
Document Data Modeling: A Conceptual
Perspective

David Chaves(&) and Elzbieta Malinowski

Department of Computer Science and Informatics, University of Costa Rica,
San José, Costa Rica

{david.chavescampos,elzbieta.malinowski}@ucr.ac.cr

Abstract. The growing availability of data and the increased popularity of
NoSQL databases, that support the idea of managing unstructured or semi-
structured data, motivate implementers to skip the phase of a conceptual view of
data. However, document data stores belonging to the NoSQL group show a
clear tendency of looking for some common feature among documents creating
collections. This aspect motivates us to propose a model for the conceptual
representation of a document data store based on UML class diagrams and
mapping rules for its implementation. We also include a case study using
Twitter data and show implementation using three data stores: MongoDB,
CouchDB, and ArangoDB.

Keywords: Document data stores � NoSQL databases �
Conceptual data modeling

1 Introduction

References to big data mention the common characteristics of being unstructured. This
opened the possibility of skipping a conceptual modeling phase. On the other hand, the
benefits of using database conceptual models have been acknowledged for decades;
however, the conceptual design domain for NoSQL repositories is still at a research
stage leading to poorly-designed systems. The modeling does not aim to enforce
structure over data, but it helps to understand how data is organized for analysis [1].

Document data stores are the second most popular data model [2] and are similar to
a key-value model with a difference of having self-describing, hierarchical, and
examinable value. The usual practice in document datastores is to skip the conceptual
design taking directly implementation aspects into account. Even though this practice
can give positive results for small systems, it becomes more difficult for more complex
ones.

In this paper, we propose an extension of UML class diagrams for representing
document stores and mapping rules, showing the implementation in the three document
stores [2]. In our approach, we look for simplicity and for bridging the gap between
academics and practitioners.

This paper is organized as follows: Sect. 2 refers to related works, Sect. 3 intro-
duces our proposal for conceptual modeling. Sect. 4 shows mapping rules for the
implementation and Sect. 5 includes a case study using the proposed conceptual

© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, CCIS 1064, pp. 19–27, 2019.
https://doi.org/10.1007/978-3-030-30278-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30278-8_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30278-8_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30278-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-30278-8_3

model and its implementation in document stores; lastly, Sect. 6 gives conclusions and
future work.

2 Related Work

Currently, there are few systematic studies on data modeling for NoSQL databases,
e.g., [1, 3]. Some works propose particular solutions that can be used for conceptual
modeling of NoSQL databases [4, 5]; however, since the complexity of these
approaches is high, they can be difficult to infiltrate into real-world applications. On the
other hand, several studies refer explicitly to modeling documents in MongoDB using
UML notation [6]; other approaches refer to the JSON format to represent the docu-
ments for different NoSQL databases [7]. Others develop automatic tools to map from
JSON [8] and applying reverse engineering to already deployed systems [9].

In this work, we do not consider performance evaluation; however, this aspect is
important and we plan to extend this research since different reports are contradicting.
For example, [10] shows a better performance for indexed referenced documents
compared to embedded ones, but the results of [11] demonstrate the opposite
conclusions.

3 Conceptual Representation of Document Data Stores

Using a conceptual model in a document data store provides the advantage of repre-
senting data in a way that helps to understand, access, and analyze it from the
beginning of the implementation process. Lacking the model forces the implementers
to retain the details of data “structure” considering an implementation level that can be
complex in the presence of different document collections.

Conceptual modeling is a product-independent design allowing its creators to focus
on user requirements and implement the system, if adequate logical/physical mapping
rules are established [12]. The proposed conceptual model uses the UML class diagram
in a similar way as the conceptual modeling is done in the relational databases.

