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Abstract. A variety of algorithms and technologies exist to cope with
design space exploration for software distribution in terms of real-time,
embedded, multiprocessor, and mixed-critical systems. The automotive
domain not only combines those domains but even introduces further
constraints and requirements due to several design decisions, standards,
or evolved methodologies. In addition, solutions are predominantly pro-
prietary, often lack in perspicuity, and sophisticated approaches towards
the comprehensive concern of constraints are rather rare.

This paper presents typical constraints along with distributing auto-
motive applications across the processing units of vehicles, outlines three
software distribution methodologies based on the constraint program-
ming paradigm, and evaluates those in comparison to related design
space exploration approaches. Benchmarks upon hypothetical and indus-
trial models show that the constraint-based approaches outperform other
forms in many cases regarding quality and effectiveness. Additionally, the
presented approach benefits from a holistic consideration of constraints
such as processing unit affinities, safety level aggregations, communi-
cation costs as well as processing unit utilization optimization among
others whilst being applicable to heterogeneous, networked, hierarchical,
embedded, multi and many core architectures.

Keywords: AMALTHEA · AUTOSAR · APP4MC ·
Embedded real-time systems · Constraint programming

1 Introduction

Software distribution for embedded multi and many core systems gained signifi-
cant importance in the recent years especially in the automotive domain due to
the increasing demands of advanced driver assistance systems, autonomous driv-
ing, as well as architectural changes towards the centralization and consolidation
of functional domains and Electronic Control Units (ECUs). Additionally, stan-
dardization (e.g. AUTOSAR1, automotive SPICE2), collaboration across Tier
1 Automotive Open System Architecture www.autosar.org, accessed 01.2019.
2 Automotive SPICE http://www.automotivespice.com, accessed 12.2018.
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R. Damaševičius and G. Vasiljevienė (Eds.): ICIST 2019, CCIS 1078, pp. 567–590, 2019.
https://doi.org/10.1007/978-3-030-30275-7_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30275-7_44&domain=pdf
www.autosar.org
http://www.automotivespice.com
https://doi.org/10.1007/978-3-030-30275-7_44
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suppliers, Original Equipment Manufacturer (OEMs), and various tool vendors,
and requirements from legacy applications necessitate sophisticated approaches
when applying software distribution methodologies to the already highly con-
strained domain of heterogeneous, embedded, real-time, and mixed-critical envi-
ronments. In order to reach reliability, safety, modularity, scalability, real time, or
other goals, OEMs and suppliers introduced AUTOSAR in 2002 to overcome the
tremendous amount of common challenges in the automotive industry and build
up a basis to exchange, simulate, integrate, and even develop respective soft-
ware. AUTOSAR undergoes regular releases since then, defining certain require-
ments and constraints such software has to address in order to be AUTOSAR
compliant.

The basic concern of software distribution in the AUTOSAR context is the
partitioning of runnables, i.e., atomic functions to tasks and the mapping of
such tasks to processing units across micro controllers and ECUs. More precisely,
given a set of runnables and a set of processing units, the goal is to find (a) a
runnable to task assignment that is calculated by the partitioning process and
forms the task set, and (b) a task to processing unit assignment denoted as map-
ping. This two phase approach yields a multitude of advantages such as distribu-
tion flexibility, level-based pairings or separations, as well as the consideration
of various constraints described in Sect. 3. While this rather generic perceiving
challenge has been studied for decades and is NP-complete [13], the holistic
concern of the mandatory domain-specific constraints has been either omitted
or only partially investigated. By making use of the open source AMALTHEA3

model that is AUTOSAR compliant, this paper’s work applies to a widely estab-
lished superset of automotive constraints on the one hand, and can further cover
industry driven requirements on the other hand. AMALTHEA features the typi-
cal combinatorial patterns to which constraint programming is preferably appli-
cable. It comes with the APP4MC4 platform and has, similar to AUTOSAR,
regular maintenance and update releases. The APP4MC version used for this
paper’s investigations is 0.8.3 and implementations have been migrated to 0.9.1.

A promising and flexible paradigm applicable to partitioning and mapping is
Constraint Programming (CP). CP allows natural problem modeling by making
use of a huge variety of constraints that need to be satisfied for a valid solution.
Typical features are logical, arithmetical, set, graph, or real-value expressions
and coherencies among others. CP solver can be configured in various ways to
investigate the solution space, optimize given objectives, and consequently solve
the modeled Constraint Satisfaction Problem (CSP). Therefore, an algorithm is
chosen to investigate the problem space of partitioning and mapping, e.g., incre-
mental assignment combined with backtracking search or complete assignment
combined with stochastic search. In order to remove invalid values from a vari-
able’s domain, propagation identifies inconsistent value combinations regarding
the defined constraints and assigned values.

3 AMALTHEA model http://eclip.se/eV, accessed 01.2019.
4 Eclipse APP4MC, https://www.eclipse.org/app4mc/, accessed 01.2019.

http://eclip.se/eV
https://www.eclipse.org/app4mc/
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Alternatively to using CP, local search approaches often follow a greedy-
based structure and therefore may miss optimal values and valuable parts of
the solution space. Furthermore, local search often has a dedicated model or
application to work with and its applicability to different problems is very lim-
ited. In contrast to mathematical programming such as (Mixed) Integer Linear
Programming (M)ILP, quadratic programming, or evolutionary (genetic) algo-
rithms (GA), CP not only covers most of the mathematical operations of such,
but also comes with powerful paradigms to further constrain combinatorial prob-
lem spaces and consequently increase exploration efficiency.

The contribution of this paper is the formal outline of various con-
straints in the automotive industry and their application to constraint pro-
gramming used as a paradigm to solve partitioning and mapping problems
of industry driven AMALTHEA models. Partitioning here concerns the distri-
bution of runnables, which are atomic functions, to tasks, which can run both
in parallel on the same processor, or concurrently across a multi core platform.
The mapping problem defines the distribution of tasks to processing units which
has to fulfill the amount of constraints outlined in the following sections and can
be optimized towards various goals such as minimizing response times, balanc-
ing resource consumption, and others. The contribution includes considering a
broad set of automotive constraints such as pairings, separations, affinities, tim-
ings (deadlines), sequences (precedence), ASIL- (Automotive Safety Integrity
Level), partitioning-, and mapping-properties, balancing, hardware capacities,
and communication costs when distributing software across tasks and process-
ing units of vehicles. Presented (near) optimal solutions that consider this broad
range of industry driven constraints has, to the best of the authors’ knowledge,
not been covered by related work. Along with the second contribution, the CP
technique is compared with other design space exploration (DSE) approaches
such as MILP, GA, and a heuristic whereas strengths and pitfalls of each are
outlined along with hypothetical and industrial models. The comparison reveals
new insights and assessments for applying DSE approaches to the highly con-
strained automotive software distribution problem. Results show that using the
CP methodology significantly mitigates error prone and ineffective manual pro-
cesses, partially outperforms other DSEs, and potentially eases software devel-
opment and maintenance in the respective application field.

