
Doping Tests for Cyber-Physical Systems

Sebastian Biewer1(B), Pedro D’Argenio1,2,3, and Holger Hermanns1,4

1 Saarland University, Saarland Informatics Campus, Saarbücken, Germany
biewer@depend.uni-saarland.de

2 FAMAF, Universidad Nacional de Córdoba, Córdoba, Argentina
3 CONICET, Córdoba, Argentina

4 Institute of Intelligent Software, Guangzhou, China

Abstract. The software running in embedded or cyber-physical systems
(CPS) is typically of proprietary nature, so users do not know precisely
what the systems they own are (in)capable of doing. Most malfunction-
ings of such systems are not intended by the manufacturer, but some
are, which means these cannot be classified as bugs or security loop-
holes. The most prominent examples have become public in the diesel
emissions scandal, where millions of cars were found to be equipped
with software violating the law, altogether polluting the environment
and putting human health at risk. The behaviour of the software embed-
ded in these cars was intended by the manufacturer, but it was not in the
interest of society, a phenomenon that has been called software doping.
Doped software is significantly different from buggy or insecure software
and hence it is not possible to use classical verification and testing tech-
niques to discover and mitigate software doping.

The work presented in this paper builds on existing definitions of soft-
ware doping and lays the theoretical foundations for conducting software
doping tests, so as to enable attacking evil manufacturers. The complex
nature of software doping makes it very hard to effectuate doping tests in
practice. We explain the biggest challenges and provide efficient solutions
to realise doping tests despite this complexity.

1 Introduction

Embedded and cyber-physical systems are becoming more and more widespread
as part of our daily life. Printers, mobile phones, smart watches, smart home
equipment, virtual assistants, drones and batteries are just a few examples. Mod-
ern cars are even composed of a multitude of such systems. These systems can
have a huge impact on our lives, especially if they do not work as expected. As
a result, numerous approaches exist to assure quality of a system. The classical
and most common type of malfunctioning is what is widely called “bug”. Usu-
ally, a bug is a very small mistake in the software or hardware that causes a
behaviour that is not intended or expected. Other types of malfunctioning are
caused by incorrect or wrongly interpreted sensor data, physical deficiencies of
a component, or are simply radiation-induced.

Another interesting kind of malfunction (also from an ethical perspective [4])
arises if the expectation of how the system should behave is different for two (or
c© Springer Nature Switzerland AG 2019
D. Parker and V. Wolf (Eds.): QEST 2019, LNCS 11785, pp. 313–331, 2019.
https://doi.org/10.1007/978-3-030-30281-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30281-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-30281-8_18

314 S. Biewer et al.

more) parties. Examples for such scenarios are widespread in the context of per-
sonal data privacy, where product manufacturers and data protection agencies
have notoriously different opinions about how a software is supposed to han-
dle personal data. Another example is the usage of third-party cartridges in
printers. Manufacturers and users do not agree on whether their printer should
work with third-party cartridges (the user’s opinion) or only with those sold by
the manufacturer (the manufacturer’s opinion). Lastly, an example that received
very high media attention are emission cleaning systems in diesel cars. There are
regulations for dangerous particles and gases like CO2 and NO2 defining how
much of these substances are allowed to be emitted during car operation. Part of
these regulations are emissions tests, precisely defined test cycles that a car has
to undergo on a chassis dynamometer [28]. Car manufacturers have to obey to
these regulations in order to get admission to sell a new car model. The central
weakness of these regulations is that the relevant behaviour of the car is only
a trickle of the possible behaviour on the road. Indeed, several manufacturers
equipped their cars with defeat devices that recognise if the car is undergoing
an official emissions test. During the test, the car obeys the regulation, but out-
side test conditions, the emissions extruded are often significantly higher than
allowed. Generally speaking, the phenomena described above are considered as
incorrect software behaviour by one party, but as intended software behaviour by
the other party (usually the manufacturer). In the literature, such phenomena
are called software doping [3,10].

The difference between software doping and bugs is threefold: (1) There is a
disagreement of intentions about what the software should do. (2) While a bug
is most often a small coding error, software doping can be present in a consider-
able portion of the implementation. (3) Bugs can potentially be detected during
production by the manufacturer, whereas software doping needs to be uncovered
after production, by the other party facing the final product. Embedded software
is typically proprietary, so (unless one finds a way to breach into the intellectual
property [9]) it is only possible to detect software doping by observation of the
behaviour of the product, i.e., by black-box testing.

This paper develops the foundations for black-box testing approaches geared
towards uncovering doped software in concrete cases. We will start off from an
established formal notion of robust cleanness (which is the negation of software
doping) [10]. Essentially, the idea of robust cleanness is based on a succinct
specification (called a “contract”) that all involved parties agree on and which
captures the intended behaviour of a system with respect to all inputs to the
system. Inputs are considered to be user inputs or environmental inputs given
by sensors. The contract is defined by input and output distances on standard
system trajectories supplemented by input and output thresholds. Simply put,
the input distance and threshold induce a tube around the standard inputs, and
similar for outputs. For any input in the tube around some standard input the
system must be able to react with an output that is in the tube around the
output possible according to the standard.

Doping Tests for Cyber-Physical Systems 315

Example 1. For a diesel car the standard trajectory is the behaviour exhibited
during the official emissions test cycle. The input distance measures the deviation
in car speed from the standard. The input threshold is a small number larger
than the acceptable error tolerance of the cycle limiting the inputs considered of
interest. The output distance then is the difference between (the total amount
of) NOx extruded by the car facing inputs of interest and that extruded if on
the standard test cycle. For cars with an active defeat device we expect to see a
violation of the contract even for relatively large output thresholds.

A cyber-physical system (CPS) is influenced by physical or chemical dynam-
ics. Some of this can be observed by the sensors the CPS is equipped with,
but some portion might remain unknown, making proper analysis difficult. Non-
determinism is a powerful way of representing such uncertainty faithfully, and
indeed the notion of robust cleanness supports non-deterministic reactive sys-
tems [10]. Furthermore, the analysis needs to consider (at least) two trajectories
simultaneously, namely the standard trajectory and another that stays within
the input tube. In the presence of nondeterminism it might even become neces-
sary to consider infinitely many trajectories at the same time. Properties over
multiple traces are called hyperproperties [8]. In this respect, expressing robust
cleanness as a hyperproperty needs both ∀ and ∃ trajectory quantifiers. Formu-
las containing only one type of quantifier can be analysed efficiently, e.g., using
model-checking techniques, but checking properties with alternating quantifiers
is known to be very complex [7,16]. Even more, testing of such problems is
in general not possible. Assume, for example, a property requiring for a (non-
deterministic) system that for every input i, there exists the output o = i,
i.e., one of the system’s possible behaviours computes the identity function. For
black-box systems with infinite input and output domains the property can nei-
ther be verified nor falsified through testing. In order to verify the property,
it is necessary to iterate over the infinite input set. For falsification one must
show that for some i the system can not produce i as output. However, not
observing an output in finitely many steps does not rule out that this output
can be generated. As a result, there is no prior work (we are aware of) that tar-
gets the automatic generation of test cases for hyperproperties, let alone robust
cleanness.

