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Abstract. We study the problem of analysing Markov reward models
(MRMs) in the presence of imprecise or uncertain rewards. Properties
of interests for their analysis are (i) probabilistic bisimilarity, and (ii)
specifications expressed as probabilistic reward CTL formulae.

We consider two extensions of the notion of MRM, namely (a) con-
strained Markov reward models, i.e., MRMs with rewards parametric on
a set variables subject to some constraints, and (b) stochastic Markov
reward models, i.e., MRMs with rewards modelled as real-valued ran-
dom variables as opposed to precise rewards. Our approach is based on
quantifier elimination for linear real arithmetic. Differently from exist-
ing solutions for parametric Markov chains, we avoid the manipulation
of rational functions in favour of a symbolic representation of the set
or parameter valuations satisfying a given property in the form of a
quantifier-free first-order formula in the linear theory of the reals.

Our work finds applications in model repair, where parameters need to
be tuned so as to satisfy the desired specification, as well as in robustness
analysis in the presence of stochastic perturbations.

Keywords: Parameter synthesis · Markov chains ·
Markov reward models · Model checking

1 Introduction

The wide-spread diffusion of cyber-physical systems (CPSs) poses the challenge
of handling their growing complexity, while meeting requirements on correctness,
predictability, performance without compromising time- and cost-to-market.
Their analysis requires one to address a number of non-functional properties
related to the quantitative aspects that are typical of such systems.

Finite-state Markovian models are popular modelling formalisms for the
quantitative analysis of systems with probabilistic behaviours. Among these,
Markov reward models (MRMs) were proposed as a natural extension of the
usual notion of discrete-time Markov chain with (real-valued) state rewards.

Interesting properties of MRMs may be expressed by means of quantitative
extensions of CTL, such as Probabilistic Reward CTL (PRCTL), cf. e.g., [1].
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Fig. 1. Model of a Ph.D. student in CS.

As a running example, consider the MRM in Fig. 1 modelling the stress level
of a Ph.D. student in computer science. It has seven states, namely s1, . . . , s7,
annotated with the propositions thk (thinking), ths (thesis), wr (writing paper),
tc (tool coding), and pe (paper evaluation). The level of stress of the student is
modelled by associating with each state a reward that represents the stress that
the student accumulates in the state at each time unit. After spending some
time thinking, the student starts developing a tool with probability pc = 0.2, or
writing a paper with probability pw = 0.5 (40% of the times for a journal and 60%
for a conference), otherwise the student submits the thesis with probability 0.1.
Once the tool is mature enough, the student starts writing a paper about it with
probability pw (70% of which for a journal, otherwise for a conference). When a
paper has been completed it is submitted for evaluation with probability ps =
0.3. The paper may be rejected or accepted (moving resp. to s7 or s5) according
to some acceptance rate. At any moment before the thesis is completed, the
student may move back to s1 with probability pt = 0.2 to think on how to
proceed with his/her Ph.D.

We can use PRCTL formulae for specifying properties such as “the average
level of stress accumulated until the thesis is submitted doesn’t exceed 10”, “the
student completes the thesis without passing through a state with stress level
higher than 2 with probability greater than or equal to 0.9”, or “the probability
of eventually start coding and, subsequently, submitting the thesis with expected
accumulated stress within [x, y] is less than or equal to z”.

In the above MRM we fixed specific reward values. This is an unrealistic
simplification since the level of stress at each state may vary depending on dif-
ferent factors, possibly external to the student. The same argument applies to
CPSs, that typically rely on sensor measurements which are inherently imprecise,
but also to other systems, e.g., resource-management protocols that depends on
stochastic assumptions on the future workload.

Typically, there are two ways for dealing with uncertain measurements: (i)
determine the precision of the instrument and associate an error ε with each
measurement, or (ii) perform estimation statistics (e.g., by recursive Bayesian
estimation [16]) and use random variables to model each measurement.
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In this paper we address the problem of analysing MRMs in presence of
imprecise rewards. We present two extensions of the notion of MRM: (i) con-
strained Markov reward models (CMRMs), i.e., MRMs with rewards and tran-
sition probabilities parametric on a set variables subject to some constraints
expressed as a first-order formula in the linear theory of the reals; (ii) stochastic
Markov reward models (SMRMs), i.e., MRMs with rewards modelled as real-
valued random variables as opposed to exact rewards.

Intuitively, a CMRM models a family of MRMs arising by plugging in con-
crete values for the parameters provided that they satisfy its constraints. Anal-
ogously, an SMRM models a probability distribution over a family of MRMs.

We are interested in the analysis of these models with respect to (i) proba-
bilistic bisimilarity, and (ii) specifications expressed as PRCTL formulae.

