
Chapter 2
The Helmholtz Equation

Studying an inverse problem always requires a solid knowledge of the theory for the
corresponding direct problem. Therefore, the following two chapters of our book
are devoted to presenting the foundations of obstacle scattering problems for time-
harmonic acoustic waves, i.e., to exterior boundary value problems for the scalar
Helmholtz equation. Our aim is to develop the analysis for the direct problems to an
extent which is needed in the subsequent chapters on inverse problems.

In this chapter we begin with a brief discussion of the physical background to
scattering problems. We will then derive the basic Green representation theorems
for solutions to the Helmholtz equation. Discussing the concept of the Sommerfeld
radiation condition will already enable us to introduce the idea of the far field pattern
which is of central importance in our book. For a deeper understanding of these
ideas, we require sufficient information on spherical wave functions. Therefore, we
present in two sections those basic properties of spherical harmonics and spherical
Bessel functions that are relevant in scattering theory. We will then be able to derive
uniqueness results and expansion theorems for solutions to the Helmholtz equation
with respect to spherical wave functions. We also will gain a first insight into the
ill-posedness of the inverse problem by examining the smoothness properties of the
far field pattern. The study of the boundary value problems will be the subject of the
next chapter.

2.1 Acoustic Waves

Consider the propagation of sound waves of small amplitude in a homogeneous
isotropic medium in IR3 viewed as an inviscid fluid. Let v = v(x, t) be the velocity
field and let p = p(x, t), ρ = ρ(x, t) and S = S(x, t) denote the pressure, density,
and specific entropy, respectively, of the fluid. The motion is then governed by
Euler’s equation
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∂v

∂t
+ (v · grad) v + 1

ρ
grad p = 0,

the equation of continuity

∂ρ

∂t
+ div(ρv) = 0,

the state equation

p = f (ρ, S),

and the adiabatic hypothesis

∂S

∂t
+ v · grad S = 0,

where f is a function depending on the nature of the fluid. We assume that v, p,
ρ, and S are small perturbations of the static state v0 = 0, p0 = constant, ρ0 =
constant, and S0 = constant and linearize to obtain the linearized Euler equation

∂v

∂t
+ 1

ρ0
grad p = 0,

the linearized equation of continuity

∂ρ

∂t
+ ρ0 div v = 0,

and the linearized state equation

∂p

∂t
= ∂f

∂ρ
(ρ0, S0)

∂ρ

∂t
.

From this we obtain the wave equation

1

c2

∂2p

∂t2 = Δp

where the speed of sound c is defined by

c2 = ∂f

∂ρ
(ρ0, S0).

From the linearized Euler equation, we observe that there exists a velocity potential
U = U(x, t) such that
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v = 1

ρ0
grad U

and

p = −∂U

∂t
.

Clearly, the velocity potential also satisfies the wave equation

1

c2

∂2U

∂t2 = ΔU.

For time-harmonic acoustic waves of the form

U(x, t) = Re
{
u(x) e−iωt

}

with frequency ω > 0, we deduce that the complex valued space dependent part u

satisfies the reduced wave equation or Helmholtz equation

Δu + k2u = 0

where the wave number k is given by the positive constant k = ω/c. This equation
carries the name of the physicist Hermann Ludwig Ferdinand von Helmholtz (1821–
1894) for his contributions to mathematical acoustics and electromagnetics.

In the first part of this book we will be concerned with the scattering of time-
harmonic waves by obstacles surrounded by a homogeneous medium, i.e., with
exterior boundary value problems for the Helmholtz equation. However, studying
the Helmholtz equation in some detail is also required for the second part of our
book where we consider wave scattering from an inhomogeneous medium since we
always will assume that the medium is homogeneous outside some sufficiently large
sphere.

In obstacle scattering we must distinguish between the two cases of impenetrable
and penetrable objects. For a sound-soft obstacle the pressure of the total wave
vanishes on the boundary. Consider the scattering of a given incoming wave ui by
a sound-soft obstacle D. Then the total wave u = ui + us , where us denotes the
scattered wave, must satisfy the wave equation in the exterior IR3 \ D̄ of D and a
Dirichlet boundary condition u = 0 on ∂D. Similarly, the scattering from sound-
hard obstacles leads to a Neumann boundary condition ∂u/∂ν = 0 on ∂D where ν

is the unit outward normal to ∂D since here the normal velocity of the acoustic wave
vanishes on the boundary. More generally, allowing obstacles for which the normal
velocity on the boundary is proportional to the excess pressure on the boundary
leads to an impedance boundary condition of the form
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∂u

∂ν
+ ikλu = 0 on ∂D

with a positive constant λ.
The scattering by a penetrable obstacle D with constant density ρD and

speed of sound cD differing from the density ρ and speed of sound c in the
surrounding medium IR3 \ D̄ leads to a transmission problem. Here, in addition
to the superposition u = ui + us of the incoming wave ui and the scattered wave
us in IR3 \ D̄ satisfying the Helmholtz equation with wave number k = ω/c, we
also have a transmitted wave v in D satisfying the Helmholtz equation with wave
number kD = ω/cD �= k. The continuity of the pressure and of the normal velocity
across the interface leads to the transmission conditions

u = v,
1

ρ

∂u

∂ν
= 1

ρD

∂v

∂ν
on ∂D.

In addition to the transmission conditions, more general resistive boundary condi-
tions have been introduced and applied. For their description and treatment we refer
to [14].

In order to avoid repeating ourselves by considering all possible types of
boundary conditions, we have decided to confine ourselves to working out the basic
ideas only for the case of a sound-soft obstacle. On occasion, we will mention
modifications and extensions to the other cases.

For the scattered wave us , the radiation condition

lim
r→∞ r

(
∂us

∂r
− ikus

)
= 0, r = |x|,

introduced by Sommerfeld [397] in 1912 will ensure uniqueness for the solutions to
the scattering problems. From the two possible spherically symmetric solutions

eik|x|

|x| and
e−ik|x|

|x|
to the Helmholtz equation, only the first one satisfies the radiation condition.
Since via

Re

{
eik|x|−iωt

|x|
}

= cos(k|x| − ωt)

|x|
this corresponds to an outgoing spherical wave, we observe that physically speaking
the Sommerfeld radiation condition characterizes outgoing waves. Throughout the
book by |x| we denote the Euclidean norm of a point x in IR3.

For more details on the physical background of linear acoustic waves, we refer to
the article by Morse and Ingard [326] in the Encyclopedia of Physics and to Jones
[224] and Werner [421].
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2.2 Green’s Theorem and Formula

We begin by giving a brief outline of some basic properties of solutions to the
Helmholtz equation Δu + k2u = 0 with positive wave number k. Most of these
can be deduced from the fundamental solution

Φ(x, y) := 1

4π

eik|x−y|

|x − y| , x �= y. (2.1)

Straightforward differentiation shows that for fixed y ∈ IR3 the fundamental
solution satisfies the Helmholtz equation in IR3 \ {y}.

