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Abstract. Probabilistic programming aims to help users make deci-
sions under uncertainty. The user writes code representing a probabilistic
model, and receives outcomes as distributions or summary statistics. We
consider probabilistic programming for end-users, in particular spread-
sheet users, estimated to number in tens to hundreds of millions. We
examine the sources of uncertainty actually encountered by spreadsheet
users, and their coping mechanisms, via an interview study. We examine
spreadsheet-based interfaces and technology to help reason under uncer-
tainty, via probabilistic and other means. We show how uncertain values
can propagate uncertainty through spreadsheets, and how sheet-defined
functions can be applied to handle uncertainty. Hence, we draw conclu-
sions about the promise and limitations of probabilistic programming for
end-users.

1 Introduction

In this paper, we discuss the potential of bringing together two rather distinct
approaches to decision making under uncertainty: spreadsheets and probabilistic
programming. We start by introducing these two approaches.

1.1 Background: Spreadsheets and End-User Programming

The spreadsheet is the first “killer app” of the personal computer era, starting
in 1979 with Dan Bricklin and Bob Frankston’s VisiCalc for the Apple II [15].
The primary interface of a spreadsheet—then and now, four decades later—is
the grid, a two-dimensional array of cells. Each cell may hold a literal data
value, or a formula that computes a data value (and may depend on the data
in other cells, which may themselves be computed by formulas). Spreadsheets
help democratise computing by allowing computer users to create their own
customised calculations based on their own data. They are highly flexible and
general-purpose, capable of performing a huge variety of jobs for a great many
users in their working or personal lives.

Spreadsheet formulas comprise calls to a wide collection of built-in algo-
rithms, encapsulated in functions known as worksheet functions. Formulas typi-
cally act on strings, numbers, two-dimensional arrays, and can treat fragments of
the grid as arrays. Formulas may consist of complex, nested expressions, includ-
ing conditionals and other forms of control flow. For these and other reasons,
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spreadsheets can be viewed as code [16], and spreadsheet users are canonical
examples of end-user programmers [18]: people who write code primarily for
their own use. Even though they write code, end-user programmers are usually
not professional developers. An end-user programmer often has little intrinsic
interest or education in computing but instead wishes to get some job done with
the spreadsheet. They are “business professionals or scientists or other kinds of
domain specialists whose jobs involve computational tasks” [24].

Spreadsheets often contain uncertain data: for example, academics may deal
with noise and missing data in their data sets, managers may have to make
business decisions based on projected sales data, and project leaders have to
adapt schedules based on estimated workload. Some of the core affordances of
spreadsheets are mechanisms to deal with uncertainty: for instance, uncertainty
about future events can be modelled simply by trying out different parameters
and immediately seeing an updated model. Due to their flexibility, ubiquity, and
low knowledge barriers, spreadsheets are acknowledged to be a “breakthrough
technology for practical modeling” [28]. Still, this paper considers some proposed
additions to spreadsheets to propagate uncertain values through calculations and
models.

1.2 Background: Probabilistic Programming

Let’s turn to another approach to decision making under uncertainty: statistical
models. The purpose of a statistical model is to infer insights from observed
data. Much expertise is needed to write, and interpret the results of, statistical
inference algorithms, such as randomised Monte Carlo methods or determin-
istic message-passing. The aim of probabilistic programming [12] is to empower
domain experts and expert statisticians to get the benefits of statistical modelling
and machine learning, without needing expertise in writing inference algorithms.
The idea is that the user specifies a statistical model by writing a piece of code,
and delegates the difficulty of statistical inference to an automatic compiler.

Probabilistic programming languages typically comprise a deterministic core
language, plus (1) operations to sample from probability distributions, (2) oper-
ations to condition on observations, and (3) operations to infer properties of
the resulting probability distributions. BUGS [9] is the first probabilistic pro-
gramming language, first developed in 1989 [14], and used extensively in several
textbooks for statisticians and social scientists [8,20,25]. Infer.NET [23], devel-
oped since 2004, is used at scale in Microsoft. BUGS and Infer.NET only support
certain classes of graphical models. Church [10] introduced the idea of a univer-
sal probabilistic programming language, that can express any model written in a
Turing-complete programming language (although efficient inference in general
remains a challenge). More recently, Stan [6] and PyMC3 [21] have also gained
wide popularity, and there is a wide range of research languages, including Figaro
[27], Anglican [38], and many others. Probabilistic programming environments
with graphical representations have also been developed, to aid the understand-
ing of programmers new to the paradigm [13].
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Table 1. Estimated users of probabilistic programming and of spreadsheets.

programming (writing formulas) in spreadsheets
(tens to hundreds of millions of people)

>>>
probabilistic programming (without conditioning) in spreadsheets

(hundreds of thousands of people)
>

probabilistic programming in probabilistic programming languages
(tens of thousands of people)

(Published estimates of spreadsheet users range from tens [32] to hundreds of mil-
lions https://irishtechnews.ie/seven-reasons-why-excel-is-still-used-by-half-a-billion-
people-worldwide/. Palisade, the maker of @Risk, claims use by over 150,000 deci-
sion makers. See https://www.palisade.com/about/about.asp. RStan has about 20 K
downloads per month and the Stan website has about 15K unique visitors per month
(personal communication, Matthijs Vákár, May 2019). See also https://discourse.mc-
stan.org/t/estimating-popularity-of-stan-and-related-packages/8768.)

1.3 Bringing Probabilistic Programming to the Spreadsheet

Why might we want to enable probabilistic programming in spreadsheets? As
we have already discussed, a substantial amount of decision making around the
world is supported by data in spreadsheets. Many models of uncertain situations
such as financial plans, events, scientific experiments, and so on, are built using
spreadsheet formulas by end-user programmers.

Thus, the direction seems inevitable: let’s take probabilistic programming
to the data, to the spreadsheet! These observations have led researchers on
probabilistic programming languages (including one of the authors) to design
probabilistic programming systems aimed towards spreadsheet users. Examples
include Tabular [11] and Invrea’s Scenarios [40].

