

R

∫
|x|≤R

|v(x)|2dx = 16π2

R

∞∑
n=0

∫ R

0
r2[jn(kr)]2dr

n∑
m=−n

∣∣am
n

∣∣2 . (3.93)

Now assume that v satisfies

1

R

∫
|x|≤R

|v(x)|2dx ≤ C

for all R > 0 and some constant C > 0. This, by (3.93), implies that

16π2

R

N∑
n=0

∫ R

0
r2[jn(kr)]2dr

n∑
m=−n

∣∣am
n

∣∣2 ≤ C
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for all R > 0 and all N ∈ IN. Hence, by first passing to the limit R → ∞ with the
aid of (3.90) and then letting N → ∞ we obtain

∞∑
n=0

n∑
m=−n

∣∣am
n

∣∣2 ≤ k2C

8π2
.

Therefore,

g :=
∞∑

n=0

n∑
m=−n

am
n Ym

n

defines a function g ∈ L2(S2). From the Jacobi–Anger expansion (2.46) and the
addition theorem (2.30), that is, from

eik x·d = 4π

∞∑
n=0

n∑
m=−n

in jn(k|x|) Ym
n

(
x

|x|
)

Ym
n (d)

we now derive

∫
S2

g(d)eik x·dds(d) = 4π

∞∑
n=0

n∑
m=−n

in am
n jn(k|x|) Ym

n

(
x

|x|
)

= v(x)

for all x ∈ IR3, that is, we have shown that v can be represented in the form (3.66).
Conversely, for a given g ∈ L2(S2) we have an expansion

g =
∞∑

n=0

n∑
m=−n

am
n Ym

n ,

where, by Parseval’s equality, the coefficients satisfy

‖g‖2
L2(S2)

=
∞∑

n=0

n∑
m=−n

∣∣am
n

∣∣2 < ∞. (3.94)

Then for the entire solution v to the Helmholtz equation defined by

v(x) :=
∫
S2

eik x·dg(d) ds(d), x ∈ IR3,

we again see by the Jacobi–Anger expansion that

v(x) = 4π

∞∑
n=0

n∑
m=−n

in am
n jn(k|x|) Ym

n

(
x

|x|
)

(3.95)
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and from (3.91), (3.93), and (3.95) we conclude that the growth condition (3.89) is
fulfilled for v. The proof is now complete. 	


With the help of (3.91), we observe that the series (3.93) has a convergent
majorant independent of R. Hence, it is uniformly convergent for all R > 0 and
we may interchange the limit R → ∞ with the series and use (3.90) and (3.94) to
obtain that for the Herglotz wave function v with kernel g we have

lim
R→∞

1

R

∫
|x|≤R

|v(x)|2dx = 8π2

k2 ‖g‖2
L2(S2)

.

3.5 The Two-Dimensional Case

The scattering from infinitely long cylindrical obstacles leads to exterior boundary
value problems for the Helmholtz equation in IR2. The two-dimensional case can be
used as an approximation for the scattering from finitely long cylinders, and more
important, it can serve as a model case for testing numerical approximation schemes
in direct and inverse scattering. Without giving much of the details, we would like
to show how all the results of this chapter remain valid in two dimensions after
appropriate modifications of the fundamental solution, the radiation condition, and
the spherical wave functions.

We note that in two dimensions there exist two linearly independent spherical
harmonics of order n which can be represented by e±inϕ . Correspondingly, looking
for solutions to the Helmholtz equation of the form

u(x) = f (kr) e±inϕ

in polar coordinates (r, ϕ) leads to the Bessel differential equation

t2f ′′(t) + tf ′(t) + [t2 − n2]f (t) = 0 (3.96)

with integer order n = 0, 1, . . . . The analysis of the Bessel equation which is
required for the study of the two-dimensional Helmholtz equation, in particular
the asymptotics of the solutions for large argument, is more involved than the
corresponding analysis for the spherical Bessel equation (2.31). Therefore, here
we will list only the relevant results without proofs. For a concise treatment of
the Bessel equation for the purpose of scattering theory, we refer to Colton [86]
or Lebedev [293].

By direct calculations and the ratio test, we can easily verify that for n =
0, 1, 2, . . . the functions

Jn(t) :=
∞∑

p=0

(−1)p

p! (n + p)!
(

t

2

)n+2p

(3.97)
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represent solutions to Bessel’s equation which are analytic for all t ∈ IR and these
are known as Bessel functions of order n. As opposed to the spherical Bessel
equation, here it is more complicated to construct a second linearly independent
solution. Patient, but still straightforward, calculations together with the ratio test
show that

Yn(t) := 2

π

{
ln

t

2
+ C

}
Jn(t) − 1

π

n−1∑
p=0

(n − 1 − p)!
p!

(
2

t

)n−2p

− 1

π

∞∑
p=0

(−1)p

p! (n + p)!
(

t

2

)n+2p

{ψ(p + n) + ψ(p)}
(3.98)

for n = 0, 1, 2, . . . provide solutions to Bessel’s equation which are analytic for all
t ∈ (0,∞). Here, we define ψ(0) := 0,

ψ(p) :=
p∑

m=1

1

m
, p = 1, 2, . . . ,

let

C := lim
p→∞

{
p∑

m=1

1

m
− ln p

}

denote Euler’s constant, and if n = 0 the finite sum in (3.98) is set equal to zero. The
functions Yn are called Neumann functions of order n and the linear combinations

H(1,2)
n := Jn ± iYn

are called Hankel functions of the first and second kind of order n respectively.
From the series representation (3.97) and (3.98), by equating powers of t , it is

readily verified that both fn = Jn and fn = Yn satisfy the recurrence relation

fn+1(t) + fn−1(t) = 2n

t
fn(t), n = 1, 2, . . . . (3.99)

Straightforward differentiation of the series (3.97) and (3.98) shows that both fn =
Jn and fn = Yn satisfy the differentiation formulas

fn+1(t) = −tn
d

dt

{
t−nfn(t)

}
, n = 0, 1, 2, . . . , (3.100)

and
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tnfn−1(t) = d

dt

{
tnfn(t)

}
, n = 1, 2, . . . . (3.101)

The Wronskian

W(Jn(t), Yn(t)) := Jn(t)Y
′
n(t) − Yn(t)J

′
n(t)

satisfies

W ′ + 1

t
W = 0.

Therefore, W(Jn(t), Yn(t)) = C/t for some constant C and by passing to the limit
t → 0 it follows that

Jn(t)Y
′
n(t) − J ′

n(t)Yn(t) = 2

πt
. (3.102)

From the series representation of the Bessel and Neumann functions, it is
obvious that

Jn(t) = tn

2n n!
(

1 + O

(
1

n

))
, n → ∞, (3.103)

uniformly on compact subsets of IR and

H(1)
n (t) = 2n(n − 1)!