A domain D ⊂ IR3, i.e., an open and connected set, is said to be of class Ck ,
k ∈ IN, if for each point z of the boundary ∂D there exists a neighborhood Vz of
z with the following properties: the intersection Vz ∩ D̄ can be mapped bijectively
onto the half ball {x ∈ IR3 : |x| < 1, x3 ≥ 0}, this mapping and its inverse are
k-times continuously differentiable and the intersection Vz ∩∂D is mapped onto the
disk {x ∈ IR3 : |x| < 1, x3 = 0}. On occasion, we will express the property of a
domain D to be of class Ck also by saying that its boundary ∂D is of class Ck . By
Ck(D) we denote the linear space of real or complex valued functions defined on
the domain D which are k-times continuously differentiable. By Ck(D̄) we denote
the subspace of all functions in Ck(D) which together with all their derivatives up
to order k can be extended continuously from D into the closure D̄.

One of the basic tools in studying the Helmholtz equation is provided by Green’s
integral theorems. Let D be a bounded domain of class C1 and let ν denote the
unit normal vector to the boundary ∂D directed into the exterior of D. Then, for
u ∈ C1(D̄) and v ∈ C2(D̄) we have Green’s first theorem

∫

D

(uΔv + grad u · grad v) dx =
∫

∂D

u
∂v

∂ν
ds, (2.2)

and for u, v ∈ C2(D̄) we have Green’s second theorem

∫

D

(uΔv − vΔu) dx =
∫

∂D

(
u

∂v

∂ν
− v

∂u

∂ν

)
ds. (2.3)

For two vectors a = (a1, a2, a3) and b = (b1, b2, b3) in IR3 or C3 we will denote
by a · b := a1b1 + a2b2 + a3b3 the bilinear scalar product and by |a| := √

a · ā

the Euclidean norm. For complex numbers or vectors the bar indicates the complex
conjugate. Note that our regularity assumptions on D are sufficient conditions for
the validity of Green’s theorems and can be weakened (see Kellogg [230]).

Theorem 2.1 Let D be a bounded domain of class C2 and let ν denote the unit
normal vector to the boundary ∂D directed into the exterior of D. Assume that u ∈
C2(D) ∩ C(D̄) is a function which possesses a normal derivative on the boundary
in the sense that the limit
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∂u

∂ν
(x) = lim

h→+0
ν(x) · grad u(x − hν(x)), x ∈ ∂D,

exists uniformly on ∂D. Then we have Green’s formula

u(x) =
∫

∂D

{
∂u

∂ν
(y)Φ(x, y) − u(y)

∂Φ(x, y)

∂ν(y)

}
ds(y)

−
∫

D

{
Δu(y) + k2u(y)

}
Φ(x, y) dy, x ∈ D,

(2.4)

where the volume integral exists as improper integral. In particular, if u is a solution
to the Helmholtz equation

Δu + k2u = 0 in D,

then

u(x) =
∫

∂D

{
∂u

∂ν
(y)Φ(x, y) − u(y)

∂Φ(x, y)

∂ν(y)

}
ds(y), x ∈ D. (2.5)

Proof First, we assume that u ∈ C2(D̄). We circumscribe the arbitrary fixed
point x ∈ D with a sphere S(x; ρ) := {y ∈ IR3 : |x − y| = ρ} contained
in D and direct the unit normal ν to S(x; ρ) into the interior of S(x; ρ). We
now apply Green’s theorem (2.3) to the functions u and Φ(x, ·) in the domain
Dρ := {y ∈ D : |x − y| > ρ} to obtain

∫

∂D∪S(x;ρ)

{
∂u

∂ν
(y)Φ(x, y) − u(y)

∂Φ(x, y)

∂ν(y)

}
ds(y)

=
∫

Dρ

{
Δu(y) + k2u(y)

}
Φ(x, y) dy.

(2.6)

Since on S(x; ρ) we have

Φ(x, y) = eikρ

4πρ

and

grady Φ(x, y) =
(

1

ρ
− ik

)
eikρ

4πρ
ν(y),

a straightforward calculation, using the mean value theorem, shows that
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lim
ρ→0

∫

S(x;ρ)

{
u(y)

∂Φ(x, y)

∂ν(y)
− ∂u

∂ν
(y)Φ(x, y)

}
ds(y) = u(x),

whence (2.4) follows by passing to the limit ρ → 0 in (2.6). The existence of the
volume integral as an improper integral is a consequence of the fact that its integrand
is weakly singular.

The case where u belongs only to C2(D) ∩ C(D̄) and has a normal derivative in
the sense of uniform convergence is treated by first integrating over parallel surfaces
to the boundary of D and then passing to the limit ∂D. For the concept of parallel
surfaces, we refer to [104, 268, 311]. We note that the parallel surfaces for ∂D ∈ C2

belong to C1. ��
In the literature, Green’s formula (2.5) is also known as the Helmholtz represen-

tation. Obviously, Theorem 2.1 remains valid for complex values of k.

Theorem 2.2 If u is a two times continuously differentiable solution to the
Helmholtz equation in a domain D, then u is analytic.

Proof Let x ∈ D and choose a closed ball contained in D with center x. Then
Theorem 2.1 can be applied in this ball and the statement follows from the
analyticity of the fundamental solution for x �= y. ��

As a consequence of Theorem 2.2, a solution to the Helmholtz equation that
vanishes in an open subset of its domain of definition must vanish everywhere.

In the sequel, by saying u is a solution to the Helmholtz equation we tacitly imply
that u is twice continuously differentiable, and hence analytic, in the interior of its
domain of definition.

The following theorem is a special case of a more general result for partial
differential equations known as Holmgren’s theorem.

Theorem 2.3 Let D be as in Theorem 2.1 and let u ∈ C2(D)∩C1(D̄) be a solution
to the Helmholtz equation in D such that

u = ∂u

∂ν
= 0 on Γ (2.7)

for some open subset Γ ⊂ ∂D. Then u vanishes identically in D.

Proof In view of (2.7), we use Green’s representation formula (2.5) to extend the
definition of u by setting

u(x) :=
∫

∂D\Γ

{
∂u

∂ν
(y)Φ(x, y) − u(y)

∂Φ(x, y)

∂ν(y)

}
ds(y)

for x ∈ (IR3 \ D̄) ∪ Γ . Then, by Green’s second integral theorem (2.3), applied to
u and Φ(x, ·), we have u = 0 in IR3 \ D̄. By G we denote a component of IR3 \ D̄

with Γ ∩ ∂G �= ∅. Clearly u solves the Helmholtz equation in (IR3 \ ∂D) ∪ Γ and
therefore u = 0 in D, since D and G are connected through the gap Γ in ∂D. ��
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Definition 2.4 A solution u to the Helmholtz equation whose domain of definition
contains the exterior of some sphere is called radiating if it satisfies the Sommerfeld
radiation condition

lim
r→∞ r

(
∂u

∂r
− iku

)
= 0 (2.8)

where r = |x| and the limit is assumed to hold uniformly in all directions x/|x|.
Theorem 2.5 Assume the bounded set D is the open complement of an unbounded
domain of class C2 and let ν denote the unit normal vector to the boundary ∂D

directed into the exterior of D. Let u ∈ C2(IR3 \ D̄) ∩ C(IR3 \ D) be a radiating
solution to the Helmholtz equation

