
TabbyXL: Rule-Based Spreadsheet Data
Extraction and Transformation

Alexey Shigarov1,2(B), Vasiliy Khristyuk1, Andrey Mikhailov1,
and Viacheslav Paramonov1,2

1 Matrosov Institute for System Dynamics and Control Theory of SB RAS,
134 Lermontov st., Irkutsk, Russia

shigarov@icc.ru
2 Institute of Mathematics, Economics and Informatics, Irkutsk State University,

20 Gagarin blvd., Irkutsk, Russia
http://cells.icc.ru

Abstract. This paper presents an approach to rule-based spreadsheet
data extraction and transformation. We determine a table object model
and domain-specific language of table analysis and interpretation rules.
In contrast to the existing data transformation languages, we draw up
this process as consecutive steps: role analysis, structural analysis, and
interpretation. To the best of our knowledge, there are no languages for
expressing rules for transforming tabular data into the relational form in
terms of the table understanding. We also consider a tool for transform-
ing spreadsheet data from arbitrary to relational tables. The performance
evaluation has been done automatically for both (role and structural)
stages of table analysis with the prepared ground-truth data. It shows
high F -score from 95.82% to 99.04% for different recovered items in the
existing dataset of 200 arbitrary tables of the same genre (government
statistics).

Keywords: Data extraction · Data transformation · Table analysis ·
Rule-based programming · Spreadsheet

1 Introduction

A big volume of arbitrary tables (e.g. cross-tabulations, invoices, roadmaps, and
data collection forms) circulates in spreadsheet-like formats. Mitlöhner et al. [28]
estimate that about 10% of the resources in Open Data portals are labeled
as CSV (Comma-Separated Values), a spreadsheet-like format. Barik et al. [2]
extracted 0.25M unique spreadsheets from Common Crawl1 archive. Chen
and Cafarella [6] reported about 0.4M spreadsheets of ClueWeb09 Crawl2

archive.

1 http://commoncrawl.org.
2 http://lemurproject.org/clueweb09.

c© Springer Nature Switzerland AG 2019
R. Damaševičius and G. Vasiljevienė (Eds.): ICIST 2019, CCIS 1078, pp. 59–75, 2019.
https://doi.org/10.1007/978-3-030-30275-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30275-7_6&domain=pdf
http://commoncrawl.org
http://lemurproject.org/clueweb09
https://doi.org/10.1007/978-3-030-30275-7_6

60 A. Shigarov et al.

FY2016 FY2017 FY2016 FY2017

Electronics
– Phones 11,2 23,7 12,6 32,2
– Comp. 89,9 203,1 81,9 204,1
– TV 13,4 32,7 11,7 90,1
Books 12,3 21,6 11,8 24,5

thousands of dollars

Retail Sales Catalog Sales

1 2 3 4 5

1

2

3

4

8

c1 c2
c3

c5

c6 c7

PRODUCT

FISCAL_YEARCURRENCY

Child
Label

Rows

Columns

EntryParent
Label

Label
SALES_CHANNEL Category

c4

5

DATA
SALES

CHANNEL
FISCAL
YEAR

CURRENCY PRODUCT

11200 retail 2016 u.s. dollars electronics/phones
23700 retail 2017 u.s. dollars electronics/phones
12600 catalog 2016 u.s. dollars electronics/phones
32200 catalog 2017 u.s. dollars electronics/phones

c7 c2 c3 c4 c6

a

b
c5

Fig. 1. A fragment of a source arbitrary spreadsheet table—a; a fragment of a target
table in the relational (canonical) form generated from the source table—b.

Spreadsheets can be considered as a general form for representing tabular
data with an explicitly presented layout (cellular structure) and style (graphical
formatting). For example, HTML tables presented on web pages can be easily
converted to spreadsheet formats. The arbitrary spreadsheet tables can be a
valuable data source in business intelligence and data-driven research. However,
difficulties that inevitably arise with extraction and integration of the tabular
data often hinder the intensive use of them in the mentioned areas.

Many of arbitrary spreadsheet tables are an instance of weakly-structured
and non-standardized data (Fig. 1, a). Unlike relational tables (Fig. 1, b), they
are not organized in a predefined manner. They lack explicit semantics required
for high-level computer interpretation such as SQL queries. To be accessible for
data analysis and visualization, their data need to be extracted, transformed, and
loaded (ETL) into databases. Since arbitrary tables can have various complex
cell layouts (structures), often the familiar industrial ETL-tools are not sufficient
to populate automatically a database with their data.

Researchers and developers faced with the tasks of spreadsheet data integra-
tion often use general-purpose tools. They often offer their own implementations
of the same tasks. In such cases, domain-specific tools can reduce the complexity

TabbyXL: Rule-Based Spreadsheet Data Extraction and Transformation 61

of software development in the domain of the spreadsheet data integration. This
is especially important when a custom software for data extraction and trans-
formation from heterogeneous arbitrary spreadsheet tables is implemented for a
short time and with a lack of resources.

1.1 Related Work

There are several recent studies dealing with spreadsheet data converting. The
tools [14–16,18,27,29,31] are devoted to issues of converting data presented in
spreadsheets or web tables to RDF (Resource Description Framework) or OWL
(Web Ontology Language) formats. The solutions for spreadsheet data extrac-
tion and transformation [1,3,17,19,22] are based on programming by examples.
Some of the solutions also include own domain-specific languages: XLWrap [27],
M2 [31], TableProg [19], and Flare [3].

