
Exploiting Event Log Event Attributes
in RNN Based Prediction

Markku Hinkka1,3(B), Teemu Lehto1,3, and Keijo Heljanko2,4

1 Department of Computer Science, School of Science,
Aalto University, Espoo, Finland

2 Department of Computer Science, University of Helsinki, Helsinki, Finland
3 QPR Software Plc, Helsinki, Finland

4 HIIT Helsinki Institute for Information Technology, Espoo, Finland
markku.hinkka@aalto.fi, teemu.lehto@qpr.com, keijo.heljanko@helsinki.fi

Abstract. In predictive process analytics, current and historical process
data in event logs are used to predict future. E.g., to predict the next
activity or how long a process will still require to complete. Recurrent
neural networks (RNN) and its subclasses have been demonstrated to
be well suited for creating prediction models. Thus far, event attributes
have not been fully utilized in these models. The biggest challenge in
exploiting them in prediction models is the potentially large amount
of event attributes and attribute values. We present a novel clustering
technique which allows for trade-offs between prediction accuracy and the
time needed for model training and prediction. As an additional finding,
we also find that this clustering method combined with having raw event
attribute values in some cases provides even better prediction accuracy
at the cost of additional time required for training and prediction.

Keywords: Process mining · Predictive process analytics ·
Prediction · Recurrent neural networks · Gated Recurrent Unit

1 Introduction

Event logs generated by systems in business processes are used in Process Min-
ing to automatically build real-life process definitions and as-is models behind
those event logs. There is a growing number of applications for predicting the
properties of newly added event log cases, or process instances, based on case
data imported earlier into the system [2,3,8,13]. The more the users start to
understand their own processes, the more they want to optimize them. This
optimization can be facilitated by performing predictions. In order to be able
to predict properties of new and ongoing cases, as much information as possible
should be collected that is related to the event log traces and relevant to the
properties to be predicted. Based on this information, a model of the system
creating the event logs can be created. In our approach, the model creation is
performed using supervised machine learning techniques.

c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, CCIS 1064, pp. 405–416, 2019.
https://doi.org/10.1007/978-3-030-30278-8_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30278-8_40&domain=pdf
https://doi.org/10.1007/978-3-030-30278-8_40


406 M. Hinkka et al.

In our previous work [5] we have explored the possibility to use machine
learning techniques for classification and root cause analysis for a process min-
ing related classification task. In the paper, experiments were performed on the
efficiency of several feature selection techniques and sets of structural features
(a.k.a. activity patterns) based on process paths in process mining models in
the context of a classification task. One of the biggest problems with the app-
roach is that finding of the structural features having the most impact on the
classification result. E.g., whether to use only activity occurrences, transitions
between two activities, activity orders, or other even more complicated types
of structural features such as detecting subprocesses or repeats. For this pur-
pose, we have proposed another approach in [6], where we examined the use
of recurrent neural network techniques for classification and prediction. These
techniques are capable of automatically learning more complicated causal rela-
tionships between activity occurrences in activity sequences. We have evaluated
several different approaches and parameters for the recurrent neural network
techniques and have compared the results with the results we collected in our
work. In both the previous publications [5,6], focusing on boolean-type classifi-
cation tasks based on the activity sequences only.

In this work we build on our previous work to further improve the prediction
accuracy of prediction models by exploiting additional event attributes often
available in the event logs while also taking into account the scalability of the
approach to allow users to precisely specify the event attribute detail level suit-
able for the prediction task ahead. Our goal is to develop a technique that would
allow the creation of a tool that is, based on a relatively simple set of parameters
and training data, able to efficiently produce a prediction model for any case-
level prediction task, such as predicting the next activity or the final duration
of a running case. Fast model rebuilding is also required in order for a tool to
be able to also support, e.g., interactive event and case filtering capabilities.

To answer these requirements, we introduce a novel method of exploiting
event attributes into RNN prediction models by clustering events by their event
attribute values, and using the cluster labels in the RNN input vectors instead
of the raw event data. This makes it easy to manage the input RNN vector size
no matter how many event attributes there are in the data set. E.g., users can
configure the absolute maximum length of the one-hot vector used for the event
attribute data which will not be exceeded, no matter how many actual attributes
the dataset has.