Δu + k2u = 0 in IR3 \ D̄,

which possesses a normal derivative on the boundary in the sense that the limit

∂u

∂ν
(x) = lim

h→+0
ν(x) · grad u(x + hν(x)), x ∈ ∂D,

exists uniformly on ∂D. Then we have Green’s formula

u(x) =
∫

∂D

{
u(y)

∂Φ(x, y)

∂ν(y)
− ∂u

∂ν
(y)Φ(x, y)

}
ds(y), x ∈ IR3 \ D̄. (2.9)

Proof We first show that

∫

Sr

|u|2ds = O(1), r → ∞, (2.10)

where Sr denotes the sphere of radius r and center at the origin. To accomplish this,
we observe that from the radiation condition (2.8) it follows that

∫

Sr

{∣∣∣∣
∂u

∂ν

∣∣∣∣
2

+ k2|u|2 + 2k Im

(
u

∂ū

∂ν

)}
ds =

∫

Sr

∣∣∣∣
∂u

∂ν
− iku

∣∣∣∣
2

ds → 0, r → ∞,

where ν is the unit outward normal to Sr . We take r large enough such that D is
contained in Sr and apply Green’s theorem (2.2) in Dr := {y ∈ IR3 \ D̄ : |y| < r}
to obtain

∫

Sr

u
∂ū

∂ν
ds =

∫

∂D

u
∂ū

∂ν
ds − k2

∫

Dr

|u|2dy +
∫

Dr

| grad u|2dy.

We now insert the imaginary part of the last equation into the previous equation and
find that
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lim
r→∞

∫

Sr

{∣∣∣∣
∂u

∂ν

∣∣∣∣
2

+ k2|u|2
}

ds = −2k Im
∫

∂D

u
∂ū

∂ν
ds. (2.11)

Both terms on the left-hand side of (2.11) are nonnegative. Hence, they must be
individually bounded as r → ∞ since their sum tends to a finite limit. Therefore,
(2.10) is proven.

Now from (2.10) and the radiation condition

∂Φ(x, y)

∂ν(y)
− ikΦ(x, y) = O

(
1

r2

)
, r → ∞,

which is valid uniformly for y ∈ Sr , by the Cauchy–Schwarz inequality we see that

I1 :=
∫

Sr

u(y)

{
∂Φ(x, y)

∂ν(y)
− ikΦ(x, y)

}
ds(y) → 0, r → ∞,

and the radiation condition (2.8) for u and Φ(x, y) = O(1/r) for y ∈ Sr yield

I2 :=
∫

Sr

Φ(x, y)

{
∂u

∂ν
(y) − iku(y)

}
ds(y) → 0, r → ∞.

Hence,

∫

Sr

{
u(y)

∂Φ(x, y)

∂ν(y)
− ∂u

∂ν
(y)Φ(x, y)

}
ds(y) = I1 − I2 → 0, r → ∞.

The proof is now completed by applying Theorem 2.1 in the bounded domain Dr

and passing to the limit r → ∞. ��
From Theorem 2.5 we deduce that radiating solutions u to the Helmholtz

equation automatically satisfy Sommerfeld’s finiteness condition

u(x) = O

(
1

|x|
)

, |x| → ∞, (2.12)

uniformly for all directions and that the validity of the Sommerfeld radiation condi-
tion (2.8) is invariant under translations of the origin. Wilcox [428] first established
that the representation formula (2.9) can be derived without the additional condition
(2.12) of finiteness. Our proof of Theorem 2.5 has followed Wilcox’s proof. It also
shows that (2.8) can be replaced by the weaker formulation

∫

Sr

∣∣∣∣
∂u

∂r
− iku

∣∣∣∣
2

ds → 0, r → ∞,

with (2.9) still being valid. Of course, (2.9) then implies that (2.8) also holds.
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Solutions to the Helmholtz equation which are defined in all of IR3 are called
entire solutions. An entire solution to the Helmholtz equation satisfying the radia-
tion condition must vanish identically. This follows immediately from combining
Green’s formula (2.9) and Green’s theorem (2.3).

We are now in a position to introduce the definition of the far field pattern or the
scattering amplitude which plays a central role in this book.

Theorem 2.6 Every radiating solution u to the Helmholtz equation has the asymp-
totic behavior of an outgoing spherical wave

u(x) = eik|x|

|x|
{
u∞(x̂) + O

(
1

|x|
)}

, |x| → ∞, (2.13)

uniformly in all directions x̂ = x/|x| where the function u∞ defined on the
unit sphere S

2 is known as the far field pattern of u. Under the assumptions of
Theorem 2.5 we have

u∞(x̂) = 1

4π

∫

∂D

{
u(y)

∂e−ik x̂·y

∂ν(y)
− ∂u

∂ν
(y) e−ik x̂·y

}
ds(y), x̂ ∈ S

2.

(2.14)

Proof From

|x − y| =
√

|x|2 − 2 x · y + |y|2 = |x| − x̂ · y + O

(
1

|x|
)

,

we derive

eik|x−y|

|x − y| = eik|x|

|x|
{
e−ik x̂·y + O

(
1

|x|
)}

, (2.15)

and

∂

∂ν(y)

eik|x−y|

|x − y| = eik|x|

|x|

{
∂e−ik x̂·y

∂ν(y)
+ O

(
1

|x|
)}

(2.16)

uniformly for all y ∈ ∂D. Inserting this into Green’s formula (2.9), the theorem
follows. ��

One of the main themes of our book will be to recover radiating solutions of
the Helmholtz equation from a knowledge of their far field patterns. In terms of the
mapping A : u �→ u∞ transferring the radiating solution u into its far field pattern
u∞, we want to solve the equation Au = u∞ for a given u∞. In order to establish
uniqueness for determining u from its far field pattern u∞ and to understand the
strong ill-posedness of the equation Au = u∞, we need to develop some facts
on spherical wave functions. This will be the subject of the next two sections. We
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already can point out that the mapping A is extremely smoothing since from (2.14)
we see that the far field pattern is an analytic function on the unit sphere.

2.3 Spherical Harmonics

For convenience and to introduce notations, we summarize some of the basic
properties of spherical harmonics which are relevant in scattering theory and briefly
indicate their proofs. For a more detailed study we refer to Lebedev [293].

Recall that solutions u to the Laplace equation Δu = 0 are called harmonic
functions. The restriction of a homogeneous harmonic polynomial of degree n to
the unit sphere S

2 is called a spherical harmonic of order n.

Theorem 2.7 There exist exactly 2n + 1 linearly independent spherical harmonics
of order n.

Proof By the maximum–minimum principle for harmonic functions it suffices to
show that there exist exactly 2n + 1 linearly independent homogeneous harmonic
polynomials Hn of degree n. We can write

Hn(x1, x2, x3) =
n∑

k=0

an−k(x1, x2) xk
3 ,

where the ak are homogeneous polynomials of degree k in the two variables x1 and
x2. Then, straightforward calculations show that Hn is harmonic if and only if the
coefficients satisfy

an−k = −Δan−k+2

k(k − 1)
, k = 2, . . . , n.