In fact, probabilistic modelling and even aspects of probabilistic program-
ming have existed in spreadsheets from early on, before the interest in proba-
bilistic programming for statistics and machine learning.

The formula RAND() draws at random from the uniform distribution on the
unit interval. The formula NORM.INV(RAND(),0,1) draws at random from the
standard normal distribution. Writing Monte Carlo simulations using such ran-
domized spreadsheet formulas is a simple form of probabilistic modelling, based
on repeated sampling. Monte Carlo simulations can be implemented, for exam-
ple, by arranging a randomised computation in a row of a sheet, and then repli-
cating the row many times.1 Books on spreadsheet modelling devote whole chap-
ters to this idiom [28,39]. Savage [31] advocates probabilistic modelling using
features such as Excel’s data tables.2

A key aspect of probabilistic programming is that the user writes a
model, and the system handles inference. Writing Monte Carlo simulations by

1 See https://www.youtube.com/watch?v=BQv2Uyea8i4&t=27s, for example.
2 See https://www.probabilitymanagement.org/.

https://irishtechnews.ie/seven-reasons-why-excel-is-still-used-by-half-a-billion-people-worldwide/
https://irishtechnews.ie/seven-reasons-why-excel-is-still-used-by-half-a-billion-people-worldwide/
https://www.palisade.com/about/about.asp
https://discourse.mc-stan.org/t/estimating-popularity-of-stan-and-related-packages/8768
https://discourse.mc-stan.org/t/estimating-popularity-of-stan-and-related-packages/8768
https://www.youtube.com/watch?v=BQv2Uyea8i4&t=27s
https://www.probabilitymanagement.org/
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replicating some formulas is not probabilistic programming as the user is express-
ing the inference algorithm directly. Still, there are well-established add-ins that
do support probabilistic programming without tedious replication by the user.
These include @Risk (pronounced ‘at risk’, first released in 1987) or Crystal Ball.
It seems to be uncommon, but these tools also support forms of Bayesian con-
ditioning via rejection sampling. (Probabilistic programming languages support
conditioning via inference techniques that are far more efficient than rejection
sampling.)

Intriguingly, we can reason that there are more users of probabilistic program-
ming in spreadsheets via these add-ins than in actual probabilistic programming
languages such as BUGS or Stan. Table 1 shows rough estimates of orders of
magnitude of users today. We cannot be certain, of course, because we have only
rough estimates of usage numbers. End-user probabilistic programming does
appear to be a relatively miniscule subset of all end-user programming: the use
of formulas for probabilistic modelling is probably a tiny fraction of the use of
formulas in general.

1.4 How Would Probabilistic Programming Help Spreadsheet
Users?

To understand how better support for probabilistic programming might help
end users, we conducted an interview study of how spreadsheet users manage
uncertainty. The study used thematic analysis [5], a qualitative method, common
in psychology, in which transcripts of the interviews are coded (that is, labelled
by researchers) to mark significant phenomena, and the results aggregated.

This paper reports some technical background, the interview study itself, and
the design implications of the study.

We begin in Sect. 2 by describing two different existing proposals for spread-
sheet extensions that can deal with uncertainty. First, we describe uncertain val-
ues, that can be used like ordinary certain values, and that propagate uncertainty
through calculations. We describe three formalisms for uncertain values: qualita-
tive, possibilistic, and probabilistic. Second, we describe sheet-defined functions,
and how they can be applied to model uncertainty. Section 3 describes our inter-
view study and its findings, including a categorisation of the types of uncertainty
encountered by spreadsheet users in spreadsheets they had constructed, and
also a categorisation of the coping strategies adopted by the spreadsheet users.
Section 4 describes design implications of the interview study, and explores how
the formalisms of Sect. 2 apply to the categorisations of uncertainty faced by
users in Sect. 3.

To the best of our knowledge, this work is the first study of how end-users
deal with uncertain values in spreadsheets, and the first to discuss how various
candidate spreadsheet extensions might match the potential needs of end-users.
We augment Streit’s framework with the idea of using arrays of possible scenarios
or probabilistic samples as a representation of uncertain values.
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2 Spreadsheet Extensions for Uncertainty

We consider how spreadsheets can be extended to better handle different types
of uncertainty. We consider two extensions. First, Streit [36] proposed to store
different sorts of uncertain value in cells, and have these uncertain values prop-
agate through calculations. Second, Peyton Jones, Blackwell, and Burnett [26]
proposed sheet-defined functions as a general-purpose mechanism for end-users
to define new worksheet functions by an example calculation in a sheet. We
explain how both these mechanisms can help users manage uncertainty. We do
so with a running example, which we present next.

2.1 Example: Clara’s Budget

Let us consider Clara,3 a fictitious character who represents a common category
of spreadsheet end-user. She is a confident computer user. She does not identify
as a programmer, but does use spreadsheets in her work and personal life. She
is confident to model with simple formulas including arithmetic and common
functions like SUM, but is not highly confident with more complex formulas.

We join Clara as she is preparing a spreadsheet to help decide whether she
should purchase a sofa, given her budget for this month. The equations below
show her assignments of data and formulas to cells.

E1 = "Budget for Jan 2018"

E3 = "Income"; F4 = 2000
E5 = "Expenses"

E6 = "Rent"; F6 = 1100 // A certain cost
E7 = "Commute"; F7 = 85 // Another certain cost
E8 = "Sofa!"; F8 = 700 // Clara is deciding whether to buy this item
E9 = "Utilities"; F9 = 100 // But she is uncertain about her utilities bill
E10 = "Total expenses"; F10 = SUM(F6:F9) // value: 1985
E12 = "Balance"; F12 = F4−F10 // value: 15

(Instead of the standard view of the spreadsheet, which shows the values of for-
mulas but not the formulas themselves, we use a textual notation for spreadsheets
known as Calculation View [29], and show values of formulas in comments.)

Clara lists out her certain costs, rent and commute, the cost of the sofa, and
puts in her estimate of the utilities bill. She calculates in F12 the balance of her
income given her total expenses, calculated by the formula in F10.

Clara wants the sofa but doesn’t want her total expenses to exceed her
income. She is uncertain about her utilities bill. How can the spreadsheet help
her decide what to do?

