
On Metadata Support for Integrating Evolving
Heterogeneous Data Sources

Darja Solodovnikova(&), Laila Niedrite, and Aivars Niedritis

Faculty of Computing, University of Latvia, Riga 1050, Latvia
{darja.solodovnikova,laila.niedrite,

aivars.niedritis}@lu.lv

Abstract. With the emergence of big data technologies, the problem of
structure evolution of integrated heterogeneous data sources has become
extremely topical due to dynamic and diverse nature of big data. To solve the
big data evolution problem, we propose an architecture that allows to store and
process structured and unstructured data at different levels of detail, analyze
them using OLAP capabilities and semi-automatically manage changes in
requirements and data expansion. In this paper, we concentrate on the metadata
essential for the operation of the proposed architecture. We propose a metadata
model to describe schemata and supplementary properties of data sets extracted
from sources and transformed to obtain integrated data for the analysis in a
flexible way. Furthermore, the unique feature of the proposed model is that it
allows to keep track of all changes that occur in the system.

Keywords: Big data � Data warehouse � Evolution � Metadata

1 Introduction

In recent years, the concept of big data has been increasingly attracting attention and
interest from researchers and businesses around the world. There are different
approaches to the processing and analysis of big data and one of them is to use a data
warehouse and OLAP techniques. Various solutions based on Hadoop and similar
frameworks allow to implement a data warehouse also to support analysis of big data.

In the context of relational data warehouses, evolution problems have been known
for a long time. Evolution can be caused by changes in data sources of the data
warehouse, and changes in requirements when additional information becomes nec-
essary for decision making. In the big data world, evolution problems have become
even more topical [1, 2] as big data are more dynamic, diverse and can be generated at
higher speeds, but the solution to the big data evolution problems is a more challenging
task for several reasons. First, there is currently no standard data warehouse archi-
tecture that should be used to support big data analysis. Second, in the context of big
data, data sources are very often unstructured or semi-structured, and tracking and
processing changes in such data sources is a complex task. Finally, in big data systems,
the data could be generated in real time, which means that the changes could occur in
real time, so they should be processed in real time too.

© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, CCIS 1064, pp. 378–390, 2019.
https://doi.org/10.1007/978-3-030-30278-8_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30278-8_38&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30278-8_38&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30278-8_38&domain=pdf
https://doi.org/10.1007/978-3-030-30278-8_38

In this paper, we propose a data warehouse architecture over big data that can adapt
to evolving user requirements and changes in data sources. We present the model that
allows to store the metadata describing schemata of involved data sets and their
changes that are essential for the operation of the proposed architecture.

The paper is structured as follows. In Sect. 2 the related work is discussed. Sec-
tion 3 introduces a data warehouse architecture over big data. The main contribution of
this paper is presented in Sect. 4, where the metadata model is described. Section 5
discusses evolution support in our proposal. Section 6 is devoted to the description of
the case study system. We conclude with directions for future work in Sect. 7.

2 Related Work

The problem of representing metadata of heterogeneous data sources has been studied
extensively in the context of data lakes, where structure and other characteristics of data
are not defined a priori and are discovered during the data analysis or processing. The
paper [3] describes challenges that developers of data lakes are often facing. One of
such challenges is obtaining metadata about data extracted from heterogeneous sources.
Along with other challenges, the authors mention data evolution when data represen-
tation changes over time or the same data are provided in different formats.

The authors of the paper [4] propose a metadata classification to support a data
mining process in big data. Although the evolution is not mentioned in the classifi-
cation and some types of metadata described are specific to data mining tasks, the
proposed classification may be used complementary to our metadata model.

The paper [5] proposes a formal metadata model for data lakes. The model is
represented as a graph based on the metadata classification proposed by [6]. The model
is applied in two algorithms used to obtain a structure from unstructured data lake
sources and to integrate sources of different formats.

