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1 Introduction

Sleep disorders are affecting a significant percentage of adult population, where
insomnia, sleep apnea, and somnolence [18] are being the most prevalent. The
lack of sleep has been associated with irritability and a negative mood, lack of
energy and problems with memory and retaining information, and even weight
gain and health issues. It has been recently shown that lack of sleep, besides
resulting in lowered cognitive and physical performance is even linked to diabetes
and cardiovascular diseases [16]. In addition, many chronic conditions such as
diabetes, sleep apnea, and cardiovascular diseases actually result in an increased
risk of an attack during sleep. Therefore new methods for detecting, monitoring,
and managing sleep disorders are of essential importance today.

Physiological changes during sleep and sleep disorders have been extensively
studied via polysomnography methods. Such methods involve collecting signals like
the electroencephalography (EEG) for observing brain activity, electrocardiography
(ECG) for heart rhythm, electronystagmography (ENG), electrooculography (EOG)
for eye movement, and electromyography (EMG) for muscle activity or skeletal
muscle activation. However, these methods are costly and require hospitalization of
the patient for the duration of the procedure. Thus, increased research efforts are
oriented towards a non-invasive monitoring of human physiological parameters as
well as activity parameters. A wide range of wearable sensors are being developed
for real-time non-invasive health monitoring, which opens up possibilities to
follow sleep patterns and analyze the dependence between sleep and measured
physiological variables.
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Physiological variables of healthy individuals are controlled optimally during
wakefulness to respond to the body’s functioning. The body temperature, blood
pressure, and levels of oxygen, carbon dioxide, and glucose in the blood remain
quite constant and optimally regulated during wakefulness. During sleep, however,
physiological demands are reduced and, for example, temperature and blood
pressure drop. In general, many of the physiological functions such as brain wave
activity, breathing, and heart rate are quite variable when a person is awake or during
rapid eye movement (REM) sleep, but are extremely regular when a person is in
non-rapid eye movement (NREM) sleep.

In this paper, we propose a method for monitoring sleep by use of physiological
signals collected solely from a bracelet-like and sensor-equipped wristband which
is comfortable, discreet, and non-invasive and therefore perfectly suitable for ambu-
latory settings. We collect physiological signals that correspond to electrodermal
activity, heart rate variability, body temperature, and body movements. Our goal
is to propose a system that objectively measures and estimates the periods of
sleep and wakefulness, respectively, and we aim to achieve that by a machine
learning classifier which classifies based on physiological signals solely. However,
for training the classifier, we needed a labeled training set. For this purpose, we
developed a mobile application that provides an intuitive user interface through
which a user can register his/her sleep and wake hours while wearing the sensor-
equipped wristband. The data provided by the user in this way are used to construct
a training dataset which is further used to train a support vector machine based
classifier. We show that by optimizing parameters of the classifier, we are able to
correctly classify sleep and wakefulness in up to 93% of the cases. We present
two applications, one implemented as a part of the mobile application and another
on a cloud back-end application. We show that both types of classifiers ultimately
achieve similar performance.

This paper is organized as follows: in Sect. 2 we discuss the related works, in
Sect. 3 we present the problem formulation and our contributions, in Sect. 4 we
present our data collection process, tools, and methods, the wearable sensor and
the type of signals that we are able to collect with it, and the architecture of our
system. We also explain our machine learning methods and classification results in
this section. In Sect. 5 we present our mobile application and the user interface and
we conclude in Sect. 6.