Hung et al. [20] propose TranSheet, a spreadsheet-like formula language
for specifying mappings between source spreadsheet data and a target schema.
Embley et al. [13] propose an algorithmic end-to-end solution for transforming
“header-indexed” tables in CSV format to a relational form (“category tables”)
based on header indexing. Senbazuru, a spreadsheet database management
system proposed by [5], provides extracting relational data from spreadsheets
(“data frames”). HaExcel framework [10] enables migrating normalized data
among spreadsheets and relational databases. MDSheet framework [8,9] also
implements a technique that automatically infers relational schemes from spread-
sheets. The framework [7] constructs trained spreadsheet property (e.g. aggrega-
tion rows or hierarchical header) detectors based on rule-assisted active learning.

DeExcelerator project [12] aims at the development of a framework for
information extraction from partially structured documents such as spreadsheets
and HTML tables. The framework exploits a set of heuristics based on features of
tables published as Open Data. DeExcelerator works as a predefined pipeline
without any user interaction. Koci et al. [23–25] expand the covered spectrum of
spreadsheets. They proposes a machine learning approach for table layout infer-
ence [24] and TIRS, a heuristic-based framework for automatic table identifica-
tion and reconstruction in spreadsheets [25]. Their recent paper [23] introduces a
novel approach to recognition of the functional regions in single- and multi-table
spreadsheets.

The recent papers [4,39] develop domain-specific solutions. The work [39]
proposes algorithms and accompanying software for automatic annotation of
natural science spreadsheet tables. The tool proposed in [4] extracts RDF data
from French government statistical spreadsheets and populates instances of their
conceptual model. The system CACheck [11] automatically detects and repairs
“smelly” cell arrays by recovering their computational semantics. TaCLe [26]
automatically identifies constraints (formulas and relations) in spreadsheets. The
papers [41,42] suggest an approach to rule-based semantic extraction from tab-
ular documents.

62 A. Shigarov et al.

1.2 Contribution

Our work shows new possibilities in spreadsheet data transformation from arbi-
trary to relational tables based on rule-based programming for the following
table understanding [21] stages:

– Role analysis extracts functional data items, entries (values) and labels (keys),
from cell content.

– Structural analysis recovers relationships of functional data items (i.e. entry-
label and label-label pairs).

– Interpretation binds recovered labels with categories (domains).

Our contribution consists in the following results:

– The two-layered table object model combines the physical (syntactic) and
logical (semantic) table structure. Unlike others models, it is not based on
using functional cell regions but determines that functional items can be
placed anywhere in a table.

– The domain-specific language, CRL (Cells Rule Language), is intended for
programming table analysis and interpretation rules. In contrast to the exist-
ing mapping languages, it expresses the spreadsheet data conversion in terms
of table understanding.

– The tool for spreadsheet data extraction and transformation from an arbitrary
(Fig. 1, a) to the relational (canonical) form (Fig. 1, b), TabbyXL3, imple-
ments both the model and the language. Compared to the mentioned solu-
tions it draws up this process as consecutive steps: role analysis, structural
analysis, and interpretation.

– The CRL interpreter (CRL2J) provides the translation of CRL rules to Java
code in the imperative style. It allows automatically generating Java source
code from CRL rules and compile it to Java bytecode, and then runs gen-
erated Java programs. The interpreter uses CRL grammar implemented by
ANTLR4. This ensures the correctness of CRL language grammar.

– The ruleset for transforming arbitrary tables of the same genre (government
statistical websites) is implemented in three formats: CRL, DSLR (Drools5),
and CLP (JESS6). The experimental results are reproduced and validated by
using three different options: (i) CRL-to-Java translation; (ii) Drools rule
engine; (iii) JESS rule engine. The results (recovered relational tables) are the
same for all of these three options. This confirms the applicability of CRL
language for expressing table analysis and interpretation rules.

This paper continues our series of works devoted the issues of table under-
standing in spreadsheets [33,34,37,38]. It combines and significantly expands
our approach to table understanding based on executing rules for table anal-
ysis and interpretation with a business rule engine [34]. We briefly introduced
3 https://github.com/tabbydoc/tabbyxl2.
4 http://www.antlr.org.
5 https://www.drools.org.
6 http://www.jessrules.com.

https://github.com/tabbydoc/tabbyxl2
http://www.antlr.org
https://www.drools.org
http://www.jessrules.com

TabbyXL: Rule-Based Spreadsheet Data Extraction and Transformation 63

the preliminary version of our domain-specific rule language first in [33]. The
prototype of our tool for canonicalization of arbitrary tables in spreadsheets
is discussed in [37]. This work extends the results presented in the paper [38]
by adding the CRL interpreter for the CRL-to-Java translation, as well as by
the implementation and validation of the ruleset by using the different options:
CRL2J, Drools, and JESS.

The novelty of our current work consists in providing two rule-based ways
to implement workflows of spreadsheet data extraction and transformation. In
the first case, a ruleset for table analysis and interpretation is expressed in a
general-purpose rule language and executed by a JSR-94-compatible rule engine
(e.g. Drools or Jess). In the second case, our interpreter translates a ruleset
expressed in CRL to Java source code that is complicated and executed by
the Java development kit. This CRL-to-Java translation allows us to express
rulesets without any instructions for management of the working memory such
as updates of modified facts or blocks on the rule re-activation. The end-users
can focus more on the logic of table analysis and interpretation than on the logic
of the rule management and execution.

2 Table Object Model

The table object model is designed for representing both a physical structure and
logical data items of an arbitrary table in the process of its analysis and interpre-
tation (Fig. 2). Our model adopts the terminology of Wang’s table model [40]. It
includes two interrelated layers: physical (syntactic) represented by the collec-
tion of cells (Sect. 2.1) and logical (semantic) that consists of three collections of
entries (values), labels (keys), and categories (concepts) (Sect. 2.2). We deliber-
ately resort to the two-way references between the layers to provide convenient
access to their objects in table analysis and interpretation rules.

