
Modelling and Querying Star
and Snowflake Warehouses Using

Graph Databases

Alejandro Vaisman(B), Florencia Besteiro, and Maximiliano Valverde

Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
{avaisman,mabestei,mvalverd}@itba.edu.ar

Abstract. In current “Big Data” scenarios, graph databases are increas-
ingly being used. Online Analytical Processing (OLAP) operations can
expand the possibilities of graph analysis beyond the traditional graph-
based computation. This paper studies graph databases as an alternative
to implement star and snowflake schemas, the typical choices for data
warehouse design. For this, the MusicBrainz database is used. A data
warehouse for this database is designed, and implemented over a Post-
gres relational database. This warehouse is also represented as a graph,
and implemented over the Neo4j graph database. A collection of typi-
cal OLAP queries is used to compare both implementations. The results
reported here show that in ten out of thirteen queries tested, the graph
implementation outperforms the relational one, in ratios that go from 1.3
to 26 times faster, and performs similarly to the relational implementa-
tion in the three remaining cases.

1 Introduction

Online Analytical Processing(OLAP) [6,8] comprises a set of tools and algo-
rithms that allow querying large data repositories called data warehouses (DW).
At the conceptual level, these DWs are modelled as data cubes, following the
multidimensional (MD) model. In such model, each cell of the cube contains
one or more measures of interest, that quantify facts. Measure values can be
aggregated along dimensions, organized as sets of hierarchies. The most popular
OLAP operations on cube data are aggregation and disaggregation of measure
values along the dimensions (called roll-up and drill-down, respectively); selec-
tion of a portion of the cube (dice); or projection of the data cube over a subset
of its dimensions (slice operation).

Property Graphs [5,7] underlie the most popular graph database engines [1].
In addition to traditional graph analytics, it is also of interest of the data scientist
to have the possibility of performing OLAP on graphs. This paper explores graph
databases as an alternative for storing DWs or data marts (that is, DWs oriented
to analyse focused particular problems, generally at departmental level). Rela-
tional OLAP models are typically of two kinds: star schema-based and snowflake

c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, CCIS 1064, pp. 144–152, 2019.
https://doi.org/10.1007/978-3-030-30278-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30278-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-30278-8_18


Modelling and Querying Star and Snowflake Warehouses 145

schema-based. Both of them are composed of a collection of fact and dimension
tables. Fact tables contain the foreign keys of the dimension tables, and a set
of measures quantifying the facts. Dimension tables contain dimensional data.
In the star model, dimension tables are denomalized, whereas in the snowflake
model, dimension tables are normalized. This paper studies graph databases
as an alternative to implement the star and snowflake DW schemas. The main
hypothesis here is that graph databases can be more efficient than relational
ones to address the typical kinds of OLAP queries, which consist, basically, in
sequences of selection-projection-join-aggregation operations (SPJA).

A case study is discussed throughout the paper, based on the MusicBrainz
database (http://musicbrainz.org/), an open music encyclopedia that collects
music metadata and makes it available to the public. In this work, MusicBrainz
is considered the OLTP (Online Transactional Processing) database, from which
a DW is designed following the snowflake schema. This design is implemented on
a PostgreSQL database, populated with data from the OLTP database through
an ETL process (not reported in this paper). The same logical design is per-
formed following the property graph data model, and implemented over a Neo4j
database, which is then populated from the relational data. A collection of SPJA
queries is defined and executed on both implementations, and the results are
reported and discussed. The experiments showed (with some exceptions) a clear
advantage of the graph alternative over the relational one.

The remainder of this paper is organized as follows: In Sect. 2 related work
is discussed. Section 3 presents the case study, and the corresponding relational
and graph models. Section 4 presents the queries implemented in the paper, and
Sect. 5 describes the experiments, and reports and discusses the results. Section 6
concludes the paper and suggest future research directions.