Our prediction engine source code is available in GitHub1.
The rest of this paper is structured as follows: Sect. 2 is a short summary of

the latest developments around the subject. In Sect. 3, we present the problem
statement and the related concepts. Section 4 presents our solution for the prob-
lem. In Sect. 5 we present our test framework used to test our solution. Section 6
describes the used datasets as well as performed prediction scenarios. Section 7
presents the experiments and their results validating our solution. Finally Sect. 8
draws the final conclusions.

1 https://github.com/mhinkka/articles.

https://github.com/mhinkka/articles


Exploiting Event Log Event Attributes in RNN Based Prediction 407

2 Related Work

Lately there has been a lot of interest in the academic world on predictive process
monitoring which can clearly be seen, e.g., in [4] where the authors have collected
a survey of 55 accepted academic papers on the subject. In [12], the authors have
compared several approaches spanning three different research fields: Machine
learning, process mining and grammar inference. As result, they have found
that overall, the techniques from machine learning field generate more accurate
predictions than grammar inference and process mining fields.

In [13] the authors used Long Short-Term Memory (LSTM) recurrent neu-
ral networks to predict the next activity and its timestamp. They use one-
hot encoded activity labels and three numerical time-based features: duration
between the current activity and the previous activity, time within the day and
time within the week. Event attributes were not considered at all. In [2] the
authors trained LSTM networks to predict the next activity. In this case how-
ever, network inputs are created by concatenating categorical, character string
valued event attributes and then encoding these attributes via an embedding
space. They also note that this approach is feasible only because of the small
number of unique values each attribute had in their test datasets. Similarly,
in [11], the authors take a very similar approach based on LSTM networks, but
this time also incorporate both discrete and continuous event attribute values.
Discrete values are one-hot encoded, whereas continuous values are normalized
using min-max normalization and added to the input vectors as single values.

In [9] the authors use Gated Recurrent Unit (GRU) recurrent neural networks
to detect anomalies in event logs. One one-hot encoded vector is created for
activity labels and one for each of the included string valued event attributes.
These vectors are then concatenated in similar fashion to our solution into one
vector representing one event, that is then given as input to the network. We
use this approach for benchmarking our own clustering based approach (labeled
as Raw feature in the text below). The system proposed in their paper is able to
predict both the next activity and the next values of event attributes. Specifically,
it does not take case attributes and temporal attributes into account.

In [14] the authors trained a RNN to predict the most likely future activ-
ity sequence of a running process based only on the sequence of activity labels.
Similarly our earlier publication [5] used sequences of activity labels to train a
LSTM network to perform a boolean classification of cases. None of the men-
tioned earlier works present a solution that is scalable for datasets having lots
of event- or case attributes and unique attribute values.

3 Problem

Using RNN to perform case-level predictions on event logs has lately been studied
a lot. However, there has not been any scalable approach on handling event
attributes in RNN setting. Instead, e.g., in [9] authors used separate one-hot
encoded vector for each attribute value. Having this kind of an approach when



408 M. Hinkka et al.

you have, e.g., 10 different attributes, each having 10 unique values would already
require a vector of 100 elements to be added as input for every event. The longer
the input vectors become, the more time and memory it gets for the model to
create accurate models from them. This increases the time and memory required
to use the model for predictions.

Table 1. Feature input vector structure

f11 f12 ... f1m1 f21 ... f2m2 ... fn1 ... fnmn

Table 2. Feature input vector example content

row activityeat activitydrink foodsalad foodpizza foodwater foodsoda cluster1 cluster2

1 1 0 1 0 0 0 1 0

2 0 1 0 0 1 0 1 0

3 1 0 0 1 0 0 0 1

4 1 0 0 1 0 0 0 1

5 0 1 0 0 0 1 0 1

4 Solution

We decided to include several feature types into the input vectors of the RNN.
Input vectors are formatted as shown in Table 1, where each column represents
one feature vector element fab, where a is the index of the feature and b is
the index of the element of that feature. In the table, n represents the number
of feature types used in the feature vector and mk represents the number of
elements required in the input vector for feature type k. Thus, each feature
type produces one or more numeric elements into the input vector, which are
then concatenated together into one actual input vector passed to RNN both in
training and in prediction phases. Table 2 shows an example input vector having
three different feature types: activity label, raw event attribute values (only single
event attribute named food having four unique values) and the event attribute
cluster where clustering has been performed separately for each unique activity.

