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Abstract. Low-complexity is as important as prediction accuracy for video
quality assessment (VQA) metrics to be practically deployable. In this paper, we
develop an effective and efficient full-reference VQA algorithm, called Spatio-
temporal Structural-based Video Quality Metric (SSVQM). To be more specific,
spatio-temporal structural information is sensitive to both spatial distortions and
temporal distortions. We calculate spatio-temporal structure based local quality
according to spatio-temporal gradient characteristics and chrominance infor-
mation. Then, these local quality scores are integrated to yield an overall video
quality via a spatio-temporal pooling strategy simulating three most important
global temporal effects of the human visual system, i.e. the smooth effect, the
asymmetric tracking effect. Experiments on VQA databases LIVE and CSIQ
demonstrate that our SSVQM achieves highly competitive prediction accuracy
and delivers very low computational complexity.
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1 Introduction

Video quality assessment (VQA) plays a central role in various video-related appli-
cations. It is often employed in quality control of various video services and perfor-
mance comparison of various video processing algorithms. Objective VQA models
[1, 2] have been designed to evaluate video quality in line with the human visual
system (HVS). Considering accurate and stable, full-reference VQA (FR-VQA) has
been widely used in video processing and coding [2]. FR-VQA intends to estimate
video quality quickly and precisely, in which peak signal-to-noise ratio (PSNR) has
been the dominant quantitative indicator in image and video processing. However,
PSNR does not always correlate well with HVS [3]. The drawback will slow down the
development of video processing technology, especially the further promoting of video
compression efficiency. In image quality assessment (IQA), based on the assumption
that the HVS is highly adapted for extracting structural information from the scene,
Structural SIMilarity (SSIM) index [4] was proposed to bring IQA from pixel-based
stage to structure-based stage. Then, some state-of-the-art FR-IQA algorithms were
developed, such as Feature SIMilarity (FSIM) index [5] and Gradient Magnitude
Similarity Deviation [6], etc.
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A straightforward approach to VQA is to use these state-of-the-art IQAs for an
independent frame and then average all the frame level scores to obtain a composite
score. However, due to the lack of temporal information, this approach did not worked
well. Other methods deal with motion information either by incorporating motion
characteristics into the frame weighting to account for their effects on the spatial
distortion, or by modeling the temporal distortion and spatial distortion independently.
Video Quality Metric (VQM) [7], MOtion-based Video Integrity Evaluation (MOVIE)
[8], Spatio-Temporal MAD (STMAD) [9], spatial and spatiotemporal slices based ViS3
[10] and [11, 12] are the state-of-the-art FR-VQA metrics. Although these approaches
improved performance compared to PSNR, a number of shortcomings, including high
implementation and computational complexity, long latency and difficulty to integrate,
still need to be resolved.

This paper proposes an efficient FR-VQA algorithm, called Spatio-temporal
Structural-based Video Quality Metric (SSVQM). We extend the assumption of SSIM
to VQA, i.e. HVS is highly adapted for extracting spatio-temporal structural infor-
mation from dynamic scene. The whole video sequence is regarded as a pixel volume,
and local quality is calculated according to spatio-temporal gradient and chrominance
characteristics, which are both sensitive to spatial distortions and temporal distortions.
Then, local quality scores are integrated to yield an overall video quality via a spatio-
temporal pooling strategy simulating three most important global temporal effect.
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Fig. 1. Framework of the proposed SSVQM.
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2 The Proposed SSVQM

In Fig. 1, the framework of the proposed SSVQM mainly consists of two phases:
spatio-temporal structure based local quality calculating and spatio-temporal pooling.
We use 3D Prewitt operator to calculate spatio-temporal gradients of reference and
distorted video sequences.

We compare the video gradients detected by 2D Prewitt operator used in [7] and 3D
Prewitt operator used in our SSVQM and the results are shown in Fig. 2. It can be clear
that 2D Prewitt operator only detects spatial gradients, whereas 3D Prewitt operator can
detect both temporal and spatial gradients. The rough edge represents motion, and the
thin edge represents static, which can be used to measure temporal distortion.

The proposed SSVQM estimates video quality of the reference and distorted videos
in the YUV color space. The luminance component of the reference and distorted video
are denoted as Yr and Yd, respectively. The spatial resolution of each video is W � H,
F is the total frames evaluated. Assume the luminance component of each video as a 3-
D matrix with size of H � W � F. The original video gradient amplitude and distorted
video gradient magnitude, denoted as Gr and Gd, are computed via.