2 Related Work

Recent works related to ambulatory monitoring of sleep regularity focus on the type
of sensors and sensing signals that can be obtained and the type of data analysis and
the knowledge that can be extracted from the collected data. Furthermore, various
studies focus on different types of sleep disorders among which the most frequent
are insomnia or lack of sleep, somnolence or sleepiness, and sleep apnea [18].
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In order to properly diagnose various sleep disorders, data regarding physiologi-
cal signals are collected in hospitals via controlled laboratory experiments and this
method is known as polysomnography (PSG). The polysomnography is the “gold
standard” for sleep assessment [4], is very expensive, and can be intrusive to sleep
itself, making the search for alternatives essential to the field. Study participants
come to a sleep laboratory where multiple channels of data are collected. PSG
provides general sleep measures, such as total sleep time (TST =sleep duration)
and sleep efficiency (SE=TST/time in bed), light sleep (nREM1 + nREM?2), and
deep sleep (SWS+REM). The phases nREM1 and nREM2 are known as non-
rapid eye movement and are providing measures of specific sleep stages referred
to as light sleep, while REM, known as rapid eye movement together with SWS,
known as slow-wave sleep, is often referred to as deep sleep. Polysomnography
recordings include electroencephalography (EEG), electrooculogram (EOG), and
electromyogram (EMG) of patient data among other signals [1].

In the last couple of years, the method known as actigraphy appeared together
with the democratization and increasing usage of the non-invasive devices in
many fields including health domain. With real-time information from the patient,
collected in natural environment, this rich source of information allows users to
change their lifestyle, predict and prevent hazardous events, optimize physical
activities and sleep patterns [9].

Actigraphy is a non-invasive method, which can be used to infer sleep/wake
patterns based on periods of activity versus inactivity, by analyzing raw data
through specific algorithms [3]. The detection of movement is calculated by the
accelerometer of the bracelet or by combining the accelerometer on the wrist
with the accelerometer in a mobile phone. Actigraphy, in the domain of sleep
medicine, has been a research method for studying a person’s sleep-wake cycle,
as demonstrated by the recent studies [11, 15].

There are three main actigraphy approaches [1] for inferring sleep quality: (1)
objective approach based on measure metrics such as total sleep time (TST) and
sleep efficiency (SE), (2) subjective approach based on self-reports via surveys and
diaries, and (3) machine learning based, the approach that often combines the two
previous methods, whose goal is to improve the objectivity and reliability of the
observations from data collection via machine learning algorithms.

Sensor-equipped devices are being increasingly used to monitor patients with
various chronic diseases, such as cardiovascular and neurological. Different sensors
are combined and incorporated into wrist-wearable devices to be used in a plethora
of applications providing feedback to users and also to health professionals.
Currently, we observe a trend towards strengthening the customization or personal-
ization of feedback to the users. In the domain of personalized health-care services
[13] the evolution of sensor-equipped smartphones offers tremendous opportunities
for monitoring. A variety of dedicated mobile applications offer new opportunities
in psychological research [6] and many other areas. QuantifyMe platform [17] is one
of the recent attempts that are starting to emerge in the quantified-self field. The goal
is to allow to the non-experts to try to conduct self-experiments by use of appropriate
methodology, in an automated way, using their smartphones. This technology is
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supposed to allow the users to find their personal optimal behavioral variables
(e.g., bed time or physical activity) or to achieve their goals (e.g., productivity or
happiness) based on evidence-based experimentation.

In a recent study [10] the authors outline platform aimed at processing physio-
logical data from several wearable sensors and devices, namely Microsoft Band 2,
Empatica E4, eHealth Sensor Platform, and BITalino (http://bitalino.com/). In this
study critical comparison of the quality of HR and GSR signals is given. Most of the
devices used in this study are wristbands, which are low-cost and accessible, thus
creating opportunity for real life applications.

Several recent studies have compared the two most prominent approaches:
polysomnography and actigraphy. In [15] the authors compared results for sleep
monitoring obtained using PSG and the results from commercially available devices
such as Fitbit Flex and Actiwatch among others. Different aspects were compared
in this study: (1) regarding sleep efficiency (SE), it was shown that the device
had low correlation with PSG, (2) regarding total sleep (TST), for all devices, a
strong correlation with the PSG method was shown, (3) regarding light sleep time:
significant difference with respect to PSG was reported, and (4) regarding deep sleep
time measurements, the results were correlated with the PSG measurement. This
study reveals strengths and limitations between actigraphy and PSG.