πitn

(
1 + O

(
1

n

))
, n → ∞, (3.104)

uniformly on compact subsets of (0,∞).
For large arguments, we have the following asymptotic behavior of the Hankel

functions

H(1,2)
n (t) =

√
2

πt
e±i(t− nπ

2 − π
4 )
{

1 + O

(
1

t

)}
, t → ∞,

H (1,2)′
n (t) =

√
2

πt
e±i(t− nπ

2 + π
4 )
{

1 + O

(
1

t

)}
, t → ∞.

(3.105)

For a proof, we refer to Lebedev [293]. Taking the real and the imaginary part of
(3.105) we also have asymptotic formulas for the Bessel and Neumann functions.

Now we have listed all the necessary tools for carrying over the analysis of
Chaps. 2 and 3 for the Helmholtz equation from three to two dimensions. The
fundamental solution to the Helmholtz equation in two dimensions is given by
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Φ(x, y) := i

4
H

(1)
0 (k|x − y|), x �= y. (3.106)

For fixed y ∈ IR2, it satisfies the Helmholtz equation in IR2 \ {y}. From the
expansions (3.97) and (3.98), we deduce that

Φ(x, y) = 1

2π
ln

1

|x − y| + i

4
− 1

2π
ln

k

2
− C

2π
+ O

(
|x − y|2 ln

1

|x − y|
)

(3.107)
for |x − y| → 0. Therefore, the fundamental solution to the Helmholtz equation
in two dimensions has the same singular behavior as the fundamental solution of
Laplace’s equation. As a consequence, Green’s formula (2.5) and the jump relations
and regularity results on single- and double-layer potentials of Theorems 3.1 and 3.3
can be carried over to two dimensions. From (3.107) we note that, in contrast to
three dimensions, the fundamental solution does not converge for k → 0 to the
fundamental solution for the Laplace equation. This leads to some difficulties in the
investigation of the convergence of the solution to the exterior Dirichlet problem as
k → 0 (see Werner [424] and Kress [261]).

In IR2 the Sommerfeld radiation condition has to be replaced by

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0, r = |x|, (3.108)

uniformly for all directions x/|x|. From (3.105) it is obvious that the fundamental
solution satisfies the radiation condition uniformly with respect to y on compact
sets. Therefore, Green’s representation formula (2.9) can be shown to be valid for
two-dimensional radiating solutions. According to the form (3.108) of the radiation
condition, the definition of the far field pattern (2.13) has to be replaced by

u(x) = eik|x|
√|x|

{
u∞(x̂) + O

(
1

|x|
)}

, |x| → ∞, (3.109)

and, due to (3.105), the representation (2.14) has to be replaced by

u∞(x̂) = ei π
4√

8πk

∫
∂D

{
u(y)

∂e−ik x̂·y

∂ν(y)
− ∂u

∂ν
(y) e−ik x̂·y

}
ds(y) (3.110)

for |x̂| = x/|x|. We explicitly write out the addition theorem

H
(1)
0 (k|x−y|) = H

(1)
0 (k|x|) J0(k|y|)+2

∞∑
n=1

H(1)
n (k|x|) Jn(k|y|) cos nθ (3.111)

which is valid for |x| > |y| in the sense of Theorem 2.11 and where θ denotes the
angle between x and y. The proof is analogous to that of Theorem 2.11. We note that
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the entire spherical wave functions in IR2 are given by Jn(kr)e±inϕ and the radiating
spherical wave functions by H

(1)
n (kr)e±inϕ . Similarly, the Jacobi–Anger expansion

(2.46) assumes the form

eik x·d = J0(k|x|) + 2
∞∑

n=1

in Jn(k|x|) cos nθ, x ∈ IR2. (3.112)

With all these prerequisites, it is left as an exercise to establish that, with minor
adjustments in the proofs, all the results of Sects. 2.5, 3.2, and 3.4 remain valid in
two dimensions.

3.6 On the Numerical Solution in IR2

We would like to include in our presentation an advertisement for what we
think is the most efficient method for the numerical solution of the boundary
integral equations for two-dimensional problems. Since it seems to be safe to
state that the boundary curves in most practical applications are either analytic
or piecewise analytic with corners, we restrict our attention to approximation
schemes which are the most appropriate under these regularity assumptions. We
begin with the analytic case where we recommend the Nyström method based
on weighted trigonometric interpolation quadratures on an equidistant mesh. To
support our preference for using trigonometric polynomial approximations we
quote from Atkinson [20]: . . . the most efficient numerical methods for solving
boundary integral equations on smooth planar boundaries are those based on
trigonometric polynomial approximations, and such methods are sometimes called
spectral methods. When calculations using piecewise polynomial approximations
are compared with those using trigonometric polynomial approximations, the latter
are almost always the more efficient.

We first describe the necessary parametrization of the integral equation (3.29)
in the two-dimensional case. We assume that the boundary curve ∂D possesses a
regular analytic and 2π -periodic parametric representation of the form

x(t) = (x1(t), x2(t)), 0 ≤ t ≤ 2π, (3.113)

in counterclockwise orientation satisfying |x′(t)|2 > 0 for all t . Then, by straight-
forward calculations using H

(1)
1 = −H

(1)′
0 , we transform (3.29) into the parametric

form

ψ(t) −
∫ 2π

0
{L(t, τ ) + iηM(t, τ )} ψ(τ) dτ = g(t), 0 ≤ t ≤ 2π,

where we have set ψ(t) := ϕ(x(t)), g(t) := 2f (x(t)), and the kernels are given by
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L(t, τ ) := ik

2
{x′

2(τ )[x1(τ )−x1(t)]−x′
1(τ )[x2(τ )−x2(t)]} H

(1)
1 (k|x(t) − x(τ)|)

|x(t)−x(τ)| ,

M(t, τ ) := i

2
H

(1)
0 (k|x(t) − x(τ)|) |x′(τ )|

for t �= τ . From the expansion (3.98) for the Neumann functions, we see that the
kernels L and M have logarithmic singularities at t = τ . Hence, for their proper
numerical treatment, following Martensen [310] and Kussmaul [284], we split the
kernels into

L(t, τ ) = L1(t, τ ) ln

(
4 sin2 t − τ

2

)
+ L2(t, τ ),

M(t, τ ) = M1(t, τ ) ln

(
4 sin2 t − τ

2

)
+ M2(t, τ ),

where

L1(t, τ ) := k

2π
{x′

2(τ )[x1(t)−x1(τ )]−x′
1(τ )[x2(t)−x2(τ )]} J1(k|x(t)−x(τ)|)

|x(t)−x(τ)| ,

L2(t, τ ) := L(t, τ ) − L1(t, τ ) ln

(
4 sin2 t − τ

2

)
,

M1(t, τ ) := − 1

2π
J0(k|x(t) − x(τ)|) |x′(τ )|,

M2(t, τ ) := M(t, τ ) − M1(t, τ ) ln

(
4 sin2 t − τ

2

)
.

