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1 Introduction

Owing to the huge evolution in the sensor and microprocessor technologies, as
well as in 3D (Three-Dimensional) printing, the development of prosthesis has
undergone a great transformation. Particularly for the hand, the myoelectric solution
is still the choice of the majority of amputees, although limited by the prohibitive
price of bionic hands. Differences are in the versatility of each solution, because in
the myoelectric case the hand is opened and closed being able to grasp objects. In
opposition, bionic hands are capable of executing individual motions of the fingers,
subsequently having a higher functionality approaching the human hand. There
is a plethora of commercial hands with a wide range of costs; two of them are
shown in Fig. 1. Its cost greatly varies from 5 to 50 k euros, for Open Bionics and
Michelangelo hands.

The aim of this work is to study the effectiveness of low-cost sensors for
the replacement of EMG (ElectroMyography) sensors commonly used for upper-
limb prosthesis. Any movement/gesture executed by a human hand is triggered
by command signals sent by the brain, and it implies the ability of nervous cells
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Fig. 1 Examples of commercial hands. Open Bionics (a) and Michelangelo (b)

to transmit electrical signals. In the typical approach, EMG sensors acquire these
myoelectric signals through electrodes placed in appropriate locations, taking into
consideration the muscles involved in each movement.

Surface-mounted electrodes are preferably used in case muscles provide signals
with enough intensity to be detected. These electrodes, placed on the skin surface,
capture the aggregated activity within the area of detection. Three electrodes are
used with their locations being chosen depending on the muscles activated in a
certain gesture. One of the electrodes is the ground electrode, typically placed in a
bone region (electrical neutral) and the other two are active electrodes that collect a
signal whose amplitude is proportional to the electrical activity differential between
them, and also to the electrode area.

In spite of the typical approach of using EMG signals, there are some drawbacks
that have led to the attempts of extracting other type of information, namely to
predict muscle forces from EMG signals using the wavelet transform [1]. One of
those drawbacks is the often degradation of EMG signals due to electromagnetic
interference which implies a large processing time for features extraction [2].

In contrast, the mechanical change of the muscles can be measured by a method
with sensitivity to the position/motion of a small area in surface of the muscle, and
is typically known as MMG (MechanoMyography). The possibility of acquiring
a mechanical deformation map seems potentially interesting as the shape of the
muscles changes when different sets of fingers are moved. It has already been
implemented using FSR (Force Sensitive Resistor) [2]. Also the application of load
cells is described in literature [3].

Another obvious choice to detect mechanical changes is light instrumentation.
Amongst the vast offer in these types of sensors, affordable options are available
that integrate, in a single package, a light source and detector that could be easily
linked to a biosignals acquisition hardware platform.
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In this paper we describe and present the results of the application of two MMG
sensors and their comparison with EMG signals. Those MMG sensors, an FSR
and an IR (InfraRed) reflectance sensor, have shown successful results in gesture
recognition and a high SNR (Signal-to-Noise Ratio) in spite of a lower ability to
detect different gestures.

2 Materials and Methods

2.1 Sensors

As already mentioned, the reference signal in the scope of this work is the EMG
signal. A BITalino EMG sensor was used, which is capable of measuring signals
with maximum amplitude of ±1.65 mV and frequencies in the range of 10–400 Hz.
A summary of the main specifications can be found in Table 1.

One option for obtaining MMG signal is to use a force sensor in order to react to
changes in the muscle volumes, for which an FSR 400 sensor (Interlink Electronics,
USA) was selected. It is capable of sensing forces from 0.1 to 10 N (Newton) and
it has a circular form factor with 7.62 mm in diameter. A summary of the main
specifications can be found in Table 1. The force sensitivity is dependent on the
electronic circuit used to achieve the force-to-voltage conversion, which can be
realized using a voltage divider followed by an op-amp.

Finally, a third sensor was used in this study to extract features related with the
variations in light reflected at the skin surface, as a result of the changes in muscle
volume due to the contraction. For the acquisition of this data, a QTR-1A reflectance
sensor (Pololu Corporation, USA) was used. It includes an IR LED (InfraRed Light
Emitting Diode) and a phototransistor, and the output varies proportionally to the
amount of light reflected on a surface. As the light intensity increases (i.e., greater
reflection occurs), the lower is the output voltage. It is able to measure a maximum
distance of 6 mm, with an optimal sensing distance of 3 mm.

Table 1 Main specifications
of each sensor

EMG module specifications
Gain 1000
Range ±1.65 mV
Bandwidth 10–400 Hz

FSR 400 specifications
Force sensitivity range 0.1–10.0 N
Force repeatability ±2%
Number of actuations (life time) Ten million

QTR-1A reflectance sensor specifications
Optimal sensing distance 3 mm
Maximum sensing distance 6 mm
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2.2 Data Acquisition

For this study each sensor was placed individually and acquisitions were carried out
using similar timing parameters. The sampling data from four healthy subjects (two
men, two women) is summarized in Table 2, from which it is possible to observe
that, in each acquisition, the same gesture is made three times. Each gesture lasts for
approximately 3 s with similar rest time between them. It is also important to explain
that for FSR and IR sensors the acquisition of data from other gestures besides open
and close would require the design of a new holder for its fixation and placement
that can adapt two or more sensor units.