A metadata model that represents 3 types of metadata describing data lake sources:
structure metadata, metadata properties, and semantic metadata is proposed in the paper
[7]. The structuremetadata describe the schemata of data sources. The authors distinguish
between 2 types of structures: matrices and trees. Metadata properties are descriptive
information about the contents of data source files, such as file name, author, date
modified, including information from the file itself, such as date, information about the
experiment for which the source file contains data. Semantic metadata contain annota-
tions of any source elements that could be expressed as URIs that point to a concept in an
ontology. The authors use data unit templates to obtainmetadata properties that may have
different structures. We adapted the metadata model proposed in [7] for our big data
warehouse architecture and extended it with metadata necessary for evolution support.

3 Big Data Warehouse Architecture

To solve the topical problem of big data evolution in the data warehousing context, we
propose to design a big data management system according to the big data warehouse
architecture shown in Fig. 1. The detailed description of the architecture is given in [8].

On Metadata Support for Integrating Evolving Heterogeneous Data Sources 379

The architecture consists of a data processing pipeline (Data Highway in the figure).
The idea and the concept of the data highway was first presented in [9]. Data in the
system are gathered from various heterogeneous data sources and loaded in their
original format at the first level of the data highway which may be considered as a data
lake. Each next level data are obtained from the previous level data by ELT processes
by means of applying transformation operations, adding structure to unstructured and
semi-structured data, integrating and aggregating data. The number and contents of the
levels of the data highway depend on the system requirements. The final level of the
data highway is a data warehouse which stores structured aggregated information ready
for OLAP operations. Since the volume of data stored in the data warehouse may be
too large to provide a reasonable performance of data analysis queries, the architecture
may be augmented by the cube engine component, which precomputes various
dimensional combinations and aggregated measures for them.

To support big data evolution, we expanded the big data warehouse architecture
with an adaptation component that is responsible for handling changes in data sources
and levels of the data highway. The main idea of this component is to generate several
potential adaptation options to schema of the data highway levels affected by each
change in a data source of other level of the highway and to allow a developer to
choose the most appropriate option that must be implemented.

One of the central components of the architecture is the metastore that incorporates
six types of interconnected metadata necessary for the operation of various components
of the architecture. In this paper, we concentrate on the metadata support to maintain
information about big data evolution. Three types of such metadata are highlighted
with a dark font color in the figure. Schematic metadata describe schemata of data sets
stored in the different levels of the highway. Mapping metadata define the logic of ELT
processes. Information about changes in data sources and data highway levels is
accumulated in the evolution metadata. Such information may be obtained from
wrappers or during the execution of ELT processes.

Source Layer

RDBMS Data
Source

Wrapper

Wrapper

Unstructured
Data Source

...

Adapta on
Component

Metadata
Management

Tool

BI &
Visualiza on

Tools

Business Analyst

Developer

Cube Engine

Data Analyst

1st Level
Raw Source

Data

Pre-
computed

OLAP Cubes
Data

Warehouse

nth Level
Top Line

Data

ELTELTELT

Data Highway

Schema c
Metadata
Evolu on
Metadata

Adapta on
Rules

Poten al Change
Metadata

Mapping
Metadata Cube Metadata

Analy cs Tools

Data flow

Metadata flow

Semi-
structured

Data Source
Wrapper

Metastore

Fig. 1. Big data warehouse architecture

380 D. Solodovnikova et al.

There are also other three types of metadata used for other purposes. Cube metadata
describe schemata of precomputed cubes and are leveraged not only during the cube
computation process but also for execution of queries. Adaptation rules specify
adaptation options that must be implemented for different types of changes. Finally,
potential change metadata accumulate proposed changes in the data warehouse schema.

4 Metadata Model

To accumulate metadata about the structure of data sources as well as data sets included
at various levels of the data highway and to maintain information about changes that
occur in them, we propose the use of metadata that is designed according to the
conceptual model presented in Fig. 2.