The kernels L1, L2,M1, and M2 turn out to be analytic. In particular, using the
expansions (3.97) and (3.98) we can deduce the diagonal terms

L2(t, t) = L(t, t) = 1

2π

x′
1(t)x

′′
2 (t) − x′

2(t)x
′′
1 (t)

|x′(t)|2

and

M2(t, t) =
{

i

2
− C

π
− 1

π
ln

(
k

2
|x′(t)|}

)}
|x′(t)|

for 0 ≤ t ≤ 2π . We note that despite the continuity of the kernel L, for numerical
accuracy it is advantageous to separate the logarithmic part of L since the derivatives
of L fail to be continuous at t = τ .
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Hence, we have to numerically solve an integral equation of the form

ψ(t) −
∫ 2π

0
K(t, τ )ψ(τ) dτ = g(t), 0 ≤ t ≤ 2π, (3.114)

where the kernel can be written in the form

K(t, τ ) = K1(t, τ ) ln

(
4 sin2 t − τ

2

)
+ K2(t, τ ) (3.115)

with analytic functions K1 and K2 and with an analytic right-hand side g. Here we
wish to point out that it is essential to split off the logarithmic singularity in a fashion
which preserves the 2π -periodicity for the kernels K1 and K2.

For the numerical solution of integral equations of the second kind, in principle,
there are three basic methods available, the Nyström method, the collocation method,
and the Galerkin method. In the case of one-dimensional integral equations, the
Nyström method is more practical than the collocation and Galerkin methods
since it requires the least computational effort. In each of the three methods,
the approximation requires the solution of a finite dimensional linear system. In
the Nyström method, for the evaluation of each of the matrix elements of this
linear system only an evaluation of the kernel function is needed, whereas in the
collocation and Galerkin methods the matrix elements are single or double integrals
demanding numerical quadratures. In addition, the Nyström method is generically
stable in the sense that it preserves the condition of the integral equation whereas
in the collocation and Galerkin methods the condition can be disturbed by a poor
choice of the basis (see [268]).

In the case of integral equations for periodic analytic functions, using global
approximations via trigonometric polynomials is superior to using local approxima-
tions via low order polynomial splines since the trigonometric approximations yield
much better convergence. By choosing the appropriate basis, the computational
effort for the global approximation is comparable to that for local approximations.

The Nyström method consists in the straightforward approximation of the
integrals by quadrature formulas. In our case, for the 2π -periodic integrands, we
choose an equidistant set of knots tj := πj/n, j = 0, . . . , 2n − 1, and use the
quadrature rule

∫ 2π

0
ln

(
4 sin2 t − τ

2

)
f (τ)dτ ≈

2n−1∑
j=0

R
(n)
j (t)f (tj ), 0 ≤ t ≤ 2π, (3.116)

with the quadrature weights given by

R
(n)
j (t) := −2π

n

n−1∑
m=1

1

m
cos m(t − tj ) − π

n2
cos n(t − tj ), j = 0, . . . , 2n − 1,
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and the trapezoidal rule

∫ 2π

0
f (τ)dτ ≈ π

n

2n−1∑
j=0

f (tj ). (3.117)

Both these numerical integration formulas are obtained by replacing the integrand
f by its trigonometric interpolation polynomial and then integrating exactly. The
quadrature formula (3.116) was first used by Martensen [310] and Kussmaul [284].
Provided f is analytic, according to derivative-free error estimates for the remainder
term in trigonometric interpolation for periodic analytic functions (see [258, 268]),
the errors for the quadrature rules (3.116) and (3.117) decrease at least exponentially
when the number 2n of knots is increased. More precisely, the error is of order
O(exp(−nσ)) where σ denotes half of the width of a parallel strip in the complex
plane into which the real analytic function f can be holomorphically extended.

Of course, it is also possible to use quadrature rules different from (3.116)
and (3.117) obtained from other approximations for the integrand f . However,
due to their simplicity and high approximation order we strongly recommend the
application of (3.116) and (3.117).

In the Nyström method, the integral equation (3.114) is replaced by the approxi-
mating equation

ψ(n)(t) −
2n−1∑
j=0

{
R

(n)
j (t)K1(t, tj ) + π

n
K2(t, tj )

}
ψ(n)(tj ) = g(t) (3.118)

for 0 ≤ t ≤ 2π . Equation (3.118) is obtained from (3.114) by applying the
quadrature rule (3.116) to f = K1(t, .)ψ and (3.117) to f = K2(t, .)ψ .
The solution of (3.118) reduces to solving a finite dimensional linear system. In
particular, for any solution of (3.118) the values ψ

(n)
i = ψ(n)(ti), i = 0, . . . , 2n−1,

at the quadrature points trivially satisfy the linear system

ψ
(n)
i −

2n−1∑
j=0

{
R

(n)
|i−j |K1(ti , tj ) + π

n
K2(ti , tj )

}
ψ

(n)
j = g(ti), i = 0, . . . , 2n − 1,

(3.119)
where

R
(n)
j := R

(n)
j (0) = −2π

n

n−1∑
m=1

1

m
cos

mjπ

n
− (−1)jπ

n2 , j = 0, . . . , 2n − 1.

Conversely, given a solution ψ
(n)
i , i = 0, . . . , 2n − 1, of the system (3.119), the

function ψ(n) defined by
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ψ(n)(t) :=
2n−1∑
j=0

{
R

(n)
j (t)K1(t, tj ) + π

n
K2(t, tj )

}
ψ

(n)
j + g(t), 0 ≤ t ≤ 2π,

(3.120)

is readily seen to satisfy the approximating equation (3.118). The formula (3.120)
may be viewed as a natural interpolation of the values ψ

(n)
i , i = 0, . . . , 2n − 1, at

the quadrature points to obtain the approximating function ψ(n) and goes back to
Nyström.

For the solution of the large linear system (3.119), we recommend the use of the
fast iterative two-grid or multi-grid methods as described in [268] or, in more detail,
in [164].

