
David Parker
Verena Wolf (Eds.)

LN
CS

 1
17

85

16th International Conference, QEST 2019
Glasgow, UK, September 10–12, 2019
Proceedings

Quantitative Evaluation 
of Systems



Lecture Notes in Computer Science 11785

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


David Parker • Verena Wolf (Eds.)

Quantitative Evaluation
of Systems
16th International Conference, QEST 2019
Glasgow, UK, September 10–12, 2019
Proceedings

123



Editors
David Parker
University of Birmingham
Birmingham, UK

Verena Wolf
Saarland University
Saarbrücken, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-30280-1 ISBN 978-3-030-30281-8 (eBook)
https://doi.org/10.1007/978-3-030-30281-8

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4137-8862
https://doi.org/10.1007/978-3-030-30281-8


Preface

This volume contains the papers presented at QEST 2019: 16th International
Conference on Quantitative Evaluation of Systems held during September 10–12,
2019, in Glasgow, UK. QEST is a leading forum on quantitative evaluation and
verification of computer systems and networks, through stochastic models and
measurements. It was held as a standalone event this year.

QEST covers a broad range of topics, including quantitative specification methods,
stochastic and nondeterministic models, and metrics for performance, reliability, safety,
correctness, and security. QEST welcomes a diversity of modeling formalisms,
programming languages, and methodologies that incorporate quantitative aspects such
as probabilities, temporal properties, and other forms of nondeterminism. Papers may
advance empirical, simulation, and analytic methods. QEST also has a tradition of
presenting case studies, highlighting the role of quantitative evaluation in the design of
systems, where the notion of system is broad. Systems of interest include computer
hardware and software architectures, communication systems, embedded systems,
infrastructural systems, and biological systems. Moreover, tools for supporting the
practical application of research results in all of the aforementioned areas are also of
interest to QEST. In short, QEST aims to encourage all aspects of work centered
around creating a sound methodological basis for assessing and designing systems
using quantitative means.

This year’s edition of QEST featured three keynote speakers. Andrew Gordon
(Microsoft Research) gave a talk on “End-User Probabilistic Programming,” Piet Van
Mieghem (Delft University of Technology) spoke about “Epidemic Spread on
Networks,” and Andre Platzer (Carnegie Mellon University) presented “The Logical
Path to Autonomous Cyber-Physical Systems.” This year, QEST also included two
invited tutorials, integrated within the main program. Barbara Fila (Kordy) from INSA
Rennes gave a tutorial titled “Twenty Years of Quantitative Evaluation of Security with
Attack Trees” and Jan Křetínský (Technical University of Munich) spoke about
“Learning in Probabilistic Verification and Synthesis.”

The Program Committee (PC) consisted of 33 experts and we received a total of 40
submissions. Each submission was reviewed by either PC members or external
reviewers (at least three) in a single-blind fashion. Based on the reviews and the PC
discussion phase, 19 papers were selected for the conference program (17 full-length
papers and 2 tool demonstration papers).

Our thanks go to the QEST community for making this an interesting and lively
event; in particular, we acknowledge the hard work of the PC members and the
additional reviewers for sharing their valued expertise with the rest of the community.
The collection and selection of papers was organized through the EasyChair conference
system and the proceedings volume was prepared and published with the help of
Springer, in particular Alfred Hofmann, Aliaksandr Birukou, and Anna Kramer; we
thank them all for their assistance. We would also like to thank Springer for kindly



sponsoring the conference and SICSA (The Scottish Informatics & Computer Science
Alliance) for sponsoring PhD Studentships for Scotland-based students. Finally, we
would also like to thank the local organization team, especially Gethin Norman, the
general chair, for his dedication and excellent work, and the QEST Steering Committee
for their support and guidance.

We hope that you find the conference proceedings rewarding and will consider
submitting papers to QEST 2020.

July 2019 David Parker
Verena Wolf

vi Preface
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End-User Probabilistic Programming

Judith Borghouts, Andrew D. Gordon, Advait Sarkar(B), and Neil Toronto

Microsoft Research, Cambridge, UK
advait@microsoft.com

Abstract. Probabilistic programming aims to help users make deci-
sions under uncertainty. The user writes code representing a probabilistic
model, and receives outcomes as distributions or summary statistics. We
consider probabilistic programming for end-users, in particular spread-
sheet users, estimated to number in tens to hundreds of millions. We
examine the sources of uncertainty actually encountered by spreadsheet
users, and their coping mechanisms, via an interview study. We examine
spreadsheet-based interfaces and technology to help reason under uncer-
tainty, via probabilistic and other means. We show how uncertain values
can propagate uncertainty through spreadsheets, and how sheet-defined
functions can be applied to handle uncertainty. Hence, we draw conclu-
sions about the promise and limitations of probabilistic programming for
end-users.

1 Introduction

In this paper, we discuss the potential of bringing together two rather distinct
approaches to decision making under uncertainty: spreadsheets and probabilistic
programming. We start by introducing these two approaches.

1.1 Background: Spreadsheets and End-User Programming

The spreadsheet is the first “killer app” of the personal computer era, starting
in 1979 with Dan Bricklin and Bob Frankston’s VisiCalc for the Apple II [15].
The primary interface of a spreadsheet—then and now, four decades later—is
the grid, a two-dimensional array of cells. Each cell may hold a literal data
value, or a formula that computes a data value (and may depend on the data
in other cells, which may themselves be computed by formulas). Spreadsheets
help democratise computing by allowing computer users to create their own
customised calculations based on their own data. They are highly flexible and
general-purpose, capable of performing a huge variety of jobs for a great many
users in their working or personal lives.

Spreadsheet formulas comprise calls to a wide collection of built-in algo-
rithms, encapsulated in functions known as worksheet functions. Formulas typi-
cally act on strings, numbers, two-dimensional arrays, and can treat fragments of
the grid as arrays. Formulas may consist of complex, nested expressions, includ-
ing conditionals and other forms of control flow. For these and other reasons,
c© Springer Nature Switzerland AG 2019
D. Parker and V. Wolf (Eds.): QEST 2019, LNCS 11785, pp. 3–24, 2019.
https://doi.org/10.1007/978-3-030-30281-8_1
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4 J. Borghouts et al.

spreadsheets can be viewed as code [16], and spreadsheet users are canonical
examples of end-user programmers [18]: people who write code primarily for
their own use. Even though they write code, end-user programmers are usually
not professional developers. An end-user programmer often has little intrinsic
interest or education in computing but instead wishes to get some job done with
the spreadsheet. They are “business professionals or scientists or other kinds of
domain specialists whose jobs involve computational tasks” [24].

Spreadsheets often contain uncertain data: for example, academics may deal
with noise and missing data in their data sets, managers may have to make
business decisions based on projected sales data, and project leaders have to
adapt schedules based on estimated workload. Some of the core affordances of
spreadsheets are mechanisms to deal with uncertainty: for instance, uncertainty
about future events can be modelled simply by trying out different parameters
and immediately seeing an updated model. Due to their flexibility, ubiquity, and
low knowledge barriers, spreadsheets are acknowledged to be a “breakthrough
technology for practical modeling” [28]. Still, this paper considers some proposed
additions to spreadsheets to propagate uncertain values through calculations and
models.

1.2 Background: Probabilistic Programming

Let’s turn to another approach to decision making under uncertainty: statistical
models. The purpose of a statistical model is to infer insights from observed
data. Much expertise is needed to write, and interpret the results of, statistical
inference algorithms, such as randomised Monte Carlo methods or determin-
istic message-passing. The aim of probabilistic programming [12] is to empower
domain experts and expert statisticians to get the benefits of statistical modelling
and machine learning, without needing expertise in writing inference algorithms.
The idea is that the user specifies a statistical model by writing a piece of code,
and delegates the difficulty of statistical inference to an automatic compiler.

Probabilistic programming languages typically comprise a deterministic core
language, plus (1) operations to sample from probability distributions, (2) oper-
ations to condition on observations, and (3) operations to infer properties of
the resulting probability distributions. BUGS [9] is the first probabilistic pro-
gramming language, first developed in 1989 [14], and used extensively in several
textbooks for statisticians and social scientists [8,20,25]. Infer.NET [23], devel-
oped since 2004, is used at scale in Microsoft. BUGS and Infer.NET only support
certain classes of graphical models. Church [10] introduced the idea of a univer-
sal probabilistic programming language, that can express any model written in a
Turing-complete programming language (although efficient inference in general
remains a challenge). More recently, Stan [6] and PyMC3 [21] have also gained
wide popularity, and there is a wide range of research languages, including Figaro
[27], Anglican [38], and many others. Probabilistic programming environments
with graphical representations have also been developed, to aid the understand-
ing of programmers new to the paradigm [13].
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Table 1. Estimated users of probabilistic programming and of spreadsheets.

programming (writing formulas) in spreadsheets
(tens to hundreds of millions of people)

>>>
probabilistic programming (without conditioning) in spreadsheets

(hundreds of thousands of people)
>

probabilistic programming in probabilistic programming languages
(tens of thousands of people)

(Published estimates of spreadsheet users range from tens [32] to hundreds of mil-
lions https://irishtechnews.ie/seven-reasons-why-excel-is-still-used-by-half-a-billion-
people-worldwide/. Palisade, the maker of @Risk, claims use by over 150,000 deci-
sion makers. See https://www.palisade.com/about/about.asp. RStan has about 20 K
downloads per month and the Stan website has about 15K unique visitors per month
(personal communication, Matthijs Vákár, May 2019). See also https://discourse.mc-
stan.org/t/estimating-popularity-of-stan-and-related-packages/8768.)

1.3 Bringing Probabilistic Programming to the Spreadsheet

Why might we want to enable probabilistic programming in spreadsheets? As
we have already discussed, a substantial amount of decision making around the
world is supported by data in spreadsheets. Many models of uncertain situations
such as financial plans, events, scientific experiments, and so on, are built using
spreadsheet formulas by end-user programmers.

Thus, the direction seems inevitable: let’s take probabilistic programming
to the data, to the spreadsheet! These observations have led researchers on
probabilistic programming languages (including one of the authors) to design
probabilistic programming systems aimed towards spreadsheet users. Examples
include Tabular [11] and Invrea’s Scenarios [40].

In fact, probabilistic modelling and even aspects of probabilistic program-
ming have existed in spreadsheets from early on, before the interest in proba-
bilistic programming for statistics and machine learning.

The formula RAND() draws at random from the uniform distribution on the
unit interval. The formula NORM.INV(RAND(),0,1) draws at random from the
standard normal distribution. Writing Monte Carlo simulations using such ran-
domized spreadsheet formulas is a simple form of probabilistic modelling, based
on repeated sampling. Monte Carlo simulations can be implemented, for exam-
ple, by arranging a randomised computation in a row of a sheet, and then repli-
cating the row many times.1 Books on spreadsheet modelling devote whole chap-
ters to this idiom [28,39]. Savage [31] advocates probabilistic modelling using
features such as Excel’s data tables.2

A key aspect of probabilistic programming is that the user writes a
model, and the system handles inference. Writing Monte Carlo simulations by

1 See https://www.youtube.com/watch?v=BQv2Uyea8i4&t=27s, for example.
2 See https://www.probabilitymanagement.org/.

https://irishtechnews.ie/seven-reasons-why-excel-is-still-used-by-half-a-billion-people-worldwide/
https://irishtechnews.ie/seven-reasons-why-excel-is-still-used-by-half-a-billion-people-worldwide/
https://www.palisade.com/about/about.asp
https://discourse.mc-stan.org/t/estimating-popularity-of-stan-and-related-packages/8768
https://discourse.mc-stan.org/t/estimating-popularity-of-stan-and-related-packages/8768
https://www.youtube.com/watch?v=BQv2Uyea8i4&t=27s
https://www.probabilitymanagement.org/
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replicating some formulas is not probabilistic programming as the user is express-
ing the inference algorithm directly. Still, there are well-established add-ins that
do support probabilistic programming without tedious replication by the user.
These include @Risk (pronounced ‘at risk’, first released in 1987) or Crystal Ball.
It seems to be uncommon, but these tools also support forms of Bayesian con-
ditioning via rejection sampling. (Probabilistic programming languages support
conditioning via inference techniques that are far more efficient than rejection
sampling.)

Intriguingly, we can reason that there are more users of probabilistic program-
ming in spreadsheets via these add-ins than in actual probabilistic programming
languages such as BUGS or Stan. Table 1 shows rough estimates of orders of
magnitude of users today. We cannot be certain, of course, because we have only
rough estimates of usage numbers. End-user probabilistic programming does
appear to be a relatively miniscule subset of all end-user programming: the use
of formulas for probabilistic modelling is probably a tiny fraction of the use of
formulas in general.

1.4 How Would Probabilistic Programming Help Spreadsheet
Users?

To understand how better support for probabilistic programming might help
end users, we conducted an interview study of how spreadsheet users manage
uncertainty. The study used thematic analysis [5], a qualitative method, common
in psychology, in which transcripts of the interviews are coded (that is, labelled
by researchers) to mark significant phenomena, and the results aggregated.

This paper reports some technical background, the interview study itself, and
the design implications of the study.

We begin in Sect. 2 by describing two different existing proposals for spread-
sheet extensions that can deal with uncertainty. First, we describe uncertain val-
ues, that can be used like ordinary certain values, and that propagate uncertainty
through calculations. We describe three formalisms for uncertain values: qualita-
tive, possibilistic, and probabilistic. Second, we describe sheet-defined functions,
and how they can be applied to model uncertainty. Section 3 describes our inter-
view study and its findings, including a categorisation of the types of uncertainty
encountered by spreadsheet users in spreadsheets they had constructed, and
also a categorisation of the coping strategies adopted by the spreadsheet users.
Section 4 describes design implications of the interview study, and explores how
the formalisms of Sect. 2 apply to the categorisations of uncertainty faced by
users in Sect. 3.

To the best of our knowledge, this work is the first study of how end-users
deal with uncertain values in spreadsheets, and the first to discuss how various
candidate spreadsheet extensions might match the potential needs of end-users.
We augment Streit’s framework with the idea of using arrays of possible scenarios
or probabilistic samples as a representation of uncertain values.
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2 Spreadsheet Extensions for Uncertainty

We consider how spreadsheets can be extended to better handle different types
of uncertainty. We consider two extensions. First, Streit [36] proposed to store
different sorts of uncertain value in cells, and have these uncertain values prop-
agate through calculations. Second, Peyton Jones, Blackwell, and Burnett [26]
proposed sheet-defined functions as a general-purpose mechanism for end-users
to define new worksheet functions by an example calculation in a sheet. We
explain how both these mechanisms can help users manage uncertainty. We do
so with a running example, which we present next.

2.1 Example: Clara’s Budget

Let us consider Clara,3 a fictitious character who represents a common category
of spreadsheet end-user. She is a confident computer user. She does not identify
as a programmer, but does use spreadsheets in her work and personal life. She
is confident to model with simple formulas including arithmetic and common
functions like SUM, but is not highly confident with more complex formulas.

We join Clara as she is preparing a spreadsheet to help decide whether she
should purchase a sofa, given her budget for this month. The equations below
show her assignments of data and formulas to cells.

E1 = "Budget for Jan 2018"

E3 = "Income"; F4 = 2000
E5 = "Expenses"

E6 = "Rent"; F6 = 1100 // A certain cost
E7 = "Commute"; F7 = 85 // Another certain cost
E8 = "Sofa!"; F8 = 700 // Clara is deciding whether to buy this item
E9 = "Utilities"; F9 = 100 // But she is uncertain about her utilities bill
E10 = "Total expenses"; F10 = SUM(F6:F9) // value: 1985
E12 = "Balance"; F12 = F4−F10 // value: 15

(Instead of the standard view of the spreadsheet, which shows the values of for-
mulas but not the formulas themselves, we use a textual notation for spreadsheets
known as Calculation View [29], and show values of formulas in comments.)

Clara lists out her certain costs, rent and commute, the cost of the sofa, and
puts in her estimate of the utilities bill. She calculates in F12 the balance of her
income given her total expenses, calculated by the formula in F10.

Clara wants the sofa but doesn’t want her total expenses to exceed her
income. She is uncertain about her utilities bill. How can the spreadsheet help
her decide what to do?

3 To be clear, Clara is a fictional character, contrived to illustrate these technical
solutions to representing uncertainty. Our interview study looked at how actual
users deal with uncertainty in today’s spreadsheets. It would be interesting in future
to get the reactions of real people to the technical solutions presented in this section.
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2.2 Managing Uncertainty with Uncertain Values

In this section, we turn to a technical approach to handling uncertainty in spread-
sheets based on storing uncertain values in cells. Most spreadsheet systems allow
a cell to hold only an individual value, such as a text or a number. Streit [36]
proposed and implemented a spreadsheet where a cell can hold an value of an
uncertainty type, such as a number explicitly tagged as an estimate, or a numeric
interval like 7 ± 2, or a probability distribution such as a normal distribution
with parameters for mean and standard deviation.

Other researchers have proposed aggregate values in cells, such as arrays
[2], which could in principle represent uncertain values, but to the best of our
knowledge Streit was the first to consider uncertain values explicitly.

Streit proposed to enrich the spreadsheet interface in several ways:

1. The user can input uncertainty information into cells. Input can be via a
textual notation, such as a numeric range. Input could also be assisted by some
interface that gathers parameters of a probability distribution, for instance.

2. Uncertainty information propagates through formula evaluation.
3. The presence of uncertainty information is indicated within cells. A most

likely value might be displayed, for example, together with an indication that
the value is uncertain.

Unlike Streit, in the following classification we do not consider visualization
techniques. Visualization of uncertainty [37] is an important subject, but out-
side the scope of this paper. In terms of semantics, uncertain values and their
propagation through formula evaluation are a kind of computational effect [1].
To the best of our knowledge, there has been no formal semantics for Streit’s
uncertain values. That too would be an interesting challenge for future research.

Next, we discuss three kinds of uncertain value—Qualitative, Possibilistic,
and Probabilistic—that could be implemented in spreadsheet systems.

Qualitative. The simplest form of uncertain value is an estimate, a qualitative
indication that the value is approximate.

– The function ESTIMATE(V) returns the value V tagged as uncertain.

Clara can indicate that she is uncertain about her utilities bill as follows:

E9 = "Utilities"; F9 = ESTIMATE(100)

(In practice, Clara would likely use some graphical interface to help enter the
ESTIMATE tag, but we omit the details.)

Estimates propagate through calculation, so that the formulas depending on
cell F9 also return estimates.4

F10 = SUM(F6:F9) // value: ESTIMATE(1985)
F12 = F4−F10 // value: ESTIMATE(15)

4 Readers might notice a parallel to the literature on information flow and ‘tainting’.
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Clara’s simple spreadsheet gains little from this qualitative tracking of uncer-
tainty. Still, larger spreadsheets with many values, some uncertain, some not,
may benefit more as there would be a clear indication of which results are cer-
tain, in spite of the presence of uncertain values.

The implementation of qualitative uncertainty as the function ESTIMATE(V)

is merely one possibility. One might also imagine an alternative implementation,
invoked through buttons/menus, where the ‘tag’ is applied as cell metadata,
much like cell formatting. While easier to access for non-expert end-users, this
implementation would also be less flexible; it would not be possible to mark
values within larger expressions as being uncertain, for example.

Possibilistic. There are several possibilistic approaches to uncertainty, where an
uncertain value represents a set of possible values. In one, the multiple scenarios
approach, the uncertain value consists of a tuple of values, each corresponding
to one of N scenarios. For example, N = 3 could represent best case, most-likely
case, and worst case.

– The function SCENARIOS(V1,...,VN) returns an uncertain value representing
N scenarios.

Suppose Clara considers the best case cost of her utilities to be 50, the most-
likely 100, and the worst case to be 150. She can write this as follows:

E9 = "Utilities"; F9 = SCENARIOS(50,100,150)

These scenarios propagate through her calculations like this:

F10 = SUM(F6:F9) // value: SCENARIOS(1935,1985,2035)
F12 = F4−F10 // value: SCENARIOS(65,15,−35)

The spreadsheet tells Clara that, given her assumptions, her best case balance
is 65, most-likely 15, and worst case -15.

Having a multiple-scenario value propagate through the sheet is equivalent
to Clara trying out the three input values one at a time: the classic ‘what-if’
analysis afforded by spreadsheets. Still, the advantage over one at a time entry
is that the spreadsheet can display the three possibilities side-by-side in the cell.
Also, if the other costs are uncertain, Clara can enter those too as multiple-
scenarios. One implementation of uncertainty propagation could automatically
combine all the 1st cases, all the 2nd cases and all the 3rd cases (which in this
simple example corresponds to best-case, most-likely case, and the worst-case),
which is easier than for Clara to manually manage the correspondences.5

An alternative to these dependent scenarios, where an elementwise product
of scenarios is taken, is independent scenarios (which we have not discussed),
where the cartesian product of the individual scenarios would be taken.
5 Some versions of Microsoft Excel provide a specialist tool, the Scenario Manager,

that evaluates multiple copies of a template sheet, one copy for each scenario, and
produces a report. The Scenario Manager is a wizard, outside the formula language.
Its results are not subject to automatic recalculation. See https://www.youtube.
com/watch?v=c0tdVlPvFZ4.

https://www.youtube.com/watch?v=c0tdVlPvFZ4
https://www.youtube.com/watch?v=c0tdVlPvFZ4
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Another form of possibilistic uncertainty, considered by Streit and others, is
a numeric interval, where propagation consists of interval arithmetic [17].

Probabilistic. A possibilistic uncertain value consists of a set of possible values
(such as a finite set of scenarios or an infinite set of real numbers in a numeric
interval). Additionally, a probabilistic uncertain value is a probability distribu-
tion: roughly a possibilistic value, a set, together with a weight for each value.

A simple way to introduce weighted estimates is the triangular distribution:

– The function DIST.TRIANG(a, b, c) constructs a value distributed according to
a triangular distribution, with lower bound a, upper bound b, and mode c,
where a < b and a ≤ c ≤ b.

The triangular distribution can capture subjective judgments of probabilities,
where c is someone such as Clara’s best guess, and a and b are subjectively the
intuitive minimum and maximum. The shape of the density of this continuous
distribution is a triangle that peaks at c and falls to zero at a and b.

If Clara enters a probabilistic approximate value using this function it prop-
agates as follows.

E9 = "Utilities"; F9 = DIST.TRIANG(50,150,100)
F10 = SUM(F6:F9) // value: DIST.TRIANG(1935,2035,1985)
F12 = F4−F10 // value: DIST.TRIANG(−35,65,15)

In the case above, the distribution can be propagated exactly. Streit only
considered propagation of parametric probability distributions (such as the fam-
ilies of normal distributions or triangular distributions) that can be calculated
exactly. We cannot always compute propagated distributions exactly (for exam-
ple, the sum of two triangular distributions is not a triangular distribution,
and in general it may not be possible to derive a closed-form expression for
a distribution generated through any arbitrary arithmetic on other probability
distributions). Instead approximate representations based on Monte Carlo sam-
pling can be used. A general but approximate representation of a probabilistic
uncertain value is an array of samples from the distribution. Such an array is
known as a stochastic information packet (SIP) [30].6 A key advantage of SIPs
is that it is easy to compute with them; for example, the sum of two triangular
distributions represented as SIPs, can be computed (and thereby represented)
as the elementwise addition of the individual SIPs.

How does the spreadsheet visualise a probabilistic uncertain value in a cell? A
simple option is to show “∼15”, that is, the mean 15 together with the sign “∼”
to indicate the uncertainty. A more sophisticated representation is to visualize
the density, perhaps as a histogram, although it takes practice for end users to
make sense of a density.

6 Use of SIPs to represent probabilistic values is equivalent to the mechanisms used
by @Risk and Crystal Ball. Guesstimate is a spreadsheet-like system that uses SIPs
to represent uncertain values. See https://www.getguesstimate.com/.

https://www.getguesstimate.com/
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In Clara’s case, she may be most interested in the risk that her balance
goes below zero. If she writes the Boolean formula F12<0 to test this event,
propagation of the triangular distribution in F12 yields the probability that the
formula is true.

E13="Chance of overdraft"; F13=F12<0 // value: 25%

So with probabilistic assumptions, the spreadsheet can tell Clara the probability
of modelled events such as her overdraft. In this case, she really wants that sofa,
and will take the risk!

2.3 Managing Uncertainty with Sheet-Defined Functions

Observe that when considering multiple chosen scenarios in the possibilistic case,
or when considering many randomly drawn scenarios in the probabilistic case,
we are replaying the original spreadsheet model with different parameters.

A user can replay a calculation by copying part of a sheet, and changing
parameter values. Still, this practice is prone to error as the model gets larger,
or if it and its copies need to be updated.

Peyton Jones, Blackwell, and Burnett [26] proposed sheet-defined functions
as an automatic general alternative to manual replication. It is simply the per-
vasive idea of procedural abstraction from programming languages, but applied
to spreadsheets. A sheet-defined function f is specified by a body, a piece of
grid, and has a number of input parameters identified by ranges in the body,
and an output, also identified by a range in the body. A formula f(V1, . . . , Vn)
is computed by making a copy of the body, pasting the values V1, . . . , Vn into
the parameter ranges, evaluating the body, and then returning the value in the
result range.

Sestoft’s monograph [34] describes how to implement sheet-defined functions.
He also describes example usages of sheet-defined functions, including idioms for
both possibilistic and probabilistic uncertainty.

To explain these idioms, we first turn Clara’s budget into a sheet-defined
function as follows. The function Budget has a single parameter, the uncertain
utilities bill, held in range F9, and it returns the balance together with a numeric
indicator of whether the balance is overdrawn in the range F12:H12.

function BUDGET( F9 ) returns F12:G12 {
E1 = "Budget for Jan 2018"

E3 = "Income"; F4 = 2000
E5 = "Expenses"

E6 = "Rent"; F6 = 1100 // A certain cost
E7 = "Commute"; F7 = 85 // Another certain cost
E8 = "Sofa!"; F8 = 700 // Clara is deciding whether to buy this item
E9 = "Utilities"; F9 = 100 // This cell is the parameter to the SDF
E10 = "Total expenses"; F10 = SUM(F6:F9)
E12 = "Balance"; F12 = F4−F10; G12 = IF(F12<0,1,0) // Result cells

}
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(Here we rely on an extension [22] of Calculation View [29] for a textual notation
for sheet-defined functions. Instead, an implementation of sheet-defined functions
would provide a graphical interface for the user to specify the function name,
parameters, and other metadata.)

Clara can calculate her three scenarios of possibilistic reasoning with the
formulas below. She can write the formula first in C54, and then drag fill to C55

and C56.

B54=50; C54 = BUDGET(B54) // value: {65,0}
B55=100; C55 = BUDGET(B55) // value: {15,0}
B56=150; C56 = BUDGET(B56) // value: {35,1}
In some recent spreadsheet systems, an array held in a cell such as C54 spills

for display into adjacent cells.7 In this case, the formula in cell C54 returns
the array {65, 0}, and therefore the cell C54 displays the number 65, and cell
D54 displays the number 0 (that is, the second item in the array spills into the
adjacent cell D54. Similarly, the arrays returned into C55 and C56 spill into the
corresponding cells in column D.

Clara can make changes to her budget just once in the sheet-defined function,
and they automatically propagate to the three scenarios.

Turning to probabilistic reasoning, we start with the observation that a SIP,
the underlying representation for a probabilistic uncertain value, is simply an
array. We can achieve the effect of Monte Carlo modelling by mapping the sheet-
defined function for our budget over a SIP array. The array is drawn from the
distribution modelling our probabilistic uncertainty about the parameter.

Here is how Clara can do this in her situation:

B58 = SIP.TRIANGULAR(B54,B56,B55,1000) // column vector of samples
C58 = VMAP(B58,Budget) // returns: SIPs with means {15.51, 25%}

The column vector in B58 has 1000 samples from a triangular distribution.
The function call VMAP(B58,Budget) calculates {bi, oi} = Budget(si) for each
sample si with i ∈ 1..1000, and returns a [1000×2] array {bi, oi | i ∈ 1..1000}. In
this example, there is only a single uncertain parameter. To handle N uncertain
inputs, the sheet-defined function would take N arguments, and the input would
be an N -column array of random samples.

We are simply using the advanced encapsulation afforded by sheet-defined
functions to more robustly implement the Monte Carlo simulation idiom
described earlier in Sect. 1.3! This is a more robust implementation as the logic
for each trial is defined exactly once and can be easily modified.

Sheet-defined functions and arrays are general-purpose tools, and so there is
no inbuilt interface for viewing the resulting array as a probability distribution.
Still, it is possible to write formulas, or even sheet-defined functions, to calculate
summary statistics of the resulting array.

7 https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-
behavior-205c6b06-03ba-4151-89a1-87a7eb36e531.

https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
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3 End-User Behaviour with Uncertainty

Clara’s fictitious example is useful to illustrate the differences between for-
malisms, but is clearly contrived. In order to ground our analysis in examples of
real user behaviour, we designed and conducted an interview study.

We aimed to investigate the following questions:

1. What types of uncertainty do spreadsheet users deal with?
2. How do they manage these various types of uncertainty?

We conducted semi-structured interviews of 11 participants, who walked us
through their spreadsheets. We analysed the audio transcripts of these inter-
views, identifying six qualitatively different types of uncertainty, as well as six
categories of strategies participants used to cope with the uncertainty. A sum-
mary of our study protocol, and the results, follows. These results are presented
in greater detail in our paper “Somewhere Around That Number”[3].

3.1 Interview Study

Participants. We interviewed 11 participants who worked in finance, construc-
tion, IT consulting, the oil and gas industry, business administration, and aca-
demic research. The size of participants’ spreadsheets ranged from 40 rows to
thousands of rows. Participants were recruited using convenience sampling via
email invitation and were eligible to participate if they used spreadsheets that
contained uncertain data. We did not filter participants based on whether they
used spreadsheets for work or personal use, but all participants we recruited
dealt with uncertainty in spreadsheets for work purposes. To elicit participation,
the invitation gave several examples of spreadsheet tasks which could involve
uncertainty, such as budgeting, planning, business forecasting, data collection
and analysis, scientific modelling, and making predictions. Interviews lasted on
average 60 min, and participants were reimbursed with a £30 voucher for an
online store.

Procedure. We asked participants to bring one or more of their own spread-
sheets which contained uncertain data to the interview session. They were
instructed to remove any sensitive information that they did not want to share.

In the first part of the session, participants were asked to talk about their
work, and how uncertainty and spreadsheets are a part of this work. In the second
part of the session, we discussed if participants gain insights from uncertainty,
what tools or strategies they use to gain this insight, and what challenges they
perceive in doing so. In the final part, we asked participants to walk us through
their spreadsheets, and explain how these spreadsheets were constructed, and
what they were used for. The session was audio recorded, and participants’
walk-through of their spreadsheets was screen recorded.
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Data Analysis. The audio recordings were transcribed verbatim and analysed
using iterative coding based on an inductive approach of thematic analysis [5].
There was no pre-existing coding scheme, but we did approach the data with
a specific focus to uncover uncertainty types, and user strategies for managing
uncertainty. Through a detailed analysis of the transcripts, we identified key fea-
tures of the spreadsheets and work practices that related to participant concerns
with uncertainty.

3.2 Findings

Types of Uncertainty. Based on participants’ descriptions of their spread-
sheets during the interviews, we identified six types of uncertainty in spread-
sheets: estimates, dynamic data, errors, missing data, unfindable data, and
untraceable data.

1. Estimates were the most common type of uncertainty among participants, and
refer to approximated values of which the precise value is not known, such
as the expected profit of a project: ‘We’re talking about the future. We don’t
know exactly what’s going to happen. All we can do is make best estimates’
(P8).

2. Dynamic data refers to data of which the values changed dependent on time,
for instance stock market information.

3. Errors were either (1) data that users believed to be incorrect based on their
prior knowledge and expectations (these could be caused, for example, by
measurement errors, transcription errors), or (2) a spreadsheet error value,
such as those created by mis-typed formulas, or formulas receiving arguments
of incorrect types, or broken links to external sources. Spreadsheet errors
and their sources are an important area of research in their own right, with
sophisticated existing taxonomies [19] that we shall not replicate here.

4. Missing data were values that were not recorded in the dataset, such as gaps
in measured sensor data.

5. Unfindable data is information which in principle could be computed from
data contained within the spreadsheet, but was hard to extract, and was
thus experienced by the user as uncertain. If users were unable to find the
information, they regularly used their own estimate instead. For example, P7
dealt with timesheets which gave an overview of hours that all employees of
his department had worked per day. He wanted to know how many of these
hours were worked on the weekend, but did not know the correct spreadsheet
formula to retrieve this data from the timesheet: ‘There’s a second unknown,
which is the weekends [...] Well for me it’s difficult, I’m sure there’s probably
people that can extract it out there’ (P7). This type of uncertainty is partic-
ularly interesting, because its presence depends on the circumstances of the
spreadsheet user; it is not merely a static property of the data itself.

6. Untraceable data refers to data for which the source could not be traced. For
instance, participants described situations where it was unclear whether data
they received from other people was derived from a computational model, or
whether it was ‘completely based on their [colleagues’] intuition’ (P11).
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Our claim is that these six categories are useful distinctions between different
kinds of unknowns arising in our sample of spreadsheets, and by inference in
the whole population of spreadsheets. Estimates, Errors and Missing data are
common types of uncertainty found in earlier work [4,33]. In addition to these
uncertainty types, we found additional three types of uncertainty: Dynamic data,
Unfindable data, and Untraceable data.

A further distinction from the literature on uncertainty is between aleatoric
uncertainty, due to some random process, and epistemic uncertainty, due to lack
of knowledge. Our classes of estimates and dynamic data are aleatoric uncertain-
ties, while our classes of errors, missing data, unfindable data, and untraceable
data are epistemic uncertainties.

Participants’ Strategies to Cope with Uncertainty. Participants described
various strategies to cope with uncertainty in their spreadsheets. Through our
analysis we identified 35 different strategies, which were categorised into six high-
level categories: Minimise, Understand, Communicate, Ignore, Exploit, and Add
uncertainty. This is an extension of the categories observed by Boukhelifa et al.
[4], with a specific focus on spreadsheets (the original categorisation was tool-
agnostic).

1. Minimising uncertainty was the most common strategy. Examples of Min-
imise strategies were to acquire more data, or compare the data with historic
data from past situations to try and come to more accurate estimates.

2. The second most common strategy was to Understand uncertainty. Partici-
pants discussed uncertain data with colleagues, read literature on the subject,
researched why the dataset was uncertain, and compared a subset of alterna-
tive scenarios.

3. Participants also tried to Communicate uncertainty to both themselves and to
others. This type of strategy did not necessarily improve people’s understand-
ing of why data was uncertain, but its aim was to highlight that there was
uncertainty present in the data. To communicate uncertainty to themselves,
participants gave spreadsheet cells different colours, or added comments. Par-
ticipants communicated uncertainty to others through presentations, reports
or by providing a verbal narrative.

4. Three participants said they also Ignored uncertainty at times. P6, P10 and
P11 explained it could be difficult to conduct analysis on a dataset that
contained errors or missing values, and these were removed during the analysis
process.

5. Sometimes however, it was valuable to know there was uncertainty in a
dataset. In this case, an Exploit strategy was used, and the uncertainty
was extracted or quantified. For example, P11 exploited missing values by
adding weights to them in model building, based on how often they occurred.
The amount of missing values in a dataset could provide valuable informa-
tion about what caused the uncertainty, and how important they were to
consider.
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6. Interestingly, one coping strategy to deal with uncertainty was to minimise
one type of uncertainty, by Adding another type of uncertainty. For example,
if participants dealt with unfindable data that they could not extract from a
spreadsheet, they used an estimate instead. Uncertainty was also added by
only considering a summary or a subset of the data. P11 dealt with datasets
of measured sensor data, which could be tens of thousands of rows. To be able
to view and easily digest this data, he would replace multiple data points with
one data point, such as the average value of those data points.

Table 2. An overview of each of the six types of uncertainty, showing the definition of
each, and an example quote where a participant described the type of uncertainty.

Type of uncertainty Definition Example quote

Estimates Data approximated by the user of

which the precise value is not

known, such as the expected

number of attendees to an event.

‘The final value will be

somewhere around that figure.

However, I haven’t gotten to the

point yet where I’m able to say:

it’s in this range, it’s in the +/−
3% range’ (P8)

Dynamic data Data which is not static and

changes over time, such as stock

market information.

‘When you go to open that

[spreadsheet] next month, the

information has changed’ (P9)

Errors Data that contains errors, such as

formula or transcription errors.

‘You also get a few very unusual

values, I seem to get negative

infinities quite a lot. Which

clearly is not possible (...) So

there’s a whole load of error

values in there’ (P11)

Missing data Data that is missing from the

data set, such as gaps in

measured sensor data.

‘The weather file that’s used to

generate the data there in the

other program is missing large

chunks of wind data (...) That

was one of those kind of reports

that was fairly heavily caveated

as being ’We’ve had to make

quite a lot of numbers up here,

to get any idea of what might

happen with this’ (P6)

Unfindable data Data which technically is

contained within a spreadsheet,

but which cannot easily be found

by the user, such as the total

amount of hours worked on the

weekend in an employee

timesheet. Usually, being unable

to find it, the user uses an

estimate instead.

‘There’s a second unknown [in

the spreadsheet], which is the

weekends. (...) I think that kind

of formula that we’re trying

Excel to do is probably difficult.

Well for me it’s difficult, I’m

sure there’s probably people that

can extract it out there’ (P7)

Untraceable data Data from which the user cannot

trace its original source, and

whether or how it is calculated,

such as subjective estimates made

by other people, or complex and

inaccessible formulas.

‘Sometimes it would just be

numbers in a spreadsheet, and

you couldn’t really identify what

the hell was going on (...) And

half the time, to actually check

it, the easiest way is almost to

make a new spreadsheet doing it

your own way, and see if you get

the same number’ (P6)
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Table 3. An overview of the six categories of coping strategies, its definition and an
example quote where a participant gave an example of the strategy.

Coping strategy Definition Example quote

Add The user adds additional uncertainty

to a spreadsheet. For example, the

user is unable to find data in a sheet,

and uses an estimate or interval

instead. In this situation, data is

contained within a spreadsheet, but

cannot easily be found by the user,

and uncertainty is added by using an

approximated value

‘A lot of the time, there are those

things which just aren’t [worth the

effort to figure out the right formula

to extract data]. So they either get

done quite slowly, the manual way,

or they don’t get done at all. And

you get people putting like fudge

figures (...) and say, ‘Oh well it’s

anywhere between here and here.

That’s the best we can do’ (P6)

Alternatively, a collection of data

points is reduced to one data point,

such as the average value, to make a

large spreadsheet easier to view and

digest

‘It gets very confusing when I start

having dozen sheets, with 1,000

columns, and 10,000 rows in each.

(...) I have a range of values, but

the algorithms only give me an

average, across say 100 points’

(P11)

Communicate The user communicates uncertainty

to others verbally, and through

reports and presentations

‘Although we provide estimates, I do

provide an estimate which is a hard

figure. But what I tell them [clients]

is: it’s around that figure’ (P8)

Users also communicate uncertainty

to themselves, by highlighting cells in

their spreadsheets that contain

uncertain data

‘Quite a lot of colouring. Just to

highlight particular aspects. So I’d

do green for a particular area of

what I think ‘These are definites’.

And light-blue or something for

unknowns’ (P4)

Exploit The user uses the amount of

uncertainty in a spreadsheet as a

valuable piece of information about

the data

‘Sometimes it [uncertainty]

contributes to the forecast, because

you want to know sometimes if

there’s a specific reason for the

missing data’ (P10)

Ignore The user ignores uncertainty, by

removing it from the spreadsheet or

replacing it with other values

‘I use a filter on Excel to filter the

values (...) So I try to identify them

and then find and replace with NAs,

most of the time’ (P11)

Minimise The user minimises uncertainty, by

acquiring more data, or discussing it

with colleagues

‘We will liaise with our front office

to say, ’Does this look correct? Have

things like this happened in the

past?’ If it’s chartered territory, the

stuff that we’ve seen something like

this before, we can get more of a

better estimate’ (P3)

Understand The user tries to understand

uncertainty by reading literature,

discussing it with colleagues, plotting

data, evaluating the data source, and

analysing a subset of possible

scenarios

‘I would read as much around the

literature as I possibly can, I will get

in different views that people have

(...). And then I’ll work from all

that to try and inform myself’ (P2)
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Table 4. An overview of the six types of uncertainty (the counts and percentages
indicate the frequency of each uncertainty type in our dataset of 352 observations)
and the three formalisms. The table indicates how well we think a type of uncertainty
could have been supported by a particular formalism, on the scale: none, weak support,
some support, good support. We used the following rough guidelines to make this
classification: None: this formalism will not help the users in this uncertainty type.
Weak: this formalism will help with this uncertainty type, but has significant limitations
in comparison to the others. Some: this formalism would help in some cases where users
encounter this uncertainty type. Good: (features supported by) this formalism would
help in many or most cases where users that encounter this uncertainty type. An
asterisk (*) indicates that we observed at least one participant directly state that type
of uncertainty would be supported by that formalism.

Dynamic

data

(52, 15%)

Estimates

(175, 50%)

Errors

(47, 13%)

Missing

data

(44, 12%)

Unfindable

data

(24, 7%)

Untraceable

data

(10, 3%)

Qualitative Some Good* Good* Weak None None

Possibilistic Some* Good* None Some None None

Probabilistic Good* Weak Some* Some* None None

4 Design Implications of the Interview Study

So if the makers of spreadsheet software wished to implement user-facing tools
for the representation and management of uncertainty,8 what should they focus
on? What features would solve the most common use cases we observed? In other
words, what should we build to get the most bang for our buck? In this section
we present some implications for design (notwithstanding the criticism of that
phrase [7,35]).

In the previous section we have been introduced to a broad categorisation
of uncertainty formalisms into Qualitative, Possibilistic, and Probabilistic, and
how the formalism determines the family of features that can be implemented
to support them – tags for Qualitative uncertainty, the scenario manager or
intervals for Possibilistic uncertainty, and so on. At the same time, our research
has identified six types of uncertainty in spreadsheets. We therefore examine
how each formalism can support the management of each type of uncertainty,
on a case by case basis, by considering how the user might use the various
implementations of each formalism in those cases.

1. Dynamic data changes over time, either refreshing automatically or need-
ing manual re-entry. A Qualitative tag may help to indicate the presence of
uncertainty. A Possibilistic or Probabilistic representation may help to keep
a record of historic values for a cell, with a Probabilistic representation cap-
turing additional information, helpful for statistical inference.

8 We began this paper with a set of premises leading to the hypothesis: introduc-
ing probabilistic programming to spreadsheets is a Good Idea. Through our user
research, we refined our ideas from focusing on probabilistic programming, to ways
of representing and managing uncertainty more generally.
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Table 5. Participant quotes exemplifying how types of uncertainty could have been
supported by a particular formalism.

Formalism -

Type of

uncertainty

How the formalism would be

used

Example quote

Qualitative -

Estimates

The user can input their own

values of what they think an

estimate is

‘We have to convert that qualitative

scenario into some quantitative

numbers, to say ‘OK, if X wins, it’s

likely that the market’s going to react a

little bit better, just because of her

economic policies, therefore we would

expect GBP to strengthen.’ And then we

would revise our forecast based on that,

going forward. But then again, those

are unknown numbers, we’re just using,

we would use estimates to try and say,

‘This is where we’d end up’ (P3)

Possibilistic -

Dynamic data

The user can input intervals to

indicate the range that dynamic

data can fluctuate in, and/or can

compare a subset of outcomes of

dynamic data

‘You’d have a day rate, and multiply it

in terms of days. And then you add a

certain percentage on afterwards, just

so you have some space’ (P4)

Possibilistic -

Estimates

The user can compare a subset of

possible estimates

‘You get a huge extra benefit from

looking at one policy to looking at two

policies. It’s a bit more

time-consuming, it takes twice as long

to run, but it’s worth doing. But to go

from two to three policies, it’s not so

clear that you get enough extra benefit

from that, from the extra complexity’

(P2)

Probabilistic -

Dynamic data

Based on historic values, the user

can quantify the likelihood of

future values

‘Once you get the data, then it becomes

a modelling exercise. Like what is my

chance of selling something next

month? Well that depends on how

much of that thing has been selling this

month’ (P9)

Probabilistic -

Errors

If the data errors in a spreadsheet

are quantifiable, probabilistic

measures can be used to track

and quantify uncertainty as it

propagates through the

calculations of a spreadsheet

‘At every stage, a lot of the time we

have: if we know we’ve got however

many unknown values in spreadsheet 1,

by the time we get to spreadsheet 10,

there’s a debate about whether the

data’s of any use at all, because the

errors propagate, and multiply. Now I

don’t have a measure of how that

affects it. I’d love to be able to measure

that, but I have no idea how to do that

within the tools’ (P11)

Probabilistic -

Missing data

The user can make estimates

regarding missing data by

analysing the distributions of the

data that does exist in the

spreadsheet

‘If we get certain data, and we want to

make sure: does that follow a certain

distribution, or something like that? Or

is that data based on a certain

distribution? There are tests that give

you a p value, very likely that this data

point’s origins are the same as the

other data points. (...) So that gives

you some confidence data in how well

you can rely on this model, on that

model, and stuff like that’ (P10)
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2. Estimates can be supported by Qualitative tags, which can propagate through
the calculation dependency chain so that it is made apparent which calcu-
lations depend on estimated data. In entering estimates, users may also be
able to provide upper and lower bounds, or a set of possible values, which
are well-supported by the Possibilistic formalism. Finally, if possible, it would
be ideal to elicit a formal probability distribution, but our experience with
users suggests that non-expert end-users find it challenging to understand
and confidently assign parameters to a probability distribution. Consider the
difference between a non-expert having to produce “upper and lower bounds”
for a cost in a budget, and having to produce a “mean and standard deviation
for a Gaussian distribution”. This makes the Probabilistic scenario a weak
overall fit for estimates, although we recognise that it might fit the needs of
some experts very well.

3. Errors benefit most from Qualitative tagging, as a way of annotating their
presence and communicating them to others. It is unclear whether Possibilis-
tic or Probabilistic uncertainty can help in error cases, although some cases
of data entry errors can be detected using the insight that an erroneous data
value is often very unlikely given the distribution of the rest of the data.

4. Missing data can be supported by Qualitative tagging, if calculations are done
on ranges with missing values. Missing values can be inferred and represented
either in a Possibilistic manner (for instance, if the missing value is known to
be a member of a finite set) or in a Probabilistic manner (for instance, if the
missing value is part of a dataset with a known or calculable distribution).

5. Unfindable data – that is, answers that are prohibitively difficult to extract
from the data in the spreadsheet, even if it is possible in principle. This type
of uncertainty cannot be solved by implementing better tools for representing
and manipulating uncertainty; the solutions here depend more on enabling
users to store and retrieve data in different ways, from enabling the pivoting
and refactoring of existing spreadsheet layouts, to better assistance in formula
authoring.

6. Untraceable data might be supported using a Qualitative tag, to indicate
and communicate its presence. However, better tracking of data provenance
would help deal with the issue more holistically. Users should be able to
inspect the history of edits to a spreadsheet cell, and answer the questions:
who edited this cell and when? Was the data manually typed in, copied in
from a document, or written by a macro or other script? The implementation
of some of these ideas (such as tracking and linking to documents from which
data is copied) might go beyond the scope of the spreadsheet software, and
require the participation of other tools and the operating system to track
provenance.

In summary, solutions focused around enabling users to formally represent
uncertainty offer varying levels of support dynamic data, errors, estimates and
missing data, but are unlikely to help with unfindable data and untraceable data.
Table 4 shows a matrix of the three categories and the six types of uncertainty,
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summarising the discussion above. For many pairings where we claim that the
formalism would support the user, we provide a participant quote in Table 5 –
these entries are indicated with an asterisk (*).

It should be noted that the user behaviour we observed was shaped and con-
strained by the affordances of spreadsheets today; users may appear to make
limited use of uncertainty in spreadsheets simply because of the lack of native
support for uncertainty in spreadsheets. There may be a larger latent demand for
such features, which is currently unobservable due to this ‘technological deter-
minism’. Or, there may be no such demand and the observed behaviour is a true
reflection of society’s needs. It is impossible to tell using our interview method-
ology alone.

Bearing this in mind, let us return to the question of what designers of
spreadsheet systems can take away from this. One clear conclusion is that no
single formalism can solve most user problems. Of Qualitative, Possibilistic, and
Probabilistic formalisms, Qualitative tagging appears to be the most widely
applicable, but what the user can do with it is limited. Our recommendation is
therefore to offer features from multiple formalisms. Furthermore, if we were to
pick one to exclude, it would be Possibilistic, as the technique of managing differ-
ent scenarios across different columns (or rows, or cells, or sheets, or even whole
workbooks), as well as tinkering with values in cells, are both already effective
coping strategies in many use cases for Possibilistic data. This recommenda-
tion comes despite the fact that Possibilistic data is likely to be easier to input
and reason about than Probabilistic data, for most end-users. Finally, solutions
focused around representing uncertainty are unlikely to help with unfindable and
untraceable data—for those cases, we need tools offering education, assistance
with authoring, layout and refactoring, and provenance tracking.

5 Conclusions

In this paper, we formally acknowledge the human activity of end-user probabilis-
tic programming, in which a computer user, likely not a statistical expert, creates
models to support their own decision making. While probabilistic programming
is a powerful tool, its widespread adoption is limited by the high statistical and
programming expertise required. Spreadsheets, on the other hand, enjoy the
status of being the premier end-user programming tool, and are arguably the
venue of much of the world’s data and decision making. What if we were to bring
probabilistic programming to spreadsheets?

As a stepping stone, we consider the simpler question of bringing native
support for uncertain values to spreadsheets. The choice of whether we sup-
port qualitative (such as simple tags), possibilistic (such as sets or intervals) or
probabilistic (such as distributions) uncertainty will have profound implications
for the user experience, which we illustrated through the fictitious case study
of Clara’s budget. To study these implications empirically, we interviewed 11
spreadsheet users, focusing on their current use cases and coping strategies for
uncertainty.
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We produced a taxonomy of uncertain data as experienced by end-users, and
analysed how each uncertainty formalism could support the different categories,
finding the following:

– No single formalism emerges the clear winner, and though Possibilistic uncer-
tainty is well-understood by end-users, the data suggests that it would add
the least benefits, since end-users already have several effective strategies for
coping with it.

– We also identified that users experience types of uncertainty, such as unfind-
able and untraceable data, that cannot be solved by representations of uncer-
tainty alone.

– Estimates were the most common type of uncertainty experienced by end-
users in our sample, with 157 occurrences (nearly 50% of all observations).
While we should be careful with drawing quantitative inferences from small
samples such as ours, this is still an indication that Estimates are an impor-
tant category of uncertainty cases.

As well as considering special-purpose uncertain values, we showed idioms for
representing probabilistic and possibilistic uncertainty using the general-purpose
concept of sheet-defined functions.

The idea of probabilistic programming in spreadsheets is certainly alluring.
But for full effect, we must ensure that the idea works for the tens (or even
hundreds) of millions of spreadsheet users facing uncertainty in their decision
making. At present, neither uncertain values nor sheet-defined functions are
available in mainstream spreadsheets. Will one or both revolutionise probabilistic
programming in spreadsheets? Time will tell.

Acknowledgements. Thanks to Breck Baldwin and Matthijs Vákár for information
regarding Stan. We are grateful to Alan Blackwell, Eunice Jun, Tom Minka, Simon
Peyton Jones for their helpful comments on a draft of this paper.
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Abstract. Autonomous cyber-physical systems are systems that com-
bine the physics of motion with advanced cyber algorithms to act on their
own without close human supervision. The present consensus is that rea-
sonable levels of autonomy, such as for self-driving cars or autonomous
drones, can only be reached with the help of artificial intelligence and
machine learning algorithms that cope with the uncertainties of the real
world. That makes safety assurance even more challenging than it already
is in cyber-physical systems (CPSs) with classically programmed con-
trol, precisely because AI techniques are lauded for their flexibility in
handling unpredictable situations, but are themselves harder to predict.
This paper identifies the logical path toward autonomous cyber-physical
systems in multiple steps. First, differential dynamic logic (dL) provides
a logical foundation for developing cyber-physical system models with
the mathematical rigor that their safety-critical nature demands. Then,
its ModelPlex technique provides a logically correct way to tame the
subtle relationship of CPS models to CPS implementations. Finally, the
resulting logical monitor conditions can then be exploited to safeguard
the decisions of learning agents, guide the optimization of learning pro-
cesses, and resolve the nondeterminism frequently found in verification
models. Overall, logic leads the way in combining the best of both worlds:
the strong predictions that formal verification techniques provide along-
side the strong flexibility that the use of AI provides.

Keywords: Autonomous cyber-physical systems · Safe AI ·
Hybrid systems · Differential dynamic logic · Formal verification ·
Runtime verification

1 Introduction

Autonomous cyber-physical systems (autonomous CPS) use sophisticated soft-
ware to control the physics of motion. They plan their own goals and actions in
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pursuit of them. And if things go wrong, they react to situation changes in order
to prevent problems on their own without close human supervision. Autonomous
cyber-physical systems are a technological dream come true. Or are they?

Well, for one thing, cyber-physical systems have found frequent use, but are
not yet operated very autonomously. Certainly, the prospects that autonomous
cyber-physical systems promise are very appealing, but it is precisely their goal of
autonomy and lack of human supervision that also makes them fairly challenging
to build just right. Granted, it is also challenging to design an ordinary CPS
with human supervision because humans need sufficiently early warning to gain
situational awareness and react, which, in turn, requires ample foresight in the
CPS design. But the desire for autonomy changes the state of affairs considerably.

From a performance perspective, the biggest difference compared to ordinary
CPS is that autonomous CPS do not need to be monitored all the time, but “do
the right thing” on their own. The biggest difference from a safety perspective
is that it’s not clear what the right thing is and humans cannot save the day if
the autonomous CPS goes awry, because the whole point is that they are not
supervised closely. Autonomy benefits from the help of artificial intelligence and
machine learning algorithms that cope with the uncertainties of the real world
[27]. Of course, the added flexibility in handling unpredictable situations makes
the safety impact of the addition of AI themselves harder to predict.

Formal methods provide ways of establishing safety properties for ordinary
CPS [2,17,19,26,28,34,36,40], and AI provides ways of giving autonomy to CPS.
This calls for a combination of formal methods and artificial intelligence [1,9,13,
14,16], just not by a friendly ignorance of one another. Instead, the trick is to
combine both in a way that each field actually retains its benefits for the CPS
in the end. This paper surveys an approach for Safe AI in CPS in which logic
leads the way in combining the best of both worlds.

2 Challenge

Cyber-Physical Systems combine cyber capabilities such as communication,
computation and control with physical capabilities such as the motion of robots,
cars, or aircraft. Mathematical models for such CPS are based on hybrid systems,
which combine discrete dynamical systems with continuous dynamical systems,
e.g., because discrete change one step at a time fits well to computation, while
continuous dynamics along differential equations fits well to their motion.

Formal Verification uses the descriptive models of hybrid systems for predict-
ing, with the help of model checking [8,11] or proof [31,36], whether all their
behavior satisfies safety properties of interest, such as collision freedom. Espe-
cially in the case of logical proofs, formal methods enable very strong guarantees
about all behavior of the mathematical models from a small reasoning basis [35].
In order to overcome complexity challenges, it is often important to work with
models that use simplifying abstractions, because models that include literally
all implementation detail quickly become prohibitively expensive to analyze.
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Machine Learning forgoes the principle of explicitly programming all behav-
ior of a system and, instead, uses learning algorithms that generalize responses
from static data (e.g., a set of labeled images to classify) or from dynamic expe-
rience (e.g., responses to trial and error). Reinforcement learning (RL) [39], for
example, repeatedly tries out an action, observes what the overall outcome of a
sequence of actions was, and then increases the probability with which its policy
decides for actions that have had large fractions of good outcomes so far. The
big advantage of reinforcement learning is that it can be used with very minimal
assumptions on the system to be controlled. All it takes is a black-box way of
executing actions and reliably observing the outcome, e.g., in a simulator. In
practice, learning systems are also lauded for their flexibility in responding to
situations that were not directly programmed into the system design. Learning
is, thus, presently considered crucial to reach reasonable levels of autonomy.

Of course, guarantees are harder to come by. At the very least, one has to
assume that the outcomes observed for the individual actions in the individ-
ual states are strongly correlated (in fact, Markovian) with outcomes at other
times. Under suitable assumptions, finite-state cases provide elegant theoretical
guarantees [39]. But the infinite-state case of CPSs is significantly more com-
plex, because even the luxury of an arbitrary countable amount of experiments
is not enough to try all actions in all states. Indeed, black-box uses require fairly
strong additional assumptions to enable any correct predictions at all [6,37,41],
and many of those assumptions need to be provided as explicit inputs into safety
analysis algorithms for soundness. In particular, a white-box model is required
to obtain guarantees even if only an executable model is needed during learning.

Safety for Autonomous CPS requires direct attention to the interplay of
learning systems with hybrid system models. Even if the combination of learn-
ing algorithms with the CPS dynamics formally are hybrid systems again, they
cannot be considered quite as näıvely due to the resulting scale. Without sum-
marizing symbolic abstractions, it would have been completely infeasible, for
example, to verify the hybrid systems model of the next-generation Airborne
Collision Avoidance System ACAS X [18] defined by interpolation of a Markov
Decision Process policy on its half a trillion different discretized state regions.
Instead, the computational complexities call for approaches that establish safety
from simpler models that do not include full detail on the learning while still
benefiting from the flexibility advantages of learning without risking unsafety.

3 Approach

As a foundation for the safe design of autonomous CPS, this approach uses
differential dynamic logic dL [30,31,33,36] which provides modalities [α] and
〈α〉 for every hybrid system model α such that the dL formula [α]φ is true in a
state whenever the postcondition φ is true after all runs of α (safety) and the
dL formula 〈α〉φ is true in a state whenever φ is true after at least one run of
α (liveness). Besides serving as a flexible specification language, dL also comes
with axiomatizations [30,32,33,35] that enable its use for verification purposes.
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CPS Modeling is the first step and culminates in a hybrid system α describ-
ing all possible behavior of the CPS. For both complexity control reasons and
flexibility reasons, it is best not to describe completely accurately under which
exact circumstance the learning system decides upon which exact control action.
Instead, the hybrid system α describes all actions that are possible as well as
the continuous dynamics of the system.

Elaborate modeling advice can be found elsewhere [36,38], but nondetermin-
ism is frequently used for this purpose. For example, a hybrid systems model

(
(β ∪ γ);x′ = f(x)

)∗ (1)

expresses that the CPS can nondeterministically choose (by operator ∪) to either
run control action β or control action γ and will then (after the ; operator) fol-
low the continuous dynamics of the differential equation x′ = f(x) for a certain
period of time, before repeating (by operator ∗ for repetition) the sequence of
discrete and continuous actions any number of times. For example, β could be
the action of accelerating while γ could be braking (additional actions such as
turning left add more ∪ operators, accordingly). A model of this shape is fairly
noncommittal, because its use of nondeterminism in action choices, differential
equation durations, and repetition counts deliberately leaves open how exactly
it is run, giving the learning CPS a lot of flexibility in filling in these choices at
its leisure later without requiring any change in the model.

KeYmaera X: Hybrid Systems Model Safety can be established by proving
in the tool KeYmaera X [12] a dL safety property of the form

φ → [α]ψ (2)

which, if proved, implies that, if the system starts in any initial state satisfying
formula φ, then all states reached after all runs of the hybrid systems model α
satisfy formula ψ. Formal proofs of dL formulas such as (2) are highly trustworthy,
not just because of the clever design of KeYmaera X that reduces its soundness-
critical core to less than 2000 lines of code [12] but also because of the cross-
verification of the soundness of dL in both Isabelle/HOL and Coq [3].

A formal proof of (2) justifies that all behavior of α satisfies the safety prop-
erty. The most valuable takeaway lesson besides the formal proof itself are the
additional requirements inevitably found during the proof, which characterize
when it is even safe to use the various control actions in the model α. For exam-
ple, in the initial model (1), actions β and γ were unconstrained, but it may
not always be safe to accelerate without first checking a condition C that, e.g.,
relates the obstacle distance to the present velocities and braking capabilities:

(
((?C;β) ∪ γ);x′ = f(x)

)∗ (3)

This refined hybrid system (3) includes an additional test (written ?C) that
needs to pass since C holds true before running action β. If C is true in the
present state, then both β and γ can be run by a nondeterministic choice (∪),
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otherwise only γ is available, because the condition ?C would fail. All such
additional constraints that are required for safety will be discovered during the
proof of (2), because a sound proof could not otherwise succeed, and dL is sound
[30,32,35].

ModelPlex: Model Safety Transfer provides the correctness bridge between
a verified hybrid systems model and its implementation by synthesizing correct-
by-construction runtime monitors. A dL proof of formula (2) in KeYmaera X is a
great achievement, but, due to its (desirable) modeling simplifications, does not
provide an answer for the full complexities of a learning CPS. Usually, there is a
discrepancy between the implementation detail of the autonomous CPS and the
simplified descriptions that were chosen to be included in the verified model. For-
tunately, the ModelPlex procedure [24] can overcome such discrepancies. Given
a verified dL model, ModelPlex synthesizes a monitor along with a dL correctness
proof for it, saying that the real implementation is safe as long as it satisfies that
runtime monitor (and will always remain safe when continuing the model).

The same relationship between verified model and runtime monitor also is the
cornerstone to safeguard the decisions of learning agents [14], which is crucial to
obtain safety after deployment unless ModelPlex has already been used during
learning to guide the learning process toward safe answers (which speeds up
convergence). The logical monitor conditions obtained from a ModelPlex proof
can be directly exploited as a safety signal for learning. Since it is challenging
to implement learning algorithms in a provably correct way, the continued use
of ModelPlex monitors after deployment is advisable even if ModelPlex monitor
outputs were used to steer learning toward safe answers during training.

VeriPhy: Executable Proof Transfer synthesizes executable machine code
binaries (e.g., for x64 or ARM) that inherit the safety theorems such as (2) by a
chain of formal proofs in theorem provers [4]. The resulting executables are not
just formally verified to be safe for the CPS, but also accept control input from
unverified controllers that will be checked against ModelPlex monitors for safety
before execution and are vetoed otherwise. This input decides how to resolve
the nondeterminism in the hybrid systems model, e.g., whether to run β or γ in
(3). But the verified controller sandbox generated by VeriPhy only accepts β if
the condition C was true that was required for the safety proof. While the need
to test C when deciding on β was evident from the way model (3) was written,
other conditions are more difficult to read off, and the key is to find them all and
then prove safety of the control sandbox, which VeriPhy does automatically.

Safe Learning in CPSs is made possible by the combination of a hybrid
systems model verified in KeYmaera X [12], whose safety-critical monitor con-
ditions were extracted along with a proof of correctness by ModelPlex [24], and
whose verified controller sandbox was synthesized along with a chain of correct-
ness proofs by VeriPhy [4]. This combination enables any reinforcement learning
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algorithm to be run as a black box [14]. The VeriPhy output provides a verified
CPS sandbox within which the reinforcement learning can experiment safely. The
reinforcement learning algorithm can focus on identifying the most optimal deci-
sions, which is usually replaced by nondeterminism in verification for the sake of
simplicity. Convergence of the learning algorithm is improved, because the Mod-
elPlex monitors give immediate feedback about which individual action might
cause an unsafe future in which state. This is faster than having to wait until
an entire sequence of actions has been chosen that, say, lead to a collision, and
then facing the nontrivial task of retroactively identifying to what extent which
action contributed to this collision and back-propagate generalizable knowledge.

If the physical behavior was modeled adequately, then this approach leads
to a provably safe policy [14]. Otherwise, quantitative ModelPlex, which gives a
real-valued (instead of boolean-valued) degree of compliance, is experimentally
shown to guide the optimization of reinforcement learning (RL) off model to a
graceful recovery using the ability of boolean ModelPlex to reliably spot when the
real behavior is outside the verified model. The question is what could then prove
safety regardless, not just observe recovery. Clearly, if all model assumptions are
completely wrong, then no amount of analysis will make the system safe but
magic is needed instead. Yet, if there merely is uncertainty about which one of
a whole pile of models is the right one, yet they are not all wrong, then not
only is safety preserved, but learning can also optimize the system by actively
experimenting to find out which model accurately reflects the present reality
[15]. Conjunctions of the ModelPlex monitors for all plausible models keep the
learning AI safe. Solving for distinct monitor predictions makes it possible to
plan differentiating experiments to converge a.s. to the true model, if possible.
When the verified models are given together with a tactic that proves them, then
safety proofs can be reified, such that both the model and its safety proof can
be adapted to better fit observations with verification-preserving model updates.

4 Summary and Outlook

Overall, logic leads the way in combining the best of both worlds: the strong pre-
dictions that formal verification techniques provide for CPS alongside the strong
flexibility that the use of AI provides. Table 1 summarizes the logical technolo-
gies that enable the respective combinations, their uses in CPS design, and their
corresponding counterpart in AI. Each element of the safety transition stack

Table 1. Logical triumvirate of technologies for transitioning trustworthiness to
autonomous cyber-physical systems

dL proof technology RL learning technology

KeYmaera X: identify safe actions in CPS model RL optimizes action choice

ModelPlex: safe model to safe implementation Safe reward signal for RL

VeriPhy: monitored sandbox to safe executables CPS sandbox for RL
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fulfills a different purpose and integrates the benefits of learning and proving in
different ways. They all share differential dynamic logic dL as a common logical
foundation and reinforcement learning RL as a learning foundation.

While logic paints a particularly clear picture of how to safely navigate the
path to autonomous CPSs, and while its efficacy has been demonstrated through-
out on small scale [5], numerous interesting challenges remain that go beyond
the ones of interest already for ordinary CPS [34]. The guarantees, even in the
presence of learning, are strong on the controls side of CPS. The safety-relevant
control error is provably reduced to zero thanks to the logical safety stack, but
only under the assumption of bounded deviations in sensing [24].

The picture is not so rosy on the sensing side of CPS. And I argue that this
is not a coincidence. Of course, no amount of reasoning can bypass the sensory
illusions of the Cartesian Demon that fooled all but René Descartes’ existence of
thoughts [7]. If literally all sensors and actuators of a CPS could be arbitrarily
wrong, then no connection can be made between the suspected and real state
of the system. But even if sensors are almost always a little wrong, they are
not usually all that wrong, which enables a logical angle of attack [21,23,25]
for guarantees despite bounded sensor errors. Now, how can concrete bounds be
substantiated for sensor errors with as little doubt as possible? An answer to
this question is the true challenge beyond recent progress in verified perception
[10,29].
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Abstract. We study the problem of analysing Markov reward models
(MRMs) in the presence of imprecise or uncertain rewards. Properties
of interests for their analysis are (i) probabilistic bisimilarity, and (ii)
specifications expressed as probabilistic reward CTL formulae.

We consider two extensions of the notion of MRM, namely (a) con-
strained Markov reward models, i.e., MRMs with rewards parametric on
a set variables subject to some constraints, and (b) stochastic Markov
reward models, i.e., MRMs with rewards modelled as real-valued ran-
dom variables as opposed to precise rewards. Our approach is based on
quantifier elimination for linear real arithmetic. Differently from exist-
ing solutions for parametric Markov chains, we avoid the manipulation
of rational functions in favour of a symbolic representation of the set
or parameter valuations satisfying a given property in the form of a
quantifier-free first-order formula in the linear theory of the reals.

Our work finds applications in model repair, where parameters need to
be tuned so as to satisfy the desired specification, as well as in robustness
analysis in the presence of stochastic perturbations.

Keywords: Parameter synthesis · Markov chains ·
Markov reward models · Model checking

1 Introduction

The wide-spread diffusion of cyber-physical systems (CPSs) poses the challenge
of handling their growing complexity, while meeting requirements on correctness,
predictability, performance without compromising time- and cost-to-market.
Their analysis requires one to address a number of non-functional properties
related to the quantitative aspects that are typical of such systems.

Finite-state Markovian models are popular modelling formalisms for the
quantitative analysis of systems with probabilistic behaviours. Among these,
Markov reward models (MRMs) were proposed as a natural extension of the
usual notion of discrete-time Markov chain with (real-valued) state rewards.

Interesting properties of MRMs may be expressed by means of quantitative
extensions of CTL, such as Probabilistic Reward CTL (PRCTL), cf. e.g., [1].
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Fig. 1. Model of a Ph.D. student in CS.

As a running example, consider the MRM in Fig. 1 modelling the stress level
of a Ph.D. student in computer science. It has seven states, namely s1, . . . , s7,
annotated with the propositions thk (thinking), ths (thesis), wr (writing paper),
tc (tool coding), and pe (paper evaluation). The level of stress of the student is
modelled by associating with each state a reward that represents the stress that
the student accumulates in the state at each time unit. After spending some
time thinking, the student starts developing a tool with probability pc = 0.2, or
writing a paper with probability pw = 0.5 (40% of the times for a journal and 60%
for a conference), otherwise the student submits the thesis with probability 0.1.
Once the tool is mature enough, the student starts writing a paper about it with
probability pw (70% of which for a journal, otherwise for a conference). When a
paper has been completed it is submitted for evaluation with probability ps =
0.3. The paper may be rejected or accepted (moving resp. to s7 or s5) according
to some acceptance rate. At any moment before the thesis is completed, the
student may move back to s1 with probability pt = 0.2 to think on how to
proceed with his/her Ph.D.

We can use PRCTL formulae for specifying properties such as “the average
level of stress accumulated until the thesis is submitted doesn’t exceed 10”, “the
student completes the thesis without passing through a state with stress level
higher than 2 with probability greater than or equal to 0.9”, or “the probability
of eventually start coding and, subsequently, submitting the thesis with expected
accumulated stress within [x, y] is less than or equal to z”.

In the above MRM we fixed specific reward values. This is an unrealistic
simplification since the level of stress at each state may vary depending on dif-
ferent factors, possibly external to the student. The same argument applies to
CPSs, that typically rely on sensor measurements which are inherently imprecise,
but also to other systems, e.g., resource-management protocols that depends on
stochastic assumptions on the future workload.

Typically, there are two ways for dealing with uncertain measurements: (i)
determine the precision of the instrument and associate an error ε with each
measurement, or (ii) perform estimation statistics (e.g., by recursive Bayesian
estimation [16]) and use random variables to model each measurement.
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In this paper we address the problem of analysing MRMs in presence of
imprecise rewards. We present two extensions of the notion of MRM: (i) con-
strained Markov reward models (CMRMs), i.e., MRMs with rewards and tran-
sition probabilities parametric on a set variables subject to some constraints
expressed as a first-order formula in the linear theory of the reals; (ii) stochastic
Markov reward models (SMRMs), i.e., MRMs with rewards modelled as real-
valued random variables as opposed to exact rewards.

Intuitively, a CMRM models a family of MRMs arising by plugging in con-
crete values for the parameters provided that they satisfy its constraints. Anal-
ogously, an SMRM models a probability distribution over a family of MRMs.

We are interested in the analysis of these models with respect to (i) proba-
bilistic bisimilarity, and (ii) specifications expressed as PRCTL formulae.

On the one hand, the analysis of CMRMs is done by inferring constraints
over its parameters characterising the valuations satisfying the property then,
verify the robustness of the model within the given precision. On the other
hand, analysing an SMRM consists in measuring the likelihood that an MRM
obtained by plugging in real-valued outcomes of its random variables satisfies a
given property.

Our Contribution: In relation with the analysis of CMRMs our contribution is
twofold. First, we show that the computation of the set of parameter valuations
ensuring that some states are probabilistic bisimilar with each other can be done
using quantifier elimination in the linear fragment of the theory of the reals.
Secondly, we demonstrate that for CMRMs having parameters only on state
rewards, also the PRCTL model checking problem can be solved within the linear
fragment of the theory of the reals. This allows one to employ SMT solvers and
quantifier elimination procedures specialised on linear constraints [14], avoiding
to use more inefficient and less scalable solvers for bilinear inequalities [17] as
suggested e.g., in the case of interval Markov chains [15].

As for the analysis of SMRMs, we describe how one can apply the results
for CMRMs described above for estimating the probability of satisfying a given
property by employing Mote Carlo simulation techniques.

Related Work: The analysis of CMRMs falls into the research area of parameter
synthesis for parametric Markov chains (pMCs) [4,6–10,12] and Interval Markov
chains (IMC) [2,3,15]. Most of these works [4,5,7,8,10] consider pMCs without
state rewards and focus mainly on computing closed form solutions for reachabil-
ity probabilities in pMCs as rational functions. The same approach was recently
extended to the computation of closed form solutions for expected rewards and
long-run average rewards [6,9].

In the context of model checking pMCs and IMCs, quantifier elimination
for the first-order theory of the reals has been mainly applied as a theoretical
tool for proving complexity upper-bounds of the model checking problem for
IMCs [2,3,15] and pMCs [9]. Notably, the model checker PROPhESY [5] relies
on SMT solving via the existential theory of the reals to determine approximate
covering of the parameter space.
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2 Preliminaries and Notation

We denote by R, Q, and N respectively the sets of real, rational, and natural
numbers. We denote by Σn, Σ∗ and, Σω respectively the set of words of length
n ∈ N, finite length, and infinite length, built over the finite alphabet Σ.

The dot product of two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) in
R

n is defined as a · b =
∑n

i=1 aibi. For c ∈ R, we use c ∈ R
n to denote the

constant vector (c, . . . , c). For a function f : I → R with finite domain with
cardinality |I| = n we may use f to denote also the I-indexed vector (f(i))i∈I =
(f(i1), . . . , f(in)).

Measure Theory. Let Ω be a set. A family Σ ⊆ 2Ω is called a σ-algebra if it
contains the empty set and is closed under complement and countable unions,
in this case (Ω,Σ) is called a measurable space and elements of Σ measurable
sets. When Σ = 2Ω , the measure space (Ω,Σ) is discrete.

A measure on (Ω,Σ) is a σ-additive function μ : Σ → R, i.e. a map satisfying
μ(

⋃
i∈I Ei) =

∑
i∈I μ(Ei) for any countable family of pairwise disjoint measur-

able sets (Ei)i∈I , in this case (Ω,Σ, μ) is called a measure space. If additionally
μ satisfies μ(Ω) = 1, it is called a probability measure and (Ω,Σ, μ) a probability
space. We denote by D(Ω) the set of discrete probability distributions on Ω. For
x ∈ Ω, the Dirac distribution concentrated at x is the distribution 1x ∈ D(Ω)
defined, for arbitrary y ∈ Ω, as 1x(y) = 1 if x = y, 0 otherwise.

For measurable spaces (Ω,Σ) and (Γ,Θ), a map f : Ω → Γ is measurable
if for all E ∈ Θ, f−1(E) = {x | f(x) ∈ E} ⊆ Σ. Given a measurable map
f : Ω → Γ and a measure μ on (Ω,Σ) we define the measure μ[f ] on (Γ,Θ),
called the push forward of μ under f , as μ[f ](E) = μ(f−1(E)) for E ∈ Θ.

A real-valued random variable X : Ω → R is a measurable function from
a probability space (Ω,Σ,P ) to the Borel space (R,B(R)). Intuitively, X can
be seen as the outcome of some experiment, e.g. measuring some sensor value.
Given a “test” A ∈ B(R), we write P [X ∈ A] for the probability that X has
a value in A, i.e. P [X ∈ A] = P [X](A). A random variable is associated with
its cumulative distribution function (CDF) FX : R → [0, 1] defined as FX(x) =
P [X ∈ (−∞, x]]; and a probability density function (PDF) fX , a non-negative
Lebesgue-integrable function satisfying P [X ∈ [a, b]] =

∫ b

a
fX(x)dx. The expected

value of X, written E[X], is intuitively understood as the long-run average of
repetitions of the experiment X, formalised by the Lebesgue integral

∫
Ω

XdP
(corresponding to

∫
R

fX(x)dx when X admits density function fX).

3 Markov Reward Models

In this section we recall the definitions of Markov reward models (MRMs), prob-
abilistic bisimulation, and probabilistic reward CTL (PRCTL).

In what follows we fix a finite set of atomic propositions AP.

Definition 1. A Markov chain is a tuple M = (S, τ, 	) consisting of a finite
nonempty set of states S, a transition probability function τ : S → D(S), and a
labelling function 	 : S → 2AP mapping states to atomic propositions.
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Intuitively, if M is in state s it moves to state s′ with probability τ(s)(s′). In
this sense, M can be thought as a state-machine that generates paths in Sω. A
path is an infinite sequence of states π = s1s2s3 · · · ∈ Sω; for i ≥ 1 we denote
by π[i] the i-th state of π, i.e., π[i] = si, and π|i the prefix of length i of π, i.e.,
π|i = s1 · · · si and π|0 = ε.

We denote by GM = (S,→) the underlying graph of M, where s, s′ ∈ S are
connected by a directed edge, written s → s′, if and only if τ(s)(s′) > 0. We
indicate by →∗, the transitive and reflexive closure of →.

In order to associate probabilities to events, we adopt the classical cylinder
set construction (cf. [1, Ch10]). For w ∈ S∗, the cylinder set of w is the set
of all paths having prefix w, i.e., cyl(w) = wSω. Given an initial probability
distribution ι ∈ D(S), we define the probability space (Sω, ΣM, P rM

ι ), where
ΣM = σ({cyl(w) | w ∈ S∗}) is the smallest σ-algebra that contains all the
cylinder sets, and PrM

ι is the unique probability measure such that, for all
w = s1 · · · sn ∈ S∗, PrM

ι (cyl(w)) = ι(s1) · ∏
0<i<n τ(si)(si+1).

When ι = 1s we write PrM
s , or just Prs when M is clear from the context.

Definition 2. A Markov reward model is a tuple R = (S, τ, 	, ρ) where (S, τ, 	)
is a MC, and ρ : S → R is the reward function assigning a reward to each state.

A Markov reward model generates paths in Sω according to its underlying
Markov chain; in addition, whenever a transition is performed, say from s to
s′, the system is rewarded by ρ(s). It is worth noting that the reward is given
after leaving the current state.

In the following, it may be convenient to represent the reward function ρ and
the probability transition distributions τ(s) (for s ∈ S) as S-indexed vectors.

Example 1. Consider the MRM depicted in Fig. 1. Its reward function ρ and the
distribution τ(s1) are respectively represented in vector notation as

ρ = (0, 0, 1.2, 1.5,−3, 2, 3), and τ(s1) = (pt, 0.1, 0.6pw, 0.4pw, 0, pc, 0).

The next definition extends the classic notion of probabilistic bisimulation
for Markov chains by Larsen and Skou [13] to the case of MRMs.

Definition 3 (Bisimulation). Let R = (S, τ, 	, ρ) be an MRM. An equivalence
relation R ⊆ S × S is a probabilistic bisimulation if whenever (s, s′) ∈ R then,
	(s) = 	(s′), ρ(s) = ρ(s′), and for all R-equivalence class C ∈ S/R, τ(s)(C) =
τ(s′)(C).

Two states s, s′ ∈ S are probabilistic bisimilar, written s ∼R s′, if they are
related by some probabilistic bisimulation.

Example 2. Consider the MRM depicted in Fig. 1. As it is presented, none of
its states are bisimilar with each other because each pair of states differs on the
rewards or the labels. If we consider instead an MRM with underlying chain
as in Fig. 1 and rewards ρ = (0, 0, 1, 1, 3, 2, 3), now we have that s5 ∼ s7 and,
consequently, s3 ∼ s4 because τ(s3)({s5, s7}) = ps = τ(s4)({s5, s7}). �	
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Before presenting probabilistic reward CTL, we need to introduce the concept
of expected cumulative reward for reaching a set of states B ⊆ S.

Let ρ̂B : Sω → R be the random variable representing the reward accumu-
lated along a prefix of the path belonging to (S \ B)∗B. This is formalised as
ρ̂B(π) =

∑n−1
i=1 ρ(π[i]) if π|n ∈ (S \ B)∗B for some n ∈ N, otherwise 0.

We denote by E[ρ̂B |s] the expected value of ρ̂B with respect to the probability
distribution Prs. Following [1, Ch10], E[ρ̂B |s] can be computed as the (unique)
solution rs of the following system of linear equations

rs =

{
0 if s ∈ B or s 
→∗ B

ρ(s) +
( ∑

t∈S τ(s)(t) · rt

)
otherwise.

(1)

We are now ready to present Probabilistic Reward CTL. PRCTL allows for
state formulae describing properties about states in a MRM, and path formulae
describing properties about paths in a MRM. State formulae Φ, Ψ and path
formulae ϕ are constructed over the following abstract syntax:

Φ, Ψ ::= tt | a | ρ �� r | ¬Φ | Φ ∧ Ψ | PJ (ϕ) | ER(Φ) , (state formulae)
ϕ ::= XΦ | ΦUΨ | ΦUn

RΨ (path formulae)

where a ∈ AP, r ∈ Q, n ∈ N, �� ∈ {=, <,>}, and J ⊆ [0, 1] and R ⊆ R are
intervals with rational bounds.

Given a MRM R = (S, τ, 	, ρ), a state s ∈ S, and a path π ∈ Sω, we denote
by R, s |= Φ (resp. R, π |= ϕ) the fact that the state s satisfies the state formula
Φ (resp. the path π satisfies the path formula ϕ). Sat(Φ) denotes the set of all
states satisfying the property Φ, i.e. Sat(Φ) = {s ∈ S | R, s |= Φ}. Formally,
the satisfiability relation |= is inductively defined as:

R, s |= tt always holds
R, s |= a iff a ∈ 	(s)
R, s |= ρ �� r iff ρ(s) �� r

R, s |= ¬Φ iff R, s 
|= Φ

R, s |= Φ ∧ Ψ iff R, s |= Φ and R, s |= Ψ

R, s |= PJ (ϕ) iff Prs({π ∈ Sω | R, π |= ϕ}) ∈ J

R, s |= ER(Φ) iff E[ρ̂Sat(Φ)|s] ∈ R

R, π |= XΦ iff R, π[2] |= Φ

R, π |= ΦUΨ iff there exists j ≥ 1 such that π[j] |= Ψ, and
R, π[j′] |= Φ for all 1 ≤ j′ < j

R, π |= ΦUn
RΨ iff there exists 1 ≤ j ≤ n such that π[j] |= Ψ and

for all 1 ≤ k ≤ j,
∑k−1

i=1 ρ(π[i]) ∈ R and,
for all 1 ≤ h < j, R, π[h] |= Φ.
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As usual, we can derive the logical operators ff , ∨, and → as follows: ff
def= ¬tt,

Φ ∨ Ψ
def= ¬(¬Φ ∧ ¬Ψ), and Φ → Ψ

def= ¬Φ ∨ Ψ . Similarly, we can derive the
temporal operators ♦ and � as: ♦Φ

def= ttUΦ and �Φ
def= ¬♦(¬Φ).

Example 3. Consider the MRM R depicted in Fig. 1. We can verify that “the
average level of stress accumulated by the student until the thesis is submitted
doesn’t exceed 23” by proving that R, s1 |= E≤23(ths) holds true. Analogously,
we can check that the property “the student completes the thesis without passing
through a state with stress level higher than 2 with probability greater than or
equal to 0.5” does not hold true by proving R, s1 |= ¬P≥0.5((ρ ≤ 2) U ths). �	

4 Constrained Markov Reward Models

Constrained Markov reward models (CMRMs) model families of MRMs where
both transition probabilities and state rewards are parametric on a set of real-
valued variables subject to constraints expressed as a first-order formula in the
linear theory of the reals.

Let x = (x1, . . . , xk) be a vector of real-valued parameters. We denote by
E the set of affine maps f : R

k → R of the form f(x) = a · x + b with a =
(a1, . . . , ak) ∈ Q

k and b ∈ Q, i.e. f(x1, . . . , xk) =
( ∑k

i=1 aixi

)
+ b.

Definition 4. A constrained Markov reward model is a tuple F = (S, τ, 	, ρ, F )
where S and 	 are defined as for MCs, τ : S → (S → E) is a parametric transition
function, ρ : S → E is a parametric reward function, and F (x) is a linear first-
order formula s.t., for all s ∈ S, F (x) implies τ(s) ≥ 0 ∧ 1 · τ(s) = 1.

Intuitively, a CMRM F = (S, τ, 	, ρ, F ) defines a family of MRMs arising by
plugging in concrete values for the parameters. A parameter valuation v ∈ R

k is
admissible (or feasible) if F (v) holds true. By abuse of notation, we may write
F to indicate the set of admissible valuations. Given v ∈ F we denote by F(v)
the MRM associated with v. In this respect, it will be convenient to think of F
as a function F : F → MRM. The semantics of F , written [F ], is defined as the
image of F , i.e. [F ] = {F(v) | v ∈ F}.

Example 4. As already mentioned in the introduction, the stress level of a Ph.D.
student may be influenced by several factors. For instance, we can define the
following CMRM F = (S, τ, 	, ρ̄, F ) having as underlying Markov chain that of
Fig. 1, parametric vector of rewards ρ = (0, 0, h+c, h+ j, r, 0, a), and constraints
F = (−5 ≤ h ≤ 0) ∧ (1 ≤ c ≤ j ≤ 5) ∧ (−3 ≤ a + r ≤ 3) ∧ a ≤ r. Here, the
parameter h models the help of the supervisor, whereas c and j represent the
stress that accumulates while writing a conference paper c, or a journal paper
j. The stress caused by having a paper accepted or rejected in modelled by the
parameters a and r respectively.

It is easy to note that the MRM in Fig. 1 is an instance of F . �	
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Remark 1. Our notion of CMRM trivially extends that of IMC w.r.t. the so-
called uncertain Markov chain interpretation [15]. The condition that transitions
probabilities lie within some intervals is trivially expressed as a conjunction of
liner inequalities. We shall also recall, that our definition is similar to that of
augmented pMCs given by Hutschenreiter et al. [9]. Nevertheless, we do not
require all admissible valuations to induce the same underlying graph; instead,
we require linear constraints as opposed to polynomial constraints. �	

Given a CMRM F we are interested in finding suitable symbolic representa-
tions of the set of parameter valuations that ensure the corresponding MRMs to
enjoy some property. Properties of interests for this paper are bisimulation and
PRCTL formulae. Specifically, given states s, s′ ∈ S, and a PRCTL state for-
mula Φ, we are interested in the set of parameter valuations for which s becomes
bisimilar to s′ or such that Φ holds at s. These are formalised as follows.

�s ∼F s′� def=
{
v ∈ F | s ∼F(v) s′} , �F , s |= Φ�

def= {v ∈ F | F(v), s |= Φ} .

Example 5. Consider the CMRM F defined in Example 4 and the PCTL for-
mula Φ = E[0,10](ths). The set of feasible parameter valuations satisfying Φ, i.e.,
�F , s |= Φ�, can be symbolically represented by the following formula

φ = 0 ≤ 57a + 575c + 750h + 175j + 168r ≤ 1750
3

∧ F . (2)

The above formula can be used for instance to determine how much effort the
supervisor needs to provide to ensure that the formula Φ is satisfied. In this case,
this can be done by maximising h under the constraints φ. �	

5 Analysing Bisimilarity on Constrained MRMs

In this section we address the problem of finding symbolic representations of
the set of parameter valuations ensuring that two given states of a CMRM are
probabilistic bisimilar.

Before diving in this problem, it will be convenient to present an alternative
characterisation for probabilistic bisimilarity on MRMs. The characterisation is
a variant of that of Jonsson and Larsen [11] based on the notion of coupling.