Therefore, choosing the two coefficients an and an−1 uniquely determines Hn, and
by setting

an(x1, x2) = x
n−j

1 x
j

2 , an−1(x1, x2) = 0, j = 0, . . . , n,

an(x1, x2) = 0, an−1(x1, x2) = x
n−1−j

1 x
j

2 , j = 0, . . . , n − 1,

clearly we obtain 2n + 1 linearly independent homogeneous harmonic polynomials
of degree n. ��

In principle, the proof of the preceding theorem allows a construction of all
spherical harmonics. However, it is more convenient and appropriate to use polar
coordinates for the representation of spherical harmonics. In polar coordinates
(r, θ, ϕ), homogeneous polynomials clearly are of the form

Hn = rnYn(θ, ϕ),
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and ΔHn = 0 is readily seen to be satisfied if

1

sin θ

∂

∂θ
sin θ

∂Yn

∂θ
+ 1

sin2 θ

∂2Yn

∂ϕ2 + n(n + 1)Yn = 0. (2.17)

From Green’s theorem (2.3), applied to two homogeneous harmonic polynomials
Hn and Hn′ , we have

0 =
∫

S2

{
Hn′

∂Hn

∂r
− Hn

∂Hn′

∂r

}
ds = (n − n′)

∫

S2
YnYn′ ds.

Therefore spherical harmonics satisfy the orthogonality relation

∫

S2
YnYn′ ds = 0, n �= n′. (2.18)

We first construct spherical harmonics which only depend on the polar angle θ .
Choose points x and y with r = |x| < |y| = 1, denote the angle between x and y

by θ , and set t = cos θ . Consider the function

1

|x − y| = 1√
1 − 2tr + r2

(2.19)

which for fixed y is a solution to Laplace’s equation with respect to x. Since for
fixed t with −1 ≤ t ≤ 1 the right-hand side is an analytic function in r , we have the
Taylor series

1√
1 − 2tr + r2

=
∞∑

n=0

Pn(t)r
n. (2.20)

The coefficients Pn in this expansion are called Legendre polynomials and the
function on the left-hand side consequently is known as the generating function
for the Legendre polynomials. For each 0 < r0 < 1 the Taylor series

1√
1 − r exp(±iθ)

= 1 +
∞∑

n=1

1 · 3 · · · (2n − 1)

2 · 4 · · · 2n
rn e±inθ , (2.21)

and all its term by term derivatives with respect to r and θ are absolutely and
uniformly convergent for all 0 ≤ r ≤ r0 and all 0 ≤ θ ≤ π . Hence, by multiplying
the Eq. (2.21) for the plus and the minus sign, we note that the series (2.20) and all
its term by term derivatives with respect to r and θ are absolutely and uniformly
convergent for all 0 ≤ r ≤ r0 and all −1 ≤ t = cos θ ≤ 1. Setting θ = 0 in (2.21)
obviously provides a majorant for the series for all θ . Therefore, the geometric series
is a majorant for the series in (2.20) and we obtain the inequality
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|Pn(t)| ≤ 1, −1 ≤ t ≤ 1, n = 0, 1, 2, . . . . (2.22)

Differentiating (2.20) with respect to r , multiplying by 1 − 2tr + r2, inserting
(2.20) on the left-hand side, and then equating powers of r shows that the Pn satisfy
the recursion formula

(n + 1)Pn+1(t) − (2n + 1)tPn(t) + nPn−1(t) = 0, n = 1, 2, . . . . (2.23)

Since, as easily seen from (2.20), we have P0(t) = 1 and P1(t) = t , the recursion
formula shows that Pn indeed is a polynomial of degree n and that Pn is an even
function if n is even and an odd function if n is odd.

Since for fixed y the function (2.19) is harmonic, differentiating (2.20) term by
term, we obtain that

∞∑
n=0

{
1

sin θ

d

dθ
sin θ

dPn(cos θ)

dθ
+ n(n + 1)Pn(cos θ)

}
rn−2 = 0.

Equating powers of r shows that the Legendre polynomials satisfy the Legendre
differential equation

(1 − t2)P ′′
n (t) − 2tP ′

n(t) + n(n + 1)Pn(t) = 0, n = 0, 1, 2, . . . , (2.24)

and that the homogeneous polynomial rnPn(cos θ) of degree n is harmonic.
Therefore, Pn(cos θ) represents a spherical harmonic of order n. The orthogonality
(2.18) implies that

∫ 1

−1
Pn(t)Pn′(t) dt = 0, n �= n′.

Since we have uniform convergence, we may integrate the square of the generating
function (2.20) term by term and use the preceding orthogonality to arrive at

∫ 1

−1

dt

1 − 2tr + r2 =
∞∑

n=0

∫ 1

−1
[Pn(t)]2 dt r2n.

On the other hand, we have

∫ 1

−1

dt

1 − 2tr + r2 = 1

r
ln

1 + r

1 − r
=

∞∑
n=0

2

2n + 1
r2n.

Thus, we have proven the orthonormality relation

∫ 1

−1
Pn(t)Pm(t) dt = 2

2n + 1
δnm, n,m = 0, 1, 2, . . . , (2.25)
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with the usual meaning for the Kronecker symbol δnm. Since span{P0, . . . , Pn} =
span{1, . . . , tn} the Legendre polynomials Pn, n = 0, 1, . . . , form a complete
orthogonal system in L2[−1, 1].

We now look for spherical harmonics of the form

Ym
n (θ, ϕ) = f (cos θ) eimϕ.

Then (2.17) is satisfied provided f is a solution of the associated Legendre
differential equation

(1 − t2)f ′′(t) − 2tf ′(t) +
{
n(n + 1) − m2

1 − t2

}
f (t) = 0. (2.26)

Differentiating the Legendre differential equation (2.24) m-times shows that g =
P

(m)
n satisfies

(1 − t2)g′′(t) − 2(m + 1)tg′(t) + (n − m)(n + m + 1)g(t) = 0.

From this it can be deduced that the associated Legendre functions

P m
n (t) := (1 − t2)m/2 dmPn(t)

dtm
, m = 0, 1, . . . , n, (2.27)

solve the associated Legendre equation for n = 0, 1, 2, . . . . In order to make
sure that the functions Ym

n (θ, ϕ) = P m
n (cos θ) eimϕ are spherical harmonics, we

have to prove that the harmonic functions rnYm
n (θ, ϕ) = rnP m

n (cos θ) eimϕ are
homogeneous polynomials of degree n. From the recursion formula (2.23) for the
Pn and the definition (2.27) for the P m

n , we first observe that

P m
n (cos θ) = sinm θ um

n (cos θ)

where um
n is a polynomial of degree n − m which is even if n − m is even and odd

if n − m is odd. Since in polar coordinates we have

rm sinm θ eimϕ = (x1 + ix2)
m,

it follows that

rn Ym
n (θ, ϕ) = (x1 + ix2)

m rn−m um
n (cos θ).