Provided the integral equation (3.114) itself is uniquely solvable and the kernels
K1 and K2 and the right-hand side g are continuous, a rather involved error analysis
(for the details we refer to [263, 268]) shows that

1. the approximating linear system (3.119), i.e., the approximating equation
(3.118), is uniquely solvable for all sufficiently large n;

2. as n → ∞ the approximate solutions ψ(n) converge uniformly to the solution ψ

of the integral equation;
3. the convergence order of the quadrature errors for (3.116) and (3.117) carries

over to the error ψ(n) − ψ .

The latter, in particular, means that in the case of analytic kernels K1 and K2 and
analytic right-hand sides g the approximation error decreases exponentially, i.e.,
there exist positive constants C and σ such that

|ψ(n)(t) − ψ(t)| ≤ C e−nσ , 0 ≤ t ≤ 2π, (3.121)

for all n. In principle, the constants in (3.121) are computable but usually they are
difficult to evaluate. In most practical cases, it is sufficient to judge the accuracy of
the computed solution by doubling the number 2n of knots and then comparing the
results for the coarse and the fine grid with the aid of the exponential convergence
order, i.e., by the fact that doubling the number 2n of knots will double the number
of correct digits in the approximate solution.

For a numerical example, we consider the scattering of a plane wave by a cylinder
with a non-convex kite-shaped cross section with boundary ∂D illustrated in Fig. 3.1
and described by the parametric representation

x(t) = (cos t + 0.65 cos 2t − 0.65, 1.5 sin t), 0 ≤ t ≤ 2π.

From the asymptotics (3.105) for the Hankel functions, analogous to (3.110) it
can be deduced that the far field pattern of the combined potential (3.28) in two
dimensions is given by
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Fig. 3.1 Kite-shaped domain for numerical example

Table 3.1 Numerical results for Nyström’s method

n Re u∞(d) Im u∞(d) Re u∞(−d) Im u∞(−d)

k = 1 8 −1.62642413 0.60292714 1.39015283 0.09425130

16 −1.62745909 0.60222343 1.39696610 0.09499454

32 −1.62745750 0.60222591 1.39694488 0.09499635

64 −1.62745750 0.60222591 1.39694488 0.09499635

k = 5 8 −2.30969119 1.52696566 −0.30941096 0.11503232

16 −2.46524869 1.67777368 −0.19932343 0.06213859

32 −2.47554379 1.68747937 −0.19945788 0.06015893

64 −2.47554380 1.68747937 −0.19945787 0.06015893

u∞(x̂) = e−i π
4√

8πk

∫
∂D

{k ν(y) · x̂ + η}e−ik x̂·yϕ(y) ds(y), |x̂| = 1, (3.122)

which can be evaluated again by the trapezoidal rule after solving the integral
equation for ϕ. Table 3.1 gives some approximate values for the far field pattern
u∞(d) and u∞(−d) in the forward direction d and the backward direction −d.
The direction d of the incident wave is d = (1, 0) and, as recommended in [259],
the coupling parameter is η = k. Note that the exponential convergence is clearly
exhibited.

The corresponding quadrature method including its error and convergence
analysis for the Neumann boundary condition has been described by Kress [264].

For domains D with corners, a uniform mesh yields only poor convergence and
therefore has to be replaced by a graded mesh. We suggest to base this grading upon
the idea of substituting an appropriate new variable and then using the Nyström
method as described above for the transformed integral equation. With a suitable
choice for the substitution, this will lead to high order convergence.

Without loss of generality, we confine our presentation to a boundary curve ∂D

with one corner at the point x0 and assume ∂D\{x0} to be C2 and piecewise analytic.
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We do not allow cusps in our analysis, i.e., the angle γ at the corner is assumed to
satisfy 0 < γ < 2π .

Using the fundamental solution

Φ0(x, y) := 1

2π
ln

1

|x − y| , x �= y,

to the Laplace equation in IR2 to subtract a vanishing term, we rewrite the combined
double- and single-layer potential (3.28) in the form

u(x) =
∫

∂D

[{
∂Φ(x, y)

∂ν(y)
− iηΦ(x, y)

}
ϕ(y) − ∂Φ0(x, y)

∂ν(y)
ϕ(x0)

]
ds(y)

for x ∈ IR2 \ D̄. This modification is notationally advantageous for the corner case
and it makes the error analysis for the Nyström method work. The integral equation
(3.29) now becomes

ϕ(x) − ϕ(x0) + 2
∫

∂D

{
∂Φ(x, y)

∂ν(y)
− iηΦ(x, y)

}
ϕ(y) ds(y)

− 2
∫

∂D

∂Φ0(x, y)

∂ν(y)
ϕ(x0) ds(y) = 2f (x), x ∈ ∂D.

(3.123)

Despite the corner at x0, there is no change in the residual term in the jump relations
since the density ϕ − ϕ(x0) of the leading term in the singularity vanishes at the
corner. However, the kernel of the integral equation (3.123) at the corner no longer
remains weakly singular. For a C2 boundary, the weak singularity of the kernel of
the double-layer operator rests on the inequality

|ν(y) · (x − y)| ≤ L|x − y|2, x, y ∈ ∂D, (3.124)

for some positive constant L. This inequality expresses the fact that the vector x −y

for x close to y is almost orthogonal to the normal vector ν(y). For a proof, we refer
to [104]. However, in the vicinity of a corner (3.124) does not remain valid.

After splitting off the operator K0 : C(∂D) → C(∂D) defined by

(K0ϕ)(x) := 2
∫

∂D

∂Φ0(x, y)

∂ν(y)
[ϕ(y) − ϕ(x0)] ds(y), x ∈ ∂D,

from (3.107) we see that the remaining integral operator in (3.123) has a weakly
singular kernel and therefore is compact. For the further investigation of the non-
compact part K0, we choose a sufficiently small positive number r and denote the
two arcs of the boundary ∂D contained in the disk of radius r and center at the
corner x0 by A and B (see Fig. 3.2). These arcs intersect at x0 with an angle γ and
without loss of generality we restrict our presentation to the case where γ < π . By
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ν
∂D

x0

x

γ
α

A

B

D

Fig. 3.2 Domain with a corner

elementary geometry and continuity, we can assume that r is chosen such that both
A and B have length less than 2r and for the angle α(x, B) between the two straight
lines connecting the points x ∈ A\{x0} with the two endpoints of the arc B we have

0 < α(x, B) ≤ π − 1

2
γ, x ∈ A \ x0,

and analogously with the roles of A and B interchanged. For the sake of brevity,
we confine ourselves to the case where the boundary ∂D in a neighborhood of the
corner x0 consists of two straight lines intersecting at x0. Then we can assume that
r is chosen such that the function (x, y) �→ ν(y) · (y − x) does not change its sign
for all (x, y) ∈ A×B and all (x, y) ∈ B ×A. Finally, for the two C2 arcs A and B,
there exists a constant L independent of r such that the estimate (3.124) holds for
all (x, y) ∈ A × A and all (x, y) ∈ B × B.