Given μ, ν ∈ D(X), we denote by Γ (μ, ν) the set of couplings for (μ, ν), i.e.,
probability distributions γ ∈ D(X × X) such that, for all x, y ∈ X

∑
x′∈X γ(x′, y) = ν(y) and

∑
y′∈X γ(x, y′) = μ(x) . (3)

The probability measures μ and ν are respectively called left and right marginals
of γ. A coupling can be seen as a redistribution of the “probability mass” from
the right marginal to the left and vice versa.

Lemma 1. s ∼ s′, if and only if there exists a relation R ⊆ S × S, such that
s R s′ and, whenever m R n the following conditions hold
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(i) 	(m) = 	(n), ρ(m) = ρ(n), and
(ii) there exists γ ∈ Γ (τ(m), τ(n)) such that {(u, v) ∈ S ×S | γ(u, v) > 0} ⊆ R.

The above lemma allows us to encode �s ∼F s′� as the following first-order
formula in the linear theory of the reals.

�s ∼F s′� def= F ∧ ∃b. bss′ = 1 ∧
∧

m,n∈S

β(m,n) ∧ γ(m,n) ∧ σ(m,n) (4)

where the sub-formulae β, γ, and σ are defined as follows:

β(m,n) def=
∧

m,n∈S

(bmn = 0 ∨ bmn = 1) (5)

γ(m,n) def= (bmn = 1) → ∃c ≥ 0.

⎛

⎜
⎝

∧
u∈S

∑
v∈S cuv = τ(m)(u) ∧

∧
v∈S

∑
u∈S cuv = τ(n)(v) ∧

∧
u,v∈S cuv ≤ buv

⎞

⎟
⎠ (6)

σ(m,n) def= (bmn = 1) → (	(m) = 	(n) ∧ ρ(m) = ρ(n)) . (7)

In the formula �s ∼F s′�, b = (bmn)m,n∈S represents a selection of a relation
R ∈ S×S by means of binary variables (cf. (5)) such that bm,n = 1 iff (m,n) ∈ R.
According to Lemma 1, the selection needs to include the pair (s, s′) and satisfy
the conditions (i) and (ii). This is modelled by imposing bss′ = 1, σ(m,n) and
γ(m,n) for all m,n ∈ S. In particular, in (6), the variables c = (cuv)u,v∈S model
coupling for (τ(m), τ(n)) the condition (ii) is enforced by requiring cu,v ≤ bu,v

for all u, v ∈ S.
By Lemma 1, the elimination of the existential quantifiers in �s ∼F s′� yields

a Boolean formula with linear predicates on x representing the set of valua-
tions �s ∼F s′�. Notably, the formula �s ∼F s′� is a first-order formula in the
existential theory of the reals which involves only linear predicates. Therefore,
quantifier elimination can be performed by using tools specialised for the linear
theory of real-arithmetic, such as mjollnir [14].

6 Model Checking Constrained MRMs

In this section we consider the model checking problem of CMRMs against
PRCTL formulae for the class of constrained MRMs having parameters only
on state rewards. For this class, we show that the set of parameter valuations
satisfying given PRCTL formula can, again, be encoded as a first-order formula
in the linear theory of real-arithmetic.

In this section assume that in the CMRM P = (S, τ, 	, ρ, F ), parameters
occur only in the state rewards, that is, τ(s)(u) ∈ [0, 1] for all s, u ∈ S.

For a state s ∈ S, and a PRCTL state formula Φ, we characterise �P, s |= Φ�
by means of the set of valuations satisfying F ∧�s, Φ�. The formula �s, Φ� encodes
the satisfiability of P in s up-to the constraints F , and it is defined by induction
on the structure of Φ.
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For the Boolean fragment of PRCTL, the reduction is as one may expect.

�s, tt� = tt , �s, a� = a ∈ 	(s) , �s, ρ �� r� = ρ(s) �� r ,

�s,¬Φ� = ¬�s, Φ� , �s, Φ ∧ Ψ� = �s, Φ� ∧ �s, Ψ� .

For all other formulae, it is convenient to use �u,♦Φ� as short for
∨

u→∗v�v, Φ�.

�s,PJ (XΦ)� = ∃p.1 · p ∈ J ∧
∧

u∈S

((pu = τ(s)(u) ∧ �u, Φ�) ∨ (pu = 0 ∧ ¬�u, Φ�))

�s,PJ (ΦUΨ)� = ∃p. ps ∈ J ∧
∧

u∈S

⎛

⎜
⎝

(pu = 1 ∧ �u, Ψ�) ∨ (pu = 0 ∧ ¬�u,♦Ψ�)∨
(pu = 0 ∧ ¬�u, Φ� ∧ ¬�u, Ψ�)∨

(pu = τ(u) · p ∧ �u, Φ� ∧ ¬�u, Ψ� ∧ �u,♦Ψ�)

⎞

⎟
⎠

�s,PJ (ΦUn
RΨ)� = ∃q.1 · q ∈ J ∧

∧

w∈Sn

(
(qw=Prs(cyl(w)) ∧ β(w))∨

(qw=0 ∧ ¬β(w))

)

�s,ER(Φ)� = ∃r. rs ∈ R ∧
∧

u∈S

((ru = 0 ∧ αu) ∨ (ru = ρ(u) + τ(u) · r ∧ ¬αu))

where p = (ps)s∈S , r = (rs)s∈S , q = (qw)w∈Sn , αu = �u, Φ� ∨ ¬�u,♦Φ�, and

β(s1 . . . sn) =
∨

1≤j≤n

(
�sj , Ψ� ∧

∧

1≤k≤j

∑k−1
i=1 ρ(si) ∈ R ∧ ∧

1≤h<j�sh, Φ�
)

.

In �s,PJ (XΦ)�, the variable pu represents the probability of moving from s to
u, where u satisfies the property Φ, therefore 1 · p =

∑
u∈S is the probability of

moving in one step from s to a state satisfying Φ. Analogously, in �s,PJ (ΦUΨ)�,
the variable pu models the probability of u satisfying the property ΦUΨ : if u
satisfies the property Φ then pu is 1; if u satisfies neither Φ nor Ψ or cannot
reach a state satisfying Ψ , then pu is 0; otherwise, pu amounts to the probability
of moving in one step to some other state u′ and, from there, satisfying ΦUΨ .

In �s,PJ (ΦUn
RΨ)�, qw is the probability of executing the trace w in exactly

n steps starting from s where β(w) models that fact that w satisfies ΦUn
RΨ .

Therefore, 1 · q amounts to the probability of executing from s a path that
satisfies ΦUn

RΨ .
Finally, in �s,ER(Φ)�, one can readily see that r models the unique solution

of the system of linear equations (1), where formula αu capture the fact that u
either satisfies the property Φ or cannot reach any state that does.

The following result states the correctness of the above characterisation.

Theorem 1. v |= F ∧ �s, Φ� iff v ∈ �P, s |= Φ�.

Example 6. Consider the CMRM F and the formula Φ from Example 5. The
encoding of the satisfiability of s1 with respect to Φ, namely �s, Φ�, boils down
to the following first order linear formula.
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∃x. x1 ≥0 ∧ x1 ≤ 10 ∧ x1 =
x1

5
+

x2

10
+

3x3

10
+

x4

5
+

x6

5
∧

x2 = 0 ∧ x3 = c + h +
x1

5
+

x3

2
+

9x5

100
+

21x7

100
∧

x4 = h + j +
x1

5
+

x3

2
+

3x5

100
+

27x7

100
∧

x5 = a + x1 ∧ x6 =
x1

5
+

3x3

20
+

7x4

20
+

3x6

10
∧ x7 = r + x1

By using the tool mjollnir [14] we are able to eliminate the existential quanti-
fiers on x = (x1, . . . , x7) obtaining the formula φ of Eq. (2). �	

7 Markov Models with Stochastic Rewards

It’s common practice to model experimental measurements by means of real-
valued random variables distributed according to well studied families of distri-
butions (e.g., normal or student’s T).

In this section we introduce the notion of stochastic Markov reward mod-
els (SMRMs) where state rewards are real-valued random variables. Then, we
present a PRCTL model checking framework for SMRMs.

From here on we fix the probability space (Ω,Σ,P ) representing the envi-
ronment where the experiments are performed, and we use Y to denote the set
of real-valued random variables of the form Y : Ω → R.

Definition 5. A stochastic Markov reward model is a tuple J = (S, τ, 	, ρ)
where (S, τ, 	) is a Markov chain, and ρ : S → Y is a reward function assigning
a real-valued random variable to each state.

An SMRM J = (S, τ, 	, ρ) can be intuitively interpreted as a measurable function
J : Ω → MRMJ , where J (ω) is the MRM having (S, τ, 	) as underlying Markov
chain and (ρ(s)(ω))s∈S as vector of rewards. Such interpretation justifies the
intuition of J being an experiment whose outcomes is a MRM.

The above intuition is formalised as follows. We denote by MRMJ the set
of all MRMs having the same underlying Markov chain as J . We construct the
σ-algebra ΣJ as the family of sets A ⊆ MRMJ whose corresponding set of
rewards vectors is Borel measurable in R

m (m = |S|). Formally,

A ∈ ΣJ iff A ⊆ MRMJ and {ρ(R) | R ∈ A} ∈ B(Rm) .

Accordingly, the semantics of J is the probability space (MRMJ , ΣJ , P [J ]).
Given a SMRM J , a state s ∈ S, and a PRCTL formula Φ, it comes natural

to ask how likely is that a concrete instance of J satisfies Φ at s, denoted by
P [J , s |= Φ]. This model checking problem is formalised as follows

P [J , s |= Φ] def= P [J ]({R ∈ MRMJ | R, s |= Φ}) . (8)
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We study the above model checking problem for a subclass of SMRMs having
random variables (Y : Ω → R) ∈ EX of the form Y (ω) = a·X(ω)+b, with a ∈ Q

k,
b ∈ Q and, where X = (X1, . . . , Xk) is a vector of pairwise independent real-
valued random variables1. Observe that, elements in EX may not be independent
from each other.

Hereafter we consider the SMRM J = (S, τ, 	, ρ) with ρ : S → EX, and we
use P to refer to the CMRM obtained by replacing the random variables Xi in
J with the parameters xi (i = 1, . . . , k).

For Eq. (8) to be well-defined the set {R ∈ MRMJ | R, s |= Φ} needs to be
a measurable event in ΣJ . The following result ensures that.

Lemma 2. {R ∈ MRMJ | R, s |= Φ} ∈ ΣJ .

Proof. By definition of P we have that

{R ∈ MRMJ | R, s |= Φ} = {P(v) | v ∈ �P, s |= Φ�})

Therefore, by def. of ΣJ and measurability of affine transformations we have
that the claim holds iff �P, s |= Φ� ∈ B(Rk). By Theorem 1, �P, s |= Φ� can be
described by means of a Boolean formula with linear predicates. Since σ-algebras
are closes under complement (i.e., negation), countable unions (i.e., disjunctions)
and countable intersections (i.e., conjunctions) and, affine transformations are
measurable, we conclude that {R ∈ MRMJ | R, s |= Φ} ∈ ΣJ .

The following theorem characterises the model checking problem for the
SMRM J in terms of the model checking problem for the CMRM P.

Theorem 2. P [J , s |= Φ] = P [X ∈ �P, s |= Φ�].

Proof. The claim holds true according to the following equalities.

P [J , s |= Φ] = P [J ]({R ∈ MRMJ | R, s |= Φ}) (by Eq. (8))
= P [P ◦ X]({R ∈ MRMJ | R, s |= Φ}) (J = P ◦ X)
= P [P ◦ X](P(�P, s |= Φ�)) (def. P and def. �P, s |= Φ�)

= P ((P ◦ X)−1(P(�P, s |= Φ�)) (def. push-forward)

= P (X−1(�P, s |= Φ�)) ((P ◦ X)−1 = X−1 ◦ P−1)
= P [X ∈ �P, s |= Φ�] . (def. push-forward)

�	
By Theorem 2 we can estimate the value p of P [J , s |= Φ] by applying Monte
Carlo simulation techniques. For this, we sample n independent repetitions of X,
associating with each repetition a Bernoulli random variable Bi. A realisation
bi of Bi is 1 if the corresponding sampled value of X lays in �P, s |= Φ�, and

1 In fact, the vector X is a multivariate random variable X : Ω → R
n with marginals

Xi : Ω → R (i = 1, . . . , n).
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0 otherwise. Finally, we estimate p by means of the observed relative success
rate p̃ = (

∑n
i=1 bi)/n. The absolute error ε of the estimation can be bound

with a certain degree of confidence δ ∈ (0, 1] by tuning the number of required
simulations based on the Hoeffding’s inequality P (|p̃ − p| ≥ ε) ≤ 2e−2nε2

. Thus,
we can determine the number of samples required to estimate p with absolute
error ε and confidence δ by imposing 2e−2nε2

= 1 − δ, from which we obtain

n =
⌈

− ln(δ/2)
2ε2

⌉

. (9)

For example, we can estimate p with an error ε = 0.01 with a confidence of 95%
(i.e., δ = 0.95) by drawing n = 18445 samples.

Example 7. Let X = (H,C, J,A,R) be a vector of random variables respectively
distributed as H ∼ unif(−5, 0), C ∼ unif(1, 2), J ∼ N (2, 0.1), A ∼ N (−3, 0.5),
and R ∼ N (−3, 0.5). We define the SMRM J = (S, τ, 	, ρ) having as underlying
Markov chain that of Fig. 1, and the following random vector of rewards

ρ = (0, 0,H + C,H + J,R, 0, A) ,

which shall be understood as a stochastic version of the one presented in Exam-
ple 4. By taking the formula Φ = E[0,10](ths) from Example 5, we can estimate
P [J , s1 |= Φ] ∼= 0.156061 with an error ε = 0.005 and confidence of 99.99%
(i.e., δ = 0.0001) by generating n = 198070 samples. �	

8 Conclusion

We described a framework for the analysis of Markov reward models in presence
of uncertain rewards. To this end we propose two extensions of the notion of
MRM: (a) constrained Markov reward models, having state rewards parametric
on a set variables subject to some constraints, and (b) stochastic Markov reward
models, having rewards modelled as random variables.

We demonstrated that the analysis CMRMs with respect to probabilistic
bisimilarity and PRCTL formulae, can be reduced to perform quantifier elimi-
nation on fist-order formulae in the linear fragment of the theory of the reals.
Our reduction does not lead to an improvement on the theoretical complexity of
the model checking problem for (augmented) parametric Markov chains (cf. [9,
Theorem 4]). However, we believe that our reduction is important from the
perspective of implementation in practice, because it allows one to employ SMT
solvers or quantifier elimination procedures specialised on linear constraints such
as mjollnir [14]. It is worth noting that our reduction can be also applied with
PRCTL formulas with parametric bounds, extending even further the applica-
bility of our approach.

Finally, we provided a characterisation of the model checking problem for
SMRMs in terms of the model checking problem for CMRMs. As we have shown,
this result allows one to estimate the probability that a given SMRM satisfies a
given specification by employing Monte Carlo simulation techniques.
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All the calculations presented in the examples have been done by using a
prototype implementation of the above described algorithms2 coded in Mathe-
matica [18]. For the quantifier elimination we employed mjollnir instead of the
built-in solution offered by Mathematica.

Our work finds applications in model repair, where parameters need to be
tuned so as to satisfy a desired specification, as well as in robustness analysis in
presence of stochastic perturbations.
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Abstract. Markov automata are a compositional modelling formalism
with continuous stochastic time, discrete probabilities, and nondetermin-
istic choices. In this paper, we present extensions to the Modest language
and the mcsta model checker to describe and analyse Markov automata
models. Modest is an expressive high-level language with roots in pro-
cess algebra that allows large models to be specified in a succinct, modular
way. We explain its use for Markov automata and illustrate the advantages
over alternative languages. The verification of Markov automata models
requires dedicated algorithms for time-bounded probabilistic reachability
and long-run average rewards. We describe several recently developed such
algorithms as implemented inmcsta and evaluate them on a comprehensive
set of benchmarks. Our evaluation shows that mcsta improves the perfor-
mance and scalability of Markov automata model checking compared to
earlier and alternative tools.

1 Introduction

Studying dependability and performance aspects of critical designs or implemen-
tations [4] requires a formal mathematical model that captures the core quantita-
tive aspects of such systems. In particular, we need stochastic continuous time to
model delays of which we only know averages, e.g. the mean time to failure, dis-
crete probabilistic choices to describe instantaneous uncertain decisions, as in e.g.
randomised algorithms, and nondeterminism to be able to deal with underspecifi-
cation, abstraction, unquantified uncertainty, and concurrency. Markov automata
(MA, [18,20]) extend the classical formalisms of continuous-time Markov chains
anddiscrete-timeMarkov decision processes (MDP) to encompass all three of these
aspects. In contrast to continuous-time MDP (CTMDP), they are compositional:
there is a natural parallel composition operator for networks of MA that provides
for both interleaved and synchronising transitions without the need for ad-hoc
operations to combine transition rates.

MA are the semantic basis for generalised stochastic Petri nets [19] and
dynamic extensions of fault trees [6,31]. Several publications studied algorithmic
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problems related to the efficient analysis of MA [2,12–15,23,24,30]. In this light,
it is disappointing that tool support for MA is thus far rather brittle. The one ded-
icated tool for compositional modelling with MA, Scoop [38], is unmaintained,
as is the corresponding lower-level MA model checker Imca [22]. The one other
actively developed tool with comprehensive MA support is Storm [17], which
however lacks built-in support for high-level compositional modelling.

Using the mathematical formalism of MA directly to build complex models
is cumbersome. For their use to be practical, we need a higher-level modelling
language. Aside from a parallel composition operator, such languages typically
provide variables over finite domains that can be used in expressions to e.g.
enable or disable transitions. Their semantics is then an MA whose states are
the valuations of the variables, allowing to compactly describe very large MA. In
this paper, we present recent extensions to Modest [27], a high-level modelling
language for stochastic hybrid systems, that add support for expressing MA
models. Rooted in process algebra, Modest provides various composition oper-
ators that allow large models to be assembled from small, easy-to-understand
components. In Sect. 3, we illustrate the use of Modest for MA, and we compare
its succinctness, expressivity, and readability with alternative languages.

We build MA models to compute quantitative properties of systems such as
safety (the probability to reach an unsafe state), reliability (doing so within a
time bound), or throughput (the long-run average amount of work completed
per time unit). Probabilistic model checking techniques [3] can be applied to
MA to effectively compute or approximate such values. While the computa-
tion of unbounded reachability probabilities and expected accumulated rewards
can be reduced to checking the MA’s embedded MDP, time-bounded probabili-
ties and long-run average rewards require dedicated algorithms. We summarise
the currently available algorithms, their particular characteristics, and notable
implementation considerations, in Sect. 4. To complement our extension of the
Modest language with suitable analysis facilities, we have implemented the
most promising of these algorithms in the mcsta model checker of the Modest
Toolset [28]. We use the MA models of the Quantitative Verification Bench-
mark Set [29] to evaluate the performance of our implementation and of the
different algorithms in Sect. 5. We compare the results with Imca and Storm.

2 Markov Automata

The mathematical formalism of Markov automata provides nondeterministic
choices as in labelled transition systems (LTS, or Kripke structures or finite
automata), discrete probabilistic decisions as in discrete-time Markov chains
(DTMC), and states with exponentially distributed residence times as in continu-
ous-time Markov chains (CTMC). The relationships between these formalisms
are visualised in Fig. 1. We now define MA formally and describe their semantics.

Preliminaries. We write {x1 �→ y1, . . . } to denote the function that maps all
xi to yi, and if necessary in the respective context, implicitly maps to 0 all x
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Fig. 1. The MA family tree

0

M1

1 2 3

4

0.5 0.5

2 2

0

M2

12

3 4

2

2

00

M1 M2

01
02

03

14 2434

44

2

0.5 0.5

2

2 2

Fig. 2. Example Markov automata

for which no explicit mapping is specified. Given a set S, its powerset is 2S . A
(discrete) probability distribution over S is a function μ ∈ S → [0, 1] such that
spt(μ) def= { s ∈ S | μ(s) > 0 } is countable and

∑
s∈spt(μ) μ(s) = 1. Dist(S) is the

set of all probability distributions over S, and μ1⊗μ2 is the product distribution
of μ1 and μ2 defined by (μ1 ⊗μ2)(s) = μ1(s) ·μs(s). We refer to discrete random
choices as probabilistic and to continuous ones as stochastic.

Definition 1. A Markov automaton (MA) is a tuple

M = 〈S, s0, A, P,Q, rr , br〉
where
– S is a finite set of states, with s0 ∈ S being the initial state,
– A is a finite set of actions,
– P ∈ S → 2A×Dist(S) is the probabilistic transition function,
– Q ∈ S → 2Q×S the Markovian transition function,
– rr ∈ S → [0,∞) is the rate reward function, and
– br ∈ S × Tr(M) × S → [0,∞) is the branch reward function

with Tr(M) def=
⋃

s∈S P (s)∪⋃
s∈S Q(s). P (s) and Q(s) must be finite sets for all

s ∈ S. We define the exit rate of s ∈ S as E(s) =
∑

〈λ,s′〉∈Q(s) λ.

Example 1. Fig. 2 shows two MA M1 and M2 without rewards. We draw proba-
bilistic transitions as solid, Markovian ones as dashed lines. If a transition leads
to a single target state, we omit the intermediate probabilistic branching node.

The semantics of an MA is that, in state s, (1) the probability to take Markovian
transition 〈λ, s′〉 ∈ Q(s) and move to state s′ within t time units is

λ/E(s) · (1 − e−E(s)·t), (1)

i.e. the residence time follows the exponential distribution with rate E(s) and
the choice of transition is weighted by their rates; and (2) at any point in time,
a probabilistic edge 〈a, μ〉 ∈ P (s) can be taken with the successor state being
chosen according to μ. MA thus separate interaction from timing: the former
is represented by the action-labelled probabilistic transitions, and the latter is
governed by the rates of the Markovian transitions. This is the key difference
to CTMDP, which have one kind of transitions with both actions and rates.
It enables parallel composition operators with action synchronisation for MA
without any need to prescribe an ad-hoc operation for combining rates.
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Definition 2. Given two MA Mi = 〈Si, s0i , Ai, Pi, Qi〉, i ∈ { 1, 2 }, their parallel
composition is M1 ‖ M2

def= 〈S1×S2, 〈s01 , s02〉, A1∪A2, P,Q〉 with P the smallest
function such that

(〈a, μ〉∈P1(s1) ∧ a /∈A2 ⇒ 〈a, μ ⊗ { s2 �→ 1 }〉∈P (〈s1, s2〉))
∧ (〈a, μ〉∈P2(s2) ∧ a /∈A1 ⇒ 〈a, { s1 �→ 1 } ⊗ μ〉∈P (〈s1, s2〉))
∧ (〈a, μ1〉∈P1(s1) ∧ 〈a, μ2〉∈P2(s2) ∧ a∈A1 ∩ A2 ⇒ 〈a, μ1 ⊗ μ2〉∈P (〈s1, s2〉))

and Q is the smallest function s.t. (〈λ, s′
1〉∈Q1(s1) ⇒ 〈λ, 〈s′

1, s2〉〉∈Q(〈s1, s2〉))
and vice-versa for Q2.

The operator above uses multi-way synchronisation on the shared alphabet of
the two automata; similar operators could be defined for other synchronisation
mechanisms, e.g. to define input-output MA. Fig. 2 includes the parallel compo-
sition of the example M1 and M2, where we write nm for state 〈n,m〉. The two
automata synchronise on the shared actions a and c.

We defined MA as open systems [8]: probabilistic transitions can interact
with, wait for, and be blocked by other MA in parallel composition. For veri-
fication, we make the usual closed system and maximal progress assumptions,
i.e. we assume that probabilistic transitions face no further interference and
take place without delay. If multiple probabilistic transitions are available in
a state, however, the choice between them remains nondeterministic. Since the
probability that a Markovian transition is taken in zero time is 0, the maximal
progress assumption allows us to remove all Markovian transitions from states
that also have a probabilistic transition. In such closed MA, we can thus dis-
tinguish between Markovian states (where P (s) = ∅) and probabilistic states
(where Q(s) = ∅). The behaviour of a closed, deadlock-free MA M is defined
via its paths:

Definition 3. A path π ∈ Π(M) is an infinite sequence
π = s0 t0 tr0 s1 . . . ∈ (S × [0,∞) × Tr(M))ω

such that Q(si) = ∅ ⇒ ti = 0 and tr i ∈ P (si)∪ Q(si). We write Πf (M) for the
set of all path prefixes πf ending in a state. Let π≤i

def= s0 t0 . . . si. The duration
dur(πf ) of a path prefix is the sum of its residence times ti. A path’s reward is

rew(π) =
∑∞

i=0
ti · rr(si) + br(si, tri , si+1)

and is analogously defined for prefixes.

A path prescribes a resolution of all nondeterministic, probabilistic, and stochas-
tic choices. To define a probability measure, we resolve nondeterminism only:

Definition 4. Given an MA M as above, a scheduler in S(M) is a function σ ∈
Πf (M) → Tr(M) s.t. ∀s ∈ S : σ(s) = tr ⇒ tr ∈ P (s)∪ Q(s). A time-dependent
scheduler is in S × [0,∞) → Tr(M); a memoryless one in S → Tr(M).

We define deterministic schedulers only since randomised schedulers are in prac-
tice only needed for multi-objective problems [34]. We note that CTMDP with
early schedulers [36] can be encoded as closed MA. A scheduler induces a prob-
ability measure over sets of measurable paths in the usual way [30]. For all of
the following types of properties, we are interested in the maximum (supremum)
and minimum (infimum) values when ranging over all schedulers σ ∈ S(M):
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Reachability probabilities: Given a set of goal states G ⊆ S, compute the
probability of the set of paths that include a state in G. Memoryless schedulers
suffice to achieve optimal results (i.e. the max. and min. probabilities).

Time-bounded reachability: Additionally restrict to paths where the sum of
delays up to reaching the first state in G is below a bound b ∈ [0,∞). Here,
time-dependent schedulers with input b − dur(πf ) suffice.

Expected accumulated rewards: For G ⊆ S, compute the expected value of
the random variable1 that assigns to path π the value rew(πf ) where πf is the
shortest prefix of π with a state in G. Memoryless schedulers suffice.

Long-run average rewards: Compute the expected value of the random vari-
able that assigns to path π the value limi→∞ rew(π≤i)/dur(π≤i). Memoryless
schedulers suffice.

Example 2. Consider MA M1 ‖ M2 of Fig. 2 and the
probability to reach state 〈4, 4〉 within 1 time unit. In
state 〈0, 1〉, we have to decide whether to choose action
a or b. The optimal decision depends on the amount of
time t that has passed in state 〈0, 0〉. In the plot on the
right, we show the probability of reaching state 〈4, 4〉
(y-axis) depending on 1− t (x-axis). The blue line rep-
resents the reachability probability for the memoryless
scheduler that always chooses a and the red one is for
the scheduler that always takes action b. A time-dependent scheduler can make
better decisions than either of these two by determining the values of t for which
a results in a higher probability than b and vice-versa. The optimal scheduler
thus chooses a if and only if 1 − t ≤ 0.63 approximately.

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

3 Modelling

Tools for the automated analysis of MA need a syntax in which the model and
the properties of interest are specified. As noted in Sect. 1, such a modelling
language needs to provide a parallel composition operator such that large MA
can be built from small specifications, and will typically support modelling with
variables that can be used in guards and assignments. In the context of such
symbolic formalisms, we have locations and edges that each induce (many) states
and transitions, respectively, in the formalism’s plain-MA semantics.

3.1 Modest for Markov Automata

As part of implementing the Jani [10] model exchange format, we recently intro-
duced support for MA into the syntax and semantics of the Modest mod-
elling language [27]. Modest previously supported MDP and more complex
continuous-time formalisms such as stochastic hybrid automata, but did not
1 This is well-defined if the maximum (minimum) probability to reach G is 1; other-

wise, we define the minimum (maximum) expected accumulated reward to be ∞.
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Fig. 3. Modest for MA

Fig. 4. MAPA process algebra

Fig. 5. Prism dialect supporting MA

Fig. 6. Imca state space format

have provisions for succinctly annotating edges with rates. We added the rate(e)
construct for this purpose, which behaves analogously to the existing when(e)
construct for specifying the enabling condition of an edge. Modest enforces
the separation of probabilistic and Markovian transitions by requiring edges for
which a rate is specified to have the predefined and non-synchronising τ action
label. If this restriction is not met, the model is recognised as a CTMDP.

At its core, Modest is a process algebra: it provides various operations such
as parallel composition (par), sequential composition (;), parameterised process
definitions, process calls, and guards (when) to flexibly construct complex models
out of small and reusable components. Its syntax however borrows heavily from
commonly used programming languages, and it provides high-level conveniences
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such as do loops and a full-fledged mechanism for throwing (throw) and han-
dling (try-catch) exceptions. As such, Modest tends to be more verbose than
classic process algebras, but also more readable and beginner-friendly. To spec-
ify complex behaviour in a succinct manner, Modest also provides variables of
standard basic types (e.g. bool, int, or bounded int), arrays, and user-defined
recursive datatypes akin to functional programming languages. Its syntax for
expressions again is aligned with C-like programming languages for ease of use.

In Fig. 3, we show a Modest representation of the parallel composition of
MA M1 and M2 of Fig. 2. M1 has been slightly optimised by merging states 1 and
3 into the last line of process M1; this actually came naturally when modelling due
to the ease in which behaviours can be combined and shared in Modest. The
model also includes the declaration of two properties of interest for verification,
P_Min and P_Max, which ask for the probability to reach state 〈4, 4〉—made
observable via the global variable succ—within time B akin to Example 2. B is
an open parameter for which values can be specified at verification time. There
are many features of Modest not used in this small model; the interested reader
may find more complex Modest MA models, in particular with arrays and
rewards, in the Quantitative Verification Benchmark Set [29] at qcomp.org.

Tool Support. The Modest Toolset [28] is a comprehensive suite of tools
for quantitative modelling and verification. Its primary input languages are
Modest and Jani. MA are supported in its mosta, moconv2, mcsta, and modes
tools. mosta visualises the symbolic semantics of models and is useful for model
debugging. moconv transforms models between modelling languages (it can e.g.
convert Modest to Jani) and performs syntactic rewriting and optimisations.
mcsta is an explicit-state model checker; we present and evaluate its MA-specific
algorithms in Sects. 4 and 5. modes [9] is a statistical model checker with auto-
mated rare event simulation capabilities. It implements the lightweight scheduler
sampling approach [32] for nondeterministic models, including MA [16]. The
Modest Toolset is written in C#, works cross-platform on Linux, Mac OS,
and Windows, and is freely available at modestchecker.net. All its tools share
a common infrastructure for parsing and syntactic transformations. mcsta and
modes additionally build on the same state space exploration engine that com-
piles models to bytecode at runtime for memory efficiency and performance.

3.2 Alternative Modelling Languages

Modest is not the only modelling language for MA. These are the alternatives:

State Space Files for Imca. The first MA-specific algorithms were implemented
in the Imca tool [22]. Its only input language is a text-based explicit state space
format as illustrated for our example of M1 ‖ M2 in Fig. 6. This is clearly not a
useful modelling language, but a format to be automatically generated by tools.

2 moconv can also export CTMDP to Jani, but due to their lack of a natural parallel
composition operator, the analysis of CTMDP is not supported in the other tools.

http://qcomp.org/benchmarks/
http://www.modestchecker.net/
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Guarded Commands with Storm. Of the alternative tools for MA, Storm [17] is
the only one that is actively maintained. It provides many input languages, with
MA being supported through a state space format similar to Imca’s, via Jani, as
the semantics of generalised stochastic Petri nets [19] in GreatSPN format [1],
and through an extension of the Prism guarded command language. We show
our example in the latter in Fig. 5. It is a very simple, small language that is
easy to learn, however it completely lacks higher-level constructs to structure
and compose models aside from the implicit parallel composition of its modules.

Process Algebra with Scoop. Mapa [38] is a dedicated process algebra for MA. It
is supported by Scoop [38], which can linearise, reduce, and finally export Mapa
models to Imca for verification. We show the example of M1 and M2 in Mapa in
Fig. 4. As a classic concise process algebra, Mapa tends to be very succinct, but
also difficult to read. Mapa models can be much more flexibly composed than
Prism models, yet there is less syntactic structure than in Modest—although
the languages conceptually share many operators. Mapa notably has a prede-
fined queue datatype, and users can specify custom non-recursive datatypes.

JANI Model Interchange. Jani [10] is a model interchange format designed to
ease tool development and interoperation. It is Json-based and thus human-
debuggable, but not intended as human-writable. It represents networks of
automata with variables symbolically. Since both the Modest Toolset and
Storm support Jani, it is possible to e.g. build MA models in the Modest
language, export them to Jani with moconv, and then verify them with Storm.
Likewise in the other direction, we can e.g. create a Petri net with GreatSPN,
convert to Jani with Storm, and analyse it with mcsta or modes. In this way,
the most appropriate modelling language can be combined with the best analysis
method and tool for every specific scenario.

4 Algorithms

While the values for some classes of properties can be computed by checking
the embedded MDP of an MA, most need dedicated MA-specific algorithms. We
briefly describe the algorithms implemented for MA in mcsta, Storm and Imca.

4.1 Untimed and Expected-Reward Properties

Like for CTMC, properties that do not refer to time, or that only refer to exp-
ected times, can be computed on the embedded MDP of the Markov automaton.
These properties include unbounded as well as branch reward-bounded reach-
ability probabilities and expected accumulated rewards. For simplicity, we will
refer to all of these as “unbounded properties”. The available algorithms include
all the standard exhaustive model checking algorithms for MDP [33], in partic-
ular using linear programming (LP), policy iteration, value iteration, interval
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iteration [5,25], and sound value iteration [35]. Standard “unsound” value itera-
tion and typical LP solvers do not provide any guarantees (such as ε-closeness
to the true probability or value) on their results, while interval iteration and
sound value iteration do. To combat the state space explosion problem of the
exhaustive methods, the BRTDP learning-based approach [7] can be used for
probabilities. It attempts to explore only a small part of the state space that
is sufficient to provide a lower and an upper bound on the result that are close
enough. Its efficiency both in terms of runtime and in terms of memory reduction
highly depend on the structure of the model, though.

Tool Support. mcsta implements value iteration, LP, and interval iteration for
expected rewards and unbounded reachability probabilities. It is being extended
to support sound value iteration. It also provides BRTDP as in [2] where sim-
ulations with the uniform probabilistic scheduler are used to explore a part of
the state space. After every batch of simulation runs, interval iteration is used
to compute bounds. Storm implements value and policy iteration, LP, interval
iteration, sound value iteration, and a variant of BRTDP. It also provides algo-
rithms to compute exact (rational) solutions using exact arithmetic, but they
are currently limited to small models. Imca supports value iteration only.

4.2 Time-Bounded Reachability

Time-bounded properties pose one of the most challenging problems in MA
model checking. Several algorithms with rather different characteristics are cur-
rently available for approximating time-bounded reachability probabilities: The
discretisation approach [23] discretises the time horizon into small intervals,
such that the MA will likely perform at most one Markovian transition within
each interval. Unif+ was first presented for CTMDP [13] and later extended
to MA [21] in the straightforward way. It is based on an approximation of the
optimal time-bounded reachability probability over timed schedulers with that
same value but ranging over untimed schedulers. The switch-step algorithm [12]
attempts to compute switching points: the points at which the optimal scheduler
changes the action for at least one state, as illustrated in Example 2. Finally, the
BRTDP idea for time-bounded reachability properties on CTMDP [2] can be
extended to MA straightforwardly: the simulation phase performs CTMC-style
simulation for Markovian states and MDP-style simulation over probabilistic
states. Time progresses only over Markovian states and the simulation stops
whenever the time bound expires or a target state is reached. Resolution of non-
determinism is performed via the randomised scheduler that samples the next
action uniformly at random from the enabled actions. The analysis phase can
be performed by any of the other algorithms for time-bounded analysis on MA.

Tool Support. mcsta implements Unif+ and switch-step while Storm supports
Unif+ and the discretisation approach. Both provide sound implementations of
these algorithms (i.e. they guarantee ε-correct results). Imca implements only
discretisation and uses unsound techniques for certain subproblems.
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4.3 Long-Run Average Rewards

There exist two approaches for computing long-run average rewards: one based
on a reduction to a linear program [24], and a value iteration-based algorithm [14]
that approximates the reward up to a user-specified (and guaranteed) precision.
In both cases, first the long-run average reward is determined for each maximal
end component, then the end components are collapsed, and the overall result
is computed as an expected reward value on the collapsed state space.

Tool Support. mcsta and Storm implement both of the algorithms while Imca
implements only the linear programming-based approach.

4.4 Other Verification Problems

We now briefly summarise other MA verification problems, name the correspond-
ing available algorithms, and mention where they are implemented.

Time-bounded expected rewards extend the time-bounded reachability problem
to rewards. The property represents the expected accumulated reward until a
time bound is reached. Algorithmic support for this property is limited to the
discretisation-based approach of [24], which is implemented in Imca.

Resource-bounded rewards generalise both time-bounded reachability and time-
bounded expected rewards. A resource-bounded reward property represents the
expected accumulated reward within a finite resource budget. The resource is
formally represented by a second type of (branch or rate) reward in the model.
The only algorithm available to date is presented in [30], with no tool support.

Discounted Rewards. Expected discounted reward properties ask for the expected
total reward where rewards collected at a certain time point are discounted with
a value, depending on this time point. For example, when dealing with income,
discounted rewards allow to take inflation into account. Iterative algorithms for
computing and approximating the value exist, such as policy and value itera-
tion [15]. There is however no tool support so far.

Multi-objective Tradeoffs. Multi-objective MA model checking allows finding a
scheduler that is optimal for several objectives, rather than only one. The only
algorithm available to date and implemented in Storm is presented in [34]. It
does not support the full range of properties, in particular excluding long-run
average and discounted rewards. For the underlying time-bounded analysis, it
resorts to discretisation, which tends to not scale well (see Sect. 5 below).

5 Experiments

The Quantitative Verification Benchmark Set (QVBS, [29]) currently contains 18
MA models, specified in Modest, Storm’s extension of the Prism language for
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MA (cf. Sect. 3.2), as GreatSPN Petri nets, and as fault trees in the Galileo
format [37]. For every model, there is also a Jani version. All models have
open parameters (like B in our Modest example of Fig. 3) to be scaled up from
small to huge state spaces. We use most of these models, selecting parameters
that make for challenging, but not impossible, state space sizes (up to a few
millions of states), to compare the performance and scalability of the algorithms
implemented in mcsta with Imca and Storm. The models include variations of
queueing systems, dependability models, scheduling problems, and security case
studies. We excluded those models that only have spurious non-determinism
(i.e. they are equivalent to a CTMC), and those that can be fully checked in
just a few seconds for the given parameter valuations. Due to the absence of
long-run average reward properties in most MA models of the benchmark set,
we added sensible long-run average properties to most of the Modest models
(which are easy to modify by hand, in contrast to Jani) in order to be able to do a
meaningful performance comparison. Those are mainly steady-state probabilities
(i.e. the special case of a rate reward of 1 in some states and of 0 in all others),
or properties describing long-run average costs of running the modelled system.

All experiments were conducted on two servers with Intel Core i7-4790 pro-
cessors and 16 resp. 32GB of RAM running 64-bit Ubuntu Linux 18.04. We keep
the default values for all the command line arguments of the tools, unless we
explicitly mention specific parameters being used. When we request a certain
precision for results (with sound methods), we request absolute, not relative,
precision. We show all results as scatter plots like the one below, with log-log
axes. Every benchmark instance—a model, a valuation for its parameters, and a
property to check—results in one point in these plots. A point 〈x, y〉 states that
the runtime of the tool noted on the x-axis on one instance was x seconds while
the runtime of the tool noted on the y-axis was y seconds. Thus points above
the solid diagonal line indicate instances where the x-tool was the fastest; it was
more than ten times faster (slower) on points above (below) the dotted line. We
set the timeout to 30min; a timeout is denoted by an “x” dot in the plots.

5.1 mcsta and Imca

The plot on the right compares the
runtime of mcsta and Imca on time-
bounded (“tbr”), long-run average (“lra”),
and unbounded properties (“unb”). The
input of Imca is an explicit representa-
tion of a state space (cf. Sect. 3.2). Thus,
before a model can be analysed with
Imca, the state space has to be fully
explored, transformed into this format,
and saved to disk. This takes additional
time and memory. Models of a few kB in
Modest lead to Imca files of several GB.
We use mcsta to perform this transforma-
tion, which took up to 200 s on each of the benchmarks we selected for our
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experiments. The runtime presented for Imca does not include the time to gen-
erate input models, but only the time it takes to load them into memory and
analyse them. For mcsta, we do include the time for state space exploration
(from Modest or Jani input). For all experiments, we chose the best runtime
among all algorithms provided in each tool. For time-bounded properties we
set the precision to 10−3 and 10−6. The same holds for long-run properties for
mcsta, but not for Imca since its command-line interface does not support setting
the precision for these properties. For unbounded properties we use the default
parameters of both tools, including precision, since this once again cannot be
changed for Imca.

We see that Imca performs far worse than mcsta. This is despite the fact that
the considered runtime does not include time for model generation and that its
only algorithm for time-bounded properties is unsound (with unsound methods
tending to be faster than sound ones [35]), while the one of mcsta is sound. The
performance gap is likely due to Imca only implementing the discretisation-
based approach, which is known to be inefficient [12,13], and not providing the
most recent model checking algorithms for any of the property types.

5.2 mcsta and Storm

Storm, like mcsta, implements multiple and current algorithms. We thus present
the results of this comparison in more detail. The runtimes for both tools include
the time for state space exploration and for the numeric computations.

Time-Bounded Properties. Fig. 7 summarises the comparison of time-bounded
solvers in mcsta and Storm. Once again we run experiments with precision
values 10−3 and 10−6 and configure the tools to produce sound results. In the
top-left plot we compare the best runtime for each tool among the algorithms
that it implements; in the bottom-left plot, we compare mcsta’s and Storm’s
implementations of Unif+. In both comparisons, mcsta achieves better runtimes
than Storm. In particular, mcsta has no timeouts in the best-algorithm com-
parison. In the Unif+ comparison, mcsta and Storm both time out in some
cases, yet whenever mcsta times out on a model, Storm does so, too (the “x”
dot on the 45◦ line is actually a superposition of several such dots here). The
two plots on the right compare the runtime of the switch-step implementation
in mcsta with Unif+ in both tools. We do not compare to the discretisation algo-
rithm for time-bounded properties implemented in Storm due to the consistent
reports [12,13] of its inefficiency (which we confirmed in Sect. 5.1 with Imca).
We observe that neither Unif+ nor switch-step dominates the other, no matter
which tool is used. This is because none of the two algorithms is strictly better
than the other. Consider the top-right plot: it compares switch-step and Unif+ in
mcsta and confirms the results presented in [12] that the algorithms are good in
complementary scenarios. There are cases where one of them times out while the
other finishes quite fast, and vice-versa. In particular, Unif+ performs somewhat
better when a lower precision is required. Overall, the individual algorithms for
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Fig. 7. Runtime of mcsta and Storm on time-bounded properties

time-bounded reachability in mcsta perform competitively, and especially when
combined in a portfolio approach (i.e. using the best for each model, which could
practically be done by running both concurrently on a multi-core system), offer
noticeably better performance and scalability than Storm overall.

Long-Run Average Properties. Fig. 8 summarises the comparison of algorithms
for model checking long-run average properties in mcsta and Storm. For value
iteration-based algorithms (“VI”), we run experiments on precision values 10−3

and 10−6, and use only its sound variations. For the linear programming-based
approaches (“LP”), we set mcsta and Storm to use linear programming at all
steps of the algorithm. The LP-based algorithms run with default parameters
in both tools. For the top-left plot, we again chose the best runtime over the
two algorithms for each tool. The LP-based approaches are not competitive: this
can be seen from the three other plots. Here, the bottom-right plot shows that
the LP-based algorithms in both mcsta and Storm run out of time on most
of the benchmarks. In contrast, the VI-based solutions in both tools finish the
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Fig. 8. Runtime of mcsta and Storm on long-run average reward properties

computations on the same benchmarks within the given time bound, as can
be seen from the bottom-left and top-right plots. The exact reason for this is
hard to extract. It may be possible that, when dealing with long-run properties,
the LP-based approach itself is not as efficient as the one using VI, at least on
existing benchmarks. Alternatively, it may be that the underlying LP algorithms
or their implementations are not efficient. Overall, mcsta and Storm are roughly
on par, albeit with mcsta having a few instances where it is significantly faster.
The overall similarity is likely due to the set of implemented algorithms being
exactly the same. We do notice, though, that specifically Storm’s LP method
appears to work better than mcsta’s.

BRTDP. We compared exhaustive algorithms, i.e. those that perform compu-
tations on the full state space, with their BRTDP extensions in mcsta on a few
benchmarks for time-bounded and unbounded properties. Table 1 summarises
the results. BRTDP is useful in cases where the property under consideration
does not require the full state space to be explored in order to achieve results
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Table 1. Runtime of BRTDP vs. exhaustive algorithms on time-bounded properties

vgs (5, 10000) stream (20000) ftwc (512, 10) hecs (false, 4, 3)

BRTDP 6.07 s 1.91 s 6.69 s 5.78 s
exhaustive >30 min >30 min 1077 s >30 min

with specified precision. In fact, the explored state space might be only a few
percent of the full state space. Table 1 confirms that, in certain cases, these
approaches can perform substantially better than their exhaustive counterparts.
Precision is set to 10−3 here.

Unbounded Properties. We finally add a small
evaluation for model checking unbounded prop-
erties. These properties can be checked via
standard MDP algorithms and are thus not
the focus of this paper. An extensive evaluation
of such properties for both mcsta and Storm
was done for the QComp 2019 tool competi-
tion [26]. The plot on the right confirms the
QComp results of the two tools being compet-
itive with no absolute winner.

6 Conclusion

We have presented a fully integrated toolchain to create and model check Markov
automata models based on the high-level compositional modelling language
Modest and the mcsta model checker of the Modest Toolset. Other tools
of the Modest Toolset complement the approach, such as the modes simu-
lator that helps deal with models too large for traditional model checking, or
the moconv tool that can export Modest models to Jani. We have compared
the performance of the dedicated MA model checking algorithms in mcsta with
Imca and Storm. We found mcsta to significantly outperform Imca, and to
be faster than Storm in many cases. The Jani support in both the Modest
Toolset and Storm allows the user to choose the most appropriate tool in
every instance, thus mcsta and Storm ought to be seen as complementary tools
for a common goal. Overall, Markov automata now have user-friendly modelling
and efficient verification support in tools that are actively maintained.

Data Availability. The data generated in our experimental evaluation as well
as instructions to replicate the experiments are archived and available at DOI
10.4121/uuid:98d571be-cdd4-4e5a-a589-7c5b1320e569 [11].

https://doi.org/10.4121/uuid:98d571be-cdd4-4e5a-a589-7c5b1320e569
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Abstract. We give a discretization technique that allows one to check
reachability properties in a family of continuous-state processes. We con-
sider a sub-family of labelled Markov processes (LMP), whose transitions
can be defined by uniform distributions, and simple reachability formulas.

The key of the discretization is the use of the mean-value theorem
to construct, for a family of LMPs and reachability properties, a (finite)
Markov decision process (MDP) equivalent to the initial (potentially infi-
nite) LMP with respect to the formula. On the MDP obtained, we can
apply known algorithms and tools for probabilistic systems with finite or
countable state space. The MDP is constructed in such a way that the
LMP satisfies the reachability property if and only if the MDP also satis-
fies it. Theoretically, our approach gives a precise final result. In practice,
this is not the case, of course, but we bound the error on the formula
with respect to the errors that can be introduced in the computation of
the MDP. We also establish a bisimulation relation between the latter
and the theoretical MDP.

1 Introduction

Systems verification is a major task and for critical systems, formal techniques
are important. We focus on model-checking of continuous state-space systems
with discrete time, called labelled Markov processes (LMPs) [7]. We consider a
sub-family whose transition functions can be defined by uniform distributions.

In model-checking one first abstracts the behaviour of a system in the form
of a transitions system, the model. Then, a property of interest is written in a
temporal logic, and a software, called model-checker, is used to verify automat-
ically if the model satisfies the property. There are models of continuous state
space systems [1,12,16], and of continuous time processes [5], and combination of
both, as well as continuous dynamics, in Stochastic Hybrid Systems [3]. Model-
checking these systems is challenging, because of the continuous nature of the
state spaces, and it usually involves approximating them.

In this paper, we develop a technique to construct a finite system from an
LMP in such a way that a family of reachability properties will be checked
exactly. We consider a sub-family of labelled Markov processes (LMP), whose
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transition function can be defined by uniform distributions, and simple reach-
ability formulas (without nested reachability operator). More precisely, we use
the mean-value theorem to prove that, for a family of LMPs and for a finite
set of simple reachability properties, there is a Markov decision process (MDP)
equivalent to the LMP with respect to the formulas. On the MDP, we can apply
known algorithms and tools for probabilistic systems with finite or countable
state space. The MDP is constructed in such a way that we can infer that the
LMP satisfies the reachability property if and only if the MDP also satisfies it.
Theoretically, our approach gives a precise final result. The initial goal of the
present work was to improve CISMO [17], a model checker on LMPs, and there
is indeed an implementation of the proposed technique in this tool. However the
idea is theoretical and could be used in other tools. We show how the result can
be extended to other distributions than uniform under some conditions.

At implementation, since the numerical computation for the MDP is sub-
jected to numerical errors, the result can be inexact, as expected. In the imple-
mentation, we use a numerical integration method to determine the transition
probabilities in the MDP. Despite the errors that can affect the outcome of a
verification, we show that our approach makes sense at implementation by quan-
tifying the errors. We show on the one hand that numerical errors are always
bounded from above in the MDP and we establish, on the other hand, approx-
imate bisimilarity between the MDP constructed theoretically and the MDP
generated algorithmically with errors.

Other approximations have been defined on LMPs but they are general and
hence cannot guarantee, even theoretically, equivalent satisfaction of formulas
between the LMP and its approximant [11,13]. Those that quotient with respect
to logical formulas do so for a simple logic without reachability properties [9].
There is much work on the verification of Stochastic Hybrid Systems, but as far
as we know, the exact discretization that we obtain in this paper has not been
considered before.

The plan of the paper is as follows. In the next section, we define the basic
model and logic that we will work with; in Sect. 3, we show how the discretization
is defined; in Sect. 4, we analyze the properties of the construction, including its
limitation. We conclude in Sect. 5.

2 Preliminaries

The model of continuous-state systems we consider is a restriction of LMPs.
Throughout the years, LMPs have been studied a lot, mostly on their theoretical
aspect, and in full generality. When comes the need to actually check properties
of an LMP, some restrictions must be chosen. In a general LMP [12], the set of
states S is arbitrary and equipped with a sigma-algebra Σ, forming an analytic
space. To model the probabilities associated with the change of states, there
are transition functions indexed with actions: μa : S × Σ → [0, 1] such that
for all s ∈ S, the function μa(s, .) is a probability measure and for all E ∈ Σ,
the function μa(., E) is measurable. LMPs are deterministic: there is only one
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function μa for any action a; consequently, given a state and an action, only one
distribution with action a exists. Even if LMPs can be as general as possible,
when one wants to actually describe a system, one is forced to use a finite list
of states and transitions, with the help of parametrized functions, most likely.
In particular, the set of states will most of the time be the reals, or R

n. Most
of the time, parametrization of transitions will force to split the state space into
intervals or their equivalent [3]. This explains why our restriction specifically
exhibits a set of intervals. Now because of the construction we propose further
on, we also assume that the transitions follow the uniform law (this can be
relaxed, as we will argue later on). In the following definition we use the notation
U(I) for the uniform law on the interval I.

Definition 1. An LMPU is a tuple S = (S, I, i, AP,Act, Label, {μa}a∈Act)
where

– S ⊆ R is a set of states; i ∈ S is the initial state;
– I is a finite set of pairwise disjoint intervals, a partition of S = ∪ I;
– AP is a countable set of atomic propositions (on states);
– Act is a countable set of actions;
– Label : AP → B(S) is a function that returns the (Borel) set of states that

satisfy a label;
– A transition with action a has the form μa : S × B(S) → [0, 1], with the

following restrictions. For each action a and pair ι1, ι2 ∈ I, a measurable
function f : ι1 → [0, 1] is associated to parametrize the (uniform) distribution
on ι2 and this is emphasised by the notation μa(s ∈ ι1, ι2) ∼ f(s)U(ι2).
Because the total probability out of a state must be at most one, we require∑

ι∈I μa(s, ι) ≤ 1 for all s ∈ S. Finally, we require that only one action is
enabled in any state, that is, if μa(s, S) > 0 and μb(s, S) > 0, then a = b.

It is straightforward to see that defining μ by pieces on the intervals of I is
sufficient for its extension to B(S), and hence that an LMPU is an LMP. In
general LMPs, the labelling function of states is usually omitted. To lighten up
the writing, instead of LMPU we often write LMP and we assume an LMP S
has set of states S.

In this definition, we write μa(s ∈ ι1, ι2) as a notation for the behaviour
of μa(s,−) inside the interval ι2 (because μa(s, ι2) is actually a value). The
interpretation of μa(s ∈ ι1, ι2) ∼ f(s)U(ι2) is that f(s) multiplies the value of
the uniform distribution on ι2. So, if μa(s ∈ [1, 2], [3, 5]) ∼ (s−1)2U([3, 5]), then
we get the following computations:

μa(s, [3.5, 4]) = (s − 1)2
|[3.5, 4]|
|[3, 5]| = (s − 1)2

0.5
2

for s ∈ [1, 2]

μa(1.1, [3.5, 4]) = (1.1 − 1)2(0.25) = 0.01 · 0.25

μa(2, [3.5, 4]) = (2 − 1)2(0.25) = 0.25.

The probability 0.5
2 to a subset of [3, 5] is relative to its length, because the

distribution is uniform. Finally, as expected, for a set S0 ∈ B(S) overlapping
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more than one element of I, the probability μa(s, S0) is computed by partitioning
S0 with respect to the sets in I and then summing up the probabilities:

μa(s, S0) =
∑

ι∈I

μa(s, ι ∩ S0).

Example 1. An LMPU is illustrated in Fig. 1; S = [0, 7] ∪ {10}, Act = {a, b, e};
i = 0. The arrows must be interpreted as follows, the variable involved in the
label of an arrow belonging to the set in the source of the arrow.

– The arrow from {0} to ]0, 1] is for μa(0, ]0, 1]) ∼ 1
4U(0, 1).

– The arrow from ]1, 2] to ]5, 7] is for μb(z ∈]1, 2], ]5, 7]) ∼ z2

4 U(5, 7)
– The arrow from ]5, 7] to {10} means that μe(k ∈]5, 7], {10}) = k2

100
– For all other values of x, μa(x, ·) and μb(x, ·) have value 0.

We see that the total probability out of 0 is 1
2 , the total probability out of any z ∈

]1, 2] is z2

4 + 4−z2

4 = 1. Note that {0} could be merged with the interval state ]0, 1]
and follow the parametrized transitions out of ]0, 1], as μa(0, ]0, 1]) ∼ 0+1

4 U(0, 1)
and μa(0, ]2, 3]) ∼ 0

4U(2, 3).

This model is neither a restriction of continuous-time Markov chains nor of
hybrid systems1. However, it is a discrete time stochastic hybrid system.

The discretization that we will define from LMPU are finite state LMPs, a
model very similar to MDPs [6,19].

Definition 2. A tuple (S, i, AP,Act, Label, P ) is a Markov decision process
(MDP) if S is a countable set of states, i ∈ S, AP , Act and Label are as in
Definition 1, P : S × Act × S → [0, 1] is the transition probability function; for
all states s ∈ S and actions a ∈ Act :

∑
s′∈S P (s, a, s′) ≤ 1.

Finally, we define the logic, denoted L1, a branch of PCTL [2,14].

Definition 3. The logic L1 is a subset of the logic PCTL, restricting to state
formulas φ without nested Until operators. PCTL follows the following syntax:

φ := T | p | ¬φ | φ ∨ φ | Pq(Ψ) Ψ := 〈a〉φ | φUφ

where p ∈ AP , q ∈ [0, 1], a ∈ Act.

Examples of formulas of L1 are Pq(〈a〉Pr(〈b〉T)) and Pq(aU b); the latter is the
typical one for which we propose a finite equivalent MDP. The logic L1 does not
contain formula Pr(〈a〉Pq(aU b)), but it accepts formulas Pq(aUPr(〈a〉〈b〉)T) and
Pq(aU b) ∧ Pr(TU c).

The semantics is as usual (see [2,14]), we summarize it here. A path π =
s0a0s1... (an alternation of states and actions) satisfies 〈a〉φ if and only if a0 =
a ∧ s1 |= φ. A path satisfies φUϕ as for the well-known logic LTL. A state
1 See [4] for a comparison between hybrid systems and LMPs on R with a finite list
of transitions (similar but a little more general than LMPU ’s).
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Fig. 1. An LMPU where AP = {w, v, c, u, r, t, o}, x ∈ [0, 1], y ∈]2, 3], k ∈]5, 7], z ∈]1, 2].

satisfies formula Pq(Ψ) if the probability of the set of paths starting in this state
that satisfy Ψ is greater than or equal to q:

s |= Pq(Ψ) if ProbS({π ∈ Path(s) | π |= Ψ}) ≥ q. (1)

Finally, a process satisfies a formula if its initial state does. Note that Eq. (1) is
well defined, because there is only one action enabled in any state.

3 The Mean MDP

Our goal is to verify, for an LMP, attainability properties of the form Pq(φUψ)
where φ and ψ are properties without Until operators. We prove that our result
is theoretically exact; of course, during implementation, digital inaccuracies may
distort the result, but this is part of any system analysis with numeric values.
We limit ourselves to the LMPs having distributions of uniform probabilities
on their states. The choice of the uniform law simplifies the use of the mean-
value theorem. This provides us with an exact result, which ensures that the
constructed MDP satisfies the formula if and only if the initial LMP also does
(from its initial state, or states).

Here is our strategy. In the description of an LMP, since the set of intervals
is finite, there is a finite number of transitions, which calls for a finite structure
of transition system, as we can see in Fig. 1. If we can simply replace these
transition functions by well-chosen probability values, we will get an MDP on
which we can possibly check our property with a finite-state probabilistic model
checker, like PRISM [15] (more precisely, on the initial state of the MDP). We
will do just that, but we will first split the states along the formula φUψ. We
proceed in the following way:

1. We first determine the state intervals of the LMP that satisfy φ or ψ, using
known strategy for the sublogic of PCTL without U -operator. If the initial
state does not belong to any such interval, the LMP does not satisfy the
property;
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Fig. 2. MDP corresponding to the LMP of Fig. 1, for formula TU o.

2. we then construct an MDP from these states, the transition probabilities
values being defined by the mean-value theorem;

3. the resulting MDP is fed to a model-checker like PRISM which will determine
whether or not Pq(φUψ) is satisfied.

Figure 2 illustrates the MDP resulting from the first two steps of our app-
roach, for verifying formula TU o on the LMP illustrated in Fig. 1 (there is
no need to split the states here). In this example, s1 represents the LMP’s
state interval ]0, 1] and 3

8 is the mean of the transition function x+1
4 over ]0, 1].

There are infinitely many paths satisfying TU o; for example s0as1as2bs4es6 and
s0as1as1as1as2bs4es6.

3.1 Mean of a Probability Transition

The mean-value theorem for definite integrals is a known result in calculus saying
that the mean-value of a function on a given interval is the image of some point.

Theorem 1 ([8]). For any real-valued function f , defined and continuous on
a segment [a, b] ⊂ R, there exists c ∈]a, b[, satisfying f(c) = 1

b−a

∫ b

a
f(x)dx.

We denote by M
[a,b]
f the mean of f on [a, b]. In general, if f : [a, b] → R is

continuous and g is an integrable function that does not change sign on [a, b],
then there exists c ∈ (a, b) such that

∫ b

a
f(x)g(x) dx = f(c)

∫ b

a
g(x) dx.

For example, consider f : [0, 2] → R, f(x) = 2x. Since f is integrable on [0, 2]
and

∫ 2

0
f(x) = 4 then the mean-value of f is M

[0.2]
2x = 1

2

∫ 2

0
f(x) = 2 and c = 1.

Remark 1. At this point, the reader may wonder why we would work through
the computation of an integral if we can avoid it. The point is that we cannot.
When evaluating a reachability property, one must sum up through all possible
paths. Even just to compute a path of length two, one has to evaluate an integral,
as illustrated in the following example.
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Example 2. In Fig. 1, to compute the probability of going from state {0} to
state ]5, 7] in two steps, following actions a and b, one has to sum up over the
state of the intermediate interval state ]1, 2]. The probability is then

μab({0}, ]5, 7]) :=
∫ 2

1

μb(z, ]5, 7])μa({0}, dz) =
∫ 2

1

z2

4
· dz

4|]1, 2]|
In this example, one can see that the first part of the expression, μb(z, ]5, 7]),
would be exactly the same, z2

4 , no matter from which state the a-transition
was taken. Since all distributions are uniform, the rest of the expression is not
affected by the origin of the initial transition (here {0}). This is the intuition
why we can replace the first part of the expression by a constant, the mean value.

If we want to ultimately check the property on the LMP in practice, we
will need to actually compute the mean value, which forces us to evaluate an
integral. Usually, an integral is evaluated using classical mathematical formulas
for determining primitives. For example, the primitive of f(x) = 1

x , x �= 0, is
ln |x|. Generally it is difficult to construct algorithmically a program that derives
or calculates the primitive of mathematical functions. Due to this difficulty, we
chose the numerical evaluation of an integral. The numerical integration tech-
niques are numerous and diverse [18]. Two fundamental aspects are observed
in their use: the desired precision and the calculation time. In terms of numeri-
cal integral evaluation, there are two main categories of methods: deterministic
methods, like the rectangle method, the trapezoidal rule, Romberg’s method,
Simpson’s rule, Gauss’, etc; there are also probabilistic methods, like the Monte
Carlo techniques. In our implementation, we have chosen the trapezoidal rule.

3.2 From LMP to MDP

We construct an MDP, from an LMP S, that will satisfy the reachability property
β = Pq(φUψ) if and only if S also does. As is usually done when verifying a
property of the form φUψ, the first step is to keep in S only the states that satisfy
φ or ψ. These formulas come from a syntax without reachability properties, and
they are already taken care of with direct techniques, as is done in CISMO, for
example, so we do not give anymore detail on the matter. W.l.o.g., we can thus
assume that we want to check a property β = Pq(φUψ) in an LMP S, where
the states satisfying φ and ψ have already been computed. In the following, the
sets Sφ and Sψ have this role (and hence, they could be any sets of states).

To define the states of the MDP, we refine the partition I of the state space
S with respect to the sets Sφ and Sψ. The following definition is similar to the
function �.� presented in [16].

Definition 4. Let S = (S, I, i, Act, Label, {μa}a∈Act), Sφ, Sψ ⊆ S. The set of
intervals states(I, Sφ, Sψ) is a partition of Sφ ∪ Sψ that satisfies
1. each interval of states(I, Sφ, Sψ) is included in (exactly) one interval of I
2. states(I, Sφ, Sψ) contains a partition of Sφ \ Sψ and a partition of Sψ

3. it is minimal: replacing any two intervals I1, I2 ∈ states(I, Sφ, Sψ) with their
union I1 ∪ I2 violates item 1 or 2.
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Note that Condition 3, on minimality, is not necessary, but it gives a unique
construction, and will yield an MDP with the least number of state. No proof
relies on this condition.

Example 3. Consider the LMP of Fig. 1. We have S = [0, 7] ∪ [10, 10], I =
{[0, 0], [0, 1], ]1, 2], ]2, 3], ]3, 5], ]5, 7], [10, 10]} with initial state 0. Suppose Sφ =
[0, 0]∪ ]1, 2] ∪ [3, 4] and Sψ =]2.5, 3.5], then Sφ \ Sψ = [0, 0]∪ ]1, 2]∪ ]3.5, 4] and
the minimal refinement is given by

states(I, Sφ, Sψ) = {[0, 0], ]1, 2], ]2.5, 3], ]3, 3.5], ]3.5, 4]}.

We are now ready to define the MDP from the LMP.

Definition 5. Let S = (S, I, i, AP,Act, Label, {μa}a∈Act) be an LMP, and let
Sφ, Sψ ⊆ S, with i ∈ Sφ ∪ Sψ. The mean MDP associated to S, Sφ, Sψ is defined
as:

SφUψ = (states(I, Sφ, Sψ), Iinit, AP,Act, Label, μ′)

where Iinit is the unique interval of states(I, Sφ, Sψ) containing i, and μ′ is
defined as follows: for I1, I2 ∈ states(I, Sφ, Sψ), let ι1, ι2 ∈ I be the unique
intervals of I such that Ik ⊆ ιk, k = 1, 2. Then S contains some μa(x ∈ ι1, ι2) ∼
f(x)U(ι2) and we set

μ′(I1, a, I2) =
|I2|
|ι2|

1
|I1|

∫

I1

f(x)dx.

=
|I2|
|ι2|M

I1
f ,

where M I1
f is the mean value of f in interval I1 (see Theorem 1).

Note that the states of the MDP SφUψ are intervals given by the minimal
refinement, each interpreted as a single state, or label, or equivalence class. The
value |I2|

|ι2| normalizes the uniform distribution value: the distribution μa, defined
on ι2 in S, is applied on the interval I2 ⊆ ι2. Note that as for LMPs, the
probability of transiting from one state of the mean MDP to the other states
may not sum up to 1. However, they sum up to at most one.

Theorem 2. For any LMP, the mean MDP SφUψ associated to S, Sφ, Sψ is
indeed an MDP.

Proof. First observe that since φ and ψ do not contain an Until operator, the
determination of Sφ and Sψ can be done for a general LMPU . Now, the only
thing that needs to be checked is that the total probability out of a state I1 is
less than or equal to 1 for every action.
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∑

I2∈states(I,Sφ,Sψ)

μ′(I1, a, I2) =
∑

I2∈states(I,Sφ,Sψ)

|I2|
|ι2|M

I1
f

=
∑

I2∈states(I,Sφ,Sψ)

|I2|
|ι2|

1
|I1|

∫

I1

f(x)dx.

=
1

|I1|
∫

I1

∑

I2∈states(I,Sφ,Sψ)

f(x)
|I2|
|ι2| dx.

=
1

|I1|
∫

I1

∑

I2∈states(I,Sφ,Sψ)

μa(x, I2)dx.

=
1

|I1|
∫

I1

μa(x, Sφ ∪ Sψ)dx.

≤ 1
|I1|

∫

I1

(1)dx.

= 1.

��
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Fig. 3. Mean MDP of Fig. 1 with Sφ = [0, 3
4
] and Sψ = [ 1

2
, 1].

Example 4. Consider the LMP S of Fig. 1, with initial state 0. Suppose that
Sφ = [0, 3

4 ] and Sψ = [12 , 1]. Then the states of SφUψ are illustrated in Fig. 3.
Where P is the function defining the transitions of S of Fig. 1, so that M I

P

is the mean value of P in I. Let us make an observation about Rule 2 of the
construction of states(I, Sφ, Sψ). If this rule was omitted, there would be no
partitioning of states in this example, because (Sφ ∪ Sψ) \ {0} =]0, 1] is entirely
included in an interval of I. It would result in a less precise MDP with only one
state apart from the initial state. Since states satisfying φ and ψ would not even
be split, then we would not preserve the satisfiability of formula β = φUψ. We
illustrate in Fig. 4 a finer partition where Sφ is split (thus dropping the third
condition of Definition 4). This discretization will have the same properties we
are seeking in our approach. The downside of it is that there are more mean
values to compute. The upside is that it may be useful for other reachability
properties, for example for Pq(ψUφ).
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Fig. 4. A finer partition than in Fig. 3. (Initial state {0} is omitted).

3.3 The Reachability Property in S and SφU ψ

We are at the end of the second stage of the approach. The aim is to verify
β = φUψ in S through the mean MDP, so we must calculate the probability of
the set of paths in SφUψ that satisfy φUψ and compare it to q. In the following
theorem, the sets of paths PathS and PathSφUψ

are initial paths, that is, starting
at initial states.

Theorem 3. Let S be an LMP and SφUψ a corresponding mean MDP. Then

ProbS({π ∈ PathS | π |= φUψ} = ProbSφUψ
({π ∈ PathSφUψ

| π |= φUψ}).

Proof. Recall that we assume that S is deterministic in the sense that only
one action is possible in any state. We will discuss a generalisation later on.
Let I1, I2, . . . , In be interval states of SφUψ and a1, a2, . . . , an−1 be actions. The
transition probabilities between these intervals are obtained from S as follows.
Let J1, J2, . . . , Jn ∈ I be such that Ik ⊆ Jk, and f, f1, f2, f3 . . . , fn−1 be the
functions that satisfy μak

(x, Jk+1) ∼ fk(x)U(Jk+1), x ∈ Jk representing the
transition function from Jk to Jk+1 in S, for k = 1, . . . , n and let fU(J1) be the
transition function from i to I1.

We define the sets of paths that pass through a sequence of intervals of I in
S (where a path goes through individual states ik ∈ S):

i a1I1a2I2a2I3 . . . an−1In := {i a1 i1 a2 i2 . . . an in ∈ PathS(s) | ij ∈ Ij}.

We say that a set of paths satisfy a property φ, and we write X |= φ if all the
paths of the set satisfy it. To simplify the notation, we omit the actions below;
they determine the functions fk from Ik. We have:
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ProbS(iI1I2 . . . In)

=
∫

I1

ProbS(x1I2 . . . In)f(i)dU(J1)(x1) =
∫

I1

ProbS(x1I2 . . . In)f(i)
1

|J1|dx1

= f(i)
1

|J1|
∫

I1

ProbS(x1I2 . . . In) dx1

= f(i)
1

|J1|
∫

I1

(
∫

I2

ProbS(x2I3 . . . In)f1(x1)dU(J2)(x2)) dx1

= f(i)
1

|J1|
∫

I1

(
∫

I2

ProbS(x2I3 . . . In)f1(x1)
1

|J2|dx2) dx1

= f(i)(
1

|J1|
∫

I1

f1(x1)dx1)(
1

|J2|
∫

I2

ProbS(x2I3 . . . In)dx2)

...

= f(i)(
1

|J1| |I1|M
I1
f1

)(
1

|J2|
∫

I2

f2(x2)dx2) . . . (
1

|Jn−2|
∫

In−2

fn−2(xn−2)dxn−2)

· (
∫

In−1

ProbS(xn−1In)dU(Jn−1)(xn−1)

= f(i)
|I1|
|J1|M

I1
f1

|I2|
|J2|M

I2
f2

. . .
|In−2|
|Jn−2|M

In−2
fn−2

· (
1

|Jn−1|
∫

In−1

fn−1(xn−1)
|In|
|Jn|dxn−1)

= f(i)
|I1|
|J1|M

I1
f1

|I2|
|J2|M

I2
f2

. . .
|In−2|
|Jn−2|M

In−2
fn−2

(
|In−1|
|Jn−1|M

In−1
fn−1

|In|
|Jn| ))

= μ′(i, I1) μ′(I1, I2) · · · μ′(In−1, In)
= ProbSφUψ

(iI1I2 . . . In).

The first equality above is based on the fact that the probability of the
paths starting in i is equal to the probability of the paths starting on x1 in
I1 weighted by the probability from i to these x1 (i.e., f(i)dU(J1)(x1)), those
of which there are uncountably many: we thus have to integrate. The uniform
distribution dU(J1)(x1) must take into account the size of J1, resulting in the
factor 1

|J1| at the second equality, followed by the usual Lebesgue measure dx1.

Note that ProbS(xn−1In) = μan−1(xn−1, In) = fn−1(xn−1)
|In|
|Jn| because the

function from In−1 to In is fn−1U(Jn).
We can now conclude the demonstration. The first equality below comes from

the fact that the paths can be grouped according to the intervals they traverse
in S. These sets are all disjoint, hence the second equality.

ProbS({π ∈ Paths(L) | π |= φUψ}
= ProbS(

⋃

iI1I2...In |=(φ∧¬ψ)Uψ

iI1I2 . . . In)
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=
∑

iI1I2...In |=(φ∧¬ψ)Uψ

ProbS(iI1I2 . . . In)

=
∑

iI1I2...In |=(φ∧¬ψ)Uψ

ProbSφUψ
(iI1I2 . . . In)

= ProbSφUψ
({π ∈ Path(SφUψ) | π |= φUψ}.

��
This theorem shows that as far as properties φ and ψ are computed exactly,
then the computed MDP contains the same information as the initial LMP,
with regards to reachability formulas involving φ and ψ. Hence we can use a
model-checker for MDP to check if the property is satisfied.

Remark 2. Even if we do not enter into the details, let us comment on the restric-
tion we impose, for simplicity, on LMPs. In general, starting for any LMP S,
the MDP SφUψ could have some states with multiple outgoing transitions (with
different actions), each summing up to at most one. Thus, as is usually done,
reachability properties must be evaluated with respect to some determination of
the MDP, usually through schedulers, for example. The statement in the theo-
rem, as well as the argument in most of the proof, do not detail on this matter.
However, any fixed scheduler determines a sub-LMP that respects the condition
of the theorem. Accordingly, the schedulers of S and SφUψ are in one-to-one
correspondence, the pair satisfying the theorem.

4 Analysis of the Mean MDP

4.1 Possible Extension, Simplification and Reusability

The technique is suited for a very specific type of formula and we have limited
the analysis to probabilistic transition functions defined by the uniform law.
In this subsection, we discuss how to extend and take advantage of the con-
struction. First, the mean-value theorem also applies to real-valued functions of
multiple variables, provided the domain is convex. This is why for our setting, we
have split the state space in intervals; for higher dimensions, the state-space will
have to be split with analogue structures, called hyper-rectangles. Second, it is
interesting to observe an exact discretization for reachability properties has more
impact than for finite depth formulas. Formulas are usually short, so the number
of computations when evaluating a formula without reachability operator is rel-
atively small, and hence so is the error generated. The errors do not accumulate
that much, as the cumulation of errors comes from the depth of the formula –
the number of 〈a〉 nested operators, more precisely. However, when a reachability
property is evaluated, then we are forced to compute the probability of sets of
paths, along which the errors accumulate. Hence, having on hand a discretization
of the continuous system that is exact for some reachability properties can very
much improve the quality of the verification.
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Reusability of MDP We have assumed a property φUψ. The same discretiza-
tion would be suitable for another reachability property φ′Uψ′ as long as
states(I, Sφ, Sψ) is a more refined partition than states(I, Sφ′ , Sψ′). Figure 5
shows an example. Let β = (u ∧ v)Uw and β′ = vUw. Here, S(u∧v)Uw can-
not be used to evaluate β′. However, if β′′ = uUw we have S(u∧v)Uw equal to
SuUw. In general, one could perform the first step of the approach by considering
a set of reachability properties. The refinement of I would then be done in such
a way that it also refines all the state subformulas of this set of properties, and
not only Sφ and Sψ. The discretization could then be used to check all prop-
erties. Alternatively, after a discretization with respect to some properties, one
could adapt the result locally to take another reachability property into account,
instead of computing all of it from scratch. For example, in Fig. 5 one could just
add a state ]4, 8] to S(u∧v)Uw and obtain an MDP that would have the same
reachability properties as SvUw has. All previously computed transitions would
still be correct. Indeed, the computation of the MDP is a local computation,
from an interval to another interval. If an interval is split, one has to compute
the probabilities of its ingoing and outgoing edges, but nothing more.

S:
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�

x
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�
1

Initial state : 100

Label(u) = [0, 4] ∪ {100}
Label(v) = [0, 8] ∪ {100}
Label(w) = [10, 12]
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u v
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Fig. 5. LMP and corresponding MDPs for formulas (u ∧ v)Uw, uUw and vUw .
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Initial State(s). The theorem is stated for sets of paths that start at the initial
state. The requirement is necessary because, in the MDP, the probability from
a (regrouped) state I to state I ′ is an aggregate from all states in the original
interval I. If the latter is a singleton, the value is exact, else it may not be for a
particular s ∈ I. The probability is exact only when used for path computations.
More generally, states of the MDP whose original outgoing transition functions f
are constant in S (restricted to Sφ and Sψ) are also suitable as initial states in the
theorem; this would be the case if this state interval contained all bisimilar states
(w.r.t. S restricted to Sφ and Sψ). Finally, all states that must be considered as
initial could be extracted from the intervals they belong to in the partitioning
of the states when constructing the MDP.

Uniform Distributions. We discuss the role of the assumption of uniform
distributions. It is used in the proof of Theorem 3 when the integral∫

Ik
fk(xk)dU(Jk)(xk) is factored out of the integral and computed independently,

and then replaced by its value in the MDP. This is not so much because the dis-
tribution is uniform, but because the distribution into the interval Ik is always
the same, no matter from where this jump is made! We observed this partially
in Example 2. The partial integral above would become

∫
Ik

fk(xk)dDk(xk) for a
general distribution Dk on Ik. As long as this distribution can be expressed with
a density function g such as stated in the mean theorem (1), then the proof of
Theorem 3 stays correct. So the result should apply to a generalisation of LMPU

where the transitions are restricted as follows

A transition with action a has the form μa : S × B(S) → [0, 1], with the
following restrictions. For each pair ι1, ι2 ∈ I, we have μa(s ∈ ι1, ι2) ∼
f(s)Dι2 ; where the distribution Dι2 on the interval ι2 is fixed.

It is still restrictive, but note that if one wants to model two different distri-
butions to interval ι2, it can be done with a bisimilar LMP, where the latter
interval is recopied twice, one copy for each of the two different distributions.

4.2 Error Analysis at Implementation – Comparison of Sβ and Ŝβ

We now evaluate the numerical errors that can arise when computing in practice
the mean MDP. In this section, the notation Sβ refers to the theoretical MDP
with exact computations; we write Ŝβ for its actual computed version. The errors
come from the computations of the mean values MJ

f , using integrals. We focus on
the errors generated by our construction for β = φUψ, and ignore the numerical
errors that are due to the computation of the subformulas φ and ψ, and those
from arithmetic calculations. These errors can be considered negligible, as they
are mainly due to the floating point non recursive computations.

Consider a transition from [a, b] to [c, d] with distribution fU [c, d] in S. To
compute the mean value, the errors depend on the method for numerical inte-
gration. In our implementation, we have chosen the trapezoidal rule. In Sβ , both
intervals [a, b] and [c, d] may have been split. The errors only depend on the first
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Fig. 6. R = {(P0, Q0), (P0, Q2), (P1, Q1), (P2, Q1)} is an ε-bisimilation

interval, and it is in Θ( (b−a)3

12N2 sup[a,b] f
′′
) where N is the number of subdivisions

of [a, b]. Hence, when the functions f are of degree less than or equal to one,
the computations are exact. If set [a, b] has been split, the error is smaller. If
set [c, d] has been split, there is no cumulation of errors: the mean is computed
once on the interval at the starting point of the transition, it is then weighted by
the size of the sub-interval of its arriving point. For example, consider S(a∧bUc)

in Fig. 5; the means from state [0, 4] to itself and to state [10, 12] are obtained
using the integral

∫ 4

0
x/3dx = 1/6, a value that must then be multiplied by the

ratio of the starting state [0, 4] over the arriving states, which are, respectively,
1/3 and 1/6, yielding 1/18 and 1/36.

We now compare Ŝβ , Sβ and S through a notion of approximate bisimulation
from [10]. Of course, none of these processes are equivalent (bisimilar), but we
want to establish how close they are. Informally, two probabilistic systems are
ε-bisimilar if their transition probabilities are within ε.

Definition 6. ([10]) Let S = (S, I, i, AP,Act, Label, {μa}a∈Act) and S ′ be two
LMPs. Let ε ∈ [0, 1]. A symetric relation R on S ∪ S′ is an ε-bisimulation if for
all s ∈ S, s′ ∈ S′, such that s R s′, we have that s and s′ are labelled with the
same atomic proposition, and

∀a ∈ Act,∀C ∈ B(R), |μa(s, C) − μ′
a(s′, C)| ≤ ε.

where we write B(R) for the Borel sets X that are R-closed, that is, if x ∈ X
and xRx′, then x′ ∈ X. If there is an ε-bisimulation between S and S ′, we write
S ∼ε S ′.

In Fig. 6, we give a simple example of ε-bisimilar finite LMPs, to help intuition.
The notion captures, in particular, the similarities between a system and an
approximation of its probabilities (which may have been obtained by observation
or standard assumptions). Note that, as expected, 0-bisimulation gives the usual
notion of bisimulation for LMPs.

Theorem 4. Let S be an LMP, let β be the reachability property under study.
Let εs,a be the (absolute value of the) error at state s of Ŝβ for action a, that is,
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the sum of the errors of transitions from s with action a. Let ε = maxs,a εs,a.
Then Sβ ∼ε Ŝβ.

Moreover, if K is the maximal number of branching in LMP S, if l is the
maximal length of interval states in Sβ, if γ is sup f

′′
(see note2) then ε is bounded

above by Kl3γ
12N2 , where N is the number of subdivisions in the trapezoidal rule.

Proof. The first part of the theorem is straightforward from the definition of
ε-bisimulation. The relation R is given by the identity relation, considering that
Sβ and Ŝβ have the same state space. Let us write μβ and μ̂β

a for the probabilistic
transition functions of Sβ and Ŝβ . Then, for any state s, action a and R-closed
set X (of interval states), we have

|μβ
a(s,X) − μ̂β

a(s,X)| = |
∑

I∈X

μβ
a(s, I) −

∑

I∈X

μ̂β
a(s, I)|

≤
∑

I∈X

|μβ
a(s, I) − μ̂β

a(s, I)|

≤ εs,a.

For the second part of the theorem, it is well known that the trapezoidal rule
applied to approximate

∫ c

b
f(x) dx has error |c−b|3f ′′(ξ)

12N2 , where ξ is some value in
the interval [b, c] and N is the number of subdivisions used in the method. Thus
from state s with action a, each outgoing transition generates this error, so εs,a

is bounded above by
∑

i l3i f ′′(ξi)

12N2 , where li is the length of the target interval of
the ith transitions, and ξi is the value where the mean is obtained. Since the
number of outgoing a-transitions from s is bounded by K and f ′′(ξi) ≤ γ, the
result follows. ��

The relation between S and Sβ is not as tight, because here εs,a will have
to compare the mean value with the exact value, and because Sβ is constructed
specifically for formula β; of course information about S is lost. So Sβ is not a
very “good” approximation of S in general and we do not explore the subject
further.

When computing a reachability property on an MDP, there are always numer-
ical errors on the way. The errors are at many stages, among which: abstraction of
an actual system; floating-point rounding errors; fixpoint computation for φUψ,
involving a stopping condition on iteration. We expect that with a discretization
that is exact for a reachability property, our precision is better.

5 Conclusion

We have developed a technique to construct a finite system from an LMPU

in such a way that a family of reachability properties can be checked exactly.
The transition functions of these systems are functions of uniform distribution.
2 The supremum is taken for every f over the interval of S on which it is defined.



86 G. Kouko et al.

This particular restriction allows us to use the mean-value theorem to construct
a discretization of LMPU in such a way that some reachability properties are
preserved exactly. On the discretized system, an MDP, we can use known tools for
probabilistic systems, like PRISM, to determine the probability of the property.
Even if the systems considered are limited, we believe that an exact result is
interesting, especially for reachability properties.

We have implemented the technique. From an LMPU , we use CISMO [17] to
determine states that satisfy formulas φ and ψ (formulas without reachability
operators), we then compute the MDP using the technique of the mean-value
and we pass the result to PRISM.

At implementation, since the numerical computation for the MDP is sub-
jected to numerical errors, the result can be inexact, as expected. Despite the
errors that can affect the outcome of a verification, we have shown that the
theoretical and the computed discretization are within a small error, using the
notion of ε-bisimulation.
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Abstract. This work concerns discrete-time parametric Markov deci-
sion processes. These models encompass the uncertainty in the transi-
tions of partially unknown probabilistic systems with input actions, by
parameterising some of the entries in the stochastic matrix. Given a
property expressed as a PCTL formula, we pursue a data-based verifi-
cation approach that capitalises on the partial knowledge of the model
and on experimental data obtained from the underlying system: after
finding the set of parameters corresponding to model instances that sat-
isfy the property, we quantify from data a measure (a confidence) on
whether the system satisfies the property. The contribution of this work
is a novel Bayes-Adaptive planning algorithm, which synthesises finite-
memory strategies from the model allowing Bayes-Optimal selection of
actions. Actions are selected for collecting data, with the goal of increas-
ing its information content that is pertinent to the property of interest:
this active learning goal aims at increasing the confidence on whether or
not the system satisfies the given property.

1 Introduction

Markov Decision Processes (MDPs) [23] have been successfully employed to solve
many demanding decision making problems in complex environments. A fully-
specified MDP can be leveraged to provide quantitative guarantees for correct
behaviour of intricate engineering systems. Formal methods provide mathemat-
ically rigorous machinery to obtain such guarantees [3], but their applicability
might fall short in the case of incomplete knowledge of the underlying system.
Available knowledge of a partially unknown system can be encompassed by a
parametric MDP (pMDP) [13], where a set of parameters is used to account for
imperfect knowledge.

We are interested in performing data-efficient verification of partially
unknown systems with input actions, which can be modelled using pMDPs.
Input actions represent nondeterministic choices available for planning. We rea-
son about system properties expressed in probabilistic computational tree logic
(PCTL [15]). In this paper, we assume that full data can be gathered from the
system to reason about these properties.
c© Springer Nature Switzerland AG 2019
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Our verification approach is both model-based and data-driven [20,21]: on
the one hand, we classify the pMDP model into those MDPs satisfying the given
property and those that do not; on the other, we augment the knowledge about
the pMDP with the information content derived from limited amount of data
actively gathered from the system; we finally quantify a confidence on whether
the system satisfies the property.

In this work, we perform active learning [1] by seeking optimal strategies to
gather data from the system, with the objective of performing verification with
the greatest degree of accuracy. The novelty of our contribution is to extend [21],
where memoryless strategies were synthesised towards this task, which are highly
sub-optimal for maximising the confidence estimate [23]. Here we tackle the
requirement of memory dependency by formalising the verification problem as
a model-based reinforcement learning task, which is cast into a framework that
augments the pMDP with the information acquired through histories of inter-
actions with the system: this results in a model formulation known as Bayes-
Adaptive MDP (BAMDP) [8]. We also introduce a new algorithm called Bayes-
Adaptive Temporal Difference Search for planning with BAMDPs. A reward
function, related to the confidence estimate, is introduced over the BAMDP to
set up an optimisation task. Optimal strategies help to steer the interaction
with the underlying system to ultimately attain the most accurate confidence
estimate.

1.1 Related Work

The parameter synthesis problem [13] aims at formulating a range of possible
valuations for a set of parameters corresponding to the satisfaction of a prop-
erty of interest. Recent works [6,13,24] perform synthesis utilising increasingly
efficient techniques that scale well on larger state and parameter spaces. Param-
eter synthesis alone does not answer the question whether the underlying, partly
known system satisfies the property. Instead, some information about the param-
eters also needs to be inferred from the system. We not only perform param-
eter synthesis but also parameter inference, which draws valuations for model
parameters from measurement data from the system. When measurement data is
readily available (i.e. need not gather from the underlying system as part of the
planning process), approaches such as [2] proceed to find parameter-independent
strategies where the expected reachability probability is optimised.