On the one hand, the analysis of CMRMs is done by inferring constraints
over its parameters characterising the valuations satisfying the property then,
verify the robustness of the model within the given precision. On the other
hand, analysing an SMRM consists in measuring the likelihood that an MRM
obtained by plugging in real-valued outcomes of its random variables satisfies a
given property.

Our Contribution: In relation with the analysis of CMRMs our contribution is
twofold. First, we show that the computation of the set of parameter valuations
ensuring that some states are probabilistic bisimilar with each other can be done
using quantifier elimination in the linear fragment of the theory of the reals.
Secondly, we demonstrate that for CMRMs having parameters only on state
rewards, also the PRCTL model checking problem can be solved within the linear
fragment of the theory of the reals. This allows one to employ SMT solvers and
quantifier elimination procedures specialised on linear constraints [14], avoiding
to use more inefficient and less scalable solvers for bilinear inequalities [17] as
suggested e.g., in the case of interval Markov chains [15].

As for the analysis of SMRMs, we describe how one can apply the results
for CMRMs described above for estimating the probability of satisfying a given
property by employing Mote Carlo simulation techniques.

Related Work: The analysis of CMRMs falls into the research area of parameter
synthesis for parametric Markov chains (pMCs) [4,6–10,12] and Interval Markov
chains (IMC) [2,3,15]. Most of these works [4,5,7,8,10] consider pMCs without
state rewards and focus mainly on computing closed form solutions for reachabil-
ity probabilities in pMCs as rational functions. The same approach was recently
extended to the computation of closed form solutions for expected rewards and
long-run average rewards [6,9].

In the context of model checking pMCs and IMCs, quantifier elimination
for the first-order theory of the reals has been mainly applied as a theoretical
tool for proving complexity upper-bounds of the model checking problem for
IMCs [2,3,15] and pMCs [9]. Notably, the model checker PROPhESY [5] relies
on SMT solving via the existential theory of the reals to determine approximate
covering of the parameter space.
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2 Preliminaries and Notation

We denote by R, Q, and N respectively the sets of real, rational, and natural
numbers. We denote by Σn, Σ∗ and, Σω respectively the set of words of length
n ∈ N, finite length, and infinite length, built over the finite alphabet Σ.

The dot product of two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) in
R

n is defined as a · b =
∑n

i=1 aibi. For c ∈ R, we use c ∈ R
n to denote the

constant vector (c, . . . , c). For a function f : I → R with finite domain with
cardinality |I| = n we may use f to denote also the I-indexed vector (f(i))i∈I =
(f(i1), . . . , f(in)).

Measure Theory. Let Ω be a set. A family Σ ⊆ 2Ω is called a σ-algebra if it
contains the empty set and is closed under complement and countable unions,
in this case (Ω,Σ) is called a measurable space and elements of Σ measurable
sets. When Σ = 2Ω , the measure space (Ω,Σ) is discrete.

A measure on (Ω,Σ) is a σ-additive function μ : Σ → R, i.e. a map satisfying
μ(

⋃
i∈I Ei) =

∑
i∈I μ(Ei) for any countable family of pairwise disjoint measur-

able sets (Ei)i∈I , in this case (Ω,Σ, μ) is called a measure space. If additionally
μ satisfies μ(Ω) = 1, it is called a probability measure and (Ω,Σ, μ) a probability
space. We denote by D(Ω) the set of discrete probability distributions on Ω. For
x ∈ Ω, the Dirac distribution concentrated at x is the distribution 1x ∈ D(Ω)
defined, for arbitrary y ∈ Ω, as 1x(y) = 1 if x = y, 0 otherwise.

For measurable spaces (Ω,Σ) and (Γ,Θ), a map f : Ω → Γ is measurable
if for all E ∈ Θ, f−1(E) = {x | f(x) ∈ E} ⊆ Σ. Given a measurable map
f : Ω → Γ and a measure μ on (Ω,Σ) we define the measure μ[f ] on (Γ,Θ),
called the push forward of μ under f , as μ[f ](E) = μ(f−1(E)) for E ∈ Θ.

A real-valued random variable X : Ω → R is a measurable function from
a probability space (Ω,Σ,P ) to the Borel space (R,B(R)). Intuitively, X can
be seen as the outcome of some experiment, e.g. measuring some sensor value.
Given a “test” A ∈ B(R), we write P [X ∈ A] for the probability that X has
a value in A, i.e. P [X ∈ A] = P [X](A). A random variable is associated with
its cumulative distribution function (CDF) FX : R → [0, 1] defined as FX(x) =
P [X ∈ (−∞, x]]; and a probability density function (PDF) fX , a non-negative
Lebesgue-integrable function satisfying P [X ∈ [a, b]] =

∫ b

a
fX(x)dx. The expected

value of X, written E[X], is intuitively understood as the long-run average of
repetitions of the experiment X, formalised by the Lebesgue integral

∫
Ω

XdP
(corresponding to

∫
R

fX(x)dx when X admits density function fX).

