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Abstract. We present an algorithm that quickly finds falsifying inputs
for hybrid systems, i.e., inputs that steer the system towards violation of
a given temporal logic requirement. Our method is based on a probabilis-
tically directed search of an increasingly fine grained spatial and temporal
discretization of the input space. A key feature is that it adapts to the diffi-
culty of a problem at hand, specifically to the local complexity of each input
segment, as needed for falsification. In experiments with standard bench-
marks, our approach shows comparable or better performance to existing
techniques, while at the same time being relatively simple.

Keywords: Cyber-physical system · Falsification ·
Stochastic optimization · Temporal logic · Quantitative semantics ·
Las Vegas Tree Search

1 Introduction

The falsification problem we consider seeks a (time-bounded) input signal that
causes a hybrid system model to violate a given temporal logic specification. A
popular way to address this is to first construct a “score function” that quan-
tifies how much of the specification has been satisfied during the course of an
execution. The falsification can then be treated as an optimization problem,
which can be solved using standard algorithms. This approach, especially using
a quantitative “robustness” semantics [15] of requirements as the score function,
has been successfully applied, resulting in a number of now mature tools [4,10]
with practical applications as well as and friendly competitions [8,9,28].

Despite its apparent success, robustness is in general not a perfect optimiza-
tion function, but only a heuristic score function [20] with respect to the falsi-
fication problem, as greedy hill climbing may lead to local optima. In practice,
standard optimization algorithms overcome this limitation by including stochas-
tic exploration. The most sophisticated of these can also model the dynamics of
the system (e.g., [2]), in order to estimate the most productive direction of input
signal space to explore. There is, however, “no free lunch” [27], and high per-
formance general purpose optimization algorithms are not necessarily the best
choice. For example, such algorithms often optimize with respect to the entire
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input trace, without exploiting the time causality of the problem, i.e., the fact
that a good trace (one that eventually falsifies the property) may be dependent
on a good trace prefix.

The contribution of this paper is a randomized falsification algorithm
(Sect. 3.1) that exploits the time-causal structure of the problem and that adapts
to local complexity. In common with alternative approaches, our algorithm
searches a discretized space of input signals, but in our case the search space also
includes multiple levels of spatial and temporal granularity (Sect. 3.2). The addi-
tional complexity is mitigated by an efficient tree search that probabilistically
balances exploration and exploitation (Sect. 3.3).

The performance of our algorithm benefits from the heuristic idea to explore
simple (coarse granularity) inputs first, then gradually switch to more complex
inputs that include finer granularity. Importantly, the finer granularity tends only
to be added where it is needed, thus avoiding the exponential penalty of searching
the entire input space at the finer granularity. While it is always possible to
construct pathological problem instances, we find that despite its simplicity,
our approach is effective on benchmarks from the literature. Our experimental
results (Sect. 4) demonstrate that our algorithm can achieve comparable or better
performance than other methods, in terms of speed and reliability of finding a
falsifying input.

2 Preliminaries

In this work we represent a deterministic black-box system model as an
input/output function M : ([0, T ] → R

n) → ([0, T ] → R
m). In general, M

comprises continuous dynamics with discontinuities. M takes a time-bounded,
real-valued input signal u : [0, T ] → R

n of length |u| = T and transforms it to a
time bounded output signal y : [0, T ] → R

m of the same length, but potentially
different dimensionality. The dimension n of the input indicates that at each
moment t ≤ T within the time horizon T , the value u(t) ∈ R

n of the input is an
n-dimensional real vector (analogously for the output).

We denote by u1u2 : [0, T1+T2] → R
n the concatenation of signals u1 and u2

that have the same dimensions. Concatenation of more than two signals follows
naturally and is denoted u1u2u3 · · · . A constant input signal segment is writ-
ten (t, v), where t is a time duration and v ∈ R

n is a vector of input values. A
piecewise constant input signal is the concatenation of such segments.

In this work we adopt the syntax and robustness semantics of STL defined
in [12]. The syntax of an STL formula is thus given by

ϕ ::= ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ UI ϕ | �Iϕ | ♦Iϕ | μ, (1)

where the logical connectives and temporal operators have their usual Boolean
interpretations and equivalences, I is the interval of time over which the temporal
operators range, and atomic formulas μ ≡ f(x1, . . . , xm) > 0 are predicates over
the spatial dimensions of a trace. The robustness of trace y with respect to
formula ϕ, denoted ρ(ϕ,y), is calculated inductively according to the following
robustness semantics, using the equivalence ρ(ϕ,y) ≡ ρ(ϕ,y, 0).
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ρ(μ,y, t) = f(x1[t], . . . , xm[t]), for μ ≡ f(x1, . . . , xm) > 0
ρ(¬ϕ,y, t) = −ρ(ϕ,y, t)