Depending entirely on data, [5,18] attempt to learn a completely determinis-
tic representation of an MDP model from the system and to subsequently verify
properties over the learnt model. Unlike our approach, they do not take into
account prior knowledge available to the learner through the incomplete model
at hand and the property given, leading to a single model fitting the underlying
system. Characterising the transition model of an MDP, [1,25] aim at learn-
ing representations from sequences of data using Bayesian learning. The lack
of information from a partial model and without the ability to exploit known
relationships between parameters themselves, renders these approaches data-
inefficient.
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In this work we incorporate Bayesian inference [25] when planning over
pMDPs. Simplicity and analytical behaviour of Bayesian inference has motivated
its use herein. Statistical Model Checking (SMC) techniques [26] perform verifi-
cation over fully-specified models by generating simulation data, or by gathering
data from the underlying system if no model is specified. While we do not solve
the same problem as SMC techniques do, our work strikes a balance between the
two mentioned alternatives, allowing for a substantial reduction in data gath-
ered owing to the knowledge encompassed in the partially known model (i.e.,
the pMDP). Notice that SMC techniques for MDPs solve nondeterminism via
memoryless strategies [16], or employ history-dependent strategies from only a
subset of possible strategies [17]. On the other hand, in this work, we have the
ability to construct memory-efficient strategies that are focused on the specific
objective of asserting whether or not the system satisfies the property.

Computing confidence estimates in formal verification is seen as a meaning-
ful approach in the presence of uncertainty in models. Cognate to this work,
[21] utilises ideas from experiment design to calculate memoryless schedulers
for pMDPs to ultimately compute a confidence estimate for the satisfaction of
properties. Similarly, [20] computes confidence estimates for parametric Markov
chains (PMCs) and [12] performs data-driven verification over linear, time-
invariant dynamical systems encompassing measurement uncertainty.

2 Rudiments

2.1 Markov Decision Processes

Let P(H) denote a probability measure over an event H while E[X] denote
the expectation for any given random variable X. We use P (·) to denote a
discrete probability distribution over a finite set S where P : S → [0, 1] and∑

s∈S P (s) = 1.
We consider a discrete-time Markov decision process (MDP), represented as

a tuple M = (S,A, T , ι), where S is the finite set of states, A is the finite set of
actions. T : S×A×S → [0, 1] is a transition probability function such that ∀s ∈ S
and ∀a ∈ A:

∑
s′∈S T (s, a, s′) ∈ {0, 1}. ι ⊆ S denotes the set of initial states.

Any action that belongs to the set A(s) = {a ∈ A |
∑

s′∈S T (s, a, s′) = 1} is
said to be enabled at state s.

Consider an underlying data-generating system that allows to observe and
collect finite traces of data in the form of sequences of visited states and chosen
actions. We take into account the case where an MDP model that exactly rep-
resents the system is unknown but is assumed belonging to a class of uncertain
models comprised in a parametric Markov decision process (pMDP).

A pMDP is a tuple Mp = (S,A, Tp, ι, Θ), where the previous definition of
an MDP is lifted, ceteris paribus, to include a transition function Tp with a
target set specified using parameters found in an n-dimensional vector θ. All
possible valuations of θ are held in Θ ⊆ [0, 1]n, with n ∈ N>0. For any θ ∈ Θ,
we enforce that ∀s ∈ S and ∀a ∈ A(s):

∑
s′∈S Tp(s, a, s′) = 1. Hence, each

valuation of θ induces a single MDP M(θ) with a transition function that can
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be represented using a stochastic matrix. Whilst the probabilities of all non-
parameterised transitions of Mp are assumed to be known, we allow (unknown)
probabilities of parameterised transitions to be linearly related, as in [21].

2.2 Strategies

A strategy (a.k.a. policy or scheduler) designates an agent’s behaviour within its
environment. For an MDP, a strategy is a distribution over actions at a particular
state. A deterministic strategy selects a single action at a particular state and a
deterministic memoryless (a.k.a. stationary) strategy π : S → A where ∀s ∈ S:
π(s) ∈ A(s), always selects the same action per state, regardless of any available
memory of previously selected actions and/or visited states, hence allowing for
a time-independent choice.

In this work, we are compelled to introduce the notion of memory (a.k.a.
history) with respect to strategies, since memoryless strategies fail to be adequate
with optimality in the choice of actions [2,23]. We call a memory m, a sequence
of states and actions, namely m = s0a0s1a1s2a2... , where si ∈ S, ai ∈ A(si)
and T (si, ai, si+1) > 0. A memory mt = s0a0s1a1s2a2...at−1st is finite if it
covers a finite-time horizon t ∈ N>0. Let M represent the set of possible finite
memories. A deterministic finite-memory strategy π̂ : S × M → A has finitely
many modes M ⊆ M , such that a single action at is chosen at time t, namely
at = π̂(st,mt), ∀t > 0 where mt ∈ M and at ∈ A(st). Obviously, st is the last
state in memory mt: the redundant emphasis on pairs (st,mt) is a notational
convenience inherited from literature that will be further justified in Sect. 4.1.

2.3 Bayesian Reinforcement Learning (Bayesian RL)

Model-based Bayesian RL for pMDPs relies on an explicit model, which is learnt
assuming priors over model parameters and by updating a posterior distribution
using Bayesian inference [25] as more data is gathered from the underlying sys-
tem. Subsequently (and possibly iteratively), the MDP with parameters sampled
from the current posterior is employed to find an optimal policy that maximises
the long-term expected reward.

We consider a Bayes-Adaptive RL formulation [8], with a model that allows
to encode memory as part of the state space. A Bayes-Adaptive MDP is a tuple
Mba = (Ŝ, A, T̂ , ι̂,R), where Ŝ = S×M is the state space encompassing memory,
A is as defined in Sect. 2.1 for an MDP, the transition function T̂ (s,m, a, s′,m′)
designates transitions between belief states (s,m) ∈ Ŝ and (s′,m′) ∈ Ŝ after
choosing an action a. Further, ι̂ ⊆ Ŝ where (s,m) ∈ ι̂ if s ∈ ι. R : Ŝ × A × Ŝ →
R is the newly introduced transition reward. The transition (s, a, s′) plus the
information state m affect the next information state m′, thereby preserving
the Markov property among transitions between belief states.

When an action a is selected in a belief state (s, m), a transition occurs to
the successive belief state (s′,m′) ∼ T̂ (s,m, a, ·, ·) and a transition reward r is
received. With a slight abuse of notation, the function R(s,m, a) = E[r | st =
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s,mt = m, at = a] shall denote the expected reward for the pair: belief state
(s,m) and action a.

Given a finite-time horizon T ∈ N>0 and strategy π̂, the action-value function
Qπ̂(s,m, a) = Eπ̂[ΣT

j=t rj | st = s,mt = m, at = a] is the expected cumulative
transition reward up to the horizon T after action a is chosen over belief state
(s,m) and thereafter following strategy π̂. Solving a BAMDP in our context
boils down to finding a finite-memory, deterministic strategy π̂∗ that maps belief
states from the augmented state space Ŝ to actions in A and which maximises
an expected cumulative transition reward over a given finite horizon T .

2.4 PCTL Properties

We consider non-nested properties expressed in a fragment of probabilistic com-
putational tree logic (PCTL) [15]. For a PCTL formula φ interpreted over states
of a given MDP M, a formula ϕ interpreted over the paths [3], 	
∈ {<,≤,≥, >}
and b ∈ [0, 1], the probabilistic operator φ = P��b(ϕ) in a state s ∈ S expresses
the probability for paths starting at s that satisfy ϕ meet the bounds given by
	
 b. We consider path formulae both bounded: ϕ = φi U≤k φj (with a finite-
time bound k ∈ N>0) and unbounded time: ϕ = φi U φj . Denote by P

π(ϕ | s)
the probability of satisfying ϕ along the paths of MDP M that start from s ∈ S
and follow a given strategy π. The satisfaction of formula P��b(φi U≤k φj) over
M is thus given by:

M |= P��b(φi U≤k φj) ⇐⇒ ∀s ∈ ι : A
π∈StrM

P
π(φi U≤k φj | s) 	
 b,

where P
π is the measure over the events corresponding to the formula φ for

the MDP under strategy π and StrM is the set of all strategies of M and
A ∈ {inf, sup} with following choices for 	
: inf if ≥ or > and sup if < or ≤.
The satisfaction of P��b(φi U φj) over M can be derived similarly. Considering
a pMDP Mp, we let Θφ denote the set of valuations of θ for which the formula
φ is satisfied: θ ∈ Θφ ⇔ M(θ) |= φ and we call Θφ the feasible set.

3 Verification and Learning

We present here our integrated verification and learning approach [20].

3.1 Parameter Synthesis

The aim of parameter synthesis is to classify induced MDP models of the corre-
sponding pMDP, between those that satisfy a given property φ and those that do
not. This is achieved by producing an output that maps regions corresponding
to parameter valuations to truth values [13]. Regions that map to “true” are
considered belonging to the feasible set Θφ, while those that maps to “false” are
guaranteed to not contain valuations that satisfy the property φ. This step han-
dles actions pessimistically, namely models are considered to verify property φ
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regardless of the action selection. This is because we plan to fully utilise actions
for learning at a later step. Evidently, a different trade-off on actions could be
struck, which we delegate to future work. We employ the probabilistic model
checker Storm [7] to perform synthesis because it supports the PCTL properties
of interest.

3.2 Bayesian Inference

Bayesian inference allows to determine a posterior probability distribution over
the likely values of the parameters θ ∈ Θ, based on data gathered from the
underlying system and to update this probability distribution as more data is
collected [25]. It is also possible to incorporate any subjective beliefs about the
parameters using a prior distribution P (θ).

Denote by D the set of finite traces gathered from the system so far, com-
prising a count Ca

s,s′ of how many times a particular transition (s, a, s′) has
been observed. We limit parameterisation of pMDP transitions to two cases of
interest: (a) each transition of the pMDP is parameterised either with a single
parameter (e.g. θi or 1−θi) or with a constant k ∈ (0, 1]; (b) the pMDP includes
transitions whose transition probabilities are expressed as affine functions of the
form gs′

s,a(θ) = k0 + k1θ1 + . . . + knθn. For any instance of (b), [21] suggests two
transformations that produce a pMDP that contains only transition probabili-
ties of the form given in (a). Therefore, without loss of generality and for the
purpose of succinctness, we assume pMDPs with parameterisation correspond-
ing to the form in (a) herein. For transitions having identical parameterisations,
their transition counts can be grouped together using parameter tying [22].

Denote by C(θi), the number of times transitions parameterised by θi have
been observed in D : C(θi) =

∑
Ca

s,s′ for Tp(s, a, s′) = θi. Similarly, we define
C ′(θi) to count transitions parameterised by 1 − θi, i.e., transitions not param-
eterised by θi given that there exists a transition parameterised by θi under the
same action a ∈ A(s). We collect both C(θi) and C ′(θi) in C̄(θi) for brevity.

Assuming a prior distribution P (θi) over each component parameter θi ∈ θ,
the posterior distribution over θi can be expressed using Bayes’ rule as:

P (θi | D) ∝ P (θi)θ
C(θi)
i (1 − θi)C′(θi).

The counts Ca
s,s′ follow a multinomial distribution [25]. Selecting a Beta distri-

bution: Beta(θi; (αθi
, βθi

)) as a conjugate prior, the posterior distribution has a
closed-form expression, allowing it to be updated by adding respective parameter
counts to the hyper-parameter pair (αθi

, βθi
) [25]:

P (θi | D) = Beta(θi; C̄(θi) + (αθi
, βθi

)).

Note that hyper-parameters αθi
and βθi

are the parameters of the (Beta) prior
distribution over θi. We denote by Ui(m) the update on hyper-parameter counts
C̄(θi)+(αθi

, βθi
), corresponding to an information state m. Marginals P (θj | D)

can be combined to form the posterior for the entire vector θ ∈ Θ under the
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assumption that each component parameter θj is independent over those inde-
pendent state-action pairs in the pMDP. Thus, the posterior P (θ | D) is given
by: P (θ | D) =

∏
θj∈θ P (θj | D). Whenever an analytical update is impossible,

we can resort to sampling techniques to obtain posterior realisations [21].

3.3 Confidence Computation

Given a specification φ and the posterior distribution P (θ | D) for θ ∈ Θ
obtained from a system of interest S, the confidence on whether S |= φ, can be
quantified according to [20]:

C = P(S |= φ | D) =
∫

Θφ

P (θ | D)dθ =
∫

Θφ

∏

θj∈θ

P (θj | D)dθ. (1)

This quantity in general can be computed using Monte Carlo integration [20].

3.4 Overview of the Approach

I2: Property φ = P��b(ϕ)

I1: pMDP Mp

1: Parameter synthesis

2a: Strategy synthesis

2b: Collect data from S 2c: Bayesian inference

3: Compute confidenceO: C = P(S |= φ | D)

Θφ,Mp

π̂∗

D

P (θ | D)

Θφ

P
(θ|

D
)

Fig. 1. Verification and Learning. I1, I2 are inputs
and output O is the confidence estimate C .

The different phases of our
approach are shown in Fig. 1.
We assume that the available
parametric model Mp best
represents the underlying sys-
tem together with its uncer-
tain dynamics. We first per-
form parameter synthesis over
the given parametric model to
find the feasible set of param-
eter values Θφ that satisfy the
specification at hand. We then

collect data from the system and employ Bayesian inference to update the pos-
terior distribution over the likely values of the parameters with respect to the
gathered data. Finally, we output a quantification of the confidence that the
underlying system satisfies the specification over the data gathered so far.

In this work, the feasible set and the current distribution over the parameter
space are propagated through a BAMDP model and used to plan (viz. synthesise
a strategy) for gathering valuable data from the underlying system. We synthe-
sise strategies to sequentially collect data to optimise the measure in Eq. (1)
which will be further elaborated in Sect. 4.2.

4 Active Learning

We introduce a new technique for model-based Bayesian RL to synthesise a
finite-memory strategy to further explore the system from data.
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4.1 Bayes-Adaptive Model

In order to collect maximally useful data from the underlying system, we take
into account the importance of (both past and expected) information to decrease
the uncertainty associated with model parameters with respect to property satis-
faction. Our confidence quantification (cf. Eq. (1)) is a proxy for this uncertainty:
if the property is satisfied over the underlying system, one would expect the con-
fidence to be as high as possible and, conversely, as low possibly if the property
is not satisfied (essentially, in either case, one ideally wants to be away from the
value 0.5).

We lift the BAMDP model described in Sect. 2 to support uncertainty
described by parameterised transitions assuming a Beta-Binomial representation
for the posterior distribution (as in Sect. 3.2). Using this uncertainty representa-
tion, we encompass the information state m by a joint probability distribution im
over the hyper-parameters, which are collectively denoted by the pair (α,β) =
{Uj(m) | ∀θj ∈ θ}, namely, α = 〈C(θ1) + αθ1 , C(θ2) + αθ2 , . . . , C(θn) + αθn

〉
and β = 〈C ′(θ1)+βθ1 , C

′(θ2)+βθ2 , . . . , C
′(θn)+βθn

〉 where n = |θ|. The hyper-
parameters for θj are thus denoted by im,j . The distribution im acts as a statistic
for m that summarises all information accumulated so far. We furthermore adapt
the pair (s,m) to (s, im) as a belief state of the BAMDP, essentially lifting mem-
ories M to the hyper-parameters (α,β) of the (Beta) posterior distributions, M̂.
This lifting preserves the Markovian property of transition function T̂ . For the
remainder of the paper, we employ im and M̂ to reason about intended concepts
over m and M, respectively.

We formulate BAMDPs in this work to transform the uncertainty in param-
eters θ ∈ Θ of a pMDP into certainty about belief states of a BAMDP. A prior
P (Tp) on the transition function Tp of a pMDP corresponds to a prior distribu-
tion P (θ) over parameters θ. Accordingly, we can define a posterior belief b(Tp)
over the transition function given data D , so that b(Tp) = P (θ | D). For a mem-
ory m, this belief can be quantified as b(Tp) = P (Tp | im) ∝ P (im | Tp)P (im).
The transition dynamics for the BAMDP can be formulated as:

T̂ (s, im, a, s′, im′) =
∫

Tp

Tp(s, a, s′)P (Tp | im)dTp, (2)

where m′ is the updated memory after the transition (s, a, s′) is witnessed. The
RHS of Eq. 2 is the expectation of Tp(s, a, s′), which corresponds to the expec-
tation of the posterior P (θ | D), hence T̂ can be expressed as:

T̂ (s, im, a, s′, im′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1imas′ (im′)
αθj

αθj
+βθj

if Tp(s, a, s′) = θj ,

1imas′ (im′)
βθj

αθj
+βθj

if Tp(s, a, s′) �= θj and
∃sk ∈ S : Tp(s, a, sk) = θj ,

Tp(s, a, s′) otherwise,

(3)

where 1b(a) is 1 if a equals b, else 0.
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4.2 Synthesis of Bayes-Adaptive Strategies

The reward function R is used in the BAMDP to designate expected confidence
updates resulting from transitions and thereby to guide the learning process. We
work with finite-horizon problems. Positive rewards defined at the horizon (and
zero elsewhere) require the learner to consider complete trajectories spanning
the horizon in order to accumulate non-zero rewards. This can be computation-
ally expensive should the horizon be large. Therefore, we focus on obtaining
immediate rewards at each step of the learning process.

We define belief-dependent rewards [19] based on the difference between the
confidence estimate at the given time step and that at the successive time step.
As a learning process is designed to maximise rewards [28], here it is focussed
on maximising the information content from the system’s data to compute the
most accurate confidence estimate possible. In order to achieve this, we need to
synthesise strategies that maximise the deviation between future confidence and
the base case K = 0.5.

Denote by Ct, the confidence estimate at current time step t, where we have
set C0 = K . After selecting action at over the belief state (st, imt

), the next-step
confidence Ct+1 can be used to define an immediate confidence gain rt+1 as:

rt+1 = |K − Ct+1| − |K − Ct|.

The reward function R(s, im, a) is thus defined as R(s, im, a) = E[rt+1 | st =
s, imt

= im, at = a], where clearly R(s, im, a) = 0 if there is no associated param-
eterised transition. An interesting observation about R is that corresponding
rewards might converge to zero in the limit, i.e., go to zero as the agent is left
with nothing more to learn.

With respect to a prior distribution P (θ), the Bayes-Optimal policy π̂∗ that
maximises the expected cumulative reward over a finite horizon T is given by

π̂∗(s, im) = arg max
a∈A(s)

Q∗(s, im, a),

where the corresponding Bayes-Optimal action-value function is given by

Q∗(s, im, a) = sup
π̂

Eπ̂[ΣT
j=trj | st = s, imt

= im, at = a, θ ∼ P (θ)].

Note that the Bayes-Optimal policy π̂∗(s, im) depends on prior beliefs and
is consistent with the way in which Ct+1 is calculated. According to Eq. (1),
this value corresponds to the expected values of the parameter counts after tran-
sitioning from state st by selection of action at. Starting from the expected
values of transition counts, as described in Sect. 3.2, we can collect the expected
parameter counts in C̄(θ). The expected transition counts correspond to the
Binomial distribution over the transitions under a chosen action. The expected
values of the transition probabilities can be calculated via the expected values
of the parameters. For instance, the expected value of a given parameter θj is

E[θj ] =
αθj

αθj
+ βθj

. The expected transition probability for the transition (s, a, s′)

is hence gs′
s,a(E[θj ]).
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4.3 Bayes-Adaptive Temporal Difference Search

The learning algorithm we introduce is based on learning from simulated episodes
of experiences gathered from the BAMDP. However, a BAMDP can be sizeable,
even for a corresponding simple concrete MDP [8]. The information space grows
exponentially with the number of state-action pairs in the concrete MDP and the
horizon T of exploration. In our setting, T directly relates to the length of the
traces drawn from the system and T can be chosen arbitrarily but needs to be
large enough to witness several state transitions. However, when the PCTL prop-
erty imposes a finite-time bound k on satisfaction, T should not exceed k. Even
though there exist exact solutions to BAMDPs, for instance, via dynamic pro-
gramming using Gittins indices [11], in most practical cases they are intractable.
Let us recall that we denote by Q(s, im, a) the expected cumulative transition
reward, when action a is selected at belief state (s,m). It is in practice not pos-
sible to store all values of Q(s, im, a) in memory and learning exact values might
be too slow. One way of reducing these computational burdens is to observe that
distinct memories may yield the same (or a similar) belief [8], hence generalisa-
tion of Q values among related paths can be helpful. [10] proposes a Monte Carlo
simulation algorithm to estimate Q values with a function approximator, which
allows generalisation between states, actions and beliefs. However, such methods
require to evaluate the final step of the simulation to update all corresponding
Q values.

In this work, we follow an approach based on temporal difference (TD) learn-
ing [28], which can update the estimate of the Q value after every step of a sim-
ulation. This is helpful when the time horizon is very long (or non-terminating).
Furthermore, the ability to learn step by step helps in estimating Q values with
low variance and to plan via subsequent decisions that can be correlated in time.
Temporal Difference Search (TD Search) is a simulation-based algorithm that
employs value function approximation. Initially used for planning in Computer
Go [27], we extend TD search to the context of Bayes-Adaptive models.

A new Bayes-Adaptive temporal difference search algorithm is outlined in
Algorithm 1. It gathers episodes of simulated trajectories starting from the cur-
rent belief state (st, imt

) according to an ε–greedy strategy. An ε–greedy strategy
selects an action that maximises the local Q value with a probability equal to
1 − ε or outputs a random action with probability ε. Rather than exploring the
whole BAMDP, our algorithm commits to solving a sub-BAMDP that starts at
the current belief state and spans a given time horizon T . Once Algorithm 1
synthesises a strategy (based on the current posterior P (θ | D)), we roll it out
up to the designated time horizon T and collect data (in the form of traces of
length T ) from the underlying system. We then update the BAMDP model via
Bayesian inference using the collected data: the current posterior distributions
of each parameter θi ∈ θ is updated using the new data. Next, we synthesise a
new strategy to further gather data. We continue in this fashion until we have
gathered an arbitrary allowed number of traces from the system. We then output
the eventual confidence estimate that asserts whether the system satisfies the
property (cf. Fig. 1).
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Value Function Approximation. In order to approximate the value function,
we lift the action-value function with a weight matrix β of learnable param-
eters: Q(s, im, a;β). The goal of the learning process is to then find β that
minimises the mean-squared error between approximate and true Q functions:
E[(Q(s, im, a;β) − Q(s, im, a))2].

Algorithm 1. Bayes-Adaptive Temporal Difference Search
1: Inputs:
2: st, imt

3: Initialize:
4: β ← 0, ρ ← 0
5: procedure Search(st, imt)
6: while time remaining do � Start episode
7: s ← st, im ← imt , t̃ ← t
8: a ← π̂ε–greedy(s, im; Q)
9: ξ ← 0, ξ′ ← 0

10: while t̃ < T do
11: s′ ∼ T̂ (s, im, a, ·, ima·)
12: R ← R(s, im, a)
13: a′ ← π̂ε–greedy(s

′, imas′ ; Q)
14: δ ← R + Q(s′, imas′ , a′; β) − Q(s, im, a; β)
15: ξ = λξ + y(im) ⊗ x(s, a)
16: ξ′ = λξ + y(imas′) ⊗ x(s′, a′)
17: β ← β + αδξ − αξ′(ξ�ρ)
18: ρ ← ρ + ω(δJ − ξ�ρ)ξ
19: s ← s′, a ← a′, t̃ ← t̃ + 1
20: end while
21: end while
22: return arg max

at

Q(st, imt , at; β)

23: end procedure

We use the backward
view of SARSA(λ) [28], with
ε–greedy strategy improve-
ment, to help learn parame-
ters β at each step of simula-
tion sequences. The parame-
ter λ designates up to how far
in time should bootstrapping
occur (bootstrapping refers to
updating an estimated value
with one or more estimated
values of the same kind).
To implement the backward
view, it is required to main-
tain an eligibility trace ξa

s,im
1

for each tuple (s, im, a). An
eligibility trace [28] temporar-

ily remembers the occurrence of an activity, for instance, visiting a state and
choosing an action. The trace signals the learning process that the credit asso-
ciated to the activity is eligible for change. The trace assigns credit to eligible
activities based on combing assignments from two common heuristics: frequency
heuristic (where credit is assigned to most frequent activities) and recency heuris-
tic (where credits is assigned to most recent activities).

A BAMDP entails a convex action-value function [8] as a function of the infor-
mation state: this function becomes piecewise linear if the horizon is finite and if
the state-action space is discrete. Therefore, linear value function approximation
is appropriate to represent the true convex action-value function for a particular
state-action pair. Since the transition rewards we receive correspond to a gain in
confidence, the values are bounded within [0, 1]. As such, the introduced function
approximation is truncated using the sigmoid function σ(x) = 1

1+e−x [27].

Feature Representation. The quality of the value function approximation
Q(s, im, a;β) greatly depends on employed features: we use the feature triple
(s, im, a). A good approximation procedure should generalise well for those mem-
ories that lead to similar information states (or beliefs). The feature represen-
tation should facilitate likewise representations for such memories. We propose
the following representation for Q(s, a, im;β) [10]:

Q(s, im, a;β) = y(im)�βx(s, a).

1 Note that in Algorithm 1, we actually maintain an eligibility trace matrix ξ.
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This form encodes the feature triple into the Q approximation, with vector x(s, a)
concerning state-action pairs and vector y(im) representing information states.

x(s, a) indicates which state-action pair is currently involved. Therefore, for
a particular pair, this representation of Q is linear as a function of im which
approximates the true convex action-value function. State-action pairs with sim-
ilar features will be considered to be similar. We associate x(s, a) with binary
features by assigning it a column vector of size Z, with value one assigned to the
location of the element corresponding to (s, a) and to any entry corresponding
to parameter similar state-action pairs of (s, a), while other entries are assigned
the value zero2. By parameter similar state-action pairs, we mean those pairs
with outgoing transitions having identical parameterisation.

The construction of the vector y(im) requires representing beliefs in a coor-
dinate vector form. However, as beliefs are not finite-dimensional objects, a
finite-dimensional approximation is therefore required. [10] proposes a sampling
mechanism based on a sequential importance sampling particle filter. We con-
struct y : M̂ → R

Z as follows, assuming that Z is the degree of the finite-
dimensional approximation. We initialise y(im), a column vector with Z ele-
ments, to 1

Z at the beginning of each episode of Algorithm 1. We then modify
y(im) by updating each entry j at the current step, using the probability given
by T̂ (s, im, a, s′, imas′), as:

yj(imas′) = yj(im)T̂ (s, im, a, s′, imas′).

Notice how this scheme allows different memories leading to same belief to be
mapped as identical representations, i.e., y(im′) = y(im) if b(m′) = b(m). With
this construction, it is not required to explicitly update the information of belief
states that are not directly traversed in the simulation, since these updates are
implicitly reflected in the finite-dimensional representation. The two updates (cf.
Algorithm 1, lines: 15 and 16) on eligibility traces capture the joint effect of the
introduced feature vectors x and y (in the algorithm, ⊗ denotes the standard
outer product).

Feature vectors x(s, a) and y(im) effectively generalise from states, actions,
and memories already seen to those unseen. As such, the rolled-out simulations
will achieve the generalisation without the need to traverse all possible states of
the BAMDP, making the algorithm much more efficient.

We run Algorithm 1 episodically (note that an episode starts from line 6 and
ends in line 21) to learn β using simulated traces from the BAMDP model. We
roll-out these simulations (cf. from line 10 to 20) up to the horizon T . The prop-
agation of knowledge from one step of the algorithm to the other is fundamental
to learning good representations from past experiences. When rolling-out simula-
tions, one can use y(im) from previous time step t̃−1 for learning in the current
step t̃ but y(im) may degenerate, e.g. leaving one of its entries yj(im) = 1
and rest being zero. Given a threshold Y , we simply re-initialise all entries if

1∑
j yj(imt̃

)2 < Y or else, we reuse y from the previous β update.

2 This scheme is sometimes called one-hot encoding.
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Convergence. In the context of our action-value function approximation, con-
vergence means that entries of β reach a fixed point. Linear SARSA (λ) (which
is the underlying learning algorithm used in TD search) is sensitive to initial
values of β and does not always converge in view of chattering [9]. Convergence
guarantees for standard SARSA(λ), requiring a greedy in the limit with infinite
exploration (GLIE) sequence of strategies and Robbins-Monro conditions for the
learning rate α [28], are not in general enough to guarantee convergence for linear
SARSA (λ), since it is not a true gradient-descent method [29]. Policy gradient
methods [28] on the other hand can be used in place if one desires guaranteed
convergence. This motivates the use of stochastic gradient descent algorithms.
Since we roll-out a complete strategy before the next stage of data gathering, we
are essentially performing open loop control together with the current beliefs we
possess. Therefore, our planning stage is based on off-policy learning : training
on outcomes from an ε-greedy strategy in order to learn the value of another.
Linear TD with gradient correction (TDC) [29] can be used to force SARSA to
follow the true gradient. We adopt TDC to support the form of Q and the pres-
ence of matrix β. Based on the mean-square projected Bellman error (MSPBE)
objective function [29], TDC employs two additional parameters: matrix ρ and
scalar ω and updates β and ρ accordingly on each state transition (cf. lines 17–18
of Algorithm 1, where J is a properly-sized all-ones matrix).

5 Experiments

5.1 Setup

We evaluate our approach over three case studies. We consider a range of simu-
lated underlying systems (corresponding to different instantiations of the param-
eters) and compare obtained confidence results against the corresponding ground
truths, via mean-squared error (MSE) metric. We compare strategies generated
by our synthesis algorithm, Algorithm 1 (denoted BA strategy) against other
strategies: a strategy synthesised in [21] (denoted Synth strategy), a given proba-
bilistic memoryless strategy (denoted RS strategy), and a strategy that randomly
select actions at each state (denoted No strategy).

First case study involves the pMDP given in [21], endowed with 6 states, 12
transitions, and 2 parameters and the PCTL property P≥0.5(true U complete)
(complete is the label associated to one of the 6 states).

For the second case study (cf. Fig. 2), we extend an MDP model for a
smart buildings application [4] to a pMDP with action space A = {foff, fon}
and parameter vector θ = {θ1, θ2}. Actions correspond to the on/off state
of a fan inside a room. We verify the satisfaction of the PCTL property
P≥0.35¬(true U≤20 (E,O)). Beyond the comparison between strategies described
above, we use traces generated by our algorithm and by other strategies with a
Bayesian Statistical Model Checking (Bayesian SMC) [30] implementation. SMC
collects trajectories from the system, checks whether trajectories satisfy a given
property and subsequently uses statistical methods such as hypothesis testing to
determine whether the system satisfies the property.
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Thirdly, we carry out experiments with a well-known pMDP benchmark
from [14], the Randomised Consensus Protocol. This case study allows to show-
case the efficiency and effectiveness of our approach over large MDPs. We con-
sider an instance of the problem with 4112 states and 7692 transitions, where
we fix the number of processes N = 2 (i.e. two parameters) and the proto-
col constant K = 32 to check the PCTL property P≥0.25(true U (finished &
allCoinsEqualToOne)).

Like [21], for convenience of presentation, we have selected all simulated
underlying systems such that a single parameter θ∗ is responsible for the satis-
faction/falsification of the property: θ∗ = (θ1 = θ2). Intervals over θ∗ (namely,
feasible sets) corresponding to the system verifying the corresponding property
are: I1 = [0.369, 0.75] (for case 1), I2 = [0.0, 0.16] (for case 2) and I3 = [0.2, 0.5]
(for case 3), respectively.

Our approach has been implemented in C++. We consider non-informative
priors for all parameters involved i.e., uniform ones (α = β = 1). Over different
values of θ∗, data from the simulated underlying system is collected as traces
containing state-action pairs visited over time. We gather confidence estimates
through n number of runs. If Cj is the confidence estimate at the j-th run of case
study i, then MSE is computed as = 1

nΣn
j=1(1Ii

(θ∗)−Cj)2. For the experiments,
we set algorithm parameters (cf. Algorithm 1) as follows. λ is set to 0.8, ω to
0.9, α to 1

(t̃+1)0.65 and ε to 1
t̃+1

. We train β on 1000 episodes for all case studies
and set Z = 50 for the large model in case study 3.

5.2 Results

The MSE outcomes for each case study are summarised in Figs. 3a, b and c.
The horizontal axis (system parameter) represents values of θ∗ for the simulated
underlying systems. The intervals Ii above allow to separate systems that satisfy
the property from those that do not, by a clear edge/boundary (e.g., for Fig. 3a
this edge is rooted at 0.369). The MSE results have been drawn by experiments
carried out under limited amount of data (e.g. for the third case study, we have
used 10 traces, each of length 10, namely (t10, l10)). These results show that our
approach clearly outperforms other strategies.

It is important to note that we incur a comparably higher error at system
parameters that are very close to the mentioned edge. This is due to the nature
of the confidence computation that we perform. For a point closer to the edge,
this could yield a posterior distribution that will have its peak centred at the
point with probability mass falling almost equally in both the feasible set and
outside it. As more data is gathered, the posterior distribution may grow taller
and thinner, but with the slightest shift in its peak, a large proportion of the
mass may fall on either side, resulting in an increase of the MSE. This increased
sensitivity near the edge soon subsides as we move away from the edge, where
the mass can now fall in either part of the interval.

Note that we achieve a significant performance for the large pMDP model
in case study 3 (cf. Fig. 3c). For a model of this magnitude, the corresponding
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Bayes-Adaptive model is enormous, making it impossible to search/traverse it
entirely. The proposed generalisation approach embedded in our search algorithm
allows to tackle this otherwise intractable problem. Unfortunately, [21] times out
(in 1 h after going out of memory) when attempting synthesis, i.e., explicitly
evaluating memoryless strategies does not scale well for large models.

(E,O)

(F,O)(F,C)

(E,C)

1− θ21− θ2

(1− 0.75
−θ1)

(1− 0.25
−θ1)

1− 0.35 1− 0.15

0.35

0.75

0.15
0.25

θ1 θ1

θ2 θ2

fon

fon

foff
foff

Fig. 2. Extended pMDP model
for case study in [4].

Figures 3d and e present results on case
study 2. These show that our method is able
to gather more useful data than Synth and to
rapidly converge to the ground truth. Main-
taining good performance even at very low
amounts of data (e.g. 10 traces or traces of
length 5) shows that our approach is robust
to the nature of the gathered data. The major
reason behind this is that the current strategy
constantly looks for parameterised transitions
as much as possible: it is over these transitions
that confidence gain may happen. This is in
stark contrast to techniques like SMC, where
the length of horizon of the trace needs to be
long enough to either reach a designated state
or find counterexamples for the given property.

Figure 3f provides results for an experiment conducted over case study 2,
and shows two significant aspects of our approach: first, the information content
of the traces that we have generated from our approach, by comparing them
against those generated from other strategies; and secondly, the demonstration
that SMC can be problematic in situations where one has access to only a limited
amount of data. Running traces generated by different strategies (BA vs Synth vs
No) through a Bayesian SMC algorithm, demonstrates that our (BA) approach
converges rapidly to the ground truth, faster than other methods (Synth and
No). This shows that our traces encompass much richer information content to
compute better confidence estimates to decide the satisfiability of the property.

SMC provides outcomes that are usually much faster than canonical model
checking tools. However, for case study 2, the property we have selected is a
negative bounded-time property that requires falsification by reaching a specific
state (E,O). This is a tricky property to ascertain via SMC, due to the lack
of counterexamples with trace lengths much shorter than the formula horizon.
On the other hand, such traces processed with our approach (i.e. confidence
computation using the posterior distribution) yield much better results than
Bayesian SMC. This shows that we can work with much shorter horizons than
the formula horizon and are still able to accurately verify properties. Performance
at shorter trace lengths is an important performance criterion for large models,
like the one in case study 3, where you would need fairly longer trace lengths
(e.g. 1000 or more) for SMC to work, whereas our approach is able to verify the
property with a couple of orders of magnitudes lower trace lengths (e.g. 10).
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Fig. 3. Mean-squared error (MSE) and average confidence results for the three case
studies. The number of generated traces or the length of generated traces is indicated
by values prefixed with t or l, respectively. Translucent bars along the x-axes of a, b
and c designate the simulated underlying systems that satisfy the property φ and those
which do not. Respective edges/boundaries are followed by a ‡ symbol.

6 Conclusions and Future Work

We have a data-based efficient verification approach to assert whether a partially
unknown probabilistic system satisfies a given property expressed as a logical
specification. Our approach takes into account memory in calculating optimal
strategies to gather data from the underlying system so as to derive the most
accurate confidence estimates possible.

As future work, based on the updated confidence value, one could tune/repair
the parametric model until a decisive confidence is achieved. For instance, if
the output confidence value is 0.5, then there exists an equal chance that the
property is either satisfied or not over the system. If this value has been obtained
after gathering a substantial amount of data, this may mean that the employed
parametric model was not supportive enough to gauge the satisfaction of the
property, hence it could be adjusted until a substantial judgement about the
satisfiability can be made.

Furthermore, in this work, actions are exclusively selected for learning tasks.
Instead, one might choose them in the context of model classification (i.e., param-
eters selection), in order to steer the system towards property satisfaction.
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Abstract. Graph games and Markov decision processes (MDPs) are
standard models in reactive synthesis and verification of probabilistic
systems with nondeterminism. The class of ω-regular winning conditions;
e.g., safety, reachability, liveness, parity conditions; provides a robust and
expressive specification formalism for properties that arise in analysis of
reactive systems. The resolutions of nondeterminism in games and MDPs
are represented as strategies, and we consider succinct representation of
such strategies. The decision-tree data structure from machine learn-
ing retains the flavor of decisions of strategies and allows entropy-based
minimization to obtain succinct trees. However, in contrast to traditional
machine-learning problems where small errors are allowed, for winning
strategies in graph games and MDPs no error is allowed, and the deci-
sion tree must represent the entire strategy. In this work we propose
decision trees with linear classifiers for representation of strategies in
graph games and MDPs. We have implemented strategy representation
using this data structure and we present experimental results for prob-
lems on graph games and MDPs, which show that this new data structure
presents a much more efficient strategy representation as compared to
standard decision trees.

1 Introduction

Graph Games and MDPs. Graph games and Markov decision processes
(MDPs) are classical models in reactive synthesis. In graph games, there is a
finite-state graph, where the vertices are partitioned into states controlled by
the two players, namely, player 1 and player 2, respectively. In each round the
state changes according to a transition chosen by the player controlling the cur-
rent state. Thus, the outcome of the game being played for an infinite number of
rounds, is an infinite path through the graph, which is called a play. In MDPs,
instead of an adversarial player 2, there are probabilistic choices. An objective
specifies a subset of plays that are satisfactory. A strategy for a player is a
recipe to specify the choice of the transitions for states controlled by the player.
In games, given an objective, a winning strategy for a player from a state ensures
c© Springer Nature Switzerland AG 2019
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the objective irrespective of the strategy of the opponent. In MDPs, given an
objective, an almost-sure winning strategy from a state ensures the objective
with probability 1.

Reactive Synthesis and Verification. The above models play a crucial role
in various areas of computer science, in particular analysis of reactive systems.
In reactive-system analysis, the vertices and edges of a graph represent the states
and transitions of a reactive system, and the two players represent controllable
versus uncontrollable decisions during the execution of the system. The reac-
tive synthesis problem asks for construction of winning strategies in adversarial
environment, and almost-sure winning strategies in probabilistic environment.
The reactive synthesis for games has a long history, starting from the work
of Church [15,18] and has been extensively studied [16,27,38,47], with many
applications in synthesis of discrete-event and reactive systems [44,48], model-
ing [1,22], refinement [28], verification [4,20], testing [7], compatibility checking
[19], etc. Similarly, MDPs have been extensively used in verification of prob-
abilistic systems [6,21,33]. In all the above applications, the objectives are
ω-regular, and the ω-regular sets of infinite paths provide an important and
robust paradigm for reactive-system specifications [37,49].

Strategy Representation. The strategies are the most important objects as
they represent the witness to winning/almost-sure winning. The strategies can
represent desired controllers in reactive synthesis and protocols, and formally
they can be interpreted as a lookup table that specifies for every controlled state
of the player the transition to choose. As a data structure to represent strategies,
there are some desirable properties, which are as follows: (a) succinctness, i.e.,
small strategies are desirable, since smaller strategies represent efficient con-
trollers; (b) explanatory, i.e., the representation explains the decisions of the
strategies. While one standard data structure representation for strategies is
binary decision diagrams (BDDs) [2,14], recent works have shown that decision
trees [39,45] from machine learning provide an attractive alternative data struc-
ture for strategy representation [10,12]. The two key advantages of decision trees
are: (a) Decision trees utilize various predicates to make decisions and thus retain
the inherent flavor of the decisions of the strategies; and (b) there are entropy-
based algorithmic approaches for decision tree minimization [39,45]. However,
one of the key challenges in using decision trees for strategy representation is
that while in traditional machine-learning applications errors are allowed, for
winning and almost-sure winning strategies errors are not permitted.

Our Contributions. While decision trees are a basic data structure in machine
learning, their various extensions have been considered. In particular, they have
been extended with linear classifiers [13,25,35,46]. Informally, a linear classifier
is a predicate that checks inequality of a linear combination of variables against
a constant. In this work, we consider decision trees with linear classifiers for
strategy representation in graph games and MDPs, which has not been con-
sidered before. First, for representing strategies where no errors are permitted,
we present a method to avoid errors both in decision trees as well as in linear
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classification. Second, we present a new method (that is not entropy-based) for
choosing predicates in the decision trees, which further improves the succinctness
of decisions trees with linear classifiers. We have implemented our approach, and
applied it to examples of reactive synthesis from SYNTCOMP benchmarks [30],
model-checking examples from PRISM benchmarks [34], and synthesis of ran-
domly generated LTL formulae [43]. Our experimental results show significant
improvement in succinctness of strategy representation with the new data struc-
ture as compared to standard decision trees.

2 Stochastic Graph Games and Strategies

Stochastic Graph Games. We denote the set of probability distributions over
a finite set X as D(X). A stochastic graph game is a tuple G = 〈S1, S2, A1, A2, δ〉,
where:

– S1 and S2 is a finite set of states for player 1 and player 2, respectively, and
S = S1 ∪ S2 denotes the set of all states;

– A1 and A2 is a finite set of actions for player 1 and player 2, respectively, and
A = A1 ∪ A2 denotes the set of all actions; and

– δ : (S1 ×A1)∪ (S2 ×A2) → D(S) is a transition function that given a player 1
state and a player 1 action, or a player 2 state and a player 2 action, gives
the probability distribution over the successor states.

We consider two special cases of stochastic graph games, namely:

– graph games, where for each (s,a) in the domain of δ, δ(s,a)(s′)=1 for some
s′ ∈ S.

– Markov decision processes (MDPs), where S2 = ∅ and A2 = ∅.

We consider stochastic graph games with several classical objectives, namely,
safety (resp. its dual reachability), Büchi (resp. its dual co-Büchi), and parity
objectives.

Stochastic Graph Games with Variables. Consider a finite subset of natural
numbers X ⊆ N, and a finite set Var of variables over X, partitioned into state-
variables and action-variables Var = VarS 	 VarA (	 denotes a disjoint union).
A valuation is a function that assigns values from X to the variables. Let XVarS

(resp., XVarA) denote the set of all valuations to the state-variables (resp., the
action-variables). We associate a stochastic graph game G = 〈S1, S2, A1, A2, δ〉
with a set of variables Var , such that (i) each state s ∈ S is associated with a
unique valuation vals ∈ XVarS , and (ii) each action a ∈ A is associated with a
unique valuation vala ∈ XVarA .

Example 1. Consider a simple system that receives requests for two different
channels A and B. The requests become pending and at a later point a response
handles a request for the respective channel. A controller must ensure that (i) the
request-pending queues do not overflow (their sizes are 2 and 3 for channels A and
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0, 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2 1, 3

2, 0 2, 1 2, 2 2, 3

Fig. 1. A reactive system with two request channels.

B, respectively), and that (ii) no response is issued for a channel without a pend-
ing request. The system can be modeled by the graph game depicted in Fig. 1.
The states of player 1 (controller issuing responses) are labeled with valuations
of state-variables capturing the number of pending requests for channel A and
B, respectively. For brevity of presentation, the action labels (corresponding to
valuations of a single action-variable) are shown only outgoing from one state,
with a straightforward generalization for all other states of player 1. Further, for
clarity of presentation, the labels of states and actions for player 2 (environment
issuing requests, with filled blue-colored states and actions) are omitted. The
controller must ensure the safety objective of avoiding the four error states.

Strategy Representation. The algorithmic problem treated in this work con-
siders representation of memoryless almost-sure winning strategies for stochastic
graph games with variables. Given a stochastic graph game and an objective, a
memoryless strategy for player i ∈ {1, 2} is a function π : Si → Ai that resolves
the nondeterminism for player i by choosing the next action based on the cur-
rently visited state. Further, a strategy is almost-sure winning if it ensures the
given objective irrespective of the strategy of the other player. In synthesis and
verification of reactive systems, the problems often reduce to computation of
memoryless almost-sure winning strategies for stochastic graph games, where
the state space and action space is represented by a set of variables. In practice,
such problems arise from various sources, e.g., AIGER specifications [29], LTL
synthesis [43], PRISM model checking [33].

We refer to our technical report [5] for detailed description of the technical
concepts regarding games and strategies.

3 Decision Trees and Decision Tree Learning

Here we recall decision trees (DT), representing strategies by DT, and learning
DT.
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x1 < 4

YES x1 = 7

YES NO

Fig. 2. A decision tree
for {0, 1, 2, 3, 7} ⊆ N

1.

Decision tree (DT) over N
d is a tuple T =

(T, ρ, θ) where T is a finite rooted binary (ordered)
tree, ρ assigns to every inner node an (in)equality pred-
icate comparing arithmetical expressions over variables
{x1, . . . , xd}, and θ assigns to every leaf a value YES
or NO . The language L(T ) ⊆ N

d of the tree is defined
as follows. For a vector x = (x1, . . . , xd) ∈ N

d, we find
a path p from the root to a leaf such that for each inner
node n on the path, ρ(n)(x) = true (i.e., the predicate
ρ(n) is satisfied with valuation x) iff the first child of
n is on p. Denote the leaf on this particular path by �. Then x is in the lan-
guage L(T ) of T iff θ(�) = YES . Intuitively, L(T ) captures the set of vectors
accepted by the tree T , i.e., vectors with accepting path in the tree (ending with
YES ). An example is illustrated in Fig. 2 with the first children connected with
unbroken arrows and the second children with dashed ones.

The (usually finite) set of predicates in the co-domain of ρ is denoted by
Pred . In the example above Pred are comparisons of variables to constants.

Representing strategies by DT has been introduced in [10]. The dimen-
sion of data points here is d = |Var |. The data points are natural tuples repre-
senting state-action pairs, thus we also write them as (s, a). The strategy induced
by a decision tree T allows to play a in s iff (s, a) ∈ L(T ).

A given input strategy π : Si → Ai for player i ∈ {1, 2} defines the sets (i)
Good = {〈s, π(s)〉 ∈ Si × Ai}, (ii) Bad = {〈s, a〉 ∈ Si × Ai | a 
= π(s)}, and (iii)
Train = Good 	Bad (	 denotes a disjoint union). Further, given a subset data ⊆
Train, we define maxclass(data) as (i) YES if |data ∩Good | ≥ |data ∩Bad |, and
(ii) NO otherwise. When strategies need to be represented exactly, as in the
case of games, the trees have to classify all decisions correctly [12]. This in turn
causes difficulties not faced in standard DT learning [39], as described below.

Example 2. Consider the reactive system and the corresponding game described
in Example 1. Consider a strategy π for the controller (player 1) in this system
that (i) waits in state (0, 0), (ii) issues a response for channel B when there are more
pending requests for channel B than pending requests for channel A, and (iii) issues
a response for channel A in all other cases. Then, the strategy π induces: Good =
{(0, 0, w), (0, 1, rB), (0, 2, rB), (0, 3, rB), (1, 0, rA), (1, 1, rA), (1, 2, rB), (1, 3, rB),
(2, 0, rA), (2, 1, rA), (2, 2, rA), (2, 3, rB)}, and Bad = {(pA, pB , act) ∈ {0, 1, 2} ×
{0, 1, 2, 3} × {w , rA, rB} | (pA, pB , act) 
∈ Good}. The task is to represent π
exactly, i.e., to accept all Good examples and reject all Bad examples.

Learning DT from the set Good of positive examples and the set Bad
of negative examples is described in Algorithm 1. A node with all the data
points is gradually split into offsprings until the point where each leaf contains
only elements of Good or only Bad . Note that in the classical DT learning
algorithms such as ID3 [45], one can also stop this process earlier to prevent
overfitting, which induces smaller trees with a classification error, unacceptable
in the strategy representation.
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Algorithm 1. Basic decision-tree learning algorithm
Input: Train ⊆ N

|Var| partitioned into subsets Good and Bad .
Output: A decision tree T such that L(T ) ∩ Train = Good .
/* train T on positive set Good and negative set Bad */

1: T ← (T = {root}, ρ = ∅, θ = ∅)
2: q ← {(root ,Train)}
3: while q nonempty do
4: (�, data�) ← popq

5: if data� ⊆ Good or data� ⊆ Bad then
6: θ(�) ← maxclass(data�)
7: else
8: ρ(�) ← predicate selected by a split procedure Split(data�)
9: create children �sat and �unsat of �

10: pushq((�sat , data�[ρ(�)])), pushq((�unsat , data�[¬ρ(�)]))

11: return T

Algorithm 2. Split procedure – information gain
Input: data ⊆ N

|Var| partitioned into subsets dataG and dataB .
Output: A predicate pr maximizing information gain on data.

1: ig ← ∅
2: for pr ∈ Pred do
3: ig(pr) ← information gain(data, pr)

4: if maxpr{ig(pr)} = 0 then � condition checks if information gain failed
5: for pr ∈ Pred do

6: ig(pr) ← max
{|dataB [¬pr ]|

|data[¬pr ]| +
|dataG[pr ]|
|data[pr ]| ,

|dataG[¬pr ]|
|data[¬pr ]| +

|dataB [pr ]|
data[pr ]|

}

7: return argmaxpr{ig(pr)}

The choice of the predicate to split a node with is described in Algorithm
2. From the finite set Pred1 we pick the one which maximizes information gain
(i.e., decrease of entropy [39]). Again, due to the need of fully expanded trees
with no error, we need to guarantee that we can split all nodes with mixed data
even if none of the predicates provides any information gain in one step. This
issue is addressed in [12] as follows. Whenever no positive information gain can
be achieved by any predicate, a predicate is chosen according to a very simple
different formula using a heuristic that always returns a positive number. One
possible option suggested in [12] is captured on Line 6.

4 Decision Trees with Linear Classifiers

In this section, we develop an algorithm for constructing decision trees with
linear classifiers in the leaf nodes. As we are interested in representation of
1 The set of considered predicates Pred is typically domain-specific, and finitely

restricted in a natural way. In this work, we consider (in)equality predicates that
compare values of variables to constants. A natural finite restriction is to consider
only constants that appear in the dataset.
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winning and almost-sure winning strategies, we have to address the challenge of
allowing no error in the strategy representation. Thus we consider an algorithm
that provably represents a given strategy in its entirety. Furthermore, we present
a split procedure for decision-tree algorithms, which aims to propose predicates
leading into small trees with linear classifiers.

4.1 Linear Classifiers in the Leaf Nodes

Fig. 3. Good (triangles)
and Bad (circles). No
horizontal or vertical
classifier can separate
Train, but Train is
linearly separable (by a
slanted classifier).

During the construction of a decision tree for a given
dataset, each node corresponds to a certain subset
of the dataset. This subset exactly captures the data
points from the dataset that would reach the node
starting from the root and progressing based on the
predicates visited along the travelled path (as explained
in Sect. 3). Notably, there might be other data points
also reaching this node from the root, however, they are
not part of the dataset, and thus their outcome on the
tree is irrelevant for the correct dataset representation.
This insight allows us to propose a decision-tree algo-
rithm with more expressive terminal (i.e., leaf) nodes,
and in this work we consider linear classifiers as the
leaf nodes.

Given two vectors a, b ∈ R
d, their dot product (or

scalar product) is defined as a · b =
∑d

i=1 aibi. Given
a weight vector w ∈ R

d and a bias term b ∈ R, a linear classifier cw ,b : Rd →
YES ,NO is defined as

cw ,b(x) =

{
YES w · x ≥ b

NO otherwise.

Informally, a linear classifier checks whether a linear combination of vector values
is greater than or equal to a constant. Intuitively, we consider strategies as good
and bad vectors of natural numbers, and we use linear classifiers to decide for a
given vector whether it is good or bad. On a more general level, a linear classifier
partitions the space R

d into two half-spaces, and a given vector gets classified
based on the half-space it belongs to.

Consider a finite dataset Train ⊆ N
d partitioned into subsets Good and Bad .

A linear classifier cw ,b separates Train, if for every x ∈ Train we have that
cw ,b(x) = YES iff x ∈ Good . The corresponding decision problem asks, given a
dataset Train ⊆ N

d, for existence of a weight vector w ∈ R
d and bias b ∈ R such

that the linear classifier cw ,b separates Train. In such a case we say that Train
is linearly separable. Figure 3 provides an illustration. There are efficient oracles
for the decision problem of linear separability, e.g., linear-programming solvers.

Example 3. We illustrate the idea of representing strategies by decision trees
with linear classifiers. Consider the game described in Example 1 and the con-
troller strategy π for this game described in Example 2. An example of a decision
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action = wait

YES iff pendingA + pendingB < 1 action = responseA

pendingA > 0 YES iff pendingA - pendingB < 0

YES iff pendingA - pendingB ≥ 0 NO

Fig. 4. A decision tree for the system’s controller.

tree that represents the strategy π is displayed in Fig. 4. The input samples with
action w (wait) end in and get classified by the leftmost linear classifier, and
the samples with action rB (responseB) get classified by the rightmost linear
classifier. Finally, the samples with action rA (responseA) are rejected if there
are no pending requests to channel A, and otherwise they get classified by the
bottommost linear classifier. Note that the decision tree accepts each sample
from Good and rejects each sample from Bad , and thus indeed represents the
strategy π.

Algorithm 3. Learning algorithm for decision trees with linear classifiers
Input: Train ⊆ N

|Var| partitioned into subsets Good and Bad .
Output: A decision tree T such that L(T ) ∩ Train = Good .
/* train T on positive set Good and negative set Bad */

1: T ← (T = {root}, ρ = ∅, θ = ∅)
2: q ← {(root ,Train)}
3: while q nonempty do
4: (�, data�) ← popq

5: if data� ⊆ Good or data� ⊆ Bad then
6: θ(�) ← maxclass(data�)
7: else if data� is linearly separable by a classifier cw ,b then
8: θ(�) ← cw ,b

9: else
10: ρ(�) ← predicate selected by a split procedure Split(data�)
11: create children �sat and �unsat of �
12: pushq((�sat , data�[ρ(�)])), pushq((�unsat , data�[¬ρ(�)]))

13: return T

We are now ready to describe our algorithm for representing strategies as
decision trees with linear classifiers. Algorithm 3 presents the pseudocode. At
the beginning, in Line 2 the queue is initiated with the root node and the whole
training set Train. Intuitively, the queue maintains the tree nodes that are to be
processed, and in every iteration of the loop (Line 3) one node � gets processed.
First, in Line 4 the node � gets popped together with data�, which is the subset
of Train that would reach � from the root node. If data� contains only samples
from Good (resp., only samples from Bad), then � becomes a leaf node with
YES (resp., NO) as the answer (Line 6). If data� contains samples from both,
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but is linearly separable by some classifier, then � becomes a leaf node with
this classifier (Line 8). Otherwise, � becomes an inner node. In Line 10 it gets
assigned a predicate by an external split procedure and in Line 11 two children
of � are created. Finally, in Line 12, data� is partitioned into the subset that
satisfies the chosen predicate of � and the subset that does not, and the two
children of � are pushed into the queue with the two subsets, to be processed in
later iterations. Once there are no more nodes to be processed, the final decision
tree is returned. For further intuition on Algorithm 3, we refer to our technical
report [5] that contains an example displaying a step-by-step construction of a
decision tree from a given dataset.

Correctness. We now prove the correctness of Algorithm 3. In other words, we
show that given a strategy in the form of a training set, Algorithm 3 can be used
to provably represent the training set (i.e., the strategy) without errors.

Theorem 1. Let G be a stochastic graph game, and let π : Si → Ai be a mem-
oryless strategy for player i ∈ {1, 2} that defines a training set Train partitioned
into Good and Bad. Consider an arbitrary split procedure that considers only
predicates from Pred which produce nonempty sat- and unsat-partitions. Given
Train as input, Algorithm 3 using the split procedure outputs a decision tree
T = (T, ρ, θ) such that L(T ) ∩ Train = Good, which means that for all s ∈ Si

we have that 〈s, a〉 ∈ L(T ) iff π(s) = a. Thus T represents the strategy π.

Proof. We consider stochastic graph games with variables Var over a finite
domain X ⊆ N, thus Train ⊆ X |Var |. Recall that given a decision tree
T = (T, ρ, θ) constructed by Algorithm 3, ρ assigns to every inner node a pred-
icate from Pred , and θ assigns to every leaf either YES , or NO , or a linear
classifier cw ,b that classifies elements from R

|Var | into YES resp. NO .

Partial Correctness. Consider Algorithm 3 with input Train, and let T = (T, ρ, θ)
be the output decision tree. Consider an arbitrary 〈s, a〉 ∈ Si × Ai, note that
it belongs to Train. Consider the leaf � corresponding to 〈s, a〉 in T . There is a
unique path for 〈s, a〉 down the tree T from its root, induced by the predicates
in the inner nodes given by ρ. Thus � is well-defined. At some point during the
algorithm, � was popped from the queue q in Line 4, together with a dataset
data�, and note that 〈s, a〉 ∈ data�. Since � is a leaf, there are three cases to
consider:

1. θ(�) = YES . Then data� ⊆ L(T ), which implies 〈s, a〉 ∈ L(T ). The assign-
ment happened in Line 6, so (i) the condition in Line 5 was satisfied, and (ii)
maxclass(data�) = YES . Thus data� ⊆ Good , which implies 〈s, a〉 ∈ Good .
By the definition of Good , we have π(s) = a.

2. θ(�) = NO . Then data� ∩ L(T ) = ∅, which implies 〈s, a〉 
∈ L(T ). The assign-
ment happened in Line 6, so (i) the condition in Line 5 was satisfied, and (ii)
maxclass(data�) = NO . Thus data� ⊆ Bad , which implies 〈s, a〉 ∈ Bad . By
the definition of Bad , we have π(s) 
= a.

3. θ(�) = cw ,b. This assignment happened in Line 8. Thus the condition in Line 7
was satisfied, and hence cw ,b linearly separates data�. As 〈s, a〉 ∈ data�, we
have that cw ,b(〈s, a〉) = YES iff 〈s, a〉 ∈ Good . This gives that 〈s, a〉 ∈ L(T )
iff π(s) = a.
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The desired result follows.

Total Correctness. Algorithm 3 uses a split procedure that considers only pred-
icates from Pred which produce nonempty sat- and unsat-partitions. Thus the
algorithm maintains the following invariant for every path p̄ in T starting from
the root: For each predicate pr ∈ Pred , there is at most one inner node n̄ in
the path p̄ such that ρ(n̄) = pr . This invariant is indeed maintained, since any
predicate considered the second time in a path inadvertedly produces an empty
data partition, and such predicates are not considered by the split procedure
that selects predicates for ρ (in Line 10 of Algorithm 3).

From the above we have that the length of any path in T starting from the
root is at most |Pred | ≤ 2·|Var |·|X|, i.e., twice the number of variables times the
size of the variable domain. We prove that the number of iterations of the loop
in Line 3 is finite. The branch from Line 9 happens finitely many times, since it
adds two vertices (in Line 11) to the decision tree T and we have the bound on
the path lengths in T . Since only the branch from Line 9 pushes elements into
the queue q, and each iteration of the loop pops an element from q in Line 4,
the number of loop iterations (Line 3) is indeed finite. This proves termination,
which together with partial correctness proves total correctness. ��

4.2 Splitting Criterion for Small Decision Trees with Classifiers

During construction of decision trees, the predicates for the inner nodes are cho-
sen based on a supplied metric, which heuristicly attempts to select predicates
leading into small trees. The entropy-based information gain is the most preva-
lent metric to construct decision trees, in machine learning [39,45] as well as
in formal methods [3,10,26,41]. Algorithm 2 presents a split procedure utilizing
information gain, supplemented with a stand-in metric proposed in [12].

In this section, we propose a new metric and we develop a split procedure
around it. When selecting predicates for the inner nodes, we exploit the knowl-
edge that in the descendants the data will be tested for linear separability. Thus
for a given predicate, the metric tries to estimate, roughly speaking, how well-
separable the corresponding data partitions are. While the metric is well-studied
in machine learning, to the best of our knowledge, the corresponding decision-
tree-split procedure is novel, both in machine learning and in formal methods.

c YES NOx

Good

Bad

TP FN

FP TN

Fig. 5. True/False Posi-
tive/Negative.

True/False Positive/Negative. Consider a fixed
linear classifier c, and a sample x ∈ Train such that
c(x) = YES . If x ∈ Good , then x is a true positive
(TP) w.r.t. the classifier c, otherwise x ∈ Bad and
thus x is a false positive (FP). Consider a different
sample x̄ ∈ Train such that c(x̄) = NO . If x̄ ∈ Bad ,
then x̄ is a true negative (TN ), otherwise x̄ ∈ Good
and x̄ is a false negative (FN ). Figure 5 summarizes
the terminology.
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True/False Positive Rate. Consider a fixed linear classifier c and a fixed
dataset Train = Good 	 Bad . We denote by |TP | the number of true positives
within Train w.r.t. the classifier c. Similarly we denote |FP | for false positives.
Then, the true positive rate (TPR) is defined as |TP |/|Good |, and the false
positive rate (FPR) is |FP |/|Bad |. Intuitively, TPR describes the fraction of
good samples that are correctly classified, whereas FPR describes the fraction
of bad samples that are misclassified as good.

Area Under the Curve. Consider a fixed dataset Train = Good 	 Bad and a
fixed weight vector w ∈ R

d. In what follows we describe a metric that evaluates w
w.r.t. Train. First, consider a set of boundaries, which are the dot products of w
with samples from Train. Formally, bnd = {w ·x | x ∈ Train}. Further, consider
bnone = max bnd + ε for some ε > 0. Then, consider the set of linear classifiers
that “hit” the boundaries, plus a classifier that rejects all samples. Formally,
cl = {cw ,b | b ∈ bnd∪{bnone}}. Now, the receiver operating characteristic (ROC)
is a curve that plots TPR against FPR for the classifiers in cl . Intuitively, the
ROC curve captures, for a fixed set of weights, how changing the bias term affects
TPR and FPR of the resulting classifier. Ideally, we want the TPR to increase
rapidly when bias is weakened, while the FPR increases as little as possible. We
consider the area under the ROC curve (denoted auc ∈ [0, 1]) as the metric to
evaluate the weight vector w w.r.t. the dataset Train. Intuitively, the faster the
TPR increases, and the slower the FPR increases, the bigger the area under the
ROC curve (auc) will be.

Figure 6 provides an intuitive illustration of the concept, where the weight
vector is fixed as w = (1, 0). The classifiers cl are then shown on the left subfig-
ure, and the corresponding ROC curve (with the shaded area under the curve
– auc) is shown on the right subfigure. Note that the points in the ROC curve
correspond to the classifiers from cl , and they capture their (FPR, TPR). The
extra point (0/2, 0/3) corresponds to the classifier that rejects all samples.

(a) Classifiers x1 ≥ b, iterating over
the bias b from 5 down to 1.
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(b) ROC curve and the shaded auc.

Fig. 6. Area under the curve for w = (1, 0) w.r.t. Good (triangles) and Bad (circles).
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Algorithm 4. Split procedure – area under the curve (auc)
Input: data ⊆ N

|Var| partitioned into subsets dataG and dataB .
Output: A predicate pr maximizing area under the sat and unsat ROC curves.

1: areas ← ∅
2: for pr ∈ Pred do
3: wsat ← LinearLeastSquares(data[pr ])
4: wunsat ← LinearLeastSquares(data[¬pr ])
5: areas(pr) ← auc(wsat , data[pr ]) + auc(wunsat , data[¬pr ])
6: return arg maxpr{areas(pr)}

Algorithm 4 presents a split procedure that uses auc as the metric to select
predicates. Each considered predicate partitions input data into the subset that
satisfies the predicate and the subset that does not. Then, in Lines 3 and 4, two
weight vectors are obtained by solving the linear least squares problem on the
data partitions. This is a classical problem in statistics with a known closed-form
solution, and [5] provides detailed description of the problem. Finally, the score
for the predicate equals the sum of auc for the two weight vectors with respect to
their corresponding data partitions (Line 5). At the end, in Line 6 the predicate
with maximum score is selected.

The choice of auc as the split metric is motivated by heuristicly estimat-
ing well-separability of data in the setting of strategy representation. A simpler
metric of accuracy (i.e., the fraction of correctly classified samples) may seem
as a natural choice for the estimate of well-separability. However, in strategy
representation, the data is typically very inbalanced, i.e., the sizes of Good are
typically much smaller than the sizes of Bad . As a result, for all considered
predicates the corresponding proposed classifiers focus heavily on the Bad sam-
ples and neglect the few Good samples. Thus all classifiers achieve remarkable
accuracy, which gives us little information on the choice of a predicate. This is
a well-known insight, as in machine learning, the accuracy metric is notoriously
problematic in the case of disproportionate classes. On the other hand, the auc
metric, utilizing the invariance of bias, is able to focus also on the sparse Good
subset, thus providing better estimates on well-separability.

5 Experiments

Throughout our experiments, we consider the following construction algorithms:

– Basic decision trees (Algorithm 1 with Algorithm 2), as considered in [12]. (	)
– Decision trees with linear classifiers (Algorithm 3) and entropy-based splitting

procedure (Algorithm 2). (†)
– Decision trees with linear classifiers (Algorithm 3) and auc-based splitting

procedure (Algorithm 4). (‡)
For the experimental evaluation of the construction algorithms, we consider

multiple sources of problems that arise naturally in reactive synthesis, and reduce
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to stochastic graph games with Integer variables. These variables provide seman-
tical information about the states (resp., actions) they identify, so a strategy-
representation method utilizing predicates over the variables produces naturally
interpretable output. Moreover, there is an inherent internal structure in the
states and their valuations, which machine-learning algorithms can exploit to
produce more succinct representation of strategies.

Given a game and an objective, we use an explicit solver to obtain an almost-
sure winning strategy. Then we consider the strategy as a list of played (Good)
and non-played (Bad) actions for each state, which can be used directly as an
input training set (Train). We evaluate the construction algorithms based on
succinctness of representation, which we express as the number of non-pure nodes
(i.e., nodes with either a predicate or a linear classifier). Further experimental
details are presented in [5].

5.1 Graph Games and Winning Strategies

We consider two sources of problems reducible to strategy representation in
graph games, namely, AIGER safety synthesis [29] and LTL synthesis [43].

AIGER – Scheduling of Washing Cycles. The goal of this problem is to
design a centralized controller for a system of washing tanks running in parallel.
The system is parametrized by the number of tanks, the time limit to fill a tank
with water after a request, the delay after which the tank has to be emptied
again, and a number of tanks per one shared water pipe. The controller has to
ensure that all requests are satisfied within the specified time limit.

The problem has been introduced in the second year of SYNTCOMP [30], the
most important and well-known synthesis competition. The problem is implicitly
described in the form of AIGER safety specification [29], which uses circuits with
input, output, and latch Boolean variables. This reduces directly to graph games
with {0, 1}-valued Integer variables and safety objectives. The state-variables
represent for each tank whether it is currently filled, and the current deadline
for filling (resp., emptying). The action-variables capture environment requests
to fill water tanks, and the controller commands to fill (resp., empty) water
tanks. We consider 364 datasets, where the sizes of Train range from 640 to
1024000, and the sizes of Var range from 16 to 62.

Fig. 7. Scheduling of washing cycles.
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We illustrate the results in Fig. 7. Both subfigures plot the ratios of sizes
for two considered algorithms. Each dot represents a dataset, the y-axis cap-
tures the ratios, and the two red lines represent equality and order-of-magnitude
improvement, respectively. The left figure considers the size ratios of the basic
decision-tree algorithm and the algorithm with linear classifiers and entropy-
based splits (	/†). The arithmetic, geometric, and harmonic means of the ratios
are 59%, 57%, and 55%, respectively. The right figure considers the basic algo-
rithm and the algorithm with linear classifiers and auc-based splits (	/‡). The
arithmetic, geometric, and harmonic means of the ratios are 33%, 31%, and 30%,
respectively.

LTL Synthesis. In reactive synthesis, most properties considered in practice are
ω-regular objectives, which can be specified as linear-time temporal logic (LTL)
formulae over input/output signals [43]. Given an LTL formula and input/output
signal partitioning, the controller synthesis for this specification is reducible to
solving a graph game with parity objective.

In our experiments, we consider LTL formulae randomly generated using the
tool SPOT [24]. Then, we use the tool Rabinizer [31] to translate the formu-
lae into deterministic parity automata. Crucially, the states of these automata
contain semantic information retained by Rabinizer during the translation. We
consider an encoding of the semantic information (given as sets of LTL formu-
lae and permutations) into binary vectors. The encoding aims to capture the
inherent structure within automaton states, which can later be exploited during
strategy representation. Finally, for each parity automaton we consider various
input/output partitionings of signals, and thus we obtain parity graph games
with {0, 1}-valued Integer variables. The whole pipeline is described in detail
in [12].

We consider graph games with liveness (parity-2) and strong fairness (parity-3)
objectives. In total we consider 917 datasets, with sizes of Train ranging from 48
to 8608, and sizes of Var ranging from 38 to 128.

Fig. 8. LTL synthesis.

Figure. 8 illustrates the results, where both subfigures plot the ratios of sizes
(captured on the y-axis) for two considered algorithms. The left figure considers
the basic decision-tree algorithm and the algorithm with linear classifiers and
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entropy-based splits (	/†). The arithmetic, geometric, and harmonic means of
the ratios are 51%, 47%, and 43%, respectively. The right figure considers the
basic decision-tree algorithm and the algorithm with linear classifiers and auc-
based splits (	/‡). The arithmetic, geometric, and harmonic means of the ratios
are 36%, 34%, and 31%, respectively.

5.2 MDPs and Almost-Sure Winning Strategies

LTL Synthesis with Randomized Environment. In LTL synthesis, given
a formula and an input/otput signal partitioning, there may be no controller
that satisfies the LTL specification. In such a case, it is natural to consider a
different setting where the environment is not antagonistic, but behaves ran-
domly instead. There are LTL specifications that are unsatisfiable, but become
satisfiable when randomized environment is considered. Such special case of LTL
synthesis reduces to solving MDPs with almost-sure parity objectives [17]. Note
that in this setting, the precise probabilities of environment actions are immate-
rial, as they have no effect on the existence of a controller ensuring an objective
almost-surely (i.e., with probability 1).

We consider 414 instances of LTL synthesis reducible to graph games with
co-Büchi (i.e., parity-2) objective, where the LTL specification is unsatisfiable,
but becomes satisfiable with randomized environment (which reduces to MDPs
with almost-sure co-Büchi objective). The examples have been obtained by the
same pipeline as the one described in the previous subsection. In the examples,
the sizes of Train range from 80 to 26592, and the sizes of Var range from 38
to 74.

Fig. 9. LTL synthesis with randomized environment.

The experimental results are summarized in Fig. 9. The two subfigures plot
the ratios of sizes (captured on the y-axis) for two considered algorithms. The
left figure considers the basic decision-tree algorithm and the algorithm with
linear classifiers and entropy-based splits (	/†). The arithmetic, geometric, and
harmonic means of the ratios are 58%, 56%, and 54%, respectively. The right
figure considers the basic decision-tree algorithm and the algorithm with linear
classifiers and auc-based splits (	/‡). The arithmetic, geometric, and harmonic
means of the ratios are 38%, 36%, and 34%, respectively.
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Table 1. PRISM model checking.

Model Specification |Train| |Var| NoLC LC-ent LC-auc

coin2 K1 F[finished&agree] 1820 7 142 135 45

coin2 K2 F[finished&agree] 3484 7 270 261 55

coin2 K3 F[finished&agree] 5148 7 386 373 60

coin2 K4 F[finished&agree] 6812 7 536 520 55

coin2 K9 F[finished&agree] 15132 7 1137 1123 68

coin3 K1 F[finished&agree] 27854 9 772 713 298

coin3 K2 F[finished&agree] 51566 9 1142 1074 316

coin3 K3 F[finished&agree] 75278 9 1580 1500 378

coin3 K4 F[finished&agree] 98990 9 2047 1967 388

coin4 K0 F[finished&agree] 52458 11 742 632 221

coin5 K0 F[finished&agree] 451204 13 2572 1626 566

csma2 2 F[succ min bo≤2] 8590 13 70 52 32

csma2 2 F[max col≥3] 10380 13 65 54 54

csma2 3 F[succ min bo≤3] 25320 13 66 48 35

csma2 3 F[max col≥4] 28730 13 63 48 59

csma2 4 F[succ min bo≤4] 73110 13 60 42 40

csma2 4 F[max col≥5] 79580 13 54 41 59

firewire abst F[exists leader] 2535 4 12 10 8

firewire impl 01 F[exists leader] 22633 12 99 86 71

firewire impl 02 F[exists leader] 37180 12 101 85 81

firewire impl 05 F[exists leader] 90389 12 102 85 72

leader2 F[elected] 204 12 25 18 11

leader3 F[elected] 3249 17 61 34 23

leader4 F[elected] 38016 22 152 92 45

mer10 G[!err G] 499632 19 552 510 124

mer20 G[!err G] 954282 19 963 922 124

mer30 G[!err G] 1408932 19 1373 1332 126

wlan0 F[both sent] 27380 14 244 198 232

wlan1 F[both sent] 81940 14 272 200 286

wlan2 F[both sent] 275140 14 288 206 353

zeroconf F[configured] 268326 24 413 330 376

PRISM Model Checking. We consider model checking of probabilistic sys-
tems in the model checker PRISM [33]. Given an implicit description of a prob-
abilistic system in PRISM, and a reachability/safety LTL formula as a specifi-
cation, the model checking problem of the model and the specification reduces
to construction of an almost-sure winning strategy in an MDP with nonnegative
Integer variables. The state-variables correspond to the variables in the implicit
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PRISM model description, i.e., local states of the moduli, counter values, etc.
The action-variables capture the id of the module performing an action, and the
id of the action performed by the module.

Table 1 presents the PRISM experimental results, where we consider various
case studies available from the PRISM benchmark suite [34] (e.g., communica-
tion protocols). The columns of the table represent the considered model and
specification, the sizes of Train and Var , and the decision-tree sizes for the three
considered construction algorithms (	, †, ‡).

In this set of experiments, we have noticed several cases where the split
heuristic based on auc achieves significantly worse results. Namely, in csma, wlan,
and zeroconf, it is mostly outperformed by the information-gain split procedure,
and sometimes it is outperformed even by standard decision trees without lin-
ear classifiers. This was caused by certain variables repeatedly having high auc
scores (for different thresholds) when constructing some branches of the tree,
even though subsequent choices of the predicates did little progress to linearly
separate the data. We were able to mitigate the cases of bad predicate sugges-
tions, e.g., by penalizing the predicates on the variables that already appear in
the path to the current node (that is about to be split), however, the inferior
overall performance in these benchmarks persists. This discovery motivates to
consider various combinations of auc and information-gain methods, e.g., using
information gain as a stand-in metric, in cases where auc yields poor scores for
all considered predicates.

6 Related Work

Strategy Representation. Previous non-explicit representation of strategies
for verification or synthesis purposes typically used BDDs [50] or automata [40,
42] and do not explain the decisions by the current valuation of variables. Clas-
sical decision trees have been used a lot in the area of machine learning as a
classifier that naturally explains a decision [39]. They have also been considered
for representation of values and thus implicitly strategies for MDP in [8,9]. In
the context of verification, this approach has been modified to capture strate-
gies guaranteed to be ε-optimal, for MDPs [10], partially observable MDPs [11],
and (non-stochastic) games [12]. Learning a compact decision tree representa-
tion of an MDP strategy was also investigated in [36] for the case of body sensor
networks.

Linear extensions of decision trees have been considered already in [23]
for combinatoric optimization problems. In the field of machine learning, combi-
nations of decision trees and linear models have been proposed as interpretable
models for classification and regression [13,25,35,46]. A common feature of these
works is that they do not aim at classifying the training set without any errors,
as in classification tasks this would bear the risk of overfitting. In contrast, our
usage requires to learn the trees so that they fully fit the data.

The closest to our approach is the work of Neider et al. [41], which learns
decision trees with linear classifiers in the leaves in order to capture functions
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with generally non-Boolean co-domains. Since the aim is not to classify, but rep-
resent fully a function, our approach is better tailored to representing strategies.
Indeed, since the trees and the lines in the leaves of [41] are generated from
counterexamples in the learning process, the following issues arise. Firstly, each
counterexample has to be captured exactly using a generated line. With the geo-
metric intuition, each point has to lie on a line, while in our approach we only
need to separate positive and negative points by lines, clearly requiring less lines.
Secondly, the generation of lines is done online and based on the single discussed
point (counterexample). As a result, lines that would work for more points are
not preferred, while our approach maximizes the utility of a generated line with
respect to the complete data set and thus generally prefers smaller solutions.
Unfortunately, even after discussing with the authors of [41] there is no compil-
able version of their implementation at the time of writing and no experimental
confirmation of the above observations could be obtained.

7 Conclusion and Future Work

In this work, we consider strategy representation by an extension of decision
trees. Namely, we consider linear classifiers as the leaf nodes of decision trees.
We note that the decision-tree framework proposed in this work is more general.
Consider an arbitrary data structure D , with an efficient decision oracle for
existence of an instance of D representing a given dataset without error. Then,
our scheme provides a straightforward way of constructing decision trees with
instances of D as the leaf nodes.

Besides representation algorithms that provably represent entire input strat-
egy, one can consider models where an error may occur and the data structure
is refined into a more precise one only when the represented strategy is not win-
ning. Here we can consider more expressive models in the leaves, too. This could
capture representation of controllers exhibiting more complicated functions, e.g.
quadratic polynomial capturing that a robot navigates closely (in Euclidean dis-
tance) to a given point, or deep neural networks capturing more complicated
structure difficult to access directly [32].
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Abstract. Minimizing the precision in which the neurons of a neural
network compute is a desirable objective to limit the resources needed
to execute it. This is specially important for neural networks used in
embedded systems. Unfortunately, neural networks are very sensitive to
the precision in which they have been trained and changing this preci-
sion generally degrades the quality of their answers. In this article, we
introduce a new technique to tune the precision of neural networks in
such a way that the optimized network computes in a lower precision
without modifying the quality of the outputs of more than a percentage
chosen by the user. From a technical point of view, we generate a system
of linear constraints among integer variables that we can solve by linear
programming. The solution to this system is the new precision of the
neurons. We present experimental results obtained by using our method.

Keywords: Formal methods · Floating-point arithmetic ·
Static analysis · Dynamic analysis · Linear programming ·
Numerical accuracy

1 Introduction

Neural networks are more and more used in many domains, including criti-
cal embedded systems in aeronautics, space, defense, automotive, etc. These
neural networks also become larger and larger while embedded systems still
have limited resources, mainly in terms of computing power and memory. As
a consequence, running large neural networks on embedded systems with lim-
ited resources introduces several new challenges. While recent work has focused
on safety [7,9,12,21,22] and security properties [14,24], a different problem is
addressed in this article which concerns the accuracy of the computations. It is
well-known that neural networks are sensitive to the precision of the computa-
tions, or, in other terms to the computer arithmetic used during their training
and execution. Indeed, a neural network working correctly in some computer
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arithmetic (e.g. IEEE754 single precision [1]) may behave poorly if we run it in
lower or even in higher precision (e.g. in IEEE754 half or double precision).

We consider the problem of tuning the precision of an already trained neural
network, assumed to behave correctly at some precision, in such a way that,
after tuning, the network behaves almost like the original one while performing
its computations in lower precision. In this article, we focus on interpolator
networks, i.e. in networks computing mathematical functions. In this case, we
will say that the original and optimized networks behave almost identically if
they compute functions f and f̂ respectively, such that, for any input x, the
relative error between the numerical results computed by both networks is less
than some user defined constant δ:

∣
∣
∣
∣
∣

f(x) − f̂(x)
f(x)

∣
∣
∣
∣
∣
≤ δ. (1)

This definition should be adapted for classifier networks without impacting the
rest of the techniques presented here. More precisely, in this case, we should
compare the original and optimized networks with respect to a performance
metric (recall, precision, F1-score, etc.)

Recently, a lot of work has been done concerning precision tuning of general
programs (without direct connection to neural networks), based on static anal-
ysis [2,5] or dynamic analysis [13,18,20]. In this article, we adapt the approach
introduced in [15] to neural networks. We consider fully connected networks with
ReLU or tanh functions (see Sect. 2.1). We always assume that these networks
are already trained and work correctly in the sense that they have satisfying
performances in terms of interpolation or classification. We assume that each
neuron has its own precision for the computations. However, we assume that
all the computations performed inside the same neuron (summation and acti-
vation function) use the same precision. Finally, we assume that the ranges of
the inputs and outputs of each neuron are given. Several techniques have been
developed recently to solve precisely this problem [7,9], which is orthogonal to
our. Currently, in our implementation, we compute these ranges by dynamic
analysis even if we aim at implementing static analysis techniques in (near)
future work. We generate a set of constraints describing the propagation of the
errors throughout the neural network. The strength of our approach is that we
only generate linear constraints among integers (and only integers). These con-
straints are easy to solve by standard tools. Optimizing the precision of the
network under the correctness constraint of Eq. (1) then becomes a linear pro-
gramming problem. We demonstrate the efficiency of our technique by showing
how the size of interpolator neural networks can be reduced in function of the
parameter δ of Eq. (1).

The rest of this article is organized as follows. Preliminary notions and nota-
tions are introduced in Sect. 2. They concern neural networks and computer
arithmetic. The propagation of the roundoff errors throughout a neural network
is modeled in Sect. 3. The generation of constraints is introduced in Sect. 4 and
experimental results are given in Sect. 5. Section 6 concludes.
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W1 =

(
0.9 0.0 2.3
1.1 −0.7 0.0
0.1 −2.1 0.4

)
b1 =

(
0.1
0.2
0.3

)

W2 =

(
0.0 −0.3 1.1
1.0 0.2 0.0
−0.4 0.4 1.1

)
b2 =

(
−0.1
0.0
−0.1

)

Fig. 1. Example of a fully-connected two-layer network with three neurons by layer.

2 Preliminary Definitions

In this section, we introduce preliminary notions and notations concerning neural
networks and computer arithmetics. Section 2.1 is dedicated to neural networks
while Sect. 2.2 focuses on the floating-point arithmetic. Finally, Sect. 2.3 intro-
duces precision tuning.

2.1 Neural Networks

In this article, a neural network is defined by means of affine transformations
defined by the grammar of Eq. (2) in function of an input vector x ∈ R

m.

f(x) :: = ReLU(W · x + b) | tanh(W · x + b) | f1(f2(x)) (2)

The hyperbolic tangent is denoted tanh and a rectified linear unit (ReLU) acti-
vation function is defined by

ReLU(x) =
(

max(0, x1), . . . ,max(0, xm)
)T

. (3)

Following Eq. (2), an affine function is either an affine map f : Rm → R
n com-

posed with a ReLU or tanh function or the composition of the former elements.
In general, an affine function with ReLU or tanh f : Rm → R

n defines a fully
connected layer of a neural network. The whole network is a sequence of � layers,
which corresponds to the composition of � affine functions f1 ◦ f2 . . . ◦ f�.

An example of neural network is given in Fig. 1. This fully connected neural
network is made of two layers, each layer containing three neurons. The matrices
W1 and W2 correspond to the first and second layers respectively and b1 and b2
are the second members of each layer. For example, the first neuron of the first
layer computes 0.9x1 + 2.3x3 + 0.1 in function of the entry x ∈ R

3.
Note that other operations, different from affine transformations and usually

performed by some layers of other kinds of neural networks, such as convolutional
layers or max pooling layers, can be reduced to affine transformations [9]. We
may then omit them in our work without loss of generality.
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Format Name p e bits emin emax

Binary16 Half precision 11 5 −14 +15
Binary32 Single precision 24 8 −126 +127
Binary64 Double precision 53 11 −1122 +1223
Binary128 Quadruple precision 113 15 −16382 +16383

Fig. 2. Basic binary IEEE754 formats.

2.2 Computer Arithmetics

We introduce here some elements of floating-point arithmetic [1,17]. First of all,
a floating-point number x in base β is defined by

x = s · (d0.d1 . . . dp−1) · βe = s · m · βe−p+1 (4)

where s ∈ {−1, 1} is the sign, m = d0d1 . . . dp−1 is the significand, 0 ≤ di < β,
0 ≤ i ≤ p − 1, p is the precision and e is the exponent, emin ≤ e ≤ emax.

A floating-point number x is normalized whenever d0 �= 0. The IEEE754
Standard defines binary formats (with β = 2) and decimal formats (with β = 10).
In this article, without loss of generality, we only consider normalized numbers
and we always assume that β = 2 (which is the most common case in practice).
The IEEE754 Standard also specifies a few values for p, emin and emax which
are summarized in Fig. 2. Finally, special values also are defined: nan (Not a
Number) resulting from an invalid operation, ±∞ corresponding to overflows,
and +0 and −0 (signed zeros).

The IEEE754 Standard also defines five rounding modes for elementary oper-
ations over floating-point numbers. These modes are towards −∞, towards +∞,
towards zero, to the nearest ties to even and to the nearest ties to away and
we write them ◦−∞, ◦+∞, ◦0, ◦∼e

and ◦∼a
, respectively. The semantics of the

elementary operations � ∈ {+, −, ×, ÷} is then defined by

f1 �◦ f2 = ◦ (f1 � f2) (5)

where ◦ ∈ {◦−∞, ◦+∞, ◦0, ◦∼e
, ◦∼a

} denotes the rounding mode. Equation (5)
states that the result of a floating-point operation �◦ done with the rounding
mode ◦ returns what we would obtain by performing the exact operation � and
next rounding the result using ◦. The IEEE754 Standard also specifies how the
square root function must be rounded in a similar way to Eq. (5) but does not
specify the roundoff of other functions like sin, log, etc.

We introduce hereafter two functions which compute the unit in the f irst
place and the unit in the last place of a floating-point number. These functions
are used further in this article to generate constraints encoding the way roundoff
errors are propagated throughout computations. The ufp of a number x is

ufp(x) = min
{

i ∈ N : 2i+1 > x
}

= 	log2(x)
. (6)

The ulp of a floating-point number which significant has size p is defined by

ulp(x) = ufp(x) − p + 1. (7)
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The ufp of a floating-point number corresponds to the binary exponent of its most
significant digit. Conversely, the ulp of a floating-point number corresponds to
the binary exponent of its least significant digit.

2.3 Precision Tuning

The method developed in this article aims at tuning the precision of neural net-
works. While this subject is new for neural networks, some work has been carried
out recently in this domain for usual computer programs and, in this section, we
introduce some background material about this domain. Precision tuning con-
sists of finding the least floating-point formats enabling a program to compute
some results with an accuracy requirement. Precision tuning allows compilers to
select the most appropriate formats (for example IEEE754 [1] half, single, double
or quadruple formats [1,17]) for each variable. It is then possible to save mem-
ory, reduce CPU usage and use less bandwidth for communications whenever
distributed applications are concerned. So, the choice of the best floating-point
formats is an important compile-time optimization in many contexts. Precision
tuning is also of great interest for the fixed-point arithmetic [11] for which it is
important to determine data formats, for example in FPGAs [8,16]. In mixed
precision, i.e. when every variable or intermediary result may have its own for-
mat, possibly different from the format of the other variables, this problem leads
to a combinatorial explosion.