3 Markov Reward Models

In this section we recall the definitions of Markov reward models (MRMs), prob-
abilistic bisimulation, and probabilistic reward CTL (PRCTL).

In what follows we fix a finite set of atomic propositions AP.

Definition 1. A Markov chain is a tuple M = (S, τ, 	) consisting of a finite
nonempty set of states S, a transition probability function τ : S → D(S), and a
labelling function 	 : S → 2AP mapping states to atomic propositions.
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Intuitively, if M is in state s it moves to state s′ with probability τ(s)(s′). In
this sense, M can be thought as a state-machine that generates paths in Sω. A
path is an infinite sequence of states π = s1s2s3 · · · ∈ Sω; for i ≥ 1 we denote
by π[i] the i-th state of π, i.e., π[i] = si, and π|i the prefix of length i of π, i.e.,
π|i = s1 · · · si and π|0 = ε.

We denote by GM = (S,→) the underlying graph of M, where s, s′ ∈ S are
connected by a directed edge, written s → s′, if and only if τ(s)(s′) > 0. We
indicate by →∗, the transitive and reflexive closure of →.

In order to associate probabilities to events, we adopt the classical cylinder
set construction (cf. [1, Ch10]). For w ∈ S∗, the cylinder set of w is the set
of all paths having prefix w, i.e., cyl(w) = wSω. Given an initial probability
distribution ι ∈ D(S), we define the probability space (Sω, ΣM, P rM

ι ), where
ΣM = σ({cyl(w) | w ∈ S∗}) is the smallest σ-algebra that contains all the
cylinder sets, and PrM

ι is the unique probability measure such that, for all
w = s1 · · · sn ∈ S∗, PrM

ι (cyl(w)) = ι(s1) · ∏
0<i<n τ(si)(si+1).

When ι = 1s we write PrM
s , or just Prs when M is clear from the context.

Definition 2. A Markov reward model is a tuple R = (S, τ, 	, ρ) where (S, τ, 	)
is a MC, and ρ : S → R is the reward function assigning a reward to each state.

A Markov reward model generates paths in Sω according to its underlying
Markov chain; in addition, whenever a transition is performed, say from s to
s′, the system is rewarded by ρ(s). It is worth noting that the reward is given
after leaving the current state.

In the following, it may be convenient to represent the reward function ρ and
the probability transition distributions τ(s) (for s ∈ S) as S-indexed vectors.

Example 1. Consider the MRM depicted in Fig. 1. Its reward function ρ and the
distribution τ(s1) are respectively represented in vector notation as

ρ = (0, 0, 1.2, 1.5,−3, 2, 3), and τ(s1) = (pt, 0.1, 0.6pw, 0.4pw, 0, pc, 0).

The next definition extends the classic notion of probabilistic bisimulation
for Markov chains by Larsen and Skou [13] to the case of MRMs.

Definition 3 (Bisimulation). Let R = (S, τ, 	, ρ) be an MRM. An equivalence
relation R ⊆ S × S is a probabilistic bisimulation if whenever (s, s′) ∈ R then,
	(s) = 	(s′), ρ(s) = ρ(s′), and for all R-equivalence class C ∈ S/R, τ(s)(C) =
τ(s′)(C).

Two states s, s′ ∈ S are probabilistic bisimilar, written s ∼R s′, if they are
related by some probabilistic bisimulation.

Example 2. Consider the MRM depicted in Fig. 1. As it is presented, none of
its states are bisimilar with each other because each pair of states differs on the
rewards or the labels. If we consider instead an MRM with underlying chain
as in Fig. 1 and rewards ρ = (0, 0, 1, 1, 3, 2, 3), now we have that s5 ∼ s7 and,
consequently, s3 ∼ s4 because τ(s3)({s5, s7}) = ps = τ(s4)({s5, s7}). �	
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Before presenting probabilistic reward CTL, we need to introduce the concept
of expected cumulative reward for reaching a set of states B ⊆ S.

Let ρ̂B : Sω → R be the random variable representing the reward accumu-
lated along a prefix of the path belonging to (S \ B)∗B. This is formalised as
ρ̂B(π) =

∑n−1
i=1 ρ(π[i]) if π|n ∈ (S \ B)∗B for some n ∈ N, otherwise 0.