The contribution of this paper is three-fold. (1) We observe that standard
behaviour, in particular when derived by common standardisation procedures,
can be represented by finite models, and we identify under which conditions
the resulting contracts are (un)satisfiable. (2) For a given satisfiable contract we
construct the largest non-deterministic model that is robustly clean w.r.t. this
contract. We integrate this model into a model-based testing theory, which can
provide a non-deterministic algorithm to derive sound test suites. (3) We develop
a testing algorithm for bounded-length tests and discretised input/output values.
We present test cases for the diesel emissions scandal and execute these tests
with a real car on a chassis dynamometer.

316 S. Biewer et al.

2 Software Doping on Reactive Programs

Embedded software is reactive, it reacts to inputs received from sensors by pro-
ducing outputs that are meant to control the device functionality. We consider a
reactive program as a function P : Inω → 2(Outω) on infinite sequences of inputs
so that the program reacts to the k-th input in the input sequence by produc-
ing non-deterministically the k-th output in each respective output sequence.
Thus, the program can be seen, for instance, as a (non-deterministic) Mealy or
Moore machine. Moreover, we consider an equivalence relation ≈ ⊆ Inω × Inω

that equates sequences of inputs. To illustrate this, think of the program embed-
ded in a printer. Here ≈ would for instance equate input sequences that agree
with respect to submitting the same documents regardless of the cartridge brand,
the level of the toner (as long as there is sufficient), etc. We furthermore con-
sider the set StdIn ⊆ Inω of inputs of interest or standard inputs. In the previous
example, StdIn contains all the input sequences with compatible cartridges and
printable documents. The definitions given below are simple adaptations of those
given in [10] (but where parameters are instead treated as parts of the inputs).

Definition 1. A reactive program P is clean if for all inputs i, i′ ∈ StdIn such
that i ≈ i′, P (i) = P (i′). Otherwise it is doped.

This definition states that a program is clean if its execution exhibits the same
visible sequence of output when supplied with two equivalent inputs, provided
such inputs comply with the given standard StdIn. Notice that the behaviour
outside StdIn is deemed immediately clean since it is of no interest.

In the context of the printer example, a program that would fail to print a
document when provided with an ink cartridge from a third-party manufacturer,
but would otherwise succeed to print would be considered doped, since this
difference in output behaviour is captured by the above definition. For this,
the inputs (being pairs of document and printer cartridge) must be considered
equivalent (not identical), which comes down to ink cartridges being compatible.

However, the above definition is not very helpful for cases that need to pre-
serve certain intended behaviour outside of the standard inputs StdIn. This is
clearly the case in the diesel emissions scandal where the standard inputs are
given precisely by the emissions test, but the behaviour observed there is assumed
to generalise beyond the singularity of this test setup. It is meant to ensure that
the amount of NO2 and NO (abbreviated as NOx) in the car exhaust gas does
not deviate considerably in general, and comes with a legal prohibition of defeat
mechanisms that simply turn off the cleaning mechanism. This legal framework
is obviously a bit short sighted, since it can be circumvented by mechanisms that
alter the behaviour gradually in a continuous manner, but in effect drastically.
In a nutshell, one expects that if the input values observed by the electronic
control unit (ECU) of a diesel vehicle deviate within “reasonable distance” from
the standard input values provided during the lab emission test, the amount of
NOx found in the exhaust gas is still within the regulated threshold, or at least
it does not exceed it more than a “reasonable amount”.

Doping Tests for Cyber-Physical Systems 317

This motivates the need to introduce the notion of distances on inputs and
outputs. More precisely, we consider distances on finite traces: dIn : (In∗ × In∗) →
R≥0 and dOut : (Out∗ × Out∗) → R≥0. Such distances are required to be
pseudometrics. (d is a pseudometric if d(x, x) = 0, d(x, y) = d(y, x) and
d(x, y) ≤ d(x, z)+d(z, y) for all x, y, and z.) With this, D’Argenio et al. [10] pro-
vide a definition of robust cleanness that considers two parameters: parameter
κi refers to the acceptable distance an input may deviate from the norm to be
still considered, and parameter κo that tells how far apart outputs are allowed
to be in case their respective inputs are within κi distance (Definition 2 spells
out the Hausdorff distance used in [10]).

Definition 2. Let σ[..k] denote the k-th prefix of the sequence σ. A reactive
program P is robustly clean if for all input sequences i, i′ ∈ Inω with i ∈ StdIn, it
holds for arbitrary k ≥ 0 that whenever dIn(i[..j], i′[..j]) ≤ κi for all j ≤ k, then

1. for all o ∈ P (i) there exists o′ ∈ P (i′) such that dOut(o[..k], o′[..k]) ≤ κo, and
2. for all o′ ∈ P (i′) there exists o ∈ P (i) such that dOut(o[..k], o′[..k]) ≤ κo.

Notice that this is what we actually need for the non-deterministic case: each
possible output generated along one of the executions of the program should be
matched within “reasonable distance” by some output generated by the other
execution of the program. Also notice that i′ does not need to satisfy StdIn, but
it will be considered as long as it is within κi distance of any input satisfying
StdIn. In such a case, outputs generated by P (i′) will be requested to be within
κo distance of some output generated by the respective execution induced by a
standard input.

We remark that Definition 2 entails the existence of a contract which defines
the set of standard inputs StdIn, the tolerance parameters κi and κo as well as
the distances dIn and dOut. In the context of diesel engines, one might imagine
that the values to be considered, especially the tolerance parameters κi and κo

for a particular car model are made publicly available (or are even advertised
by the car manufacturer), so as to enable potential customers to discriminate
between different car models according to the robustness they reach in being
clean. It is also imaginable that the tolerances and distances are fixed by the
legal authorities as part of environmental regulations.

3 Robustly Clean Labelled Transition Systems

This section develops the framework needed for an effective theory of black-box
doping tests based on the above concepts. In this, the standard behaviour (e.g.
as defined by the emission tests) and the robust cleanness definitions together
will induce a set of reference behaviours that then serve as a model in a model-
based conformance testing approach. To set the stage for this, we recall the
definitions of labelled transition systems (LTS) and input-output transitions
systems (IOTS) together with Tretmans’ notion on model-based conformance
testing [25]. We then recast the characterisation of robust cleanness (Definition 2)
in terms of LTS.