3.1 Document with Fields

A document is the main element and presents a set of data in an organized form, even
though its structure can differ from other documents. Each document contains fields;
one of them is reserved for document id. Since documents can have different fields, we
propose to choose as a representative document the one that includes all fields indi-
cating some fields as optional. Figure 1b shows an example where two fields are
included in all documents, e.g., movieId, and movieTitle, and one is optional, e.g.,
language, indicating this by the symbol of “*” before the name. Other fields group
elements in an array, e.g., genres; this data type with its cardinalities is indicated in
square parenthesis.

20 D. Chaves and E. Malinowski

3.2 Document Collection

The collection represents a grouping of similar documents. Compared to relational
databases, a document could correspond to a row and a collection of documents to a
table. Figure 1a shows a graphical representation for a collection using the UML
package. We use the symbol of contention relationship (�) to indicate that documents
form part of a collection, i.e., its membership [13].

3.3 Embedded Documents

The field in the document can refer to another document forming nested documents.
We propose two different UML notations to represent this: a composition relationship
and an aggregation relationship. Figure 1c shows a general form for representing the
composition relationship with an example of movies and their ratings. This embedded
document includes the name, its multiplicity (0..* in Fig. 1c), and the specification of
its fields. This kind of relationship is required when a nested document existence
depends on its container document, e.g., movie rating is part of a specific movie. Our
approach is different from [6] since the last one, additionally, requires class inheritance
that increases unnecessarily the complexity of the model.

On the other hand, when a nested document depends on its container but, if
necessary for the further extension, they can be converted to standalone documents, we
propose to use the aggregation relationship (♢), e.g., the movie storyline is closely
related but not strictly dependent to the movie.

3.4 Referenced Documents

When a collection is related to two or more other collections, it is necessary to define a
relationship between them to avoid data repetition. To represent this relationship, we
propose to use a bi-directional association as it can be seen in Fig. 2 (Directed by
relationship). This representation includes multiplicity values in the (min, max) form to
indicate the number of documents that should participate (min value) in the association
and number of documents from one collection that can be associated with documents
from another collection (max value).

Figure 2 shows two document collections representing movies and directors. Since
a movie can be directed by one or more directors and the director can lead some other
movies, the cardinality is many-to-many (indicated by the * symbol). Further, not all
movies have a specified director (min value is 0), but all directors have associated at
least one movie (min value is 1).

a) b) c)

Fig. 1. Document representation: (a) collection, (b) document itself, and (c) an embedded one.

Document Data Modeling: A Conceptual Perspective 21

4 Mapping Rules

After outlining the conceptual proposal, we define the following mapping rules using
the JSON markup language. It emulates an intermediate stage for the design of the data
store, similar to the logical representation in relational databases that allows one to
specify relations before their deployment in the particular DBMS. The translation from
JSON to the physical level according to the specific system is a straightforward task
and may consider other aspects, such as indexing, sharding, replication (if available),
among other features. Furthermore, it is possible to automate the mapping process from
UML to JSON based on already existing tools, such as crowd [8].

4.1 Document with Fields and Document Collection

To represent a document, we use the JSON specification as shown in Fig. 3 for a
document conceptual representation in Fig. 1. Each field is represented in a key-value
fashion with the key (field name) between quotes, followed by the associated value. In
addition, to represent an array (genres in the figure), values separated by commas are
included in square parentheses. Additionally, JSON file can include many documents
arranged in an array forming a collection.

4.2 Embedded Documents

The mapping of embedded documents is based on the commonly-known principles
used for object-relational databases [14]. Even though document data stores do not
belong to this group, general practice demonstrates the use of this mapping [13]. The
following rules are applied considering the multiplicity shown on the conceptual level:

• (0..1) or (1..1): indicates the existence of none or only one embedded document;
this document can be represented as such or its fields can be merged with the fields
of the main document.

• (0..*) or (1..*): indicates the existence of none, one, or many embedded documents;
these nested documents are organized as an array stored in one field of the main
document. Each related document is an element of the array.

Fig. 2. An example of a referenced collection.

