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Abstract. Besides being a fundamental infrastructure for communica-
tion, cellular networks are increasingly exploited for positioning via signal
fingerprinting. Here, we focus on cellular signal fingerprinting, where an
accurate and comprehensive knowledge of the network is fundamental.
We propose an original multilevel database for cellular networks, which
can be automatically updated with new fingerprint measurements and
makes it possible to execute a number of meaningful analyses. In par-
ticular, it allows one to monitor the distribution of cellular networks
over countries, to determine the density of cells in different areas, and to
detect inconsistencies in fingerprint observations.
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1 Introduction

Nowadays, our society is characterized by a pervasive use of mobile devices.
The most common example of a mobile device is the smartphone, which com-
bines voice communication with data services, Wi-Fi connection, and localiza-
tion services to support advanced activities. As a matter of fact, many commonly
employed applications make use of the current position of the user.

In order to compute the current location of a device, the most widely known
solution is the Global Positioning System (GPS). Despite its widespread use,
GPS has some significant drawbacks. On the one hand, the GPS signal cannot
be received in certain conditions; on the other hand, energy consumption of GPS
modules can be a problem with battery-powered devices [8,15].

Cellular signal fingerprinting offers a viable alternative to GPS solutions
[1,2,7]: an estimation of the current position of a device can be obtained by com-
paring the signals received at that position with those recorded in a database of
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observations taken at known positions. The use of signals coming from cellular
networks in positioning systems has a number of advantages. The most signifi-
cant ones are high coverage and low cost. Moreover, monitored devices need to
be equipped with a cellular module and a simple software component only.

The most critical aspect is the need of collecting and maintaining a large set
of fingerprints with their position. As a matter of fact, there are some ready-to-
use repositories. Some of them are free of charge, others require a subscription
fee. The most famous community dataset is OpenCellID [13], which is the result
of a crowd source effort. We will make use of such a dataset. Unfortunately, as
it happens with the other publicly-available datasets, collected data are poorly
structured: information is recorded in a raw table (in csv format) of cellular
signal readings paired with their position in a global reference system. In par-
ticular, no data structuring reflecting the organization of the cellular networks
is present. The lack of an organization and of a user-friendly presentation of
data complicates and limits their utilization. To overcome these weaknesses, we
designed and implemented a cellular network relational database for fingerprint
positioning systems, which integrates a large set of relevant data about cellular
network, at different levels of granularity, in a coherent and systematic way.

It is well known that signal fingerprinting heavily relies on a comprehensive
and accurate knowledge of cellular network configurations. In view of that, we
start with an in-depth analysis of cellular networks in order to define a concep-
tual schema able to capture all meaningful aspects of their organization (Sect. 2).
Then, we develop (Sect. 3) and populate (Sect. 4) the database, and show, by
means of some representative examples, how useful information about the con-
figuration of the network can be easily obtained from it (Sect. 5).

2 Basics of Cellular Networks

Cellular networks support wireless communication between mobile devices (both
voice and data transmissions), and allow for seamless nation or even worldwide
roaming with the same mobile phone. Different cellular technologies have been
proposed over the years, each one with its own distinctive features [6,9,11].

Cellular radio networks are based on the deployment of a large number of
low-powered base stations for signal transmission, each one with a limited trans-
mission area, covering the surroundings with typically more than one cell. Cells
are grouped into clusters to avoid adjacent cells to use the same frequency. Usu-
ally, a cell overlaps one or more other ones; a mobile device can distinguish
among them by making use of their frequencies and scrambling codes (in the
case of UMTS and LTE). Cells in a mobile network are put together into admin-
istrative areas, known as Location Areas (LA) in 2G/3G voice services, Routing
Areas (RA) in 2G/3G data services, and Tracking Areas (TA) in 4G networks.
These administrative areas are used to determine in a rough way the current
location of a mobile device in the idle mode, that is, when it is switched on, but
it is not using the network for any call or data exchange.

Independently of the adopted technology, there is a Public Land Mobile Net-
work (PLMN), which can be identified by the Mobile Country Code (MCC),
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which indicates the country where the network is located, and the Mobile Net-
work Code (MNC), which identifies the network in the country. On the basis of
the administrative organisation, a Global Cell Identifier (GCI) can be used to
globally identify every cell. Even though the properties of each element depend
on the specific technology, the GCI can be viewed as the concatenation of the
PLMN identifier, the LAC or the TAC identifier, and the Cell Identifier (CI).

3 A Multilevel Database for Cellular Networks

Following the consolidated methodology for database design, we start with
the conceptual schema, which has been developed by using the ChronoGeo-
Graph (CGG) model [3,4], a spatiotemporal extension of the Entity-Relationship
model.