In [11] the authors evaluate the applicability of data obtained from a wearable
activity tracker, Fitbit Charge HR, to medical research. This study was performed
by comparing the wearable activity tracker, Fitbit Charge HR, with an actigraphy
device, Actiwatch 2 (Royal Philips), for sleep evaluation and circadian rest-activity
rhythm measurement. The findings of this study showed that the Fitbit Charge HR
is a valid, reliable, and alternative device for use for sleep evaluations and circadian
rest-activity thythm measurements compared with actigraphy in healthy young
adults. However, the sensitivity of the Fitbit Charge HR for accurately identifying
activity was lower than actigraphy.

In [16] the link between electrodermal activity, skin temperature, and sleep was
explored. They presented various feature sets for sleep/wake identification using
electroencephalography (EEG) and actigraphy, while [7] elaborates more in detail
about the EDA signal (phasic and tonic) patterns during sleep, and incorporates this
information into a relatively simple method for identifying sleep and wake epochs
using EDA data only. The results of this study indicate that electrodermal activity
is not only a robust parameter for describing sleep, but also a potentially suitable
method for ambulatory sleep monitoring. Automatic sleep classification based on
support vector machine method and using EEG signal was presented in [2].

The heart rate signal for sleep monitoring was explored in [11] and [1], the
reported results are encouraging but require complementarity with other signals. In
[12] electrocardiogram (ECG) and heart rate variability (HRV) signals were used to
classify sleep in infants and the correct classification reported was between 85% and
87%. In [5] different algorithms are used to predict sleep quality, using the heart rate
and temperature signals. Our work differs compared to these works in the sense that
it uses more comprehensive set of different physiological signals and their derived
features.
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The user interface and its different aspects and their impact on user together with
practical considerations for designing have been discussed in [14].

3 Problem Formulation

Sleep regularity and disorders have usually been monitored and analyzed using
polysomnography methods. Polysomnography is a comprehensive recording of the
biophysiological changes that occur during sleep. A polysomnogram will typically
record a minimum of 12 channels requiring a minimum of 22 wire attachments
to the patient.! It is obvious that such procedures must be performed by a trained
medical expert and require hospitalization of the patient.

Our objective in this work is to study and show to what extent it is possible
to accurately detect the regularity of the sleep patterns in ambulatory conditions.
For this purpose we use a wearable device that is equipped with multiple sensors
and is usually worn on the wrist. The device is comfortable, easy to use, and poses
absolutely no harm or risk to the user. Our contributions are the following:

— To the best of our knowledge we are the first to use at the same time, combined
electrodermal activity (EDA), heart rate variability (HRV), accelerometer data,
and blood volume pulse (BVP) together with body temperature in order to
classify sleep and wakefulness. Previous works for sleep classification have
concentrated on one or the combination of some of the aforementioned signals.

— We provide a study about various features and their relevance to the sleep
classification problem.

— We have developed and presented a mobile application that is connected with
the sensor-equipped bracelet to collect the physiological signals, provide data
visualization and information about the regularity and duration of sleep patterns.

— We have proposed a support vector machine (SVM) based model to classify sleep
and wakefulness, tested several kernels, and optimized the parameters such that
the classification F1 score is up to 93%.

4 Methodology

Several wrist-wearable monitoring devices have recently appeared on the market
among which the most prominent are Fitbit, Apple, Xiaomi, Garmin, and Fossil.
However, the most comprehensive acquisition and access to raw data is currently

Thttps://en.wikipedia.org/wiki/Polysomnography.
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provided by Empatica E4 sensor? and thus we decided to use it for the purpose of
this study.