318 S. Biewer et al.

Definition 3. A labelled transition system (LTS) with inputs and outputs is
a tuple 〈Q, In,Out,→, q0〉 where (i) Q is a (possibly uncountable) non-empty
set of states; (ii) L = In � Out is a (possibly uncountable) set of labels; (iii)
→ ⊆ Q × L × Q is the transition relation; (iv) q0 ∈ Q is the initial state. We
say that a LTS is an input-output transition system (IOTS) if it is input-enabled
in any state, i.e., for all s ∈ Q and a ∈ In there is some s′ ∈ Q such that s

a−→ s′.

For ease of presentation, we do not consider internal transitions. The following
definitions will be used throughout the paper. A finite path p in an LTS L is
a sequence s1a1s2a2 . . . an−1sn with si

ai−→ si+1 for all 1 ≤ i < n. Similarly, an
infinite path p in L is a sequence s1a1s2a2 . . . with si

ai−→ si+1 for all i ∈ N. Let
paths∗(L) and pathsω(L) be the sets of all finite and infinite paths of L beginning
in the initial states, respectively. The sequence a1a2 · · · an is a finite trace of L if
there is a finite path s1a1s2a2 . . . ansn+1 ∈ paths∗(L), and a1a2 · · · is an infinite
trace if there is an infinite path s1a1s2a2 . . . ∈ pathsω(L). If p is a path, we let
trace(p) denote the trace defined by p. Let traces∗(L) and tracesω(L) be the sets
of all finite and infinite traces of L, respectively. We will use L1 ⊆ L2 to denote
that tracesω(L1) ⊆ tracesω(L2).

Model-Based Conformance Tests. In the following we recall the basic notions
of input-output conformance (ioco) testing [25–27], and refer to the mentioned
literature for more details. In this setting, it is assumed that the implemented
system under test (IUT) I can be modelled as an IOTS while the specification
of the required behaviour is given in terms of a LTS Spec. The idea of whether
the IUT I conforms to the specification Spec is formalized by means of the ioco
relation which we define in the following.

We first need to identify the quiescent (or suspended) states. A state is quies-
cent whenever it cannot proceed autonomously, i.e., it cannot produce an output.
We will make each such state identifiable by adding a quiescence transition to
it, in the form of a loop with the distinct label δ.

Definition 4. Let L = 〈Q, In,Out,→, q0〉 be an LTS. The quiescence closure
(or δ-closure) of L is the LTS Lδ := 〈Q, In,Out ∪ {δ},→δ, q0〉 with →δ := → ∪
{s

δ−→δ s | ∀o ∈ Out, t ∈ Q : s �o−→ t}. Using this we define the suspension traces
of L by traces∗(Lδ).

Let L be an LTS with initial state q0 and σ = a1 a2 . . . an ∈ traces∗(L). We
define L after σ as the set {qn | q0a1q1a2 . . . anqn ∈ paths∗(L)}. For a state q,
let out(q) = {o ∈ Out ∪ {δ} | ∃q′ : q

o−→ q′} and for a set of states Q′ ⊆ Q, let
out(Q′) =

⋃
q∈Q′ out(q).

The idea behind the ioco relation is that any output produced by the IUT
must have been foreseen by its specification, and moreover, any input in the
IUT not foreseen in the specification may introduce new functionality. ioco
captures this by harvesting concepts from refusal testing. As a result, I ioco
Spec is defined to hold whenever out(Iδ after σ) ⊆ out(Specδ after σ) for all
σ ∈ traces∗(Specδ).

Doping Tests for Cyber-Physical Systems 319

The base principle of conformance testing now is to assess by means of testing
whether the IUT conforms to its specification w.r.t. ioco. An algorithm to derive
a corresponding test suite TSpec is available [26,27], so that for any IUT I,
I ioco Spec iff I passes all tests in TSpec.

It is important to remark that the specification in the setting considered here
is missing. Instead, we need to construct the specification from the standard
inputs and the respective observed outputs, together with the distances and the
thresholds given by the contract. Furthermore, this needs to respect the ∀ − ∃
interaction required by the cleanness property (Definition 2).

Software Doping on LTS. To capture the notion of software doping in the context
of LTS, we provide two projections of a trace, projecting to a sequence of the
appearing inputs, respectively outputs. To do this, we extend the set of labels
by adding the input –i, that indicates that in the respective step some output
(or quiescence) was produced (but masking the precise output), and the output
–o that indicates that in this step some (masked) input was given.

The projection on inputs ↓i : Lω → (In∪{–i})ω and the projection on outputs
↓o : Lω → (Out∪{–o})ω are defined for all traces σ and k ∈ N as follows: σ↓i[k] :=
if σ[k] ∈ In then σ[k] else –i and σ↓o[k] := if σ[k] ∈ Out then σ[k] else –o.

They are lifted to sets of traces in the usual elementwise way.

Definition 5. A LTS S is a standard for a LTS L, if tracesω(Sδ) ⊆ tracesω(Lδ).

The above definition provides an interpretation of the notion of StdIn for a given
program P modelled in terms of LTS L. This interpretation relaxes the original
definition of StdIn, because it requires to fix only a subset of the behaviour that
L exhibits when executed with standard inputs. This corresponds to a testing
context, in which recordings of the system executing standard inputs are the
baseline for testing. StdIn can then be considered as implicitly determined as the
input sequences tracesω(S)↓i occurring in S. If instead L and StdIn ⊆ (In ∪ –i)ω

are given, we denote by S(L,StdIn) a standard LTS which is maximal w.r.t. StdIn
and L, i.e., for all σ ∈ tracesω(Sδ

(L,StdIn)) iff σ↓i ∈ StdIn and σ ∈ tracesω(Lδ).
In this new setting, we assume that the distance functions dIn and dOut run

on traces containing labels –i and –o, i.e. they are pseudometrics in (In∪{–i})∗ ×
(In∪{–i})∗ → R≥0 and (Out∪{–o})∗×(Out∪{–o})∗ → R≥0, respectively. We will
denote a contract explicitly by a 5-tuple C = 〈S, dIn, dOut, κi, κo〉, which contains
a LTS S representing some standard behaviour, the distances and thresholds (the
domains In and Out are captured implicitly as the domains of dIn, respectively
dOut). With this, robust cleanness can be restated in terms of LTS as follows.

Definition 6. Let L be an IOTS and C = 〈S, dIn, dOut, κi, κo〉 a contract so
that S is standard for L. This L is robustly clean w.r.t. C if for all σ ∈
tracesω(Sδ) and σ′ ∈ tracesω(Lδ) it holds for arbitrary k ≥ 0 that whenever
dIn(σ[..j]↓i, σ

′[..j]↓i) ≤ κi for all j ≤ k then

1. there exists σ′′ ∈ tracesω(Lδ) s.t. σ′↓i = σ′′↓i and dOutδ(σ[..k]↓o, σ
′′[..k]↓o) ≤ κo,

2. there exists σ′′ ∈ tracesω(Sδ) s.t. σ↓i = σ′′↓i and dOutδ(σ
′[..k]↓o, σ

′′[..k]↓o) ≤ κo.