(a)             (b)

(c)                (d)

(e)                     (f)

Fig. 2. Comparison of gradient calculated by 2D Prewitt operators and 3D Prewitt operators.
(a) and (b) are frames from distorted video, (c) and (d) are gradients detected by 2D Prewitt
operators, (e) and (f) are gradients detected by 3D Prewitt operators.
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Gr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yr � Fxð Þ2 þ Yr � Fy

� �2 þ Yr � Fzð Þ2
q

ð1Þ

Gd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yd � Fxð Þ2 þ Yd � Fy

� �2 þ Yd � Fzð Þ2
q

ð2Þ

where the symbol � denotes the convolution operation, and Fx, Fy and Fz are three
templates of 3D Prewitt operator along direction of x-axis, y-axis and t-axis, respec-
tively. The gradient similarity of reference and distorted video sequence denoted as
Gsim, is computed via

Gsim ¼ 2Gr �Gd þ c1
G2

r þG2
d þ c2

ð3Þ

where c1 is a positive constant to increase stability and fine-tune the feature sensitivity
to distortions.

Distortions of chrominance information will also seriously affect the video quality.
Generally, the spatial size of two chrominance components both are only 1/4 of the
luminance component in widely used YUV420 format. In addition, chrominance
components adopt the same encoding scheme as luminance component when video is
encoded. Both factors make chrominance components an easy source of degeneration,
and therefore chrominance information is an important factor to be considered in the
VQA algorithm.

We calculate the chrominance similarity using two chrominance components in
YUV format video as [5]. Two chrominance components of the original and distorted
video are denoted as Ur, Vr and Ud, Vd respectively, and the chrominance similarity
denoted as Csim, is computed via

Csim ¼ 2Ur � Ud þ c2
U2

r þU2
d þ c2

� 2Vr � Vd þ c3
V2

r þV2
d þ c3

ð4Þ

where c2 and c3 are positive constants. Here, we set c1 = 90, c2 = c3 = 300, and fix them
for all databases so that SSVQM can be conveniently used. Gsim and Csim can then be
combined to get the spatio-temporal structure based local quality, denoted as QLS.

QLS ¼ Gsim � Csimð Þk ð5Þ

where k > 0 is the parameter for adjusting the importance of two chromatic compo-
nents. Here, k is set to 3 in order to emphasize the effect of severely distorted in
chrominance components.

In this paper, each video is regarded as a pixel volume at the local quality calcu-
lating stage ignoring global temporal effects of HVS. At the spatio-temporal pooling
stage, the frame-level quality is obtained via an efficient spatial pooling method, then
these frame-level quality scores are integrated to yield an overall video quality via a
temporal pooling method simulating three most important global temporal effects.
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Spatial pooling: The simplest and widely used pooling strategy is average pooling.
Here, we adopt a more efficient standard deviation pooling [7] method to calculate
frame-level quality. Each pix-level quality in QLS is denoted as QLS(x, y, t), where x
2{1,…, H}, y 2{1,…, W}, z 2{1,…, F}, and frame-level quality can be computed via.

Qmean tð Þ ¼ 1
H �W

XH
x¼1

XW
y¼1

QLS x; y; tð Þ ð6Þ

Qframe tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
H �W

XH
x¼1

XW
y¼1

QLS x; y; tð Þ � Qmean tð Þð Þ2
vuut ð7Þ

Note that a smaller value indicate higher quality, which is opposite to the average
pooling method.

Temporal pooling: In this paper, we mainly consider three most important global
temporal effects of HVS: (1) the smooth effect [13], i.e. the subjective ratings of the
whole video sequence typically demonstrate far less variation than the frame-level
quality scores. This effect can be simulated by low-pass filtering frame-level quality
scores; (2) the asymmetric tracking effect [14], i.e. HVS is more sensitive to frame-
level quality degradation than improvement. This effect can be simulated using dif-
ferent weights for quality rising and quality declining; (3) the recency effect [15], i.e.
subjects tend to put a higher weigh on what they have seen most recently. This effect
can be simulated using a time-related weight. The implementation in [16] accurately
describes the smooth effect and the asymmetric tracking effect. We improved the model
by integrating logarithmic function weights to simulate the recency effect. The final
video quality denoted as Q, is computed via

QLP ¼ QLP t � 1ð Þþ a � DQ tð Þ; if DQ tð Þ� 0

QLP t � 1ð Þþ b � DQ tð Þ; if DQ tð Þ[ 0

(
ð8Þ

Q ¼ 1
F

XF
t¼1

QLP tð Þ � ln r � tþ 1ð Þð Þ ð9Þ

where DQ ¼ Qframe tð Þ � QLP t � 1ð Þ, QLP (1) = Qframe (1), a and b are asymmetric
weighs, and c is a positive constant for adjusting time-related weighs. Unlike [11], we
just rough-tune these parameters and fix them as fallow: a = 0.03, b = 0.2 and c = 1000.
It is worth noting that the performance can be improved if we independently fine-tune
these parameters for each database, but generalization capability of our pooling method
will be slightly affected.
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3 Experimental Results and Discussion

Two publicly VQA databases are used in experiments:

(1) LIVE [17]: LIVE VQA database contains 10 reference videos with four different
distortions: MPEG-2 compression, H.264/AVC compression, simulated trans-
mission of H.264-compressed bit-streams through error-prone IP networks and
error-prone wireless networks, a total of 150 distorted videos. All videos are in
YUV420 format with a resolution of 768 � 432 pixels, two kinds of frame rates:
25 and 50 fps, and about 10 s in duration.