This paper is organized as follows. The subsequent section outlines related
work as well as preliminaries this paper makes use of. Afterwards, Sect. 3
describes model entities required for the constraint descriptions in Sect. 4 and
the optimization in Sect. 5. Finally, Sect. 6 provides benchmarks of the presented
constraint solving approach, whereas Sect. 7 compares the results with some
available related work. Finally, the conclusion in Sect. 8 summarizes this paper’s
contributions and results.

2 Related and Prior Work

Related work stretches across a huge variety of application domains when tar-
geting DSE via heuristics, (M)ILP, Genetic Algorithms (GA), or CP. Since this
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work focuses on the automotive domain, various requirements of embedded,
real-time, mixed-critical, and highly interconnected systems define specifics such
DSE approaches have to address. In fact, avionics, robotics, or logistic domains
have certain similarities with this paper’s automotive constraints. Furthermore,
model-based programming techniques are used to utilize model checking, vali-
dation, and generation on the one hand and to specify data the DSE approaches
are applied to on the other hand.

Typical optimization goals reach from execution time, energy consumption,
resource utilization to reliability or solution quality as stated in a mapping survey
in [30]. With the CP-based approach of this paper, multi-objective optimization
is applied to different models and a variety of requirements and constraints
is considered at the same time. Any typical optimization approaches can be
configured whereas the remainder especially targets communication costs and
resource utilization.

(M)ILP is one of the most used paradigms to cope with challenges such
as partitioning and mapping, e.g., presented in [4]. MILP has though shown
scalability issues for large-scale problems as stated in [29] and [17]. Laurent
Perron also stated in [26] that the usage of CP is beyond MILP for optimizing
applications in industrial operations research projects.

There is also a variety of papers stating that processing unit affinities are
beneficial regarding application performance, fault tolerance, or security such
as [7] or [20]. Such affinities are also considered within this paper via arithmetical
constraints ensuring that a solution must contain given task to processing unit
pairing.

Xiao et al. have shown in [33] that satisfying reliability goals and reducing
resource consumption is challenging for precedence-constraints, mixed-critical,
parallel, and embedded systems. However, the AMALTHEA model used in this
work is based on AUTOSAR and highly differs from the presented reliability
goal in [33] that is based on the constant failure rate per time unit combined
with ensuring that tasks are mapped to processors that maximize a certain
reliability value. In contrast, approaches presented in this paper ensure reliability
via considering the various constraints such as affinities, pairings, separations,
activations, safety levels, etc.

Thiruvady et al. studied the component deployment problem for vehicles
in [32] that is similar to the partitioning and mapping problems of this work via
CP. However, due to the consideration of only three major constraints (mem-
ory, colocation, and communication), their approach covers just a subset of this
paper’s constraints.

Oliveira et al. [10] provide one of the few publications that compares (M)ILP
with CP for the JSSP (job shop scheduling problem). Their results show that
CP outperforms MILP in many cases and that CP is assessed as being the prior
choice to MILP in generic cases. The GA approach, however, has neither been
applied to the JSSP problems in [10] nor compared with CP or ILP. Also, the
according JSSP does not cover the specific constraints presented in this work.
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Limtanyakul et al. apply CP to test scheduling for the automotive industry in
[23]. Although the problem is different from this work’s partitioning and mapping
approaches, results have shown that the automotive domain comprises typical
requirements and constraints that CP can fully utilize such that CP-based DSE
can potentially be more effective and efficient.

Along with the FMTV benchmark that is used in Sect. 6, several research
was presented in the recent years regarding solutions towards event chain latency
calculation [14], contention analysis [4] under different communication paradigms
[15,24], worst case execution/response time (WCET/WCRT) analyses [8], label
mapping [6] and more. However, none of those publications covers the broad
constraints described in this paper.

Hilbrich et al. present the most similar constraint programming approach
towards safety, time, and mixed critical systems in [16]. The ASSIST Toolsuite
is publicly available5 and addresses typical concerns of the avionics industry.
However, there are certain differences to the AMALTHEA model that is used
for this paper’s work. For instance, label (memory) accesses, label sizes, access
rates, runnable sequencing, stimuli diversity, or event chains of AMALTHEA
result in an increased amount of constraints as well as a deviation from respective
propagation approaches and variable domains.

Krawczyk et al. [22] present mapping algorithms in order to map tasks to
processing units via ILP and GA that have been extended by Cuadra et al.
in [9] towards the incorporation of the simulated annealing paradigm. These
implementations are taken as a reference to compare this work’s results in Sect. 7.
GA-based applications to automotive systems have been also investigated in [25].
Those results show, similar to generic multi-objective genetic algorithms in [11],
that evolutionary algorithms scale well especially for large-scale problems.

Finally, some commercial tools exist from companies such as Inchron GmbH,
Symtavision GmbH, Vector Informatik GmbH, and others that were not accessi-
ble to the authors that probably address constrained software distribution. Apart
from the scope, efficiency, and quality assessment of such commercial products,
it is expected that certain model transformations and integration activities con-
sume additional efforts when using a multitude of tools during the development
process.

Along with the investigation of related work, no publication could be found
that considers both a broader set of automotive constraints and an analysis of
different DSE methodologies for the partitioning and mapping problems.