3 To be clear, Clara is a fictional character, contrived to illustrate these technical
solutions to representing uncertainty. Our interview study looked at how actual
users deal with uncertainty in today’s spreadsheets. It would be interesting in future
to get the reactions of real people to the technical solutions presented in this section.
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2.2 Managing Uncertainty with Uncertain Values

In this section, we turn to a technical approach to handling uncertainty in spread-
sheets based on storing uncertain values in cells. Most spreadsheet systems allow
a cell to hold only an individual value, such as a text or a number. Streit [36]
proposed and implemented a spreadsheet where a cell can hold an value of an
uncertainty type, such as a number explicitly tagged as an estimate, or a numeric
interval like 7 ± 2, or a probability distribution such as a normal distribution
with parameters for mean and standard deviation.

Other researchers have proposed aggregate values in cells, such as arrays
[2], which could in principle represent uncertain values, but to the best of our
knowledge Streit was the first to consider uncertain values explicitly.

Streit proposed to enrich the spreadsheet interface in several ways:

1. The user can input uncertainty information into cells. Input can be via a
textual notation, such as a numeric range. Input could also be assisted by some
interface that gathers parameters of a probability distribution, for instance.

2. Uncertainty information propagates through formula evaluation.
3. The presence of uncertainty information is indicated within cells. A most

likely value might be displayed, for example, together with an indication that
the value is uncertain.

Unlike Streit, in the following classification we do not consider visualization
techniques. Visualization of uncertainty [37] is an important subject, but out-
side the scope of this paper. In terms of semantics, uncertain values and their
propagation through formula evaluation are a kind of computational effect [1].
To the best of our knowledge, there has been no formal semantics for Streit’s
uncertain values. That too would be an interesting challenge for future research.

Next, we discuss three kinds of uncertain value—Qualitative, Possibilistic,
and Probabilistic—that could be implemented in spreadsheet systems.

Qualitative. The simplest form of uncertain value is an estimate, a qualitative
indication that the value is approximate.

– The function ESTIMATE(V) returns the value V tagged as uncertain.

Clara can indicate that she is uncertain about her utilities bill as follows:

E9 = "Utilities"; F9 = ESTIMATE(100)

(In practice, Clara would likely use some graphical interface to help enter the
ESTIMATE tag, but we omit the details.)

Estimates propagate through calculation, so that the formulas depending on
cell F9 also return estimates.4

F10 = SUM(F6:F9) // value: ESTIMATE(1985)
F12 = F4−F10 // value: ESTIMATE(15)

4 Readers might notice a parallel to the literature on information flow and ‘tainting’.
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Clara’s simple spreadsheet gains little from this qualitative tracking of uncer-
tainty. Still, larger spreadsheets with many values, some uncertain, some not,
may benefit more as there would be a clear indication of which results are cer-
tain, in spite of the presence of uncertain values.

The implementation of qualitative uncertainty as the function ESTIMATE(V)

is merely one possibility. One might also imagine an alternative implementation,
invoked through buttons/menus, where the ‘tag’ is applied as cell metadata,
much like cell formatting. While easier to access for non-expert end-users, this
implementation would also be less flexible; it would not be possible to mark
values within larger expressions as being uncertain, for example.

Possibilistic. There are several possibilistic approaches to uncertainty, where an
uncertain value represents a set of possible values. In one, the multiple scenarios
approach, the uncertain value consists of a tuple of values, each corresponding
to one of N scenarios. For example, N = 3 could represent best case, most-likely
case, and worst case.

– The function SCENARIOS(V1,...,VN) returns an uncertain value representing
N scenarios.

Suppose Clara considers the best case cost of her utilities to be 50, the most-
likely 100, and the worst case to be 150. She can write this as follows:

E9 = "Utilities"; F9 = SCENARIOS(50,100,150)

These scenarios propagate through her calculations like this:

F10 = SUM(F6:F9) // value: SCENARIOS(1935,1985,2035)
F12 = F4−F10 // value: SCENARIOS(65,15,−35)

The spreadsheet tells Clara that, given her assumptions, her best case balance
is 65, most-likely 15, and worst case -15.

Having a multiple-scenario value propagate through the sheet is equivalent
to Clara trying out the three input values one at a time: the classic ‘what-if’
analysis afforded by spreadsheets. Still, the advantage over one at a time entry
is that the spreadsheet can display the three possibilities side-by-side in the cell.
Also, if the other costs are uncertain, Clara can enter those too as multiple-
scenarios. One implementation of uncertainty propagation could automatically
combine all the 1st cases, all the 2nd cases and all the 3rd cases (which in this
simple example corresponds to best-case, most-likely case, and the worst-case),
which is easier than for Clara to manually manage the correspondences.5

An alternative to these dependent scenarios, where an elementwise product
of scenarios is taken, is independent scenarios (which we have not discussed),
where the cartesian product of the individual scenarios would be taken.
5 Some versions of Microsoft Excel provide a specialist tool, the Scenario Manager,

that evaluates multiple copies of a template sheet, one copy for each scenario, and
produces a report. The Scenario Manager is a wizard, outside the formula language.
Its results are not subject to automatic recalculation. See https://www.youtube.
com/watch?v=c0tdVlPvFZ4.

https://www.youtube.com/watch?v=c0tdVlPvFZ4
https://www.youtube.com/watch?v=c0tdVlPvFZ4
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Another form of possibilistic uncertainty, considered by Streit and others, is
a numeric interval, where propagation consists of interval arithmetic [17].

Probabilistic. A possibilistic uncertain value consists of a set of possible values
(such as a finite set of scenarios or an infinite set of real numbers in a numeric
interval). Additionally, a probabilistic uncertain value is a probability distribu-
tion: roughly a possibilistic value, a set, together with a weight for each value.

A simple way to introduce weighted estimates is the triangular distribution:

– The function DIST.TRIANG(a, b, c) constructs a value distributed according to
a triangular distribution, with lower bound a, upper bound b, and mode c,
where a < b and a ≤ c ≤ b.