We now choose a continuous cut-off function ψ : IR2 → [0, 1] such that
ψ(x)= 1 for 0 ≤ |x − x0| ≤ r/2, ψ(x) = 0 for r ≤ |x − x0| < ∞ and define
K0,r : C(∂D) → C(∂D) by

K0,rϕ := ψ K0(ψϕ).

Then, the kernel of K0 − K0,r vanishes in a neighborhood of (x0, x0) and therefore
is weakly singular.

We introduce the norm

‖ϕ‖∞,0 := max
x∈∂D

|ϕ(x) − ϕ(x0)| + |ϕ(x0)|,

which obviously is equivalent to the maximum norm. We now show that r can be
chosen such that ‖K0,r‖∞,0 < 1. Then, by the Neumann series, the operator I+K0,r

has a bounded inverse and the results of the Riesz–Fredholm theory are available for
the corner integral equation (3.123).

By our assumptions on the choice of r , we can estimate

|(K0,rϕ)(x0)| ≤ 4Lr

π
‖ϕ‖∞,0 (3.125)
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since (3.124) holds for x = x0 and all y ∈ A ∪ B. For x ∈ A \ {x0} we split
the integral into the parts over A and over B and evaluate the second one by using
Green’s integral theorem and our assumptions on the geometry to obtain

2
∫

B

∣∣∣∣∂Φ0(x, y)

∂ν(y)

∣∣∣∣ ds(y) = 2

∣∣∣∣
∫

B

∂Φ0(x, y)

∂ν(y)
ds(y)

∣∣∣∣ = α(x, B)

π
, x ∈ A \ {x0},

and consequently

|(K0,rϕ)(x)| ≤
{

2Lr

π
+ 1 − γ

2π

}
‖ϕ‖∞,0, (3.126)

which by symmetry is valid for all x ∈ A ∪ B \ {x0}. Summarizing, from the
inequalities (3.125) and (3.126) we deduce that we can choose r small enough such
that ‖K0,r‖∞,0 < 1. For an analysis for more general domains with corners we refer
to Ruland [380] and the literature therein.

The above analysis establishes the existence of a continuous solution to the
integral equation (3.123). However, due to the singularities of elliptic boundary
value problems in domains with corners (see [155]), this solution will have
singularities in the derivatives at the corner. To take proper care of this corner
singularity, we replace our equidistant mesh by a graded mesh through substituting
a new variable in such a way that the derivatives of the new integrand vanish up to a
certain order at the endpoints and then use the quadrature rules (3.116) and (3.117)
for the transformed integrals.

We describe this numerical quadrature rule for the integral
∫ 2π

0 f (t) dt where the
integrand f is analytic in (0, 2π) but has singularities at the endpoints t = 0 and t =
2π . Let the function w : [0, 2π ] → [0, 2π ] be one-to-one, strictly monotonically
increasing and infinitely differentiable. We assume that the derivatives of w at the
endpoints t = 0 and t = 2π vanish up to an order p ∈ IN. We then substitute
t = w(s) to obtain

∫ 2π

0
f (t) dt =

∫ 2π

0
w′(s) f (w(s)) ds.

Applying the trapezoidal rule to the transformed integral now yields the quadrature
formula

∫ 2π

0
f (t) dt ≈ π

n

2n−1∑
j=1

aj f (sj ) (3.127)

with the weights and mesh points given by

aj = w′
(

jπ

n

)
, sj = w

(
jπ

n

)
, j = 1, . . . , 2n − 1.
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A typical example for such a substitution is given by

w(s) = 2π
[v(s)]p

[v(s)]p + [v(2π − s)]p , 0 ≤ s ≤ 2π, (3.128)

where

v(s) =
(

1

p
− 1

2

)(
π − s

π

)3

+ 1

p

s − π

π
+ 1

2

and p ≥ 2. Note that the cubic polynomial v is chosen such that v(0) = 0, v(2π)= 1
and w′(π) = 2. The latter property ensures, roughly speaking, that one half of the
grid points is equally distributed over the total interval, whereas the other half is
accumulated towards the two end points.

For an error analysis for the quadrature rule (3.127) with substitutions of the form
described above and using the Euler–MacLaurin expansion, we refer to Kress [262].
Assume f is 2q +1-times continuously differentiable on (0, 2π) such that for some
0 < α < 1 with αp ≥ 2q + 1 the integrals

∫ 2π

0

[
sin

t

2

]m−α

|f (m)(t)| dt

exist for m = 0, 1, . . . , 2q +1. The error E(n)(f ) in the quadrature (3.127) can then
be estimated by

|E(n)(f )| ≤ C

n2q+1
(3.129)

with some constant C. Thus, by choosing p large enough, we can obtain almost
exponential convergence behavior.

For the numerical solution of the corner integral equation (3.123), we choose a
parametric representation of the form (3.113) such that the corner x0 corresponds to
the parameter t = 0 and rewrite (3.123) in the parameterized form

ψ(t) − ψ(0) −
∫ 2π

0
K(t, τ )ψ(τ) dτ

−
∫ 2π

0
H(t, τ )ψ(0) dτ = g(t), 0 ≤ t ≤ 2π,

(3.130)

where K is given as above in the analytic case and where

H(t, τ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

π

x′
2(τ )[x1(t) − x1(τ )] − x′

1(τ )[x2(t) − x2(τ )]
|x(t) − x(τ)|2 , t �= τ,

1

π

x′
2(t)x

′′
1 (t) − x′

1(t)x
′′
2 (t)

|x′(t)|2 , t = τ, t �= 0, 2π,
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corresponds to the additional term in (3.123). For the numerical solution of the
integral equation (3.130) by Nyström’s method on the graded mesh, we also have
to take into account the logarithmic singularity. We set t = w(s) and τ = w(σ) to
obtain

∫ 2π

0
K(t, τ ) ψ(τ) dτ =

∫ 2π

0
K(w(s),w(σ)) w′(σ )ψ(w(σ)) dσ

and then write

K(w(s),w(σ)) = K̃1(s, σ ) ln

(
4 sin2 s − σ

2

)
+ K̃2(s, σ ).

This decomposition is related to (3.115) by

K̃1(s, σ ) = K1(w(s), w(σ))

and

K̃2(s, σ ) = K(w(s),w(σ)) − K̃1(s, σ ) ln

(
4 sin2 s − σ

2

)
, s �= σ.