The acquisition of the signals from each sensor is performed through the
hardware platform BITalino Plugged1; its OpenSignals software enables real-time
data acquisition and recording in a CSV (Comma-Separated Values) format. These
data is subsequently used in Matlab2 (MathWorks, Inc.) for data processing and
analysis.

An extremely important issue for the acquisition of signals from any of these
three sensors, with a fair signal-to-noise ratio and appropriate sensitivity, is a correct
placement of the sensors. Photos of the placement of each of the three sensors are
shown in Fig. 2.

From preliminary signal acquisition different strategies were implemented for
each sensor, taking into account their sensing parameters. EMG signals were
acquired using three pre-gelled electrodes, whose correct placements were chosen
taking into consideration the data available in literature [4].

In the case of FSR signals, initially two different positions were tested for open
and close gestures, but no features could be extracted. Because of its operation, the
IR (reflectance) sensor has different requirements for its placement. It was found
that the placement in the two different positions shown in Fig. 2 is suitable to detect
open and close gestures.

Table 2 Summary of
sampling data

Sensor Gesture #Acquisitions #Muscle activations

EMG Open 18 54
Close 24 72
Point 13 39

FSR Open 18 42
Close 32 96

IR Open 16 48
Close 20 60

1http://bitalino.com/datasheets/BITalino_Plugged_Datasheet.pdf.
2https://www.mathworks.com/products/matlab.html.

http://bitalino.com/datasheets/BITalino_Plugged_Datasheet.pdf
https://www.mathworks.com/products/matlab.html
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Fig. 2 Photos of the sensors placement. Three EMG pre-gelled electrodes (a), FSR sensor with
velcro strap for fixation (b), and IR sensor mounted inside a 3D printed fixation support and velcro
strap for fixation (c)

2.3 Data Processing

For FSR and IR sensors, raw data was used in spite of a variable baseline that
eventually could be corrected through the use of the derivative of these signals. The
EMG sensor is used in a bipolar differential front-end for a higher signal-to-noise
ratio. Firstly a bandpass filter was applied to raw data with a frequency range of
20–500 Hz [5]. It is important to cancel the powerline noise, so a band-reject filter
is used for the 50–60 Hz range. Figure 3 shows an example of raw data for each
sensor.

The visualization of the signals acquired from each sensor was important in
an initial stage but a more objective comparison between those signals should be
attempted. Signal-to noise ratio (SNR) is a quite well-established parameter; hence,
it was calculated through the ratio of peak-to-peak values of signals from muscle
activation periods and of noise from rest period.

Table 3 shows the SNR values in dB for each of the three sensors and each of
the gestures [6]. As it was predictable from the signals shown in Fig. 3, FSR and IR
signals have a higher SNR than EMG signals.

2.4 Onset/Offset Detection

A crucial step for success in gestures identification is the onset/offset detection.
The correct feature extraction from the signal requires a high precision in the
determination of the time interval in which the muscle is active. Several methods
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Fig. 3 Example of raw data of each sensor in case of a gesture of close. EMG (a), FSR (b), and
IR sensor (c)

Table 3 Summary of SNR
analysis

Sensor Gesture SNR (dB)

EMG Open 4.5
Close 2.1
Point 2.2

FSR Open 10.0
Close 9.6

IR Open 9.1
Close 14.0

are available in literature [7–9], using different definitions of thresholds to find
the beginning and end of a muscle activation, considering a single threshold of
signal amplitude based on a deviation from the baseline of three times the standard
deviation [7], or using a double threshold [8, 9]. Other method available in literature
detects the muscle activity onset, using the energy of the signal, as it increases with
the start of the activation [10]. In this work, the method selected for onset detection
it is based on one proposed in literature [9].

The method used in this work for onset detection is based on one also described
in literature [9]. It uses a double threshold with a moving average for calculating
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Fig. 4 Example of application of onset/offset detection in signals from each sensor, in case of a
gesture of close for EMG and FSR, and open for IR sensor. EMG with envelope curve (a), FSR
(b), and IR sensor (c)

an adaptive threshold. Besides EMG filtered signals, this method was also used for
onset/offset detection of FSR and IR sensor signals; an example of its application in
the three signals is presented in Fig. 4. Examples are the same as shown previously
in Fig. 3 for EMG and FSR, and for the IR sensor it is an example of the gesture of
open to show how it is distinguishable from the gesture of close.