4.1 Wearable Sensor and Architecture

The Empatica E4 bracelet, the device that has been used for this project, offers
the acquisition in real time of physiological data and provides full access to data
for research purposes. The Empatica company has made available the Empatica
Connect platform,® which allows to visualize the graphs corresponding to different
signals. The bracelet works in two modes: (a) recording mode: the wristband records
the data in the internal memory, and it can record up to 60h. (b) Streaming mode:
the bracelet connects via Bluetooth to the application.

The Empatica E4 bracelet is equipped with the following physiological sen-
sors:

— EDA Sensor (or GSR Sensor): measures the fluctuating changes of certain
electrical properties of the skin. It is measured in microsiemens.

— Infrared Thermopile: measures the temperature of the skin and gives the data
measured in Celsius degrees.

— 3-axis Accelerometer: measures motion based activity, contains the data of the
3-axis (x, y, and z) accelerometer sensor. It measures continuous gravitational
force (g) applied to each of the three spacial dimensions (x, y, and z). The scale
is limited to =2g (by default) and can be extended to =8g with custom firmware.
The accelerometer in our application is configured to measure acceleration in the
range [—2g, 2g]. The unit is expressed in g which is 9.81 m/s.

— PPG Sensor (Photoplethysmography Sensor): measures the blood volume pulse
(BVP) from which two signals can be derived: (1) heart rate (HR) and the
interbeat interval (IBI). The blood volume pulse is measured in nanoWatts, heart
rate variability HRV is measured in beats per minute (bpm), and interbeat interval
is measured in time between two consecutive beats.

The architecture of our system is represented in Fig. 1. Figure 1 represents our
system architecture. It consists of three main parts: (Subsystem 1) Machine Learning
(top part, green-dotted rectangle) which aims at building the best performant model
by iterating the different steps of the pipeline which are prepare data, extract
features, evaluate and tune model, and finally build the best performant one. The
final pipeline step consists of deploying the model on the repository S3 on AWS
Cloud after being serialized. (Subsystem 2) Android mobile application (left part,
black-dotted rectangle) whose aim is to interact with the Cloud Backend and make
a Bluetooth connection with Empatica E4 wristband, gather values received from

Zhttps://www.empatica.com/en-eu/research/e4.
3https://www.empatica.com/connect.
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Fig. 1 Mobile application architecture

all the sensors embedded in it and sending them to the Backend. It also fetches
the results from the Backend and visualizes them in a graphical and statistical way.
(Subsystem 3) Backend and Cloud (right part, brown-dotted rectangle) composed by
the three Cloud model PaaS (Platform as a Service) (S3 Bucket repository where we
store some data and code), DBaaS (Database as a Service) (DynamoDB databases),
and FaaS (Function as a Service) (Lambda Function where different Python scripts
are triggered to execute many tasks like the prediction algorithm). The objective is
to gather raw data received by the mobile application and sample them with a 600-
s window. The prediction process is automated and launched after each recorded
patient session and the results are stored in the dataset.

4.2 Data Collection

In order to collect data, each participating subject wore the Empatica E4 wristband
for several days and for several long uninterrupted periods during day and night.
Three subjects, two men and one woman, participated in this study. Each day they
recorded the exact time of falling asleep and was recorded waking up. On some
occasions, when they woke at night, such as going to the bathroom or drinking water,
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such periods were recorded as a wakeness hours. The subjects wore the bracelet a
few hours before going to bed and a few hours after waking up, which favors a
balanced dataset.

Empatica E4 provides six different measures: accelerometer data (ACC), blood
volume pulse (BVP), electrodermal activity (EDA), heart rate (HR) (which is)
automatically derived from BVP, interbeat interval (IBI) also calculated from BVP,
and temperature (TEMP). These measures however do not have the same frequency,
some are sampled at 1Hz frequency like, for example, the heart rate (HR) and
some like the blood volume pulse (BVP) at 64 Hz. For this study, we decided to
downsample the signals at the same frequency of 1 Hz. Using the collected data,
we created a training set containing all the features labeled by each participant. The
labeling is manually done using the mobile application, with the two values 0 and 1,
respectively, corresponding to “sleep” and “awake,” respectively. We have 21 days
of data collected, and the global dataset contains recordings of 1,058,374 s in total.