The triangular distribution can capture subjective judgments of probabilities,
where c is someone such as Clara’s best guess, and a and b are subjectively the
intuitive minimum and maximum. The shape of the density of this continuous
distribution is a triangle that peaks at c and falls to zero at a and b.

If Clara enters a probabilistic approximate value using this function it prop-
agates as follows.

E9 = "Utilities"; F9 = DIST.TRIANG(50,150,100)
F10 = SUM(F6:F9) // value: DIST.TRIANG(1935,2035,1985)
F12 = F4−F10 // value: DIST.TRIANG(−35,65,15)

In the case above, the distribution can be propagated exactly. Streit only
considered propagation of parametric probability distributions (such as the fam-
ilies of normal distributions or triangular distributions) that can be calculated
exactly. We cannot always compute propagated distributions exactly (for exam-
ple, the sum of two triangular distributions is not a triangular distribution,
and in general it may not be possible to derive a closed-form expression for
a distribution generated through any arbitrary arithmetic on other probability
distributions). Instead approximate representations based on Monte Carlo sam-
pling can be used. A general but approximate representation of a probabilistic
uncertain value is an array of samples from the distribution. Such an array is
known as a stochastic information packet (SIP) [30].6 A key advantage of SIPs
is that it is easy to compute with them; for example, the sum of two triangular
distributions represented as SIPs, can be computed (and thereby represented)
as the elementwise addition of the individual SIPs.

How does the spreadsheet visualise a probabilistic uncertain value in a cell? A
simple option is to show “∼15”, that is, the mean 15 together with the sign “∼”
to indicate the uncertainty. A more sophisticated representation is to visualize
the density, perhaps as a histogram, although it takes practice for end users to
make sense of a density.

6 Use of SIPs to represent probabilistic values is equivalent to the mechanisms used
by @Risk and Crystal Ball. Guesstimate is a spreadsheet-like system that uses SIPs
to represent uncertain values. See https://www.getguesstimate.com/.

https://www.getguesstimate.com/
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In Clara’s case, she may be most interested in the risk that her balance
goes below zero. If she writes the Boolean formula F12<0 to test this event,
propagation of the triangular distribution in F12 yields the probability that the
formula is true.

E13="Chance of overdraft"; F13=F12<0 // value: 25%

So with probabilistic assumptions, the spreadsheet can tell Clara the probability
of modelled events such as her overdraft. In this case, she really wants that sofa,
and will take the risk!

2.3 Managing Uncertainty with Sheet-Defined Functions

Observe that when considering multiple chosen scenarios in the possibilistic case,
or when considering many randomly drawn scenarios in the probabilistic case,
we are replaying the original spreadsheet model with different parameters.

A user can replay a calculation by copying part of a sheet, and changing
parameter values. Still, this practice is prone to error as the model gets larger,
or if it and its copies need to be updated.

Peyton Jones, Blackwell, and Burnett [26] proposed sheet-defined functions
as an automatic general alternative to manual replication. It is simply the per-
vasive idea of procedural abstraction from programming languages, but applied
to spreadsheets. A sheet-defined function f is specified by a body, a piece of
grid, and has a number of input parameters identified by ranges in the body,
and an output, also identified by a range in the body. A formula f(V1, . . . , Vn)
is computed by making a copy of the body, pasting the values V1, . . . , Vn into
the parameter ranges, evaluating the body, and then returning the value in the
result range.

Sestoft’s monograph [34] describes how to implement sheet-defined functions.
He also describes example usages of sheet-defined functions, including idioms for
both possibilistic and probabilistic uncertainty.

To explain these idioms, we first turn Clara’s budget into a sheet-defined
function as follows. The function Budget has a single parameter, the uncertain
utilities bill, held in range F9, and it returns the balance together with a numeric
indicator of whether the balance is overdrawn in the range F12:H12.

function BUDGET( F9 ) returns F12:G12 {
E1 = "Budget for Jan 2018"

E3 = "Income"; F4 = 2000
E5 = "Expenses"

E6 = "Rent"; F6 = 1100 // A certain cost
E7 = "Commute"; F7 = 85 // Another certain cost
E8 = "Sofa!"; F8 = 700 // Clara is deciding whether to buy this item
E9 = "Utilities"; F9 = 100 // This cell is the parameter to the SDF
E10 = "Total expenses"; F10 = SUM(F6:F9)
E12 = "Balance"; F12 = F4−F10; G12 = IF(F12<0,1,0) // Result cells

}
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(Here we rely on an extension [22] of Calculation View [29] for a textual notation
for sheet-defined functions. Instead, an implementation of sheet-defined functions
would provide a graphical interface for the user to specify the function name,
parameters, and other metadata.)

Clara can calculate her three scenarios of possibilistic reasoning with the
formulas below. She can write the formula first in C54, and then drag fill to C55

and C56.

B54=50; C54 = BUDGET(B54) // value: {65,0}
B55=100; C55 = BUDGET(B55) // value: {15,0}
B56=150; C56 = BUDGET(B56) // value: {35,1}
In some recent spreadsheet systems, an array held in a cell such as C54 spills

for display into adjacent cells.7 In this case, the formula in cell C54 returns
the array {65, 0}, and therefore the cell C54 displays the number 65, and cell
D54 displays the number 0 (that is, the second item in the array spills into the
adjacent cell D54. Similarly, the arrays returned into C55 and C56 spill into the
corresponding cells in column D.

Clara can make changes to her budget just once in the sheet-defined function,
and they automatically propagate to the three scenarios.

Turning to probabilistic reasoning, we start with the observation that a SIP,
the underlying representation for a probabilistic uncertain value, is simply an
array. We can achieve the effect of Monte Carlo modelling by mapping the sheet-
defined function for our budget over a SIP array. The array is drawn from the
distribution modelling our probabilistic uncertainty about the parameter.

Here is how Clara can do this in her situation:

B58 = SIP.TRIANGULAR(B54,B56,B55,1000) // column vector of samples
C58 = VMAP(B58,Budget) // returns: SIPs with means {15.51, 25%}

The column vector in B58 has 1000 samples from a triangular distribution.
The function call VMAP(B58,Budget) calculates {bi, oi} = Budget(si) for each
sample si with i ∈ 1..1000, and returns a [1000×2] array {bi, oi | i ∈ 1..1000}. In
this example, there is only a single uncertain parameter. To handle N uncertain
inputs, the sheet-defined function would take N arguments, and the input would
be an N -column array of random samples.