For this paper, we encoded only event activity labels and event attributes
into the input vectors. However, this mechanism can easily incorporate also other
types of features not described here. The only requirement for added features is
that it needs to be able to be encoded into a numeric vector as shown in Table 1
whose length must be the same for each event.

4.1 Event Attributes

Our primary solution for incorporating information in event attributes into input
vectors is to cluster all the event attribute values in the training set and then



Exploiting Event Log Event Attributes in RNN Based Prediction 409

use a one-hot encoded cluster identifier to represent all the attribute values
of the element. The used clustering algorithm must be such that it tries to
automatically find the optimal number of clusters for the given data set within
the range of 0 to N clusters, where N can be configured by the user. By changing
N, the user can easily configure the maximum length of the one-hot-vector as well
as the precision of how detailed attribute information will be tracked. For this
paper, we experimented with slightly modified version of Xmeans-algorithm [10].

It is very common that different activities get processed by different resources
yielding a completely different set of possible attribute values. E.g., different
departments in a hospital have different people, materials and processes. Also in
the example feature vector shown in Table 2, food -event attribute has completely
different set of possible values depending on the activity since it is forbidden by,
e.g., the external system to not allow activity of type eat to have food event
attribute value of water. If we cluster all the event attributes using single clus-
tering, we would easily lose this activity type specific information.

In order to retain this activity specific information, we used separate clus-
tering for each unique activity type. All the event attribute clusters are encoded
into one one-hot encoded vector representing only the resulting cluster label for
that event, no matter what its activity is. This is shown in the example table
as clusterN , which represents the row having N as clustering label. E.g., in the
example case, cluster1 is 1 in both rows 1 and 2. However, row 1 is in that
cluster because it is in the 1st cluster of the activityeat activity, whereas row 2 is
in that cluster because it is in the 1st cluster of the activitydrink activity. Thus,
in order to identify the actual cluster, one would require both the activity label
and the cluster label. For RNN to be able to properly learn about the actual
event attribute values, it needs to be given both the activity label and the cluster
label in input vector. Below, this approach is labeled as ClustN, where N is the
maximum cluster count.

For benchmarking, we also experimented with a raw implementation where
event attributes were used so that every event attribute is encoded into its own
one-hot encoded vector and then concatenated into the actual input vectors. This
method is lossless, since every unique event attribute value has its own indicator
in the input vector. Below, this approach is referred to as Raw. Finally, we
experimented also using both Raw and Clustered event attribute values. Below,
this approach is referred to as BothN, where N is the maximum cluster count.

5 Test Framework

We have performed our test runs using an extended Python-based prediction
engine that was used in our earlier work [5]. The engine is still capable of sup-
porting most of the hyperparameters that we experimented with in our earlier
work, such as used RNN unit type, number of RNN layers and the used batch
size. The prediction engine we built for this work takes a single JSON configu-
ration file as input and outputs test result rows into a CSV file.

Tests were performed using a commonly used 3-fold cross-validation tech-
nique to measure the generalization characteristics of the trained models. In



410 M. Hinkka et al.

3-fold cross-validation the input data is split into three subsets of equal size.
Each of the subsets is tested one by one against models trained using the other
two subsets.

5.1 Training

Training begins by loading the event log data contained in the two of the three
event log subsections. After this, the event log is split into actual training data
and validation data that used to find the best performing model out of all the
model states during all the test iterations. For this, we picked 75% of the cases for
the training and the rest for the validation dataset. After the this, we initialize
event attribute clusters as described in Sect. 4.1.

The actual prediction model and the data used to generate the actual input
vectors is performed next. This data initialization involves splitting cases into
prefixes and also taking a random sample of the actual available data if the
amount of data exceeds the configured maximum amount of prefixes. In order
to avoid running out of memory during any of our tests, these limits were set to
75000 for training data and 25000 for validation data. We also had to filter out
all the cases having more than 100 events.

Finally after the model is initialized, we start the actual training in which we
concatenate all the requested feature vectors as well as the expected outcome into
the RNN model repeatedly for the whole training set until 100 test iterations have
passed. The number of actual epochs trained in each iteration is configurable. In
our experiments, the total number of epochs was set to be 10. After every test
iteration the model is validated against the validation set. In order to improve
validation performance, if the size of the validation set is larger than separately
specified limit (10000), a random sample of the whole validation set is used.
These test results, including additional status and timing related information,
is written into resulting test result CSV file. If the prediction accuracy of the
model against the validation set is found to be better than the accuracy of any
of the models found thus far, then the network state is stored for that model.
Finally after all the training, the model having the best validation test accuracy
is picked as the actual result of the model training.