2.1 Physical Layer

Cell object represents common features of a cell that can be presented in tagged
documents of well-known formats, such as Excel, Word, or HTML. We define
Cell object as a set of the following features:

– Location: cl—left column, rt—top row, cr—right column, and rb—bottom
row. A cell located on several consecutive rows and columns covers a few grid
tiles, which always compose a rectangle. Moreover, two cells cannot overlap
each other.

– Style: font—font features including: name, color, size, etc.; horzAlignment
and vertAlignment—horizontal and vertical alignment; bgColor and
fgColor—background and foreground colors; leftBorder, topBorder,
rightBorder, and bottomBorder—border features; rotation—text rotation.

– Content : text—textual content, indent—indentation, and type—its literal
data type (numeric, date, string, etc.).

64 A. Shigarov et al.

Table

Cells
Cell

is the origin of

is the origin of

Entries

Labels

Label

is the child of

is associated with

Entries Entry

Labels Label

is associated with

originates from Cell

is the parent of

originates from Cell

Label

Category

Entry

Label

Categories

Category

is associated with Labels Label

Labels Label

Labels Label

Sy
nt

ax
Se

m
an

tic
s

Fig. 2. Two-layered table object model.

– Annotation: mark—a user-defined word or phrase to annotate the cell.
– Logical layer references: entries (a set of entries) and labels (a set of labels)

originated from this cell. Thus, a cell can contain several entries and labels.

For example, Fig. 3 presents an initial state of some cells (c1,. . . , c7) shown in
Fig. 1, a.

2.2 Logical Layer

Entry object serves as a representation a data value of a table. It consists of the
following attributes: value—a value (text), labels—a set of labels associated
with this entry, and cell—the physical layer reference to a cell as its origin that
serves as data provenance. An entry can be associated with only one label in
each category.

Label represents a label (key) that addresses one or more entries (data val-
ues). It is defined as follows: value—a value (text), children—a set of labels
which are children of this label, parent—its parent label, category—an asso-
ciated category, cell—the physical layer reference to a cell as its origin (data
provenance).

TabbyXL: Rule-Based Spreadsheet Data Extraction and Transformation 65

c1=(cl=1,rt=1,cr=1,rb=3,text=null)
c2=(cl=2,rt=1,cr=3,rb=1,text="Retail Sales")
c3=(cl=2,rt=2,cr=2,rb=2,text="FY2016"
c4=(cl=2,rt=3,cr=5,rb=3,text="thousands of dollars")
c5=(cl=1,rt=4,cr=1,rb=4,text="Electronics")
c6=(cl=1,rt=5,cr=1,rb=5,text="- Phones")
c7=(cl=2,rt=5,cr=2,rb=5,text="11.2",type=NUMERIC)

Fig. 3. Some initial facts (cells) for the table shown in Fig. 1, a.

e1=(value="11200",labels={l1,l2,l3,l5},cell=c7)
l1=(value="retail",category=d1,cell=c2)
l2=(value="2016",category=d2,cell=c3)
l3=(value="u.s. dollars",category=d3,cell=c4)
l4=(value="electronics",children={l5,...}, category=d4,cell=c5)
l5=(value="phones",parent=l4,category=d4,cell=c6)
d1=(name="SALE CHANNEL",labels={l1,...})
d2=(name="FISCAL YEAR",labels={l2,...})
d3=(name="CURRENCY",labels={l3,...})
d4=(name="PRODUCT",labels={l4,l5,...})

Fig. 4. Some recovered facts (functional items) for the table shown in Fig. 1, a.

Category models a category of labels as follows: name—an internal
name, URI—a uniform resource identifier representing this category (concept)
in an external vocabulary, labels—a set of its labels. Each label is associated
with only one category. Labels combined into a category can be organized as one
or more trees.

This layer allows representing items differently depending on target require-
ments of the table transformation. For example, Fig. 4 demonstrates a possible
target state of the entry (e1), labels (l1,. . . , l5), and categories (d1,. . . , d4)
recovered from the initial cells shown in Fig. 3. They can be presented as a tuple
of a target relational Table 1, b.

3 CRL Language

The rules expressed in our language are intended to map explicit features (lay-
out, style, and text of cells) of an arbitrary table into its implicit semantics
(entries, labels, and categories). Figure 5 demonstrates the grammar of CRL,
our domain-specific language, in Extended Backus-Naur form. This grammar is
also presented in ANTLR format7.

A rule begins with the keyword rule and ends with end. A number that
follows the keyword rule determines the order of executing this rule.

rule #i
when conditions
then actions

end

7 https://github.com/tabbydoc/tabbyxl2/blob/master/src/main/resources/crl
gram.g.

https://github.com/tabbydoc/tabbyxl2/blob/master/src/main/resources/crl_gram.g
https://github.com/tabbydoc/tabbyxl2/blob/master/src/main/resources/crl_gram.g

66 A. Shigarov et al.

rule = 'rule' <a Java integer literal> 'when' condition
 'then' action 'end' <EOL> {rule} <EOF>
condition = query identifier [':' constraint {',' constraint}
 [',' assignment {',' assignment}]] <EOL> {condition}
constraint = <a Java boolean expr>
assignment = identifier ':' <a valid Java expr>
query = 'cell' | 'entry' | 'label' | 'category' | 'no cells' |
 'no entries' | 'no labels' | 'no categories'
action = merge | split | set text | set indent | set mark |
 new entry | new label | add label | set parent |
 set category | group <EOL> {action}
merge = 'merge' identifier 'with' identifier
split = 'split' identifier
set text = 'set text' <a Java string expr> 'to' identifier
set indent = 'set indent' <a Java integer expr> 'to' identifier
set mark = 'set mark' <a Java string expr> 'to' identifier
new entry = 'new entry' identifier ['as' <a Java string expr>]
new label = 'new label' identifier ['as' <a Java string expr>]
add label = 'add label' identifier | (<a Java string expr>
 'of' identifier | <a Java string expr>)
 'to' identifier
set parent = 'set parent' identifier 'to' identifier
set category = 'set category' identifier | <a Java string expr>
 'to' identifier
group = 'group' identifier 'with' identifier
identifier = <a Java identifier>

Fig. 5. Grammar of CRL language.