{"id": "321","movieId": "123","movieTitle": "Science", "language": "English",
"genres": ["Comedy", "Fiction"],
"Ratings": [{"userId": "453", "rating": "4","timestamp": "2017-11-09 T 11:20 UTC"},

{"userId": "784","rating": "5","timestamp": "2016-10-08 T 13:40 UTC"}]}

Fig. 3. JSON file representing a document from Fig. 1.

22 D. Chaves and E. Malinowski

Notice that we do not consider a many-to-many relationship between main and
embedded documents since it would indicate that some “external” documents are
referencing an embedded document. We consider that if the embedded document must
be accessed by other “external” documents, it should be modeled as a collection of
documents with the corresponding association relationship.

4.3 Referenced Documents

Mapping of referenced documents, similar to the previous case, is based on known
principles from object-relational databases [14] according to the following rules:

• One-to-one cardinality: the document key is included as a field in another
document.

• One-to-many cardinality is mapped in two ways: each document on the n-side
cardinality stores the key of the document from the one-side cardinality or each
document on the one-side cardinality stores an array of keys from the n-side
cardinality.

• Many-to-many cardinality is also be mapped in two ways: documents in one or both
collections include an array of identifiers of corresponding documents from another
collection.

Figure 4 illustrates the case of two documents with a many-to-many cardinality
between collection of documents: Fig. 4a represents a movie with an array of corre-
sponding director IDs, while Fig. 4b includes arrays with associated movie IDs.

5 Case Study

After presenting the conceptual model and its mapping rules, we propose a case study
to demonstrate the use of the notation and its deployment according to [15] guidelines.

5.1 Case Delimitation

Objective. We evaluate the application of the proposed notation in different open
source products for document storing. The main hypothesis is that the implementation
is common among systems without incurring to particular additional requirements that
could change the proposed conceptual schema.

{"id": "564", "movieId": "417",
"movieTitle": "Night",
"Directors": [{"nameId":"853"},

{"nameId":"384"}]}

a) Movie document with several
directors.

{"id": "650", "directorId": "853",
"directorName": "James",
"country": "United Kingdom",
"Movies": [{"movieId":"417"},

{"movieId":"932"}]}
b) Director document with several

movies.

Fig. 4. Implementation in JSON for referenced many-to-many documents.

Document Data Modeling: A Conceptual Perspective 23

Related Cases. Many academic works include examples of using document stores as
relational implementations (e.g. [3, 13]) or modeling, particularly, in MongoDB [1].

Methodology. Using a qualitative approach, we design a conceptual model for a
document data store and implement it in selected data stores. We overview the raw data
[16] to define requirements for data store design. Afterward, we develop the schema
(Sect. 3) and map it (Sect. 4), showing the implementation differences.

Limitations. This model does not include some possible optimizations for each sys-
tem, such as indexes and buckets that could be included after the model is deployed.

5.2 Conceptual Representation

Considering Twitter messages, it is possible to identify data referring to users and
messages, leading to conceptual schema showed partially in Fig. 5.

As can be seen in Fig. 5, the Tweets and Users collections include their own fields,
e.g., tweetId, text or userId, name, among others. Furthermore, the tweet document
refers to two optional embedded documents: Place that may appear at most one time
and Media that may consist of several documents representing different media types. In
addition, the Tweets collection is related to the Users collection through two rela-
tionships: Tweet and Retweet. According to shown multiplicity, no all users publish
tweets, but every published tweet must have an associated (and only one) user. The
Retweet association shows the possibility that a message can be republished by many
users and these users can republish many messages.

5.3 Applied Mapping for Implementation

MongoDB Implementation. Figure 6 shows an example of a tweet in MongoDB
mapped according to rules in Sect. 4. Fields of embedded document Place are included
in the main document (lines 5–8) with an optional field (coordinates, line 5). The
composition Media object is embedded as an array (lines 9–10) considering its

Fig. 5. An extract of a conceptual representation of Twitter data.

24 D. Chaves and E. Malinowski

multiplicity (only two elements are shown). In addition, userId (line 3) represents a
one-to-many association relationship Tweet between Tweets and Users collections.