We denote by E[ρ̂B |s] the expected value of ρ̂B with respect to the probability
distribution Prs. Following [1, Ch10], E[ρ̂B |s] can be computed as the (unique)
solution rs of the following system of linear equations

rs =

{
0 if s ∈ B or s 
→∗ B

ρ(s) +
( ∑

t∈S τ(s)(t) · rt

)
otherwise.

(1)

We are now ready to present Probabilistic Reward CTL. PRCTL allows for
state formulae describing properties about states in a MRM, and path formulae
describing properties about paths in a MRM. State formulae Φ, Ψ and path
formulae ϕ are constructed over the following abstract syntax:

Φ, Ψ ::= tt | a | ρ �� r | ¬Φ | Φ ∧ Ψ | PJ (ϕ) | ER(Φ) , (state formulae)
ϕ ::= XΦ | ΦUΨ | ΦUn

RΨ (path formulae)

where a ∈ AP, r ∈ Q, n ∈ N, �� ∈ {=, <,>}, and J ⊆ [0, 1] and R ⊆ R are
intervals with rational bounds.

Given a MRM R = (S, τ, 	, ρ), a state s ∈ S, and a path π ∈ Sω, we denote
by R, s |= Φ (resp. R, π |= ϕ) the fact that the state s satisfies the state formula
Φ (resp. the path π satisfies the path formula ϕ). Sat(Φ) denotes the set of all
states satisfying the property Φ, i.e. Sat(Φ) = {s ∈ S | R, s |= Φ}. Formally,
the satisfiability relation |= is inductively defined as:

R, s |= tt always holds
R, s |= a iff a ∈ 	(s)
R, s |= ρ �� r iff ρ(s) �� r

R, s |= ¬Φ iff R, s 
|= Φ

R, s |= Φ ∧ Ψ iff R, s |= Φ and R, s |= Ψ

R, s |= PJ (ϕ) iff Prs({π ∈ Sω | R, π |= ϕ}) ∈ J

R, s |= ER(Φ) iff E[ρ̂Sat(Φ)|s] ∈ R

R, π |= XΦ iff R, π[2] |= Φ

R, π |= ΦUΨ iff there exists j ≥ 1 such that π[j] |= Ψ, and
R, π[j′] |= Φ for all 1 ≤ j′ < j

R, π |= ΦUn
RΨ iff there exists 1 ≤ j ≤ n such that π[j] |= Ψ and

for all 1 ≤ k ≤ j,
∑k−1

i=1 ρ(π[i]) ∈ R and,
for all 1 ≤ h < j, R, π[h] |= Φ.
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As usual, we can derive the logical operators ff , ∨, and → as follows: ff
def= ¬tt,

Φ ∨ Ψ
def= ¬(¬Φ ∧ ¬Ψ), and Φ → Ψ

def= ¬Φ ∨ Ψ . Similarly, we can derive the
temporal operators ♦ and � as: ♦Φ

def= ttUΦ and �Φ
def= ¬♦(¬Φ).

Example 3. Consider the MRM R depicted in Fig. 1. We can verify that “the
average level of stress accumulated by the student until the thesis is submitted
doesn’t exceed 23” by proving that R, s1 |= E≤23(ths) holds true. Analogously,
we can check that the property “the student completes the thesis without passing
through a state with stress level higher than 2 with probability greater than or
equal to 0.5” does not hold true by proving R, s1 |= ¬P≥0.5((ρ ≤ 2) U ths). �	

4 Constrained Markov Reward Models

Constrained Markov reward models (CMRMs) model families of MRMs where
both transition probabilities and state rewards are parametric on a set of real-
valued variables subject to constraints expressed as a first-order formula in the
linear theory of the reals.

Let x = (x1, . . . , xk) be a vector of real-valued parameters. We denote by
E the set of affine maps f : R

k → R of the form f(x) = a · x + b with a =
(a1, . . . , ak) ∈ Q

k and b ∈ Q, i.e. f(x1, . . . , xk) =
( ∑k

i=1 aixi

)
+ b.

Definition 4. A constrained Markov reward model is a tuple F = (S, τ, 	, ρ, F )
where S and 	 are defined as for MCs, τ : S → (S → E) is a parametric transition
function, ρ : S → E is a parametric reward function, and F (x) is a linear first-
order formula s.t., for all s ∈ S, F (x) implies τ(s) ≥ 0 ∧ 1 · τ(s) = 1.

Intuitively, a CMRM F = (S, τ, 	, ρ, F ) defines a family of MRMs arising by
plugging in concrete values for the parameters. A parameter valuation v ∈ R

k is
admissible (or feasible) if F (v) holds true. By abuse of notation, we may write
F to indicate the set of admissible valuations. Given v ∈ F we denote by F(v)
the MRM associated with v. In this respect, it will be convenient to think of F
as a function F : F → MRM. The semantics of F , written [F ], is defined as the
image of F , i.e. [F ] = {F(v) | v ∈ F}.

