
Smart Caching for Efficient Functional
Dependency Discovery

Anastasia Birillo1,2 and Nikita Bobrov1,2(B)

1 JetBrains Research, Saint-Petersburg, Russia
anastasia.i.birillo@gmail.com, nikita.v.bobrov@gmail.com
2 Saint Petersburg State University, Saint-Petersburg, Russia

Abstract. Functional dependency (FD) is a concept for describing reg-
ularities in data, that traditionally was used for schema normalization.
Recently, a different problem has emerged: for a given dataset, find FDs
that are contained in it. Efficient FD discovery is of great importance
due to FD usage in many tasks such as data cleaning, schema recovery,
and query optimization.

In this paper we consider a particular class of FD discovery algorithms
that rely on partition intersection. We present a simple approach for
caching intermediate results that are generated during run times of these
algorithms. Our approach is essentially a heuristic that selects which par-
titions to cache based on measures of disorder in data. For this purpose,
we adopt such well-known measures as Entropy and Gini Impurity, and
propose a novel one—Inverted Entropy. Our approach has a negligible
computational overhead, and can be used with a number of FD discovery
algorithms, both exact and approximate. Our experiments demonstrate
that our heuristic allows to decrease algorithm run times by up to 40%
while simultaneously requiring up to an order of magnitude less space
compared to the state-of-the-art caching approaches.

Keywords: Functional dependency · Partition intersection ·
Partition caching · Caching · Entropy · Gini impurity · PYRO · TANE

1 Introduction

Functional dependency (FD) states that some attributes of a table functionally
determine the value of some other attribute, or a set of other attributes. Since
their introduction by Codd [2] in 1969, they have been widely applied, mainly
for schema normalization, i.e. in this case they were known in advance.

However, in the 90’s the focus of research community shifted to different
scenarios, where one has to discover FDs for a given dataset. This problem

This is a student work, authored solely by students. Advisors: George Chernishev
(chernishev@gmail.com) and Kirill Smirnov (kirill.k.smirnov@gmail.com). This work
is partially supported by RFBR grant 16-57-48001.

c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, CCIS 1064, pp. 52–59, 2019.
https://doi.org/10.1007/978-3-030-30278-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30278-8_7&domain=pdf
http://orcid.org/0000-0003-2269-8211
http://orcid.org/0000-0002-2779-7836
https://doi.org/10.1007/978-3-030-30278-8_7

Smart Caching for Efficient Functional Dependency Discovery 53

formulation gained even more popularity with the advent of big data era, because
the task of data exploration became much more common.

The problem of FD discovery is very computationally demanding, since the
number of potential irreducible FDs grows as O(N ∗2N), where N is the number
of involved attributes. Moreover, algorithm run times depend not only on the
number of attributes, but on the number of rows as well. In the 90’s, the state-of-
the-art algorithms on the average desktop PC could handle [4] datasets of up to
20 attributes and tens of thousands of rows within reasonable time (up to several
hours). Nowadays [7,8], contemporary algorithms run on a server-class many-
core multiprocessor computer discover dependencies for datasets consisting of
hundreds of attributes (up to 200) and tens of thousands of rows (up to 200K)
within roughly the same time limits.

No doubt, this is substantial progress. Nevertheless, it is insufficient: these
volumes are unacceptable for the majority of real-life applications. Therefore,
efficient FD mining remains an acute problem that requires designing new and
speeding up existing algorithms.

Many algorithms for FD discovery (including some of the recent ones, e.g.
[5]) rely on the notion of partition. Informally, a partition for a given attribute
X is a collection of lists where each list contains row numbers that have the
same value for X. Next, this notion can be straightforwardly generalized for an
arbitrary number of attributes. The core of algorithms that employ this concept
is the operation of partition intersection. It is rather costly and more importantly,
it is performed frequently. However, it can greatly benefit from caching since the
algorithm may intersect the same partitions multiple times. Therefore, several
existing algorithms use partition caching.

In this paper we propose a novel caching mechanism that employs a heuristic
to guide cache population. Our idea is the following: during partition intersec-
tion, check the heuristic for the result and if it passes, add it to the cache. This
heuristic is based on a measure of “uniqueness” of values of an attribute set.
For this purpose, we have adopted several existing measures such as Entropy,
Gini Impurity, and developed a new one, which we named Inverted Entropy.
Our technique has a negligible computational overhead and can be used with a
number of FD discovery algorithms, both exact [4,9] and approximate [5]. We
have also proposed a novel cache eviction policy, that captures usefullness of
partitions and tries to retain the most useful ones.