From

K2(s, s) = lim
σ→s

[
K(s, σ ) − K1(s, σ ) ln

(
4 sin2 s − σ

2

)]
,

we deduce the diagonal term

K̃2(s, s) = K2(w(s), w(s)) + 2 ln w′(s)K1(w(s), w(s)).

Now, proceeding as in the derivation of (3.119), for the approximate values
ψ

(n)
i = ψ(n)(si) at the quadrature points si for i = 1, . . . , 2n−1 and ψ

(n)
0 = ψ(n)(0)

at the corner s0 = 0 we arrive at the linear system

ψ
(n)
i − ψ

(n)
0 −

2n−1∑
j=1

{
R

(n)
|i−j |K̃1(si, sj ) + π

n
K̃2(si, sj )

}
aj ψ

(n)
j

−
2n−1∑
j=1

π

n
H(si, sj ) aj ψ

(n)
0 = g(si), i = 0, . . . , 2n − 1.

(3.131)
A rigorous error analysis carrying over the error behavior (3.129) to the approximate
solution of the integral equation obtained from (3.131) for the potential theoretic



102 3 Direct Acoustic Obstacle Scattering

Fig. 3.3 Drop-shaped domain for numerical example

Table 3.2 Nyström’s method for a domain with corner

n Re u∞(d) Im u∞(d) Re u∞(−d) Im u∞(−d)

k = 1 16 −1.28558226 0.30687170 −0.53002440 −0.41033666

32 −1.28549613 0.30686638 −0.53020518 −0.41094518

64 −1.28549358 0.30686628 −0.53021014 −0.41096324

128 −1.28549353 0.30686627 −0.53021025 −0.41096364

k = 5 16 −1.73779647 1.07776749 −0.18112826 −0.20507986

32 −1.74656264 1.07565703 −0.19429063 −0.19451172

64 −1.74656303 1.07565736 −0.19429654 −0.19453324

128 −1.74656304 1.07565737 −0.19429667 −0.19453372

case k = 0 has been worked out by Kress [262]. Related substitution methods have
been considered by Jeon [218] and by Elliott and Prössdorf [136, 137].

For a numerical example, we used the substitution (3.128) with order p = 8. We
consider a drop-shaped domain with the boundary curve ∂D illustrated by Fig. 3.3
and given by the parametric representation

x(t) = (2 sin
t

2
, − sin t), 0 ≤ t ≤ 2π.

It has a corner at t = 0 with interior angle γ = π/2. The direction d of the incoming
plane wave and the coupling parameter η are chosen as in our previous example.
Table 3.2 clearly exhibits the fast convergence of the method.

3.7 On the Numerical Solution in IR3

In three dimensions, for the numerical solution of the boundary integral equation
(3.29) the Nyström, collocation, and Galerkin methods are still available. However,
for surface integral equations we have to modify our statements on comparing the
efficiency of the three methods. Firstly, there is no straightforward simple quadrature
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rule analogous to (3.116) available that deals appropriately with the singularity
of the three-dimensional fundamental solution. Hence, the Nyström method loses
some of its attraction. Secondly, for the surface integral equations there is no
immediate choice for global approximations like the trigonometric polynomials in
the one-dimensional periodic case. Therefore, local approximations by low order
polynomial splines have been more widely used and the collocation method is the
most important numerical approximation method. To implement the collocation
method, the boundary surface is first subdivided into a finite number of segments,
like curved triangles and squares. The approximation space is then chosen to consist
of low order polynomial splines with respect to these surface elements. The simplest
choices are piecewise constants or piecewise linear functions. Within each segment,
depending on the degree of freedom in the chosen splines, a number of collocation
points is selected. Then, the integrals for the matrix elements in the collocation
system are evaluated using numerical integration. Due to the weak singularity of
the kernels, the calculation of the improper integrals for the diagonal elements of
the matrix, where the collocation points and the surface elements coincide, needs
special attention. For a detailed description of this so-called boundary element
method we refer to Rjasanow and Steinbach [376] and to Sauter and Schwab [385].

Besides these local approximations via boundary elements there are also global
approaches available in the sense of spectral methods. For surfaces which can be
mapped onto spheres, Atkinson [19] has developed a Galerkin method for the
Laplace equation using spherical harmonics as the counterpart of the trigonomet-
ric polynomials. This method has been extended to the Helmholtz equation by
Lin [304]. Based on spherical harmonics and transforming the boundary surface
to a sphere as in Atkinson’s method, Wienert [427] has developed a Nyström
type method for the boundary integral equations for three-dimensional Helmholtz
problems which exhibits exponential convergence for analytic boundary surfaces.
Wienert’s method has been further developed into a fully discrete Galerkin type
method through the work of Ganesh, Graham, and Sloan [143, 153]. We conclude
this chapter by introducing the main ideas of this method.

We begin by describing a numerical quadrature scheme for the integration of
analytic functions over closed analytic surfaces Γ in IR3 which are homeomorphic
to the unit sphere S2 and then we proceed to corresponding quadratures for acoustic
single- and double-layer potentials. To this end, we first introduce a suitable
projection operator QN onto the linear space HN−1 of all spherical harmonics of
order less than N . We denote by −1 < t1 < t2 < · · · < tN < 1 the zeros of the
Legendre polynomial PN (the existence of N distinct zeros of PN in the interval
(−1, 1) is a consequence of the orthogonality relation (2.25), see [130, p. 236])
and by

αj := 2(1 − t2
j )

[NPN−1(tj )]2 , j = 1, . . . , N,
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the weights of the Gauss–Legendre quadrature rule which are uniquely determined
by the property

∫ 1

−1
p(t) dt =

N∑
j=1

αjp(tj ) (3.132)

for all polynomials p of degree less than or equal to 2N − 1 (see [131, p. 89]). We
then choose a set of points xjk on the unit sphere S

2 given in polar coordinates by

xjk := (sin θj cos ϕk, sin θj sin ϕk, cos θj )

for j = 1, . . . , N and k = 0, . . . , 2N − 1 where θj := arccos tj and ϕk = πk/N

and define QN : C(S2) → HN−1 by

QNf := π

N

N∑
j=1

2N−1∑
k=0

αjf (xjk)

N−1∑
n=0

n∑
m=−n

Y−m
n (xjk) Ym

n (3.133)

where the spherical harmonics Ym
n are given by (2.28). By orthogonality we clearly

have

∫
S2

QNf Y−m
n ds = π

N

N∑
j=1

2N−1∑
k=0

αjf (xjk)Y
−m
n (xjk) (3.134)

for |m| ≤ n < N . Since the trapezoidal rule with 2N knots integrates trigonometric
polynomials of degree less than N exactly, we have