2 Related Work

There is an extensive bibliography on graph database models, comprehensively
studied in [1,3]. The interested reader is referred to this corpus of work for details.
In real-world practice, two graph database models are used, namely (a) Models
based on RDF (https://www.w3.org/RDF/) oriented to the Semantic Web; and
(b) Models based on Property Graphs. Models of type (a) represent data as sets
of triples where each triple consists of three elements that are referred to as
the subject, the predicate, and the object of the triple. Informally, a collection
of RDF triples is an RDF graph. In the property graph data model, [2] nodes
and edges are labelled with a sequence of (attribute, value)-pairs. Extending
traditional graph database models, Property Graphs are the usual choice in
modern graph databases used in real-world practice.

The present paper works with models based on Property Graphs, and it is
based on the work of Gómez et al. [4], who propose a model for performing OLAP
on hypergraphs, based on the notion of graphoids, which are defined as graphs
aggregated at different levels of granularity, using a collection of OLAP dimen-
sion hierarchies. The proposal supports heterogeneous graphs, which is required
for typical multidimensional problems. The authors show that this model cap-
tures the semantics of the star and snowflake schemas.

http://musicbrainz.org/
https://www.w3.org/RDF/


146 A. Vaisman et al.

3 Data Model

The model adopted in this paper will be presented through a running example
based, as mentioned above, on the MusicBrainz database. For clarity of presen-
tation, and to make the analysis more comprehensive, only the portion of the
database containing information about music track releases and musical events,
is tackled here. The core data in the original database includes, for example:
Artists (with, e.g., name, aliases, type, begin and end dates); Releases (title,
artist credit, type, status, language, date, country, label, etc.); Recordings (title,
artist credit, duration, etc.); Labels (name, aliases, country, type, code, begin
and end dates). Based on the original MusicBrainz database, a relational DW is
defined at a conceptual level. Then, an equivalent graph DW is created, follow-
ing [4]. In the next two sections, the relational and graph representations of the
DW are described and discussed.

Fig. 1. ROLAP design for the musicbrainz database.

The MusicBrainz Relational Data Warehouse. Figure 1 depicts the snowflake
schema for the MusicBrainz DW. There are two fact tables, namely release fact
and event fact, representing the occurrence of the release of a music piece, or of an
event, respectively. Each fact table refers to a dimension table called release dim
and event dim. Artists in the release fact fact table are described at the artist
credit level (using the id artist credit attribute, which is a foreign key of the
artist credit dim dimension table). An artist credit indicates a reunion of artists
for a release, like, for example, David Bowie and Queen for the “Under Pressure”
track. For the events, artists are described in the artist dim dimension table,
referred through the id artist attribute. There is also an area dim dimension table



Modelling and Querying Star and Snowflake Warehouses 147

RELEASE

RELEASE
FACT

ARTIST 
CREDIT

DATE

EVENT

EVENT
FACT

ARTIST

CITY

COUNTRY

UNKNOWN

[RELEASED IN]

[RELEASED ON]

[REFERS TO]

[TOOK PLACE IN]

[INCLUDES]

[IS FROM]

[PERFORMED BY]

[IS FROM]

[IS PART OF]

[HAPPENED ON]

[IS PART OF]

[TOOK PLACE IN]

[IS FROM]

[RELEASED ON]

[RELEASED IN]

[REFERS TO]

[REFERS TO]

Fig. 2. Graph design for the musicbrainz database.

which includes the city → country dimension hierarchy. Thus, actually the design
is a mixture of a star and snowflake schemas, as it is usual in data warehousing
design practice. Finally, there is a time dimension represented by a dimension
table denoted date dim. This DW was implemented on a PostgreSQL database,
and part of the data exported using an ETL process (not described here).

The MusicBrainz Graph Datawarehouse. Figure 2 depicts the schema of the
graph database model for the MusicBrainz DW represented in Fig. 1. Attributes
are not included in the graph representation, for the sake of clarity, and only
the node types are depicted. There is a node for each event fact and a node for
each release fact. In addition, there is an “Unknown” node type, which indicates
missing data. The references to the dimensions are materialized through links
to nodes which represent the members of the dimensions. Therefore, there is
one node for each dimension member linked to a fact, such that the descriptive
attributes are properties of these nodes (e.g., a Date node, with month and
year properties). Some dimension hierarchies are made explicit. For example,
the area dim dimension is transformed into a node hierarchy of the kind city →
country. Event and release facts are associated with nodes representing event and
release data (e.g., the date of the event). In summary, with respect of the model
introduced in [4], Fig. 2 represents the base graphoid (the graphoid at the finest
level of granularity), and the background dimension hierarchies, one for each
dimension in the relational schema, plus an Unknown dimension, with one level.
This DW was implemented on a Neo4j graph database, which was populated
using a script containing a sequence of Cypher statements.