Conceptual Design. The analysis of cellular networks reported in Sect. 2 makes
it clear that they are organized in a hierarchical way (Fig. 1 - left side). Each net-
work (entity PLMN ) can be univocally identified by the values of the attributes
mcc and mmc, and it consists of a number a distinct components (“subnetwork”
entity subPLMN ). Such a decomposition depends on the specific cellular tech-
nologies. According to the administrative perspective, each subnetwork consists
of a number of cells (entity CELL), grouped into administrative areas (entity
ADMINISTRATIVE AREA), on the basis of their registration and/or routing
services. The properties of each level of the network organization depend on the
specific technology. The differences among technologies are modeled by means of
a suitable specialization of the entity subPLMN. The most significant one occurs
at the level of the administrative areas (Fig. 1 - right side): the first two genera-
tions (2G GSM and 3G UMTS) distinguish two kinds of area, namely, Location
and Routing Areas (entities LA and RA, respectively), which are identified by
specific lac and rac codes. In the fourth generation, Location and Routing Areas
are replaced by the Tracking Area (entity TA), which is characterized by a tac
code. In all cases, a single code, combined with the ci, is used to identify the
cells: the lac, for 2G and 3G, and the tac, for 4G.

Logical Design and Implementation. The CGG schema is turned into a
relational one by applying the standard rules for the ER-to-relational schema
mapping paired with dedicated rules for the encoding of the CGG spatial fea-
tures [4]. The resulting schema is then implemented in the DBMS PostgreSQL
with its spatial extension PostGIS. PL/SQL triggers are used for the automatic
population of the tables. More precisely, when a new observation is received, it is
checked and, if valid, the corresponding cell is inserted (or updated) in the table
of cells. When a cell is inserted (or updated), the corresponding administrative
area is inserted (or updated) in the table of the location/tracking areas, and so
on. To obtain a comprehensive description of cellular networks via observations,
the logical schema has been extended with some derived attributes whose value
can be automatically computed, such as timestamp attributes (firstview and
lastview attributes), that model the lifespan of the instances, as inferred from
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Fig. 1. A hierarchical schema for cellular networks: the administrative organization.

observations, and a counter attribute (attribute numobs), which keeps track of
the number of observations of a single component to evaluate its reliability.

4 Data Ingestion and Filtering

In order to test our proposal, we used the OpenCellID dataset [13], which is
probably the most popular, publicly available, crowd source project in the field.
Basically, users collect observations about signals from cell towers and locations
using a specific mobile phone application. On 2017, the project was acquired
by the Unwired Labs company, a geolocation service provider enterprise that
affected both the privacy policies and the level of detail of published data.

We downloaded the OpenCellID dataset on April 2017, just before the change
to the data and privacy policies. Data is organized in a tabular format (csv for-
mat), where each observation is encoded by means of a number of attributes:
mcc, net, area, cell, lon, lat, signal, measured, created, rating, speed, direction,
radio, ta, rnc, cid, psc, tac, pci, sid, nid, and bid. As a matter of fact, not all
these attributes are available for all technologies, and even their meaning slightly
changes from one technology to the other. Moreover, since several devices con-
tributed to the dataset, there are significant differences in terms of attribute
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structure and attribute subsets. The dataset covers an interval of about three
years (from 2014-01-01 to 2017-03-17). It includes 42,951,377 observations dis-
tributed among three different cellular technologies. On the basis of a preliminary
cleaning step, we restricted ourselves to 26,840,87 GSM observations, 6,177,024
UMTS, and 9,848,455 LTE (total 42,865,566) over the entire globe.

Fig. 2. Frequent errors: oversized cell
over country.

Fig. 3. Frequent errors: oversized cell
within country.

Data from a real scenario is generally affected by different types of error. As
noticed in [12], there are at least four phenomena leading to incorrect readings:
erroneous Cell IDs, antenna dragging, outliers, and unrealistic cell sizes. As a
consequence, one of the most important operation in data acquisition is cleaning.
To this end, we developed two filters to detect two relevant error situations. The
first one deals with erroneous Cell IDs, and it consists of a domain check for
each cellular parameter. The study of the cellular network standards allowed us
to list a complete set of domains for each technology, e.g., ci ranges from 0 to
65535 for 2G and 3G, and from 65535 to 268435455 for 4G. If an observation
exhibits one or more attribute values out of range, this is a valid reason to
discard the entire observation, as some error may have occurred. The second
filter focuses on the quality of the GPS position associated with each observation.
First, to avoid inaccurate GPS positions, we excluded observations with less than
3 visible satellites. Later, a more interesting check has been done by comparing
the GPS location of observations with borders of the country corresponding to
the associated mcc. This spatial filter allowed us to avoid errors as the outlier
depicted in Fig. 2. It is clear that a single cell belonging to a country cannot be
received from such a long distance, in the middle of another country.

One of the main advantages of the proposed database is that, by keeping the
geometry of cells constantly updated, it allows one to easily integrate additional
filters. As an example, we may think of a filter that excludes observations which
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are not coherent with the physical characteristics of the cellular network. Con-
sider the scenario in Fig. 3, where the coverage of the shown cell is clearly too
wide with respect to the transmitting range. This can be interpreted as an error,
which may be caused by various phenomena (e.g., a device may have submitted
discrepant positions and signals due to a failure or a switch on after a flight).