For n − m even we can write

rn−m um
n (cos θ) = rn−m

1
2 (n−m)∑

k=0

ak cos2k θ =
1
2 (n−m)∑

k=0

ak x2k
3 (x2

1 +x2
2 +x2

3)
1
2 (n−m)−k
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which is a homogeneous polynomial of degree n− m and this is also true for n− m

odd. Putting everything together, we see that the rn Ym
n (θ, ϕ) are homogeneous

polynomials of degree n.

Theorem 2.8 The spherical harmonics

Ym
n (θ, ϕ) :=

√
2n + 1

4π

(n − |m|)!
(n + |m|)! P |m|

n (cos θ) eimϕ (2.28)

for m = −n, . . . , n, n = 0, 1, 2, . . . , form a complete orthonormal system in
L2(S2).

Proof Because of (2.18) and the orthogonality of the eimϕ , the Ym
n given by (2.28)

are orthogonal. For m > 0 we evaluate

Am
n :=

∫ π

0
[P m

n (cos θ)]2 sin θ dθ

by m partial integrations to get

Am
n =

∫ 1

−1
(1 − t2)m

[
dmPn(t)

dtm

]2

dt =
∫ 1

−1
Pn(t)

dm

dtm
gm

n (t) dt,

where

gm
n (t) = (t2 − 1)m

dmPn(t)

dtm
.

Hence

dm

dtm
gm

n (t) = (n + m)!
(n − m)! ant

n + · · ·

is a polynomial of degree n with an the leading coefficient in Pn(t) = ant
n + · · · .

Therefore, by the orthogonality (2.25) of the Legendre polynomials we derive

(n − m)!
(n + m)! Am

n =
∫ 1

−1
ant

n Pn(t) dt =
∫ 1

−1
[Pn(t)]2 dt = 2

2n + 1
,

and the proof of the orthonormality of the Ym
n is finished.

For fixed m the associated Legendre functions P m
n for n = m,m + 1, . . . are

orthogonal and they are complete in L2[−1, 1] since we have

span
{
P m

m , . . . , P m
m+n

} = (1 − t2)m/2 span
{
1, . . . , tn

}
.
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Writing Y := span
{
Ym

n : m = −n, . . . , n, n = 0, 1, 2, . . .
}
, it remains to show

that Y is dense in L2(S2). Let g ∈ C(S2). For fixed θ we then have Parseval’s
equality

2π

∞∑
m=−∞

|gm(θ)|2 =
∫ 2π

0
|g(θ, ϕ)|2 dϕ (2.29)

for the Fourier coefficients

gm(θ) = 1

2π

∫ 2π

0
g(θ, ϕ)e−imϕ dϕ

with respect to ϕ. Since the gm and the right-hand side of (2.29) are continuous in θ ,
by Dini’s theorem the convergence in (2.29) is uniform with respect to θ . Therefore,
given ε > 0 there exists M = M(ε) ∈ IN such that

∫ 2π

0

∣∣∣∣∣g(θ, ϕ)−
M∑

m=−M

gm(θ)eimϕ

∣∣∣∣∣
2

dϕ =
∫ 2π

0
|g(θ, ϕ)|2 dϕ−2π

M∑
m=−M

|gm(θ)|2< ε

4π

for all 0 ≤ θ ≤ π . The finite number of functions gm, m = −M, . . . , M, can now
be simultaneously approximated by the associated Legendre functions, i.e., there
exist N = N(ε) and coefficients am

n such that

∫ π

0

∣∣∣∣∣∣
gm(θ) −

N∑
n=|m|

am
n P |m|

n (cos θ)

∣∣∣∣∣∣

2

sin θ dθ <
ε

8π(2M + 1)2

for all m = −M, . . . ,M . Then, combining the last two inequalities with the help of
the Cauchy–Schwarz inequality, we find

∫ π

0

∫ 2π

0

∣∣∣∣∣∣
g(θ, ϕ) −

M∑
m=−M

N∑
n=|m|

am
n P |m|

n (cos θ) eimϕ

∣∣∣∣∣∣

2

sin θ dϕdθ < ε.

Therefore, Y is dense in C(S2) with respect to the L2 norm and this completes the
proof since C(S2) is dense in L2(S2). ��

We conclude our brief survey of spherical harmonics by proving the important
addition theorem.

Theorem 2.9 Let Ym
n , m = −n, . . . , n, be any system of 2n + 1 orthonormal

spherical harmonics of order n. Then for all x̂, ŷ ∈ S
2 we have
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n∑
m=−n

Ym
n (x̂) Ym

n (ŷ) = 2n + 1

4π
Pn(cos θ), (2.30)

where θ denotes the angle between x̂ and ŷ.

Proof We abbreviate the left-hand side of (2.30) by Y (x̂, ŷ) and first show that
Y only depends on the angle θ . Each orthogonal matrix Q in IR3 transforms
homogeneous harmonic polynomials of degree n again into homogeneous harmonic
polynomials of degree n. Hence, we can write

Ym
n (Qx̂) =

n∑
k=−n

amkY
k
n (x̂), m = −n, . . . , n.

Since Q is orthogonal and the Ym
n are orthonormal, we have

∫

S2
Ym

n (Qx̂) Ym′
n (Qx̂) ds =

∫

S2
Ym

n (x̂) Ym′
n (x̂) ds = δmm′ .

From this it can be seen that the matrix A = (amk) also is orthogonal and we obtain

Y (Qx̂,Qŷ) =
n∑

m=−n

n∑
k=−n

amkY
k
n (x̂)

n∑
l=−n

amlY l
n(ŷ) =

n∑
k=−n

Y k
n (x̂) Y k

n (ŷ) = Y (x̂, ŷ)

whence Y (x̂, ŷ) = f (cos θ) follows. Since for fixed ŷ the function Y is a spherical
harmonic, by introducing polar coordinates with the polar axis given by ŷ we see
that f = anPn with some constant an. Hence, we have

n∑
m=−n

Ym
n (x̂) Ym

n (ŷ) = anPn(cos θ).

Setting ŷ = x̂ and using Pn(1) = 1 (this follows from the generating function
(2.20)) we obtain

an =
n∑

m=−n

|Ym
n (x̂)|2.

Since the Ym
n are normalized, integrating the last equation over S2 we finally arrive

at 4πan = 2n + 1 and the proof is complete. ��
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2.4 Spherical Bessel Functions

We continue our study of spherical wave functions by introducing the basic
properties of spherical Bessel functions. For a more detailed analysis we again refer
to Lebedev [293].