148 A. Vaisman et al.

4 Case Study and Discussion

This section shows how four kinds of OLAP queries can be expressed over both
representations described in Sect. 3: (a) PJA queries, that means, queries that
perform a projection after join operations, and finally aggregate the result; (b)
SPJA queries, analogous to (a), but including a selection (a filter using a Boolean
condition); (c) FPJA queries, that is, PJA queries that involve self joins of fact
tables (in the snowflake model) of self references to the same kind of node (in the
graph model); (d) PJA-DA queries, that is, PJA queries referring to different
kinds of facts. For the sake of space, only some of Cypher expressions are shown
in the queries below.

(a) PJA Queries. These typical OLAP queries, generally link facts and dimen-
sions, and finally perform some kind of aggregation. The first query is a sim-
ple join, representing the climbing along the artist hierarchy starting from
artist credit, aggregating the releases.

Query 1. Compute the number of releases per artist.

In SQL, this is a join between the fact table containing the releases
(release fact, and the dimension tables artist credit dim and artist dim. In Cypher:

MATCH (r:ReleaseFact)-[]->(a:ArtistCredit)-[]->(a1:Artist)

RETURN a1.name, count(r) ORDER BY a1.name ASC

Queries in Cypher are evaluated by means of pattern matching. In this case, the
join is implemented through the matching of the ReleaseFact → ArtistCredit →
Artist path, against the MusicBrainz graph. In this case, the relationship names
of the path are not needed since the edges between nodes can be inferred from
the node types. In the next query, aggregation is performed climbing along two
dimensions, namely Artist and Time.

Query 2. Compute the number of releases per artist and per year.

MATCH (r:ReleaseFact)-[r1:RELEASED_BY]->(a:ArtistCredit)-[]->(a1:Artist),

(d:Date)<-[rd:RELEASED_ON]-(r)

RETURN a1.name, d.year, count(r) ORDER BY a1.name ASC,d.year ASC

Note that in Cypher, the aggregation a1.name, d.year, count(r) is a concise way
to express a GROUP BY clause in SQL. Query 3 below, is similar to Query 1,
but uses the event facts rather than the release facts.

Query 3. Compute the number of events per artist.

In the next query, aggregation of event facts is performed along the Event and
Artist dimensions.

Query 4. Compute the number of times the artist performed in each event.



Modelling and Querying Star and Snowflake Warehouses 149

MATCH (e1:Event)<-[:REFERS_TO]-(e:EventFact)-[:PERFORMED_BY]->(a:Artist)

RETURN e1.name,a.name, count(*) ORDER BY e1.name ASC, a.name ASC

It can be seen that the kind of event is given in the event type of node (of the
event dim dimension in the relational model). The last PJA query aggregates
data along three dimensions (Event, Artist, and Time).

Query 5. For each (event, artist, year) triple, compute the number of times the
artist performed in an event on an year.

(b) SPJA Queries. These queries add, to the join condition between facts and
dimensions, a selection (Boolean) condition. The first query to be analysed oper-
ates over event facts.

Query 6. Same as Query 5, for artists in the United Kingdom and events
occurred after year 2006.

MATCH (e1:Event)<-[r1:REFERS_TO]-(e:EventFact)-[r:HAPPENED_ON]->(d:Date)

WHERE d.year > 2006

WITH e,d,e1

MATCH (e)-[p:PERFORMED_BY]->(a:Artist)-

[IS_FROM]->(c:Country{name:’United Kingdom’})

RETURN e1.name, d.year,a.name, count(*)

ORDER BY e1.name asc, d.year asc, a.name asc

In the query above, the WITH expression passes the variables on to the next
step of the computation. The next query operates over releases.

Query 7. Compute the number of releases, per language, in the UK.

The next query requires joining the event facts with themselves, once. Queries 9
and 10, require two and three self joins, respectively.

Query 8. Compute, for each pair of artists, the number of times they have
performed together at least twice in an event.