4.1 Schematic Metadata and Mappings

In this section, we concentrate on the elements of the model that are used to describe
schemata of data sources and data highway levels. A class Data Set is used to represent
a collection of Data Items that are individual pieces of data. The Data Set class is split
into three subclasses according to the type and format. Structured Data Set represents a
relational database table where data items correspond to table columns. Semi-structured
Data Set reflects files where data items are organized into a schema that is not pre-
defined. The attribute Type of a data item incorporated into a such data source indicates
the position of it in the schema. For example, XML documents are composed of
Elements and their Attributes, JSON documents may contain Objects and Arrays. Semi-
structured proprietary file formats of software tools or hardware devices may be also
described by the Semi-structured Data Set class. Unstructured Data Sets include data
that do not have any organization or acknowledged schema, such as text files, images,
other multimedia content, etc. Usually, an unstructured data set is represented by a
single data item. However, pieces of supplementary information like keywords or tags
that are used to get an idea of the data set content may be available. They are repre-
sented as additional data items associated with the corresponding data set in the model.

A data set may be obtained from a Data Source or it may be a part of a Data
Highway Level. We also maintain the information about the rate at which data in the
data set are collected or updated by assigning one of the velocity types and frequency
attribute of the Data Set class. If a data set is a part of a multidimensional model of a
data warehouse, its role (dimension or fact table) is assigned to the attribute Role and
data items contained in such a data set get roles of either dimension attribute or fact
table measure.

There usually exist relationships between data items in the same data set or across
different data sets determined by the format of these data sets. For example, elements in
XML files are composed of other subelements and attributes, objects in JSON files may
contain other objects as property values, foreign keys relate columns of relational
tables, predicates relate subjects and objects in RDF. There may exist a link between an

On Metadata Support for Integrating Evolving Heterogeneous Data Sources 381

unstructured data set and structured/semi-structured data. We modelled such relation-
ships by an association class Relationship that connects child and parent data items and
assigns the corresponding relationship type. The relationship type Equality is assigned
if two items of different data sets contain the same data. Equality relationships help
integrate separate data sets.

Our proposed architecture of the big data system implies that data sets contained in
various data highway levels are obtained either from data sources in their original
format or from data sets at other data highway levels by performing transformation,
aggregation and integrating related data items. To maintain metadata about provenance
of data sets within the data highway and make it possible to follow their lineage, an
association class Mapping was introduced in the model. A mapping defines a way how
a target data item is derived from origin data items by a transformation indicated in the
attribute Operation of the class Mapping. Not only our model allows to maintain
provenance metadata of data items in the highway calculated directly from source data,
but it also supports such cases when previously processed data sets of the highway are
further transformed to obtain new data sets at subsequent data highway levels.

Fig. 2. Conceptual metadata model for evolution support

382 D. Solodovnikova et al.

4.2 Metadata Properties

The classes and associations of the model described above reflect mainly the schematic
metadata of the system whereas other characteristics of the data should also be rep-
resented in the model. For this purpose, we included a class Metadata Property that is
used to store various characteristics of different elements of the model. Each metadata
property is represented by a name:value pair to allow for some flexibility as metadata
properties of different classes may vary considerably. Examples of metadata properties
include file or table name, dates created and updated, location, file size, character set,
version, check constraints for data sets; type, length, precision, scale, nullable, range
for data items; mechanism used to retrieve data from a data source (for instance, API
request).

Certain metadata properties may be obtained in a machine-processible form auto-
matically, but others may be only entered manually. Furthermore, an experienced user
may discover some new metadata properties of data sets obtained from a data source
during data analysis or transformation and of processed data sets that might be valuable
for other users of the system. In such a case, the user may augment the metadata by the
discovered properties. Such conversational [3] metadata are associated with a user who
recorded the property represented by the class Author in the model.