CouchDB Implementation. This store does not include the concept of collection;
therefore, it is necessary to insert the documents in the same database with a field
identifying its type, e.g., Tweets or Users. This adaptation is minimal and does not affect
the conceptual model. Figure 7 shows an example of a tweet document in CouchDBwith
theRetweet relationship. Thismany-to-many cardinality is shown as an array of users (the
field retweetUserId, line 8). Also, we include the field type (line 3) to define its collection.

ArangoDB Implementation. ArangoDB supports a user-defined unique _key to
identify each document. In addition, it includes the _id field, which is the combination
of the collection name and the document key (Fig. 8, lines 1 and 2). Particularly, both
CouchDB and ArangoDB include a revision value (Fig. 7, line 2 and Fig. 8, line 3) in
order to support concurrency control, which does not affect the conceptual level design.

1
2
3
4
5
6
7
8
9
10

{ "_id":ObjectId("5b21705709429256cd1bc75c"),
"tweetId":NumberLong("934592617924276225"),
"userId":NumberLong("839337948323713028"),
…,
"Place_coordinates":{"coordinates":[40.417416, -79.993930],"type":"Point"}
"Place_id":"5db3a841345615",
"Place_country":"United States",
"Place_city":"Pittsburgh, Pennsylvania",
"Media":[{ "id":NumberLong("934421567307747328"),"type":"photo", …},

{ "id":NumberLong("908781363528110080"),"type":"photo", …}]}

Fig. 6. Example in MongoDB of embedded (Place and Media) and referenced (Users)
documents from Fig. 5.

1
2
3
4
5
6
7
8
9

{"_id": "339f175188d7c1d587ab41af873b9fcb",
"_rev": "1-2a34bf1359537ef283dcc2633a4395fc",
"type": "Tweets",
"tweetId": "934592567584411649",
"userId": 157772888,
"text": "RT @mnrothbard: https://t.co/aoJqK0eJz7",
"created_at": "Sun Nov 26 01:20:06 +0000 2017",
"retweetUserId": [{157772888}, {2367997502}],
…}

Fig. 7. Example in CouchDB of documents with many-to-many cardinality.

1
2
3
4
5
6

{ "_key": "2816",
"_id": "tweets/2816",
"_rev": "_X-RUUJG-_x",
"tweetId":"934592680847327232",
"userId": 159104114,

…}

Fig. 8. Example in ArangoDB with keys combination and revision value support.

Document Data Modeling: A Conceptual Perspective 25

6 Conclusions and Future Work

The growing use of NoSQL databases and the increasing amount of data in these
repositories make the understanding of their “structure” increasingly difficult. The
affirmation that NoSQL databases, in particular, document data stores, manage semi-
structured data opens the possibility of skipping the conceptual phase; this phase is
important since it helps in understanding the nature of data and relationships existing
between different elements. As a consequence, it facilitates the expression of queries to
analyze data. Although it is well-known that documents can have different fields, there is
a clear tendency to create a document collection in order to group “similar” documents.

In this paper, we propose the use of UML class diagrams to represent document
stores on a conceptual level. We also include mapping rules that facilitate the document
data stores implementation, showing examples of three data stores. Even though the
proposed model and mapping rules can be extended, we expect that the simplicity of
this conceptual proposal may be appealing to a wide forum of document data stores
implementers.