We are simply using the advanced encapsulation afforded by sheet-defined
functions to more robustly implement the Monte Carlo simulation idiom
described earlier in Sect. 1.3! This is a more robust implementation as the logic
for each trial is defined exactly once and can be easily modified.

Sheet-defined functions and arrays are general-purpose tools, and so there is
no inbuilt interface for viewing the resulting array as a probability distribution.
Still, it is possible to write formulas, or even sheet-defined functions, to calculate
summary statistics of the resulting array.

7 https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-
behavior-205c6b06-03ba-4151-89a1-87a7eb36e531.

https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
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3 End-User Behaviour with Uncertainty

Clara’s fictitious example is useful to illustrate the differences between for-
malisms, but is clearly contrived. In order to ground our analysis in examples of
real user behaviour, we designed and conducted an interview study.

We aimed to investigate the following questions:

1. What types of uncertainty do spreadsheet users deal with?
2. How do they manage these various types of uncertainty?

We conducted semi-structured interviews of 11 participants, who walked us
through their spreadsheets. We analysed the audio transcripts of these inter-
views, identifying six qualitatively different types of uncertainty, as well as six
categories of strategies participants used to cope with the uncertainty. A sum-
mary of our study protocol, and the results, follows. These results are presented
in greater detail in our paper “Somewhere Around That Number”[3].

3.1 Interview Study

Participants. We interviewed 11 participants who worked in finance, construc-
tion, IT consulting, the oil and gas industry, business administration, and aca-
demic research. The size of participants’ spreadsheets ranged from 40 rows to
thousands of rows. Participants were recruited using convenience sampling via
email invitation and were eligible to participate if they used spreadsheets that
contained uncertain data. We did not filter participants based on whether they
used spreadsheets for work or personal use, but all participants we recruited
dealt with uncertainty in spreadsheets for work purposes. To elicit participation,
the invitation gave several examples of spreadsheet tasks which could involve
uncertainty, such as budgeting, planning, business forecasting, data collection
and analysis, scientific modelling, and making predictions. Interviews lasted on
average 60 min, and participants were reimbursed with a £30 voucher for an
online store.

Procedure. We asked participants to bring one or more of their own spread-
sheets which contained uncertain data to the interview session. They were
instructed to remove any sensitive information that they did not want to share.

In the first part of the session, participants were asked to talk about their
work, and how uncertainty and spreadsheets are a part of this work. In the second
part of the session, we discussed if participants gain insights from uncertainty,
what tools or strategies they use to gain this insight, and what challenges they
perceive in doing so. In the final part, we asked participants to walk us through
their spreadsheets, and explain how these spreadsheets were constructed, and
what they were used for. The session was audio recorded, and participants’
walk-through of their spreadsheets was screen recorded.
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Data Analysis. The audio recordings were transcribed verbatim and analysed
using iterative coding based on an inductive approach of thematic analysis [5].
There was no pre-existing coding scheme, but we did approach the data with
a specific focus to uncover uncertainty types, and user strategies for managing
uncertainty. Through a detailed analysis of the transcripts, we identified key fea-
tures of the spreadsheets and work practices that related to participant concerns
with uncertainty.

3.2 Findings

Types of Uncertainty. Based on participants’ descriptions of their spread-
sheets during the interviews, we identified six types of uncertainty in spread-
sheets: estimates, dynamic data, errors, missing data, unfindable data, and
untraceable data.

1. Estimates were the most common type of uncertainty among participants, and
refer to approximated values of which the precise value is not known, such
as the expected profit of a project: ‘We’re talking about the future. We don’t
know exactly what’s going to happen. All we can do is make best estimates’
(P8).

2. Dynamic data refers to data of which the values changed dependent on time,
for instance stock market information.

3. Errors were either (1) data that users believed to be incorrect based on their
prior knowledge and expectations (these could be caused, for example, by
measurement errors, transcription errors), or (2) a spreadsheet error value,
such as those created by mis-typed formulas, or formulas receiving arguments
of incorrect types, or broken links to external sources. Spreadsheet errors
and their sources are an important area of research in their own right, with
sophisticated existing taxonomies [19] that we shall not replicate here.

4. Missing data were values that were not recorded in the dataset, such as gaps
in measured sensor data.

5. Unfindable data is information which in principle could be computed from
data contained within the spreadsheet, but was hard to extract, and was
thus experienced by the user as uncertain. If users were unable to find the
information, they regularly used their own estimate instead. For example, P7
dealt with timesheets which gave an overview of hours that all employees of
his department had worked per day. He wanted to know how many of these
hours were worked on the weekend, but did not know the correct spreadsheet
formula to retrieve this data from the timesheet: ‘There’s a second unknown,
which is the weekends [...] Well for me it’s difficult, I’m sure there’s probably
people that can extract it out there’ (P7). This type of uncertainty is partic-
ularly interesting, because its presence depends on the circumstances of the
spreadsheet user; it is not merely a static property of the data itself.

6. Untraceable data refers to data for which the source could not be traced. For
instance, participants described situations where it was unclear whether data
they received from other people was derived from a computational model, or
whether it was ‘completely based on their [colleagues’] intuition’ (P11).
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Our claim is that these six categories are useful distinctions between different
kinds of unknowns arising in our sample of spreadsheets, and by inference in
the whole population of spreadsheets. Estimates, Errors and Missing data are
common types of uncertainty found in earlier work [4,33]. In addition to these
uncertainty types, we found additional three types of uncertainty: Dynamic data,
Unfindable data, and Untraceable data.

A further distinction from the literature on uncertainty is between aleatoric
uncertainty, due to some random process, and epistemic uncertainty, due to lack
of knowledge. Our classes of estimates and dynamic data are aleatoric uncertain-
ties, while our classes of errors, missing data, unfindable data, and untraceable
data are epistemic uncertainties.