4.3 Evolution Metadata

In this section, we discuss classes and associations introduced in the model to store
information about the evolution of both the schemata of data sources and data highway
data sets and their supplementary characteristics represented as metadata properties.
Examples of changes that are supported by the model are given in more detail in the
next section.

Evolution is reflected in the model by a class Change that is connected by asso-
ciations with other classes. These associations determine the element of the model that
was affected by each change. In the metadata, we store the date and time when the
change took place, Type of the change, Status that determines whether that change is
new, processed (propagated in the system) or in progress (being currently processed).
In case if evolution was caused by a change in a value of any attribute of a model
element including metadata property, we record the name of the affected attribute as an
attribute AttrName of the class Change and both the value before the change (attribute
OldAttrValue) and after it (attribute NewAttrValue). If a change was performed man-
ually by a known user, the corresponding Author is associated with such change.

5 Evolution Support

In the proposed big data architecture, data from heterogeneous data sources are inte-
grated and transformed gradually to obtain a data warehouse level of the data highway.
Various kinds of changes to the data employed in each step of this process must be
recorded in the metadata model. The list of atomic changes classified according to the
part of the metadata model they affect is given in Table 1. For each change, the table

On Metadata Support for Integrating Evolving Heterogeneous Data Sources 383

describes classes that are connected with the instance of the class Change in the model
by an association, the key attributes of the class Change with their value and additional
metadata that must be recorded in the model.

Table 1. Supported atomic changes

Change Associated
classes

Key
attribute
values

Additional metadata

Schematic changes
Addition of a
data source

Data Source Type:
Addition

For each data set included in the new data
source, the corresponding schematic
metadata and metadata properties must be
added

Unavailable data
source

Data Source Type:
Deletion

Addition of a
data highway
level

Data Highway
Level

Type:
Addition

For each data set included in the new data
highway level, the corresponding
schematic metadata and metadata
properties must be added along with
mappings that define the origin of data

Deletion of a
data highway
level

Data Highway
Level

Type:
Deletion

Addition of a
data set

Data Set Type:
Addition

For each data item included in the new
data set, the corresponding schematic
metadata and metadata properties must be
added

Unavailable data
set

Data Set Type:
Addition

Change of data
set format

Data Set
Data Item
Relationship

Type:
Deletion
Type:
Addition

Such change must be recorded as two
changes: deletion and addition of a data
set. After that, new relationships with the
type Equality between the corresponding
data items of the removed data set and the
new data set must be added to the
metadata

Renamed data
set

Data Set Type:
Attribute
value
update
AttrName:
Name

The attributes OldAttrValue and
NewAttrValue of the class Change are
filled with the previous and updated name
of the data set

Addition of a
data item

Data Item Type:
Addition

A change is associated with the new
instance of the class Data Item

(continued)

384 D. Solodovnikova et al.

Table 1. (continued)

Change Associated
classes

Key
attribute
values

Additional metadata

Renamed data
item

Data Item Type:
Attribute
value
update
AttrName:
Name

The attributes OldAttrValue and
NewAttrValue of the class Change are
filled with the previous and updated name
of the data item

Change of a data
item type

Data Item Type:
Attribute
value
update
AttrName:
Type

The attributes OldAttrValue and
NewAttrValue of the class Change are
filled with the previous and updated type
of the data item

Deletion of a
data item from a
data set

Data Item Type:
Deletion

Addition of a
relationship

Relationship Type:
Addition

A new instance of the association class
Relationship connects two related data
items

Deletion of a
relationship

Relationship Type:
Deletion

Addition of a
new mapping

Mapping Type:
Addition

A new instance of the class Mapping that
is being added within the change and
associated with target and origin data
items defines the way the target data item
is obtained in the attribute Operation