Example 4. As already mentioned in the introduction, the stress level of a Ph.D.
student may be influenced by several factors. For instance, we can define the
following CMRM F = (S, τ, 	, ρ̄, F ) having as underlying Markov chain that of
Fig. 1, parametric vector of rewards ρ = (0, 0, h+c, h+ j, r, 0, a), and constraints
F = (−5 ≤ h ≤ 0) ∧ (1 ≤ c ≤ j ≤ 5) ∧ (−3 ≤ a + r ≤ 3) ∧ a ≤ r. Here, the
parameter h models the help of the supervisor, whereas c and j represent the
stress that accumulates while writing a conference paper c, or a journal paper
j. The stress caused by having a paper accepted or rejected in modelled by the
parameters a and r respectively.

It is easy to note that the MRM in Fig. 1 is an instance of F . �	
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Remark 1. Our notion of CMRM trivially extends that of IMC w.r.t. the so-
called uncertain Markov chain interpretation [15]. The condition that transitions
probabilities lie within some intervals is trivially expressed as a conjunction of
liner inequalities. We shall also recall, that our definition is similar to that of
augmented pMCs given by Hutschenreiter et al. [9]. Nevertheless, we do not
require all admissible valuations to induce the same underlying graph; instead,
we require linear constraints as opposed to polynomial constraints. �	

Given a CMRM F we are interested in finding suitable symbolic representa-
tions of the set of parameter valuations that ensure the corresponding MRMs to
enjoy some property. Properties of interests for this paper are bisimulation and
PRCTL formulae. Specifically, given states s, s′ ∈ S, and a PRCTL state for-
mula Φ, we are interested in the set of parameter valuations for which s becomes
bisimilar to s′ or such that Φ holds at s. These are formalised as follows.

�s ∼F s′� def=
{
v ∈ F | s ∼F(v) s′} , �F , s |= Φ�

def= {v ∈ F | F(v), s |= Φ} .

Example 5. Consider the CMRM F defined in Example 4 and the PCTL for-
mula Φ = E[0,10](ths). The set of feasible parameter valuations satisfying Φ, i.e.,
�F , s |= Φ�, can be symbolically represented by the following formula

φ = 0 ≤ 57a + 575c + 750h + 175j + 168r ≤ 1750
3

∧ F . (2)

The above formula can be used for instance to determine how much effort the
supervisor needs to provide to ensure that the formula Φ is satisfied. In this case,
this can be done by maximising h under the constraints φ. �	

5 Analysing Bisimilarity on Constrained MRMs

In this section we address the problem of finding symbolic representations of
the set of parameter valuations ensuring that two given states of a CMRM are
probabilistic bisimilar.

Before diving in this problem, it will be convenient to present an alternative
characterisation for probabilistic bisimilarity on MRMs. The characterisation is
a variant of that of Jonsson and Larsen [11] based on the notion of coupling.

Given μ, ν ∈ D(X), we denote by Γ (μ, ν) the set of couplings for (μ, ν), i.e.,
probability distributions γ ∈ D(X × X) such that, for all x, y ∈ X

∑
x′∈X γ(x′, y) = ν(y) and

∑
y′∈X γ(x, y′) = μ(x) . (3)

The probability measures μ and ν are respectively called left and right marginals
of γ. A coupling can be seen as a redistribution of the “probability mass” from
the right marginal to the left and vice versa.

Lemma 1. s ∼ s′, if and only if there exists a relation R ⊆ S × S, such that
s R s′ and, whenever m R n the following conditions hold
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(i) 	(m) = 	(n), ρ(m) = ρ(n), and
(ii) there exists γ ∈ Γ (τ(m), τ(n)) such that {(u, v) ∈ S ×S | γ(u, v) > 0} ⊆ R.

The above lemma allows us to encode �s ∼F s′� as the following first-order
formula in the linear theory of the reals.

�s ∼F s′� def= F ∧ ∃b. bss′ = 1 ∧
∧

m,n∈S

β(m,n) ∧ γ(m,n) ∧ σ(m,n) (4)

where the sub-formulae β, γ, and σ are defined as follows:

β(m,n) def=
∧

m,n∈S

(bmn = 0 ∨ bmn = 1) (5)

γ(m,n) def= (bmn = 1) → ∃c ≥ 0.