The left hand side (when) of a rule consists of one or more conditions that enable
to query available facts which are cells, entries, labels, and categories of a table.
Each of the conditions listed in the left hand side of a rule has to be true to
execute its right hand side (then) that contains actions to modify the existed
or to generate new facts about the table.

3.1 Conditions

We use two kinds of conditions. The first requires that there exists at least one
fact of a specified data type, which satisfies a set of constraints:

cell var: constraints, assignments
entry var: constraints, assignments
label var: constraints, assignments
category var: constraints, assignments

The condition consists of three parts. In their order of occurrence, the first is
a keyword that denotes one of the following fact types: cell, entry, label, or
category. The second is variable, a variable of the specified fact type. The
third optional part begins with the colon character. It defines constraints for
restricting the requested facts and assignments for binding additional variables

TabbyXL: Rule-Based Spreadsheet Data Extraction and Transformation 67

with values. A constraint is a boolean expression in Java. The comma character
separating the constraints is the logical conjunction of them. An assignment
(variable: value) sets a value (Java expression) to a variable. A condition
without constraints allows querying all facts of specified type. The second kind of
conditions determines that there exist no facts satisfied to specified constraints:
The first part of these conditions is a keyword for satisfying a type of facts. The
second part contains constraints on the facts.

3.2 Cell Cleansing

In practice, hand-coded tables often have messy layout (e.g. improperly split
or merged cells) and content (e.g. typos, homoglyphs, or errors in indents). We
address several actions to the issues of cell cleansing that can be used as the
preprocessing stage.

– merge, the action combines two adjacent cells when they share one border.
– split, the action divides a merged cell that spans n-tiles into n-cells. Each

of the n-cells completely copies content and style from the merged cell and
coordinates from the corresponding tile.

– set text, the action provides modifying textual content of a cell. Some string
processing (e.g. regular expressions and string matching algorithms) imple-
mented as Java-methods can be involved in the action.

– set indent, the action modifies an indentation of a cell.

3.3 Role Analysis

This stage aims to recover entries and labels as functional data items presented
in tables. We also enable associating cells with user-defined tags (marks) that
can assist in both role and structural analysis.

– set mark, the action annotates a cell with a word or phrase. The assigned
tag can substitute the corresponding constraints in subsequent rules. The
typical practice is to set a tag to all cells, which play the same role or are
located in the same table functional region. Thereafter, we can use these tags
in subsequent rules instead of repeating constraints on cell location in the
regions.

– new entry, the action generates an entry, using a specified cell as its origin.
Usually, a value of the created entry is an expression obtained as a result of
string processing for its textual content of the cell.

– new label, the action generates a label in a similar way.

3.4 Structural Analysis

The next stage recovers pairs of two kinds: entry-label and label-label.

– add label, the action binds an entry with an added label. A label can be
specified as a value of a category indicated by its name.

– set parent, the action connects two labels as a parent and its child.

68 A. Shigarov et al.

a

c

b

d

b1 1 b4 4
b2 2 b5 NA
b3 b6 6

a1 a2

DATA A B
1 a1 b1
2 a1 b2
4 a2 b1
6 a2 b3

b1 b3 3 b5 5
b2 2 b4 NA b6 6

a1 a2 a3

DATA A B
2 a1 b2
3 a2 b3
5 a3 b5
6 a3 b6

Fig. 6. Source tables—a and b; target canonicalized tables—c and d.

3.5 Interpretation

The stage includes actions for recovering label-category pairs.

– set category, the action associates a label with a category.
– group, the action places two labels in one group. Arbitrary tables often place

all labels of one category in the same row or column. Consequently, we can
suppose that the labels belong to a category without defining its name. In the
cases, grouping two or more labels means that they all belong to an undefined
category. All labels of a group can be associated with only one category.

3.6 Illustrative Example

Figure 6 depicts an example of a transformational task that consists in converting
tables similar to ones (a and b) into the relational form (c and d). These tables
satisfy the following assumptions: 1, . . . , n are entries, a1, . . . , am are column

(1)when cell $c: text == "NA"then set text "" to $c (2)when cell $c: (cl % 2) == 0, !blankthen new entry $c
(3)when cell $c: (cl % 2) == 1then new label $c (4)

when
 entry $e
 label $l: cell.cr == $e.cell.cr
then add label $l to $e

(5)
when
 entry $e
 label $l: cell.rt == $e.cell.rt, cell.cl == $e.cell.cl - 1
then add label $l to $e

(6)when label $l: cell.rt == 1then set category "A" to $l (7)when label $l: cell.rt > 1then set category "B" to $l

Fig. 7. A reference ruleset for transforming the source tables (Fig. 6, a, c) to the target
canonical forms (Fig. 6, b, d).

TabbyXL: Rule-Based Spreadsheet Data Extraction and Transformation 69

labels of the category A, b1, . . . , bk are row labels of the category B. Figure 7
presents a reference ruleset implemented for this task. It contains only 7 rules
that are executed in the following order: (1) data cleansing, (2) entry generation,
(3) label generation, (4) associating entries with column labels, (5) associating
entries with row labels, (6) categorizing column labels, and (7) categorizing row
labels.

