
WISEMOVE: A Framework to Investigate
Safe Deep Reinforcement Learning for

Autonomous Driving

Jaeyoung Lee, Aravind Balakrishnan, Ashish Gaurav, Krzysztof Czarnecki(B),
and Sean Sedwards

University of Waterloo, Waterloo, Canada
kczarnec@gsd.uwaterloo.ca

Abstract. WiseMove is a platform to investigate safe deep reinforce-
ment learning (DRL) in the context of motion planning for autonomous
driving. It adopts a modular architecture that mirrors our autonomous
vehicle software stack and can interleave learned and programmed com-
ponents. Our initial investigation focuses on a state-of-the-art DRL app-
roach from the literature, to quantify its safety and scalability in simu-
lation, and thus evaluate its potential use on our vehicle.

1 Introduction

Ensuring the safety of learned components is of interest in many contexts and
particularly in autonomous driving, which is the concern of our group.1 We
have hand-coded an autonomous driving motion planner that has already been
used to drive autonomously for 100 km,2 but we observe that further exten-
sions by hand will be very labour-intensive. The success of deep reinforcement
learning (DRL) in playing Go [5], and its success with other applications having
intractable state space [1], suggests DRL as a more scalable way to implement
motion planning. A recent DRL-based approach [4] seems particularly plausible,
since it incorporates temporal logic (safety) constraints and its architecture is
broadly similar to our existing software stack. The claimed results are promising,
but the authors provide no means of verifying them and there is apparently no
other platform in which to test their ideas. We have thus devised WiseMove,
to quantify the trade-offs between safety, performance and scalability of both
learned and programmed motion planning components.

Below we describe the key features of WiseMove and briefly present results
of experiments that corroborate some of the claimed quantitative results of [4].
In contrast to that work, our results can be reproduced by installing our publicly-
available code.3

1 uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/.
2 therecord.com/news-story/8859691-waterloo-s-autonomoose-hits-100-kilometre-
milestone/.

3 git.uwaterloo.ca/wise-lab/wise-move/.

J. Lee, A. Balakrishnan, A. Gaurav and S. Sedwards—Contributed equally.

c© Springer Nature Switzerland AG 2019
D. Parker and V. Wolf (Eds.): QEST 2019, LNCS 11785, pp. 350–354, 2019.
https://doi.org/10.1007/978-3-030-30281-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30281-8_20&domain=pdf
https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/
https://www.therecord.com/news-story/8859691-waterloo-s-autonomoose-hits-100-kilometre-milestone/
https://www.therecord.com/news-story/8859691-waterloo-s-autonomoose-hits-100-kilometre-milestone/
https://git.uwaterloo.ca/wise-lab/wise-move/
https://doi.org/10.1007/978-3-030-30281-8_20


WiseMove 351

Environment

Vehicle Models

MCTS

High-level Policy

Options

LTL Verification

state

op
ti
on

Fig. 1. Planning architecture.

S
TO

P

STOP

stop region

st
op

 re
gi

on

intersection

ego

Fig. 2. Experimental environment.

2 Features and Architecture

WiseMove is an options-based modular DRL framework, written in Python,
with a hierarchical structure designed to mirror the architecture of our
autonomous driving software stack. Options [6, Chap. 17] are intended to model
primitive manoeuvres, to which are associated low-level policies that implement
them. A learned high-level policy over options decides which option to take in
any given situation, while Monte Carlo tree search (MCTS [6, Chap. 8]) is used to
improve overall performance during deployment (planning). High-level policies
correspond to the behaviour planner in our software stack, while low-level poli-
cies correspond to the local planner. These standard concepts are discussed in,
e.g., [3]. To define correct behaviour and option termination conditions, Wise-
Move incorporates “learntime” verification to validate individual simulation
traces and assign rewards during both learning and planning. This typically
improves safety, but does not guarantee it, given finite training and function
approximation [1,2].

When an option is chosen by the decision maker (the high-level policy or
MCTS), a sequence of actions is generated according to the option’s low-level
policy. An option terminates if there is a violation of a logical requirement, a col-
lision, a timeout, or successful completion. In the latter case, the decision maker
then chooses the next option to execute, and so on until the whole episode ends.
Fig. 1 gives a diagrammatic overview of WiseMove’s planning architecture. The
current state is provided by the environment. The planning algorithm (MCTS)
explores and verifies hypothesized future trajectories using the learned high-level
policy as a baseline. MCTS chooses the best next option it discovers, which is
then used to update the environment.

WiseMove comprises four high-level Python modules: worlds, options,
backends and verifier. The worlds module provides support for environments
that adhere to the OpenAI Gym4 interface, which includes methods to initial-
ize, update and visualize the environment, among others. The options module
4 gym.openai.com.

https://gym.openai.com


352 J. Lee et al.

Table 1. Options and examples of their preconditions.

Option Description Example LTL precondition

KeepLane Keep lane while driving -

Stop Stop in the stop region G(not has stopped in stop region)

Wait Wait in the stop region
then drive forward

G((has stopped in stop region and

in stop region) U highest priority)

Follow Follow vehicle ahead G(veh ahead U (in stop region or

close to stop region))

ChangeLane Change to other lane G(not(in intersection or in stop region))

defines the hierarchical decision-making structure. The backends module pro-
vides the code that implements the learned or possibly programmed components
of the hierarchy. WiseMove currently uses keras5 and keras-rl6 for DRL
training. The training hierarchy can be specified through a json file.