5.2 Testing

In the testing phase, the third subset of cross-validation folding is tested against
the model built in the previous step. After initializing the event log following
similar steps as in the training phase, the model is asked for a prediction for each
input vector built from the test data. In order to prevent running out of memory
and to ensure tests are not taking exceedingly long time to run, we limited the



Exploiting Event Log Event Attributes in RNN Based Prediction 411

number of final test traces to 100000 traces and used random sampling when
needed. The prediction result accuracy, as well as other required statistics are
written to the resulting CSV file.

6 Test Setup

We performed our tests using several different data sets. Some details of the used
data sets can be found in the Table 3.

Table 3. Used event logs and their relevant statistics

Event log # Cases # Activities # Events # Attributes # Unique values

BPIC12a 13087 24 262200 1 3

BPIC13, incidentsb 7554 13 65533 8 2890

BPIC14c 46616 39 466737 1 242

BPIC17d 31509 26 1202267 4 164

BPIC18e 43809 41 2514266 5 360
ahttps://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
bhttps://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
chttps://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
dhttps://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
ehttps://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972

For each dataset, we performed next activity prediction where we wanted to
predict the next activity of any ongoing case. In this case, we split every input
case into possibly multiple virtual cases depending on the number of events the
case had. If the length of the case was shorter than 4, the whole case was ignored.
If the length was equal or higher, then a separate virtual case was created for all
prefixes at least of length 4. Thus, for a case of length 6, 3 cases were created:
One with length 4, one with 5 and one with 6. For all these prefixes, the next
activity label was used as the expected outcome. For the full length case, the
expected outcome was a special finished -token.

7 Experiments

For experiments, we have used the same system that we used already in our pre-
vious work [5]. The system had Windows 10 operating system and its hardware
consisted of 3.5 GHz Intel Core i5-6600K CPU with 32 GB of main memory and
NVIDIA GeForce GTX 960 GPU having 4 GB of memory. Out of those 4 GB,
we reserved 3 GB for the tests. The testing framework was built on the test sys-
tem using Python programming language. The actual recurrent neural networks
were built using Lasagne2 library that works on top of Theano3. Theano was
configured to use GPU via CUDA for expression evaluation.
2 https://lasagne.readthedocs.io/.
3 http://deeplearning.net/software/theano/.

https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
https://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
https://lasagne.readthedocs.io/
http://deeplearning.net/software/theano/


412 M. Hinkka et al.

We used one layer GRU [1] as the RNN type. Adam [7] was used as gradient
descent optimizer. 256 was used as hidden dimension size and 0.01 as learning
rate even though it is quite probable that more accurate results could have been
achieved by selecting, e.g., different hidden dimension sizes depending on the size
of the input vectors. However, since that would have made the interpretation
of the test results more complicated, we decided to use the constant hidden
dimension size on all the tests.

We performed next activity predictions using all the four combinations of
features, five data sets and three different maximum cluster counts: 20, 40, and
80 clusters. The results of these runs are shown in Table 4. In the table, Features-
column shows the used set of features. S.rate shows the achieved prediction
success rate. In.v.s. shows the size of the input vector. This column can be used
to give some kind of indication on the memory usage of using that configuration.
Finally, Tra.t. and Pred.t. columns tell us the time required for performing the
training and the prediction for all the cases in the test dataset. In both the cases,
this time includes the time for setting up the neural network, clusterings and
preparing the dataset from JSON format. Sample standard deviation has been
included into both S.rate and Tra.t in parentheses to indicate how spread out the
measurements are within all the three test runs. Each row in the table represents
three cross validation runs with unique combination of dataset and feature that
was tested. Rows having a best prediction accuracy within a dataset are shown
using bold font. None-feature represents the case in which there were no event
attribute information at all in the input vector, ClustN represents a test with
one-hot encoded cluster labels of event attributes clustered into maximum of N
clusters, Raw represents having all one-hot encoded attribute values individually
in the input vector, and finally BothN represents having both one-hot encoded
attribute values and one-hot encoded cluster labels in the input vector.