4 Implementation with Options

TabbyXL implements both the presented table object model and the rule-based
approach to spreadsheet data extraction and transformation. It can process data,
using one of the following options:

– CRL2J-option automatically generates Java source code from CRL rules and
compile it to Java bytecode, and then runs the generated program. This
option requires that ruleset is implemented in CRL language. We use ANTLR,
the parser generator, to implement the CRL-to-Java translator. This allows
to parse CRL rules and to build their object model which is then translated
to Java source code.

– Drools-option relies on Drools Expert rule engine. The rules can be
expressed in DRL (the general-purpose rule language that is native for
Drools) or in a dialect of CRL that is implemented as a domain-specific
language (DSL) in corresponding of Drools requirements. In the last case,
CRL rules presented in DSLR format are automatically translated into DRL
format through the DSL-specification that defines CRL-to-DRL mappings.
Unlike the pure CRL, this dialect supports DRL attributes in rule declara-
tions.

– JESS-option executes a ruleset with JESS rule engine. This option requires
that a ruleset is represented in the well-known CLP (CLIPS) format.

Moreover, the current version of TabbyXL supports rule engines that are
compatible with Java Rule Engine API (JSR948). Therefore, it is possible
to use not only Drools or JESS, but also others rule engines supporting Java
Rule Engine API, and to represent the rules in their native formats. Any case,
TabbyXL builds an instance of the table object model from source spreadsheet
data. The cells of this instance are asserted as facts into the working memory of a
rule engine. Optionally, some user-defined categories specified in YAML format
can also be loaded and presented as facts. The rule engine matches asserted
facts against the rules. While rules are executed, the instance of the table object
model is augmented by recovered facts (entries, labels, and categories). At the
end of the transformation process, the instance is exported as a flat file database.

8 https://www.jcp.org/ja/jsr/detail?id=94.

https://www.jcp.org/ja/jsr/detail?id=94

70 A. Shigarov et al.

Table 1. Experiment results on the role and structural analysis stages.

Metrics Role analysis Structural analysis

Type of instances

Entries Labels Entry-label pairs Label-label pairs

recall 0.9813 16602
16918

0.9965 4842
4859

0.9773 34270
35066

0.9389 1951
2078

precision 0.9996 16602
16609

0.9364 4842
5171

0.9965 34270
34389

0.9784 1951
1994

F -score 0.9904 0.9655 0.9868 0.9582

5 Experimental Results

The purpose of the experiment is to show a possibility of using our tool for tables,
which originate from various sources produced by different authors but pertain
to the same document genre. The experiment includes two parts: (i) designing
and implementing an experimental ruleset for tables of the same genre, and (ii)
evaluating the performance of the ruleset on a set of these tables.

We used Troy200 [30], the existing dataset of tables, for the performance
evaluation. It contains 200 arbitrary tables as CSV files collected from 10 dif-
ferent sources of the same genre, government statistical websites predominantly
presented in English language.

We designed and implemented a ruleset that transforms Troy200 arbitrary
tables to the relational form, using two formats: CRL and CLP (JESS). We
also prepared ground-truth data, including reference entries, labels, entry-label,
and label-label pairs extracted from Troy200 tables. Their form is designed for
human readability. Moreover, they are independent of the presence of critical
cells in tables. The performance evaluation is based on comparing the ground-
truth data with the tables generated by executing the presented ruleset for the
experiment dataset.

All tables of the dataset were automatically transformed into the relational
form, using TabbyXL with three different options: CRL2J, DROOLS, and JESS.
The results are the same for all of these three options.

We used the standard metrics: recall, precision, and F -score, to evaluate
our ruleset for both role and structural analysis. We adapted them as follows.
When R is a set of instances in a target table and S is a set of instances in the
corresponding source table, then:

recall =
|R ∩ S|

|S| precision =
|R ∩ S|

|R|
An instance refers to an entry, label, entry-label pair, or label-label pair. These
metrics were separately calculated for each type of instances (entries, labels,
entry-label pairs, and label-label pairs).

The experiment results are shown in Table 1. Among 200 tables of the dataset,
only 25 are processed with errors (1256 false negatives in 25 tables, and 498 false
positives in 14 ones). Only one table is not processed. This results in 948 false

TabbyXL: Rule-Based Spreadsheet Data Extraction and Transformation 71

negative and 316 false positive errors, which amount to about 72% of all errors.
In this case, entries are not recovered because they are not numeric as it is
assumed in the used ruleset.

Table 2. Comparison of the running time by using the different options.

Running time of CRL2J Drools JESS

Ruleset translation (t1) 2108 ms 1711 ms 432 ms

Ruleset execution (t2) 367 ms 1974 ms 4149 ms

Additionally, Table 2 presents a comparison of the running time for the ruleset
translation and execution processes, using the implemented options. The ruleset
translation time (t1) is a time of translating an original ruleset into an executable
form. The ruleset execution time (t2) is a total time of executing the ruleset
presented in the executable form that is required to process all 200 tables of
the dataset. In the case of CRL2J option, t1 is a time of parsing and compiling
the original ruleset into a Java program, while t2 is a time of executing the
generated Java program. In the case of the use of a rule engine (Drools or
JESS option), t1 is a time of parsing the original ruleset and adding the result
into a rule engine session. t2 consists of a time of asserting initial facts into the
working memory and a time of executing the ruleset by the rule engine. The
results shown in Table 2 were obtained with the following computer: 3.2 GHz
4-core CPU and 8 GB RAM. The use of CRL2J option requires slightly more
time for the translation of the ruleset. However, CRL2J is faster for the execution
of the program (ruleset) compared to Drools or JESS rule engine.