ρ(ϕ1∨ϕ2,y, t) = max(ρ(ϕ1,y, t), ρ(ϕ2,y, t)) ρ(♦Iϕ,y, t) = max
t′∈t+I

(ρ(ϕ,y, t′))

ρ(ϕ1∧ϕ2,y, t) = min(ρ(ϕ1,y, t), ρ(ϕ2,y, t)) ρ(�Iϕ,y, t) = min
t′∈t+I

(ρ(ϕ,y, t′))

ρ(ϕ1UI ϕ2,y, t) = max
t′∈t+I

(
min

t′′∈[t,t′)
(ρ(ϕ1,y, t′′)),min(ρ(ϕ2,y, t′))

)

An important characteristic of the robustness semantics is that it is faithful to
standard boolean satisfaction, such that

ρ(ϕ,y) > 0 =⇒ y |= ϕ and ρ(ϕ,y) < 0 =⇒ y 	|= ϕ. (2)

Together, these equations justify using the robustness semantics ρ(ϕ,M(u)) to
detect whether an input u corresponds to the violation of a requirement ϕ.
This correspondence is exploited to find such falsifying inputs through global
hill-climbing optimization:

Find u∗ = arg min
u∈([0,T ]→Rn)

ρ(ϕ,M(u)) such that ρ(ϕ,M(u∗)) < 0. (3)

Of course, finding an adequate falsifying input u∗ is generally hard and subject
to the limitations of the specific optimization algorithm used.

Sound approximations of the lower and upper bounds of the robustness of
a prefix y can sometimes be used to short-cut the search. We thus define lower
and upper bounds in the following way.

Lower: ρ(ϕ,y) = min
y ′

ρ(ϕ,yy′) Upper: ρ(ϕ,y) = max
y ′

ρ(ϕ,yy′) (4)

A lower bound ρ(ϕ,M(u))) > 0 can be used to detect that a prefix cannot be
extended to a falsifying trace (e.g., after the deadline for a harmful event has
passed). An upper bound ρ(ϕ,M(u)) < 0 similarly implies M(uu′) 	|= ϕ for all
u′, concluding that input u is already a witness for falsification (e.g., a limit is
already exceeded). Robustness can be computed efficiently [11], as well as the
respective upper and lower bounds [13].

3 Approach

We wish to solve the following falsification problem efficiently:

Find u∗ such that ρ(ϕ,M(u∗)) < 0. (5)

Our approach is to repeatedly construct input signals u = u1u2u3 · · · , where ui

is drawn from a predetermined search space of candidate input segments, A.
The choice is probabilistic, according to a distribution D that determines the
search strategy, i.e., which inputs are likely to be tried next given a partially
explored search space. The construction of each input is done incrementally, to
take advantage of the potential short cuts described at the end of Sect. 2.
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Algorithm 1 “adaptive Las Vegas Tree Search” (aLVTS) codifies the high
level functionality of this probabilistic approach, described in detail in Sect. 3.1.

The effectiveness of our algorithm in practice comes from the particular
choices of A and D, which let the search gradually adapt to the difficulty of
the problem. The set A (defined in Sect. 3.2) contains input segments of diverse
granularity, which intuitively corresponds to how precise the input must be in
order to find a falsifying trace. The distribution D (defined in Sect. 3.3) initially
assigns high probabilities to the “coarsest” input segments in A. Coarse here
means that the segments tend to be long in relation to the time horizon T and
large in relation to the extrema of the input space. The algorithm probabilis-
tically balances exploration and exploitation of segments, but as the coarser
segments become fully explored, and the property has not been falsified, the
algorithm gradually switches to finer-grained segments.

3.1 Algorithm

Algorithm 1 searches the space of input signals constructed from piecewise con-
stant (over time) segments, which are chosen at random according to the distri-
bution defined by D in line 6. This distribution is a function of the numbers of
unexplored and explored edges at different levels of granularity, and thus defines
the probabilities of exploration, exploitation and adaptation. The precise calcu-
lation made by D is described in Sect. 3.3.

As the search proceeds, the algorithm constructs a tree whose nodes each
correspond to a unique input signal prefix. The edges of the tree correspond to
the constant segments that make up the input signal. The root node corresponds
to time 0 and the empty input signal (line 4).