3 System Model

This section defines model entities the subsequent sections make use of in order
to scope the problem space when distributing

(a) a set of runnables R = {r1, ..., ro}, |R| = o to tasks (partitioning) and

5 ASSIST Toolsuite https://github.com/roberthilbrich/assist-public, accessed
10.2018.

https://github.com/roberthilbrich/assist-public
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(b) a set of tasks T = {τ1, ..., τm}, |T | = m to a set of processing units PU =
{pu1, ..., pun}, |PU| = n (mapping)

while considering a vast amount of constraints. The partitioning result is denoted
by RA = (rai,j) ∈ {0, 1}o×m, i.e., a distinctive runnable assignment, and the
mapping result is denoted as T A = (taj,k) ∈ {0, 1}m×n, i.e., a distinctive task
assignment. We assume that each runnable and each task must be assigned stat-
ically to exactly one target, i.e., task and processing unit respectively. After
the partitioning, a task τj consists of an ordered sequence of pj runnables
τj = {rj,1, ...rj,p}. Processing units PU can be obtained from higher abstraction
levels such as micro controllers, cores, or ECUs, whereas communication costs
are considered according to the modeled architecture properties such as labels,
label sizes, label accesses, and access rates. Each processing unit puk is associ-
ated with a capacity puck = fk · ipck, i.e., the multiplication of the processing
unit’s frequency with its static instruction per cycle value. Consequently, puck is
normalized towards 1 s. We assume fixed priority scheduling as well as distinct
preemptive and cooperative task sets. Consequently, preemptive tasks can pre-
empt any lower priority tasks and cooperative tasks can preempt lower priority
cooperative tasks at runnable bounds only. Each runnable is associated with an
activation Ti and a worst case execution time ci that represents the instruction
costs the runnable requires for execution. Runnables inherit their activation to
the tasks they are assigned to: ∀ i with rai,j = 1 : Tj = Ti. Since ci often varies
and is described via Weibull distributions in AMALTHEA, upper bounds are
chosen as the worst case execution times in this paper. Despite Weibull estima-
tions, AMALTHEA provides different forms of instruction representations that
are omitted in this paper. Such properties are especially useful for simulation
frameworks such as [31] or others. The instruction cost ICj value of a task τj is
defined by the sum of its contained runnable instruction costs:

ICj =
∑

ri:rai,j=1

ci (1)

A task’s worst case execution time Cj,k is derived from ICj and depends on the
processing unit’s capacity puck the task is mapped to (taj,k = 1). For calcula-
tions in this paper, task’s activation patterns Tj are considered via one second
normalization as shown in the following Eq. 2.

Cj,k =
ICj · 1024

Tj

puck
(2)

with Tj in pico seconds that has been chosen as an appropriate time scale but
can also be changed to a different accuracy. 1024 is derived from 1012 for the 1 s
normalization in pico seconds multiplied with another 1012 to compensate the
denominator that is given in Hz, i.e., 1

second . We assume that task’s deadlines are
implicit to their activation. Activations can be periodic, sporadic, event-driven,
variable rate, relative periodic, and more6 whereas the former two are considered
6 See APP4MC documentation at http://eclip.se/fA, accessed 04.2019.

http://eclip.se/fA
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in this paper. For sporadic activation, the lower bound recurrence value (see
Footnote 6) is used to consider worst case arrival rates of the corresponding
tasks. Other activations go beyond the scope of this paper.

Data propagation between tasks is assumed to be achieved via the asyn-
chronous use of shared labels. Labels correspond to parameters saved to memory.
To determine the communication costs, a communication model like explicit,
implicit, or logical execution time (LET) is preferred to be used in terms of
AUTOSAR. The worst case response times (WCRT) of runnables and tasks
depend on scheduling and corresponding preemptions. The response time anal-
ysis from Baruah et al. in [3] that has been extended by Balsini et al. in [2], can
be used to calculate WCRT as well as event chain latency properties via recur-
rence relations. In addition, recent response time analysis solutions for adaptive
variable rate tasks presented by Biondi et al. in [5] can be further incorporated
to achieve more accurate WCRT analysis with a precise estimation of worst-
case interference. However, the communication cost cck calculation presented in
Sect. 5 uses Cj,k only and can be configured to consider latencies, WCRT, and
a corresponding communication paradigm. This configuration is omitted here
in order to achieve comparable results in regard to the existing evolutionary
algorithms, ILP solutions, and heuristics in Sect. 7. If configured differently, the
solution space would be more constrained and results could be worse. Minor
additions to this system model are made in the next sections along with specific
concerns that are correspondingly described.

The above mentioned model entities, that are just a subset of AMALTHEA,
excellently apply to the CP paradigm when addressing highly combinatorial
problems. The huge amount of sets, relations, and properties constitute all data
that a constraint model requires to potentially utilize CP benefits. For example,
aggregations such as activations, tags, or ASIL properties can be directly con-
verted to .allEqual(x[]) constraints that ensure that a valid solution must have
equal values for all variables in x.

4 Constraint Modeling

This section describes a subset of constraints applied to the previously outlined
model in order to calculate (a) the runnable to task partitioning and (b) the
task to processing unit mapping. Constraints are modeled using the open source
choco-library and its solver from Prud’homme et al. [27].

4.1 Runnable Partitioning Constraints

The first constraint shown in Eq. 3 outlines the activation aggregation (i.e. group-
ing) that applies consecutively to ASIL properties, tags, and runnable pair-
ings. For ASIL level and Tag references, Ti of Eq. 3 is replaced with Asili or
Tagi respectively, whereas Asili denotes the ASIL level reference of runnable
ri and Tagi its tag reference. Runnable pairings are modeled via ∀i ∈ rp :
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.allEqual (j|rai,j = 1) . Equation 3 defines that a partition, i.e., task, must not
contain runnables that commonly reference more than one activation.

∀ j with rai,j ∈ RA : .allEqual ({Ti|rai,j = 1}) (3)

Or in other words, a task must not contain runnables of different activations.
However, the amount of tasks per activation is not restricted by this constraint.

A combination of the Eq. 3 constraint and a dedicated existing heuristic
from [19] that is available at the APP4MC platform is chosen in order to quickly
partition models consisting of large runnable sets. In fact, a directed acyclic
graph is built from runnables and their label accesses and graph branches are
cut into tasks in order to ensure cause-effect-chains, i.e., read/write dependencies
that represent causal relationships. The heuristic forms the parameter initializa-
tion of the constraint-based partitioning that incorporates the various constraints
of this section.

As mentioned above, the same constraint of Eq. 3 is implemented for

– ASIL properties that classify automotive safety integrity levels into A, B, C,
D, and undefined according to ISO 26262 safety requirements and correspond-
ing identification of the software’s relation to potential hazards and risks (A
= lowest to D = highest)

– runnable pairings to pair e.g. functionally close runnables
– and tags in order to group, e.g., software components.