Participants’ Strategies to Cope with Uncertainty. Participants described
various strategies to cope with uncertainty in their spreadsheets. Through our
analysis we identified 35 different strategies, which were categorised into six high-
level categories: Minimise, Understand, Communicate, Ignore, Exploit, and Add
uncertainty. This is an extension of the categories observed by Boukhelifa et al.
[4], with a specific focus on spreadsheets (the original categorisation was tool-
agnostic).

1. Minimising uncertainty was the most common strategy. Examples of Min-
imise strategies were to acquire more data, or compare the data with historic
data from past situations to try and come to more accurate estimates.

2. The second most common strategy was to Understand uncertainty. Partici-
pants discussed uncertain data with colleagues, read literature on the subject,
researched why the dataset was uncertain, and compared a subset of alterna-
tive scenarios.

3. Participants also tried to Communicate uncertainty to both themselves and to
others. This type of strategy did not necessarily improve people’s understand-
ing of why data was uncertain, but its aim was to highlight that there was
uncertainty present in the data. To communicate uncertainty to themselves,
participants gave spreadsheet cells different colours, or added comments. Par-
ticipants communicated uncertainty to others through presentations, reports
or by providing a verbal narrative.

4. Three participants said they also Ignored uncertainty at times. P6, P10 and
P11 explained it could be difficult to conduct analysis on a dataset that
contained errors or missing values, and these were removed during the analysis
process.

5. Sometimes however, it was valuable to know there was uncertainty in a
dataset. In this case, an Exploit strategy was used, and the uncertainty
was extracted or quantified. For example, P11 exploited missing values by
adding weights to them in model building, based on how often they occurred.
The amount of missing values in a dataset could provide valuable informa-
tion about what caused the uncertainty, and how important they were to
consider.
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6. Interestingly, one coping strategy to deal with uncertainty was to minimise
one type of uncertainty, by Adding another type of uncertainty. For example,
if participants dealt with unfindable data that they could not extract from a
spreadsheet, they used an estimate instead. Uncertainty was also added by
only considering a summary or a subset of the data. P11 dealt with datasets
of measured sensor data, which could be tens of thousands of rows. To be able
to view and easily digest this data, he would replace multiple data points with
one data point, such as the average value of those data points.

Table 2. An overview of each of the six types of uncertainty, showing the definition of
each, and an example quote where a participant described the type of uncertainty.

Type of uncertainty Definition Example quote

Estimates Data approximated by the user of

which the precise value is not

known, such as the expected

number of attendees to an event.

‘The final value will be

somewhere around that figure.

However, I haven’t gotten to the

point yet where I’m able to say:

it’s in this range, it’s in the +/−
3% range’ (P8)

Dynamic data Data which is not static and

changes over time, such as stock

market information.

‘When you go to open that

[spreadsheet] next month, the

information has changed’ (P9)

Errors Data that contains errors, such as

formula or transcription errors.

‘You also get a few very unusual

values, I seem to get negative

infinities quite a lot. Which

clearly is not possible (...) So

there’s a whole load of error

values in there’ (P11)

Missing data Data that is missing from the

data set, such as gaps in

measured sensor data.

‘The weather file that’s used to

generate the data there in the

other program is missing large

chunks of wind data (...) That

was one of those kind of reports

that was fairly heavily caveated

as being ’We’ve had to make

quite a lot of numbers up here,

to get any idea of what might

happen with this’ (P6)

Unfindable data Data which technically is

contained within a spreadsheet,

but which cannot easily be found

by the user, such as the total

amount of hours worked on the

weekend in an employee

timesheet. Usually, being unable

to find it, the user uses an

estimate instead.

‘There’s a second unknown [in

the spreadsheet], which is the

weekends. (...) I think that kind

of formula that we’re trying

Excel to do is probably difficult.

Well for me it’s difficult, I’m

sure there’s probably people that

can extract it out there’ (P7)

Untraceable data Data from which the user cannot

trace its original source, and

whether or how it is calculated,

such as subjective estimates made

by other people, or complex and

inaccessible formulas.

‘Sometimes it would just be

numbers in a spreadsheet, and

you couldn’t really identify what

the hell was going on (...) And

half the time, to actually check

it, the easiest way is almost to

make a new spreadsheet doing it

your own way, and see if you get

the same number’ (P6)



End-User Probabilistic Programming 17

Table 3. An overview of the six categories of coping strategies, its definition and an
example quote where a participant gave an example of the strategy.

Coping strategy Definition Example quote

Add The user adds additional uncertainty

to a spreadsheet. For example, the

user is unable to find data in a sheet,

and uses an estimate or interval

instead. In this situation, data is

contained within a spreadsheet, but

cannot easily be found by the user,

and uncertainty is added by using an

approximated value

‘A lot of the time, there are those

things which just aren’t [worth the

effort to figure out the right formula

to extract data]. So they either get

done quite slowly, the manual way,

or they don’t get done at all. And

you get people putting like fudge

figures (...) and say, ‘Oh well it’s

anywhere between here and here.

That’s the best we can do’ (P6)

Alternatively, a collection of data

points is reduced to one data point,

such as the average value, to make a

large spreadsheet easier to view and

digest

‘It gets very confusing when I start

having dozen sheets, with 1,000

columns, and 10,000 rows in each.

(...) I have a range of values, but

the algorithms only give me an

average, across say 100 points’

(P11)

Communicate The user communicates uncertainty

to others verbally, and through

reports and presentations

‘Although we provide estimates, I do

provide an estimate which is a hard

figure. But what I tell them [clients]

is: it’s around that figure’ (P8)

Users also communicate uncertainty

to themselves, by highlighting cells in

their spreadsheets that contain

uncertain data

‘Quite a lot of colouring. Just to

highlight particular aspects. So I’d

do green for a particular area of

what I think ‘These are definites’.