Evaluation performed on a number of real datasets has demonstrated that our
caching approach allows to improve run times up to 40%, while simultaneously
decreasing the required memory by up to an order of magnitude.

2 Background: Partitions and Caching

Many existing FD discovery algorithms employ the partition intersection app-
roach [7]. Formally, a stripped partition or position list index (PLI) is defined as
follows [5] (for the ease of comprehension, we will follow the Kruse and Naumann
notation throughout our paper):

54 A. Birillo and N. Bobrov

Definition 1. Let r be a relation with schema R, and let X ⊆ R be a set of
attributes. A cluster is a set of all tuple indices in r that have the same value
for X, i.e., c(t) = {i|ti [X] = t [X]}. The PLI of X is the set of all such clusters
except for singleton clusters:

π(X) := {c(t)|t ∈ r ∧ |c(t)| > 1}
Next, the size of a PLI is defined as ‖π(X)‖ =

∑
c∈π(X) |c|. Essentially, it is

the number of included tuple indices. Finally, arity of a partition is defined as
the number of involved attributes and we atomic partition a partition that has
arity of 1.

PLIs are extensively used for FD validation, i.e. for checking whether a given
FD holds. A frequently used criterion [4] is the following: X → A A,X ⊆ R
holds ⇔ ‖π(X)‖ = ‖π(X ∪ A)‖. To compute π(X ∪ A), a procedure called PLI
intersection (also known as partition product) is performed. Its idea is to avoid
the costly rescan of the necessary attributes for computing π(X ∪A) via reusing
the already known π(X) and π(A). This procedure significantly contributes to
algorithm run time, since it is invoked many times during the search space traver-
sal. However, it is often called for overlapping attribute sets. Therefore, PLIs are
promising for caching.

Several recent FD discovery algorithms employ caching [1,5]. In study [5]
authors use a set-trie data structure, which is essentially a prefix tree where each
node stores the corresponding PLIs. In this paper, the authors have proposed a
sophisticated algorithm for cache lookup, but they relied on coin flip for cache
population (see algorithm 2). In our study, we argue that such an important
part should not be left to chance.

3 Our Approach

3.1 Preliminaries

Consider the following. Let D = X → Y be an arbitrary FD, and for simplicity,
let X and Y be single attributes. The following observations are true:

1. If X contains unique values, then D holds regardless of Y .
2. If Y contains unique values, then D holds only if X contains only unique

values too.
3. If X contains equal values, then D holds only if contains Y equal values too.
4. If X contains equal values, but Y has at least one non-equal value, then D is

violated.

Therefore, the more “unique” values are in X, the more probable that D will
hold. For Y it is vice versa: the more similar values are in Y , the more probability
that the dependency will hold.

Next, note that partition-based FD discovery algorithms share a common
pattern: when a dependency is violated, they try to fix it via introducing addi-
tional attributes to the left part (in some papers, this procedure is called spe-
cialization [4]).

Smart Caching for Efficient Functional Dependency Discovery 55

Our idea is the following: PLIs obtained during the course of the algorithm are
not equally worthy of caching. There is no need to cache PLIs for dependencies
that are almost satisfied, i.e. that have a high probability of being satisfied during
the next specialization. Contrary to this, PLIs that would require many rounds
of specialization should be cached.

As shown above, this probability is directly linked to the degree of “unique-
ness” of values of dependency’s left hand side. Note that this probability is a
monotonic, non-decreasing function with regard to specialization steps. In other
words, after a specialization step, the probability that this new (specialized)
dependency holds is at least the same as before.

There are several ways to calculate the degree of “uniqueness” of a set of
values:

1. Shannon Entropy is a classic measure of disorder in data. It is given as follows:

H = −
∑

i

Pi log Pi,

where Pi is the probability mass function. The entropy is 0 if there is a single
value for all entries for a given attribute. If all records contain different values
for this attribute (e.g. the attribute is the primary key) then entropy is log n,
where n is the number of records.

2. Gini impurity is a measure used for construction of decision trees. It is com-
puted as follows:

IG = 1 −
J∑

i=1

P 2
i ,

where J is the number of classes and Pi is the probability of correctly classi-
fying i-th item.

3. We have also proposed our metric, which is essentially a minor modification
of Shannon Entropy:

H−1 = −
∑

i

(1 − Pi) log(1 − Pi).

Such a metric inherits the behaviour of the previous ones (it also grows as a
set of values becomes more unique), and its sensitivity to “uniqueness” can
be compared to the other metrics as follows: IG ≤ H−1 ≤ H.