MATCH (a1:Artist)<-[]-(e:EventFact)-[]->(a2:Artist) WHERE a1.id < a2.id

WITH a1, a2, COLLECT(e) AS events WHERE SIZE(events) > 1

RETURN a1.name, a2.name, SIZE(events) ORDER BY SIZE(events) desc

The COLLECT statement builds a list with all the events for each pair of artists.
The SIZE function computes the length of this list.

(c) FPJA Queries But Involving More Than One Self Fact Table Joins. This
kind of queries joins several fact nodes with other ones of the same type. The
next query requires two of such joins.

Query 9. Compute the triples of artists, and the number of times they have
performed together in an event, if this number is at least 3.



150 A. Vaisman et al.

MATCH (a1:Artist)<-[]-(e:EventFact)-[]->(a2:Artist) WHERE a1.id < a2.id

WITH a1,a2,COLLECT(e) AS events WHERE SIZE(events) > 2

MATCH (a1:Artist)<-[]-(e1:EventFact)-[]->(a2:Artist)

MATCH (a3:Artist)<-[]-(e1) WHERE a2.id < a3.id

WITH a1.name as name1, a2.name as name2,a3.name as name3 ,

COUNT(e1.idEvent) as nbrTimes WHERE nbrTimes > 2

RETURN name1,name2,name3, nbrTimes ORDER BY nbrTimes DESC

Query 10. Compute the quadruples of artists, and the number of times they
have performed together in an event, if this number is at least 3.

(d) PJA-DA Queries. Finally, queries involving events and releases are evalu-
ated. In OLAP this is called a drill-across operation between event and release
facts.

Query 11. Compute the pairs of artists that have performed together in at least
two events and that have worked together in at least one release, returning the
number of events and releases together.

Query 12. List the artists who released a record and performed in at least an
event, and the year(s) this happened.

Table 1. Dataset sizes for the relational representation (left); Dataset sizes for the
graph representation (center); Results of the experiments (right).

Table # tuples
date dim 90,033
artist dim 1,151,920

artist credit dim 1,871,875
area dim 74,211

release dim 1,715,636
event dim 19,441
event fact 55,281
release fact 1,724,365

Element(node/edge type) # nodes # edges
Artist 1,151,920

ArtistCredit 1,871,875
City 73,955

Country 255
Event 19,441
Release 1,715,636

ReleaseFact 1,724,365
EventFact 19,457
Unknown 1

HAPPENED ON 19,348
IS FROM 1,151,920
INCLUDES 4,098,689
IS PART OF 73,955

PERFORMED BY 52,599
RELEASED BY 1,913,494
REFERS TO 1,743,822
RELEASED IN 1,755,598
RELEASED BY 1,913,494
RELEASED ON 1,407,504
TOOK PLACE IN 19,475

Query PostgreSQL Neo4j Pg/Neo4j
query 1 22 11 2
query 2 30 12.5 2.4
query 3 0.8 0.12 6.66
query 4 1.5 0.2 7.5
query 5 2.4 0.4 6
query 6 0.2 0.2 1
query 7 0.2 0.2 1
query 8 2 1.5 1.33
query 9 24 5 4.8
query 10 1110 43 25.8
query 11 9 1.8 5
query 12 3 3 1
query 13 2 1 2

In Cypher, the query reads:

MATCH (a:Artist)<-[PERFORMED_BY]-(e:EventFact)-[:HAPPENED_ON]->(d:Date)

WITH distinct a,d.year as year

MATCH (r:ReleaseFact)-[r1:RELEASED_BY]->(a2:ArtistCredit)-[]->(a),

(r)-[r2:RELEASED_ON]->(d1:Date) WHERE d1.year=year

RETURN DISTINCT a.name, year

Query 13. Artists who released a record and performed in at least an event,
and the year(s) this happened, for events and releases occurred since 2007.