Since runnables inherit their properties to tasks, such constraints also hold for
the mapping process. Consequently, the constraint of Eq. 3 is also applied to the
task mapping for activations, pairings, and ASIL properties.

After ensuring the correct aggregations, Eq. 4 defines the constraint to ensure
runnable sequencing. Runnable sequencing constraints can have multiple groups
that can each reference an arbitrary amount of runnables. The constraint appli-
cation is straight forward. For each subsequent group pairs (rscgx, rscgy) across
all runnable sequencing constraints, the following rule holds:

∀ ra ∈ rscgx, rb ∈ rscgy : a < b with τj = {rj,1, ..., rj,a, ..., rj,b, ...} (4)

The constraint of Eq. 4 is implemented as an arithmetical constraint using the
smaller expression. Strictly defining runnable sequencing constraints ensures
causal orders and significantly eases system determinism.

Finally, the actual runnable to task partitioning constraint can be defined.
For this purpose, the RA boolean matrix is applied to a .sum constraint as
shown in Eq. 5.

∀ ri ∈ R :
∑

j≤m

rai,j = 1 (5)

I.e., a runnable is assigned to exactly one task.
In order to balance runnable loads to tasks, Eq. 6 sets the minimal task weight

(i.e. execution time) to a lower bound value (lbτi). Each scalar length equals the
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number of runnables (scalar constraint) so that the dot product of both scalars
has to be less or equal to the task’s lower bound value:

∀ τj ∈ T :
∑

i

〈rai,j , ci〉 ≤ lbτj (6)

The lower bound definition in Eq. 6 has been found useful for larger models in
order to decrease resolution time for load balancing.

Presented constraints are derived from the AUTOSAR standard [1]. They
are mandatory for real and valid scenarios and have been evolved since 2004.
New constraints can easily be added to the existing model in form of CP typical
constraints or even new variables and corresponding modeling.

4.2 Task Mapping Constraints

When mapping tasks to processing units, several assumptions must be made.
First of all, tasks must be mapped to exactly one processing unit, i.e., when
having a boolean matrix |T |× |PU|, i.e., n×m, the sum of booleans (true = 1)
across all processing units must be 1 for each task as stated in the following
Eq. 7:

∀ τj ∈ T :
∑

k

taj,k = 1 (7)

Equation 7 for task mapping corresponds to Eq. 5 for the runnable partitioning.
Of course, additional constraints have to follow to consider the various model

properties such as safety levels and avoid arbitrary results. Equation 8 begins
with defining the processing unit capacity constraint and ensures that no pro-
cessing unit is assigned with a set of tasks that would exceed the processing
unit’s execution capacity puck. Therefore, the task assignment scalar tak for all
tasks at processing unit puk is multiplied with the execution time scalar for all
tasks at the processing unit Ck (note here that Ci,j is the execution time of τi at
puj , and Ck is a scalar denoting all task execution times at puk). Hence, given
〈tak, Ck〉 =

∑
j (Cj,k · taj,k), and the task cost equation from Eq. 2 that contains

the task’s activation, the processing unit capacity constraint is defined by:

∀ puk ∈ PU : 〈tak, Ck〉 + cck(T A) ≤ puck (8)

This capacity constraint incorporates inter processing unit, inter micro con-
troller, and inter ECU communication costs denoted as cck. Additionally, timing
constraints are added such that every task τj meets its deadline Dj via Eq. 9:

WCRTj ≤ Dj (9)

with Dj denoting the deadline of task τj . In order to calculate WCRT ,
the classical recurrence relation method for preemptive tasks WCRTj,k =

Cj,k +
∑

h∈hp(j)

⌈
WCRTh,k

Th

⌉
Ch,k is used. Memory access and contention costs

go beyond the scope of this paper and are assumed to be accounted within Cj,k

values.
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The communication costs cck for each processing unit depend on the mapping
result T A as well as label to memory mapping. This specific label mapping is
omitted in this paper due to lack of space. The cck values are defined by the label
access rate derived from Tj , the label bit width bwl, and the available hardware

(e.g. crossbar) bit width bwhw, i.e., bml =
⌈

bwl

bwhw

⌉
, and the label access cycles

acl that is 9 cycles for accessing global memory or local memory of different
processing units and 1 cycle for local puk memory:

cck =
∑

j :taj,k=1

Tj

⎛

⎝
∑

l accessed by τj

bml · acl

⎞

⎠ with acl =

{
1 if l is at pu′

ks LRAM

9 otherwise

(10)
Here, acl values are derived from the FMTV challenge description in [21]. More
(formal) information about label accesses and dependency derivation can be
found at [18]. By replacing 9 with 9 + n − 1, further maximal FIFO arbitration
at the crossbar can be considered as described in [28]. For calculating commu-
nication costs for a single task, the notation ccj is used that uses the same
calculation as in Eq. 10 but without the first sum over all tasks j.

After applying tag and pairing constraints to tasks as in Eq. 3, activation
aggregations, i.e. grouping runnables referencing the same activation, can be
further extended with a validation of a hyper period existence as shown in Eq. 11:

∀ τj with taj,k = 1 : Tj ∈ hyp ∈ Phyp (11)

Equation 11 states that each task τj of a task set mapped to a processing unit
puk must reference an activation within a hyperperiod set hyp ∈ Phyp. Each
hyperperiod set hyp is defined by hyp ⊂ T : ∀ Tu ∈ hyp ∃ v · lcmhyp, v ∈ Z. A
hyperperiod set is a set of periodic activations, that has a single integer least
common multiple, i.e., the hyper period of the hyperperiod set. Hyperperiod
sets do not necessarily have to be distinct, such that periodic activations may
occur in several hyperperiod sets. Such validation can be used to lessen the pes-
simism of response time analysis approaches such as [3] and examine WCRT
values for scheduling approaches regarding a given task to processing unit map-
ping set. This paper’s investigations cover fixed-priority WCRT analysis for rate
monotonic scheduling (RMS) as referred to in Eq. 9. Work on considering more
sophisticated scheduling approaches, dynamic scheduling such as earliest dead-
line first (EDF), and event-chain latencies go beyond the scope of this paper.