We also aggregated some of these results over all the datasets using maximum
cluster size of 80 clusters. Figure 1 shows average success rates of different event
attribute encoding techniques over all the tested datasets. Figure 2 shows the
average input vector lengths. Figures 3 and 4 shows the averaged training and
prediction times respectively.

Based on all of these results, we can see that having event attribute values
included clearly improved the prediction accuracy over not having them included
at all in all datasets. The effect ranged from 0.5% in BPIC12 model to 8.5% in
BPIC18. As shown in Fig. 1, very similar success rates were achieved using ClustN
features as with Raw. However, model training and the actual prediction can be
performed clearly faster using ClustN approaches than either Raw or BothN.
This effect is the most prominently visible in BPIC13 results, where, due to the
model having large amount of unique attribute values, the size of the input vector
is almost 68 times bigger and the training time almost 14 times longer using Raw
feature than Clust20. At the same time, the accuracy is still clearly better than
not having event attributes at all (about 3.9% better) and only slightly worse
(about 1.4%) than when using Raw feature. This clearly indicates that clustering
can be really powerful technique for minimizing the time required for training



Exploiting Event Log Event Attributes in RNN Based Prediction 413

Table 4. Statistics of next activity prediction using different sets of input features

Dataset Features S.rate (σ) In.v.s. Tra.t. (σ) Pred.t.