Fig. 4. Cellular networks per country.

5 Data Analysis

Once the data ingestion and filtering phases have been completed, the hierar-
chical structure of the schema allows us to execute some meaningful analysis
tasks on the filtered data. It is worth pointing out that all the analyses rely
upon a reconstruction of the actual network as perceived trough the observa-
tions recorded in the OpenCellID dataset. Moreover, despite the application of
a couple of filters, that ruled out some inconsistent data, most probably data
are still affected by errors. However, our main goal is to validate the proposed
data model, and the above limitations have a little impact on it.

Let us first focus on the PLMNs occurring at the coarsest level. In Fig. 4,
we give a graphical account of the result of a query that computes the number
of cellular networks available in any single country, ignoring the specific cellular
technology. India turns out to be the country with the maximum number of
PLMNs (182), followed by USA (110) and Brazil (17). If we consider density
(number of PLMNs divided by the area of the country), the first positions are
occupied by small countries like Monaco, Gibraltar, and Macau.

Let us consider now the finer levels of the schema where administrative areas
and cells come into play. In [10], the authors make it evident the existence of a
correlation between the size of administrative areas and the density of population
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in the area. Other experiments showed that the number of cells in a given admin-
istrative area can also be used to distinguish between rural and urban areas. This
is the case, for instance, with the results reported in [16], where the density of
base stations, and thus of cells, is taken as a good criterion to classify an area as
rural or not. By exploiting the relationships between the various spatial entities,
we can easily determine the internal composition of the administrative areas,
and compute the density of the cells.

Fig. 5. Density of cells. Fig. 6. Urban (red) and rural (blue)
areas. (Color figure online)

In Fig. 5, we give a graphical account of the density of cells, in relation to the
localization of urban areas, as it emerges from the pieces of information recorded
in the considered dataset. It is clear from the picture that areas with a high
density of cells (dark purple) are located where urban areas are, in particular
where the cities with the highest population, such as Berlin, Hamburg, and the
area of Koln, are (the largest cities are labeled with their name). As another
example, working with GSM location areas with an extension between 50 Km2

and 500 m2 (avoiding areas which are not significant for the lack of a sufficient
number of observations or for the presence of errors), it is possible to select the
two areas with the highest (reps. lowest) density. As already pointed out, we
cannot assume the dataset to be complete, and thus we may expect new cells to
be added in the areas under consideration. However, the overall result confirms
the original idea, as shown in Fig. 6: the two areas with the highest density (red
areas) are located in the urban area of Berlin; the two areas with the lowest
density (blue areas) are located in the rural area near Berlin.
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6 Conclusions and Further Work

Thanks to their global coverage, cellular networks play a relevant role in a num-
ber of different contexts, including positioning systems based on cellular finger-
print observations. A comprehensive and accurate knowledge of their configura-
tion is thus extremely important to optimise their usage. This paper is a first step
towards the creation of a data store providing carefully structured information
coming from observations of cellular networks.

We focused on the administrative organization of the networks (pieces of
information usually available on the mobile device side), and we proposed a mul-
tilevel database that can be automatically updated with new cellular fingerprint
measurements. We implemented the database in PostgreSQL, taking advantage
of its spatial extension PostGIS, and populated it with an open data collection.
Then, we demonstrated by some representative examples that it allows one to
filter out inconsistent data and to perform a number of meaningful analyses.

We are currently exploring various possible improvements to the work done.
One is the integration of other (public and proprietary) data sources in the
database. We are also investigating an extension of the database schema with
information about the network architecture as well as the physical parameters.
Finally, to systematically deal with changes of the network configuration over
time [14], we are thinking of adding some temporal dimensions [3,5].
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DEXA 2009. LNCS, vol. 5690, pp. 792–806. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03573-9 67

6. Hoy, J.: Forensic Radio Survey for Cell Site Analysis. Wiley, New York (2013)
7. Paek, J., Kim, K.-H., Singh, J.P., Govindan, R.: Energy-efficient positioning for

smartphones using cell-id sequence matching. In: Proceedings of the 9th MobiSys,
pp. 293–306 (2011)

8. Li, X., Zhang, X., Chen, K., Feng, S.: Measurement and analysis of energy con-
sumption on android smartphones. In: Proceedings of the 4th ICIST, pp. 242–245
(2014)

https://doi.org/10.1007/978-3-642-16644-0_60
https://doi.org/10.1007/11853565_14
https://doi.org/10.1007/978-3-642-03573-9_67
https://doi.org/10.1007/978-3-642-03573-9_67


A Cellular Network Database for Fingerprint Positioning Systems 119

9. Pahlavan, K., Krishnaumurty, P.: Principles of Wireless Access and Localization.
Wiley, New York (2013)

10. Ricciato, F., Widhalm, P., Craglia, M., Pantisano, F.: Estimating population den-
sity distribution from network-based mobile phone data (2015)

11. Sauter, M.: From GSM to LTE: An Introduction to Mobile Networks and Mobile-
Broadband. Wiley, New York (2011)
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