3.2 Caching Algorithm and Cache Population

In order to evaluate our ideas, we have decided to modify the PYRO algorithm [5]
by introducing our heuristic. In their paper, cache lookup and cache population
were contained in a single algorithm as described below. Suppose that we have
to compute the result of partition intersection π(X), where X is an attribute
set.

56 A. Birillo and N. Bobrov

1. If the required π(X) is not present in cache, try to compute it by efficiently
reusing cached results for subsets of X. The idea is to minimize the number
of intersections and to keep the size of intermediate results small.

2. While incrementally constructing π(X), for each intermediate result π(C)
decide whether to cache it or not. The decision is made randomly, depending
on the outcome of the coin toss.

We propose to use the following heuristic to guide caching:

if(PLIUniqueness(C) ≤ medianUniqueness ∗ (1 + mod1(C) + mod2)) then cache.

Here, PLIUniqueness(C) and medianUniqueness are “uniqueness” degrees
of newly computed PLI and the median of “uniqueness” degrees for individ-
ual attributes. In our study we experimentally evaluate all three “uniqueness”
measures that were described above.

The modifiers are as follows:

mod1(C) =
maxc∈π(C) |c|

N
, mod2 =

maxHeapSize − availableMemory

maxHeapSize
.

Here, |c| is cluster size and N is relation size, both in records. The mod1
modifier indicates how close our newly computed PLI is to being primary key.
It is 1/N when it is primary key (all values are unique) and 1 when its values
are all the same. This way, we stimulate caching of PLIs that are far from being
primary key, because dependencies with such left hand sides are likely to fail.

In the second modifier, availableMemory and maxHeapSize represent cur-
rently available and maximum available memory respectively (in megabytes).
This modifier allows to keep track of cache occupancy and allows to favour pop-
ulation while there is plenty of free space.

It is necessary to note that the proposed heuristic is computationally light-
weight: everything that is required can be computed during partition intersec-
tion.

3.3 Cache Eviction

During the course of the algorithm there is always a chance to run out of available
memory, making it impossible to add more PLIs into the cache. The authors of
PYRO suggest to perform cache eviction (shrink procedure) each time when
the cache size is more than modifer ∗ maxHeapSize (modifier set to 0.85 by
default setting). The original procedure is performed as follows: (1) construct a
priority queue based on arity of all cached PLIs, starting from PLIs with the
arity of 2; (2) remove PLIs from the cache until target size requirement of the
cache is met (half of the original size by default). Obviously, such an approach
does not take into consideration the real usefulness of PLIs.

We propose a PLI eviction strategy that is based on the number of PLI
accesses. This statistic in combination with the cache population strategy

Smart Caching for Efficient Functional Dependency Discovery 57

described above can help to collect and retain useful PLIs. Therefore, we mod-
ified the original eviction algorithm as follows: (1) every time a new PLI is
constructed, increment the number of accesses for each cached PLI that was
used for its construction; (2) when the shrinking is run, calculate the median
of a PLI’s number of accesses; (3) add all PLIs that have a less than median
number of accesses into a priority queue; (4) clean cache by polling the queue
and disposing elements on a per PLI basis until the target size of the cache is
met; (5) set the number of accesses of remaining PLIs to zero.

4 Experiments

We have implemented our approach in the Metanome [6] system and used the
PYRO algorithm (with agree-set sample size parameter of 10,000) for compari-
son. In our experiments, we have used the following hardware and software con-
figuration: Intel(R) Core(TM) i5-4670K CPU 3.40GHz (4 CPUs) RAM 16GB,
Ubuntu Linux 18.04 (64 bit). The characteristics of the used tables are presented
in the left part of Table 1.

We have conducted two experiments. In Fig. 1 we present the results of the
run time experiment with our cache population approach and PYRO’s eviction
policy. We can see that heuristic cache population always improves run times
compared to the default approach (Coin). Depending on the dataset, improve-
ment ranges from 10% to 40%. However, there is no clearly superior data disorder
measure. In this experiment we have also measured the volume of data which
was put into cache (presented in Table 1, right part) during the whole run time,
including evictions. We can see that our heuristic allows to drastically reduce
the amount of cached data, sometimes up to an order of magnitude.

The second experiment assessed our cache population approach and our evic-
tion policy. To force frequent invocations, we have set a tight memory limit of 512
MBs. Due to that, run times increased by almost two times. We do not present
a bar chart or table with figures due to space constraints, but in this experiment
heuristic population approach was also superior to the coin-based one in terms
of run times. This experiment also did not identify the best measure, i.e. some
measures excel on different tables, but all of them are superior to baseline.