(2) CSIQ [18]: CSIQ VQA database contains 12 reference videos with six different
distortions: MJPEG compression, H.264/AVC compression, H.265/HEVC com-
pression, wavelet compression, packet-loss simulated transmission of H.264-
compressed bit-streams through wireless networks and additive white Gaussian
noise, a total of 216 distorted videos. All videos are in YUV420 format with a
resolution of 832 � 480 pixels, 10 s in duration and five kinds of frame rates: 24,
25, 30, 50 and 60 fps.

Two performance indicators are used in our experiments: Linear Correlation
Coefficient (LCC) and Spearman Rank Order Correlation Coefficient (SROCC). LCC
measures the prediction accuracy and SROCC measures the prediction monotonicity.
We apply a four-parameter logistic transform before computing LCC as recommended
by video quality experts group (VQEG) [19]. It is worth noting that VQA on the
appropriate scale will be most effective and efficient. Instead of up-sampling two
chrominance components for YUV420 format video, luminance component is filtered
by a 2 � 2 average filter in spatial domain first, and then down-sampled by a factor of
2. In this way, not only the size of luminance component and two chrominance
components match, but also the complexity of SSVQM is reduced without jeopardizing
the prediction accuracy.

The proposed FR-VQA metric, SSVQM, compared with eight well-known quality
metrics, including three FR-IQA metrics: PSNR, SSIM, FSIM, four FR-VQA metrics:
VQM, MOVIE, STMAD, ViS3, and one RR-VQA metric STRRED [20] on the LIVE
and CSIQ VQA databases. Here, three FR-IQA metrics are extended to video. The
results are listed in Table 1 and clearly SSVQM is superior to other metrics on the
LIVE database. On the CSIQ database, SSVQM and ViS3 provide similar SROCC, and
both are superior to the other metrics.

We also compare the complexity of our SSVQM with other eight metrics on a
video sequence with 250 frames from LIVE VQA database using a Lenovo desktop
(Intel Core i5-4590 CPU @3.30 GHz, 8G RAM, Windows 7 64-bit, MATLAB®
R2014b). Except MOVIE implemented using C++, all other metrics are implemented
using MATLAB, and all source codes were obtained from the original authors.
Our SSVQM is also implemented using MATLAB without any optimization. The
results are listed in Table 2. The complexity of SSVQM is very low, only 5 times of
PSNR. The complexity of ViS3, STMAD and MOVIE are 28 times, 70 times and 380
times of our SSVQM, respectively.
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4 Conclusions

In this paper, an effective and efficient full-reference video quality assessment algo-
rithm has been proposed, called Spatio-temporal Structural-based Video Quality Metric
(SSVQM). Spatio-temporal structure based local quality is calculated according to
spatio-temporal gradient characteristics and chrominance information. Then, these local
quality scores are integrated to yield an overall video quality via a spatio-temporal
pooling strategy simulating three most important global temporal effects of human
visual system, i.e. the smooth effect, asymmetric tracking effect. Experiments on LIVE
and CSIQ VQA databases demonstrate that the proposed SSVQM can achieve highly
competitive prediction accuracy and delivers very low computational complexity. In
future work, we will focus on low-complexity video quality assessment of high-
definition videos and stereoscopic videos.

Acknowledgments. The work was partly supported by the Natural Science Foundation of China
(61671258,61871247).

Table 1. LCC and SROCC on LIVE and CSIQ VQA databases

Metrics LIVE CSIQ
LCC SROCC LCC SROCC

PSNR 0.5397 0.5231 0.5663 0.5798
SSIM 0.5068 0.5233 0.6389 0.5811
FSIM 0.6823 0.7318 0.7211 0.7503
VQM 0.7708 0.7563 0.7697 0.7893
MOVIE 0.8116 0.7890 0.7884 0.8061
STRRED 0.8038 0.8007 0.7894 0.8129
STMAD 0.8303 0.8251 0.7237 0.7355
ViS3 0.8336 0.8168 0.8222 0.8325
SSVQM 0.8632 0.8475 0.8099 0.8302

Table 2. Running time of SSVQM and other eight metrics

Metrics Running time (s)

PSNR 1.3
SSIM 6.3
SSVQM 6.5
VQM 26
FSIM 53
STRRED 97
ViS3 182
STMAD 455
MOVIE 2470
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