⎛

⎜
⎝

∧
u∈S

∑
v∈S cuv = τ(m)(u) ∧

∧
v∈S

∑
u∈S cuv = τ(n)(v) ∧

∧
u,v∈S cuv ≤ buv

⎞

⎟
⎠ (6)

σ(m,n) def= (bmn = 1) → (	(m) = 	(n) ∧ ρ(m) = ρ(n)) . (7)

In the formula �s ∼F s′�, b = (bmn)m,n∈S represents a selection of a relation
R ∈ S×S by means of binary variables (cf. (5)) such that bm,n = 1 iff (m,n) ∈ R.
According to Lemma 1, the selection needs to include the pair (s, s′) and satisfy
the conditions (i) and (ii). This is modelled by imposing bss′ = 1, σ(m,n) and
γ(m,n) for all m,n ∈ S. In particular, in (6), the variables c = (cuv)u,v∈S model
coupling for (τ(m), τ(n)) the condition (ii) is enforced by requiring cu,v ≤ bu,v

for all u, v ∈ S.
By Lemma 1, the elimination of the existential quantifiers in �s ∼F s′� yields

a Boolean formula with linear predicates on x representing the set of valua-
tions �s ∼F s′�. Notably, the formula �s ∼F s′� is a first-order formula in the
existential theory of the reals which involves only linear predicates. Therefore,
quantifier elimination can be performed by using tools specialised for the linear
theory of real-arithmetic, such as mjollnir [14].

6 Model Checking Constrained MRMs

In this section we consider the model checking problem of CMRMs against
PRCTL formulae for the class of constrained MRMs having parameters only
on state rewards. For this class, we show that the set of parameter valuations
satisfying given PRCTL formula can, again, be encoded as a first-order formula
in the linear theory of real-arithmetic.

In this section assume that in the CMRM P = (S, τ, 	, ρ, F ), parameters
occur only in the state rewards, that is, τ(s)(u) ∈ [0, 1] for all s, u ∈ S.

For a state s ∈ S, and a PRCTL state formula Φ, we characterise �P, s |= Φ�
by means of the set of valuations satisfying F ∧�s, Φ�. The formula �s, Φ� encodes
the satisfiability of P in s up-to the constraints F , and it is defined by induction
on the structure of Φ.



46 G. Bacci et al.

For the Boolean fragment of PRCTL, the reduction is as one may expect.

�s, tt� = tt , �s, a� = a ∈ 	(s) , �s, ρ �� r� = ρ(s) �� r ,

�s,¬Φ� = ¬�s, Φ� , �s, Φ ∧ Ψ� = �s, Φ� ∧ �s, Ψ� .

For all other formulae, it is convenient to use �u,♦Φ� as short for
∨

u→∗v�v, Φ�.

�s,PJ (XΦ)� = ∃p.1 · p ∈ J ∧
∧

u∈S

((pu = τ(s)(u) ∧ �u, Φ�) ∨ (pu = 0 ∧ ¬�u, Φ�))

�s,PJ (ΦUΨ)� = ∃p. ps ∈ J ∧
∧

u∈S

⎛

⎜
⎝

(pu = 1 ∧ �u, Ψ�) ∨ (pu = 0 ∧ ¬�u,♦Ψ�)∨
(pu = 0 ∧ ¬�u, Φ� ∧ ¬�u, Ψ�)∨

(pu = τ(u) · p ∧ �u, Φ� ∧ ¬�u, Ψ� ∧ �u,♦Ψ�)

⎞

⎟
⎠

�s,PJ (ΦUn
RΨ)� = ∃q.1 · q ∈ J ∧

∧

w∈Sn

(
(qw=Prs(cyl(w)) ∧ β(w))∨

(qw=0 ∧ ¬β(w))

)

�s,ER(Φ)� = ∃r. rs ∈ R ∧
∧

u∈S

((ru = 0 ∧ αu) ∨ (ru = ρ(u) + τ(u) · r ∧ ¬αu))

where p = (ps)s∈S , r = (rs)s∈S , q = (qw)w∈Sn , αu = �u, Φ� ∨ ¬�u,♦Φ�, and

β(s1 . . . sn) =
∨

1≤j≤n

(
�sj , Ψ� ∧

∧

1≤k≤j

∑k−1
i=1 ρ(si) ∈ R ∧ ∧

1≤h<j�sh, Φ�
)

.

In �s,PJ (XΦ)�, the variable pu represents the probability of moving from s to
u, where u satisfies the property Φ, therefore 1 · p =

∑
u∈S is the probability of

moving in one step from s to a state satisfying Φ. Analogously, in �s,PJ (ΦUΨ)�,
the variable pu models the probability of u satisfying the property ΦUΨ : if u
satisfies the property Φ then pu is 1; if u satisfies neither Φ nor Ψ or cannot
reach a state satisfying Ψ , then pu is 0; otherwise, pu amounts to the probability
of moving in one step to some other state u′ and, from there, satisfying ΦUΨ .