320 S. Biewer et al.

In the spirit of model-based testing with ioco, Definition 6 takes specific care
of quiescence in a system. In order to properly integrate quiescence into the
context of robust cleanness it must be considered as a unique output. As a
consequence, in the presence of a contract C = 〈S, dIn, dOut, κi, κo〉, we use –
instead of S, Out and dOut – the quiescence closure Sδ of S, Outδ = Out ∪ {δ}
and an extended output distance defined as dOutδ(σ1, σ2) := dOut(σ1\δ, σ2\δ) if
σ1[i] = δ ⇔ σ2[i] = δ for all i, and dOutδ(σ1, σ2) := ∞ otherwise, where σ\δ is
the same as σ with all δ removed.

For the maximal standard LTS S(L,StdIn), Definition 6 echoes the semantics
of the HyperLTL interpretation appearing in Proposition 19 of [10] restricted to
programs with no parameters. Thus, the proof showing that Definition 6 is the
correct interpretation of Definition 2 in terms of LTS, can be obtained in a way
similar to that of Proposition 19 in [10].

In the sequel, we will at some places need to refer to Definition 6 only consider-
ing the second condition (but not the first one). We denote this as Definition 6.2.

4 Reference Implementation for Contracts

As mentioned before, doping tests need to be based on a contract C, which we
assume given. C specifies the domains In, Out, a standard LTS S, the distances
dIn and dOut and the bounds κi and κo. We intuitively expect the contract to
be satisfiable in the sense that it never enforces a single input sequence of the
implementation to keep outputs close enough to two different executions of the
specification while their outputs stretch too far apart. We show such a problem-
atic case in the following example.

Example 2. On the right a quiescence-closed standard LTS Sδ

for an implementation L (shown below) is depicted. For sim-
plicity some input transitions are omitted. Assume Out = {o}
and In = {i, i − κi, i + κi}. Consider the transition labelled x
of L. This must be one of either o or δ, but we will see that
either choice leads to a contradiction w.r.t. the output dis-
tances induced. The input projection of the middle path in L
is i –i and the input distance to (i − κi) –i and (i + κi) –i is
exactly κi, so both branches (i+κi) o and (i−κi) δ of Sδ must
be considered to determine x. For x = o, the output distance
of –o x to –o o in the right branch of Sδ is 0, i.e. less than κo.
However, dOutδ(–o δ, –o o) = ∞ > κo. Thus the output distance
to the left branch of Sδ is too high if picking o. Instead picking

Sδ

i−κi i+κi

o

δ

δ
δ

L
i−κi i+κi

o

i

x

x = δ does not work either, for the symmetric reasons, the problem switches
sides. Thus, neither picking o nor δ for x satisfies robust cleanness here. Indeed,
no implementation satisfying robust cleanness exists for the given contract.

We would expect that a correct implementation fully entails the standard
behaviour. So, to satisfy a contract, the standard behaviour itself must be
robustly clean. This and the need for satisfiability of particular inputs lead to
Definition 7.

Doping Tests for Cyber-Physical Systems 321

Definition 7 (Satisfiable Contract). Let C = 〈S, dIn, dOut, κi, κo〉 be a con-
tract. Let input σi ∈ (In ∪ {–i})ω be the input projection of some trace. σi is
satisfiable for C if and only if for every standard trace σS ∈ tracesω(Sδ) and
k > 0 such that for all j ≤ k dIn(σi[..j], σS [..j]↓i) ≤ κi there is some implemen-
tation L that satisfies Definition 6.2 w.r.t. C and has some trace σ ∈ tracesω(Lδ)
with σ↓i = σi and dOutδ(σ[..k]↓o, σS [..k]↓o) ≤ κo.
C is satisfiable if and only if all inputs σi ∈ (In ∪ {–i})ω are satisfiable for C
and if S is robustly clean w.r.t. C. A contract that is not satisfiable is called
unsatisfiable.

Given a satisfiable contract it is always possible to construct an implementa-
tion that is robustly clean w.r.t. to this contract. Furthermore, for every contract
there is exactly one implementation (modulo trace equivalence) that contains all
possible outputs that satisfy robust cleanness. Such an implementation is called
the largest implementation.

Definition 8 (Largest Implementation). Let C be a contract and L an
implementation that is robustly clean w.r.t. C. L is the largest implementation
within C if and only if for every L′ that is robustly clean w.r.t. C it holds that
tracesω(L′

δ) ⊆ tracesω(Lδ).

In the following, we will focus on the fragment of satisfiable contracts
with standard behaviour defined by finite LTS. For unsatisfiable contracts,
testing is not necessary, because every implementation is not robustly clean
w.r.t. to C. Finiteness of S will be necessary to make testing feasible in prac-
tice. For simplicity we will further assume past-forgetful output distance func-
tions. That is, dOut(σ1, σ2) = dOut(σ′

1, σ
′
2) whenever last(σ1) = last(σ′

1) and
last(σ2) = last(σ′

2) (where last(a1 a2 . . . an) = an.) Thus, we simply assume that
dOut : (Out∪{–o} × Out∪{–o}) → R≥0, i.e., the output distances are determined
by the last output only. We remark that dOutδ(δ, o) = ∞ for all o �= δ.

We will now show how to construct the largest implementation for any con-
tract (of the fragment we consider), which we name reference implementation R.
It is derived from Sδ by adding inputs and outputs in such a way that whenever
the input sequence leading to a particular state is within κi distance of an input
sequence σi of Sδ, then the outputs possible in such a state should be at most κo

distant from those outputs possible in the unique state on Sδ reached through
σi. This ensures that R will satisfy condition (2) in Definition 6.

Reference Implementation. To construct the reference implementation R we
decide to model the quiescence transitions explicitly instead of using the qui-
escence closure. We preserve the property, that in each state of the LTS it is
possible to do an output or a quiescence transition. The construction of R pro-
ceeds by adding all transitions that satisfy the second condition of Definition 6.

Definition 9. Let C = 〈S, dIn, dOut, κi, κo〉 be a contract. The reference imple-
mentation R for C is the LTS 〈(In∪Out)∗, In,Out,→R, ε〉 where →R is defined by

322 S. Biewer et al.

ε

i+[0, 2κi]i+[−κi, 0) other i

i+[−κi, 0) o+[−κo, 2κo]i+[−κi, 0) any i i+[0, 2κi] any i i+[0, 2κi] o+[0, 2κo] other i any o other i any i

i+[−κi,0)
i+[0,2κi]

other i

any i o+[−κo,2κo] any i o+[0,2κo] any o any i

Fig. 1. The reference implementation R of S in Example 3.