Several approaches have been proposed to determine the best floating-point
formats as a function of the expected accuracy on the results. Darulova and
Kuncak use a forward static analysis to compute the propagation of errors [6].
If the computed bound on the accuracy satisfies the post-conditions then the
analysis is run again with a smaller format until the best format is found. Note
that in this approach, all the values have the same format (contrarily to our
framework where each control-point has its own format). While Darulova and
Kuncak develop their own static analysis, other static techniques [10,23] could
be used to infer from the forward error propagation the suitable formats. This
approach has also been improved in [5]. Chiang et al. [2] have proposed a method
to allocate a precision to the terms of an arithmetic expression (only). They use
a formal analysis via Symbolic Taylor Expansions and error analysis based on
interval functions. In spite of our linear constraints, they solve a quadratically
constrained quadratic program to obtain annotations.

Other approaches rely on dynamic analysis. For instance, the Precimonious
tool tries to decrease the precision of variables and checks whether the accuracy
requirements are still fulfilled [18,20]. Lam et al. instrument binary codes in
order to modify their precision without modifying the source codes [13]. They
also propose a dynamic search method to identify the pieces of code where the
precision should be modified.

Another related research direction concerns the compile-time optimization
of programs in order to improve the accuracy of the floating-point computation
in function of given ranges for the inputs, without modifying the formats of the
numbers [4,19].
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3 Roundoff Error Modelling

In this section, we introduce some theoretical results concerning the numeri-
cal errors done inside a neural network. The error on the output of an affine
transformation function can be decomposed in two parts, the propagation of
the errors on the input vector and the roundoff errors arising in the computa-
tion of the affine function itself. We show in Proposition 2 that the numerical
error on the output of an affine transformation function can be expressed by
max(p + μ, q + ν) + 1 where p is related to the precision of the input vector, q is
the precision in which the affine transformation is computed and where μ and ν
are constants depending only on the neural networks, i.e. on W and b.

Following Eq. (2), a fully connected layer of a neural network computes an
output vector u ∈ R

n in function of an input vector x ∈ R
m such that

u = f(x) = W · x + b, (8)

for some n × m matrix W and for some vector b ∈ R
n (the case of ReLU and

tanh functions will be discussed at the end of Sect. 4.) Proposition 1 states how
to bound the numerical errors arising in Eq. (8).

Proposition 1. Let us consider a fully connected layer of a neural network as
defined in Eq. (8). Let pi, 1 ≤ i ≤ n, denote the precision of the ith neuron of the
layer. Let x̂ be an approximated input and e some absolute error bound on the
input, i.e. the exact input x satisfies |x − x̂| ≤ e. Then the networks computes
the output f(x̂) and, for all i, 1 ≤ i ≤ n, the absolute error erri on the ith

component of the output err = |f(x) − f(x̂)| on this output is bound by

erri ≤
m∑

j=1

Wij · ej + 2−pi ·
⎛

⎝bi + (m + 1) ·
m∑

j=1

|Wij · x̂j |
⎞

⎠ . (9)

Proof. Using the notations of Eq. (8), we have

ui =
m∑

j=1

Wij · xj + bi, 1 ≤ i ≤ n. (10)

Then the error err on the output is

err = W · e + c (11)

where W · e is the propagation of the initial error on the input and c the error
introduced by the computation of u = f(x̂) in machine. We need to bound c.
Explicitly,

ui = f̂i(x̂) = Wi1 · x̂1 + Wi2 · x̂2 + . . . + Wim · x̂m + bi. (12)

First, the errors due to products in Eq. (12) are bound by

err×(ui) ≤ |Wi1 · x̂1| · 2−pi + |Wi2 · x̂2| · 2−pi + . . . + |Wim · x̂m| · 2−pi (13)
=

(|Wi1 · x̂1| + |Wi2 · x̂2| + . . . + |Wim · x̂m|) · 2−pi . (14)
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Then the errors due to additions are bound by

err+(ui) ≤ 2−pi · (m − 1) ·
m∑

j=1

|Wij · x̂j | + 2−pi · (bi +
m∑

j=1

|Wij · x̂j |) (15)

and, consequently,

err(ui) = err×(ui) + err+(ui) (16)

≤ 2−pi · m ·
m∑

j=1

|Wij · x̂j | + 2−pi ·
⎛

⎝x̂i +
m∑

j=1

|Wij · x̂j |
⎞

⎠ . (17)

Finally, by combining Eqs. (11) and (16), we bound err the global error vector
on the output u by

erri ≤
m∑

j=1

Wij · ej + 2−pi ·
⎛

⎝bi + (m + 1) ·
m∑

j=1

|Wij · x̂j |
⎞

⎠ . (18)

�

The next step consists of linearizing the equations in order to make them
easier to solve by a solver.

Proposition 2. Let us consider a fully connected layer of a neural network as
defined in Eq. (8). Let pi, 1 ≤ i ≤ n, denote the precision of the ith neuron of the
layer. Let x̂ be an approximated input of precision q, i.e. the absolute error e on
the input, is bound by |xi − x̂i| ≤ ei < 2−qi , ∀i, 1 ≤ i ≤ n. Then the accuracy of
the ith output ui = fi(x̂) is max(μi +pi, νi + qi)+1 with μi and νi two constants
defined by

μi = ufp

⎛
⎝bi + (m + 1) ·

m∑
j=1

|Wij · x̂j |
⎞
⎠ νi = ufp

⎛
⎝

∣∣∣∣∣∣
m∑

j=1

Wij

∣∣∣∣∣∣

⎞
⎠ ∀i, 1 ≤ i ≤ n.

Proof. Let us write

αi = bi + (m + 1) ·
m∑

j=1

|Wij · x̂j | (19)

Indeed, the vector α is constant. Let e be the data error vector introduced in
Eq. (11) and let q be the accuracy of the input, we have

qi = min
{

r ∈ N ei ≤ 2r
}

(20)

Let

βi =

∣
∣
∣
∣
∣
∣

m∑

j=1

Wij

∣
∣
∣
∣
∣
∣

(21)
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p
q max( +p, +q) + 1

q

q

Fig. 3. Accuracy propagation throughout a neuron as defined in Proposition 2.

Again, the βi, 1 ≤ i ≤ n are constants. Then
∣
∣
∣
∣
∣
∣

m∑

j=1

Wij · ej

∣
∣
∣
∣
∣
∣

≤ βi · 2qi (22)

Consequently,
err ≤ α · 2p + β · 2q (23)

Let μ = ufp(α) and ν = ufp(β). Equation (23) becomes

∀i, 1 ≤ i ≤ n, erri ≤ 2μi · 2pi + 2νi · 2qi = 2μi+pi + 2νi+qi (24)
≤ 2max(μi+pi,νi+qi)+1 (25)

�

The way Proposition 2 defines the propagation of a neuron is summarized in
Fig. 3.

4 Constraint Generation

In this section, we describe our algorithm to tune the precision of a neural
network. We assume that the input network correctly computes a function f(x).
When we decrease this precision, the network computes a new function f̂(x).
Then we aim at finding the smallest precision such that the relative error

∣
∣
∣
∣
∣

f(x) − f̂(x)
f(x)

∣
∣
∣
∣
∣
< δ , (26)

for a given tolerance δ specified by the user.
We generate the constraints of Fig. 4, explained hereafter. Let us consider

a neural network made of � layers of n fully connected neurons. The variables
of the constraint system are Prec(W [k, i]), for 0 ≤ i < n, 0 ≤ k < � and
Prec(X[k, i]), for 0 ≤ i < n, 0 ≤ k < � + 1. They correspond respectively to
the accuracy used to compute inside the neurons and the accuracy of the output
of each neuron. Next the constraints depend on values computed a priori in
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∀0 ≤ i < n, ∀0 ≤ k < �, 0 < Prec(X[k, i]) ≤ ComputedPrec(X[k, i]) (PB)

∀0 ≤ i < n, ∀0 ≤ k < �, 0 < Prec(W [k, i]) ≤ InitialPrec(W [k, i]) (IP)

∀0 ≤ i < n, Prec(Output[i]) ≤ Prec(X[�, i]) (PC)

∀0 ≤ i < n, ∀0 ≤ k < �, Prec(X[k + 1, i]) − Prec(W [k, i]) ≤ μ − 1 (EW)

∀0 ≤ i < n, ∀0 ≤ k < �, Prec(X[k + 1, i]) − Prec(X[k, i]) ≤ ν − 1 (EX)

Fig. 4. Constraints generated for precision optimization of neural networks.

function of the network and its input datasets. First, ∀0 ≤ i < n, ∀0 ≤ k < �,
InitialPrec(W [k, i]) is the initial precision of the ith neuron of the kth layer,
i.e. the precision used for this neuron in the original network before optimization.
Second, ∀0 ≤ i < n, Output[i] is the precision wanted by the user for the ith

neuron of the output of the last layer. This precision can be computed from the
parameter δ. Finally, ∀0 ≤ i < n, ∀0 ≤ k < � + 1, ComputedPrec(X[k, i]) is
the precision of the output of the ith neuron of the layer k − 1. This precision
is computed by static or dynamic analysis by applying Proposition 2 to all the
neurons of the original network (with its original precision). Note that for all
0 ≤ i < n, X[0, i] corresponds to the input of the network. Our algorithm works
as follows.

1. Compute the forward accuracy of the network. For each neuron 0 ≤
i < n of the kth layer, 0 ≤ k < �, we compute the precision precX[k,i] of
the output X[k,i] in the worst case, for all input vectors of the considered
dataset D. We also compute at the same time, for each neuron, the minimum
and maximum values Xmin[k,i] and Xmax[k,i] of its output for D. In our
implementation, these computations are done by dynamic analysis but they
can be done by static analysis using the techniques of [7,9].

2. Generate constraints for precision bounds. On one hand, the forward
accuracy computed at Step 1 gives an upper bound on the accuracy of the
output X[k,i] of each neuron such that 0 ≤ i < n, 0 ≤ k < �. On the other
hand, the precision desired by the user (thanks to the parameter δ) gives a
lower bound on the accuracy of the outputs of the last layer. For each neuron,
we generate the constraints (PB), (IP) and (PC) of Fig. 4.

3. Generate constraints for backward precision conditions. Using Propo-
sition 2, we generate the constraints (EW) and (EC) of Fig. 4. In function of
the precision of the outputs of the neurons of some layer k, these constraints
set conditions on the precision of the neurons of layer k and on the precision
of the inputs of layer k. Hence, they propagate in a backward way the con-
straints set by the user on the final outputs of the network by means of the
parameter δ.
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The constraints of Fig. 4 are linear constraints among integers. We find an
optimal solution the system by linear programming. This solution gives the accu-
racy needed for each neuron for the δ parameter chosen by the user.

As mentioned in Sect. 2.1 at Eq. (2), the dot product performed in each neu-
ron can be composed with another mathematical function, typically a ReLU or
tanh function. Indeed, the examples of Sect. 5 do use tanh functions. While a
ReLU does not impact the accuracy in the worst case (it just keeps the input
value or reset it to zero which does not make the accuracy decrease), this is not
the case for the tanh function. However, ∀x ∈ R, |tanh(x)| ≤ x and the func-
tion only reduces the errors in absolute value. It is then possible to make the
approximation tanh(x) ≈ x without under-estimating the roundoff errors done
in the computations of the neurons. In other word, we may get rid of the tanh
function in the error analysis and constraint generation.

For neural networks combining dot products with other mathematical func-
tions, or to improve the error bounds on the results of the tanh function, a fine
error propagation can be computed by means of Taylor series developments. For
example, for a value x approximated by a floating-point number f with an error
e, i.e. x = f + e, we have

tanh(f + e) ≈ (f + e) − 1
3
(f + e) (27)

= (f + e) − 1
3

(

f3 + 3f2e + 3fe2 + e3
)

(28)

=
(

f − 1
3
f3

)

+
(

e − f2e − fe2 − 1
3
e3

)

(29)

≈ tanh(f) +
(

tanh(e) − f2e − fe2
)

(30)

Consequently, the error propagated by the tanh function can be approximated
by tanh(e) − f2e − fe2. Similar reasonings can be done for other elementary
functions.

5 Experimental Results

In this section, we show on two representative neural networks how our precision
tuning method may optimize the precision. These networks originally work in
IEEE754 double precision. The prototype used for these experiments has been
implemented in Python 2.7 using the linprog function of the scipy library.

5.1 Neural Network Computing the Hyperbolic Sine

The first neural network we consider computes the hyperbolic sine of the point
(x, y). This network, displayed in Fig. 5, is made of four layers containing 12,
8, 4 and 1 neurons respectively. The curve in the bottom left corner of Fig. 5
displays the percentage of bits that we can save by our method in function of
the parameter δ which sets the relative error that we accept between the outputs
of the original and transformed networks. On this curve, 100% corresponds to
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Fig. 5. Top left: Interpolator network used to compute the hyperbolic sine function.
Top right: The hyperbolic sine function. Bottom left: Percentage of improvement in
bits, compared to the initial network in double precision. Bottom right: Measured
error between the original and optimized networks.

the case where all the computations are done in double precision. As we can
observe, our technique makes it possible to save a significant amount of bits,
depending on δ. The curve in the bottom right corner of Fig. 5 displays the
measured distance between the results of the original and optimized networks.
This error is compared to the worst accepted error defined by δ. We can see that
the actual error is always less than δ.

In Fig. 6, we give more details on the results of our optimization for the case
δ = 10−6. The left part of the figure shows the actual number of bits needed
for each neuron in this case. Indeed, our method is able to save 54% of bits in
this case. In addition, in the right part of Fig. 6, we display the best IEEE754
formats that we may choose according to the number of bits needed for each
neuron. For this example, 56% of the neurons can be set in single precision while
guaranteeing that the error between the neural network working fully in double
precision and the optimized network will be less than δ = 10−6 for any input.
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Fig. 6. Left: Number of bits needed for each neuron for δ = 10−6. Right: Best IEEE754
format which can be used for δ = 10−6.

90

Fig. 7. Top left: An interpolator network used to compute the bump function displayed
on the right of the top right corner of the figure. Bottom left: Percentage of improvement
in bits, compared to the initial network in double precision. Bottom right: Measured
error between the original and optimized networks.
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The mean execution time to generate and solve the constraints is 0.9 s for
δ = 10−6. This time does not change significantly is we take another value for δ.

5.2 Neural Network Computing a Bump Function

In this section, we introduce a second network computing a function of a point
(x, y) displayed in Fig. 7. Again, we compute the percentage of bits that we can
save by our method in function of the parameter δ. Again, our results, displayed
in Fig. 7 show that our method makes it possible to save an important number of
bits (curve at the bottom left corner of Fig. 7). As in Sect. 5.1, we also measure
the error between the original and optimized networks and compare it to the
theoretical error defined by the parameter δ (curve at the bottom right corner
of Fig. 7).

The mean execution time for constraint generation and constraint solving is
25 s. Note that our implementation is not optimized and consider that all the
layers have the same number of neurons (90 in this example).

6 Conclusion

In this article, we introduced a new method to tune the precision of the com-
putations done inside the neurons of a network in order to save memory while
ensuring that the network still answers correctly, compared to the original net-
work. Our method models the propagation of the roundoff errors through a set
of linear constraints among integers which can be solved by linear programming.
Experimental results show the efficiency of our method.

A first perspective is to test our method on larger, real-size neural networks.
This requires to improve our prototype to manage some implementation details.
We believe that our method will scale up as long as the linear programming
solver will scale up. If this is not enough, a solution would be to assign the
same precision to a group of neurons in order to reduce the number of equations
and variables in the constraint system. The choice of the best partition remains
an open question currently and additional work should be carried out in this
direction.

A second perspective is to extend our method to classifiers, i.e. to neural
networks recognizing patterns given as inputs. While most our approach can
be reused for classifier, it would be necessary to formally define what is an
acceptable approximated output for the networks working with less precision. A
possibility would be to check that the original and optimized networks almost
always classify the inputs in the same way (in δ% of the cases, δ being chosen
by the user). In particular, we aim at testing our method on neural networks
developed for standard recognition benchmarks such as CIFAR and MNIST.

A third perspective is to generate code for the fixed-point arithmetic [11].
Fixed-point arithmetic (or possibly integer arithmetic) are more and more used
to run neural networks, specially in embedded systems. To cope with the fixed-
point arithmetic, we need to adapt the error propagations equations of Sect. 3
without changing the general approach developed in this article.
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A last perspective is to improve the method itself, by optimizing the equa-
tions of Sect. 3. For example, some errors are over-estimated. In addition, all
the computations done inside the same neuron have the same accuracy and we
could improve this point. The way the computations are done inside neurons
could also be transformed by re-parsing of the computations in order to improve
their accuracy [3,4] and, consequently, to allow smaller formats.
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22. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. PACMPL 3(POPL), 41:1–41:30 (2019)
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Abstract. For hybrid Markov decision processes, Uppaal Stratego can
compute strategies that are safe for a given safety property and (in the
limit) optimal for a given cost function. Unfortunately, these strategies
cannot be exported easily since they are computed as a very long list. In
this paper, we demonstrate methods to learn compact representations of
the strategies in the form of decision trees. These decision trees are much
smaller, more understandable, and can easily be exported as code that
can be loaded into embedded systems. Despite the size compression and
actual differences to the original strategy, we provide guarantees on both
safety and optimality of the decision-tree strategy. On the top, we show
how to obtain yet smaller representations, which are still guaranteed safe,
but achieve a desired trade-off between size and optimality.

1 Introduction

Cyber-physical systems often are safety-critical and hence strong guarantees
on their safety are paramount. Furthermore, resource efficiency and the qual-
ity of the delivered service are strong requirements; the behaviour needs to be
optimized with respect to these objectives, while of course staying within the
bounds of what is still safe. In order to achieve this, controllers of such systems
can be either implemented manually or automatically synthesized. In the former
case, due to the complexity of the system, coming up with a controller that is
safe is difficult, even more so with the additional optimization requirement. In
the latter case, the synthesis may succeed with significantly less effort, though
the requirement on both safety and optimality is still a challenge for current
synthesis methods. However, due to the size of the systems, the produced con-
trollers may be very complex, hard to understand, implement, modify, or even
just output. Indeed, even for moderately sized systems, we can easily end up
with gigabytes-long descriptions of their controllers (in the algorithmic context
called strategies).
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Fig. 1. The two cars, Ego and Front . We control Ego and the environment controls
Front . Both cars have an acceleration and a velocity. In addition, we know the distance
between the cars.

In this paper, we show how to provide a more compact representation,
which can yield acceptably short and simple code for resource-limited embedded
devices, and consequently can be more easily understood, maintained, modified,
debugged, and the requirements are better traceable in the final controller. To
this end, as the formalism for the compact representation we choose decision
trees [41]. This representation is typically several orders of magnitude smaller
than the classical explicit description and also is known for its interpretability
and understandability [9,41,47]. The resulting encoded strategy may differ from
the original one, but despite that and despite being smaller, it is still guaranteed
to be safe and as nearly-optimal as the original one. Moreover, we can trade
off additional decrease in size for decrease in performance (getting farther from
optimum) to a desired degree, while maintaining safety.

Example 1. As a running example and one of the case studies, we use the following
example introduced in [35] and expanded with stronger safety guarantees in [34].

We consider two cars Ego and Front , depicted in Fig. 1. We control Ego,
whereas Front is controlled by the environment. Ego is driving behind Front ,
and both cars have a discrete input (the acceleration) and a continuous state
(the velocity). The goal of the adaptive cruise control in Ego is, first, to stay safe
(by keeping the distance between the cars greater than a given safe distance),
and second, to drive as close to Front as possible, i.e. to optimize the aggregated
distance between the cars.

We use Uppaal Tiga [2] to get a safe strategy for Ego as in [34], and then
Uppaal Stratego [18] to learn a (near-)optimal strategy for a desired cost
function, given the constraints from the safe strategy. The resulting strategy is
output as a list with almost 6 million configurations. Using our new methods,
we obtain a decision tree representing the strategy, that has only about 2713
nodes. Additionally, we can trade performance to reduce the size even further,
e.g. by increasing the aggregated distance reasonably we can reduce the size to
1247 nodes.

Our Contribution:

– We design and implement a framework Stratego+ to transform safe and
(near-)optimal strategies into their decision-tree representation, preserving
safety and the same level of optimality, while being much smaller.
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– We provide several transformations and ways to yet further decrease the size
while preserving safety, but relaxing the optimality to a desired extent.

– We test our methods on three case studies, where we show size reductions of
up to three orders of magnitude, and quantify the additional size-performance
trade-off.

Our techniques can be used to represent (finite-memory non-stochastic)
strategies for arbitrary systems exhibiting non-determinism (e.g. Markov deci-
sion processes, timed/concurrent/stochastic games). This paper demonstrates
the technique on hybrid Markov decision processes, as that is the formalism
used in Uppaal Stratego.

Related Work: The problem of computing strategies for hybrid systems has been
extensively studied in the past years. Most approaches rely on abstraction tech-
niques: the continuous and infinite state space of the system is represented with
a finite number of symbols, e.g. discrete points [24,50], sets of states [15], etc.
However, it is still hard to deal with uncontrollable components, even though
some approaches exist such as robust control [26], or contract-based design [51],
but they usually consider the uncontrollable component as a bounded pertur-
bation and do not tackle stochastic behaviour. The tool PESSOA [38,48] can
synthesize controllers for cyber-physical systems represented by a set of smooth
differential equations with a specification in a fragment of Linear Temporal Logic
(LTL). Abstraction techniques are used in [27] for synthesizing strategies for a
class of hybrid systems that involve random phenomena together with discrete
and continuous behaviours. Discrete, stochastic dynamical systems are consid-
ered in [54], where the synthesis of strategies with respect to LTL objectives
is made possible with an abstraction-refinement method. In [22] a number of
benchmarks for hybrid system verification has been proposed, including a room
heating benchmark. In [16] Uppaal SMC was applied to the performance eval-
uation of several strategies proposed in the benchmark. However, there was no
focus on safety in this approach. In our work, the safety strategy synthesis relies
on a discretization of the continuous variables, leading to a decidable problem
that can be handled by Uppaal Tiga, but we furthermore provide safety guar-
antees for the original system with the use of a Timed Game abstraction based
on a guaranteed Euler scheme [36].

In artificial intelligence, compact (factored) representations of Markov deci-
sion processes (MDPs) have been developed using dynamic Bayesian net-
works [7,31], probabilistic STRIPS [33], algebraic decision diagrams [30], and
also decision trees [7]. For a detailed survey of compact representations see [5].
Formalisms used to represent MDPs can, in principle, be used to represent
strategies as well. In particular, variants of decision trees are probably the most
used [7,13,32]. Decision trees have been also used in connection with real-time
dynamic programming and reinforcement learning [6,44].

In the context of verification, MDPs are often represented using variants
of (MT) BDDs [19,28,39], and strategies by BDDs [55]. Learning a compact
decision-tree representation of a strategy has been investigated in [37] for the case
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of body sensor networks, in [9] for finite (discrete) MDPs, and in [10] for finite
games, but only with Boolean variables. Moreover, these decision trees can only
predict a single action for a state configuration whereas in this work, we allow
the trees to predict more than one action for a single configuration. In control
theory, [56] proves that the problem of computing size-optimal determinisiation
of controllers is NP-complete and hence discuss various heuristic-based determin-
isation algorithms. None of these works consider the optimization aspect, which
being a soft constraint enables the trade-offs.

Permissive strategies have been studied in e.g. [3,8,20].

2 Preliminaries

2.1 Hybrid Markov Decision Processes

We describe the mathematical modelling framework. The correspondence to the
Uppaal models is straightforward.

Definition 1 (HMDP). A hybrid Markov decision process (HMDP) M is a
tuple (C,U,X, F, δ) where:

1. the controller C is a finite set of (controllable) modes C = {c1, . . . , ck},
2. the uncontrollable environment U is a finite set of (uncontrollable) modes

U = {u1, . . . , ul},
3. X = (x1, . . . , xn) is a finite tuple of continuous (real-valued) variables,
4. for each c ∈ C and u ∈ U , Fc,u : R>0 × R

X → R
X is the flow-function that

describes the evolution of the continuous variables over time in the combined
mode (c, u), and

5. δ is a family of probability functions δγ : U → [0, 1], where γ = (c, u,x) is
a global configuration. More precisely, δγ(u′) is the probability that u in the
global configuration γ = (c, u,x) will change to the uncontrollable mode u′.

In the following, we denote by C the set of global configurations C × U × R
X

of the HMDP M. The above notion of HMDP actually describes an infinite-
state Markov Decision Process [43], where choices of mode for the controller
is made periodically and choice of mode for the uncontrollable environment is
made probabilistically according to δ. Note that abstracting δγ to the support
δ̂γ = {u | δγ(u) > 0}, turns M into a (traditional) hybrid two-player game. The
inclusion of δ allows for a probabilistic refinement of the uncontrolled environ-
ment in this game. Such a refinement is irrelevant for the purposes of guaran-
teeing safety; however, it will be useful for optimizing the cost of operating the
system. Indeed, rather than optimizing only the worst-case performance, we wish
to optimize the overall expected behaviour.
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Strategies. A – memoryless and possibly non-deterministic – strategy σ for
the controller C is a function σ : C → 2C , i.e. given the current configuration
γ = (c, u,x), the expression σ(γ) returns the set of allowed actions in that
configuration; in our setting, the actions are the controllable modes to be used
for the duration of the next period. Non-deterministic strategies are also called
permissive since they permit many actions instead of prescribing one.

The evolution of system over time is defined as follows. Let γ = (c, u,x) and
γ′ = (c′, u′,x′). We write γ

τ→ γ′ in case c′ = c, u′ = u and x′ = F(c,u)(τ,x).
A run is an interleaved sequence π ∈ C× (R×C×C×C)∗ of configurations

and relative time-delays of some given period P :

π = γo :: P :: α1 :: β1 :: γ1 :: P :: α2 :: β2 :: γ2 :: P :: · · ·

Then π is a run according to the strategy σ if after each period P the following
sequence of discrete (instantaneous) changes are made:

1. the value of the continuous variables are updated according to the flow of the
current mode, i.e. γi−1 = (ci−1, ui−1,xi−1)

P→ (ci−1, ui−1,xi) =: αi;
2. the environment changes to any possible new mode, i.e. βi = (ci−1, ui,xi)

where δαi
(ui) > 0;

3. the controller changes mode according to the strategy σ, i.e. γi = (ci, ui,xi)
with ci ∈ σ(βi).

Safety. A strategy σ is said to be safe with respect to a set of configuration
S ⊆ C, if for any run π according to σ all configurations encountered are within
S, i.e. αi, βi, γi ∈ S for all i and also γ′

i ∈ S whenever γi
τ→ γ′

i with τ ≤ P . Note
that the notion of safety does not depend on the actual δ, only on its supports.
Recall that almost-sure safety, i.e. with probability 1, coincides with sure safety.

We use a guaranteed set-based Euler method introduced in [34] to ensure
safety of a strategy not only at the configurations where we make decisions, but
also in the continuum in between them. We refer the reader to [1, Appendix A.2]
for a brief reminder of this method.

Optimality. Under a given deterministic (i.e. permitting one action in each
configuration) strategy σ the game M becomes a completely stochastic pro-
cess M � σ, inducing a probability measure on sets of runs. In case σ is non-
deterministic or permissive, the non-determinism in M � σ is resolved uniformly
at random. On such a process, we can evaluate a given optimization function.
Let H ∈ N be a given time-horizon, and D a random variable on runs, then
E

M,γ
σ,H (D) ∈ R≥0 is the expected value of D on the space of runs of M � σ of

length1 H starting in the configuration γ. As an example of D, consider the inte-
grated deviation of a continuous variable, e.g. distance between Ego and Front ,
with respect to a given target value.
1 Note that there is a bijection between length of the run and time, as the time between

each step, P , is constant.
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Consequently, given a (memoryless non-deterministic) safety strategy σsafe

with respect to a given safety set S, we want to find a deterministic sub-strategy2

σopt that optimizes (minimizes or maximizes) E
M,γ
σsafe ,H(D).

2.2 Decision Trees

From the perspective of machine learning, decision trees (DT) [41] are a clas-
sification tool assigning classes to data points. A data point is a d-dimensional
vector v = (v1, v2, . . . , vd) of features with each vi drawing its value from some
set Di. If Di is an ordered set, then the feature corresponding to it is called
ordered or numerical (e.g. velocity ∈ R) and otherwise, it is called categorical
(e.g. color ∈ {red , green, blue}). A (multi-class) DT can represent a function
f :

∏d
i=1 Di → A where A is a finite set of classes.

A (single-label) DT over the domain D =
∏d

i=1 Di with labels A is a tuple
T = (T, ρ, θ), where T is a finite binary tree, ρ assigns to every inner node
predicates of the form xi ∼ c where ∼ ∈ {≤,=}, c ∈ Di, and θ assigns to every
leaf node a list of natural numbers [m1,m2, . . . ,m|A|]. For every v ∈ D, there
exists a decision path from the root node to some leaf �v . We say that v satisfies
a predicate ρ(t) if ρ(t) evaluates to true when its variables are evaluated as given
by v. Given v and an inner node t with a predicate ρ(t), the decision path selects
either the left or right child of t based on whether v satisfies ρ(t) or not. For v
from the training set, we say that the leaf node �v contains v. Then ma of a leaf
is the number of points contained in the leaf and classified a in the training set.
Further, the classes assigned by a DT to a data point v (from or outside of the
training set) are given by argmax θ(�v ) = {i | ∀i, j ≤ |A|. θ(�v )i ≥ θ(�v )j}, i.e.
the most frequent classes in the respective leaf.

Decision trees may also predict sets of classes instead of a single class. Such
a generalization (representing functions of the type

∏d
i=1 Di → 2A) is called

a multi-label decision tree. In these trees, θ assigns to every leaf node a list of
tuples [(n1, y1), (n2, y2), . . . , (n|A|, y|A|)] where na, ya ∈ N are the number of data
points in the leaf not labelled by class a and labelled by class a, respectively. The
(multi-label) classification of a data point is then typically given by the majority
rule, i.e. it is classified as a if na < ya.

A DT may be constructed using decision-tree learning algorithms such as
ID3 [45], C4.5 [46] or CART [11]. These algorithms take as input a training set,
i.e. a set of vectors whose classes are already known, and output a DT classifier.
The tree constructions start with a single root node containing all the data
points of the training set. The learning algorithms explore all possible predicates
p = xi ∼ c, which split the data points of this node into two sets, Xp and X¬p.
The predicate that minimizes the sum of entropies3 of the two sets is selected.
These sets are added as child nodes to the node being split and the whole process

2 i.e. a strategy that for every configuration returns a (non-strict) subset of the actions
allowed by the safe strategy.

3 Entropy of a set X is H(X) =
∑

a∈A pa log2(pa) + (1− pa) log2(1− pa), where pa is
the fraction of samples in X belonging to class a. See [14] for more details.
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is repeated, splitting each node further and further until the entropy of the node
becomes 0, i.e. all data points belong to the same class. Such nodes are called
pure nodes. This construction is extended to the multi-label setting by some of
the algorithms. A multi-label node is called pure if there is at least one class
that is endorsed by all data points in that node, i.e. ∃a ∈ A : na = 0.

If the tree is grown until all leaves have zero entropy, then the classifier
memorizes the training data exactly, leading to overfitting [41]. This might not be
desirable if the classifier is trained on noisy data or if it needs to predict classes of
unknown data. The learning algorithms hence provide some parameters, known
as hyperparameters, which may be tuned to generalize the classifier and improve
its accuracy. Overfitting is not an issue in our setup where we want to learn the
strategy function (almost) precisely. However, we can use the hyperparameters
to produce even smaller representations of the function, at the “expense” of not
being entirely precise any more. One of the hyperparameters of interest in this
paper is the minimum split size k. It can be used to stop splitting nodes once
the number of data points in them become smaller than k. By setting larger k,
the size of the tree decreases, usually at the expense of increasing the entropy
of the leaves. There also exist several pruning techniques [21,40], which remove
either leaves or entire subtrees after the construction of the DT.

2.3 Standard Uppaal Stratego Workflow

The process of obtaining an optimized safe strategy σopt usingUppaal Stratego
is depicted as the grey boxes in Fig. 2. First, the HMDP M is abstracted into
a 2-player (non-stochastic) timed game T G, ignoring any stochasticity of the
behaviour.Next, Uppaal Tiga is used to synthesize a safe strategy σsafe : C → 2C

for T G and the safety specification ϕ, which is specified using a simplified version
of timed computation tree logic (TCTL) [2]. After that, the safe strategy is applied
on M to obtain M � σsafe . It is now possible to perform reinforcement learning
on M � σsafe in order to learn a sub-strategy σopt that will optimize a given quan-
titative cost, given as any run-based expression containing e.g. discrete variables,
locations, clocks, hybrid variables. For more details, see [17,18].

3 Stratego+

In this section, we discuss the new Uppaal Stratego+ framework following
with each of its components are elucidated.

3.1 New Workflow

Uppaal Stratego+ extends the standard workflow in two ways: Firstly, in the
top row, we generate the DT Topt that exactly represents σopt , yielding a small
representation of the strategy.

The DT learning algorithm can make use of two (hyper-)parameters k and
p which may be used to prune the DT; this approach is described in Sect. 3.4.
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SOS
M T G σsafe

M � σsafe σopt Topt

T k,p
σsafe

M � T k,p
σsafe σk,p

opt T k,p
opt

Uppaal

Tiga

Stratego

learning

Stratego

learning

DT learning

exact

DT learning k,p

DT learning

exact

Fig. 2. Uppaal Stratego+ workflow. The dark orange nodes are the additions to the
original workflow, which now involve DT learning, the yellow-shaded area delimits the
desired safe, optimal, and small strategy representations. (Color figure online)

While pruning reduces the size of the DT, the resultant tree no longer represents
the strategy exactly. Hence it is not possible to prune a DT representing deter-
ministic strategies, like in the case of the σopt described in the first row of the
workflow, as safety would be violated.

However, for our second extension we apply the DT learning algorithm to
the non-deterministic, permissive strategy σsafe , resulting in T k,p

σsafe
. This DT is

less permissive, thereby smaller, since the pruning disallows certain actions; yet
it still represents a safe strategy (details in Sect. 3.4). Next, as in the standard
workflow, this less permissive safe strategy is applied to the game and Stratego
is used to get a near-optimal strategy σk,p

opt for the modified game M � T k,p
σsafe

. In
the end, we again construct a DT exactly representing the optimal strategy,
namely T k,p

opt . Note that in the game restricted to T k,p
σsafe

fewer actions are allowed
than when it is restricted only to σsafe , and hence the resulting strategy could
perform worse. For example, let σsafe allow decelerating or remaining neutral for
some configuration, while T k,p

σsafe
pruned the possibility to remain neutral and only

allows decelerating. Thus, σopt remains neutral, whereas σk,p
opt has to decelerate

and thereby increase the distance that we try to minimize.
In both cases, the resulting DT is safe by construction since we allow the

DT to predict only pure actions (actions allowed by all configurations in a leaf,
see next section for the formal definition). We convert these trees into a nested
if-statements code, which can easily be loaded onto embedded systems.

3.2 Representing Strategies Using DT

A DT with domainC and labels C can learn a (non-deterministic) strategy σ: C →
2C . The strategy is provided as a list of tuples of the form (γ, {a1, . . . , ak}), where
γ is a global configuration and {a1, . . . , ak} is the set of actions permitted by σ.The
training data points are given by the integer configurations γ ∈ C (safety for non-
integer points is guaranteed by the Euler method; see Sect. 2.1) and the set of
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distance velocity actions

2 51 {dec}
3 20 {dec}
5 30 {dec}
7 1 {dec, neu}

20 46 {dec, neu}
25 25 {dec, neu, acc}
45 70 {dec, neu}

[(0, 3),
(3, 0),
(3, 0)]

distance ≤ 6

[(0, 2),
(0, 2),
(2, 0)]

distance ≤ 22.5

[(0, 1),
(0, 1),
(0, 1)]

distance ≤ 35

[(0, 1),
(0, 1),
(1, 0)]

FalseTrue

Fig. 3. A sample dataset (left); and a (multi-label) decision tree generated from the
dataset (right). The leaf nodes contain the list of tuples assigned by θ, the inner nodes
contain the predicates assigned by ρ

classes for each γ is given by σ(γ). Consequently, a multi-label decision tree learn-
ing algorithm as described in Sect. 2.2 can be run on this dataset to obtain a tree
Tσ representing the strategy σ.

Each node of the tree contains the set of configurations that satisfy the
decision path traced from the root of the tree to the node. The leaf attribute
θ gives, for each action a, the number of configurations in the leaf where the
strategy disallows and allows a, respectively. For example, consider a node with
10 configurations with θ = [(0, 10), (2, 8), (9, 1)]. This means that the first action
is allowed by all 10 configurations in the node, the second action is disallowed
by 2 configurations and allowed by 8, and the third action is disallowed by 9
configurations and allowed only by 1.

Since we want the DT to exactly represent the strategy, we need to run
the learning algorithm until the entropy of all the leaves becomes 0, i.e. all
configurations of the leaf agree on every action. More formally, given a leaf �
with n configurations we require θ(�) = (0, n) or θ(�) = (n, 0) for every action.
We call an action that all configurations allow a pure action.

The table on the left of Fig. 3 shows a toy strategy. Based on values of dis-
tance d and velocity v, it permits a subset of the action set {dec,neu, acc}.
A corresponding DT encoding is displayed on the right of Fig. 3.

3.3 Interpreting DT as Strategy

To extract a strategy from a DT, we proceed as follows: Given a configuration
C, we pick the leaf �C associated with it by evaluating the predicates and fol-
lowing a path through the DT. Then we compute θ(�C) = [(n1, y1), (n2, y2), . . . ,
(n|A|, y|A|)] where na, ya ∈ N are the number of data points in the leaf not
labelled by class a and labelled by class a, respectively. The classes assigned to
�C are exactly its pure actions, i.e. {a | (0, ya) ∈ θ(�C)}.
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Note that allowing only pure actions is necessary in order to preserve safety.
We do not follow the common (machine learning) way of assigning classes to
the nodes based on the majority criterion, i.e. the majority of the data points
in that node allow the action; because then the decision tree might prescribe
unsafe actions just because they were allowed in most of the configurations in
the node. This is also the reason why the DT-learning algorithm described in
the previous section needs to run until the entropy of all leaves becomes 0.

3.4 Learning Smaller, Yet Safe DT

We now describe how to learn a DT for a safe strategy that is smaller than the exact
representation, but still preserves safety. A tree obtained using off-the-shelf DT
learning algorithms is unlikely to exactly represent the original strategy.4 We use
two different methods to achieve the goal: firstly, we use the standard hyperparam-
eter named minimum split size, and secondly, we introduce a new post-processing
algorithm called safe pruning. Both methods rely on the given strategy being non-
deterministic/permissive, i.e. permitting several actions in a leaf.

A
(0, 7): dec
(7, 0): neu
(7, 0): acc

x ≤ 5

B
(0, 7): dec
(0, 7): neu
(3, 4): acc

FalseTrue
C

(0, 14): dec
(7, 7): neu
(10, 4): acc

Fig. 4. Illustration of safe pruning applied to a node. The pure action of leaf A is just
dec, for B it is both dec and neu. Safe pruning replaces the nodes with C, where only
dec is a pure action.

(1) Using Minimum Split Size. The splitting process can be stopped before
the entropy becomes 0. We do this by introducing a parameter k, which deter-
mines the minimum number of data points required in a node to consider split-
ting it further. During the construction of the tree, a node is usually split if its
entropy is greater than 0. When k is set to an integer greater than 2, a node is
split only if both the entropy is greater than 0 and the number of data points
(configurations) in the node is at least k. The strategy given by such a tree is
safe as long as it predicts only pure actions, i.e. a with na = 0. In order to
obtain a fully expanded tree, k may be set to 2 (in nodes with <2 configurations,

4 This is because DT learning algorithms are usually configured to avoid overfitting on
the dataset.
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there is nothing to split). For larger k, the number of pure actions in the leaves
decreases. Ultimately, for too large k, we would obtain a tree that has some leaf
nodes not containing any pure actions. In such a case, the strategy represented
by the DT would not be well-defined, as for some data point no action could be
picked. However, this can be detected immediately during the construction.

Algorithm 1. Safe Pruning
1: procedure Safe-Pruning(DT Tσ = (T, ρ, θ), p ∈ N)
2: for i ← 1..p do
3: N ← {n ∈ T | LEFT (n) and RIGHT (n) are leaves}
4: � Candidate nodes for pruning
5: for each n ∈ N do
6: c� ← LEFT (n), cr ← RIGHT (n)
7: if θ(c�) ∩ θ(cr) �= ∅ then
8: � Prune and keep the common classification
9: Convert n to a leaf node

10: θ(n) ← θ(c�) ∩ θ(cr)
11: Remove c� and cr from T

(2) Using Safe Pruning. Another way of obtaining a smaller tree is by using a
procedure to prune the leaves of the produced tree by merging them while preserv-
ing safety. For example, consider the decision node on the left of Fig. 4 with two
children that are leaves A and B. For A, only the action dec is pure (i.e. allowed
by all configurations in the leaf), while for B both dec and neu are pure. Since the
sets of pure actions of the two leaf nodes intersect, we can safely remove both A
and B and replace the decision node with a new leaf node C that contains only
those actions that are in the intersection, in this case only dec.

Algorithm 1 describes the pruning process formally. If θ returns only safe
actions, then the tree obtained after pruning is guaranteed to represent a safe
strategy, although a less-permissive one. The algorithm may be run for multiple
(possibly 0) rounds, denoted by p, at most until we get a “fully pruned” tree
representing a safe but deterministic strategy. We denote by T k,p

σsafe
the decision

tree for σsafe constructed by only splitting nodes with k or more data points,
followed by p rounds of safe pruning. Clearly, the more permissive the original
strategy is, the more we can prune using safe pruning.

When generating T k,p
σsafe

, we use a modified implementation of the CART deci-
sion tree learning algorithm implemented in the DecisionTreeClassifier class
of the Python-based machine learning library Scikit-learn [42]. Since we construct
the DT from a safe strategy and as long as we let the DT-encoded strategy have
at least one pure action in each leaf, the strategy will remain safe. With this
in mind, we can freely change the parameters of the DecisionTreeClassifier
class. However, in our experiments, we picked only the minimum split size k from
the Scikit-parameters as a demonstrative example, as well as our newly intro-
duced p. The methods described in this paper would work with other parameters
as well.
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3.5 Comparing DTs to Binary Decision Diagrams

A Binary Decision Diagram (BDD, e.g. [12]) is a popular data structure that
can be used to represent boolean functions f : Bn → B. It may also be used to
represent strategies by encoding configurations and actions into a suitable form
via bit-blasting, i.e. converting them into propositional formulae. For example,
the configuration-action pair ((x = 6, y = 2), a0) can be represented as (x2 ∧
x1 ∧ ¬x0 ∧ ¬y2 ∧ y1 ∧ ¬y0 ∧ a0), if it is known that the maximum value that x
and y can take is less than 8 (3 bits). A strategy can be seen as a disjunction∨

γ,a∈σ(γ)(γ, a) of all configuration-action pairs (γ, a) permitted by the strategy σ.
Such an encoding allows for an easy conversion into a BDD. Though theoretically
straightforward, there are some practical concerns involved when constructing
the BDD. Mainly, the ordering of the variables in the BDD can drastically change
its size. While computing the optimal ordering so as to have the smallest BDD
is an NP-complete problem [4], various heuristics exist that can be used to get
better orderings. We use the CUDD package [53] to construct the BDD, along
with Rudell’s Sifting reordering technique [49].

The main disadvantage of DTs compared to BDDs is that isomorphic sub-
graphs are not merged (DTs are trees, BDDs are directed acyclic graphs); and
even if merging was allowed, it would not save much. Indeed, since DT may
choose different predicates on the same level (which is an advantage in contrast
to BDD with a fixed variable ordering) isomorphic subgraphs occur rarely. There
are further advantages of DT, related to learning, that make them more compact
than BDD in some contexts, e.g. [9,10]. Firstly, they can be learnt fast, using
the entropy-based heuristic, compared to the graph processing and variable re-
ordering of BDDs. Secondly, a DT can ignore “don’t-care inputs”; these inputs
are encodings of things that are not valid configuration-action pairs, in the sense
that either the action is not available in the configuration or that it is not a
valid configuration at all. In contrast, a BDD has to explicitly either allow or
disallow these inputs. Thirdly, DT learning can also be used to represent the
strategy imprecisely using a smaller DT, which can be model checked for safety.
For the modifications described in Sect. 3.4, we do not even need to re-verify
safety, because this property is preserved by both our size reduction techniques.
Fourthly, DT can use much wider class of predicates, compared to single bit tests
for a bit representation in a BDD. This final point is also a reason (together with
the smaller size) why DT is a more understandable representation than a BDD
[9,10]. We also illustrate this point on a case-study in Remark 1.

4 Case Studies and Experimental Results

In this section, we evaluate the techniques discussed above on three different
case studies: (1) the adaptive cruise control model introduced in the motivation;
(2) a two tank case study introduced in [29]; and (3) the heating system of a two
room apartment adapted from [25].

Table 1 compares representations for our case studies obtained in different
ways. We discuss results for the three case studies, denoted cruise, twotanks,
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Table 1. Sizes of the different representations: explicit list as output by
Uppaal Stratego, the relevant part of the list, BDD displaying [minimum/medi-
an/maximum] over the 40 trials, and DT according to the upper path in Fig. 2.

#Variables Stratego list List BDD[min/med/max] DT Topt Size

cruisenon-Euler 5 1,790,034 308,216 [3,718/5,066/5,890] 2,899

cruise 7 5,931,154 304,752 [3,470/4,728/4,742] 2,713

twotanks 9 23,182 23,182 [65/69/91] 1

tworooms 11 1,924,708 509,715 [16,370/20,214/25,909] 487

Table 2. Tables displaying the number |T k,p
opt | of nodes of T k,p

opt (left) and the expected
performance E

M,γ
σ,H (D) (right) for various k and p, i.e. using the bottom path of Fig. 2,

for the cruise model. Higher performance corresponds to a lower number. (Color table
online)

Min split
size (k)

Rounds of pruning (p)
0 1 2

2 2,713 1,725 1,267
10 2,705 1,733 1,249
20 2,667 1,733 1,131
30 2,657 1,695 993
40 2,627 1,669 1,015
50 2,557 1,695 1,003
60 2,635 1,489 963
70 2,613 1,441 955
80 2,519 1,537 915
90 2,455 1,323 923
100 1,929 1,023 877

Min split
size (k)

Rounds of pruning (p)
0 1 2

2 2,627 3,618 4,240
10 2,696 3,596 4,210
20 2,778 3,625 14,039
30 2,778 3,589 14,108
40 2,778 3,600 14,096
50 2,825 3,614 14,037
60 2,905 3,673 14,074
70 2,898 3,714 14,095
80 2,907 3,717 14,092
90 3,006 3,741 14,077
100 3,030 14,061 14,292

and tworooms respectively. Additionally, the first line displays cruise without
the integrated Euler method, to illustrate the effect of Euler method on the
final size. All the representations are safe and as optimal as σopt produced by
Uppaal Stratego.

For each of the models we display the following information: the third column
lists the number of items in the explicit list representation of σopt output by
Uppaal Stratego. The fourth column lists the number of those items that are
actually relevant, i.e. sets of configurations where an actual decision is to be made.
The fifth and sixth column list the sizes of BDD and DT representations learnt
from σopt , i.e. the upper path in Fig. 2. For BDDs, since the initial ordering plays
a role in the size of the final result despite applying the re-ordering heuristics, we
ran 40 experiments for each model with random initial variable orderings. For
creating BDDs, we used the free Python library tulip-control/dd as an interface
to CUDD.

We conclude that both BDDs and DTs reduce the size by several order
of magnitude. DTs are slightly better in all cases, and 2 orders of magnitude
smaller in the tworooms model. Note that reliably achieving good results when
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Table 3. Tables displaying the number |T k,p
opt | of nodes of T k,p

opt (left) and the expected
performance E

M,γ
σ,H (D) (right) for various k and p, i.e. using the bottom path of Fig. 2,

for the tworooms model. Higher performance corresponds to a lower number. (Color
table online)

Min split
size (k)

Rounds of pruning (p)
0 1 2 3

2 543 403 283 191
10 525 387 271 185
50 497 365 251 171
125 445 317 219 151
250 387 265 179 123
500 323 211 139 97
750 277 175 111 77

Min split
size (k)

Rounds of pruning (p)
0 1 2 3

2 2,096 2,353 2,821 3,156
10 2,156 2,460 3,285 3,283
50 1,989 2,778 3,287 3,281
125 2,374 2,053 3,280 3,284
250 2,283 2,071 3,288 3,282
500 2,563 2,155 3,280 3,282
750 2,333 2,210 3,279 3,286

constructing the BDD relies on repeating the construction several times; since
already constructing a single BDD and applying the heuristics [49] already took
roughly 10 times longer than DT learning, DT can be obtained one or two
orders of magnitude faster than BDDs, depending on how many times one tries
constructing the BDD. Further, for the two tanks, only DT realizes that the
strategy is actually trivial. The main reason for BDD not to spot this is the
point of ignoring “don’t-care” inputs addressed in Sect. 3.5.

Table 2 shows how the size of the DT can be further reduced by the bottom
path of Fig. 2, when the “exact representation” criterion is relaxed. It displays
the performance, i.e. the aggregated distance to Front car, and size of T k,p

opt for
different combinations of the pruning parameters k and p. Recall that using no
pruning (k = 2, p = 0) yields the same DT as the upper path of Fig. 2, i.e.
T 2,0
opt = Topt .

We observed that for cruise, increasing the values of k and p buys a reduc-
tion in size of the DT against a reduction in performance. For instance, using
k = 80, p = 0, one can decrease the size to 2485 (by 8.4%) while deteriorating the
performance to 2907 (by 10%). Allowing for half the performance (double the
aggregated distance), one can make the DT even smaller than half of its original
size, e.g. by setting k = 10, p = 2. The shading and colouring of the table dis-
play different “trade-off zones”, each with comparable savings/losses. The same
conclusions hold for cruisenon-Euler, see the similar Table in [1, Appendix A.3].
For tworooms (Table 3), the best performance is observed not with k = 2, p = 0,
but with k = 50, p = 0. We conjecture that the less permissive safe strategy
assists Stratego in performing the optimisation faster by reducing the size of
the search space. As a result, here we get a both smaller and more performant
strategy. In the case of twotanks, already Topt has only a single node, hence no
further reductions are possible.

Remark 1. Interestingly, domain knowledge can reduce the DT size further and
make the representation more understandable. Indeed, for the cruise model we
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were able to construct a DT with only 25 nodes, designing our predicates based
on the car kinematics. For example, the expected time until the front car reaches
minimal velocity if it only decelerates from now on (1) plays an important role
in the decision making and (2) can be easily expressed by solving the standard
kinematics equation v(t) = vcurrent − adec · t. The resulting DT (illustrated in
[1, Appendix A.4] is thus very small and easy to interpret, as each of the few
nodes has a clear kinematic interpretation. The DT thus open the possibility for
strategy representation to profit from predicate/invariant synthesis.

5 Conclusion

We have provided a framework for producing small representations of safe and
(near-)optimal strategies, without compromising safety. As to (near-)optimality,
we can choose between two options: (i) not compromising it, or (ii) finding a
suitable trade-off between compromising it (causing drops of performance) and
additional size reductions. Compared to the original sizes, we achieve orders-of-
magnitude reductions, allowing for efficient usage of the strategies in e.g. embed-
ded devices. Compared to BDD representation, the size of the DT representation
is smaller and can be computed faster; additionally trivial solutions are repre-
sented by trivial DTs. DTs are more readable as argued in [9,10].

A detailed examination of the latter point in the hybrid context remains
future work. Further, candidates for more complex predicates could be auto-
matically generated based on given domain knowledge or learnt from the data
similarly to invariants from program runs [23,52]. As illustrated in Remark 1, this
could lead to further reduction in size and improved understandability. Addition-
ally, isomorphic/similar subtrees could be merged as in decision diagrams and
further optimizations for algebraic decision diagrams [56] could be employed.
Finally, we plan to visualize the DT representation of the strategies directly in
Uppaal Stratego+ for convenience of the users.
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54. Svoreňová, M., Křetínskỳ, J., Chmelík, M., Chatterjee, K., Černá, I., Belta, C.:
Temporal logic control for stochastic linear systems using abstraction refinement
of probabilistic games. Nonlinear Anal.: Hybrid Syst. 23, 230–253 (2017)

55. Wimmer, R., et al.: Symblicit calculation of long-run averages for concurrent prob-
abilistic systems. In: QEST (2010)

56. Zapreev, I.S., Verdier, C., Mazo, M.: Optimal symbolic controllers determinization
for BDD storage. In: ADHS (2018)

https://doi.org/10.1007/978-3-642-38856-9_21
https://doi.org/10.1007/978-3-642-38856-9_21
http://vlsi.colorado.edu/~fabio/CUDD
http://vlsi.colorado.edu/~fabio/CUDD


Fast Falsification of Hybrid Systems
Using Probabilistically Adaptive Input

Gidon Ernst1(B), Sean Sedwards2, Zhenya Zhang3, and Ichiro Hasuo3

1 Ludwig-Maximilians-University, Munich, Germany
gidon.ernst@lmu.de

2 University of Waterloo, Waterloo, Canada
sean.sedwards@uwaterloo.ca

3 National Institute of Informatics, Tokyo, Japan
{zhangzy,hasuo}@nii.ac.jp

Abstract. We present an algorithm that quickly finds falsifying inputs
for hybrid systems, i.e., inputs that steer the system towards violation of
a given temporal logic requirement. Our method is based on a probabilis-
tically directed search of an increasingly fine grained spatial and temporal
discretization of the input space. A key feature is that it adapts to the diffi-
culty of a problem at hand, specifically to the local complexity of each input
segment, as needed for falsification. In experiments with standard bench-
marks, our approach shows comparable or better performance to existing
techniques, while at the same time being relatively simple.

Keywords: Cyber-physical system · Falsification ·
Stochastic optimization · Temporal logic · Quantitative semantics ·
Las Vegas Tree Search

1 Introduction

The falsification problem we consider seeks a (time-bounded) input signal that
causes a hybrid system model to violate a given temporal logic specification. A
popular way to address this is to first construct a “score function” that quan-
tifies how much of the specification has been satisfied during the course of an
execution. The falsification can then be treated as an optimization problem,
which can be solved using standard algorithms. This approach, especially using
a quantitative “robustness” semantics [15] of requirements as the score function,
has been successfully applied, resulting in a number of now mature tools [4,10]
with practical applications as well as and friendly competitions [8,9,28].

Despite its apparent success, robustness is in general not a perfect optimiza-
tion function, but only a heuristic score function [20] with respect to the falsi-
fication problem, as greedy hill climbing may lead to local optima. In practice,
standard optimization algorithms overcome this limitation by including stochas-
tic exploration. The most sophisticated of these can also model the dynamics of
the system (e.g., [2]), in order to estimate the most productive direction of input
signal space to explore. There is, however, “no free lunch” [27], and high per-
formance general purpose optimization algorithms are not necessarily the best
choice. For example, such algorithms often optimize with respect to the entire
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input trace, without exploiting the time causality of the problem, i.e., the fact
that a good trace (one that eventually falsifies the property) may be dependent
on a good trace prefix.

The contribution of this paper is a randomized falsification algorithm
(Sect. 3.1) that exploits the time-causal structure of the problem and that adapts
to local complexity. In common with alternative approaches, our algorithm
searches a discretized space of input signals, but in our case the search space also
includes multiple levels of spatial and temporal granularity (Sect. 3.2). The addi-
tional complexity is mitigated by an efficient tree search that probabilistically
balances exploration and exploitation (Sect. 3.3).

The performance of our algorithm benefits from the heuristic idea to explore
simple (coarse granularity) inputs first, then gradually switch to more complex
inputs that include finer granularity. Importantly, the finer granularity tends only
to be added where it is needed, thus avoiding the exponential penalty of searching
the entire input space at the finer granularity. While it is always possible to
construct pathological problem instances, we find that despite its simplicity,
our approach is effective on benchmarks from the literature. Our experimental
results (Sect. 4) demonstrate that our algorithm can achieve comparable or better
performance than other methods, in terms of speed and reliability of finding a
falsifying input.

2 Preliminaries

In this work we represent a deterministic black-box system model as an
input/output function M : ([0, T ] → R

n) → ([0, T ] → R
m). In general, M

comprises continuous dynamics with discontinuities. M takes a time-bounded,
real-valued input signal u : [0, T ] → R

n of length |u| = T and transforms it to a
time bounded output signal y : [0, T ] → R

m of the same length, but potentially
different dimensionality. The dimension n of the input indicates that at each
moment t ≤ T within the time horizon T , the value u(t) ∈ R

n of the input is an
n-dimensional real vector (analogously for the output).

We denote by u1u2 : [0, T1+T2] → R
n the concatenation of signals u1 and u2

that have the same dimensions. Concatenation of more than two signals follows
naturally and is denoted u1u2u3 · · · . A constant input signal segment is writ-
ten (t, v), where t is a time duration and v ∈ R

n is a vector of input values. A
piecewise constant input signal is the concatenation of such segments.

In this work we adopt the syntax and robustness semantics of STL defined
in [12]. The syntax of an STL formula is thus given by

ϕ ::= ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ UI ϕ | �Iϕ | ♦Iϕ | μ, (1)

where the logical connectives and temporal operators have their usual Boolean
interpretations and equivalences, I is the interval of time over which the temporal
operators range, and atomic formulas μ ≡ f(x1, . . . , xm) > 0 are predicates over
the spatial dimensions of a trace. The robustness of trace y with respect to
formula ϕ, denoted ρ(ϕ,y), is calculated inductively according to the following
robustness semantics, using the equivalence ρ(ϕ,y) ≡ ρ(ϕ,y, 0).
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ρ(μ,y, t) = f(x1[t], . . . , xm[t]), for μ ≡ f(x1, . . . , xm) > 0
ρ(¬ϕ,y, t) = −ρ(ϕ,y, t)

ρ(ϕ1∨ϕ2,y, t) = max(ρ(ϕ1,y, t), ρ(ϕ2,y, t)) ρ(♦Iϕ,y, t) = max
t′∈t+I

(ρ(ϕ,y, t′))

ρ(ϕ1∧ϕ2,y, t) = min(ρ(ϕ1,y, t), ρ(ϕ2,y, t)) ρ(�Iϕ,y, t) = min
t′∈t+I

(ρ(ϕ,y, t′))

ρ(ϕ1UI ϕ2,y, t) = max
t′∈t+I

(
min

t′′∈[t,t′)
(ρ(ϕ1,y, t′′)),min(ρ(ϕ2,y, t′))

)

An important characteristic of the robustness semantics is that it is faithful to
standard boolean satisfaction, such that

ρ(ϕ,y) > 0 =⇒ y |= ϕ and ρ(ϕ,y) < 0 =⇒ y 	|= ϕ. (2)

Together, these equations justify using the robustness semantics ρ(ϕ,M(u)) to
detect whether an input u corresponds to the violation of a requirement ϕ.
This correspondence is exploited to find such falsifying inputs through global
hill-climbing optimization:

Find u∗ = arg min
u∈([0,T ]→Rn)

ρ(ϕ,M(u)) such that ρ(ϕ,M(u∗)) < 0. (3)

Of course, finding an adequate falsifying input u∗ is generally hard and subject
to the limitations of the specific optimization algorithm used.

Sound approximations of the lower and upper bounds of the robustness of
a prefix y can sometimes be used to short-cut the search. We thus define lower
and upper bounds in the following way.

Lower: ρ(ϕ,y) = min
y ′

ρ(ϕ,yy′) Upper: ρ(ϕ,y) = max
y ′

ρ(ϕ,yy′) (4)

A lower bound ρ(ϕ,M(u))) > 0 can be used to detect that a prefix cannot be
extended to a falsifying trace (e.g., after the deadline for a harmful event has
passed). An upper bound ρ(ϕ,M(u)) < 0 similarly implies M(uu′) 	|= ϕ for all
u′, concluding that input u is already a witness for falsification (e.g., a limit is
already exceeded). Robustness can be computed efficiently [11], as well as the
respective upper and lower bounds [13].

3 Approach

We wish to solve the following falsification problem efficiently:

Find u∗ such that ρ(ϕ,M(u∗)) < 0. (5)

Our approach is to repeatedly construct input signals u = u1u2u3 · · · , where ui

is drawn from a predetermined search space of candidate input segments, A.
The choice is probabilistic, according to a distribution D that determines the
search strategy, i.e., which inputs are likely to be tried next given a partially
explored search space. The construction of each input is done incrementally, to
take advantage of the potential short cuts described at the end of Sect. 2.



168 G. Ernst et al.

Algorithm 1 “adaptive Las Vegas Tree Search” (aLVTS) codifies the high
level functionality of this probabilistic approach, described in detail in Sect. 3.1.

The effectiveness of our algorithm in practice comes from the particular
choices of A and D, which let the search gradually adapt to the difficulty of
the problem. The set A (defined in Sect. 3.2) contains input segments of diverse
granularity, which intuitively corresponds to how precise the input must be in
order to find a falsifying trace. The distribution D (defined in Sect. 3.3) initially
assigns high probabilities to the “coarsest” input segments in A. Coarse here
means that the segments tend to be long in relation to the time horizon T and
large in relation to the extrema of the input space. The algorithm probabilis-
tically balances exploration and exploitation of segments, but as the coarser
segments become fully explored, and the property has not been falsified, the
algorithm gradually switches to finer-grained segments.

3.1 Algorithm

Algorithm 1 searches the space of input signals constructed from piecewise con-
stant (over time) segments, which are chosen at random according to the distri-
bution defined by D in line 6. This distribution is a function of the numbers of
unexplored and explored edges at different levels of granularity, and thus defines
the probabilities of exploration, exploitation and adaptation. The precise calcu-
lation made by D is described in Sect. 3.3.

As the search proceeds, the algorithm constructs a tree whose nodes each
correspond to a unique input signal prefix. The edges of the tree correspond to
the constant segments that make up the input signal. The root node corresponds
to time 0 and the empty input signal (line 4).

To each node identified by an input signal prefix u is associated a set of unex-
plored edges, unexplored(u) ⊆ A, that correspond to unexplored input signal
segments, and a set of explored edges, explored(u) ⊆ A, that remain inconclu-
sive with respect to falsification. Initially, all edges are unexplored (line 1 and line
2). Once an edge has been chosen (line 6), the unique signal segment associated
to the edge may be appended to the signal prefix associated to the node, to form
an extended input signal. If the chosen edge is unexplored, it is removed from
the set of unexplored edges (line 8) and the extended input signal uu′ is trans-
formed by the system into an extended output signal (line 9). If the requirement
is falsified by the output signal (y in line 10), the algorithm immediately quits
and returns the falsifying input signal (line 11). If the requirement is satisfied,
with no possibility of it being falsified by further extensions of the signal (12),
the algorithm quits the current signal (line 13) and starts a new signal from the
root node (line 4). This is the case, in particular, when the length of the signal
exceeds the time horizon of the formula as a consequence of the definition of ρ
in (4). If the requirement is neither falsified nor satisfied, the edge is added to
the node’s set of explored edges (line 14). Regardless of whether the chosen edge
was previously explored or unexplored, if the signal remains inconclusive, the
extended input signal becomes the focus of the next iterative step (line 15).
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Algorithm 1: Adaptive Las Vegas Tree Search (aLVTS)

Input:
system model M : u → y, with u : [0, t] → R

n and y : [0, t] → R
m,

time-bounded specification φ, set of all possible input trace segments A
Output:
u such that M(uu′) �|= φ for all u′, or ⊥ after timeout or maximum iterations

1 unexplored(u) ← A for all u
2 explored(u) ← ∅ for all u
3 repeat
4 u ← 〈〉
5 while unexplored(u) �= ∅ ∨ explored(u) �= ∅ do
6 sample u′ ∼ D(u)

7 if u′ ∈ unexplored(u) then
8 unexplored(u) ← unexplored(u) \ {u′}
9 y ← M(uu′)

10 if ρ(φ,y) < 0 then
11 return uu′

12 if ρ(φ,y) > 0 then

13 continue line 3

14 explored(u) ← explored(u) ∪ {u′}
15 u ← uu′

16 until timeout or maximum number of iterations;
17 return ⊥

While not explicit in the presentation of Algorithm 1, our approach is delib-
erately incremental in the evaluation of the system model. In particular, we
can re-use partial simulations to take advantage of the fact that traces share
common prefixes. Hence, for example, one can associate to every visited u the
terminal state of the simulation that reached it, using this state to initialize a
new simulation when subsequently exploring uu′. This idea also works for the
calculation of robustness. We note, however, that incremental simulations may
be impractical. For example, suspending and re-starting Simulink can be more
expensive than performing an entire simulation from the start.

3.2 Definition of A
The set A contains constant, n-dimensional input signal segments u′ with values
(v1, . . . , vn) ∈ R

n and time duration t. Let vi and vi denote the minimum and
maximum possible values, respectively, of dimension i ∈ {1, . . . , n}. For each
integer level l ∈ {0, . . . , lmax}, we define the set of possible proportions of the
interval [vi, vi] as

pl = {(2j + 1)/2l | j ∈ N0 ≤ (2l − 1)/2}.
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The numerators of all elements are coprime with the denominator, 2l, hence
pi ∩ pj = ∅ for all i 	= j. By definition, p0 also includes 0. Hence, p0 = {0, 1},
p1 =

{
1
2

}
and p2 =

{
1
4 , 3

4

}
, etc. The set of possible values of dimension i at

level l is thus given by
vi,l = vi + pl × (vi − vi).

Rather than making the granularity of each dimension independent, we interpret
the value of l as a granularity “budget” that must be distributed among the
(non-temporal) dimensions of the input signal. The set of possible per-dimension
budget allocations for level l is given by

bl = {(b1, ..., bn) ∈ N
n
0 | b1 + · · · + bn = l}.

For example, with n = 2, b3 = {(0, 3), (1, 2), (2, 1), (3, 0)}. If we denote the set
of possible time durations at level l by tl, then the set of possible input segments
at level l is given by

Al =
⋃

(b1,...,bn)∈bl

tl × v1,b1 × · · · × vn,bn .

Note that while tl is not required here to share the granularity budget, this
remains a possibility. Our implementation actually specifies tl by defining a fixed
number of control points per level, (k0, . . . , klmax), such that the tl = {T/kl} are
singleton sets. The sizes of various Al for different choices of n and l, assuming
|tl| = 1, are given in Table 1.

Table 1. Size of Al for input dimensionality n and level l given that |tl| = 1.

n l = 0 1 2 3 4 5 6 7 8 9 10

2 4 4 9 20 44 96 208 448 960 2048 4352

3 8 12 30 73 174 408 944 2160 4896 11008 24576

In summary, an input segment u′ = (t, v1, . . . , vn) ∈ Al has t ∈ tl and
corresponding budget allocation b1 + · · · + bn = l, with the value vi for each
dimension given by vi = vi + pi(vi − vi), where pi = (2ji + 1)/2bi , for some ji,
defines the proportion between minimum vi and maximum vi.

By construction, Ai ∩ Aj = ∅, for all i 	= j. Hence, we define

unexplored l(u) = unexplored(u) ∩ Al and
explored l(u) = explored(u) ∩ Al.

The set of all possible input signal segments is given by A = A0 ∪ A1 ∪ · · · ∪
Almax . Figure 1 depicts the construction of A for two dimensions. The majority of
candidate input points is concentrated on the outer contour, corresponding to an
extreme choice for one dimension and a fine-grained choice for the other dimen-
sion. While this bias appears extreme, as layers are exhausted, finer-grained
choices become more likely, e.g., after two points from A0 have been tried, all
remaining points from both levels in the second panel would be equally probable.
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–A0

–A1

–A2

–A2

–A3

–A3–A4

–A4

Fig. 1. Construction of A for n = 2 and lmax = 4, with A0 representing the extremes of
the two spatial dimensions. Showing A0 ∪A1 ∪A2 ∪A3 ∪A4. Larger points correspond
to more likely values. Many points lie on the contour: the algorithm tends to combine
finer choices in one dimension with coarse choices in the other dimension.

3.3 Definition of D
The distribution D(u) is constructed implicitly. First, a granularity level l ∈
{0, . . . , lmax} is chosen at random, with probability in proportion to the fraction
of edges remaining at the level, multiplied by an exponentially decreasing scaling
factor. Defining the overall weight of level l as

wl =
|unexplored l(u)| + |explored l(u)|

2l · |Al| ,

level l is chosen with probability wl/
∑lmax

i=0 wi.
Having chosen l, one of the following strategies is chosen uniformly at random:

1. select u′ ∈ unexplored l(u), uniformly at random;
2. select u′ ∈ explored l(u), uniformly at random;
3. select u′ ∈ explored l(u), uniformly at random from those that minimise

ρ(ϕ,M(uu′));
4. select u′ ∈ explored l(u), uniformly at random from those that minimise

ρ(ϕ,M(uu′u∗)), where u∗ denotes any, arbitrary length input signal suffix
that has already been explored from uu′.

Strategy 1 can be considered pure exploration, while strategies 3–4 are three
different sorts of exploitation. In the case that unexplored l(u) or explored l(u)
are empty, their corresponding strategies are infeasible and a strategy is chosen
uniformly at random from the feasible strategies. If for all u′ ∈ explored(u),
explored(uu′) = ∅, then strategy 4 is equivalent to strategy 3, but it is feasible.

4 Evaluation

We evaluate our approach on a selection of standard driving-related automotive
benchmarks, which are of particular interest to us and common in the falsification
literature. Each benchmark has at least one time-varying input to discover (the
motivation of aLVTS), in contrast to simply searching for an initial configuration.
In addition to experiments conducted by us, we include some recent results from
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the ARCH 2019 falsification competition [28]. Our selection is representative,
but not exhaustive, and note that there are some benchmarks used in [28] where
our algorithm does not work well. There are, however, benchmarks where our
algorithm is significantly better than the alternatives, motivating its potential
inclusion in an ensemble approach.

4.1 Benchmarks

Automatic Transmission. This benchmark was proposed in [16] and consists
of a Simulink model and its related requirements. The model has two inputs:
throttle and brake. Depending on the speed and engine load, an appropriate gear
is automatically selected. Besides the current gear g, the model outputs the car’s
speed v and engine rotations ω. We consider the following requirements:

AT1t = �[0,t] v < 120 AT2 = �[0,10]ω < 4750
AT5i = �[0,30]((g 	= i ∧ ◦ g = i) =⇒ ◦ �[0,2.5]g = i)

AT6t,v,ω =
(
�[0,10] v < v

) ∨ (
♦[0,t] ω < ω

)

ATX1i = �[0,30]

(
g = i =⇒ v > 10 · i

)
, i ∈ {3, 4}

ATX2 = ¬(
�[10,30]v ∈ [50, 60]

)

AT* are from [16], with AT5 here subsuming AT3 and AT4 of [16]. ATX* are
additional requirements with interesting characteristics. The syntax ◦ φ denotes
♦[0.001,0.1] φ. Note that for falsification, AT1 and AT2 require extreme inputs,
whereas AT6 and ATX2 require fine-grained inputs. The robustness scores of
AT5 and ATX1 can be ±∞ and are discontinuous at gear changes.

The input signal for the benchmarks is piecewise constant with 4 control
points for random sampling/Breach/S-TaLiRo, which is sufficient to falsify all
requirements. We choose 6 levels, with 2, 2, 3, 3, 3, 4 control points, respectively,
corresponding to a time granularity of input segment durations between 15 (=
30
2 , coarsest) to 7.5 (= 30

4 , finest).

Powertrain Control. The benchmark was proposed for hybrid systems verifica-
tion and falsification in [21]. Falsification tries to detect amplitude and duration
of spikes in the air-to-fuel AF ratio with respect to a reference value AF ref. Those
occur as a response to changes in the throttle θ. The input θ ∈ [0, 62.1) varies
throughout the trace, whereas ω ∈ [900, 1100] is constant. The abbreviation
μ = |AF − AF ref|/AF ref denotes the normalized deviation from the reference.

We consider requirements 27 from [21], which states that after a falling or
rising edge of the throttle, μ should return to the reference value within 1 time
unit and stay close to it for some time. We also consider requirement 29, which
expresses an absolute error bound.

AFC27 = �[11,50] (rise ∨ fall) =⇒ �[1,5] |μ| < β AFC29 = �[11,50]|μ| < γ

where rising and falling edges of θ are detected by rise = θ < 8.8∧♦[0,ε] 40.0 < θ
and fall = 40.0 < θ ∧ ♦[0,ε] θ < 8.8 for ε = 0.1. The concrete bounds β = 0.008
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and γ = 0.007 are chosen from [8,9,28] as a balance between difficulty of the
problem and ability to find falsifying traces.

The input signal is piecewise constant with 10 control points for all falsifica-
tion methods, specifically 5 levels with 10 control points each for aLVTS.

Chasing Cars. In the model from [17] five cars drive in sequence. The time
varying input controls the throttle and brake of the front car (each in [0, 1]),
while the other cars simply react to maintain a certain distance. We consider
five artificial requirements from [28], where yi is the position of the ith car.
FalStar uses the same input parameterization as for the AT benchmarks.

CC1 = �[0,100]y5 − y4 ≤ 40 CC2 = �[0,70]♦[0,30]y5 − y4 ≥ 15
CC3 = �[0,80]((�[0,20]y2 − y1 ≤ 20) ∨ (♦[0,20]y5 − y4 ≥ 40))
CC4 = �[0,65]♦[0,30]�[0,20]y5 − y4 ≥ 8
CC5 = �[0,72]♦[0,8]((�[0,5]y2 − y1 ≥ 9) → (�[5,20]y5 − y4 ≥ 9))

4.2 Experimental Results

We have implemented Algorithm 1 in the prototype tool FalStar, which is
publicly available on github, including repeatability instructions.1 In our own
experiments, we compare the performance of aLVTS with uniform random sam-
pling (both implemented in FalStar) and with the state-of-the-art stochastic
global optimization algorithm CMA-ES [18] implemented in the falsification tool
Breach.2 The machine and software configuration was: CPU Intel i7-3770, 3.40
GHz, 8 cores, 8 Gb RAM, 64-bit Ubuntu 16.04 kernel 4.4.0, MATLAB R2018a,
Scala 2.12.6, Java 1.8.

We compare two performance metrics: success rate (how many falsification
trials were successful in finding a falsifying input) and the number of iterations
made, which corresponds to the number of simulations required and thus indi-
cates time. To account for the stochastic nature of the algorithms, the experi-
ments were repeated for 50 trials. For a meaningful comparison of the number
of iterations until falsification, we tried to maximize the falsification rate for a
limit of 300 iterations per trial.

The number of iterations of the top-level loop in Algorithm 1 in our imple-
mentation corresponds exactly to one complete Simulink simulation up to the
time horizon. For random sampling and CMA-ES, the number of iterations like-
wise corresponds to samples taken by running exactly one simulations each.
Hence the comparison is fair and, as the overhead is dominated by simulation
time, the numbers are roughly proportional to wall-clock times.

1 https://github.com/ERATOMMSD/falstar.
2 https://github.com/decyphir/breach release version 1.2.9.

https://github.com/ERATOMMSD/falstar
https://github.com/decyphir/breach
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Table 2. Successes in 50 trials (“succ.”, higher is better) and number of iterations
averaged over successful trials (“iter.”, lower is better) of uniform random sampling,
Breach/CMA-ES, and FalStar/ Algorithm 1 for a maximum of 300 iterations per
trial. est results for each requirement are highlighted. AT6a: v = 80, ω = 4500. AT6b:
v = 50, ω = 2700. t = 30 in both cases.

Breach: FalStar:
Random CMA-ES aLVTS

succ. iter. succ. iter. succ. iter.
Req. /50 mean /50 mean /50 mean

AT130 43 106.6 50 39.7 50 8.5
ATX13 50 41.0 50 13.2 50 33.4
ATX14 49 67.0 6 17.8 50 23.4
ATX2 19 151.1 50 145.2 50 86.3
AT6a 36 117.3 50 97.0 50 22.8
AT6b 2 117.7 49 46.7 50 47.6

AFC27 15 129.1 41 121.0 50 3.9

Table 3. Results from the ARCH competition.
AT6a: t = 35, v = 80,. AT6b: t = 50, v = 50. AT6c:
t = 65, v = 50. ω = 3000 in all three cases.

S-TaLiRo: Breach: FalStar:
SOAR GNM aLVTS

succ. iter. succ. iter. succ. iter.
Req. /50 mean /50 mean /50 mean

AT120 50 118.8 50 11.0 50 33.0
AT2 50 23.9 50 2.0 50 4.3
AT51 50 26.7 41 74.6 50 69.5
AT52 50 4.1 49 72.0 26 125.3
AT53 50 3.4 49 74.5 50 70.8
AT54 50 10.5 21 84.9 50 71.1
AT6a 49 78.4 50 97.9 50 76.1
AT6b 33 132.6 49 112.9 50 82.4
AT6c 47 61.3 50 94.1 0 –

AFC27 50 70.3 50 3.0 50 3.9
AFC29 50 13.5 50 3.0 50 1.2

CC1 50 9.4 50 3.0 50 4.1
CC2 50 6.0 50 1.0 50 4.0
CC3 50 19.9 50 3.0 50 6.9
CC4 20 188.0 0 – 2 52.0
CC5 50 42.9 49 26.1 46 91.2

Table 2 summarizes our
results in terms of success
rate, and mean number of
iterations of successful trials.
The unambiguously (possibly
equal) best results are high-
lighted in blue. Where the
lowest average number of iter-
ations was achieved without
finding a falsifying input for
every trial, we highlight in
grey the lowest average num-
ber of iterations for 100% suc-
cess. We thus observe that
aLVTS achieves the best per-
formance in all but one case,
ATX13. Importantly, within
the budget of 300 iterations
per trial, aLVTS achieves a
perfect success rate. CMA-ES
is successful in 296 trials out
of the total 350, with sub
maximal success for ATX4

and AFC27. In comparison,
random sampling succeeds in
only 214 trials, with sub max-
imal success in all but ATX1.
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The number of iterations required for falsification varies significantly between
the algorithms and between the benchmarks. For the automatic transmission
benchmarks, as an approximate indication of relative performance, CMA-ES
requires about 50% more iterations than aLVTS, and random sampling requires
again twice as many as CMA-ES. For the powertrain model (AFC27), the per-
formance of aLVTS is more than an order of magnitude better: 3.9 iterations on
average, compared to 121 for CMA-ES.
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Fig. 2. Relative performance of falsification
algorithms with AFC27 powertrain require-
ment: fewer iterations and more successful
results are better.

Figure 2 compares all trial runs
for AFC27, ordered by the num-
ber of iterations required for falsi-
fication. Similar plots for the auto-
matic transmission benchmarks are
shown in Fig. 3. The shape of each
curve gives an intuition of the per-
formance and consistency of its cor-
responding algorithm. In general,
fewer iterations and more success-
ful results are better, so it is clear
that aLVTS performs better than
random sampling and CMA-ES.

To reinforce that the perfor-
mance of aLVTS is at least compa-
rable to other approaches, Table 3
presents some results of the recent
ARCH competition [28]. The values for S-TaLiro and Breach (in different con-
figurations to our experiments) were provided by the respective participants.

4.3 Discussion

For AT1, aLVTS quickly finds the falsifying input signal, as the required throttle
of 100 and brake of 0 are contained in level 0 and are very likely to be tried early
on. In contrast, even though this is a problem that is well-suited to hill-climbing,
CMA-ES has some overhead to sample its initial population, cf. Fig. 3(a).

While CMA-ES deals very well with ATX1 for i = 3, it struggles to find
falsifying inputs for i = 4 (cf. Figs. 3(c) and (d)). We attribute this to the fact
that reaching gear 4 by chance occurs rarely in the exploration of CMA-ES
when the robustness score is uninformative. aLVTS not only explores the spatial
dimensions, but takes opportunistic jumps to later time points, which increases
the probability of discovering a trace (prefix) where the gear is reached.

A priori, one would expect CMA-ES to perform well with ATX2 and AT6,
exploiting its continuous optimization to fine tune inputs between conflicting
requirements. E.g., ATX2 requires that v is both above 50 and below 60; AT4
requires that v is high while maintaining low ω, which is proportional to v.
One would similarly expect the limited discrete choices made by aLVTS to hin-
der its ability to find falsifying inputs. Despite these expectations, our results
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(a) Performance plot for AT1
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(b) Performance plot for ATX2
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(c) Performace plot for ATX13
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(d) Performance plot for ATX14
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(e) Plot for AT6 (v = 80, ω = 4500)
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(f) Plot for AT6 (v = 50, ω = 2700)

Fig. 3. Performance comparison for the automatic transmission benchmark.

demonstrate that in most situations aLVTS converges to a falsifying input more
consistently and with fewer iterations than CMA-ES. We speculate that this
is because CMA-ES is too slow to reach the “sweet spots” in the input space,
where its optimization is efficient.
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For ATX2, there are a few instances where aLVTS does not quickly find a
good prefix towards the corridor v ∈ [50, 60] at time 10 (the rightmost points in
Fig. 3(b)), which can be explained by the probabilistic nature of the search.

Regarding two instances of AT6 in Figs. 3(e) and (f), the graph for aLVTS
is generally smoother and shallower, whereas CMA-ES shows consistent perfor-
mance for only some of the trials but takes significantly more time on the worst
10 trials. We remark that the two parameter settings seem to pose opposite dif-
ficulty for the two algorithms, as CMA-ES is significantly quicker for two thirds
of the trials for the second instance. It is unclear what causes this variation in
performance of CMA-ES.

The plateaux apparent in some of the results using CMA-ES are difficult to
explain, but suggest some kind of procedural logic or counter to decide termi-
nation. In contrast, the curves for random sampling and aLVTS are relatively
smooth, reflecting their purely probabilistic natures.

For the results in Table 3, Breach was configured to use the GNM algorithm,
which has a phase of sampling extreme and random values, thus sharing some
of the characeristics of the aLVTS algorithm. As a consequence, many results of
these two approaches are quite similar. A take-away is that algorithms that use
random sampling in a disciplined way but are otherwise fairly simple work well
on many falsification problem. There is no best overall tool: S-TaLiRo is quickest
on the AT5 requirements involving discrete gear changes, whereas GNM yields
the best results for the chasing cars model.

The AT and CC results for aLVTS show its capability to adapt to the (infor-
mal) difficulty of the problem, where the number of iterations increases but the
falsification rate stays high. For AT52 and AT6b in Table 3 we conjecture that
the available granularities of the search space are misaligned with the actual
values to find a violation. Precisely, the required values are not contained in a
set Ai that is sampled within the budget of 300; i is too large.

5 Related Work

The idea to find falsifying inputs using robustness as an optimization function
originates from [15] and has since been extended to the parameter synthesis
problem (e.g., [22]). Approaches to make the robustness semantics more infor-
mative include [3,14], which use integrals instead of min/max in the semantics of
temporal operators. Two mature implementations in MATLAB are S-Taliro [4]
and Breach [10], which have come to define the benchmark in this field. Users of
S-Taliro and Breach can select from a range of optimization algorithms, includ-
ing Uniform Random, Nelder-Mead, Simulated Annealing, Cross-Entropy and
CMA-ES. These cover a variety of trade-offs between exploration of the search
space and exploitation of known good intermediate results.

Underminer [5] is a recent falsification tool that learns the (non-) convergence
of a system to direct falsification and parameter mining. It supports STL formu-
las, SVMs, neural nets, and Lyapunov-like functions as classifiers. Other global
approaches include [1], which partitions the input space into sub-regions from
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which falsification trials are run selectively. This method uses coverage metrics
to balance exploration and exploitation. Comprehensive surveys of simulation
based methods for the analysis of hybrid systems are given in [6,23].

The characteristic of our approach to explore the search space incremen-
tally is shared with rapidly-exploring random trees (RRTs). The so-called star
discrepancy metric guides the search towards unexplored regions and a local
planner extends the tree at an existing node with a trajectory segment that
closely reaches the target point. RRTs have been used successfully in robotics [24]
and also in falsification [13]. On the other hand, the characteristic of our app-
roach taking opportunistic coarse jumps in time is reminiscent of stochastic local
search [7] and multiple-shooting [31].

Monte Carlo tree search (MCTS) has been applied to a model of aircraft
collisions in [25], and more recently in a falsification context to guide global
optimization [30], building on the previous idea of time-staging [29]. That work
noted the strong similarities between falsification using MCTS and statistical
model checking (SMC) using importance splitting [19]. The robustness seman-
tics of STL, used in [29,30] and the present approach to guide exploration, can
be seen as a “heuristic score function” [20] in the context of importance split-
ting. All these approaches construct trees from traces that share common prefixes
deemed good according to some heuristic. The principal difference is that impor-
tance splitting aims to construct a diverse set of randomly-generated traces that
all satisfy a property (equivalently, falsify a negated property), while falsifica-
tion seeks a single falsifying input. The current work can be distinguished from
standard MCTS and reinforcement learning [26] for similar reasons. These tech-
niques tend to seek optimal policies that make good decisions in all situations,
unnecessarily (in the present context) covering the entire search space.

6 Conclusion

The falsification problem is inherently hard (no theoretically best solution for
all examples can exist), but our simple approach can provide useful results in
isolation or as part of an ensemble. We have demonstrated this by matching and
outperforming existing state-of-the-art methods on a representative selection
of standard benchmarks. We hypothesize the reason our approach works well
stems from the fact that there tends to be a significant mass of simple falsifying
inputs for common benchmarks. As future work we will test this hypothesis
(and the limits of our approach) by applying our algorithm to a wider range of
benchmarks. In addition, we propose to fine-tune the probabilities of exploration
vs. exploitation, and find better inputs by interpolating from previously seen
traces, in a manner reminiscent of the linear combinations computed by the
Nelder-Mead algorithm.
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Abstract. Hybrid Petri nets have been extended to include general
transitions that fire after a randomly distributed amount of time. With a
single general one-shot transition the state space and evolution over time
can be represented either as a Parametric Location Tree or as a Stochastic
Time Diagram. Recent work has shown that both representations can be
combined and then allow multiple stochastic firings. This work presents
an algorithm for building the Parametric Location Tree with multiple
general transition firings and shows how its transient probability distri-
bution can be computed. A case study on a battery-backup system shows
the feasibility of the approach.

Keywords: Petri nets · Stochastic hybrid model ·
Transient probability

1 Introduction

Hybrid Petri nets with general transitions (HPnG) [9] extend Hybrid Petri nets
[1] by adding stochastic behaviour through general transitions with a randomly
distributed delay. HPnGs provide a high-level formalism for a class of stochastic
hybrid systems with piece-wise linear continuous behaviour without resets and a
probabilistic resolution of non-determinism. Hybrid Petri nets have been shown
useful for the evaluation of critical infrastructures [7,15], even though they have
previously been restricted to a single random variable. This paper shows how
the state-space of a Hybrid Petri net with multiple general transition firings
can be constructed as a Parametric Location Tree (PLT) [9] and analyzed over
time. As such, this paper provides the missing link to recent work [13,14] which
provides model checking capabilities for HPnGs with multiple random variables,
assuming the existence of the Parametric Location Tree.