BPIC12 None 85.8% (0.3%) 25.7 489.0 s (7.0 s) 35.1 s

Clust20 86.0% (0.4%) 30.0 500.6 s (2.5 s) 31.6 s

Clust40 85.8% (0.3%) 30.0 499.7 s (1.3 s) 31.9 s

Clust80 86.2% (0.1%) 30.0 502.1 s (2.3 s) 7.5 s

Raw 85.9% (0.3%) 29 504.3 s (0.5 s) 38.9 s

Both20 86.0% (0.2%) 33 515.3 s (2.6 s) 40.4 s

Both40 86.0% (0.4%) 33 517.7 s (3.6 s) 40.4 s

Both80 86.3% (0.1%) 33 518.2 s (4.0 s) 40.7 s

BPIC13 None 62.9% (0.3%) 13.7 165.6 s (21.2 s) 3.5 s

Clust20 66.8% (0.3%) 34.7 188.0 s (22.4 s) 4.7 s

Clust40 67.2% (0.7%) 54.7 214.8 s (3.1 s) 5.4 s

Clust80 67.0% (0.6%) 94.7 258.4 s (4.7 s) 6.0 s

Raw 68.2% (1.1%) 2353.7 2611.7 s (44.7 s) 74.8 s

Both20 69.1% (0.6%) 2359.3 2464.6 s (309.0 s) 94.4 s

Both40 68.9% (0.5%) 2395.7 2687.1 s (227.3 s) 106.6 s

Both80 68.4% (0.7%) 2429.3 2821.8 s (33.5 s) 194.3 s

BPIC14 None 37.8% (1.5%) 40.3 488.1 s (5.3 s) 36.1 s

Clust20 39.9% (0.5%) 61.7 523.3 s (3.5 s) 40.4 s

Clust40 40.0% (0.3%) 80.3 553.5 s (3.8 s) 43.6 s

Clust80 40.2% (0.1%) 84.7 556.8 s (10.5 s) 43.6 s

Raw 39.7% (1.4%) 272.0 825.7 s (2.8 s) 68.0 s

Both20 40.6% (0.6%) 292.3 907.1 s (7.5 s) 78.6 s

Both40 40.6% (0.6%) 309.3 943.3 s (10.6 s) 82.0 s

Both80 37.3% (4.2%) 305.0 935.1 s (26.9 s) 156.7 s

BPIC17 None 86.4% (0.4%) 27.7 518.7 s (2.8 s) 107.7 s

Clust20 90.8% (0.3%) 48.7 556.3 s (3.7 s) 132.4 s

Clust40 90.2% (1.4%) 68.3 637.5 s (58.3 s) 143.9 s

Clust80 90.2% (0.4%) 108.7 647.3 s (3.7 s) 142.8 s

Raw 89.9% (0.5%) 190 816.4 s (5.2 s) 164.9 s

Both20 89.9% (0.5%) 211.0 867.8 s (3.5 s) 188.0 s

Both40 90.2% (0.3%) 230.3 910.9 s (19.3 s) 193.7 s

Both80 89.6% (0.6%) 271.3 986.5 (4.4 s) 197.7 s

BPIC18 None 71.3% (9.3%) 43 516.0 s (9.5 s) 197.0 s

Clust20 79.0% (0.9%) 64.0 588.7 s (13.7 s) 268.7 s

Clust40 79.9% (0.2%) 84.0 628.4 s (2.8 s) 286.1 s

Clust80 79.5% (0.1%) 124.0 701.3 s (7.4 s) 306.9 s

Raw 79.3% (0.4%) 349.7 1173.7 s (83.1 s) 381.2 s

Both20 79.7% (0.5%) 377.7 1213.1 s (48.1 s) 463.2 s

Both40 79.9% (0.5%) 401.0 1301.9 s (82.9 s) 540.3 s

Both80 79.3% (0.5%) 425.7 1405.4 s (87.2 s) 619.9 s

especially when there are a lot of unique event attribute values in the used event
log. Even when using the maximum cluster count of 20, prediction results will
be either not affected or improved with relatively small impact to the training
and prediction time. In all the datasets, the best prediction accuracy is always
achieved either by using only clustering, or by using both clustering and raw
attributes at the same time.



414 M. Hinkka et al.

66,0%

67,0%

68,0%

69,0%

70,0%

71,0%

72,0%

73,0%
Su

cc
es

s 
Ra

te None

Raw

Clust80

Both80

Fig. 1. Average prediction success rate
over all the datasets

0

100

200

300

400

500

600

700

800

In
pu

t v
ec

to
r l

en
gt

h

None

Raw

Clust80

Both80

Fig. 2. Average length of the input vec-
tor over all the datasets

0

500

1 000

1 500

2 000

2 500

3 000

Tr
ai

ni
ng

 
m

e 
(s

)

None

Raw

Clust80

Both80

Fig. 3. Average training time over all the
datasets

0

50

100

150

200

250

300

Te
s

ng
 

m
e 

(s
)

None

Raw

Clust80

Both80

Fig. 4. Average prediction time over all
the datasets

7.1 Threats to Validity

As threats to validity of the results in this paper, it is clear that there are a lot
of variables involved. As initial set of parameter values, we used parameters that
were found good enough in our earlier work and did some improvement attempts
based on the results we got. It is most probable that the set of parameters we used
were not optimal ones in each test run. We also did not test all the parameter
combinations and the ones we did, we tested often only once, even though there
was some randomness involved, e.g., selecting the initial cluster centers in the
XMeans algorithm. However, we think that since we tested the results in several
different datasets using 3-fold cross validation technique, our results can be used
at least as a baseline for further studies. All the results generated by the test
runs, as well as all the source data and the test framework itself, are available
in support materials4.

Also, we did not really test with datasets having really many event attribute
values, the maximum amount tested being 2890. However, it can be seen that
since the size of the input vectors is completely user configurable when per-
forming event attribute clustering, the user him/herself can easily set limits to
the input vector length which should take the burden off from the RNN and
move the burden to the clustering algorithms, which are usually more efficient
in handling lots of features and feature values. When evaluating the results of
the performed tests and comparing them with other similar works, it should be
taken into account that data sampling was used in several phases of the testing
process.

4 https://github.com/mhinkka/articles.

https://github.com/mhinkka/articles


Exploiting Event Log Event Attributes in RNN Based Prediction 415

8 Conclusions

Clustering can be applied on attribute values to improve accuracy of predictions
performed on running cases. In four of the five experimented data sets, having
event attribute clusters encoded into the input vectors outperforms having the
actual attribute values in the input vector. In addition, due to raw attribute
values having direct effect to input vector lengths, the training and prediction
time will also be directly affected by the number of unique event attribute values.
Clustering does not have this problem: The number of elements reserved in the
input vector for clustered event attribute values can be adjusted freely. The
memory usage is directly affected by the length of the input vector. In the tested
cases, the number of clusters to use to get the best prediction accuracy seemed
to depend very much on the used datasets, when the tested cluster sizes were
20, 40 and 80. In some cases, having more clusters improved the performance,
whereas in others, it did not have any significant impact, or even made the
accuracy worse. We also found out that in some cases, having attribute cluster
indicators in the input vectors improved the prediction even if the input vectors
also included all the actual attribute values.