Equation 12 defines the separation constraints in order to ensure that tasks
are not mapped to the same processing unit. Each task separation constraint
contains at least 1 group, i.e., a task subset, and optionally a target processing
unit or target scheduler. tsf,g denotes the f -th task separation constraint and
the g-th group within the separation constraint.

TS = {ts0, ...} : ts = {g0, ..., tpu} : g ⊂ T , tpu ∈ [1, k]
(a) ∀ τj ∈ tsf,0 : .allDifferent (k : taj,k = 1)
(b) ∀ g, τj ∈ tsf : .notMember (k : taj,k = 1, kog)
(c) ∀ τj ∈ tsf : .arithm (k : taj,k = 1, ”! = ”, tpu)

(12)
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If no target and a single group is defined, case (a) shows that all tasks must be
mapped to different processing units via using the .allDifferent constraint.
If no target and multiple groups are defined, case (b) of Eq. 12 shows that each
group must be mapped to different processing units via applying the .notMember
constraint. Here, kog is the set of processing unit indexes the other groups of the
same separation constraint are mapped to. If a specific target is defined in a
separation constraint, case (c) of Eq. 12 shows that all tasks across all groups
must not be mapped to the specified processing unit via using the arithmetical
constraint with an not equal operator.

Affinity constraints correspond to the task separation model whereas the
constraints (a)–(c) of Eq. 12 are replaced by (a) .allEqual, (b) .Member, and
(c) “=” instead of “!=”.

Typical use cases for separation and affinity constraints are separations from
interfering tasks or affiliations to specific hardware, e.g., floating point units, I/O
interfaces, memory intensive tasks, or similar.

5 Optimization

Within this paper, the focus is on two optimization parameters: minimizing
the maximal processing unit utilization across all processing units in percent
(max

k
(puuk)), i.e., load balancing, and minimizing the overall communication

costs (occ). Both optimization criteria are important to maximize resource uti-
lization and correspondingly the throughput, i.e., the amount of jobs finished in
a given time frame. In fact, both bad load balancing and high communication
costs lower the job throughput (amount of finished tasks to a given time) and
result in higher hardware costs as well as aggravated determinism and timing
analysis. Apart from the optimization, it is important to note that this work’s
DSE approaches are accompanied with the validation of previously described
constraints. A multitude of additional optimization criteria can be added but
are omitted here for comprehension reasons.

Beginning with the processing unit utilization optimization, Eq. 13 presents
the respective calculation using the dot product along the Ck and tak scalars:

puuk =
〈tak, Ck〉

puck
(13)

As described in Eq. 2 and Sect. 3, this calculation uses normalization towards
one second and considers task activation rates. The processing unit utilization
metric has been chosen over, e.g., remaining processing unit capacity because of
its simplicity and its applicability to heterogeneous architectures.

There are multiple ways to minimize the overall processing unit utilization
value. The most obvious one is defining a variable that is applied as a maximum
constraint across all processing unit utilization values, i.e., puumax = .max(puu).

This value is then applied to the solver with the minimization objective.
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Instead of minimizing the maximal processing unit utilization, maximizing
the minimal processing unit utilization is also possible. However, the latter app-
roach usually results in a larger solution space so that optimization time is
increased significantly because the amount of variable combinations is much
higher. Consequently, getting good or optimal results for large industrial models
takes significantly longer when targeting to maximize puumin. In other words,
if the upper bound on processing unit utilization is found, the min(puumax)
approach would stop the resolution process whereas the max(puumin) process
would continue aligning (maximizing) the remaining utilization values. In all of
the cases studied in this paper, minimizing the maximal processing unit uti-
lization provided sufficient results since the load balancing across lower utilized
processing units is not accounted within the measurements.

In addition to single parameter optimization, optimizing multiple parame-
ters can also be addressed with CP. Therefore, a pareto front is calculated that
optimizes multiple values towards the same objective, i.e., min or max. From
a value set of a pareto front, optimization parameters can also be weighted in
order to identify a single solution from a pareto front as being the final solution.
For example, having a pareto front with three solutions and two optimization
parameters to be minimized such as op0 = [2, 3, 8]; op1 = [4, 3, 1], the third
solution would be omitted when equally weighting op0 and op1 since its cumu-
lated optimization parameter is higher than the results from solutions 1 and 2
(2+4 = 6; 3+3 = 6; 8+1 = 9;→ opt3 > (opt1, opt2)). However, when weighting
op1 with 3, the results are 2 + 3 · 4 = 14, 3 + 3 · 3 = 12, 8 + 3 · 1 = 11 and conse-
quently solution three would be the best one. For the measurements presented in
this work, optimization parameters from the pareto front are equally weighted
as shown in Eq. 15.

Inter task communication (for the partitioning) and inter processing unit
communication (for the mapping) costs are combined with load balancing so
that both criteria are optimized towards their minimum value within the CPMO
approach (constraint programming using multi objective optimization).

Communication costs are derived from Eq. 10 with the addition that they
are 0 if a task pair is mapped to the same processing unit as stated in Eq. 14.

cc(T A) = (tdj,h)m×m : tdj,h =
{

0, if (j = h) ∨ (taj,k = tah,k)
ccj , if taj,k �= tah,k

(14)

This approach can be advanced in order to consider hardware ports that con-
nect arbitrary hardware instances using interfaces like CAN, Flexray, LIN,
MOST, Ethernet, SPI, I2C, AXI, AHB, APB, SWR, or custom ones7. While
this advancement is already in development, it is omitted here in order to com-
pare results with the existing DFG, ILP, and GA approaches.

By using the choco solver [27], one can make use of the powerful reification
paradigm in order to set constraints for certain situations only. Without reifica-
tion, calculating communication costs (i.e. occ(T A)) would be significantly more
complex. The approach of calculating overall communication costs based on a
7 http://eclip.se/f0 gives more information on hardware ports, accessed 01.2019.

http://eclip.se/f0
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Algorithm 1. occ calculation
Data: task communication costs td, task assignments ta
Result: overall communication costs occ(T A)

1 forall the processing units pu ∈ PU do
2 forall the task combinations τj , τh ∈ td do
3 only consider cases where at least one task is mapped to the current

processing unit pu:
4 if (taj,k ∨ tah,k) ⇒ τj or τh is mapped to puk then
5 if (taj,k∨ tah,k) then
6 set task dependency of puk for tasks at different processing units

to the task dependency value ccj,h = tdj,h

7 else
8 set task dependency for tasks mapped to the same puk to 0:

ccj,h = 0
9 end

10 end

11 end

12 end
13 occ(T A) =

∑
j,h ccj,h = the sum of all task’s communication costs

static dependency matrix td and reification (cf. Algorithm1 line 3) is shown in
Algorithm 1. It uses the pseudo code notation for a better understanding.