To each node identified by an input signal prefix u is associated a set of unex-
plored edges, unexplored(u) ⊆ A, that correspond to unexplored input signal
segments, and a set of explored edges, explored(u) ⊆ A, that remain inconclu-
sive with respect to falsification. Initially, all edges are unexplored (line 1 and line
2). Once an edge has been chosen (line 6), the unique signal segment associated
to the edge may be appended to the signal prefix associated to the node, to form
an extended input signal. If the chosen edge is unexplored, it is removed from
the set of unexplored edges (line 8) and the extended input signal uu′ is trans-
formed by the system into an extended output signal (line 9). If the requirement
is falsified by the output signal (y in line 10), the algorithm immediately quits
and returns the falsifying input signal (line 11). If the requirement is satisfied,
with no possibility of it being falsified by further extensions of the signal (12),
the algorithm quits the current signal (line 13) and starts a new signal from the
root node (line 4). This is the case, in particular, when the length of the signal
exceeds the time horizon of the formula as a consequence of the definition of ρ
in (4). If the requirement is neither falsified nor satisfied, the edge is added to
the node’s set of explored edges (line 14). Regardless of whether the chosen edge
was previously explored or unexplored, if the signal remains inconclusive, the
extended input signal becomes the focus of the next iterative step (line 15).
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Algorithm 1: Adaptive Las Vegas Tree Search (aLVTS)

Input:
system model M : u → y, with u : [0, t] → R

n and y : [0, t] → R
m,

time-bounded specification φ, set of all possible input trace segments A
Output:
u such that M(uu′) �|= φ for all u′, or ⊥ after timeout or maximum iterations

1 unexplored(u) ← A for all u
2 explored(u) ← ∅ for all u
3 repeat
4 u ← 〈〉
5 while unexplored(u) �= ∅ ∨ explored(u) �= ∅ do
6 sample u′ ∼ D(u)

7 if u′ ∈ unexplored(u) then
8 unexplored(u) ← unexplored(u) \ {u′}
9 y ← M(uu′)

10 if ρ(φ,y) < 0 then
11 return uu′

12 if ρ(φ,y) > 0 then

13 continue line 3

14 explored(u) ← explored(u) ∪ {u′}
15 u ← uu′

16 until timeout or maximum number of iterations;
17 return ⊥

While not explicit in the presentation of Algorithm 1, our approach is delib-
erately incremental in the evaluation of the system model. In particular, we
can re-use partial simulations to take advantage of the fact that traces share
common prefixes. Hence, for example, one can associate to every visited u the
terminal state of the simulation that reached it, using this state to initialize a
new simulation when subsequently exploring uu′. This idea also works for the
calculation of robustness. We note, however, that incremental simulations may
be impractical. For example, suspending and re-starting Simulink can be more
expensive than performing an entire simulation from the start.

3.2 Definition of A
The set A contains constant, n-dimensional input signal segments u′ with values
(v1, . . . , vn) ∈ R

n and time duration t. Let vi and vi denote the minimum and
maximum possible values, respectively, of dimension i ∈ {1, . . . , n}. For each
integer level l ∈ {0, . . . , lmax}, we define the set of possible proportions of the
interval [vi, vi] as

pl = {(2j + 1)/2l | j ∈ N0 ≤ (2l − 1)/2}.
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The numerators of all elements are coprime with the denominator, 2l, hence
pi ∩ pj = ∅ for all i 	= j. By definition, p0 also includes 0. Hence, p0 = {0, 1},
p1 =

{
1
2

}
and p2 =

{
1
4 , 3

4

}
, etc. The set of possible values of dimension i at

level l is thus given by
vi,l = vi + pl × (vi − vi).

Rather than making the granularity of each dimension independent, we interpret
the value of l as a granularity “budget” that must be distributed among the
(non-temporal) dimensions of the input signal. The set of possible per-dimension
budget allocations for level l is given by

bl = {(b1, ..., bn) ∈ N
n
0 | b1 + · · · + bn = l}.

For example, with n = 2, b3 = {(0, 3), (1, 2), (2, 1), (3, 0)}. If we denote the set
of possible time durations at level l by tl, then the set of possible input segments
at level l is given by

Al =
⋃

(b1,...,bn)∈bl

tl × v1,b1 × · · · × vn,bn .

Note that while tl is not required here to share the granularity budget, this
remains a possibility. Our implementation actually specifies tl by defining a fixed
number of control points per level, (k0, . . . , klmax), such that the tl = {T/kl} are
singleton sets. The sizes of various Al for different choices of n and l, assuming
|tl| = 1, are given in Table 1.

Table 1. Size of Al for input dimensionality n and level l given that |tl| = 1.

n l = 0 1 2 3 4 5 6 7 8 9 10

2 4 4 9 20 44 96 208 448 960 2048 4352

3 8 12 30 73 174 408 944 2160 4896 11008 24576

In summary, an input segment u′ = (t, v1, . . . , vn) ∈ Al has t ∈ tl and
corresponding budget allocation b1 + · · · + bn = l, with the value vi for each
dimension given by vi = vi + pi(vi − vi), where pi = (2ji + 1)/2bi , for some ji,
defines the proportion between minimum vi and maximum vi.