We collected data from three subjects as three is the maximum participants’
number that we can use to implement and test an experimental model. In the future
we aim to make this application openly accessible for use by multiple subjects with
the consent from ethics committee.

4.3 Features Extraction

In order to better characterize the data collection, we summarized several statistics
from the collected set of signals. We focus on measures such as the average values
and the standard deviation in order to find out which are good features candidate for
the classification algorithm. In the discussion below we summarized the measures
related to a session whose total time is 15h, 42min and 16s. The sleep and
wakefulness period duration was 5h and 18 min and 10 h and 22 min.

We have looked more in detail to discover how each signal is affected during
sleep and wakefulness. In Fig. 2 we have represented the EDA signal for the three
subjects during periods of sleep and wakefulness. Here we observe a significant
drop when the sleep period starts and significantly increases when the wakefulness
period starts. This observation is consistent with the EDA analysis in [8]. We

ey ] e s —————— e | g e ———————

Fig. 2 Sleep and wakefulness EDA for the three subjects
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Fig. 5 Sleep and wakefulness IBI for the three subjects

observe differences between subjects, though. The drop in EDA amplitude at sleep
period is more pronounced for subject 1 and the increase in EDA amplitude is more
pronounced for subjects 2 and 3.

In Figs. 3, 4, and 5 we show the heart rate variability (HRV), the blood volume
pulse (BVP), and the interbeat interval (IBI). As we mentioned previously, BVP is
the directly measured from the PPG sensor and HRV and IBI are derived from BVP.
As for the BVP signal from Fig.4, we observe that the variance is significantly
higher during wake periods than during sleep. This observation is consistent for the
three subjects. Thus, the standard BVP deviation appears to be a good significant
difference between sleep and wakefulness periods. Regarding HRV signal from
Fig. 3, we notice that both the variance and the average values increase during
wakefulness periods (compared to sleep), and this is also consistent for the three
subjects. This is in line with the observations in [12] where the ECG signal is
measured to derive the HRV for sleep and wakefulness classification and the average
of HRV is considered as a feature for classification. As for the IBI signal, Fig. 5,
we observe that its amplitude increases during sleep periods as the breathing slows
down. This is consistent for the three subjects, as we notice that during the period of
sleep the signal amplitude of the signal that represents the time between two beats
gets longer. We see however that this feature does not improve the classification
accuracy and shows that it can be omitted for the final classification without
disturbing the performance. We discuss these details in Sect. 4.4.
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Fig. 6 Standard deviation and average

A summary about the values of average and standard deviation measured for
the same period of EDA, HRV, and BVP together with the measurements from the
accelerometer (ACC) and body temperature (TEMP) is illustrated in Fig. 6.

The following conclusions can be drawn regarding the different values of the
mean and standard deviations for the observed signals:

For the HRV signal, when comparing the differences between sleep and wake-
fulness periods, the difference between the two average values is greater than the
difference between standard deviations. Although the difference is not that high,
we tend to choose the HRV mean as a feature. For the ACC signal, the difference
between the two mean values is greater than that of the standard deviation; thus, we
tend to choose the mean of ACC as a feature. For the EDA signal the difference
in mean values between sleep and wakefulness is larger than that of the standard
deviation; thus, we tend to choose the EDA mean as a feature. For the BVP signal
the difference between the standard deviations between sleep and wakefulness is
larger than that of the mean; thus, we tend to choose the BVP standard deviation as
a feature.

We further built our model and tested the performance for separate features,
doing optimization (tuning) and cross-validation for the training set. Some signals
have shown a tendency to deteriorate the performance of the model, and that is why
we did not choose them in the final model, TEMP and IBI. Finally we extracted the
following features: average values for the heart rate (HR), the electrodermal activity
(EDA), the accelerometer (ACC), and the standard deviation for the BVP signal.