We look for solutions to the Helmholtz equation of the form

u(x) = f (k|x|) Yn

(
x

|x|
)

,

where Yn is a spherical harmonic of order n. From the differential equation (2.17)
for the spherical harmonics, it follows that u solves the Helmholtz equation provided
f is a solution of the spherical Bessel differential equation

t2f ′′(t) + 2tf ′(t) + [t2 − n(n + 1)]f (t) = 0. (2.31)

We note that for any solution f to the spherical Bessel differential equation (2.31)
the function g(t) := √

t f (t) solves the Bessel differential equation with half integer
order n + 1/2 and vice versa. By direct calculations, we see that for n = 0, 1, . . .

the functions

jn(t) :=
∞∑

p=0

(−1)ptn+2p

2pp! 1 · 3 · · · (2n + 2p + 1)
(2.32)

and

yn(t) := − (2n)!
2nn!

∞∑
p=0

(−1)pt2p−n−1

2pp!(−2n + 1)(−2n + 3) · · · (−2n + 2p − 1)
(2.33)

represent solutions to the spherical Bessel differential equation (the first coefficient
in the series (2.33) has to be set equal to one). By the ratio test, the function jn is
seen to be analytic for all t ∈ IR whereas yn is analytic for all t ∈ (0,∞). The
functions jn and yn are called spherical Bessel functions and spherical Neumann
functions of order n, respectively, and the linear combinations

h(1,2)
n := jn ± iyn

are known as spherical Hankel functions of the first and second kind of order n.
From the series representation (2.32) and (2.33), by equating powers of t , it is

readily verified that both fn = jn and fn = yn satisfy the recurrence relation

fn+1(t) + fn−1(t) = 2n + 1

t
fn(t), n = 1, 2, . . . . (2.34)
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Straightforward differentiation of the series (2.32) and (2.33) shows that both fn =
jn and fn = yn satisfy the differentiation formulas

fn+1(t) = −tn
d

dt

{
t−nfn(t)

}
, n = 0, 1, 2, . . . , (2.35)

and

tn+1fn−1(t) = d

dt

{
tn+1fn(t)

}
, n = 1, 2, . . . . (2.36)

Finally, from (2.31), the Wronskian

W(jn(t), yn(t)) := jn(t)y
′
n(t) − yn(t)j

′
n(t)

is readily seen to satisfy

W ′ + 2

t
W = 0,

whence W(jn(t), yn(t)) = C/t2 for some constant C. This constant can be
evaluated by passing to the limit t → 0 with the result

jn(t)y
′
n(t) − j ′

n(t)yn(t) = 1

t2
. (2.37)

From the series representation of the spherical Bessel and Neumann functions, it
is obvious that

jn(t) = tn

1 · 3 · · · (2n + 1)

(
1 + O

(
1

n

))
, n → ∞, (2.38)

uniformly on compact subsets of IR and

h(1)
n (t) = 1 · 3 · · · (2n − 1)

itn+1

(
1 + O

(
1

n

))
, n → ∞, (2.39)

uniformly on compact subsets of (0,∞). With the aid of Stirling’s formula n! =√
2πn (n/e)n (1 + o(1)), n → ∞, which implies that

(2n)!
n! = 22n+ 1

2

(n

e

)n

(1 + o(1) ), n → ∞,

from (2.39) we obtain

h(1)
n (t) = O

(
2n

et

)n

, n → ∞, (2.40)

uniformly on compact subsets of (0,∞).
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The spherical Bessel and Neumann functions can be expressed in terms of
trigonometric functions. Setting n = 0 in the series (2.32) and (2.33) we have that

j0(t) = sin t

t
, y0(t) = −cos t

t

and consequently

h
(1,2)
0 (t) = e±it

±it
. (2.41)

Hence, by induction, from (2.41) and (2.35) it follows that the spherical Hankel
functions are of the form

h(1)
n (t) = (−i)n

eit

it

⎧⎨
⎩1 +

n∑
p=1

apn

tp

⎫⎬
⎭

and

h(2)
n (t) = in

e−it

−it

⎧
⎨
⎩1 +

n∑
p=1

āpn

tp

⎫
⎬
⎭

with complex coefficients a1n, . . . , ann. From this we readily obtain the following
asymptotic behavior of the spherical Hankel functions for large argument

h
(1,2)
n (t) = 1

t
e±i(t− nπ

2 − π
2 )

{
1 + O

(
1

t

)}
, t → ∞,

h
(1,2)′
n (t) = 1

t
e±i(t− nπ

2 )
{

1 + O

(
1

t

)}
, t → ∞.

(2.42)

Taking the real and the imaginary part of (2.42) we also have asymptotic formulas
for the spherical Bessel and Neumann functions.

For solutions to the Helmholtz equation in polar coordinates, we can now state
the following theorem on spherical wave functions.

Theorem 2.10 Let Yn be a spherical harmonic of order n. Then

un(x) = jn(k|x|) Yn

(
x

|x|
)

is an entire solution to the Helmholtz equation and
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vn(x) = h(1)
n (k|x|) Yn

(
x

|x|
)

is a radiating solution to the Helmholtz equation in IR3 \ {0}.
Proof Since we can write jn(kr) = knrnwn(r

2) with an analytic function wn :
IR → IR and since rnYn(x̂) is a homogeneous polynomial in x1, x2, x3, the product
jn(kr) Yn(x̂) for x̂ = x/|x| is regular at x = 0, i.e., un also satisfies the Helmholtz
equation at the origin. That the radiation condition is satisfied for vn follows from
the asymptotic behavior (2.42) of the spherical Hankel functions of the first kind.

��
We conclude our brief discussion of spherical wave functions by the following

addition theorem for the fundamental solution.

Theorem 2.11 Let Ym
n , m = −n, . . . , n, n = 0, 1, . . . , be a set of orthonormal

spherical harmonics. Then for |x| > |y| we have

eik|x−y|

4π |x − y| = ik

∞∑
n=0

n∑
m=−n

h(1)
n (k|x|) Ym

n

(
x

|x|
)

jn(k|y|) Ym
n

(
y

|y|
)

. (2.43)

The series and its term by term first derivatives with respect to |x| and |y| are
absolutely and uniformly convergent on compact subsets of |x| > |y|.
Proof We abbreviate x̂ = x/|x| and ŷ = y/|y|. From Green’s theorem (2.3) applied
to um

n (z) = jn(k|z|) Ym
n (ẑ) with ẑ = z/|z| and Φ(x, z), we have

∫

|z|=r

{
um

n (z)
∂Φ(x, z)

∂ν(z)
− ∂um

n

∂ν
(z)Φ(x, z)

}
ds(z) = 0, |x| > r,

and from Green’s formula (2.9), applied to vm
n (z) = h

(1)
n (k|z|) Ym

n (ẑ), we have

∫

|z|=r

{
vm
n (z)

∂Φ(x, z)

∂ν(z)
− ∂vm

n

∂ν
(z)Φ(x, z)

}
ds(z) = vm

n (x), |x| > r.