All data and steps to reproduce the experiment results are publicly available
as a dataset9 [35]. It contains the following items: the relational tables obtained
by TabbyXL; the ground-truth data; the mentioned CRL and CLP rulesets;
the detailing of the performance evaluation. Some comparison of TabbyXL in
its previous version with others solutions is discussed in the paper [38].

This experiment exemplifies the use of our language for developing task-
specific rulesets. The performance evaluation confirms the applicability of the
implemented ruleset in accomplishing the stated objectives of this application.

6 Conclusions and Further Work

The presented approach can be applied to develop software for extraction and
transformation data of arbitrary spreadsheet tables. We expect TabbyXL to be
useful in cases when data from a large number of tables appertaining to a few
table types are required for populating a database.

We showed experimentally that rules for table analysis and interpretation
can be expressed in a general-purpose rule-based language and executed with a
9 https://data.mendeley.com/datasets/ydcr7mcrtp/3.

https://data.mendeley.com/datasets/ydcr7mcrtp/3

72 A. Shigarov et al.

rule engine [34]. But only a few of its possibilities are sufficient for developing
our rules. The exploration of these possibilities has led to development of CRL, a
domain-specific rule language, which specializes in expressing only rules for table
analysis and interpretation. Our language hides details which are inessential for
us and allows to focus on the logic of table analysis and interpretation. There
are two ways to use CRL rules. They can be executed with a rule engine (e.g.
Drools or JESS) or be translated to programs presented in the imperative style
(e.g. in Java language).

The experiment demonstrates that the tool can be used for developing pro-
grams for transformation of spreadsheet data into the relational form. One rule-
set can process a wide range of tables of the same genre, e.g. government sta-
tistical websites. Our tool can be used for populating databases from arbitrary
tables, which share common features.

The work focuses rather on table analysis than on issues of interpretation. We
only recover categories as sets of labels, without binding them with an external
taxonomy of concepts (e.g. Linked Open Data). The further work on table con-
tent conceptualization can overcome this limitation. Moreover, we observe that
arbitrary tables can contain messy (e.g. non-standardized values or typos) and
useless (e.g. aggregations or padding characters) data. It seems to be interesting
for the further work to incorporate additional techniques of data cleansing in our
tool. Another direction of development is to integrate the presented results with
the tools for extracting tables from documents (e.g. untagged PDF documents
[32,36]) in end-to-end systems for the table understanding.

Acknowledgment. This work is supported by the Russian Science Foundation under
Grant No.: 18-71-10001.

References

1. Astrakhantsev, N., Turdakov, D., Vassilieva, N.: Semi-automatic data extraction
from tables. In: Selected Papers of the 15th All-Russian Scientific Conference on
Digital Libraries: Advanced Methods and Technologies, Digital Collections, pp.
14–20 (2013)

2. Barik, T., Lubick, K., Smith, J., Slankas, J., Murphy-Hill, E.: Fuse: a reproducible,
extendable, internet-scale corpus of spreadsheets. In: Proceedings of the 12th Work-
ing Conference on Mining Software Repositories, pp. 486–489. IEEE Press (2015).
https://doi.org/10.1109/MSR.2015.70

3. Barowy, D.W., Gulwani, S., Hart, T., Zorn, B.: FlashRelate: extracting relational
data from semi-structured spreadsheets using examples. SIGPLAN Not. 50(6),
218–228 (2015). https://doi.org/10.1145/2813885.2737952

4. Cao, T.D., Manolescu, I., Tannier, X.: Extracting linked data from statistic spread-
sheets. In: Proceedings of the International Workshop on Semantic Big Data, pp.
5:1–5:5 (2017). https://doi.org/10.1145/3066911.3066914

5. Chen, Z.: Information extraction on para-relational data. Ph.D. thesis, University
of Michigan, US (2016)

6. Chen, Z., Cafarella, M.: Automatic web spreadsheet data extraction. In: Proceed-
ings of the 3rd International Workshop on Semantic Search Over the Web, pp.
1:1–1:8 (2013). https://doi.org/10.1145/2509908.2509909

https://doi.org/10.1109/MSR.2015.70
https://doi.org/10.1145/2813885.2737952
https://doi.org/10.1145/3066911.3066914
https://doi.org/10.1145/2509908.2509909

TabbyXL: Rule-Based Spreadsheet Data Extraction and Transformation 73

7. Chen, Z., et al.: Spreadsheet property detection with rule-assisted active learning.
Technical report CSE-TR-601-16 (2016). https://www.cse.umich.edu/techreports/
cse/2016/CSE-TR-601-16.pdf

8. Cunha, J., Erwig, M., Mendes, J., Saraiva, J.: Model inference for spreadsheets.
Autom. Softw. Eng. 23(3), 361–392 (2016). https://doi.org/10.1007/s10515-014-
0167-x

9. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: Spreadsheet engineering. In:
Zsók, V., Horváth, Z., Csató, L. (eds.) CEFP 2013. LNCS, vol. 8606, pp. 246–299.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15940-9 6

10. Cunha, J., Saraiva, J.a., Visser, J.: From spreadsheets to relational databases
and back. In: Proceedings of the ACM SIGPLAN Workshop Partial Evaluation
and Program Manipulation, pp. 179–188 (2009). https://doi.org/10.1145/1480945.
1480972

11. Dou, W., Xu, C., Cheung, S.C., Wei, J.: CACheck: detecting and repairing cell
arrays in spreadsheets. IEEE Trans. Software Eng. 43(3), 226–251 (2017). https://
doi.org/10.1109/TSE.2016.2584059