The verifier module provides methods for checking LTL-like properties
constructed according to the following syntax:

ϕ = F ϕ | G ϕ | X ϕ | ϕ => ϕ | ϕ or ϕ | ϕ and ϕ | not ϕ | ϕ U ϕ | (ϕ) | α (1)

Atomic propositions, α, are functions of the global state, represented by human-
readable strings. In what follows we use the term LTL to mean properties written
according to (1). The verifier decides during learning and planning when vari-
ous LTL properties are satisfied or violated, in order to assign the appropriate
reward. Learning proceeds one step at a time, so the verifier works incremen-
tally, without revisiting the prefix of a trace. WiseMove uses LTL to express
the preconditions and terminal conditions of each option, as well as to encode
traffic rules. E.g.,

G(in stop region => (in stop region U has stopped in stop region)).

Some options and preconditions are listed in Table 1.

3 Experiments

Our experiments reproduce the architecture and some of the results of [4],7 using
the scenario illustrated in Fig. 2. We learned the low-level policies for each option
first, then learned the high-level policy that determines which option to use at
each decision instant. We used the DDPG [1] and DQN [2] algorithms to learn
the low- and high-level polices, respectively. Each episode is initialized with the

5 keras.io.
6 github.com/keras-rl/keras-rl.
7 Details and scripts to reproduce our results can be found in our repository (see
Footnote 3).

https://keras.io
https://github.com/keras-rl/keras-rl


WiseMove 353

ego vehicle placed at the left hand side, and up to six other randomly placed
vehicles driving “aggressively” [4]. The goal of the ego is to reach the right hand
side with no collisions and no LTL violations.

Table 2. Performance of low-level policies trained for 105 steps, with and without
additional LTL: mean (std) % success, averaged over 100 trials of 100 episodes.

Add’l LTL KeepLane Stop Wait Follow ChangeLane

Without 7.7 (21.4) 53.9 (32.0) 36.7 (43.3) 52.0 (19.6) 60.9 (34.0)

With 78.1 (29.4) 87.6 (20.4) 78.3 (28.8) 81.0 (15.4) 92.8 (14.3)

Table 3. Overall performance with and without MCTS, using low-level policies trained
for 106 steps: mean (std) %, averaged over 1000 episodes.

Without MCTS With MCTS

Success LTL violation Collision Success LTL violation Collision

92.0 (2.0) 5.40 (1.9) 2.60 (1.6) 98.5 (1.5) 0.9 (0.9) 0.6 (0.8)

We found that training low-level policies only according to the information
given in [4] is unreliable; training would often not converge and good policies
had to be selected from multiple attempts. We thus introduced additional LTL
to give more information to the agent during training, including liveness con-
straints (e.g., G(not stopped now)) to promote exploration, and safety-related
properties (e.g., G(not veh ahead too close)). Table 2 reports typical perfor-
mance gains for 105 training steps. Note in particular the sharp increase in
performance for KeepLane, which is principally due to the addition of a live-
ness constraint. Without this, the agent avoids the high penalty of collisions by
simply waiting, thus not completing the option.

Having trained good low-level policies with DDPG using 106 steps, we trained
high-level policies with DQN using 2 × 105 steps. We then tested the policies
with and without MCTS. Table 3 reports the results, which suggest a ca. 7%
improvement using MCTS.

4 Conclusion and Prospects

We have constructed WiseMove to investigate safe deep reinforcement learning
in the context of autonomous driving. Learning is via options, whose low- and
high-level policies broadly mirror the behaviour planner and local planner in our
autonomous driving stack. The learned policies are deployed using a Monte Carlo
tree search planning algorithm, which adapts the policies to situations that may
not have been encountered during training. During both learning and planning,
WiseMove uses linear temporal logic to enable and terminate options, and to
specify safe and desirable behaviour.



354 J. Lee et al.

Our initial investigation using WiseMove has reproduced some of the quan-
titative results of [4]. To achieve these we found it necessary to use additional
logical constraints that are not mentioned in [4]. These enhance training by
promoting exploration and generally encouraging good behaviour. We leave a
detailed analysis for future work.

Our ongoing research will use WiseMove with different scenarios and more
complex vehicle dynamics. We will also use different types of non-ego vehicles
(aggressive, passive, learned, programmed, etc.) and interleave learned compo-
nents with programmed components from our autonomous driving stack.

Acknowledgment. This work is supported by the Japanese Science and Technology
agency (JST) ERATO project JPMJER1603: HASUO Metamathematics for Systems
Design, and by the Natural Sciences and Engineering Research Council of Canada
(NSERC) Discovery Grant: Model-Based Synthesis and Safety Assurance of Intelligent
Controllers for Autonomous Vehicles.

References

1. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning (2015).
http://arxiv.org/abs/1509.02971

2. Mnih, V., et al.: Playing Atari with deep reinforcement learning (2013). http://
arxiv.org/abs/11312.5602

3. Paden, B., Čáp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion plan-
ning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh.
1(1), 33–55 (2016)

4. Paxton, C., Raman, V., Hager, G.D., Kobilarov, M.: Combining neural networks
and tree search for task and motion planning in challenging environments. In: 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
IEEE, pp. 6059–6066 (2017)

5. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529, 484–489 (2016)

6. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/11312.5602
http://arxiv.org/abs/11312.5602

	WISEMOVE: A Framework to Investigate Safe Deep Reinforcement Learning for Autonomous Driving
	1 Introduction
	2 Features and Architecture
	3 Experiments
	4 Conclusion and Prospects
	References