By construction, Ai ∩ Aj = ∅, for all i 	= j. Hence, we define

unexplored l(u) = unexplored(u) ∩ Al and
explored l(u) = explored(u) ∩ Al.

The set of all possible input signal segments is given by A = A0 ∪ A1 ∪ · · · ∪
Almax . Figure 1 depicts the construction of A for two dimensions. The majority of
candidate input points is concentrated on the outer contour, corresponding to an
extreme choice for one dimension and a fine-grained choice for the other dimen-
sion. While this bias appears extreme, as layers are exhausted, finer-grained
choices become more likely, e.g., after two points from A0 have been tried, all
remaining points from both levels in the second panel would be equally probable.
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–A0

–A1

–A2

–A2

–A3

–A3–A4

–A4

Fig. 1. Construction of A for n = 2 and lmax = 4, with A0 representing the extremes of
the two spatial dimensions. Showing A0 ∪A1 ∪A2 ∪A3 ∪A4. Larger points correspond
to more likely values. Many points lie on the contour: the algorithm tends to combine
finer choices in one dimension with coarse choices in the other dimension.

3.3 Definition of D
The distribution D(u) is constructed implicitly. First, a granularity level l ∈
{0, . . . , lmax} is chosen at random, with probability in proportion to the fraction
of edges remaining at the level, multiplied by an exponentially decreasing scaling
factor. Defining the overall weight of level l as

wl =
|unexplored l(u)| + |explored l(u)|

2l · |Al| ,

level l is chosen with probability wl/
∑lmax

i=0 wi.
Having chosen l, one of the following strategies is chosen uniformly at random:

1. select u′ ∈ unexplored l(u), uniformly at random;
2. select u′ ∈ explored l(u), uniformly at random;
3. select u′ ∈ explored l(u), uniformly at random from those that minimise

ρ(ϕ,M(uu′));
4. select u′ ∈ explored l(u), uniformly at random from those that minimise

ρ(ϕ,M(uu′u∗)), where u∗ denotes any, arbitrary length input signal suffix
that has already been explored from uu′.

Strategy 1 can be considered pure exploration, while strategies 3–4 are three
different sorts of exploitation. In the case that unexplored l(u) or explored l(u)
are empty, their corresponding strategies are infeasible and a strategy is chosen
uniformly at random from the feasible strategies. If for all u′ ∈ explored(u),
explored(uu′) = ∅, then strategy 4 is equivalent to strategy 3, but it is feasible.

4 Evaluation

We evaluate our approach on a selection of standard driving-related automotive
benchmarks, which are of particular interest to us and common in the falsification
literature. Each benchmark has at least one time-varying input to discover (the
motivation of aLVTS), in contrast to simply searching for an initial configuration.
In addition to experiments conducted by us, we include some recent results from
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the ARCH 2019 falsification competition [28]. Our selection is representative,
but not exhaustive, and note that there are some benchmarks used in [28] where
our algorithm does not work well. There are, however, benchmarks where our
algorithm is significantly better than the alternatives, motivating its potential
inclusion in an ensemble approach.

4.1 Benchmarks

Automatic Transmission. This benchmark was proposed in [16] and consists
of a Simulink model and its related requirements. The model has two inputs:
throttle and brake. Depending on the speed and engine load, an appropriate gear
is automatically selected. Besides the current gear g, the model outputs the car’s
speed v and engine rotations ω. We consider the following requirements:

AT1t = �[0,t] v < 120 AT2 = �[0,10]ω < 4750
AT5i = �[0,30]((g 	= i ∧ ◦ g = i) =⇒ ◦ �[0,2.5]g = i)

AT6t,v,ω =
(
�[0,10] v < v

) ∨ (
♦[0,t] ω < ω

)

ATX1i = �[0,30]

(
g = i =⇒ v > 10 · i

)
, i ∈ {3, 4}

ATX2 = ¬(
�[10,30]v ∈ [50, 60]

)

AT* are from [16], with AT5 here subsuming AT3 and AT4 of [16]. ATX* are
additional requirements with interesting characteristics. The syntax ◦ φ denotes
♦[0.001,0.1] φ. Note that for falsification, AT1 and AT2 require extreme inputs,
whereas AT6 and ATX2 require fine-grained inputs. The robustness scores of
AT5 and ATX1 can be ±∞ and are discontinuous at gear changes.