And light-blue or something for

unknowns’ (P4)

Exploit The user uses the amount of

uncertainty in a spreadsheet as a

valuable piece of information about

the data

‘Sometimes it [uncertainty]

contributes to the forecast, because

you want to know sometimes if

there’s a specific reason for the

missing data’ (P10)

Ignore The user ignores uncertainty, by

removing it from the spreadsheet or

replacing it with other values

‘I use a filter on Excel to filter the

values (...) So I try to identify them

and then find and replace with NAs,

most of the time’ (P11)

Minimise The user minimises uncertainty, by

acquiring more data, or discussing it

with colleagues

‘We will liaise with our front office

to say, ’Does this look correct? Have

things like this happened in the

past?’ If it’s chartered territory, the

stuff that we’ve seen something like

this before, we can get more of a

better estimate’ (P3)

Understand The user tries to understand

uncertainty by reading literature,

discussing it with colleagues, plotting

data, evaluating the data source, and

analysing a subset of possible

scenarios

‘I would read as much around the

literature as I possibly can, I will get

in different views that people have

(...). And then I’ll work from all

that to try and inform myself’ (P2)
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Table 4. An overview of the six types of uncertainty (the counts and percentages
indicate the frequency of each uncertainty type in our dataset of 352 observations)
and the three formalisms. The table indicates how well we think a type of uncertainty
could have been supported by a particular formalism, on the scale: none, weak support,
some support, good support. We used the following rough guidelines to make this
classification: None: this formalism will not help the users in this uncertainty type.
Weak: this formalism will help with this uncertainty type, but has significant limitations
in comparison to the others. Some: this formalism would help in some cases where users
encounter this uncertainty type. Good: (features supported by) this formalism would
help in many or most cases where users that encounter this uncertainty type. An
asterisk (*) indicates that we observed at least one participant directly state that type
of uncertainty would be supported by that formalism.

Dynamic

data

(52, 15%)

Estimates

(175, 50%)

Errors

(47, 13%)

Missing

data

(44, 12%)

Unfindable

data

(24, 7%)

Untraceable

data

(10, 3%)

Qualitative Some Good* Good* Weak None None

Possibilistic Some* Good* None Some None None

Probabilistic Good* Weak Some* Some* None None

4 Design Implications of the Interview Study

So if the makers of spreadsheet software wished to implement user-facing tools
for the representation and management of uncertainty,8 what should they focus
on? What features would solve the most common use cases we observed? In other
words, what should we build to get the most bang for our buck? In this section
we present some implications for design (notwithstanding the criticism of that
phrase [7,35]).

In the previous section we have been introduced to a broad categorisation
of uncertainty formalisms into Qualitative, Possibilistic, and Probabilistic, and
how the formalism determines the family of features that can be implemented
to support them – tags for Qualitative uncertainty, the scenario manager or
intervals for Possibilistic uncertainty, and so on. At the same time, our research
has identified six types of uncertainty in spreadsheets. We therefore examine
how each formalism can support the management of each type of uncertainty,
on a case by case basis, by considering how the user might use the various
implementations of each formalism in those cases.

1. Dynamic data changes over time, either refreshing automatically or need-
ing manual re-entry. A Qualitative tag may help to indicate the presence of
uncertainty. A Possibilistic or Probabilistic representation may help to keep
a record of historic values for a cell, with a Probabilistic representation cap-
turing additional information, helpful for statistical inference.

8 We began this paper with a set of premises leading to the hypothesis: introduc-
ing probabilistic programming to spreadsheets is a Good Idea. Through our user
research, we refined our ideas from focusing on probabilistic programming, to ways
of representing and managing uncertainty more generally.
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Table 5. Participant quotes exemplifying how types of uncertainty could have been
supported by a particular formalism.

Formalism -

Type of

uncertainty

How the formalism would be

used

Example quote

Qualitative -

Estimates

The user can input their own

values of what they think an

estimate is

‘We have to convert that qualitative

scenario into some quantitative

numbers, to say ‘OK, if X wins, it’s

likely that the market’s going to react a

little bit better, just because of her

economic policies, therefore we would

expect GBP to strengthen.’ And then we

would revise our forecast based on that,

going forward. But then again, those

are unknown numbers, we’re just using,

we would use estimates to try and say,

‘This is where we’d end up’ (P3)

Possibilistic -

Dynamic data

The user can input intervals to

indicate the range that dynamic

data can fluctuate in, and/or can

compare a subset of outcomes of

dynamic data

‘You’d have a day rate, and multiply it

in terms of days. And then you add a

certain percentage on afterwards, just

so you have some space’ (P4)

Possibilistic -

Estimates

The user can compare a subset of

possible estimates

‘You get a huge extra benefit from

looking at one policy to looking at two

policies. It’s a bit more

time-consuming, it takes twice as long

to run, but it’s worth doing. But to go

from two to three policies, it’s not so

clear that you get enough extra benefit

from that, from the extra complexity’

(P2)

Probabilistic -

Dynamic data

Based on historic values, the user

can quantify the likelihood of

future values

‘Once you get the data, then it becomes

a modelling exercise. Like what is my

chance of selling something next

month? Well that depends on how

much of that thing has been selling this

month’ (P9)

Probabilistic -

Errors

If the data errors in a spreadsheet

are quantifiable, probabilistic

measures can be used to track

and quantify uncertainty as it

propagates through the

calculations of a spreadsheet

‘At every stage, a lot of the time we

have: if we know we’ve got however

many unknown values in spreadsheet 1,

by the time we get to spreadsheet 10,

there’s a debate about whether the

data’s of any use at all, because the

errors propagate, and multiply. Now I

don’t have a measure of how that

affects it. I’d love to be able to measure

that, but I have no idea how to do that

within the tools’ (P11)

Probabilistic -

Missing data

The user can make estimates

regarding missing data by

analysing the distributions of the

data that does exist in the

spreadsheet

‘If we get certain data, and we want to

make sure: does that follow a certain

distribution, or something like that? Or

is that data based on a certain

distribution? There are tests that give

you a p value, very likely that this data

point’s origins are the same as the

other data points. (...) So that gives

you some confidence data in how well

you can rely on this model, on that

model, and stuff like that’ (P10)
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2. Estimates can be supported by Qualitative tags, which can propagate through
the calculation dependency chain so that it is made apparent which calcu-
lations depend on estimated data. In entering estimates, users may also be
able to provide upper and lower bounds, or a set of possible values, which
are well-supported by the Possibilistic formalism. Finally, if possible, it would
be ideal to elicit a formal probability distribution, but our experience with
users suggests that non-expert end-users find it challenging to understand
and confidently assign parameters to a probability distribution. Consider the
difference between a non-expert having to produce “upper and lower bounds”
for a cost in a budget, and having to produce a “mean and standard deviation
for a Gaussian distribution”. This makes the Probabilistic scenario a weak
overall fit for estimates, although we recognise that it might fit the needs of
some experts very well.