Line 8 ensures that the task dependency matrix is set to 0 for every task
pair that is mapped to the same processing unit. Instead of using a simple
.ifThenElse constraint at line 4, lines 4–8 are important to only keep a task
dependency, i.e., setting ccj,h to tdj,h, if and only if a task pair is mapped to dif-
ferent processing units in line 6. If tasks are mapped to the same processing unit,
ccj,h is set to 0 in line 8. Such situation is implemented using the exclusive or
statement in line 5 that is used as a reification for the arithmetic constraint
setting cc, i.e., the communication cost matrix, to the task dependency value in
line 8. Consequently, if no task of a task pair is mapped to a processing unit
(line 4 is false), ccj,h is not changed in any way since it may still be either 0 or
tdj,h.

As mentioned in Sect. 4, the method of calculating overall communication
costs shown in Algorithm 1 is independent of the underlying communication
paradigm such as explicit, implicit, or LET. Those paradigms are necessary
when calculating latencies and contention effects along with WCRT that is not
in scope of this paper.

Table 1 summarizes briefly the AMALTHEA constraints, requirements, or
methodologies as well as the correspondingly implemented constraints. Some
constraints were used in combination with additional variables or reification such
as the .ifThen constraint combined with the .addClausesXorEqVar boolean
variable (shown in Algorithm1, line 5). Additionally, different approaches are
implemented, e.g., for the partitioning, considering either integer or boolean
variables resulting in different constraint types. This was done in order to
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Fig. 1. Properties of DEM, FMTV, AIM, MG1, MG2, and MG3 models

overcome some scalability challenges and comparing the .binpacking constraint
with a combination of arithmetical constraints. Measurements showed that the
.binpacking constraint introduced overheads compared with the combination
of arithmetical expressions and boolean variables.

Nevertheless, Table 1 also shows the benefits of using constraint definitions
in contrast to, e.g., MILP, since the number of constraints remains relatively
small and their usage is more natural compared with a combination of multiple
inequality definitions.

6 Benchmarks

With the previously described constraint model, solution and optimization pro-
cesses have been applied to three industrial models as well as three hypothetical
models generated from a model generator as listed in Table 2.

Figure 1 presents the model properties of the respective models with the num-
ber of runnables, activations, runnable sequencing constraints (RSCs), labels,
and processing units. The slash pattern above some processing unit bars indicate
the amount of heterogeneous processing units that differ in frequency, instruc-
tions per cycle, or clock ratio from the basis processing units. In general, the

Table 1. Applied constraint types

AMALTHEA constraint Choco [27] constraint

Runnable-, process-,
ASIL-, or tag-pairing

.allEqual; .arithm(=);

Runnable-, or process-separation .allDifferent; .arithm(�=); .notMember;

Runnable sequencing .arithm(<, =); .allDifferentEx0; .max;

Processing unit utilization .scalar; .count; .min / .max;

Partitioning .binpacking; .min; .sum; .scalar;

Activations .allEqual; .arithm(≤ ); .and; .or;

Inter task communication .addClausesXorEqVar;
.ifThen;.arithm(=);
.count; .and;
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Table 2. Examined models

DEM Democar, an academic engine management
system available at [12]

FMTV An industry driven anonymized model
available at [21]

AIM An anonymized industrial model the
authors have been granted access to

MG1, MG2, MG3 Generated models

number of processing units shown in Fig. 1 has been used to calculate qual-
ity values for the evaluation shown in Fig. 2, but more processing units can be
modeled to calculate wider software mapping as exemplarily shown in Fig. 3.

Compared with other models, the Democar model contains fewest properties
due to the fact that it represents a single engine control unit only and it has
been manually modeled with academic content only in [12].

Each model is partitioned and mapped via six DSE approaches outlined in
Table 3.

Additionally, the above outlined benchmarks have been extended to feature
a varying number of (a) tasks and (b) processing units. Therefore, the measure-
ments were performed upon several benchmark clusters. Results are presented
and discussed in the following Sect. 7.

Results are saved within the model and utilized by compiler and linker scripts
in order to be executed as binaries on a target hardware. After the compila-
tion process, the static software distribution is not changed in accordance with
AUTOSAR.

7 Evaluation

This section discusses obtained results along with quality, runtime, as well as
scalability measurements. The partitioning process is not in scope of this eval-
uation but forms a requirement for the different task numbers along with mea-
surements such as Fig. 4. Quality results are shown as scatter plots puumax(occ)
in Fig. 2 as well as line charts that form speedup plots sumax(#processingunits)
in Fig. 3, and the occ(#processing units) plot in Fig. 5(b). Runtimes are pre-
sented in line charts along Figs. 4 and 5(a). All line charts also provide infor-
mation about the DSE’s scalabiliy, due to their x axis representing either the
number of tasks or the number of processing units as indicated.

7.1 Quality

Figure 2 presents the qualities of the six different DSE approaches measured as
puumax(occ), i.e., the maximal processing unit utilization of the results depend-
ing on the number of overall communication costs. Each scatter plot (a)–(f) in
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Table 3. DSE approaches applied to the models

DFG Data flow graph heuristic [22]

ILP Integer linear programming using oj!algo8 [22]

GA Genetic algorithm using jenetics9 [22]

CP Constraint programming without any optimization using
the library from [27]

CPLB CP + optimization for load balancing, i.e., minimizing the
maximal processing unit utilization using the library
from [27]

CPMO CPLB + optimization for overall communication costs
(occ) → multi objective optimization using the library
from [27]

8 ojAlgo library http://ojalgo.org, accessed 10.2018
9 Jenetics library http://jenetics.io, accessed 10.2018

Fig. 2 concerns a distinct model (each model’s properties are shown in Fig. 1)
and features measurements of 3 different task amount configurations for each
solution. The respective model and task configurations are indicated along with
each subplot’s title. For comprehension purposes, the concrete results are in
light gray color whereas the mean values across the three tasks configurations
are added as colored symbols.