π

N

2N−1∑
k=0

Ym
n (xjk)Y

−m′
n′ (xjk) =

∫ 2π

0
Ym

n (θj , ϕ) Y−m′
n′ (θj , ϕ) dϕ

for |m|, |m′| ≤ n < N and these integrals, in view of (2.28), vanish if m �= m′.
For m = m′, by (2.27) and (2.28), Ym

n Y−m
n′ is a polynomial of degree less than

2N in cos θ . Hence, by the property (3.132) of the Gauss–Legendre quadrature rule,
summing the previous equation we find

π

N

N∑
j=1

2N−1∑
k=0

αjY
m
n (xjk) Y−m′

n′ (xjk) =
∫
S2

Ym
n Y−m′

n′ ds,

that is, QNYm
n = Ym

n for |m| ≤ n < N and therefore QN is indeed a projection
operator onto HN−1. We note that QN is not an interpolation operator since by
Theorem 2.7 we have dim HN−1 = N2 whereas we have 2N2 points xjk . Therefore,
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it is also called a hyperinterpolation operator. With the aid of (2.22), the addition
theorem (2.30) and (3.132) we can estimate

‖QNf ‖∞ ≤ 1

4N

N∑
j=1

2N−1∑
k=0

αj

N−1∑
n=0

(2n + 1) ‖f ‖∞ = N2‖f ‖∞

whence

‖QN‖∞ ≤ N2 (3.135)

follows. However, this straightforward estimate is suboptimal and can be improved
into

c1 N1/2 ≤ ‖QN‖∞ ≤ c2 N1/2 (3.136)

with positive constants c1 < c2 (see [153, 395]). For analytic functions f : S2 → C,
Wienert [427] has shown that the approximation error f − QNf decreases
exponentially, that is, there exist positive constants C and σ depending on f such
that

‖f − QNf ‖∞,S2 ≤ Ce−Nσ (3.137)

for all N ∈ IN.
Integrating the approximation QNf instead of f we obtain the so-called Gauss

trapezoidal product rule

∫
S2

f ds ≈ π

N

N∑
j=1

2N−1∑
k=0

αjf (xjk) (3.138)

for the numerical integration over the unit sphere. For analytic surfaces Γ which
can be mapped bijectively through an analytic function q : S2 → Γ onto the unit
sphere, (3.138) can also be used after the substitution

∫
Γ

g(ξ) ds(ξ) =
∫
S2

g(q(x))Jq(x) ds(x)

where Jq stands for the Jacobian of the mapping q. For analytic functions, the
exponential convergence (3.137) carries over to the quadrature (3.138).

By passing to the limit k → 0 in (2.44), with the help of (2.32) and (2.33),
we find

∫
S2

Yn(y)

|x − y| ds(y) = 4π

2n + 1
Yn(x), x ∈ S

2,
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for spherical harmonics Yn of order n. This can be used together with the addition
formula (2.30) to obtain the approximation

∫
S2

f (y)

|x − y| ds(y) ≈ π

N

N∑
j=1

2N−1∑
k=0

αjf (xjk)

N−1∑
n=0

Pn(xjk · x), x ∈ S
2,

which again is based on replacing f by QNf . In particular, for the north pole x0 =
(0, 0, 1) this reads

∫
S2

f (y)

|x0 − y| ds(y) ≈
N∑

j=1

2N−1∑
k=0

βjf (xjk) (3.139)

where

βj := παj

N

N−1∑
n=0

Pn(tj ), j = 1, . . . , N.

The exponential convergence for analytic densities f : S
2 → C again carries

over from (3.137) to the numerical quadrature (3.139) of the harmonic single-layer
potential.

For the extension of this quadrature scheme to more general surfaces Γ , we
need to allow more general densities and we can do this without losing the rapid
convergence order. Denote by S̃

2 the cylinder

S̃
2 := {(cos ϕ, sin ϕ, θ) : 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π}.

Then we can identify functions defined on S̃
2 with functions on S

2 through the
mapping

(cos ϕ, sin ϕ, θ) �→ (sin θ cos ϕ, sin θ sin ϕ, cos θ)

and, loosely speaking, in the sequel we refer to functions on S̃
2 as functions

on S
2 depending on the azimuth ϕ at the poles. As Wienert [427] has shown,

the exponential convergence is still true for the application of (3.139) to analytic
functions f : S̃2 → C.

For the general surface Γ as above, we write

∫
Γ

g(η)

|q(x) − η| ds(η) =
∫
S2

F(x, y)f (y)

|x − y| ds(y),

where we have set f (y) := g(q(y))Jq(y) and

F(x, y) := |x − y|
|q(x) − q(y)| , x �= y. (3.140)



3.7 On the Numerical Solution in IR3 107

Unfortunately, as can be seen from simple examples, the function F in general
cannot be extended as a continuous function on S

2 × S
2. However, since on the

unit sphere we have |x − y|2 = 2(1 − x · y) from the estimate (see the proof of
Theorem 2.2 in [104])

c1|x − y|2 ≤ |q(x) − q(y)|2 ≤ c2|x − y|2

which is valid for all x, y ∈ S
2 and some constants 0 < c1 < c2 it can be seen that

F(x0, ·) is analytic on S̃
2.

For ψ ∈ IR, we define the orthogonal transformations

DP (ψ) :=
⎛
⎝ cos ψ − sin ψ 0

sin ψ cos ψ 0
0 0 1

⎞
⎠ and DT (ψ) :=

⎛
⎝ cos ψ 0 − sin ψ

0 1 0
sin ψ 0 cos ψ

⎞
⎠ .

Then for x = (sin θ cos ϕ, sin θ sin ϕ, cos θ) ∈ S
2 the orthogonal transformation

Tx := DP (ϕ)DT (θ)DP (−ϕ)

has the property Tx x = (0, 0, 1) for x ∈ S
2. Therefore

∫
S2

F(x, y)f (y)

|x − y| ds(y) ≈
N∑

j=1

2N−1∑
k=0

βjF (x, T −1
x xjk)f (T −1

x xjk) (3.141)

is exponentially convergent for analytic densities f in the sense of (3.137) since x

is the north pole for the set of quadrature points T −1
x xjk . It can be shown that the

exponential convergence is uniform with respect to x ∈ S
2.