From the last two equations, noting that on |z| = r we have

um
n (z) = jn(kr) Ym

n (ẑ),
∂um

n

∂ν
(z) = kj ′

n(kr) Ym
n (ẑ)

and

vm
n (z) = h(1)

n (kr) Ym
n (ẑ),

∂vm
n

∂ν
(z) = kh(1)′

n (kr) Ym
n (ẑ)

and using the Wronskian (2.37), we see that
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1

ikr2

∫

|z|=r

Ym
n (ẑ)Φ(x, z) ds(z) = jn(kr) h(1)

n (k|x|) Ym
n (x̂), |x| > r,

and by transforming the integral into one over the unit sphere we get

∫

S2
Ym

n (ẑ)Φ(x, rẑ) ds(ẑ) = ik jn(kr) h(1)
n (k|x|) Ym

n (x̂), |x| > r. (2.44)

We can now apply Theorem 2.8 to obtain from the orthogonal expansion

Φ(x, y) =
∞∑

n=0

n∑
m=−n

∫

S2
Ym

n (ẑ)Φ(x, rẑ) ds(ẑ) Ym
n (ŷ)

and (2.44) that the series (2.43) is valid for fixed x with |x| > r and with respect to
y in the L2 sense on the sphere |y| = r for arbitrary r . With the aid of the Cauchy–
Schwarz inequality, the Addition Theorem 2.9 for the spherical harmonics and the
inequalities (2.22), (2.38), and (2.39) we can estimate

n∑
m=−n

∣∣∣h(1)
n (k|x|) Ym

n (x̂) jn(k|y|) Ym
n (ŷ)

∣∣∣

≤ 2n + 1

4π
| h(1)

n (k|x|) jn(k|y|) | = O

( |y|n
|x|n

)
, n → ∞,

uniformly on compact subsets of |x| > |y|. Hence, we have a majorant implying
absolute and uniform convergence of the series (2.43). The absolute and uniform
convergence of the derivatives with respect to |x| and |y| can be established
analogously with the help of estimates for the derivatives j ′

n and h
(1)′
n corresponding

to (2.38) and (2.39) which follow readily from (2.35). ��
Passing to the limit |x| → ∞ in (2.44) with the aid of (2.15) and (2.42), we arrive

at the Funk–Hecke formula

∫

S2
e−ikr x̂·ẑ Yn(ẑ) ds(ẑ) = 4π

in
jn(kr) Yn(x̂), x̂ ∈ S

2, r > 0,

for spherical harmonics Yn of order n. Obviously, this may be rewritten in the form

∫

S2
e−ik x·ẑ Yn(ẑ) ds(ẑ) = 4π

in
jn(k|x|) Yn

(
x

|x|
)

, x ∈ IR3. (2.45)

Proceeding as in the proof of the previous theorem, from (2.45) and Theorem 2.9
we can derive the Jacobi–Anger expansion
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eik x·d =
∞∑

n=0

in(2n + 1) jn(k|x|) Pn(cos θ), x ∈ IR3, (2.46)

where d is a unit vector, θ denotes the angle between x and d and the convergence
is uniform on compact subsets of IR3.

2.5 The Far Field Pattern

In this section we first establish the one-to-one correspondence between radiating
solutions to the Helmholtz equation and their far field patterns.

Lemma 2.12 (Rellich) Assume the bounded set D is the open complement of an
unbounded domain and let u ∈ C2(IR3 \ D̄) be a solution to the Helmholtz equation
satisfying

lim
r→∞

∫

|x|=r

|u(x)|2ds = 0. (2.47)

Then u = 0 in IR3 \ D̄.

Proof For sufficiently large |x|, by Theorem 2.8 we have a Fourier expansion

u(x) =
∞∑

n=0

n∑
m=−n

am
n (|x|) Ym

n (x̂)

with respect to spherical harmonics where x̂ = x/|x|. The coefficients are given by

am
n (r) =

∫

S2
u(rx̂)Ym

n (x̂) ds(x̂)

and satisfy Parseval’s equality

∫

|x|=r

|u(x)|2ds = r2
∞∑

n=0

n∑
m=−n

∣∣am
n (r)

∣∣2
.

Our assumption (2.47) implies that

lim
r→∞ r2

∣∣am
n (r)

∣∣2 = 0 (2.48)

for all n and m.
Since u ∈ C2(IR3 \ D̄), we can differentiate under the integral and integrate by

parts using Δu + k2u = 0 and the differential equation (2.17) to conclude that the
am
n are solutions to the spherical Bessel equation



38 2 The Helmholtz Equation

d2am
n

dr2
+ 2

r

dam
n

dr
+

(
k2 − n(n + 1)

r2

)
am
n = 0,

that is,

am
n (r) = αm

n h(1)
n (kr) + βm

n h(2)
n (kr)

where αm
n and βm

n are constants. Substituting this into (2.48) and using the
asymptotic behavior (2.42) of the spherical Hankel functions yields αm

n = βm
n = 0

for all n and m. Therefore, u = 0 outside a sufficiently large sphere and hence u = 0
in IR3 \ D̄ by analyticity (Theorem 2.2). ��

Rellich’s lemma ensures uniqueness for solutions to exterior boundary value
problems through the following theorem.

Theorem 2.13 Let D be as in Lemma 2.12, let ∂D be of class C2 with unit normal
ν directed into the exterior of D, and assume u ∈ C2(IR3 \ D̄) ∩ C(IR3 \ D) is a
radiating solution to the Helmholtz equation with wave number k > 0 which has a
normal derivative in the sense of uniform convergence and for which

Im
∫

∂D

u
∂ū

∂ν
ds ≥ 0.

Then u = 0 in IR3 \ D̄.

Proof From the identity (2.11) and the assumption of the theorem, we conclude that
(2.47) is satisfied. Hence, the theorem follows from Rellich’s Lemma 2.12. ��

Rellich’s lemma also establishes the one-to-one correspondence between radiat-
ing waves and their far field patterns.

Theorem 2.14 Let D be as in Lemma 2.12 and let u ∈ C2(IR3 \ D̄) be a
radiating solution to the Helmholtz equation for which the far field pattern vanishes
identically. Then u = 0 in IR3 \ D̄.

Proof Since from (2.13) we deduce

∫

|x|=r

|u(x)|2ds =
∫

S2
|u∞(x̂)|2ds + O

(
1

r

)
, r → ∞,

the assumption u∞ = 0 on S
2 implies that (2.47) is satisfied. Hence, the theorem

follows from Rellich’s Lemma 2.12. ��
Theorem 2.15 Let u be a radiating solution to the Helmholtz equation in the
exterior |x| > R > 0 of a sphere. Then u has an expansion with respect to spherical
wave functions of the form



2.5 The Far Field Pattern 39

u(x) =
∞∑

n=0

n∑
m=−n

am
n h(1)

n (k|x|) Ym
n

(
x

|x|
)

(2.49)

that converges absolutely and uniformly on compact subsets of |x| > R. Conversely,
if the series (2.49) converges in the mean square sense on the sphere |x| = R then
it also converges absolutely and uniformly on compact subsets of |x| > R and u

represents a radiating solution to the Helmholtz equation for |x| > R.

Proof For a radiating solution u to the Helmholtz equation, we insert the addition
theorem (2.43) into Green’s formula (2.9), applied to the boundary surface |y| = R̃

with R < R̃ < |x|, and integrate term by term to obtain the expansion (2.49).
Conversely, L2 convergence of the series (2.49) on the sphere |x| = R, implies

by Parseval’s equality that

∞∑
n=0

n∑
m=−n

∣∣∣h(1)
n (kR)

∣∣∣
2 ∣∣am

n

∣∣2
< ∞.