4.4 Experimental Results

Our objective is to classify the collected physiological data into two classes, namely
sleep and wakefulness, and for this purpose we have decided to use support vector
machine (SVM) algorithms. SVM method has been already successfully used for
classifying physiological data in other settings such as for classifying sleep and
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wake using ECG signal [12]. The SVM success is mainly due to the classifier’s
ability to create an optimal, highly complex decision boundary for the training data.
SVMs use kernel functions to map the input space to a higher dimensional feature
space. Optimization techniques are then applied to find the separating hyperplane
that maximizes the margin between two classes in the feature space. This creates an
arbitrarily complex decision boundary ideal for non-linearly separable data. We have
thus explored both linearly and non-linearly separable approaches to investigate
which one is the best for separating into the two classes sleep and wake.

Out of all the collected data, we created a training and a testing set by selecting
1764 records for the training set and 441 records for the testing set. The sleep and
wakefulness periods were registered manually via mobile application dataset and
serve as labels for the training set. Those labels were removed from the testing set.
The features such as the mean values and standard deviation were calculated for a
period of 1s.

Next we tested combinations of selected features and performed fine-tuning
of the SVM parameters to optimize its performance. We used scikit library to
achieve tuning of the hyper-parameters of the classifiers. The library GridSearchCV
exhaustively generates candidates from a grid of parameter values: when “fitting” it
on a dataset all the possible combinations of parameter values are evaluated and the
best combination is retained. Thus, using GridSearchCV we optimized the following
parameters:

— Estimator object: in our case we estimated the best choice for the SVM kernel by
testing the three options “linear,” “rbf,” and “sigmoid.”

— Cross-validation parameter cv determines the cross-validation splitting strategy
and the number of folds in stratified k-fold.

— c¢: penalty parameter used for the error term. Common to all SVM kernels, this
parameter trades off misclassification of training examples against simplicity of
the decision surface. A low ¢ makes the decision surface smooth, while a high ¢
aims at classifying all training examples correctly.

— gamma: kernel coefficient for “rbf” and “sigmoid.” Gamma defines how much
influence a single training example has. The larger gamma is, the closer other
examples must be to be affected.

In our case the best value for cv of ten was estimated; thus, a linear, radial
basis function (RBF) kernel and sigmoid kernels are used, and the optimal model
parameters are determined using tenfold cross-validation of the training set.

We further tested and evaluated each signal with its mean and standard deviation
to estimate their contribution value when used as inputs for the classification. We
have observed that blood volume pulse, heart rate variability, and accelerometer data
give fairly good classification results even when used as single feature. We decided
to use F1 score to evaluate the classification methods, as F1 is usually more useful
than accuracy in cases when there is an uneven class distribution, such as ours is.
For example, we observe that the standard deviation of BVP, std(BV P) with linear
kernel gives F1 score of 0.82, the mean of accelerometer data mean(ACC) with
sigmoid kernel results in 0.93 F1 score, and the mean(H RV') results in 0.84 when
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Table 1 Classification results: F1 score

Kernel Sigmoid Linear rbf

std(BVP) 0.81 0.82 0.82
mean(ACC) 0.93 0.92 0.87
std(HRV) 0.82 0.82 0.82
mean(IBI) 0.89 0.89 0.89
mean(EDA), mean(ACC) 0.68 0.92 0.91
mean(EDA), mean(ACC), std(BVP) 0.83 0.93 0.86
mean(EDA), mean(ACC), std(BVP), mean(HRV) 0.90 0.92 0.89

used with sigmoid and rbf kernels. We then combined pairs of these features and fed
them as inputs to the classifier for each kernel type. The best result was obtained by
combining mean(ACC) and std(BV P) with linear kernel, which resulted in 0.92
F1 score.