With (a), the Democar model, the optimal puumax value was achieved for
CPLB and GA whereas CPLB features a lower occ value. DFG and ILP results
are close to the optimum and GA has slightly higher occ values for 10 and
20 tasks. Interestingly, CPMO found solutions with significantly less commu-
nication costs across all task configurations. Whilst weighting the optimization
objectives equally, this difference in communication costs even compensates the
worse puumax values > 0.9. This pareto front evaluation is shown in Eq. 15.

∀sq ∈ pf : 0 ≥
puusf

− puusq

puusf

+
occsf

− occsq

occsf

(15)

Here, pf denotes the pareto front, sq is any solution from the pareto front, and
sf is the final (chosen) solution. Consequently, for the two example solutions
s1 : puus1 = 0.7; occs1 = 15 and sf : puusf

= 0.8; occsf
= 5, Eq. 15 ensures

that 0 ≥ 0.8−0.7
0.7 + 5−15

5 ⇒ 1
7 − 2 = − 13

7 ≤ 0 holds for all solutions of the pareto
front.

The CP approach only identifies valid solutions, has no optimization at all,
and consequently creates the worst solution quality across almost all models and
configurations. However, CP features the lowest execution time compared with
any other approach, even with DFG. Given the fact that all constraints can be
easily covered with CP in contrast to DFG, CP may still be an appropriate choice
for quickly identifying valid solutions whilst considering a variety of necessary
constraints that all need to be fulfilled in a given solution.

http://ojalgo.org
http://jenetics.io
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Fig. 2. Quality of six DSE approaches (DFG, ILP, GA, CP, CPLB, CPMO) along with
the six models DEM, FMTV, AIM, MG1, MG2, and MG3

As soon as larger models are addressed, i.e., subplots (b)–(f) in Fig. 2, CPLB
creates the best (lower puumax, lower occ values) results for most measurements.
Even setting the runtime to a single minute created better results compared with
other DSE approaches. For instance, at the generated model (d) MG1, CPLB
has lowest puumax across all results. Here, the runtime was set to one minute
whereas the ILP solver did not create any feasible results. The shown ILP values
feature a runtime of 5 min and still do not reach comparable results to CPLB.
For (e) MG2 and (f) MG3, ILP was not able to provide any results for 256 and
512 tasks, such that no ILP mean values are shown in the diagrams. This is due
to the fact that the ILP solver does not scale well with the number of processing
units and tasks as shown in the next Subsect. 7.2 and it does not reliably address
heterogeneous processing units at all.

Interestingly, the DFG approach quickly found the optimal solution for 256
and 512 tasks in Fig. 2(e) i.e., the MG2 model. This is due to the fact that there
is a relatively large task that contains a long sequence of runnables, i.e., a task
that can not be further subdivided, and the DFG simply sorts tasks by their
instruction costs and assigns those beginning with the largest chronologically to
an ordered list of processing units beginning with the fastest (most instructions
per second). However this greedy heuristic rarely results in good solutions as the
other subplots, e.g., (b), (c), or (d) show.

Figure 3 presents the speedup of (a), the MG1 model, and (b), the
FMTV model, along with an increasing number of homogeneous processing
units (speedup (#processing units)). The used speedup calculation is based
on [13] and provided in Eq. 16. Measurements from here on were repeated five
times and shown values are mean values across those five benchmarks in order
to mitigate measurement jitter caused by the operating system.
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Fig. 3. Speedup (#processing units) of different DSE results for (a) MG3 and
(b) FMTV

speedup =

∑
j

(
min

k
(Cj,k)

)

max
k

(
∑
j

Cj,k| taj,k = 1

) (16)

Here, the nominator defines the minimal sequential runtime of all tasks (
∑

j)
being mapped to the fastest processing unit. The denominator depends on the
task mapping ta and identifies the maximal runtime across all processing units,
i.e., parallel runtime. This speedup calculation is applicable to a heterogeneous
processing unit structure and can be seen as the fraction of the time before the
parallelization and the time after the parallelization as introduced in [13].

Due to limited dependencies between the tasks and runnables as well as a
relatively homogeneous instruction distribution, almost optimal speedup factors
can be reached whereas CPLB found the best values correspondingly to Figs. 2(f)
and 3. Surprisingly, the DFG approach creates better results for the MG3 model
compared to GA. However, this is not the case for the FMTV model as shown
in Fig. 3(b) due to its more heterogeneous nature. While ILP was not able to
scale beyond 8 processing units, CPLB required significantly more runtime after
the amount of 16 processing units. The optimal, model independent, speedup
value equals the number of processing units, but is barely achievable due to
communication costs and varying task sizes.

With the FMTV model (cf. Fig. 3(b)), the speedup is saturated at 16 pro-
cessing units due to the fact that there is a single task that can not be subdivided
further and consequently forms the lower bound on schedule length. In order to
avoid saturation, the model would have to provide less dependencies and more
homogeneous tasks regarding their sum of instruction costs. While the difference
between GA and CPLB is smaller in (b) compared with (a), CPLB still provides
the best results along all number of processing units. As mentioned before, the
DFG approach produces worse results in (b) whereas CP was able to achieve



Constrained Software Distribution for Automotive Systems 585

Fig. 4. Runtime(#tasks) of different DSEs for (a) Democar and (b) FMTV

better results than in (a). Other than that, results are similar to the MG3 model
in (a).

7.2 Runtime and Scalability

Figure 4 presents the runtime, i.e., the efficiency, of different DSE approaches
along with an increasing number of tasks (rt(#Tasks)) for (a) the Democar
and (b) the FMTV model. Measurements were taken with an Intel i7 quad core
computer running at 2,2 GHz with 16 GB Ram.

Results show that the multi-objective constraint programming approach
(CPMO) scales worst with the number of tasks as it is the only approach with
multi-objective optimization. The way the CPLB approach scales highly depends
on the model structure. As soon as there is a single task defining the lower bound
on the maximal processing unit utilization, i.e., a comparably large task that
contains a high instruction cost and is consequently mapped to the fastest pro-
cessing unit, CPLB will run quicker than ILP, DFG, or GA. If tasks’ instruction
costs are balanced, CPLB scales worse than ILP with the number of tasks, but
better with the number of processing units. It is important to note though, that
CPLB was always able to find at least a valid solution, while the ILP solver
failed, e.g., regarding MG2 and MG3 (cf. Fig. 2(e), (f)), even with 12 h of res-
olution time. Furthermore, even if the constraint solver did not investigate the
complete solution space, solutions feature better results, i.e., lower inter task
communication and lower processing unit utilization, compared with DFG, ILP,
or GA results (cf. CPLB marks at Fig. 2(a)). Concerning larger models, the sin-
gle objective constraint approach (CPLB) outperforms almost every DFG, ILP,
and GA result (except Fig. 2(e) and (f) for |T | = 512) whereas the CPMO tends
to create worse results beyond a task number of 65.