∀σi ∈ tracesω(Sδ)↓i :
(∀j ≤ |σ| + 1 : dIn((σ · a)↓i[..j], σi[..j]) ≤ κi)

⇒ ∃σS ∈ tracesω(Sδ) : σS↓i = σi ∧ dOutδ(a↓o, σS [|σ| + 1]↓o) ≤ κo

σ
a−→R σ · a

Notably, R is deterministic, since only transitions of the form σ
a−→R σ · a are

added. As a consequence of this determinism, outputs and quiescence may coexist
as options in a state, i.e. they are not mutually exclusive.

Example 3. Fig. 1 gives a schematic representation of the
reference implementation R for the LTS S on the right.
Input (output) actions are denoted with letter i (o, respec-
tively), quiescence transitions are omitted. We use the
absolute difference of the values, so that dIn(i, i′) := |i−i′|
and dOut(o, o′) := |o−o′|. For this example, the quiescence
closure Sδ looks like S but with δ-loops in states s0, s4,

s0

s2s1 s3

s4 s5 s6

S
i i i+κi

o o+κo o+κo

s5, and s6. Label r+[a, b] should be interpreted as any value r′ ∈ [a + r, b + r]
and similarly r+[a, b) and r+(a, b], appropriately considering closed and open
boundaries; “other i” represents any other input not explicitly considered leaving
the same state; and “any i” and “any o” represent any possible input and output
(including δ), respectively. In any case –i and –o are not considered since they
are not part of the alphabet of the LTS. Also, we note that any possible sequence
of inputs becomes enabled in the last states (omitted in the picture).

Robust Cleanness of Reference Implementation. In the following, the aim is to
show that R is robustly clean. By construction, each state in R equals the trace
that leads to that state. In other words, last(p) = trace(p) for any p ∈ paths∗(R)
can be shown by induction. As a consequence, a path in R can be completely
identified by the trace it defines. The following lemma states that R preserves
all traces of the standard Sδ it is constructed from. This can be proven by using
that Sδ is robustly clean w.r.t. the (satisfiable) contract C (see Definition 7).

Lemma 1. Let R be the reference implementation for C = 〈S, dIn, dOut, κi, κo〉.
Then S is standard for R.

The following theorem states that the reference implementation R is robustly
clean w.r.t. the contract it was constructed from.

Theorem 1. Let R be the reference implementation for some contract C. Then
R is robustly clean w.r.t. C.

Doping Tests for Cyber-Physical Systems 323

Furthermore, it is not difficult to show that R is indeed the largest imple-
mentation within the contract it was constructed from.

Theorem 2. Let R be the reference implementation for some contract C. Then
R is the largest implementation within C.

5 Model-Based Doping Tests

Following the conceptual ideas behind ioco, we need to construct a specification
that is compatible with our notion of robust cleanness in such a way that a test
suite can be derived. Intuitively, such a specification must be able to foresee
every behaviour of the system that is allowed by the contract. We will take the
reference implementation from the previous section as this specification. Indeed
we claim that R is constructed in such a way that whenever an IUT I is robustly
clean, I ioco R holds. The latter translates to

∀σ ∈ traces∗(Rδ) : out(Iδ after σ) ⊆ out(Rδ after σ). (1)

Theorem 3. Let C be a contract with standard S and let IOTS I be robustly
clean w.r.t. C. If R is the reference implementation for C, then I ioco R.

The key observations to prove this theorem are: (i) the reference implementation
is the largest implementation within the contract, i.e. if the IUT is robustly
clean, then all its traces are covered by R, and (ii) by construction of R and
satisfiability of C, the suspension traces of R are exactly its finite traces.

Test Algorithm. An important element of the model-based testing theory is a
non-deterministic algorithm to generate test cases. It is, however, not guaran-
teed that this algorithm, even if existing, is implementable, a problem which we
will tackle in this section. A set of test cases is called a test suite. It is shown
elsewhere [27], that there is an algorithm that can produce a (possibly infinitely
large) test suite T , for which a system I passes T if I is correct w.r.t. ioco
and, conversely, I is correct w.r.t. ioco if I passes T . The former property is
called soundness and the latter is called exhaustiveness. Algorithm 1 shows a
tail-recursive algorithm to test for robust cleanness. This DT algorithm takes as
an argument the history h of the test currently running. Every doping test is
initialized by DT(ε). Several runs of the algorithm constitute a test suite. Each
test can either pass or fail, which is reported by the output of the algorithm.
In each call DT picks one of three choices: (i) it either terminates the test by
returning pass (line 3), (ii) if there is no pending output that has to be read
from the system under test, the algorithm may pick a new input and pass it to
the system (lines 5–6), or (iii) DT reads and checks the next output (or quies-
cence) that the system produces (lines 9–10). Quiescence can be recognized by
using a timeout mechanism that returns δ if no output has been received in a
given amount of time. In the original algorithm, the case and the next input
are determined non-deterministically. Our algorithm is parameterized by Ωcase

324 S. Biewer et al.

Algorithm 1. Doping Test (DT)

Input: history h ∈ (In ∪ Out ∪ {δ})∗

Output: pass or fail
1 c ← Ωcase(h) /* Pick from one of three cases */
2 if c = 1 then
3 return pass /* Finish test generation */
4 else if c = 2 and no output from I is available then
5 i ← ΩIn(h) /* Pick next input */
6 i � I /* Forward input to IUT */
7 return DT(h · i) /* Continue with next step */
8 else if c = 3 or output from I is available then
9 o � I /* Receive output from IUT */

10 if o ∈ acc(h) then
11 return DT(h · o) /* If o is foreseen by oracle continue with next step */
12 else
13 return fail /* Otherwise, report test failure */
14 end if
15 end if

and ΩIn, which can be instantiated by either non-determinism or some optimized
test-case selection. Until further notice we assume non-deterministic selection.
An output or quiescence that has been produced by the IUT is checked by means
of an oracle acc (line 10). The oracle reflects the reference implementation R,
that is used as the specification for the ioco relation and is defined in Eq. (2).

acc(h) := {o ∈ Outδ | (2)
∀σi ∈ tracesω(Sδ)↓i : (∀j ≤ |h|+1 : dIn(σi[..j]↓i, (h · o)[..j]↓i) ≤ κi})

⇒ ∃σ ∈ tracesω(Sδ) : σ↓i = σi↓i ∧ dOutδ(o, σ[|h| + 1]↓o) ≤ κo

Given a finite execution, acc returns the set of acceptable outputs (after such an
execution) which corresponds exactly to the set of outputs in R (after such an
execution). Thus acc(h) is precisely the set of outputs that satisfies the premise
in the definition of R after the trace h, as stipulated in Definition 9.

We refer to acc as an oracle, because it cannot be computed in general due to
the infinite traces of Sδ in the definition. However, we get the following theorem
stating that the algorithm is sound and exhaustive with respect to ioco (and we
present a computable algorithm in the next section). The theorem follows from
the soundness and exhaustiveness of the original test generation algorithm for
model-based testing and Definition 9.