In �s,PJ (ΦUn
RΨ)�, qw is the probability of executing the trace w in exactly

n steps starting from s where β(w) models that fact that w satisfies ΦUn
RΨ .

Therefore, 1 · q amounts to the probability of executing from s a path that
satisfies ΦUn

RΨ .
Finally, in �s,ER(Φ)�, one can readily see that r models the unique solution

of the system of linear equations (1), where formula αu capture the fact that u
either satisfies the property Φ or cannot reach any state that does.

The following result states the correctness of the above characterisation.

Theorem 1. v |= F ∧ �s, Φ� iff v ∈ �P, s |= Φ�.

Example 6. Consider the CMRM F and the formula Φ from Example 5. The
encoding of the satisfiability of s1 with respect to Φ, namely �s, Φ�, boils down
to the following first order linear formula.
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∃x. x1 ≥0 ∧ x1 ≤ 10 ∧ x1 =
x1

5
+

x2

10
+

3x3

10
+

x4

5
+

x6

5
∧

x2 = 0 ∧ x3 = c + h +
x1

5
+

x3

2
+

9x5

100
+

21x7

100
∧

x4 = h + j +
x1

5
+

x3

2
+

3x5

100
+

27x7

100
∧

x5 = a + x1 ∧ x6 =
x1

5
+

3x3

20
+

7x4

20
+

3x6

10
∧ x7 = r + x1

By using the tool mjollnir [14] we are able to eliminate the existential quanti-
fiers on x = (x1, . . . , x7) obtaining the formula φ of Eq. (2). �	

7 Markov Models with Stochastic Rewards

It’s common practice to model experimental measurements by means of real-
valued random variables distributed according to well studied families of distri-
butions (e.g., normal or student’s T).

In this section we introduce the notion of stochastic Markov reward mod-
els (SMRMs) where state rewards are real-valued random variables. Then, we
present a PRCTL model checking framework for SMRMs.

From here on we fix the probability space (Ω,Σ,P ) representing the envi-
ronment where the experiments are performed, and we use Y to denote the set
of real-valued random variables of the form Y : Ω → R.

Definition 5. A stochastic Markov reward model is a tuple J = (S, τ, 	, ρ)
where (S, τ, 	) is a Markov chain, and ρ : S → Y is a reward function assigning
a real-valued random variable to each state.

An SMRM J = (S, τ, 	, ρ) can be intuitively interpreted as a measurable function
J : Ω → MRMJ , where J (ω) is the MRM having (S, τ, 	) as underlying Markov
chain and (ρ(s)(ω))s∈S as vector of rewards. Such interpretation justifies the
intuition of J being an experiment whose outcomes is a MRM.

The above intuition is formalised as follows. We denote by MRMJ the set
of all MRMs having the same underlying Markov chain as J . We construct the
σ-algebra ΣJ as the family of sets A ⊆ MRMJ whose corresponding set of
rewards vectors is Borel measurable in R

m (m = |S|). Formally,

A ∈ ΣJ iff A ⊆ MRMJ and {ρ(R) | R ∈ A} ∈ B(Rm) .

Accordingly, the semantics of J is the probability space (MRMJ , ΣJ , P [J ]).
Given a SMRM J , a state s ∈ S, and a PRCTL formula Φ, it comes natural

to ask how likely is that a concrete instance of J satisfies Φ at s, denoted by
P [J , s |= Φ]. This model checking problem is formalised as follows

P [J , s |= Φ] def= P [J ]({R ∈ MRMJ | R, s |= Φ}) . (8)
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We study the above model checking problem for a subclass of SMRMs having
random variables (Y : Ω → R) ∈ EX of the form Y (ω) = a·X(ω)+b, with a ∈ Q

k,
b ∈ Q and, where X = (X1, . . . , Xk) is a vector of pairwise independent real-
valued random variables1. Observe that, elements in EX may not be independent
from each other.

Hereafter we consider the SMRM J = (S, τ, 	, ρ) with ρ : S → EX, and we
use P to refer to the CMRM obtained by replacing the random variables Xi in
J with the parameters xi (i = 1, . . . , k).

For Eq. (8) to be well-defined the set {R ∈ MRMJ | R, s |= Φ} needs to be
a measurable event in ΣJ . The following result ensures that.

Lemma 2. {R ∈ MRMJ | R, s |= Φ} ∈ ΣJ .

Proof. By definition of P we have that

{R ∈ MRMJ | R, s |= Φ} = {P(v) | v ∈ �P, s |= Φ�})

Therefore, by def. of ΣJ and measurability of affine transformations we have
that the claim holds iff �P, s |= Φ� ∈ B(Rk). By Theorem 1, �P, s |= Φ� can be
described by means of a Boolean formula with linear predicates. Since σ-algebras
are closes under complement (i.e., negation), countable unions (i.e., disjunctions)
and countable intersections (i.e., conjunctions) and, affine transformations are
measurable, we conclude that {R ∈ MRMJ | R, s |= Φ} ∈ ΣJ .