Figure 4(a) also shows that all approaches except CPMO stay almost linear
below 200 ms in runtime whereas the CP, DFG, and CPLB approaches are yet
the quickest with insignificant deviations. When applying the various DSEs to
bigger models, the situation is similar: CPLB meets its limits to investigate the
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complete solution space at about 60 tasks, whereas ILP does the same at around
100 tasks. CPLB however finds valid solutions already at the same time the CP
approach does (< 5ms), while ILP may not provide solutions before its resolution
time at all.

Figure 5 presents the runtime (a) and the occ values (b) of different
DSE approaches along with an increasing number of processing units
(rt(#processing units)) for the FMTV model.

Fig. 5. (a) Runtime (#processing units); (b) occ (#processing units) of different DSEs
for FMTV

Once again, CPMO performs with its maximal runtime definition (here set to
15 min) and CP finds valid solutions most quickly. The GA approach performs
well but still takes longer than CP for each result. The worst scaling behav-
ior shows the ILP approach. Above 8 processing units, the ILP solver did not
find a valid solution at all. CPMO does also not scale well with the number
of processing units and fails beyond 16 processing units for the same execution
time restriction. Interestingly, the CPLB approach starts with requiring the full
defined runtime but drops to the minimal runtime with 16 processing units and
above. This is due to the fact that below 16 processing units, the solution space
covers a huge variety of task to processing unit mapping combinations resulting
in different maximal processing unit utilizations. As soon as 16 or more pro-
cessing units are available, one relatively huge task defines the upper bound of
processing unit utilization and mapping the other tasks to other processing units
will not reduce this maximal processing unit utilization. Consequently, since the
optimization targets only at minimizing the upper processing unit utilization
bound but not maximizing the lower bound (this would in contrast keep the
CPLB resolution time high), its optimization is done and solutions are available
quickly. Figure 5(b) also shows a linear increase of communication costs with
the increasing number of processing units as well as the CPMO approach with
lowest occ values.

As soon as a heterogeneous structure of processing units is present, the puuk

metric shows its benefits since no additional calculations must be performed and
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the utilization values consider processing unit specific properties. Additionally,
the CP solver can be configured to a specific initialization in order to overcome
the arbitrary initial assignment values that often creates an undesired homoge-
neous mapping along with the heterogeneous system. For example, instead of
the processing unit capacity constraint only, the initial assignment could feature
another lower bound comparable to Eq. 6, i.e., ∀ puk :

∑
j taj,k ≥ 1 with m ≥ n.

Assuming that the task number is higher than the number of processing units,
this equation ensures that at least one task is mapped to each processing unit.
This could also be extended in order to map the largest tasks to the fastest pro-
cessing units following the DFG strategy. Therefore, tasks and processing units
are arranged in a descending order (regarding ICj and puck) and the ta matrix is
initialized with corresponding values such that the largest task is mapped to the
fastest processing unit and following tasks are mapped respectively to mitigate
initial mapping efforts and reduce resolution time.

With applying the 6 DSE approaches to more generated models, results did
not show significant deviation from results presented above. It was observed that
the threshold for speedup limitation and the CPLB runtime always depends on
whether there exists a task that defines the lower bound on execution time when
increasing the number of processing units (cf. Figs. 3(b) and 5(a)).

8 Conclusion

The proposed CP-based DSEs provide a wide flexibility for engineers facing the
highly constrained problem of distributing real-time and mixed-critical software
to heterogeneous hardware with varying architectural structures and patterns.
The lightweight CP approach without any optimization has shown to provide
valid solutions faster than any other comparable approach such as DFG, ILP,
or GA. The single objective optimization approach CPLB provides optimal or
nearly optimal solutions for most of the measurements. In only 11% of all mea-
surements, CPLB did not provide the best processing unit utilization values. For
73% of all measurements, CPLB defines the best overall result quality regarding
occ and puumax values. The CPMO approach covers multi objective optimiza-
tion with assessable pareto fronts in an appropriate amount of time. For optimal
results however, the multi object constraint programming solution requires sig-
nificantly more time.

A great benefit of using the CP paradigm is also an automatic constraint
validation that will inform programmers about any contradicting or erroneous
model entities, variable bounds, or constraints. Such validation requires addi-
tional efforts when using different DSEs.

Additionally, this paper’s work has shown that CP applies very well to highly
constrained domains consisting of combinatorial design spaces such as automo-
tive systems. It preserves the natural modeling and programming activities while
providing optimal, pareto optimal, or nearly optimal solutions in an appropri-
ate amount of resolution time. Typical automotive constraints, consecutive con-
straint modeling, and solving partitioning and mapping problems with a con-
straint solver are presented. The CP solver’s perception is very natural since its
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constraints often directly correspond to AMALTHEA entities and the CP SAT
solver uses mainly clauses and backtracking search rather than linear inequalities
only as in ILP. This also takes effect when adapting optimization goals which
CP tackles on a more natural level. In addition to the efficiency and quality
assessments of the described approaches, their benefits of effort mitigation when
investigating highly constrained solution spaces are presented. We can conclude
that if optimization is less important rather than getting valid solutions as quick
as possible, CP is the prior choice. If constraints are of non integer nature or if the
model is subject to a high amount of interleaving constraints of different types,
CP, CPMO, and CPLB are the prior choice. If implementation simplicity is in
focus, local search heuristics (such as DFG) can be useful for simple problems
without any optimality demands. Genetic algorithms scale well for single objec-
tive optimization if the problem can be represented via few and simple mutation
characteristics. Further work is intended to advance the utilization and response
time analysis for various scheduling methods and to adjust optimization goals
to consider further parameters such as memory contention or task chain latency.

To the best of the authors’ knowledge, this paper is the first approach that
considers AUTOSAR compliant constraints on a broader level and compares
different DSE methodologies for the software distribution problem in the auto-
motive domain.
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