References

1. Vera, H., Boaventura, W., Holanda, M., Guimarâes, V., Hondo, F.: Data modeling for
NoSQL document-oriented databases. In: 2nd Annual International Symposium on
Information Management and Big Data, Cusco (2015)

2. DB-Engines: DB-Engines Ranking category, May 2019. https://db-engines.com/en/ranking_
categories. Accessed 21 May 2019

3. Imam, A., Basri, S., Ahmad, R., Aziz, N., González-Aparicio, M.: New cardinality notations
and styles for modeling NoSQL document-store databases. In: IEEE Region 10 Conference
(TENCON), Malaysia (2017)

4. Abdelhedi, F., Brahim, A., Atigui, F., Zurfluh, G.: MDA-based approach for NoSQL
databases modelling. In: International Conference on Big Data Analytics and Knowledge
Discovery, Lyon (2017)

5. Bugiotti, F., Cabibbo, L., Atzeni, P., Torlone, R.: Database design for NoSQL systems. In:
Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 223–231.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12206-9_18

6. Poveda, J.: Propuesta de Notación Gráfica para el Modelo Orientado a Documentos de
MongoDB. Universidad Distrital Francisco José de Caldas, Bogotá (2013)

7. Zola, W.: 6 Rules of Thumb for MongoDB Schema Design, 29 May 2014. https://bit.ly/
2FUb3cp. Accessed 21 May 2019

8. Braun, G., Gimenez, C., Fillottrani, P., Cecchi, L.: Towards Conceptual Modelling
Interoperability in a Web Tool for Ontology Engineering in Simposio Argentino de
Ontologías y sus Aplicaciones, Córdoba (2017)

9. Hernández, A., Feliciano, S., Sevilla, D., García-Molina, J.: Exploring the visualization of
schemas for aggregate-oriented NoSQL databases. In: Proceedings of the ER Forum 2017
and the ER 2017 Demo track, Valencia (2017)

10. Reis, D.G., Gasparoni, F.S., Holanda, M., Victorino, M., Ladeira, M., Ribeiro, E.O.: An
evaluation of data model for NoSQL document-based databases. In: Rocha, Á., Adeli, H.,
Reis, L.P., Costanzo, S. (eds.) WorldCIST’18 2018. AISC, vol. 745, pp. 616–625. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-77703-0_61

26 D. Chaves and E. Malinowski

https://db-engines.com/en/ranking_categories
https://db-engines.com/en/ranking_categories
http://dx.doi.org/10.1007/978-3-319-12206-9_18
https://bit.ly/2FUb3cp
https://bit.ly/2FUb3cp
http://dx.doi.org/10.1007/978-3-319-77703-0_61

11. Calvo, K., Durán, J., Quirós, E., Malinowski, E.: MongoDB: alternativas de implementar y
consultar documentos. In: IX Congreso Internacional de Computación y Telecomunica-
ciones, COMTEL, Lima (2017)

12. Gulden, J., Reijers, H.: Toward advanced visualization techniques for conceptual modeling.
In: Proceedings of the CAiSE 2015 Forum at the 27th International Conference on Advanced
Information Systems Engineering, Stockholm, pp. 33–40 (2015)

13. Lima, C., Santos, R.: A workload-driven logical design approach for NoSQL document
databases. In: 17th International Conference on Information Integration and Web-based
Applications & Services, Brussels (2015)

14. Dietrich, S., Urban, S.: An Advanced Course in Database Systems: Beyond Relational
Databases. Prentice Hall, New Jersey (2004)

15. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empir. Softw. Eng. 14, 131–164 (2009)

16. Scott, J.: Archive Team: The Twitter Stream Grab, 6 December 2012. https://archive.org/
details/twitterstream. Accessed 21 May 2019

Document Data Modeling: A Conceptual Perspective 27

https://archive.org/details/twitterstream
https://archive.org/details/twitterstream

	Document Data Modeling: A Conceptual Perspective
	Abstract
	1 Introduction
	2 Related Work
	3 Conceptual Representation of Document Data Stores
	3.1 Document with Fields
	3.2 Document Collection
	3.3 Embedded Documents
	3.4 Referenced Documents

	4 Mapping Rules
	4.1 Document with Fields and Document Collection
	4.2 Embedded Documents
	4.3 Referenced Documents

	5 Case Study
	5.1 Case Delimitation
	5.2 Conceptual Representation
	5.3 Applied Mapping for Implementation

	6 Conclusions and Future Work
	References