The approach of this paper is twofold: Firstly, a purely numerical iterative
algorithm for the construction of a PLT in the presence of a finite but arbitrary
number of stochastic firings before a certain maximum time is presented. This
algorithm is based on introducing an order on the random variables that occur
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due to the firing of general transitions. Each of these firings influences the evo-
lution of the Petri net. The idea of parametric analysis, as presented in [9], is to
collect values of random variables into intervals, which lead to a similar system
evolution. These intervals are called potential domains.

Secondly, to facilitate a transient analysis, we identify those parametric loca-
tions the HPnG can be in at a specific point in time (the so-called candidates)
and compute those subsets of the domains of the random variables present, for
which the HPnG is guaranteed to be in a specific candidate. A multi-dimensional
integration over these so-called time-restricted domains yields a transient distri-
bution over locations.

Previous work had to restrict the number of general transition firings, since (i)
identifying the potential domains of child locations requires linear optimization,
(ii) transient analysis relies on multi-dimensional integration over polytopes. For
one random variable, this was solved using the simplex method and discretization
[9]. For two random variables, [8] used hyperplane arrangement and triangulation
to compute numerically exact results. Vertex enumeration was proposed in [14] to
construct a PLT for an arbitrary but finite number of stochastic firings, but did
not provide a general algorithm. The strict order on the firings of the general
transitions, as in this paper, simplifies the computation of the child locations
to solving linear inequalities. This allows the implementation of (i) an efficient
iterative algorithm for constructing the PLT up to a certain maximum time and
(ii) a transient analysis based on Fourier-Motzkin variable elimination.

A scalable case study on a battery backed-up system shows the feasibility of
the approach and discusses its performance.

Related Work. Hybrid Petri nets without general transitions form a subclass
of non-initialized singular automata [1]. Hence, un-bounded reachability is not
decidable, and [8,9] resort to computing time-bounded reachability, however
only in the presence of at most two random variables. Approaches for Hybrid
automata extended with discrete probability distributions [16,21,22,24] compute
time-bounded reachability using abstraction.

Another variant of Petri nets with hybrid and stochastic behaviour are FSPNs
[10,12], which only allow exponentially distributed and immediate discrete tran-
sitions. Related Petri net approaches are all restricted w.r.t. the number of con-
tinuous variables [11] or to Markovian jumps [5]. Semi-Markov processes have
been used to evaluate the dependability of uninterrupted power supply (UPS)
systems [23] and Stochastic Activity networks have been used to study the resi-
lence of smart grid distribution networks [2]. They are however restricted to
negative exponential stochastic behaviour.

Organisation. Section 2 recalls the modeling formalism, Sect. 3 repeats the Para-
metric Location Tree. Section 4 introduces its construction for an arbitrary but
finite number of random variables. Transient analysis is explained in Sects. 5 and
6 presents a feasibility study. Section 7 concludes the paper.
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2 The Model Formalism of HPnGs

Syntax. Hybrid Petri nets with multiple general transition firings (HPnG) con-
sist of the three components places, transitions and arcs. HPnGs extend hybrid
Petri nets [1] with so called general transitions [9]. Places are either discrete or
continuous. Any discrete place P d

i ∈ Pd holds a marking of mi ∈ N0 tokens and
any continuous place P c

j ∈ Pc holds a continuous marking described by a fluid
level xj ∈ R

+
0 . A continuous place has a predefined upper bound. The lower

bound is always zero. The initial marking M0 is given by the initial number of
tokens m0 and fluid levels x0 of all places. Transitions change the marking upon
firing, i.e. they change the content of discrete and continuous places. How to
change the content is defined by assigning weights and priorities to discrete and
continuous arcs, i.e., Ad ∈ Ad and Af ∈ Af respectively. They connect places
and transitions and depending on the direction of connection, corresponding
places are called input or output places. General, deterministic and immediate
transitions, together also called discrete transitions, change the discrete marking.
A discrete transition is enabled when its input places match the weight of their
connecting arcs. A continuous transition is enabled if all connected input places
hold fluid. Guard arcs At ∈ At may further influence the enabling of transitions.
They carry a comparison operator and a weight. A discrete guard arc connects
a discrete place to any transition and conditions its enabling on the comparison
of the discrete marking and its weight. Correspondingly, continuous places may
be connected to (only) discrete transitions via (continuous) guard arcs. Discrete
transitions are each associated with a clock ci, which if enabled evolves with
dci/dt = 1, otherwise dci/dt = 0. Note that upon disabling, the clock value
is preserved. For general transitions this corresponds to the preemptive resume
strategy. A deterministic transition TD

k ∈ T D fires when ci reaches the prede-
fined transitions firing time. For an immediate transition T I

k ∈ T I the predefined
firing time is always zero. The firing time of a general transition TG

m ∈ T G is
modelled by a cummulative distribution function (CDF), which is assumed to be
absolutely continuous. Each stochastic firing results in a random variable that
follows the CDF of the general transition.

Rate adaptation. Every static continuous transition TF
n ∈ T F has a constant

nominal flow rate. Dynamic continuous transitions TDyn
o ∈ T Dyn represent a

set D ⊂ T F of static continuous transitions. Hence their nominal flow rate
is a function of the actual flow rates of all static continuous transitions in D
(c.f. [7]). Continuous transitions change the fluid level of connected input and
output places with a constant rate. The rates of transitions that are connected
to a continuous place that is at either of its boundaries require rate adaptation
(c.f. [9]), which changes the actual flow rate. At the upper boundary the inflow
is decreased to match the outflow and at the lower boundary, the outflow is
reduced accordingly. A continuous place then evolves with a drift, which equals
the sum of the actual inflow rates minus the sum of the actual outflow rates. If
multiple immediate or deterministic transitions fire at the same time, this conflict
is resolved using priorities and weights. For details on conflict resolution and the
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concept of enabling c.f. [9]. The probability that a general transition fires at the
same time as a deterministic one is zero. We exclude zeno behaviour by banning
cycles of immediate and general transitions. Section 3 further describes the model
evolution and the interplay between stochastic and deterministic transitions.

Model Evolution. A state of an HPnG is a tuple Γ = (m,x, c,d,g, e), where m is
the discrete marking, x the continuous marking, c contains for each deterministic
transition the enabling time. The drift d describes the current change of fluid
level per time unit for each continuous place, g contains the enabling time for
the general transitions, and e describes the enabling status of all transitions.
Events trigger changes in states as introduced in [9,19]:

Definition 1. An event Υ (Γi, Γi+1) = (Δτi+1, εi+1) describes the change from
one state Γi to another state Γi+1, with εi+1 ∈ Pc ∪T I ∪T D ∪T G ∪At specifying
the model element that caused the event. Note that Δτi+1 ∈ R

+
0 is a relative time

between two events, such that one of the following conditions is fulfilled:

1. An immediate, deterministic or general transition fires, such that mi �=
mi+1 ∧ εi+1 ∈ T I ∪ T D ∪ T G.

2. A continuous place reaches its lower or upper boundary, such that di �= di+1∧
εi+1 ∈ Pc.

3. A guard arc condition is fulfilled or stops being fulfilled, such that ei �= ei+1 ∧
εi+1 ∈ At.

The set of all possible events which can occur in state Γi is finite and its size
depends on the number of continuous places, the number of guard arcs and the
number of enabled discrete transitions. It is denoted E(Γi) and the set of events
with minimum remaining time for that state is defined as follows:

Emin(Γi) = {Υj(Γi, Γj) ∈ E(Γi) |�Υk(Γi, Γk) ∈ E(Γi) : Δτk < Δτj}. (1)

Note that multiple events can happen at the same point in time, e.g. due to
conflicts between deterministic transitions or due to the scheduling of stochastic
transitions. We split the set Emin(Γi) into two subsets, representing the next
random events Emin

ran (Γi) and the set of all next deterministic events Emin
det (Γi) =

Emin\Emin
ran (Γi). The next minimum event time is unique before the first stochastic

firing, it simply is the minimum of the remaining times to fire of all enabled
deterministic transitions. After at least one stochastic firing, the entry time
of locations, the clocks and the continuous marking may linearly depend on
random variable(s). The computation of the next minimum event then is based
on polynomials and not scalars. Hence, after at least one stochastic firing the set
of deterministic events with minimum remaining time may consist of more than
one element. Their remaining time to fire is derived by minimizing the elements
of ΔTmin

det (Γi) over the support of the random variables that already have fired,
where

ΔTmin
det (Γi) = {Δτm ∈ R

+
0 |∃Υ (Γi, Γm) ∈ Emin

det (Γi)}. (2)
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3 The Parametric Location Tree

The evolution over time until a fixed maximum time τmax of an HPnG can
be described as a so-called Parametric Location Tree [9,14]. Each node in the
tree is called a parametric location and represents a set of states. The edges of
a PLT represent events. The event corresponding to the edge is called source
event w.r.t. the child node location. Extending previous notation, a parametric
location is now described as a tuple Λ = (ID, t, p, Γ,S,o), where the entry time is
Λ.t, the probability of choosing that specific location with identifier Λ.ID is Λ.p
w.r.t. the parent node. Λ.Γ denotes the unique state of the HPnG when entering
the location and Λ.S denotes the potential domain of the random variables as
described in the following. There can be multiple general transitions present in
the system and each can possibly fire multiple times. The firing order is unique
for each parametric location and hence is stored as vector Λ.o.

Each firing of a general transition corresponds to a random variable which
equals the enabling time between two consecutive firings. The random variable
corresponding to the j-th firing of TG

i is denoted sj
i and is added to o upon the

firing of the transition. The r-th stochastic firing is then stored in o[r]. A new
random variable is instantiated each time a general transition becomes enabled.
Hence, the number of random variables n equals the number of stochastic firings
plus the number of general transitions that are currently enabled. Concurrently
enabled general transitions yield competing random variables of potentially dif-
ferent distributions, whereas consecutive firings of a single general transition
result in a series of identically distributed random variables.

As the number of stochastic firings differ per location, the size of the potential
domains, as indicated by |S|, also differs. The potential domain for a random
variable sj

i in location Λ collects all values of the domain of sj
i which are possible

in that location. This is stored in Sj
i as a lower and an upper boundary Sj

i .l ≤
Sj

i .u, such that sj
i ∈ [Sj

i .l, Sj
i .u]. This extends the definition presented in [14] by

separately collecting the possible intervals for each general transition.
The PLT of an HPnG is defined as a tree (V,E, vΛ0), where V is the set of

nodes representing the parametric locations of the HPnG. E is the set of edges
with ei = (vΛj

, vΛk
) ∈ E for vΛj

, vΛk
∈ V if an event Υ (Λj .Γ, Λk.Γ ) exists which

leads from the parametric location Λj to its child location Λk. The root node
vΛ0 represents the initial location. The PLT is iteratively constructed by adding
a child location Λc for each possible event that can take place from a given
parametric location. The finite set of possible next events (c.f. Eq. 1) together
with the exclusion of cycles of immediate and general transitions in the model
definition yields a finite PLT if computed up to time τmax.

The absolute point in time at which the event takes place is then stored as
the locations entry time Λc.t. The other parameters of the location are derived
by executing the event in the HPnG. The random variable domain for a spe-
cific child location is derived from the parent location, by taking into account
the event that leads to the specific location. Since the location entry times may
depend on previously expired random variables, the set which consists of the
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remaining minimum times for all deterministic events ΔTmin
det (Λp.Γ ) may con-

tain more than one element and the order of the timed events depends on the
values of the random variables that have expired. Since different child nodes
symbolically describe sets of values leading to different system evolutions, the
resulting potential domains are always disjoint for non-conflicting successors.

4 Random Variables Support

When allowing more than one stochastic firing the construction of the PLT
becomes more complex [14]. For each enabled general transition, at least one
location is added as child node, where the edge represents its next firing before
every other event. Additionally, each general transition needs to be scheduled
after each minimum deterministic event. Hence, if there are n deterministic
events, for each enabled general transition, first n+1 child nodes are generated,
with one edge for the general transition firing and n for all possible determinis-
tic next events Emin

det (Γi). The deterministic next events and the enabled general
transitions can then be arranged in two different ways: (i) either deterministic
events are scheduled first (ii) or a general transitions fires before the next deter-
ministic events. We need to consider all possible combinations of deterministic
events and general transitions firings and we need to adjust the boundaries in
all cases accordingly, which is discussed in the following.

4.1 Adjust Boundaries for Expired Random Variables

Each parametric location provides an interval Sj
i of possible values for all ran-

dom variables as previously described. The bounds of those intervals may depend
on firings with a lower order. When scheduling the deterministic successors of
a location, we first need to compute the set of minimum events. In case this
set contains more than one element, their order depends on the values of other
random variables. This is handled by adjusting the potential domains of the cor-
responding random variables per event, such that each event takes place before
all other minimum events for all values in the potential domain of the corre-
sponding successor location.

The computation of the correct potential domains corresponds to minimizing
the time to the minimum event over the domain of all random variables. In
earlier work this has been solved, e.g., using the simplex method [9] in case
of one random variable, hyperplane arrangement in the case of two [8] or as
suggested by [14] using vertex enumeration. Instead, this paper defines a strict
total order ≺ on the random variables that is based on their firing order: Let sj

i

and sl
k be two random variables, then sj

i ≺ sl
k holds iff the i-th general transition

fires for the j-th time before the k-th general transition fires for the l-th time:
∃u, v ∈ N : o[u] = sj

i ∧o[v] = sl
k∧u < v ⇒ sj

i ≺ sl
k. This ensures that the interval

of a random variable sj
i may only depend on earlier expired random variables

sl
k. The interval bounds of a random variable sj

i can in general be described by
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two linear expressions:

sj
i ∈ Sj

i = [a0 +
∑

sj
i≺sl

k

aj
i · sj

i , b0 +
∑

sj
i≺sl

k

bj
i · sj

i ], with a0, a
j
i , b0, b

j
i ∈ R. (3)

Each interval bound is given by the sum of previously expired random variables,
each potentially multiplied with a real constant, which relates to the firing of
deterministic transitions. In the following we describe how these bounds can be
computed.

Scheduling the deterministic successors of a parametric location Λp, the set
of minimum events Emin

det (Λp.Γ ) is required. When generating a child location
for a deterministic successor, the potential domains of the expired random vari-
ables are determined and stored for all deterministic events Υ (Λp.Γ, Λc.Γ ) ∈
Emin
det (Λp.Γ ). If the set ΔTmin

det (Λp.Γ ) contains more than one value, the inter-
vals of the potential domains for the (expired) random variables have to be
limited for the corresponding deterministic successor, such that its source event
Υ (Λp.Γ, Λc.Γ ) = (Δτc, εc), takes place before any other event. Hence Δτc is
smaller than or equal to the remaining time for any other event:

∀Δτ∗ ∈ ΔTmin
det (Λp.Γ ) : Δτc ≤ Δτ∗. (4)

Hence, the potential domain of the random variables in Λc is computed by
comparing Δτc in a pairwise fashion to each other value Δτ∗ ∈ ΔTmin

det (Λp.Γ )
and limiting the intervals of the corresponding random variables such that Eq. 4
holds for the included potential domains. Having Δτc = Δτ∗ means that both
linear expressions intersect. Note that this results in closed intervals for the
potential domains with overlapping interval bounds, which however does not
make a difference, since the probability for such case equals zero. The com-
putation can be done by considering only random variables which correspond
to firings in the past, i.e. with a lower order, since only past firings can affect
clocks and markings and the remaining time to fire, as stored in ΔTmin

det (Λp.Γ ).
Since Δτc is compared to the other remaining times one-by-one, we first present
the pairwise comparison in the following and then explain how the results are
brought together to obtain the potential domains for the child location Λc. The
remaining times to fire, Δτc and each Δτ∗ ∈ ΔTmin

det (Λp.Γ ) for α0, αz, β0, βz ∈ R

and n = |S|, can be written as:

Δτc = α0 +
n∑

z=1

αz · o[z], and Δτ∗ = β0 +
n∑

z=1

βz · o[z]. (5)

According to Eq. 3 also the expressions above are dependent on the random
variables in firing order. Each variable may again be multiplied by a real constant,
which calculation is presented below. The intervals for any random variable o[z]
with the same multiplier in both linear expressions, i.e. αz = βz, do not need
to be adapted since the validity of Δτc ≤ Δτ∗ is independent of this random
variables.
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Using these linear expressions, the inequality Δτc ≤ Δτ∗ can be solved for
a specific random variable, i.e., the random variable with the highest order for
which the multipliers differ in both inequalities. Hence, to ensure that the con-
dition Δτc ≤ Δτ∗ is fulfilled, it is sufficient to limit the intervals of the potential
domain of this specific random variable, such that the rearranged inequality
(that is solved for this random variable) is fulfilled. Precisely, we determine the
maximum index k with respect to the order ≺, for which αk �= βk holds. If no
such index k exists, it follows that Δτc = Δτ∗. This results in two events with
the same remaining occurrence time. In this case only the event with the higher
order (c.f. Table 1 in [9]) is considered. If both events have the same order, the
conflict resolution (c.f. Section 3.4 in [9]) is used to compute probabilities and
Λc.p is updated accordingly. In this case the potential domains of the random
variables do not need to be adjusted. Due to the definition of Emin

det (Γi), if such a
maximum index k exists, it needs to be larger than zero. Otherwise, the linear
expressions of the remaining times Δτc and Δτ∗ would be parallel functions and
one of the remaining event times is always larger and hence the corresponding
event is not included in Emin

det (Γi). For any k > 0, the potential domain of the
random variable o[k] is adjusted by rearranging the inequality Δτc ≤ Δτ∗ as:

α0+
n∑

z=1

αz ·o[z] ≤ β0+
n∑

z=1

βz ·o[z] ⇔ (αk−βk)·o[k] ≤ (β0−α0)+
k−1∑

z=1

(βz−αz)·o[z].

(6)
First Δτc as well as Δτ∗ are replaced by the expressions presented in Eq. 5.
Then both summations are combined on the right side of the inequality and the
largest differentiating term, i.e., the one with index k, is pushed to the left side

of the inequality. The sum
n∑

z=k+1

(βz − αz) · o[z] can be omitted since ∀z > k :

βz − αz = 0. Rearranging the inequality and dividing it by αk − βk, which
is always possible, as αk − βk �= 0 by definition of the index k. We need to
distinguish two cases: Case αk > βk:

(αk − βk) · o[k] ≤ (β0 − α0) +
k−1∑

z=1

(βz − αz) · o[z]

⇒αk>βk
o[k] ≤ β0 − α0

αk − βk
+

k−1∑

z=1

βz − αz

αk − βk
· o[z].

(7)

The upper bound for the random variable sj
i stored in o[k] is adjusted as follows:

Λc.S
j
i =

[
Λc.S

j
i .l,

β0 − α0

αk − βk
+

k−1∑

z=1

βz − αz

αk − βk
· o[z]

]
. (8)
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Algorithm 1 . scheduling child locations

1: for all (deterministicEvent Υ : Emin
det (Λp.Γ )) do

2: Λc := generateChild();

3: Λc.setExpiredRVBounds(Υ);

4: for all (s: enabled RV) do

5: Λc.s.l = Λp.s.l + Δτc; {Eq 11}
6: Λc′ := generateChild();

7: Λc′.copyExpiredRVBounds(Λc);

8: Λc′.s.u = Λp.s.l + Δτc; {Eq. 12}
9: for all (s’ : enabled RV) do

10: if (s != s’) then

11: Λc′.s’.l = Λp.s’.l + s - Λp.s.l; {Eq. 13}

Case αk < βk:

(αk − βk) · o[k] ≤ (β0 − α0) +
k−1∑

z=1

(βz − αz) · o[z]

⇒αk<βk
o[k] ≥ β0 − α0

αk − βk
+

k−1∑

z=1

βz − αz

αk − βk
· o[z].

(9)

The lower bound for the random variable sj
i stored in o[k] is adjusted as follows:

Λc.S
j
i =

[
β0 − α0

αk − βk
+

k−1∑

z=1

βz − αz

αk − βk
· o[z], Λc.S

j
i .u

]
. (10)

Repeating the pairwise comparison for every Δτ∗ ∈ ΔTmin
det (Λp.Γ ), we store

the resulting upper and lower bounds and set the potential domain for child
Λc by taking the maximum of the pair-wisely computed lower bounds and the
minimum of the corresponding upper bounds. This ensures that the resulting
potential domain for each random variable equals the intersection of all intervals
obtained by the pairwise comparison of Δτc and any Δτ∗ ∈ ΔTmin

det (Λp.Γ ). In the
following, we assume that for the child location Λc with source event Υ the above
explained procedure is summarized in the function Λc.setExpiredRVBounds(Υ ).

For each scheduled child location Λc, the potential domains further need to
be adjusted in case one or more general transitions are currently enabled in the
parent location. This is discussed in the following section, where we assume that
for all expired random variables, the potential domains in Λc′ .S are set to the
corresponding potential domains in Λc.S, that have been determined in the pro-
cedure described above, by calling a function Λc′.copyExpiredRVBounds(Λc).

4.2 Scheduling the Child Locations

After computing the potential domains for each minimum next event, the corre-
sponding child location needs to be scheduled for each combination of possible
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next deterministic event and each enabled stochastic firing. This requires iterat-
ing over all elements in the set of minimum deterministic events, generating the
corresponding child locations and computing the potential domains for already
expired random variables, as explained in the previous section. Then the firings
of all enabled general transitions need to be scheduled before each minimum
next event and the corresponding child locations are generated. To ensure that
all random variables are scheduled once before and once after each minimum
next event, the potential domains of the currently enabled random variables
need to be further restricted.

Algorithm 1 presents pseudo code for the scheduling of all child locations for
a given parametric location Λp. In Line 2 generateChild() creates a location
for each child Λc for every event in the set of minimum deterministic events Emin

det .
The entry time of each child location Λc.t is set to Λp.t+Δτc and the boundaries
for expired random variables are adjusted as explained in the previous section by
calling the function Λc.setExpiredRVBounds(Υ ) (Line 3). In order to schedule
all competing general transition firings after the event Υ (Λp.Γ, Λc.Γ ) = (Δτc, εc),
the lower interval bound for each of the still enabled random variables is increased
by Δτc in the location Λc (Lines 5–6). Formally, the lower interval bound of
the potential domain Λc.S

j
i is adapted by increasing the lower bound of the

corresponding potential domain Λp.S
j
i :

Λc.S
j
i .l = Λp.S

j
i .l + Δτc. (11)

After adapting the already scheduled successors which correspond to determin-
istic events, we need to schedule each enabled stochastic firing before each of the
deterministic events. This requires the construction of new parametric locations.

Hence, for each enabled stochastic firing, i.e., for each event Υ (Λp.Γ, Λc′ .Γ ) =
(Δτc′ , εc′) ∈ Emin

ran (Λp.Γ ) one or more new parametric locations Λc′ need to be
constructed (Line 7) and the potential domains of the expired random variables
are inherited from the corresponding deterministic location Λc by calling the
function Λc′.copyExpiredRVBounds(Λc) (Line 8).

Furthermore, the upper interval bound for the potential domain of the ran-
dom variable sj

i is decreased in the new child location Λc′ , such that the general
transition fires before any other competing event occurs (Lines 9–10). Hence, sj

i

cannot take any value that is larger than the sum of its previous upper bound
in the parent location Λp and the time to the next competing event.

The upper interval bound in the domain Λc′ .Sj
i of the child location is

decreased to ensure that the enabled random variable sj
i fires first:

Λc′ .Sj
i .u = Λp.S

j
i .l + Δτc. (12)

Next, the potential domains for all other enabled random variables have to
be adjusted, such that the corresponding firings do not occur before the firing
related to sj

i takes place. Hence, for all enabled random variables (except sj
i ), the

potential domain is adjusted (Lines 11–16). For every random variable sv
u �= sj

i

that corresponds to the v-th firing of transition TG
u ∈ T G, which is enabled in

Λp.Γ , the lower interval bound is increased in the potential domain Λc′ .Sv
u:



192 J. Hüls et al.

Λc′ .Sv
u.l = Λp.S

v
u.l + sj

i − Λp.S
j
i .l. (13)

Furthermore, the support of the random variable sj+1
i that corresponds to

the next firing of TG
i has to be initialized if TG

i is still enabled in Λc′ .Γ . The
interval is then always set to Sj+1

i = [0,∞). All of the new child locations Λc

and Λc′ together create the set of children of location Λp, i.e. children(Λp).
The computational complexity of Algorithm 1 follows the nested for loops and

is in O(n2 × |Emin
det (Λp.Γ )|), where n = |S| forms an upper bound on the number

of enabled random variables. The size of Emin
det (Λp.Γ ) depends on the number

of continuous places, guard arcs and immediate and deterministic transitions,
which are present in the model.

5 Transient Analysis

Transient analysis computes the probability to be in a certain state of the model
at time t′. This can easily be extended to computing the probability that the
model fulfills a certain atomic property, w.r.t. the discrete or continuous marking.
As the PLT is a symbolic representation of the state space evolution over time,
the system can be in different parametric locations at time t′, depending on the
values of the random variables. For each of these so-called candidate locations,
the subset of the potential domains need to be computed for which the system
actually is in that location at time t′. The transient probabilities can then be
computed by integrating over the computed subsets.

5.1 Candidate Locations and Restricting Their Potential Domains

Since the entry time Λ.t of a location Λ depends on the potential domain of the
random variables Λ.S, the entry time point is a linear function of the random
variables. However, we can specify the minimum entry time, i.e., the earliest pos-
sible entry time Λ.tentrymin of a location Λ. Accordingly, Λ.tentrymax specifies the latest
possible entry time into a specific location. To identify the candidate locations
for t′, also the latest possible exit time of a location needs to be considered,
which is obtained as the latest maximum entry time of all child locations:

Λ.texitmax = max{Λc.t
entry
max | Λc ∈ children(Λ)}. (14)

Note, that the number of locations in the tree for a maximum considered time
τmax is finite, according to [14]. To obtain candidate locations for a specific time
t′ we check for each location of the PLT, whether the potential domains are such
that values for random variables exist, that bring the system in that location
at time t′. This is done by checking whether Λ.tentrymin ≤ t′ and Λ.texitmax ≥ t′. If
the first condition is violated, the entry time of the location Λ is guaranteed
to be later than the considered time point, and hence its children do also not
need to be considered as candidates. The second condition ensures that it is
possible to still be in location Λ at time t′. In case this condition is violated, the



State-Space Construction of Hybrid Petri Nets 193

child locations of Λ still need to be considered as candidates. Hence, the set of
candidate locations Ct′ at time t′ equals Ct′ = {Λ ∈ V | Λ.tentrymin ≤ t′ ≤ Λ.texitmax}.

The earliest and latest possible entry time of a parametric location Λ are com-
puted iteratively by replacing random variables by their lower or upper bound-
aries. The boundaries of a random variable may depend on random variables
with a lower order, i.e. that fired earlier. These dependencies need to be resolved
when minimizing the entry time of a location or maximizing the entry time of
its children. Using the previously defined order, the linear equation defining Λ.t
can be rearranged such that the random variables together with their factors
occur according to their firing order: Λ.t = f0 +

∑n
k=1 fk · o[k].

By iterating over the random variables it is possible to resolve their depen-
dencies and to minimize the entry time at the same time. In case random variable
sj

i is stored in o[l] the random variable sj
i needs to be replaced within Λ.t by

the corresponding interval bound Sj
i .l or Sj

i .u, depending on the sign of fl. This
step is repeated for all o[l] in descending order and the resulting Λ.t after each
step then only depends on all o[k] ≺ o[l]:

Λ.t = f0 +
l−1∑

k=1

fk · o[k] +

{
fl · Sj

i .l, if fl > 0,

fl · Sj
i .u, if fl < 0.

(15)

Once all random variables have been resolved by the corresponding lower or
upper boundary, Λ.t has been minimized within the potential domain of location
Λ. When computing the maximum of the entry time for all children, i.e. the latest
exit time point, the conditions to replace the random variables are both reversed.

In all candidate locations the potential domain of all random variables present
up to t′ need to be restricted, such that only those values remain for which the
system certainly is in that location at time t′. The computation of the restricted
potential domains per location corresponds to a cylindrical algebraic decompo-
sition [3], which returns the restricted potential domains S′ as a set of multi-
dimensional intervals. For linear inequalities this can be computed in O(n2) using
a variant of the Fourier-Motzkin elimination [4].

Under the assumption that no conflicts have occurred, the restricted potential
domain of a location and the restricted potential domains of its children form
disjoint subsets. In case a conflict occurs, it needs to be resolved by adapting
the value Λc.p, for all children that participate in the conflict. In that case
the restricted domains of all conflicting child locations may overlap. Note that
conflicting child locations have the same minimum entry time.

5.2 Computing Transient Probabilities

The probability to be in a specific candidate location Λ at time t′ is computed by
first integrating over the joint probability density function, and then multiplying
the result with the accumulated conflict probability towards that location. The
latter is computed by multiplying the conflict probability of each location visited
when traversing the tree from the root location to Λ.



194 J. Hüls et al.

Recall that the potential domain S consists of one multi-dimensional inter-
val per location. The restricted potential domain S′, however, may consist of
several multi-dimensional intervals per location, as the Fourier-Motzkin elimini-
ation potentially splits the potential domain in several dimensions. Hence, the
restricted domain S′ is a set of multi-dimensional intervals. Each element r ∈ S′

is stored as a vector of intervals defining an upper and a lower bound for each
random variable present in the order specified by o.

Let function gi(s
j
i ) denote the probability density function of all random

variables sj
i for j ≥ 0, which is uniquely determined by the CDF assigned to the

general transition TG
i . All random variables are accessed in their firing order, as

specified in o. The probability that the values of all random variables in s lie
within S′ is given by Eq. 16, whereas the product over the |S| = n probability
density functions yields the joint probability density function

∏n
i=1 gi(o[i]), due

to the independence of the random variables. The resulting probability then is
the sum of the integration over each restricted potential domain, as

Prob(s,S′) =
∑

r∈S′

∫ r[1].u

r[1].l

. . .

∫ r[n].u

r[n].l

n∏

i=1

gi(o[i]) do[n] · · · do[1]. (16)

Since no exact integration techniques exist, we use approximate methods
together with an estimation of the (statistical) error. Existing libraries for numer-
ical integration approaches only support integration over (bounded) rectangular
regions, i.e. with constant limits. To use such libraries, a transformation of vari-
ables from Sn onto a rectangular region Sn

rect is needed, for which we refer to
[18]. Monte Carlo methods [17] provide algorithms for the approximation of such
integrals including a reliable error estimate, which are well-suited to compute
integrals of higher dimensions since their convergence rates are independent of
the dimension. The main idea for estimating an integral as in [6,20] is to select
N random points from a distribution of points in the (rectangular) integration
region Sn

rect. Our implementation uses the adaptive Monte Carlo scheme VEGAS
[17] as in GNU Scientific Library (GSL)1 [6], based on importance sampling.

6 Case Study: Battery Back-Up

As feasibility study, we model a factory whose power intake from the grid is
limited by a service level agreement (SLA) with the energy provider. The factory
relies on battery back-up which is discharged in the case of a peak-demand or
a power outage. Figure 1(a) shows the core of the HPnG model: The continuous
place PC

0 models the battery with capacity B, inflow (TDy
0 ) from the power

grid and an outflow (TDy
1 ) which corresponds to the power that exceeds the

constant peak demand PA, specified by the SLA. The rates of the dynamic
inflow and outflow are specified as fTDy

0
(d) = max((PA −

∑
di∈d di), 0) and

fTDy
1

(d) = max((
∑

di∈d di − PA), 0), where d ∈ R
|T St| is the vector of currently

1 https://www.gnu.org/software/gsl/.

https://www.gnu.org/software/gsl/
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Fig. 1. Battery model and demands.

active demands, as specified in Fig. 1(b). The upper left part of Fig. 1(a) models
the status of the grid and enables the inflow of the battery.

The failure of the grid (TG
0 ) is modeled by a general transition, the recovery

TD
O is deterministic. Place PD

3 indicates an empty battery, which in turn enables
transition TDy

2 , which models the cost that occur due to service level violations
when the accumulated demand exceeds the amount specificed in the SLA. Its
flow rate is fTDy

2
(d) = max((

∑
di∈d di − PA), 0) and the extra cost is collected

in the continuous place PC
1 (with infinite capacity).

Figure 1(b) models three levels of demand via static continuous transitions,
i.e. standard (TF

d1
), reduced (TF

d0
), and extended (TF

d2
), that are enabled via a

guard arcs. General transitions switch from standard to reduced demand (TG
d10

)
and from standard to extended demand (TG

d12
). The number of random variables

in the system depends on the maximum time τmax of the analysis and the repair
and switching times. At least three random variables are present, since all three
general transitions are initially enabled concurrently.

Results. Table 1 shows the probability that PD
0 contains a token at time tc = 8,

computed numerically via the PLT2 and Monte Carlo integration, for which error
estimates are provided. For comparison, we include results obtained from the
statistical model checking tool HYPEG [19]. The general transition TG

0 follows
a uniform distribution U(0, 10) and the firing time of TD

0 takes values between 8
and 1, resulting in an increasing availability of the grid. The number of random
variables present in the system increases, since TG

0 can fire more often before
time tc = 8. Due to the increasing dimensionality, the computation times of the
analysis grow exponentially, mainly for the integration. The numerical results
are well supported by the simulation and the Table 1 illustrates the trade-off
between the computation times of both methods w.r.t. the number of dimensions.

2 Tool available at: https://github.com/jannikhuels/hpnmg/tree/dynamicTransitions.

https://github.com/jannikhuels/hpnmg/tree/dynamicTransitions
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Table 1. Probability of an available grid, i.e. Φ := m(PD
0 ) = 1, for tc = 8 and

decreasing grid repair times TD
0 .

TD
0 8 7 5 3 2 1

NUM p(tc, Φ) 0.200 0.295 0.454 0.593 0.689 0.817

e(tc, Φ) 0 5.5 ∗ e−6 5.8 ∗ e−6 1.2 ∗ e−5 1.0 ∗ e−5 1.9 ∗ e−5

dim 4 4 5 6 8 13

comp. t 1.67 s 17.74 s 38.92 s 90.22 s 250.15 s 2145.66 s

SIM p(tc, Φ) 0.200 0.296 0.455 0.594 0.690 0.818

comp. t.(CI: ±0.001) 27.61 s 31.30 s 39.87 s 39.29 s 33.57 s 26.04 s

comp. t.(CI: ±0.0001) 1477.39 s 1983.97 s 2599.05 s 2761.17 s 2630.43 s 1728.41 s

Table 2. Probability of a standard demand, i.e. Φ := m(PD
d1) = 1, at time tc = 8 for

randomly distributed demand changing times with different distributions.

TG
d10 , TG

d12 U(0, 10) U(6, 10) N (μ = 8, σ = 1) N (7, 1) N (7, 2)

NUM p(tc, Φ) 0.040 0.241 0.249 0.023 0.070

e(tc, Φ) 1.3 ∗ e−5 8.5 ∗ e−5 5.5 ∗ e−6 9.8 ∗ e−6 2.4 ∗ e−5

dim 4 4 4 4 4

comp. t 4.16 s 4.04 s 8.17 s 8.21 s 7.62 s

SIM p(tc, Φ) 0.041 0.240 0.250 0.025 0.072

comp. t 8.89 s 19.54 s 32.91 s 7.09 s 16.87 s

The number of dimensions influences the run time of the numerical analysis,
whereas the width of the confidence interval significantly influences the run time
of the simulation. A confidence interval of ±0.00002 would be comparable to the
largest error made by the numerical analysis. This is however not feasible, since
the simulation does not terminate.

Simulation results are presented for two confidence interval widths, i.e.
±0.001 and ±0.0001. With such intervals the statistical simulation needs (signif-
icantly) more time than the numerical analysis for four or five dimensions. For
13 dimensions, the computation time of numerical analysis and simulation with
a confidence interval of ±0.0001 are of the same magnitude. However note that
the integration error of the numerical analysis is still approx. five times smaller
than the confidence level.

Table 2 summarizes the probability that the standard demand is enabled at
time tc = 8 for varying CDFs assigned to the competing general transitions TG

d10

and TG
d12

. The results are well supported by simulation and in most cases the
computation time for the numerical approach is considerably slower.

As a feasibility study, we analyzed the model for an increasing number of
random variables. In this setup the transition TG

0 follows a folded normal distri-
bution with mean μ = 14 and variance σ = 4. Once the grid failed, it needs 22
time units to be repaired. TD

d01
and TD

d21
follow a uniform distribution U(0, 2) and
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Fig. 2. Number of dimensions and locations created.

Fig. 3. Time to create the different location sets.

the firing times of both TD
d10

and TD
d20

equals 5. The checktime tc always equals
τmax. Hence, a larger τmax results in more random variables present in the sys-
tem. We compute the probability that costs have occurred, i.e. Φ := xI(PC

1 ) ≥ 0.
Figure 2 shows the number of dimensions (right y-axis) for different values of

τmax. Values of τmax ≤ 5 results in 4 dimensions, as all three general transitions
can fire only once and the time also adds a dimension. In general, two dimensions
are added every 5 time units, since the two general transitions that change
the demand each can fire once more. At τmax = 22 the number of dimensions
increases to 13, because then the grid can fail two times. On the other hand
the left y-axis in Fig. 2 shows the total number of locations and the number
in subsets thereof. Analogous to the dimensions, the number of locations also
increases periodically. At τmax ≥ 22 the number of locations rises drastically.
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Figure 3 shows the time needed to (1) compute the PLT, (2) compute the
restricted domains and (3) perform the integration. The final integration takes an
order of magnitude longer than creating the complete PLT as well as creating the
integration intervals. For τmax ≥ 22, we were unable to complete integration due
to memory overflows. The number of locations that fulfill a formula is therefore
the limiting factor in the current implementation. The tests have been performed
on a MacBook Pro with 2.5 GHz Inter Core i7 and 16 GB of memory.

7 Conclusion

We proposed and implemented a general algorithm for building a Parametric
Location Tree for HPnGs with an arbitrary but finite number of general tran-
sition firings and presented the computation of transient probabilities in three
stages. First the candidate locations, i.e. parametric locations the system can
be in at time t′, were obtained. Second, the potential domain of all candidate
locations was restricted, such that only those values of the random variables
remained for which the system certainly can be in that location at time t′. Third,
the probability to be in a specific candidate location at time t′ was computed by
integrating over the joint probability density function, and multiplying the result
with the accumulated conflict probability. A case study on a battery-backup sys-
tem showed the feasibility and current limitations of the approach. We plan to
conduct a large-scale case study to allow a more comprehensive analysis of the
efficiency of the current implementation.

Acknowledgement. We thank the anonymous reviewers for their valuable comments.
Especially regarding the computation times in the original version of Table 1.
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Abstract. Attack-defense trees (ADT ) are an established formalism for
assessing system security. We extend ADT with costs and success proba-
bilities of basic events. We design a framework to analyze the probability
of a successful attack/defense, its expected cost, and its probability for
a given maximum cost. On the conceptual level, we show that a proper
analysis requires to model the problem using sequential decision mak-
ing and non-tree structures, in contrast to classical ADT analysis. On
the technical level, we provide three algorithms: (i) reduction to PRISM-
games, (ii) dedicated game solution utilizing the structure of the problem,
and (iii) direct analysis of ADT for certain settings. We demonstrate the
framework and compare the solutions on several examples.

1 Introduction

Attack trees and their extension attack-defense trees (ADT ) are established
formalisms for security assessment [15–17,27,28]. Essentially, attack trees are
labelled trees, where the root represents the goal an attacker wants to reach.
This goal is refined into subgoals with the help of logic operations such as AND
and OR. The leaves of the tree are called basic events and the inner nodes gates.
On the one hand, they allow for formal reasoning and analysis of the system
design. On the other hand, the formalism is at the same time appropriate for
human interaction since ADT are easy to understand also for non-computer
scientists. Together, this facilitates the model-driven development of security-
critical systems.

Cost and Probability. To reflect the practical (in)feasibility of attacks one
can decorate the basic events with costs [3,4,11,19], reflecting, for instance, time
durations. This enables us to distinguish in the analysis between purely theo-
retical risks, such as brute-forcing a password, and more realistic ones. Further,
modelling the success probabilities of attacks provides a complementary way to
identify more likely scenarios. Accordingly, the analysis algorithms for models
supporting both costs and success probabilities become more involved [3–5].

This research was funded in part by the Studienstiftung des deutschen Volkes project
“Formal methods for analysis of attack-defence diagrams” and the German Research
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The OWASP CISO AppSec Guide1 states that attack trees are a useful
measure to identify the point of weakest resistance and explicitly mentions
the importance of costs and probabilities there. NATO’s Improving Common
Security Risk Analysis report2 says that attack trees might help to understand
attacks in retrospective, i.e., by so-called red teams. Fortunately, in contrast to
other model checking domains, probabilities and costs can typically be estimated
using numerous approaches to retrospective system analysis, as done in [9]. For
instance, it is known that in 2014 78% of all phishing attacks were spoofed to
look like they were sent from a company’s IT department or AV vendors3.

Our goal in this paper is to provide a framework for efficient analysis of ADT
in the presence of both sources of information: costs and success probabilities.
In particular, we algorithmically answer the following questions:

– What is a game-theoretically optimal strategy for a successful attack?
– What is a game-theoretically optimal strategy for a successful attack for a

given cost budget?
– What is the minimum expected cost among all optimally succeeding attacks?

This in turn allows us to answer practical questions such as

– Who can afford to try to attack the system (with high success probability)?
– How secure can a system become with a limited amount of resources and how

to efficiently attack/defend it?
– What are the bottlenecks in the system where defense should be strengthened?

Conceptual Contribution. Due to the presence of probabilities, an analysis
should take into account several fundamental issues, which are also the distin-
guishing points compared to the existing literature. We briefly mention these
points here. Detailed justification of our approach follows in Section 3 and the
comparison to the literature in Sect. 9.

– We shall argue that decision making should be modelled in a sequential way.
– Consequently, instead of classical Boolean valuation of successful/failed events

a 3-valued logic captures that some events have not been attempted (yet).
– Due to the sequential nature of the problem, the classical bottom-up tech-

niques do not work any more since the problem is no more modular and
cannot be solved for the subtrees in isolation.

– Besides, if an event is relevant for different subtrees, its occurrences cannot
be treated in the analysis as probabilistically independent and we have to
transform the tree into a directed acyclic graph instead.

– Once the sequential reasoning is necessarily present anyway, we can use a
richer class of gates that require ordering of events, e.g., SAND, at no addi-
tional cost.

1 https://www.owasp.org/index.php/CISO AppSec Guide: Criteria for Managing
Application Security Risks.

2 https://www.sto.nato.int/publications/STO%20Technical%20Reports/RTO-
TR-IST-049/%5Cprotect%20%5CT1%5Ctextdollar%20%5Cprotect%20%5CT1
%5Ctextdollar%20TR-IST-049-ALL.pdf.

3 https://www.fireeye.com/current-threats/annual-threat-report.html.

https://www.owasp.org/index.php/CISO_AppSec_Guide:_Criteria_for_Managing_Application_Security_Risks
https://www.owasp.org/index.php/CISO_AppSec_Guide:_Criteria_for_Managing_Application_Security_Risks
https://www.sto.nato.int/publications/STO%20Technical%20Reports/RTO-TR-IST-049/%5Cprotect%20%5CT1%5Ctextdollar%20%5Cprotect%20%5CT1%5Ctextdollar%20TR-IST-049-ALL.pdf
https://www.sto.nato.int/publications/STO%20Technical%20Reports/RTO-TR-IST-049/%5Cprotect%20%5CT1%5Ctextdollar%20%5Cprotect%20%5CT1%5Ctextdollar%20TR-IST-049-ALL.pdf
https://www.sto.nato.int/publications/STO%20Technical%20Reports/RTO-TR-IST-049/%5Cprotect%20%5CT1%5Ctextdollar%20%5Cprotect%20%5CT1%5Ctextdollar%20TR-IST-049-ALL.pdf
https://www.fireeye.com/current-threats/annual-threat-report.html
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Algorithmic Contribution. We provide the respective semantics in terms of
stochastic two-player games with reachability, cost-bounded reachability, and
expected cost objectives. Subsequently, we present three algorithms to solve the
game:

1. We translate the ADT into a game in the PRISM modelling language and
evaluate it using PRISM-games [13].

2. We utilize the acyclic structure of the model and apply a simpler back-
propagation algorithm for stochastic games.

3. For the case where events occur once only in the tree, we provide an algo-
rithm for computing success probabilities directly on the tree in a bottom-up
manner. Although this is in line with the tradition of ADT analysis, addi-
tional operators (such as TR and NAT) and the inherent sequential character
of decision making require a more complex solution.

In all the cases, we also compute the respective attack and defense strategies
optimizing the given criteria.

Structure of the Paper. In Sect. 2, we recall and illustrate ADT and in Sect. 3
we justify our approach, explaining the consequences on examples. Subsequently,
in Sect. 4 we recall stochastic games and in Sect. 5 we provide the sequential for-
mal semantics of ADT by translation to stochastic games. In Sect. 6, we discuss
the analysis of the stochastic games resulting from ADT . Section 7 is devoted
to a bottom-up computation of success probabilities directly on the tree. We
discuss experimental results in Sect. 8. We review and compare to related work
in Sect. 9 and conclude the paper in Sect. 10.

2 Attack-Defense Trees

In this section, we recall and illustrate the notion of attack-defense trees (ADT ).4

Definition 1 (Syntax of ADT based on [18]). An attack-defense tree (ADT)
is a tuple ADT = (V,E, t,TEdge) where

– (V,E) is a directed acyclic graph with a designated goal sink vertex att, also
called the root of the ADT. Source vertices BE ⊆ V are called basic events.
Edges are directed from basic events towards the single root att. We assume
BE = BEA ∪̇BED, where BEA and BED are the events under the attacker’s
and defender’s control, respectively. All other vertices CE := V \ BE are gates
(or composite events). Direct predecessors of gates are called inputs and we
denote the set of all inputs of a vertex v by in(v).

– t : CE → O is the type function assigning to each gate one of the operators
in O = {AND, OR, NOT, SAND, SOR, NAT, TR}.

– TEdge ⊆ {v ∈ CE | t(v) = TR} × BE are trigger edges from TR gates to basic
events. Note that TEdge is not a subset of E.

– We require |in(v)| = 1 for all vertices v ∈ V such that t(v) ∈ {NAT, NOT, TR}.
4 Since a step in the analysis transforms the trees into DAGs, we already introduce
ADT more generally as a DAG, not necessarily a tree.
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We let BETR := {b ∈ BE | ∃v ∈ V : (v, b) ∈ TEdge} denote the set of triggerable
basic events. If (v, b) ∈ TEdge, we say that v triggers b. We call an ADT attack
tree iff (V,E) forms a tree rooted in att and BED = ∅.

The operators AND and OR have the usual logic meaning w.r.t. subgoals. Intu-
itively, SAND behaves like AND, but the subgoals need to be completed in order,
while SOR behaves like OR, but subgoals need to fail in order. Formally, SAND
requires not only both subgoals to be successfully completed, but the first one
needs to be finished before the second one. In contrast, SOR requires only one
subgoal to be successfully completed, but the second one may only be completed
successfully if the first one is completed unsuccessfully. The operator TR enables
basic events on being successfully completed (for instance, in Fig. 1 we can only
get a correct password after we have installed the keylogger successfully). NOT
allows us to express that certain events need to be completed unsuccessfully,
while NAT turns out true if the subgoal is not attempted at all. We treat each
subgoal this way till we reach the basic events.

Example 1. In Fig. 1, an attack-defense tree representing an attack on a com-
pany is depicted. The attacker tries to harm the company (7) by sending out
phishing mails from a valuable employee’s account (11). To do so, the attacker
tries to either get physical access to the servers (4) or to install a keylogger
to get the correct password (2 and 3). The defender can prevent an attack by
blocking infected accounts (6). The attack turns out to be successful as long as
the defender either failed in successfully completing the blocking or does not
perform the blocking at all (13 and 8–10).

The set of events comprises the basic events 1 to 6 and the composed events
labelled with operators. The goal sink at the top is labelled with AND and repre-
sents the ultimate goal of the attacker to harm the company by sending phishing
mails from an employee’s account. The AND reflects the idea that harm can only
be done if the account has not been blocked by the defender. The basic events,
which are controlled by the attacker, are red and horizontally striped, while the
basic events under the defender’s control are green and vertically striped. Trigger
transitions are depicted as squiggled lines.

Basic events can be equipped, for instance, with probabilities, costs, aver-
age completion times etc. However, many scalars such as time can often be
modelled as costs. Therefore, we only deal with ADT s, in which basic events
are equipped with probabilities and costs. Hence, we assume that there exists
a probability function Pr : BE → [0, 1] assigning to each basic event a success
probability between 0 and 1 and a cost function Cost : BE → N assigning each
basic event a non-negative execution cost. In Fig. 1, we give the values of the
cost and probability functions for basic events in the table next to the tree.

3 Examples and Modelling Approach

In this section, we explain our way of modelling in the presence of probabilities
and costs, and argue that it is an adequate approach in this context.
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1

4

SAND

NAT NOT

OR

AND

SAND

2

3

OR

5

6

AND

TR

A 2 1

A 4 0.5

A 1 0.6

A 5 0.5

A 0 1

D 0 0.9

Fig. 1. An ADT representation of an attack on some email account

Firstly, in order to faithfully model and analyze expected costs, we stipulate
that decisions are made sequentially, i.e. players do not fix upfront which events
to attempt, but react to the outcome of events. This is in stark contrast with the
traditional approach, which considers static valuations (subsets) of basic events
that are executed.

Example 2. Consider the tree of Fig. 2a. In the classical static (non-sequential)
analysis, there are three options to successfully attack. These correspond to the
three valuations {1}, {2}, {1, 2} that satisfy the OR gate, with the respective costs
5, 10, and 5+10 = 15. In the probabilistic context, the maximum probability to
succeed is 1− (1− 0.3)(1− 0.8) = 0.86 by attempting both events. Nevertheless,
the cost may be reduced from 15 to 5 + (1 − 0.3) · 10 = 12 if we attempt event
1 first and only if it fails we attempt event 2. Similarly, the reverse order yields
a cost of 10 + (1 − 0.8) · 5 = 11, which is the minimum. Similarly, in Example 1,
it is better to first try events (2), (3) and before attempting event (1), since
event (1) cannot fail. In summary, the order of attempts affects the cost and
should be reflected in the semantics of the model.

On the negative side, the sequential modelling implies increased difficulty in
the analysis.

Example 3. Consider the tree in Fig. 2b. It is cheapest to first try 2 and only
then 3, which is in a different subtree. Hence the optimal expected cost 1/4 ·4+
1 · 1 + 1/2 · 2 + 1/8 · 8 = 4 cannot be easily computed by a bottom-up analysis
that summarizes each subtree (left and right one) into a single number, but a
more global view is necessary.

Such non-modularity implies that the standard bottom-up analysis fails for
expected cost analysis as indicated in [19,23].
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1 2

OR

5, 0.3 10, 0.8 1 2 3 4

OR OR

OR

4, 0.5 1, 0.5 2, 0.5 8, 0.5

Fig. 2. Sequential decision making is necessary for expected cost analysis

Next, we show that semantics based on 3-valued logic as in [18] is more ade-
quate than the standard Boolean one. Indeed, sequential decision making makes
it necessary to remember whether an event has been successfully completed,
unsuccessfully completed or not attempted at all (yet).

Example 4. In Example 1, gate 10 checks whether the SAND gate 13 failed (by
NOT gate 9) or has not even been attempted (by NAT gate 8) since the attack
should succeed in both cases.

Now we show that directed acyclic graphs are more appropriate than trees in
the analysis.

Example 5. Consider the event (4) get physical access to server in Example 1
and a model where this event is replicated for each successor so that it is a
tree instead of a DAG. Since the two copies are not independent events, we only
have one chance to attempt it and it either succeeds for both occurrences or
none. Further, the incurred cost is only paid once. Hence, such a tree should be
pre-processed into the DAG depicted in Fig. 1.

1

2 3 4 5

SOR SOR

OR

SAND

1

0.3 1 0.7 1

Fig. 3. The attacker’s success probabil-
ity depends on the defender’s strategy.

Finally, the presence of the defense
results in an inherently more complex
problem. While the success probability
for reasonable strategies (not failing the
attack by attempting SAND and SOR in
the wrong order) in attack trees does not
depend on the chosen strategy, the suc-
cess probability in attack-defense trees
depends on the defender’s strategy.

Example 6. Consider the tree in Fig. 3.
In any reasonable strategy, the attacker
needs to attempt event (1) first. If the
defender plays (3), the success probability is 0.7 since the attacker wins if
event (4) is successfully completed. In contrast, if the defender plays (5), the
attacker wins with success probability 0.3 since he wins if event (2) is success-
fully completed.
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4 Stochastic Games

In this section, we recall (two-player turn-based) simple stochastic games [14] and
equip them with costs. For a countable set X, D(X) is the set of all distributions
over X, i.e. functions μ : X → [0, 1] with

∑
x∈X μ(x) = 1. We also write μ =⊕

x∈Supp(μ) μ(x) · x where Supp(μ) = {x | μ(x) > 0} is μ’s support.

Definition 2 (Stochastic Game). A stochastic game (SG) is a tuple G =
(S,SA,SD, s0,M, ava,T, 1,−1), where S is a finite set of states partitioned into
the sets SA and SD of states of the players A and D, respectively, s0 ∈ S is the
initial state, M is a finite set of moves, ava : S → 2M assigns to every state a
set of available moves, and T : S×M → μ(S) is a transition function that given
a state s and a move m ∈ ava(s) yields a probability distribution over successor
states, 1 and −1 are the only sink states (with no available moves) winning for
player A and D, respectively.

The semantics is standard [14] and we only briefly recall some terminology.
We denote transitions (s,m, μ) ∈ T also by s m μ. By taking their turns,
players generate an execution, i.e. an alternating sequence of states and moves
ρ = s0 . . .mnsn with si

mi+1 μ and si+1 ∈ Supp(μ) for every 0 ≤ i < n. We
denote by Execmax(G) the set of all maximum executions of G, i.e. those ending5

in 1 or −1.
A strategy is a function σ : S → M assigning to each state one of its avail-

able moves6. A pair of strategies (σ, τ ) induces a Markov chain G(σ, τ ) over
Execmax(G) with the probability function P

σ,τ using the standard cone construc-
tion [7, Ch. 10] where non-determinism in SA and SD is resolved using σ and τ ,
respectively.

Costs. To model costs of executing events, we add a cost function Cost : M → N

and lift it to executions by Cost(s0m1 · · ·mnsn) :=
∑

1≤i≤n Cost(mi). Given a pair
of strategies (σ, τ ), restricting Cost to Execmax(G) results in a random variable
C with the expected value E

σ,τ [C].

5 Game Semantics of Attack-Defense Trees

In this section, we provide (i) formal semantics of attack-defense trees with
shared subtrees in terms of stochastic games and (ii) game objectives cor-
responding to our probability-cost objectives on the attack-defense tree. Let
ADT = (V,E, t,TEdge) be an attack-defence tree with a probability func-
tion Pr : BE → [0, 1] and a cost function Cost : BE → N.
5 To simplify the presentation, we do not consider infinite executions since the games

we deal with in this paper are finite and acyclic. Nevertheless, the theory would
seamlessly extend to games with cycles and infinite executions if the need of such
gates, e.g. [18], arises.

6 In general, one can consider randomizing history-dependent strategies. However, in
the context of our paper, positional strategies are sufficient even for cost-bounded
objectives since the costs will be implicitly encoded in the states of the games.
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Valuations. We capture the current status of events using valuations, which can
be changed by moves of the players. Formally, we define valuations as func-
tions υ : V → {1, 0,−1} and denote the (finite) set of all valuations by Val.
Initially, we assign to each basic event the value 0 (not attempted yet). While
a basic event b has not been attempted, its value remains 0. After attempt-
ing, its value must be either 1 (successfully completed) with probability Pr(b)
or −1 (unsuccessfully completed) with probability 1−Pr(b). When we restrict a
valuation υ to an input set X, we denote it by υ|X .

In the following, we denote the single element of in(v) for a vertex v ∈ V with
t(v) ∈ {NOT, NAT, TR} by inv . To compute the new valuation after an attempt, we
only need the previous valuation and the outcome of the attempt. Formally, let
υp be the previous valuation and υBE be the new valuation of the basic events.
The new valuation υn is inductively defined as

υn(v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

υBE(v) if v ∈ BE

1 if t(v) = NAT and υp(inv) = 0
−1 if t(v) = NAT and υp(inv) = 1
−1 if t(v) = NAT and υp(inv) = −1
υn(inv) if t(v) = TR

op(in(v)) if op = t(v) ∈ {AND, OR, SAND, SOR, NOT}

.

Here op denotes the application of the respective three-valued operator: stan-
dard AND, OR and NOT or SAND and SOR according to Fig. 4. We denote the new
valuation υn by app(υp,υBE).

υn(v1) υn(v2) υp(v) υn(v)
1 1
−1 −1

−1 0 −1
−1 0 −1
0 1 0 −1
0 0 0 0
1 0 0 0
1 1 0 1 υp(v1) = 1

−1

υn(v1) υn(v2) υp(v) υn(v)
1 1
−1 −1

−1 1 0 1 υp(v1) = −1
−1

−1 0 0 0
0 0 0 0
0 1 0 −1
1 1 0 −1
1 0 0 1

Fig. 4. Definition of the semantics for vertex v with t(v) = SAND on the left and
t(v) = SOR on the right. We denote the inputs with v1 and v2.

Available basic events. Initially, the set of available basic events is given by
BE \ BETR, i.e., all non-triggerable basic events are available. Whenever a com-
posed event v labelled with TR is successfully completed, the basic events
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in {b | ∃(v, b) ∈ TEdge ∧ υ(b) = 0} become available. While the first condi-
tion ensures that only basic events, which this event triggers, become available,
the second one ensures that no basic event is available although it has been
attempted already.

Finally, we can define the stochastic game induced by an ADT as follows. We
limit the number of moves the attacker can attempt simultaneously by a and
similarly for the defender by d.

Definition 3 (Induced stochastic game). Let ADT = (V,E, t,TEdge)
be an attack-defense tree. The induced (a, d)-stochastic game is defined as
Ga,d(ADT) = (S,SA,SD, s0,M, ava,T, 1,−1)

– S = Val × {A,D}, SA = Val × {A}, SD = Val × {D}
– s0 = (app(0, 0|BE),A), where 0(v) = 0 for every v ∈ V (note that the operator

NAT might affect the initial valuation)
– M = 2BE ,
– ava((υ, p)) = BEp \ {b | υ(b) 
= 0 ∨ (∀(v, b) ∈ TEdge : υ(v) 
= 1

)} for
p ∈ {A,D} are the available basic events of the current player,

– T consists of exactly the transitions (υ, p) m μ such that:
• m ⊆ ava((υ, p)).
• If s ∈ SA, then 0 < |m| ≤ a. If s ∈ SD, then |m| ≤ d.
• Let

V new
BE := {υ∗

BE | υ∗
BE |BE\m = υ|BE\m ,∀b ∈ m : υ∗

BE(b) 
= 0}
be the set of all possible new valuations of basic events following valua-
tion υ and player p attempting the basic events in m and let

Valp := {υ∗ | υ∗ = app(υp,υBE),υBE ∈ V new
BE }

be the set of all possible new valuations (of all events). The occurrence
probability P

(
υ∗) of a valuation υ∗ ∈ Valp is given by

∏

b∈m

{
Pr(b) if υ∗(b) = 1
1 − Pr(b) if υ∗(b) = −1

.

So finally the distribution μ must satisfy μ =
⊕

υ∗∈Valp
P
(
υ∗) · (υ∗, p′),

where p′ = A if p = D and vice versa.
– 1 results from grouping all winning states for the attacker, i.e. (υ, p) with

υ(att) = 1,
– −1 results from grouping all states where the attack definitely failed or no

more basic attacks are possible, i.e. from states (υ, p) with υ(att) = −1 or
p = A, ava((υ,A)) = ∅.

If we omit a, d, we assume the number of basic events each player can attempt
simultaneously to be unbounded.

Example 7. A part of the game for our Example 1 is depicted in Fig. 5.

We lift the cost function from attack-defense trees to the induced stochastic
games by defining Cost(m) :=

∑
b∈m Cost(b).
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5 �→ 1, 7 �→ −1

4 �→ 1

4 �→ −1

2 �→ 1

2 �→ −1

1 �→ 1

4 �→ 1

4 �→ −1

2 �→ 1

2 �→ −1

1 �→ 1

2 �→ 1, 1 �→ 1

2 �→ 1, 5 �→ 1

2 �→ 1, 3 �→ 1

2 �→ 1, 3 �→ −1

2 �→ 1, 4 �→ 1

2 �→ 1, 4 �→ −1

5

1

4

2

0.5

0.5

0.5

0.5

∅

∅

∅

∅

∅

6

6

6

6

6

3

4

1

5

0.6

0.4

0.5

0.5

Fig. 5. A part of the induced stochastic game for the ADD in Fig. 1 with a = 1 = d.
Note that initially 8 �→ 1 and 10 �→ 1. We omit outgoing transitions of all other attacker
states in level 3 and the outgoing transitions of states in level 4. We also omit values
of composed events since they can be computed using the inductive definition of υn.

Winning Objectives. Firstly, the optimal probability of a succesful attack is
the value of the game supσ∈ΣA

infτ ∈ΣD
P
(
♦1

)
where ♦1 is the set of all exe-

cutions ending in 1. We denote the set of strategies realizing the supremum
by Σmax

A . Secondly, we do not want to compute the (minimal) expected cost
infσ∈ΣA

supτ ∈ΣD
E[C] as the respective success probability might even be 0, but

rather the minimal expected cost among all strategies guaranteeing the optimal
success probability: infσ∈Σmax

A
supτ ∈ΣD

E[C]. Thirdly, we are also interested in the
cost-bounded success probability, counting only successful attacks with cost less
than b, i.e. supσ∈ΣA

infτ ∈ΣD
P
(
♦1∩C<b

)
. In addition, we want to compute opti-

mal strategiesx

argmin
σ∈Σmax

A

sup
τ ∈ΣD

E[C] and argmax
σ∈ΣA

inf
τ ∈ΣD

P
(
♦1 ∩ C < b

)
.

6 Probability–Cost Analysis of Acyclic Stochastic Games

Stochastic games induced by attack-defense tree are acyclic since once a basic
event is attempted, it can never change its value back to 0. Hence, whenever
the attacker or the defender executes a move, a new state is reached. However,
the game is not tree-like since the order of some moves does not play a role.
For instance, in Fig. 2b, for the resulting state it does not matter whether first
event (1) and then (2) fail or the other way round.

Consequently, we can compute the maximal reachability probability and
expected cost as well as the respective strategies efficiently with one iteration
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over the whole state space from sinks to the initial state, more precisely in
increasing maximum distance to the goal vertices (so-called back-propagation,
see e.g. [12]).

6.1 Success Probability

We use Bellman equations (e.g. [12]) to compute the reachability probabil-
ity V(s0). The value of each state is only changed once if we update the vertices
in the order of increasing maximum distance to the goal vertices

V(s) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max
m∈ava(s)

V(s,m) if s ∈ SA

min
m∈ava(s)

V(s,m) if s ∈ SD

1 if s ∈ 1

0 if s ∈ −1

V(s,m) :=
∑

s′∈S

T
(
s,m, s′

) · V(s′)

Restricting the moves of A in s to the set argmaxm∈ava(s) V(s,m) yields a
subgame where every strategy of player A is optimal, i.e. in Σmax

A , since the
reachability game on an acyclic finite game is actually a safety game [7].

6.2 Expected Cost

In a similar manner, we compute expected costs of attempting an attack. How-
ever, we minimize in attacker’s and maximize in defender’s states. Moreover, we
add costs of transitions taken only in the attacker’s case.

C(s) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
m∈ava(s)

C(s,m) if s ∈ SA

max
m∈ava(s)

C(s,m) if s ∈ SD

0 if s ∈ −1 or s ∈ 1

C(s,m) :=
∑

s′∈S

T
(
s,m, s′

) · C(s′) for defender’s states s ∈ SD

C(s,m) :=Cost(m) +
∑

s′∈S

T
(
s,m, s′

) · C(s′) for attacker’s states s ∈ SA

Restricting moves of the attacker in s to argminm∈ava(s) C(s,m) is optimal for
the expected costs infσ∈ΣA

supτ ∈ΣD
E[C]. Moreover, if we first restrict the game

to the subgame of the previous subsection and then apply this algorithm, the
obtained strategy is optimal for infσ∈Σmax

A
supτ ∈ΣD

E[C].
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6.3 Cost-Bounded Success Probability

The attacker’s cost bound can efficiently be taken into account while generating
the game by merging states that exceed the bound with −1. Whenever a tran-
sition only leads to states in the set −1, we do not add the transition to the
game. Whenever a state does not have any successor after removing all these
transitions, it is merged with −1. Inductively, we thus remove all paths, which
fail the cost bound.

Additionally, we can include a separate cost bound for the defender: we need
to allow only the moves m in defender’s states such that C + Cost(m) does not
exceed the cost bound, where C denotes the accumulated defender cost so far.
Since we assign cost 0 to the move ∅, there is always at least one available move
in any defender’s state, ensuring the game is well defined.

7 Bottom-Up Analysis on Trees

7.1 Success Probability Computation

In this section we provide an algorithm for computing the exact success prob-
ability directly on the attack-defense trees under some restrictions. Let ADT =
(V,E, t,TEdge) be an ADT that is a tree, i.e. no shared subtrees and repeated
labels. In addition, for each v ∈ V with �(v) = TR, the set {v′ | (v, v′) ∈ TEdge}
is a singleton. For simplicity7, we assume {v | (v, b) ∈ TEdge} to be a singleton
for every triggerable b ∈ BE. In addition, we assume that all basic events are
(probabilistically) independent and no basic event controlled by the defender
occurs in a subtree with root NAT.

For operators such as NOT and NAT, we are interested in the probability of
achieving −1 or 0, respectively. Hence, we need to compute the probabilities of
success, failure, and remaining 0; we denote them by P

1, P−1, and P
0, respec-

tively. We can compute the success probability P
1
(
att

)
inductively on the tree

as follows:

– t(v) ∈ {AND, SAND} and v1 and v2 denote the inputs of v:
• P

1
(
v
)

:= P
1
(
v1

) · P1
(
v
)

• P
0
(
v
)

:= min
(
P
0
(
v1

) · P0
(
v2

)
+ P

1
(
v1

) · P0
(
v2

)
+ P

1
(
v2

) · P0
(
v1

)
, 1

)

• P
−1

(
v
)

:= P
−1

(
v1

)
+ P

−1
(
v2

) − P
−1

(
v1

) · P−1
(
v2

)

– t(v) ∈ {OR, SOR} and v1 and v2 denote the inputs of v:
• P

1
(
v
)

:= P
1
(
v1

)
+ P

1
(
v2

) − P
1
(
v1

) · P1
(
v2

)

• P
0
(
v
)

:= min
(
P
0
(
v1

) · P0
(
v2

)
+ P

−1
(
v1

) · P0
(
v2

)
+ P

−1
(
v2

) · P0
(
v1

)
, 1

)

• P
−1

(
v
)

:= P
−1

(
v1

) · P−1
(
v2

)

7 In principal, a basic event can be triggered by several events and is triggered as soon
as one of these events is completed successfully, which is equivalent to a disjunction
over all these triggers.
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– v ∈ BEA and v is non-triggerable:
• P

1
(
v
)

:= Pr(v)
• P

−1
(
v
)

:= 1 − Pr(v)
• P

0
(
v
)

:= 1.
– v ∈ BED and v is non-triggerable:

• P
1
(
v
)

:= 0
• P

−1
(
v
)

:= 0
• P

0
(
v
)

:= 1
– v ∈ BEA and v is triggered by v′:

• P
1
(
v
)

:= Pr(v) · P1
(
v′)

• P
−1

(
v
)

:= (1 − Pr(v)) · P1
(
v′)

• P
0
(
v
)

:= 1.
– v ∈ BED and v is triggered by v′:

• P
1
(
v
)

:= 0
• P

−1
(
v
)

:= 0
• P

0
(
v
)

:= 1
– t(v) = NOT and let v1 denote the

input of v.
• P

1
(
v
)

:= P
−1

(
v1

)

• P
0
(
v
)

:= P
0
(
v1

)

• P
−1

(
v
)

:= P
1
(
v1

)

– t(v) = NAT and let v1 denote the
input of v.

• P
1
(
v
)

:= P
0
(
v1

)

• P
0
(
v
)

:= ∅
• P

−1
(
v
)

:= P
−1

(
v1

)

Proof Sketch. Under the given assumption, our bottom-up computation
indeed yields the success probability, i.e. we show that P

1
(
att

)
=

supσ∈ΣA
infτ ∈ΣD

P
σ,τ

(
♦1

)
. In ADT , which satisfy the conditions above, each

subtree is independent. For attack trees consisting of a basic event, the equation
trivially holds. Inductively, we first compute optimal reachability strategies for
induced games of the subtree(s). These strategies are also optimal in the game
for the whole tree. Indeed, interleaving the strategies for the subtrees cannot
increase the success probability and it cannot influence the availability of moves.
The success probability of the tree is then given by the formulae above over the
success probabilities for the subtrees.

7.2 Heuristics for Cost-Efficient Strategies

We now show how to compute a probability-optimal cost-efficient (not necessar-
ily cost-optimal) winning strategy on attack trees, i.e. ADT without shared
labels and without defender behavior. We first compute top-down a func-
tion tv : V → {1, 0,−1}, which assigns each event the truth value it may need to
turn to for a successful attack. tv is just an approximation since, for instance,
for OR we add more events than actual necessary to turn OR to 1. We start the
computation with tv(att) := 1 and proceed as following: Let v ∈ V and let vi

denote a child of v.
We define:

– tv(vi) := tv(v) if t(v) ∈ {AND, SAND, OR, SOR, TR}.

– for t(v) = NOT:
• tv(vi) := 1 if tv(v) = −1
• tv(vi) := 0 if tv(v) = 0
• tv(vi) := −1 if tv(v) = 1

– for t(v) = NAT:
• tv(vi) := 1 if tv(v) = 0
• tv(vi) := −1 if tv(v) = 1 or if

tv(v) = −1

Since we define the function tv top-down, we do not need a case for basic events.
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To compute a cost-efficient strategy for the attacker, we rely on computing
valuations as in Sect. 5, i.e. we start with the valuation (app(0, 0|BE),A) and
after attempting basic events, we denote the new valuation by app(υp,υBE). A
cost-efficient strategy for the attacker is then given by:

– do not attempt SAND and SOR in the wrong order (“suicide”)
– only attempt available basic events
– never try basic events b such that tv(b) = 0
– always try the basic event b that has either the smallest expected cost for

losing if tv(b) = 1 or the smallest expected cost for winning if tv(b) = −1
and the successor of b has still value 0 in the current valuation.

In attack trees, the success probability (except for suicidal moves) does not
depend on the chosen strategy. Hence, following the strategy constructed above
does not change the overall success probability of attacks, but just the expected
cost following an attacker has to spend.

Example 8. Consider our running example in Fig. 1 without vertices 6, 8–10 and
13. We compute tv for each basic event b as tv(b) = 1. The cost of losing for the
events is given by (event)-cost: (1)-0, (2)-2, (3)-0.4, (4)-2.5 and (5)-0. We cannot
try (5) fist since its a suicidal move. Hence, we first try (1), then (2) (since (3) is
not available yet). Depending on the outcome of (2), event (3) (if available) or
(4) (if (2) or (3) failed), and depending on their outcomes finally event (5) are
attempted. This strategy is not optimal since it is better to first try events (2),
(3) and (4) since event (1) cannot fail.

For the attack trees in Fig. 2a, this heuristics lead to optimal strategies
(attempting first event (2) then (1)) as well as for the attack tree in Fig. 2b
((2), (3), (1), (4)).

8 Implementation and Experiments

We implemented our analyses with arbitrary precision (using the library
jscience)8 using Java 8. Back-propagation on the game as well as the heuris-
tics on the ADT and the valuation computation is implemented using the visitor
pattern. All experiments are run using Arch Linux (Linux kernel 4.18.16-arch1-
1-ARCH) with 7.7GiB available memory and an Intel Core i5-7200U. As an
alternative approach to solve reachability on the simple stochastic games we
generate an input file for the recent distribution of PRISM-games [13].

For performance testing, we used randomly generated attack-defense trees.
We first generated a set of basic events with random costs and success probabil-
ities. We then used a random number generator to determine which operator to
use to connect randomly chosen subtrees into one larger attack tree.

Our experiments showed that number of states in the games is hard to predict
solely from the number of vertices in the ADT ; a detailed overview can be found

8 http://jscience.org/.

http://jscience.org/
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in Fig. 6b. We have observed that operators AND and OR often cause a blow up
since our prototypical implementation considers all possible interleavings, which
could be alleviated with partial-order reduction techniques. For trees with only
16 to 18 vertices, but OR or AND close to the top, the generation of the game
semantics may take hours (or even longer). This renders the generation of game
the main bottleneck of the analysis.

The main difference between our back-propagation implementation and the
game analysis using PRISM is then (1) the number of iterations: while back-
propagation iterates once over the whole state space, PRISM mostly needs more
iterations, e.g. nine in the running example and (2) that our implementation of
back-propagation computes the results with arbitrary precision and PRISM uses
floating-point arithmetics.

In contrast to the game approaches, success probability computation using
bottom-up analysis on the tree scales very well (see Fig. 6a) and can even solve
trees with more than 1600 states and thus, with far more states than used in
typical real-world applications.

Fig. 6. On the left, we consider only the special case of tree-structured graphs with no
further restriction (i.e. all available operators as well as both players are used). The
diagram shows how the size of the tree determines the runtime of the heuristic. One
the right, we depict the relation between the size of the tree and the number of states
in the generated game.

9 Related Work

Attack trees were introduced two decades ago [29–31] and shortly after received
a formal semantics in [25]. Multi-parameter attack trees [11,19] extend attack
trees by attaching cost, probabilities and penalties to basic events. Recently,
model checking exact cost for attack trees without shared subtrees, sequential
aspects or defender’s behavior has been explored in [3].

Sequential attack trees [2] add an operator SAND (sequential And) to specify
the order of certain attack steps with an semantics based on acyclic phase-
type distributions. In [1], sequential attack trees receive a semantics in terms of
input/output Markov chains. In [24], a sequential attack tree analysis approach
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based on priced timed automata is presented taking temporal relations between
attack steps, shared subtrees, and multi-dimensional resources into account.

Attack-defense trees (ADT) [21] allow to also represent the defender’s behav-
ior. In [6,21], ADT received a semantics in terms of a bottom-up traversal.
In [20], it has been shown that they are equivalent to zero-sum extensive form
games. Pareto-efficient solutions for ADT s with conflicting parameters have been
discussed in [4].

For attack trees with dependent actions (but without sequential or defender
behavior, without shared subtrees and no costs), success probabilities using
Bayesian networks are treated in [22]. Quantitative analysis in the presence of
repeated events is studied only recently in [10,18,23]. Strategy synthesis for
attack trees with repeated labels has not been studied at all. [10] studies how
to deal with attack-defense trees with repeated labels (but without sequential
behavior) correctly.

The authors of [23] study ADT s with repeated labels. They devise condi-
tions, under which the bottom-up traversal of the tree yields reliable results
in the context of repeated labels. In comparison to our approach, they are not
specifically interested in computing strategies, success probabilities or expected
cost efficiently and do not treat sequential behavior.

In [26], cost and probabilities on ADT are analysed using statistical model
checking. In [17], ADT s without repeated events are analysed w.r.t. to cost
and success probabilities using UPPAAL [8]. ADT s have also been extended by
sequential AND and OR. Stochastic games have been proposed as semantics for
such ADT in [5] and translated to PRISM-games [13], where then multi-objective
model-checking may be applied. In comparison to our approach, ADT in [5] do
not consider such a rich set of operators, a three-valued semantics and do not
allow to arbitrarily combine sequential and non-sequential version of AND and OR.
However, the PRISM-games model generated in [5] from attack trees are acyclic
directed graphs since intermediate results are shared in a similar manner as in
our approach. While we do not apply multi-objective model checking to ADT s in
this paper, any suitable analysis from the PRISM-games engine may be applied
to our model.

In [18], an extension of attack-defense trees to attack-defense diagrams is
proposed, which, for instance, allows to set back basic events to their initial value.
However, optimal strategies or exact reachability probabilities and expected costs
are not treated.

10 Conclusion and Future Work

We have provided a framework for analysis of attack-defense trees with costs
and probabilities. The presence of probabilities significantly affects the nature
of the problem and the techniques required to solve it. We have argued that
decision making must be modelled sequentially even for the most basic attack
trees. As a result, the need for a 3-valued logic and a non-tree-based evaluation
arose. We have presented algorithms based on representing the problem as a
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stochastic game and the analysis of the game using either off-the-shelf solvers or
a faster tailored computation. While some questions can be answered directly
on the tree, demonstrating great scalability, other questions are inherently non-
modular and the construction of the game slows down the analysis considerably.
This could be alleviated using partial-order reduction techniques.
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Abstract. In this paper, we consider the information flow security
properties named Persistent Stochastic Non-Interference (PSNI ) and
Delimited Persistent Stochastic Non-Interference (D PSNI ) for stochas-
tic cooperating processes described as terms of the Performance Evalua-
tion Process Algebra (PEPA). A PEPA process P that satisfies (D) PSNI
admits only controlled information flows from the high, private, level
of confidentiality to the low, public, one. In particular, the downgrad-
ing/declassification of information is permitted only when performed by
a trusted component. Once a process has been defined one can only check
whether it satisfies (D) PSNI or not.

In this work, we contribute to the verification and construction of
secure processes in two respects: (i) first we prove new compositional-
ity properties for (D) PSNI and then (ii) we exploit them in order to
introduce a new process algebra which allows the definition of processes
which are secure by construction, thus avoiding any further check.

1 Introduction

In this paper, we consider the information flow security properties named Per-
sistent Stochastic Non-Interference (PSNI ) [21,23,24] and Delimited Persistent
Stochastic Non-Interference (D PSNI ) [22] which have been defined for stochas-
tic cooperating processes expressed as terms of the Performance Evaluation Pro-
cess Algebra (PEPA).

(Delimited) Non-Interference is an information flow security property which
aims to protect confidential data by ensuring a complete (or controlled) absence
of information flow from high level entities to low level ones. Hence, a PEPA
process P that satisfies (D) PSNI admits only controlled information flows from
the high, private, level of confidentiality to the low, public, one. In particular, the
downgrading/declassification of information is permitted only when it is under
the control of a trusted component.

In [21–24], it has been proved that PSNI and D PSNI can be verified
by checking whether the system interacting with any high level component
is behaviourally equivalent or not to the system in isolation. The notion of
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behavioural equivalence for PSNI and D PSNI relies on the concept of lumpabil-
ity ensuring that, for a secure process P , the steady-state probability of observing
the system being in a specific state P ′ is independent of its possible high level
interactions. In other words, we assume that the observer is able to observe
any execution path with its delays and also to measure some timing properties
like, e.g., the response time or the throughput. Hence, a system S is secure if
any external observer is not able to distinguish the behaviour of S performing
confidential, high level, activities from the behaviour of the same system but
prevented from performing any high level action.

Although there exist efficient algorithms for verifying PSNI and D PSNI
(see, e.g., [21,22]) which are polynomial with respect to the number of states
and transitions of the labelled transition systems underlying PEPA components,
we are not aware of any work dealing with the following two problems:

(i) The verification of behavioural equivalence often suffers of the so-called state
space explosion problem, i.e., the number of states increases exponentially
with respect to the degree of cooperations inside the considered system.
The reason is that any interleaving among cooperating processes needs to
be represented.

(ii) Once a process has been defined, one can only check whether the process
satisfies (D) PSNI or not. If the process is not secure then it is necessary
to modify it, trying to preserve as much as possible its behaviour, while
ensuring the security properties. A framework for defining processes which
are PSNI or D PSNI by construction would ease the development of secure
systems.

In this work, we contribute to the verification and construction of secure
processes in two respects:

(i) We prove new compositionality properties for the cooperation operator of
PEPA which preserve both PSNI and D PSNI.

(ii) We exploit such properties in order to introduce new process algebras which
allow one to define processes which satisfy PSNI or D PSNI by construction,
thus avoiding any further check.

More precisely, the state space explosion problem intrinsic in the behavioural
verification is avoided by exploiting the compositionality of (D) PSNI with
respect to the cooperation operator which is the source of the exponential grow-
ing of the number of states in a system. Indeed, if a property is preserved when
secure systems are composed, then the analysis may be performed on subsystems
and, in case of success, the system as a whole can be proved to be secure.

Moreover, the problem of defining systems which are secure by construction
is tackled by exploiting the characterizations of (D) PSNI given in [21–24] which
are formulated through unwinding conditions [16]. Indeed, unwinding conditions
allow us to express PSNI and D PSNI in terms of a local property of high level
activities requiring that whenever a high level activity is performed moving the
system from state P to state P ′ then P and P ′ are behaviourally equivalent
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from a low level point of view. Intuitively, if this holds no high level activity
h should be observable by a low level user, as there always exists a low level
equivalent state that the system may reach without performing h. Here, we
exploit these local properties in order to define two process algebras which allow
us to statically derive secure PSNI or D PSNI processes, i.e., by just following
the syntax.

Related Work. Quantitative analysis of security is gaining new interest from the
research community (see, e.g., [12,36]).

The concept of non-interference has been introduced by Goguen and
Meseguer in [15]. Also the problem of modelling information flow policies
admitting some forms of downgrading has first been addressed by Goguen and
Meseguer in [16]. Since then, a large body of work has led to a variety of defi-
nitions for different application contexts [2,8,9,14,26,29,34,35,37,38,40,43]. A
systematic overview is given in [17].

There are many approaches to the verification of information flow security
properties. For instance, there are verification techniques for information flow
security which are based on types (see, e.g., [10,18,41,42]) and control flow anal-
ysis (see, e.g., [3,11]). However, most of them are concerned with trace based
models [27,28,31,32]. A proof system for, non persistent, bisimulation based
security is proposed by Martinelli in [30]. Non persistent properties are usu-
ally harder to verify than persistent ones. Martinelli’s approach deals with finite
processes. Unwinding conditions for possibilistic security properties have been
previously proposed in, e.g., [28,33,39]. All such conditions have been studied for
trace based models and are, in most cases, only sufficient for the respective secu-
rity properties. Necessary and sufficient unwinding conditions for bisimulation
based security properties of CCS processes have been proposed in [4,5,7].

Our proof system extends that of [30] to the case of recursively defined pro-
cesses and that of [6,13] to the case of stochastic processes.

Structure of the Paper. In Sect. 2 we introduce the process algebra PEPA, its
semantics, and the observation equivalence. The notion of Persistent Stochastic
Non-Interference (PSNI ) and its characterization are briefly recalled in Sect. 3,
where a process algebra for defining PSNI components is presented. In Sect. 4
the approach is extended to Delimited Persistent Stochastic Non-Interference
(D PSNI ). Finally, Sect. 5 concludes the paper.

2 The Language

In this section, we briefly recall the Performance Evaluation Process Algebra
(PEPA) [19] that we will use as a formal language to model and study quanti-
tative properties of dynamic systems.

Syntax. The PEPA language [19] consists of two basic elements: components and
activities. Activities are pairs (α, r) where α is called action type and belongs to
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Table 1. Operational semantics for PEPA components

a countable set A, while r is called activity rate and belongs to the set R+ ∪{�}
where the symbol � is used to denote an unspecified rate. Hence, the duration
of an activity is modelled as a negative exponential distribution with mean r−1.
The special action type τ ∈ A is used to denote the unknown type. Activities of
this type will be private to the component in which they occur.

In this paper, we slightly extend the syntax of PEPA by adding the empty
component and the restriction operator which are not standard in PEPA. How-
ever, these are only shorthands for PEPA terms obtained by combing standard
PEPA operators. The syntax of our language is given by the following grammar:

S ::= 0 | (α, r).S | S + S | X
P ::= S | P/A | P \ A | P ��

A
P

where A ⊆ A\{τ}, S denotes a sequential component, X is a variable associated
to a recursive definition of the form X

def= S, and P denotes a model component.
We denote by C the set of all possible components.

Operational Semantics. Table 1 shows the operational semantics of PEPA. Com-
ponent 0 does not carry out any activity. Component (α, r).S carries out the
activity (α, r) of type α at rate r and subsequently behaves as component S.
Term S + T specifies a system which may behave either as S or as T . S + T
enables all the current activities of both S and T . The first activity to complete
distinguishes one of the components, S or T . The other component of the choice
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is discarded. The continuous nature of the probability distributions ensures that
the probability of S and T both completing an activity at the same time is
zero. Component P/A behaves as P except that any activity of type within the
set A are hidden, i.e., they are relabelled with the unknown type τ . Compo-
nent P \ A behaves as P except that any activity of type within the set A are
forbidden, i.e., they are restricted. The meaning of a constant X is given by a
defining equation such as X

def= S which gives the constant S the behaviour of
the sequential component S. Cooperation combinator ��

A
is in fact an indexed

family of combinators, one for each possible set of action types, A ⊆ A \ {τ}.
The cooperation set A defines the action types on which the components must
synchronise or cooperate (the unknown action type, τ , may not appear in any
cooperation set). It is assumed that each component proceeds independently
with the activities whose types do not occur in the cooperation set A (individual
activities). However, activities with action types in A require the simultaneous
involvement of both components (shared activities). Shared activities will only
be enabled in P ��

A
Q when they are enabled in both P and Q and have the

same action type as the two contributing activities with a rate that reflects that
of the slower component. If in a component an activity has rate �, then we say
that it is passive with respect to that action type. In this case, the rate of the
shared activity will be that of the other component.

For a given component P and action type α, the apparent rate of α in P ,
rα(P ), is the sum of the rates of the α activities enabled in P . The semantics
of each term in PEPA is given via a labelled multi-transition system where the
multiplicities of arcs are significant. In the transition system, a state or derivative
corresponds to each syntactic term of the language and an arc represents the
activity which causes one derivative to evolve into another. The set of reachable
states of a model P is termed the derivative set of P (ds(P )) and constitutes
the set of nodes of the derivation graph of P (D(P )) obtained by applying the
semantic rules exhaustively.

We say that a component P is a shorthand for a component Q if their deriva-
tion graphs are isomorphic as defined in [19]. The empty component 0, which
is not standard in PEPA, has a derivation graph with one node and no edges.
Hence, it can be seen as the shorthand for P ��

A\{τ} Q where P and Q are two
components that do not share any activity and do not perform any τ action.
Since P and Q cannot synchronize the derivation graph of P ��

A\{τ} Q is formed
by one node and no edges. Similarly, the restriction P \ A can be seen as a
shorthand for P ��

A
0 for any A ⊆ A \ {τ},

We denote the set of all the current action types of P by A(P ). This is the
set of action types which the component P may next engage in. We denote by
Act(P ) the multiset of all the current activities of P .

Underlying Markov Chain. Let P
def= P0 with ds(P ) = {P0, . . . , Pn} be a finite

PEPA model. Then, the stochastic process X(t) on the space ds(P ) is a
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continuous time Markov chain [19]. The transition rate between two states Pi

and Pj is denoted by q(Pi, Pj) and corresponds to the rate at which the system
changes from behaving as component Pi to behaving as Pj , i.e.,

q(Pi, Pj) =
∑

a∈Act(Pi|Pj)
ra

with Pi �= Pj and the multiset Act(Pi|Pj) = {| a ∈ Act(Pi)| Pi
a−→ Pj |}. When

Pj is not a one-step derivative of Pi we set q(Pi, Pj) = 0.
Another notion that will be used in the paper is that of conditional transition

rate from Pi to Pj via an action type α, denoted by q(Pi, Pj , α). This is the sum
of the activity rates labelling arcs connecting the corresponding nodes in the
derivation graph which are also labelled by the action type α. It is the rate at
which a system behaving as component Pi evolves to behaving as component
Pj as the result of completing a type α activity. The total conditional transition
rate from P to C ⊆ C, q[P,C, α], is defined as

q[P,C, α] =
∑

P ′∈C

q(P, P ′, α) .