As future work, it would be interesting to test this clustering approach also
with other machine learning model types such as more traditional random forest
and gradient boosting machines. Similarly it could be interesting to first filter
out some of the most rarely occurring attribute values before clustering the
values. This could potentially reduce the amount of noise added to the clustered
data and make it easier for the clustering algorithm to not be affected by noisy
data. Finally, more study is required to understand whether similar clustering
approach performed for event attributes in this work could be applicable also
for encoding case attributes.

Acknowledgments. We want to thank QPR Software Plc for funding our research.
Financial support of Academy of Finland project 313469 is acknowledged.

References

1. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of
neural machine translation: encoder-decoder approaches. In: Wu, D., Carpuat,
M., Carreras, X., Vecchi, E.M. (eds.) Proceedings of SSST@EMNLP 2014, Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha,
Qatar, 25 October 2014, pp. 103–111. Association for Computational Linguistics
(2014)

2. Evermann, J., Rehse, J., Fettke, P.: Predicting process behaviour using deep learn-
ing. Decis. Support Syst. 100, 129–140 (2017)

3. Francescomarino, C.D., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based
predictive process monitoring. CoRR, abs/1506.01428 (2015)

4. Francescomarino, C.D., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process
monitoring methods: which one suits me best? In: Weske, et al. [15], pp. 462–479



416 M. Hinkka et al.

5. Hinkka, M., Lehto, T., Heljanko, K., Jung, A.: Structural feature selection for event
logs. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 20–35.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74030-0 2

6. Hinkka, M., Lehto, T., Heljanko, K., Jung, A.: Classifying process instances using
recurrent neural networks. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM
2018. LNBIP, vol. 342, pp. 313–324. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-11641-5 25

7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR,
abs/1412.6980 (2014)

8. Navarin, N., Vincenzi, B., Polato, M., Sperduti, A.: LSTM networks for data-aware
remaining time prediction of business process instances. In: 2017 IEEE Sympo-
sium Series on Computational Intelligence, SSCI 2017, Honolulu, HI, USA, 27
November–1 December 2017, pp. 1–7. IEEE (2017)

9. Nolle, T., Seeliger, A., Mühlhäuser, M.: BINet: multivariate business process
anomaly detection using deep learning. In: Weske, et al. [15], pp. 271–287

10. Pelleg, D., Moore, A.W.: X-means: extending k-means with efficient estimation
of the number of clusters. In: Langley, P. (ed.) Proceedings of the Seventeenth
International Conference on Machine Learning (ICML 2000), Stanford University,
Stanford, CA, USA, 29 June–2 July 2000, pp. 727–734. Morgan Kaufmann (2000)

11. Schönig, S., Jasinski, R., Ackermann, L., Jablonski, S.: Deep learning process pre-
diction with discrete and continuous data features. In: Damiani, E., Spanoudakis,
G., Maciaszek, L.A. (eds.) Proceedings of the 13th International Conference on
Evaluation of Novel Approaches to Software Engineering, ENASE 2018, Funchal,
Madeira, Portugal, 23–24 March 2018, pp. 314–319. SciTePress (2018)

12. Tax, N., Teinemaa, I., van Zelst, S.J.: An interdisciplinary comparison of sequence
modeling methods for next-element prediction. CoRR, abs/1811.00062 (2018)

13. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process mon-
itoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017.
LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59536-8 30

14. Verenich, I., Dumas, M., Rosa, M.L., Maggi, F.M., Chasovskyi, D., Rozumnyi, A.:
Tell me what’s ahead? Predicting remaining activity sequences of business process
instances, June 2016

15. Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.): BPM 2018. LNCS, vol.
11080. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7

https://doi.org/10.1007/978-3-319-74030-0_2
https://doi.org/10.1007/978-3-030-11641-5_25
https://doi.org/10.1007/978-3-030-11641-5_25
https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1007/978-3-319-98648-7

	Exploiting Event Log Event Attributes in RNN Based Prediction
	1 Introduction
	2 Related Work
	3 Problem
	4 Solution
	4.1 Event Attributes

	5 Test Framework
	5.1 Training
	5.2 Testing

	6 Test Setup
	7 Experiments
	7.1 Threats to Validity

	8 Conclusions
	References