Theorem 4. Let C be a contract with standard S. Let I be an implementation
with Sδ ⊆ Iδ and let R be the largest implementation within C. Then, I ioco R
if and only if for every test execution t = DT(ε) it holds that I passes t.

Corollary 1. Let C be a contract with standard S. Let I be an implementation
with Sδ ⊆ Iδ. If I is robustly clean w.r.t. C, then for every test execution t =
DT(ε) it holds that I passes t.

Doping Tests for Cyber-Physical Systems 325

This corollary is derived from Theorem 3 and the satisfiability of C. It is worth
noting that in this corollary we do not get that I is robustly clean if I always
passes DT. This is due the intricacies of genuine hyperproperties. By testing,
we will never be able to verify the first condition of Definition 6, because this
needs a simultaneous view on all possible execution traces of I. During testing,
however, we always can observe only one trace.

Finite Doping Tests. As mentioned before, the execution of DT is not possible,
because the oracle acc is not computable. There is, however, a computable version
accb of acc for executions up to some test length b for bounded and discretised
In and Out. Even for infinite executions, b can be seen as a limit of interest and
testing is still sound. accb is shown in Eq. (3). The only variation w.r.t. acc lies in
the use of the set tracesb(Sδ), instead of tracesω(Sδ), so as to return all traces of
Sδ whose length is exactly b. Since Sδ is finite, function accb can be implemented.

accb(h) := {o ∈ Outδ | (3)
∀σi ∈ tracesb(Sδ)↓i : (∀j ≤ |h|+1 : dIn(σi[..j]↓i, (h · o)[..j]↓i) ≤ κi)

⇒ ∃σ ∈ tracesb(Sδ) : σ↓i = σi↓i ∧ dOutδ(o, σ[|h|+1]↓o) ≤ κo}

Now we get a new algorithm DTb by replacing acc by accb in DT and by forcing
case 1 when and only when |h| = b. We get a similar soundness theorem for DTb

as in Corollary 1.

Theorem 5. Let C be a contract with standard S. Let I be an implementation
with Sδ ⊆ Iδ. If I is robustly clean w.r.t. C, then for every boundary b and every
test execution t = DTb(ε) it holds that I passes t.

Since I passesDTb(ε) implies I passesDTa(ε) for any a ≤ b, we have in
summary arrived at an on-the-fly algorithm DTb that for sufficiently large b
(corresponding to the length of the test) will be able to conduct a “convicting”
doping test for any IUT I that is not robustly clean w.r.t. a given contract C.
The bounded-depth algorithm effectively circumvents the fact that, except for
S and Sδ, all other objects we need to deal with are countably or uncountably
infinite and that the property we check is a hyperproperty.

We implemented a prototype of a testing framework using the bounded-depth
algorithm. The specification of distances, value domains and test case selection
are parameters of the algorithm that can be set specific for a concrete test
scenario. This flexibility enables us to use the framework in a two-step approach
for cyber-physical systems not equipped with a digital interface to forward the
inputs to: first, the tool can generate test inputs, that are executed by a human
or a robot on the CPS under test. The actual inputs (possibly deviating from
the generated inputs) and outputs from the system are recorded so that in the
second step our tool determines if the (actual) test is passed or failed.

326 S. Biewer et al.

0 200 400 600 800 1,000 1,180
0

32
70

100
120

Time [s]

Sp
ee
d
[k

m h
]

Fig. 2. NEDC speed profile.

6 Evaluation

The normed emission test NEDC (New European Driving Cycle) (see Fig. 2) is
the legally binding framework in Europe [28] (at the time the scandal surfaced).
It is to be carried out on a chassis dynamometer and all relevant parameters are
fixed by the norm, including for instance the outside temperature at which it
is run.

For a given car model, the normed test induces a standard LTS S as fol-
lows. The input dimensions of S are spanned by the sensors the car model is
equipped with (including e.g. temperature of the exhaust, outside temperature,
vertical and lateral acceleration, throttle position, time after engine start, engine
rpm, possibly height above ground level etc.) which are accessible via the stan-
dardized OBD-2 interface [24]. The output is the amount of NOx per kilometre
that has been extruded since engine start. Inputs are sampled at equidistant
times (once per second). The standard LTS S is obtained from the trace rep-
resenting the observations of running NEDC on the chassis dynamometer, say
σS := i1 · · · i1180 oS δ δ δ · · · with inputs i1, · · · i1180 given by the NEDC over
its 20 min (1180 s) duration, and oS is the amount of NOx gases accumulated
during the test procedure. This σS is the only standard trace of our experiments.
The trace ends with an infinite suffix δω of quiescence steps.

The input space, In is a vector space spanned by all possible input parameter
dimensions. For a ∈ In we distinguish the speed dimension as v(a) ∈ R (mea-
sured in km/h). We can use past-forgetful distances with dIn(a, b) := |v(a)−v(b)|
if a, b ∈ In, dIn(–i, –i) = 0 and dIn(a, b) = ∞ otherwise. The speed is the deci-
sive quantity defined to vary along the NEDC (cf. Fig. 2). Hence dIn(a, b) = 0 if
v(a) = v(b) regardless of the values of other parameters. We also take Out = R

for the average amount of NOx gases per kilometre since engine start (in mg/km).
We define dOut(a, b) = |a − b| if a, b ∈ Out, and dOut(a, b) = ∞ otherwise.

Doping Tests in Practice. For the purpose of practically exercising doping tests,
we picked a Renault 1.5 dci (110hp) (Diesel) engine. This engine runs, among
others, inside a Nissan NV200 Evalia which is classified as a Euro 6 car. The test
cycle used in the original type approval of the car was NEDC (which corresponds
to Euro 6b). Emissions are cleaned using exhaust gas recirculation (EGR). The
technical core of EGR is a valve between the exhaust and intake pipe, controlled
by a software. EGR is known to possibly cause performance losses, especially at

Doping Tests for Cyber-Physical Systems 327

0 100 200
0

15

32

50

Time [s]

Sp
ee
d
[k

m h
]

Fig. 3. Initial 200 s of a SineNEDC (red, dotted), its test drive (green) and the NEDC
driven (blue, dashed). (Color figure online)

higher speed. Car manufacturers might be tempted to optimize EGR usage for
engine performance unless facing a known test cycle such as the NEDC.

We fixed a contract with κi = 15 km/h, κo = 180 mg/km. We report here on
two of the tests we executed apart from the NEDC reference: (i) PowerNEDC
is a variation of the NEDC, where acceleration is increased from 0.94 m

s2 to 1.5 m
s2

in phase 6 of the NEDC elementary urban cycle (i.e. after 56 s, 251 s, 446 s and
641 s) and (ii) SineNEDC defines the speed at time t to be the speed of the
NEDC at time t plus 5 · sin(0.5t) (but capped at 0). Both can be generated by
DT1181(ε) for specific deterministic Ωcase and ΩIn. For instance, SineNEDC is
given below. Fig. 3 shows the initial 200 s of SineNEDC (red, dotted).