3. Errors benefit most from Qualitative tagging, as a way of annotating their
presence and communicating them to others. It is unclear whether Possibilis-
tic or Probabilistic uncertainty can help in error cases, although some cases
of data entry errors can be detected using the insight that an erroneous data
value is often very unlikely given the distribution of the rest of the data.

4. Missing data can be supported by Qualitative tagging, if calculations are done
on ranges with missing values. Missing values can be inferred and represented
either in a Possibilistic manner (for instance, if the missing value is known to
be a member of a finite set) or in a Probabilistic manner (for instance, if the
missing value is part of a dataset with a known or calculable distribution).

5. Unfindable data – that is, answers that are prohibitively difficult to extract
from the data in the spreadsheet, even if it is possible in principle. This type
of uncertainty cannot be solved by implementing better tools for representing
and manipulating uncertainty; the solutions here depend more on enabling
users to store and retrieve data in different ways, from enabling the pivoting
and refactoring of existing spreadsheet layouts, to better assistance in formula
authoring.

6. Untraceable data might be supported using a Qualitative tag, to indicate
and communicate its presence. However, better tracking of data provenance
would help deal with the issue more holistically. Users should be able to
inspect the history of edits to a spreadsheet cell, and answer the questions:
who edited this cell and when? Was the data manually typed in, copied in
from a document, or written by a macro or other script? The implementation
of some of these ideas (such as tracking and linking to documents from which
data is copied) might go beyond the scope of the spreadsheet software, and
require the participation of other tools and the operating system to track
provenance.

In summary, solutions focused around enabling users to formally represent
uncertainty offer varying levels of support dynamic data, errors, estimates and
missing data, but are unlikely to help with unfindable data and untraceable data.
Table 4 shows a matrix of the three categories and the six types of uncertainty,
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summarising the discussion above. For many pairings where we claim that the
formalism would support the user, we provide a participant quote in Table 5 –
these entries are indicated with an asterisk (*).

It should be noted that the user behaviour we observed was shaped and con-
strained by the affordances of spreadsheets today; users may appear to make
limited use of uncertainty in spreadsheets simply because of the lack of native
support for uncertainty in spreadsheets. There may be a larger latent demand for
such features, which is currently unobservable due to this ‘technological deter-
minism’. Or, there may be no such demand and the observed behaviour is a true
reflection of society’s needs. It is impossible to tell using our interview method-
ology alone.

Bearing this in mind, let us return to the question of what designers of
spreadsheet systems can take away from this. One clear conclusion is that no
single formalism can solve most user problems. Of Qualitative, Possibilistic, and
Probabilistic formalisms, Qualitative tagging appears to be the most widely
applicable, but what the user can do with it is limited. Our recommendation is
therefore to offer features from multiple formalisms. Furthermore, if we were to
pick one to exclude, it would be Possibilistic, as the technique of managing differ-
ent scenarios across different columns (or rows, or cells, or sheets, or even whole
workbooks), as well as tinkering with values in cells, are both already effective
coping strategies in many use cases for Possibilistic data. This recommenda-
tion comes despite the fact that Possibilistic data is likely to be easier to input
and reason about than Probabilistic data, for most end-users. Finally, solutions
focused around representing uncertainty are unlikely to help with unfindable and
untraceable data—for those cases, we need tools offering education, assistance
with authoring, layout and refactoring, and provenance tracking.

5 Conclusions

In this paper, we formally acknowledge the human activity of end-user probabilis-
tic programming, in which a computer user, likely not a statistical expert, creates
models to support their own decision making. While probabilistic programming
is a powerful tool, its widespread adoption is limited by the high statistical and
programming expertise required. Spreadsheets, on the other hand, enjoy the
status of being the premier end-user programming tool, and are arguably the
venue of much of the world’s data and decision making. What if we were to bring
probabilistic programming to spreadsheets?

As a stepping stone, we consider the simpler question of bringing native
support for uncertain values to spreadsheets. The choice of whether we sup-
port qualitative (such as simple tags), possibilistic (such as sets or intervals) or
probabilistic (such as distributions) uncertainty will have profound implications
for the user experience, which we illustrated through the fictitious case study
of Clara’s budget. To study these implications empirically, we interviewed 11
spreadsheet users, focusing on their current use cases and coping strategies for
uncertainty.
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We produced a taxonomy of uncertain data as experienced by end-users, and
analysed how each uncertainty formalism could support the different categories,
finding the following:

– No single formalism emerges the clear winner, and though Possibilistic uncer-
tainty is well-understood by end-users, the data suggests that it would add
the least benefits, since end-users already have several effective strategies for
coping with it.

– We also identified that users experience types of uncertainty, such as unfind-
able and untraceable data, that cannot be solved by representations of uncer-
tainty alone.

– Estimates were the most common type of uncertainty experienced by end-
users in our sample, with 157 occurrences (nearly 50% of all observations).
While we should be careful with drawing quantitative inferences from small
samples such as ours, this is still an indication that Estimates are an impor-
tant category of uncertainty cases.

As well as considering special-purpose uncertain values, we showed idioms for
representing probabilistic and possibilistic uncertainty using the general-purpose
concept of sheet-defined functions.

The idea of probabilistic programming in spreadsheets is certainly alluring.
But for full effect, we must ensure that the idea works for the tens (or even
hundreds) of millions of spreadsheet users facing uncertainty in their decision
making. At present, neither uncertain values nor sheet-defined functions are
available in mainstream spreadsheets. Will one or both revolutionise probabilistic
programming in spreadsheets? Time will tell.
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