Using the Cauchy–Schwarz inequality, the asymptotic behavior (2.39) and the
addition theorem (2.30) for R < R1 ≤ |x| ≤ R2 and for N ∈ IN we can estimate

[
N∑

n=0

n∑
m=−n

∣∣∣∣h(1)
n (k|x|) am

n Ym
n

(
x

|x|
)∣∣∣∣

]2

≤
N∑

n=0

∣∣∣∣∣
h

(1)
n (k|x|)

h
(1)
n (kR)

∣∣∣∣∣
2 n∑

m=−n

∣∣∣∣Ym
n

(
x

|x|
)∣∣∣∣

2 N∑
n=0

n∑
m=−n

∣∣∣h(1)
n (kR)

∣∣∣
2 ∣∣am

n

∣∣2

≤ C

N∑
n=0

(2n + 1)

(
R

|x|
)2n

for some constant C depending on R, R1, and R2. From this we conclude absolute
and uniform convergence of the series (2.49) on compact subsets of |x| > R.
Similarly, it can be seen that the term by term first derivatives with respect to
|x| are absolutely and uniformly convergent on compact subsets of |x| > R.
To establish that u solves the Helmholtz equation and satisfies the Sommerfeld
radiation condition, we show that Green’s formula is valid for u. Using the addition
Theorem 2.11, the orthonormality of the Ym

n and the Wronskian (2.37), we indeed
find that
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∫

|y|=R̃

{
u(y)

∂Φ(x, y)

∂ν(y)
− ∂u

∂ν
(y)Φ(x, y)

}
ds(y)

= ikR̃2
∞∑

n=0

n∑
m=−n

am
n h(1)

n (k|x|) Ym
n

(
x

|x|
)

k W(h(1)
n (kR̃), jn(kR̃))

=
∞∑

n=0

n∑
m=−n

am
n h(1)

n (k|x|) Ym
n

(
x

|x|
)

= u(x)

for |x| > R̃ > R. From this it is now obvious that u represents a radiating solution
to the Helmholtz equation. ��

Let R be the radius of the smallest closed ball with center at the origin containing
the bounded domain D. Then, by the preceding theorem, each radiating solution
u ∈ C2(IR3 \ D̄) to the Helmholtz equation has an expansion with respect to
spherical wave functions of the form (2.49) that converges absolutely and uniformly
on compact subsets of |x| > R. Conversely, the expansion (2.49) is valid in all of
IR3 \ D̄ if the origin is contained in D and if u can be extended as a solution to the
Helmholtz equation in the exterior of the largest closed ball with center at the origin
contained in D̄.

Theorem 2.16 The far field pattern of the radiating solution to the Helmholtz
equation with the expansion (2.49) is given by the uniformly convergent series

u∞ = 1

k

∞∑
n=0

1

in+1

n∑
m=−n

am
n Ym

n . (2.50)

The coefficients in this expansion satisfy the growth condition

∞∑
n=0

(
2n

ker

)2n n∑
m=−n

∣∣am
n

∣∣2
< ∞ (2.51)

for all r > R.

Proof We cannot pass to the limit |x| → ∞ in (2.49) by using the asymptotic behav-
ior (2.42) because the latter does not hold uniformly in n. Since by Theorem 2.6 the
far field pattern u∞ is analytic, we have an expansion

u∞ =
∞∑

n=0

n∑
m=−n

bm
n Ym

n
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with coefficients

bm
n =

∫

S2
u∞(x̂) Ym

n (x̂) ds(x̂).

On the other hand, the coefficients am
n in the expansion (2.49) clearly are given by

am
n h(1)

n (kr) =
∫

S2
u(rx̂) Ym

n (x̂) ds(x̂).

Therefore, with the aid of (2.42) we find that

bm
n =

∫

S2
lim

r→∞ r e−ikru(rx̂) Ym
n (x̂) ds(x̂)

= lim
r→∞ r e−ikr

∫

S2
u(rx̂) Ym

n (x̂) ds(x̂) = am
n

k in+1 ,

and the expansion (2.50) is valid in the L2 sense.
Parseval’s equation for the expansion (2.49) reads

r2
∞∑

n=0

n∑
m=−n

∣∣am
n

∣∣2
∣∣∣h(1)

n (kr)

∣∣∣
2 =

∫

|x|=r

|u(x)|2ds(x).

From this, using the asymptotic behavior (2.40) of the Hankel functions for
large order n, the condition (2.51) follows. In particular, by the Cauchy–Schwarz
inequality, we can now conclude that (2.50) is uniformly valid on S

2. ��
Theorem 2.17 Let the Fourier coefficients bm

n of u∞ ∈ L2(S2) with respect to the
spherical harmonics satisfy the growth condition

∞∑
n=0

(
2n

keR

)2n n∑
m=−n

∣∣bm
n

∣∣2
< ∞ (2.52)

with some R > 0. Then

u(x) = k

∞∑
n=0

in+1
n∑

m=−n

bm
n h(1)

n (k|x|) Ym
n

(
x

|x|
)

, |x| > R, (2.53)

is a radiating solution of the Helmholtz equation with far field pattern u∞.

Proof By the asymptotic behavior (2.40), the assumption (2.52) implies that the
series (2.53) converges in the mean square sense on the sphere |x| = R. Hence, by
Theorem 2.15, u is a radiating solution to the Helmholtz equation. The fact that the
far field pattern coincides with the given function u∞ follows from Theorem 2.16.

��
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The last two theorems indicate that the equation

Au = u∞ (2.54)

with the linear operator A mapping a radiating solution u to the Helmholtz equation
onto its far field u∞ is ill-posed. Following Hadamard [165], a problem is called
properly posed or well-posed if a solution exists, if the solution is unique and if
the solution continuously depends on the data. Otherwise, the problem is called
improperly posed or ill-posed. Here, for Eq. (2.54), by Theorem 2.14 we have
uniqueness of the solution. However, since by Theorem 2.16 the existence of a
solution requires the growth condition (2.51) to be satisfied, for a given function
u∞ in L2(S2) a solution of Eq. (2.54) will, in general, not exist. Furthermore, if a
solution u does exist it will not continuously depend on u∞ in any reasonable norm.
This is illustrated by the fact that for the radiating solutions

un(x) = 1

n
h(1)

n (k|x|) Yn

(
x

|x|
)

,

where Yn is a normalized spherical harmonic of degree n the far field patterns are
given by

un,∞ = 1

kin+1n
Yn.

Hence, we have convergence un,∞ → 0, n → ∞, in the L2 norm on S
2 whereas,

as a consequence of the asymptotic behavior (2.40) of the Hankel functions for large
order n, the un will not converge in any suitable norm. Later in this book we will
study the ill-posedness of the reconstruction of a radiating solution of the Helmholtz
equation from its far field pattern more closely. In particular, we will describe stable
methods for approximately solving improperly posed problems such as this one.
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