The input signal for the benchmarks is piecewise constant with 4 control
points for random sampling/Breach/S-TaLiRo, which is sufficient to falsify all
requirements. We choose 6 levels, with 2, 2, 3, 3, 3, 4 control points, respectively,
corresponding to a time granularity of input segment durations between 15 (=
30
2 , coarsest) to 7.5 (= 30

4 , finest).

Powertrain Control. The benchmark was proposed for hybrid systems verifica-
tion and falsification in [21]. Falsification tries to detect amplitude and duration
of spikes in the air-to-fuel AF ratio with respect to a reference value AF ref. Those
occur as a response to changes in the throttle θ. The input θ ∈ [0, 62.1) varies
throughout the trace, whereas ω ∈ [900, 1100] is constant. The abbreviation
μ = |AF − AF ref|/AF ref denotes the normalized deviation from the reference.

We consider requirements 27 from [21], which states that after a falling or
rising edge of the throttle, μ should return to the reference value within 1 time
unit and stay close to it for some time. We also consider requirement 29, which
expresses an absolute error bound.

AFC27 = �[11,50] (rise ∨ fall) =⇒ �[1,5] |μ| < β AFC29 = �[11,50]|μ| < γ

where rising and falling edges of θ are detected by rise = θ < 8.8∧♦[0,ε] 40.0 < θ
and fall = 40.0 < θ ∧ ♦[0,ε] θ < 8.8 for ε = 0.1. The concrete bounds β = 0.008
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and γ = 0.007 are chosen from [8,9,28] as a balance between difficulty of the
problem and ability to find falsifying traces.

The input signal is piecewise constant with 10 control points for all falsifica-
tion methods, specifically 5 levels with 10 control points each for aLVTS.

Chasing Cars. In the model from [17] five cars drive in sequence. The time
varying input controls the throttle and brake of the front car (each in [0, 1]),
while the other cars simply react to maintain a certain distance. We consider
five artificial requirements from [28], where yi is the position of the ith car.
FalStar uses the same input parameterization as for the AT benchmarks.

CC1 = �[0,100]y5 − y4 ≤ 40 CC2 = �[0,70]♦[0,30]y5 − y4 ≥ 15
CC3 = �[0,80]((�[0,20]y2 − y1 ≤ 20) ∨ (♦[0,20]y5 − y4 ≥ 40))
CC4 = �[0,65]♦[0,30]�[0,20]y5 − y4 ≥ 8
CC5 = �[0,72]♦[0,8]((�[0,5]y2 − y1 ≥ 9) → (�[5,20]y5 − y4 ≥ 9))

4.2 Experimental Results

We have implemented Algorithm 1 in the prototype tool FalStar, which is
publicly available on github, including repeatability instructions.1 In our own
experiments, we compare the performance of aLVTS with uniform random sam-
pling (both implemented in FalStar) and with the state-of-the-art stochastic
global optimization algorithm CMA-ES [18] implemented in the falsification tool
Breach.2 The machine and software configuration was: CPU Intel i7-3770, 3.40
GHz, 8 cores, 8 Gb RAM, 64-bit Ubuntu 16.04 kernel 4.4.0, MATLAB R2018a,
Scala 2.12.6, Java 1.8.

We compare two performance metrics: success rate (how many falsification
trials were successful in finding a falsifying input) and the number of iterations
made, which corresponds to the number of simulations required and thus indi-
cates time. To account for the stochastic nature of the algorithms, the experi-
ments were repeated for 50 trials. For a meaningful comparison of the number
of iterations until falsification, we tried to maximize the falsification rate for a
limit of 300 iterations per trial.

The number of iterations of the top-level loop in Algorithm 1 in our imple-
mentation corresponds exactly to one complete Simulink simulation up to the
time horizon. For random sampling and CMA-ES, the number of iterations like-
wise corresponds to samples taken by running exactly one simulations each.
Hence the comparison is fair and, as the overhead is dominated by simulation
time, the numbers are roughly proportional to wall-clock times.

1 https://github.com/ERATOMMSD/falstar.
2 https://github.com/decyphir/breach release version 1.2.9.

https://github.com/ERATOMMSD/falstar
https://github.com/decyphir/breach
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Table 2. Successes in 50 trials (“succ.”, higher is better) and number of iterations
averaged over successful trials (“iter.”, lower is better) of uniform random sampling,
Breach/CMA-ES, and FalStar/ Algorithm 1 for a maximum of 300 iterations per
trial. est results for each requirement are highlighted. AT6a: v = 80, ω = 4500. AT6b:
v = 50, ω = 2700. t = 30 in both cases.