By decomposing

eik|x−y|

|x − y| = cos k|x − y|
|x − y| + i

sin k|x − y|
|x − y| ,

we see that the integral equation (3.29) for the exterior Dirichlet problem is of
the form

g(ξ) −
∫

Γ

{
h1(ξ, η)

|ξ − η| + ν(η) · (ξ − η)

|ξ − η|2 h2(ξ, η) + h3(ξ, η)

}
g(η) ds(η) = w(ξ)

for ξ ∈ Γ with analytic kernels h1, h2 and h3. For our purpose of exposition, it
suffices to consider only the singular part, that is, the case when h2 = h3 = 0.
Using the substitution ξ = q(x) and η = q(y), the integral equation over Γ can be
transformed into an integral equation over S2 of the form

f (x) −
∫
S2

k(x, y)F (x, y)

|x − y| f (y) ds(y) = v(x), x ∈ S
2, (3.142)
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with the functions f, k and v appropriately defined through g, h1 and w and with F

given as in (3.140). We write A : C(S2) → C(S2) for the weakly singular integral
operator

(Af )(x) :=
∫
S2

k(x, y)F (x, y)

|x − y| f (y) ds(y), x ∈ S
2,

occurring in (3.142). By using the quadrature rule (3.141), we arrive at an
approximating quadrature operator AN : C(S2) → C(S̃2) given by

(ANf )(x) :=
N∑

j=1

2N−1∑
k=0

βjk(x, T −1
x xjk)F (x, T −1

x xjk)f (T −1
x xjk), x ∈ S

2.

(3.143)

We observe that the quadrature points T −1
x xjk depend on x. Therefore, we cannot

reduce the solution of the approximating equation

f̃N − ANf̃N = v (3.144)

to a linear system in the usual fashion of Nyström interpolation. A possible remedy
for this difficulty is to apply the projection operator QN a second time. For this, two
variants have been proposed. Wienert [427] suggested

f w
N − ANQNf w

N = v (3.145)

as the final approximating equation for the solution of (3.144). Analogous to the
presentation in the first edition of this book, Graham and Sloan [153] considered
solving (3.144) through the projection method with the final approximating equation
of the form

fN − QNANfN = QNv. (3.146)

As observed in [153] there is an immediate one-to-one correspondence between
the solutions of (3.145) and (3.146) via fN = QNf w

N and f w
N = v + ANfN.

Therefore, we restrict our outline on the numerical implementation to the second
variant (3.146). Representing

fN :=
N−1∑
n=0

n∑
m=−n

am
n Ym

n

and using (3.134) and (3.143) we find that solving (3.146) is equivalent to solving
the linear system

am
n −

N−1∑
n′=0

n′∑
m′=−n′

Rmm′
nn′ am′

n′ = π

N

N∑
j=1

2N−1∑
k=0

αjv(xjk)Y
−m
n (xjk) (3.147)
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for n = 0, . . . , N − 1, m = −n, . . . , n, where

Rmm′
nn′ := π

N

N∑
j1=1

2N−1∑
k1=0

N∑
j2=1

2N−1∑
k2=0

αj1βj2K(xj1k1 , xj2k2) Y−m
n (xj1k1) Ym′

n′ (T −1
xj1k1

xj2k2)

and

K(x, y) := k(x, T −1
x y)F (x, T −1

x y).

Since orthogonal transformations map spherical harmonics of order n into spherical
harmonics of order n, we have

Ym′
n′ (DT (−θ)y) =

n′∑
μ=−n′

Z0(n
′,m′, μ, θ)Y

μ

n′ (y)

with

Z0(n
′,m′, μ, θ) =

∫
S2

Ym′
n′ (DT (−θ)y) Y

−μ

n′ (y) ds(y)

and from (2.28) we clearly have

Ym′
n′ (DP (−ϕ)y) = e−im′ϕYm′

n′ (y).

From this we find that the coefficients in (3.147) can be evaluated recursively
through the scheme

Z1(j1, k1, j2, μ) :=
2N−1∑
k2=0

βj2e
iμ(ϕk2 −ϕk1 )K(xj1k1 , xj2k2),

Z2(j1, k1, n
′, μ) :=

N∑
j2=1

Y
μ

n′ (xj2,0)Z1(j1, k1, j2, μ),

Z3(j1, k1, n
′,m′) :=

n′∑
μ=−n′

Z0(n
′,m′, μ, θj1)Z2(j1, k1, n

′, μ)eim′ϕk1 ,

Z4(j1,m, n′,m′) :=
2N−1∑
k1=0

e−imϕk1 Z3(j1, k1, n
′,m′),

Rmm′
nn′ := π

N

N∑
j1=1

αj1Y
−m
n (xj1,0)Z4(j1,m, n′,m′)
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by O(N5) multiplications provided the numbers Z0(n
′,m′, μ, θj1) (which do not

depend on the surface) are precalculated. The latter calculations can be based on

Z0(n
′,m′, μ, θ) =

∫
S2

(QN(Ym′
n′ ◦ DT (−θ)))(y) Y

−μ

n′ (y) ds(y)

= π

N

N∑
j=1

2N−1∑
k=0

αjY
m′
n′ (DT (−θ)xjk) Y

−μ

n′ (xjk).

For further details we refer to [143, 427]. To obtain a convergence result, a further
modification of (3.145) and (3.146) was required by using different orders N and
N ′ for the projection operator QN and the approximation operator AN ′ such that

N ′ = κN (3.148)

for some κ > 1. Under this assumption Graham and Sloan [153] established
superalgebraic convergence. We note that for the proof it is crucial that the exponent
in the estimate (3.136) is less than one.

Table 3.3 gives approximate values for the far field pattern in the forward and
backward direction for scattering of a plane wave with incident direction d =
(1, 0, 0) from a pinched ball with representation

r(θ, ϕ) = √1.44 + 0.5 cos 2ϕ(cos 2θ − 1), θ ∈ [0, π ], ϕ ∈ [0, 2π ]

in polar coordinates. (For the shape of the pinched ball see Fig. 5.3.) The results were
provided to us by Olha Ivanyshyn and obtained by using the combined double- and
single-layer potential integral equation (3.29) with coupling parameter η = k and
applying the Graham and Sloan variant (3.146) of Wienert’s method with N ′ = 2N .
The rapid convergence behavior is clearly exhibited. For further numerical examples
we refer to [143].

Table 3.3 Numerical results for Wienert’s method

N Re u∞(d) Im u∞(d) Re u∞(−d) Im u∞(−d)

k = 1 8 −1.43201720 1.40315084 0.30954060 0.93110842

16 −1.43218545 1.40328665 0.30945849 0.93112270

32 −1.43218759 1.40328836 0.30945756 0.93112274

64 −1.43218759 1.40328836 0.30945756 0.93112274

k = 5 8 −1.73274564 5.80039242 1.86060183 0.92743363

16 −2.10055735 5.86052809 1.56336545 1.07513529

32 −2.10058191 5.86053941 1.56328188 1.07513840

64 −2.10058191 5.86053942 1.56328188 1.07513841
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