12. Eberius, J., Werner, C., Thiele, M., Braunschweig, K., Dannecker, L., Lehner, W.:
DeExcelerator: a framework for extracting relational data from partially struc-
tured documents. In: Proceedings of the 22nd ACM International Conference on
Information & Knowledge Management, pp. 2477–2480 (2013). https://doi.org/10.
1145/2505515.2508210. http://doi.acm.org/10.1145/2505515.2508210

13. Embley, D.W., Krishnamoorthy, M.S., Nagy, G., Seth, S.: Converting heteroge-
neous statistical tables on the web to searchable databases. IJDAR 19(2), 119–138
(2016). https://doi.org/10.1007/s10032-016-0259-1

14. Ermilov, I., Ngomo, A.-C.N.: TAIPAN: automatic property mapping for tabular
data. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016.
LNCS (LNAI), vol. 10024, pp. 163–179. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-49004-5 11

15. Fiorelli, M., Lorenzetti, T., Pazienza, M.T., Stellato, A., Turbati, A.: Sheet2RDF:
a flexible and dynamic spreadsheet import&lifting framework for RDF. In: Ali, M.,
Kwon, Y., Lee, C.H., Kim, J., Kim, Y. (eds.) IEA/AIE 2015. LNCS, vol. 9101, pp.
131–140. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19066-2 13

16. Galkin, M., Mouromtsev, D., Auer, S.: Identifying web tables: supporting a
neglected type of content on the web. In: Klinov, P., Mouromtsev, D. (eds.) KESW
2015. CCIS, vol. 518, pp. 48–62. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24543-0 4

17. Gulwani, S., Harris, W.R., Singh, R.: Spreadsheet data manipulation using exam-
ples. Commun. ACM 55(8), 97–105 (2012). https://doi.org/10.1145/2240236.
2240260

18. Han, L., Finin, T., Parr, C., Sachs, J., Joshi, A.: RDF123: from spreadsheets
to RDF. In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 451–466.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88564-1 29

19. Harris, W.R., Gulwani, S.: Spreadsheet table transformations from examples. SIG-
PLAN Not. 46(6), 317–328 (2011). https://doi.org/10.1145/1993316.1993536

20. Hung, V., Benatallah, B., Saint-Paul, R.: Spreadsheet-based complex data trans-
formation. In: Proceedings of the 20th ACM International Conference on Informa-
tion and Knowledge Management, pp. 1749–1754 (2011). https://doi.org/10.1145/
2063576.2063829

21. Hurst, M.: Layout and language: challenges for table understanding on the web.
In: Proceedings of the 1st International Workshop on Web Document Analysis, pp.
27–30 (2001)

https://www.cse.umich.edu/techreports/cse/2016/CSE-TR-601-16.pdf
https://www.cse.umich.edu/techreports/cse/2016/CSE-TR-601-16.pdf
https://doi.org/10.1007/s10515-014-0167-x
https://doi.org/10.1007/s10515-014-0167-x
https://doi.org/10.1007/978-3-319-15940-9_6
https://doi.org/10.1145/1480945.1480972
https://doi.org/10.1145/1480945.1480972
https://doi.org/10.1109/TSE.2016.2584059
https://doi.org/10.1109/TSE.2016.2584059
https://doi.org/10.1145/2505515.2508210
https://doi.org/10.1145/2505515.2508210
http://doi.acm.org/10.1145/2505515.2508210
https://doi.org/10.1007/s10032-016-0259-1
https://doi.org/10.1007/978-3-319-49004-5_11
https://doi.org/10.1007/978-3-319-49004-5_11
https://doi.org/10.1007/978-3-319-19066-2_13
https://doi.org/10.1007/978-3-319-24543-0_4
https://doi.org/10.1007/978-3-319-24543-0_4
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1007/978-3-540-88564-1_29
https://doi.org/10.1145/1993316.1993536
https://doi.org/10.1145/2063576.2063829
https://doi.org/10.1145/2063576.2063829

74 A. Shigarov et al.

22. Jin, Z., Anderson, M.R., Cafarella, M., Jagadish, H.V.: Foofah: transforming data
by example. In: Proceedings of the ACM International Conference on Management
of Data, pp. 683–698 (2017). https://doi.org/10.1145/3035918.3064034

23. Koci, E., Thiele, M., Lehner, W., Romero, O.: Table recognition in spreadsheets
via a graph representation. In: 13th IAPR International Workshop on Document
Analysis Systems, pp. 139–144 (2018). https://doi.org/10.1109/DAS.2018.48

24. Koci, E., Thiele, M., Romero, O., Lehner, W.: A machine learning approach for
layout inference in spreadsheets. In: Proceedings of the 8th International Joint
Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Man-
agement, pp. 77–88 (2016). https://doi.org/10.5220/0006052200770088

25. Koci, E., Thiele, M., Romero, O., Lehner, W.: Table identification and recon-
struction in spreadsheets. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol.
10253, pp. 527–541. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
59536-8 33

26. Kolb, S., Paramonov, S., Guns, T., De Raedt, L.: Learning constraints in spread-
sheets and tabular data. Mach. Learn. 106(9), 1441–1468 (2017). https://doi.org/
10.1007/s10994-017-5640-x

27. Langegger, A., Wöß, W.: XLWrap – querying and integrating arbitrary spread-
sheets with SPARQL. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp.
359–374. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04930-
9 23

28. Mitlöhner, J., Neumaier, S., Umbrich, J., Polleres, A.: Characteristics of open
data CSV files. In: 2nd International Conference on Open and Big Data, pp. 72–79
(2016). https://doi.org/10.1109/OBD.2016.18