Breach: FalStar:
Random CMA-ES aLVTS

succ. iter. succ. iter. succ. iter.
Req. /50 mean /50 mean /50 mean

AT130 43 106.6 50 39.7 50 8.5
ATX13 50 41.0 50 13.2 50 33.4
ATX14 49 67.0 6 17.8 50 23.4
ATX2 19 151.1 50 145.2 50 86.3
AT6a 36 117.3 50 97.0 50 22.8
AT6b 2 117.7 49 46.7 50 47.6

AFC27 15 129.1 41 121.0 50 3.9

Table 3. Results from the ARCH competition.
AT6a: t = 35, v = 80,. AT6b: t = 50, v = 50. AT6c:
t = 65, v = 50. ω = 3000 in all three cases.

S-TaLiRo: Breach: FalStar:
SOAR GNM aLVTS

succ. iter. succ. iter. succ. iter.
Req. /50 mean /50 mean /50 mean

AT120 50 118.8 50 11.0 50 33.0
AT2 50 23.9 50 2.0 50 4.3
AT51 50 26.7 41 74.6 50 69.5
AT52 50 4.1 49 72.0 26 125.3
AT53 50 3.4 49 74.5 50 70.8
AT54 50 10.5 21 84.9 50 71.1
AT6a 49 78.4 50 97.9 50 76.1
AT6b 33 132.6 49 112.9 50 82.4
AT6c 47 61.3 50 94.1 0 –

AFC27 50 70.3 50 3.0 50 3.9
AFC29 50 13.5 50 3.0 50 1.2

CC1 50 9.4 50 3.0 50 4.1
CC2 50 6.0 50 1.0 50 4.0
CC3 50 19.9 50 3.0 50 6.9
CC4 20 188.0 0 – 2 52.0
CC5 50 42.9 49 26.1 46 91.2

Table 2 summarizes our
results in terms of success
rate, and mean number of
iterations of successful trials.
The unambiguously (possibly
equal) best results are high-
lighted in blue. Where the
lowest average number of iter-
ations was achieved without
finding a falsifying input for
every trial, we highlight in
grey the lowest average num-
ber of iterations for 100% suc-
cess. We thus observe that
aLVTS achieves the best per-
formance in all but one case,
ATX13. Importantly, within
the budget of 300 iterations
per trial, aLVTS achieves a
perfect success rate. CMA-ES
is successful in 296 trials out
of the total 350, with sub
maximal success for ATX4

and AFC27. In comparison,
random sampling succeeds in
only 214 trials, with sub max-
imal success in all but ATX1.
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The number of iterations required for falsification varies significantly between
the algorithms and between the benchmarks. For the automatic transmission
benchmarks, as an approximate indication of relative performance, CMA-ES
requires about 50% more iterations than aLVTS, and random sampling requires
again twice as many as CMA-ES. For the powertrain model (AFC27), the per-
formance of aLVTS is more than an order of magnitude better: 3.9 iterations on
average, compared to 121 for CMA-ES.
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Fig. 2. Relative performance of falsification
algorithms with AFC27 powertrain require-
ment: fewer iterations and more successful
results are better.

Figure 2 compares all trial runs
for AFC27, ordered by the num-
ber of iterations required for falsi-
fication. Similar plots for the auto-
matic transmission benchmarks are
shown in Fig. 3. The shape of each
curve gives an intuition of the per-
formance and consistency of its cor-
responding algorithm. In general,
fewer iterations and more success-
ful results are better, so it is clear
that aLVTS performs better than
random sampling and CMA-ES.

To reinforce that the perfor-
mance of aLVTS is at least compa-
rable to other approaches, Table 3
presents some results of the recent
ARCH competition [28]. The values for S-TaLiro and Breach (in different con-
figurations to our experiments) were provided by the respective participants.

4.3 Discussion

For AT1, aLVTS quickly finds the falsifying input signal, as the required throttle
of 100 and brake of 0 are contained in level 0 and are very likely to be tried early
on. In contrast, even though this is a problem that is well-suited to hill-climbing,
CMA-ES has some overhead to sample its initial population, cf. Fig. 3(a).

While CMA-ES deals very well with ATX1 for i = 3, it struggles to find
falsifying inputs for i = 4 (cf. Figs. 3(c) and (d)). We attribute this to the fact
that reaching gear 4 by chance occurs rarely in the exploration of CMA-ES
when the robustness score is uninformative. aLVTS not only explores the spatial
dimensions, but takes opportunistic jumps to later time points, which increases
the probability of discovering a trace (prefix) where the gear is reached.