Deletion of a
mapping

Mapping Type:
Deletion

Changes in metadata
Addition of a
metadata
property

Metadata
Property

Type:
Addition

Deletion of a
metadata
property

Metadata
Property

Type:
Deletion

Update of an
attribute value

A class
containing an
updated attribute

Type:
Attribute
value
update

The attribute values before and after the
update are recorded in the attributes
OldAttrValue and NewAttrValue of the
class Change, which is associated with the
model class instance affected by the
change

On Metadata Support for Integrating Evolving Heterogeneous Data Sources 385

When elements of the model are deleted, they remain in the model, but information
about deletion is maintained as instances of the class Change with the type Deletion. In
case of a deletion of a relationship, such change may affect integration of heterogeneous
data sets. This aspect must be considered during change propagation. If a data item or a
data set is deleted from the system individually or by deletion of the data source or data
highway level containing it, such change affects data sets that were populated with data
from a deleted model element (determined by mappings) before the change. If there are
any alternative ways how affected data sets may be obtained from other data sets
described in metadata, new mappings should be defined by a change “Addition of a new
mapping”. When a mapping is deleted, it should be replaced by a new mapping to
provide successful execution of ELT processes and maintain data lineage. If a
replacement is not possible, a change of deletion of a mapping must be registered.

In case of addition of a new element to the system, a new instance of the corre-
sponding class described in the column Associated Class of Table 1 is created in the
metadata. If an element containing child elements (such as a data set, data source or
data highway level) is added to the system, only one instance of the class Change with
the type Addition is created and associated with the new class containing other child
elements.

When a new change is discovered automatically by a source wrapper or during the
execution of ELT processes or observed or generated by a user, the corresponding
metadata about it must be entered in the metadata repository as an instance of the class
Change with the status New. Thereafter, the adaptation component of the big data
warehouse architecture must inject the change and generate possible adaptation sce-
narios. At this stage the status of the change must be updated to In progress. Finally,
when a developer or administrator of the system accepts any of the adaptation scenarios
proposed by the adaptation component and change propagation is complete, the status
of the change must be adjusted to Processed.

6 Case Study

As a proof of concept, we have applied our proposed approach to the publications big
data system with the purpose to validate the metadata model. The goal of the system is
to integrate data about publications authored by employees and students of the
University of Latvia from multiple heterogeneous sources and to provide these data for
analysis in a data warehouse. The architecture of the developed system that includes
data sources and data highway levels is shown in Fig. 3.

Source Layer

APIAleph

APIScopus

APIWeb of
Science 1st Level

Raw Source
Data

2nd Level
Structured

Data Data Warehouse
Extractor

MetastoreLUIS

Fig. 3. Architecture of the publication data warehouse

386 D. Solodovnikova et al.

6.1 Data Sources

We integrated data from four structured and semi-structured data sources. The sources
contain complementary information about publications, therefore integration of all
sources is necessary to obtain the unified view of all publications authored by
employees and students of the university.

LUIS is the university data management system implemented in a relational
database Oracle. Data about employees and students of the university as well as data
about publications entered by LUIS users in the database are gathered and loaded into
the first level of the data highway. Aleph is the library data management system.
Bibliographical data about publications are obtained from it using API in XML format.
All data sets gathered from Aleph have the same structure. Scopus is an indexation
system and data from this source are obtained using API in XML format. We used four
data set types from this source: publication bibliographical data, author data, affiliation
data, and data about publication citation metrics. Web of Science (WOS) is another
indexation system. We use API to gather data from WOS in XML format. One type of
a data set is available to the university and it contains information about publications,
which also includes limited author data (names, surnames and ResearcherID field).

6.2 Data Highway

There are three levels in the data highway of the case study system. Data from the
sources are ingested and loaded into the first raw data level. We use Scoop to extract
and transfer data from the relational database LUIS into Hive tables. Data from other
sources are first pulled from the API and saved in Linux file system and then data are
transferred into HDFS using a script with HDFS commands.

At the 2nd level of the data highway, XML files are transformed into structured
Hive tables. Data at this level are not yet fully integrated. It is not necessary to
transform structured data from the relational database, therefore such data are not
included at the 2nd level of the data highway.