5 Related Work

There are several dozen of algorithms for FD discovery. We will not survey all
of them due to space constraints, instead referring an interested reader to the
study [7].

Most of these algorithms employ partition intersection and some of those can
benefit from partition caching. However, to the best of our knowledge, there are
only two algorithms that implement such caching techniques.

The first one is PYRO [5], where caching is performed randomly (via coin
toss) for every partition that was computed during intersection.

58 A. Birillo and N. Bobrov

Table 1. Used tables, their details and memory consumption (MB) of different caching
approaches.

Table Records Attrs #FD Coin Entropy Gini Inverted entropy

ditag 3,960,124 13 171 1363 665 681 649

iowa 27,373,453 24 1202 15625 9281 5430 7656

structSheet 664,128 32 1058 837 180 1, 267 13

pdbx 29,787 35 108001 71,503 59,103 21,302 35,340

apogeeStara 277,370 49 71066 170,126 165,578 73,351 41,553

plista 1,000 63 316866 10,312 1435 4512 570

flight 1,000 109 144185 1,220 409 125 943
aSloan Digital Sky Survey. https://www.sdss.org/dr14/

Fig. 1. Runtime comparison of different caching approaches.

The other one is DFD [1] that has adopted caching from the DUCC [3] algo-
rithm. Similarly to PYRO, its cache population strategy is also straightforward:
the authors propose to cache all obtained partitions. However, their cache evic-
tion strategy is more sophisticated. First, during the course of the algorithm,
calculate the number of uses for each partition. Second, whenever the number of
stored partitions exceeds a threshold, run cache clean-up. During this process,
remove all non-atomic partitions whose use counts are below the median value
of the currently stored partitions.

6 Conclusion

In this paper, we have addressed the problem of intermediate result caching for
partition-based FD discovery algorithms. We have proposed to use three mea-
sures of disorder in data to guide the cache population algorithm. Next, we have
designed a simple cache eviction algorithm to conserve memory. To experimen-
tally validate our approach, we have implemented it inside the Metanome system
and modified its PYRO. Experimental results show that our approach decreases

https://www.sdss.org/dr14/

Smart Caching for Efficient Functional Dependency Discovery 59

run times up to 40% on a number of datasets, while simultaneously decreasing
the volume of used memory by up to an order of magnitude. The proposed app-
roach has a negligible computational overhead and, more importantly, can be
used with a different partition-based FD discovery algorithms such as TANE.

References

1. Abedjan, Z., Schulze, P., Naumann, F.: DFD: efficient functional dependency dis-
covery. In: Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management, CIKM 2014, pp. 949–958. ACM, New
York (2014)

2. Codd, E.F.: Further normalization of the data base relational model. IBM Research
Report, San Jose, California, RJ909 (1971)

3. Heise, A., Quiané-Ruiz, J.-A., Abedjan, Z., Jentzsch, A., Naumann, F.: Scalable
discovery of unique column combinations. Proc. VLDB Endow. 7(4), 301–312 (2013)

4. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: TANE: an efficient algorithm
for discovering functional and approximate dependencies. Comput. J. 42, 100–111
(1992)

5. Kruse, S., Naumann, F.: Efficient discovery of approximate dependencies. Proc.
VLDB Endow. 11(7), 759–772 (2018)

6. Papenbrock, T., Bergmann, T., Finke, M., Zwiener, J., Naumann, F.: Data profiling
with metanome. Proc. VLDB Endow. 8(12), 1860–1863 (2015)

7. Papenbrock, T., et al.: Functional dependency discovery: an experimental evaluation
of seven algorithms. Proc. VLDB Endow. 8(10), 1082–1093 (2015)

8. Papenbrock, T., Naumann, F.: A hybrid approach to functional dependency discov-
ery. In: Proceedings of the 2016 International Conference on Management of Data,
SIGMOD 2016, pp. 821–833. ACM, New York (2016)

9. Wang, S.-L., Shen, J.-W., Hong, T.-P.: Incremental discovery of functional depen-
dencies using partitions. In: Proceedings Joint 9th IFSA World Congress and 20th
NAFIPS International Conference (Cat. No. 01TH8569), vol. 3, pp. 1322–1326, July
2001

	Smart Caching for Efficient Functional Dependency Discovery
	1 Introduction
	2 Background: Partitions and Caching
	3 Our Approach
	3.1 Preliminaries
	3.2 Caching Algorithm and Cache Population
	3.3 Cache Eviction

	4 Experiments
	5 Related Work
	6 Conclusion
	References