A priori, one would expect CMA-ES to perform well with ATX2 and AT6,
exploiting its continuous optimization to fine tune inputs between conflicting
requirements. E.g., ATX2 requires that v is both above 50 and below 60; AT4
requires that v is high while maintaining low ω, which is proportional to v.
One would similarly expect the limited discrete choices made by aLVTS to hin-
der its ability to find falsifying inputs. Despite these expectations, our results
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(a) Performance plot for AT1
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(b) Performance plot for ATX2

0 10 20 30 40 50

0
50

10
0

15
0

20
0

25
0

30
0

Index of nth fastest successful result

N
um

be
r o

f i
te

ra
tio

ns

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ●

●
●

● ●

●

Random
CMA−ES

● Adaptive

(c) Performace plot for ATX13
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(d) Performance plot for ATX14
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(e) Plot for AT6 (v = 80, ω = 4500)
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(f) Plot for AT6 (v = 50, ω = 2700)

Fig. 3. Performance comparison for the automatic transmission benchmark.

demonstrate that in most situations aLVTS converges to a falsifying input more
consistently and with fewer iterations than CMA-ES. We speculate that this
is because CMA-ES is too slow to reach the “sweet spots” in the input space,
where its optimization is efficient.
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For ATX2, there are a few instances where aLVTS does not quickly find a
good prefix towards the corridor v ∈ [50, 60] at time 10 (the rightmost points in
Fig. 3(b)), which can be explained by the probabilistic nature of the search.

Regarding two instances of AT6 in Figs. 3(e) and (f), the graph for aLVTS
is generally smoother and shallower, whereas CMA-ES shows consistent perfor-
mance for only some of the trials but takes significantly more time on the worst
10 trials. We remark that the two parameter settings seem to pose opposite dif-
ficulty for the two algorithms, as CMA-ES is significantly quicker for two thirds
of the trials for the second instance. It is unclear what causes this variation in
performance of CMA-ES.

The plateaux apparent in some of the results using CMA-ES are difficult to
explain, but suggest some kind of procedural logic or counter to decide termi-
nation. In contrast, the curves for random sampling and aLVTS are relatively
smooth, reflecting their purely probabilistic natures.

For the results in Table 3, Breach was configured to use the GNM algorithm,
which has a phase of sampling extreme and random values, thus sharing some
of the characeristics of the aLVTS algorithm. As a consequence, many results of
these two approaches are quite similar. A take-away is that algorithms that use
random sampling in a disciplined way but are otherwise fairly simple work well
on many falsification problem. There is no best overall tool: S-TaLiRo is quickest
on the AT5 requirements involving discrete gear changes, whereas GNM yields
the best results for the chasing cars model.

The AT and CC results for aLVTS show its capability to adapt to the (infor-
mal) difficulty of the problem, where the number of iterations increases but the
falsification rate stays high. For AT52 and AT6b in Table 3 we conjecture that
the available granularities of the search space are misaligned with the actual
values to find a violation. Precisely, the required values are not contained in a
set Ai that is sampled within the budget of 300; i is too large.

5 Related Work

The idea to find falsifying inputs using robustness as an optimization function
originates from [15] and has since been extended to the parameter synthesis
problem (e.g., [22]). Approaches to make the robustness semantics more infor-
mative include [3,14], which use integrals instead of min/max in the semantics of
temporal operators. Two mature implementations in MATLAB are S-Taliro [4]
and Breach [10], which have come to define the benchmark in this field. Users of
S-Taliro and Breach can select from a range of optimization algorithms, includ-
ing Uniform Random, Nelder-Mead, Simulated Annealing, Cross-Entropy and
CMA-ES. These cover a variety of trade-offs between exploration of the search
space and exploitation of known good intermediate results.

Underminer [5] is a recent falsification tool that learns the (non-) convergence
of a system to direct falsification and parameter mining. It supports STL formu-
las, SVMs, neural nets, and Lyapunov-like functions as classifiers. Other global
approaches include [1], which partitions the input space into sub-regions from
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which falsification trials are run selectively. This method uses coverage metrics
to balance exploration and exploitation. Comprehensive surveys of simulation
based methods for the analysis of hybrid systems are given in [6,23].

The characteristic of our approach to explore the search space incremen-
tally is shared with rapidly-exploring random trees (RRTs). The so-called star
discrepancy metric guides the search towards unexplored regions and a local
planner extends the tree at an existing node with a trajectory segment that
closely reaches the target point. RRTs have been used successfully in robotics [24]
and also in falsification [13]. On the other hand, the characteristic of our app-
roach taking opportunistic coarse jumps in time is reminiscent of stochastic local
search [7] and multiple-shooting [31].