Ωcase(h) =

{
2 , if |h| ≤ 1179
3 , if |h| = 1180

ΩIn(h) = max
{

0,
NEDC(|h|) + 5 · sin(0.5|h|))

}

The car was fixed on a Maha LPS 2000 dynamometer and attached to an
AVL M.O.V.E iS portable emissions measurement system (PEMS, see Fig. 4)
with speed data sampling at a rate of 20 Hz, averaged to match the 1 Hz rate
of the NEDC. The human driver effectuated the NEDC with a deviation of at
most 9 km/h relative to the reference (notably, the result obtained for NEDC
are not consistent with the car data sheet, likely caused by lacking calibration
and absence of any further manufacturer-side optimisations).

Fig. 4. Nissan NV200 Evalia on a
dynamometer

Table 1. Dynamometer measurements
(sample rate: 1 Hz)

NEDC Power Sine

Distance [m] 11,029 11,081 11,171

Avg. Speed
[
km
h

]
33 29 34

CO2

[
g
km

]
189 186 182

NOx

[
mg
km

]
180 204 584

The PowerNEDC test drive differed by less than 15 km/h and the SineNEDC
by less than 14 km/h from the NEDC test drive, so both inputs deviate by less
than κi. The green line in Fig. 3 shows SineNEDC driven. The test outcomes are
summarised in Table 1. They show that the amount of CO2 for the two tests is
lower than for the NEDC driven. The NOx emissions of PowerNEDC deviate

328 S. Biewer et al.

by around 24 mg/km, which is clearly below κo. But the SineNEDC produces
about 3.24 times the amount of NOx, that is 404 mg/km more than what we
measured for the NEDC, which is a violation of the contract. This result can
be verified with our algorithm a posteriori, namely by using ΩIn to replay the
actually executed test inputs (which are different from the test inputs generated
upfront due to human driving imprecisions) and by feeding the outputs recorded
by the PEMS into the algorithm. As to be expected, this makes the recording
of the PowerNEDC return pass and the recording of SineNEDC return fail.

Our algorithm is powerful enough to detect other kinds of defeat devices like
those uncovered in investigations of the Volkswagen or the Audi case. Due to
lack of space, we cannot present the concrete Ωcase and ΩIn for these examples.

7 Discussion

Related Work. The present work complements white-box approaches to software
doping, like model-checking [10] or static code analysis [9] by a black-box testing
approach, for which the specification is given implicitly by a contract, and usable
for on-the-fly testing. Existing test frameworks like TGV [18] or TorX [29] pro-
vide support for the last step, however they fall short on scenarios where (i) the
specification is not at hand and, among others, (ii) the test input is distorted in
the testing process, e.g., by a human driving a car under test.

Our work is based on the definition of robust cleanness [10] which has concep-
tual similarities to continuity properties [6,17] of programs. However, continuity
itself does not provide a reasonably good guarantee of cleanness. This is because
physical outputs (e.g. the amount of NOx gas in the exhaust) usually do change
continuously. For instance, a doped car may alter its emission cleaning in a
discrete way, but that induces a (rapid but) continuous change of NOx gas con-
centrations. Established notions of stability and robustness [13,19,21,23] differ
from robust cleanness in that the former assure the outputs (of a white-box sys-
tem model) to stabilize despite transient input disturbances. Robust cleanness
does not consider perturbations but (intentionally) different inputs, and needs a
hyperproperty formulation.

Concluding Remarks. This work lays the theoretical foundations for black-box
testing approaches geared towards uncovering doped software. As in the diesel
emissions scandal – where manufacturers were forced to pay excessive fines [22]
and where executive managers are facing lawsuits or indeed went to prison [5,14]
– doped behaviour is typically strongly related to illegal behaviour.

As we have discussed, software doping analysis comes with several challenges.
It can be performed (i) only after production time on the final embedded or
cyber-physical product, (ii) notoriously without support by the manufacturer,
and (iii) the property belongs to the class of hyperproperties with alternating
quantifiers. (iv) Non-determinism and imprecision caused by a human in-the-
loop complicate doping analysis of CPS even further.

Conceptually central to the approach is a contract that is assumed to be
explicitly offered by the manufacturer. The contract itself is defined by very few

Doping Tests for Cyber-Physical Systems 329

parameters making it easy to form an opinion about a concrete contract. And
even if a manufacturer is not willing to provide such contractual guarantees,
instead a contract with very generous parameters can provide convincing evi-
dence of doping if a test uncovers the contract violation. We showed this in a real
automotive example demonstrating how a legally binding reference behaviour
and a contract altogether induce a finite state LTS enabling to harvest input-
output conformance testing for doping tests. We developed an algorithm that
can be attached directly to a system under test or in a three-step process, first
generating a valid test case, afterwards used to guide a human interacting with
the system, possibly adding distortions, followed by an a-posteriori validation
of the recorded trajectory. For more effective test case selection [11,15] we are
exploring different guiding techniques [1,2,12] for cyber-physical systems.

Acknowledgements. We gratefully acknowledge Thomas Heinze, Michael Fries, and
Peter Birtel (Automotive Powertrain Institute of HTW Saar) for sharing their automo-
tive engineering expertise with us, and for providing the automotive test infrastructure.
This work is partly supported by the ERC Grant 695614 (POWVER), by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) grant 389792660 as part
of TRR 248, see https://perspicuous-computing.science, by the Saarbrücken Grad-
uate School of Computer Science, by the Sino-German CDZ project 1023 (CAP),
by ANPCyT PICT-2017-3894 (RAFTSys), and by SeCyT-UNC 33620180100354CB
(ARES).

References

1. Adimoolam, A., Dang, T., Donzé, A., Kapinski, J., Jin, X.: Classification and
coverage-based falsification for embedded control systems. In: Majumdar, R.,
Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 483–503. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9 24

2. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

3. Barthe, G., D’Argenio, P.R., Finkbeiner, B., Hermanns, H.: Facets of software
doping. In: Margaria and Steffen [20], pp. 601–608. https://doi.org/10.1007/978-
3-319-47169-3 46

4. Baum, K.: What the hack is wrong with software doping? In: Margaria and Steffen
[20], pp. 633–647. https://doi.org/10.1007/978-3-319-47169-3 49

5. BBC: Audi chief Rupert Stadler arrested in diesel emissions probe. BBC (2018).
https://www.bbc.com/news/business-44517753. Accessed 28 Jan 2019

6. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity analysis of programs. In:
Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2010, Madrid, Spain, 17–23 January 2010, pp.
57–70. ACM (2010). http://doi.acm.org/10.1145/1706299.1706308

7. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

https://powver.org
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-319-63387-9_24
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-319-47169-3_46
https://doi.org/10.1007/978-3-319-47169-3_46
https://doi.org/10.1007/978-3-319-47169-3_49
https://www.bbc.com/news/business-44517753
http://doi.acm.org/10.1145/1706299.1706308
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15

330 S. Biewer et al.

8. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: CSF 2008, pp. 51–65 (2008).
http://dx.doi.org/10.1109/CSF.2008.7

9. Contag, M., et al.: How they did it: an analysis of emission defeat devices in modern
automobiles. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, 22–26 May 2017, pp. 231–250. IEEE Computer Society (2017).
https://doi.org/10.1109/SP.2017.66

10. D’Argenio, P.R., Barthe, G., Biewer, S., Finkbeiner, B., Hermanns, H.: Is your
software on dope? In: Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 83–110.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54434-1 4

11. de Vries, R.: Towards formal test purposes. In: Formal Approaches to Testing of
Software 2001 (FATES 2001). BRICS Notes Series, No. NS-01-4, pp. 61–76. BRICS,
University of Aarhus, August 2001

12. Deshmukh, J., Jin, X., Kapinski, J., Maler, O.: Stochastic local search for falsifi-
cation of hybrid systems. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015.
LNCS, vol. 9364, pp. 500–517. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24953-7 35

13. Doyen, L., Henzinger, T.A., Legay, A., Nickovic, D.: Robustness of sequential cir-
cuits. In: 10th International Conference on Application of Concurrency to System
Design, ACSD 2010, Braga, Portugal, 21–25 June 2010, pp. 77–84. IEEE Computer
Society (2010). https://doi.org/10.1109/ACSD.2010.26

14. Ewing, J.: Ex-Volkswagen C.E.O. Charged With Fraud Over Diesel Emissions. New
York Times (2018). https://www.nytimes.com/2018/05/03/business/volkswagen-
ceo-diesel-fraud.html. Accessed 28 Jan 2019

15. Feijs, L.M.G., Goga, N., Mauw, S., Tretmans, J.: Test selection, trace distance
and heuristics. In: Testing of Communicating Systems XIV, Applications to Inter-
net Technologies and Services, Proceedings of the IFIP 14th International Confer-
ence on Testing Communicating Systems - TestCom 2002, Berlin, Germany, 19–22
March 2002. IFIP Conference Proceedings, vol. 210, pp. 267–282. Kluwer (2002)

16. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

17. Hamlet, D.: Continuity in sofware systems. In: Proceedings of the International
Symposium on Software Testing and Analysis, ISSTA 2002, Roma, Italy, 22–24
July 2002, pp. 196–200. ACM (2002). https://doi.org/10.1145/566172.566203

18. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. STTT 7(4), 297–315
(2005)

19. Majumdar, R., Saha, I.: Symbolic robustness analysis. In: Proceedings of the 30th
IEEE Real-Time Systems Symposium, RTSS 2009, Washington, DC, USA, 1–4
December 2009, pp. 355–363. IEEE Computer Society (2009). https://doi.org/10.
1109/RTSS.2009.17

20. Margaria, T., Steffen, B. (eds.): ISoLA 2016, Part II. LNCS, vol. 9953. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47169-3

21. Pettersson, S., Lennartson, B.: Stability and robustness for hybrid systems. In:
Proceedings of 35th IEEE Conference on Decision and Control, vol. 2, pp. 1202–
1207, December 1996

22. Riley, C.: Volkswagen’s diesel scandal costs hit $30 billion. CNN Business
(2018). https://money.cnn.com/2017/09/29/investing/volkswagen-diesel-cost-30-
billion/index.html. Accessed 28 Jan 2019

http://dx.doi.org/10.1109/CSF.2008.7
https://doi.org/10.1109/SP.2017.66
https://doi.org/10.1007/978-3-662-54434-1_4
https://doi.org/10.1007/978-3-319-24953-7_35
https://doi.org/10.1007/978-3-319-24953-7_35
https://doi.org/10.1109/ACSD.2010.26
https://www.nytimes.com/2018/05/03/business/volkswagen-ceo-diesel-fraud.html
https://www.nytimes.com/2018/05/03/business/volkswagen-ceo-diesel-fraud.html
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1145/566172.566203
https://doi.org/10.1109/RTSS.2009.17
https://doi.org/10.1109/RTSS.2009.17
https://doi.org/10.1007/978-3-319-47169-3
https://money.cnn.com/2017/09/29/investing/volkswagen-diesel-cost-30-billion/index.html
https://money.cnn.com/2017/09/29/investing/volkswagen-diesel-cost-30-billion/index.html

Doping Tests for Cyber-Physical Systems 331

23. Tabuada, P., Balkan, A., Caliskan, S.Y., Shoukry, Y., Majumdar, R.: Input-output
robustness for discrete systems. In: Proceedings of the 12th International Confer-
ence on Embedded Software, EMSOFT 2012, Part of the Eighth Embedded Sys-
tems Week, ESWeek 2012, Tampere, Finland, 7–12 October 2012, pp. 217–226.
ACM (2012). http://doi.acm.org/10.1145/2380356.2380396

24. The European Parliament and the Council of the European Union: Directive
98/69/ec of the european parliament and of the council. Official Journal of the
European Communities (1998). http://eur-lex.europa.eu/LexUriServ/LexUriServ.
do?uri=CELEX:31998L0069:EN:HTML

25. Tretmans, J.: A formal approach to conformance testing. Ph.D. thesis, University of
Twente, Enschede, Netherlands (1992). http://purl.utwente.nl/publications/58114

26. Tretmans, J.: Conformance testing with labelled transition systems: implementa-
tion relations and test generation. Comput. Netw. ISDN Syst. 29(1), 49–79 (1996).
https://doi.org/10.1016/S0169-7552(96)00017-7

27. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8 1

28. United Nations: UN Vehicle Regulations - 1958 Agreement, Revision 2, Addendum
100, Regulation No. 101, Revision 3 – E/ECE/324/Rev.2/Add.100/Rev.3 (2013).
http://www.unece.org/trans/main/wp29/wp29regs101-120.html

29. de Vries, R.G., Tretmans, J.: On-the-fly conformance testing using SPIN. STTT
2(4), 382–393 (2000). https://doi.org/10.1007/s100090050044

http://doi.acm.org/10.1145/2380356.2380396
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML
http://purl.utwente.nl/publications/58114
https://doi.org/10.1016/S0169-7552(96)00017-7
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1
http://www.unece.org/trans/main/wp29/wp29regs101-120.html
https://doi.org/10.1007/s100090050044

	Doping Tests for Cyber-Physical Systems
	1 Introduction
	2 Software Doping on Reactive Programs
	3 Robustly Clean Labelled Transition Systems
	4 Reference Implementation for Contracts
	5 Model-Based Doping Tests
	6 Evaluation
	7 Discussion
	References