Modelling and Querying Star and Snowflake Warehouses 151

5 Experiments

The thirteen queries in Sect. 4 where run over relational and graph databases
designed following the models described in Sect. 3. The solution based on the
graph model is compared against the relational alternative containing exactly
the same data. For the relational representation, the DW was implemented as
a snowflake schema and stored in a PostgreSQL database. All tables were fully
indexed for the workload described in the previous section. The left-hand side
of Table 1 shows the sizes of the tables. For the graph representation, the num-
ber of nodes and edges in the graph, stored in a Neo4j database, community
version 3.5.3, are depicted in the center part of the figure. As for the relational
alternative, all the required indexes were defined. The right-hand side of Table 1
shows the results of the experiments. The queries introduced in Sect. 4 were run
on machine with a i7-6700 processor and 32 GB of RAM, a 1 TB hard disk, and
a 256 MB SSD disk. The execution times are depicted as the averages of five
runs of each experiment, expressed in seconds. The best time for each query is
highlighted in bold font. The ratio between the execution times in PostgreSQL
and Neo4j are indicated in the fourth column.

The results of the experiments show that only in three out of thirteen queries
the execution times were the same. In the remaining eleven queries, Neo4j clearly
outperformed the relational alternative, ranging from 1.33 to almost 26 times
faster. For all PJA queries (Queries 1 through 5), the graph alternative clearly
outperforms the relational one. Note that this occurs for queries addressing both,
events (the smaller fact table, Queries 1 and 2) and releases (Queries 3, 4, and 5).
The probable reason for this is that neighbours are found very fast in Neo4j, due
to its internal graph representation mechanism. Once the neighbours are found,
aggregation is performed very efficiently. In the case of SQL, the join must be
computed, and this turns out, in general, to be more expensive than finding
the neighbours of a node. For SPJA queries (Queries 6 through 8), execution
times are similar for both alternatives, except for Query 8, which requires a self
join of the event facts, and the graph implementation behaves better than the
relational one. The reason here is that selections in RDBMSs are very efficiently
performed thanks to the indexing of the filtering attributes, and this compen-
sates the cost of the joins. Probably the most surprising results are obtained
for self-join queries (the FPJA queries), Queries 9 and 10, where the differences
are clearly in favour of the graph alternative. Finally, for the PJA-DA (drill-
across) queries (Queries 12 and 13), execution times seem to depend highly on
the selectivity of the filtering attributes, but nevertheless, Neo4j behaves at least
the same than SQL (like in Query 12, which does not include a selection).

6 Conclusion and Open Problems

This paper studied the plausibility of graph databases, and the property graph
data model, for representing and implementing data warehouses modelled as
star and snowflake schemas, using the MusicBrainz database. The results in



152 A. Vaisman et al.

most situations, the graph representation was clearly faster, up to one order of
magnitude. Building on the results reported in this paper, future work includes
looking for new case studies, that would lead to building a benchmark to evaluate
graph databases for OLAP queries.

Acknowledgments. Alejandro Vaisman was partially supported by project PICT-
2017-1054, from the Argentinian Scientific Agency.

References

1. Angles, R.: A comparison of current graph database models. In: Proceedings of
ICDE Workshops, Arlington, VA, USA, pp. 171–177 (2012)

2. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J.L., Vrgoc, D.: Foundations
of modern query languages for graph databases. ACM Comput. Surv. 50(5), 68:1–
68:40 (2017)

3. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv.
40(1), 1:1–1:39 (2008)

4. Gómez, L.I., Kuijpers, B., Vaisman, A.A.: Performing OLAP over graph data: query
language, implementation, and a case study. In: Proceedings of BIRTE, Munich,
Germany, 28 August 2017, pp. 6:1–6:8 (2017)

5. Hartig, O.: Reconciliation of RDF* and property graphs. CoRR, abs/1409.3288
(2014)

6. Kimball, R.: The Data Warehouse Toolkit. Wiley, New York (1996)
7. Robinson, I., Webber, J., Eifrém, E.: Graph Databases. O’Reilly Media, Sebastopol

(2013)
8. Vaisman, A., Zimányi, E.: Data Warehouse Systems: Design and Implementation.

Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54655-6

https://doi.org/10.1007/978-3-642-54655-6

	Modelling and Querying Star and Snowflake Warehouses Using Graph Databases
	1 Introduction
	2 Related Work
	3 Data Model
	4 Case Study and Discussion
	5 Experiments
	6 Conclusion and Open Problems
	References