29. Mulwad, V., Finin, T., Joshi, A.: A domain independent framework for extracting
linked semantic data from tables. In: Ceri, S., Brambilla, M. (eds.) Search Com-
puting. LNCS, vol. 7538, pp. 16–33. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34213-4 2

30. Nagy,G.: TANGO-DocLab web tables from international statistical sites (Troy 200),
1, ID: Troy 200 1 (2016). http://tc11.cvc.uab.es/datasets/Troy 200 1

31. O’Connor, M.J., Halaschek-Wiener, C., Musen, M.A.: Mapping master: a flexible
approach for mapping spreadsheets to OWL. In: Patel-Schneider, P.F., et al. (eds.)
ISWC 2010. LNCS, vol. 6497, pp. 194–208. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17749-1 13

32. Shigarov, A., Altaev, A., Mikhailov, A., Paramonov, V., Cherkashin, E.: Tab-
byPDF: web-based system for PDF table extraction. In: Damaševičius, R.,
Vasiljevienė, G. (eds.) ICIST 2018. CCIS, vol. 920, pp. 257–269. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99972-2 20

33. Shigarov, A.: Rule-based table analysis and interpretation. In: Dregvaite, G.,
Damasevicius, R. (eds.) ICIST 2015. CCIS, vol. 538, pp. 175–186. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24770-0 16

34. Shigarov, A.: Table understanding using a rule engine. Expert Syst. Appl. 42(2),
929–937 (2015). https://doi.org/10.1016/j.eswa.2014.08.045

35. Shigarov, A., Khristyuk, V.: TabbyXL2: experiment data. Mendeley Data, v2
(2018). https://doi.org/10.17632/ydcr7mcrtp.2

36. Shigarov, A., Mikhailov, A., Altaev, A.: Configurable table structure recognition in
untagged PDF documents. In: Proceedings of the ACM Symposium on Document
Engineering, pp. 119–122 (2016). https://doi.org/10.1145/2960811.2967152

https://doi.org/10.1145/3035918.3064034
https://doi.org/10.1109/DAS.2018.48
https://doi.org/10.5220/0006052200770088
https://doi.org/10.1007/978-3-319-59536-8_33
https://doi.org/10.1007/978-3-319-59536-8_33
https://doi.org/10.1007/s10994-017-5640-x
https://doi.org/10.1007/s10994-017-5640-x
https://doi.org/10.1007/978-3-642-04930-9_23
https://doi.org/10.1007/978-3-642-04930-9_23
https://doi.org/10.1109/OBD.2016.18
https://doi.org/10.1007/978-3-642-34213-4_2
https://doi.org/10.1007/978-3-642-34213-4_2
http://tc11.cvc.uab.es/datasets/Troy_200_1
https://doi.org/10.1007/978-3-642-17749-1_13
https://doi.org/10.1007/978-3-642-17749-1_13
https://doi.org/10.1007/978-3-319-99972-2_20
https://doi.org/10.1007/978-3-319-24770-0_16
https://doi.org/10.1016/j.eswa.2014.08.045
https://doi.org/10.17632/ydcr7mcrtp.2
https://doi.org/10.1145/2960811.2967152

TabbyXL: Rule-Based Spreadsheet Data Extraction and Transformation 75

37. Shigarov, A.O., Paramonov, V.V., Belykh, P.V., Bondarev, A.I.: Rule-based canon-
icalization of arbitrary tables in spreadsheets. In: Dregvaite, G., Damasevicius, R.
(eds.) ICIST 2016. CCIS, vol. 639, pp. 78–91. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46254-7 7

38. Shigarov, A.O., Mikhailov, A.A.: Rule-based spreadsheet data transformation from
arbitrary to relational tables. Inf. Syst. 71, 123–136 (2017). https://doi.org/10.
1016/j.is.2017.08.004

39. de Vos, M., Wielemaker, J., Rijgersberg, H., Schreiber, G., Wielinga, B., Top, J.:
Combining information on structure and content to automatically annotate natural
science spreadsheets. Int. J. Hum. Comput. Stud. 103, 63–76 (2017). https://doi.
org/10.1016/j.ijhcs.2017.02.006

40. Wang, X.: Tabular abstraction, editing, and formatting. Ph.D. thesis, University
of Waterloo, Waterloo, Ontario, Canada (1996)

41. Yang, S., Guo, J., Wei, R.: Semantic interoperability with heterogeneous informa-
tion systems on the internet through automatic tabular document exchange. Inf.
Syst. 69, 195–217 (2017). https://doi.org/10.1016/j.is.2016.10.010

42. Yang, S., Wei, R., Shigarov, A.: Semantic interoperability for electronic business
through a novel cross-context semantic document exchange approach. In: Proceed-
ings of the ACM Symposium on Document Engineering, pp. 28:1–28:10 (2018).
https://doi.org/10.1145/3209280.3209523

https://doi.org/10.1007/978-3-319-46254-7_7
https://doi.org/10.1007/978-3-319-46254-7_7
https://doi.org/10.1016/j.is.2017.08.004
https://doi.org/10.1016/j.is.2017.08.004
https://doi.org/10.1016/j.ijhcs.2017.02.006
https://doi.org/10.1016/j.ijhcs.2017.02.006
https://doi.org/10.1016/j.is.2016.10.010
https://doi.org/10.1145/3209280.3209523

	TabbyXL: Rule-Based Spreadsheet Data Extraction and Transformation
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Table Object Model
	2.1 Physical Layer
	2.2 Logical Layer

	3 CRL Language
	3.1 Conditions
	3.2 Cell Cleansing
	3.3 Role Analysis
	3.4 Structural Analysis
	3.5 Interpretation
	3.6 Illustrative Example

	4 Implementation with Options
	5 Experimental Results
	6 Conclusions and Further Work
	References