Observation Equivalence. We consider a bisimulation-like equivalence notion
for PEPA components, named lumpable bisimilarity, that we previously intro-
duced in [20]. Two PEPA components are lumpably bisimilar if there exists an
equivalence relation between them such that, for any action type α, with the
exception of τ actions internal to the classes, the total conditional transition
rates from those components to any equivalence class, via activities of this type,
are the same.

Definition 1. (Lumpable bisimulation [20]) An equivalence relation over
PEPA components, R ⊆ C × C, is a lumpable bisimulation if whenever (P,Q) ∈
R then for all α ∈ A and for all C ∈ C/R such that

– either α �= τ ,
– or α = τ and P,Q �∈ C,

it holds q[P,C, α] = q[Q,C, α] .

Notice that, in contrast with the notion of strong equivalence [19], lumpable
bisimulation allows arbitrary activities with type τ among components belonging
to the same equivalence class, and therefore it is less strict.

We are interested in the relation which is the largest lumpable bisimulation,
that is the union of all lumpable bisimulations.

Definition 2. (Lumpable bisimilarity [20]) Two PEPA components P and Q
are lumpably bisimilar, written P ≈l Q, if (P,Q) ∈ R for some lumpable bisim-
ulation R, i.e., ≈l =

⋃ {R | R is a lumpable bisimulation}.
≈l is called lumpable bisimilarity and it is the largest symmetric lumpable bisim-
ulation over PEPA components.



228 A. Marin et al.

In [20], we proved that for any PEPA component P , lumpable bisimilar-
ity induces a partition of the derivative set ds(P ) of P into equivalence classes
that is a strong lumpability [25] for the underlying Markov chain. In [1] algo-
rithms and applications for lumpable bisimilarity have been studied. Moreover,
the aggregated process satisfies the property that the steady-state probability of
each aggregated macro-state is equal to the sum of the steady-state probabilities
of the corresponding equivalent states in the initial CTMC. Finally, we proved
that lumpable bisimilarity is a congruence, i.e., if P1 ≈l P2 then

– (α, r).P1 ≈l (α, r).P2 for all α ∈ A
– P1/A ≈l P2/A for all A ⊆ A \ {τ}
– P1 ��

A
Q ≈l P2 ��

A
Q for all A ⊆ A \ {τ}.

Moreover, it is immediate to prove that the compositionality property can be
extended also to the restriction operator as stated by the following proposition.

Proposition 1. Let P1 and P2 be two PEPA components and A ⊆ A \ {τ}. If
P1 ≈l P2, then

P1 \ A ≈l P2 \ A.

Even more interestingly, the restriction operator commutes with the synchro-
nization one as stated by the following theorem which will be at the basis of the
results in the next sections.

Theorem 1. Let P,Q be two PEPA components and A,B ⊆ A \ {τ} be two set
of actions. It holds that

(P ��
A

Q) \ B ≈l (P \ B) ��
A

(Q \ B).

Notice that this result holds also if we replace ≈l with strong equivalence [19].
The property holds for PEPA, but not for other process algebras such as CCS.
This is due to the fact that PEPA synchronization does not replace the synchro-
nizing actions with τ .

Finally, we will exploit also the following trivial result.

Lemma 1. Let P and Q be PEPA components. If for each R ∈ ds(P ) ∪ ds(Q)
it holds that A(R) = {τ}, then P ≈l Q.

3 A Process Algebra for PSNI

In this section, we recall the security property named Persistent Stochastic Non-
Interference (PSNI) for PEPA components which aims at characterizing classes
of processes having no information flows from high to low [24]. Then, we intro-
duce a process algebra which allows us to define only PEPA components that
satisfy PSNI by construction.

Property PSNI tries to capture every possible information flow from a clas-
sified (high) level of confidentiality to an untrusted (low) one. The definition of
PSNI is based on the basic idea of Non-Interference [15]: “No information flow
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is possible from high to low if what is done at the high level cannot interfere in
any way with the low level”. Hence, the notion of PSNI consists of checking all
the states reachable by the system against all high level potential interactions.

In order to formally define this security property, we partition the set A\{τ}
of visible action types, into two sets, H and L, of high and low level action types,
respectively. A high level PEPA component H is a PEPA term such that for all
H ′ ∈ ds(H), A(H ′) ⊆ H, i.e., every derivative of H may perform in only high
level actions. We denote by CH the set of all high level PEPA components.

A system P satisfies property PSNI if for every state P ′ reachable from P and
for every high level process H a low level user cannot distinguish P ′ running in
isolation, denoted by P ′ ��

H 0, from P ′ ��
H H where H is a high level component

cooperating with P ′. In other words, a system P satisfies PSNI if what a low
level user sees of the system is not modified when it cooperates with any high
level process H.

The observation equivalence at the base of our definition relies on the notion
of lumpable bisimilarity and this ensures that, for a secure process P , the steady-
state probability of observing the system being in a specific state P ′ is indepen-
dent of its possible high level interactions.

The low level view of the system is the one in which high activities are hidden,
i.e., they are performed, but the low level observer is not able to distinguish them.

Definition 3 (PSNI [24]). Let P be a PEPA component. P ∈ PSNI iff ∀P ′ ∈
ds(P ), ∀H ∈ CH ,

(P ′ ��
H 0)/H ≈l (P ′ ��

H H)/H .

Notice that (P ′ ��
H 0) does not engage in any high level activity and hence the

derivation graphs of (P ′ ��
H 0) and (P ′ ��

H 0)/H are isomorphic. Moreover, the
derivation graph of (P ′ ��

H 0) is isomorphic to that of P ′ \H. So, we immediately
get the following characterization of PSNI.

Proposition 2. Let P be a PEPA component. P ∈ PSNI iff ∀P ′ ∈ ds(P ),
∀H ∈ CH ,

P ′ \ H ≈l (P ′ ��
H H)/H .

The definition of PSNI involves a first universal quantification over the
derivatives of P and a second one over all high level components in CH . Hence,
even if P has a finite set of derivatives, in order to verify PSNI we would have
to perform an infinite set of tests. Luckily, there are different characterizations
of PSNI that show its polynomial time decidability with respect to the size of
D(P ). In particular, in this paper it is useful to recall the following characteri-
zation expressed in terms of an unwinding condition.

Theorem 2 ([24]). Let P be a PEPA component. P ∈ PSNI iff ∀P ′ ∈ ds(P ),

P ′ (h,r)−−−→ P ′′ implies P ′ \ H ≈l P ′′ \ H .
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The process algebra we define relies on the compositionality properties of
PSNI. Some of these have been proved in [24]. However, here we observe that,
exploiting Theorem 2 we can prove stronger results on the compositionality of
the synchronization operator. In particular, the following lemma has been proved
only for low level cooperation sets in [24].

Lemma 2. Let P,Q be two PEPA components and A ⊆ A \ {τ}. If P,Q ∈
PSNI, then also P ��

A
Q ∈ PSNI.

Therefore, we can prove the following compositionality properties for PSNI.

Lemma 3. Let Pi with i ∈ N be PEPA components. If for all i ∈ N it holds
Pi ∈ PSNI, then:

a. 0 ∈ PSNI
b. Q \ L ∈ PSNI for all PEPA component Q
c. Q \ H ∈ PSNI, for all PEPA component Q
d. (�, r).Pi ∈ PSNI for all � ∈ L ∪ {τ}
e. Pi/A ∈ PSNI for all A ⊆ A \ {τ}
f. Pi \ A ∈ PSNI for all A ⊆ A \ {τ}
g. Pi ��

A
Pj ∈ PSNI for all A ⊆ A \ {τ}

h. Q1, Q2, . . . , Qp ∈ PSNI, where for all c ∈ [1, p]:

Qc
def
=

∑

i∈I

(�i, ri).Pi +
∑

k∈K

(�k, rk).Qk +
∑

j∈J

(hj , rj).Qc \ Hj +
∑

m∈M

(hm, rm).Q′
c

Q′
c

def
=

∑

i∈I

(�i, ri).Pi +
∑

k∈K

(�k, rk).Qk

with I, J,K,M set of indices, �i, �k ∈ L ∪ {τ}, hj , hm ∈ H, and Hj ⊆ H.

From the above compositionality properties we can define a process algebra
in which only PEPA components that satisfy PSNI can be constructed.

Definition 4 (PSNI Process Algebra (CPSNI). Let Q be PEPA component,
A ⊆ A \ {τ}, I, J,K,M be set of indexes, �, �i ∈ L, hj , hm ∈ H, and Hj ⊆ H.
CPSNI is the set of PEPA components defined by the following grammar:

S ::= 0 | Q \ H | Q \ L | (�, r).S | X
P ::= S | P/A | P \ A | P ��

A
P

where X has a recursive definition of the form

X
def=

∑

i∈I

(�i, ri).Si +
∑

j∈J

(hj , rj).X \ Hj +
∑

m∈M

(hm, rm).X ′

X ′ def=
∑

i∈I

(�i, ri).Si .

Theorem 3. Let P ∈ CPSNI . It holds that P ∈ PSNI.
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P1

P2 P3

(reqL, ρ)

(logH , λ)

(resL, μ)

(resL, μ)

Fig. 1. A simple client/server model.

It is easy to prove that the converse of Theorem 3 is not true. Indeed, for the
processes belonging to CPSNI a stronger version of the property in Theorem 2
holds, where ≈l is replaced by isomorphism.

Example 1. Consider a web server which can serve the requests coming from
different customers. A customer first makes a request through the low level
activity reqL with rate ρ. This may either originate a direct response, represented
by the low level activity resL with rate μ, or the customer is required to access a
confidential method (e.g., a payment service) through a high level authentication
with type logH and rate λ and then a reply is sent to the customer with the low
level activity resL.

We desire the low level observer not to be able to understand if a payment
took place. In order to achieve this goal, the definition of PSNI requires that
the response sent by the service to customer has a rate which is independent
of whether the customer has accessed to the payment service or not. We can
formalize it as a PEPA term throught the following system of recursive equations:

P1
def= (reqL, ρ).P2

P2
def= (resL, μ).P1 + (logH , λ).P3

P3
def= (resL, μ).P1

The corresponding derivation graph is represented as in Fig. 1.
It is immediate to see that this system belongs to CPSNI , hence it is PSNI.

In particular, the probability for a low level user to observe, in steady-state, the
system being in state P1 is independent of the behaviour of P2, e.g., of whether
the high level activity (log, λH) is performed or not.

In the next example we present a PSNI component that does not belong
to CPSNI . However, it is possible to consider more complex rules for recursive
definitions and enlarge the subclass of PSNI components that can be defined.
Let us consider systems of recursive components defined for k ∈ K expressed as
follows:
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Xk
def
=

∑

i∈Ik

(�i, ri).Si +
∑

j∈JXk

(hj , rj).Xk\Hj +
∑

z∈Zk

(�z, rz).Xz +
∑

x∈WXk

(hx, rx).Yk\Hx

Yk
def
=

∑

i∈Ik

(�i, ri).Si +
∑

j∈JYk

(hj , rj).Yk \ Hj +
∑

z∈Zk

(�z, rz).Yz +
∑

y∈WYk

(hy, ry).Xk \ Hy

where Si ∈ CPSNI , �i, �z ∈ L, hj , hx, hy ∈ H, and Hj ,Hx,Hy ⊆ H. It is immedi-
ate to prove that Xk \ H ≈l Yk \ H and, as a consequence, such kind of systems
generalize the ones used in the definition of CPSNI and allow one to build only
PSNI components. Here there is an interplay in the recursion between the Xk’s
and the Yk’s which again can be generalized by introducing other variables.

Example 2. We consider the case study proposed in [21] and we show that we
can prove that it satisfies PSNI by construction. The example considers a dis-
tributed system with K ≥ 2 servers. Ordinary jobs arrive at the system according
to a Poisson process with rate λL. All the events associated with arrivals and
departures of ordinary jobs can be observed by a malicious user. Moreover, the
system executes a control task that alternates a sleeping and a working phase.
The durations of these two phases are independent and exponentially distributed
with rates λH , and μH , respectively. During the working phase, the control job
uses one of the K servers. Ordinary customers require independent and exponen-
tially distributed service times with rate μL. If the internal job becomes active
and none of the servers is free, then one random ordinary job is preempted and
the internal job is executed immediately. Notice that since the distributions of
the service times have the memoryless property, it is not necessary to discuss the
resume policy for the preempted jobs. The queue has infinite capacity. In [21], we
showed that, in order to hide the state of the system when the internal process is
being executed to the external, possibly malicious, observers, we had to devote
one server to the execution of the control job. In this way, it is impossible to
observe the difference in the service times of ordinary jobs when the control job
is being executed. We can model the system as follows:

P0
def= (L, λL).P1 + (H,λH).P0H

P0H
def= (L, λL).P1H + (H,μH).P0

Pn
def= (L, μL).Pn−1 + (L, λL).Pn+1 + (H,λH).PnH

PnH
def= (L, μL).P(n−1)H + (L, λL).P(n+1)H + (H,μH).Pn

Figure 2 shows the derivation graph of the model for K = 2. In contrast with the
approach proposed in [21] where we propose an explicit state algorithm to verify
PSNI, here we do not need to check that our model satisfies PSNI, since its
syntactical specification follows the grammar for PSNI processes defined above.
Notice that since this example has an infinite number of states we would need
a symbolic algorithm to verify it, instead thanks to the syntactical approach
proposed in this paper we can deal with infinite state systems without any change
in the method.
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0H 1H 2H

0 1 2

L, λL

L, λLL, λL

L, λLL, λL

L, λL

L, μLL, μLL, μL

L, μLL, μLL, μL

H, λHH, λHH, λH H, μHH, μHH, μH

Fig. 2. LTS of the model that satisfies PSNI for K = 2.

4 A Process Algebra for D PSNI

In this section, we consider the security property named Delimited Persistent
Stochastic Non-Interference (D PSNI) for PEPA components which relaxes the
conditions imposed by PSNI allowing for limited flows of information that are
deliberated by a trusted component. Then, we extend the process algebra intro-
duced in the previous section in order to obtain a process algebra which allows
the definition of PEPA components that satisfy D PSNI by construction.

The notion of PSNI is too demanding when dealing with practical appli-
cations: indeed no real policy ever guarantees a total absence of information
flow. In many concrete applications, confidential data can flow from high to low
provided that the flow is not direct and it is controlled by the system, i.e., a
trusted part of the system can control the downgrading of sensitive informa-
tion. In [22], we showed how our security property can be generalized in order
to obtain a notion of stochastic non-interference for PEPA components which
allows systems to intentionally release some information.

To model downgrading we now partition the set A \ {τ} of visible action
types, into three sets, H, L and D of high, low and downgraded action types.
Downgraded action types are used to specify the behaviour of trusted compo-
nents interacting with the system. We assume that the low level users cannot
observe the actions performed by the trusted part.

The notion of Delimited Persistent Stochastic Non-Interference (D PSNI )
can be formalized as follows.

Definition 5 (D PSNI [22]). Let P be a PEPA component. P ∈ D PSNI iff
∀P ′ ∈ ds(P ), ∀H ∈ CH ,

((P ′ ��
H 0)/H) \ D ≈l ((P ′ ��

H H)/H) \ D .

Notice that this definition states that a system P satisfies D PSNI if when-
ever it does not cooperate with a trusted part, what a low level user sees of the
system is not modified when it cooperates with any high level process H. Hence,
flows from the high level to the trusted part and flows from the trusted part to
the low level are admissible, while direct flows from high to low are not allowed.
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In [22], we provided a characterization of D PSNI in terms of unwinding
conditions which demand properties of individual activities.

Theorem 4 ([22]). Let P be a PEPA component. P ∈ D PSNI iff
∀P ′ ∈ ds(P ),

P ′ (h,r)−−−→ P ′′ implies P ′ \ H ∪ D ≈l P ′′ \ H ∪ D .

Finally, D PSNI can be expressed in terms of PSNI.

Proposition 3 ([22]). Let P be a PEPA component. P ∈ D PSNI iff ∀P ′ ∈
ds(P ), P ′ \ D ∈ PSNI.

We can prove the following compositionality properties for D PSNI.

Lemma 4. Let P,Q be two PEPA components and A ⊆ A \ {τ}. If P and Q
are D PSNI, then also P ��

A
Q is D PSNI.

Lemma 5. Let Pi with i ∈ N be PEPA components. If for all i ∈ N it holds
Pi ∈ D PSNI, then:

a. 0 ∈ D PSNI,
b. Q \ L ∈ D PSNI for all Q PEPA component;
c. Q \ H ∈ D PSNI, for each Q PEPA component;
d. (�, r).Pi ∈ D PSNI for all � ∈ L ∪ {τ};
e. Pi/A ∈ D PSNI for all A ⊆ A \ {τ};
f. Pi \ A ∈ D PSNI for all A ⊆ A \ {τ};
g. Pi ��

A
Pj ∈ D PSNI for all A ⊆ A \ {τ};

h. Q1, Q2, . . . , Qp ∈ D PSNI, where for all c ∈ [1, p]:

Qc
def
=

∑

i∈I

(�i, ri).Pi +
∑

k∈K

(�k, rk).Qk +
∑

j∈J

(hj , rj).Qc \ Bj +
∑

m∈M

(hm, rm).Q′
c

Q′
c

def
=

∑

i∈I

(�i, ri).Pi +
∑

k∈K

(�k, rk).Qk

with I, J,K,M set of indexes �i, �k ∈ L ∪ {τ}, hj , hm ∈ H, and Bj ⊆ H ∪ D;
i. (h, r).(d, δ).Pi ∈ D PSNI for all h ∈ H and d ∈ D.

From the above compositionality properties we can define a process algebra
in which only PEPA components that are D PSNI are definable.

Definition 6 (D PSNI Process Algebra (CD PSNI)). Let Q be PEPA com-
ponent, A ⊆ A \ {τ}, I, J,K,M be set of indexes, �, �i ∈ L, h, hj , hm ∈ H,
d ∈ D and Bj ⊆ H ∪ D. CD PSNI is the set of PEPA components defined by the
following grammar:

S ::= 0 | Q \ H | Q \ L | (�, r).S | (h, r).(d, δ).S | X
P ::= S | P/A | P \ A | P ��

A
P
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endFileL, α1

beginFileL, α1

beginFileL, α1

reqH , α2 encD, α3 τ, α4 okH , α5

Fig. 3. Secure database query.

where X has a recursive definition of the form

X
def=

∑

i∈I

(�i, ri).Si +
∑

j∈J

(hj , rj).X \ Bj +
∑

m∈M

(hm, rm).X ′

X ′ def=
∑

i∈I

(�i, ri).Si .

Theorem 5. Let P ∈ CD PSNI . It holds that P ∈ D PSNI.

Example 3. In this example, we review the case study proposed in [22] that
models a confidential query to a database as shown in Fig. 3. The left-most
state models the system waiting for a request reqH . This uses a private channel
based on a asymmetric cryptography protocol. Once the request is received, the
system negotiates a symmetric key that will be used for the transmission of
the query answer (encD). This phase is observable by a malicious user, but by
using the downgrading we are stating that we tolerate the information flow that
happens up to this point. The transition labelled τ models the computation of the
query answer which can be either successful or unsuccessful. In the former case,
the system transmits on the private channel the acknowledge okH , then begins
(beginFileL) and ends (endFileL) the transmission of the reply encrypted with
the shared key negotiated before. For this reason, these activities are modelled
by means of low-level action types. In the case of failure, the system transmits
an error message (beginErrL, endErrL). In [22], we studied some conditions to
make this system secure. First, we avoid the use of a different action type for
signalling the error. Second, we use the same distribution for the sizes of the
reply and error message. In our case, the transmission of both an error message
or a query answer will take place with an exponentially distributed time with
rate α1. The model can be expresses as a CD PSNI term as follows:

P0
def= (reqH , α2).(encD, α3).P1

P1
def= (τ, α4).P2

P2
def= (beginFileL, α1).P3 + (okH , α5).P ′

2

P3
def= (endFile, α1).P0

P ′
2

def= (beginFileL, α1).P3
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5 Conclusion

In this paper, we tackle the problem of the verification and construction of
secure systems. We consider the security properties named Persistent Stochastic
Non-Interference (PSNI ) [21,23,24] and Delimited Persistent Stochastic Non-
Interference (D PSNI ) [22], which have been defined for stochastic cooperating
processes expressed as terms of PEPA. These properties aim at protecting the
flow of high level information also against possible timing attacks. Indeed, the
notion of behavioural equivalence for PSNI and D PSNI relies on the concept
of lumpability ensuring that, for a secure process P , the steady state probability
of observing the system being in a specific state P ′ is independent of its possible
high level interactions.

Moreover, we exploit compositionality to simplify the definition of secure sys-
tems. Indeed, the development of large and complex systems strongly depends on
the ability of dividing the task of the system into subtasks that are solved by sys-
tem subcomponents. Thus, it is useful to define properties which are compositional
in the sense that if the properties are satisfied by the system subcomponents then
the system as a whole will satisfy the desired property by construction. We also
face the state space explosion problem by exploiting new compositionality results
for (D) PSNI which ensure that the cooperation of secure PEPA components is
again a secure component. Finally, we exploit the characterizations of PSNI and
D PSNI in terms of unwinding conditions in order to define two new process alge-
bras, one for PSNI and a generalized one for D PSNI, which allow us to define
processes which are secure by construction in an incremental way.
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Abstract. Security-sensitive computerised communication systems are
of increasing importance, however checking that they function correctly
can be non-trivial. We propose automated verification techniques for the
formal analysis of quantitative properties of such systems. Since commu-
nication networks typically require the collaboration of their participants
to work effectively, we adopt a game-theoretic approach. Utility functions
for each player, such as the degree of security offered and the communi-
cation costs incurred, are formally specified using quantitative temporal
logics. Then, building upon probabilistic verification techniques for para-
metric Markov chains, we develop methods to identify Nash equilibria
representing stable strategies for the participants. We implement our
methods as an extension of the PRISM model checker, and illustrate
their applicability by studying anonymity-cost trade-offs in the Crowds
anonymity protocol.

Keywords: Quantitative verification · Game theory · Security

1 Introduction

Security properties have become essential requirements in today’s comput-
erised communication systems. Absolute guarantees on such properties are often
impractical in real life, so we may instead tolerate a loss of anonymity or pri-
vacy in a system with low probability. Furthermore, system designs often need
to trade off the degree of security offered against other practical concerns such
as response time or power consumption. So, effective methods for the analysis
of security also need to take quantitative aspects into account.

In this work, we present novel automatic verification techniques for the formal
modelling and analysis of security properties in communication networks. Since
such systems generally rely on the collaboration of their participants to work
effectively, we adopt a game-theoretic approach to verification. We propose a
new framework in which systems are modelled as n-player parametric Markov

The author thanks David Parker for many suggestions, help and insightful discussions.
This work is supported in part by EPSRC (EP/K038575/1), and was partially per-
formed when the author was at University of Birmingham.

c© Springer Nature Switzerland AG 2019
D. Parker and V. Wolf (Eds.): QEST 2019, LNCS 11785, pp. 239–256, 2019.
https://doi.org/10.1007/978-3-030-30281-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30281-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-30281-8_14


240 C. Mu

chain games, where each decision-maker chooses the value of a parameter, which
is used to define the transition probabilities of a Markov chain. These parameters
allow participants in the system to make strategic probabilistic decisions about
their behaviour, such as the probability which they will act in a co-operative
or unfriendly or malicious fashion during the execution of a security protocol.
Since we model system behaviour in a probabilistic fashion, we can also capture
a variety of other important stochastic aspects of a system, such as message loss,
failures, or other sources of randomisation.

We apply game-theoretic notions and methods to study the behaviour of
interacting decision-makers. We define utility functions for players capturing
their preferences regarding the different system outcomes, and then define the
expected value of these utility functions using our Markov chain models. Individ-
ual players can decide how to behave in order to maximise their utility, although
their choices will typically influence the outcomes for other players too. In order
to investigate the effectiveness of a protocol (e.g., for anonymity) that requires
some cooperation between multiple individuals with conflicting objectives, we
use the concept of Nash equilibria [14]. These represent the existence of sit-
uations where no system player can benefit by changing their own strategy,
assuming that the other players keep their strategies unchanged.

We propose techniques to formally specify games and utility functions and
to automatically compute Nash equilibria for them. We build upon existing
techniques and tools for probabilistic model checking, which is a widely used
technique for modelling and automatically verifying quantitative properties of
systems with stochastic behaviour. In particular, we build upon parametric prob-
abilistic model checking methods [6], in which transition probabilities of models
can be given as functions over parameters, and an analysis of these models can
yield results expressed as symbolic functions over parameters. We use proba-
bilistic temporal logics as a means of specifying utility functions for individual
players and then use parametric model checking to determine functions repre-
senting the expected utility. We then generate and solve a set of polynomial
equations, the solutions to which yield Nash equilibria for the system.

We developed an implementation of this approach using the parametric
model checking functionality of the PRISM model checker [10] and solving
polynomial systems using the polyhedral homotopy continuation based PHC-
pack [21]. We describe how our approach can be used to model and analyse
properties of security-sensitive communicating networks. In particular, we illus-
trate this on the Crowds [16] anonymity protocol, considering the trade-offs
between the degree of anonymity provided and the corresponding communica-
tion cost.

Related Work. Multiple efforts have been made to develop methods for
game-theoretic analysis of communicating networks for security concern. Yang
et al. [22] proposed a game theoretic framework to analyse users’ behaviours
in anonymity networks. Performance utilities were modelled as a combination
of weighted cost and anonymity utilities. Simulations were performed to show
the impact of users’ cooperation level and the weights of the anonymity and
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cost factors to the optimisation of their utilities. However, this work did not
compute the Nash equilibria in an automatic way. In our work, we use exact
solution methods, rather than simulation, and focus on automated methods to
find equilibria.

Venkitasubramaniam [20] investigated the problem of maximising security
properties from a game-theoretic perspective. The problem was formalised as
a two-player zero-sum game between the network designer and the adversary.
Given the adversary’s observation, the anonymity degree was measured using
conditional entropy of the routes. The adversary tried to choose a subset of
the nodes to monitor in order to minimise the anonymity of the routes, while
the designer aimed to maximise the anonymity. They did not deal with the
problem of computing equilibria of games with multiple players with regard to
performance analysis, however, which has been considered in our work.

Formal methods have played a significant important role in modelling and
analysing security protocols. They include two main categories: proof-based the-
orem proving and state-exploration based model checking. Specifically, we focus
on quantitative analysis of security properties. Mhamdi et al. [12] introduced
two measures of information leakage: the information leakage degree and the
conditional information leakage degree, to evaluate the anonymity and privacy
properties of protocols. A theorem prover was applied to conduct a probabilis-
tic and information-theoretic analysis for the evaluation of the anonymity and
privacy properties. However, they did not tackle the problem of how the users
should behave in order to optimise the security and performance properties from
a game-theoretic point of view.

On the other hand, Shmatikov [17,18] applied the PRISM model checker
to model and analyse the Crowds protocol for anonymity properties. By mod-
elling the system behaviour as a discrete-time Markov chain, and formalising
the anonymity properties in PCTL, the PRISM model checker was employed to
perform automated probabilistic analysis and verify anonymity properties quan-
titatively. However, they did not study the problem of strategy decision-making
or attempt a game-theoretic analysis of the system. Approaches of computing
a Nash equilibrium in Stochastic games have been studied in [3,19]. It was not
straightforward to adapt them in modelling and analysing security systems. Our
framework can be naturally applied in such systems to synthesize optimal deci-
sion strategies.

2 Preliminaries

2.1 Game Theory

We first recall some required definitions from game theory [2,15], beginning with
the definitions of convexity and some related notions.

Definition 1 (Convex set). A set S of vectors over real numbers is convex if
(1 − λ)x + λx′ ∈ S whenever x, x′ ∈ S, and λ ∈ [0, 1].

Definition 2 (Upper level set). Let f be a multivariate function defined on
a set S. For a ∈ R, the upper level set of f for a is Pa = {x ∈ S : f(x) ≥ a}.
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Definition 3 (Quasi-concave function). A multivariate function f defined
on a convex set S is quasi-concave if every upper level set of f is convex.

Definition 4 (Preference relation). A preference relation � over a set S is
a total, transitive and reflexive binary relation over S.

Definition 5 (Strategic game). A strategic game 〈N, (Ai), (�i)〉 consists of:
a finite set of players N ; for each player i ∈ N : a non-empty set of actions Ai

available to i, and a preference relation �i on A = ×j∈NAj of i. The game is
finite if the sets Ai of actions for player i are all finite.

A strategy for player i is a choice of an action ai ∈ Ai and a strategy profile
σ = (a1, . . . , an) ∈ A is a choice of actions for all players. We write σi for the
choice of player i in σ, σ−i for the choices of all players except i, and (σ−i, ai)
for the strategy profile that combines the choices from σ−i and some ai ∈ Ai.

Definition 6 (Nash equilibrium). A Nash equilibrium of a strategic game
〈N, (Ai), (�i)〉 is a strategy profile σ∗ ∈ A with the property that, for every
player i ∈ N and strategy ai ∈ Ai, we have (σ∗

−i, σ
∗
i ) �i (σ∗

−i, ai).

Definition 7 (Best response function). For any σ−i, the best response func-
tion Bi(σ−i) is defined as the set of player i’s best actions given σ−i:

Bi(σ−i) = {ai ∈ Ai : ∀a′
i ∈ Ai . (σ−i, ai) �i (σ−i, a

′
i)}.

Note that, in the above, players’ preferences with respect to strategies are defined
by a preference relation �i. In the remainder of the paper, for modelling conve-
nience and in order to allow players’ choices to be probabilistic, we will instead
use a utility function ui : A → R for each player i, which it aims to maximise.
The basic strategic game can then be rewritten as a tuple 〈N, (Ai), (ui)〉.
Proposition 1 ([15]). The strategic game 〈N, (Ai), (�i)〉 has a Nash equilib-
rium if, for all i ∈ N : (i) the set Ai of actions of player i is a non-empty compact
convex subset of Euclidian space; and (ii) the corresponding utility function ui

of the preference relation �i is continuous and quasi-concave on Ai.

In this paper, we model the communication systems in Markov chain games and
discuss the existence of Nash equilibria for this model. Proposition 1 presents
the requirements for the game to have a Nash equilibrium.

2.2 Parametric Markov Chains

In this paper, we build on parametric model checking techniques for the model
of parametric Markov chains [6]. We briefly review some relevant background.

Definition 8 (Rational function). Let V = {x1, . . . , xn} be a finite set of
variables with domain R. A polynomial g over V is constructed via the following
grammar:

g ::= c | x | g + g | (g) · (g)
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where c ∈ R, x ∈ V , + and · are the standard addition and multiplication
respectively. A rational function f over V is a fraction of two polynomials g1
and g2 over V such as: f = g1

g2
where g2 is not reducible to 0.

Definition 9 (Evaluation). Let R[x1, . . . , xn] be the set of polynomials over
the set of variables V = {x1, . . . , xn}, let FV : R[x1, . . . , xn] → R denote the
set of rational functions, and dom(f) denote the domain of function f . An
evaluation V : X → R is a function for a subset X ⊆ V . For a rational
function f ∈ FV , f [X/V] denotes the function obtained by substituting each
x ∈ (X ∩ dom(V)) with its evaluation V(x).

A parametric Markov chain is an extension of a discrete-time Markov chain,
using rational functions instead of real numbers to label transition probabilities.

Definition 10 (Parametric Markov chains). A parametric Markov chain is
a tuple M = (S, I,Δ, V,AP,L), where S is a countable set of states, I : S → FV

is the initial distribution such that
∑

s∈S I(s) = 1, Δ : S × S → FV is the
parametric transition probability matrix such that ∀s ∈ S.

∑
s′∈S Δ(s, s′) = 1,

V = {x1, . . . , xn} is a finite set of parameters with domain R, AP is a finite set
of atomic propositions, and L : S → 2AP is a labelling function mapping each
state to a set of atomic propositions taken from a set AP .

For an evaluation V and a parametric Markov chain M, an induced parametric
Markov chain MV is defined by substituting each variable in dom(V) with its
evaluation. By applying a total evaluation V with dom(V) = V , we obtain real
values for each probability instead of rational functions. Let ProbM ⊆ FV denote
the set of probabilities of M, such as

ProbM := {I(s)|s ∈ S} ∪ {Δ(s, s′)|s, s′ ∈ S},

and similarly ProbM
V ⊆ FV/ dom(V) for an evaluation V. A total evaluation V of

M is called well-defined if:

– ∀f ∈ ProbM
V : f [dom(V)/V] ∈ [0, 1], which ensures every possible evaluation

is a probability;
– ∀f ∈ ProbM

V : f �= 0 ⇔ f [dom(V)/V] �= 0, which ensures every non-zero
rational function does not evaluate to 0.

A parametric Markov chain M can be viewed as a state transition system in
which transitions are associated with parametric probabilities indicating their
likelihood. We say there is a transition from state s ∈ S to s′ ∈ S iff ΔV(s, s′) > 0
for all well-defined evaluations V. A (finite or infinite) path describes one possible
execution of M, and is defined as a sequence of states ρ = s0, s1, . . . such that
∀i ≥ 0.Δ(si, si+1) = f(X) > 0, where f(X) is a polynomial over X ⊆ V .

Let ΩM,s denote the set of paths of M starting from state s (we omit the
s when referring to all such paths). In order to reason about the behaviour
of M, it is required to formalise the probability of sets of paths taken. The
construction is based on calculating the probability of individual finite paths
induced by the parametric transition probability matrix Δ. The probability of
the path ρ = s0, . . . , sk is given by: Pr(ρ) �

∏k−1
i=0 Δ(si, si+1), where ρ ∈ ΩM,s0 .
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2.3 Probabilistic Temporal Logics

For the purposes of probabilistic verification, properties to be checked against
a model are typically specified in probabilistic extensions of temporal logic. In
this paper we use the property specification language of the PRISM tool [9], the
basis for which is the logic PCTL [7], plus various notions of reward.

Definition 11 (PCTL with rewards). The syntax of PCTL with rewards is
given by the grammar:

φ :: = true | a | ¬φ | φ ∧ φ | P��q[ψ] | Rr
��x[Fφ]

ψ :: = Xφ | φ U≤k φ | φ U φ

where a ∈ AP , r is a reward structure, 	
∈ {<,≤, >,≥}, q ∈ R∩ [0, 1], x ∈ R≥0,
and k ∈ N.

For example, P≥0.5[Fφ] means the probability of eventually reaching states sat-
isfying φ is at least 0.5; R1

≤10[Fφ] means the expected cumulated reward (or
cost) of reward structure 1 until reaching states satisfying φ is at most 10. We
also often use notation such as P=?[·] and Rr

=?[·] to represent numerically-valued
probability or reward properties. We omit a full definition of the semantics of
PCTL with rewards. Further details can be found in [9].

3 Game-Theoretic Verification with Parametric
Probabilistic Model Checking

We now present a framework for game-theoretic verification of quantitative prop-
erties, based on parametric model checking techniques for discrete-time Markov
chains. In this section, we introduce a model called parametric Markov chain
games (PMCGs), in which parameters represent (probabilistic) decisions taken
by players, and then we discuss the existence of Nash equilibria for this model.
Subsequently, we will show to automatically synthesise these Nash equilibria,
based on formal specifications of a system model and utility functions, and by
building upon existing parametric model checking techniques.

3.1 Parametric Markov Chain Games

We model systems as n-player games. We will assume a fixed set of players
N = {1, . . . , n}, each of which has m possible actions A = {a1, . . . , am} (i.e.,
all players share the same action space (A). Each aj ∈ A corresponds to a
different possible course of action which can typically be decided upon multiple
times during the execution of the system. We are generally interested in mixed
strategies which are defined as a probability distribution πi over A. Every time
that player i needs to decide which action from A to take, it will do so by
selecting action aj ∈ A with probability πi(aj).
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Given such strategies πi for each player i, the subsequent behaviour of the
system is necessarily probabilistic. Furthermore, we usually want to model other
stochastic aspects of the system, for example, message transmission failure. So,
we will assume that the behaviour of the system, under strategies πi, can be mod-
elled as a discrete-time Markov chain. In general, the transition probabilities of
this Markov chain will be defined as expressions in terms of the probabilities
πi(aj) for each player i selecting each action aj . This can be modelled as a para-
metric Markov chain whose parameters correspond to the probabilities πi(aj).
We refer to the resulting model as a parametric Markov chain game (PMCG),
which is formally defined as follows.

Definition 12 (Parametric Markov chain game). A parametric Markov
chain game (PMCG) is a tuple of the form:
G = ((S, I,Δ, V,AP,L), N,A, {Vi}i∈N , {ui}i∈N ), where:

– (S, I,Δ, V,AP,L) is a parametric Markov chain, which we will denote MG;
– N is a finite set of players;
– A = {a1, . . . , am} is a finite set of m actions;
– (Vi) is a partition of the parameter set V of MG, assigning a subset Vi =

{xi,1, . . . , xi,m} ⊆ V to each player i ∈ N ;
– ui : ΩMG → R is a utility function for each player i.

A PMCG G incorporates a parametric Markov chain MG , whose parameter set V
is partitioned into subsets Vi = {xi,1, . . . , xi,m} for each player i. Each individual
parameter xi,j represents the probability with which player i will choose action
aj ∈ A. The PMCG also defines a utility function ui for each player i, represented
as a function from (infinite) paths in MG to a real value.

3.2 Mixed Strategies and Nash Equilibria for PMCGs

Given a PMCG G, the set of pure strategies for player i is the set of avail-
able actions A. A mixed strategy for player i, denoted by πi, is given as a
probability distribution over the set of pure strategies and written as a vector
πi = (πi,1, πi,2, . . . , πi,m) where πi,j denotes the probability of player i choosing
action aj . A (mixed) strategy profile π = (π1, . . . , πn) = (πi,1, πi,2, . . . , πn,m)
comprises a strategy for all players in the game.

The parametric Markov game MG of G represents the behaviour of the system
under any possible strategy profile, with parameter xi,j representing the proba-
bility of player i choosing aj . Thus, for a fixed strategy profile π, the resulting
behaviour of the system is modelled by the induced Markov chain MG,V/π, in
which each vi,j is assigned value πi,j . This Markov chain gives us a probability
measure, denoted Probπ

G over the set of all paths in ΩG through G.
Now, to reason about Nash equilibria of G, we first need to specify a prefer-

ence ordering over strategies. As discussed earlier, we do so implicitly by defining
a utility function ui whose expected value each player i aims to maximise. In
a PMCG, a utility function ui assigns a real value to each path through the
model. The expected value of ui under a mixed strategy profile π is then defined
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by the Markov chain induced from G by π. More precisely, the expected utility
for player i is E

π
G(ui), i.e., the expected value of function ui with respect to

the probability measure Probπ
G over paths through G. Abusing notation, we will

often simply write ui(π) instead of Eπ
G(ui). This allows us to give the following

formal definition of a mixed strategy Nash equilibrium for a PMCG.

Definition 13 (Mixed strategy Nash equilibrium of G). Given a PMCG
G = (MG , N,A, (Vi), (ui)), a mixed strategy profile π for G is a Nash equilibrium
if, for any player i and any mixed strategy π′

i of player i, we have ui(π−i, πi) ≥
ui(π−i, π

′
i), where ui gives the expected utility for player i under a strategy profile,

as explained above.

Theorem 1. Let G = (MG , N,A, (Vi), (ui)) be a PMCG. If, for all i ∈ N , the
utility function ui is continuous and quasi-concave over the set of mixed strategies
for player i, then G has a mixed strategy Nash equilibrium.

Proof. Consider the set of mixed strategies for player i, which is a set of distri-
butions over the set A of m actions. This is a non-empty, convex and compact
subset of Rm. By Proposition 1, as long as each utility function ui (and thus the
preference relation �i) is continuous and quasi-concave over the set of mixed
strategies, then G satisfies all the requirements to have a Nash equilibrium. �

The following result gives an important property of mixed strategy Nash equi-
libria for PMCGs G when calculating such equilibria:

Lemma 1. Given a PMCG G = (MG , N,A, {Vi}i∈N , {ui}i∈N ), if ui is mono-
tonic on player i’s mixed strategies, then: an n-tuple of mixed strategies profile
π = (π1, . . . , πn) is a mixed strategy Nash equilibrium of G iff for every player
i ∈ N , every pure strategy in the support of π is a best response to π−i.

Proof. (“⇒”): Assume that there is an action a in the support of πi which is
not a best response to π−i. Then by the monotonicity of the utility function
ui, player i can increase his utility by switching probability from a to an action
that is a best response, so πi is not a best response to π−i, which leads to a
contradiction.

(“⇐”): Suppose that there is a mixed strategy π′
i that gives a higher expected

utility than πi does in response to π−i. Then at least one action in the support
of π′

i must give a higher utility than some action in the support of πi, so that
not all actions in the support of πi are best responses to π−i, which leads to a
contradiction. �

One can imagine that, if a mixed strategy πi is a best response, then each of
the pure strategies involved in the mix must itself be a best response. Hence, all
the pure strategies in the mix must yield the same expected utility. That is to
say, every choice in the support of any player’s equilibrium mixed strategy must
yield the same utility value: ui(π−i, a) = ui(π−i, a

′) for any two pure strategies
a, a′ ∈ A such that the probabilities of player i choosing pure strategies a and a′

are positive: πi,a > 0 and πi,a′ > 0. We will use this fact to find mixed strategy
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Nash equilibria of G = (MG , N,A, {Vi}i∈N , {ui}i∈N ) since we can therefore write
the Nash equilibria conditions as follows:

⎧
⎨

⎩

ui(π−i, a) = ui(π−i, a
′) ∀a, a′ ∈ A, s.t. πi,a, πi,a′ > 0∑m

j=1 πi,j = 1 ∀i

0 ≤ πi,j ≤ 1 ∀i, j.
(1)

By solving the equations above, we can find the equilibria.

4 Finding All Nash Equilibria

In this section we consider practical approaches to the synthesis of Nash equi-
libria for systems modelling using the parametric Markov chain game formalism
introduced above. First, we need a formal specification of both the model of the
system and the utility functions that are being used to define equilibria. Our
work builds upon functionality in the PRISM model checker [10] for modelling
and constructing parametric Markov chains, so systems are specified using the
PRISM modelling language and utility functions for the models specified using
PRISM’s temporal logic notation, summarised in Sect. 2.3.

Using PRISM, we apply probabilistic verification to a parametric Markov
chain, yielding rational functions that represent the expected values of utility
functions. These rational functions are over the variables xi,j corresponding to
the probabilities in the mixed strategies of each player. At this point we apply a
simple optimisation to reduce the number of variables required. Given that we
know xi,1 + · · · + xi,m = 1 for any i, one of the variables is redundant and we
can rewrite, for example, xi,m as 1 − (xi,1 + · · · + xi,m−1).

Next, we check the monotonicity of each player’s utility function on the
variables for its own mixed strategy.

Finally, we construct and solve, from the computed utility functions, a set of
equalities in order to determine the set of Nash equilibria for the model. This is
done based on the Nash equilibria conditions identified previously in (1), and is
described in more detail below.

We assume the cases that each player’s utility function is monotonic (and
thus quasi-concave) for his own strategy from then on. The details of each step
are discussed in the following subsections.

4.1 Nash Equilibria Conditions as Polynomial Equations

Given a set of players’ utility properties from a PMCG, each of the form

ui(x1,1, . . . , x1,m, . . . , xi,1, . . . , xi,m, . . . xn,1, . . . , xn,m).

the Nash equilibria conditions can be used to construct a polynomial system of
equations. Since player i’s optimal choices of xi,j should equal the utility of the
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other players from playing pure strategies, by Lemma 1, we can build a set of
equations for each i:

ui(x1,1, . . . , xi−1,1, . . . , xi−1,m, 1, 0, . . . , 0, xi+1,1, . . . , xn,m)
= ui(x11, . . . , xi−1,1, . . . , xi−1,m, 0, 1, . . . , 0, xi+1,1, . . . , xn,m)
= . . . . . .

= ui(x11, . . . , xi−1,1, . . . , xi−1,m, 0, 0, . . . , 1, xi+1,1, . . . , xn,m).

In addition, for all i ∈ N , {xi,j |1 ≤ j ≤ m} is a distribution so: 0 ≤ xi,j ≤ 1 and∑m
j=1 xi,j = 1. By solving the set of equations obtained above, we can find a

set of complex solutions to {xij |i = 1, . . . , n, j = 1, . . . ,m}, which, if they exist,
yield the Nash equilibria, as required.

Solving the above system is non-trivial since the problem is typically non-
linear. Herings and Peeters [8] show the feasibility of computing all Nash equi-
libria of general finite games in theory, and Datta provides an implementation
in [5]. Homotopy continuation methods have been proven to be a reliable and
powerful mathematical method to compute all isolated complex solutions [11,13]
of polynomial systems. The method includes a number of main steps: use the
algebraic structure to count the roots and to construct a start system, the root
count determines the number of solution paths to be traced; the target system
is embedded to solve in homotopy system, i.e., a family of systems connecting
the start and the target system; following the solution paths of the homotopy
system, the continuation methods are applied to extend the solutions of the start
system to the desired solutions of the target system.

There are a number of software packages devoted to solving polynomial sys-
tems by using homotopy continuation methods. In this paper, we exploit the
PHCpack [21] platform since it performs better than other software packages in
terms of computational stability and capacity [4].

We conclude the Nash equilibrium generation with a few final checks. First,
all of the mixing probabilities we have constructed must indeed be probabilities:
∀i ∈ N.

∑m
j=1 xi,j = 1. Second, if there are no probability solutions, we need

to check whether the player has a strictly profitable deviation. In the following
sections, we illustrate the process on some examples.

5 Game-Theoretic Modelling of Security Systems

Now, we move on to describe how game-theoretic verification approach described
in the previous two sections can be applied specifically in the context of security-
sensitive communicating systems. In particular, we show to model such systems
as parametric Markov chain games (see Definition 12) equipped with appropriate
utility functions. In the next section, we will demonstrate the approach on a case
study: the Crowds anonymity protocol.

We consider computerised communication systems consisting of a set of play-
ers and a set of destinations. We focus on the core procedure of transmitting
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messages through the system. This typically involves randomisation, and poten-
tially other stochastic aspects such as message loss. Individual players may make
certain strategic decisions about how to participate in the system. These are
modelled as probabilistic actions, whose probabilities are parameters controlled
by the player in question. The adversary is the set of malicious players who
partially observe or participate in the transmission of messages and try to learn
the sensitive information stored in the system states.

Players’ utility functions are used to indicate preferences between strategies.
Using our PMCG model, utility functions are defined as real-valued functions
over paths, i.e., a mapping from each possible system execution to a real value.
Strategies are then compared based on the expected value of this function. In the
context of communication systems, we consider utility functions comprising two
parts: security measurement and cost measurement. It is reasonable to expect
that conflicts or trade-offs might exist between these two: for example, additional
relaying of messages might improve security but at additional cost.

Security Measurement. In a communicating network, the adversaries act as a
player and make a series of partial observations over the communication network.
There is a set of execution paths, and some of them release information to the
adversaries. We say an execution path is bad to i if there is a transition from a
sensitive node controlled by i to a node controlled by a malicious player along the
path, which cause information leakage. In our quantitative setting, we consider
(the information of) player i to be secure if the probability of bad paths for i is
small enough. Specifically, letting ψ ⊆ ΩG denote the set of paths reaching the
destination, and ψ∗

i ⊆ ΩG denote the set of bad paths of the player i, we define
the measurement of security for mixed strategy π to be:

us
i (π) = Probπ(ψ \ ψ∗

i ) = Probπ(ψ) − Probπ(ψ∗
i ), (2)

where ψ and ψ∗ can be specified as PCTL formulas. Note that the bigger the
security metric the more secure the system is with regard to the security property
of interest.

Example 1. Consider players N = {0, 1, 2} and assume 0, 1 are honest players
and 2 is a malicious player. Consider a PMCG in which states si (i ∈ {0, 1, 2})
are controlled by player i (say i is sending or forwarding a message for instance),
sd denotes the message reaching its destination, and parameters xi represent
probabilities controllable by player i. Assume that player 0 starts a message at
s0 (sensitive), and any transitions from s0 to s2 will violate the security policy.
The bad paths ψ∗ contain all the paths including the transition from s0 to s2.
The probabilistic transition graph and security metric computation by (2) is
presented in Fig. 1.

Cost Measurement. Markov chains with reward (or cost) structures allow
us to specify two distinct types of rewards: state rewards, which are assigned to
states by means of a function of the form S → R≥0, and transition rewards, which
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8− 5x1
.

Fig. 1. Example: security measurement

are assigned to transitions by means of the function of the form S×S → R≥0. The
state reward is the reward acquired in each state per time-step, and transition
rewards are acquired each time a transition between states occurs. For the cost
measurement, we consider the “expected cost consumed until a message reaches
its destination”. Let ri = (ri,state, ri,action) be a reward structure for player
i, and φ represent a set of target states (e.g., where a message has reached
the destination). The required expected cost can be specified using the reward
operator from PRISM’s temporal logic (see Sect. 2.3): Rri

=?[Fφ].

Example 2. Consider again the example presented in Fig. 1. Let r0,state(s0) = 0,
assume the cost of player 0 forwarding a message is 1. Letting uc

i,s represent
the expected cost for player i from state s, we can calculate the cost metric by
solving:

⎧
⎨

⎩

uc
0,s2

= uc
0,sd

= 0
uc
0,s0

= (1 + x1u
c
0,s1

) + (12 − x1)uc
0,s2

+ 1
2uc

0,sd

uc
0,s1

= (0 + 5
8uc

0,s0
) + x2u

c
0,s2

+ (38 − x2)uc
0,sd

We have uc
0,s0

= 8
8−5x1

, i.e., the parametric expected cost of player 0 is 8
8−5x1

.

Expected Utilities. Note that the performance of the system is in direct
proportion to the security metric, and is in inverse proportion to the cost metric.
So we define the utility of player i as a ratio of the security metric function over
the cost metric function:

ui(π) =
us

i (π) ∗ ws

uc
i,s0

(π) ∗ wc
(3)

where ws denotes the weight of the security property, and wc denotes the weight
of the cost property.

Example 3. Let ws = 3, wc = 1, we calculate the expected utility of the previous
example as: u0(π) = (4+3x1)/(8−5x1)∗3

24/(8−5x1)
= 3(4+3x1)

8 .

6 Experimental Results: The Crowds Protocol

We have implemented our parametric model checking based approach to game-
theoretic verification as an extension of the PRISM model checker [1]. Our tool
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can find the mixed strategy Nash equilibria for the players in a game when each
player’s utility function is monotonic w.r.t. his own mixed strategy. Building on
the ideas set out in the previous section, we have used this approach to analyse
the anonymity and cost of the Crowds protocol [16].

Crowds is a protocol allowing users to forward messages anonymously. The
idea is that each user randomly chooses a user to forward a message rather than
send their message to the destination directly. A forwarding route is therefore
established within a collection of network members. In our game-theoretic model,
each honest forwarder makes a decision whether to be cooperative or to be selfish.
If he decides to be cooperative, then he flips a coin to decide to either send the
message to the destination directly (with probability 1 − PF), or relay it to
another crowd member randomly (with probability PF); otherwise he discards
the message directly. The malicious player behaves like a normal player but he
will send the message he received to the destination directly. A malicious user
can never be certain whether the observed user is the actual sender, or is simply
forwarding another user’s message.

Suppose in the protocol, there are two honest members (player-1, 2) and two
malicious members (player-3, 4). Assume that sending and relaying a message
costs cs1 = 1 and cr1 = 2 respectively for player-1, and cs2 = 2 and cr2 = 3 for
player-2. Without loss of generality, we choose different cost values for different
operations and players here for demonstration. Let xi denote the probability of
player i being cooperative, and 1−xi the probability of being selfish. Figure 3 in
AppendixB presents the transition graph of the model. We define the property
specification for initiator (honest) player k as:

(P=?[F destination] − P=?[F (to=3 ∨ to=4) ∧ (from=k) ∧ (sender=k)]) ∗ ws

(Rk=?[F deadlock ]) ∗ wc
,

where k ∈ {1, 2} is an honest player, to ∈ {1, 2, 3, 4} is the player whom the
message is sent to, from ∈ {1, 2, 3, 4} is the player who is sending/forwarding
the message, P=?[F destination] calculates the probability of the set of runs φ
reaching the destination; P=?[F (to = 3 ∨ to = 4) ∧ (from = k) ∧ (sender = k)]
calculates the probability of the set of runs φ∗ violating anonymity property,
i.e., sender k is sending or forwarding the message to a malicious player (3 or
4) directly; Rk=?[F deadlock ] calculates the accumulated costs uc

k reaching a
terminating state; and ws and wc denote the weights for anonymity and costs,
respectively. Assume ws = 3, wc = 1, let u1(x1, x2) and u2(x1, x2) denote the
polynomial utility functions generated for player-1 and player-2 respectively,
we get the parametric model checking results given as a set of polynomials as
follows:

u1(x1, x2) =
15 ∗ x2 ∗ x1 − 36 ∗ x1 − 30 ∗ x2 − 144
6 ∗ x2 ∗ x1 − 28 ∗ x1 + 12 ∗ x2 − 120

u2(x1, x2) =
15 ∗ x2 ∗ x1 − 30 ∗ x1 − 36 ∗ x2 − 144
8 ∗ x2 ∗ x1 + 24 ∗ x1 − 36 ∗ x2 − 216

First let us check the monotonicity of u1(x1, x2) for player 1’s mixed strategy:
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∂u1

∂x1
=

6(15x2
2 − 92x2 + 12)

(3x1x2 − 14x1 + 6x2 − 60)2

Let ∂u1
∂x1

= 0, we have x2 = 2
15 , 6. Considering x2 ∈ [0, 1], we have: when 0 ≤ x2 ≤

2
15 , ∀x1.

∂u1
∂x1

≥ 0 i.e., u1 is nondecreasing with x1; similarly, when 2
15 ≤ x1 ≤ 1,

∀x1.
∂u1
∂x1

≤ 0 i.e., u1 is nonincreasing with x1. Therefore, for x1, x2 ∈ [0, 1], u1

is always monotonic w.r.t. player 1’s mixed strategy; similarly, u2 is monotonic
w.r.t. player 2’s mixed strategy.

To find the equilibria, we want to choose x1 (x2) so as to equalise the utility
of player-2 (player-1) receives from playing either pure strategies. We therefore
write the equations as: u1(0, x2) = u1(1, x2), u2(x1, 0) = u2(x1, 1), i.e.,

(−30 ∗ x2 − 144) ∗ (18 ∗ x2 − 148) = (−15 ∗ x2 − 180) ∗ (12 ∗ x2 − 120)
(−30 ∗ x1 − 144) ∗ (32 ∗ x1 − 252) = (−15 ∗ x1 − 180) ∗ (24 ∗ x1 − 216).

By solving the above equations, we get the Nash equilibria and the relevant
utility values: x1 = 0.72; x2 = 0.13; u1 = 1.25; u2 = 0.83.

In order to check the solutions obtained, let us look at the experiment results
of the utilities of layer i = 1, 2 with constant variables x1 = 0 : 1 and x2 = 0 : 1
produced by PRISM. Figure 2 presents the utilities to player 1’s (cf. player 2’s)
pure strategies as functions of player 2’s (cf. player 1’s) mixed strategy. One can
see that the intersection of the two lines are mixed strategy equilibria: i.e., player-
1 chooses x1 = 0.72, player-2 chooses x2 = 0.13, which also meets our equilibria
results produced by our PMCG analyser. In addition, if we set up the reward
structure symmetrically for player 1 and 2, say both transitions s1 and s2 cost
2, both transitions r1 and r2 cost 3, we obtain the symmetric Nash equilibria
for player 1 and 2: x1 = x2 = 0.72; u1 = u2 = 0.83. Table 1 lists a group
of experimental results produced by our PMCG analyser regarding to different
number of players, honest players, reward structures (in which csi

and cri
denote

the cost of player i for sending and relaying a message respectively) with the size
of the state space of the parametric Markov chain and the total computation
time spent to achieve the final equilibria results. This demonstrates our proposed
approach can be used to automatically find the mixed Nash equilibria for the
Crowds protocol with multiple players. The computation time increases with the
number of honest players, and the result of the Nash equilibria is mainly affected
by the specified reward structures.

Fig. 2. Utilities to player 1’s (left) and 2’s (right) pure strategies as functions of player
2’s and 1’s mixed strategy
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Table 1. Experimental results with size of state space and time cost

N Nh Reward structure
(cs1 , cr1 ; . . . ; csNh

, crNh
)

Size of
PMC

Total time
(sec.)

Nash equilibria
(x1, x2, . . . )

3 2 (1, 2; 2, 3) 19 1.18 (0.62, 0.46)

4 2 (1, 2; 2, 3) 23 1.181 (0.72, 0.13)

4 3 (1, 1; 1, 1; 1, 1) 48 1.857 (0.32, 0.32, 0.32)

5 2 (2, 3; 2, 3) 35 1.878 (0.29, 0.29)

5 3 (1, 0.8; 1, 0.8; 1, 0.9) 57 2.003 (0.038, 0.038, 0.407)

7 2 (1, 1.2; 1, 1.3) 35 1.131 (0.186, 0.608)

7 3 (1, 0.6; 1, 0.6; 1, 0.6) 75 1.964 (0.469, 0.469, 0.469)

7 4 (1, 0.5; 1, 0.5; 1, 0.5; 1, 0.5) 131 116.145 (0.15, 0.15, 0.15, 0.15)

We present more details of how the reward structures affect the Nash equi-
libria results in Table 2 in AppendixA. It can be seen that the players tend to
be more cooperative (larger equilibria) when the ratio of the cost of sending
a message si and relaying a message ri is bigger (see Table 2(a)). In the cases
investigated, a range of such ratios results in mixed Nash equilibria, while the
ratios outside of that range lead to pure Nash equilibria. The strategy of each
player is also affected by other players’ reward structures (see Table 2(b and c)).

7 Conclusions

We have presented a new automated game-theoretic approach for quantitative
verification of security properties of software systems. Security-sensitive commu-
nication networks typically require the collaboration of their participants to work
effectively. We study the problem of how the participants should react regard-
ing to collaborating strategies in order to improve the overall performance with
a balance between security and cost. We apply a game-theoretic approach to
capture such a balance represented as Nash equilibria. We propose methods to
automatically find the equilibria under which no participants can benefit by
changing their strategies.

To achieve our goal, we propose the model of parametric Markov chain games
and apply parametric model checking techniques to compute utility functions,
using models described in the PRISM modelling language and utilities specified
in probabilistic temporal logic. We generate and solve a polynomial equation
system, from which we identify the Nash equilibria. To illustrate the applicability
of our approach, we have implemented our approach as an extension to the tool
of PRISM model checker, and analysed the Crowds protocol, studying the trade-
offs between anonymity/cost.

Both theoretical and experimental evidence are presented for the utility of
the approach for quantitative security analysis. We believe this is a significant
contribution to automatically analysing security systems from a quantitative and
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game-theoretic view. For future work, we plan to study the precise computational
complexity issues of the presented approach, and adapt our method in wider
cases in addition to security systems.

Appendix A: Sensitivity Study of the Reward Structures

Table 2. Sensitivity study of the reward structures to Nash equilibria (N.E.s) & utilities
(N = 4, Nh = 3)

(a)

Reward structure (cs1 , cr1 ; cs2 , cr2 ; cs3 , cr3 ) N.E. (x1, x2, x3) Utility (u1, u2, u3)

(1.0, 0.2; 1.0, 0.2; 1.0, 0.2) (1.0, 1.0, 1.0) (6.06, 6.06, 6.06)

(1.0, 0.4; 1.0, 0.4; 1.0, 0.4) (1.0, 1.0, 1.0) (4.92, 4.92, 4.92)

(1.0, 0.6; 1.0, 0.6; 1.0, 0.6) (0.908, 0.908, 0.908) (3.93, 3.93, 3.93)

(1.0, 0.8; 1.0, 0.8; 1.0, 0.8) (0.55, 0.55, 0.55) (2.753, 2.753, 2.753)

(1.0, 1; 1.0, 1; 1.0, 1.0) (0.32, 0.32, 0.32) (2.113, 2.113, 2.113)

(1.0, 1.2; 1.0, 1.2; 1.0, 1.2) (0.16, 0.16, 0.16) (1.713, 1.713, 1.713)

(1.0, 1.4; 1.0, 1.4; 1.0, 1.4) (0.048, 0.048, 0.048) (1.44, 1.44, 1.44)

(1.0, 1.6; 1.0, 1.6; 1.0, 1.6) (0.0, 0.0, 0.0) (1.304, 1.304, 1.304)

(1.0, 1.8; 1.0, 1.8; 1.0, 1.8) (0.0, 0.0, 0.0) (1.25, 1.25, 1.25)

(1.0, 2.0; 1.0, 2.0; 1.0, 2.0) (0.0, 0.0, 0.0) (1.2, 1.2, 1.2)

(b)

Reward structure (cs1 , cr1 ; cs2 , cr2 ; cs3 , cr3 ) N.E. (x1, x2, x3) Utility (u1, u2, u3)

(1.0, 0.8; 1.0, 0.8; 1.0, 0.5) (1.0, 1.0, 1.0) (3.58, 3.58, 4.5)

(1.0, 0.8; 1.0, 0.8; 1.0, 0.6) (0.908, 0.908, 0.191) (2.78, 2.78, 3.93)

(1.0, 0.8; 1.0, 0.8; 1.0, 0.7) (0.708, 0.708, 0.393) (2.76, 2.76, 3.24)

(1.0, 0.8; 1.0, 0.8; 1.0, 0.8) (0.55, 0.55, 0.55) (2.75, 2.75, 2.75)

(1.0, 0.8; 1.0, 0.8; 1.0, 0.9) (0.42, 0.42, 0.68) (2.756, 2.756, 2.39)

(1.0, 0.8; 1.0, 0.8; 1.0, 1.0) (0.321, 0.321, 0.779) (2.763, 2.763, 2.113)

(1.0, 0.8; 1.0, 0.8; 1.0, 1.1) (0.235, 0.235, 0.864) (2.77, 2.77, 1.89)

(1.0, 0.8; 1.0, 0.8; 1.0, 1.2) (0.16, 0.16, 0.94) (2.78, 2.78, 1.713)

(1.0, 0.8; 1.0, 0.8; 1.0, 1.3) (0.1, 0.1, 0.9997) (2.79, 2.79, 1.56)

(1.0, 0.8; 1.0, 0.8; 1.0, 1.4) (1.0, 1.0, 1.0) (3.58, 3.58, 2.54)

(c)

Reward structure (cs1 , cr1 ; cs2 , cr2 ; cs3 , cr3 ) N.E. (x1, x2, x3) Utility (u1, u2, u3)

(1.0, 1.0; 1.0, 1.0; 1.0, 0.5) (1.0, 1.0, 1.0) (3.15, 3.15, 4.5)

(1.0, 1.0; 1.0, 1.0; 1.0, 0.6) (1.0, 1.0, 1.0) (3.15, 3.15, 4.14)

(1.0, 1.0; 1.0, 1.0; 1.0, 0.7) (1.0, 1.0, 1.0) (3.15, 3.15, 3.84)

(1.0, 1.0; 1.0, 1.0; 1.0, 0.8) (0.55, 0.55, 0.09) (2.12, 2.12, 2.75)

(1.0, 1.0; 1.0, 1.0; 1.0, 0.9) (0.42, 0.42, 0.22) (2.11, 2.11, 2.39)

(1.0, 1.0; 1.0, 1.0; 1.0, 1.0) (0.32, 0.32, 0.32) (2.113, 2.113, 2.113)

(1.0, 1.0; 1.0, 1.0; 1.0, 1.1) (0.235, 0.235, 0.407) (2.114, 2.114, 1.892)

(1.0, 1.0; 1.0, 1.0; 1.0, 1.2) (0.16, 0.16, 0.48) (2.116, 2.116, 1.713)

(1.0, 1.0; 1.0, 1.0; 1.0, 1.3) (0.1, 0.1, 0.54) (2.12, 2.12, 1.56)

(1.0, 1.0; 1.0, 1.0; 1.0, 1.4) (1.0, 1.0, 1.0) (2.123, 2.123, 1.44)
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Appendix B: The PRISM Model of Crowds Protocol

0 : (−1, 0, 0, 0)start

0 : (0, 1, 1, 1) 0 : (0, 2, 2, 2)

1 : (1, 1, 1, 1) 2 : (1, 1, 2, 1) 3 : (1, 1, 3, 1) 4 : (1, 1, 4, 1) 1 : (1, 2, 1, 2) 2 : (1, 2, 2, 2) 3 : (1, 2, 3, 2) 4 : (1, 2, 4, 2)

2 : (2, 1, 2, 2) 1 : (2, 2, 1, 1)
0 : (3, 0, 0, 0)
discarded

1 : (4, 1, 1, 2) 2 : (4, 1, 2, 2) 3 : (4, 1, 3, 2) 4 : (4, 1, 4, 2) 1 : (4, 2, 1, 1) 2 : (4, 2, 2, 1) 3 : (4, 2, 3, 1) 4 : (4, 2, 4, 1)

0 : (5, 0, 0, 0)
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Fig. 3. Model of Crowds with 2 honest players and 2 malicious player with PF = 0.5.
For i ∈ {1, 2, 3, 4}, transition label ri denotes relaying a message by player i; for
i ∈ {1, 2}, si denotes sending a message by (honest) player i, ci denotes the player
i decide to be cooperative, ni denotes the i choose to be selfish. Label init denotes
randomly pick up an honest player as a initiator to send out a message. State labelled as
i : (status, from, to, sender) implies state (status, from, to, sender) ∈ Si for player
i ∈ {0, 1, 2, 3, 4}, player i = 0 is used to model a coordinator, where the status =
0, 1, 2, 3, 4, 5 denotes that the sender is randomly picked up, the message is sent, the
player decides to be cooperative, the player decides to be selfish and the message is
discarded, and the message reaches the destination respectively.

(1) Cost structures for honest players i = 1, 2: assigns a cost of 1 and 2 to all
transitions labelled with ‘s1’ and ‘r1’ to player 1 respectively; and assigns
a cost of 2 and 3 to all transitions labelled with ‘s2’ and ‘r2’ to player 2
respectively.

(2) Property specification for honest players: the utility function of player i is
defined as the probability of good behaviours/costs. We say a run is good if
it reaches the destination without violating the anonymity properties.
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Abstract. Markov Population Models are a widespread formalism, with
applications in Systems Biology, Performance Evaluation, Ecology, and
many other fields. The associated Markov stochastic process in continu-
ous time is often analyzed by simulation, which can be costly for large
or stiff systems, particularly when simulations have to be performed in
a multi-scale model (e.g. simulating individual cells in a tissue). A strat-
egy to reduce computational load is to abstract the population model,
replacing it with a simpler stochastic model, faster to simulate. Here
we pursue this idea, building on previous work [3] and constructing an
approximate kernel for a Markov process in continuous space and dis-
crete time, capturing the evolution at fixed Δt time steps. This kernel
is learned automatically from simulations of the original model. Differ-
ently from [3], which relies on deep neural networks, we explore here a
Bayesian density regression approach based on Dirichlet processes, which
provides a principled way to estimate uncertainty.

Keywords: Model abstraction · Markov Population Models ·
Bayesian density regression · Dirichlet processes

1 Introduction

Stochastic models are undoubtedly one of the most powerful frameworks to
describe and reason about complex systems. Due to the severe state space explo-
sion of these models, simulation is often the only viable tool to analyse them.
Even simulation, however, can face severe computational limits, in particular
when the systems of interest have a multi-scale nature. Consider for example
a biological scenario, in which we want to model the effect of a drug targeting
individual cells in a tissue, for instance a tumour. In order to build an accu-
rate model of such a system, both the dynamics at the individual cells and the
one at the tissue level have to be described and simulated. Unfortunately, tis-
sues typically contain millions of cells, each requiring the simulation of complex
interaction pathways [5]. This complexity defies also modern High Performance
Computing resources, and can be tackled only by simplifying the model of each
individual cell, i.e. resorting to model abstraction.
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Typical approaches in this direction require a large dose of experience and
ingenuity to hand-craft a suitable abstraction. Recent alternatives rely on mod-
ern artificial intelligence to learn the best abstraction from a given class of mod-
els. The more general the class, the more flexible the method, the higher the
learning cost.

Related Work. Some approaches in literature try to introduce as much knowl-
edge in the abstraction as possible, thus reducing the complexity of the learning
problem. A notable example is [13], in which authors exploit knowledge about
the key drivers of bacterial chemotaxis, combining an abstract model of the
dynamic of such drivers with a simple model with few states describing the
decision of the bacteria, i.e. whether to rotate or proceed straight. The final
model is a Continuous Time Markov Chain (CTMC) where transition rates are
learned using Gaussian Process Regression from some simulations of the full
model. On the other hand of the spectrum, we find the work of Palaniappan
et al. [16], in which the authors start from a bunch of simulations of the original
model, using information theoretic ideas extract a subset of relevant variables,
discretize them and then learn a dynamic Bayesian network in discrete time. The
abstract model was used for fast approximate simulation of the original model.
The work on this paper follows these lines, starting from the approach of [3],
in which we abstracted a CTMC model by discretizing time, choosing a time
step Δt relevant for the dynamics of the higher organisational scale (e.g. the
time-scale of the diffusion dynamics at the tissue level). The so obtained Dis-
crete Time Markov Process is defined in continuous space, approximating the
exact transition matrix by a transition kernel modelled as a mixture of Gaussian
distributions with means and covariances taken as functions of the current state
of the model. These functions are learned using Deep Neural Networks. Despite
the method was effective in the examples studied, it is not without drawbacks.
First of all, there is no quantification of the uncertainty in the so-learned kernel,
hence no measure of confidence on the accuracy of the abstraction. Secondly,
the number of mixture components is a hyperparameter strongly affecting the
performance of the method.

Contributions. In this work, we continue the investigation started in [3],
exploring the use of non-parametric Bayesian machine leaning [1] to provide a
consistent estimate of uncertainty and to self-tune kernel complexity from data.

Our idea is to work with probability distributions in the space of transition
kernels, defining a prior distribution and computing a posterior by conditioning
on observed simulation data. If we fix the current state x in the model, distri-
butions over kernels reduce to distributions over probability distributions of the
next state x′ after Δt units of time. To simulate the abstract model, we first need
to sample a distribution, and then sample the next state from this distribution.
Provided these sampling operations can be implemented efficiently, this could
considerably speed-up simulation. Importantly, having a distribution of distribu-
tions allows us to incorporate uncertainty in the reconstruction of the kernel and
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identify initial states from which the reconstruction is more problematic. This
information can be used to tune the accuracy of the abstraction, e.g. improve it
in areas of the state space visited more often by the process.

The technical details of this approach are non-trivial. Fortunately, the prob-
lem we want to solve has been studied in statistics and machine learning and
goes under the name of density regression [6,7]. Borrowing from this literature,
we extend and tailor existing methods that use Dirichlet processes (essentially
distributions over probability densities) to finally obtain a posterior distribution
which is a mixture of Gaussian with a variable number of components, learned
from data. The posterior distribution cannot be computed analytically, hence
we rely on Gibbs sampling, a Monte Carlo method which has to be run only
at training time. In fact, during training we will sample from the posterior and
approximate it by its empirical distribution which permits a very fast sampling
from the transition kernel. The method is validated on few experimental case
studies, which we use to discuss potentials and limitations of this approach.

Paper Structure. In Sect. 2 we introduce some background material on
stochastic models and case studies. Section 3 is devoted to present the model
abstraction framework and formulate the learning problems, while density regres-
sion and the algorithm we use is described in detail in Sect. 4. Experiments are
reported in Sect. 5, while the final discussion is in Sect. 6.

2 Background

2.1 Chemical Reaction Networks

Chemical Reaction Networks (CRNs) use the formalism of chemical equations
to capture the dynamics of population models, including biological systems and
epidemic spreading scenarios. Let X1, . . . , Xm be a collection of m species and
ηt,i, i = 1, . . . , m, denotes the population size of species Xi present in the system
at time t. The dynamics of a CRN is described by a set of reactions R =
{R1, . . . , Rp}. The firing of reaction Ri results in a transition of the system from
state ηt = (ηt,1, . . . , ηt,m) ∈ S = N

m to state ηt + νi, with νi being the update
vector. A general reaction Ri is identified by the tuple (fRi

, νi), where fRi
, known

as propensity function of reaction Ri, depends on the state of the system.
The time evolution of a CRN can be modelled as a Continuous Time Markov

Chain (CTMC [14]) on the discrete space S. Motivated by the well-known mem-
oryless property of CTMC, let Ps0(ηt = s) denote the probability of finding the
system in state s at time t given that it was in state s0 at time t0. This probability
satisfies a system of ODEs known as Chemical Master Equation (CME):

∂tPs0(ηt = s) =
p∑

j=1

[
fRj

(s − νj)Ps0(ηt = s − νj) − fRj
(s)Ps0(ηt = s)

]
. (1)

Since the CME is a system in general with countably many differential equa-
tions, its analytic or numeric solution is almost always unfeasible. An alternative
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computational approach is to generate trajectories using stochastic algorithms
for simulation, like the well-known the Gillespie’s SSA [10].

The SIR Model. The SIR epidemiological model describes a population of N
individuals divided in three mutually exclusive groups: susceptible (S), infected
(I) and recovered (R). The system state at time t is ηt = (St, It, Rt). The possible
reactions, given by the interaction of individuals (representing the molecules of
a CRN), are the following:

– R1 : S + I
k1·ItSt/N−−−−−−→ 2I (infection),

– R2 : I
k2·It−−−→ R (recovery).

The model describes the spread, in a population with fixed size N , of an infec-
tious disease that grants immunity to those who recover from it. As the SIR
model is well-known and stable, we use it as a testing ground for our Bayesian
abstraction procedure.

The Gene Regulatory Network Model. Consider a simple self-regulated
gene network [2] in which a single gene G is transcribed to produce copies of a
mRNA molecule M ; each mRNA molecule can then be translated into a protein
P . In addition P acts as a repressor with respect to the gene G. In other words,
the gene activity is regulated through a negative-feedback loop, a common pat-
tern in biological systems. The reactions are the following:

– R1 : GON kprodM ·GON

−−−−−−−−−→ GON + M (transcription)

– R2 : M
kprodP ·M−−−−−−→ M + P (translation)

– R3 : GON kdeact·GON

−−−−−−−−→ GOFF (protein binding)

– R4 : GOFF kact·GOFF

−−−−−−−→ GON + P (protein unbinding)

– R5 : M
kdegM ·M−−−−−−→ ∅ (mRNA degradation)

– R6 : P
kdegP ·P−−−−−→ ∅ (protein degradation).

The system dynamic varies significantly accordingly with the choice of reac-
tion rates. We refer to [2] for a detailed exploration of different behavioural
patterns. According to our choice, see Sect. 5, the system exhibits several well-
separated stable configurations. If we look at trajectories in Fig. 1 on a smaller
scale, we notice that each stable point is actually noisy, i.e. there is a high num-
ber of small amplitude oscillations. Starting from an initial state η0, we can
sequentially generate a large number of instances of the state of the system at
a fixed time t1, ηt1 . The empirical probability distribution of such ηt1 approxi-
mates, for a number of samples sufficiently large, the density function Pη0(ηt),
shown in Fig. 3 (blue lines). The system exhibits up to 5 distinguishable modes,
with some Gaussian noise affecting each one of them.

Motivated by the multimodality of this system we seek a Bayesian
non-parametric density regression method, able to capture such hierarchical
structure.
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Fig. 1. Example of a trajectory, for the gene regulation network model. The overall time
is 10,000 s. Left: trajectory of proteins (P ), which present a multistable configuration.
Middle: trajectory for the mRNA molecules (M). Right: trajectory for the active gene
GON .

3 Model Abstraction

Let’s now introduce the concept of model abstraction as presented in [3]. The
underlying idea is the following: given a stochastic process {ηt}t≥0 with transition
probabilities Ps0(ηt = s), we aim at finding another stochastic process whose
trajectories are similar to the first one, but faster to simulate. Instead of working
with transition probabilities themselves we rather use transition kernels. This
requires a discretization of time. In other words, the process is considered only
at time points with a fixed temporal distance. If we fix a time step Δt and an
initial time instant t0 ∈ R, the states can be expressed as η̃i := ηt0+iΔt. The
CTMC, {ηt}t≥0, is now expressed as a time-homogeneous Discrete Time Markov
Chain {η̃i}i with transition kernel

Kd(s | s0) = Ps0(ηΔt = s), (2)

for all s, s0 ∈ S. Two additional approximations are required:

1. The abstract model takes values in S ′ = R
m
≥0, a continuous space in which

the state space S = N
m is embedded.

2. The kernel Kd, Eq. 2, is approximated by a new kernel K(s′ |s′
0) taking values

in the continuous space S ′.

In constructing the approximate kernel K(s′ | s′
0), rather than trying to preserve

the full behavior of the process, we restrict our attention to a time-bounded
reward function r from SM to an arbitrary space T (i.e. R, N, B, or R

k). Here
M is an upper bound on the duration of discrete time trajectories we consider
to evaluate the reward; we indicate time-bounded trajectories by η̃[0,M ]. Such a
function r can be a projection, monitoring the number of molecules belonging to
a certain subset of chemical species at a certain time step, or it can take Boolean
values in B = {0, 1}, representing the truth of a linear temporal property, for
example checking if the system has entered into a dangerous region. Note that
r(η̃[0,M ]) is a probability distribution on T . The formal definition of an abstract
model is the following.
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Definition 1. Let η = {ηi}M
i=0 be a discrete time stochastic process over an

arbitrary state space S, with M ∈ N+ a time horizon, and let r : SM → T be
the associated reward function. An abstraction of (η, r) is a triple (S ′, p, r′, η′ =
{η′

i}M
i=0) where:

– S ′ is the abstract state space;
– p : S → S ′ is the abstraction function;
– r′ : S ′M → T is the abstract reward ;
– η′ = {η′

i}M
i=0 is the abstract discrete time stochastic process over S ′.

Definition 2. Let ε > 0, η′ is said to be ε-close to η with respect to d if, for
almost any s0 ∈ S,

d
(
r(η[0,M ]), r′(η′

[0,M ])
)

< ε conditioned on η0 = s0, η′
0 = p(s0). (3)

Dataset Generation. The model abstraction procedure can be translated into
a supervised learning problem. Choose n random initial states {s

(j)
0 }n

j=1 from S.
Starting from each of these states we run a simulation from t0 to t1 := t0 + Δt.
η
(j)
t1 denotes the system state at time t1 for each one of these simulations. By

defining xj := s
(j)
0 and yj := η

(j)
t1 for all j ∈ {1, . . . , n}, we have thus built

a dataset D := {(xj ,yj}n
j=1, where each yj is a sample from the probability

distribution Pxj
(ηΔt).

In order to validate the abstraction procedure, we choose a high number of
different initial settings, different from the initial states of the training set, and
from them a very large number of SSA trajectories is simulated. The empirical
distribution obtained can be compared with the distribution estimated with the
abstract kernel at these points.

Abstract Model Simulation. We now have an abstract model that can be
used to simulate a trajectory. We just need to sample up to time horizon M > 0
from the approximate kernel K, starting from the initial state s0 and initial time
t0. The simulated trajectory lies on the continuous state space S ′. Each time step
of our simulations has thus a fixed computational cost that does not depend on
the Δt chosen. This saves a lot of computational resources when simulating long
trajectories. This algorithm can be easily employed in a multi-scale setting: we
just need to train the kernel of the abstract model once, but after that a high
number of simulations can be performed at a very high speed.

Measuring the Error. The error introduced by the abstract model, i.e. how
much the abstract distribution differs from r(η′

[0,M ]), is a fundamental ingredient
to quantify. In general, the distance among two random distributions, X and Y,
can be computed using the L1 norm. In practice, this metric will be evaluated
statistically, resulting in the so called histogram distance [4]

D(X,Y ) =
K∑

i=1

|hX(Ii) − hY (Ii)|L
K

, (4)
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where I1, . . . , IK are K bins of size L and h∗(Ii) indicates the number of samples
in bin Ii. We call self distance the histogram distance between two set of samples
drawn from the same distribution.

Confidence Intervals: The big advantage of keeping a Bayesian non-
parametric perspective is the possibility to estimate the uncertainty in the
approximation procedure. The transition kernel is estimated using a trace of
predictive densities, from which we can reconstruct a confidence interval. We
expect this interval to be tight when the abstract kernel well approximate the
original kernel, and wide when the reconstruction is poor.

4 Bayesian Density Regression

Density estimation [9] is a well known process to model the density from which a
given set of observations is drawn. If data are assumed to be distributed hierar-
chically, meaning each point belongs to a randomly chosen cluster and members
of a cluster are further distributed randomly within that cluster, we are dealing
with a data clustering problem. In order to place a prior probability on the struc-
ture of data, we may assume, for instance, that there are K normally distributed
clusters, each cluster with its own parameters. The Bayesian non-parametric
intuition is to work without pre-specifying the number of clusters K and select
instead a random prior over an infinite set of clusters with infinitely many param-
eters. Dirichlet processes [8], which are the infinite-dimensional generalization of
Dirichlet distributions, are used as prior on such unknown distribution. They
are denoted as DP (αG0), where α is the precision parameter and G0 is the base
measure. A parametric form, Gaussian in our case, with unknown parameters is
usually chosen for G0. Realizations of such process, G ∼ DP (αG0), are random
distributions. In order to fit the model based on data, we should compute the
posterior distribution over cluster probabilities and their associated parameters.
Since we cannot write the posterior explicitly, we are going to draw samples from
the posterior using a Gibbs sampling algorithm.

However, our problem, which is embedded in the supervised learning scenario,
as presented in Sect. 3, is to estimate the conditional distribution of a variable
y ∈ Y, a one dimensional projection of the state space S, that depends on a
vector of covariates x ∈ X , which represents the entire state space S. This task is
called conditional density estimation or density regression. In other words, given
n observations D = (x1, y1), . . . , (xn, yn) ∈ X ×Y, we would like to estimate, for
a generic x ∈ X , the density on Y of the response variable y, i.e. the conditional
density f(y|x).

A simple solution under the assumption that G ∼ DP (αG0), would be to
use the dependent DP approach of MacEachern [11], which relies on the stick-
breaking representation [17] of DP:

G =
∞∑

h=1

πh · δθh
, (5)
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with πh/
∏h−1

l=1 (1 − πl) ∼ Beta(1, α). In the formula above, π = (πh, h =
1, . . . ,∞) is an infinite sequence of stick breaking weights, δθ is a degenerate
distribution with all its mass at θ and θ = (θh, h = 1, . . . ,∞) are atoms sampled
from G0. In the form of a DP mixture of normal linear regression models, the
stick-breaking process of (5) becomes

f(yi|xi) =
∞∑

h=1

πh · N (yi|xiβh, τ−1
h ), (6)

where θh = (βh, τh) is still sampled from G0.
The challenge is that unexpected changes in the shape of the density depend-

ing on the predictor values x may occur, therefore we cannot assume the dis-
tribution G to be constant over X . In this more complex scenario, priors for a
collection of dependent random distributions, Gx with x ∈ X , must be consid-
ered. Dunson, Pillai and Park [7] proposed a kernel-weighted mixture of DPs
(WMDP), using a non-parametric mixture of linear regression models for the
conditional density of y given x. The conditional density function is expressed
as a mixture of parametric densities:

f(y|x) =
∫

Φ

f(y|x, φ) · dGx(φ), (7)

where f(y|x, φ) is a known density on Y that depends on a parameter φ ∈ Φ and
Gx is a random mixing distribution on Φ indexed by the predictor x ∈ X . The
unknown collection of mixture distributions is allowed to vary with predictors
by defining a WMDP prior. See [7] for a detailed treatment.

Since mixtures of a sufficiently large number of Gaussian distributions have
been proved to be able to approximate any distribution accurately, we focus on
the following mixture of regression models:

f(yi|xi) =
∫

N (yi|x′
iβi, τ

−1
i ) · dGx(φi), (8)

with φi = (βi, τi). In order to limit the number of clusters, the WMDP prior pro-
posed in [7] set restrictions on the uncountable collection of mixture distributions
GX = {Gx : x ∈ X}. For every x ∈ X , they express Gx as

Gx =
n∑

i=1

πi(x)G∗
xi

, G∗
xi

∼ DP (αG0), (9)

where π(x) = [π1(x), . . . , πn(x)] is a vector of probability weights with∑
i πi(x) = 1. This formulation introduces independent DP random basis dis-

tributions at each of the predictor values in the sample, and then mixes across
these basis distributions to obtain a prior for the unknown mixture distribution,
Gx, at each possible predictor value, x ∈ X . Suppose that (φi|xi) ∼ Gxi

, for
i = 1, . . . , n, then, by marginalizing out the infinite-dimensional WMDP prior,
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it is possible to obtain a generalization of the so called DP Polya urn scheme:

(φi|φ(i),X, α) =
(

α

α + wi

)
G0 +

∑

j �=i

(
wij

α + wi

)
δφj

, (10)

where wij are weights that depend on the function π, the DP parameter α
and the set of observed predictors X, and wi =

∑
j �=i wij . In [6] the explicit

specification of π was avoided, using a simpler and more interpretable form:
wij = wψ(xi,xj), where wψ : X ×X → [0, 1] is a bounded kernel measuring how
close two predictors are in terms of a distance measure d, with ψ a smoothing
parameter controlling how rapidly wψ(x,x′) → 0 as d(x,x′) decreases. In the
limit as ψ → ∞, wψ(x,x′) = 0 for any x,x′ ∈ X having d(x,x′) > 0. In addition,
for all finite ψ, limx→x′ wψ(x,x′) = 1. Under this simplification, Eq. (10) can be
written as

(φi|φ(i),X, α, ψ) =
(

α

α + wi(ψ)

)
G0 +

k(i)∑

h=1

(
w∗

ij(ψ)
α + wi(ψ)

)
δ
(i)
θh

, (11)

where θ(i) = (θ(i)1 , . . . , θ
(i)

k(i)) denotes the unique values of φ(i) and w∗
ij(ψ) =∑

j �=i 1
(φj=θ

(i)
h )

wψ(xi,xj) and wi(ψ) =
∑

j �=i wψ(xi,xj). The prior in (11) auto-
matically allocates the n subjects into k ≤ n clusters according to their φi values.
Because subjects located close together are more likely to be clustered together,
the prior tends to penalize changes across X in the values of parameters. The
hyperparameters α and ψ control the speed at which the prior introduce new
clusters as n increase: new clusters are added more rapidly as α increases and ψ
decreases.

A natural choice for wψ, at least for continuous x, is the Gaussian kernel
wψ(x,x′) = exp(−ψ||x−x′||22). Note that, with this kernel choice, it is important
to standardize data, avoiding sensitivity to scales.

4.1 Posterior Computation

Following [7], the posterior distribution needs to be computed in order to inte-
grate out the latent cluster parameters. Since the posterior distribution is not
known explicitly, but the conditional distribution of each cluster variables is
known, the Gibbs sampling algorithm results being an efficient technique to
estimate the posterior. Let θ be a vector of length k containing the parameter
values of each of the k Gaussians distributions in the mixture, i.e. θh = (βh, τh)
for h = 1, . . . , k. The vector S = (S1, . . . , Sn) maps each subject to the cluster
it is allocated to. In other words, Si = h if φi = θh. Excluding the i-th subject,
θ(i) denotes the k(i) unique values of φ(i) and S(i) denotes the configuration of
subjects {1, . . . , n} \ i to these values.