The following theorem characterises the model checking problem for the
SMRM J in terms of the model checking problem for the CMRM P.

Theorem 2. P [J , s |= Φ] = P [X ∈ �P, s |= Φ�].

Proof. The claim holds true according to the following equalities.

P [J , s |= Φ] = P [J ]({R ∈ MRMJ | R, s |= Φ}) (by Eq. (8))
= P [P ◦ X]({R ∈ MRMJ | R, s |= Φ}) (J = P ◦ X)
= P [P ◦ X](P(�P, s |= Φ�)) (def. P and def. �P, s |= Φ�)

= P ((P ◦ X)−1(P(�P, s |= Φ�)) (def. push-forward)

= P (X−1(�P, s |= Φ�)) ((P ◦ X)−1 = X−1 ◦ P−1)
= P [X ∈ �P, s |= Φ�] . (def. push-forward)

�	
By Theorem 2 we can estimate the value p of P [J , s |= Φ] by applying Monte
Carlo simulation techniques. For this, we sample n independent repetitions of X,
associating with each repetition a Bernoulli random variable Bi. A realisation
bi of Bi is 1 if the corresponding sampled value of X lays in �P, s |= Φ�, and

1 In fact, the vector X is a multivariate random variable X : Ω → R
n with marginals

Xi : Ω → R (i = 1, . . . , n).
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0 otherwise. Finally, we estimate p by means of the observed relative success
rate p̃ = (

∑n
i=1 bi)/n. The absolute error ε of the estimation can be bound

with a certain degree of confidence δ ∈ (0, 1] by tuning the number of required
simulations based on the Hoeffding’s inequality P (|p̃ − p| ≥ ε) ≤ 2e−2nε2

. Thus,
we can determine the number of samples required to estimate p with absolute
error ε and confidence δ by imposing 2e−2nε2

= 1 − δ, from which we obtain

n =
⌈

− ln(δ/2)
2ε2

⌉

. (9)

For example, we can estimate p with an error ε = 0.01 with a confidence of 95%
(i.e., δ = 0.95) by drawing n = 18445 samples.

Example 7. Let X = (H,C, J,A,R) be a vector of random variables respectively
distributed as H ∼ unif(−5, 0), C ∼ unif(1, 2), J ∼ N (2, 0.1), A ∼ N (−3, 0.5),
and R ∼ N (−3, 0.5). We define the SMRM J = (S, τ, 	, ρ) having as underlying
Markov chain that of Fig. 1, and the following random vector of rewards

ρ = (0, 0,H + C,H + J,R, 0, A) ,

which shall be understood as a stochastic version of the one presented in Exam-
ple 4. By taking the formula Φ = E[0,10](ths) from Example 5, we can estimate
P [J , s1 |= Φ] ∼= 0.156061 with an error ε = 0.005 and confidence of 99.99%
(i.e., δ = 0.0001) by generating n = 198070 samples. �	

8 Conclusion

We described a framework for the analysis of Markov reward models in presence
of uncertain rewards. To this end we propose two extensions of the notion of
MRM: (a) constrained Markov reward models, having state rewards parametric
on a set variables subject to some constraints, and (b) stochastic Markov reward
models, having rewards modelled as random variables.

We demonstrated that the analysis CMRMs with respect to probabilistic
bisimilarity and PRCTL formulae, can be reduced to perform quantifier elimi-
nation on fist-order formulae in the linear fragment of the theory of the reals.
Our reduction does not lead to an improvement on the theoretical complexity of
the model checking problem for (augmented) parametric Markov chains (cf. [9,
Theorem 4]). However, we believe that our reduction is important from the
perspective of implementation in practice, because it allows one to employ SMT
solvers or quantifier elimination procedures specialised on linear constraints such
as mjollnir [14]. It is worth noting that our reduction can be also applied with
PRCTL formulas with parametric bounds, extending even further the applica-
bility of our approach.

Finally, we provided a characterisation of the model checking problem for
SMRMs in terms of the model checking problem for CMRMs. As we have shown,
this result allows one to estimate the probability that a given SMRM satisfies a
given specification by employing Monte Carlo simulation techniques.
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All the calculations presented in the examples have been done by using a
prototype implementation of the above described algorithms2 coded in Mathe-
matica [18]. For the quantifier elimination we employed mjollnir instead of the
built-in solution offered by Mathematica.

Our work finds applications in model repair, where parameters need to be
tuned so as to satisfy a desired specification, as well as in robustness analysis in
presence of stochastic perturbations.
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