Finally we combined and tested sets of three and four features. The best results
with three features were obtained with mean(E DA), mean(ACC), and std(BV P)
with linear kernel and that result is 0.92 F1 score. With four features, we have
obtained 0.93 F1 score and the best results were obtained with mean(HRYV),
mean(EDA), mean(ACC), and std(BV P) with the “linear” kernel. As the HRV
signal cannot be obtained directly via the mobile application the final combination
of features that includes mean(HRV) can only be used through the cloud back-end
application. Therefore when only mobile application is available for the purpose of
training the classificator we can use mean(EDA), mean(ACC), and std(BV P)
without much deterioration in performance. For the cloud back-end application,
in addition to these three we use mean(H RV). These results are summarized in
Table 1. In both cases, with three and four features, it is obvious that the best results
are obtained using the linear kernel. This result holds for the two classifications that
are with and without the HRV.

S Mobile Application

Our mobile application communicates directly and collects the data from the
Empatica E4 device and provides real-time information to the user about the
regularity of his sleep pattern via an intuitive user interface. This application,
developed for Android, allows connection via Bluetooth with the Empatica E4
bracelet. Using the application we are able to collect real-time data from the various
sensors embedded in the bracelet E4, and these data are subsequently sent to the
Amazon Web Services server where a database is stored, in order to make a machine
learning processing at the server side. The application displays the EDA, BVP,
and HRV signals for the user in the three different tabs of Fig. 7. This feature
allows the user to observe the graphical representation of his vital signals and at
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Fig. 7 User interface with a representation of the sleep pattern

the same time to make sure that the application works and that the signal values
are successfully retrieved in real time. In order to save the battery and improve
the application performance, a switch button “start/stop graph” is provided to start
or stop the graphical representation in the background, when the display is not
essentially needed. This allows to save the battery in critical periods. The results
regarding the sleep patterns are displayed in a clock-like pie chart that represents the
entire 24-h day data collection, Fig. 7. Using a spinner button, the user can select a
date to view the results. The results are projected on two clock-like pie charts, the
first in light green color is for sleep, and the second in pink color is for wakefulness.
The periods that were not recorded and labeled are not visible.

In addition, the user has the possibility to manage application modes through
other controls: (1) track sleep allows to start or stop sleep monitoring and control
the data sending to the AWS server, (2) streaming: the “streaming” button allows to
turn off the bracelet and stops the Bluetooth connection via the application. It also
allows to reset the Empatica SDK to be ready to create a new Bluetooth connection.
(3) start/stop graph: starts or stops the graphs display in the EDA, BVP, and HRV
tabs, which saves battery and smartphone resources.
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6 Conclusions and Future Work

In this work we present a system that integrates a wearable sensor-equipped bracelet,
a mobile application, and a cloud-based back-end application that allows non-
invasive monitoring of sleep patterns. We further analyzed a set of physiological
signals and their features to explore which features among them indicate significant
differences between sleep and wakefulness. Our study is fairly comprehensive
with regard to the variety of physiological signals that we collect in ambulatory
settings without disturbing the patient. In our analysis various signals such as
electrodermal activity, heart rate variability, blood volume pulse, and patients’
movements registered via an accelerometer are taken into consideration. We show
that by carefully estimating a rich set of parameters for support vector machine
based classification algorithm we can achieve up to 93% of correct classification
when classifying sleep and wake periods for the analyzed subjects. Our study shows
that such a system can be of great use for medical health practitioners who are
interested to follow sleep patterns and regularity for patients whose condition is at
risk either during sleep or due to lack of sleep.

In the future we aim to investigate more in details the different types and phases
of sleep such as nREM1, nREM2, slow-wave, and rapid eye movement, REM.
For this purpose, we plan to compare a completely non-invasive methods such as
the method proposed here, with hospital grade quality sleep evaluation methods.
Integrating user feedback about the mobile application is also planned as a part of
our future work.
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