3 Experimental Results

3.1 Onset/Offset Detection

The experimental data available from signal acquisition is different, depending
on sensor and gestures as shown in Table 2. The main reason is the difficulty to
maintain the correct placement of the sensor for every acquisition. These data files
were discarded since it is not related to the sensor itself. Table 4 summarizes the
onset/offset recognition rates for each sensor and gesture.
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Table 4 Onset/offset recognition rates

Sensor Gesture #Muscle activations #Activations detected Onset/offset detection (%)

EMG Open 54 54 100
Close 72 70 97
Point 39 23 59

FSR Open 42 39 93
Close 96 87 91

IR Open 48 46 96
Close 60 59 98

Fig. 5 Graphs comparing the average values measured for the six features in each gesture: EMG
[Open; Close; Point]; FSR [Open; Close]; IR sensor [Open; Close]

3.2 Features Extraction

A set of features in the signal had been considered initially [11]. From the extraction
of these six features in all of the data acquired in this work, it was found that just
one or two depending on the sensor signals could be used for gesture recognition.
This is illustrated in the graph presented in Fig. 5. The average values measured for
the six features were previously normalized separately for each sensor and for each
of the gestures considered; two or three gestures depending on the sensor.

3.3 Comparison of the Success in Gesture Recognition
by Each Sensor

With the EMG sensor it is possible to detect signals of three different gestures, while
with the FSR and IR sensor only two of those three gestures can be detected. From
the average values of the features already shown in Fig. 5, different criteria had been



Study of Mechanomyographic Alternatives to EMG Sensors for a Low-Cost. . . 11

Table 5 Features and criteria adopted and percentage of success in gesture identification for each
of three sensors

Gesture identification
Sensor Gesture Criteria False/true (%)

EMG1 Open [11<µ<18; σ2 < 6] 6/48 89
Close [µ > 18; σ2 > 15.5] 22/48 69
Point [µ < 11; 6 < σ2 < 15.5] 2/21 91

EMG2 Open Other 9/45 83
Close [µ > 15; RMS >16] 4/66 94

FSR Open [70 < RMS < 140; min < 40] 0/39 100
Close Other 13/74 85

IR Open Other 0/46 100
Close [RMS > 360] 0/59 100

established for the identification of those gestures. Table 5 shows the features used
for each sensor and presents the criteria adopted. For the EMG sensor two sets of
criteria were chosen: one for the recognition of the three gestures and the other for
comparison purposes, with the other two sensors only the same two gestures were
considered.

The results of the application of those criteria are also presented in Table 5 in
terms of percentage of success, i.e., accounting the true and false events of gesture
recognition for each sensor.

With these results a confusion matrix was built for each pair sensor/gesture and
the analysis of these results had been based on the application of the well-known
equations of generalized Precision, Recall (or Sensitivity), and Specificity [12].

As, in opposition to the other two sensors, EMG had shown capability for the
recognition of three gestures, Fig. 6 shows solely its results with the purpose of
evidencing the differences between the successful in recognition of each of the three
gestures. Results are mostly between 85% and 95% with the only two exceptions of
Recall or Sensitivity for close gesture (69%) and Precision for point gesture (54%).

On the other hand in Fig. 7, a comparison of success in gesture recognition for
each sensor is presented; therefore, in this case, EMG results are reported to the
recognition of the same two gestures as FSR and IR sensors. A very distinctive
behavior is found for the IR sensor as it reaches the absolute success for the
recognition of the two gestures, consequently achieving the maximum value on any
of the three parameters. FSR and EMG sensors have very similar overall values of
these three parameters but FSR with great discrepancy between the two gestures,
excellent for open gesture but very deficient for the close gesture. EMG has a more
balanced performance that is translated in also quite similar values of the three
parameters for each gesture.
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Fig. 6 Graph comparing the Specificity, Recall, and Precision for each gesture recognition using
the EMG sensor

Fig. 7 Graph comparing the Specificity, Recall, and Precision for each of the two gestures
recognition of the three sensors [EMG; FSR; IR]

4 Discussion and Conclusion

EMG sensors measure electrical activity of the muscles and are the more obvious
choice for control hand prosthetics. However signals are often impaired by noise
imposed by electromagnetic radiation and have low accuracy for finger movement
recognition, as is demanded in bionic hands. A different sensing method may be
more convenient, e.g., the use of force sensors to build a pressure distribution map of
the muscle. But other types of sensors should be also investigated trying to measure
any parameter that changes when different gestures are made.

This paper describes a comparison study embracing the application of an IR
sensor besides the traditional EMG sensor and an FSR sensor, which has some
results already documented in literature. IR sensors are able to detect movements
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in a muscle surface as its output signal depends on the intensity of light reflected by
the skin with maximum distance of 6 mm.

Results from signal acquisitions of these three sensors had shown a slightly
better ability of EMG sensor to detect different gestures, but simultaneously it has
a lower success in gesture identification. IR sensors have shown similar results
comparatively to FSR in the ability to detect different gestures but an even better
success in gesture identification. Also IR and FSR signals had shown higher signal-
to-noise ratios than traditional EMG signals, for the two gestures that those two
sensors were able to detect.

There is plenty of space to improve these results from FSR and IR sensors,
namely by the development of holders for a more solid fixation and placement.
The application of a set of sensors instead of a single one is expected to highly
improve the detectability as well as the specificity of finger motion recognition
for both FSR and IR sensors. Also, some signal processing techniques can be
applied, namely to reduce the effects on the signal derived from the poorly fixation.
Further research should be carried out in order to find other type of sensors or
combinations of sensors suitable for a more accurate gesture identification or finger
motion recognition in modern hand prosthetics based on MMG signals/sensors.
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