Finally, the 3rd level of the highway is a data warehouse implemented in Hive. Data
from external data sources that are partially transformed at the 2nd level are integrated
with LUIS data directly from the raw source data level.

For the sake of simplicity, we will discuss the fragment of the data warehouse
schema represented as a dimensional fact model in Fig. 4. Aggregated data from all
four sources are used to populate this star schema. The measures in the fact table
contain summarized values classified across four dimensions. Category dimension with
the same attribute is used to classify publications by types, such as journal article, book,
article in a conference proceedings, etc. Time is a traditional dimension in data
warehouses with the quarter of a year granularity in our case study. Faculty dimension
contains a hierarchy from a department within a faculty to represent the organizational
structure used at the university. Journal metrics dimension stores attributes that char-
acterize a journal or conference proceedings where publications were published.

On Metadata Support for Integrating Evolving Heterogeneous Data Sources 387

6.3 Metadata

We implemented the metastore as a relational database Oracle in accordance with the
proposed metadata model. Since we have access directly to LUIS data source, we
embedded a procedure directly into the data source system that collects metadata about
the structure and other metadata properties of tables used to populate the publications
system. After source data in XML format are loaded from other data sources, we run a
procedure that collects metadata about the structure of XML documents and other
metadata properties. Both procedures are able to compare discovered metadata with the
information in the metastore and register in the evolution metadata any detected
differences.

We defined mappings between data items of the 3 data highway levels. Examples
of mappings are given in Table 2. For the sake of clarity, we prefixed names of data
items with the corresponding data sources or data highway levels and names of data
sets. Question marks denote placeholders for origin data items in the order as they
appear in the column Origin Data Items.

Fig. 4. Dimensional fact model of the publications data warehouse

Table 2. Example mappings of the publication system

Target data item Origin data items Mapping
operation

Description

Level3.Faculty.
Department

Level1.LUIS_person.
Affiliation

? The department of an author of
the publication is determined
from the column Affiliation of
the table LUIS_person

Level3.
Publications.
Number of
Scopus citations

Level2.Scopus_publ.
citedby_count

SUM(?) The number of Scopus citations
is calculated as a sum of
citations of individual
publications extracted from
Scopus data source

Level2.Aleph.
doc_number

Level1.Aleph.
doc_number

? The item doc_number is
obtained from the same item
from the 1st level of the data
highway

Level3.
Publications.
Number of
publications

Level1.LUIS_publ.
Publ_ID
Level2.Aleph.
doc_number
Level2.Scopus_publ.
identifier
Level2.WOS.uid

COUNT
(?) + COUNT
(?) + COUNT
(?) + COUNT(?)

The number of publications is
calculated as a sum of counts of
identifiers from all sources. In
this case relationships are
defined to avoid counting the
same publication from multiple
sources several times

388 D. Solodovnikova et al.

6.4 Evolution

During operation of the publication system, several changes were discovered during the
comparison of the metadata present in the metastore and structure and properties of the
data incoming from the data sources. The list of changes with the corresponding
metadata additions is presented in Table 3.

7 Conclusions and Future Work

In this paper, we presented a system architecture to address the topical problem of
evolution in heterogeneous big data sources. The architecture consists of data highway
levels that contain data extracted from sources in their original format and gradually
transformed and integrated to obtain a structured data warehouse data. The main
contribution of this paper is the flexible metadata model that describes the structure and
other characteristics of such data sources and data highway levels as well as changes in
the structure not only of data sources, but also of data highway levels for the purpose to

Table 3. Changes in the publication system

Change Change processing

Addition of a data item
citeScoreYearInfoList to the data set
Scopus_metrics

A new data item (XML element) was composed
of several subelements that were also absent in
the previously gathered data sets, however, only
one change was created in the metadata for this
case and assigned to the uppermost ancestor of
the subelements