Monte Carlo tree search (MCTS) has been applied to a model of aircraft
collisions in [25], and more recently in a falsification context to guide global
optimization [30], building on the previous idea of time-staging [29]. That work
noted the strong similarities between falsification using MCTS and statistical
model checking (SMC) using importance splitting [19]. The robustness seman-
tics of STL, used in [29,30] and the present approach to guide exploration, can
be seen as a “heuristic score function” [20] in the context of importance split-
ting. All these approaches construct trees from traces that share common prefixes
deemed good according to some heuristic. The principal difference is that impor-
tance splitting aims to construct a diverse set of randomly-generated traces that
all satisfy a property (equivalently, falsify a negated property), while falsifica-
tion seeks a single falsifying input. The current work can be distinguished from
standard MCTS and reinforcement learning [26] for similar reasons. These tech-
niques tend to seek optimal policies that make good decisions in all situations,
unnecessarily (in the present context) covering the entire search space.

6 Conclusion

The falsification problem is inherently hard (no theoretically best solution for
all examples can exist), but our simple approach can provide useful results in
isolation or as part of an ensemble. We have demonstrated this by matching and
outperforming existing state-of-the-art methods on a representative selection
of standard benchmarks. We hypothesize the reason our approach works well
stems from the fact that there tends to be a significant mass of simple falsifying
inputs for common benchmarks. As future work we will test this hypothesis
(and the limits of our approach) by applying our algorithm to a wider range of
benchmarks. In addition, we propose to fine-tune the probabilities of exploration
vs. exploitation, and find better inputs by interpolating from previously seen
traces, in a manner reminiscent of the linear combinations computed by the
Nelder-Mead algorithm.



Fast Falsification of Hybrid Systems 179

Acknowledgement. This work is supported by the ERATO HASUO Metamath-
ematics for Systems Design Project (No. JPMJER1603), JST; and Grants-in-Aid
No. 15KT0012, JSPS.

References
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11. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 19

https://doi.org/10.1007/978-3-319-63387-9_24
https://doi.org/10.1007/978-3-319-46982-9_27
https://doi.org/10.1007/978-3-319-46982-9_27
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-319-24953-7_35
https://doi.org/10.1007/978-3-319-24953-7_35
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-39799-8_19


180 G. Ernst et al.
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22. Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-
loop control models. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
34(11), 1704–1717 (2015)

23. Kapinski, J., Deshmukh, J.V., Jin, X., Ito, H., Butts, K.: Simulation-based
approaches for verification of embedded control systems: an overview of traditional
and advanced modeling, testing, and verification techniques. IEEE Control Syst.
Mag. 36(6), 45–64 (2016)

24. LaValle, S.M., Kuffner Jr., J.J.: Randomized kinodynamic planning. Int. J. Robot.
Res. (IJRR) 20(5), 378–400 (2001)

25. Lee, R., Kochenderfer, M.J., Mengshoel, O.J., Brat, G.P., Owen, M.P.: Adaptive
stress testing of airborne collision avoidance systems. In: IEEE/AIAA 34th Digital
Avionics Systems Conference (DASC 2015), pp. 6C2:1–6C2:13 (2015)

26. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn.
MIT press, Cambridge (2018)

27. Wolpert, D., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1(1), 67–82 (1997)

28. Yaghoubi, S., et al.: ARCH-COMP19 category report: results on the falsification
benchmarks. In: Frehse, G. (ed.) Applied Verification of Continuous and Hybrid
Systems (ARCH). EPiC Series in Computing. EasyChair (2019)

https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-319-17524-9_10
https://doi.org/10.1007/3-540-46430-1_16
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-662-45231-8_11
https://doi.org/10.1007/978-3-662-45231-8_11


Fast Falsification of Hybrid Systems 181

29. Zhang, Z., Ernst, G., Hasuo, I., Sedwards, S.: Time-staging enhancement of hybrid
system falsification. In: 2018 IEEE Workshop on Monitoring and Testing of Cyber-
Physical Systems (MT-CPS 2018), pp. 3–4. IEEE, April 2018

30. Zhang, Z., Ernst, G., Sedwards, S., Arcaini, P., Hasuo, I.: Two-layered falsification
of hybrid systems guided by Monte Carlo tree search. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD 2018) (2018)

31. Zutshi, A., Deshmukh, J.V., Sankaranarayanan, S., Kapinski, J.: Multiple shoot-
ing, CEGAR-based falsification for hybrid systems. In: Embedded Software
(EMSOFT), pp. 5:1–5:10 (2014)


	Fast Falsification of Hybrid Systems Using Probabilistically Adaptive Input*-10pt
	1 Introduction
	2 Preliminaries
	3 Approach
	3.1 Algorithm
	3.2 Definition of A
	3.3 Definition of D

	4 Evaluation
	4.1 Benchmarks
	4.2 Experimental Results
	4.3 Discussion

	5 Related Work
	6 Conclusion
	References