The full conditional posterior distribution of φi is

(φi|φ(i),D, α, ψ, γ) ∝ qi,0Gi,0 +
k(i)∑

h=1

qi,hδ
θ
(i)
h

. (12)
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In the formula above, Gi,0 is the posterior obtained by updating the prior
G0(φ|γ), where γ indicates the hyperparameters of the base measure G0, with
the likelihood f(yi|xi, φ):

Gi,0(φ) =
G0(φ|γ)f(yi|xi, φ)∫
f(yi|xi, φ)dG0(φ|γ)

:=
G0(φ|γ)f(yi|xi, φ)

hi(yi|xi, γ)
. (13)

In addition, qi,0 = cαhi(yi|xi, γ) and qi,h = cw∗
ih(ψ)f(yi|xi, θh), where c is the

normalization constant. Note that α and ψ only appear in the expressions for
the configuration probabilities qi,h.

Conditional on α and ψ, posterior computation can proceed via a Gibbs
sampling algorithm, which alternates between the following three steps.

(1) Updating the configuration of subjects to clusters, S, and the number of
clusters, k, by sequentially sampling from the full conditional posterior dis-
tribution of each Si: P(Si = h|φ(i),D) = qi,h, for h = 0, 1, . . . , k. When
Si = 0 a new cluster is generated sampling from from Gi,0.

(2) Updating the cluster-specific parameters θ by sampling from the full condi-
tional posterior given the configuration, i.e. S and k:

(θh|θ(h),S, k,D) ∝
(

∏

i:Si=h

f(yi|xi, θh)

)
G0(θh). (14)

(3) Updating the hyperparameters γ by sampling from their full conditional
posteriors.

4.2 Implementation

As already expressed in Eq. (8), we are considering the case in which f(yi|xi, φi) =
N (yi|x′

iβi, τ
−1
i ), with φi = (β′

i, τi)′ and βi = (βi1, . . . , βid)′, so that both the
regression coefficients and variance can vary across clusters. This generalizes [7]
where only the mean parameter was allowed to vary, while τ was kept constant.
For this particular choice, the posteriors distributions, needed at step (1), (2) and
(3) of the Gibbs sampler, have simple closed forms. The detailed derivation of the
following equations is described in the Appendix.

A natural choice for G0 is the multivariate normal-gamma density

G0(βh, τh) = NG(βh, τh|β,Σβ , aτ , bτ ) = N (βh|β, τ−1
h Σβ) · G(τh|aτ , bτ ).

Let γ = {β,Σβ , aτ , bτ} denote the set of hyperparameters. In order to provide
more flexibility, we allow uncertainty in γ by choosing hyper-prior densities for β,
Σβ and bτ , while fixing aτ . More precisely, we choose multivariate normal prior
for β, p(β) = N (β|β0, Σ0), a multivariate inverse-gamma prior for Σβ , p(Σβ) =
IW(Σβ |ν0, V0), also known as inverse Wishart distribution with ν0 degrees of
freedom and mean V0, and, finally, a gamma prior for bτ , p(bτ ) = G(bτ |a0, b0).
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In step (1) of the Gibbs sampler we need to compute hi(yi|xi, γ), which takes
the following simple form:

hi(yi|xi, β,Σβ , aτ , bτ ) =
C(aτ , bτ ) · det Σβ√
2πC(āi, b̄i) · det Σ̄i

,

where Σ̄i = xix′
i+Σ−1

β , āi = aτ + 1
2 , b̄i = bτ + 1

2 [(yi−x′
iβ̄i)2+(β̄i−β)′Σ−1

β (β̄i−β)]
with β̄i = Σ̄−1

i (xiyi + Σ−1
β β) and C(a, b) = ba

Γ (a) , where Γ (a) is the gamma
function.

In addition, the full conditional posterior distribution of θh = (β′
h, τh),

required at step (2), is

(βh, τh|θ(h),S, k, γ,D) ∼ Nd(βh|β̃, τ−1
h Σ̃−1

h ) · G(τh|aτ +
nh

2
, bτ +

ξ2h
2

).

If we denote with Xh and Yh the vectors containing the values of predictors and
responses for the nh subjects in cluster h, the terms Σ̃h, β̃h and ξ2h, in the formula
above, are defined as follow: Σ̃h = (X′

hXh + Σ−1
β ), β̃h = Σ̃−1

h (X′
h · Yh + Σ−1

β β)
and ξ2h = (Yh − Xhβ̃h)′ · (Yh − Xhβ̃h) + (β̃h − β)′ · Σ−1

β · (β̃h − β).
Finally, the conditional posterior distributions of hyper-parameters (β,

Σβ , bτ ), needed at step (3), are defined as follows.
The posterior for β is (β|θ, β0, Σ0) ∼ N (β|β̂, Σ̂−1) where Σ̂ = (

∑
h τh) ·

Σ−1
β + Σ−1

0 and β̂ = Σ̂−1(Σ−1
0 β0 +

∑
h τhΣ−1

β βh).
The posterior for Σβ is (Σβ |β1, . . . , βk) ∼ IW(Σβ |η0 + k, V0 + S), where

S =
∑

h τh · (βh − β)(βh − β)′.
The bτ posterior is (bτ |τ1, . . . , τk) ∼ G(bτ |ã, b̃), where ã = a0 + k · aτ and

b̃ = b0 +
∑

h τh.

4.3 Conditional Predictive Density

Once the posterior distribution has been computed, we can finally estimate the
response density for new subjects x∗ ∈ X , i.e. f(y∗|x∗). This can be done using
the simple form of the conditional predictive density:

f(y∗|x∗, Y,X,S, k, θ, γ, α, ψ) =
(

α

α + w∗(ψ)

)
h∗(y∗|x∗, γ)+

+
(

1
α + w∗(ψ)

) k∑

h=1

w̄∗,h(ψ)N (y∗|x′
∗βh, τ−1

h ),

(15)
where w∗(ψ) =

∑n
i=1 w∗,i(ψ) and w̄∗,h =

∑n
i=1 1(Si=h)w∗,i(ψ). In words, this

means that each normal component has a weight that depends on the number
of subjects in the dataset allocated to that component and on the cumulative
distance from these subjects and x∗. Instead, if α is large or only few subjects
in the dataset are close to x∗, we will observe a shrinkage towards the first
component.
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Measuring Uncertainty in the Approximation. After convergence, each
iteration t of the Gibbs sampler correspond to a mixture of Gaussians distri-
butions, linear in x∗, with parameters S(t), k(t), θ(t), γ(t). This density can be
computed, using (15), for a dense grid of possible y∗ values, obtaining a graph-
ical representation of the mixture density. One can apply this procedure for a
large number, T , of iterates after convergence of the Gibbs sampler, ending up
with a trace of T predictive density distributions. From this trace, one can calcu-
late the expected predictive density averaging over the large number of iterates.
This remove also the conditioning on S, k, θ, γ. In practice, given t = 1, . . . , T
we obtain the estimator:

f̂(y∗|x∗,D, α, ψ) =
1
T

T∑

t=1

(
α

α + w∗(ψ)

)
h∗(y∗|x∗, γ(t))+ (16)

+
(

1
α + w∗(ψ)

) k∑

h=1

w̄∗,h(ψ)N (y∗|x′
∗β

(t)
h , τ

(t) −1
h ). (17)

Furthermore, this pool of densities provide also an estimate of the variance
of the predictive density. One can leverage this information to estimate the
uncertainty underlying the abstraction procedure in a specific state x∗ ∈ S.

Sampling from the Predictive Density. The same pool of T iterations can
be used to sample from f(·|x∗,D, α, ψ) in the following hierarchical way:

– randomly pick an iteration index t̂ ∈ {1, . . . , T},
– given the parameters at iteration t̂, we sample a component ĥ(t̂) from the

discrete vector of weights [α, w̄∗,1, . . . , w̄∗,k(t̂) ], normalized by (α + w∗(ψ)),
– from this ĥ(t̂) component, N (·|x′

∗βĥ(t̂) , τ
−1

ĥ(t̂)) if ĥ(t̂) 	= 0, we sample the desired
value ŷ.

Iterating this procedure, we have an approximate simulation algorithm.
Consider a state of a d-dimensional system at time t, x∗ = ηt, and an abstract

kernel trained on a given dataset and evaluated in x∗. A sample from such ker-
nel should return a full state of the system after a time Δt. In other words,
the abstract kernel should approximate the joint probability distribution of the
d variables composing the state space S. Unfortunately, the proposed solution
needs the response variable y ∈ Y to be one-dimensional, which means that
we are actually approximating the marginal distribution of a single variable.
Therefore, in order to simulate the full state of the system after a time Δt, i.e.
ηt+Δt, we must sample from d different kernels, loosing the correlation between
response variables. Nonetheless, the joint probability can be expressed in terms
of chain of conditional probabilities. We are investigating a technique to approxi-
mate conditional distributions rather than marginals. The basic idea is to enlarge
the input space by adding the response variables that condition the response of
interest. Finally, the chain rule allows us to sample from the joint distribution
while preserving the correlation between variables.
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5 Experimental Results

We now validate the proposed Bayesian non-parametric approach on the two case
studies introduced in Sect. 2: the SIR model and the Gene Regulatory Network
(GRN) model.

Experimental Setting. Input data has been generated simulating the original
CRN model by using both the direct and the τ -leaping SSA algorithms. The
StochPy library (stochastic modeling in Python [12]) served for this purpose.
The Gibbs sampling algorithm has been implemented in Python as well. All the
computations were performed on a computer equipped with a CPU Intel x86
and 24 cores.

Setting the Hyperparameters. The proposed Bayesian method is nonpara-
metric in the sense that it allows infinitely many parameters. However, some
hyperparameters have to be fixed. As suggested in [6], we set, for both models,
ψ = n/25, aτ = 1, β0 = 0, Σβ0 = (X′X)−1, ν0 = d, V0 = Id, where d is the
dimension of the state space, a0 = 1 and b0 = 0.5. In addition we set α = 0.5
for SIR and, since we expect a larger number of cluster to be needed, we set
α = 1 for GRN. Data has been rescaled in order to have zero mean and variance
one. This avoids sensitivity of the kernel function to different scales. Data has
been scaled back after inference was performed, hence results are shown in the
original scale. The Gibbs sampling algorithm performed 10, 000 iterations, with
a burn-in period of 1, 000 iterations. The trace plots of different unknowns show
that the convergence of the Gibbs sampler was rapid and mixing was good.

The training and validation set has been created as presented in Sect. 3.
The time required to generate the dataset depends heavily on the length of the
time step (Δt) considered and on the complexity of the model. For the SIR
model, whose dynamic is rather simple, we fix Δt = 0.1 s. The time required to
simulate 10, 000 trajectories starting from a given state is 125 s, using the direct
SSA method, and 23 s, using the τ -leaping method. For the GRN model, in
order to observe a strong multimodality, we choose a much larger time interval:
Δt = 400 s. Here the computational effort required to generate the dataset is
much higher. Generating 10, 000 trajectories takes around 40 h with the direct
SSA method, or around 20 h with the τ -leaping approach. It is important to
point out that the choice of Δt does not depend on the model itself, but rather
on the intended use of abstraction. For instance, when using this abstraction in a
multi-scale scenario (e.g. cells and tissues), Δt may be chosen as the integration
step of the higher order model (e.g. the diffusion dynamics at the tissue level).

The training time of our approach increases with the number of training
points. In order to sample from the predictive density and to compute the average
predictive density we must fix the number T of Monte Carlo iterations that we are
willing to consider. From a computational point of view, the sampling procedure
is not affected by the dimension of T . However, computing the estimators for
inter-densities mean and variance takes longer as T increases. Leveraging the
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multi-core hardware available, we ran, for the GRN model, 12 parallel Gibbs
sampling for each response variable and we mixed the final traces by taking the
last 200 iterations of each process. For the simple SIR model, we ran just 2
parallel processes. By doing so, a greater mixing can be achieved. Therefore, for
the GRN model, T = 1200, whereas, for the SIR model, T = 400.

5.1 SIR Model

The constant parameters governing the transition rates are: k1 = 3 and k2 = 1.
The model has been trained on a set of 500 observations. Experiments with
more points showed similar results. Since we are considering a fixed population
of size N , the model is two-dimensional (d = 2) and the number of recovered
individuals is indeed N − S − I. We trained two separates models, one for each
component/species. The first model predicts the number of susceptible individu-
als after Δt time units, whereas the second model predicts the number of infected
individuals. The training of the two models has been performed in parallel and
globally took 1.5 h. The method automatically fix the number of cluster needed.
The average number of clusters is 7.2 for the response variable S and 22.1 for the
response variable I. In Fig. 2, we can appreciate how a larger number of clusters
is required as the intrinsic variance of the response I is larger with respect to
the response variable S. Figure 2 shows the average density estimator, which is
the average among T mixtures, against the empirical distribution obtained with
1, 000 SSA trajectories. The shaded area denotes the 95% confidence interval,
indicating the variance among the T mixtures. Given 1, 000 samples from the
true densities and 1, 000 samples from the approximate densities, the average his-
togram distances, over 10 validation points and 100 bins, are 0.362 for response
variable S and 0.235 for the response variable I. The self-distance bound is 0.357.
The average estimator is a faithful model of the true density for all the validation
points. However, sometimes the inter-densities variances are large, which results
in potentially high variability while sampling. In fact, as we sample from a sin-
gle normal component of a randomly picked mixture, the specific component
may deviate considerably from the average estimator. This fact may introduce
instabilities in trajectories simulated for more Δt time instants, resulting in an
artificial increase of variance. We are currently exploring alternative simulation
strategies based on the average estimator to ameliorate this problem. In any
case, sampling 10, 000 one-step trajectories from the abstract model takes on
average 1.5 s, a considerable speed up of two orders of magnitude compared to
the SSA algorithm.

5.2 GRN Model

The constants governing the transition rates are: kprodP = 350, kprodM = 300,
kdegM = 0.001, kdegP = 1.5, kdeact = 166, kact = 1. In contrast with the SIR
model, which is unimodal, we set a long time interval, Δt = 400 s, in order to
observe strong multimodality and test our approach in such extreme scenario.
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Fig. 2. SIR model: estimators of the average predictive densities and their confi-
dence intervals, against the empirical simulated distributions for 3 validation points.
Each column has a corresponding 2-dimensional value x∗. The horizontal axis indicates
the one-dimensional response space Y. The first row shows the densities for the first
component (susceptibles), while the second row shows results for the second compo-
nent (infected). The grid on Y, whose domain is [0, 100] ⊂ N, contains 100 points. The
empirical distribution is generated by 1, 000 SSA trajectories.

Since the species GON and GOFF are constrained, i.e. GON +GOFF = 1, the
model is three-dimensional (d = 3). We analyze the performance of our approach
in predicting the protein outcomes, since it is the species with the multi-stable
behaviour. The model has been trained on a set of 2, 000 observations and train-
ing took around 20 h. The average number of clusters is 154.5. Figure 3 shows the
average density estimator and the 95% confidence interval against the empirical
distribution obtained through SSA simulations.

The true and the approximate distributions are clearly distinguishable, but
the main qualitative characteristics of the system are captured. The DP approach
manages to recognize the 3 modes associated with highest probability. When it
does not recognize a mode, it shows tails with high-variance. The last picture of
Fig. 3 shows the behaviour in situations where the new input point x∗ has no
neighbouring training points: it doesn’t recognizes the modes but the variance
is extremely large, reflecting the uncertainty in the reconstruction. Given 1, 000
samples from the true densities and 1000 samples from the approximate densities,
the average histogram distances, over 25 validation points and 200 bins, is 0.12
(the self-distance bound is 0.504).

The analyzed case studies coincide with the ones presented in [3], thus, results
may be compared. The use of deep neural networks renders the abstract model
more accurate and the training is faster with respect to the non-parametric app-
roach, but provides no estimate of the uncertainty. However, once the training is
over, the time required by the two methods to simulate an abstract trajectory is
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Fig. 3. GRN model: estimators of the average predictive densities and their confi-
dence intervals, against the empirical simulated distributions for 4 validation points.
The horizontal axis indicates the one-dimensional response space corresponding to the
protein P . The grid on Y contains 100 points. The empirical distribution is generated
by 1, 000 SSA trajectories. (Color figure online)

similar. It is reasonable to assume that the main reason behind the lower accu-
racy of our approach is due to the smaller training set, 2, 000 instead of 30, 000
data points. In fact, since the Monte Carlo method used is quite expensive, the
Bayesian model is trained with relatively few points. The ability of the DP to
recognize the modes is likely to increase as n grows. In order to significantly
speed up the computations, we plan to develop a more efficient and compiled
implementation of the algorithm. Finally, simulating 10, 000 one-step trajectories
from the abstract model took on average 30 s, a tremendous speed-up compared
to the SSA and τ -leaping algorithms.

6 Discussion

We presented a Bayesian approach to abstract the kernel of a Markov process.
We used a mixture of Gaussian distributions with a mixing measure, a Dirichlet
Process, flexible enough to vary accordingly with the state of the population.
This work presents a first analysis on the performances of the proposed method,
both in terms of accuracy and in terms of computational speed-up.

Results are encouraging, both in terms of the accuracy of the average estima-
tor as a function of the input point and in terms of the computational gain. The
variance of the reconstructed density is also a good indicator of the uncertainty
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in the reconstruction, and can be used to guide an active learning step to refine
the abstraction improving in target points with low accuracy.

Another important issue is to improve the accuracy of the method when it
comes to iterate the sampling of the kernel to generate trajectories longer than
Δt. One possibility is to sample from the average estimator, rather than from a
single component of the mixture. The drawback in this case is the increased cost
of simulation per step, which may be tamed by learning a simplified model (e.g.
a mixture of Gaussians with a fixed number of components) that interpolates
the average estimator.

An additional improvement, also in terms of speedup may come from using
either variational approaches for density regression [15]. Finally, we also plan to
extend this approach to approximate more general classes of models, like time
inhomogeneous systems (including time as a covariate), including non-Markovian
models.
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Abstract. We consider a class of nonlinear systems of differential equa-
tions with uncertainties, i.e., with lack of knowledge in some of the
parameters that is represented by a time-varying unknown bounded func-
tions. An under-approximation of such systems consists of a subset of
its reachable set, for any value of the unknown parameters. By relying
on optimal control theory through Pontryagin’s principle, we provide
an algorithm for the under-approximation of a linear combination of the
state variables in terms of a fully automated tool-chain named UTOPIC.
This allows to establish tight under-approximations of common bench-
marks models with dimensions as large as sixty-five.

Keywords: Under-approximation · Uncertain nonlinear dynamics ·
Modeling

1 Introduction

Many safety-critical systems can be modeled as nonlinear ordinary differential
equations (ODEs) which exhibit uncertain parameters due to finite precision
measurements, lack of data, or noise [5]. In order to formally decide whether
such a system is safe, it is necessary to determine whether the model can reach a
bad state [9,14,36]. Since closed-form expressions for reachable sets of nonlinear
ODE systems are not known in general [35], it becomes necessary to over- and
under-approximate the reachable set. Over-approximation provides a superset
of the reachable set, and thus can be used to prove that a model under study is
safe. Instead, under-approximation gives a subset of the reachable set; therefore,
it can be used to prove the presence of problems. While conceptually different,
over- and under-approximation techniques are technically closely related.

In the case of linear dynamics with uncertain parameters, the reach-
able set can be shown to be convex. This has paved the way for efficient
over- and under-approximation techniques for systems of linear ODEs, see for
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D. Parker and V. Wolf (Eds.): QEST 2019, LNCS 11785, pp. 277–291, 2019.
https://doi.org/10.1007/978-3-030-30281-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30281-8_16&domain=pdf
https://doi.org/10.1007/978-3-030-30281-8_16


278 J. Doncel et al.

instance [4,27,28,34] and references therein. Under-approximation techniques
for nonlinear ODEs received less attention in the past, and often rely on
over-approximation techniques for nonlinear systems. Indeed, by relying on
the Hamilton-Jacobi equation, a special case of the Hamilton-Jacobi-Bellman
equation used in over-approximation techniques [33], the recent work [38,51]
constructs a sequence of convex programs for polynomial ODE systems. The
sequence is proven to converge to the actual reachable set but is truncated in
practical computations to ensure a compromise between tightness and compu-
tational cost. [51] has been extended to cover time-varying uncertainties and
non-singleton initial sets [52]. In [16,53], instead, the main idea is to reverse time
of the original ODE system and to over-approximate the so obtained backward
flow while ensuring certain topological properties of the over-approximation.
Similarly to [51], the work [53] was extended to cover time-varying uncertain-
ties and non-singleton initial sets [54]. Another line of research is [29] and its
extension [30] where over- and under-approximations are obtained via Taylor
models.

The aforementioned approaches share the following features:

(i) the full reachable set (and not some projection of it) is approximated;
(ii) the approximation is given across the whole time course;
(iii) in addition to ODE parameters, the initial conditions may or must be uncer-

tain.

Instead, the technique (presented in Sect. 2) and the tool (presented in Sect. 3)—
UTOPIC—presented in this paper focus on the under-approximation of a one-
dimensional projection of the reachable set at a given time point in the presence
of time-varying uncertainties and fixed initial condition. The one-dimensional
projection is given by a linear combination of state variables. Our restriction
essentially amounts to computing an under-approximation of a one-dimensional
linear projection of the reachable set; the whole time course can then be covered
by performing the under-approximation for each grid point of a sufficiently fine
discretization of the time interval.

The basic idea underlying our approach is to interpret uncertain parame-
ters as controls and to minimize and maximize a given linear combination of
state variables using Pontryagin’s maximum principle, a well-established tech-
nique from optimal control theory [31]. The interval spanned by the so-obtained
extrema can be shown to be an under-approximation of the reachable set of the
linear combination. Moreover, thanks to the fact that Pontryagin’s maximum
principle is a necessary condition for optimality, the aforementioned interval
is likely to be tight enough to cover the actual reachable set in many cases.
This is confirmed by a numerical evaluation of UTOPIC in Sect. 4 on classical
benchmark models from [15,24], where the under-approximation is compared
against over-approximations computed by state-of-the-art reachability analysis
tools such as Flow∗ [15] and CORA [3]. Further, we show the scalability of
the algorithm on larger scale models from biochemistry [13,18] with 65 state
variables.
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Related Work. The most closely related approaches are [7,10] which propose
the use of Pontryagin’s maximum principle, but for over-approximation. Due to
the fact that Pontryagin’s maximum principle is only a necessary condition for
optimality such a solution provides only a heuristic estimation which is not guar-
anteed to be valid in general [10]. The authors of [7] address this by restricting
to bilinear systems for which Pontryagin’s maximum principle can sometimes be
shown to be a sufficient condition for optimality.

We next provide a brief account on over-approximation techniques for nonlin-
ear ODEs. The abstraction approach locally approximates the nonlinear dynam-
ics by multivariate polynomials or affine maps, see [2,6,15,16,18]. While abstrac-
tion techniques can cover many practical models, they are prone to the curse of
dimensionality, i.e., their run-time may be exponential in the size of the ODE sys-
tem, as discussed in [2,22]. A similar remark applies to the worst-case complexi-
ties of techniques relying on the Hamilton-Jacobi-Bellman equation [33] and Sat-
isfiability Modulo Theories (SMT) solvers [32], even though certain combinations
with model reductions exist [47]. Another classic approach is based on Lyapunov-
like functions known from the stability theory of ODEs [21,44,48,55]. Unfortu-
nately, for nonlinear systems the automatic computation of Lyapunov-like func-
tions remains a challenging task. Restricting to special classes of such functions
(e.g., sum-of-squares polynomials [26]) leads to efficient construction algorithms
which may provide tight bounds, but existence is not guaranteed. Approxima-
tions with differential inequalities [45,49] and interval arithmetics [40,46], on the
other hand, can be computed efficiently, but are loose in general [10].

To the best of our knowledge, C2E2 [24] is the only tool that supports
under-approximation, but only for linear systems with time-varying uncertain
parameters [22]. Instead, over-approximation is supported for nonlinear systems
with time-invariant uncertain parameters [23]. As UTOPIC covers the under-
approximation of nonlinear systems with time-varying uncertain parameters
(and C2E2 relies on closed-form expressions in the case of linear systems that will
outperform any known over- and under-approximation technique for nonlinear
systems), Flow∗ and CORA are the most related tools to our work because they
both support nonlinear systems with time-varying uncertain parameters. That
is why we chose them for our numerical tests. In a broader context, we mention
here also the tools Breach [20] and S-Taliro [42] which can be used to falsify
given properties by relying on approximate sensitivity analysis and randomized
testing, respectively.

2 Theoretical Background

ProblemStatement. Weconsider a systemofODEs ẋ = f(x, u) over state variables
x1, . . . , xn, and parameter variables u1, . . . , um. We assume that our dynamical
system is affine in controls [39], i.e., it holds that

f(x, u) = g0(x) +
m∑

j=1

ujgj(x),
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for some differentiable functions g0, g1, . . . , gm: Rn → R
n.

Given an initial condition x(0) ∈ R
n, a finite time horizon T > 0, and a weight

vector α = (α1, . . . , αn) ∈ R
n, our goal is to compute an under-approximation

at time T of the one-dimensional projection

Pα(T ) =
{ n∑

i=1

αixi(T ) | ẋ = f(x, u), u ∈ U(β, β)
}

,

where the set U(β, β), defined as

U(β, β) = {u : [0;T ] →
m∏

j=1

[β
j
;βj ] | u measurable},

describes the admissible parameter functions. We assume that ẋ = f(x, u) has
a solution on [0;T ] for any admissible function u, thus excluding in particular
finite explosion times.

We seek to compute parameter functions u, u ∈ U(β, β) such that

u ∈ arg min
{ n∑

i=1

αixi(T ) | u ∈ U(β, β), ẋ = f(x, u)
}

u ∈ arg max
{ n∑

i=1

αixi(T ) | u ∈ U(β, β), ẋ = f(x, u)
}

(1)

Thanks to the fact that our dynamical system is affine in controls, the above
optimization problems have solutions [39].

Problem Solution. We tackle the optimization problems (1) by observing that
Pontryagin’s principle implies that any optimal parameter function u (resp. u)
solves, almost everywhere on [0;T ], the differential inclusion

ẋ(t) = f(x(t), u(t)) (2)
ṗ(t) = −(∂xH)(x(t), u(t), p(t)) (3)
u(t) ∈ arg max

β≤u≤β

H(x(t), u(t), p(t)) (4)

where H(x, u, p) = 〈p, f(x, u)〉 denotes the Hamiltonian, 〈·, ·〉 refers to the scalar
product on R

n, and we set pi(T ) = −αi (resp., pi(T ) = αi) for all 1 ≤ i ≤ n in
the case of minimization (resp., maximization); in (4), the notation β ≤ u ≤ β

is shorthand for β
j

≤ uj ≤ βj for all 1 ≤ j ≤ m.
It is possible to approximate an optimal control satisfying (2–4) by relying

on a gradient projection algorithm [31, Section 6.2]. To this end, we consider the
cost function

J : U(β, β) → R, u �→
n∑

i=1

αixi(T ),
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where x is a solution of ẋ(t) = f(x(t), u(t)). The main idea to lift the common
gradient descent algorithm over reals to the space of functions. More specifically,
one interprets J as a functional on the Hilbert space H = L∞([0;T ]), where

L∞([0;T ]) = {h : [0;T ] → R
m | h is measurable and

‖h(t)‖∞ ≤ C for almost all t for some finite C > 0}

endowed with the scalar product 〈g, h〉 =
∫ T

0
g(s)h(s)ds. With this, it is possible

to prove (see [43]) that J is Fréchet differentiable at any function vector u ∈
U(β, β) ⊆ H and that its derivative is given by the function vector

(∂J)(u) : t �→ −(∂uH)(x(t), u(t), p(t))

That is, the value of the derivative at the function vector t �→ u(t) is given by the
function vector t �→ −(∂uH)(x(t), u(t), p(t)). (Note the similarity to the common
gradient descent method over the reals where the value of the derivative at a
point vector is given by another point vector.)

In order to compute (∂J)(u) for a given u, we first solve (2); afterwards,
we compute p from (3) which depends on u and x. Similarly to the gradient
projection algorithm in finite dimensions, a given u ∈ U(β, β) is either stationary
or there is some γ > 0 such that

J
(
P

(
u + γ · (∂J)(u)

))
< J(u),

where P : H → U(β, β) is the projection from H onto U(β, β). Following [43]
and references therein, P(v) ∈ U(β, β), where v ∈ H, is given by

(P(v))(t) =

⎧
⎪⎨

⎪⎩

vi(t) if β
i
≤ vi(t) ≤ βi

βi if vi(t) > βi

β
i

if vi(t) < β
i

We are now in a position to perform a gradient (descent) projection algorithm
that computes an approximation of an optimal control u: Algorithm 1 takes as
inputs the maximal number of steps ν, the positive step sizes γ1, γ2, . . . , γν

and the numerical threshold ε ≥ 0 which triggers a termination based on a
relative convergence criterion when |J(uk)−J(uk−1)| < ε, where uk denotes the
approximation of the optimal control u obtained after k steps.

The following result can be proven.

Theorem 1. For a sufficiently small step γ0 > 0, Algorithm 1 induces, if applied
to ν = ∞, ε = 0 and the constant sequence (γ0, γ0, . . .), a sequence of controls
(uk)k which, in turn, induces a decreasing sequence (J(uk))k which converges to
a stationary control of the cost functional J .

Proof. In the case of unbounded controls, the proof is at the heart of the calculus
of variations, see [39, Section 3.4]. The case of bounded controls, instead, requires
a refined reasoning, see [39, Chapter 5] and [43]. �



282 J. Doncel et al.

Gradient
(
ẋ = f(x, u),x(0),α,β,γ,T ,ε,ν

)

set k = 1

choose some initial parameter function uk

while(true)

solve ẋk = f(xk, uk) forward in time using uk and x(0)

solve ṗk = −(∂xH)(xk, uk, pk) backward in time using uk, xk, p(T )

compute Jk =
∑n

i=1 αix
k(T )

compute uk+1(·) = P
(
uk(·) − γk · (∂uH)(xk(·), uk(·), pk(·)))

if
(
k ≥ ν ∨ (k ≥ 2 ∧ |Jk − Jk−1| < ε)

)

break

else

set k = k + 1
end

end

return uk+1

Algorithm 1. Gradient projection algorithm for solving (1). Inputs are: the ODE
system ẋ = f(x, u), the initial values x(0), the weight vector α, the boundary vector β,
the time horizon T , a sequence of positive step sizes γ, the numerical threshold ε ≥ 0,
and the maximal number of steps ν ≥ 0.

We remark that Algorithm 1 requires the user to provide a sequence of step
sizes (γk)k. Those are not known a priori and have to be either inferred through
trial and error or estimated by some other means. In the case of unconstrained
optimization, estimations can be obtained via backtracking. For constrained opti-
mization such as here, instead, the basic line search algorithm can be used. For
more information on step size estimation, see [19]. Another point worth noticing
is that (J(uk))k may converge to a saddle, instead of an extreme, control. In
practice, this problem can be tackled by introducing a random noise term. A
formal proof of this heuristics has been recently established in the finite dimen-
sional case [37].

We invoke Algorithm 1 for the computation of optimal control candidates u′

and u′ for u and u, respectively, see (1). As stated next, u′ and u′ induce solution
points x′(T ) and x′(T ) whose projections span a subinterval of Pα(T ) ⊆ R.

Theorem 2. Assume that u′ and u′ are candidates for u and u underlying
p(T ) = −α and p(T ) = α, respectively. Then, if x′ and x′ denotes the solu-
tion underlying u′ and u′, respectively, it holds that

[ n∑

i=1

αix
′
i(T );

n∑

i=1

αix
′
i(T )

] ⊆ Pα(T )

when
∑n

i=1 αix
′
i(T ) ≤ ∑n

i=1 αix
′
i(T ).

Proof. Given two arbitrary piecewise continuous functions u′ and u′, we define
the function u′

λ = λu′ + (1 − λ)u′ for all 0 ≤ λ ≤ 1 and note that u′
λ ∈ U(β, β)

for all 0 ≤ λ ≤ 1. Using this, we further define Φ(λ) =
∑n

i=1 αixi(T ), where x
satisfies ẋ = f(x, u′

λ). Thanks to the intermediate value theorem, it thus suffices
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to show that Φ is continuous. Since for any C > 0 and ε > 0 there exists a
δ > 0 such that |λ − λ′| < δ implies ‖f(x, u′

λ(t)) − f(x, u′
λ′(t))‖∞ ≤ ε for all

x ∈ [−C;C]n and 0 ≤ t ≤ T , Gronwall’s inequality yields the claim. �

Fig. 1. Pictorial representation of UTOPIC’s workflow.

3 UTOPIC

Architecture. Our approach is implemented as a fully automated workflow named
UTOPIC—under-approximation through optimal control. UTOPIC involves the
following tools: ERODE, MATLAB, and VNODE [41], where:

– ERODE [12], a Java-based cross-platform tool for the specification, evalua-
tion, and reduction of nonlinear ODEs, providing an integrated development
environment.

– MATLAB, and in particular the Symbolic Math Toolbox to symbolic compu-
tation.

– VNODE [41], a C++-based validated solver for computing bounds on the
solution of ODEs. Traditional ODE solvers compute approximate solutions.
Instead, VNODE first proves that a unique solution exists, and then computes
formal bounds that are guaranteed to contain it.

Workflow. UTOPIC is implemented within the ERODE environment by means
of the dedicated utopic command. The input is a specification of a nonlinear
ODE system. Currently, this consists of the differentiable fragment of the IDOL
language [11], which corresponds to nonlinear ODEs with derivatives that are
multivariate rational expressions over the system’s variables. The execution of
the ERODE specification triggers a fully automated orchestration, as depicted
in Fig. 1. In particular ERODE performs the following actions.
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(1) Generate and execute a MATLAB specification implementing Algorithm 1
for the ODE under study, in order to compute the control candidates u′,
and u′. This activity is delegated to an external tool to leverage an already
available symbolic engine in order to perform the differentiations in (2)–(4).
We remark that MATLAB is the tool of choice in this version of UTOPIC,
although it is in principle possible to allow for other engines such SymPy
for Python.

(2) Given the control candidates u′, and u′, create, compile, execute a C++
source file using the VNODE library in order to compute a verified solution
of the ODE system ẋ = f(x, u). This step is required for obtaining a for-
mally guaranteed under-approximation. It is in principle possible to allow for
quicker heuristic experimentation by using ERODE’s built-in ODE numeri-
cal integrators.

(3) Present the VNODE-computed under-approximation to the user within the
ERODE environment.

Deployment. ERODE does not require any installation process, and it is avail-
able, together with a manual, at http://sysma.imtlucca.it/tools/erode. Instead,
http://www.cas.mcmaster.ca/∼nedialk/ provides installation notes on VNODE.

Example. Figure 2 shows a screenshot of the standard Brusselator model [15,24]
defined in the ERODE editor, together with an example of the utopic command
which triggers the analysis workflow. In particular, the file defines the ODEs

ẋ = x2y − bx + a

ẏ = −x2y + cx
(5)

with ODE variables x, y and parameters a, b and c. The initial conditions are
chosen to be x(0) = 1.0 and y(0) = 1.2. Instead, the uncertain parameters u
are specified using the paramsToPerturb argument, while the weight vector α
specifying the query is given with the coefficients argument. Finally, delta
specifies the numerical error threshold ε of Algorithm 1, while step is used to
describe a sequence of uniform step sizes γ = (step, step, . . .). The maximal
number of iterations performed by the algorithm is given by kMax. Instead,
integrationStep specifies the integration time step used in the algorithm.

In the case of the Brusselator model, setting coefficient = { x : 1.0 }
and tEnd = 1.0 ensures that utopic computes an under-approximation of the
reachable set

{
1.0 · x(1.0)

∣∣ (ẋ(t), ẏ(t)) = f(x(t), y(t), a(t), b(t), c(t))

where a(·) ∈ [0.9; 1.1], b(·) ∈ [2.3; 2.7], c(·) ∈ [1.1; 1.6] and t ∈ [0; 1.0]
}

,

where f is as in (5). Note that paramsToPerturb overwrites the parameter choice
a = 1.0, b = 2.5 and c = 1.5 at the beginning of the file; we require the spec-
ification of all parameters because only a subset of parameters is subject to

http://sysma.imtlucca.it/tools/erode
http://www.cas.mcmaster.ca/{~}nedialk/
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Fig. 2. Graphical-user interface of ERODE in the case of the standard Brusselator
model [15,24]. The ERODE file defines an ODE system with two ODE variables (x and
y) and three parameters (a, b and c). In the visualized example, all three parameters
are subject to uncertainty, thus turning them in time-varying uncertain parameter
functions. For instance, a(t) ∈ [0.9; 1.1] for all t ∈ [0; 1.0].

uncertainty in general. The field coefficient can be used to describe arbitrary
weighted sums of state variables, e.g., coefficient = { x : 0.5, y : 2.0 }
leads to the under-approximation of the set

{
0.5 · x(1.0) + 2.0 · y(1.0)

∣∣ (ẋ(t), ẏ(t)) = f(x(t), y(t), a(t), b(t), c(t))

where a(·) ∈ [0.9; 1.1], b(·) ∈ [2.3; 2.7], c(·) ∈ [1.1; 1.6] and t ∈ [0; 1.0]
}

.

Executing the model in Fig. 2 presents the under-approximation results as

Maximum reachable point enclosure at t = [1.0, 1.0]
[1.17, 1.17]
Minimum reachable point enclosure at t = [1.0, 1.0]
[0.578, 0.578]

This is the processed output of VNODE execution. Being formally an over-
approximation technique that is based on interval arithmetics [40,46], VNODE
returns intervals instead of points. This is because any numerical integration
scheme introduces truncations due to finite-precision arithmetics. Thus, already
after one time step, the solution of a verified ODE solver has to be represented by
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a (very small) set instead of a point. Algorithmically, verified integration there-
fore corresponds to over-approximation in the special case where the initial set is
a singleton. This greatly simplifies the task and often leads to over-approximation
sets with negligibly small diameters. In the above example, for instance, VNODE
returns [1.17, 1.17] and [0.578, 0.578].

Complexity Analysis. The complexity of Algorithm 1 depends on the number of
state and parameter variables n and m, respectively, the step sizes (γ1, γ2, . . .),
the numerical threshold ε and the maximal number of iterations ν. Assuming
that ν is finite, the approach requires one to solve a sequence of n dimensional
ODE systems whose length is polynomial in ν and m. Heuristic ODE solvers like
ode45 of MATLAB enjoy a polynomial time and space complexity in n and m.
Instead, the complexity of the two VNODE invocations in the last step of the
workflow, see Fig. 1, may be computationally expensive and depend, in general,
on factors such as the stiffness of the ODE system, the time discretization step
and the order of the integration scheme. This notwithstanding we stress that
many practical models can be covered efficiently because the initial set is a
singleton, as outlined in the preceding paragraph.

4 Evaluation

Set-Up. In this section we evaluate UTOPIC on benchmark models from the
literature. The main measure of performance is the scalability with respect to
the ODE system size. In addition, we investigated the tightness of the under-
approximation by comparing it against an over-approximation, since the exact
reachable sets are not known for these models. For this comparison we used the
tools Flow∗ [15] and CORA [3]. Ariadne [8] or HySAT/iSAT [25] were not consid-
ered because they have been compared to Flow∗ already [15]; similarly, C2E2 [24]
was not considered because it does not support time-varying uncertainties.

In all experiments, the error threshold ε of Algorithm 1 was set to zero (thus
enforcing ν iterations). The parameters γ and ν were found by trail and error by
looking for values that yielded a bang-bang control; this was motivated by the
fact that the vast majority of optimal controls can be expected to belong to this
class if the input sets are compact [39]. To avoid that the algorithm does not
“overshoot” due to too large γ values, γ was initialized with a small number and
increased iteratively, while comparing the control plots u1, . . . , um. The expert
settings of CORA have been chosen as in the nonlinear tank model in the CORA
manual [1]. A similar approach was taken in the case of Flow∗.

Benchmarks Description. The benchmark models are listed in the first column of
Table 1. In addition to models taken from the literature, we considered a binding
model, a biochemical model that can be parameterized in order to generate
instances of increasing size.

The binding model is a simple protein-interaction network, taken from [13],
where an enzyme, E, can form a complex with a substrate, P , according to a
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Table 1. Numerical evaluation (with termination denoted by �). Unless specified,
the benchmark models are taken from https://publish.illinois.edu/c2e2-tool/example/
(hybrid models were omitted, since Algorithm 1 applies to continuous systems only).
TO: time-out (>10 h) during the symbolic computation of the Jacobian matrices; (a)
Divide-by-zero error; (b) “Cannot compute flowpipes” error. The number of binding
sites is shown within parenthesis alongside the model name.

Model Size UTOPIC CORA Flow∗

Min Max γ ν Term. Min Max Term. Min Max Term.

Brusselator 2 0.5780 1.1700 8 20 � −0.3931 2.3485 � −1.3139 3.1541 �
Buckling 2 −1.1829 −0.9271 8 20 � −1.2039 −0.8817 � −1.4706 −0.6234 �
JetEngine 2 −0.8717 −0.5813 100 50 � −1.0332 −0.3968 � −1.6446 −0.7168 �
Van der Pol 2 0.9330 1.2300 10 100 � 0.8690 1.3530 � 0.7414 1.4785 �
Robot Arm 4 0.597 0.738 1000 200 � 0.5453 0.7767 � 0.3719 0.9565 �
Enzyme [17] 7 1.4773 1.7592 1000 50 � 1.2473 1.9398 � −0.2956 3.4850 �
Oscillator [50] 9 0.1242 0.1393 5 50 � 0.1216 0.1422 � 0.0910 0.1730 �
Helicopter 28 2.3137 3.3600 2000 25 � 2.1429 3.5551 � — —b

Binding (2) 5 0.0454 0.0467 5 20 � 0.0452 0.0482 � 0.0428 0.0491 �
Binding (3) 9 0.0242 0.0249 5 20 � 0.0239 0.0265 � −0.0280 0.3149 �
Binding (4) 17 0.0114 0.0117 10 20 � 0.0112 0.0123 � −0.1816 0.3997 �
Binding (5) 33 0.0104 0.0109 50 20 � — TO — —b

Binding (6) 65 0.0100 0.0108 100 50 � — TO — —b

reversible reaction occurring at any of the n independent and identical binding
sites of P . The model can be specified using the chemical reaction network

P(s1,...,si,0,si+1,...,sn) + E
uai−−→ P(s1,...,si,1,si+1,...,sn)

P(s1,...,si,E,si+1,...,sn)

udi−−→ P(s1,...,si,0,si+1,...,sn) + E,

where the first reaction models the binding of E to to the i-th binding site of P ;
instead, the second reaction refers to the unbinding. The parameters uai

and udi
,

for i = 1, . . . , n, give the association and dissociation constants for this model,
respectively. The dynamics is visualized in Fig. 3, while the underlying ODEs
are given, for any n ≥ 1, by

ẋPs
(t) = −

∑

i:s(i)=1

udi
(t)xPs

(t) −
∑

i:s(i)=0

uai
(t)xPs

(t)xE(t)

+
∑

i:s(i)=0

udi
(t)xAs+ei

(t) +
∑

i:s(i)=1

uai
(t)xAs−ei

(t)xE(t)

ẋE(t) =
∑

s

[ ∑

i:s(i)=1

udi
(t)xPs

(t) −
∑

i:s(i)=0

uai
(t)xPs

(t)xE(t)
]

In above ODEs, s = (s1, . . . , sn) ∈ {0, 1}n and ei ∈ {0, 1}n is such that ei
j = 1

if i = j and ei
j = 0 otherwise. The ODE system of dimension 2n + 1 is obtained

by interpreting the chemical reactions according to common law of mass action.

Results. The results reported in Table 1 confirm that the under-approximated
reachable intervals are contained in the respective over-approximations.

https://publish.illinois.edu/c2e2-tool/example/


288 J. Doncel et al.

Fig. 3. Visualization of the binding unbinding pattern appearing in biochemical mod-
els [13]. The protein molecule P has n binding sites s1, . . . , sn that can be either empty
or occupied by the molecule E.

In particular, in the models where all techniques terminated (we fixed a time-
out of 10 h on a machine equipped with a 2.7 GHz CPU core and 8 GB RAM),
the under-approximation computed by UTOPIC is close to the tightest over-
approximation. Since the binding models could neither be analyzed by CORA
nor Flow∗ beyond the four-domain binding example (corresponding to 17 ODEs),
larger model instances feature only results of UTOPIC.

We did not compare the runtimes because a fair comparison would be difficult
for the following reasons:

(i) CORA and Flow∗ are over-approximation techniques, while UTOPIC is an
under-approximation technique.

(ii) The runtimes may be sensibly affected by the choice of parameters.
(iii) CORA and Flow∗ approximate the whole reachable set across the whole

time interval, while UTOPIC considers a one-dimensional linear projection
of the state space at a given time point.

However, we report that the largest runtime of our algorithm was around ten
minutes (of which eight were due to VNODE) for the binding model with 6 sites,
indicating good scalability with increasing system sizes.

5 Conclusion

We presented a tool for the under-approximation of reachable sets of nonlin-
ear ODEs with time-varying uncertainties. The approach was implemented in
UTOPIC, a fully automated tool-chain involving ERODE [12], MATLAB and
VNODE [41]. An extensive evaluation demonstrated that UTOPIC provides
tight under-approximations in benchmark models and scales to nonlinear sys-
tems with sizes as large as sixty-five. Overall, the results suggest that our algo-
rithm can be a useful tool in the analysis of uncertain nonlinear systems.
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Abstract. Stochastic processes on complex networks, where each node
is in one of several compartments, and neighboring nodes interact with
each other, can be used to describe a variety of real-world spreading phe-
nomena. However, computational analysis of such processes is hindered
by the enormous size of their underlying state space.

In this work, we demonstrate that lumping can be used to reduce any
epidemic model to a Markov Population Model (MPM). Therefore, we
propose a novel lumping scheme based on a partitioning of the nodes.
By imposing different types of counting abstractions, we obtain coarse-
grained Markov models with a natural MPM representation that approx-
imate the original systems. This makes it possible to transfer the rich pool
of approximation techniques developed for MPMs to the computational
analysis of complex networks’ dynamics.

We present numerical examples to investigate the relationship between
the accuracy of the MPMs, the size of the lumped state space, and the
type of counting abstraction.

Keywords: Epidemic modeling · Markov Population Model ·
Lumping · Model reduction · Spreading process · SIS model ·
Complex networks

1 Introduction

Computational modeling and analysis of dynamic processes on networked sys-
tems is a wide-spread and thriving research area. In particular, much effort has
been put into the study of spreading phenomena [2,16,28,38]. Arguably, the
most common formalism for spreading processes is the so-called Susceptible-
Infected-Susceptible (SIS) model with its variations [28,38,39].

In the SIS model, each node is either infected (I) or susceptible (S). Infected
nodes propagate their infection to neighboring susceptible nodes and become
susceptible again after a random waiting time. Naturally, one can extend the
number of possible node states (or compartments) of a node. For instance, the
SIR model introduces an additional recovered state in which nodes are immune
to the infection.
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SIS-type models are remarkable because—despite their simplicity—they
allow the emergence of complex macroscopic phenomena guided by the topo-
logical properties of the network. There exists a wide variety of scenarios which
can be described using the SIS-type formalism. For instance, the SIS model
has been successfully used to study the spread of many different pathogens like
influenza [26], dengue fever [40], and SARS [36]. Likewise, SIS-type models have
shown to be extremely useful for analyzing and predicting the spread of opinions
[29,49], rumors [52,53], and memes [51] in online social networks. Other areas of
applications include the modeling of neural activity [15], the spread of computer
viruses [11] as well as blackouts in financial institutions [34].

The semantics of SIS-type processes can be described using a continuous-time
Markov chain (CTMC) [28,47] (cf. Sect. 3 for details). Each possible assignment
of nodes to the two node states S and I constitutes an individual state in the
CTMC (here referred to as network state to avoid confusion1). Hence, the CTMC
state space grows exponentially with the number of nodes, which renders the
numeral solution of the CTMC infeasible for most realistic contact networks.

This work investigates an aggregation scheme that lumps similar network
states together and thereby reduces the size of the state space. More precisely, we
first partition the nodes of the contact network. After which, we impose a count-
ing abstraction on each partition. We only lump two networks states together
when their corresponding counting abstractions coincide on each partition.

As we will see, the counting abstraction induces a natural representation of
the lumped CTMC as a Markov Population Model (MPM). In an MPM, the
CTMC states are vectors which, for different types of species, count the number
of entities of each species. The dynamics can elegantly be represented as species
interactions. More importantly, a very rich pool of approximation techniques
has been developed on the basis of MPMs, which can now be applied to the
lumped model. These include efficient simulation techniques [1,7], dynamic state
space truncation [24,33], moment-closure approximations [19,44], linear noise
approximation [18,46], and hybrid approaches [4,43].

The remainder of this work is organized as follows: Sect. 2 shortly revises
related work, Sect. 3 formalized SIS-type models and their CTMC semantics.
Our lumping scheme is developed in Sect. 4. In Sect. 5, we show that the lumped
CTMCs have a natural MPM representation. Numerical results are demon-
strated in Sect. 6 and some conclusions in Sect. 7 complete the paper and identify
open research problems.

2 Related Work

The general idea behind lumping is to reduce the complexity of a system by
aggregating (i.e., lumping) individual components of the system together. Lump-
ing is a popular model reduction technique which has been used to reduce the
number of equations in a system of ODEs and the number of states in a Markov

1 In the following, we will use the term CTMC state and network state interchangeably.
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chain, in particular in the context of biochemical reaction networks [6,8,31,50].
Generally speaking, one can distinguish between exact and approximate lumping
[6,31].

Most work on the lumpability of epidemic models has been done in the con-
text of exact lumping [28,42,48]. The general idea is typically to reduce the state
space by identifying symmetries in the CTMC which themselves can be found
using symmetries (i.e., automorphisms) in the contact network. Those methods,
however, are limited in scope because these symmetries are infeasible to find
in real-world networks and the state space reduction is not sufficient to make
realistic models small enough to be solvable.

This work proposes an approximate lumping scheme. Approximate lump-
ing has been shown to be useful when applied to mean-field approximation
approaches of epidemic models like the degree-based mean-field and pair approxi-
mation equations [30], as well as the approximate master equation [14,21]. How-
ever, mean-field equations are essentially inflexible as they do not take topo-
logical properties into account or make unrealistic independence assumptions
between neighboring nodes.

Moreover, [27] proposed using local symmetries in the contact network
instead of automorphisms to construct a lumped Markov chain. This scheme
seems promising, in particular on larger graphs where automorphisms often do
not even exist, however, the limitations for real-world networks due to a limited
amount of state space reduction and high computational costs seem to persist.

Conceptually similar to this work is also the unified mean-field framework
(UMFF) proposed by Devriendt et al. in [10]. Devriendt et al. also partition the
nodes of the contact network but directly derive a mean-field equation from it. In
contrast, this work focuses on the analysis of the lumped CTMC and its relation
to MPMs. Moreover, we investigate different types of counting abstractions,
not only node based ones. The relationship between population dynamics and
networks has also been investigated with regard to Markovian agents [3].

3 Spreading Processes

Let G = (N , E) be a an undirected graph without self-loops. At each time point
t ∈ R≥0 each node occupies one of m different node states, denoted by S =
{s1, s2, . . . , sm} (typically, S = {S, I}). Consequently, the network state is given
by a labeling x : N → S. We use

X = {x | x : N → S}
to denote all possible labelings. X is also the state space of the underlying CTMC.
As each of the |N | nodes occupies one of m states, we find that |X | = |S||N |.

A set of stochastic rules determines the particular way in which nodes change
their corresponding node states. Whether a rule can be applied to a node depends
on the state of the node and of its immediate neighborhood.

The neighborhood of a node is modeled as a vector m ∈ Z|S|
≥0 where m[s]

denotes the number of neighbors in state s ∈ S (we assume an implicit enu-
meration of states). Thus, the degree (number of neighbors, denoted by k) of
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Fig. 1. The CTMC induced by the SIS model (S: blue, I: magenta, filled) on a toy
graph. Only a subset of the CTMC spate space (11 out of 26 = 64 network states) is
shown. (Color figure online)

a node is equal to the sum over its associated neighborhood vector, that is,
k =

∑
s∈S m[s]. The set of possible neighborhood vectors is denoted as

M =
{
m ∈ Z|S|

≥0

∣
∣
∣
∣

∑

s∈S
m[s] ≤ kmax

}
,

where kmax denotes the maximal degree in a given network.
Each rule is a triplet s1

f−→ s2 (s1, s2 ∈ S, s1 �= s2), which can be applied to
each node in state s1. When the rule “fires” it transforms the node from s1 into
s2. The rate at which a rule “fires” is specified by the rate function f : M → R≥0

and depends on the node’s neighborhood vector. The time delay until the rule is
applied to the network state is drawn from an exponential distribution with rate
f(m). Hence, higher rates correspond to shorter waiting times. For the sake of
simplicity and without loss of generality, we assume that for each pair of states
s1, s2 there exists at most one rule that transforms s1 to s2.

In the well-known SIS model, infected nodes propagate their infection to sus-
ceptible neighbors. Thus, the rate at which a susceptible node becomes infected
is proportional to its number of infected neighbors:

S
f−→ I with f(m) = λ · m[I] ,

where λ ∈ R≥0 is a rule-specific rate constant (called infection rate) and m[I]
denotes the number of infected neighbors. Furthermore, a recovery rule trans-
forms infected nodes back to being susceptible:

I
f−→ S with f(m) = μ ,

where μ ∈ R≥0 is a rule-specific rate constant called recovery rate.
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A variation of the SIS model is the SI model where no curing rule exists and
all nodes (that are reachable from an infected node) will eventually end up being
infected. Intuitively, each rule tries to “fire” at each position n ∈ N where it can
be applied. The rule and node that have the shortest waiting time “win” and
the rule is applied there. This process is repeated until some stopping criterion
is fulfilled.

3.1 CTMC Semantics

Formally, the semantics of the SIS-type processes can be given in terms of
continuous-time Markov Chains (CTMCs). The state space is the set of possible
network states X . The CTMC has a transition from state x to x′ (x, x′ ∈ X ,

x �= x′) if there exists a node n ∈ N and a rule s1
f−→ s2 such that the appli-

cation of the rule to n transforms the network state from x to x′. The rate of
the transition is exactly the rate f(m) of the rule when applied to n. We use
q(x, x′) ∈ R≥0 to denote the transition rate between two network states. Figure 1
illustrates the CTMC corresponding to an SIS process on a small toy network.

Explicitly computing the evolution of the probability of x ∈ X over time
with an ODE solver, using numerical integration, is only possible for very small
contact networks, since the state space grows exponentially with the number of
nodes. Alternative approaches include sampling the CTMC, which can be done
reasonably efficiently even for comparably large networks [9,22,45] but is subject
to statistical inaccuracies and is mostly used to estimate global properties.

4 Approximate Lumping

Our lumping scheme is composed of three basic ingredients:
Node Partitioning: The partitioning over the nodes N that is explicitly pro-
vided.
Counting Pattern: The type of features we are counting, i.e., nodes or edges.
Implicit State Space Partitioning: The CTMC state space is implicitly par-
titioned by counting the nodes or edges on each node partition.

We will start our presentation discussing the partitioning of the state space,
then showing how to obtain it from a given node partitioning and counting
pattern. To this end, we use Y to denote the new lumped state space and assume
that there is a surjective2 lumping function

L : X → Y

that defines which network states will be lumped together. Note that the lumped
state space is the image of the lumping function and that all network states x ∈ X
which are mapped to the same y ∈ Y will be aggregated.

2 If L is not surjective, we consider only the image of L to be the lumped state space.
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Later in this section, we will discuss concrete realizations of L. In particular,
we will construct L based on a node partitioning and a counting abstraction of
our choice. Next, we define the transition rates q(y, y′) (where y, y′ ∈ Y, y �= y′)
between the states of the lumped Markov chain:

q(y, y′) =
1

|L−1(y)|
∑

x∈L−1(y)

∑

x′∈L−1(y′)

q(x, x′) . (1)

This is simply the mean transition rate at which an original state from x goes
to some x′ ∈ L−1(y′). Technically, Eq. (1) corresponds to the following lumping
assumption: we assume that at each point in time all network states belonging
to a lumped state y are equally likely.

4.1 Partition-Based Lumping

Next, we construct the lumping function L. Because we want to make our lump-
ing aware of the contact network’s topology, we assume a given partitioning P
over the nodes N of the contact network. That is, P ⊂ 2N and

⋃
P∈P P = N

and all P ∈ P are disjoint and non-empty. Based on the node partitioning, we
can now impose different kinds of counting abstractions on the network state.
This work considers two types: counting nodes and counting edges. The counting
abstractions are visualized in Fig. 3. A full example of how a lumped CTMC of
an SI model is constructed using the node-based counting abstraction is given
in Fig. 2.

Node-Based Counting Abstraction. We count the number of nodes in each
state and partition. Thus, for a given network state x ∈ X , we use y(s, P ) to
denote the number of nodes in state s ∈ S in partition P ∈ P. The lumping
function L projects x to the corresponding counting abstraction. Formally:

Y = {y | y : S × P → Z≥0}
L(x) = y

with: y(s, P ) = |{n ∈ N | X(n) = s, n ∈ P}| .

Edge-Based Counting Abstraction. Again, we assume that a network state
x and a node partitioning P are given. Now we count the edges, that is for
each pair of states s, s′ ∈ S and each pair of partitions P, P ′ ∈ P, we count
y(s, P, s′, P ′) which is the number of edges (n, n′) ∈ E where x(n) = s, n ∈ P ,
x(n′) = s′, n′ ∈ P ′. Note that this includes cases where P = P ′ and s = s′.
However, only counting the edges does not determine how many nodes there are
in each state (see Fig. 3 for an example).

In order to still have this information encoded in each lumped state, we
slightly modify the network structure by adding a new dummy node n� and
connecting each node to it . The dummy node has a dummy state denoted by
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Graph Partition Rule

(a)

Rate

Original Markov Model

Edge-Based

Partitioning
Node-Based

(b)

(c)

Fig. 2. Illustration of the lumping process. (a): Model. A basic SI-Process where
infected nodes (magenta, filled) infect susceptible neighbors (blue) with rate infec-
tion λ = 1. The contact graph is divided into two partitions. (b): The underlying
CTMC with 24 = 16 states. The graph partition induces the edge-based and node-
based lumping. The edge-based lumping refines the node-based lumping and generates
one partition more (vertical line in the central partition). (c): The lumped CTMC using
node-based counting abstraction with only 9 states. The rates are the averaged rates
from the full CTMC. (Color figure online)
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Without 
Dummy

With
Dummy

(a) (b)

Fig. 3. (a) By adding the dummy-node, the edge-based abstraction is able to differ-
entiate the two graphs. Adding the dummy-node ensures that the nodes in each state
are counted in the edge-based abstraction. (b) Left: A partitioned network (Zachary’s
Karate Club graph from [12]) (S: blue, I: magenta, filled). The network is partitioned
into P1 (�-nodes) and P2 (�-nodes). Right: The corresponding counting abstractions.
(Color figure online)

� which never changes, and it can be assigned to a new dummy partition P�.
Formally,

N := N ∪ {n�} S := S ∪ {�} L(n�) = � P := P ∪ {P�}
E := E ∪ {(n, n�) | n ∈ N , n �= n�}.

Note that the rate function f ignores the dummy node. The lumped represen-
tation is then given as:

Y = {y | y : S × P × S × P → Z≥0}
L(x) = y

with: y(s, P, s′, P ′) = |{(n, n′) ∈ E | x(n) = s, n ∈ P, x(n′) = s′, n′ ∈ P ′}|

Example. Figure 2 illustrates how a given partitioning and the node-based
counting approach induces a lumped CTMC. The partitions induced by the
edge-based counting abstracting are also shown. In this example, the edge-based
lumping aggregates only isomorphic network states.

4.2 Graph Partitioning

Broadly speaking, we have three options to partition the nodes based on local
features (e.g., its degree) or global features (e.g., communities in the graph)
or randomly. As a baseline, we use a random node partitioning. Therefore, we
fix the number of partitions and randomly assign each node to a partition while
enforcing that all partitions have, as far as possible, the same number of elements.

Moreover, we investigate a degree-based partitioning, where we define the
distance between to nodes n, n′ as their relative degree difference (similar to
[30]):
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dk(n, n′) =
|kn − kn′ |

max(kn, kn′)
.

We can then use any reasonable clustering algorithm and build partitions (i.e.,
clusters) with the distance function. In this work, we focus on bottom-up hier-
archical clustering as it provides the most principled way of precisely controlling
the number of partitions. Note that, for the sake of simplicity (in particular, to
avoid infinite distances), we only consider contact networks where each node is
reachable from every other node. We break ties arbitrarily.

To get a clustering considering global features we use a spectral embedding
of the contract network. Specifically, we use the spectral layout function from
the NetworkX Python-package [23] with three dimensions and perform hierar-
chical clustering on the embedding. In future research, it would be interesting
to compute node distances based on more sophisticated graph embedding as the
ones proposed in [17]. Note that in the border cases |P| = 1 and |P| = |N | all
methods yield the same partitioning.

5 Markov Population Models

Markov Population Models (MPMs) are a special form of CTMCs where each
CTMC state is a population vector over a set of species. We use Z to denote the
finite set of species (again, with an implicit enumeration) and y ∈ Z|Z|

≥0 to denote
the population vector. Hence, y[z] identifies the number of entities of species z.
The stochastic dynamics of MPMs is typically expressed as a set of reactions R,
each reaction, (α,b) ∈ R, is comprised of a propensity function α : Z|Z|

≥0 → R≥0

and a change vector b ∈ Z|Z|. When reaction (α,b) is applied, the system moves
from state y to state y + b. The corresponding rate is given by the propensity
function. Therefore, we can rewrite the transition matrix of the CTMC as3:

q(y,y′) =
{

α(y) if ∃(α,b) ∈ R,y′ = y + b
0 otherwise .

Next, we show that our counting abstractions have a natural interpretation
as MPMs.

5.1 Node-Based Abstraction

First, we define the set of species Z. Conceptually, species are node states which
are aware of their partition:

Z = {(s, P ) | s ∈ S, P ∈ P} .

3 Without loss of generality, we assume that different reactions have different change
vectors. If this is not the case, we can merge reactions with the same update by
summing their corresponding rate functions.
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Again, we assume an implicit enumeration of Z. We use z.s and z.P to denote
the components of a give species z.

We can now represent the lumped CTMC state as a single population vector
y ∈ Z|Z|

≥0 , where y[z] the number of nodes belonging to species z (i.e., which are
in state z.s and partition z.P ). The image of the lumping function L, i.e. the
lumped state space Y, is now a subset of non-negative integer vectors: Y ⊂ Z|Z|

≥0 .

Next, we express the dynamics by a set of reactions. For each rule r = s1
f−→ s2

and each partition P ∈ P, we define a reaction (αr,P ,br,P ) with propensity
function as:

αr,P :Y → R≥0

αr,P (y) =
1

L−1(y)

∑

x∈L−1(y)

∑

n∈P

f(mx,n)1x(n)=s1 ,

where mx,n denotes the neighborhood vector of n in network state x. Note that
this is just the instantiation of Eq. 1 to the MPM framework.

The change vector br,P ∈ Z|Z| is defined element-wise as:

br,P [z] =

⎧
⎪⎨

⎪⎩

1 if z.s = s2, P = z.P

−1 if z.s = s1, P = z.P

0 otherwise
.

Note that s1, s2 refer to the current rule and z.s to the entry of br,P .

5.2 Edge-Based Counting Abstraction

We start by defining a species neighborhood. The species neighborhood of a node
n is a vector v ∈ Z|Z|

≥0 , where v[z] denotes the number of neighbors of species
z. We define Vn to be the set of possible species neighborhoods for a node n,
given a fixed contact network and partitioning. Note that we still assume that a
dummy node is used to encode the number of states in each partition.

Assuming an arbitrary ordering of pairs of states and partitions, we define

Z =
{
(ssource, Psource, starget, Ptarget) |ssource, starget ∈ S, Psource, Ptarget ∈ P,

(ssource, Psource) ≤ (starget, Ptarget)
}

.

Let us define VP to be the set of partition neighborhoods all nodes in P can
have:

VP =
⋃

n∈P

Vn .

For each rule r = s1
f−→ s2, and each partition P ∈ P, and each v ∈ VP , we

define a propensity function αr,P,v with:

αr,P,v :Y → R≥0

αr,P,v(y) =
1

L−1(y)

∑

x∈L−1(y)

∑

n∈P

f(mx,n)1x(n)=s1,V (n)=v .
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Note that the propensity does not actually depend on v, it is simply indi-
vidually defined for each v. The reason for this is that the change vector
depends on the a node’s species neighborhood. To see this, consider a species
z = (ssource, Psource, starget, Ptarget), corresponding to edges connecting a node
in state ssource and partition Psource to a node in state starget and partition
Ptarget. There are two scenarios in which the corresponding counting variable
has to change: (a) when the node changing state due to an application of rule
r is the source node, and (b) when it is the target node. Consider case (a); we
need to know how many edges are connecting the updated node (which was in
state s1 and partition P ) to a node in state starget and partition Ptarget. This
information is stored in the vector v, specifically in position v[starget, Ptarget].
The case in which the updated node is the target one is treated symmetrically.
This gives rise to the following definition:

br,P,v[z] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v[z.starget, z.Ptarget] if s2 = z.ssource, P = z.Psource

−v[z.starget, z.Ptarget] if s1 = z.ssource, P = z.Psource

v[z.ssource, z.Psource] if s2 = z.starget, P = z.Ptarget

−v[z.ssource, z.Psource] if s1 = z.starget, P = z.Ptarget

0 otherwise

.

The first two lines of the definition handle cases in which the node changing
state is the source node, while the following two lines deal with the case in which
the node changing state appears as target.

Figure 4 illustrates how a lumped network state is influenced by the applica-
tion of an infection rule.

5.3 Direct Construction of the MPM

Approximating the solution of an SIS-type process on a contact network by
lumping the CTMC first, already reduces the computational costs by many
orders of magnitude. However, this scheme is still only applicable when it is
possible to construct the full CTMC in the first place. Recall that the number
of network states is exponential in the number of nodes of the contact network,
that is, |X | = |S||N |.

However, in recent years, substantial effort was dedicated to the analysis of
very small networks [25,32,35,37,48]. One reason is that when the size of a net-
work increases, the (macro-scale) dynamics becomes more deterministic because
stochastic effects tend to cancel out. For small contact networks, however, meth-
ods which capture the full stochastic dynamics of the system, and not only the
mean behavior, are of particular importance.

A substantial advantage of the reduction to MPM is the possibility of con-
structing the lumped CTMC without building the full CTMC first. In particular,
this can be done exactly for the node counting abstraction. On the other hand, for
the edge counting we need to introduce an extra approximation in the definition
of the rate function, roughly speaking introducing an approximate probability
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Fig. 4. Example of how the neighborhood v influences the update in the edge-based
counting abstraction on an example graph. Here, all nodes belong to the same parti-
tion (thus, nodes states and species are conceptually the same) and the node states
are ordered [S, I, �]. The population vector y is given in matrix form for the ease of
presentation.

distribution over neighboring vectors, as knowing how many nodes have a spe-
cific neighboring vector requires us full knowledge of the original CTMC. We
present full details of such direct construction in the Appendix of [20].

5.4 Complexity of the MPM

The size of the lumped MPM is critical for our method, as it determines which
solution techniques are computationally tractable and provides guidelines on
how many partitions to choose. There are two notions of size to consider: (a) the
number of population variables and (b) the number of states of the underlying
CTMC. While the latter governs the applicability of numerical solutions for
CTMCs, the former controls the complexity of a large number of approximate
techniques for MPMs, like mean field or moment closure.

Node-Based Abstraction. In this abstraction, the population vector is of length
|S| · |P|, i.e. there is a variable for each node state and each partition.

Note that the sum of the population variables for each partition P is |P |,
the number of nodes in the partition. This allows us to count easily the number
of states of the CTMC of the population model: for each partition, we need
to subdivide |P | different nodes into |S| different classes, which can be done in
(|P |+|S|−1

|S|−1

)
ways, giving a number of CTMC states exponential in the number |S|

of node states and |P| of partitions, but polynomial in the number of nodes:

|Y| =
∏

P∈P

(|P | + |S| − 1
|S| − 1

)

.

Edge-Based Abstraction. The number of population variables, in this case, is one
for each edge connecting two different partitions, plus those counting the number
of nodes in each partition and each node state, due to the presence of the dummy
state. In total, we have q(q−1)

2 + q population variables, with q = |S| · |P|.
In order to count the number of states of the CTMC in this abstraction, we

start by observing that the sum of all variables for a given pair of partitions
P ′, P ′′ is the number of edges connecting such partitions in the graph. We use
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ε(P ′, P ′′) to denote the number of edges between P ′, P ′′ (resp. the number of
edges inside P ′ if P ′ = P ′′). Thus,

|Y| ≤
∏

P ′,P ′′∈P2

P ′≤P ′′

(
ε(P ′, P ′′) + S2 − 1

S2 − 1

)

·
∏

P∈P

(|P | + |S| − 1
|S| − 1

)

.

This is an over-approximation, because not all combinations are consistent with
the graph topology. For example, a high number of infected nodes in a partition
might not be consistent with a small number of I− I-edges inside the partition.
Note that also this upper bound is exponential in |S| and |P| but still polynomial
in the number of nodes N , differently from the original network model, whose
state space is exponential in N .

The exponential dependency on the number of species (i.e., dimensions of
the population vector) makes the explicit construction of the lumped state space
viable only for very small networks with a small number of node states. However,
this is typically the case for spreading models like SIS or SIR. Yet, also the
number of partitions has to be kept small, particularly in realistic models. We
expect that the partitioning is especially useful for networks showing a small
number of large-scale homogeneous structures, as happens in many real-world
networks [12].

An alternative strategy for analysis is to derive mean-field [5] or moment clo-
sure equations [41] for MPMs, which can be done without explicitly constructing
the lumped (and the original) state space. These are sets of ordinary differential
equation (ODE) describing the evolution of (moments of) the population vari-
ables. We refer the reader to [10] for a similar approach regarding the node-based
abstraction.

E
rr
or

Fig. 5. Trade of between accuracy and state space size for the node-based (blue) and
edge-based (magenta, filled) counting abstraction. Results are shown for node partitions
based on the degree (l.), spectral embedding (c.), and random partitioning (r.). The
accuracy is measured as the mean (�) and maximal (�) difference between the original
and lumped solution over all timepoints. (Color figure online)
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6 Numerical Results

In this section, we compare the numerical solution of the original model—referred
to as baseline model—with different lumped MPMs. The goal of this compari-
son is to provide evidence supporting the claim that the lumping preserves the
dynamics of the original system, with an accuracy increasing with the resolu-
tion of the MPM. We will perform the comparison by solving numerically the
ground and the lumped system, thus comparing the probability of each state in
each point in time. In practical applications of our method, exact transient or
steady state solutions may not be feasible, but in this case we can still rely to
approximation methods for MPM [5,41]. Determining which of those techniques
performs best in this context is a direction of future exploration.

A limit of the comparison based on numerical solution of the CTMC is that
the state space of the original model has |S||N | states, which limits the size of
the contact network strongly4.

Let P (X(t) = x) denote the probability that the baseline CTMC occupies
network state x ∈ X at time t ≥ 0. Furthermore, let P (Y (t) = y) for t ≥ 0
and y ∈ Y denote the same probability for a lumped MPM (corresponding to
a specific partitioning and counting abstraction). To measure their difference,
we first approximate the probability distribution of the original model using the
lumped solution, invoking the lumping assumption which states that all network
states which are lumped together have the same probability mass. We use PL

to denote the lifted probability distribution over the original state space given a
lumped solution. Formally,

PL

(
Y (t) = x

)
=

P
(
Y (t) = y

)

|L−1(y)| where y is s.t. L(x) = y.

We measure the difference between the baseline and a lumped solution at
a specific time point by summing up the difference in probability mass of each
state, then take the maximum error in time:

d(P, PL) = max
t

∑

x∈X

∣
∣
∣PL

(
Y (t) = x) − P (X(t) = x

)∣∣
∣ .

In our experiments, we used a small toy network with 13 nodes and 2 states
(213 = 8192 network states). We generated a synthetic contact network following
the Erdős–Rényi graph model with a connection probability of 0.5. We use a SIS
model with an infection rate of λ = 1.0 and a recovery rate of μ = 1.3. Initially,
we assign an equal amount of probability mass to all network states.

Figure 5 shows the relationship between the error of the lumped MPM, the
type of counting abstraction and the method used for node partitioning. We also
report the mean difference together with the maximal difference over time.

From our results, we conclude that the edge-based counting abstraction yields
a significantly better trade-off between state space size and accuracy. However,

4 Code is available at github.com/gerritgr/Reducing-Spreading-Processes.
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it generates larger MPM models than the node-based abstraction when adding
a new partition. We also find that spectral and degree-based partitioning yield
similar results for the same number of CTMC states and that random partition-
ing performed noticeably worse, for both edge-based and node-based counting
abstractions.

7 Conclusions and Future Work

This work developed first steps in a unification of the analysis of stochastic
spreading processes on networks and Markov population models. Since the so
obtained MPM can become very large in terms of species, it is important to be
able to control the trade-off between state space size and accuracy.

However, there are still many open research problems ahead. Most evidently,
it remains to be determined which of the many techniques developed for the
analysis of MPMs (e.g. linear noise, moment closure) work best on our proposed
epidemic-type MPMs and how they scale with increasing size of the contact
network. We expect also that these reduction methods can provide a good start-
ing point for deriving advanced mean-field equations, similar to ones in [10].
Moreover, literature is very rich in proposed moment-closure-based approxima-
tion techniques for MPMs, which can now be utilized [19,44]. We also plan to
investigate the relationship between lumped mean-field equations [21,30] and
coarse-grained counting abstractions further.

Future work can additionally explore counting abstraction of different types,
for instance, a neighborhood-based abstraction like the one proposed by Gleeson
in [13,14].

Finally, we expect that there are many more possibilities of partitioning
the contact network that remain to be investigated and which might have a
significant impact on the final accuracy of the abstraction.
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Abstract. The software running in embedded or cyber-physical systems
(CPS) is typically of proprietary nature, so users do not know precisely
what the systems they own are (in)capable of doing. Most malfunction-
ings of such systems are not intended by the manufacturer, but some
are, which means these cannot be classified as bugs or security loop-
holes. The most prominent examples have become public in the diesel
emissions scandal, where millions of cars were found to be equipped
with software violating the law, altogether polluting the environment
and putting human health at risk. The behaviour of the software embed-
ded in these cars was intended by the manufacturer, but it was not in the
interest of society, a phenomenon that has been called software doping.
Doped software is significantly different from buggy or insecure software
and hence it is not possible to use classical verification and testing tech-
niques to discover and mitigate software doping.

The work presented in this paper builds on existing definitions of soft-
ware doping and lays the theoretical foundations for conducting software
doping tests, so as to enable attacking evil manufacturers. The complex
nature of software doping makes it very hard to effectuate doping tests in
practice. We explain the biggest challenges and provide efficient solutions
to realise doping tests despite this complexity.

1 Introduction

Embedded and cyber-physical systems are becoming more and more widespread
as part of our daily life. Printers, mobile phones, smart watches, smart home
equipment, virtual assistants, drones and batteries are just a few examples. Mod-
ern cars are even composed of a multitude of such systems. These systems can
have a huge impact on our lives, especially if they do not work as expected. As
a result, numerous approaches exist to assure quality of a system. The classical
and most common type of malfunctioning is what is widely called “bug”. Usu-
ally, a bug is a very small mistake in the software or hardware that causes a
behaviour that is not intended or expected. Other types of malfunctioning are
caused by incorrect or wrongly interpreted sensor data, physical deficiencies of
a component, or are simply radiation-induced.

Another interesting kind of malfunction (also from an ethical perspective [4])
arises if the expectation of how the system should behave is different for two (or
c© Springer Nature Switzerland AG 2019
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more) parties. Examples for such scenarios are widespread in the context of per-
sonal data privacy, where product manufacturers and data protection agencies
have notoriously different opinions about how a software is supposed to han-
dle personal data. Another example is the usage of third-party cartridges in
printers. Manufacturers and users do not agree on whether their printer should
work with third-party cartridges (the user’s opinion) or only with those sold by
the manufacturer (the manufacturer’s opinion). Lastly, an example that received
very high media attention are emission cleaning systems in diesel cars. There are
regulations for dangerous particles and gases like CO2 and NO2 defining how
much of these substances are allowed to be emitted during car operation. Part of
these regulations are emissions tests, precisely defined test cycles that a car has
to undergo on a chassis dynamometer [28]. Car manufacturers have to obey to
these regulations in order to get admission to sell a new car model. The central
weakness of these regulations is that the relevant behaviour of the car is only
a trickle of the possible behaviour on the road. Indeed, several manufacturers
equipped their cars with defeat devices that recognise if the car is undergoing
an official emissions test. During the test, the car obeys the regulation, but out-
side test conditions, the emissions extruded are often significantly higher than
allowed. Generally speaking, the phenomena described above are considered as
incorrect software behaviour by one party, but as intended software behaviour by
the other party (usually the manufacturer). In the literature, such phenomena
are called software doping [3,10].

The difference between software doping and bugs is threefold: (1) There is a
disagreement of intentions about what the software should do. (2) While a bug
is most often a small coding error, software doping can be present in a consider-
able portion of the implementation. (3) Bugs can potentially be detected during
production by the manufacturer, whereas software doping needs to be uncovered
after production, by the other party facing the final product. Embedded software
is typically proprietary, so (unless one finds a way to breach into the intellectual
property [9]) it is only possible to detect software doping by observation of the
behaviour of the product, i.e., by black-box testing.

This paper develops the foundations for black-box testing approaches geared
towards uncovering doped software in concrete cases. We will start off from an
established formal notion of robust cleanness (which is the negation of software
doping) [10]. Essentially, the idea of robust cleanness is based on a succinct
specification (called a “contract”) that all involved parties agree on and which
captures the intended behaviour of a system with respect to all inputs to the
system. Inputs are considered to be user inputs or environmental inputs given
by sensors. The contract is defined by input and output distances on standard
system trajectories supplemented by input and output thresholds. Simply put,
the input distance and threshold induce a tube around the standard inputs, and
similar for outputs. For any input in the tube around some standard input the
system must be able to react with an output that is in the tube around the
output possible according to the standard.
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Example 1. For a diesel car the standard trajectory is the behaviour exhibited
during the official emissions test cycle. The input distance measures the deviation
in car speed from the standard. The input threshold is a small number larger
than the acceptable error tolerance of the cycle limiting the inputs considered of
interest. The output distance then is the difference between (the total amount
of) NOx extruded by the car facing inputs of interest and that extruded if on
the standard test cycle. For cars with an active defeat device we expect to see a
violation of the contract even for relatively large output thresholds.

A cyber-physical system (CPS) is influenced by physical or chemical dynam-
ics. Some of this can be observed by the sensors the CPS is equipped with,
but some portion might remain unknown, making proper analysis difficult. Non-
determinism is a powerful way of representing such uncertainty faithfully, and
indeed the notion of robust cleanness supports non-deterministic reactive sys-
tems [10]. Furthermore, the analysis needs to consider (at least) two trajectories
simultaneously, namely the standard trajectory and another that stays within
the input tube. In the presence of nondeterminism it might even become neces-
sary to consider infinitely many trajectories at the same time. Properties over
multiple traces are called hyperproperties [8]. In this respect, expressing robust
cleanness as a hyperproperty needs both ∀ and ∃ trajectory quantifiers. Formu-
las containing only one type of quantifier can be analysed efficiently, e.g., using
model-checking techniques, but checking properties with alternating quantifiers
is known to be very complex [7,16]. Even more, testing of such problems is
in general not possible. Assume, for example, a property requiring for a (non-
deterministic) system that for every input i, there exists the output o = i,
i.e., one of the system’s possible behaviours computes the identity function. For
black-box systems with infinite input and output domains the property can nei-
ther be verified nor falsified through testing. In order to verify the property,
it is necessary to iterate over the infinite input set. For falsification one must
show that for some i the system can not produce i as output. However, not
observing an output in finitely many steps does not rule out that this output
can be generated. As a result, there is no prior work (we are aware of) that tar-
gets the automatic generation of test cases for hyperproperties, let alone robust
cleanness.

The contribution of this paper is three-fold. (1) We observe that standard
behaviour, in particular when derived by common standardisation procedures,
can be represented by finite models, and we identify under which conditions
the resulting contracts are (un)satisfiable. (2) For a given satisfiable contract we
construct the largest non-deterministic model that is robustly clean w.r.t. this
contract. We integrate this model into a model-based testing theory, which can
provide a non-deterministic algorithm to derive sound test suites. (3) We develop
a testing algorithm for bounded-length tests and discretised input/output values.
We present test cases for the diesel emissions scandal and execute these tests
with a real car on a chassis dynamometer.
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2 Software Doping on Reactive Programs

Embedded software is reactive, it reacts to inputs received from sensors by pro-
ducing outputs that are meant to control the device functionality. We consider a
reactive program as a function P : Inω → 2(Outω) on infinite sequences of inputs
so that the program reacts to the k-th input in the input sequence by produc-
ing non-deterministically the k-th output in each respective output sequence.
Thus, the program can be seen, for instance, as a (non-deterministic) Mealy or
Moore machine. Moreover, we consider an equivalence relation ≈ ⊆ Inω × Inω

that equates sequences of inputs. To illustrate this, think of the program embed-
ded in a printer. Here ≈ would for instance equate input sequences that agree
with respect to submitting the same documents regardless of the cartridge brand,
the level of the toner (as long as there is sufficient), etc. We furthermore con-
sider the set StdIn ⊆ Inω of inputs of interest or standard inputs. In the previous
example, StdIn contains all the input sequences with compatible cartridges and
printable documents. The definitions given below are simple adaptations of those
given in [10] (but where parameters are instead treated as parts of the inputs).

Definition 1. A reactive program P is clean if for all inputs i, i′ ∈ StdIn such
that i ≈ i′, P (i) = P (i′). Otherwise it is doped.

This definition states that a program is clean if its execution exhibits the same
visible sequence of output when supplied with two equivalent inputs, provided
such inputs comply with the given standard StdIn. Notice that the behaviour
outside StdIn is deemed immediately clean since it is of no interest.

In the context of the printer example, a program that would fail to print a
document when provided with an ink cartridge from a third-party manufacturer,
but would otherwise succeed to print would be considered doped, since this
difference in output behaviour is captured by the above definition. For this,
the inputs (being pairs of document and printer cartridge) must be considered
equivalent (not identical), which comes down to ink cartridges being compatible.

However, the above definition is not very helpful for cases that need to pre-
serve certain intended behaviour outside of the standard inputs StdIn. This is
clearly the case in the diesel emissions scandal where the standard inputs are
given precisely by the emissions test, but the behaviour observed there is assumed
to generalise beyond the singularity of this test setup. It is meant to ensure that
the amount of NO2 and NO (abbreviated as NOx) in the car exhaust gas does
not deviate considerably in general, and comes with a legal prohibition of defeat
mechanisms that simply turn off the cleaning mechanism. This legal framework
is obviously a bit short sighted, since it can be circumvented by mechanisms that
alter the behaviour gradually in a continuous manner, but in effect drastically.
In a nutshell, one expects that if the input values observed by the electronic
control unit (ECU) of a diesel vehicle deviate within “reasonable distance” from
the standard input values provided during the lab emission test, the amount of
NOx found in the exhaust gas is still within the regulated threshold, or at least
it does not exceed it more than a “reasonable amount”.
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This motivates the need to introduce the notion of distances on inputs and
outputs. More precisely, we consider distances on finite traces: dIn : (In∗ × In∗) →
R≥0 and dOut : (Out∗ × Out∗) → R≥0. Such distances are required to be
pseudometrics. (d is a pseudometric if d(x, x) = 0, d(x, y) = d(y, x) and
d(x, y) ≤ d(x, z)+d(z, y) for all x, y, and z.) With this, D’Argenio et al. [10] pro-
vide a definition of robust cleanness that considers two parameters: parameter
κi refers to the acceptable distance an input may deviate from the norm to be
still considered, and parameter κo that tells how far apart outputs are allowed
to be in case their respective inputs are within κi distance (Definition 2 spells
out the Hausdorff distance used in [10]).

Definition 2. Let σ[..k] denote the k-th prefix of the sequence σ. A reactive
program P is robustly clean if for all input sequences i, i′ ∈ Inω with i ∈ StdIn, it
holds for arbitrary k ≥ 0 that whenever dIn(i[..j], i′[..j]) ≤ κi for all j ≤ k, then

1. for all o ∈ P (i) there exists o′ ∈ P (i′) such that dOut(o[..k], o′[..k]) ≤ κo, and
2. for all o′ ∈ P (i′) there exists o ∈ P (i) such that dOut(o[..k], o′[..k]) ≤ κo.

Notice that this is what we actually need for the non-deterministic case: each
possible output generated along one of the executions of the program should be
matched within “reasonable distance” by some output generated by the other
execution of the program. Also notice that i′ does not need to satisfy StdIn, but
it will be considered as long as it is within κi distance of any input satisfying
StdIn. In such a case, outputs generated by P (i′) will be requested to be within
κo distance of some output generated by the respective execution induced by a
standard input.

We remark that Definition 2 entails the existence of a contract which defines
the set of standard inputs StdIn, the tolerance parameters κi and κo as well as
the distances dIn and dOut. In the context of diesel engines, one might imagine
that the values to be considered, especially the tolerance parameters κi and κo

for a particular car model are made publicly available (or are even advertised
by the car manufacturer), so as to enable potential customers to discriminate
between different car models according to the robustness they reach in being
clean. It is also imaginable that the tolerances and distances are fixed by the
legal authorities as part of environmental regulations.

3 Robustly Clean Labelled Transition Systems

This section develops the framework needed for an effective theory of black-box
doping tests based on the above concepts. In this, the standard behaviour (e.g.
as defined by the emission tests) and the robust cleanness definitions together
will induce a set of reference behaviours that then serve as a model in a model-
based conformance testing approach. To set the stage for this, we recall the
definitions of labelled transition systems (LTS) and input-output transitions
systems (IOTS) together with Tretmans’ notion on model-based conformance
testing [25]. We then recast the characterisation of robust cleanness (Definition 2)
in terms of LTS.
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Definition 3. A labelled transition system (LTS) with inputs and outputs is
a tuple 〈Q, In,Out,→, q0〉 where (i) Q is a (possibly uncountable) non-empty
set of states; (ii) L = In � Out is a (possibly uncountable) set of labels; (iii)
→ ⊆ Q × L × Q is the transition relation; (iv) q0 ∈ Q is the initial state. We
say that a LTS is an input-output transition system (IOTS) if it is input-enabled
in any state, i.e., for all s ∈ Q and a ∈ In there is some s′ ∈ Q such that s

a−→ s′.