Deletion of a data item IPP from a data
set Scopus_metrics

This changed affected the data loading process.
Since it was not possible to substitute the deleted
data item by another data item present in any of
the data sources, a deletion of a mapping was
recorded in the metadata

Addition of a data source DSpace According to new analysis requirements, the
system must have been supplemented by data
that contain pre-prints or published full texts of
papers. A new data source contained
unstructured data (full text files) and metadata
associated with them as tags. Files and tags were
added as individual data items. The change
(addition of a new data source) was associated
only with the new data source

Update of a metadata property API
request value of a data set
Scopus_metrics

This change was discovered during the execution
of the script that extracts data from the API. It
had to be processed manually since the new API
request could not be discovered automatically.
The change was processed as a change in the
value of the attribute Value of the class Metadata
Property

On Metadata Support for Integrating Evolving Heterogeneous Data Sources 389

support data expansion and evolution of user requirements for data. We defined a set of
atomic changes and their representations in the model and applied the model in the case
study system.

The directions for future work include full implementation of the proposed archi-
tecture. We will develop algorithms for automatic and semi-automatic change treatment.
We also plan technology improvements to our case study system by incorporating
Presto or Spark SQL for data processing to improve performance.

Acknowledgments. This work has been supported by the European Regional Development
Fund (ERDF) project No. 1.1.1.2./VIAA/1/16/057.

References

1. Ceravolo, P., et al.: Big data semantics. J. Data Semant. 7(2), 65–85 (2018)
2. Kaisler, S., Armour, F., Espinosa, J.A., Money, W.: Big data: issues and challenges moving

forward. In: Proceedings of 46th Hawaii International Conference on System Sciences,
pp. 995–1004 (2013)

3. Terrizzano, I.G., Schwarz, P.M., Roth, M., Colino, J.E.: Data wrangling: the challenging
Yourney from the wild to the lake. In: Proceedings of 7th Biennial Conference on Innovative
Data Systems Research (CIDR 2015), Asilomar, CA, USA (2015)

4. Bilalli, B., Abelló, A., Aluja, T., Wrembel, R.: Towards intelligent data analysis: the metadata
challenge. In: Proceedings of the International Conference on Internet of Things and Big Data
- Volume 1, IoTBD, pp. 331–338, Rome, Italy (2016)

5. Diamantini, C., Lo Giudice, P., Musarella, L., Potena, D., Storti, E., Ursino, D.: A new
metadata model to uniformly handle heterogeneous data lake sources. In: New Trends in
Databases and Information Systems, ADBIS 2018 Short Papers and Workshops, Budapest,
Hungary, pp. 165–177 (2018)

6. Oram, A.: Managing the Data Lake. O’Reilly, Sebastopol (2015)
7. Quix, C., Hai, R., Vatov, I.: Metadata extraction and management in data lakes with GEMMS.

Complex Syst. Inform. Model. Q. 9, 67–83 (2016)
8. Solodovnikova, D., Niedrite, L.: Towards a data warehouse architecture for managing big

data evolution. In: Proceedings of the 7th International Conference on Data Science,
Technology and Applications (DATA 2018), Porto, Portugal, pp. 63–70 (2018)

9. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Definitive Guide to Dimensional
Modeling, 3rd edn. Wiley, Hoboken (2013)

390 D. Solodovnikova et al.

	On Metadata Support for Integrating Evolving Heterogeneous Data Sources
	Abstract
	1 Introduction
	2 Related Work
	3 Big Data Warehouse Architecture
	4 Metadata Model
	4.1 Schematic Metadata and Mappings
	4.2 Metadata Properties
	4.3 Evolution Metadata

	5 Evolution Support
	6 Case Study
	6.1 Data Sources
	6.2 Data Highway
	6.3 Metadata
	6.4 Evolution

	7 Conclusions and Future Work
	Acknowledgments
	References