For ease of presentation, we do not consider internal transitions. The following
definitions will be used throughout the paper. A finite path p in an LTS L is
a sequence s1a1s2a2 . . . an−1sn with si

ai−→ si+1 for all 1 ≤ i < n. Similarly, an
infinite path p in L is a sequence s1a1s2a2 . . . with si

ai−→ si+1 for all i ∈ N. Let
paths∗(L) and pathsω(L) be the sets of all finite and infinite paths of L beginning
in the initial states, respectively. The sequence a1a2 · · · an is a finite trace of L if
there is a finite path s1a1s2a2 . . . ansn+1 ∈ paths∗(L), and a1a2 · · · is an infinite
trace if there is an infinite path s1a1s2a2 . . . ∈ pathsω(L). If p is a path, we let
trace(p) denote the trace defined by p. Let traces∗(L) and tracesω(L) be the sets
of all finite and infinite traces of L, respectively. We will use L1 ⊆ L2 to denote
that tracesω(L1) ⊆ tracesω(L2).

Model-Based Conformance Tests. In the following we recall the basic notions
of input-output conformance (ioco) testing [25–27], and refer to the mentioned
literature for more details. In this setting, it is assumed that the implemented
system under test (IUT) I can be modelled as an IOTS while the specification
of the required behaviour is given in terms of a LTS Spec. The idea of whether
the IUT I conforms to the specification Spec is formalized by means of the ioco
relation which we define in the following.

We first need to identify the quiescent (or suspended) states. A state is quies-
cent whenever it cannot proceed autonomously, i.e., it cannot produce an output.
We will make each such state identifiable by adding a quiescence transition to
it, in the form of a loop with the distinct label δ.

Definition 4. Let L = 〈Q, In,Out,→, q0〉 be an LTS. The quiescence closure
(or δ-closure) of L is the LTS Lδ := 〈Q, In,Out ∪ {δ},→δ, q0〉 with →δ := → ∪
{s

δ−→δ s | ∀o ∈ Out, t ∈ Q : s �o−→ t}. Using this we define the suspension traces
of L by traces∗(Lδ).

Let L be an LTS with initial state q0 and σ = a1 a2 . . . an ∈ traces∗(L). We
define L after σ as the set {qn | q0a1q1a2 . . . anqn ∈ paths∗(L)}. For a state q,
let out(q) = {o ∈ Out ∪ {δ} | ∃q′ : q

o−→ q′} and for a set of states Q′ ⊆ Q, let
out(Q′) =

⋃
q∈Q′ out(q).

The idea behind the ioco relation is that any output produced by the IUT
must have been foreseen by its specification, and moreover, any input in the
IUT not foreseen in the specification may introduce new functionality. ioco
captures this by harvesting concepts from refusal testing. As a result, I ioco
Spec is defined to hold whenever out(Iδ after σ) ⊆ out(Specδ after σ) for all
σ ∈ traces∗(Specδ).
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The base principle of conformance testing now is to assess by means of testing
whether the IUT conforms to its specification w.r.t. ioco. An algorithm to derive
a corresponding test suite TSpec is available [26,27], so that for any IUT I,
I ioco Spec iff I passes all tests in TSpec.

It is important to remark that the specification in the setting considered here
is missing. Instead, we need to construct the specification from the standard
inputs and the respective observed outputs, together with the distances and the
thresholds given by the contract. Furthermore, this needs to respect the ∀ − ∃
interaction required by the cleanness property (Definition 2).

Software Doping on LTS. To capture the notion of software doping in the context
of LTS, we provide two projections of a trace, projecting to a sequence of the
appearing inputs, respectively outputs. To do this, we extend the set of labels
by adding the input –i, that indicates that in the respective step some output
(or quiescence) was produced (but masking the precise output), and the output
–o that indicates that in this step some (masked) input was given.

The projection on inputs ↓i : Lω → (In∪{–i})ω and the projection on outputs
↓o : Lω → (Out∪{–o})ω are defined for all traces σ and k ∈ N as follows: σ↓i[k] :=
if σ[k] ∈ In then σ[k] else –i and σ↓o[k] := if σ[k] ∈ Out then σ[k] else –o.

They are lifted to sets of traces in the usual elementwise way.

Definition 5. A LTS S is a standard for a LTS L, if tracesω(Sδ) ⊆ tracesω(Lδ).

The above definition provides an interpretation of the notion of StdIn for a given
program P modelled in terms of LTS L. This interpretation relaxes the original
definition of StdIn, because it requires to fix only a subset of the behaviour that
L exhibits when executed with standard inputs. This corresponds to a testing
context, in which recordings of the system executing standard inputs are the
baseline for testing. StdIn can then be considered as implicitly determined as the
input sequences tracesω(S)↓i occurring in S. If instead L and StdIn ⊆ (In ∪ –i)ω

are given, we denote by S(L,StdIn) a standard LTS which is maximal w.r.t. StdIn
and L, i.e., for all σ ∈ tracesω(Sδ

(L,StdIn)) iff σ↓i ∈ StdIn and σ ∈ tracesω(Lδ).
In this new setting, we assume that the distance functions dIn and dOut run

on traces containing labels –i and –o, i.e. they are pseudometrics in (In∪{–i})∗ ×
(In∪{–i})∗ → R≥0 and (Out∪{–o})∗×(Out∪{–o})∗ → R≥0, respectively. We will
denote a contract explicitly by a 5-tuple C = 〈S, dIn, dOut, κi, κo〉, which contains
a LTS S representing some standard behaviour, the distances and thresholds (the
domains In and Out are captured implicitly as the domains of dIn, respectively
dOut). With this, robust cleanness can be restated in terms of LTS as follows.

Definition 6. Let L be an IOTS and C = 〈S, dIn, dOut, κi, κo〉 a contract so
that S is standard for L. This L is robustly clean w.r.t. C if for all σ ∈
tracesω(Sδ) and σ′ ∈ tracesω(Lδ) it holds for arbitrary k ≥ 0 that whenever
dIn(σ[..j]↓i, σ

′[..j]↓i) ≤ κi for all j ≤ k then

1. there exists σ′′ ∈ tracesω(Lδ) s.t. σ′↓i = σ′′↓i and dOutδ(σ[..k]↓o, σ
′′[..k]↓o) ≤ κo,

2. there exists σ′′ ∈ tracesω(Sδ) s.t. σ↓i = σ′′↓i and dOutδ(σ
′[..k]↓o, σ

′′[..k]↓o) ≤ κo.
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In the spirit of model-based testing with ioco, Definition 6 takes specific care
of quiescence in a system. In order to properly integrate quiescence into the
context of robust cleanness it must be considered as a unique output. As a
consequence, in the presence of a contract C = 〈S, dIn, dOut, κi, κo〉, we use –
instead of S, Out and dOut – the quiescence closure Sδ of S, Outδ = Out ∪ {δ}
and an extended output distance defined as dOutδ(σ1, σ2) := dOut(σ1\δ, σ2\δ) if
σ1[i] = δ ⇔ σ2[i] = δ for all i, and dOutδ(σ1, σ2) := ∞ otherwise, where σ\δ is
the same as σ with all δ removed.

For the maximal standard LTS S(L,StdIn), Definition 6 echoes the semantics
of the HyperLTL interpretation appearing in Proposition 19 of [10] restricted to
programs with no parameters. Thus, the proof showing that Definition 6 is the
correct interpretation of Definition 2 in terms of LTS, can be obtained in a way
similar to that of Proposition 19 in [10].

In the sequel, we will at some places need to refer to Definition 6 only consider-
ing the second condition (but not the first one). We denote this as Definition 6.2.

4 Reference Implementation for Contracts

As mentioned before, doping tests need to be based on a contract C, which we
assume given. C specifies the domains In, Out, a standard LTS S, the distances
dIn and dOut and the bounds κi and κo. We intuitively expect the contract to
be satisfiable in the sense that it never enforces a single input sequence of the
implementation to keep outputs close enough to two different executions of the
specification while their outputs stretch too far apart. We show such a problem-
atic case in the following example.

Example 2. On the right a quiescence-closed standard LTS Sδ

for an implementation L (shown below) is depicted. For sim-
plicity some input transitions are omitted. Assume Out = {o}
and In = {i, i − κi, i + κi}. Consider the transition labelled x
of L. This must be one of either o or δ, but we will see that
either choice leads to a contradiction w.r.t. the output dis-
tances induced. The input projection of the middle path in L
is i –i and the input distance to (i − κi) –i and (i + κi) –i is
exactly κi, so both branches (i+κi) o and (i−κi) δ of Sδ must
be considered to determine x. For x = o, the output distance
of –o x to –o o in the right branch of Sδ is 0, i.e. less than κo.
However, dOutδ(–o δ, –o o) = ∞ > κo. Thus the output distance
to the left branch of Sδ is too high if picking o. Instead picking

Sδ

i−κi i+κi

o

δ

δ
δ

L
i−κi i+κi

o

i

x

x = δ does not work either, for the symmetric reasons, the problem switches
sides. Thus, neither picking o nor δ for x satisfies robust cleanness here. Indeed,
no implementation satisfying robust cleanness exists for the given contract.

We would expect that a correct implementation fully entails the standard
behaviour. So, to satisfy a contract, the standard behaviour itself must be
robustly clean. This and the need for satisfiability of particular inputs lead to
Definition 7.
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Definition 7 (Satisfiable Contract). Let C = 〈S, dIn, dOut, κi, κo〉 be a con-
tract. Let input σi ∈ (In ∪ {–i})ω be the input projection of some trace. σi is
satisfiable for C if and only if for every standard trace σS ∈ tracesω(Sδ) and
k > 0 such that for all j ≤ k dIn(σi[..j], σS [..j]↓i) ≤ κi there is some implemen-
tation L that satisfies Definition 6.2 w.r.t. C and has some trace σ ∈ tracesω(Lδ)
with σ↓i = σi and dOutδ(σ[..k]↓o, σS [..k]↓o) ≤ κo.
C is satisfiable if and only if all inputs σi ∈ (In ∪ {–i})ω are satisfiable for C
and if S is robustly clean w.r.t. C. A contract that is not satisfiable is called
unsatisfiable.

Given a satisfiable contract it is always possible to construct an implementa-
tion that is robustly clean w.r.t. to this contract. Furthermore, for every contract
there is exactly one implementation (modulo trace equivalence) that contains all
possible outputs that satisfy robust cleanness. Such an implementation is called
the largest implementation.

Definition 8 (Largest Implementation). Let C be a contract and L an
implementation that is robustly clean w.r.t. C. L is the largest implementation
within C if and only if for every L′ that is robustly clean w.r.t. C it holds that
tracesω(L′

δ) ⊆ tracesω(Lδ).

In the following, we will focus on the fragment of satisfiable contracts
with standard behaviour defined by finite LTS. For unsatisfiable contracts,
testing is not necessary, because every implementation is not robustly clean
w.r.t. to C. Finiteness of S will be necessary to make testing feasible in prac-
tice. For simplicity we will further assume past-forgetful output distance func-
tions. That is, dOut(σ1, σ2) = dOut(σ′

1, σ
′
2) whenever last(σ1) = last(σ′

1) and
last(σ2) = last(σ′

2) (where last(a1 a2 . . . an) = an.) Thus, we simply assume that
dOut : (Out∪{–o} × Out∪{–o}) → R≥0, i.e., the output distances are determined
by the last output only. We remark that dOutδ(δ, o) = ∞ for all o �= δ.

We will now show how to construct the largest implementation for any con-
tract (of the fragment we consider), which we name reference implementation R.
It is derived from Sδ by adding inputs and outputs in such a way that whenever
the input sequence leading to a particular state is within κi distance of an input
sequence σi of Sδ, then the outputs possible in such a state should be at most κo

distant from those outputs possible in the unique state on Sδ reached through
σi. This ensures that R will satisfy condition (2) in Definition 6.

Reference Implementation. To construct the reference implementation R we
decide to model the quiescence transitions explicitly instead of using the qui-
escence closure. We preserve the property, that in each state of the LTS it is
possible to do an output or a quiescence transition. The construction of R pro-
ceeds by adding all transitions that satisfy the second condition of Definition 6.

Definition 9. Let C = 〈S, dIn, dOut, κi, κo〉 be a contract. The reference imple-
mentation R for C is the LTS 〈(In∪Out)∗, In,Out,→R, ε〉 where →R is defined by



322 S. Biewer et al.

ε

i+[0, 2κi]i+[−κi, 0) other i

i+[−κi, 0) o+[−κo, 2κo]i+[−κi, 0) any i i+[0, 2κi] any i i+[0, 2κi] o+[0, 2κo] other i any o other i any i

i+[−κi,0)
i+[0,2κi]

other i

any i o+[−κo,2κo] any i o+[0,2κo] any o any i

Fig. 1. The reference implementation R of S in Example 3.

∀σi ∈ tracesω(Sδ)↓i :
(∀j ≤ |σ| + 1 : dIn((σ · a)↓i[..j], σi[..j]) ≤ κi)

⇒ ∃σS ∈ tracesω(Sδ) : σS↓i = σi ∧ dOutδ(a↓o, σS [|σ| + 1]↓o) ≤ κo

σ
a−→R σ · a

Notably, R is deterministic, since only transitions of the form σ
a−→R σ · a are

added. As a consequence of this determinism, outputs and quiescence may coexist
as options in a state, i.e. they are not mutually exclusive.

Example 3. Fig. 1 gives a schematic representation of the
reference implementation R for the LTS S on the right.
Input (output) actions are denoted with letter i (o, respec-
tively), quiescence transitions are omitted. We use the
absolute difference of the values, so that dIn(i, i′) := |i−i′|
and dOut(o, o′) := |o−o′|. For this example, the quiescence
closure Sδ looks like S but with δ-loops in states s0, s4,

s0

s2s1 s3

s4 s5 s6

S
i i i+κi

o o+κo o+κo

s5, and s6. Label r+[a, b] should be interpreted as any value r′ ∈ [a + r, b + r]
and similarly r+[a, b) and r+(a, b], appropriately considering closed and open
boundaries; “other i” represents any other input not explicitly considered leaving
the same state; and “any i” and “any o” represent any possible input and output
(including δ), respectively. In any case –i and –o are not considered since they
are not part of the alphabet of the LTS. Also, we note that any possible sequence
of inputs becomes enabled in the last states (omitted in the picture).

Robust Cleanness of Reference Implementation. In the following, the aim is to
show that R is robustly clean. By construction, each state in R equals the trace
that leads to that state. In other words, last(p) = trace(p) for any p ∈ paths∗(R)
can be shown by induction. As a consequence, a path in R can be completely
identified by the trace it defines. The following lemma states that R preserves
all traces of the standard Sδ it is constructed from. This can be proven by using
that Sδ is robustly clean w.r.t. the (satisfiable) contract C (see Definition 7).

Lemma 1. Let R be the reference implementation for C = 〈S, dIn, dOut, κi, κo〉.
Then S is standard for R.

The following theorem states that the reference implementation R is robustly
clean w.r.t. the contract it was constructed from.

Theorem 1. Let R be the reference implementation for some contract C. Then
R is robustly clean w.r.t. C.
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Furthermore, it is not difficult to show that R is indeed the largest imple-
mentation within the contract it was constructed from.

Theorem 2. Let R be the reference implementation for some contract C. Then
R is the largest implementation within C.

5 Model-Based Doping Tests

Following the conceptual ideas behind ioco, we need to construct a specification
that is compatible with our notion of robust cleanness in such a way that a test
suite can be derived. Intuitively, such a specification must be able to foresee
every behaviour of the system that is allowed by the contract. We will take the
reference implementation from the previous section as this specification. Indeed
we claim that R is constructed in such a way that whenever an IUT I is robustly
clean, I ioco R holds. The latter translates to

∀σ ∈ traces∗(Rδ) : out(Iδ after σ) ⊆ out(Rδ after σ). (1)

Theorem 3. Let C be a contract with standard S and let IOTS I be robustly
clean w.r.t. C. If R is the reference implementation for C, then I ioco R.

The key observations to prove this theorem are: (i) the reference implementation
is the largest implementation within the contract, i.e. if the IUT is robustly
clean, then all its traces are covered by R, and (ii) by construction of R and
satisfiability of C, the suspension traces of R are exactly its finite traces.

Test Algorithm. An important element of the model-based testing theory is a
non-deterministic algorithm to generate test cases. It is, however, not guaran-
teed that this algorithm, even if existing, is implementable, a problem which we
will tackle in this section. A set of test cases is called a test suite. It is shown
elsewhere [27], that there is an algorithm that can produce a (possibly infinitely
large) test suite T , for which a system I passes T if I is correct w.r.t. ioco
and, conversely, I is correct w.r.t. ioco if I passes T . The former property is
called soundness and the latter is called exhaustiveness. Algorithm 1 shows a
tail-recursive algorithm to test for robust cleanness. This DT algorithm takes as
an argument the history h of the test currently running. Every doping test is
initialized by DT(ε). Several runs of the algorithm constitute a test suite. Each
test can either pass or fail, which is reported by the output of the algorithm.
In each call DT picks one of three choices: (i) it either terminates the test by
returning pass (line 3), (ii) if there is no pending output that has to be read
from the system under test, the algorithm may pick a new input and pass it to
the system (lines 5–6), or (iii) DT reads and checks the next output (or quies-
cence) that the system produces (lines 9–10). Quiescence can be recognized by
using a timeout mechanism that returns δ if no output has been received in a
given amount of time. In the original algorithm, the case and the next input
are determined non-deterministically. Our algorithm is parameterized by Ωcase
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Algorithm 1. Doping Test (DT)

Input: history h ∈ (In ∪ Out ∪ {δ})∗

Output: pass or fail
1 c ← Ωcase(h) /* Pick from one of three cases */
2 if c = 1 then
3 return pass /* Finish test generation */
4 else if c = 2 and no output from I is available then
5 i ← ΩIn(h) /* Pick next input */
6 i � I /* Forward input to IUT */
7 return DT(h · i) /* Continue with next step */
8 else if c = 3 or output from I is available then
9 o � I /* Receive output from IUT */

10 if o ∈ acc(h) then
11 return DT(h · o) /* If o is foreseen by oracle continue with next step */
12 else
13 return fail /* Otherwise, report test failure */
14 end if
15 end if

and ΩIn, which can be instantiated by either non-determinism or some optimized
test-case selection. Until further notice we assume non-deterministic selection.
An output or quiescence that has been produced by the IUT is checked by means
of an oracle acc (line 10). The oracle reflects the reference implementation R,
that is used as the specification for the ioco relation and is defined in Eq. (2).

acc(h) := {o ∈ Outδ | (2)
∀σi ∈ tracesω(Sδ)↓i : (∀j ≤ |h|+1 : dIn(σi[..j]↓i, (h · o)[..j]↓i) ≤ κi})

⇒ ∃σ ∈ tracesω(Sδ) : σ↓i = σi↓i ∧ dOutδ(o, σ[|h| + 1]↓o) ≤ κo

Given a finite execution, acc returns the set of acceptable outputs (after such an
execution) which corresponds exactly to the set of outputs in R (after such an
execution). Thus acc(h) is precisely the set of outputs that satisfies the premise
in the definition of R after the trace h, as stipulated in Definition 9.

We refer to acc as an oracle, because it cannot be computed in general due to
the infinite traces of Sδ in the definition. However, we get the following theorem
stating that the algorithm is sound and exhaustive with respect to ioco (and we
present a computable algorithm in the next section). The theorem follows from
the soundness and exhaustiveness of the original test generation algorithm for
model-based testing and Definition 9.

Theorem 4. Let C be a contract with standard S. Let I be an implementation
with Sδ ⊆ Iδ and let R be the largest implementation within C. Then, I ioco R
if and only if for every test execution t = DT(ε) it holds that I passes t.

Corollary 1. Let C be a contract with standard S. Let I be an implementation
with Sδ ⊆ Iδ. If I is robustly clean w.r.t. C, then for every test execution t =
DT(ε) it holds that I passes t.
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This corollary is derived from Theorem 3 and the satisfiability of C. It is worth
noting that in this corollary we do not get that I is robustly clean if I always
passes DT. This is due the intricacies of genuine hyperproperties. By testing,
we will never be able to verify the first condition of Definition 6, because this
needs a simultaneous view on all possible execution traces of I. During testing,
however, we always can observe only one trace.

Finite Doping Tests. As mentioned before, the execution of DT is not possible,
because the oracle acc is not computable. There is, however, a computable version
accb of acc for executions up to some test length b for bounded and discretised
In and Out. Even for infinite executions, b can be seen as a limit of interest and
testing is still sound. accb is shown in Eq. (3). The only variation w.r.t. acc lies in
the use of the set tracesb(Sδ), instead of tracesω(Sδ), so as to return all traces of
Sδ whose length is exactly b. Since Sδ is finite, function accb can be implemented.

accb(h) := {o ∈ Outδ | (3)
∀σi ∈ tracesb(Sδ)↓i : (∀j ≤ |h|+1 : dIn(σi[..j]↓i, (h · o)[..j]↓i) ≤ κi)

⇒ ∃σ ∈ tracesb(Sδ) : σ↓i = σi↓i ∧ dOutδ(o, σ[|h|+1]↓o) ≤ κo}

Now we get a new algorithm DTb by replacing acc by accb in DT and by forcing
case 1 when and only when |h| = b. We get a similar soundness theorem for DTb

as in Corollary 1.

Theorem 5. Let C be a contract with standard S. Let I be an implementation
with Sδ ⊆ Iδ. If I is robustly clean w.r.t. C, then for every boundary b and every
test execution t = DTb(ε) it holds that I passes t.

Since I passesDTb(ε) implies I passesDTa(ε) for any a ≤ b, we have in
summary arrived at an on-the-fly algorithm DTb that for sufficiently large b
(corresponding to the length of the test) will be able to conduct a “convicting”
doping test for any IUT I that is not robustly clean w.r.t. a given contract C.
The bounded-depth algorithm effectively circumvents the fact that, except for
S and Sδ, all other objects we need to deal with are countably or uncountably
infinite and that the property we check is a hyperproperty.

We implemented a prototype of a testing framework using the bounded-depth
algorithm. The specification of distances, value domains and test case selection
are parameters of the algorithm that can be set specific for a concrete test
scenario. This flexibility enables us to use the framework in a two-step approach
for cyber-physical systems not equipped with a digital interface to forward the
inputs to: first, the tool can generate test inputs, that are executed by a human
or a robot on the CPS under test. The actual inputs (possibly deviating from
the generated inputs) and outputs from the system are recorded so that in the
second step our tool determines if the (actual) test is passed or failed.
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Fig. 2. NEDC speed profile.

6 Evaluation

The normed emission test NEDC (New European Driving Cycle) (see Fig. 2) is
the legally binding framework in Europe [28] (at the time the scandal surfaced).
It is to be carried out on a chassis dynamometer and all relevant parameters are
fixed by the norm, including for instance the outside temperature at which it
is run.

For a given car model, the normed test induces a standard LTS S as fol-
lows. The input dimensions of S are spanned by the sensors the car model is
equipped with (including e.g. temperature of the exhaust, outside temperature,
vertical and lateral acceleration, throttle position, time after engine start, engine
rpm, possibly height above ground level etc.) which are accessible via the stan-
dardized OBD-2 interface [24]. The output is the amount of NOx per kilometre
that has been extruded since engine start. Inputs are sampled at equidistant
times (once per second). The standard LTS S is obtained from the trace rep-
resenting the observations of running NEDC on the chassis dynamometer, say
σS := i1 · · · i1180 oS δ δ δ · · · with inputs i1, · · · i1180 given by the NEDC over
its 20 min (1180 s) duration, and oS is the amount of NOx gases accumulated
during the test procedure. This σS is the only standard trace of our experiments.
The trace ends with an infinite suffix δω of quiescence steps.

The input space, In is a vector space spanned by all possible input parameter
dimensions. For a ∈ In we distinguish the speed dimension as v(a) ∈ R (mea-
sured in km/h). We can use past-forgetful distances with dIn(a, b) := |v(a)−v(b)|
if a, b ∈ In, dIn(–i, –i) = 0 and dIn(a, b) = ∞ otherwise. The speed is the deci-
sive quantity defined to vary along the NEDC (cf. Fig. 2). Hence dIn(a, b) = 0 if
v(a) = v(b) regardless of the values of other parameters. We also take Out = R

for the average amount of NOx gases per kilometre since engine start (in mg/km).
We define dOut(a, b) = |a − b| if a, b ∈ Out, and dOut(a, b) = ∞ otherwise.

Doping Tests in Practice. For the purpose of practically exercising doping tests,
we picked a Renault 1.5 dci (110hp) (Diesel) engine. This engine runs, among
others, inside a Nissan NV200 Evalia which is classified as a Euro 6 car. The test
cycle used in the original type approval of the car was NEDC (which corresponds
to Euro 6b). Emissions are cleaned using exhaust gas recirculation (EGR). The
technical core of EGR is a valve between the exhaust and intake pipe, controlled
by a software. EGR is known to possibly cause performance losses, especially at
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Fig. 3. Initial 200 s of a SineNEDC (red, dotted), its test drive (green) and the NEDC
driven (blue, dashed). (Color figure online)

higher speed. Car manufacturers might be tempted to optimize EGR usage for
engine performance unless facing a known test cycle such as the NEDC.

We fixed a contract with κi = 15 km/h, κo = 180 mg/km. We report here on
two of the tests we executed apart from the NEDC reference: (i) PowerNEDC
is a variation of the NEDC, where acceleration is increased from 0.94 m

s2 to 1.5 m
s2

in phase 6 of the NEDC elementary urban cycle (i.e. after 56 s, 251 s, 446 s and
641 s) and (ii) SineNEDC defines the speed at time t to be the speed of the
NEDC at time t plus 5 · sin(0.5t) (but capped at 0). Both can be generated by
DT1181(ε) for specific deterministic Ωcase and ΩIn. For instance, SineNEDC is
given below. Fig. 3 shows the initial 200 s of SineNEDC (red, dotted).

Ωcase(h) =

{
2 , if |h| ≤ 1179
3 , if |h| = 1180

ΩIn(h) = max
{

0,
NEDC(|h|) + 5 · sin(0.5|h|))

}

The car was fixed on a Maha LPS 2000 dynamometer and attached to an
AVL M.O.V.E iS portable emissions measurement system (PEMS, see Fig. 4)
with speed data sampling at a rate of 20 Hz, averaged to match the 1 Hz rate
of the NEDC. The human driver effectuated the NEDC with a deviation of at
most 9 km/h relative to the reference (notably, the result obtained for NEDC
are not consistent with the car data sheet, likely caused by lacking calibration
and absence of any further manufacturer-side optimisations).

Fig. 4. Nissan NV200 Evalia on a
dynamometer

Table 1. Dynamometer measurements
(sample rate: 1Hz)

NEDC Power Sine

Distance [m] 11,029 11,081 11,171

Avg. Speed
[
km
h

]
33 29 34

CO2

[
g
km

]
189 186 182

NOx

[
mg
km

]
180 204 584

The PowerNEDC test drive differed by less than 15 km/h and the SineNEDC
by less than 14 km/h from the NEDC test drive, so both inputs deviate by less
than κi. The green line in Fig. 3 shows SineNEDC driven. The test outcomes are
summarised in Table 1. They show that the amount of CO2 for the two tests is
lower than for the NEDC driven. The NOx emissions of PowerNEDC deviate
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by around 24 mg/km, which is clearly below κo. But the SineNEDC produces
about 3.24 times the amount of NOx, that is 404 mg/km more than what we
measured for the NEDC, which is a violation of the contract. This result can
be verified with our algorithm a posteriori, namely by using ΩIn to replay the
actually executed test inputs (which are different from the test inputs generated
upfront due to human driving imprecisions) and by feeding the outputs recorded
by the PEMS into the algorithm. As to be expected, this makes the recording
of the PowerNEDC return pass and the recording of SineNEDC return fail.

Our algorithm is powerful enough to detect other kinds of defeat devices like
those uncovered in investigations of the Volkswagen or the Audi case. Due to
lack of space, we cannot present the concrete Ωcase and ΩIn for these examples.

7 Discussion

Related Work. The present work complements white-box approaches to software
doping, like model-checking [10] or static code analysis [9] by a black-box testing
approach, for which the specification is given implicitly by a contract, and usable
for on-the-fly testing. Existing test frameworks like TGV [18] or TorX [29] pro-
vide support for the last step, however they fall short on scenarios where (i) the
specification is not at hand and, among others, (ii) the test input is distorted in
the testing process, e.g., by a human driving a car under test.

Our work is based on the definition of robust cleanness [10] which has concep-
tual similarities to continuity properties [6,17] of programs. However, continuity
itself does not provide a reasonably good guarantee of cleanness. This is because
physical outputs (e.g. the amount of NOx gas in the exhaust) usually do change
continuously. For instance, a doped car may alter its emission cleaning in a
discrete way, but that induces a (rapid but) continuous change of NOx gas con-
centrations. Established notions of stability and robustness [13,19,21,23] differ
from robust cleanness in that the former assure the outputs (of a white-box sys-
tem model) to stabilize despite transient input disturbances. Robust cleanness
does not consider perturbations but (intentionally) different inputs, and needs a
hyperproperty formulation.

Concluding Remarks. This work lays the theoretical foundations for black-box
testing approaches geared towards uncovering doped software. As in the diesel
emissions scandal – where manufacturers were forced to pay excessive fines [22]
and where executive managers are facing lawsuits or indeed went to prison [5,14]
– doped behaviour is typically strongly related to illegal behaviour.

As we have discussed, software doping analysis comes with several challenges.
It can be performed (i) only after production time on the final embedded or
cyber-physical product, (ii) notoriously without support by the manufacturer,
and (iii) the property belongs to the class of hyperproperties with alternating
quantifiers. (iv) Non-determinism and imprecision caused by a human in-the-
loop complicate doping analysis of CPS even further.

Conceptually central to the approach is a contract that is assumed to be
explicitly offered by the manufacturer. The contract itself is defined by very few
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parameters making it easy to form an opinion about a concrete contract. And
even if a manufacturer is not willing to provide such contractual guarantees,
instead a contract with very generous parameters can provide convincing evi-
dence of doping if a test uncovers the contract violation. We showed this in a real
automotive example demonstrating how a legally binding reference behaviour
and a contract altogether induce a finite state LTS enabling to harvest input-
output conformance testing for doping tests. We developed an algorithm that
can be attached directly to a system under test or in a three-step process, first
generating a valid test case, afterwards used to guide a human interacting with
the system, possibly adding distortions, followed by an a-posteriori validation
of the recorded trajectory. For more effective test case selection [11,15] we are
exploring different guiding techniques [1,2,12] for cyber-physical systems.
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Abstract. This work presents a study of the frequency dynamics of the
electricity grid under significant presence of generation from renewable
sources. A safety requirement, namely ensuring that frequency does not
deviate excessively from a reference level, is formally studied by means
of probabilistic model checking of a finite-state abstraction of the grid
dynamics. The dynamics of the electric network comprise a model of
the frequency evolution, which is in a feedback connection with a model
of renewable power generation by a heterogeneous population of solar
panels. Each panel switches independently between two states (ON and
OFF) in response to frequency deviations, and the power generated by
the population of solar panels affects the network frequency response. A
power generation loss scenario is analysed and its consequences on the
overall network are formally quantified in terms of probabilistic safety.
We thus provide guarantees on the grid frequency dynamics under several
scenarios of solar penetration and population heterogeneity.

Keywords: Population models · Aggregated models ·
Formal abstractions · Quantitative model checking ·
Probabilistic safety

1 Introduction

Renewable energy sources have shown potential to revolutionise power systems,
not only on the generation side but also for demand-response programs [3], for
fast frequency response [4], and for ancillary services [5]. Energy generation from
a large population of photovoltaic (PV, or solar) panels, resulting from either an
industrial setting (e.g., large PV farms) or numerous single households, can have
economically and environmentally relevant consequences for energy providers
and consumers alike. In this work we focus on PV populations composed of
predominantly household devices. Such populations are naturally heterogeneous,
in view of diverse weather conditions, of different panel sizes, makes and ages,
and of the actual ratio between power generated and consumed.
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A rich literature on models of solar panels encompasses several features, such
as their electrical characteristics [22] (where a panel comprises its components
and their inter-connections), their power output generation [23], or their role in
the larger economy of renewable power production [18]. A discrete-time Markov
chain (dtMC) model for a population of PV panels is presented in [15], where an
analysis on the effect of heterogeneity (as different disconnection/reconnection
rules) is discussed as a function of the dynamics of the frequency in the electric
network. The relationship between the panels working interval (to be discussed
shortly) and the stability of the electric network is further addressed in [17]. In
particular, the consequences of generation- and load-loss incidents are studied,
under several scenarios of network load and of population dynamics. This paper
expands earlier results by newly employing techniques from formal verification:
we tailor a formal abstraction procedure [2] to generate finite probabilistic models
(i.e., Markov chains) from the population models above, which are then analysed
by means of probabilistic model checking.

Cognate to this work, [10] presents models of power grids with a significant
penetration of solar: these models are employed to investigate runtime control
algorithms, introducing control designs from randomised distributed algorithms,
for photovoltaic micro-generators to assess grid stability. In [11] the authors
study the German regulation framework exploiting ideas from communication
protocol design. These works study a 50.2-Hz-disconnect/reconnect mechanism
as well as the emergency switch-off procedure. A reachable set computation is
presented in [12] to assess the stability of networked micro-grids in the presence of
uncertainties induced by penetration of distributed energy resources: this results
in bounds for systems dynamics and in its stability margins.

Technically, the models in this work are partially-degenerate discrete-time
stochastic processes [19], for which formal abstractions can be computed. How-
ever, the abstraction procedure in this work is different from [19] and following
work, as detailed next. In [21] a Markov model is constructed as the aggregation
of the temperature dynamics of an inhomogeneous population of thermostati-
cally controlled loads (TCLs): the population model is based on Markov chains
obtained as abstractions of each TCL model. In this work, unlike [21], the formal
abstraction is applied after the aggregation procedure. As discussed in [20], the
aggregation of population models from earlier work [21] introduces two kinds of
errors: the abstraction error (over a single device) and a population heterogene-
ity error. Instead, in this work we directly abstract the model of a heterogeneous
population of PV panels, thus removing the second error term. Similar to [19–
21], refining the abstraction improves the accuracy: the error converges to zero
as the number of generated abstract states increases.

Models in this work (cf. Sect. 2.2) are derived from the following description
of the workings of a solar panel. An inverter-panel device is equipped with a
sensor to sample the network frequency, and with an internal counter. Two
quantities are key to model the panel behaviour: (1) If , the working interval for
the grid frequency (only when the frequency lies within If can a panel inject
power into the grid); and (2) τr, the time delay required for a safe connection
to the network (the network frequency needs to remain inside If long enough
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before the panel connects back to the grid). Each device, in principle, can have
different admissible frequency range and time delay. The behaviour of solar-
inverter devices affects the grid and can lead [7] to load-shedding. This is a process
activated to prevent frequency imbalance and subsequent blackouts, by means of
an engineered stop of electricity delivery in order to avoid a complete shut-down
of the electricity grid. In order to secure a network with no frequency imbalance,
power generation and consumption must be matched: this is attained by Load-
Frequency Control [6], which is distinguished in primary, secondary, and tertiary
control, each activated at different timescales and with different goals. This study
focusses on few instants after an incident, when primary control is relevant, which
is thus included within the network model. We leverage model abstractions to
formally quantify the absence of load-shedding, by probabilistic model checking
a safety specification. In the end, we are able to provide certificates on the safe
and reliable operation of the grid under penetration of solar generation.

This work is organised as follows. Section 2 introduces the solar panel
behaviour, its description as a dynamical system and the electric network model.
Section 3 discusses the formal abstraction techniques and computes the intro-
duced error. Section 4 presents the generation-loss incident scenario, and shows
experimental results in terms of probability of load-shedding under several
parameter configurations, ranging over population heterogeneity and solar pen-
etration level. Finally, conclusions are drawn in Sect. 5.

2 A Model of the Electricity Grid with Solar Generation

In this Section we present a description of the behaviour of a physical device, of
its corresponding Markov model, and a model of the electric network.

2.1 Operation of a PV Panel

We briefly describe the workings of a photovoltaic panel that is connected to the
electric network [15]. A panel-inverter device is connected to the electricity grid
and samples it with a fixed sampling time - we’ll work with discrete-time models
indexed by k ∈ N. The panel can be either ON (connected) or OFF (discon-
nected), and its activation/deactivation depends on two quantities: the network
frequency f(k) and a time delay τr. Table 1 summarises the behaviour of a PV
panel, considering the value of the network frequency and a requirement on the
time delay: regulations impose the panel to produce electricity, i.e. being in the
ON state, exclusively when the frequency f(k) belongs to a predefined interval
If , a neighbourhood of the nominal frequency f0 = 50 Hz. If the frequency exits
If , the panel must disconnect, i.e. switch to the OFF state.

Whilst we assume the ON-to-OFF transition to be instantaneous, this does
not hold for the OFF-to-ON transition. The reconnection happens if the fre-
quency remains within If for τr time steps: this requirement forces the network
frequency to be “stable” for a sufficient amount of time before allowing a safe
connection of the panel to the grid. The panel is thus equipped with an internal
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counter τ(k) that increases when f(k) ∈ If and is reset as soon as f(k) /∈ If .
When τ(k) ≥ τr the panel reconnects to the grid.

Note that the values of If and τr are not homogeneous across a population
of panels. Beyond the intrinsic differences due to the small panels size that we
have mentioned above, our network setting – a continental grid or part of it – is
geographically wide enough to comprise different norms from several countries,
across many years of installation. Moreover, digital systems are sensitive to noise
in the measurements and suffer from ageing of its components: these elements
make the system under consideration highly heterogeneous.

Table 1. Switching behaviour of a single PV panel. The network frequency is f(·), τ(·)
is the internal counter, τr the re-connection delay, and k the time index.

State s(k) Frequency measurement Delay State s(k + 1)

OFF f(k) ∈ If τ(k) ≥ τr ON

ON f(k) ∈ If − ON

ON f(k) /∈ If − OFF

OFF f(k) ∈ If τ(k) < τr OFF

2.2 Markov Model of a Heterogeneous Population of Solar Panels

We introduce a model of a heterogeneous population of solar panels, which is
originally developed in [15]. Heterogeneity stems from differences between solar
panels, and globally translates to the use of different If intervals and reconnec-
tion settings. In order to aggregate this heterogeneity at the population level, we
assume to know a distribution function describing the panel intervals If , and to
know how the delays are distributed across the population.

OFF ON

WAIT

b(k)

1− b(k)

b(k)ε(k)

a(k)

1− b(k) 1− a(k)

b(k)(1− ε(k))

Fig. 1. A (time-varying) Markov model for the aggregated dynamics of a heterogeneous
population of solar panels.
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At a population level, we describe the portion of panels engaged in either
of the following states: active (ON, for panels sampling f(k) ∈ If and τ ≥ τr);
inactive (OFF, for panels sampling f(k) /∈ If ); and in between these conditions
(WAIT, for panels sampling f(k) ∈ If but where τ < τr). The pictorial repre-
sentation of such model is shown in Fig. 1. The values attached to the transition
edges depend on the grid frequency: ideally, when f(k) = f0 every panel can
(eventually) connect (back) to the network, thus switching to the ON state,
whereas if f(k) is different than f0, then solar panels might disconnect. As seen
shortly, the transition values are probabilities, and characterise a Markov chain
model with the following dynamics:

{
x(k + 1) = (1 − a(k))x(k) + b(k)ε(k)y(k)
y(k + 1) = b(k)(1 − x(k) − ε(k)y(k)). (1)

Here x(k) and y(k) represent the probability (that is, the portion of panels) of
being in the ON and WAIT state at time k, respectively. Note that the proba-
bility of being OFF can be obtained as 1 − x(k) − y(k), ∀k. The function ε(k)
is a time-varying term accounting for the probabilistic description of the delay
[15]: in this work, we assume to know its value at any k. The quantities a(k) and
b(k) are functions of f(k) as

a(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ f(k)

−∞
pd

o(u)du if f(k) > f0

∫ +∞

f(k)

pd
u(u)du otherwise,

b(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ∞

f(k)

pr
o(u)du if f(k) > f0

∫ f(k)

−∞
pr

u(u)du otherwise,

where pj
i , i = {u, o}, j = {d, r} are probability distributions encompassing the

population heterogeneity over the intervals If : indices u and o indicate the under-
frequency and over-frequency scenarios, respectively, whereas d and r indicate
the disconnection and reconnection distributions, respectively. As their variance
increases, panels disconnection and reconnection become more scattered over
the frequency range, whereas the opposite leads to the synchronisation of pan-
els switching their configuration. As such, a(·) and b(·) describe the population
heterogeneity over the interval If . Figure 2 represents function a(k) in underfre-
quency and overfrequency. Note that a(k) always denotes the part of the integral
that is closer to f0, and conversely for b(k). Finally, notice that a(·) and b(·) are
functions of the frequency signal f(k): to ease the notation we denote them as
a(k), instead of a(f(k)).

Remark 1 (On the modelling assumptions). [15] has shown that the introduced
three-state Markov model has an almost identical frequency response to that of a
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f0 ff(k)

pd
u(f)
a(k)

f0 ff(k)

pd
o(f)
a(k)

Fig. 2. Pictorial representation of a(k) in over-frequency, i.e. f(k) > f0 (right) and in
under-frequency, i.e. f(k) < f0 (left). The value of f(k) is indicated as a red vertical
line, which defines the upper or lower integration extrema in over- and under-frequency,
respectively. In general pu and po might not be symmetric nor belong to the same
distribution family.

population of devices modelled individually: in experiments, given threshold and
delay distributions, heterogeneous panels in the population are modelled with
values extracted from the distributions. The presented modelling framework is
tuneable to real data: the distributions can be interpolated from the behaviour
of real devices that are measured across the population under study. ��

2.3 Model of the Grid Dynamics

The electricity grid reference model is derived from the ENTSO-E report in
[6]. It consists of a discrete-time model of the electric network in the form of
a second-order transfer function, G(z, CP ) (z is the variable of the Z-transform
and denotes a one-step time difference in the signal), which depends on the
amount of conventional power (CP ) feeding the network, the total load of which
is denoted as S. Note that CP ≤ S, where CP = S in a network without
renewable energy sources. The model relates the photovoltaic power deviation,
ΔPPV (k) (its input) to the frequency deviation Δf(k) (output) as

Δf(k) = G(z, CP )[PPV (k) − PPV,0],

where Δf(k) = f(k)−f0, and ΔPPV = PPV (k)−PPV,0 represents the deviation
from PPV,0, the power output at the equilibrium. Finally, G(z, CP ) is the transfer
function

G(z, CP ) =
β1z + β2

z2 + α1(CP )z + α2(CP )
. (2)

Here α1(CP ), α2(CP ), β1, β2 are parameters that are selected to render the
transfer function stable around the equilibrium, in accordance with values in
[6]; in particular α1(CP ) and α2(CP ) depend on the conventional power CP in
the network [16]. Further, the structure of G(z, CP ) encompasses the network
primary control. Each scenario analysed in Sect. 4 includes a different network
transfer function, depending on the solar penetration considered.

The total power output of the solar population PPV (k) is directly propor-
tional to the portion of panels in the ON mode (variable x(k)), as PPV (k) ∼
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P̄Nx(k), where P̄ is assumed to be the constant power output of a single PV
panel, and N represents the total number of panels. This quantity couples the
network model with the population model: their feedback connection is discussed
in the following Section.

2.4 Feedback Model of the Grid with Solar Renewables

We now place in feedback the (time-varying) Markov chain modelling the solar
panels dynamics in Eq. (1), with the model of the electric network in Eq. (2),
expressing the transfer function G(z, CP ) as a difference equation, resulting in:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δf(k + 1) = α1Δf(k) + α2Δf(k − 1)+
+ β1ΔPPV (k) + β2ΔPPV (k − 1) + ωf (k)

x(k + 1) = (1 − a(k))x(k) + b(k)ε(k)y(k)
y(k + 1) = b(k)(1 − x(k) − ε(k)y(k)),

(3)

where
PPV (k) = P̄Nx(k) + ωP (k).

Notice that we have added a frequency noise term ωf (k) ∈ N (0, σf ), which
represents the imperfect balance of the electric network; PPV (k) represents the
solar power injected in the grid at time k; and ωP (k) ∈ N (0, σP ) is the noise
over the solar power generation at time k. ωP represents the unpredictability
of solar panels: their power output depends on characteristics as weather condi-
tions, occlusions, temperature, that allow a stochastic description. The process
noises ωf (k) and ωP (k), are made up by i.i.d. random variables, characterised
by density functions tf (·) and tP (·), to be used below. We assume also that ωf (·)
and ωP (·) are independent of each other.

Note that the dynamics of ΔPPV (k + 1) can be formed simply by operating
a change of variable as PPV (k) = ΔPPV (k) + PPV,0. Note also that a(k), b(k),
x(k), y(k) by construction belong to the interval [0, 1] ∀k ∈ N.

The equations in (3) represent a so called partially-degenerate stochastic
model [19]. It comprises two stochastic equations (the dynamics of Δf(k + 1)
and PPV (k + 1)) and two deterministic equations (for the Markovian dynamics
of x(k+1) and y(k+1)). The stochastic nature of the reconnection is embedded
into the ε(k) term, so an additional noise is not necessary.

3 Formal Abstractions

The dynamics of variables x(k) and y(k) represent the portion of panels in the
population that are in state ON and in state WAIT at time k, respectively (cf.
Fig. 1). Both x(k) and y(k), as well as PPV (k), are continuous variables, which
makes their formal verification tricky.
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Further, the dynamics in (3) also include state variables with delays (i.e.
f(k − 1) and PPV (k − 1)). This issue is handled by variable renaming, namely
we introduce two new state variables

φ(k) = f(k − 1), ξ(k) = PPV (k − 1),

so that

Δφ(k) = f(k−1)−f0 = Δf(k−1), Δξ(k) = PPV (k−1)−PPV,0 = ΔPPV (k−1).

Recall that f0 and PPV,0 denote fixed quantities at the equilibrium points. The
model in (3) becomes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δf(k + 1) = α1Δf(k) + α2Δφ(k) + β1ΔPPV (k) + β2Δξ(k) + ωf (k)
Δφ(k + 1) = Δf(k)
x(k + 1) = (1 − a(k))x(k) + b(k)ε(k)y(k)
y(k + 1) = b(k)(1 − x(k) − ε(k)y(k))
PPV (k) = P̄Nx(k) + ωP (k)
ξ(k + 1) = PPV (k),

(4)

Let us focus on the domain of the six state-space variables: x(k), and y(k) belong
to the interval [0, 1], whereas by definition, Δf(k), Δφ(k), PPV (k) and ξ(k) range
over R. However, as mentioned above, whenever f(k) exits its operational range
(for instance, as shall be seen in the experiments, because of a generation loss),
primary control mechanisms act to restore the frequency to its nominal value.
As such, we can limit our models to values of frequency within the operational
range F = [fu, fo] = [−0.8,+0.8] Hz, which corresponds to the frequency interval
[49.2, 50.8] Hz. Similarly, we restrict dynamics of PPV (k) to belong to the interval
P = [0, P̄N ] to model the physical limitation of real devices. Finally, introduce
the interval X = [0, 1] for variables x, y.

The state space of the model is thus characterised by a vector variable q =
(Δf,Δφ, x, y, PPV , ξ) ∈ F

2×X
2×P

2 := Q, with six continuous components. Let
us also introduce a noise vector ω(k) = (ωf (k), ωP (k)).

We now discuss the one-step transition density kernel tω(·|q), a function that
defines the transition from state q to state q′, derived from the model in (4) as
per [2]. Conditional on point q ∈ Q, it can be written as

tω(q′|q) = tf (Δf ′ − α1Δf − α2Δφ − β1ΔPPV − β2Δξ)·
· δ(Δφ′ − Δf) · δ(x′ − (1 − a)x − bεy)·
· δ(y′ − b(1 − x − εy)) · tP (P ′

PV − P̄Nx) · δ(ξ′ − PPV ),
(5)

where primed variables indicate the next value in time, and δ(p) is the Dirac delta
function pointed at p (namely it assumes value 1 if p = 0, or value 0 otherwise)
that characterises the dynamics of deterministic vector fields for variables Δφ x,
y, ξ. Stochastic vector fields are instead characterised by the two densities tf (p)
and tP (p), centred at point p, which are decoupled in view of the independence
of the two corresponding noise processes.
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3.1 Finite Abstraction via State-Space Partitioning

We introduce a formal abstraction technique, proposed in [2], aimed at reduc-
ing a discrete-time, uncountable state-space Markov process to a discrete-time
finite-state Markov chain, for the purpose of probabilistic model checking. The
abstraction is based on a state-space partitioning procedure: consider an arbi-
trary and finite partition of the continuous domain F =

⋃n
i=1 Fi, where Fi

are non-overlapping, and a set of representative points within the partitions
{f̄i ∈ Fi, i = 1, . . . n}, which in practice are taken to be their middle points.
This partition intervals represent the values of Δf . Similarly, we introduce a par-
tition of the other variables and respective domains, and define representative
points {φ̄i ∈ Φi, i = 1, . . . n}, {x̄j ∈ Xj , j = 1, . . . m}, {ȳj ∈ Yj , j = 1, . . . m},
{p̄j ∈ Pj , j = 1, . . . m}, {ξ̄j ∈ Ξj , j = 1, . . . m}, for variables Δφ, x, y, ΔPPV

and Δξ, respectively1.

f1 . . . . . . fn
2 f0

fn+1
2

. . . . . . fn+1

νf

0 1

x1 xm+1

νP

Fig. 3. Partition intervals for frequency (top) and active panels (bottom).

Let us now provide details on the selection of the intervals resulting in the
partitions of S. Let us select a partition size νf and quantity n = fo−fu

νf
, repre-

senting the number of partitions created in the frequency domain. Note that the
symmetry of the interval [fu, fo] with respect to f0 implies that f0 becomes the
reference point of the

n

2
-th partition, i.e. f̄n

2
= f0. Analogously, denote νP as

the second partition size and m = 1
νP

as the number of partitions in the active
panels domain. We denote the boundary points of the partitions as (Fig. 3)

fi+1 = fi + νf , i = 1, . . . n, Fi = [fi, fi+1), F =
⋃n

i=1 Fi,
xj+1 = xj + νP , j = 1, . . . m, Xj = [xj , xj+1), X =

⋃m
j=1 Xj ,

(6)

and analogously for Δφ, y, and PPV , ξ. Let us remark that interval F1 represents
frequency values just above fu: introduce the unsafe interval F0 = (−∞, f1)
and render F0 absorbing – this allows evaluating the cumulative load-shedding
probability over time (as further detailed shortly).

1 In principle, we could employ different partitioning intervals for different variables,
however to ease the notation we have used n intervals for frequency-related variables
and m intervals for x, y, PPV , ξ.
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Introduce now a discrete-time and finite-state Markov chain M, composed
by n2 × m4 abstract states s = (f̄i1, φ̄i2, x̄j1, ȳj2, p̄j3, ξ̄j4), where i1, i2 ∈ [1, n]
and j1, j2, j3, j4 ∈ [1,m]. Denote by S the finite state space of M and by
Si1,i2,j1,j2,j3,j4 ∈ S one of its states, which corresponds to a hyper-rectangle
centred at (f̄i1, φ̄i2, x̄j1, ȳj2, p̄j3, ξ̄j4) and with bounds (see Eq. (6)) defined by
the intervals Fi, Pj and Xj and corresponding copies. Denote μ : S → Q the
one-to-one mapping between the abstract state s and the corresponding region
of the state-space q.

The transition probability matrix of M comprises the probabilities obtained
by marginalising the kernel tω over the hyper-rectangular partitions, as

P (s, s′) =
∫

μ(Si1′,i2′,j1′,j2′,j3′,j4′ )
tω((df ′, dφ′, dx′, dy′, dP ′

PV , dξ′)|q). (7)

The abstraction procedure applied to the model in (4) carries a discretisation
error: in the following, we formally derive a bound for this error as a function
of the discretisation steps νf and νP . As argued in [2], a finer grid results in a
smaller abstraction error, however it generates a larger state space.

In view of the presence of non-probabilistic dynamics in the degenerate
stochastic model, the abstraction results in a Markov chain structured as the
following example.

Example 1. Consider, as an illustrative example, the following model:
{

r1(k + 1) = ζ1r1(k) + ζ2r2(k) + ωz(k)
r2(k + 1) = r1(k), (8)

where ζ1, ζ2 are constants and ωz(k) is a Gaussian noise term at time k ∈
N. These models are typical in control engineering, as they derive from auto-
regressive systems, such as

r1(k + 1) = ζ1r1(k) + ζ2r1(k − 1) + ωz(k),

where a new variable is introduced (r2(k)) to replace the delayed variable of
interest. Let us introduce a 2-set partition of R = A ∪ B with reference points
r̄1 = rA, r̄2 = rB . Both variables r1(·) and r2(·) can take value rA or rB . The
state-space of (8) is q = (r̄1, r̄2) ∈ {rA, rB}2 = {rArA, rArB , rBrA, rBrB}. The
dynamics of r2 allow only for deterministic transitions, as the next value of r2
must be the current value of r1. As an example, if the current state is q =
(rA, rA), the next state must be q′ = (∗, rA). Thus, adding a auxiliary variable
r2 expands the state-space while forbidding several transitions. ��

3.2 Quantification of Safety Probability and of Abstraction Error

Let us now formally characterise the load-shedding probability. Consider the
model in (4) with initial state q0 and select a discrete time horizon H. We
assume that the electric network activates the load-shedding procedure whenever
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f(k) ≤ 49.2 Hz, namely if q(k) ∈ L, where L := {Δf ≤ −0.8}2. The aim of this
work is the computation of

pq0(L) := Prob(q(i) ∈ L, i ∈ [1,H] | q0), (9)

where q0 is the initial state of the continuous model. This probability can be
formally characterised via value functions Vk : Q → [0, 1], k = 1, . . . H, which
can be computed recursively as

Vk(q) = 1L(q)
∫

Q
Vk+1(u)tω(u|q)du, with VH(q) = 1L(q), (10)

so the initial value function V1(q0) = pq0(L) is the quantity of interest. We recall
a procedure presented in [1] to approximate the model in Eq. (4) by a finite-
state dtMC. We therefore define the discrete version of Eq. (9), as ps0(Ls) :=
Prob(s(i) ∈ Ls, i ∈ [1,H] | s0) = V s

1 (s0), where Ls := {f̄ ∈ F0} (consider it the
dtMC-equivalent of L), V s

1 (·) is the value function computed over S similarly
to Eq. (10), and s0 represents the initial state of the dtMC according to the
procedure in Sect. 3.1.

In the dtMC model, functions a(k) and b(k) are approximated and assume a
finite number of values (one for each of the f̄i). This introduces an error term:
let us define amax as

amax = max
i∈[1,n]
f∈Fi

∥∥∥∥∥
∫ f̄i

fi

pd(u)du

∥∥∥∥∥ ,

where pd represents the probability distribution for disconnection. This quantity
defines the maximum approximation error introduced with the discretisation in
the computation of a(k).

Note that the presence of δ(·) functions in Eq. (5) introduces discontinuities
within the domain of the kernel: continuity regions of the kernel (density) are
parts of the state space where the δ(·) functions are equal to one. Within such
regions (which are formally defined in Appendix A) the value functions are
continuous, and the following holds over pairs of points q, q̃ (cf. Appendix C):

|Vk(q) − Vk(q̃)| ≤ 2α1

σf

√
2π

|Δf − Δf̃ | +
2amax

σP

√
2π

|ΔPPV − ΔP̃PV |,

where α1 is a term introduced in Eq. (2).
We now abstract the aggregated population of solar panels as a Markov

chain based on the procedure of Sect. 3. Computing the solution of (10) over
the Markov chain, the overall approximation error can be upper-bounded [1] as
follows

|pq0(L) − ps0(Ls)| ≤ (H − 1)

[
2α1

σf

√
2π

νf +
2amax

σP

√
2π

νP

]
.

2 We argue in Appendix B that the delayed variables are not necessary for the char-
acterisation of the load-shedding probability.
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This error allows to refine the outcomes of the model checking procedure
(obtained from ps0(Ls)) over the concrete population model (corresponding to
the unknown quantity pq0(L)).

Remark 2 (On the population heterogeneity). The model in Sect. 3 allows for
a crisp expression of the population heterogeneity in terms of pd and pr distri-
butions: the working intervals are encapsulated by the integrals a(k) and b(k).
These quantities can easily be extended to encompass a population made up of
diverse parts: assume that a(k) is the sum of various integrals, each of them
encompassing a portion of the whole population, as

a(k) = λ1

∫ f(k)

−∞
pd
1(u)du + . . . λr

∫ f(k)

−∞
pd

r(u)du,

where λi ∈ (0, 1), i = 1, . . . r,
∑r

i=1 λi = 1, are weights representing the contribu-
tion of power production for the i-th portion with respect to the total population.
A similar setup can be made for b(k). ��

4 Experimental Results

In this section we use the abstract Markov chain to compute the load-shedding
probability after a sudden generation loss, under several scenarios.

In line with the ENTSO-E requirements [6], we assume an infeed loss of 3
GW in a global network with a demand of S = 220 GW. Power and frequency
values are normalised (per unit) relative to S and to 50 Hz. Power production
of a single panel P̄ is set to 3 kW. The variance σP is set to 1% of P̄ . The
variance σf is set to 0.05. Time delays are modelled in accordance with [13,14]:
the minimum reconnection delay is set to 20 seconds, whereas the maximum to
40 seconds. Whilst these two quantities are handled deterministically, the delays
are modelled via a geometric distribution. The probabilistic model checking tests
are implemented using the MATLAB software. Due to the large state space, νf

and νP are set to 0.01 and 0.05 respectively. The grid frequency is sampled
at a rate of 0.2 s, consistently with the requirements introduced in [8]. The
discussion is focused on the consequences of an incident after a few seconds: the
time interval considered is 20 s. After this time interval, we assume the frequency
control would stabilise f(·) around its nominal value. The discrete time horizon
is thus composed of 100 steps: results shown in the following Section carry an
abstraction error of 0.1, as quantified in Sect. 3.2. This error ought to be attached
to the certificates on safety probability derived in Sect. 4.2.

4.1 Study of Generation-Loss Incidents - Setup

As anticipated above, Transmission Systems Operators are tasked with ensuring
the safe operation of the grid, and are thus interested in formal guarantees on its
dynamics, and in reliable forecasting of potentially problematic situations, such
as issues related to frequency responses after a generation loss incident.
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Our study concerns the so-called normal incidents, classified as a loss of up to
2 GW of load, and as a loss of up to 3 GW of power generation. We assume the
initial condition to be f(0) = f0, with the population of panels in active (ON)
mode (x(0) = 1). The generation-loss incident is modelled as a negative step
injected into the dynamics in Eq. (2). Assuming that an incident of magnitude
M occurs at time k = k̄, the dynamics of f(k̄ + 1) become

f(k̄ + 1) = α1Δf(k̄) + α2Δφ(k̄) + β1(ΔPPV (k̄) − M) + β2Δξ(k̄) + ωf (k̄), (11)

and then evolve from time (k̄ + 2) on as

f(k̄ + 2) = α1Δf(k̄ + 1) + α2Δφ(k̄ + 1) + β1(ΔPPV (k̄ + 1) − M)+
+β2(Δξ(k̄ + 1) − M) + ωf (k̄ + 1). (12)

Equations (11) and (12) display two different deterministic drifts, which lead to
two different transition matrices P1 and P2 defined over the same state space.
We further assume that k̄ = 0, namely the incident occurs at the beginning
of the time horizon. This results in a time-varying safety verification problem:
given the initial probability distribution vector π0, the dynamics evolve as

π1 = π0 · P1, π2 = π1 · (P2)H−1,

where π2 is a vector with the probabilities of being in each state after H steps.

4.2 Computation of Load-Shedding Probability

Our tests encompass several scenarios, in which we vary: (a.) the choice of the
distributions pd and pr; (b.) the associated variance of pd and pr; and (c.) the
total solar penetration in the network. Recall from Sect. 2.3 that the solar pen-
etration modifies the network transfer function.

We obtain results with solar penetration from 10% to 40% of the network load
(for brevity we show only the results with a 10% load) which represents current
values for solar power contribution (e.g. Germany’s 2017 average production is
around 7%, reaching peaks of 60% in Summer [9]). The threshold distributions
for If are either Gaussian or χ2: these are notably dissimilar and are here used
to model different panel dynamics. The use of different distributions denotes
different modelling choices: a Gaussian distribution models the inverter mea-
surement noise, whereas a χ2 can be used to define a minimum performance
setting, namely a minimum working interval. Whilst the Gaussian distribution
results in a more realistic choice, the χ2 offers interesting outlooks on how distri-
butions affect the safety property. In practice, the selection of a distribution must
depend on data measurements coming from real devices. Ultimately, increasing
variance of pd and pr reflects a more heterogeneous population (more diverse
thresholds characterising If ). As discussed shortly, a larger variance can have
opposite consequences on stability, depending on which threshold distribution is
used.
(1) If thresholds distributed as a Gaussian. Figure 4 depicts the load-shedding
probability in presence of 10% solar penetration, varying values of the mean and
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variance of pd. A Gaussian distribution has a symmetric shape around its mean:
when its variance increases, the tails on both sides spread out. As such, increas-
ing their variance cause a higher number of panels (represented by the tails of
the distribution) to have thresholds closer to f0. Consequently, we observe more
panels with a narrow working interval around the nominal frequency. There-
fore, a greater portion of the population is likely to disconnect under frequency
deviations, causing the network frequency to decrease.

Fig. 4. Load-shedding probability with
10% solar penetration, with Gaus-
sian distribution of thresholds. Vari-
ance within [0.01, 0.20] and mean within
[49.3, 49.8] Hz.

Fig. 5. Load-shedding probability with
10% solar penetration, with χ2 distribu-
tion of thresholds. Variance within [1, 8]
and initial point within [49.3, 49.8] Hz.

(2) If thresholds distributed as a χ2. Figure 5 depicts the load-shedding proba-
bility under 10% solar penetration, with varying values of the initial point of the
support and of the variance of pd. Note that, due to the nature of the χ2 distri-
bution, instead of the average value we denote an initial point of the support.
Unlike the Gaussian case, increasing the variance of a χ2 distribution results in
larger thresholds. As expected, the experiments show that, in this scenario, an
increased heterogeneity guarantees a more reliable network.

Experiments with a higher penetration of solar contributions (20%, 30%, 40%
of the total), under either Gaussian or χ2 scenarios, indicate that the probability
of load-shedding increases when a larger PV population is connected to the grid.

5 Conclusions

We have introduced a formal procedure to abstract the dynamics of a hetero-
geneous population of solar panels, embedded within the frequency dynamics
of the grid. The computation of error bounds on the abstraction guarantees
the correctness of the outcomes of a formal verification procedure run on the
obtained abstract model. The focus of the verification procedure has been on
a grid safety property, under significant energy generation from renewables via
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formal abstractions: we have assessed the load-shedding probability of the net-
work, under several scenarios of population heterogeneity. Operators can use
these certificates to monitor the distribution of solar panels over the grid and to
assess its reliability in case of incidents.

A Definition of Kernel Continuous Regions

We want to underline the discontinuity of the kernel density tω(·|q) caused by the
presence of the δ(·) functions. Let us define g(Δf) = −α1Δf − α2Δφ − β1Δx −
β2Δξ, h1(x) = −(1 − a)x − bεy, h2(y) = −b(1 − x − εy) and l(PPV ) = −P̄Nx.
The transition kernel density can be written as

tω(q′|q) =

⎧⎪⎨
⎪⎩

tf (Δf ′ − g(Δf))· if Δφ′ = Δf ∧ x′ = h1(x)
· tP (P ′

PV − l(PPV )) ∧ y′ = h2(y) ∧ ξ′ = PPV

0 otherwise

defining the continuous regions C = {Δφ′ = Δf ∧ x = h1(x) ∧ y′ = h2(y) ∧ ξ′ =
PPV }. Note that in the abstraction framework, regions C assume the discretised
form Cd = {Δφ̄′ = Δf̄i ∧ x̄ = h1(x̄) ∧ ȳ′ = h2(ȳ) ∧ ξ̄′ = P̄j}.

B Probabilistic Safety for Partially Degenerate Models

Let us show that for a partially degenerate stochastic model the safety proba-
bility computation depends only on the stochastic state. Consider the model{

x(k + 1) = f(z(k)) + ω(k)
y(k + 1) = x(k),

where ω(k) ∼ N (0, σ) and where z = (x, y)T denotes the complete state vec-
tor. Let us denote with tω(·) the density of the Gaussian kernel. The one-step
transition probability kernel can be split as follows:

P (x(k + 1)|z(k)) = tω(f(z(k))),
P (y(k + 1)|z(k)) = P (y(k + 1)|x(k)) = δ(y(k + 1) − x(k)),

where δ(z−p) represent the Dirac delta function of variable z, centred at point p.
Let us consider a safe set A = Ax × Ay, where Ax and Ay denote its projections
on variables x and y, respectively. Define the value function at time step H as
VH(z) = 1A(z) and compute the one-step backward recursion:

VH−1(z) =
∫

A

VH(z′)P (z′|z)dz′ =
∫

A

P (z′|z)dz′ =

=
∫

Ay

∫
Ax

tω(dx′|f(z))δ(dy′ − x) = 1Ay
(z)

∫
Ax

tω(dx′|f(z)) =

=
∫

Ax

tω(dx′|f(z)),

showing that the computation of the safety probability depends solely on the
stochastic kernel affecting the dynamics of variable x.
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C Value Function Continuity for Probabilistic Safety

In the following, we consider a generation-loss incident scenario; the load-loss
case can be derived analogously. Recall the value function definition from Sect. 3
and compute the backward Bellman equation as

Vk(q) = 1L(q)
∫

Q
Vk+1(q̃)ts(q̃|q)dq̃, with VH(q) = 1L(q).

We show that the value functions are continuous within the continuity regions
of the state space, thus there must exist a constant γ so that

|Vk(q) − Vk(q̃)| ≤ γ ‖q − q̃‖. (13)

To enhance the readability let us define g(Δf) = −α1Δf −α2Δφ−β1Δx−β2Δξ,
h(PPV ) = −P̄Nx and Δf = ρ, PPV = ψ. We now show the validity of Equation
(13) by finding a value for γ. From the definition of Vk(q), we obtain:

∣∣∣∣
∫

Q
Vk+1(q)tf (ρ − g(ρ))tP (ψ − h(ψ))d(ρ)d(ψ)

−
∫

Q
Vk+1(q̃)tf (ρ − g(ρ̃))tP (ψ − h(ψ̃))d(ρ)d(ψ)

∣∣∣∣ ≤
∣∣∣∣
∫

F
Vk+1(q)tf (ρ − g(ρ))d(ρ) ·

∫
P

Vk+1(q)tP (ψ − h(ψ))d(ψ)

−
∫

F
Vk+1(q̃)tf (ρ − g(ρ̃))d(ρ) ·

∫
P

Vk+1(q̃)tP (ψ − h(ψ̃))d(ψ)
∣∣∣∣ ,

where F and P denote the domain of frequency and power, respectively. In order
to continue, we introduce a useful lemma.

Lemma 1. Assume A,B,C,D ∈ [0, 1], then |AB − CD| ≤ |A − C| + |B − D|.
Proof. Assume A > C, then
if AB − CD > 0,
|AB − CD| ≤ |CB − CD| = C|B − D| ≤ |B − D| ≤ |B − D| + |A − C|.
if AB − CD < 0,
|AB − CD| ≤ |AB − AD| = A|B − D| ≤ |B − D| ≤ |B − D| + |A − C|.
Analogously for A ≤ C. ��
Thanks to this Lemma, we can write∣∣∫F Vk+1(q)tf (ρ − g(ρ))d(ρ) · ∫

P Vk+1(q)tP (ψ − h(ψ))d(ψ)

− ∫
F Vk+1(q̃)tf (ρ − g(ρ̃))d(ρ) · ∫

P Vk+1(q̃)tP (ψ − h(ψ̃))d(ψ)
∣∣∣ ≤∣∣∫F tf (ρ − g(ρ))d(ρ) · ∫

P tP (ψ − h(ψ))d(ψ)

− ∫
F tf (ρ − g(ρ̃))d(ρ) · ∫

P tP (ψ − h(ψ̃))d(ψ)
∣∣∣ ≤∫

F
∣∣tf (ρ − g(ρ)) − tf (ρ − g(ρ̃))

∣∣ d(ρ)+

+
∫

P
∣∣∣tP (ψ − h(ψ)) − tP (ψ − h(ψ̃))

∣∣∣ d(ψ).
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Let us focus on the first integral:

∫
F |tf (ρ − g(ρ)) − tf (ρ − g(ρ̃))|d(ρ) = 1

σf

∫
F

∣∣∣Φ(
ρ−g(ρ)

σf

)
− Φ

(
ρ−g(ρ̃)

σf

)∣∣∣ dρ

=
∫

F
∣∣∣Φ(

u − α1(ρ−ρ̃)
2σf

)
− Φ

(
u + α1(ρ−ρ̃)

2σf

)∣∣∣ dρ ≤ 2α1√
2πσf

|ρ − ρ̃|,

and similarly for the second integral. Therefore,

|Vk(q) − Vk(q̃)| ≤ 2α1√
2πσf

|ρ − ρ̃| +
2amax√
2πσP

|ψ − ψ̃|.
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Abstract. WiseMove is a platform to investigate safe deep reinforce-
ment learning (DRL) in the context of motion planning for autonomous
driving. It adopts a modular architecture that mirrors our autonomous
vehicle software stack and can interleave learned and programmed com-
ponents. Our initial investigation focuses on a state-of-the-art DRL app-
roach from the literature, to quantify its safety and scalability in simu-
lation, and thus evaluate its potential use on our vehicle.

1 Introduction

Ensuring the safety of learned components is of interest in many contexts and
particularly in autonomous driving, which is the concern of our group.1 We
have hand-coded an autonomous driving motion planner that has already been
used to drive autonomously for 100 km,2 but we observe that further exten-
sions by hand will be very labour-intensive. The success of deep reinforcement
learning (DRL) in playing Go [5], and its success with other applications having
intractable state space [1], suggests DRL as a more scalable way to implement
motion planning. A recent DRL-based approach [4] seems particularly plausible,
since it incorporates temporal logic (safety) constraints and its architecture is
broadly similar to our existing software stack. The claimed results are promising,
but the authors provide no means of verifying them and there is apparently no
other platform in which to test their ideas. We have thus devised WiseMove,
to quantify the trade-offs between safety, performance and scalability of both
learned and programmed motion planning components.

Below we describe the key features of WiseMove and briefly present results
of experiments that corroborate some of the claimed quantitative results of [4].
In contrast to that work, our results can be reproduced by installing our publicly-
available code.3

1 uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/.
2 therecord.com/news-story/8859691-waterloo-s-autonomoose-hits-100-kilometre-
milestone/.

3 git.uwaterloo.ca/wise-lab/wise-move/.
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2 Features and Architecture

WiseMove is an options-based modular DRL framework, written in Python,
with a hierarchical structure designed to mirror the architecture of our
autonomous driving software stack. Options [6, Chap. 17] are intended to model
primitive manoeuvres, to which are associated low-level policies that implement
them. A learned high-level policy over options decides which option to take in
any given situation, while Monte Carlo tree search (MCTS [6, Chap. 8]) is used to
improve overall performance during deployment (planning). High-level policies
correspond to the behaviour planner in our software stack, while low-level poli-
cies correspond to the local planner. These standard concepts are discussed in,
e.g., [3]. To define correct behaviour and option termination conditions, Wise-
Move incorporates “learntime” verification to validate individual simulation
traces and assign rewards during both learning and planning. This typically
improves safety, but does not guarantee it, given finite training and function
approximation [1,2].

When an option is chosen by the decision maker (the high-level policy or
MCTS), a sequence of actions is generated according to the option’s low-level
policy. An option terminates if there is a violation of a logical requirement, a col-
lision, a timeout, or successful completion. In the latter case, the decision maker
then chooses the next option to execute, and so on until the whole episode ends.
Fig. 1 gives a diagrammatic overview of WiseMove’s planning architecture. The
current state is provided by the environment. The planning algorithm (MCTS)
explores and verifies hypothesized future trajectories using the learned high-level
policy as a baseline. MCTS chooses the best next option it discovers, which is
then used to update the environment.

WiseMove comprises four high-level Python modules: worlds, options,
backends and verifier. The worlds module provides support for environments
that adhere to the OpenAI Gym4 interface, which includes methods to initial-
ize, update and visualize the environment, among others. The options module
4 gym.openai.com.

https://gym.openai.com
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Table 1. Options and examples of their preconditions.

Option Description Example LTL precondition

KeepLane Keep lane while driving -

Stop Stop in the stop region G(not has stopped in stop region)

Wait Wait in the stop region
then drive forward

G((has stopped in stop region and

in stop region) U highest priority)

Follow Follow vehicle ahead G(veh ahead U (in stop region or

close to stop region))

ChangeLane Change to other lane G(not(in intersection or in stop region))

defines the hierarchical decision-making structure. The backends module pro-
vides the code that implements the learned or possibly programmed components
of the hierarchy. WiseMove currently uses keras5 and keras-rl6 for DRL
training. The training hierarchy can be specified through a json file.

The verifier module provides methods for checking LTL-like properties
constructed according to the following syntax:

ϕ = F ϕ | G ϕ | X ϕ | ϕ => ϕ | ϕ or ϕ | ϕ and ϕ | not ϕ | ϕ U ϕ | (ϕ) | α (1)

Atomic propositions, α, are functions of the global state, represented by human-
readable strings. In what follows we use the term LTL to mean properties written
according to (1). The verifier decides during learning and planning when vari-
ous LTL properties are satisfied or violated, in order to assign the appropriate
reward. Learning proceeds one step at a time, so the verifier works incremen-
tally, without revisiting the prefix of a trace. WiseMove uses LTL to express
the preconditions and terminal conditions of each option, as well as to encode
traffic rules. E.g.,

G(in stop region => (in stop region U has stopped in stop region)).

Some options and preconditions are listed in Table 1.

3 Experiments

Our experiments reproduce the architecture and some of the results of [4],7 using
the scenario illustrated in Fig. 2. We learned the low-level policies for each option
first, then learned the high-level policy that determines which option to use at
each decision instant. We used the DDPG [1] and DQN [2] algorithms to learn
the low- and high-level polices, respectively. Each episode is initialized with the

5 keras.io.
6 github.com/keras-rl/keras-rl.
7 Details and scripts to reproduce our results can be found in our repository (see
Footnote 3).

https://keras.io
https://github.com/keras-rl/keras-rl
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ego vehicle placed at the left hand side, and up to six other randomly placed
vehicles driving “aggressively” [4]. The goal of the ego is to reach the right hand
side with no collisions and no LTL violations.

Table 2. Performance of low-level policies trained for 105 steps, with and without
additional LTL: mean (std) % success, averaged over 100 trials of 100 episodes.

Add’l LTL KeepLane Stop Wait Follow ChangeLane

Without 7.7 (21.4) 53.9 (32.0) 36.7 (43.3) 52.0 (19.6) 60.9 (34.0)

With 78.1 (29.4) 87.6 (20.4) 78.3 (28.8) 81.0 (15.4) 92.8 (14.3)

Table 3. Overall performance with and without MCTS, using low-level policies trained
for 106 steps: mean (std) %, averaged over 1000 episodes.

Without MCTS With MCTS

Success LTL violation Collision Success LTL violation Collision

92.0 (2.0) 5.40 (1.9) 2.60 (1.6) 98.5 (1.5) 0.9 (0.9) 0.6 (0.8)

We found that training low-level policies only according to the information
given in [4] is unreliable; training would often not converge and good policies
had to be selected from multiple attempts. We thus introduced additional LTL
to give more information to the agent during training, including liveness con-
straints (e.g., G(not stopped now)) to promote exploration, and safety-related
properties (e.g., G(not veh ahead too close)). Table 2 reports typical perfor-
mance gains for 105 training steps. Note in particular the sharp increase in
performance for KeepLane, which is principally due to the addition of a live-
ness constraint. Without this, the agent avoids the high penalty of collisions by
simply waiting, thus not completing the option.

Having trained good low-level policies with DDPG using 106 steps, we trained
high-level policies with DQN using 2 × 105 steps. We then tested the policies
with and without MCTS. Table 3 reports the results, which suggest a ca. 7%
improvement using MCTS.

4 Conclusion and Prospects

We have constructed WiseMove to investigate safe deep reinforcement learning
in the context of autonomous driving. Learning is via options, whose low- and
high-level policies broadly mirror the behaviour planner and local planner in our
autonomous driving stack. The learned policies are deployed using a Monte Carlo
tree search planning algorithm, which adapts the policies to situations that may
not have been encountered during training. During both learning and planning,
WiseMove uses linear temporal logic to enable and terminate options, and to
specify safe and desirable behaviour.
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Our initial investigation using WiseMove has reproduced some of the quan-
titative results of [4]. To achieve these we found it necessary to use additional
logical constraints that are not mentioned in [4]. These enhance training by
promoting exploration and generally encouraging good behaviour. We leave a
detailed analysis for future work.

Our ongoing research will use WiseMove with different scenarios and more
complex vehicle dynamics. We will also use different types of non-ego vehicles
(aggressive, passive, learned, programmed, etc.) and interleave learned compo-
nents with programmed components from our autonomous driving stack.

Acknowledgment. This work is supported by the Japanese Science and Technology
agency (JST) ERATO project JPMJER1603: HASUO Metamathematics for Systems
Design, and by the Natural Sciences and Engineering Research Council of Canada
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Abstract. This paper presents Great-Nsolve, the integration of Great-
SPN (with its user-friendly graphical interface and its numerous possi-
bilities of stochastic Petri net analysis) and Nsolve (with its very efficient
numerical solution methods) aimed at solving large Markov Regenerative
Stochastic Petri Nets (MRSPN). The support for general distribution is
provided by the alphaFactory library.

1 The Baseline

Generalized stochastic Petri nets (GSPN) [1] are a stochastic extension of
place/transition to associate exponentially distributed delays to transitions. The
stochastic process described by a GSPN is a continuous time Markov chain
(CTMC). Markov Regenerative Stochastic Petri Nets (MRSPN) [16] are an exten-
sion of GSPNs to allow transitions to have a generally distributed delay, given that,
in each state, at most one non-exponential transition is enabled. The solution of
a MRSPN is based on the solution of its underlying Markov Regenerative Pro-
cesses (MRgP) which is typically based on the construction and solution of the
embedded discrete time Markov chain (DTMC) at regeneration points (the so-
called global kernel) and of the CTMC that describes the stochastic behavior of
the net in-between regeneration points (the so-called local kernel). It is well known
that the embedded DTMC matrix can be very dense (even if the MRgP transition
matrix is sparse) and therefore it can be built, stored and solved only for small
systems (thousands of states). This approach is called explicit, in contrast to the
implicit, matrix-free technique [6,18] which does not require to build and store the
embedded DTMC, but works with the (usually sparse) transition matrix.

When a net model is formulated as a set of components, the state space and
transition matrix (and even the solution vector [14]) can be effectively repre-
sented in Kronecker form [11,20] allowing us to treat much larger state spaces.

A previous paper [5] has introduced the combination of matrix-free, as in
[6,18], and Kronecker representation to solve MRSPN. This demo tool paper
describes how the matrix-free solutions provided by GreatSPN [4] and the
advanced Kronecker-based techniques provided by Nsolve [12] have been inte-
grated to implement the theory presented in [5] and have been made accessible
in an easy manner through the graphical interface of GreatSPN [3]. The support
c© Springer Nature Switzerland AG 2019
D. Parker and V. Wolf (Eds.): QEST 2019, LNCS 11785, pp. 355–360, 2019.
https://doi.org/10.1007/978-3-030-30281-8_21
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for general distributions is provided by the alphaFactory library [8]. The resulting
Great-Nsolve tool allows the user to experiment and compare solutions of MRSPN
based on a large variety of techniques: implicit and matrix-free approaches [2],
already present in GreatSPN, and Kronecker-based approaches, thanks to the tool
integration presented in this paper.

The Nsolve Tool. Nsolve [12] is a collection of advanced numerical solution
methods for the computation of stationary distributions of large structured
Markov chains. The tool is written in C and uses a two level hierarchical Kro-
necker structure to represent generator matrices which can be built from a flat
description of a model as a network of synchronized components [13]. The matrix
structure is described in [15]. Due to the modular structure and the availability
of basic functions for numerical operations it is possible to easily integrate new
numerical solution methods at the level of C functions. Different interfaces exist
to combine the numerical methods provided by Nsolve with other tools as front-
and/or back-ends. First, a file interface using small component matrices stored
in sparse format has been defined [12], then the internal C data structures for
sparse matrices can be used and the solution functions can be called directly.
Finally, models can be provided in APNN format [10], an XML based format
to describe extended stochastic Petri nets. At the back-end Nsolve provides the
stationary vector and results computed from an appropriate reward structure.
Nsolve cannot deal with MRSPN models directly.

The GreatSPN Tool. GreatSPN [4] is a tool for the qualitative and stochas-
tic analysis of (stochastic) Petri nets and various extensions of them. Through
the support on a Java-based, highly portable graphical interface (GUI) [3] that
allows one to draw and compose nets and to play the (colored) token game,
GreatSPN offers a qualitative analysis that includes state space construction,
model-checking of CTL properties based on decision diagrams, various struc-
tural analysis techniques (like P- and T- invariants) and a stochastic analysis
with a rich variety of numerical solutions for ergodic and non-ergodic models, as
well as stochastic model checking of the CSLTA logic [17]. GreatSPN has been
tailored for teaching, but it is also a tool with advanced solution techniques that
regularly participates in the Petri net model checking competition [19]. For the
integration with Nsolve the most relevant features of the tool are the solvers
[2] for MRSPNs, that include an explicit and a matrix-free solver as well as a
component-based method [7] for non-ergodic MRSPN.

The alphaFactory Library. This library [8] supports the definition of general
distributions through their PDF f(x), and the computation of the α factors to
be used inside any uniformization method implementation. Examples of f(x)
are I[δ] for a Dirac impulse at time δ, i.e. a deterministic event, R(a, b) for a
uniform rectangular signal in the [a, b] range, or more sophisticated functions
like f(x) = λr

(r−1)! · xr−1 · e−λx for the Erlang distribution with r phases of rate
λ. Syntactic sugar for common distributions (like Uniform, Erlang or Pareto) is
available too.
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2 Great-Nsolve: The Integration

Changes to the GreatSPN GUI. GreatSPN already has support for MRSPN:
the GUI supports the labelling of general transitions with a PDF function f(x)
in alphaFactory form, and the execution of different forms of MRSPN solutions,
including a matrix-free approach. In Great-Nsolve the net model of the GUI
has been extended to include the module information (a partition of places)
to be exploited by Nsolve. The same net model is then shared by both the
GreatSPN solvers (that ignores it) and the Kronecker-based solvers of Nsolve.
The extensions of the GUI include: (1) Places can be partitioned by the use of
labels: places with the same label are in the same partition; Such separation is
compulsory for Nsolve, and it is ignored by other solvers. (2) The GUI outputs
the model in the internal representation of Nsolve, i.e. the APNN model. This
format requires the place bounds to be known in advance, hence place bounds are
first computed from the place invariants. Nets not fully covered by P-invariants
are currently not supported. (3) the results computed by Nsolve are shown back
in the GUI (directly on the net or in tabular form), as for any other GreatSPN
solver. These changes allow any user to exploit the efficient techniques presented
in [5] in a fully transparent, 1-click approach manner. As a by-product of the
integration, Kronecker based solution for GSPNs are also 1-click available.

Fig. 1. Net partition in the GUI and a component of a Moving Server System model.

Extension of Nsolve for MRP Solutions. Two main modifications were
needed: (1) Computation of the hierarchical state space structure cannot be
done with the standard algorithm from [13] since the hierarchical matrix struc-
ture for MRgPs differs from the matrix structure of CTMCs and requires the
implementation of the algorithm in [5]. (2) The steady-state solution for MRgPs
has been implemented to work using matrix in Kronecker form inside a matrix-
free iterative method, similar to the one in [6]. Currently the iterative methods
supported are the Power method, GMRES and BiCG-Stab. The matrix-free solu-
tion requires the computation of the local kernels using Uniformization w.r.t. the
PDF f(x) of the general transition, and the computation of the Uniformization
coefficients is delegated to the alphaFactory library.
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3 Great-Nsolve in Action

Great-Nsolve is available as a virtual machine with all software preinstalled and
ready to use that can be downloaded at: http://www.di.unito.it/∼greatspn/
VBox/Ubuntu64 with Great-nsolve.ova. The code of GreatSPN with the
Nsolve integration can be found at https://github.com/greatspn/SOURCES.

AlphaFactory can be found at https://github.com/amparore/alphaFactory.
The Kronecker-based solution of MRSPN in Great-Nsolve is limited to

ergodic systems. If the system is non-ergodic, but finite, the model can still
be solved using the matrix-free techniques and the component-based method
[2,7] of GreatSPN.

To show the use of the integrated tool consider the Moving Server System
(MSS) obtained by concatenating 4 stations (components) modeled by the net
in Fig. 1(right). Places are partitioned according to stations. The black and thick
transitions have a general distribution. This is an Erlang-3 with rate 1. Experi-
ments are performed for a variable number mi of requests arriving to the station’s
queues (in the reported experiments the same value for all queues). The number
of macro states (top states in the hierarchical structure of the MRSPN) is con-
stant, and equal to 12. Macro states are built automatically. Table 1 summarizes
the comparison in space based on the number of states and of non-zeros of the
matrices used. The following cases are considered (left to right): (1) structured
matrix-free representation of the MRgP matrices for the MRSPN in Fig. 1, (2)
structured representation of the CTMC of the GSPN obtained from the MRSPN
in Fig. 1 through phase-expansion (each Erlang-3 transition is substituted by a
sequence of three exponential transitions) (3) matrix-free representation of the
MRgP matrices for the MRSPN in Fig. 1 and (4) explicit solution for the same
matrices as in the previous case. The first two cases are the new solvers of Great-
Nsolve , while the last two cases are the best solutions available in GreatSPN.
The explicit solution (last column) is not able to cope with large state spaces,
while the matrix-free unstructured, although better than explicit, occupies much
more space than the corresponding structured case proposed in this paper, as
an example: 840 entries against more than 7 millions for the mi = 20 case. Note

Table 1. MSS: State space sizes and memory occupations.

Structured representation (Great-Nsolve ) Unstructured representation

General
(MRgP)

Phase-expansion
(CTMC)

General (MRgP)

Matrix-free – Matrix-free Explicit

mi states nnz Time states nnz Time states nnz Time nnz Time

1 128 80 0.1 320 416 0.2 128 384 0.6 544 1.1

10 117128 440 1.8 244904 1856 2.5 117128 543048 11.8 7452116 67.7

20 1555848 840 47.5 3185784 3456 64.3 1555848 7482888 606.8 88318068 12202.1

25 3655808 1040 140.5 7452224 4256 208.5 3655808 17716608 1687.8 – –

30 7388168 1240 369.3 15014664 5056 613.4 7388168 35987528 4048.4 – –

http://www.di.unito.it/~greatspn/VBox/Ubuntu64_with_Great-nsolve.ova
http://www.di.unito.it/~greatspn/VBox/Ubuntu64_with_Great-nsolve.ova
https://github.com/greatspn/SOURCES
https://github.com/amparore/alphaFactory
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also that the structured approach does not suffer much for the substitution of
general distribution with their phase expansion.

Future Work. From a theoretical point of view, we are currently working on
an optimization of the solution presented in [5]. We are also considering whether
the component-based MRgP solution techniques presented in [7] can profit of
a Kronecker-based approach for the solution of single components. From a tool
point of view we plan to lift the requirement that all places are covered by a
p-invariant. If this is not the case, indeed the place bounds cannot be computed
through structural analysis, but, if the state space is finite, they can be computed
on the actual state space, that can be efficiently generated in GreatSPN using
decision-diagrams [9].
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